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ABSTRACT 

 

Evolution of Frictional Behavior of Punchbowl Fault Gouges Sheared at Seismic Slip 

Rates and Mechanical and Hydraulic Properties of Nankai Trough Accretionary Prism 

Sediments Deformed at Different Loading Paths. (December 2010) 

Hiroko Kitajima, B. S., Kyoto University 

Co-Chairs of Advisory Committee:  Dr. Frederick M. Chester 
    Dr. Judith S. Chester 

 
 

Frictional measurements were made on natural fault gouge at seismic slip rates using a 

high-speed rotary-shear apparatus to study effects of slip velocity, acceleration, 

displacement, normal stress, and water content. Thermal-, mechanical-, and fluid-flow-

coupled FEM models and microstructure observations were implemented to analyze 

experimental results. Slightly sheared starting material (Unit 1) and a strongly sheared 

and foliated gouge (Unit 2) are produced when frictional heating is insignificant and the 

coefficient of sliding friction is 0.4 to 0.6. A random fabric gouge with rounded 

prophyroclasts (Unit 3) and an extremely-fine, microfoliated layer (Unit 4) develop 

when significant frictional heating occurs at greater velocity and normal stress, and the 

coefficient of sliding friction drops to approximately 0.2. The frictional behavior at 

coseismic slip can be explained by thermal pressurization and a temperature-dependent 

constitutive relation, in which the friction coefficient is proportional to 1/T and increases 

with temperature (temperature-strengthening) at low temperature conditions and 
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decreases with temperature (temperature-weakening) at higher temperature conditions. 

The friction coefficient, normal stress, pore pressure, and temperature within the gouge 

layer vary with position (radius) and time, and they depend largely on the frictional 

heating rate. The critical displacement for dynamic weakening is approximately 10 m or 

less, and can be understood as the displacement required to form a localized slip zone 

and achieve a steady-state temperature condition.  

The temporal and spatial evolution of hydromechanical properties of recovered from 

the Nankai Trough (IODP NanTroSEIZE Stage 1 Expeditions) have been investigated 

along different stress paths, which simulate the natural conditions of loading during 

sedimentation, underthrusting, underplating, overthrusting, and exhumation in 

subduction systems. Porosity evolution is relatively independent of stress path, and the 

sediment porosity decreases as the yield surface expands. In contrast, permeability 

evolution depends on the stress path and the consolidation state, e.g., permeability 

reduction by shear-enhanced compaction occurs at a greater rate under triaxial-

compression relative to uniaxial-strain and isotropic loading. In addition, experimental 

yielding of sediment is well described by Cam-Clay model of soil mechanics, which is 

useful to better estimate the in-situ stress, consolidation state, and strength of sediment in 

nature. 
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1. INTRODUCTION 

 

Devastating earthquakes regularly occur at plate boundaries. Despite considerable 

research, the mechanics of faulting and the physics of earthquake instability are still not 

well understood. Both brittle and ductile deformation associated with large earthquakes, 

slow slip events, and creep occur at different conditions of pressure, temperature, and 

strain rate, and are controlled by interactions of mechanical and chemical processes of 

crack growth, frictional slip, lithification, metamorphism, fluid-flow, dissolution, 

cementation, solute transport, and heat transfer. It is crucial to understand the 

mechanical, hydraulic, and frictional properties of fine-grained, granular geomaterials at 

conditions of pressure, temperature, and strain rate that are appropriate to each 

deformation and recovery processes. Here I study on (1) the frictional behavior of fault 

rocks at seismic slip rates to understand dynamic weakening during earthquake slip, and 

(2) the evolution of hydromechanical properties of sediments at different stress states 

and stress histories in order to understand seismogenesis in subduction zones.  

In Sections 2 and 3, I study the frictional behaviors of fault rocks at seismic slip 

rates. I report high-speed rotary-shear gouge friction experiments on Punchbowl fault 

gouge at different conditions of slip velocity, acceleration, displacement, normal stress, 

and water contents. In the rotary-shear configuration, slip rates and displacement vary 

with radius. In addition, considerable heat generation can cause variation in temperature 

and normal stress, and thus in coefficient of friction. In Section 2, we make an assumption 

____________ 
This dissertation follows the style of Journal of Geophysical Research. 
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that normal stress is heterogeneous but coefficient of friction is homogeneous in 

samples. We employ thermal-mechanical coupled finite element (FEM) models to 

analyze mechanical data of high-speed rotary-shear experiments. We also study 

microstructures of radial-cut sections of friction experiments to understand the 

microprocesses during co-seismic slip. In Section 3, we develop temperature-dependent 

constitutive relations of friction from the experimental results presented in Section 2. We 

run coupled thermal, mechanical, and fluid-flow models to test the constitutive relations. 

The models can treat heterogeneous evolution of normal stress, temperature, coefficient 

of friction, and pore fluid pressure in the sample. 

In Section 4, we study the evolution of hydromechanical properties of sediments at 

different stress states. We report triaxial deformation experiments along different stress 

paths on the sub-seafloor sediment samples from the Nankai Trough accretionary 

subduction zone. Different stress paths simulate the natural conditions of loading during 

sedimentation, underthrusting, underplating, overthrusting, and exhumation. Combining 

the experimental results and logging data, we constrain the in-situ stress states and 

strength. 
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2. HIGH-SPEED FRICTION OF FAULT ULTRACATACLASITE IN ROTARY 

SHEAR: CHARACTERIZATION OF FRICTIONAL HEATING, MECHANICAL 

BEHAVIOR, AND MICROSTRUCTURE EVOLUTION* 

 
2.1. Introduction 

Although great progress has been made in understanding the dynamics of 

earthquakes, an adequate understanding of the microscopic processes of faulting that 

influence the nucleation, propagation and arrest of earthquake rupture remains elusive 

[e.g., Rice and Cocco, 2006; Mizoguchi et al., 2009]. For earthquake faulting, dramatic 

weakening at coseismic slip rates is responsible for some characteristics of rupture 

propagation and energy radiation, as well as for the apparent low strength of plate-

boundary faults [Kanamori and Heaton, 2000; Noda et al., 2009]. Several dynamic 

weakening mechanisms have been proposed, including flash heating [Rice, 1999; 2006], 

thermal pressurization of pore fluid [Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 

1987], shear melting [Spray, 1993; Tsutsumi and Shimamoto, 1997; Hirose and 

Shimamoto, 2005; Di Toro et al., 2006], silica gel formation [Goldsby and Tullis, 2002; 

Di Toro et al., 2004], normal interface vibration [Brune et al., 1993], 

elastohydrodynamic lubrication [Brodsky and Kanamori, 2001], and decomposition 

weakening [Han et al., 2007]. Determining which of these mechanisms are important in  

 
____________ 
*Reprinted with permission from “High-speed friction of fault ultracataclasite in rotary 
shear: Characterization of frictional heating, mechanical behavior, and microstructure 
evolution” by Hiroko Kitajima, Judith S. Chester, Frederick M. Chester, and Toshihiko 
Shimamoto, 2010. Journal of Geophysical Research, 115, B08408, doi:10.1029/2009JB0 
07038, Copyright 2010 by the American Geophysical Union. 
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natural faulting and developing constitutive relations to describe the relevant physics are 

important tasks in earthquake mechanics.  

Experimental studies of rock friction at low slip velocity, i.e. using conventional 

laboratory displacement rates of 1 µm/s to 1 mm/s, have made great strides in 

establishing rate and state constitutive relations for friction [e.g., Marone, 1998] that 

have been successfully used in modeling nucleation and growth of earthquake ruptures 

[Dieterich, 1992; Lapusta and Rice, 2003]. More recently, rock friction experiments at 

intermediate (1-100 mm/s) and high (> 0.1 m/s) slip velocities have begun to elucidate 

the behavior at rates appropriate to coseismic slip where dynamic weakening 

mechanisms can be important [e.g., Tsutsumi and Shimamoto, 1997; Di Toro et al., 

2004]. Experiments at the intermediate and high slip rates often employ rotary shear 

configurations so as to allow large total displacements. In most high slip-velocity tests, 

the samples are not sealed and a confining pressure is not applied; thus the normal stress 

across the slipping zone is moderate (5-40 MPa) or low (<5 MPa). These high speed 

experiments generally have focused on two types of systems, sliding between bare rock 

surfaces along which frictional melting is favored [e.g., Tsutsumi and Shimamoto, 1997], 

or shear within thin layers of simulated or natural gouge [e.g., Mizoguchi et al., 2009]. A 

common finding from high-speed experiments is that friction is reduced to extremely 

low values (coefficient of friction µ ≈ 0.2) in gouge at coseismic slip rates even when 

frictional melting and melt lubrication are not operative. In most cases, weakening is 

attributed to activation of one of several possible thermal weakening processes 

associated with frictional heating.  
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Recently several high-speed, rotary shear experiments have been conducted on 

natural and simulated, clay-bearing, quartzo-feldspathic gouge at low normal stress 

levels [Brantut et al., 2008; Mizoguchi et al., 2007, 2009; Boutareaud et al., 2008]. All 

these works report dynamic weakening associated with frictional heating, and infer 

weakening mechanisms associated with dehydration reactions [Brantut et al., 2008], 

vaporization of water [Boutareaud et al., 2008, 2010], silica gel lubrication, flash 

heating, or moisture-draining [Mizoguchi et al., 2009]. The experiments use solid 

cylindrical blocks of rock to shear the thin layers of gouge, and employ Teflon sleeves 

pressed around the blocks to retain the gouge at high-speeds. This configuration 

produces a variation in slip rate along the gouge layer, from zero at the rotational axis to 

maximum values at the periphery of the gouge layer. Thermal modeling of the 

experiments show that the temperature in the gouge layer is spatially variable and a 

function of time (or cumulative slip). To date, however, determination of frictional 

strength from the measured data has assumed homogeneous stress and a uniform 

coefficient of friction in the gouge layer. In addition, microscale studies have not 

attempted to characterize the spatial heterogeneity or temporal evolution of structure. 

These observations are important to the analysis of mechanical properties. 

The purpose of this paper is to present a suite of high speed rotary shear experiments 

on thin layers of clay-bearing, quartzo-feldspathic gouge, that utilize sequential 

displacement tests over a range of slip velocity and normal stress conditions. 

Microstructural observations and finite element method (FEM) modeling are used to 

define the spatial variation in conditions and deformation response within the samples as 



 

 

6 

6 

a function of cumulative displacement, and provide a basis to constrain the mechanical 

behavior and elucidate the processes responsible for dynamic weakening. The present 

work is on experiments that are similar to those in recent studies reported in Mizoguchi 

et al. [2009], Brantut et al. [2008], and Boutareaud et al. [2008].  

 

2.2. Methods 

2.2.1. Experimental procedure 

The clay-bearing, quartzo-feldspathic material used in the experiments is derived 

from the dark yellowish-brown ultracataclasite taken from surface exposures of the 

Punchbowl fault (location DP4), a large displacement exhumed fault of the San Andreas 

system, in the Devil's Punchbowl Los Angeles County Park, California [Chester and 

Logan, 1987]. The ultracataclasite primarily consists of sub-micron size particles of 

quartz (47%) and feldspar (19%) produced by comminution, and a smaller amount of 

syn- and post-faulting alteration products including smectite (22%), clinoptillolite (7%), 

and chlorite (5%), with trace amounts of calcite and analcime [Chester and Logan, 1986; 

Chester and Chester, 1998; Chester et al., 2005].  

The ultracataclasite was disaggregated to a particle size less than 106 µm in diameter 

using a mortar and pestle. One gram of the disaggregated sample was placed between 

two cylindrical host blocks (25 mm diameter) of gabbro or granite to form a gouge layer 

approximately 1 mm thick (Figure 2.1a). "Water-dampened" gouge layers were wetted 

with 0.3 g of distilled water prior to sliding and "room-dry" gouge layers were 

equilibrated at room humidity conditions without added water. The end surfaces of the 
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Figure 2.1. Diagrams of sample assembly, radial-cut section, and 
FEM model. (a) Diagram of sample assembly showing sample 
radius, rs = 12.5 mm, length of Teflon sleeve in contact with 
rotating block, l = 5 mm, and portion of the assembly modeled 
using FEM (outlined in thick black line). (b) Location of the 
petrographic section cut through the rotation axis and 
perpendicular to the gouge layer, i.e., a radial cut. (c) Mesh and 
boundary conditions for the FEM model. Dashed gray lines show 
the locations of frictional heat sources and black lines show the 
boundaries subjected to a normal stress. Axial displacement is 
constrained to zero at the end of the rotating block. 
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cylindrical host blocks in contact with the gouge were ground with coarse (#80) SiC to 

roughen the surfaces and promote slip inside the gouge layer rather than along the 

gouge-host-block interface. A Teflon sleeve was pressed around each sample to cover 

the gouge layer and prevent the loss of gouge during assembly and subsequent shearing 

(Figure 2.1a).  

Experiments were conducted in the high-speed rotary-shear apparatus described by 

Shimamoto and Tsutsumi [1994], Hirose and Shimamoto [2005], and Mizoguchi et al. 

[2009]. In the apparatus, an air actuator applies the axial load (normal force) at the 

stationary end of the sample and an electric motor drives rotation at the opposite end. 

Normal force, torque, axial shortening, and rotation speed were recorded at 20-200 Hz 

depending on experiment duration.  

Samples were sheared at constant rotation rate of 100, 200, 400, 800, or 1500 

revolutions per minute (rpm) to a total of 29 to 1600 revolutions and an axial force of 

0.1, 0.15, 0.29 and 0.59 kN. Once the axial force is established, rotation of the sample is 

initiated using a clutch to engage the motor drive train. The target rotation rate is 

achieved within 1 s. The clutch also is used to disengage the motor at the end of each 

experiment which allows the rotation rate to be reduced to 0 rpm within a few to tens of 

seconds depending on the target speed. 
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2.2.2. Analysis of mechanical data 

The measured torque, 

 

M , includes the torque resulting from friction inside the gouge 

layer, 

 

M
s
, and the torque from friction between the Teflon sleeve and the differentially 

rotating host rock blocks, 

 

M
t
 

 

M = Ms + Mt .     (2.1) 

From this relation and appropriate approximations, the coefficient of friction of the 

layer as a function of time (or slip at constant slip velocity) is determined. In cylindrical 

coordinates, 

 

M
s
(t)  may be expressed as  

M s (t) = !
s
(r,",t) # r dr d" # r

0

rs

$
0

2%

$ , (2.2) 

where !
s
 is the shear stress on the layer as a function of position (r, θ) and time t, and rs 

is the sample radius. Relation (2.2) can be simplified to 

 

 

Ms(t) = 2! "
s
(r,t) # r2dr

0

r
s

$ , (2.3) 

assuming that the shear stress within the sample is axisymmetric. The coefficient of 

friction of the gouge layer can be determined from the measured data using relation (2.3) 

and the definition of the coefficient of sliding friction, 

 

!
s
(r,t) = "

n
(r,t) # µ

s
(r,t),    (2.4) 

where !
n

is the normal stress on the gouge layer and µ
s
is the coefficient of friction in 

the gouge layer. 

Many analyses of rotary shear experiments reported to date assume that 

 

!
n
 and 

 

µ
s
 

do not vary with position in the gouge layer. Thus, 

 

!
n
 was determined directly from the 
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area of the gouge surface and the measurements of the axial force, and 

 

µ
s
 was derived 

from 

 

M
s

 by substituting (2.4) into (2.3), 

 

µ
s

= 3M
s
(t) 2!r

s

3
"
n

 [e.g., Tsutsumi and 

Shimamoto, 1997; Hirose and Shimamoto, 2005; Mizoguchi et al., 2009]. In addition, by 

assuming that the shear stress on the layer is uniform, i.e., the normal stress and 

coefficient of friction are independent of position, the rate of frictional work can be 

expressed by 

 

! W = "
s
# rdrd$ # 2%&r

0

rs

'
0

2%

' =
4% 2"

s
r

s

3&

3
,    (2.5) 

where ω is the angular velocity. The work rate may be expressed as 

 

! s " #rs
2

"Veq , by 

defining an equivalent slip velocity, Veq, where 

 

 

Veq =
4!"rs
3

= 2!" #
2

3
rs

$ 

% 
& 

' 

( 
) , (2.6) 

i.e., the velocity at two thirds of sample radius, rs. Equivalent displacement is defined 

as the local displacement at the same position, and is given by, 

 

deq = veq ! t =
4"#rst
3

= 2"R !
2

3
rs

$ 

% 
& 

' 

( 
)  where R is revolution. The assumption of uniform 

shear stress is not made in the analysis herein so the concept of an equivalent velocity 

and displacement is no longer valid; however, we describe the general conditions of the 

experiments in terms of the velocity, displacement, and temperature at 2/3 rs, treating 

these as representative value for each experiment (Table 2.1). For the rotation rates used, 

the representative slip velocities are 0.1, 0.2, 0.35, 0.7, and 1.3 m/s. Representative 

displacements range between 1.3 m and 84 m. The axial loads applied in the experiments 

were chosen to achieve average normal stresses of 0.2, 0.3, 0.6, and 1.3 MPa.
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The torque supported by the Teflon sleeve, 

 

M
t , is estimated from the Punchbowl 

gouge experiments and from dedicated experiments on Teflon gouge. For all rotary shear 

experiments on the Punchbowl gouge layers, the total torque, 

 

M , observed for both 

initial (peak) and final (steady-state) conditions, shows an increase in magnitude with an 

increase in axial load, as would be expected for friction in the gouge layer (Figure 2.2a). 

The dependence of total torque on axial load is attributed entirely to the gouge layer 

because the sliding interface between the Teflon sleeve and host blocks is not under a 

direct axial load. Extrapolation of best-fit linear relations to measurements of peak and 

steady-state torque versus axial load indicates that 

 

M
t

 at zero axial load is 

approximately 1.8 N·m for peak conditions and 0.70 N·m for steady-state conditions 

(Figure 2.2a).  

Teflon gouge experiments are used to better define 

 

M
t
 as a function of displacement 

and rate of rotation. A sample containing a layer of Teflon gouge was sheared at an 

average normal stress of 0.6 MPa and rotation rates to achieve representative velocities 

between 0.1m/s and 1.3m/s (Figure 2.2b). When the Teflon gouge was sheared at 1.3m/s, 

the torque rapidly increased to a maximum value initially, then decreased significantly 

with subsequent displacement. When the same sample was sheared again at 0.1, 0.35, 

0.7, and 1.3m/s, it displayed a low magnitude initial peak friction, little subsequent 

weakening with slip, and only a small dependence of torque on rotation rate (Figure 

2.2b). The strength of samples with Teflon sleeves sheared at zero axial load by N. 

Brantut (written communication, 2006) displayed a similar change in behavior in the 
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Figure 2.2. Data used to determine the strength of the Teflon sleeve. (a) Total torque 
as a function of axial load or normal stress for initial peak strength (solid symbols) 
and steady-state strength (open symbols) of the samples. Symbols indicate the 
representative slip velocities: 0.1 m/s, diamond; 0.35 m/s, circle; 0.7 m/s, triangle; 1.3 
m/s, square. The best-fit lines to peak and steady-state strength can be used to estimate 
torque at zero axial load, which is assumed to equate with the strength of the Teflon 
sleeve. (b) Total torque versus representative displacement records for a rotary shear 
experiment on pure Teflon gouge. Gouge was consecutively sheared at the 
representative slip velocities of 1.3 m/s (1), 0.1 m/s, 0.35 m/s, 0.7 m/s, and 1.3 m/s 
(2). The difference between the first test at 1.3 m/s (1) and the second test at 1.3 m/s 
(2) is used to estimate the strength of the Teflon sleeve as a function of displacement.  
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first run, decreasing to essentially zero after an initial stage of shear, and also much 

smaller strength in the second run. The overall strength of Teflon sleeves, and especially 

the peak strength when initially sheared, is largely dependent on tightness, and the 

significant strength reduction in the second run is induced by loosening of the Teflon 

sleeve in contact with the host block during the first run. Accordingly, we assume that 

the total torque measured in an experiment initially reflects the sum of the torque 

resulting from the Teflon gouge and that of the Teflon sleeve. When the same samples 

are sheared again, the total torque only reflects the torque from the Teflon gouge, to a 

first order approximation. Thus, the difference between the torque at the initiation of 

shear at 1.3m/s and the torque measured when the same Teflon gouge is sheared again at 

1.3m/s gives an estimate of the torque of the Teflon sleeve, and the friction of Teflon 

gouge ranges from 0.15-0.27. Our successive runs at different slip rates and the transient 

reduction during each run suggest that the frictional behavior of Teflon should be 

velocity strengthening and temperature weakening. These results are consistent with a 

previous study of Teflon friction at similar slip velocity [McLaren and Tabor, 1963]. 

Teflon sleeve torque is adequately expressed as a function of the representative 

displacement, 

 

deq , 

 Mt = 0.14 + 0.49exp(!0.073 "deq ) + 0.33exp(!1.5 "deq ) . (2.7) 

The 

 

M
t
 described by this relation is consistent with the peak and steady-state torques 

for the Teflon sleeves estimated from the natural gouge experiments, although the 

absolute values are slightly lower in magnitude. It should be noted that a new Teflon 

sleeve was used for each experiment of disaggregated Punchwbowl ultracataclasite and 
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some variation of initial torque is caused by the uncertain tightness and possibly by 

gouge intrusion between the Teflon sleeve and the rotating host block during shear 

(Figure 2.2a). Equation (2.7) is used to calculate 

 

M
s
 from 

 

M  for all experiments 

assuming that 

 

M
t
 is independent of velocity and normal stress. The shear stress between 

the Teflon sleeve in contact with the rotating block, 

 

!
t
(t) , can be related to 

 

M
t
 by 

 

Mt (t) = !
t
(t) " A " r

s
= 2#!

t
(t)r

s

2
l, (2.8) 

where 

 

A = 2!r
s
l , and l is the length of the Teflon sleeve in contact with rotating block, 

i.e. 5 mm (Figure 2.1a).  

