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ABSTRACT

Phylogenetic Toric Varieties on Graphs. (August 2010)

Weronika Julia Buczyńska, B.S, Warsaw University;

M.S., Warsaw University

Chair of Advisory Committee: Dr. Frank Sottile

We define the phylogenetic model of a trivalent graph as a generalization of a

binary symmetric model of a trivalent phylogenetic tree. If the underlining graph is a

tree, the model has a parametrization that can be expressed in terms of the tree. The

model is always a polarized projective toric variety. Equivalently, it is a projective

spectrum of a semigroup ring. We describe explicitly the generators of this projective

coordinate ring for graphs with at most one cycle. We prove that models of graphs

with the same topological invariants are deformation equivalent and share the same

Hilbert function. We also provide an algorithm to compute the Hilbert function,

which uses the structure of the graph as a sum of elementary ones. Also, this Hilbert

function of phylogenetic model of a graph with g cycles is meaningful for the theory

of connections on a Riemann surface of genus g.
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CHAPTER I

INTRODUCTION AND BACKGROUND

The inspiration for this work are toric varieties arising in computational biology, or

more precisely in phylogenetic algebraic geometry. The references to the subject

include [8], [19] and [21].

Markov models on phylogenetic trees are statistical models describing evolution.

They are usually defined as a subset of the probability simplex, parametrized by

a subset of matrices depending on the model. Among them there are group-based

models on phylogenetic trees. These are special, as their projective versions, that

is the Zariski closure of the parametrization in the complex projective space, are

projective toric varieties.

In this thesis we are interested in the simplest group-based models — binary

symmetric models, also called the Jukes-Cantor models, on trivalent trees. The object

of study in this thesis is the generalization of those models to trivalent graphs.

The thesis is organized in the following way: further in this chapter, in Section I.1,

we give motivation to the subject and point out references where the main object of

our study appears. Then we give a brief introduction to our main tools: we recall

geometric invariant theory in Section I.3, next, in Section I.4, we set the notation for

projective toric varieties and provide the description of GIT quotient of a projective

toric variety by subtorus of its big torus.

In Section II.1 we state combinatorial relations between the topological invariants

of a trivalent graph and we prove that graphs with the same invariants are mutation-

equivalent. Next, in Section II.2 we review the parametric description of the tree

The journal model is Journal of the American Mathematical Society.
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models from [4]. In Section II3 we define the model of a trivalent graph as a GIT

quotient of a product of P3’s indexed by inner vertices of the graph. This implies that

the model is toric and comes with an embedding into a weighted projective space. Our

first result is Theorem II.37 that lists the set of minimal generators of the projective

coordinate ring of the model, when the underlying graph has the first Betti number

at most one. Chapter III contains our second result — models of mutation-equivalent

graphs are deformation equivalent.

Theorem III.5. Geometric models of connected trivalent graphs with n leaves and

the first Betti number g are deformation equivalent in the projective toric variety Pg,n,

which is a quotient of P2n+2g−1−1 by a g-dimensional torus.

In Chapter IV we prove that the Hilbert functions of mutation-equivalent models

are equal (Theorem IV.5) and finally we compute these Hilbert functions explicitly.

1. Motivation — Markov models on phylogenetic trees

A phylogenetic tree is an acyclic connected graph with additional data attached to its

edges and vertices. At a vertex v there is a finite ordered set Av called an alphabet. At

an edge with ends v and w there is a doubly-stochastic matrix (all rows and columns

sums are 1) with the (i, j)th entry indicating the probability of the ith letter of Av

being changed to the jth letter Aw. To construct a Markov model on a phylogenetic

tree we first need to indicate a set of observable vertices, for example the leaves of

the tree. Then the model is the subvariety of the probability simplex, parametrized

by a subset of matrices that we only allow, given by probabilities of observing letters

at the observable vertices. We consider symmetric models, which means we allow

symmetric matrices. Typically the observable vertices are the leaves of the tree.

Apart form this real variety, one can consider its complex algebraic relaxation.
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That is, the parameters are allowed to vary in a complex projective space and we

take the Zariski closure of the image. Then the model becomes a complex projective

variety and can be studied by means of algebraic geometry. Binary symmetric models

have additional structure — they are equipped with an action of a torus of dimension

equal to the dimension of the model and thus they are projective toric varieties.

This is an especially nice class of varieties, which have a combinatorial description

by lattice polytopes. The geometry of the simplest group-based models — binary

symmetric models with the restriction that the underlying tree is trivalent was the

object of study of [5]. In that paper we described the corresponding lattice polytope

and interpreted the models as a certain quotient of a product of three-dimensional

projective spaces.

2. Toric algebras of our graph models in the literature

We generalize the quotient description of the tree models introduced in [5] and we

again have a toric projective model, which this time is embedded in a weighted pro-

jective space. Such an embedding is always given by a graded lattice cone. We denote

the cone for a graph G by τ(G).

The way we associate a lattice cone to a trivalent graph appears also in the work

of Manon [15]. He constructs a sheaf of algebras over the moduli stackMg,n of genus

g curves with n marked points and our semigroup algebras C[τ(G)] are obtained by

some initial term deformations from algebras above the most special points of Mg,n

in Manon’s construction.

Another place where our cones τ(G) appear is the Jeffrey and Weitsmann’s [14]

study of flat SU(2)-connections on a genus g Riemann surface. In their context the

trivalent graph G describes the geometry of the compact surface Σg of genus g and
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thus has no leaves. A subset of Z-labellings of the graph, which are exactly points of

our cone τ(G), are in 1–1 correspondence with the number of Bohr-Sommerfeld fibers

which is the central object of study in [14]. By the Verlinde formula, the number of

those fibers equals the dimension of holomorphic sections of powers of a natural line

bundle on the moduli space of flat SU(2) connections on Σg. This number is a value

of the Hilbert function of the toric model of a connected graph with no leaves and

the first Betti number g.

By Theorem IV.5, we know that the Hilbert function only depends on the topo-

logical invariants of the graph.

Although the model depends on the shape of the underlying trivalent tree, once

we restrict ourselves to trees with fixed number of leaves, models of all of them are

in the same irreducible component of the Hilbert scheme of projective varieties with

fixed Hilbert polynomial. This was proved by Sturmfels and Xu in [25].

Any trivalent graph is made by gluing together tripods, that is graphs with

four vertices and three edges attached to the central vertex. To construct the toric

model we assign to every inner vertex a copy of a three-dimensional complex projective

space and to every edge we assign an action of the one-dimensional complex torus

C∗ on the product of all those P3, which corresponds to gluing two tripods along

that edge. The model X(G) of the trivalent graph G is a geometric invariant theory

(GIT) quotient of product of the P3 by the torus defined as a product of the C∗’s

corresponding to the internal edges. We also translate this description into language

of projective toric varieties, by writing the model X(G) as the projective spectrum of

a semigroup ring C[τ(G)]. The underlying semigroup τ(G) has a clear description in

terms of the graph G.

Three results of this thesis generalize our earlier results obtained in [5] about

binary symmetric models of trivalent trees to phylogenetic graph models. First we
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describe the minimal Z-generators of the semigroup τ(G) when the graph G has the

first Betti number at most one. We also prove that models of graphs with the same

discrete invariants are deformation equivalent and lastly that they share the same

Hilbert function.

