
 

 

i 

 

LIPID METABOLISM, GENE EXPRESSION, SUBSTRATE OXIDATION, AND 

MEAT QUALITY OF GROWING-FINISHING PIGS SUPPLEMENTED WITH 

CONJUGATED LINOLEIC ACID AND ARGININE 

 

 

 

A Dissertation 

by 

GWANG-WOONG GO 

 

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

December 2010 

 

 

Major Subject: Nutrition  



 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lipid Metabolism, Gene Expression, Substrate Oxidation, and Meat Quality of  

Growing-finishing Pigs Supplemented with Conjugated Linoleic Acid and Arginine  

Copyright 2010  Gwang-woong Go   



 

 

iii 

LIPID METABOLISM, GENE EXPRESSION, SUBSTRATE OXIDATION, AND 

MEAT QUALITY OF GROWING-FINISHING PIGS SUPPLEMENTED WITH 

CONJUGATED LINOLEIC ACID AND ARGININE 

 

 

A Dissertation 

by 

GWANG-WOONG GO 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,   Stephen B. Smith 

Committee Members,  Darrell Knabe 

  Peter Murano 

  Guoyao Wu 

Intercollegiate Faculty Chair, Stephen B. Smith 

 

December 2010 

 

Major Subject: Nutrition 



 

 

iii 

iii 

ABSTRACT 

 

Lipid Metabolism, Gene Expression, Substrate Oxidation, and Meat Quality of Growing-

finishing Pigs Supplemented with Conjugated Linoleic Acid and Arginine.  

(December 2010) 

Gwang-woong Go, B.S., Korea University; 

M.S., Korea University 

Chair of Advisory Committee: Dr. Stephen B. Smith 

 

 

We hypothesized that supplementation of dietary conjugated linoleic acid (CLA) and 

arginine singly or in combination would increase animal performance and meat quality 

by decreasing adiposity and increasing lean mass in growing-finishing pigs.  Sixteen 

pigs (80 kg) were assigned to four treatments in a 2 x 2 factorial design, differing in 

dietary fatty acid and amino acid composition [control: 2.05% alanine (isonitrogenous 

control) plus 1% canola oil (lipid control); CLA: 2.05% alanine + 1% CLA; arginine: 1% 

arginine + 1% canola oil; arginine + CLA: 1% arginine + 1% CLA].  Preliminary tests 

indicated that up to 2% arginine was acceptable without interfering with lysine 

absorption.  Pigs were allowed to feed free choice until reaching 110 kg.  There were no 

significant differences across treatments in feed intake, weight gain, or feed efficiency.  

CLA tended to decrease carcass length (P = 0.06), whereas backfat thickness tended to 

be greater in pigs supplemented with arginine (P = 0.08).  Arginine decreased muscle pH 



 

 

iv 

iv
 

at 45 min postmortem (P = 0.001) and tended to increase lightness of muscle at 24 h 

postmortem (P = 0.07).  CLA supplementation increased the concentrations of trans-

isomers of 18:1 (P = 0.001) and SFA (P = 0.01) in s.c. and r.p. adipose tissue.  CLA 

supplementation increased palmitate incorporation into total lipids in longissimus muscle 

(P = 0.01).  Glucose oxidation to CO2 in r.p. and s.c. adipose tissue were greater in pigs 

supplemented with CLA in the absence or presence of arginine (P = 0.03 and P = 0.04, 

respectively).  The volume of s.c. adipocytes in s.c. and r.p. adipose tissues was greater 

in pigs supplemented with CLA, arginine, or CLA plus arginine than in control pigs (P = 

0.001).  Neither CLA nor arginine affected the expression of PGC-1, AMPK, mTOR, 

CPT-1A, FAS, or SCD (P > 0.05) in any tissues.  We conclude that there was no 

significant interaction between arginine and CLA.  Supplementary CLA or arginine to 

finishing-growing pigs did not modulate growth performance and did not reduce 

adiposity.  CLA increased intramuscular fat content without deteriorating meat quality 

traits and increased saturated fatty acids and substrate oxidation in adipose tissues.  In 

the presence of 1% of canola oil or CLA in the diet, arginine has the potential to 

deteriorate meat quality by reducing early postmortem pH and by increasing carcass 

fatness. 
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NOMENCLATURE 

 

ACC  Acyl-CoA carboxylase 

ACO  Acetyl CoA oxidase 

AMPK  AMP-activated protein kinase 

C/EBP  CAAT/enhancer-binding protein 

CLA  Conjugated linoleic acid 

CPT-1A Carnitine palmitoyltransferase 1 

ERK  Extracellular signal-related kinase 

FAME  Fatty acid methyl ester 

FAS  Fatty acid synthase  

HDL  High density lipoprotein 

ILP  Intermediate lipoprotein 

LDL  Low density lipoprotein 

mTOR  Mammalian  target of rapamycin  

MUFA  Monounsaturated fatty acid 

NRF-1  Nuclear respiratory factor 1 

NFκB  Nuclear factor-κB 

NO  Nitric oxide 

NOS  Nitric oxide synthase 

PGC-1  Peroxisome proliferator-activated receptor gamma coactivator 1  

PPAR  Peroxisome proliferator-activated receptor 

PSE  Pale, soft, and exudative  
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RLP  Remnant lipoprotein 

r.p.  Retroperitoneal 

s.c.  Subcutaneous 

SCD  Stearoyl-CoA desaturase  

SFA  Saturated fatty acid  

TNF  Tumor necrosis factor 

UCP  Uncoupling protein 

VLDL  Very low density lipoprotein  

ZDF rat Zucker diabetic fatty rat 
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INTRODUCTION
1
 

 

Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of 

linoleic acid.  CLA is known for reducing body fat mass by increasing energy 

expenditure (fatty acid oxidation and phosphorylation) and decreasing lipogenesis 

(adipocyte differentiation and fatty acid synthesis).  Arginine, a semi-essential amino 

acid, also enhances fatty acid oxidation, partly via NO-mediated change in expression of 

genes including SCD, AMPK, and PGC-1.   

There is constant demand for improving animal performance and meat quality 

among producers and consumers.  Breeding systems to increase animal performance 

have resulted in quality problems such as PSE meat and reduced intramuscular fat.  

Novel approaches with compounds considered as safe are needed to increase animal 

performance and meat quality via increasing lean mass and decreasing adiposity.  

Reducing fat by CLA appears not to deteriorate pork meat quality, including pH, color, 

water holding capacity, marbling, and tenderness.  The effects of arginine (in single or 

combination with CLA) on meat quality have not yet been determined.  Furthermore, 

there is no information on the interaction between CLA and arginine in the pig. 

Taken together, both CLA and arginine seem to modulate energy expenditure 

and lipogenesis at the molecular level, lowering fat mass without meat quality 

deterioration.  We hypothesized that arginine and CLA, singly or in combination, would 

improve animal performance and meat quality, reducing adiposity and enhancing 
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leanness in finishing weight pigs.  This research provided an integrated study of the role 

of CLA and arginine in modulating lipogenesis, substrate oxidation, and meat quality. 
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REVIEW OF LITERATURE 

 

General aspects of CLA and arginine.  CLA is a group of geometric and positional 

isomers of linoleic acid, having conjugated double bonds (1), originating from 

biohydrogenation and isomerization of linoleic acid by rumen bacteria (2) and delta-9 

dehydrogenation of trans-11 vaccenic acid in mammalian tissues (3, 4).  The most 

predominant isomer in nature is cis-9, trans-11 CLA (c9, t11 CLA, >80%), which is 

mainly ruminant origin including meat and dairy, while trans-10, cis-12 CLA (t10, c12 

CLA) is found in negligible amounts in food.  Since CLA from beef was shown to be 

anti-carcinogenic (5), numerous studies demonstrated the physical, biochemical, and 

physiological properties of CLA: 1) decreasing severity of atherosclerosis (6), 2) 

modulation of immune function (7, 8), 3) antioxidative action (9), 4) growth promotion 

(10), 5) reduction of body fat and modulating lipid metabolism (11-15).  These functions 

of CLA are isomer dependent. The t10, c12 CLA is in particular active for its anti-

adipogenic property (16-19).  

Arginine is a semi-essential amino acid, playing a multiple roles as a precursor 

for NO, which modulates energy expenditure and lipogenesis.  There are two main 

pathways of synthesis of NO: arginine-NOS pathway (20) and nitrate-nitrite-NO 

pathway (21).  Arginine-NOS pathway is more dominant with isoforms: 'endothelial' 

(eNOS), 'neuronal' (nNOS), and ‘inducible’ (iNOS) (22).  According to Bryan et al. (23), 

mammalian tissues generate NO to modify proteins at heme and sulfhydryl sites, thereby 
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increasing substrate oxidation.  NO from mitochondria has been established the basis for 

a novel regulatory pathway of energy metabolism and oxygen consumption (24, 25). 

Increasing energy expenditure by CLA and arginine.  Dietary CLA enhances fatty acid 

oxidation by activating CPT-1B in skeletal muscle and increases ACO (rate limiting 

enzyme in peroximal oxidation) in liver (26).  Supplementing 0.5% of CLA in the diet 

effectively increased energy expenditure in Balb-C mice during exercise (27), and 0.93% 

of CLA supplemented to Balb-C mice increased energy expenditure (28).  1% of c9, t11 

CLA supplementation for 8 wk to Sprague-Dawley rats increased PPAR, ACO, and 

UCP, and protected mitochondria against oxidative stress (29).  Furthermore, 4 g/d of 

dietary CLA supplementation for 6 mo increased substrate oxidation and energy 

expenditure in over weight adults (30). 

NO from arginine modulates expression of AMPK (31), which is necessary for 

mitochondrial biogenesis in response to oxidation of substrate.  Hela cells, expressing 

eNOS, displayed increases in mitochondrial DNA content, cytochrome c oxidase, and 

the mRNA of PGC-1 and NRF-1 (32).  Arginine increased CPT-1A and PGC-1 

expression in liver, and increased hepatic energy expenditure compared with alanine-

supplemented rats (33).  Arginine also depressed lipogenesis from glucose and palmitate 

in liver when supplemented to rats, and also increased palmitate oxidation to CO2 (34). 

Inhibition of lipid synthesis and adipocyte differentiation by CLA and arginine.  CLA, 

given at a dose of 3.2 g/d, caused modest weight loss in body fat in humans (35), and 

depressed SCD gene expression and catalytic activity in adipocytes (36).  Research with 

SCD gene knockout mice showed that a SCD mutation caused increased AMPK in liver 
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and skeletal muscle, which inhibited lipogenesis and enhanced fatty acid oxidation (37).  