 

2.2.3. Microstructure analysis 

At the end of an experiment, the sample is epoxied under a vacuum and cut through 

the axis of the cylinder to produce a thin section that is perpendicular to the slip-

direction (i.e., a radial-cut section; Figure 2.1b). Radial thin sections display the 

structures that develop over the range of slip-rates and slip-magnitudes achieved in an 

individual experiment, from zero slip and slip-rate at the center of the cylinder to the 

maximum magnitude of slip and slip-rate at the outer surface of the cylinder. Radial 

thin-sections allow an investigation of the evolution of microstructures with slip-rate and 

slip-magnitude within one sample, providing information that is complementary to that 

acquired by study of multiple samples sheared to different displacements.  

Microstructures visible under plane-polarized and cross-polarized light were mapped 

on photomicrograph mosaics. The distribution and areal extent of distinct 

microstructural units in each gouge layer were quantified by point-counts along a 
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traverse with a 70 µm-spacing along the radial direction and a 35 µm-spacing parallel to 

the specimen axis. The spacing of the point count traverse was chosen to sufficiently 

characterize the thickness and lateral extent of each structural unit. 

 

2.3. Thermomechanical Model of the Rotary Shear Experiment  

2.3.1 Model description 

Frictional heating can produce high temperatures in high-speed rotary shear 

experiments, particularly along the outer annulus of the sample where the velocity of slip 

is the greatest [e.g., Mizoguchi et al., 2009]. The heterogeneous temperature distribution 

in the cylindrical host blocks that results from the variation in slip velocity can produce a 

differential thermal expansion that may result in a significant variation in normal stress 

on the gouge layer. The heterogeneous normal stress condition can then contribute to 

radial variation in the rate of frictional heating within the gouge layer. It follows that the 

coefficient of friction also varies in the radial direction, reflecting the differences in slip-

velocity, slip-magnitude, temperature, and normal stress. Thus, the typical assumptions 

of uniform normal stress and uniform coefficient of friction in the gouge layer are poor 

approximations.  

In order to better define the temperature and normal stress conditions in the sheared 

gouge layers, we have developed a coupled thermal-mechanical FEM model of the 

experiments using COMSOL Multiphysics software. The model is designed to treat the 

coupled, time-dependent frictional heating of the gouge layer, heat conduction in the 

sample, and the thermal-elastic response of the sample that affects loading of the gouge 
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layer and thus the rate of frictional heating. The model takes advantage of the axial 

symmetry of the sample under rotary shear (Figures 2.1a and 2.1c) and is constrained by 

the thermal and elastic properties of the rock and Teflon, and by the axial load, rate of 

rotation, and torque for each experiment. For the initial modeling, we assume the 

coefficient of friction is spatially uniform, but let the normal stress vary with radius, and 

solve for the temperature and normal stress within the sample as a function of time. We 

use the model to determine the coefficient of friction of the gouge layer as a function of 

representative displacement (time) for each experiment. The model can treat the more 

general case where friction coefficient varies with position, but this is left for later work.  

It is assumed that all frictional work is converted to heat. Heat is generated within 

the gouge layer (boundary I) and between the Teflon sleeve and the host block 

(boundary II). The frictional heating in the gouge is modeled with a planar source 

located in the center of the layer (boundary I, Figure 2.1c). The frictional sliding 

between the Teflon sleeve and host blocks most often occurs along the interface with the 

rotating side, but sometimes occurs along the stationary block interface or along both 

interfaces. The location of slip along the Teflon sleeve is not recorded, so for the model 

we assume slip occurs entirely along the interface with the rotating block (boundary II, 

Figure 2.1c) to maximize the asymmetry in temperature across the gouge layer and to 

provide upper and lower bounds on temperature and stress in the two host blocks. All 

other boundaries are assumed adiabatic. 

The heat generation rate per unit area, qs, on boundary I can be expressed as 

 

 

qs(r,t) = ! s(r,t)v(r) = µs(t)" n (r,t)v(r), (2.9) 
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using equation (2.4). From equation (2.8), the heat generation rate on boundary II, qt is 

given by 

 

qt (t) = ! t (t)vs =
Mt (t)

2"rs
2
l
# 2"rs$ =

Mt (t)$

rsl
.   (2.10) 

The rock and Teflon components of the sample assembly are treated as homogeneous 

and isotropic, and linear elasticity is assumed; the thermal and mechanical properties of 

the components are summarized in Table 2.2 [Schön, 1996; Turcotte and Schubert, 

2001]. The normal stress boundary condition at the end of the stationary host bock 

(boundary III, Figure 2.1c) is specified by the axial load measured during the experiment 

and the assumption of homogeneous stress at this boundary. The displacement in the 

axial direction at the end of the rotating block is zero. The stress distribution in the 

sample is homogeneous before shear is initiated, but frictional heating and thermal 

expansion during rotation produce heterogeneous stress within the sample. Assuming 

that the coefficient of friction of the gouge layer does not vary with position, equations 

(2.3) and (2.4) may be combined to give 

M
s
(t) = 2!µ

s
(t) "

n
(r,t) # r2 dr

0

rs

$ , (2.11) 

and rearranged to solve for the coefficient of friction of the gouge layer,  

µ
s
(t) =

M
s
(t)

2! "
n
(r,t) # r2 dr

0

rs

$
, (2.12) 

because the model determines the normal stress distribution and 

 

M
s
 is known. It is 

worth noting that torque is not treated explicitly in the mechanics of the model, but it is 
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 Host blocks 
 

Gouge 
layer Granite Gabbro 

Teflon 

Young’s modulus 
(GPa) 

 
0.01 

 
60 

 
80 

 
0.05 

     
Poisson’s ratio 0 0.25 0.18 0.25 
     
Density (g/cm3) 2.0 2.6 2.95 2.2 
     
Thermal expansion 
coefficient (K-1) 

 
2.4×10-5 

 
2.4×10-5 

 
1.6×10-5 

 
2.4×10-5 

     
Thermal 
conductivity 
(W/m⋅K) 

 
1.5 

 
2.0 

 
3.0 

 
0.24 

     
Heat capacity 
(J/g⋅K) 

 
1.0 

 
0.8 

 
1.0 

 
1.05 

 
Maximum mesh 
size (mm) 

 
0.1 

 
1.0 

 
1.0 

 
2.0 

 
 

Table 2.2. Thermal and mechanical properties of each 
component in the FEM model. 
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used to calculate the friction coefficient and heat generation rate. In addition, the sample 

holders of the experimental apparatus are not included in the model so that the local 

stresses in the host blocks near the sample holders and heat conduction into the sample 

holders are not considered. As noted above, thermal and elastic properties of gouge 

layer, host blocks, and Teflon are taken into account in the model. Because the models 

are fully elastic, the weak gouge layer is modeled with a small Young’s modulus, and 

with a Poisson’s ratio of zero, to prevent local interference with the Teflon sleeve. In 

addition, the contacts between the Teflon sleeve, the gouge layer, and the host blocks are 

treated as welded in the model, and shear tractions at these boundaries is minimized by 

applying a normal stress to the Teflon sleeve equivalent to the axial normal stress on the 

host blocks. 

In addition to the temperature and stress distribution in the samples, the model 

determines the axial displacement of boundary III resulting from thermal expansion of 

the host blocks and of the gouge layer. The displacement from thermal expansion can be 

subtracted from the measured axial displacement to determine the change in thickness of 

the gouge layer from consolidation, dilation, gouge loss or rearrangement, or other 

processes.  

 

2.3.2 Model validation 

The success of the finite element model is illustrated by analyzing a high-speed 

rotary shear experiment reported by Mizoguchi et al. [2009] on the Nojima fault gouge 

that was sheared at an average normal stress of 0.6 MPa and a representative velocity of 
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1.0 m/s. The sample assembly and procedure are similar to the experiments described in 

this paper except that four thermocouples were placed inside the stationary host block to 

record the temperature during shear (Figure 2.3a). Mizoguchi et al. [2009] presented a 

numerical model of the time-dependent heat generation and conduction for this 

experiment that is constrained by the experiment data, rock properties, and the 

assumption that all frictional work in the gouge layer is converted to heat. Their thermal 

model reproduces the general increase in temperature measured directly by the 

thermocouples, but the model result does not reproduce the temperature near the gouge 

layer or predict a good match for the temperature early in the shearing history when 

there is a rapid change in temperature.  

Using the same experiment data and rock properties reported by Mizoguchi et al. 

[2009], we determined the temperature distribution in the experiment using the 

thermomechanical model. The model shows that the greatest temperature increase occurs 

at large radii in the gouge layer and also along the slipping interface between the host 

block and the Teflon sleeve (Figure 2.3a and 2.3d). The model-determined evolution of 

temperature for the thermocouple locations compares well with the thermocouple 

measurements, particularly in the early stages of the experiment (Figure 2.3c). We take 

these results to indicate that thermal expansion and heterogeneous loading of the gouge 

need to be taken into account, and that the thermomechanical model provides a better 

analysis of the experiment conditions when compared to models that treat only thermal 

processes. In addition, the axial displacement measured by Mizoguchi et al. [2009], 

when corrected using the model-determined thermo-elastic expansion of the sample,  
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Figure 2.3. Results of the thermomechanical FEM model applied to a high-speed 
rotary shear experiment by Mizoguchi et al. (2009) in which temperature was 
measured directly by four thermocouples. (a) Spatial distribution of temperature in the 
vicinity of the gouge at a representative displacement of 10 m. The black dots (CA1-
CA4) show locations of the four thermocouples. Temperature is contoured (white 
lines) at 20 ºC intervals. (b) Variation in axial stress resulting from thermoelastic 
expansion at an representative displacement of 10 m. (c) Predicted temperature 
compared to the measured temperature as a function of representative displacement. 
Solid lines show the calculated temperature assuming that frictional heating occurs 
between the Teflon sleeve and the rotating host block (as shown in Figures 1c and 3a) 
and dashed lines show the calculated temperatures assuming heating occurs between 
the Teflon sleeve and the stationary host block. (d) Temperature and (e) normalized 
normal stress at the center of the gouge layer (boundary I) as a function of radius for 
increasing representative displacements from 0 to 40 m. Normal stress is normalized 
by the average normal stress, i.e., the total axial force applied to gouge layer divided 
by the area of the gouge layer. (f) Dilation (axial displacement) versus representative 
displacement measured directly during the experiment (red line) compared to that 
from thermal expansion as calculated by model (green line). The displacement of 
gouge layer (blue line) is determined by subtracting the model-determined thermal 
dilation from the measured dilation. Note that dilation is positive and shortening is 
negative. The large contraction and dilation observed after 20 m displacement are 
likely related to slip readjustment within the layer and loss of gouge past the Teflon 
sleeve. 
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indicates that the gouge layer compacts more than implied by the measurement (Figure 

2.3f). 

Model simulations illustrate that the stress state within the host blocks varies 

significantly as a result of differential heating and thermal expansion (Figure 2.3b). 

Axial stress is strongly compressive in the outer portion of the host blocks and tensile in 

the central region of the cylinder. Furthermore, the range of stress magnitude is greatest 

in the rotating host block heated by friction at the Teflon sleeve interface. As a result, the 

normal (axial) stress distribution in the gouge layer evolves with increasing 

representative displacement in response to the changing temperature conditions in the 

host blocks (Figure 2.3d and 2.3e). Specifically, the normal stress on the gouge layer is 

nearly homogeneous at the initiation of slip, but increases in magnitude significantly 

near the outer surface of the sample after small slip. With increased slip, the maximum 

normal stress progressively shifts inward towards the cylinder axis while the normal 

stress is reduced near the periphery.  

 

2.4. Mechanical Results 

2.4.1. Analysis of mechanical data by numerical modeling 

The numerical model is used to determine the coefficient of friction, temperature, 

and thickness changes of each gouge layer as a function of representative displacement 

(Figure 2.4). For example, experiment HVR514gr was sheared at an average normal 

stress of 1.3 MPa and a representative velocity of 1.3 m/s. The axial load in this 

experiment varies by about 10% from the target value during shearing, and the total  
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Figure 2.4. Example of high-speed rotary shear data measured during 
experiments and the conditions in the gouge layer determined from 
application of the FEM model to that data. (a) The measured torque and 
normal load as a function of revolution for HVR514gr, which was sheared 
at a representative velocity of 1.3 m/s and an average normal stress of 1.3 
MPa. (b) The model-determined coefficient of friction (solid-black line), 
representative temperature (dashed-black line), thermoelastic dilation for 
the entire sample (dashed-gray line), and dilation of gouge layer (solid-gray 
line). 
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torque, and thus the coefficient of friction, vary by a factor of about three (Figure 2.4a). 

The model determined parameters show variations with displacement that are typical for 

high-speed tests; the temperature increases with displacement, and the friction 

coefficient and dilation attain peak values just after the initiation of shearing but then 

decrease with continued displacement (Figure 2.4b). 

 

2.4.2. Mechanical results at different normal stresses and slip velocities 

The dependence of friction and temperature on the first 20 m of displacement, over 

the range of normal stress and slip rates tested, is illustrated by a representative subset of 

experiments (Figure 2.5; Table 2.1). At the lowest slip rate of 0.1 m/s, the friction 

coefficient tends to increase to values between 0.4 and 0.6 within the first few m of 

displacement. No dramatic weakening is observed with larger displacement, and the 

representative temperature gradually increases to approximately 100 ˚C (Figure 2.5a). At 

a slip rate of 0.35 m/s, the friction coefficient peaks between 0.4 and 0.7 at several m 

representative displacement, followed by significant weakening (Figure 2.5b). At this 

rate, the representative temperature rises above 150 ˚C. At 0.7 and 1.3 m/s slip rates, the 

maximum friction coefficient of 0.4 to 0.8 is achieved within a couple meters of 

displacement, and subsequent displacement leads to a dramatic reduction in friction to 

values as low as 0.4 to 0.1. At these rates, the friction coefficient remains fairly constant 

(i.e. achieves steady-state) at displacements greater than about 10 m and the 

representative temperature rapidly increases with displacement, exceeding 200 ˚C. 
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Figure 2.5. Representative results of experiments as determined from the 
thermomechanical FEM model. Friction coefficient (solid line) and 
representative temperature (dashed line) as a function of representative 
displacement for gouge sheared at different normal stresses and slip 
velocities. The representative slip velocity is (a) 0.1 m/s, (b) 0.35 m/s, (c) 
0.7 m/s, and (d) 1.3 m/s. Normal stress is 0.2-0.3 MPa (light-gray), 0.6 MPa 
(dark-gray), and 1.3 MPa (black), respectively. 
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For all slip rates, an increase in normal stress produces a decrease in the coefficient 

of friction (Figure 2.5). In addition, the peak friction coefficient and the magnitude of 

displacement to achieve approximately steady-state friction decrease with an increase in 

normal stress. At the same velocity, the representative temperature typically increases 

with an increase in normal stress; however, the magnitude of the temperature increase 

also depends on type of rock used for the host blocks. Therefore, the dependencies of 

friction and temperature on velocity, normal stress and displacement are best illustrated 

by comparing the series of experiments using gabbro sample assemblies that were 

sheared at a representative velocity of 0.35 m/s (Figure 2.5b), or comparing a series of 

experiments that used granite blocks that were sheared at a representative velocity of 1.3 

m/s (Figure 2.5d). 

 

2.4.3. Effects of water and host block 

The addition of water leads to weakening and dilation as illustrated by the 

comparison of two room-dry samples sheared at a slip rate of 1.3 m/s and normal stress 

of 0.6 MPa to similar water-dampened experiments. The coefficient of friction of the 

room-dry samples is slightly greater than the water-dampened samples at the initial 

stages of shear (Figure 2.6a). The room-dry samples achieve peak strength at somewhat 

smaller displacements (Figure 2.6a) and show somewhat less dilation overall (Figure 

2.6c). The water-dampened and room-dry samples with granite host blocks achieve 

greater temperatures in the gouge layers (Figure 2.6b) and greater dilation (Figure 2.6c) 

than the otherwise similar experiments with gabbro host blocks. These differences reflect 
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Figure 2.6. The influence of water and type of rock used (granite, gr, or 
gabbro, gb) in the sample assembly on gouge behavior. Solid lines represent 
the room-dry samples, and dashed lines represent water-dampened samples. 
(a) Frictional coefficient, (b) representative temperature, and (c) gouge 
dilation as a function of representative displacement. 
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Figure 2.7. Results of rotary shear experiments designed to 
evaluate the influence of small amounts of Teflon contamination 
on the mechanical response of the natural gouge. Friction 
coefficient versus representative displacement for natural gouge 
mixed with different proportions of Teflon particles. The number 
in the parentheses indicates the weight in grams of each 
component. 
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the lower thermal diffusivity of granite, that leads to greater representative temperatures 

within and adjacent to the gouge layer when granite is used in the sample assembly. 

 

2.4.4. Effect of Teflon contamination 

Early in this study we noted that small flakes of Teflon had been added to the outer 

portion of the gouge layer. To determine the influence of the Teflon on gouge behavior, 

Teflon flakes, less than 106 µm in diameter, were mixed with ground ultracataclasite in 

proportions of 10, 25, 50, and 100% by weight. The mixtures were sheared at a normal 

stress of 0.6 MPa and a representative slip velocity of 1.3 m/s at room-dry conditions. 

Gouge mixtures containing less than 50% by weight Teflon behave the same as the pure 

ultracataclasite gouge (Figure 2.7). Gouge containing more than 50% Teflon by weight 

displays a reduction of the coefficient of friction and a smaller weakening distance. 

Microstructure observations indicate that the volume of Teflon present in our early 

experiments is significantly less than 10%, and therefore we include these data in our 

analysis.  

 

2.5. Microstructure of Sheared Gouge Layers 

2.5.1. Definition of distinct microstructural units in the gouge  

Four distinct microstructural units have been identified based on the maximum grain 

size, grain shape, fabric, clay foliation, and presence of localized slip surfaces (Figure 

2.8). Unit 1 is the least deformed and Unit 4 is the most deformed. The geometry and 
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Figure 2.8. Photomicrographs of representative microstructures in the 
four units of the sheared gouge layer. (a-c) Portion of experiment 
HVR490gr in (a) plane-polarized light, (b) crossed polarized light, 
and (c) a schematic map. (d-f) Portion of experiment HVR794gb in 
(d) plane-polarized light, (e) crossed polarized light, and (f) a 
schematic map. All images are at the same magnification; white scale 
bars in (b) and (e) are 200 µm. 
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distribution of the four units are consistent with the axial symmetry expected for rotary 

shear (Figure 2.9).  

Unit 1 resembles the starting material, is present in lower velocity experiments, and is 

subdivided into two units. Both subunits tend to occur in the central portion of the gouge 

layer where the slip velocity and shear displacement are small (Figure 2.8). In a few 

cases, very small regions of Unit 1 also are present at the outermost edge of the gouge 

layer (Figure 2.9). Unit 1a primarily is observed in the samples sheared at 0.1 m/s. This 

unit has a granular texture, reflecting the starting material, being composed of angular 

clasts of Punchbowl ultracataclsite, as well as clasts of mono- and polycrystalline quartz, 

calcite, and laumontite. Although Unit 1a is somewhat compacted, it does not display 

flattened grains, a clay foliation, reduced particle sizes, or particle rounding.  

Unit 1b appears in regions sheared at slightly higher slip rates and is similar to Unit 

1a except it is more compacted, the clasts are a little more rounded and smaller, and a 

faint clay-foliation is present. The boundary of Unit 1b with Unit 1a and Unit 2 is 

gradational and not always distinct. Unit 1a tends to form a fairly sharp boundary with 

Unit 2, and contacts between Unit 1 and Unit 4 are not observed. 

Unit 2 is distinguished by a well-developed clay foliation (Figure 2.8). Overall the 

foliation displays a preferred orientation that is approximately parallel to the plane of the 

layer, although locally the foliation may be inclined at low angles to the plane. Thin 

clay-lined microscale shears are part of this foliation. These often occur in two sets, 

symmetrically disposed about the plane of the gouge layer. Clasts of the original 

ultracataclasite are present, but they are more rounded, fewer in number, and smaller in 
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size, when compared to Unit 1. Unit 2 forms contacts with all other units, but for the 

most part is located between Unit 1 and either Units 3 or 4. 

Units 3 and 4 form at higher velocity and greater displacement conditions, being best 

developed at large radii. Unit 3 is distinguished by a less compacted texture, light color, 

and random fabric. It has a very fine-grained matrix and large, dispersed clasts of Units 1 

and 2, and in a few cases, ripped-up fragments of Unit 4 (Figure 2.8). In most cases the 

clasts are well-rounded; a few of these were noted to be very well-rounded clay-coated 

clasts, similar to the clay-clast aggregates (CCA) described by Boutareaud et al. [2008, 

2010] and Boullier et al. [2009]. When present, typically Unit 3 is located in the 

outermost region of the circular gouge layer and is thickest at the perimeter, tapering 

inward (Figure 2.9); it is not present in the central portion of the gouge layer where the 

slip velocity and displacement are minimal. In most cases, Unit 3 is located between 

Units 2 and 4. The contact between Units 2 and 3 is irregular and displays narrow 

regions of localized mixing and interpenetration. Unit 3 correlates to the "non-foliated 

gouge" unit of Boutareaud et al. [2008]. 