3. Geometric invariant theory

Given an algebraic variety X with an action of an algebraic group G, one hopes to

construct an algebraic quotient. The naive way to do it, that is to simply take the

orbit space, most often leads to a space with non-closed points (not a T1-space. The

main tool to construct a quotient which is an algebraic variety with desired properties

is geometric invariant theory created by David Mumford in 1960’s. His main purpose

was to answer questions in the theory of moduli — those are varieties or schemes

parametrizing all objects with given invariants. The classical reference to the subject

is Mumford’s book [17]. This theory assumes that the algebraic group G that acts

on X is reductive and the action has a linearization with respect to some line bundle

on X . Depending on the line bundle the set of (semi-)stable points is determined.

There are several types of quotients that one may want to consider. One is the good

geometric quotient, which is the orbit space of the stable points. The problem with

it is that often there are not enough stable points. The good quotient is the semi-

geometric and affine quotient on the set of semi-stable points. From now on we talk

about the good quotient.

The resulting quotient is projective if the initial space was projective. The first,

most common, example of a GIT quotient is the projective space which is the quotient

of Cn by the action of C∗ — in this case the non-stable locus is the point 0. Toric

varieties can be seen as a generalization of the projective space as they are quotients
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of open subsets of an affine space.

We use geometric invariant theory for a normal projective variety X with an

action of an algebraic torus T. Our main reference is Section 5 and 6 of [2], although

the setup we use may seem to be slightly more general then the one found in [2]. This

is because instead of linearizing only with respect to a line bundle we allow ample

Weil divisors. We will explain the necessary modifications and show how this does

not affect the basic theory.

We work on a normal algebraic variety X . We recall some standard notions in

algebraic geometry. A Weil divisor L =
∑

niDi is a formal sum of codimension

one subvarieties Di of X with integer coefficients. Given a rational function f on

X the principal divisor of f is the formal difference between the zero locus of f

and locus of poles of f (equivalently zeros of 1
f
), both counted with multiplicities. A

Weil divisor is called Cartier if it is locally principal divisor, which means there is

an open covering {Ui} of X together with rational functions fi such that L ∩ Ui is

the principal divisor of fi on Ui. It is standard to identify a Cartier divisor with a

line bundle using the cocycle of fi
fj

on Ui ∩ Uj , see [13, p.141].

Definition I.1. A divisor L is an ample Weil divisor if some positive multiple nL

is an ample line bundle.

A line bundle is ample if some multiple mL (equivalently tensor power) of it

is very ample. This means that the map defined by the linear system |mL| is an

embedding into a projective space.

Given an ample Weil divisor L we have the ring

R(X,L) :=
∞⊕

p=0

H0(X,O(pL)),

which is the projective coordinate ring of X embedded into a weighted projective space
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by the linear system |L|. This is completely analogous, see [20], to the standard way

of describing embedding of X into a projective space in when L is a very ample line

bundle, see [13, Section II.2]. We discuss those facts in 4.1.

We denote by

Rp(X,L) := R(X, pL)

the ring given by a multiple of L. When the divisor L is clear, we write R(X) and

Rp(X) an instead of R(X,L) and R(X, pL).

Lemma I.2 (Veronese embedding). Let X = ProjR(X,L) be a projective variety with

a distinguished ample Weil divisor L. Then for any positive integer p the inclusion

Rp(X,L) →֒ R(X,L) induces an isomorphism

ProjR(X,L) ≃ ProjRp(X,L)

Proof. See [10, Chapter 2, Theorem 2.4.7], and also [13, Ex. II 5.13].

We briefly recall the definitions of quotients simplifying the statements from

[2]. Let G be a reductive algebraic group acting on a variety X . A G-equivariant

morphism π : X → Y is called a semi-geometric quotient if

• the image of every closed orbit is closed, and this property is invariant under

base change

• π is surjective and images of disjoint, closed orbits are disjoint and this property

is invariant under base change

• π∗(O
G
X) = OY .

The map π : X → Y is called a good quotient if it is both affine and semi-geometric.

A map π : X → Y is affine if preimage of any affine subset of Y is affine.
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This definition implies that the good quotient is a categorical quotient, and thus

unique [2, Rmk.3.1 and Thm 3.2].

To construct the quotient, we need some more definitions.

Definition I.3. Let G be a reductive algebraic group acting on X . An ample Weil

divisor L on X is G-linearized if the action of G can be lifted to the projective

coordinate ring R(X,L). More precisely, the action of G on X = ProjR(X,L)

induced by the lift, is the action of G on X .

When L is a line bundle, a G-linearization is an action of G on L which is linear

on fibers and agrees with its action on X . We recall the definition of a L-semistable

point [2, § 6.1], which is independent of the multiple of L.

Definition I.4. Let L be an ample Weil divisor. A point x ∈ X is L-semistable if

there exists a G-invariant section of a positive multiple of L that does not vanish at

x. We denote by Xss the set of all semistable points. The GIT quotient of X by G

with respect to the linearization L is

X//G = Xss//G,

where Xss//G denotes the good quotient of the set of semistable points with respect

to L by the action of G. The rational map X → X//G is called GIT quotient map

and the regular map Xss → X//G is a good quotient map.

Remark I.5. Both [17] and [2] assume that the section in the above definition has

an affine support, but as we consider only ample L all its sections automatically have

affine support.

The following theorem says that in the above situation a GIT quotient exists and

is the projective spectrum of the ring of invariants.
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Theorem I.6. Let G be a reductive group acting on projective varieties X and Y .

(i) Let L be a G-linearized ample Weil divisor on X. Then

X//G = ProjR(X,L)G.

(ii) Let X →֒ Y be a G-equivariant embedding, with Y = ProjR and X = ProjR/I,

where I is the homogeneous ideal of X in Y . Then I is generated by invariants

f1, . . . , fj, the map X//G →֒ Y//G is an embedding and the homogeneous ideal

of X//G in RG is also generated by f1, . . . , fj.

Proof. In [2, §5] the affine quotient is defined for an affine variety X as a spectrum

of invariants and [2, Thm 5.4] says it is a good quotient. Then in [2, §7] there is a

characterization of a good quotient π : X → Y as a locally affine quotient, that is

the map π is a good quotient if and only if for any open affine subset U ⊂ Y the

restriction of the map π to π−1(U) is an affine quotient.

We know from [2, Thm 6.2.1] that (i) is true for projective space and L = O(1).

Additionally for an arbitrary variety X = ProjR and a very ample line bundle L that

defines an equivariant embedding into Pn by [2, §6.3] we have:

• Xss = (Pn)ss ∩X

• the restriction of the good quotient morphism π : (Pn)ss → (Pn)ss//G is the good

quotient morphism on X .

We choose an affine covering U of the quotient Pn//G by sets of the form {f 6= 0},

where f is G-invariant. Then {π−1(U)|U ∈ U} is an affine G-invariant covering of

Pn, since π is an affine map. By [2, Thm 5.3] and the Hilbert-Nagata theorem [2,

Thm 5.2] for each U ∈ U we know that (π−1(U) ∩X)//G is a spectrum of invariants

(π−1(U) ∩X)//G = Spec(R[f−1]0)G
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Also each π−1(U) ∩X has form {g = π∗f |X 6= 0}. To see that X//G = ProjRG, we

only need to see that
(
RG[g−1]

)0
= (R[g−1]0)G, which is true since g is G-invariant.

Thus (i) holds for X projective and L very ample.

When L is an ample Weil divisor, we use Lemma I.2 to replace L by its kth

power. More precisely, we choose k such that kL is a very ample line bundle, and

since the set of semistable points does not depend on the multiple of L we have

X//G = ProjRp(X,L)G = Proj(R(X,L)G)p = ProjR(X,L)G

where the first equality holds, because kL is very ample, the second holds because

the action of G preserves gradations, and in the third we use Lemma I.2.