Decreased ACC caused by AMPK increased CPT-1A activity by decreasing malonyl 

CoA in scd -/- mice liver (38).  CLA prevented lipid filling by decreasing PPARγ in 

rodent preadipocytes (39) and bovine preadipocytes (40).  The t10, c12 CLA isomer 

supplementation decreased expression of C/EBP in 3T3-L1 adipocyte (41). Both 

PPAR and C/EBP control lipid metabolism, adipocyte differentiation, proliferation, 

and lipogenesis in adipose tissue (42).  CLA affected PPARγ via NFκB, which regulates 

mitogen-activated protein kinases and TNF- (43).  CLA activated NFκB in stromal-

vascular cells, resulting in secretion of interleukin-6, -8, and TNF-α.  These cytokines 

activated NFκB and ERK, which phosphorylated NFκB and other transcription factors 

including PPARγ, which resulted in reduced adipogenic gene expression (44).  Dietary 

0.5% CLA for 5 wk decreased adipose tissue cell size in Sprague-Drawley rats (45). 

Arginine, via NO, suppressed the expression of ACC, FAS, and SCD, decreasing 

body fat mass in rat (33, 46, 47).  NO down-regulated triacylglycerol synthesis and 

increased lipolysis.  The addition of 4% arginine to the diet decreased total body fat (48).  

Fu et al. (49) demonstrated that dietary arginine reduced adiposity in Zucker diabetic fat 

(ZDF) rats and Nall et al. (34) indicated that arginine depressed r.p. adipose tissue in 

Sprague-Dawley rats.  After 10 wk of treatment, those rats fed arginine had 25% less 

epididymal fat and 45% less abdominal fat than control rats. 

The effects of CLA and arginine on growth performance and meat quality 

characteristics.  Supplemental arginine to growing-finishing pigs for 2 mo had no effect 

on weight gain or feed intake (50), and body weight also was not affected by dietary 
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arginine supplementation in pregnant gilts (51).  On the other hand, other investigators 

have demonstrated that dietary arginine supplementation enhanced growth performance 

of neonatal pigs.  Weight gains were increased in piglets supplemented with arginine 

(52).  Similarly, average daily weight gain and body weight increased in milk-fed piglets 

receiving arginine treatment (53).   

Dietary CLA supplementation to pigs had no effect on daily weight gain, feed 

intake, or feed efficiency (54).  Likewise, CLA supplementation to growing-finishing 

pigs did not affect on average daily gain (55).  However, weight gain, feed intake, and 

feed efficiency were greater in rats supplemented with 1% CLA (34). 

In piglets , oral administration of N-carbamylglutamate, an analogue of 

endogenous N-acetylglutamate (an activator of arginine synthesis), increased weight 

gain an the rate of protein synthesis in skeletal muscle (56).  Similarly, CLA increased 

mTOR signaling activity in human preadipocytes (44), and dietary arginine 

supplementation increased mTOR signaling of muscle in neonatal pig (57).  According 

to Nall et al. (34), dietary arginine and CLA supplementation to rats caused a reduction 

in serum branched-chain amino acids (BCAA), which was caused by depression of 

muscle protein turnover.  Thus, CLA or arginine supplementation to pigs could increase 

lean mass by depression of protein turnover via stimulation of mTOR signaling pathway 

in skeletal muscle. 

Other investigators demonstrated that arginine and CLA reduced fat mass.  Total 

carcass fat decreased in pigs fed arginine for 2 mo, but arginine had no effect on average 

backfat thickness or carcass length (58).  Similarly, arginine supplementation reduced 
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the weight of r.p. and epididymal adipose tissue in ZDF rats (49).  Dietary arginine 

supplementation increased expression of genes, including PGC-1 and AMPK.  

Moreover, arginine increased lipolysis in rat adipose tissue and inhibited lipogenesis in 

liver and adipose tissue (33). 

Early postmortem muscle pH is an indicator of the rate of postmortem 

metabolism and the degree of protein denaturation (59).  The rate of pH decline and 

ultimate pH in muscle are highly related to drip loss and meat color parameters (60, 61).  

As pH declines, drip loss and lightness increases (62).  Other investigators have 

demonstrated that CLA supplementation to pigs slightly increased or had no change in 

pH (54, 55, 63-65).  Dietary 0.5% CLA supplementation increased muscle pH and 

glycogen concentrations and tended to lower lactate content (66).  

Hypothesis and objectives.  We hypothesized that co-supplementation of dietary CLA 

and arginine would have additive effects on animal performance and meat quality by 

decreasing adiposity and increasing lean mass in growing-finishing pigs.  This study will 

determine the effects of CLA and arginine supplementation on growth performance, 

carcass traits, and meat quality characteristics in growing-finishing pigs.  We will 

establish the relative role of liver, muscle, small intestine, and s.c. and r.p. adipose 

tissues metabolism in contributing to the single and combined effects of arginine and 

CLA on reducing adiposity and modulating gene expression of growing-finishing pigs. 
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MATERIALS AND METHODS 

 

Procedures for this research were approved by the Texas A&M University Institutional 

Animal Care and Use Committee, Office of Research Compliance. 

Animals, experimental diet, and sampling.  Sixteen pigs were purchased from the Texas 

A&M University Animal Science Teaching/Research Center (ASTREC) at 

approximately 80 kg body weight.  Two gilts and two castrated males were randomly 

assigned per group.  Pigs were allotted to four treatments; 2 x 2 factorial design with two 

lipids and two amino acids (Ajinomoto Inc., Tokyo, Japan).  Treatment groups (n = 4) 

were: 1) control (2.05% L-alanine plus 1% canola oil); 2) CLA (2.05% L-alanine plus 1% 

CLA); 3) arginine (1.0% L-arginine plus 1.0% canola oil); and 4) arginine plus CLA (1.0% 

arginine plus 1.0% CLA).  Mixed isomers of CLA were used (Lipid Nutrition G-80; 

triacylglycerol preparation, Clarinol).  Canola oil used as a lipid control, because it is 

food grade and has a similar melting point as the triacylglycerol preparation of CLA.  L-

alanine was used as an iso-nitrogenous control for arginine.  Blood samples were 

obtained by vein puncture with 1 mL syringes and plasma was analyzed for dose 

response of plasma arginine concentrations to dietary level of arginine.  Growing-

finishing pigs tolerate 1% of chronic supplementation of arginine and plasma arginine 

concentrations returned to baseline levels within 4-5 h administration (67).  Pigs were 

allowed to free access to feed and water until they reached a projected weight of 110 kg.  

Pig weight and feed consumption data were collected weekly. 
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When the average pen weight was 110 kg, approximately 12 h after last feeding, 

pigs were transported to the Texas A&M University Rosenthal Meat Science and 

Technology Center for sampling.  Pigs were harvested by standard industry procedures.  

Plasma samples were collected, and portion of blood samples was analyzed for plasma 

amino acid and fatty acid profiles.  Lipoprotein profiles and metabolic syndrome traits, 

including homocysteine, insulin, and triacylglycerol, were analyzed by SpectraCell 

Laboratory (Houston, TX).  Portions of the fresh liver, longissimus muscle, s.c. adipose 

tissue, peritoneal adipose tissue, and small intestine placed immediately in Kreb-

Henseleit buffer (KHB) containing 5 mM glucose (oxygenated and 37°C) and 

transported immediately to the laboratory for lipogenesis in vitro and CO2 production 

measurement.  Other portions were snap frozen in liquid N2 for other experiment, 

including fatty acid composition, cellularity, gene expression, and substrate oxidation.  

Carcass traits and meat quality characteristics.  When the average pen weight was 110 

kg, pigs were harvested by standard industry procedures.  After chilling at 2°C for 24 h, 

the right carcass side was weighed and midline backfat thickness was measured at the 

first rib, 10
th

 rib, last rib, and last lumbar vertebrae.  Carcass length was measured as the 

distance between the bottom of the pubic bone and the bottom of the first rib at the 

dorsal middle.  Loineye area was measured by using plotting paper at the 10
th 

rib.  

Dressing percentage was calculated with the proportion of carcass weight relative to its 

live slaughter weight.  

Longissimus muscle between the 9
th

 and 11
th

 thoracic rib from left carcass side 

was sampled at 45 min for meat quality and sensory evaluation.  Both at 1 h and 24 h, 
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meat temperature and pH were measured in triplicate (IQ150, IQ Scientific Instrument) 

and mat color criteria were measured in triplicate (Chroma meter CR-300, Minolta) after 

exposing the surface to the air for 30 min.  An average of triplicate measurements was 

recorded and results were expressed as C.I.E. L*, a*, b* (L*, lightness; a*, redness-

greenness; b*, yellowness-blueness).  Drip loss was measured by suspending muscle 

samples standardized for surface area in an inflated plastic bag for 48 h at 2°C. 

Lipogenesis and CO2
 
production in vitro.  Two-hour in vitro incubations conducted 

with fresh liver, longissimus dorsi, s.c. adipose tissue, r.p. adipose tissue, and small 

intestine samples (≈ 100 mg) as described previously (68, 69).  Flasks contained 5 mM 

glucose, 0.75 mM palmitate, 10 mM HEPES buffer and 1 μCi [U-
14

C]glucose or 0.5 µCi 

[1-
14

C]palmitic acid in KHB buffer.  Flasks also contained hanging center well with 

fluted filter paper for the measurement of CO2 (Hamby et al., 1986).  Vials were gassed 

for 1 min with 95% O2:5% CO2 and incubated for 2 h in a shaking water bath at 37°C.  

At the end of the incubation period, reactions terminated by addition of 1 mL of 2 N 

H2SO4, and 0.2 mL of 2 N NaOH is injected into the hanging center well.  Flasks were 

shaken for an additional 2 h.  The neutral lipids in tissues were extracted using the Folch 

et al. (70) procedure, evaporated to dryness, resuspended in 10 mL of scintillation 

cocktail, and radioactivity counted with the scintillation counter (Beckman Instruments, 

Palo Alto, CA).  The hanging center wells were transferred to 20 mL scintillation vials, 

and 2 mL of distilled ionized water added. After another 30 min, 10 mL of a commercial 

scintillation fluid added and dpm were counted by scintillation spectrometry. 



 

 

11 

1
1
 

Fatty acid composition.  Lipid was extracted by the modification of Folch method (70).  

Approximately 1.0 g of tissue was homogenized with 5.0 mL of chloroform:methanol 

(2:1, v/v) in a homogenizer (Brinkmann Insruments, Westbury, NY), or approximately 1 

mL of plasma was stoppered with with 5.0 mL of chloroform:methanol.  Total volume 

of homogenate was adjusted to 15 mL by adding chloroform:methanol solution.  After 

sitting in room temperature for 30-60 min, the homogenate was vacuum filtered through 

a sintered glass filter funnel fitted with a Whatman filter (Whatman Ltd., Maidstone, 

England) into a glass test tube containing 8 mL of 0.74% KCl (w/v).  The filtered sample 

was vortexed for 30 sec and centrifuged at 2,000 g for 15 min for separation.  After 

discarding upper aqueous phase, lower phase was evaporated at 60°C with a nitrogen 

flushing evaporator.  Liquid was total extracted lipid and used for fatty acid composition 

and slip point. 