Unit 4 is rusty orange to dark brown under plane-polarized light (Figure 2.8), forming 

thin layers along the boundary with the host blocks, defining regions of highly localized 

slip (Figure 2.9). This unit is composed of extremely fine particles, and displays a strong 

clay foliation and a distinct banded character. The foliation and banding are parallel to 

the layer except where Unit 4 is locally disrupted and thickened by offset on oblique 

imbricating shears or by folding. In most cases, Units 3 and 4 occur together where the 

slip velocity and displacement are large. The contact between Units 3 and 4 displays 
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irregular and straight segments. Unit 4 correlates to the "main slipping zone" of Brantut 

et al. [2008], the "foliated gouge" unit of Boutareaud et al. [2008], and the "deformation 

zone" of Mizoguchi et al. [2009]. 

 

2.5.2. Microstructural evolution as a function of shearing conditions  

The relative thicknesses of the different microstructural units derived from the point-

count data are shown graphically as a function of slip-velocity and shear-displacement 

(Figure 2.10). Comparing plots for all experiments illustrates that Unit 1 constitutes a 

significant fraction of the total gouge layer thickness only at the lowest velocity and 

smallest displacement conditions. In contrast, Unit 2 is present in significant proportions 

over a wide range of velocities and displacement magnitudes. Unit 3 is a significant 

fraction of the gouge layer thickness only for the very highest velocity and displacement 

conditions achieved. Volumetrically, Unit 4 is much less significant as it rarely 

constitutes more than a few percent of the total gouge layer thickness. 

Histograms displaying the point count data characterize the thickness of each 

microstructural unit as a function of the radial position to demonstrate the kinematics of 

deformation in the gouge at the different experimental conditions (Figure 2.11). 

Histogram plots for experiments at representative velocities between 0.1 to 1.3 m/s were 

selected to show the stages of structural development with shearing for representative 

displacements between 1.3 and 29 m. At the lowest representative velocity tested, 0.1 

m/s, Units 1 and 2 are the only units present; Units 3 and 4 are not produced at these 

conditions even after a representative displacement of 25 m (Figure 2.11a). With increasing 
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Figure 2.10. Relative volume fraction of each gouge unit from all 
experiments as a function of local slip velocity and local displacement 
over the range of possible radii. (a) Unit 1; (b) Unit 2; (c) Unit 3; (d) 
Unit 4. Note that the scale of symbol size to volume fraction varies 
between plots. 
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Figure 2.11. Histograms showing stages of development of gouge units for 
representative displacements up to approximately 25 m. Plots show the average 
volume fraction of each unit as a function of radius as determined by point-
counting. The experiment number and the total representative displacement are 
indicated beside each plot, and the coefficient of friction versus representative 
displacement is shown to the right of each histogram. All experiments were sheared 
at 0.6 MPa normal stress unless noted otherwise. Test series conducted at slip 
velocities of (a) 0.1 m/s, (b) 0.2-0.35 m/s, (c) 0.7 m/s, and (d) 1.3 m/s. 
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displacement, the thickness of Unit 2 increases at the expense of Unit 1, and after 10-15 

m of displacement, Unit 1 is present only in small regions at the cylinder axis and in 

some cases at the perimeter of the circular gouge layer. The data suggest that the rate 

that Unit 1 is consumed to form Unit 2 is high initially and then decreases with greater 

shear displacements. 

Units 3 and 4 appear at less than 25 m of displacement at the higher representative 

slip velocities of 0.35, 0.7 and 1.3 m/s; forming at progressively smaller displacements 

as the slip velocity increases. For example, Units 3 and 4 first appear after about 10 m of 

displacement for shearing at 0.35 and 0.7 m/s (Figure 2.11b and 2.11c), but they are 

already present by 2.5 m of displacement for shearing at 1.3 m/s (Figure 2.11d). The two 

units typically occur together, both temporally and spatially, though in one case Unit 4 is 

produced without a record of Unit 3 (Table 2.1). At the higher velocities the 

microstructure and spatial distribution of both units are established when they form; the 

units grow inward and Unit 4 sometimes thickens by accumulation with displacement, 

but neither unit changes character significantly. The data suggest that the rate that Units 

3 and 4 increase in volume is high when they form initially, and then decreases with 

increasing displacement. 
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2.6. Discussion 

2.6.1. Correlation between weakening, slip velocity, temperature and gouge 

structure 

Previous studies of high-speed friction on clay-bearing, quartzo-feldspathic gouge 

using the same rotary shear configuration as in the present study have concluded that the 

dramatic weakening observed at high slip velocity is due to the elevated temperature 

produced by frictional heating [e.g., Mizoguchi et al., 2009; Brantut et al., 2008; 

Boutareaud et al., 2008]. The experiments reported herein are consistent with the above 

studies, showing systematic weakening during high velocity slip, but our experiments 

also show systematic weakening with increased normal stress, which is qualitatively 

consistent with the premise of thermal weakening from frictional heating. Direct 

measurements of temperature [e.g., Mizoguchi et al., 2009] and our thermomechanical 

models indicate that the temperature increases significantly within gouge layers during 

shear at greater than 0.1 m/s at a normal stress on the order of 1 MPa; these conditions 

correlate to the slip velocities for dynamic weakening. 

The structure of the sheared ultracataclasite gouge displays a distinct correlation with 

slip velocity and the onset of dynamic weakening. The fact that Units 1 and 2 are best 

developed in the lower speed experiments that correlate with a higher coefficient of 

friction and little apparent weakening with displacement, suggests that the processes that 

produce these microstructures are not responsible for the low coefficient of friction. In 

contrast, Units 3 and 4 are best developed in the higher velocity experiments and are 

present in all experiments that display pronounced weakening to a low coefficient of 
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friction. The correlation between microstructure and frictional strength suggests that the 

processes that produce Units 3 and 4 are responsible for the low coefficient of friction 

and are activated by an elevation of temperature. 

The four gouge units identified here were not all noted in the experiments by Brantut 

et al. [2008], Boutareaud et al. [2008, 2010], and Mizoguchi et al. [2009], and a 

correlation between the formation of distinct gouge microstructures and the onset of 

dynamic weakening was not made. The previous studies focused on shearing at high 

velocity to large displacements where dynamic weakening is observed. These studies did 

not describe the microstructures in radial sections, and they did not conduct sequential 

displacement tests over a range of velocity and normal stress conditions that allow the 

correlation of specific behavior with specific microstructures. The previous studies all 

sheared clay-bearing, quartzo-feldspathic gouge, but Boutareaud et al. [2008, 2010] 

were the only ones to describe microstructures similar to those in Unit 3. In contrast, all 

previous studies reported the development of a localized slip zone similar to Unit 4. 

Taken together, the observations suggest that Unit 3 only forms under dynamic 

weakening conditions, but Unit 4 is the only unit that is observed in all cases of dynamic 

weakening during the rotary shear experiments. Based on the observations to date, we 

suggest that the formation of Unit 4 reflects the process that ultimately results in 

sustained dynamic weakening.  
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2.6.2. Gouge microstructure evolution and relation to weakening 

2.6.2.1. Units 1 and 2 

The formation of Unit 2 from Unit 1, and the distribution of all four units as a 

function of displacement, are consistent with a displacement and normal stress 

dependence for the formation of Unit 2. This unit begins to form at or near one boundary 

of the gouge layer and then expands with displacement at the expense of Unit 1. The 

expansion of Unit 2 inward and preservation of Unit 1 near the rotation axis would be 

expected if formation of Unit 2 requires a finite displacement or shear strain. In contrast, 

preservation of Unit 1 at the periphery of the gouge layer where the greatest cumulative 

displacement occurs, is not consistent with the above relations. The thermomechanical 

model, however, demonstrates that the gouge layer is less confined at large radii because 

of the variation in elastic loading. It is possible that the conversion of Unit 1 to Unit 2, 

by consolidation and comminution, is delayed by the reduction in normal stress at the 

periphery.  

The distributed shear recorded by a clay foliation, reduction in particle size, and 

consolidation noted in Unit 2 are characteristics shared by many low velocity friction 

experiments on quartzo-feldspathic gouge at elevated pressures [Moore et al., 1989; 

Beeler et al., 1996; Rutter et al., 1986]. These experiments also often display Riedel 

shears, which were noted in slip-parallel sections made from low velocity rotary shear 

experiments of Mizoguchi et al. [2009]. Reidel shears are not apparent in our 

experiments, but their existence would be less obvious because of the orientation of our 

thin sections.  
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Gouge experiments run at low slip velocities typically display coefficients of friction 

on order of 0.4 to 0.8, depending on the mineralogy, where the lower coefficients often 

are associated with the presence of clays and water-wet conditions [Logan and 

Rauenzahn, 1987; Morrow et al., 2000; Ikari et al., 2009]. Shear of polymineralic gouge 

layers containing clay or quartzo-feldspathic minerals demonstrate low-magnitude 

strengthening and weakening with changes in temperature [Logan et al., 1981; Moore et 

al., 1989]. For our experiments, temperature increases on the order of 100 ˚C from 

frictional heating with the associated formation of Units 1 and 2; these tests do not show 

pronounced weakening and thus are consistent with prior results of low velocity friction 

experiments on similar materials.  

2.6.2.2. Units 3 and 4 

The paired occurrence of Units 3 and 4 displayed in sequential displacement samples, 

the presence of fragments of Unit 4 in Unit 3 and of Unit 3 in Unit 4, and the spatial 

arrangement of these units suggest that the formation of Units 3 and 4 is 

contemporaneous, at least initially, and occurs after the formation of Unit 2. The 

pronounced particle size reduction of Unit 4 and the typical location of the unit at the 

gouge layer boundary are similar to the characteristics of localized shear zones observed 

in many prior experiments on gouge layers at low and intermediate slip velocities 

[Logan et al., 1979; Beeler et al., 1996]. The majority of displacement occurs within the 

localized zone, as is inferred here for Unit 4. The initial formation of Units 3 and 4 along 

a zone of concentrated shear at the boundary of the gouge layer is consistent with the 

wedge shape geometry of Unit 3 and the location of the interior vertex of the wedge 
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against the boundary of the gouge layer where Unit 4 is located. The structural evolution 

seen in sequential displacement tests further indicates that the wedge of Unit 3 grows 

inward with displacement by the propagation of the vertex along the boundary, and by 

the expansion of the wedge by incorporation and conversion of Unit 2 into Unit 3 

(Figures 2.11b, 2.11c, and 2.11d). 

The characteristics of Unit 3, such as the random fabric, massive texture, reduced 

particle size, and rounded clasts near the periphery of the layer, suggest granular 

deformation during a dynamic, fluidized flow rather than during frictional shearing flow. 

Fluidized behavior in a collection of particles is characterized by particle movement 

along a free path between collisions with other particles. Deformation of a fluidized 

material may result in a random fabric, although depending on the fluidization regime 

(frictional, macroviscous or grain-inertia), some grain size segregation or other layered 

flow-fabric may develop [Otsuki et al., 2003; Monzawa and Otsuki, 2003; Ujiie et al., 

2007]. On the basis of observed microstructures, particularly of the spherical CCA, 

Boutareaud et al. [2008, 2010] conclude that the deformation of Unit 3 reflects 

vaporization of liquid water in the gouge during frictional heating. The transformation 

produces a significant decrease in water density which, depending on rate that the water 

vapor escapes through the gouge and past the Teflon sleeve, could produce a vapor 

pressure equivalent to the normal load [Boutareaud et al., 2008, 2010]. Boutareaud et al. 

[2008, 2010] argue that the vaporization process causes the gouge to dilate and fluidize, 

and as a consequence, fine clay particles can aggregate and adhere to the core of the 
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CCA. In contrast, Mizoguchi et al. [2009] conclude that the escape of any water vapor 

produced during shear is sufficiently fast that pressurization should be minimal. 

As shown by the thermal model of Mizoguchi et al. [2009] and the thermomechanical 

model herein, the rate that the temperature increases in the gouge from frictional heating 

is greatest at the periphery of the layer. Thus, the critical temperature for the liquid-

vapor transition of water is achieved first in the outer portion of the circular gouge layer. 

The liquid-vapor transformation front should then migrate toward the center of the 

sample as temperature increases with shearing. The inward-tapered, wedge geometry of 

Unit 3 along the actively shearing boundary of the layer (recorded by Unit 4), and the 

inward expansion of the wedge with displacement are consistent with vaporization of 

water along the heated, slipping boundary, and with outward flow and escape of the 

vapor past the Teflon sleeve. Clearly, pressurized gas streaming outward could facilitate 

suspension of particles and fluidization of the gouge when the rate of vapor production is 

high.  

Our observations support the conclusions that Unit 4 is produced at the expense of the 

other units, it is active throughout shearing, and it is the locus of shear at the larger 

displacements. Brantut et al. [2008] use transmission electron microscopy to document 

partial amorphization and dramatic grain size reduction (down to the nanometer scale) 

within the localized slip zone of Unit 4 to infer thermal dehydration of the clays due to 

shearing. The more pronounced chemical changes in Unit 4 likely reflect higher 

temperatures as would be expected if the majority of displacement is accommodated by 

slipping within Unit 4 at the boundary of the gouge layer.  
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2.6.3. Vaporization of water  

The conclusion of Boutareaud et al. [2008, 2010], that Unit 3 results from the 

vaporization of pore water, can be tested using our sequential displacement experiments 

that explore a range of slip velocities, normal stress conditions and host-block type. The 

range of heating rates in these experiments and the temperature changes that can be 

determined from the thermomechanical model, give the pressure and temperature 

conditions during the development of Unit 3. Assuming that the vapor pressure equals 

the normal stress, these data suggest that the liquid-vapor transition should occur at 

temperatures of 120 to 192 ˚C for normal stresses from 0.2 to 1.3 MPa [Lide, 2006]. 

The experiments displaced at a representative velocity of 0.1 m/s do not achieve 

temperatures sufficient to vaporize water, and those run at the highest rate of 1.3 m/s 

achieve the liquid-vapor transition temperature at very small displacement. The 

experiment sheared to the largest displacement (HVR484gr), at a representative velocity 

of 0.1 m/s, reaches a representative temperature of 112 ˚C and does not display Unit 3, 

consistent with the conditions for the liquid-vapor transition (Figure 2.12a). At a 

representative velocity of 0.7 and 1.3 m/s, the smallest displacement experiments that 

display Unit 3 achieve representative temperature of 192 and 169 ˚C; these observations 

also are consistent with the conditions for the liquid-vapor transition (Figure 2.12b and 

2.12c).  

Two plots summarizing the occurrence of Unit 3 with respect to normal stress, 

displacement, velocity, and temperature show that Unit 3 forms at about 150 ˚C, 

regardless of the normal stress, displacement, and velocity (Figure 2.13). In detail, the 
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Figure 2.12. Results from three selected experiments to illustrate experimental constraint on the 
temperature at which Unit 3 is formed in the gouge layers. Friction coefficient (solid-black), 
representative temperature (dashed-black), and gouge dilation (solid-gray) versus representative 
displacement for shearing at normal stress of 0.6 MPa and representative slip velocity of (a) 0.1 m/s, 
(b) 0.7 m/s, and (c) 1.3 m/s. The bold lines and numbers represent the critical temperature for water 
vaporization assuming that the vapor pressure is equal to the average normal stress. 
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Figure 2.13. Summary plots showing the development of Unit 3 in sheared gouge as a 
function of normal stress, representative slip velocity, and maximum representative 
temperature. (a) Plot showing conditions at which Unit 3 was formed (solid symbols) or 
not formed (open symbols) as a function of velocity and normal stress. The numbers 
next to symbols indicate the final representative displacement and the maximum 
representative temperature (in parentheses) achieved in each experiment. The 
temperature of vaporization at each normal stress is shown in parentheses below the 
horizontal axis. (b) Plot showing the temperature and normal stress conditions for which 
Unit 3 was observed (solid symbols) or not observed (open symbols). The lines with 
numbers represent the critical temperatures for water vaporization at each normal stress 
assuming vapor pressure is equal to the normal stress. 
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lowest temperature at which Unit 3 is observed is 146 ˚C, and the greatest temperature at 

which Unit 3 is not observed is 142 ˚C (Figure 2.13a). In all cases where Unit 3 is 

observed, the calculated representative temperature is greater than the critical 

temperature for the liquid-vapor transition, assuming a vapor pressure equivalent to the 

normal stress (Figure 2.13b). In two cases sheared at the average normal stress of 1.3 

MPa, however, the maximum representative temperature achieved in experiments 

displaying Unit 3 is less than the critical temperature for the liquid-vapor transition, 

again assuming a vapor pressure equivalent to the normal stress. This finding could 

indicate that the vapor pressure did not increase to the magnitude of the normal stress, 

i.e., the vapor escaped the gouge layer at a rate nearly equal to its formation, consistent 

with the calculations of Mizoguchi et al. [2009]. 

The thermomechanical model may overestimate the temperatures achieved for cases 

where Unit 3 is formed because the model assumes heat transfer by conduction, and does 

not consider dehydration of clay minerals, the liquid to vapor transition of water, or the 

transfer of heat by escape of the vapor from the gouge layer. The latent heat associated 

with dehydration of clay minerals and the liquid-vapor transition of water, and the 

transfer of hot vapor out of the layer could limit the temperature increase from frictional 

heating. To estimate the possible effect of these processes on the temperature 

calculations, the total energy from friction in the gouge layer (Etotal), the energy for 

heating (Eheat), the energy for vaporization (Evapor) of water, and the energy for 

dehydration of smectite (Edehy) are calculated. Etotal and Eheat are given by, 
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$ ,              (2.14) 

where h is the thickness of gouge layer, c is heat capacity, ρ is density, and 

 

!T  is 

temperature change. We use heat capacities of 1.0 (J/g⋅K) for the gouge and 4.184 

(J/g⋅K) for water, and densities of 2.0 (g/cm3) for the gouge and 1.0 (g/cm3) for water, 

respectively. Evapor is determined as the vaporization energy of water in the area where 

the temperature exceeds the vaporization temperature, assuming vapor pressure equals 

the normal stress for each experiment. The enthalpy of vaporization of water is 2.2-1.97 

kJ/g at 120-190 °C [Lide, 2006], and the total content of water in the gouge layer is 

assumed to equal the water added at the beginning of the experiment. Similarly, Edehy is 

calculated as the dehydration energy of smectite in the area where the temperature 

exceeds the critical temperature for dehydration. Koster van Groos and Guggenheim 

[1986] found that the first and second dehydration reactions at pressure occurred at about 

50 °C and 100 °C above the liquid-vapor transition, and determined the enthalpy of the 

dehydration for each reaction were approximately 46 kJ/mol and 60 kJ/mol, respectively. 
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Total energy per unit area results in 0.4-13×106 (J/m2), depending on slip velocity and 

displacement, and Eheat, Evapor, and Edehy make up 5-37%, 6-28%, and 0.04-6% of total 

energy, respectively (Table 2.1). Thus, the amount of energy that could be transferred 

out of the gouge layer during periods of vaporization is significant. In fact, the 

temperatures achieved in the gouge layer as a whole may be limited to the liquid-vapor 

transition temperature as long as liquid water is present in the layer. This conclusion 

means that the temperature is held at the vaporization temperature as displacement 

increases in experiments sheared at the lower rates.  

 

2.6.4. Temperature dependence of friction in localized slip zone 

The conditions favoring the development of Units 3 and 4, i.e., the conditions at 

which the temperature in the gouge layer rises above 150 ˚C, correlate well with the 

onset of dynamic weakening (Figure 2.13). Thus the deformation processes operating in 

the units are good candidates for dynamic weakening mechanisms. The unique 

microstructure of Unit 3 and the possibility that Unit 3 reflects a vapor pressure increase 

that approaches the normal load during shearing, support the hypothesis that the low 

dynamic strength could, in part, reflect thermal pressurization and shearing under a 

fluidized state in Unit 3. Yet the fact that Unit 4 is present in all experiments that display 

dynamic weakening and that it appears to accommodate the majority of displacement, 

suggests that Unit 4 provides the least resistance to shearing.  

A few high-velocity rotary slip-hold-slip experiments on gouge layers demonstrate 

that original strength is recovered after short (tens of seconds) hold times and that 
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subsequent sliding displays an evolution of friction to a dynamic weakened state similar 

to that for initial loading [Mizoguchi et al., 2009; Kitajima et al., 2006]. This strength 

recovery suggests that the presence of Units 3 and 4 is not sufficient for dynamic 

weakening. Rather, Units 3 and 4 are dynamically weakened only if temperature is 

increased sufficiently high through frictional heating. 

 

2.6.5. Critical displacement for weakening 

The results of previous rotary shear experiments on split cylinders of rock, with and 

without gouge layers, have been used to guide modeling of the breakdown in strength 

and the critical slip distance for weakening for earthquake rupture [e.g., Hirose and 

Shimamoto, 2005; Mizoguchi et al., 2007]. One outcome of the rotary shear experiments 

is that the critical slip distance is decreased and the magnitude of weakening is increased 

with an increase in normal stress. Such a dependence on normal stress is consistent with 

expectations for thermal weakening processes because the heating rate for frictional slip 

is directly dependent on normal stress. The relatively large critical slip distances 

observed in the rotary shear experiments at low normal stress appear compatible with 

slip weakening distances for earthquakes, if one accounts for the increased heating rate 

associated with high normal stress in the seismogenic regime [Mizoguchi et al., 2007]. 

Such analyses, however, remain problematic given the heterogeneous nature of 

deformation in rotary shear experiments. 