For the proof of (ii) by Hilbert-Nagata theorem, we know that I is generated by

invariants. Since a good quotient is a locally affine quotient the map X//G → Y//G

is an embedding. The last part of (ii) follows from [2, Thm. 5.2].

4. Toric varieties

A toric variety is a normal algebraic variety with a faithful action of a torus (C∗)dimX

with an open, dense orbit. The classical references for this subject are [9] and [18].

An abstract toric variety can be described by a fan in the lattice N of one-parameter

subgroups of the torus. A fan is a collection of rational, polyhedral cones, closed

under taking faces and such that if two cones are in the fan, then their intersection

is a face for each of them and is also in the fan. Each cone of maximal dimension

corresponds to an affine patch of the toric variety.

If our toric variety is projective and we consider it together with an embedding

into projective space, then the pair can be encoded by a lattice polytope, which is dual

to the complete fan. The lattice points of this polytope define the coordinates of the
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ambient projective space and the Z-relations between them generate the ideal of the

variety. This setting is used by Sturmfels in his book [23] and yields a generalization

to not necessarily normal toric varieties, which we do not consider here.

4.1. Toric varieties in weighted projective space

The embedding of a projective toric variety X into a projective space is described by

a polytope ∆ with integral vertices. If we scale the polytope by an integer k, then we

do not change the variety. The resulting embedding changes by composing it with

kth Veronese embedding. The sum of all positive multiples forms a semigroup (or a

graded cone). In this situation X = Proj
⊕

k∈N C[k∆]. When the ambient space is

a weighted projective space the embedding is given by a graded cone with a set of

(minimal) Z-generators, which are no longer in the first degree. Every section of this

cone determined by the grading is a rational polytope.

Definition I.7. A weighted projective space P(a0, . . . , an) with weights (a0, . . . , an)

where each ai ∈ N is a positive integer is the GIT quotient of the affine space Cn+1

by the action

t · (x0, . . . , xn) = (ta0 · x0, . . . , t
an · xn)

Again, the non-stable locus is the point 0 ∈ Cn+1.

We can assume that the greatest common divisor of the weights is one — this is by

substitution t 7→ tgcd(a0,...,an). Let us pick integers b0, . . . , bn such that
∑n

i=0 bi · ai = 1.

The weighted projective space has the sheaf OP(1), which corresponds to the ample

Weil divisor
∑n

i=0 bi · (xi), where the (xi)’s are the divisors corresponding to the

coordinates.

Weighted projective spaces are often singular. They have quotient singularities

coming from finite abelian group actions.
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Definition I.8. Given a lattice M , we can associate with it in a non-unique way

a graded lattice Mgr, which equipped with degree map deg : Mgr → Z — the

projection to the first coordinate and fits into the exact sequence

0 M Mgr
deg

Z
s

0

We also fix a splitting s : Z → Mgr of the exact sequence which is equivalent to

a choice of the 0 element in the M ≃ (1,M) ⊂ Mgr. The choice of the splitting

s corresponds to a choice of linearization of the action of the torus Spec(C[M∨) on

itself.

Definition I.9. A graded lattice cone τ is a rational, convex, polyhedral cone in

a graded lattice Mgr, with all elements having non-negative degree: deg(τ) ⊂ N, and

the zero gradation consists of one element: deg−1(0)∩τ = 0. Convex here means that

τ ⊗Z R+ ⊂ Mgr ⊗Z R is convex. Equivalently, τ is a (saturated) sub-semigroup of

the free abelian group Mgr with finite set of Z-generators all having positive degrees

where the neutral element is the only one of degree zero.

Proposition I.10. A toric variety X ⊂ P(a0, . . . , an) is described by its fan and an

ample Weil divisor OX(1) or equivalently by an isomorphism X ≃ ProjC[τ ] where τ is

a graded, rational, convex, polyhedral cone in a graded lattice Mgr. Then C[τ ] = R/I,

where R is the homogeneous coordinate ring of P(a0, . . . , an) and I is the homogeneous

ideal of X.

Idea of the proof. The correspondence between the ample Weil divisor and the

graded cone is the following. The degree k sections of the sheaf associated to the

Weil divisor form the kth section of the cone τ . To go the other way, we have an

isomorphism X ≃ ProjC[τ ] and then the ample Weil divisor is OX(1) — the pull-

back of OP(a0,...,an)(1) from the ambient weighted projective space P(a0, . . . , an).
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The choice of the 0 element of M ≃ (1,M) ⊂ Mgr in Definition I.8 is a choice

of linearization of the action of the torus of X , which extends the action of the torus

on itself.

Definition I.11. A graded productMgr
1 ×gM

gr
2 of the graded lattices Mgr

1 and Mgr
2

is the fiber product over their degree maps, or equivalently the hyperplane deg1 = deg2

in the product Mgr
1 ×Mgr

2 :

Mgr
1 ×g M

gr
2 Mgr

2

deg2

Mgr
1

deg1
Z

Definition I.12. A graded product τ1 ×g τ2 of graded cones τ1 and τ2 is the

fiber product over their degree map, or equivalently intersection of the hyperplane

deg1 = deg2 with the product cone τ1 × τ2:

τ1 ×g τ2 τ2

deg2

τ1
deg1

Z

Lemma I.13. If τ1 ⊂Mgr
1 and τ2 ⊂Mgr

2 are graded rational convex polyhedral cones,

and

X1 = ProjC[τ1] X2 = ProjC[τ2]

are corresponding projective toric varieties, then the product of these varieties under

the Segre embedding

X1 ×X2 = ProjC[τ1 ×g τ2]

corresponds to the graded product of the cones τ1 and τ2.
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Proof. By definition X1 ×X2 under Segre embedding is equal to

Proj

∞⊕

i=0

H0
(
X1 ×X2,OX1

(i)⊠OX2
(i)
)
.

For each i we know that the sections of this exterior tensor product are spanned by

the product of the ith graded pieces of the cones

H0
(
X1 ×X2,OX1

(i)⊠OX2
(i)
)

= C ·
((

τ1 ∩ deg−1(i)
)
×
(
τ1 ∩ deg−1(i)

))

We conclude the lemma by summing the above equality over all i’s to get

∞⊕

i=0

H0
(
X1 ×X2,OX1

(i)⊠OX2
(i)
)

= C[τ1 ×g τ2]

as required.

4.2. Quotient of a toric variety by a subtorus

We show that the quotient of a projective toric variety X = ProjC[τ ] by a subtorus

is described by an appropriate linear section of τ .

We first recall some facts about toric varieties from [9]. If X = ProjC[τ ], where

τ ⊂ Mgr is a graded cone, then the torus of X is given by an isomorphism T =

Hom(M,Z) ⊗Z C∗. The lattice N = Hom(M,Z) is the lattice of one-parameter

subgroups of T. For any subtorus T′ of the torus T there are corresponding maps

of lattices: the projection M ։ M ′ of the monomial lattices and the embedding

N ′ →֒ N of the lattice of one-parameter subgroups.

A linearization of the action of the torus T on X , induces a linearization of the

action of any subtorus T′ ⊂ T, by restricting the action. In this setting Theorem I.6

implies the following result.