Fatty acids were methylated by the modification of Morrison and Smith method 

(71).  Approximately 100 mg of total lipids extract was taken into another glass tube. 

Lipid was mixed with 1 mL of 0.5 N of KOH in MeOH and heated in water bath at 70°C 

for 10 min.  After cooling in room temperature, 1 mL of 14% BF3 in MeOH (w/v) was 

added to sample, then heated in water bath at 70°C for 30 min and sit in room 

temperature.  Two milliliter of HPLC grade hexane and saturated NaCl solution were 

added and vortexed for 30 sec.  Samples were then centrifuged at 2,000  g for 10 min 

for separation, then transferred to 15 mL glass tube containing anhydrous Na2SO4 to 

remove aqueous molecule.  Total volume of hexane was determined for optimal FAME 

concentrations.  FAME were analyzed by GC-FID (model CP-3800 equipped with a CP-
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8200 auto-sampler, Varian Inc, CA).  Separation of FAME was accomplished on a fused 

silica capillary column (100 m x 0.25 mm ID) (model CP-7420, Varian Inc, CA) with 

the helium as carrier gas (flow rate = 1.7 mL/min).  One microliter of sample was 

injected with the split ratio of 100:1 at 270°C. Oven temperature set up 165°C for 65 

min and increased to 235°C (2°C/min) and held for 15 min.  FID detected the signal at 

270°C.  Standard (GLC 68-D, Nu-chek Prep, MN) was used to identify each peak. 

Plasma amino acids.  Plasma amino acids were analyzed using HPLC.  The HPLC 

apparatus and pre-column derivatization of amino acids with o-phthaldialdehyde were as 

previously described (72).  Amino acids were quantified on the basis of authentic 

standards (Sigma-Aldrich) using the Millemmium workstation (Waters) (72).  

Cellularity.  s.c. adipose tissue and r.p. adipose tissue were collected by immediately 

postmortem from pigs for determination of cellularity by osmium fixation, counting, and 

sizing (69).  Tissue was sliced into sections 1 mm thick and placed in 20 mL scintillation 

vials.  Tissues were rinsed three times with 37°C 0.154 M NaCl at 1 h intervals to 

remove free lipid.  After the last rinse, 0.6 mL of 50 mM collidine-HCl buffer (pH 7.4) 

was added to each sample, followed by 1.0 mL of 3% osmium tetroxide in collidine.  

After incubation for 96 h at 37°C, the osmium solution was removed and the tissue 

rinsed three times with 0.154 M NaCl until clear.  Samples were incubated in 10 mL of 8 

M urea at 25°C for 96 h.  After degradation of connective tissue with urea, tissues were 

rinsed three times with 0.154 M NaCl.  Tissues, resuspended with 0.01% Triton in 0.154 

M NaCl, were used for determination of cell size, volume, and cells/100mg tissue, using 

bright-field microscope (Olympus Vanox ABHS3, Olympus, Tokyo, Japan), CCD Color 
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Video Camera (DXC-960MD, Sony, Japan) 

RNA isolation and qRT-PCR analysis.  Total RNA was isolated from tissue as 

described previously (73) using Tri-reagent (Sigma Chemical Co., St. Louis, MO).  

Approximate 200 mg of tissue was homogenized with 2 mL Tri-reagent.  After sitting at 

room temperature for 5 min, 200 µL chloroform was added and vortexed.  Samples were 

centrifuged (12,000  g for 15 min).  The upper clear layer was transferred into new tube 

and inverted gently with 500 µL isopropanol.  After sitting at 4°C for 5 min, samples 

were centrifuged (12,000  g for 10 min) and dried.  Samples were washed with 70% 

EtOH and dried.  Pellet was dissolved with 20 µL of nuclease-free H2O and stored at -

80°C until further analysis.   

The concentrations and abundance of total RNA was measured with Nanodrop 

(NanoDrop Technologies Inc., Wilmington, DE) and the quality of total RNA was 

determined by 1% agarose gel electrophoresis.  One microgram of RNA was used for 

reverse transcription to produce the first-strand complementary DNA (cDNA) using 

TaqMan Transcription Reagent and MultiScribe reverse transcription (Applied 

Biosystem, Foster City, CA) with the following temperature ramp: 25°C for 10 min, 

37°C for 60 min, and 95.5°C for 5 min.  

Quantitative PCR was used to analyze the quantity of gene expression including 

AMPK, PGC-1, PPAR, FAS, SCD, ACC, mTOR, and CPT-1.  Eukaryotic 18S rRNA 

was used as an endogenous gene expression control.  Measurement of the relative 

quantity of cDNA was performed using TaqMan Universal PCR mixer, Assays-on-

demand Gene Expression Products (Applied Biosystem), and 1 µg of cDNA mixture. 
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Statistical analysis.  Data were analyzed as a 2  2 factorial analysis of variance with 

arginine and CLA as the main effects.  The model tested main effects of arginine and 

CLA, as well as the arginine  CLA interaction.  Means were separated Duncan method 

if their respective F-test indicated significant differences (P < 0.05). 
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RESULTS 

 

Growth performance and carcass traits.  Neither arginine nor CLA dietary 

supplementation affected total gain, total feed intake, average daily gain, average daily 

feed intake, or feed efficiency (feed/gain) in pigs.  Neither arginine nor CLA affected 

slaughter weight, carcass weight, dressing percentage, or carcass quality grade.  Loineye 

area and muscle score were not affected by arginine or CLA.  However, carcass length 

was 2.4% shorter in pigs supplemented with CLA (P = 0.06).  Total fat thickness (9.5% 

greater) and backfat thickness (9.6% greater) tended to be greater in pigs fed arginine (P 

= 0.09 and P = 0.08, respectively).  

Meat quality traits.  Longissimus muscle pH at 45 min postmortem was lower by 0.36 

pH units in pigs supplemented with arginine than in pigs receiving alanine (P = 0.001).  

Muscle color (L*, a*, and b*) at 45 min postmortem was not affected by arginine or 

CLA.  Lightness of muscle at 24 h postmortem tended to be increased by arginine (P = 

0.07) and tended to be decreased by CLA (P = 0.07).  CLA supplementation increased 

intramuscular fat (P = 0.01) and tended to decrease moisture (P = 0.06).  

Fatty acid composition.  Selected fatty acid profiles from liver, longissimus muscle, 

intestinal duodenal mucosal cells, s.c. adipose tissue, and r.p. adipose tissue are indicated.  

Canola added diets had higher concentrations of 18:1 c9, 18:1 c11, 18:2 n6, and 18:3 n3 

and CLA added diets had higher 18:2 c9, t11 and 18:2 t10, c12.  However, there were no 

differences in saturated fatty acids, including 12:0, 14:0, 16:0, 18:0, and 20:0, among 

experimental diets. 



 

 

16 

1
6
 

CLA supplementation increased concentrations of c9, t11 CLA (P = 0.001), t10, 

c12 CLA (P = 0.001), SFA (P = 0.01), and trans-isomers of 18:1 in liver (P = 0.001).  

Arginine increased oleic acid (P = 0.05), MUFA (P = 0.06), and the MUFA:SFA ratio 

(P = 0.06) in liver.  In longissimus muscle, MUFA, SFA, and the MUFA:SFA ratio were 

not affected by CLA or arginine.  Trans-isomers of 18:1 (P = 0.001, palmitoleic acid, 

and myristoleic acid were greater in pigs supplemented with CLA in the absence or 

presence of arginine (all P = 0.001) in longissimus muscle.  The concentrations of oleic 

acid was decreased (P = 0.005) and the concentrations of c9, t11 CLA (P = 0.001) and 

t10, c12 CLA (P = 0.001) were increased in longissimus muscle in pigs fed CLA.  CLA 

supplementation increased the concentrations of trans-isomers of 18:1 (P = 0.001), c9, 

t11 CLA (P = 0.001), and t10, c12 CLA (P = 0.001), and decreased the MUFA:SFA 

ratio in intestinal duodenal mucosal cells.  Neither CLA nor arginine affected stearic 

acid, oleic acid, MUFA, or SFA in intestinal duodenal mucosal cell in pigs.   

CLA supplementation increased the concentrations of trans-isomers of 18:1 (P = 

0.001), c9, t11 CLA (P = 0.003), t10, c12 CLA (P = 0.003), and SFA (P = 0.01) and 

decreased oleic acid (P = 0.001), MUFA (P = 0.001), and the MUFA:SFA ratio (P = 

0.001) in r.p. adipose tissue.  Arginine did not affect any s.c. adipose tissue fatty acids.  

CLA supplementation significantly increased myristic acid, palmitoleic acid, stearic acid, 

trans-isomers of 18:1, and CLA (all P = 0.001) in s.c. adipose tissue.  Oleic acid (P = 

0.001), -linolenic acid (P = 0.001), arachidonic acid (P = 0.001), and MUFA (P = 

0.001) were reduced in s.c. adipose tissue in pigs fed CLA in the absence or presence of 

arginine.   
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No fatty acids were affected by arginine in plasma.  CLA treatment increased the 

concentrations of myristic acid (P = 0.02), c9, t11 CLA (P = 0.02), and t10, c12 CLA (P 

= 0.02) in plasma.  SFA tended to be increased (P = 0.07) and oleic acid tended to be 

depressed (P = 0.06) by CLA in plasma. 

Incorporation of glucose and palmitate into CO2 or lipid in vitro.  The oxidation of 

glucose to CO2 was approximately 10-fold higher than the rate of palmitate oxidation in 

liver.  The rate of palmitate incorporation into total lipids was approximately 20-fold 

higher than lipid synthesis from glucose in liver.  Neither CLA nor arginine affected CO2 

production from glucose or palmitate in liver.  CLA tended to reduce hepatic lipid 

synthesis from glucose (P = 0.10).  The rate of palmitate incorporation was greater in 

pigs supplemented with arginine than that of alanine-fed pigs (P = 0.02).   

The oxidation of glucose was approximately 10-fold greater than the rate of 

palmitate oxidation in longissimus muscle.  The oxidation rates from glucose or 

palmitate were not affect by CLA or arginine in longissimus muscle.  Palmitate was 

more dominantly used for lipid synthesis than glucose in longissimus muscle.  CLA 

supplementation in the absence of arginine increased palmitate incorporation into total 

lipids in longissimus muscle (P = 0.01).  CO2 production from glucose was 

approximately 10-fold greater than that from palmate and was affected by neither CLA 

nor arginine in intestinal duodenal mucosal cells.  The oxidation of palmitate to CO2 

tended to be greater in pigs fed CLA than in pigs fed arginine (P = 0.07).   