In the present experiments, dynamic weakening appears to require not only the 

establishment of Units 3 and 4 but also a slip velocity sufficient to elevate temperature 
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along the surface through frictional heating. On the basis of microstructural observations 

and thermomechanical modeling, it is clear that the required conditions for dynamic 

weakening are achieved initially in a restricted region at the periphery of the gouge 

layer. Simultaneously, in the central portion of the sample where Units 1 and 2 form and 

the heating rates are much lower, the gouge layer remains relatively strong. As a result, 

the dynamic weakening observed at high effective slip velocity reflects the progressive 

inward expansion of the hot, weaker Units 3 and 4 at the expense of the interior region 

of the gouge where shearing is within the stronger Units 1 and 2. It must be concluded 

that the critical slip distance determined directly is a bulk response of the sample, and 

that to a certain extent the magnitude of the critical slip distance reflects the 

heterogeneous velocity and stress conditions imposed in the rotary configuration. As 

such, it is misleading to attempt to determine a unique critical slip distance from a rotary 

shear experiment without accounting for the heterogeneous conditions. Similarly, the 

measured torque also must be regarded as a bulk response, and the calculation of a 

coefficient of friction for the gouge layer assuming friction is uniform is misleading. 

The use of the thermomechanical model, which allows for variable normal stress 

from thermoelastic deformation of the sample assemblies, to determine friction from 

experimental data is an improvement over previous methods that are based on the 

assumption of uniform shear stress in the gouge layer. Nonetheless, the assumption of 

uniform friction in the modeling also must be relaxed in order to adequately account for 

the heterogeneous conditions and in order to extract meaningful friction constitutive 

parameters. 
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2.7. Conclusions 

1) The microstructural observations of the sheared gouge, and analysis of 

experimental data using thermomechanical models of the sample assembly, indicate that 

heterogeneous conditions of stress, temperature, and frictional-slip processes occur 

within the high-speed rotary shear experiments. The heterogeneity must be characterized 

to understand friction behavior and the underlying microscopic slip processes. 

2) Dynamic weakening is observed in experiments conducted at slip rates greater 

than about 0.3 m/s where frictional heating rates are sufficient to elevate the temperature 

of the gouge layer; dynamic weakening is facilitated by increases in normal stress, shear 

displacement and water, consistent with a temperature-dependent weakening process. 

Host block composition also can indirectly affect dynamic weakening; samples with 

granite blocks result in higher temperature and larger dilation than those with gabbro 

blocks because of the lower thermal diffusivity of granite. 

3) On the basis of the maximum particle size, particle shape, development of clay 

foliation, and degree of localization of shear, four distinct microstructural units are 

identified within the sheared gouge layers. Unit 1 is similar to the disaggregated starting 

material but slightly compacted due to shear, whereas Unit 2 displays a clay foliation 

resulting from the comminution and distributed shear of Unit 1. Unit 3 displays a 

random clay fabric and reduced particle size that records fluidized flow. Unit 4 occurs 

within a thin zone of concentrated shear, displays extreme grain size reduction and a 

strong foliation, and is often located along the contact of the gouge and host block.  
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4) Units 1 and 2 generally occur in regions subjected to lower slip velocity and 

smaller shear displacements, and are associated with higher coefficients of friction. Units 

3 and 4 occur together and are formed in the samples sheared at higher slip rates to 

larger displacements, the same conditions where dynamic weakening of the gouge layer 

is observed. 

5) Formation of the fluidized structure in Unit 3 occurs at the critical temperature for 

vaporization of water. The vapor pressurization and streaming flow of vapor through the 

gouge layer likely facilitates fluidized behavior in Unit 3. 

6) The observed dynamic weakening appears to require both the establishment of the 

localized slip surface recorded by Unit 4, and a slip velocity sufficient to elevate 

temperature along the surface through frictional heating. Marked weakening of the 

gouge occurs at temperatures above the vaporization temperature of water, however, 

formation of pressurized water vapor may not be directly responsible for the pronounced 

weakening. 

7) Given the heterogeneous stress, temperature, and friction in the gouge layers, the 

determination of friction constitutive behavior from the rotary shear experiments 

requires advanced thermomechanical modeling in which traditional assumptions of data 

analysis are relaxed to allow treatment of spatially variable normal stress and coefficient 

of friction. 
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3. DYNAMIC WEAKENING OF GOUGE LAYERS BY THERMAL 

PRESSURIZATION AND TEMPERATURE-DEPENDENT FRICTION IN 

HIGH-SPEED SHEAR EXPERIMENTS 

 
3.1. Introduction 

Over the last decade, frictional behavior of rock at slip rates greater than 0.1 m/s have 

been investigated, and both rock-on-rock and gouge-layer experiments show significant 

weakening at these rates [e.g., Tsutsumi and Shimamoto, 1997; Golsby and Tullis, 2002; 

Hirose and Shimamoto, 2005; Mizguchi et al., 2009]. Several dynamic weakening 

mechanisms have been proposed, including flash heating [Rice, 1999, 2006; Beeler et 

al., 2008], thermal pressurization of pore fluid [Sibson, 1973; Lachenbruch, 1980; Mase 

and Smith, 1987], shear melting [Spray, 1993; Tsutsumi and Shimamoto, 1997; Hirose 

and Shimamoto, 2005; Di Toro et al., 2006], silica gel formation [Goldsby and Tullis, 

2002; Di Toro et al., 2004], normal interface vibration [Brune et al., 1993], 

elastohydrodynamic lubrication [Brodsky and Kanamori, 2001], and transformation 

weakening [Han et al., 2007]. Significant progress has been made in understanding some 

of the mechanisms, but more work is required to determine which mechanisms are 

significant to natural faulting and to develop appropriate constitutive descriptions.  

Friction behavior determined at slip rates smaller than 1 mm/s is well described by 

rate- and state-dependent constitutive laws largely based on micromechanical models of 

time-dependent processes at areas of contact [Dieterich, 1979; Ruina, 1983]. Because 

rate dependence, specifically velocity weakening, can explain the nucleation of slip 

instabilities, rate and state friction laws have been used in mechanical models of faults to 
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investigate slip instability and earthquake occurrence [e.g., Tse and Rice, 1986; Rice, 

1993; Lapusta et al., 2000]. In contrast, constitutive relations capable of describing the 

frictional behavior observed in high-speed friction experiments are poorly developed. 

The general frictional response seen at slip-rates greater than 0.1 m/s consists of a slip-

weakening behavior characterized by an initial-peak friction coefficient, µpeak , an 

evolution to a steady-state friction coefficient, µ
ss

, over a characteristic slip-weakening 

distance, d
c
, and a reduction in µ

ss
 with increase in slip rate [e.g., Tsutsumi and 

Shimamoto, 1997; Hirose and Shimamoto, 2005; Brantut et al., 2008; Mizoguchi et al., 

2009]. In some cases the weakening has been attributed to the flash heating mechanism, 

which describes thermal weakening of asperity contacts from a local temperature 

increase that depends on contact size, slip rate, and thermal properties [Rice, 1999, 2006; 

Beeler et al., 2008]. Sone and Shimamoto [2009] describe the evolution of friction 

strength, including the three stages of strengthening, weakening, and recovery that are 

observed during changing-velocity rotary-shear experiments, by assuming a velocity-

dependent steady-state friction coefficient and a displacement-dependent, initial-peak 

friction coefficient. Although it is well recognized that frictional heating is important at 

high slip rates, and many of the proposed mechanisms for dynamic weakening are 

thermally activated processes, there has been little effort to apply constitutive relations 

with temperature dependence to the results of high-speed friction experiments. 

The purpose of this paper is to use thermal-, mechanical-, and fluid-flow-coupled 

finite element (FEM) models of high-speed, rotary-shear experiments on thin layers of 

gouge comprised of disaggregated ultracataclasite from the Punchbowl fault to (1) assess 
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the efficacy of state-variable, temperature dependent constitutive relations in describing 

the frictional response, (2) evaluate the contribution of flash heating and thermal 

pressurization to dynamic weakening, and (3) better describe heterogeneous evolution of 

the friction coefficient, normal stress, pore pressure, temperature, and microstructure 

during rotary shear. The FEM modeling extends the work of Kitajima et al. [2010] in 

analyzing high-speed rotary-shear experiments, and treats both the original tests 

employing constant velocity loading, and new tests incorporating constant acceleration, 

changing velocity loading. 

 

3.2. Temperature-dependence of Friction in High Slip-rate Experiments 

3.2.1. Experiment methods and FEM-based analysis 

High-speed rotary-shear experiments were conducted on 1-mm-thick layers of gouge 

between two cylindrical host blocks of granite or gabbro (25 mm diameter) confined but 

not sealed by a Teflon sleeve (Figure 3.1a). The gouge consists of gently disaggregated 

Punchbowl fault ultracataclasite [Kitajima et al., 2010]. ‘Water-dampened’ and ‘room-

dry’ samples were prepared with or without adding 0.3 g of distilled water, respectively. 

All experiments were conducted at room temperature and humidity conditions. Normal 

load was applied and kept constant at the end of the stationary host block, and rotation of 

the rotating host block was driven by an electric motor. A clutch was used to quickly 

reach the target rate for constant velocity experiments while the velocity and 

acceleration was manually controlled for constant acceleration experiments. Normal 

load, total torque, rotation speed, and axial displacement were measured during 
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Figure 3.1. Diagrams of the sample assembly and heat source distributions. (a) Diagram of 
the sample assembly showing the position of the gouge layer, host blocks, and Teflon sleeve. 
The region outlined in blue indicates the portion of the axial-symmetric assembly modeled 
using FEM. Cut-away view showing the velocity distributions in the gouge layer for the (b) 
localized slip and (c) distributed shear cases. The bold arrows indicate the magnitude of local 
velocity relative to the stationary host block at a given radius. For the localized case, 
frictional slip and the associated heat generation are assumed to occur at the midplane of the 
gouge layer. For the distributed shear case, heat generation rate increases with radius but is 
constant with z in the gouge layer.  
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experiments. The measurement of the total torque was reduced by the torque supported 

by the friction between the Teflon sleeve and host blocks before analysis of gouge 

friction. In the rotary shear configuration, slip velocity and displacement vary with 

radius r , from zero at r = 0  to the maximum values at r = r
s
. For reference, the 

velocity, temperature and displacement at r = 2r
s
/ 3  are used to describe general 

conditions of each experiment as a representative slip velocity Veq , a representative 

temperature Teq , and a representative displacement deq . After experiments, the samples 

were cut through the axis of host block cylinder to produce radial cut thin sections 

oriented perpendicular to the slip direction. The radial cut sections were used to 

characterize the evolution of deformed microstructures as a function of radius, velocity, 

and displacement [Kitajima et al., 2010]. 

Numerous constant velocity experiments were conducted for a parametric study of 

slip rate, normal stress, total displacement, water content, and host block type [Kitajima 

et al., 2010]. Normal stresses of 0.2-1.3 MPa, slip velocities of 0.1-1.3 m/s, and the total 

displacement of 1.3-84 m were achieved. Among tens of experiments, the results of four 

representative experiments sheared at normal stress of 0.6 MPa and different slip rates 

are analyzed in this study (Table 3.1). In addition to the constant velocity experiments 

reported by Kitajima et al. [2010], constant acceleration experiments were conducted for 

a parametric study of loading path, acceleration rate, and water content. Slip velocities 

were manually increased and decreased between 0 and 1.3m/s with constant 

accelerations of 0.05 or 0.1 m/s2 (Table 3.1). These experiments are similar to 

“changing-velocity experiments” reported by Sone and Shimamoto [2009] and Sawai et 
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 σn 

(MPa) 
Veq 

(m/s) 
aeq 

(m/s2) 
deq 
(m) 

dry or 
wet 

Constant velocity 
experiment 

     

HVR484gr 0.6 0.1 - 25 wet 
HVR809gb 0.6 0.35 - 19 wet 
HVR530gr 0.6 0.7 - 29 wet 
HVR482gr 0.6 1.3 - 83 wet 
HVR475gr 0.6 1.3 - 84 dry 

      
Constant acceleration 
experiment 

     

HVR952gb1 0.6 0-1.3 0.1 19/19 wet 
HVR955gb 0.6 0-1.3 0.05 32 wet 
HVR956gb 0.6 0-1.3 0.05 32 dry 

1 Includes two consecutive runs. 
 

Table 3.1. Summary of high-speed experiments. gr and gb after the 
experiment number represent host rock type of granite and gabbro. σn: 
average normal stress, Veq: representative slip rate, aeq: representative 
acceleration rate, deq: representative displacement. 
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al. [2009], however, our acceleration rates are much lower than those of the changing-

velocity experiments. As summarized in Table 3.1, room-dry gouge was used in an 

experiment (HVR955gb) and water-damped gouge was used in other experiments 

(HVR952gb and HVR956gb). The experiment HVR952gb includes two successive runs, 

HVR952gb-1 and HVR952gb-2, and the sample was held stationary with normal load 

maintained for 20 minutes between the runs. 

In the previous study of Kitajima et al. [2010], mechanical data from each experiment 

was analyzed using a coupled thermo-mechanical FEM model, which can treat frictional 

heating, heat transfer, and thermal expansion, to determine the spatial and temporal 

variation in normal stress and temperature within the samples and the magnitude of 

gouge dilation by subtracting the calculated thermal expansion from the measured axial 

displacement. It should be emphasized that the previous analysis of high-speed friction 

experiments using the FEM model was based on the assumption of a uniform coefficient 

of friction in the layer. With this assumption, and that the local normal stress on the layer 

is given by the FEM model, the coefficient of friction could be determined directly from 

the measured torque corrected for Teflon friction. All the details of the method, thermal-

mechanical FEM model, mechanical results, and microstructure analysis of constant 

velocity experiments are described in Kitajima et al. [2010]. 

 

3.2.2 Evidence that dynamic weakening reflects temperature dependent friction 

Comparison of frictional strength and temperature in constant velocity experiments 

shows that dynamic weakening occurs at slip rates larger than 0.35 m/s where frictional 
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heating rates are sufficient to elevate the temperature of the gouge layer, and no dramatic 

weakening is observed at the lowest slip rate of 0.1 m/s where temperature changes are 

minimal [Kitajima et al., 2010]. The series of experiments suggest that the weakening 

process is strongly temperature-dependent, because it is facilitated by increases in 

normal stress and velocity. Dynamic weakening is achieved with elevation of 

temperature regardless of the combination of velocity, displacement, normal stress, and 

host-rock thermal conductivity to produce the increase of temperature. Layer 

microstructure changes at the critical temperature for weakening, consistent with the 

activation of a distinct high-temperature slip process responsible for dynamic 

weakening. 

In the constant-acceleration experiments, the evolution of frictional strength is similar 

for different acceleration, but is significantly different for room-dry and water-dampened 

samples [Kitajima et al., 2007]. For the experiment on the room-dry sample, the 

coefficient of friction gradually increases to 1.2 when slip velocity reaches at 

approximately 0.2 m/s, followed by weakening with increasing velocity. For the 

experiments on water-dampened samples, on the other hand, coefficient of friction 

largely decreases after the initial peak, followed by slight increase and another decrease 

during acceleration. Both room-dry and water-dampened samples show partial recovery 

of frictional coefficient during deceleration. Although abrupt dynamic weakening is not 

observed in constant-velocity experiments on gouge of disaggregated Punchbowl 

ultracataclasite, it is observed in high-speed, constant-velocity experiments on some 

other water-dampened clay-rich gouge [e.g., Kitajima et al., 2006; Faulkner et al., 2009; 



 

 

65 

65 

Togo et al., 2009]. Abrupt weakening could reflect thermal pressurization in water-

dampened samples at high-speed, even though the Teflon sleeve used to contain the 

gouge is not expected to seal fluids (Figure 3.1a). 

The relationship between evolving temperature and friction in the various 

experiments is illustrated in Figure 3.2. For room-dry samples, friction coefficient in 

both the constant-velocity experiment (HVR475gr) and the constant-acceleration 

experiment (HVR956gb) initially increases and then decreases as temperature rises over 

the course of the experiment (Figure 3.2a). Similar though not as quite pronounced 

behavior of strengthening then weakening is observed in the constant-velocity 

experiments on wet samples (Figure 3.2b). Differences in the relationships between 

evolving temperature and friction for room-dry and wet samples suggest other thermal- 

and water-related process is operative, such as thermal pressurization of pore fluid. The 

data shown in Figure 3.2 are determined by FEM modeling assuming the friction 

coefficient is spatially uniform, but observations described above indicate the velocity, 

temperature, normal stress and friction coefficient vary with position in the samples. 

Thus the relationships in Figure 3.2 represent an average, bulk response of the samples 

and likely do not indicate the exact relationship between temperature and friction. 

Nonetheless, the existence of a temperature-strengthening regime at lower temperatures 

(low-T regime) and a temperature-weakening regime at higher temperatures (high-T 

regime) is certain. 
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Figure 3.2. Plots of friction coefficient versus representative temperature for 
selected constant velocity and constant acceleration experiments. Red and black 
lines indicate the inferred temperature-weakening relationship in the high 
temperature regime for a) room-dry and b) wet gouge. Plotted values were 
determined from analysis of experiments using the FEM model of Kitajima et al. 
[2010] assuming the coefficient of friction in the gouge is independent of position 
(see text). The representative temperature, Teq, is a determined at r=2/3rs. (a) Room-
dry gouge experiments of HVR475gr sheared at a constant representative velocity of 
1.3 m/s and HVR956gb sheared at a constant representative acceleration of 0.05 
m/s2. (b) Wet gouge experiments of HVR484gr, HVR809gb, HVR530gr, and 
HVR482gb sheared at constant representative velocities of 0.1, 0.35, 0.7, and 1.3 
m/s, respectively.  
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3.2.3. Temperature-dependent constitutive friction relations 

Chester [1994] extended a rate and state friction constitutive relation to account for 

the effect of temperature on the basis of the assumption that the micromechanisms of 

friction are thermally activated and follow an Arrhenius relationship. The rate-, state-, 

and temperature-dependent friction constitutive law (the slip law) is expressed by  

 µ = µ* + A ln
V
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where V , T , and !  are slip velocity, temperature, and state variable. A , B  , and D
c
 

are constitutive parameters. R  is the gas constant; Q
A

 and Q
B

 are the activation energy 

for the direct and evolution effects, respectively. At steady state, µ
ss
= µ* for V = V

* and 

T = T
* . From Eqs (3.1) and (3.2), the steady state friction coefficient is given by  
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Velocity and temperature dependence is expressed as 

!µ
ss

!(lnV )
"
#$

%
&'
T =const .

= A ( B ,     (3.4) 

and 



 

 

68 

68 

!µ
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   (3.5) 

respectively. 

The parameter of temperature dependence described by (3.5) should be determined in 

experiments when velocity is constant, or if velocity dependence given by (3.4) is 

known. Unfortunately, using velocity stepping tests to directly measure velocity 

dependence was not attempted in the rotary shear apparatus. However, the range of 

velocities tested (0.1 to 1.3 m/s) is small relative to the changes in temperature, so the 

changes in friction resulting from velocity change is likely smaller than the changes in 

friction due to changes in temperature that take place at the high slip rates. They are also 

likely small relative to the variation in base-level friction, µ* , typically observed in 

friction tests. Accordingly we can ignore velocity dependence and infer the magnitude 

and sign of the temperature dependence directly from the slopes of the friction versus the 

reciprocal of temperature plot of room-dry experiments (Figure 3.2). Together with the 

assumption that friction during constant-velocity, high-speed tests is close to steady state 

conditions, at least to first-order approximation, we can characterize temperature 

dependence in (3.5) as C=-2000 K for the low-T, temperature-strengthening regime and 

as C=750 K for the high-T, temperature-weakening regime.  

 

3.3. Thermo-mechanical and Fluid Flow FEM Model  

For the present analysis, the thermomechanical FEM model of Kitajima et al. [2010] 

is extended to treat spatial and temporal variation of the coefficient of friction and pore 
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fluid pressure resulting from thermomechanical effects and fluid flow in the porous 

media. The results of forward models based on the experimental parameters, assumed 

material properties, and temperature-dependent friction constitutive relations, are 

compared to the measurements of torque in the experiments to evaluate the veracity of 

the friction constitutive relations, as well as to evaluate the character of frictional shear 

and the associated heat source, and constrain some physical properties such as gouge 

permeability.  

The torque carried by the sheared layer M
s

 is computed at z = 0 by 

Ms (t) = 2! µs (r,t) " # n (r,t) $ p(r,t)( )
0

r

% " r2dr ,    (3.6) 

where µ
s
 is coefficient of friction of gouge layer, and !

n
 and p  are normal stress and 

pore pressure. In detail, the friction coefficient is a function of temperature, which is 

allowed to vary with position and time, i.e., µ
s
(r, z,t) = µ

s
(T )andT = T (r, z,t) . Note 

that the approach herein contrasts with that taken in Kitajima et al. [2010] in which pore 

pressure is ignored and the coefficient of friction can vary with time but not with 

position.  

We solve the conservation equations of heat and fluid mass to predict the evolution of 

temperature and pore pressure during shear. The conservation equation of heat within the 

gouge is  

 

!c
"T

"t
# $ % K$T( ) = & !'

,
     (3.7) 



 

 

70 

70 

where !  is density, c  is heat capacity, K  is thermal conductivity, and 
 
! !"  is the heat 

generation rate per unit area . The conservation equation of fluid mass within the gouge 

layer is  

 ! f"
#p

#t
$ % & 'hy%T( ) = ! f( ) f $ )n( )

#T

#t
     (3.8) 

where p is pore pressure, ! f  is fluid viscosity, !  is the volumetric pore fluid storage 

coefficient, !hy  is hydraulic diffusivity, !  is porosity, ! f  is fluid thermal expansivity, 

and !
n  is pore space thermal expansivity. !  and !hy  are expressed by ! = " ! f + !n( )  

and !hy = k (" f #) , respectively, where ! f  is fluid compressibility, !
n

 is pore space 

pressure expansivity, k  is permeability, and ! f  is fluid viscosity [e.g., Rice, 2006].  