Theorem I.14. Let τ be a graded cone in a lattice Mgr and X = ProjC[τ ] the
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corresponding toric variety. Let j : T′ →֒ T be a subtorus of the torus T, with

j∗ : N ′ →֒ N , j∗ : M ։ M ′ and id⊕j∗ : Mgr → (M ′)gr the corresponding lattice

maps. Then there exists a good quotient and it is equal to

X//T′ = ProjC[τ ]T
′

,

where

C[τ ]T
′

= C[τ ∩ (Z⊕ ker(j∗ : M ։M ′))] = C[τ ∩ (Z⊕N ′⊥)].

Moreover the quotient X//T′ is polarized by OX//T′(1) in a natural way.

The following example shows that we do need ample Weil divisors, not only

ample line bundles.

Example I.15. Let X be the good GIT-quotient

π : P3 × P
3 → X = P

3 × P
3)//(C∗)3

of the product of two projective three-spaces by an action of three-dimensional torus

acting with weights




(0 1 1 0) × (0 −1 −1 0)

(0 1 −1 0) × (0 0 0 0)

(0 0 0 0) × (0 1 −1 0)




linearized with respect to the line bundle OP3(1) ⊠ OP3(1). We will see later that

X = X ( ) is the model of the trivalent graph with the first Betti number two with

three edges and is a projective toric variety by Theorem I.14. The sheaf OX(1) =

π∗(OP3(1) ⊠ OP3(1)) is not a locally free OX-module because the associated divisor

is not Cartier. To verify it we can use a computer algebra system, for example

magma [3] as follows. Since any divisor on a toric variety is linearly equivalent to
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a T-invariant divisor, we identify a divisor with a corresponding Z-combination of

primitive elements of the rays of the fan. Thus we only need to check if the Z-

combination corresponding to OX(1) yields a piecewise linear function on the fan,

which by [18] is equivalent to our T-invariant Weil divisor being Cartier.
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CHAPTER II

PHYLOGENETIC MODELS ON TRIVALENT GRAPHS1

In this chapter we mention facts about graphs that we will use later, then we provide

the parametric definition of the tree models. Next we recall the alternative, geometric

way to define them, which yields a generalization to graphs. Lastly, we provide a way

to get the toric description of the phylogenetic model from the graph.

1. Trivalent graphs

We define topological invariants of trivalent graphs and show any two graphs with

the same invariants are equivalent by applying appropriate mutations, which we in-

troduced in [5]. We do not assume that our graphs are connected.

Definition II.1. A graph G is set V of vertices and set E of edges together with

the unordered boundary map ∂ : E → V⊗2, where V⊗2 is the set of unordered pairs

of vertices. We write ∂(e) = {∂1(e), ∂2(e)} and say that v is an end of the edge e

if v ∈ ∂(e). A vertex incident to exactly one edge is a leaf. The set of leaves is

denoted by L and the number of leaves by n. If a vertex is not a leaf, it is called an

inner vertex. An edge incident to a leaf is a petiole and P is the set of petioles. We

write compG for the set of connected components of the graph and | compG| for

the number of components. We denote by g for the first Betti numbers of graph,

which is the rank of the first group homology of the graph viewed as a CW-complex.

A graph is trivalent if every inner vertex has valency three. Valency of a vertex v is

1Part of this chapter, namely Section 2, was reprinted with permission from
“Isotropic models of evolution with symmetries”, by Weronika Buczyńska, Maria
Donten, and Jaros law A. Wísniewski, 2009. Interactions of classical and numerical
algebraic geometry, Contemp. Math., vol. 496, pp. 111–131. Copyright by Amer.
Math. Soc.
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the number of connected components of a sufficiently small neighborhood of v with

v removed. A trivalent graph with no cycles is a trivalent tree.

When discussing more then one graph instead of V, E , n,... we will write V(G),

E(G), n(G), etc.

Remark II.2. Our graphs are not oriented, nevertheless we write ∂1(e) and ∂2(e) for

the vertices adjacent to the edge e. This makes it easier to talk about “the other end

of e”.

We call the unique trivalent tree with a single inner vertex and three leaves

the elementary tripod. It has three edges e1, e2, e3. Any trivalent graph is built

of elementary tripods in the following way: given a trivalent graph G and any inner

vertex v ∈ V(G) we pick a copy of elementary tripod v ≃ and an map iv : v → G

which sends the central vertex of v to v and locally near i−1(v) is an embedding.

We present the graph G as a disjoint union of the graphs v with appropriate iden-

tification of edges

G =
⊔

v∈V\L

v/{i
−1
∂1(e)

(e) ∼ i−1
∂2(e)

(e)}e∈E\P (II.3)

This construction mirrors how the model of the graph is constructed, as we will see

in Definition II.16.

Example II.4. On the Figure II.1 we give an example of the above presentation of

a trivalent graph for a graph with the first Betti number one and two leaves.

=

Fig. II.1.: Building a trivalent graph from tripods
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Lemma II.5. In any trivalent graph with n leaves and first Betti number g the fol-

lowing holds

(i) |V|, |E| ≥ n,

(ii) 2|E| = 3|V| − 2n,

(iii) |V| − |E| = | compG| − g.

Thus, any three of the numbers |V|, |E|, n, g, | compG| determine the other two.

Proof. To prove (ii) let us count pairs of consisting of a vertex and an adjacent

edge. On one hand we will count every edge twice. On the other hand every inner

vertex has three incident edges so we have 3(|V| − n) pairs and another n pairs come

from leaves which totals to 3|V| − 2n. Equation (iii) counts the Euler characteristic

| compG| − g of the graph.

Here we introduce operations of gluing two leaves of a graph, cutting an edge

into two new edges and taking a disjoint sum of two graphs.

Definition II.6. We will use the following three constructions of trivalent graphs.

• G ⊔ G ′ is the disjoint sum of the given graphs G and G ′.

• Gl1l2⊃ is the graph obtained from a given graph G with two distinguished leaves

l1, l2 ∈ L(G) by gluing the two leaves l1 and l2, or more precisely by removing

l1 and l2 and identifying the edge incident to l1 with the edge incident to l2.

• Gl⋆G
′
l′ a graft of given graphs G and G ′ each with a distinguished leaf. Figure II.2

is a schematic picture of this construction.
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G G ′

Fig. II.2.: Graft of two graphs

The new graph can be written as

Gl ⋆ G
′
l′ =

((
(G ⊔ G ′)le1⊃

)
⊔ G ′

)l′
e2
⊃

• Ge is the graph obtained from the given graph G by cutting an internal edge

e ∈ E(G) \ L(G). More precisely we replace e by two new edges e1 and e2 with

∂1(e1) := ∂1(e) and ∂1(e2) := ∂2(e). There are two new leaves in Ge, which are

the free ends of the new edges ∂2(e1) and ∂2(e2).

Definition II.7. An edge e ∈ E is called a cycle edge if it is not a petiole and

removing it does not disconnect the connected component of the graph that contains

e. An edge e ∈ E is called cycle leg if it is incident to a cycle edge but it is not a

cycle edge. A vertex v ∈ V is called cycle vertex if it is an end of a cycle edge. We

draw example of those on Figure II.3.

cycle edge

cycle vertex

cycle legs

Fig. II.3.: Cycle edge, cycle leg and cycle vertex of a graph

A path is a sequence of distinct edges e0, . . . , em with ∂2(ei) = ∂1(ei+1) for all i ∈
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{0, . . . , m− 1}, moreover ∂1(e0) and ∂2(em) are both leaves or they are either equal.