Glucose oxidation to CO2 in r.p. adipose tissue was approximately 15-fold higher 

than palmitate oxidation to CO2 and was greater in pigs supplemented with CLA in the 
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absence or presence of arginine (P = 0.03).  Arginine did not affect CO2 production from 

glucose or palmitate in r.p. adipose tissue.  Neither CLA nor arginine affected lipid 

synthesis from glucose or palmitate in r.p. adipose tissue.  CLA, arginine, and CLA plus 

arginine increased the volume of adipocytes (P = 0.001).  Glucose oxidation to CO2 in 

s.c. adipose tissue was approximately 15-fold higher than palmitate oxidation to CO2 and 

was greater in pigs supplemented with CLA than canola-treated pigs (P = 0.04).  

Arginine did not affect the oxidation of glucose or palmitate to CO2 in s.c. adipose tissue.  

Arginine increased glucose incorporation into total lipids in s.c. adipose tissue (P = 0.06).  

Lipid synthesis from glucose or palmitate was not affected by CLA treatment.  The 

volume of s.c. adipocytes was greater in pigs supplemented CLA, arginine, or CLA plus 

arginine than that of control pigs (P = 0.001).  

Expression of genes related to substrate oxidation and lipid synthesis.  Neither CLA 

nor arginine affected gene expression, including PGC-1, AMPK, mTOR, CPT-1A, 

FAS, and SCD, in liver.  In longissimus muscle, both CLA and arginine supplementation 

increased PGC-1 mRNA level but the effect was not detected when pigs were 

supplemented the combination of CLA plus arginine (P = 0.07).  AMPK, mTOR, CPT-

1B, FAS, and SCD were not affected by CLA or arginine in longissimus muscle.   

Arginine did not affect gene expression in intestinal duodenal mucosal cells.  

CLA supplementation tended to depress lipogenic expression of FAS (P = 0.07) and 

SCD (P = 0.07) in intestinal duodenal mucosal cells.  In intestinal duodenal mucosal 

cells, AMPK mRNA tended to be reduced by CLA supplementation (P = 0.10) and 
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mTOR mRNA was less (P = 0.04) in pigs fed CLA.  Arginine had no effects on gene 

expression in intestinal duodenal mucosal cells.   

Neither CLA nor arginine affected mRNA levels, including PGC-1, AMPK, 

mTOR, CPT-1B, FAS, and SCD, in r.p. or s.c. adipose tissues. 

Metabolic syndrome straits and lipoprotein profiles in plasma.  Plasma insulin was 

significantly reduced in pigs supplemented with CLA, compared to canola-fed pigs (P = 

0.05).  Homocysteine concentrations tended to be increased by arginine supplementation 

(P = 0.07), but there was no interaction with CLA.  The concentrations of VLDL, LDL, 

and HDL were not affected by CLA or arginine.  Arginine supplementation tended to 

increase the concentrations of intermediate lipoproteins (P = 0.07) and remnant 

lipoproteins (P = 0.07) in plasma. 

Plasma amino acid profiles.  Neither CLA nor arginine affected the concentrations of 

most essential amino acids, including histidine, isoleusine, leusine, lysine, methionine, 

threonine, tryptophan, and valine.  CLA tended to increase the concentrations of 

phenylananine (P = 0.06).  There were no significant differences in the concentrations of 

nonessential amino acids except serine, which tended to increase in pigs supplemented 

with CLA compared with the other treatment groups (P = 0.06).    
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DISCUSSION 

 

Neither arginine nor CLA supplementation for 4 wk affected growth performance in the 

current study.  Similarly, 0.5 and 1.0% of arginine supplementation from 60 kg to 110 kg 

finishing weight did not affect weight gain or feed intake (50).  Body weight also was 

not affected by 1% of dietary arginine supplementation in pregnant gilts (51).  However, 

other investigators have demonstrated that arginine supplementation to neonatal pigs 

enhanced growth performance.  Average daily weight gain by d 28 and body weight by d 

15 were greater in milk-fed piglets received 0.2 and 0.5% arginine than in control piglets 

(53).  Similarly, weight gains were increased in piglets fed 0.2% and 0.4% of arginine 

supplementation to 7 to 21 d (52).  Furthermore, CLA or arginine supplementation to 

pigs could increase lean mass by depression of protein turnover via stimulation of 

mTOR signaling pathway in skeletal muscle.  CLA increased mTOR signaling activity 

in human preadipocytes (44), and dietary arginine supplementation increased mTOR 

signaling of muscle in neonatal pigs (57).  Oral administration of N-carbamylglutamate, 

an analogue of endogenous N-acetylglutamate (an activator of arginine synthesis), for 7 

d increased weight gain an the rate of protein synthesis in skeletal muscle in piglets (56).  

However, there was no significant difference in mTOR levels in different tissues in this 

study.  Therefore, longer-term administration, higher doses of arginine, or treatment of 

piglets may be necessary in finishing-growing pigs to enhance animal performance or 

protein synthesis. 
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Dietary 2% CLA supplementation to pigs ranging in weight from 23.5 – 110 kg 

had no effect on daily weight gain, feed intake, or feed efficiency in pigs (54).  Dietary 

0.75% CLA supplementation to growing-finishing pigs did not affect average daily gain 

(55).  However, we previously demonstrated that weight gain, feed intake, and feed 

efficiency was greater in rats supplemented with 1% CLA (34).  These results indicate 

that there may be species differences in CLA effects on growth performance between 

rats and pigs.  

Contrary to previous results with rats receiving 10 wk arginine supplementation, 

neither arginine nor CLA decreased s.c. fat mass.  Drinking 1.51% arginine for 10 wk 

reduced the weight of r.p. and epididymal adipose tissue in Zucker diabetic fatty (ZDF) 

rats (49).  Arginine supplementation increased expression of genes centrally responsible 

for substrate oxidation, including PGC-1 and AMPK.  Moreover, arginine increased 

lipolysis in rat adipose tissue and inhibited lipogenesis in liver and adipose tissue (33).  

A recent reported that total carcass fat decreased in pigs fed arginine for 2 mo, but 

arginine had no effect on average backfat thickness or carcass length (58).  Thus, a lack 

of evidence in the current study for a fat-reducing effect of arginine in the presence of 

canola oil or CLA was unusual in light of previous reports.  However, we previously 

demonstrated that four week dietary arginine supplementation did not affect epididymal 

fat mass in young rats (34).  

The statistical lack of effect of arginine in adiposity may have been related to the 

use of canola oil as a lipid control.  However, earlier studies demonstrated that average 

fat thickness and marbling score were not affected by 10 or 20% canola oil 
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supplementation in pigs (74).  Similarly, dietary supplementation of canola oil up to 10% 

had no effect on backfat thickness in growing-finishing pigs (75).  Supplementation of 2% 

CLA to pigs from 23.5 kg to 110 kg decreased backfat thickness by 11% (54).  Similarly, 

backfat depth decreased in pigs fed 0.75% CLA supplementation from 28 kg to 115 kg 

of weight without affecting loineye area (55).  Our laboratory previously reported that 

r.p. adipose tissue:body weight ratio was less in rats fed 1% dietary CLA 

supplementation (34).  However, we also demonstrated that feeding CLA for 35 d to 

postweanling piglets did not affect the mass of adipose tissue (76).  These indicate that 

longer-term treatment with CLA may be necessary for reducing fat mass and that there 

are species differences between rats and pigs.  Thus, feeding 1% of arginine or CLA 

supplementation to pigs 80 kg to 110 kg of weight may not be practical for reducing fat 

mass in finishing-growing pigs.  Earlier initiation of treatment and a longer period of 

supplementation may be required for arginine to exert its effect on reducing white fat in 

growing-finishing pigs. 

The rate of pH decline and ultimate pH in muscle are highly related to drip loss 

and meat color parameters (60, 61).  Early postmortem muscle pH is an indicator of the 

rate of postmortem metabolism and the degree of protein denaturation (59).  As pH 

declines, drip loss and lightness increases (62).  Other investigators have demonstrated 

that CLA supplementation to pigs slightly increased or had no change in pH (54, 55, 63-

65).  Dietary 0.5% CLA supplementation increased muscle pH and glycogen 

concentrations and tended to lower lactate content (66).  In the current study, pH at 45 

min postmortem was lower, although ultimate pH was not affected in pigs supplemented 
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with arginine.  Arginine supplementation tended to increase the lightness of muscle at 24 

h postmortem.  Dietary arginine supplementation to ZDF rats increased AMPK gene 

expression (49).  AMPK activation indirectly increases glycolysis via activating 

glycogen phosphorylase (promoting glycogenolysis) and 2-phosphofructokinase, thus 

AMPK may be potent modulator of postmortem glycolysis.  Lower early postmortem pH 

in pigs supplemented with arginine may be explained by AMPK activation by arginine.  

Therefore, arginine supplementation with canola oil or CLA could enhance glycolysis 

and lactate content in meat, which is deteriorative to pork meat quality. 

Our results demonstrated that dietary CLA supplementation increased 

intramuscular fat and tended to decrease water content.  Previously, investigators 

demonstrated that 2% CLA supplementation increased marbling scores and 

intramuscular fat in finishing-growing pigs (63), and 5% CLA supplementation 

increased intramuscular fat in the loin of pigs (65).  Intramuscular fat content in 

longissimus muscle is highly related to consumer perception meat quality aspects.  As 

intramuscular fat content increases in pork loin up to 3.25%, the perception of texture 

and taste increases (77).  In the current study, arginine increased lightness of meat but 

did not affect the concentrations of intramuscular fat.  Lack of effect on intramuscular fat 

by arginine is unusual in light of previous reports.  Dietary 1% arginine supplementation 

to finishing pigs for 2 mo in the absence of canola oil or CLA increased intramuscular 

fat and antioxidative capacity via total antioxidant capacity and glutathione peroxidase 

(50).  Similarly, lipid content in longissimus muscle increased in pigs supplemented with 

1% arginine (58).  Thus, increased lightness by arginine up to 50 and intramuscular fat 
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content by CLA up to 3.25% would not cause adverse effects in pork meat quality.  

Intramuscular fat could increase lightness of meat.  However, in this study, there is lack 

of evidence that CLA or arginine, singly or in combination, increased lightness via 

increasing intramuscular fat content.  

In the current study, fatty acid profiles differed between treatments in a manner 

that was consistent with differences in dietary lipid composition.  CLA-added diets 

increased CLA isomers and decreased oleic acid, linoleic acid, and -linolenic acid 

compared to canola-added diets.  There were no differences in the concentrations of 

saturated fatty acids, including palmitic acid and stearic acid.  However, dietary CLA 

supplementation increased the total saturated fatty acids liver, in s.c. adipose tissue, and 

r.p. adipose tissue.  This effect can be explained by depressed 
9
-desaturase by CLA and 

degradation of CLA to 18:1 trans-isomers.  Stearoyl-CoA desaturase enzyme activity 

and gene expression decreased dose-dependently by CLA treatment in 3T3-L1 

adipocytes (78).  We previously demonstrated that dietary CLA supplementation to pigs 

reduced stearoyl-CoA desaturase enzyme activity  and the 
9
-desaturase index in s.c. 

adipose tissue (36).  Unlike our previous results that CLA supplementation did not affect 

saturated fatty acids in liver in rats (34), CLA supplementation enhanced hepatic 

saturated fatty acids in liver in growing-finishing pigs.  Furthermore, dietary CLA 

supplementation increased 18:1 trans-isomers across tissues, including liver, longissimus 

muscle, intestinal duodenal mucosal cell, s.c. adipose tissue, and r.p. adipose tissue.  