Assuming that all frictional work is converted to heat, we consider the two cases of 

either a localized or distributed heat source within the gouge layer as would be expected 

for localized or distributed shear, respectively. For the localized shear and heat source, it 

is assumed that all slip occurs at the mid-plane of the layer (Figure 3.1b). For the 

distributed shear and heat source, it is assumed that shear strain rate is independent with 

z in the gouge layer (Figure 3.1c). In addition to the heat source in the gouge, the heat 

generation at the boundary between Teflon sleeve and the rotating host block also is 

treated [Kitajima et al., 2010].  

To best model the starting condition of the experiments, the gouge is saturated with 

water, the stress in the layer is isotropic with magnitude !
n

, and the pore fluid pressure 

is zero at t = 0. The temporal evolution of porosity is expressed by !(t) = !
0
+ "(t) , 
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where !
0  is initial porosity and !  is volumetric strain computed by the 

thermomechanical FEM model. Permeability of the granite and gabbro host-blocks are 

set to 10-17 m2 and 10-18 m2, respectively [Zhang et al., 2001; Hirose and Hayman, 

2008]. We assume high permeability of 10-13 m2 for the Teflon sleeve to simulate the 

relatively poor seal between the sleeve and the host block.  

The most uncertain parameter is the permeability of gouge layer during shear at high 

slip rates. In general, gouge permeability decreases with increasing effective stress and 

decreasing porosity [e.g., Wibberley, 2002]. Permeability measurements on clay-rich 

gouge during friction experiments at slow strain rates show that permeability decreases 

with shear strain [Takahashi et al., 2007; Crawford et al., 2008; Ikari et al., 2009]. In 

contrast, no measurement of permeability has been conducted during experiments 

sheared at high slip rates. Tanikawa et al. [2010] measured permeability before and after 

rock-on-rock rotary shear at slip rates of 10-4 to 1.3 m/s on Berea sandstone, Indian 

sandstone, and Aji granite. For the relatively impermeable rocks, permeability is 

increased significantly due to thermal cracking when slip rates exceed 0.1 m/s. However, 

the samples tested by Tanikawa et al. [2010] are not similar to the present case of weak 

gouge layer between the host blocks. 

In addition to assuming constant permeability of the gouge layer, we test two cases 

assuming that permeability is a function of (1) effective normal stress, and (2) porosity. 

There are several proposed relationships between permeability and effective normal 

stress, e.g., a log-linear relationship [e.g., Rice, 1992] and a cubic law [Gangi, 1978; 

Kwon et al., 2004]. Since the pressure range in this study is as small as 0.6 MPa, we  
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 Host blocks 
 

Gouge 
layer Granite Gabbro 

Teflon 

Young’s 
modulus 
(GPa) 

 
0.01 

 
60 

 
80 

 
0.05 

     
Poisson’s 
ratio 

0 0.25 0.18 0.25 

     
Density 
(g/cm3) 

2.0 2.6 2.95 2.2 

     
Thermal 
expansion 
coefficient 
(K-1) 

 
2.4×10-5 

 
2.4×10-5 

 
1.6×10-5 

 
2.4×10-5 

     
Thermal 
conductivity 
(W/m⋅K) 

 
1.5 

 
2.0 

 
3.0 

 
0.24 

     
Heat 
capacity 
(J/g⋅K) 

 
1.0 

 
0.8 

 
1.0 

 
1.05 

 
Porosity (%) 

 
0.25 

 
0.05 

 
0.05 

 
0 

 
Permeability 
(m2) 

 
   k(σn’) 

k(φ) 

 
10-17 

 
10-18 

 
10-13 

Table 3.2. Thermal, mechanical, and hydraulic properties of 
each component in the FEM model. 
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simply use a log-linear relationship [Rice, 1992], k = k
!0
exp "(! n " p) /!

*( )  for case 

(1), where k
!
0

is the permeability at zero effective stress (10 -15 m2), !
n

 is normal stress, 

and ! *  is a reference pressure of 0.1 MPa. For case (2) a log-linear relationship between 

permeability and porosity is used [Bryant, 1975; Neuzil, 1994; Saffer and Bekins, 1998; 

Gamage and Screaton, 2006], given by k = k
n0
!10

5.25n  where k
n
0

is the reference 

permeability (10-19 m2) when porosity n  is zero. 

Thermal, elastic, and hydraulic properties of the gouge layer, host blocks, and Teflon 

sleeve are summarized in Table 3.2. The thermal and elastic properties are same as those 

used in Kitajima et al. [2010]. We consider the change in physical properties of water 

with pressure and temperature, however, neither two-phase flow of water and vapor, nor 

the thermodynamics of vaporization, is considered here. In addition, the thermal-

expansion coefficient of water is included in the fluid mass conservation equation, but 

not in thermal stress calculation. The same conditions and parameters, including the 

temperature-dependent constitutive relationship for friction, are used in all model 

simulations of the experiments.  

 

3.4. Results 

3.4.1. Constitutive model of friction for high-speed friction experiments 

Using the inferred temperature dependency of friction in the low-T, temperature-

strengthening regime and the high-T, temperature-weakening regime, and iteratively 

adjusting friction parameters during forward modeling to match friction behavior 
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displayed in the experiments, we are able to reproduce adequately the frictional behavior 

observed in all the tests using a two-mechanism friction-constitutive model. The model 

is constructed similar to other multi-mechanism friction-constitutive models [e.g., 

Chester, 1988, 1995]. From (3), and by ignoring velocity dependence, the friction 

behavior under dry conditions may be expressed as  

    µ = µ* + C
1

T
!
1

T
*

"
#$

%
&'

     (3.9) 

where µ* =1.0, T * =353 K, and with C = -2000 K for the low-T mechanism 

(temperature-strengthening regime) and C = 750 K for the high-T mechanism 

(temperature-weakening regime) (Figure 3.3). The two friction mechanisms are treated 

as independent, i.e., operating parallel-concurrent such that the mechanism with the 

lowest friction coefficient dominates the combined behavior [e.g., Chester, 1988, 1995]. 

The experiment results indicate that under wet conditions the friction is reduced in the 

high-T regime, and thus for wet conditions the behavior is best described by (3.9) where 

µ*  = 0.82 and T *=345 K, but with the same values of C for the low-T and high-T 

mechanisms (Figure 3.3). 

Although the two-mechanism model adequately treats the behavior throughout the 

majority of each experiment, it does not treat friction at low temperature at the very 

beginning of tests, particularly at low velocity as occurs at low radius inside the gouge 

layer. This likely reflects a problem with ignoring velocity dependence at low 

temperatures where the constitutive description for the low-T mechanism gives very 

small friction coefficients and the fact that friction is certainly far from steady-state at the 
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Figure 3.3. Graphical representation of the temperature-
dependent friction constitutive relations used in the FEM 
model for the low- and high-temperature regimes. The same 
relationship is used for both dry and wet samples in the 
temperature-strengthening, low temperature regime (gray 
line). For the temperature-weakening, high-temperature 
regime, relationships with the same temperature dependence, 
C, but different base-level of friction, µ*, are used for dry 
gouge (solid black line) and wet gouge (dashed black line). 
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initiation of sliding [e.g., Dieterich, 1981]. Accordingly we employ the velocity- and 

temperature-dependent friction relation determined by Chester [1995] for wet quartz at 

higher velocities as a lower bound to the friction coefficient, given by  

 µ
ss
= µ*

+ 0.002 ! ln
V

1 [µm/s]

"
#$

%
&'
+ 21.4

1

T
(

1

573 [K]

"
#$

%
&'

.   (3.10) 

However, clay-bearing fault gouge generally displays a smaller friction coefficient than 

pure quartz gouge, so µ*  is set at 0.44 (0.2 less than for quartz). In detail, use of this 

particular relation for simulating the high-speed friction results is not critical; adequate 

behavior is achieved simply by assuming a lower bound to friction at low temperatures 

set to 0.45. Assuming a lower bound to low-T friction is essentially treating the friction 

relations given by (3.10) and the low-T mechanism as operating as series-sequential 

mechanisms. 

The formal treatment of thermal pressurization within the sheared gouge layers 

appears necessary to account for some aspects of the frictional behavior of samples. In 

particular, the abrupt weakening early in the constant acceleration experiments is 

produced in the FEM models when thermal pressurization is included. Similarly, in 

constant velocity experiments, the delay in achieving peak strength in samples sheared at 

higher slip rates may be explained by thermal pressurization that slows heating and 

reduces frictional strength.  
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3.4.2. Localization of slip and heating in the gouge layer 

FEM models assuming frictional heating is distributed throughout the gouge layer or 

concentrated along a surface in the layer were compared for all experiments. Models 

using a localized heat source produce somewhat smaller torque than models with a 

distributed heat source, in all cases (Figure 3.4a). It should be noted that microstructural 

observations indicate the localized slip zones are generally, though not always, located at 

the boundary between the gouge layer and rotating host block, whereas it is assumed 

centrally located in the FEM models. In addition, localization generally develops only at 

larger radii, and may develop early or late in experiments. Thus assuming a localized or 

distributed heat source is only meant as a first order approximation; however, regardless 

of the assumption of heat source the FEM models reproduce the general evolution of 

friction observed in the experiments. All models reported hereafter assume a localized 

heat source. 

 

3.4.3. Permeability and pore fluid pressurization in the gouge layers 

FEM models of the experiments indicate that different assumptions regarding 

permeability evolution of both gouge layer and host blocks largely impact both constant-

velocity experiments and constant-acceleration experiments. The differences are 

illustrated at a constant Veq  of 0.35 m/s or at a constant acceleration of 0.05 m/s2 (Figure 

3.4). The strengthening and weakening observed at constant velocity are best captured 

when permeability of gabbro is set at 10-17 m2 (Figure 3.4a); however, an assumption of 
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Figure 3.4. Effect of different assumptions for heat source 
distribution and permeability relationships of gouge and host rock in 
FEM model simulations. Comparison of measured and model-
calculated torque for representative experiments using a) constant 
velocity loading (HVR809gb, 0.35 m/s) and b) constant acceleration 
loading (HVR955gb, 0.05 m/s2). The gray curves indicate the 
measured torque. k and kgb are permeability of gouge layer and gabbro 
host rock, respectively. Both a localized heat source and distributed 
heat source with different values of host block permeability were 
tested in models of experiment HVR809gb. The models of 
experiment HVR955gb assumed a localized heat source, but different 
values of host-block permeability and different assumptions for gouge 
permeability were tested. Heat generation rate in the gouge is 

 
! !"  for 

distributed shear and !V  at z=0 for localized shear. 
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lower permeability of 10-18 m2 for gabbro better simulates the significant weakening in 

the constant acceleration experiment (Figure 3.4b).  

In addition to host block permeability, gouge permeability also affects the results. The 

general evolution of friction is poorly predicted by the assumption of constant 

permeability during experiments (Figure 3.4b). In contrast, the assumptions of 

permeability varying with porosity or normal stress lead to better agreement between 

models and experiment observation. The findings indicate that permeability somewhat 

increases with displacement during shear, especially at higher slip rates, such that the 

abrupt weakening and subsequent increase in torque early in the constant-acceleration 

tests is successfully reproduced. Overall the observations of all tests are best matched by 

the assumptions that gouge permeability is dependent on normal stress, gabbro 

permeability is 10-18 m2, and granite permeability is 10-17 m2; these assumptions are 

applied in all FEM models presented in the next section.  

 

3.4.4. Spatial and temporal variation of stress, temperature and friction in the 

gouge layers 

The modeling results for all the experiments, which explore different conditions of 

slip rate, acceleration rate, and water content, are summarized in Figures 3.5-3.8. Model 

values of gouge torque, coefficient of friction, normal stress, pore pressure, and 

temperature were calculated at the center of the gouge layer based on the assumptions of 

a localized heat source and that gouge permeability depends on normal stress. The 

development of locally elevated pore pressure is expressed by ! , which is the ratio of
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Figure 3.5. Results of thermal-, mechanical-, and fluid flow-coupled FEM models 
for five constant velocity experiments. HVR484gr, HVR809gb, HVR530gr, and 
HVR482gr are shear experiments on water-dampened gouge at 0.1, 0.35, 0.7, and 
1.3 m/s, respectively. HVR475gr is shear experiment on room-dry gouge at 1.3 m/s. 
(a)-(e) Gouge torque as a function of time. Black and gray lines represent the 
model-calculated torque and the measured torque, respectively. (f)-(w) Radial 
distribution of physical properties along the midplane of the gouge layer. Colored 
lines show conditions at times identified by the arrows with the same colors in 
figure (a)-(e) and specified in the corresponding legends. (f)-(j) Friction coefficient, 
µ, (k)-(n) effective friction coefficient,  µ′, (o)-(r) the ratio of pore pressure to 
normal stress, λ, and (s)-(w) temperature.  
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Figure 3.6. Results of thermal-, mechanical-, and fluid flow-coupled FEM models 
for four constant acceleration experiments. HVR952gb-1 and HVR952gb-2 are two 
consecutive experiments on the same sample containing water-dampened gouge 
sheared at a constant acceleration of 0.1 m/s2. HVR955gb and HVR956gb are shear 
experiments on water dampened gouge and room-dry gouge, respectively, at a 
constant acceleration of 0.05 m/s2. (a)-(d) Torque and equivalent velocity as a 
function of time. Black and gray solid lines represent the model-calculated torque 
and the measured torque, respectively. The dashed black lines represent the 
equivalent velocity. (e)-(r) Radial distribution of physical properties at the center of 
the gouge layer. Colored lines show conditions at times identified by the arrows 
with the same colors in figure (a)-(d) and specified in the corresponding legends. 
(e)-(h) Friction coefficient, µ, (i)-(k) effective friction coefficient,  µ′, (l)-(n) the ratio 
of pore pressure to normal stress, λ, and (o)-(r) temperature. 
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Figure 3.7. Local evolution of (a)-(e) friction coefficient, µ, (f)-(i) effective friction 
coefficient,  µ′, and (j)-(n) temperature as a function of local displacement for the 
constant velocity experiments in Figure 3.5. Colored lines represent conditions at 
different radii as indicated in the legend. 
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Figure 3.8. Local evolution of (a)-(d) friction coefficient, µ, (e)-(g) effective friction 
coefficient,  µ′, and (h)-(k) temperature as a function of local displacement for the 
constant acceleration experiments in Figure 3.6. Colored lines represent conditions 
at different radii as indicated in the legend. 
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pore pressure p  to normal stress !
n

, i.e. ! = p "
n

 [Hubbert and Ruby, 1959]. 

Accordingly, effective coefficient of friction is expressed as !µ = (1" #)µ . 

The model calculated torque shows great agreement with the measurement for all 

experiments (Figures 3.5a-3.5e and Figures 3.6a-3.6d). Friction coefficient, pore 

pressure, and temperature in the gouge layer vary with position and time (Figures 3.5f-

3.5w and Figures 3.6e-3.6r). In the experiment at the lowest slip rate (HVR484gr), the 

friction coefficient ranges 0.4-0.7, and there is little development of pore pressure, 

limited increase in temperature, and no significant weakening (Figures 3.5a, 3.5f, 3.5k, 

3.5o, and 3.5s). As slip rates increases, dynamic weakening is enhanced by a 

combination of temperature-dependent weakening of the friction coefficient and thermal 

pressurization of pore water. The temperature-dependent friction behavior leads to 

strengthening followed by weakening as temperature increases with slip. The slip-rate 

distribution in the sample causes a prominent peak in friction coefficient to form at the 

perimeter of the gouge layer and migrate inward with time. The peak in friction 

coefficient is not mimicked by the effective friction coefficient due to locally elevated 

pore pressure induced by the heterogeneous heating rate (Figures 3.5f-3.5n). The 

development of pore pressure delays the temperature increase and thus causes a 

reduction of peak strength (Figures 3.5k-3.5w). Pore water pressure is drained after 

approximately 10 s, and thermal pressurization is less pronounced in the center of the 

specimens. Thus after shear to greater slip, the temperature distribution is more 

homogeneous and a relatively high effective friction coefficient is maintained at the 

center portion of sample.  
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The effect of thermal pressurization is most obvious in the constant-acceleration 

experiments because the heating rate is greater than in the constant, low slip-rate 

experiments but lower than that in the constant, high slip-rate experiments. In 

experiment HVR952gb-1 sheared at 0.1 m/s2, the thermal pressurization rate is much 

greater than the diffusion rate, thus pore pressure locally exceeds normal stress (Figure 

3.6l). For the second run of HVR952gb (HVR952gb-2), the assumption that fluid source 

is 50 % as much as that of the first run (HVR952gb-1) results in reasonable match 

between the measured torque and the calculated torque, which suggests that after the 

first run the sample is partially wet. 

An interesting characteristic of the constant velocity tests is that the increase in local 

temperature with local slip is nearly the same at all radii (Figure 3.7). Accordingly, the 

evolution of friction coefficient with local slip also is similar at all radii. Although the 

friction versus displacement curves have the character of slip-dependent weakening, the 

model analysis indicates that the samples rapidly achieve a relatively steady-state 

temperature and friction condition as a result of the feedback between frictional heating 

and temperature-weakening friction (Figure 3.7). In contrast, for the constant-

acceleration experiments, the evolution of local temperature with local displacement 

varies with radius, and the friction versus local slip curves are dissimilar (Figure 3.8). 
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3.5. Discussion 

3.5.1. Temperature-dependent friction constitutive relations and thermal 

pressurization 

The FEM models treat the processes operative in the experiments simply, and several 

aspects are not treated formally, such as plastic deformation, velocity dependence of 

friction, and the thermal pressurization of vapor and associated two-phase fluid flow of 

liquid water and vapor. However, the critical fluid pressure and temperature condition 

for vaporization is tracked, and the magnitude of thermal fluid pressurization is 

diminished at the critical condition for the phase change as a means to account for 

vaporization and the likely rapid escape of vapor from the sample. There are other 

poorly constrained physical properties, such as the ability of the Teflon sleeve to confine 

pore pressure, and the evolution of permeability of both gouge layer and host rocks with 

slip. We believe the gouge permeability is the most important, unknown factor of the 

FEM models. In spite of the uncertainties, it appears that the range of behavior displayed 

by the experiments is captured by the FEM model, which is based primarily on 1) a 

simple temperature-dependent friction constitutive relation and 2) ability to treat fluid 

pressurization, fluid flow, and the change at the critical conditions for vaporization. 

Although the FEM model is not a unique explanation for the behavior, the fact that the 

response of the samples to very different load paths can be simulated with the model 

gives credence to the friction constitutive relationship. In addition, the need to include 

fluid pressure and fluid flow in order to explain the differences in behavior for wet and 
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dry tests supports the inference that thermal pressurization occurs in the gouge at high 

slip rates. 

The temperature-dependence of friction in the constitutive model, characterized by 

the parameter C in equations (3.3), (3.5) and (3.9), is very large in magnitude for both 

the temperature-strengthening and temperature-weakening regimes. The magnitudes are 

50-100 times greater than those determined at low rates of slip for wet quartz gouge 

using slide-hold-slide, velocity stepping, and temperature stepping experiments [Chester 

and Higgs, 1992; Chester, 1994, 1995]. As indicated in (3.3), temperature dependence is 

a function of the activation energy, QA and QB, and the velocity dependence of friction, 

A-B. Although velocity dependence was not determined for the gouge, results from other 

recent experimental studies of friction [e.g., Di Toro et al., 2004; Lockner and Reches, 

2009] on silicates at intermediate slip-rates (0.001 to 0.1 m/s) indicate large-magnitude 

rate-weakening behavior. This velocity range extends up to the minimum velocities 

tested herein where temperature-strengthening is observed. Both Di Toro et al. [2004] 

and Lockner and Reches [2009] report velocity-weakening with A-B ≈ -0.1. Assuming 

this value is appropriate for the temperature-strengthening regime where C = -2000 K 

gives an activation energy Q = QA = QB on the order of 165 kJ/mol·K, which is not an 

unreasonable value. Interestingly, Lockner and Reches [2009] not only observe a regime 

of velocity weakening between 0.001 and 0.04 m/s, but find marked strengthening 

between 0.04 and 0.3 m/s coincident with a temperature increase associated with 

frictional heating. The strengthening above 0.04 m/s is quite similar to the temperature-

strengthening in the low-T regime identified here. It is possible that the behavior 
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documented by Lockner and Reches [2009] reflects a single mechanism for which the 

velocity dependence dominates behavior below 0.04 m/s where frictional heating is 

minimal, and temperature strengthening dominates at higher velocity where heating rates 

and temperature increases are substantial. In fact, the entire spectrum of steady-state 

frictional behavior documented by Di Toro et al. [2004], Lockner and Reches [2009], 

and in the low-T regime here, could be described approximately with a single rate- and 

temperature-dependent friction-constitutive relation of the form of (3.3) using A-B = -

0.1, Q = QA = QB = 165 kJ/mol·K, µ* = 1.0, T* = 353 K, and V* = 2 m/s. In fact, we find 

that using this velocity and temperature dependent relation for the low-T regime in the 

FEM model can not only describe all the experiment results herein, but also obviates the 

need for assuming (3.10) or some other lower bound to friction. 