In the latter case, the path is called a cycle. Paths are disjoint if they have no

common vertices. A network is a union of disjoint paths. For consistency we say

that the empty set is also a network. A cycle is a minimal sequence of cycle edges.

A cycle of length one is a loop. On Figure II.4 we draw examples for each those

sequences.

Fig. II.4.: A path, a cycle and a network containing a loop

A graph G is called a polygon graph if it has 2k edges of which k form the only

cycle of G and the remaining k edges are cycle legs. If G is any graph, e ∈ V(G) a

non-cycle edge and after cutting e we get a decomposition Ge = G0 ⊔ G1 where G1 is

a tree then we call G1 a pendant tree.

Figure II.5 shows the three trivalent trees with one internal edge e and four

labeled leaves.

1 2

3 4

1 2

3 4

1 2

3 4

Fig. II.5.: The three trees with four labeled leaves

Let G be a trivalent graph and let e be an internal edge which is not a loop (the

ends of e are not identified). Then a neighborhood of e in G is a trivalent tree with

four leaves.
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Definition II.8. A mutation of a trivalent graph G along an edge e is a graph G ′

which is obtained from G by removing a neighborhood of e (which is a trivalent tree

with four leaves) and replacing it by one of the other trivalent trees from Figure II.5.

Two graphs are mutation-equivalent if they may be transformed by sequence of

mutations into each other.

Remark II.9. By definition it is not possible to mutate along an edge that forms

a cycle of length one. However, for longer cycles, mutations are possible, and one

shortens the length of the cycle. Figure II.6 shows this fenomena for Hammock graph

mutation equivalent to LittleMan.

←→

Fig. II.6.: Mutation along cycle edge shortens a cycle

Lemma II.10. Suppose edges {e1, . . . , ek} form a cycle in the graph G and assume

k > 1. Then, for any i ∈ {1, . . . , k} one of the two mutations along ei shortens the

cycle {e1, . . . , ek} by one in the resulting graph, i.e. {e1, . . . , ei−1, ei+1, . . . , ek} is a

cycle in the new graph.

A caterpillar is a trivalent tree, which after removing all leaves and petioles

becomes a string of edges as shown on Figure II.7.

Fig. II.7.: Caterpillar tree
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Lemma II.11. Let G1 and G2 be connected, trivalent graphs both with n leaves and

first Betti numbers g. Then they are mutation-equivalent. Moreover, for any ordered

subsets S1 of cycle edges of G1 and S2 of cycle edges of G2, of the same size, both with

the property that removing Si from Gi does not disconnect the graph, we can find a

sequence of mutations that avoid the edges from S1 (S2) and sends ith edge of S1 to

the ith edge of S2. Also, any mutation sends a leaf of G1 to a leaf of G2.

Proof. Let G be connected, trivalent graph with n leaves and the first Betti number

g and S a subset of cycle edges as above. We will prove that G is mutation-equivalent

to a trivalent graph obtained by attaching g cycles of length one to a caterpillar tree

with n + g leaves. We will choose mutations so that they will satisfy the required

property.

Step 1. We proceed by induction on the set S and the first Betti number of G.

For an edge e ∈ S we can find a cycle that contains no other elements of S. This is

because after removing all edges from S the graph G is connected, so there is a path

γ from ∂1(e) to ∂2(e), which together with e form the required cycle. By repeatedly

using Lemma II.10, we reduce the length of this cycle to one, by performing mutations

along edges from γ. In the new graph the edge e forms a loop. We can consider this

graph with e removed, reducing both the size of S and g. If |S| < g, then we repeat

the above g − |S| times starting from any cycle edge, which is not a loop.

After repeating this procedure g times, we get a tree with g loops (all edges

from S are among them) attached to some leaves. We can assume that this tree is

a caterpillar, as we know from [5, Lem. 2.18], that any trivalent tree is mutation-

equivalent to a caterpillar with the same number of leaves.

Step 2. We observe that it does not matter to which leaves the cycles are attached,

we can move a cycle from a leaf to any another leaf.
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In Figure II.8 we illustrate those two steps.

Step 1 Step 2

Fig. II.8.: Every graph is mutation-equivalent to a caterpillar graph

The last claim follows simply form the definition: mutation maps an inner edge to an

inner edge, and a leaf to a leaf.

2. Parametrization of tree models

From the point of view of algebraic geometry, phylogenetic trees encode certain linear

subsystems of the Segre system on the product of projective spaces. In the case of

binary symmetric models of trivalent trees these are subsystems of sections of Segre

system on a product of P1’s invariant with respect to some Z
|E\L|
2 action.

Notation II.12. Let W be a finite dimensional, complex vector space with a dis-

tinguished basis, sometimes called letters: {α0, α1, α2, . . . }. We consider the map

σ : W → C, such that σ(αi) = 1 for every i, that is σ =
∑

α∗
i .

Let Ŵ be a subspace of the second tensor product W⊗W . An element
∑

i,j aij(αi⊗

αj) of Ŵ can be represented as a matrix (aij). We will assume that Ŵ is contained

in the second symmetric power S2(W ), so these matrices are symmetric.

Given a tree T and a vector space W , and a subspace Ŵ ⊂ S2W , we associate

to any vertex v of V(T ) a copy of W denoted by Wv and for any edge e ∈ E(T )

we associate a copy of Ŵ understood as the subspace in the tensor product Ŵ e ⊂

W∂1(e)⊗W∂2(e). Note that although the pair {∂1(e), ∂2(e)} is unordered, this definition
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makes sense since Ŵ consists of symmetric tensors. Elements of Ŵ e will be written

as symmetric matrices (aeαi,αj
).

Definition II.13. A triple (T ,W, Ŵ ) together with the above association is called a

symmetric, unrooted phylogenetic tree.

Construction II.14. Let us consider a linear map of tensor products

Ψ̂ : Ŵ E =
⊗

e∈E

Ŵ e −→WV =
⊗

v∈V

Wv

defined by setting its dual as follows

Ψ̂∗(⊗v∈V α∗
v) = ⊗e∈E (α∂1(e) ⊗ α∂2(e))

∗
|Ŵ e

where αv stands for an element of the chosen basis {αi} of the space Wv. The

complete affine geometric model of the phylogenetic tree (T ,W, Ŵ ) is the image

of the associated multi-linear map

Ψ̃ :
∏

e∈E

Ŵ e −→WV =
⊗

v∈V

Wv

The induced rational map of projective varieties will be denoted by Ψ:

Ψ :
∏

e∈E

P(Ŵ e) 99K P(WV) = P(
⊗

v∈V

Wv)

and the closure of the image of Ψ is called the complete projective geometric

model, or just the complete model of (T ,W, Ŵ ). The maps Ψ̃ and Ψ are called the

parametrization of the respective model.

We can hide any set of vertices by applying the contraction map σ =
∑

i α
∗
i to

their tensor factors. In what follows will hide inner nodes and project to leaves. That
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is, we consider the map

ΠL : WV =
⊗

v∈V Wv →WL =
⊗

v∈L Wv

ΠL = (⊗v∈L idWv)⊗ (⊗v∈E\L σWv)

Definition II.15. The affine geometrical model of a phylogenetic tree (T ,W, Ŵ )

is the affine subvariety of WL =
⊗

v∈L Wv which is the image of the composition

Φ = ΠL ◦ Ψ. Respectively, the projective geometrical model, or just the model,

denoted by X(T ) is the underlying projective variety in P(WL). For X = X(T ), by

OX(1) we denote the line bundle coming from the embedding in the projective space

P(WL).