This suggests that dietary CLA can be metabolized to 18:1 trans-isomers, including 18:1 

t10 and 18:1 t11, in these tissues.   
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In s.c. adipose tissue, increased concentrations of saturated fatty acids can cause 

firmer bellies, fewer problems with sausage making, bacon slicing, and lipid oxidation.  

Thiobarbituric acid-reactive substance value was lower (55, 65) and belly firmness 

increased (64) in pigs fed CLA.  

There was a lack of effect of arginine or an interaction between CLA and 

arginine on fatty acid profiles among the tissues sampled.  Similarly, we previously 

demonstrated that arginine did not affect fatty acid composition in epididymal adipose 

tissue and plasma fatty acids in young rats (34). Thus, arginine supplementation for 4 wk 

has little or no effect on modulating fatty acid composition of liver, plasma, and 

peripheral tissues. 

Unlike previous results (46, 79), there was the lack of effect of CLA or arginine 

on glucose or palmitate oxidation to CO2 in liver and longissimus muscle, which is 

consistent with our previous study that neither CLA nor arginine affected hepatic 

substrate oxidation in rats (34).  Also, neither CLA nor arginine supplementation 

modulated mRNA levels of related genes, including PGC-1, AMPK, CPT-1A, and 

CPT-1B.  However, CO2 production in intestinal duodenal mucosal cells increased by 

101% in pigs supplemented with CLA, despite a lack of changes in gene expression.  

Likewise, dietary CLA supplementation, with or without arginine, increased energy 

utilization from glucose in s.c. and r.p. adipose tissue despite changes in mRNA levels. 

It is well known that there are dominant species differences in major lipogenic 

sites; liver for mouse and rats, and adipose tissue for pigs.  The results obtained in this 

study indicate that CLA or arginine supplementation enhanced hepatic lipogenesis from 
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palmitate.  Likewise, other investigators demonstrated that CLA supplementation to 

mice enhanced triacylglycerol accumulation and steatosis in liver, via increasing 

mitochondrial citrate carrier activity and cytosolic lipogenic enzymes (80).  Thus, 

despite lack of evidence of genes expression, including SCD and FAS, the data suggest 

that CLA or arginine, known for lipodystrophy, could inhibit lipid uptake by adipose 

tissues, which either could lead to the hepatic accumulation of dietary fat, or depress 

substrate oxidation in liver. 

CLA supplementation also enhanced lipogenesis from palmitate in longissimus 

muscle by 109%, which is consistent with increased intramuscular fat by CLA singly or 

in combination with arginine.  However, there was no significant change in gene 

expression in muscle, including FAS and SCD.  Therefore, we demonstrated that CLA 

or arginine supplementation for 4 wk to pigs may increase hepatic lipogenesis from 

palmitate and CLA supplementation to pigs may enhance the lipid synthesis in 

longissimus muscle. 

Other investigators demonstrated that CLA treatment reduced body fat mass in 

different models, including human (15), mice (81), rat (34), and pigs (54, 55).  CLA 

supplementation decreased the size of 3T3-L1 preadipocytes (82) and rat adipocytes (45).  

However, in current study, CLA supplementation, singly or in combination with arginine, 

did not depress lipid synthesis in r.p. adipose tissue.  Unlike a previous study in which 

arginine supplementation to young rats reduced lipid synthesis in epididymal adipose 

tissue without affecting adiposity (34), lipogenesis and related gene expression were not 
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affected, but adipocytes were enlarged in r.p. adipose tissue by CLA or arginine 

supplementation. 

In s.c. adipose tissue, CLA treatment, singly or with arginine, increased 

adipocyte volume without modulating mRNA levels of related genes.  We previously 

reported similar results that mixed isomers of CLA supplementation to 3T3-L1 

preadipocytes promoted lipid filling via de novo lipogenesis from glucose, which may 

lead to accumulation of fat in growing animals (83).  Similarly, CLA supplementation to 

rats increased lipogenesis in adipose tissue (84).  Likewise, lipogenesis from glucose in 

s.c. adipose tissue tended to increase in pigs fed arginine singly without change in 

related genes expression.  However, we previously demonstrated that arginine 

supplementation decreased lipid synthesis from palmitate in rat epididymal adipose 

tissue (34).  We concluded that, relative to control pigs fed a canola-enriched diet, 

arginine promoted adipogenesis and adiposity.  
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CONCLUSIONS 

 

Neither arginine nor CLA supplementation affected growth performance, including 

weight gain and feed efficiency.  There were no significant differences in mTOR levels 

in the tissues examined in this study.  Neither arginine nor CLA decreased s.c. or r.p. fat 

mass in growing-finishing pigs.  The lack of effect of arginine in reducing adiposity may 

have been related to the use of canola oil as a lipid control.  Therefore, longer-term 

administration, higher doses of arginine, or treatment of piglets may be necessary in 

finishing-growing pigs to enhance animal performance, protein synthesis, or reducing 

adiposity. 

In the current study, CLA supplementation increased intramuscular fat, which 

may increase consumer perception.  pH at 45 min postmortem was lower in pigs 

supplemented with arginine, although ultimate pH was not affected.  Arginine 

supplementation tended to increase the lightness of muscle at 24 h postmortem.  

Therefore, arginine supplementation with canola oil or CLA could enhance glycolysis or 

lactate content via activating AMPK, which is deteriorative to pork meat quality. 

Fatty acid profiles differed between treatments in a manner that was consistent 

with differences in dietary lipid composition.  CLA-added diets increased CLA isomers 

and decreased oleic acid, linoleic acid, and -linolenic acid compared to canola-added 

diets.  Even though there were no differences in the concentrations of dietary saturated 

fatty acids, including palmitic acid and stearic acid, dietary CLA supplementation 

increased the total saturated fatty acids in liver, s.c. and r.p. adipose tissues.  This effect 
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can be explained by depressed 
9
-desaturase by CLA or degradation of CLA to 18:1 

trans-isomers.   

CLA supplementation enhanced hepatic saturated fatty acids in liver.  Dietary 

CLA supplementation increased 18:1 trans-isomers across tissues, including liver, 

longissimus muscle, intestinal duodenal mucosal cell, s.c. adipose tissue, and r.p. adipose 

tissue.  This suggests that dietary CLA can be metabolized to 18:1 trans-isomers, 

including 18:1 t10 and 18:1 t11, in these tissues.  In s.c. adipose tissue, increased 

concentrations of saturated fatty acids can cause firmer bellies, fewer problems with 

sausage making, bacon slicing, and lipid oxidation.   

There was the lack of effect of CLA or arginine on glucose or palmitate 

oxidation to CO2 in liver and longissimus muscle.  Also, neither CLA nor arginine 

supplementation modulated mRNA levels of related genes, including PGC-1, AMPK, 

and CPT-1A or CPT-1B.  However, CO2 production in intestinal duodenal mucosal cells 

increased in pigs supplemented with CLA, despite a lack of changes in gene expression.  

Likewise, dietary CLA supplementation, with or without arginine, increased energy 

utilization from glucose in s.c. and r.p. adipose tissue despite changes in mRNA levels. 

CLA or arginine supplementation to pigs may increase hepatic lipogenesis from 

palmitate and CLA supplementation to pigs may enhance the lipid synthesis in 

longissimus muscle.  In s.c. adipose tissue, CLA supplemetation increased adipocyte 

volume without modulating mRNA levels of related genes.  Our results indicate that 

both dietary CLA or arginine supplementation to pigs affects lipogenesis in different 

manner depend on tissues.  In adipose tissues, CLA or arginine supplementation to pigs 
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significantly increased adiposity even though CLA supplementation increased substrate 

utilization.  And there was little evidence of interaction between CLA and arginine.  

In conclusion, our novel hypothesis, that 1% of CLA and arginine would have 

synergetic effects on improving growth performance and meat quality by reducing 

adiposity and increasing substrates utilization, proved to be incorrect, in that 1) there was 

little evidence in reducing adiposity, substrate oxidation, and related gene expression; 2) 

arginine with canola or CLA accelerated pH drop in meat quality characteristics and 

increased backfat; and 3) CLA and arginine worked independently.  Longer-term 

administration of arginine or treatment of younger pigs (e.g. 40 kg body weight) may be 

necessary to enhance animal performance, protein synthesis, or reducing adiposity in 

growing-finishing pigs.  However, we demonstrate consistent effects of CLA that 1) 

CLA increased intramuscular fat content in longissimus muscle for consumer perception; 

2) CLA increased the capacity of bacon processing via increasing saturated fatty acids; 3) 

CLA increased substrate oxidation in adipose tissues; and 4) CLA decreased the 

concentrations of insulin in plasma.    
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APPENDIX 

 

TABLE 1 Calculated nutrient content of the basal diet
1-3 

Item Amount 

Crude protein, % 13.99 

Crude fat, % 3.04 

Crude fiber, % 3.73 

Metabolizable energy, Mcal/kg 3.08 

Calcium, % 0.65 

Phosphorus, % 0.55 

Lysine, % 0.60 

Methionine + Cysteine, % 0.41 

Tryptophan, % 0.14 

Threonine, % 0.45 

Arginine, % 0.82 
1
Commercial diet prepared by Producers Cooperation Association, Bryan, TX., closed formula 

but diet ingredients were sorghum, wheat middlings, meat and bone meal, soybean meal, salt, 

limestone, dicalcium phosphate, trace mineral premix, vitamin premix, and lysine-HCl. 
2
As fed basis 

3
Vitamin and trace minerals content of diet exceeded requirements established by the National 

Research Council (1998). 
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TABLE 2 Composition of experimental diet 

 Treatment 

Item, % Control CLA Arg CLA + Arg 

Basal diet 96.95 96.95 98.00 98.00 

Canola oil 1.00 - 1.00 - 

CLA - 1.00 - 1.00 

Alanine 2.05 2.05 - - 

Arginine - - 1.00 1.00 

Total 100 100 100 100 



 

 

46 

4
6
 

TABLE 3 Fatty acid profiles of test diets (g/100g total lipids) 