 

3.5.2. Relating microstructure, friction mechanisms, and constitutive behavior 

Kitajima et al., [2010] documented the microstructure evolution of the gouge sheared 

in constant-velocity experiments by mapping the microstructure of layers in sequential 

displacement tests. Four deformation units are observed; slightly sheared starting 

material (Unit 1) and a strongly sheared and foliated gouge (Unit 2) are produced when 

frictional heating is less significant. A random fabric gouge with rounded prophyroclasts 

(Unit 3) and an extremely-fine, microfoliated layer (Unit 4) develop when significant 

frictional heating occurs. The development of each unit was quantified as a function of 

local velocity and local displacement to show that Unit 3 and Unit 4 are formed at higher 

slip rates and larger displacements [Kitajima et al., 2010].  
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Figure 3.9. Diagrams showing the relationship between the formation of the four 
gouge units, friction coefficient, and temperature. The volume fraction of (a) Unit 1, 
(b) Unit 2, (c) Unit 3, and (d) Unit 4 are shown by color on plots of local friction 
coefficient versus local temperature. Red and black colors represent more and less 
development of each unit, respectively. The volume fraction of each unit was 
measured by point-counting radial-cut petrographic sections [Kitajima et al., 2010]. 
The data include all constant velocity experiments on wet samples analyzed in 
Kitajima et al. [2010]. Friction coefficient and temperature are the model-calculated 
values at the midplane of the gouge layer. Unit 3 and Unit 4 are formed only in 
temperature-weakening, high-temperature regime. 
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The results of the FEM model can be used to infer the relationship between local 

friction coefficient, local temperature, and friction mechanism as recorded by the 

microstructure of each unit. Unit 1 develops in the temperature strengthening regime at 

low temperature (Figure 3.9a), and Unit 2 is present in transition from temperature 

strengthening to temperature weakening over a wide range of temperature and friction 

coefficient (Figure 3.9b). On the other hand, both Unit 3 and Unit 4 are present only in 

temperature weakening regime at high temperature (Figures 3.9c and 3.9d). 

Unit 2 expands at the expense of Unit 1 both outward and inward with displacement 

Kitajima et al. [2010]. To some extent the outward expansion of Unit 2 and the 

preservation of Unit 1 at the periphery of the gouge layer reflects the corner effect of the 

gouge-rock-jacket interface inherent in the rotary shear experiment configurations 

[Beeler et al., 1996], and thus should not be considered when trying to understand 

microstructure development. On the other hand, the inward expansion of Unit 2 with 

displacement (or time) is found to coincide with the inward migration of the thermal 

front shown by the FEM modeling, and with conversion of Unit 1 to Unit 2 as frictional 

strength increases with temperature and shear strain.  

Unit 3 and Unit 4 develop only at temperature higher than 120 °C, and both units 

correlate with low coefficients of friction resulting from temperature weakening. 

Interestingly, the FEM models indicate excess pore fluid pressure is not generated in the 

areas of the gouge layer where Unit 3 and Unit 4 are forming because all the free water 

has transformed to vapor. However, the FEM model does not treat pressurization of 

water vapor associated with the transition from liquid water because it is assumed that 
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the vapor can be easily pass through the gouge layer past the Teflon sleeve. In contrast, 

Boutareaud et al. [2008, 2010] assume vapor does not easily escape and that the 

vaporization increases pore pressure causing the gouge to dilate and fluidize. They 

interpret that clay-clast aggregates (CCA) are formed as a consequence of vapor 

fluidization that allows fine clay particles to aggregate and adhere to core particles of the 

CCA. It is unclear whether vaporization can cause thermal pressurization due to lack of 

information on hydraulic diffusivity of water vapor during shear [see also Mizoguchi et 

al., 2009]. However, we find that Unit 3 containing CCA is observed more frequently in 

room-dry samples than in wet samples sheared at otherwise identical conditions. A 

similar finding is reported for high-speed, constant velocity experiments on clay-bearing 

fault gouge from the Nankai Trough (personal communication, K. Ujiie, 2010). If CCA 

are a product of thermal pressurization of water vapor, then CCA should be more 

prevalent in experiments with wet gouge. Accordingly, the vaporization and thermal 

pressurization of vapor appears very limited both spatially and temporally, and has little 

significance to bulk mechanical response. 

A previous study of friction experiments on illite-rich gouge sheared at low slip rates 

of 0.048 and 4.8 µm/s and temperature of 200-600 °C documented two different 

deformation structures associated with different frictional behavior [Moore et al., 1989]. 

A pervasively deformed structure including clay-foliation, kink bands, and stretched 

opaque grains is formed in samples which are sheared at relatively lower temperature 

and mostly show stable slip, which implies rate strengthening. The other structure is 

characterized by localized shear bands within undeformed regions of clay aggregates, 
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and is formed in samples that are sheared at relatively higher temperature and show 

stick-slip behavior slip, which implies rate weakening. Although the absolute 

temperature ranges and slip velocities are different from the high-speed tests herein, the 

similarities in terms of relating frictional behavior, structural features, and temperature 

conditions between the low slip-rate and high slip-rate tests support the hypothesis that 

pervasive deformation occurs when velocity- or temperature-strengthening is dominating 

bulk behavior and that localized slip occurs when velocity- or temperature-weakening is 

dominating bulk behavior.  

Kitajima et al. [2010] concluded that the dynamic weakening (in the high-T regime) 

appears to require both the establishment of the localized slip surface recorded by Unit 4, 

and a slip velocity sufficient to elevate temperature along the surface through frictional 

heating. These are the conditions that generally favor a dynamic weakening by the flash 

heating mechanism [Rice, 2006; Beeler et al., 2008; Noda, 2008]. Although we have 

described the weakening in the high-T regime based only on the macroscopic 

temperature. Flash heating is a weakening mechanism that causes a decrease in shear 

stress at an asperity contact as a consequence of increasing the local temperature at the 

contact [Rice, 1999, 2006, Beeler et al., 2008]. For flash heating, the steady-state 

frictional strength is given by  

 µ = µ
0
! µ

w( )
V
w

V
+ µ

w
       (V >V

w
) ,     (3.13) 



 

 

95 

95 

where µ
0
 is low speed friction coefficient, µ

w
is weakened friction coefficient at high 

temperature, and V
w

 is critical slip velocity above which the contact weakens during 

contact lifetime. V
w

 is obtained by  

 V
w
=
!"

th

D
a

#c(T
w
$ T )

%
c

&

'(
)

*+

2

,     (3.14) 

where D
a

, T
w

, !
c

and !
th

 are slip distance during the lifetime of an asperity, a 

weakening temperature, local shear stress, and thermal diffusivity ( = K (!c) ), 

respectively. Steady-state coefficient of friction determined from the FEM model 

decreases with representative velocity in a manner that appears consistent with the flash 

heating model (Figure 3.10). The critical slip velocity V
w

 is estimated as 0.19 m/s, which 

is consistent with the value calculated for an experiment at room temperature, T=20°C 

from (3.14) with αth= 0.5 mm2/s, ρc= 2.7MPa/°C , Da= 5µm , Tw= 900°C , and τc= 

3.0GPa [Rice, 2006]. Description of flash heating as formulated in (3.13) and (3.14) 

involves specifying a number of material and structural parameters in addition to the 

state variables of T and V. However, experiment results and theoretical analysis suggest 

that localization of slip and particle refinement naturally arises in gouge layers at high 

slip rates [e.g., Noda et al., 2009; Sleep, 2010]. Presumably, after additional work, an 

understanding of the microscopic processes of slip can be integrated with a macroscopic 

viewpoint as employed here to describe the constitutive behavior at high slip rates using 

a compact rate- and state-variable law that incorporates an appropriate evolution 

function to describe changes in structural state.  
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Figure 3.10. Plot showing steady-state friction 
coefficient as a function of representative 
velocity. Open circles are model-calculated 
values of friction at steady-state for the four 
constant velocity tests on wet gouge layers. The 
fitting curve is based on the flash heating model 
using material and structural parameters specified 
in the text. 
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The critical slip distance for describing evolution of friction at slow slip rates is 

interpreted as a distance required to renew the population of true contacts [Dieterich, 

1978] and has a range of 1-100 µm depending on surface roughness, particle size, slip 

rate, normal stress, and thickness of gouge [e.g., Dieterich, 1981; Marone and Kilgore, 

1993; Mair and Marone, 1999]. From the FEM analysis of the experiment results 

reported here, the critical slip distance for dynamic weakening illustrated in plots of 

local friction coefficient versus local displacement, is approximately 10 m or less. 

Because the micromechanisms for dynamic weakening are likely different than the 

weakening in quasi-static slip, the critical distance for dynamic weakening should be 

understood as a distance required to reach a steady-state condition of temperature along 

a localized slip zone, rather than just a change in true contact population. 

In the context of the rate and state friction, velocity weakening is a necessary 

condition for nucleation of instability, but dynamic rupture could be maintained with 

velocity strengthening friction if frictional heating causes weakening through thermal 

processes such as pore fluid pressurization or flash heating [e.g., Noda et al., 2009]. 

There has been extensive laboratory work on friction constitutive behavior at low to 

intermediate slip rates. Although there is great variability in the sign of velocity 

dependence with rock types and conditions of deformation, a general finding is that 

velocity-weakening occurs over a limited range of temperature and velocity with 

transitions to velocity strengthening at very low rates and elevated temperatures or at 

high slip rates [e.g., Blanpied et al., 1995; Chester, 1995]. In some cases the transitions 
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in velocity dependence can be associated with changes in the microscopic mechanisms 

of frictional slip.  

An important concern is the transition in friction behavior from intermediate rates to 

the high rates where dynamic weakening processes dominate. As discussed by 

Shimamoto and Hirose [2005] and Sone and Shimamoto [2009], strengthening process at 

this transition can serve as a mechanical barrier to the development of large earthquakes. 

Unfortunately, there is very little experimental data for fault friction in the transition 

regime on materials at conditions of elevated temperature and fluid pressure. Some 

strengthening has been inferred from the extrapolation of velocity strengthening 

observed in friction experiments at low slip rates [e.g., Shimamoto, 1986], and now has 

observed in many high-speed experiments, including those herein [Tsutsumi and 

Shimamoto, 1997; Shimamoto and Hirose, 2005; Sone and Shimamoto, 2009; Lockner 

and Reches, 2009]. Most studies assume the strengthening reflects velocity- or slip-

dependent strengthening [Sone and Shimamoto, 2009]. In contrast, we argue that 

strengthening could reflect frictional heating and the temperature dependence of friction 

within velocity-weakening regime. Noda [2008] also argue for the importance of 

considering temperature-dependence of friction in the intermediate slip-rate regime. 

Clearly there is a need to acquire additional observations of rate and temperature 

dependence of friction in the intermediate slip-rate regime in addition to understanding 

various dynamic weakening processes that dominate at coseismic slip rates. 
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3.6. Conclusions 

1) Temperature-dependent friction constitutive relations, in which friction coefficient 

is proportional to 1/T, successfully describe friction of gouge in rotary shear at coseismic 

slip rates between 0.1 and 1.3 m/s. Friction coefficient increases with temperature 

(temperature-strengthening) at low temperature conditions (less than approximately 70 

˚C) and decreases with temperature (temperature-weakening) at higher temperature 

conditions. Assuming an Arrhenius relationship between slip rate and temperature, the 

temperature-strengthening behavior documented in low-temperature, high-speed tests is 

consistent with other recent findings of dramatic rate-weakening at low temperature and 

intermediate slip rates (0.001 to 0.1 m/s). 

2) Thermal-, mechanical-, and fluid-flow-coupled FEM models based on a 

temperature-dependent friction constitutive relation, and that treat thermal pressurization 

of pore water, successfully reproduce the frictional response in all shear experiments at 

different conditions of slip rate, acceleration rate, and water content. The greatest 

uncertainty in the model derives from the lack of independent information on the 

evolution of gouge permeability at high shear rates, 

3) The friction coefficient, normal stress, pore pressure, and temperature within the 

gouge layers vary with position (radius) and time, and largely depend on the frictional 

heating rate. Thermal pressurization of pore fluid develops during the early stages of 

experiments at locations where heating rate is large, and at the transition from the low-

temperature, strengthening regime to the high-temperature, dynamic-weakening regime.  
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4) Microstructure of the sheared gouge layers record a general evolution from 

distributed shearing flow to fluidized flow associated with the formation of an extremely 

localized slip zone as slip-rate and temperature is increased. The critical displacement 

for dynamic weakening results in approximately 10 m or less, and can be understood as 

the distance required to form a localized slip zone and achieve a steady-state temperature 

condition. The observed relationship between steady state friction and slip rate is 

consistent with predictions from micromechanical models of flash heating. 

5) Further investigations on the frictional behavior at intermediate and high slip 

velocities are required to fully establish rate-, state-, and temperature-dependent friction 

constitutive relations for seismic slip rates.  
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4. MECHANICAL AND HYDRAULIC PROPERTIES OF SUBDUCTED 

SEDIMENTS, NANKAI TROUGH ACCRETIONARY PRISM: EFFECT OF 

STRESS PATH 

 
4.1. Introduction 

Recurrent devastating thrust-type earthquakes and tsunamis occur in subduction 

zones, where mechanical and chemical processes operate, including sedimentation, 

deformation, metamorphism, fluid-flow, dissolution, cementation, and solute transport. 

One of the key outstanding questions for these regions is what controls tsunami- and 

seismo-genesis. The updip limit is especially important for tsunami generation and 

corresponds to a critical temperature of 100-150 °C [e.g., Hyndman and Wang, 1993; 

Hyndman et al., 1995]. The transformation of smectite to illite at that temperature could 

change the frictional behavior from velocity strengthening to velocity weakening and 

explain the up-dip seismogenic limit [Vrolijk, 1990]. However, this simple hypothesis is 

not supported by friction experiments on illite and other clay-bearing materials [Saffer 

and Marone, 2003, Brown et al., 2003]. The aseismic-seismic transition is likely not 

controlled by a single process, but depends on many factors including consolidation 

characteristics of sediments, cementation processes, dehydration reactions accompanied 

by solid-fluid phase transitions such as smectite-illite and opal A-quartz, pore pressure 

generation, fracture permeability, and thermal gradient [e.g., Byrne et al., 1988; Marone 

and Scholz, 1988; Moore and Vrolijk, 1992; Moore and Saffer, 2001]. 
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The stress conditions in accretionary subduction zones are complicated; yet they are 

essential to describe both brittle and ductile deformation in sediments [e.g., Moore, 

1986]. Stress states change spatially and temporally during burial, underthrusting, 

underplating, and exhumation, and different deformation mechanisms are apparently 

operative. Since fluid pressurization and flow plays one of the more important roles in 

deformation of sediemnts, it is necessary to address the effect of deformation on 

hydraulic properties. Zhu and Wang [1997] reported that permeability evolution of 

porous rocks depends on the deformation mechanism; slight decrease in permeability is 

observed with increasing porosity in brittle faulting regime, while significant reduction 

in permeability with decreasing porosity in cataclastic flow regime. Most laboratory 

studies have measured the permeability evolution during the conventional triaxial 

deformation tests at the constant Pc and only few studies discuss the effect of stress 

states or stress history. Crawford and Yale [2002] measured permeability of siliciclastic 

and carbonate rocks along different stress paths and found that permeability evolution 

largely depends on rock types and deformation micromechanics, and that critical state 

theory can account for permeability evolution of siliciclastic rocks but not for that of 

carbonate rocks. Zhu et al. [2002] introduced hybrid compression tests on porous 

sandstones to understand the shear-induced permeability anisotropy, and found that 

permeability anisotropy develops with the onset of shear-enhanced compaction and 

initiation of cataclastic flow, but it diminishes at a cumulative strain of ~10%. For the 

sediments, the consolidation state at the onset of shear is a crucial factor on the 

permeability evolution as well as on deformation style [e.g., Karig, 1990; Bolton et al., 
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1998]. Apparently, to better describe the evolution of hydraulic and mechanical 

properties with deformation is crucial for the modeling of the coupled deformation and 

fluid flow processes in accretionary subduction zones.  

The purpose of this paper is to present the evolution of strength and hydraulic 

properties along different stress paths, which simulate the range of stress conditions in 

accretionary subduction systems. First, we describe five experiments along different 

stress paths on the three different samples from the Nankai accretionary subduction zone 

collected during the IODP NanTroSEIZE Stage 1 Expeditions. Second, from the 

experimental results, we construct yield surfaces based on the critical state theory to 

estimate in-situ stress states and mechanical properties including undrained shear 

strength, unconfined compressive strength, and frictional angle. Third, we discuss the 

effect of deformation on hydraulic properties in terms of stress state and history. 

 

4.2. Critical State Soil Mechanics Theory 

The oil mechanics critical state concept is very useful to understand the stress states 

and stress history for deformation of marine sediments and porous sedimentary rocks. 

The critical state is defined as the state where plastic deformation can occur without 

producing any change in strength and volume [Roscoe et al., 1958]. Critical state is 

described from the three-dimensional relationship of effective mean stress, p', 

differential stress, q, and specific volume (volumetric strain); however, two-dimensional 

p'-q space often is used to describe the stress states in nature and experiments (Figure 

4.1a). Herein, we use an axial-symmetric stress and strain model, and define p' and q by 
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       (4.2) 

where σ1 and σ3 are the maximum and minumum principal compressive stresses, 

respectively, and compressive stress and shortening strain are taken as positive. This 

model is often assumed for sediment in nature, and accurately describes the stress states 

in our triaxial experiments. The critical state is represented as a straight line in p'-q space, 

and the yield surface is described by the slope of the critical state line, M, and a 

reference effective mean pressure, p0'. The yield surface is expressed by either a 

logarithmic function of p' (Original Cam-Clay) or by an elliptic shape (Modified Cam-

Clay) [e.g., Wood, 1990]. 

 

q = M ! p    (Critical state)    (4.3) 
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( = 0 (Modified Cam-Clay yield surface) (4.5) 

In the Cam-Clay or the Modified Cam-Clay models, the yield surface is the same as the 

plastic potential, which is orthogonal to the plastic strain vector (Figure 4.1a). The 

plastic strain vector consists of two components, a plastic volumetric strain, 

 

!p
p  and a 

plastic shear strain, 

 

!q
p . Volumetric strain 

 

!p  and shear strain 

 

!q  are expressed by 

 

!p = !a + 2!r       (4.6) 

 

!q =
2

3
!a "!r( )           (4.7) 
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Figure 4.1. Schematic diagram of critical state 
soil mechanics and stress paths in p’-q 
diagram. (a) Critical state line and two yield 
surfaces of the original Cam-Clay model and 
the modified Cam-Clay model. The slope of 
critical state line is M. (b) Six different stress 
paths are achieved in the experiments, isotropic 
loading (and unloading), triaxial loading at 
constant Pc, uniaxial strain loading, undrained 
Pc reduction, drained Pc reduction, and triaxial 
unloading at constant Pc. 
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where εa and εr are axial strain and radial strain. From Hooks law, the elastic volumetric 

strain 

 

!p
e  and elastic shear strain 

 

!q
e  are linearly related to effective mean stress and 

differential stress; 
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where K' and G' are bulk modulus and shear modulus in terms of effective stress.  

 Sediments and sedimentary rocks have potential to record the maximum effective 

stress state in the past loading history. It is called preconsolidation stress, σv0', and can 

be estimated in consolidation tests. The ratio of preconsolidation stress to the present in-

situ effective vertical stress is called overconsolidation ratio, OCR= σv0'/σv'. If OCR =1, 

sediments are normal consolidated. If OCR >1, sediments are overconsolidated. If OCR 

<1, sediments are underconsolidation. We need to be careful to use the term 

‘underconsolidation’, which is originated in geology and not used in engineering [Jones, 

1994]. Underconsolidation state can be achieved only when pore pressure has been 

greater than hydrostatic pore pressure and the normal consolidation state has never been 

reached in history, and thus inhibits less consolidation. On the other hand, if excess pore 

pressure develops when sediments are normal consolidated, then the sediments are just 

overconsolidated due to reduction in effective stress. Thus, the development of excess 

pore pressure can render sediments underconsolidated or overconsolidated, but their 

mechanical behavior is totally different; the former is weak and ductile and the latter is 

brittle [e.g., Jones, 1994]. 
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4.3. Geological Settings and Experimental Samples 

The Nankai Trough is located southwest of Japan, where the Philippine Sea plate is 

subducting beneath the Eurasian plate at a rate of 4-6 cm/year (Figure 4.2a) [Seno et al., 

1993; Miyazaki and Heki, 2001]. The Integrated Ocean Drilling Program’s (IODP) 

Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) focuses on direct 

sampling, in-situ measurement, and long-term monitoring at the region off the Kii 

Peninsula through multiple stages each comprised of multiple drilling expeditions, in 

order to understand the mechanics of seismogenesis and rupture propagation along plate 

boundary faults. During Stage 1 Expeditions 314, 315, and 316, logging data and core 

samples were successfully obtained from the eight sites (Figure 4.2b) [Tobin et al., 

2009a]. The three different samples presented in this paper were collected from the three 

major regions of NanTroSEIZE transect, the Kumano forearc basin, the shallow tip of 

the megasplay fault, and the frontal thrust region (Table 4.1). The sample 315-C0002B-

63R-1 is Late Miocene, old accretionary prism siltstone taken from 1034 m core depth 

sea floor (CSF) in forearc basin region [Expedition 315 Scientists, 2009]. The age is 

estimated between 5.59 and 5.90 Ma, and the most likely depositional environment 

before accretion is trench wedge although this interpretation is difficult due to poor core 

recovery and strong tectonic overprint [Expedition 315 Scientists, 2009]. The sample 

316-C0004D-48R-1 is early Pleistocene(~1.67 Ma), slope sediment taken from 360 m 

CSF at the footwall of megasplay fault [Expedition 316 Scientists, 2009a]. The burial 
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Figure 4.2. Geological setting of the Nankai Trough subduction zone. (a) A map view and 
(b) a cross-section view of the transect of IODP NantroSEIZE projects off Kii Peninsula. 
Sites C0002, C0004, and C0006 are located in forearc basin, megasplay, and frontal thrust 
regions, respectively. The black box areas are enlarged in (c) and (d). (c) and (d) Detailed 
cross section of the megasplay and frontal thrust regions. 
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Experimental 
samples/ 

CSF 
(mbsf) 

Sample 
diameter 

(mm) 

Sample 
length 
(mm) 

Estimated 
porosity 

(%) 

In situ 
effective 

overburden 
pressure σv′ 

(MPa) 

Hydrostatic 
pore 

pressure 
(MPa) 

LSF 
(mbsf) 

Breakout 
width θb 

(°) 

315-2B-63R-1 1034 19.2 24.6 35 8.8 29.8 996 86 
316-4D-48R-1 360 19.3 18.7 43 2.7 30.0 352 60 
316-6F-8R-1-a 457 19.2 27.1 40 4.4 43.5 462 39 
316-6F-8R-1-b 457 19.0 32.3 40 4.4 43.5 462 39 
316-6F-8R-1-c 457 19.2 11.3 40 4.4 43.5 462 39 

Table 4.1. Summary of experimental samples. CSF is core depth below sea floor, and 
LSF is LWD(logging-while-drilling) depth below sea floor. 