Note that X(T ) is the closure of the image of the respective rational map

∏

e∈E

P(Ŵ e) 99K P

(⊗

v∈L

Wv

)

which is defined by a special linear subsystem
∣∣⊗

e∈E p
∗
P(Ŵ e)

O
P(Ŵ e)(1)

∣∣ in the Segre

linear system, where p∗
P(Ŵ e)

is the projection from the product to the respective com-

ponent. We will call this map a rational parametrization of the model.

The above definition of parametrization is an unrooted and algebraic version of

what is commonly considered in the statistics literature, see [1], [24] or [6].

3. Phylogenetic model of a graph

The phylogenetic model of a trivalent graph is a generalization of the discussed pro-

jective geometrical model of a binary symmetric model on a trivalent tree. Graph

models no longer have a parametrization — we generalize the alternative construction

given in [5] which uses quotients. In Section 3.1 we describe the quotient construction
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so that it is valid for both trees and graphs. Then in Section 3.2 we provide a de-

scription of lattice and cone of the resulting toric variety and we prove that it yields

the phylogenetic model.

3.1. Definition as quotient

Given a not necessarily connected trivalent graph G, we construct a toric variety

X(G), generalizing the binary symmetric model of trivalent tree from [5].

As we have already explained, see equation (II.3), any trivalent graph is the

union of |V| − n elementary tripods with some edges identified. To define the variety

X(G) we replace each elementary tripod v with P
3
v, union with product, and the

edge identification with a quotient by an action of a one-parameter torus.

Definition II.16. Let G be a trivalent graph. To an inner vertex v ∈ V \ L we

associate projective space P3
v with coordinates xv

∅, x
v
12, x

v
13, x

v
23. To any edge e ∈ E we

associate an action λe
v of C∗ on P3

v with weights 0 and 1 as follows:

λe
v(t)(xS) =





t · xv
S if the index of i−1

v (e) ∈ {e1, e2, e3} belongs to the set S,

xv
S otherwise.

So we have an action of a three-dimensional torus on P3 = ProjC[xv
∅, x

v
12, x

v
13, x

v
23]

with weights: 


0 1 1 0

0 1 0 1

0 0 1 1




In other words if for example iv(e2) = e then λe
v acts with weight 1 on xv

12 and xv
23

and with weight 0 on xv
∅ and xv

13. This action extends to an action λe
v on

∏
v∈V\L P

3
v

which is non-trivial only if v is an end of the edge e. Thus, for any internal edge
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e ∈ E \ P, we can define a C∗-action λe
∂1(e)
×−λe

∂2(e)
on

∏

v∈V\L

P
3
v (II.17)

to be the product action of the action λe
∂1(e)

on P3
∂1(e)

and the action λe
∂2(e)

with

opposite weights on P3
∂2(e)

. We define the phylogenetic model of a trivalent

graph G to be the good quotient:

X(G) :=
( ∏

v∈V\L

P
3
v

) // ∏

e∈E\P

(
λe
∂1(e) ×−λ

e
∂2(e)

)
(II.18)

of the toric variety
∏

v∈V\L P
3
v by a subtorus of dimension |E| − |L| of the torus. The

subtorus by which we are dividing is a product of all the C∗’s over all internal edges

of the graph G and the linearized line bundle is ⊠v∈V(G)OP3
v
(1). By Theorem I.14.

X(G) is toric as it is the quotient of a toric variety by a subtorus.

Remark II.19. In Definition (II.18) the choice that we made defining the action

of the torus (C∗)V\L only depends on the choice of coordinates of the torus. If we

choose different orientation of the edge e, then the two C
∗-actions λe

∂1(e)
×−λe

∂2(e)
and

−λe
∂1(e)
× λe

∂2(e)
differ by composing with t 7→ 1

t
.

Remark II.20. Let l be a leaf of a graph G and e the adjacent petiole. The action

λe
l descends to a non-trivial action on the quotient variety X(G) and is denoted by

λl. For a subset S ⊂ L of the leaves of G of cardinality k we have an action of a

k-dimensional torus T(S) — a product of the corresponding λl’s.

If we set k = |V| − n the number of inner vertices, we can rewrite |V| − |E| =

| compG| − g using Lemma II.5(ii) to get k = (2g − 2| compG|) + n. Observe that

• k is the number of the P3’s in (II.17)

• g is the first Betti number.
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On the other hand, |E| − n = k + g − | compG| is the number of inner edges which is

the dimension of the torus that we divide by in (II.18). We get a variety of dimension

dimX(G) = 3k − (|E| − n) = 3g − 3| compG|+ 2n = |E|.

3.2. Lattice and cone

Given a trivalent graph G we construct the toric data that allows to recover its toric

model. The graded lattice, denoted by Mgr, as well as the graded cone in it have

both rank one bigger than the dimension of the model X(G), and the latter is equal

to the number of edges E(G).

Definition II.21. Given a graph G let ZE =
⊕

Z · e be the lattice spanned by E ,

and ZE∨ = Hom(ZE ,Z) be its dual. Elements of the lattice ZE are formal linear

combinations of the edges, forming the standard basis of ZE . The dual lattice ZE∨

comes with the dual basis {e∗}e∈E . We identify vertices of the graph G with certain

elements of ZE∨:

v =
∑

e∋v

e∗. (II.22)

We also define M = {u ∈ ZE : ∀v ∈ V v(u) ∈ 2Z} and its dual N = Hom(M,Z).

Then the graded lattice of the graph is

Mgr = Z⊕M,

with the degree map

deg : Mgr = Z⊕M → Z,

which is the projection to the first summand. The degree of ω ∈Mgr is deg(w).

If there is more then one graph in question we will write M(G) for Mgr(G) etc.

Let us use the following notation for the elements of the lattice ZE∨ dual to the
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edges meeting at the vertex v

av :=
(
iv(e1)

)∗
, bv :=

(
iv(e2)

)∗
, cv :=

(
iv(e3)

)∗
,

where {e1, e2, e3} are the edges of and iv : →֒ G is, as before, a map which is

locally an embedding and sends the central vertex of the to v — an inner vertex

of G. Whenever we use this notation we have a fixed presentation as in (II.3).

Given an element ω in either ZE , M or Mgr, each of av, bv, cv ∈ ZE∨ measures

the coefficient of ω at an edge incident to v. Then (II.22) becomes

v = av + bv + cv.

Definition II.23. The degree of ω ∈Mgr at a vertex v ∈ V(G) is

degv(ω) :=
1

2
·
(
av(ω) + bv(ω) + cv(ω)

)
.

The minimal degree of ω is

degmin(ω) := maxv∈V{degv(ω)},

where πM : Mgr →M is the projection to the second summand.

The name minimal degree will be clear after we define the cone τ(G).

We identify paths and networks in G with elements of the lattices M and Mgr,

by replacing union with sum in the group ZE

Definition II.24. A network in the graded latticeMgr is a pair ω = (1, a) ∈Mgr

where a ∈M is a network.

Lemma II.25. An element of the lattice M is represented by a labeling of the edges

of G with integers so that the sum at any vertex is even. Thus the lattice M ⊂ ZE is

generated by
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(i) networks

(ii) {2e | e ∈ E}.

Proof. Let ω ∈ M . By using generators of the second type, we can assume that

0 ≤ av(ω), bv(ω), cv(ω) ≤ 1 for any vertex v. This implies that av(ω) + bv(ω) + cv(ω)

equals 0 or 2 and either two among av(ω), bv(ω), cv(ω) are one or all are zero. This

implies that ω is a network, since it corresponds to a disjoint union of path. A path

goes through a vertex v means in terms of av(ω), bv(ω), cv(ω) that exactly two of them

are one.