 Treatment
1
 

Fatty acid Control CLA Arg CLA + Arg 

C12:0 nd
3
 nd nd nd 

C14:0 0.1 0.1 0.1 0.1 

C14:1 n5 nd nd nd nd 

C16:0 12.3 12.5 12.3 12.4 

C16:1 n7 0.3 0.3 0.3 0.3 

C18:0 1.9 2.0 2.0 2.0 

C18:1 trans
2
 nd nd nd nd 

C18:1 c9 33.7 23.7 33.9 23.3 

C18:1 c11 1.7 1.2 1.7 1.2 

C18:2 n6 43.2 39.5 43.7 39.5 

C18:2 c9, t11 0.0 7.5 0.0 7.7 

C18:2 t10, c12 0.0 7.6 0.0 7.8 

C18:3 n3 3.9 2.3 3.9 2.4 

C20:0 0.3 0.3 0.3 0.2 

C20:1 n11 0.5 0.5 0.6 0.5 

C20:4 n6 nd nd nd nd 

C20:5 n3 nd nd nd nd 

C22:6 n3 nd nd nd nd 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% 

canola oil + 1% arginine, and CLA + arginine = 1% CLA + 1% arginine. 
2
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

3
nd = not detectable. 
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TABLE 4 Amino acid profiles of test diets
1-3

 

  Treatment
1
 

Amino acid, % Control CLA Arg CLA + Arg 

Alanine 2.85 2.88 0.82 0.84 

Arginine 0.85 0.84 1.86 1.89 

Asparagine 0.45 0.44 0.42 0.44 

Aspartate 0.61 0.59 0.60 0.61 

Cysteine 0.27 0.28 0.27 0.26 

Glutamate 1.18 1.19 1.15 1.17 

Glutamine 1.37 1.33 1.35 1.31 

Glycine 0.61 0.60 0.59 0.58 

Histidine 0.37 0.36 0.35 0.36 

Isoleucine 0.61 0.60 0.60 0.61 

Leucine 1.31 1.28 1.27 1.24 

Lysine 0.76 0.75 0.75 0.74 

Methionine 0.30 0.29 0.28 0.30 

Phenylalanine 0.72 0.70 0.69 0.71 

Proline 1.16 1.12 1.20 1.15 

Serine 0.62 0.60 0.59 0.58 

Threonine 0.53 0.51 0.52 0.51 

Tryptophan 0.15 0.14 0.15 0.15 

Tyrosine 0.51 0.48 0.49 0.50 

Valine 0.76 0.74 0.74 0.75 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% 

canola oil + 1% arginine, and CLA + arginine = 1% CLA + 1% arginine. 
2
As-fed basis 

3
Molecular weights of intact amino acids were used for calculation of amino acids in diet. 
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TABLE 5 Growth performance of pigs fed CLA, arginine, or arginine plus CLA 

 Treatment
1
  P-value 

Item Control CLA Arg CLA + Arg SEM AA FA AA  FA
2
 

Total gain, kg 43 39 44 45 3.81 0.37 0.73 0.68 

Total feed, kg 184 188 185 184 4.56 0.80 0.69 0.91 

Average daily gain, kg/d 0.78 0.70 0.79 0.82 0.07 0.38 0.74 0.69 

Average daily feed, kg/d 2.88 2.95 2.90 2.89 0.07 0.79 0.68 0.91 

Feed efficiency
3
 3.77 4.23 3.74 3.55 0.27 0.27 0.65 0.45 

1
Treatments: Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% 

arginine, and CLA + arginine = 1% CLA + 1% arginine. 
2
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

3
Feed efficiency = feed:gain. 
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TABLE 6 Carcass traits of pigs fed CLA, arginine, or CLA plus arginine 

  Treatment
1
  P-value 

Item Control CLA Arg CLA + Arg SEM AA FA AA  FA
2
 

Slaughter weight, kg 111 105 109 110 4.02 0.69 0.65 0.76 

Carcass         

Hot weight, kg 85.0 80.0 83.6 86.5 3.63 0.49 0.78 0.63 

Length, cm 82.7 80.0 81.5 80.6 0.87 0.72 0.06 0.19 

Dressing, % 76.8 76.0 76.8 78.3 0.76 0.16 0.65 0.22 

Grade 1.30 1.00 1.30 1.35 0.17 0.32 0.48 0.48 

Fat thickness, cm         

Backfat thickness 2.49 2.50 2.74 2.78 0.15 0.08 0.83 0.38 

First rib 3.62 3.75 4.06 4.19 0.23 0.07 0.58 0.32 

Last rib 2.03 1.91 2.10 2.16 0.16 0.32 0.84 0.71 

Last lumbar 1.84 1.91 2.10 2.03 0.17 0.28 1.00 0.73 

Total 7.49 7.56 8.26 8.38 0.44 0.09 0.83 0.39 

Muscle score 2.00 2.00 2.00 2.00 - - - - 

Loineye area, cm
2
 38.7 35.5 38.2 41.0 2.82 0.39 0.93 0.60 

1
Treatments: Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% 

arginine, and CLA + arginine = 1% CLA + 1% arginine. 
2
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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TABLE 7 Meat quality characteristics of pigs fed CLA, arginine, or CLA plus arginine 

 Treatment
1
  P-value 

 Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

45 min postmortem         

pH 5.94
a
 6.00

a
 5.59

b
 5.64

b
 0.08 0.001 0.46 0.001 

L*
4
 42.7 45.0 46.0 45.3 1.80 0.33 0.67 0.60 

a*
5
 6.89 8.58 8.66 8.30 0.82 0.37 0.42 0.39 

b*
6
 1.80 3.05 2.79 2.76 0.61 0.57 0.32 0.49 

24 h postmortem         

pH 5.65 5.64 5.68 5.63 0.03 0.80 0.20 0.43 

L* 48.6
ab

 46.8
b
 52.2

a
 48.7

ab
 1.50 0.06 0.07 0.08 

a* 8.24 9.01 10.14 8.83 0.73 0.25 0.72 0.33 

b* 3.98 4.09 5.07 4.70 0.67 0.21 0.85 0.63 

Bag drip loss, % 5.71 5.12 6.27 6.10 2.29 0.73 0.87 0.98 

Moisture, % 74.1
a
 72.7

b
 73.6

a
 73.8

a
 0.25 0.25 0.06 0.003 

Intramuscular fat, % 2.30
b
 3.17

a
 2.02

b
 2.55

ab
 0.26 0.10 0.01 0.03 

a-b
Means in rows not bearing a common superscript differ, P < 0.10. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
L* = lightness 

5
a* = redness 

6
b* = yellowness
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TABLE 8 Fatty acid composition of liver from pigs fed diets containing CLA, arginine, CLA plus arginine  

(g/100g total lipids) 

  Treatment
1
  P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 0.21
b
 0.43

a
 0.46

a
 0.56

a
 0.08 0.02 0.04 0.02 

C16:0 12.1
b
 15.7

a
 15.6

a
 15.2

a
 0.50 0.03 0.01 0.001 

C16:1 n7 0.51 0.72 0.91 0.82 0.11 0.04 0.57 0.10 

C18:0 23.0 23.2 21.3 21.6 1.00 0.11 0.83 0.46 

C18:1 trans
4
 0.37

b
 0.88

a
 0.36

b
 0.88

a
 0.05 0.91 0.001 0.001 

C18:1 c9 14.5 14.0 18.3 16.0 1.35 0.05 0.31 0.16 

C18:1 c11 1.63 1.50 1.69 1.59 0.11 0.51 0.31 0.70 

C18:2 n6 10.0
b
 14.3

a
 14.2

a
 14.9

a
 0.89 0.02 0.01 0.002 

C18:2 c9, t11 0.05
b
 1.17

a
 0.11

b
 1.23

a
 0.11 0.57 0.001 0.001 

C18:2 t10, c12 nd 0.30
a
 0.01

b
 0.30

a
 0.04 0.86 0.001 0.001 

C18:3 n3 0.27
b
 0.26

b
 0.50

a
 0.39

ab
 0.05 0.001 0.19 0.005 

C20:4 n6 21.3
a
 15.7

b
 15.3

b
 15.0

b
 1.14 0.01 0.02 0.001 

C20:5 n3 0.57
a
 0.38

bc
 0.49

ab
 0.34

c
 0.04 0.18 0.001 0.001 

C22:6 n3 2.07
a
 1.09

b
 1.03

b
 1.25

b
 0.20 0.08 0.10 0.004 

MUFA 17.2 17.8 21.4 19.9 1.58 0.06 0.80 0.25 

SFA 38.2
b
 42.5

a
 39.6

b
 40.2

ab
 0.86 0.62 0.01 0.01 

MUFA:SFA
5
 0.45 0.42 0.55 0.51 0.05 0.06 0.56 0.30 

a-c
Means in rows not bearing a common superscript differ, P < 0.05. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable.
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TABLE 9 Fatty acid composition of longissimus muscle from pigs fed diets containing CLA, arginine,  

or CLA plus arginine (g/100g total lipids) 

  Treatment
1
   P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 1.47 1.51 1.30 1.35 0.22 0.45 0.82 0.89 

C14:1 n5 0.02
c
 0.05

a
 0.02

bc
 0.03

b
 0.004 0.14 0.001 0.001 

C16:0 24.8 24.9 24.0 25.0 1.34 0.78 0.67 0.94 

C16:1 n7 2.95
c
 5.04

a
 3.41

c
 4.24

b
 0.26 0.55 0.001 0.001 

C18:0 11.3 10.9 10.5 11.6 0.39 0.99 0.42 0.24 

C18:1 trans
4
 0.20

b
 0.35

a
 0.15

b
 0.35

a
 0.03 0.38 0.001 0.001 

C18:1 c9 41.3
a
 36.1

b
 39.8

ab
 37.2

b
 1.26 0.87 0.005 0.03 

C18:1 c11 3.83 4.59 4.22 4.28 0.29 0.90 0.18 0.35 

C18:2 n6 7.42 8.15 7.92 8.45 0.69 0.56 0.36 0.75 

C18:2 c9, t11 0.03
b
 0.51

a
 0.05

b
 0.46

a
 0.06 0.83 0.001 0.001 

C18:2 t10, c12 nd
6
 0.18 nd 0.17 0.03 0.87 0.001 0.001 

C18:3 n3 0.37
a
 0.26

b
 0.30

b
 0.29

b
 0.02 0.34 0.03 0.03 

C20:4 n6 1.35 1.80 2.25 1.54 0.30 0.32 0.69 0.20 

C20:5 n3 0.04 0.05 0.07 0.04 0.01 0.26 0.36 0.16 

C22:6 n3 0.05 0.06 0.07 0.06 0.01 0.38 0.64 0.51 

MUFA 49.0 47.1 48.3 47.0 1.61 0.80 0.30 0.76 

SFA 38.5 38.4 36.7 39.0 1.71 0.73 0.54 0.80 

MUFA:SFA
5
 1.32 1.24 1.35 1.22 0.09 0.94 0.23 0.67 

a-c
Means in rows not bearing a common superscript differ, P < 0.05. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable. 
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TABLE 10 Fatty acid composition of intestinal duodenal mucosal cells from pigs fed diets containing CLA, arginine,  

or CLA plus arginine (g/100g total lipids) 