 

 

110 

110 

depth of the sample 316-C0004D-48R-1 before underthrusting is inferred as at least ~52 

m, which is the present thickness of overriding slope sediment above the sample 

underthrusted below the megasplay (Figure 4.2c), however, it is the minimum estimation 

based on the assumption that all slope sediments deposited have been underthrusted 

below the megasplay and also that no further compaction is made after underthrsting. 

The sample 316-C0006F-8R-1 is Pliocene-Pleistocene Upper Shikoku Basin (USB) 

siltstone taken from 457 m CSF at the hanging wall of the main frontal thrust [Expedition 

316 Scientists, 2009b]. The seismic reflection data and observations of core samples 

imply that the USB sediment and the overriding slope sediment were deposited off the 

deformation front, underthrusted and underplated below the previous frontal thrust, and 

overthrusted along the present frontal thrust. The burial depth of the sample 316-

C0006F-8R-1 is estimated as ~430 m from the total thickness of overriding USB 

sediment and slope sediment, since the most top unit of slope sediment is deposited 

during the uplift due to movement of the frontal thrust [Expedition 316 Scientists, 2009b 

; Screaton et al., 2009]. The total displacement of the present frontal thrust is estimated 

as long as 6 km [Moore et al., 2009], but such large amount of displacement is distributed 

among multiple faults in the frontal thrust regions, as they are observed at both Site 

C0006 and Site C0007, which is located ~700 m seaward from Site C0006 [Screaton et 

al., 2009]. 
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4.4. Experimental Method 

Experimental samples were trimmed from the whole-round core samples (~75 mm 

diameter) to a diameter of 20 mm and a length of 20-40 mm; in all cases the cylindrical 

axis is parallel to the axis of whole-round sample (Table 4.1). All experiments were 

conducted using a modified variable strain-rate triaxial deformation apparatus (Figure 

4.3a), MVSR [Heard, 1963; Chester, 1989]. The gear-driven axial load is applied at a 

constant axial displacement rate of 5×10-6 mm/s, which is equivalent to the strain rate of 

~10-7 s-1. This is the slowest rate that can be used in this apparatus. 

All experiments were conducted at room temperature conditions. A screw-driven, 

piston cylinder pressure generator and pressure transducer is placed in the pore pressure 

system, and used to (1) keep pore pressure constant and (2) measure pore volume 

change, and (3) conduct pulse-decay permeability measurements. A 1-mm-thick Berea 

sandstone wafer was placed at the upper end of each sample, at the pore fluid access 

port, in order to facilitate uniform pore fluid access and prevent the sample from 

squeezing out to the pore pressure port. The experimental sample and the Berea 

sandstone wafer were isolated from the confining pressure medium of silicon oil using 

polyolefin and silver jackets; the sample was saturated with distilled water for at least 12 

hours before pressurization.  

Both confining pressure and pore pressure were measured by pressure transducers 

with accuracy of 0.07 MPa and 0.02 MPa. Axial differential force and axial displacement 



 

 

112 

112 

 

Figure 4.3. Schematic diagram of experimental systems of (a) MVSR (b) PPR. PT 
and PG represent pressure transducer and pressure generator, respectively. 
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were measured by a force gauge inside the pressure vessel (accurate to 0.2 MPa) and a 

displacement transducer (accurate to 8×10-4 mm) at the top of the loading system, 

respectively. The volume of pore fluid displaced from the sample was measured at the 

pressure generator from displacement of the piston measured with a displacement 

transducer (accurate to 1.5×10-4 cc in terms of volume). Room temperature also recorded 

because the pressure and displacement measurements are temperature-sensitive and the 

experiments lasted several weeks. The data were recorded by computer at intervals of 1 

to 600 s depending on the type of experiment being conducted. 

Different stress paths of (1) isotropic loading, (2) uniaxial strain loading (K0 

consolidation), (3) triaxial loading at constant Pc, (4) undrained Pc reduction (cf. modified 

undrained test [Tembe et al., 2006]), (5) drained Pc reduction, and (6) triaxial unloading at 

constant Pc were achieved in the same apparatus (Figure 4.1b). An experiment usually 

included a series of load paths of (1), (3), (4), (5), and (6) or a series of load paths of (2), 

(4), (5), and (6). During isotropic loading (σ1 = σ2 = σ3 = const.), confining pressure was 

incremented stepwise with keeping pore pressure a constant 10MPa. When confining 

pressure is increased, pore volume is decreased and excess pore pressure is developed 

within the sample. By draining excess pore pressure, consolidation proceeds. After a few 

hours to several days when pore pressure approaches equilibrium, permeability and axial 

shortening were measured, and then confining pressure was increased to achieve another 

step of consolidation. Axial shortening of the sample was determined during isotropic 

loading by displacing the upper piston to the hit point, i.e. the point at which differential 
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loading initiates, for each consolidation step. Following the isotropic loading, 

conventional triaxial compression loading at constant confining pressure (σ1 > σ2 = σ3 = 

const.) was conducted. Confining pressure and pore pressure were kept constant and the 

axial load was applied at the constant displacement rate.  

In uniaxial strain consolidation, the axial load was applied at constant displacement 

rate. No radial strain condition is achieved by measuring both axial and volumetric strains 

in a manner different than the typical approach of constraining axial strain or by directly 

measuring the radial strain [e.g., Morgan and Ask, 2004]. Because radial strain, εr must be 

zero in a uniaxial strain condition, volumetric strain equals the axial strain, εp = εa from 

the Equation (4.6). Accordingly, confining pressure was manually controlled during axial 

shortening to maintain volumetric strain equal to the axial strain (and volumetric strain 

rate equal to the axial strain rate). Note that the stress path for uniaxial strain loading is 

an outcome of the experiment where the strain condition is constrained, while isotropic 

loading and triaxial loading constrain the stress paths. The stress path is expressed by the 

slope of q/p' or K, which is the ratio of σ3/σ1.  

q

!p
=
3" 3K

1+ 2K
     (4.9) 

K =
3! (q "p )

3+ 2(q "p )
     (4.10) 

Isotropic loading has q/p' of 0 and K of 1, and triaxial loading has q/p' of 3 and K of 0. K0 

is a slope of K during uniaxial strain loading. 
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Undrained and drained Pc reduction was conducted following uniaxial strain loading or 

triaxial loading. In this load path the axial loading was kept at constant shortening rate, 

confining pressure was manually reduced. The reduction rate of confining pressure was 

manually controlled so that pore pressure remains constant (indicating no change in 

volumetric strain, i.e., undrained). At some point, pore pressure cannot be maintained by 

reducing confining pressure because because the sample begins to dilate. When it reaches 

this point, the pore fluid is allowed to drain into the sample to keep pore pressure 

constant (drained) and confining pressure is slowly decreased. 

To make permeability measurements, the sample was allowed to equilibrate, after the 

axial shortening rate was set to zero, until the rate of pore pressure increase indicated a 

strain rate of less than 10-7 s-1, i.e. slow enough to drain excess pore pressure from the 

experimental samples and the transient pulse-decay method would be accurate. The 

transient pulse decay method involves an abrupt increase in pore pressure at one end of 

the sample and then monitoring the subsequent evolution in pore pressure at either one 

end or both ends of the sample during equilibration [e.g., Brace et al., 1968; Hsieh et al., 

1981]. This method is more practical than steady-state flow methods especially for low 

permeability samples such as shale [e.g., Kwon et al., 2004]. Heish et al. [1981] and 

Neuzil et al. [1981] present analytical solutions for the transient pulse-decay method, 

and a graphical method for analyzing experimental data, to obtain the hydraulic 

properties of the sample, i.e., hydraulic conductivity and specific storage. The analytical 
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solution for dimensionless hydraulic head (pore pressure), as a function of time after the 

step change, in the upstream and downstream reservoirs are given by 
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The parameters, pu and pd are the pore pressure in the upstream and the downstream 

reservoirs, hu and hd are the hydraulic head in the upstream and the downstream 

reservoirs, and P and H are the initial difference in pore pressure and hydraulic head at 

time t=0. Parameters A, l, K and Ss are the cross-sectional area, the length, the hydraulic 

conductivity, and the specific storage of the sample, and Su and Sd are compressive 

storage of the upstream and the downstream reservoirs, respectively.  

One-end pulse-decay method was used in the MVSR apparatus, in which the pore 

pressure system was connected only to the upper end of the experimental sample and 

the downstream face of the sample is an impermeable boundary (Figure 4.3a). For this 
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case γ=0, and the analytical solution for dimensionless hydraulic head (pore pressure) in 

the upstream reservoirs is given by 

 

pu

P
=
hu

H
=

1

1+ !
+ 2

exp "#$m
2( )

$m
2
/! + ! +1

m=1

%

& .     (4.13) 

Pore pressure was quickly increased by ~1MPa and monitored until reaching equilibrium, 

since analytical solutions with different hydraulic conductivities and different storage 

capacities show almost the same behavior as equilibrium is achieved in a single-end case 

[Heish et al., 1981]. The normalized pore pressure data was matched with the analytical 

solutions to compute hydraulic conductivity and specific storage of sample [Neuzil et al., 

1981]. The compressibility of upstream reservoir, Cu was measured in advance using 

metal sample with zero permeability to determine a value of 9.11×10-9 m3/MPa. The 

compressive storage of the upstream reservoir, Su, was computed as 8.92×10-11 m2 from 

the relationship, 

 

Su = !wgCu
, where ρw and g are density and of pore fluid and gravity.  

We also conducted two-end pulse decay permeability measurements on a sample 

during isotropic loading up to 50 MPa using a different apparatus (PPS) in which no 

differential axial loading was available but both ends of the sample were connected to the 

pore pressure system (Figure 4.3b). In this apparatus, double-ended pulse-decay is 

conducted by increasing the pore pressure of the upstream reservoir by ~1MPa at t=0 

and monitoring the pore pressure of both the upstream and the downstream reservoirs. 

The compressibilities of upstream and downstream reservoirs, Cu and Cd, were 
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determined by dedicated calibration tests as 7.96×10-9 m3/MPa and 8.51×10-9 m3/MPa, 

respectively, and the compressive storages, Su and Sd were determined as 7.79×10-11 m2 

and 8.33×10-11 m2, respectively.  

 

4.5. Results 

4.5.1. Pulse decay permeability measurements 

For comparison, permeability measurements using one-end and two-end pulse decay 

methods were made on specimens taken from the same whole-round core sample, 316-

C0006F-8R-1, at the same condition of p' = 8MPa during isotropic loading (Figure 4.4). 

For one-end pulse decay, the normalized pore pressure data is well matched to an 

analytical solution where β = 0.8, and t = 1900 at αβ2 = 1. From the relationships of 

 

! = Kt l
2
S
s
 and 

 

! = S
s
Al S

u
, we computed Ss=7.97×10-6 m-1 and K=6.70×10-12 m/s. 

Intrinsic permeability k is calculated as 6.86×10-19 m2 from the relationship 

 

k = K!wg µ , 

where ρw and µ are density and dynamic viscosity of pore fluid, respectively. For two-

end pulse decay, the experimental data matches an analytical solution of β=0.3 and 

t=4400 at αβ2=1. Specific storage, hydraulic conductivity, and intrinsic permeability 

were computed as Ss=7.48×10-6 m-1, K=2.31×10-12 m2, and k=2.36×10-19 m2, 

respectively. Permeability from two-end pulse decay measurement is three times lower 

than that from one-end pulse decay measurement, whereas specific storage values are 
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Figure 4.4. Examples of transient pressure 
change during pulse decay measurements at the 
effective pressure of 8 MPa during isotropic 
loading. (a) One-end pulse decay in MVSR. (b) 
Two-ends pulse decay in PPR.  
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almost the same. This difference is seen in measurements at all pressure conditions. It is 

worth noting that hydraulic properties are also dependent on sample geometry, i.e., the 

length and the cross-sectional area. In the triaxial deformation apparatus (MVSR), we 

can estimate the axial and radial strains from the measured axial displacement and pore 

volume change. On the other hand, it is impossible to estimate the axial and radial strains 

in the other apparatus (PPS) because it does not have an axial loading frame. When 

calculating the hydraulic properties from pulse decay conducted in PPS (316-C0006F-

8R-1-c), we assume that the deformation behavior and thus the ratio of εr to εa of this 

experiment are same as those of the experiment, 316-C0006F-8R-1-b which was 

isotropically loaded on MVSR.  

Specific storage of the sample can be written as a function of water compressibility 

and coefficient of compressibility of the sample, 

 

Ss = !wg "n + #(1$ n)[ ]    (4.14) 

where β is water compressibility and α is coefficient of compressibility. Specific storage 

ranges from 3×10-6 to 3×10-5 m-1. With n=0.4, α is calculated as 1.06×10-9 Pa-1. To 

ensure the pore pressure is equilibrated during deformation experiments, Lee [1981] 

suggests that the strain rate used for CRS (constant rate of strain) test should satisfy the 

relationship, 

 

! " 
a
l
2
C
v

< 0.1      (4.15) 

where εa' is axial strain rate and Cv is coefficient of consolidation. Since 

 

Cv = kµ !"w

2

g
2 , the maximum strain rate that should be used is, 
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! " a < 0.1kµ l
2#$w

2

g
2

= 4.23%10&5 . The axial strain rate of 10-7 s-1 used in this paper 

satisfies this condition. 

 

4.5.2. Evolution of strength and permeability along different stress paths 

The stress path for each experiment is summarized in Table 4.2, and the stress-strain 

behavior, stress evolutions in p'-q space, permeability as a function of effective mean 

stress, and volumetric strain vs log σ1 for each experiment are shown in Figures 4.5, 4.6 

and 4.7. For uniaxial strain loading, three stages of strength evolution can be distinguished 

by changes in the stress strain response. Differential stress increases significantly with 

axial strain up to ~2% shortening during Stage I, and stays almost constant during Stage 

II. Two samples of 316-C0004D-48R-1 and 316-C0006F-8R-1-a show further 

strengthening with strain in Stage III. K0 is 0.3-0.4 for stage I, approximately 1 for stage 

II, and 0.55 for stage III. We interpret Stages I, II, and III as an elastic response, yielding 

with cement breakage [e.g., Karig, 1993; Mogan and Ask, 2004], and normal 

consolidation, respectively. For triaxial loading, the sample of 316-C0006F-8R-1 

continuously strengthens with a slight change in the slope of stress-strain curve at axial 

strain of 6% (Figure 4.7d). Differential stress increases with a steeper slope in the stress-

strain curves during undrained Pc reduction, and decreases during drained Pc reduction 

(Figures 4.5a, 4.6a, 4.7a, and 4.7e). These can be also seen in the p'-q diagram. i.e., q 

increases during undrained Pc reduction and decreases during drained Pc reduction with 
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Figure 4.5. Experimental results on the sample 315-C0002B-63R-1. (a) Differential 
stress as a function of axial strain. (b) p-q diagram. (c) Permeability as a function of 
effective mean stress. (d) Volumetric strain as a function of logarithmic σ1. 
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Figure 4.6. Experimental results on the sample 316-C0004D-48R-1. (a) Differential 
stress as a function of axial strain. (b) p-q diagram. (c) Permeability as a function of 
effective mean stress. (d) Volumetric strain as a function of logarithmic σ1. 
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Figure 4.7. Experimental results on the samples 316-C0006F-8R-1-a and 316-
C0006F-8R-1-b. (a) and (e) Differential stress as a function of axial strain. (b) and 
(f) p-q diagram. (c) and (g) Permeability as a function of effective mean stress. (d) 
and (h) Volumetric strain as a function of logarithmic σ1. 
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decreasing p' (Figures 4.5b, 4.6b, 4.7b, and 4.7f). Strength (q) reaches a maximum at the 

transition from undrained to drained conditions, which could demark the critical state. 

The overall evolution of permeability is reduction with effective mean stress during 

loading and partial recovery during Pc reduction, especially during drained Pc reduction 

(Figures 4.5c, 4.6c, 4.7c, and 4.7g). Permeability ranges from 10-17 to 10-19 m2 at effective 

mean stress of 1-20 MPa and further decreases to ~10-20 m2 with pressurization to 50 

MPa (316-C0006F-8R-1-c). A closer look at the two experiments, 316-C0006F-8R-1-a 

and 316-C0006F-8R-1-b, reveals that permeability evolution depends on the stress 

paths (Figures 4.7c and 4.7g). During uniaxial strain loading, permeability continuously 

decreases with a log-linear relationship. During isotropic loading, permeability quickly 

decreases at the effective pressures less than 5 MPa, and stays almost constant 

thereafter. The fastest reduction in permeability is observed during triaxial loading. 

Although permeability evolution depends on stress path, permeability ends up the same 

at the final point of loading where the stress states are almost the same (Figures 4.7c and 

4.7g). 

The preconsolidation pressure σv0' is determined from uniaxial strain loading by the 

intersection point of the two lines tangent to the elastic portion (Stage I) and the normal 

consolidation portion (Stage III) in a logarithmic plot of volumetric strain versus σ1 

(Figures 4.5d, 4.6d, 4.7d, and 4.7h) [Holtz and Kovacs, 1981]. It turns out that all 

samples have larger preconsolidation pressure than the in-situ overburden pressure σv', 
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which is calculated from the shipboard measurement of bulk density assuming that pore 

pressure is hydrostatic [Expedition 315 Scientists, 2009; Expedition 316 Scientists, 2009a, 

2009b]. Thus, all samples are overconsolidated and OCR ranges 1.4-2.8 (Table 4.2). 

 

4.6. Discussion 

4.6.1. Yield surface and consolidation states 

Both plastic volumetric strain and plastic shear strain are calculated by subtracting 

elastic strain from total strain. As given by equation (4.8), bulk modulus K' and shear 

modulus G' are determined from the elastic part of the relationship between effective 

mean stress and volumetric strain, and that between differential stress and shear strain, 

respectively. Bulk modulus, K' can be determined from the ratio of volumetric strain to 

natural logarithm of effective mean stress, κ, by the equation, 

 

! =
"#p

" ln $ p ( )
=

$ p "#p

" $ p 
=

$ p 

$ K 
.     (4.16) 

We assume that the deformation during Stage I of uniaxial strain loading, triaxial 

unloading, and hydrostatic unloading is perfectly elastic (Figures 4.8a and 4.8b). Once 

elastic parameters are obtained (e.g., G' = 340MPa and κ = 0.03 for 316-C0006F-8R-1), 

the plastic vector for each stress state can be plotted (Figure 4.8c). Plastic potential is 

normal to the plastic vector and the direction of plastic potential mostly follows the 

stress paths during both undrained and drained Pc reduction. Taking into account the 

assumption of the Cam-Clay model that the yield surface is same as the plastic potential  
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 Figure 4.8. The experimental results of the samples 316-C0006F-8R-1-a, 316-C0006F-8R-
1-b, and 316-C0006F-8R-1-c used for Cam-Clay model. (a) Volumetric strain as a function 
of effective mean stress. (b) Differential stress as a function of shear strain. (c) Plastic strain 
vectors (blue arrows) and the predicted plastic potential (yield surface) direction (red 
arrows) during undrained and drained Pc reduction tests on the sample 316-C0006F-8R-1-b. 
Black dots represent the stress states. 
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[Wood, 1990], and that the yield surfaces of each sample are well described by the 

original Cam-Clay of equation (4.4) with M of 0.8-1.2 (Table 4.2), the stress path during 

a Pc reduction test likely defines the yield surface (Figures 4.5b, 4.6b, 4.7b, and 4.7f).  

All samples are overconsolidated, and OCR ranges 1.4-2.8 (Table 4.2). 

Overconsolidation can be explained by the cementation of the sediments, a maximum 

depth of burial greater than the current depth, or by a in-situ stress-strain history 

inconsistent with the uniaxial strain loading used in which σv' = σ1'. To evaluate the 

effect of cementation on consolidation state and preconsolidation stress is not easy and 

would require future study. Thus, we evaluate the other possibilities here.  