We define the cone τ(G) of the graph, which is the semigroup defining the model

of the graph as projective spectrum of the semigroup ring, as we will see in Theo-

rem II.28.

Definition II.26. For a graph G we define its cone τ = τ(G) ⊂ Mgr as the set of

ω ∈Mgr which satisfy following inequalities:

(i) av(ω), bv(ω), cv(ω) ≥ 0,

(ii) for any vertex v ∈ V triangle inequalities hold

|av(ω)− bv(ω)| ≤ cv(ω) ≤ av(ω) + bv(ω), and

(iii) deg(ω) ≥ degmin(ω).

Remark II.27. To explain the name minimal degree degmin(ω), note that for any ω

in the cone we have the following equality

degmin(ω) = minω′∈τ{deg(ω′) : πM̂(ω′) = πM̂(ω)}.

Proof of the remark. By part (iii) of the Definition II.26 of τ for any ω′ ∈ τ
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satisfying πM̂(ω′) = πM̂(ω) we have

deg(ω′) ≥ degmin(ω′) = degmin(ω)

since by definition of degmin(ω) only depends on πM̂(ω). This means

degmin(ω) ≤ minω′∈τ{deg(ω′) : πM̂ (ω′) = πM̂ (ω)}.

To prove the equality we will find ω′ ∈ τ with deg(ω′) = degmin(ω). Let us write

ω = (deg(ω), α) as it is an element of Mgr. Recall that degmin(ω) is the maximum of

degv(ω) = 1
2
·(av+bv+cv)(w) over all vertices v of the graph. Thus ω′ = (degmin(ω), α)

is in the cone τ and has the required degree in Mgr.

Theorem II.28. The variety X(G) is isomorphic to the toric variety ProjC[τ(G)].

Proof. To see this we first observe that each P3
v in Definition II.16 of the model

X(G) can be written as ProjC[τ( v)], where each cone

τ( v) = conv(0000, 1000, 1110, 1101, 1011)

is a cone over a tetrahedron and is clearly defined by the required inequalities. Next,

taking the product of Pv corresponds by Lemma I.13 to taking a graded product of

cones. Thus the product cone is defined by required inequalities. Lastly we use the

description of the quotient of a toric variety by a subtorus of the torus in Theorem I.14.

The subtorus in Definition II.16 is a product of the C∗
e over all internal edges. Taking

the quotient with respect to such a torus corresponds to cutting the cone with the

hyperplane of the type a∂1(e) = b∂2(e), which preserves the inequalities.
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3.3. Z-generators of the cone τ(G)

Knowing that the model X(G) is the projective spectrum of the semigroup algebra of

τ(G) means that it is a subvariety of a weighted projective space with weights equal

to the degrees of the chosen generators. When G = T is a tree the cone is generated

in degree 1 so the embedding is into a (straight) projective space Pk = P(1, . . . , 1).

In this case, by [5], we already know all about this cone, see Proposition II.36 below.

It is represented by its degree 1 section — a normal lattice polytope ∆(T ) ⊂ 1×M ,

whose vertices span the cone τ(T ) and the lattice points generate the semigroup.

Our goal is to show that for graphs with the first Betti number one, the semigroup is

generated in degrees 1 and 2.

In order to describe Z-generators of the cone τ(G) we will express elements of

τ(G) in terms of G. We also decompose the graph G into smaller graphs for which

Z-generators of the corresponding cones are easier to find.

We explain that any element ω of the cone τ(G) locally decomposes into paths.

In the graph there are three non-empty paths, each consisting of two edges. Let

us denote them by:

x := e2 + e3, y := e1 + e3, z := e1 + e2,

where {e1, e2, e3} are edges of .

For an arbitrary G, we know that given an element ω ∈ τ(G) of the cone and a

vertex v ∈ V(G), the numbers av(ω), bv(ω), cv(ω) satisfy the triangle inequalities and

their sum is even. This allows us to, locally at v, rewrite ω as sum of paths x, y

and z. The picture of this decomposition is drawn in Figure II.9.
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av

bv cv
xv

yvzv
av = yv + zv

bv = xv + + zv

cv = xv + yv

Fig. II.9.: Local paths around a vertex

Our aim is to find the Z-generators by understanding how the graph G was built

from smaller pieces. Each of the operations in Definition II.6 has a corresponding

operation on lattices and cones. By Definition II.16, the model of a disjoint sum of

graphs is the product of the models, so the underlying cone is the graded product of

corresponding cones.

Lemma II.29. Let G1 and G2 be two trivalent graphs then

Mgr(G1 ⊔ G2) = Mgr(G1)×g M
gr(G2), and

τ(G1 ⊔ G2) = τ(G1)×g τ(G2).

In the definition of X(G) we take a quotient by a torus corresponding to the set

of inner edges. In other words we have translated the operation of gluing of two leaves

of a graph G into taking a quotient by appropriate C∗-action of the model X(G). The

following observation says that if we choose to glue some pairs of leaves first and then

the rest of the pairs it does not matter how we partition the set of pairs of leaves or

which order we choose. In all cases the resulting variety is the same.

Lemma II.30. Let two reductive, commutative groups H1 and H2 and their direct

sum H1 ⊕H2 act on a projective variety X. Suppose all those actions are linearized

with respect to some ample Weil divisor L. Then

X//(H1 ⊕H2) = (X//H1)//H2 = (X//H2)//H1,
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where the semistable points on X are taken with respect to L and on quotients of X

with respect to the push-forward of L.

We have identified the vertices of G with elements of ZE∨, see (II.22). We ob-

served in Remark II.20 that a leaf l yields a C
∗-action λl on X(G). Given two leaves

l1 and l2 of G, by definition we have

X(Gl1l2⊃) = X(G)//
(
λl1 ×−λl2

)
.

In terms of toric geometry this quotient corresponds to the intersection of τ(G) with

the kernel of l1 − l2, where we treat l1 and l2 as elements of the lattice (Mgr)∨. Thus

the following lemma is a consequence of Theorem I.14.

Lemma II.31. Let l1 and l2 be distinct leaves of G. Then

Mgr(Gl1l2⊃) = Mgr(G) ∩ ker(l1 − l2)

τ(Gl1l2⊃) = τ(G) ∩ ker(l1 − l2).

The reverse operation on graphs is to cut an edge into two new edges. In the

next lemma we explain how this is reflected on the cones and lattices.

Lemma II.32. Let G be a trivalent graph and e ∈ E\P an internal edge. As before Ge

is the graph obtained from G by cutting the edge e. Then there are natural embeddings

of the cones and graded lattices:

ie : Mgr(G) →֒Mgr(Ge) ie : τ(G) →֒ τ(Ge)

Proof. Let

ZEe(G) =
⊕

e′∈E(G)\{e}

Z · e′

be the lattice spanned by all other edges. We can decompose the lattices (ZE)gr(G)
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and (ZE)gr(Ge)

ZE(G) = Z⊕ ZEe(G)⊕ Z · e,

ZE(Ge) = Z⊕ ZEe(G)⊕ Z · e1 ⊕ Z · e2.

Thus we can embed the lattices identifying the first two summands and taking a di-

agonal embedding of the third one: ie := idZ⊕ idZEe ⊕∆Z : (ZE)gr(G) →֒ (ZE)gr(Ge).