  Treatment
1
   P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 0.63 0.90 0.69 0.81 0.12 0.91 0.11 0.41 

C14:1 n5 0.01 0.02 0.01 0.01 0.01 0.39 0.32 0.63 

C16:0 21.5 24.1 21.9 22.8 1.15 0.69 0.12 0.38 

C16:1 n7 1.38 1.29 1.19 1.21 0.14 0.31 0.80 0.73 

C18:0 15.7 18.8 17.7 17.7 0.98 0.63 0.13 0.15 

C18:1 trans
4
 0.29

b
 0.63

a
 0.29

b
 0.72

a
 0.08 0.58 0.001 0.001 

C18:1 c9 25.0 24.1 26.4 21.3 1.95 0.72 0.12 0.28 

C18:1 c11 2.81
a
 2.23

b
 2.61

a
 2.11

b
 0.11 0.15 0.00 0.001 

C18:2 n6 12.3 10.4 9.85 12.0 1.52 0.79 0.93 0.59 

C18:2 c9, t11 0.01
b
 0.66

a
 0.04

b
 0.75

a
 0.09 0.50 0.001 0.001 

C18:2 t10, c12 nd
6
 0.24 nd 0.26 0.06 0.78 0.001 0.001 

C18:3 n3 0.47
a
 0.27

b
 0.33

b
 0.25

b
 0.04 0.06 0.001 0.001 

C20:4 n6 7.03 5.10 6.69 7.30 1.04 0.37 0.52 0.44 

C20:5 n3 0.10 0.05 0.10 0.07 0.02 0.51 0.03 0.13 

C22:6 n3 0.28
a
 0.16

b
 0.18

b
 0.25

ab
 0.03 0.80 0.47 0.04 

MUFA 29.9 28.9 31.0 25.9 2.04 0.62 0.13 0.30 

SFA 40.2 46.3 42.7 44.3 1.95 0.92 0.05 0.15 

MUFA:SFA
5
 0.74

a
 0.63

b
 0.72

a
 0.58

b
 0.03 0.16 0.001 0.001 

a-b
Means in rows not bearing a common superscript differ, P < 0.05. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable. 
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TABLE 11 Fatty acid composition of r.p. adipose tissue from pigs fed diets containing CLA, arginine, or CLA plus arginine 

(g/100g total lipids) 

  Treatment
1
   P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 1.71
bc

 2.75
a
 1.47

c
 2.23

ab
 0.22 0.09 0.001 0.001 

C16:0 30.1 34.0 28.0 32.0 1.78 0.25 0.03 0.12 

C16:1 n7 1.65 1.89 1.53 1.86 0.14 0.59 0.05 0.25 

C18:0 17.7 18.1 17.2 17.5 0.78 0.49 0.61 0.87 

C18:1 trans
4
 0.49

bc
 0.86

a
 0.33

c
 0.60

b
 0.09 0.02 0.001 0.002 

C18:1 c9 31.3
ab

 25.2
c
 34.5

a
 28.8

bc
 1.57 0.04 0.001 0.002 

C18:1 c11 1.82
a
 1.56

b
 1.88

a
 1.79

a
 0.08 0.08 0.03 0.03 

C18:2 n6 11.2 10.8 11.6 10.8 0.94 0.81 0.55 0.93 

C18:2 c9, t11 0.55
bc

 1.31
a
 0.12

c
 0.86

ab
 0.23 0.07 0.003 0.01 

C18:2 t10, c12 0.30
bc

 0.73
a
 0.05

c
 0.48

ab
 0.13 0.07 0.003 0.01 

C18:3 n3 0.68
ab

 0.48
c
 0.79

a
 0.56

bc
 0.07 0.18 0.003 0.02 

C20:4 n6 0.24 0.18 0.22 0.18 0.02 0.59 0.03 0.17 

MUFA 36.0
ab

 30.5
c
 38.7

a
 33.9

bc
 1.49 0.04 0.002 0.005 

SFA 50.7
ab

 56.5
a
 47.6

b
 53.1

ab
 1.94 0.10 0.01 0.02 

MUFA:SFA
5
 0.73

ab
 0.55

c
 0.82

a
 0.66

bc
 0.05 0.06 0.002 0.01 

a-c
Means in rows not bearing a common superscript differ, P < 0.05. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable. 
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TABLE 12 Fatty acid composition of s.c. adipose tissue from pigs fed diets containing CLA, arginine, or CLA plus arginine 

(g/100g total lipids) 

  Treatment
1
   P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 1.04
b
 1.97

a
 1.15

b
 1.75

a
 0.10 0.54 0.001 0.001 

C14:1 n5 0.003 0.005 nd
6
 0.003 0.002 0.15 0.20 0.29 

C16:0 21.5
b
 26.3

a
 22.2

b
 26.0

a
 0.69 0.77 0.001 0.001 

C16:1 n7 1.98 2.13 1.81 1.95 0.11 0.13 0.19 0.26 

C18:0 11.3
b
 15.5

a
 12.8

b
 16.5

a
 0.67 0.07 0.001 0.001 

C18:1 trans
4
 0.34

b
 0.82

a
 0.36

b
 0.72

a
 0.05 0.41 0.001 0.001 

C18:1 c9 42.2
a
 32.4

b
 41.6

a
 32.4

b
 1.25 0.78 0.001 0.001 

C18:1 c11 2.78
a
 2.41

b
 2.59

ab
 2.28

b
 0.12 0.19 0.01 0.04 

C18:2 n6 14.3 12.7 13.1 12.8 0.64 0.43 0.16 0.33 

C18:2 c9, t11 0.05
b
 1.33

a
 0.13

b
 1.29

a
 0.13 0.88 0.001 0.001 

C18:2 t10, c12 nd 0.73
a
 0.05

b
 0.72

a
 0.09 0.82 0.001 0.001 

C18:3 n3 0.85
a
 0.51

b
 0.77

a
 0.53

b
 0.04 0.44 0.001 0.001 

C20:4 n6 0.27
a
 0.17

c
 0.23

ab
 0.19

bc
 0.02 0.62 0.002 0.01 

MUFA 48.1
a
 39.3

b
 47.3

a
 38.8

b
 1.34 0.62 0.001 0.001 

SFA 34.9
b
 45.2

a
 37.2

b
 45.7

a
 1.31 0.33 0.001 0.001 

MUFA:SFA
5
 1.39

a
 0.89

b
 1.28

a
 0.86

b
 0.06 0.29 0.001 0.001 

a-c
Means in rows not bearing a common superscript differ, P < 0.05. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable.  
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TABLE 13 Fatty acid composition of plasma from pigs fed diets containing CLA, arginine, or CLA plus arginine  

(g/100g total lipids) 

  Treatment
1
   P-value 

Fatty acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

C14:0 0.16 0.50 0.30 0.52 0.10 0.44 0.02 0.11 

C16:0 15.4 17.2 16.3 16.9 0.61 0.59 0.08 0.26 

C16:1 n7 0.70 0.74 0.82 0.79 0.12 0.48 0.98 0.90 

C18:0 14.9 15.3 14.3 14.7 0.58 0.30 0.46 0.64 

C18:1 trans
4
 0.20 0.79 0.36 0.49 0.23 0.85 0.14 0.37 

C18:1 c9 20.6 18.8 24.0 19.8 1.37 0.13 0.06 0.10 

C18:1 c11 1.62 1.30 1.62 1.51 0.15 0.53 0.16 0.41 

C18:2 n6 26.5 26.9 25.8 25.7 1.81 0.61 0.95 0.96 

C18:2 c9, t11 nd 0.90 nd 0.90 0.33 1.00 0.02 0.13 

C18:2 t10, c12 nd 0.32 nd 0.34 0.12 0.95 0.02 0.14 

C18:3 n3 0.53 0.38 0.57 0.19 0.13 0.60 0.07 0.25 

C20:4 n6 12.7 10.2 10.1 11.4 0.79 0.37 0.43 0.13 

C20:5 n3 0.27 0.15 0.30 0.10 0.09 0.94 0.11 0.45 

C22:6 n3 0.61 0.39 0.33 0.52 0.14 0.57 0.85 0.54 

MUFA 22.9 21.8 26.6 23.2 1.52 0.12 0.18 0.19 

SFA 32.9 36.2 33.5 34.7 1.15 0.78 0.07 0.26 

MUFA:SFA
5
 0.70 0.61 0.80 0.68 0.06 0.16 0.10 0.21 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Sum of amount of 18:1 t9, 18:1 t10, and 18:1 t11. 

5
MUFA:SFA = (14:1 n5 + 16:1 n7 + 18:1 c9 + 18:1 c11 + 18:2 c9, t11) / (14:0 + 16:0 + 18:0 + 18:1 trans)

 

6
nd = not detectable. 
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TABLE 14 Incorporation of glucose and palmitate carbon into CO2 and lipids in vitro in liver, longissimus muscle, and  

intestinal duodenal mucosal cells in pigs fed CLA, arginine, or CLA plus arginine 

  Treatment
1
   P-value 

Tissue/substrate Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

Liver metabolism, nmol substrate converted to product/(100mg  2h) 

CO2 production 

Glucose 68.4 49.4 47.5 46.8 7.96 0.22 0.27 0.32 

Palmitate 4.88 6.01 5.56 6.54 0.72 0.43 0.17 0.49 

Lipid synthesis 

Glucose 2.94 1.72 2.35 2.05 0.43 0.81 0.10 0.27 

Palmitate 34.0
b
 41.4

ab
 56.2

a
 48.5

ab
 6.04 0.02 0.98 0.07 

Longissimus muscle metabolism, nmol substrate converted to product/(100mg  2h) 

CO2 production 

Glucose 36.1 42.5 46.5 30.5 9.63 0.82 0.74 0.68 

Palmitate 4.66 5.27 4.33 6.02 0.79 0.76 0.18 0.50 

Lipid synthesis 

Glucose 1.80 1.16 2.41 1.95 1.13 0.52 0.62 0.88 

Palmitate 28.6
b
 59.9

a
 28.2

b
 30.1

b
 5.37 0.01 0.01 0.001 

Intestinal duodenal mucosal metabolism, nmol substrate converted to product/(100mg  2h) 

CO2 production 

Glucose 186 189 106 151 38.6 0.11 0.53 0.35 

Palmitate 16.0
ab

 32.1
a
 13.8

b
 18.1

ab
 5.50 0.15 0.07 0.10 

a-b
Means in rows not bearing a common superscript differ, P < 0.10. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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TABLE 15 Incorporation of glucose and palmitate carbon into CO2 and lipids in vitro and cellularity in r.p. adipose tissue  

in pigs fed CLA, arginine, or CLA plus arginine 

  Treatment
1
   P-value 

Tissue/substrate Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

r.p. adipose tissue metabolism, nmol substrate converted to product/(100mg  2h) 