A greater depth of burial in the past than in the present can be explained by two cases; 

(1) the sediment overburden above the sample in the past are removed in the present or 

(2) the sample have moved from the depth during thrusting deformation. Considering the 

geological setting, the samples 316-C0004D-48R-1 and 316-C0006F-8R-1 can be case 

(1) and case (2), respectively. The sample C0002B-63R-1 is from the older accretionary 

prism sediment, and thus the deformation history is not clear. Also, since this old sample 

has the smallest OCR among the three samples presented herein, overconsolidation 

could be explained solely by the effect of cementation. 

The sample 316-C0004D-48R-1 is underthrust slope sediment, and overlain by 

accreted sediments and the overlying younger slope sediments across the megasplay 

fault. There is ~ 1 m.y. (1.5-2.5 Ma) unconformity between the accreted sediments and 

the overlying slope sediments [Expedition 316 Scientists, 2009a]. If we assume that bulk 

density of the removed sediment is same as the averaged bulk density of slope sediment 
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of ~1.66 and pore pressure is hydrostatic, then the thickness of the slope sediment that 

would have had to been above the present sea floor removed to produce a σv' equal to the 

preconsolidation stress is estimated as 580 m. For such a large thickness of sediment to 

have accumulated (and then removed) during ~1 m.y. period would require an average 

sedimentation rate greater than ~580 m/m.y., which is much faster than the 

sedimentation rate of approximately 50 m/m.y. recorded at Site C0008 during the same 

time period, and the sedimentation rate at Site C0008 is very high because of the 

proximity to the megasplay (Figure 4.2c). Thus, even if some sediment is missing, other 

possibilities should also be considered to explain the overconsolidation. 

The sample 316-C0006F-8R-1 is from the top of the Upper Shikoku Basin sediment 

overthrust along the frontal thrust. The deepest depth at which the overthrusted 

sediments have been buried could be the depth before the start of overthrusting. This 

depth can be considered as equivalent to that of the proto-thrust forming the next, future 

frontal thrust. Since the development of accretionary prism is self-similar [e.g., Davis et 

al., 1983] and the initiation evolution of the proto-thrust is observed right below the Site 

C0006 in the seismic data [Moore et al., 2009], we assume that the sample 316-C0006F-

8R-1 had been buried, before underthrusting initiated, to a depth equivalent to the depth 

of the present proto-thrust. The thickness of Upper Shikoku Basin in the hanging wall 

and trench wedge sediment in the footwall is estimated as approximately 220m and 

1120m from the seismic reflection data, respectively (Figure 4.2d) [Moore et al., 2009]. 

We assume that pore pressure is hydrostatic at any depth and that the trench wedge 

sediment and the Upper Shikoku Basin sediment in the footwall have the averaged bulk 
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densities of the trench sediment (Unit II) and Upper Shikoku Basin sediment (Unit III) in 

the hanging wall of the frontal thrust, from which the cored samples were recovered 

during Expedition 316 [Expedition 316 Scientists, 2009b]. The in-situ effective 

overburden pressure for the top of the Upper Shikoku Basin in the proto-thrust zone is 

estimated as 13.2 MPa, which is slightly higher pressure than the preconsolidation 

pressure of 12.3 MPa estimated from the experiments. It might be considered an 

overestimate due to the assumption of hydrostatic pore pressure for underthrusted 

sediment at the proto-thrust. The previous studies have suggested that overpressure 

would be developed and sediment would be underconsolidated due to the fast loading of 

sediments and their low permeability [e.g., Screaton et al., 2002; Saffer 2003]. It is 

crucial to estimate the pore pressure and the consolidation states for the underthrust 

sediments at this transect in order to understand the deformation mechanism and history 

of the frontal thrust. 

The preconsolidation pressure determined in uniaxial strain tests represents the 

maximum vertical stress experienced by the sediment in the past, and is most 

appropriately applied to the natural case of flat-lying sediments loaded by overburden 

where lateral strains are expected to be small [e.g., Terzaghi et al., 1996]. In an 

accretionary subduction zone, horizontal stress magnitude can vary with position and 

time, and will constitute the maximum principal compressive stress in regions of 

accretion and thusting [e.g., Karig, 1990; Jones 1994; Morgan et al., 2007]. Accordingly, 

we consider the effect of the horizontal stress in evaluating the consolidation state of 

sediments. To do this, we estimate an effective mean preconsolidation stress (same as a 
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reference effective mean stress in Cam-Clay model), p0', to define virgin yield envelopes. 

The effective mean preconsolidation stress is determined from the logarithmic plot of 

volumetric strain versus p' (Figure 4.9a). As the vertical preconsolidation stress is 

estimated as the value at the intersection of two lines tangent to the elastic portion and 

the normal consolidation portion, the effective mean stress at yield, py' is determined. In 

isotropic loading, py'=p0', while in non-isotropic loading where q≠0, p0' is determined 

from Equations (4.1), (4.2), and (4.4) with σv0' and M that were determined for each 

sample in the precious sections. Once p0' is determined, the virgin yield surface can be 

constructed (Figures 4.9b-4.9d). The values of p0' estimated in non-isotropic loading 

tests, 316-C0006F-8R-1-a and 316-C0006F-8R-1-b are comparable to p0' of isotropic 

loading test, 316-C0006F-8R-1-c (Figure 4.9d and Table 4.2). We also present p0' and 

yield envelopes at the end of elastic portion and the onset of normal consolidation 

(Figures 4.9b-4.9d). We call them as a pre-yield envelope and a post-yield envelope, 

respectively. Interestingly, the transitions from Stage I (elastic deformation) to Stage II 

(cement breakage) in uniaxial strain loading are on the pre-yield envelope except for the 

sample 316-C0004D-48R-1, in which the transition lies on the vergin yield surface. The 

onset of Stage III (normal consolidation) seems to lie on the post-yield surface, although 

Stage III is not clear in the sample 315-C0002B-63R-1. In addition, the sample 316-

C0006F-8R-1 shows faster increase in differential stress just before Stage III, and it 

might be related to experimentally-formed compaction bands, which are not observed in 

other deformed samples.  
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Figure 4.9. Effective mean preconsolidation pressure and yield envelopes. (a) 
Volumetric strain as a function of effective mean stress of the samples 315-C0002B-
63R-1, 316-C0004D-48R-1, and 316-C0006F-8R-1-a. (b), (c), (d) Yield envelopes for 
the samples 315-C0002B-63R-1, 316-C0004D-48R-1, and 316-C0006F-8R-1-a, 
respectively. Bold envelopes are the virgin yield envelopes, dashed envelopes are the 
pre-yield envelopes, and dashed-dot envelopes are the post-yield envelopes. The 
squares indicate the stress states at yield points, which are chosen in the logarithmic 
plot of volumetric strain vs p’. 
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4.6.2. Estimation of in-situ horizontal stress 

Undrained shear strength can be estimated from the yield surface. The SHANSEP 

model (stress history and normalized soil engineering properties) are designed to estimate 

the undrained shear strength for overconsolidated sediments [Ladd and Foott, 1974]. 

Undrained shear strength for overconsolidated sediment can be calculated from the 

normalized relationship of  
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where Su is the undrained shear strength and m is a material constant, which typically 

ranges between 0.7 and 0.9. NC stands for normal consolidation. We assume that 

 

S
u( )

NC
is the differential stress at the critical state and 

 

! " 
v( )

NC
= ! " 

v0
. With m = 0.8, 

undrained shear strength is estimated as Su =3.86 MPa for 315-C0002B-63R-1, Su = 2.14 

MPa for 316-C0004D-48R-1, and Su = 3.53 MPa for 316-C0006F-8R-1. Unfortunately, 

it is not possible to compare these results to the shipboard measurements of undrained 

shear stress by vane shear and penetrometer, both of which can be only used for soft 

samples. 

Although the drained Pc reduction is well matched to the Cam-Clay yield surface, it 

could follow the friction-based failure criteria such as the Coulomb failure criteria. 

 

! = c + " tan#      (4.18) 

where τ is shear stress, σ is normal stress, c is cohesive strength, and φ is internal friction 
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angle. Equation (4.18) can be rewritten in terms of effective mean stress and differential 

stress, 

 

q =
6c cos!

3" sin!
+ # p 

6sin!

3" sin!
.     (4.19) 

The best-fit of (4.19) to the stress path during undrained Pc reduction (Figures 4.5b, 

4.6b, 4.7b, and 4.7f), gives the internal friction angle. From this angle and undrained 

shear strength, the best-fit Coulomb failure line can be derived, and thus cohesive 

strength can be calculated (Figures 4.9c-4.9e and Table 4.2). Jaeger and Cook [1979] 

show the relationship between the maximum and the minimum principal stresses is 

given by 

 

!
1

= 2c[(1+ µ2
)
1 2

+ µ]+ [(1+ µ2
)
1 2

+ µ]2!
3

= C
0

+ [(1+ µ2
)
1 2

+ µ]2!
3
 (4.20) 

where unconfined compressive strength C0 is described as a function of cohesive strength 

c and coefficient of internal friction,µ  ( = tan!) , in a relation of C
0
= 2c[(1+ µ2

)
1 2

+ µ] . 

Given that the stress in crust is limited by the frictional strength described by Equation 

(4.20) and follow Anderson’s faulting theory, the range of possible stress states of each 

sample is estimated for normal faulting, strike slip faulting, and reverse faulting 

environment and presented as stress polygons (Figures 4.10a, 4.10c, 4.10e, and 4.10g) 

[Zoback et al., 2003].  

Horizontal stress magnitude was estimated from breakout width and the empirical 

rock strength parameters of unconfined compressive strength and internal friction 

coefficient during Expedition 314 [Expedition 314 Scientists, 2009], based on the 
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Figure 4.10. Estimation of in-situ stress conditions from stress polygons and yield 
envelopes. (a) Schematic diagram of stress polygons. All stresses are total stress, not 
effective stress. The region with labels of NF, SS, and TF represent the stress 
conditions for normal faulting, strike-slip faulting, and thrust faulting, respectively. 
(b) Schematic diagram of possible stress states in p’-q diagram. (c), (e), (g) Stress 
polygons and the relationship between the maximum and minimum horizontal stress 
(bold lines) estimated from the breakout data. (d), (f), (h) Yield envelopes and 
predicted in-situ stress states. Possible stress states are the region bounded by yield 
surface and the two lines of (1) and (4). (c) and (d), (e) and (f), and (g) and (h) show 
the results of the samples 315-C0002B-63R-1, 316-C0004D-48R-1, and 316-
C0006F-8R-1-a, respectively. 
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relationship,  

 

! H =
(C

0
+ 2Pp + "P) #! h (1+ 2cos2$b )

1# 2cos2$b
    (4.21) 

where σH and σh are the maximum and minimum horizontal stresses, Pp is pore pressure, 

ΔP is the difference between the wellbore pressure and the pore pressure, i.e., excess 

pore pressure, and θb is the breakout width. Using the estimated unconfined compressive 

strength C0, the possible relationship between the maximum and minimum horizontal 

stress magnitude is estimated as a line (Figures 4.10c, 4.10e, 4.10g, and Table 4.2). We 

assume that pore pressure is hydrostatic, and ΔP is 0. All samples show that the 

horizontal stress is in the normal fault regime, except the sample 316-C0006F-8R-1 is 

also in the strike-slip fault regime (Figures 4.10c, 4.10e, 4.10g).  

Since the consolidation state can be represented by the yield surface in p’-q space 

(Figure 4.9b-4.9d), possible in-situ stress conditions can be also understood in p’-q space. 

The present in-situ stress subjected to the samples should be within or on the yield 

surface. The in-situ effective vertical stress is estimated from the shipboard measurement 

bulk density of the overburden sections assuming hydrostatic pore pressure, but the 

horizontal stress magnitude is unknown. During the Expedition 314, the estimation of in-

situ horizontal stress has been attempted from the logging breakout data, but mechanical 

properties of sediments such as UCS and frictional angle are constrained by the 

empirical equations for the similar sediment samples not by the laboratory measurement 

of the strength on the real samples [Tobin et al., 2009b]. We consider four representative 
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relationships between effective vertical stress σv', maximum horizontal stress σH', and 

minimum horizontal stress σh'; (1) σh' = σH' < σv', (2) σh' = σH' <  σv', (3) σh' = σv' < σH', 

(4) σv' < σh'  σH'. Although effective stresses are used here, but these are also applicable 

to total stress. From the Equations (4.1) and (4.2) with the effective overburden pressure 

σv', the linear relationships between p' and q are obtained for each case (Figure 10b) and 

all four lines are intersected at p'=σv'. This point represents the isotropic stress 

condition, σh' = σH' = σv'. More general stress states of (5) σh' < σH' < σv', (6)  σh' < σv' < 

 σH', (7)  σv' = σh' <  σH' lie between the lines of (1) and (2), (2) and (3), and (3) and (4) 

(Figure 4.10b). Each stress state is required for normal faulting, strike-slip faulting, and 

thrust faulting, respectively [Anderson, 1951]. Given that pore pressure is hydrostatic, 

the possible stress conditions are in the regions bounded by yield surface and the lines 

(1) and (4). When excess pore pressure is developed, the boundaries of lines (1) and (4) 

shift to the left by the amount of excess pore pressure shifts left with keeping the same 

yield surface.  

If the stress state lies on the yield surface, the sample is normal consolidated. Normal 

consolidation can be achieved by not only the stress conditions in the past but also the 

present stress condition. In other word, greater burial depths in the past are not necessary 

to understand the consolidation state if large horizontal stress exists. In addition, to 

describe possible in-situ stress in p’-q space with critical state concept can give us 

insight on the deformation modes (brittle or ductile). Possible stress states of the sample 

315-C0002B-63R-1 are all existed in cataclastic flow regime (Figure 4.10d), while those 
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of the samples 316-C0004D-48R-1 and 316-C0006F-8R-1 sit in both brittle faulting 

regime and cataclastic flow regime (Figures 4.10f and 4.10h). The stress conditions 

required for thrust faulting ((3) and (4)) are in the cataclasitc regime, while the stress 

conditions for normal faulting are in the brittle regime. It is consistent with general 

observations of deformation structures in core samples of both deformation bands and 

shear fractures in the frontal regions (Sites C0006 and C0007) [Expedition 316 Scientists, 

2009b, 2009c]. The deformation bands mostly show reverse slip associated with 

horizontal layer-parallel contraction and the shear fractures show normal faulting. 

Furthermore, the formation of deformation bands followed by younger normal faults can 

be explained by the transition of stress states from the cataclastic flow regimes to the 

brittle faulting regime possibly due to stress rotation. 

 

4.6.3. Relationships between hydraulic properties and stress states 

The results of permeability of three experiments on the sample 316-6F-8R-1 are 

shown in Figure 4.11a. Although volumetric strain similarly decreases with the effective 

mean stress (Figure 4.8b), permeability evolution depends on the stress paths. 

Permeability decreases with log-linear relationship throughout the three stages of 

uniaxial strain loading. During the isotropic loading, permeability quickly decreases 

when the mean effective stress is less than approximately 5 MPa and stays almost 

constant at the mean effective stress up to 20 MPa and starts decreasing again down to 

10-20 m2 at effective mean stress of 50 MPa. Although there is some difference between 
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Figure 4.11. Evolution of permeability and porosity of the samples 316-C0006F-
8R-1-a, 316-C0006F-8R-1-b, and 316-C0006F-8R-1-c. (a) Permeability as a 
function of effective mean stress. (b) Permeability - porosity relationship. (c) and 
(d) Contours of permeability and porosity in p-q space. 
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one-end and two-end pulse decay measurements, permeability evolution with the mean 

effective stress is very similar. The greatest reduction in permeability is observed in 

triaxial loading. The observations imply that cementation can be broken easier when 

differential stress is applied. In other word, larger effective mean stress is required to 

break cementation in isotropic stress conditions.  

There are two trends in porosity-permeability relationship (Figure 4.11b). First, 

permeability quickly decreases with small changes in porosity and then porosity 

decreases with slow change in permeability. It is less obvious, but the effect of stress 

path can be seen as different slope. It is unknown if permeability-porosity relationship 

converge with greater strain such that the permeability-porosity relation for all load 

paths follow the isotropic case at higher stresses, as has been suggested from previous 

studies on porous sandstones that show the porosity-permeability relationship is 

independent of differential stress [Zhu and Wong, 1997] and permeability anisotropy 

diminishes at strain of ~ 10% [Zhu et al., 2002]. 

On the basis of the experiment results, permeability and porosity are contoured in p'-q 

space (Figures 4.11c and 4.11d). Porosity evolution depends on both effective mean 

stress and differential stress and is sub-parallel to the predicted Cam-Clay yield surface. 

On the other hand, permeability evolution seems more complicated. When the stress 

states are within the yield surface, permeability largely depends on the effective mean 

stress, but isotropic condition can keep permeability higher. After the sample yields, 

permeability evolution depends more on the differential stress than on the effective mean 

stress. The permeability evolution in relation to both effective mean stress and 
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differential stress does not correspond with that of siliciclastic and carbonate rocks 

[Crawford and Yale, 2002], but in all cases the yield surface well describes the transition 

of permeability evolution. 

Zhu et al. [2007] specified the three stages for stress-induced permeability reduction 

in porous rocks. In the elastic regime or Stage I, permeability and porosity reduction are 

solely controlled by the effective mean stress. In Stage II, differential stress primarily 

controls permeability and porosity evolution, i.e., permeability drastically decreases with 

increasing differential stress. In Stage III, permeability and porosity reduction becomes 

gradual again due to the development of pervasive cataclastic flow. Note that these three 

stages do not necessarily correspond to the three stages of strength evolution for uniaxial 

strain loading described above. Our experimental results show similarities and 

differences with the findings of Zhu et al. [2007]. Stage II is identified as the shear-

enhanced permeability reduction in uniaxial strain loading and triaxial loading, although 

permeability reduction in uniaxial strain loading is more gradual than that in triaxial 

loading. Also, the transition between Stage I and Stage II is obvious when isotropic 

loading is initially applied, but not so clear in uniaxial strain loading (Figures 4.7c, 4.7g, 

and 4.11a). This has not been observed in the previous studies [Zhu et al., 2002; 

Crawford and Yale, 2002], in which all triaxial deformation tests follow isotropic 

loading. More experimental works are necessary to fully understand the permeability 

evolution in terms of stress states and stress paths. 
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4.7. Conclusions  

1) Using different stress paths facilitates understanding the mechanical and hydraulic 

behavior of sediments recovered from the Nankai Trough subduction zone. Experimental 

results indicate that all samples tested in this study are overconsolidated. Possible 

reasons for overconsolidation is (1) cementation, which is observed in uniaxial strain 

loading, (2) the maximum burial depth greater than the current depth, and (3) large 

horizontal stress. Overconsolidation can induce brittle faulting as well as development of 

excess pore pressure. Consolidation states must be characterized to understand the 

deformation mechanism in accretionary prism subduction zones. 

2) The stress paths during Pc reduction for the NanTroSEIZE samples can be 

considered as yield surfaces, which are best described by Cam-Clay model. Constructing 

the virgin yield surface of the samples based on the experiment results can better describe 

the consolidation status and possible in-situ stress magnitudes which are complicated in 

accretionary prisms. The in-situ stress magnitudes, and mechanical properties such as 

undrained shear strength, unconfined compressive strength, and frictional angle can be 

estimated from the yield surface combined with the Coulomb failure criteria, stress 

polygons, and the borehole breakout data.  

3) During consolidation, porosity decreases with both effective mean stress and 

differential stress as yield surface expands. Permeability evolution depends on only 

effective mean stress within the virgin yield surface, while it depends more on differential 
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stress than on effective mean stress after the sample yield. Differential stress can 

decrease permeability faster, which is consistent with shear-enhanced permeability 

reduction. Greatest change in permeability with both effective pressure and changing 

porosity is seen in triaxial loading.  
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5. SUMMARY 

Rotary-shear experiments are suitable for understanding frictional behavior at 

coseismic slip rates because large displacements (tens of meters) can be readily 

achieved. Significant analysis of mechanical data is required to interpret the results, 

because slip velocity and displacement vary with radius. We implemented thermal-, 

mechanical-, and fluid-flow-coupled FEM models and microstructure observations to 

better describe the evolution of coefficient of friction, temperature, and stress within the 

sample. Dynamic weakening occurs at slip rates greater than 0.3 m/s and is associated 

with significant frictional heating and two characteristic microstructures of a localized 

slip zone and a fluidized layer. Friction of gouge at coseismic slip rates is successfully 

described by a combination of temperature-dependent friction constitutive relations, in 

which friction coefficient is proportional to 1/T, and thermal pressurization of pore 

water. Further investigations of frictional behavior at intermediate and high slip 

velocities are required to fully establish rate-, state-, and temperature-dependent friction 

constitutive relations for seismic slip rates. More detailed microstructure analysis is also 

needed to understand the microprocesses during coseismic slip. 

The evolution of porosity and permeability of sediments recovered from the Nankai 

Trough subduction zone is dependent on effective mean stress and differential stress. 

Porosity evolution is independent of stress path, and porosity decreases as the yield 

surface expands. Permeability evolution depends on the stress state, stress path, and the 

consolidation state. Experimental yielding of sediment during undrained Pc reduction 

test is well described by Cam-Clay model of soil mechanics. The in-situ stress 
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conditions and strength of sediment are better estimated from the predicted yield 

envelopes combined with stress polygons and borehole breakout data. All samples tested 

are overconsolidated, and there are three possible reasons for overconsolidation, 1) 

sediments are cemented, 2) sediments have been subjected to larger overburden stress 

than the present in-situ overburden stress, or 3) large horizontal stress conditions within 

accretionary prism can overconsolidate sediments. More experiments on sediments from 

the input sites which are located off the deformation front and microstructure study on 

both natural and experimentally-deformed samples are necessary to understand the cause 

of overconsolidation. 
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