CO2 production 

Glucose 58.3 100 57.8 110 23.0 0.83 0.03 0.20 

Palmitate 5.72 7.14 5.80 5.99 1.11 0.63 0.47 0.79 

Lipid synthesis 

Glucose 64.5 59.6 33.7 83.8 22.6 0.89 0.32 0.48 

Palmitate 112 107 120 117 11.2 0.41 0.72 0.85 

r.p. adipose tissue metabolism, nmol substrate converted to product/(10
-9

  cell  2h) 

CO2 production 

Glucose 58.3 107 60.4 113 24.2 0.85 0.03 0.18 

Palmitate 5.73 7.62 6.06 6.18 1.14 0.63 0.38 0.66 

Lipid synthesis 

Glucose 64.5 63.5 35.2 86.4 23.4 0.89 0.29 0.50 

Palmitate 112 114 126 121 11.7 0.39 0.91 0.84 

r.p. adipose tissue cellularity 

Adipocyte volume, pL 666
b
 811

a
 805

a
 814

a
 8.63 0.001 0.001 0.001 

Adipocytes/100mg × 10
-9

 1.00
a
 0.94

d
 0.96

c
 0.97

b
 0.01 0.001 0.001 0.001 

a-d
Means in rows not bearing a common superscript differ, P < 0.10. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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TABLE 16 Incorporation of glucose and palmitate carbon into CO2 and lipids in vitro and cellularity in s.c. adipose tissue  

in pigs fed CLA, arginine, or CLA plus arginine 

  Treatment
1
   P-value 

Tissue/substrate Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

s.c. adipose tissue metabolism, nmol substrate converted to product/(100mg  2h) 

CO2 production 

Glucose 52.4 89.0 73.0 88.4 14.1 0.50 0.06 0.21 

Palmitate 4.66 5.29 4.57 5.03 0.94 0.86 0.56 0.95 

Lipid synthesis 

Glucose 33.7
b
 33.9

b
 80.8

a
 39.5

ab
 14.9 0.09 0.18 0.09 

Palmitate 97.5 93.9 107 104 11.0 0.38 0.79 0.84 

s.c. adipose tissue metabolism, nmol substrate converted to product/(10
-9

  cell  2h) 

CO2 production 

Glucose 48.9 88.1 75.2 92.3 14.4 0.30 0.04 0.14 

Palmitate 4.35 5.23 4.71 5.25 0.92 0.83 0.44 0.88 

Lipid synthesis 

Glucose 31.5
b
 33.5

b
 83.3

a
 41.2

ab
 15.2 0.06 0.20 0.07 

Palmitate 91.1 92.9 110 109 11.0 0.12 0.97 0.49 

s.c. adipose tissue cellularity 

Adipocyte volume, pL 597
d
 735

c
 789

b
 875

a
 11.0 0.001 0.001 0.001 

Adipocytes/100mg × 10
-9

 1.07
a
 1.01

b
 0.97

c
 0.96

c
 0.01 0.001 0.001 0.001 

a-d
Means in rows not bearing a common superscript differ, P < 0.10. 

1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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TABLE 17 Expression of genes in liver, longissimus muscle, and intestinal duodenal mucosal cells in pigs fed CLA,  

arginine, or CLA plus arginine 

  Treatment
1
   P-value 

  Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

Liver 

PGC-1 1.00 0.75 0.50 0.66 0.23 0.27 0.80 0.56 

AMPK 1.00 1.40 0.64 1.06 0.45 0.43 0.37 0.71 

mTOR 1.00 0.47 0.52 0.59 0.26 0.58 0.37 0.50 

CPT-1A 1.00 1.51 1.18 1.20 0.67 0.95 0.72 0.97 

FAS 1.00 0.91 0.74 0.44 0.35 0.33 0.60 0.70 

SCD 1.00 0.98 0.99 0.65 0.39 0.66 0.72 0.91 

Longissimus muscle 

PGC-1 1.00
b
 1.63

a
 1.52

a
 1.01

b
 0.19 0.85 0.80 0.07 

AMPK 1.00 1.14 0.93 0.68 0.35 0.43 0.88 0.81 

mTOR 1.00 1.44 1.69 1.17 0.59 0.72 0.94 0.85 

CPT-1B 1.00 1.21 1.39 0.96 0.38 0.85 0.78 0.84 

FAS 1.00 1.29 1.01 1.18 0.39 0.90 0.55 0.94 

SCD 1.00 1.61 0.56 0.83 0.55 0.27 0.42 0.59 

Intestinal duodenal mucosal cells 

PGC-1 1.00 0.16 0.60 0.28 0.24 0.64 0.18 0.41 

AMPK 1.00 0.38 2.03 0.31 0.51 0.62 0.10 0.38 

mTOR 1.00
a
 0.14

b
 0.57

ab
 0.31

ab
 0.14 0.83 0.04 0.08 

CPT-1B 1.00 0.69 1.08 0.32 0.26 0.75 0.13 0.37 

FAS 1.00 0.38 2.81 0.65 0.36 0.27 0.07 0.16 

SCD 1.00 0.19 0.85 0.17 0.25 0.79 0.07 0.29 
a-b

Means in rows not bearing a common superscript differ, P < 0.10. 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 



 

 

6
1
 

TABLE 18 Expression of genes in r.p. adipose tissue and s.c. adipose tissue in pigs fed CLA, arginine,  

or CLA plus arginine 

  Treatment
1
   P-value 

  Control CLA Arg CLA + Arg SEM
2
 AA FA AA  FA

3
 

r.p. adipose tissue 

PGC-1 1.00 1.02 0.67 0.95 0.72 0.75 0.81 0.98 

AMPK 1.00 0.81 1.74 0.92 1.10 0.70 0.61 0.92 

mTOR 1.00 1.67 0.71 1.30 0.48 0.51 0.22 0.60 

CPT-1B 1.00 0.97 0.39 0.51 0.47 0.25 0.93 0.71 

FAS 1.00 1.10 2.19 1.01 1.01 0.50 0.61 0.71 

SCD 1.00 0.62 1.83 1.42 0.95 0.30 0.62 0.69 

s.c. adipose tissue 

PGC-1 1.00 1.53 2.71 1.57 1.16 0.43 0.86 0.74 

AMPK 1.00 1.29 2.66 2.05 1.09 0.27 0.88 0.70 

mTOR 1.00 1.05 2.21 1.71 0.57 0.11 0.68 0.41 

CPT-1B 1.00 2.46 5.72 4.00 2.13 0.19 0.91 0.52 

FAS 1.00 0.98 2.06 1.39 0.61 0.24 0.57 0.59 

SCD 1.00 0.96 0.50 0.16 0.68 0.25 0.75 0.70 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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TABLE 19 Metabolic syndrome traits and lipoprotein profiles of plasma in pigs fed CLA, arginine, or CLA plus arginine 

  Treatment
1
   P-value 

  Control CLA Arg CLA + Arg SEM
2
 AA FA AA × FA

3
 

Metabolic syndrome traits         

TG, mg/dL 22.7 36.3 32.7 35.5 5.46 0.46 0.14 0.29 

Total cholesterol, CEQ/dL
4
 89.2 89.7 84.0 99.7 6.57 0.59 0.22 0.36 

Insulin, IU/mL 64.4 20.0 51.5 30.5 16.4 0.97 0.05 0.23 

Homocysteine, mol/L 13.9 11.4 17.8 18.0 2.99 0.07 0.69 0.30 

Lipoprotein profiles         

VLDL, nmol 24.3 24.5 24.7 24.8 1.28 0.80 0.91 0.99 

LDL, nmol 405 407 374 445 35.0 0.81 0.30 0.53 

HDL, nmol 5605 5454 5106 5952 431 0.87 0.42 0.54 

ILP, nmol 6.10 6.05 6.83 8.83 1.03 0.07 0.34 0.17 

RLP, nmol 33.0 33.0 36.7 44.8 4.55 0.07 0.36 0.20 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 

4
Cholesterol equivalents per dL
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TABLE 20 Essential amino acids in plasma (nmol/mL) of pigs fed CLA, arginine, and CLA plus arginine 

  Treatment
1
   P-value 

Amino acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA × FA

3
 

Histidine 74.9 84.4 81.9 80.0 5.92 0.83 0.53 0.71 

Isoleucine 80.2 90.7 88.1 86.1 8.97 0.85 0.63 0.86 

Leucine 154 169 156 149 22.1 0.68 0.85 0.93 

Lysine 78.2 98.4 107 104 25.0 0.49 0.74 0.85 

Methionine 32.6 36.2 32.4 30.3 2.75 0.29 0.80 0.52 

Phenylalanine 64.1
b
 86.8

a
 76.7

ab
 72.6

ab
 5.25 0.90 0.16 0.06 

Threonine 65.8 87.0 88.0 90.3 7.16 0.11 0.14 0.11 

Tryptophan 37.8 42.6 46.3 45.7 5.89 0.33 0.72 0.73 

Valine 203 222 208 202 18.4 0.69 0.73 0.87 
a-b

Means in rows not bearing a common superscript differ, P < 0.10. 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect.
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TABLE 21 Nonessential amino acids in plasma (nmol/mL) of pigs fed CLA, arginine, and CLA plus arginine 

  Treatment
1
   P-value 

Amino acid Control CLA Arg CLA + Arg SEM
2
 AA FA AA × FA

3
 

Alanine 341 423 322 270 45.8 0.10 0.76 0.18 

Arginine 120 298 149 139 90.1 0.48 0.37 0.50 

Asparagine 43.3 50.4 44.5 49.3 3.89 0.99 0.13 0.51 

Aspartate 10.5 11.0 11.4 14.0 1.70 0.26 0.38 0.51 

Citrulline 52.8 66.6 60.5 59.3 8.87 0.99 0.49 0.75 

Glutamate 157 149 148 169 37.0 0.89 0.85 0.97 

Glutamine 419 436 361 384 58.2 0.35 0.73 0.80 

Glycine 708 818 774 758 79.8 0.97 0.56 0.81 

Ornithine 66.1 59.7 56.0 57.7 11.2 0.59 0.83 0.93 

Serine 84.1
b
 106

a
 101

ab
 90.4

ab
 5.55 0.91 0.44 0.06 

Taurine 82.2 119 118 156 27.5 0.19 0.18 0.35 

Tyrosine 42.3 60.3 54.4 58.4 10.8 0.63 0.31 0.65 
1
Control = 1% canola oil + 2.05% alanine, CLA = 1% CLA + 2.05% alanine, arginine = 1% canola oil + 1% arginine, and 

CLA + arginine = 1% CLA + 1% arginine. 
2
Largest SEM among treatments. 

3
AA, amino acid effect (alanine or arginine); FA, fatty acid effect (canola or CLA); AA  FA, interaction effect. 
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