To complete the proof we check that ie restricts to the lattices with parity condition

and to the cones.

ZE(G) ie
ZE(Ge)

Mgr(G) ie Mgr(Ge)

ZE(G) ie
ZE(Ge)

τ(G) ie τ(Ge)

To see it we only need to check the parity condition about the ends ∂1(e) and ∂2(e)

of the edge e that we cut. By definition e∗1(i
e(e)) = e∗2(i

e(e)), so for any ω ∈ Mgr

we have ∂1(e)(ω) = ∂1(e1)(i
e(ω)) and ∂2(e)(ω) = ∂2(e2)(i

e(ω)). In the same way ie

preserves all the inequalities defining cones τ(G) and τ(Ge).

When the edge e is not a cycle edge, the graph Ge is not connected. We write

Ge = G1 ⊔ G2, where G1 (respectively G2) is the part containing e1 (respectively e2).

Then we have a projection πe
1 (respectively πe

2) of lattices

πe
1 : Mgr(Ge) = Mgr(G1)×Mgr(G2)։Mgr(G1)

which restricts to a projection of cones. For a non-cycle edge e ∈ E we denote by ρe1

(respectively ρe2) the composition ρe1 = πe
1 ◦ i

e of the above defined maps.

Remark II.33. When e ∈ E is not a cycle edge we write Ge = G1 ⊔ G2. Then the

cone τ(G) is the following fiber product of the cones ρe1(τ(G)) = τ(G1) and ρe2(τ(G)) =
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τ(G2). The same is true for the lattice Mgr(G).

τ(G)
ρe1

ρe2

τ(G1)

deg⊕e∗1

τ(G2)
deg⊕e∗

2

Z⊕ Z

Mgr(G)
ρe1

ρe2

Mgr(G1)

deg⊕e∗1

Mgr(G2)
deg⊕e∗

2

Z⊕ Z

Now we turn our attention to our main task of finding the Z-generators of the

cone τ(G).

Lemma II.34. For any graph G the set of degree 1 integer points of cone τ(G) is

equal to the set of networks.

Proof. If ω ∈ τ is a point in the cone of degree 1, then for any vertex v ∈ V,

1 = deg(ω) ≥ degmin(ω) = maxu∈V{degu(ω)} ≥ degv(ω) ≥ 0.

By definition degv = xv + yv + zv ≥ 0 so exactly one of xv(ω), yv(ω), zv(ω) equals

one and the other two are zero or all are zero. Equivalently exactly two of av(ω),

bv(ω), cv(ω) are one, and the third one is zero, or all are zero. This means that ω is

a network.

Corollary II.35. All networks are among the minimal Z-generators of the cone τ(G).

In fact when the graph in question is a tree these are the Z-generators.

Proposition II.36 ([5, §2.1]). If G is a trivalent tree, then τ(G) is generated in

degree 1. Moreover, the generators are exactly networks of paths, which in this case are

determined by their values on the leaves. Thus a generator of τ(G) is identified with

a sequence of 0’s and 1’s of length n(G) with even number of 1’s. As a consequence

a model of a trivalent tree with n leaves comes with an embedding into projective

space P2n−1−1.
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Let G be a graph with the first Betti number one. We will describe the generators

of the semigroup τ(G) in this case. We cut all the cycle legs l1, . . . , lk of G and write

Gl1,...,lk = G0⊔G1⊔. . .⊔Gk, where G0 is a polygon graph and thus G1, . . . ,Gk are pendant

trees (see Definition II.7). Thus any element ω ∈ τ(G) has a lift ω̃ ∈ τ(G0⊔ . . .⊔Gk) =

τ(G0)×g τ(G1)×g . . .×g τ(Gk) and components ω̃ = (ω0, w1, . . . , ωk), which can be

written ωi = ρli(ω).

Theorem II.37. Let G be a trivalent graph with the first Betti number exactly one.

Any element ω ∈ Mgr(G) is a minimal Z-generator of τ(G) if and only if it satisfies

one of the following conditions

(i) ω has degree 1 and ω is a network, or

(ii) ω has degree 2, and satisfies the following three conditions determining w0

e∗(ω) = 1, for all cycle edges e ∈ E \ L

e∗(ω) = 2, for an odd number of cycle legs,

e∗(ω) = 0, for the remaining cycle legs.

Each of the remaining components ωi ∈ τ(Gi) is an element of degree at most

two.

We postpone the proof until we prepare for it with some lemmas. The idea of

the proof is to use Lemma II.32 in order to remove the pendant trees G1, . . . ,Gk and

work only with the polygon graph G0. Lemma II.41 describes all the degree 2 points

of the cone of a polygon graph and distinguishes the generators among them.

Example II.38. In Figure II.10 we illustrate the generators of the cone associated

to the graph LittleMan (one of the two graphs with one cycle and two leaves). The

first four are of degree 1, the remaining three are of degree 2.
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Fig. II.10.: Generators of the cone of the LittleMan graph

Lemma II.39 (Decomposition propagates to pendant trees). Let G be any trivalent

graph and ω ∈ τ any cone element. Let us also fix a non-cycle edge e ∈ E \ P such

that Ge is a tree, where Ge = G1 ⊔ G2. Then any decomposition of ρe1(ω) lifts to a

decomposition of ω.

Proof. First note that both ρe1 and ρe2 preserve the degree, so an element ω of degree

d in τ(G) yields ω1 ∈ τ(G1) and ω2 ∈ τ(G2) both of degree d. The semigroup of a

tree is generated by networks, which are degree 1 elements, see Theorem II.36. This

means that ρe2(ω) is a sum of degree 1 elements. Thus if ρe1(ω) can be decomposed,

then the same decomposition works for ω by choosing appropriate grouping of the

summands of ρe2(ω), because the degrees are preserved.

Corollary II.40. In the proof of Theorem II.37 we can assume that the graph is a

polygon graph.

Proof. A graph with one cycle is a polygon graph with a tree attached to each cycle

leg l1, . . . , lk. We cut all the cycle legs to obtain k+1 pieces of the graph G: a polygon

graph G0 and k trees: G1, . . . ,Gk. We denote by ρ0 the composition of projections for

each leg that we cut ρ0 = ρl10 ◦ · · · ◦ ρ
lk
0 . Iteratively using Lemma II.39 to decompose

ρ0(ω) we decompose ω.

Lemma II.41 (Degree 2 elements of the cone). Let G be a graph with exactly one

cycle. Any degree 2 element of τ(G) except those in Theorem II.37 (ii) is a sum of

two networks.
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Proof. By Corollary II.40 we may assume G is a polygon graph. Let ω ∈ τ(G) a

degree 2 element. The coefficient e∗(ω) of ω on any edge e ∈ E is 0, 1 or 2. We denote

by

ωE\P := {e∗(ω) | e ∈ E \ P}

the set of coefficients of ω on the cycle edges. We distinguish between four types of

ω based on ωE\P . For all but one we decompose ω as a sum of two networks.

If 0 ∈ ωE\P , there exists a cycle edge e ∈ E(G) with e∗(ω) = 0. We can cut it

with no harm to ω, since ie(ω) ∈ τ(Ge) is a degree 2 element in a cone of the trivalent

tree Ge, so it can be decomposed into a sum of degree 1 elements. This decomposition

can be lifted to τ(G), as we assumed e∗(ω) = 0. On Figure II.11 we show an example

of this situation.

= + .

Fig. II.11.: Decomposition of a degree two element with a weight zero cycle edge

The second case is when ωE\P = {2}, that is e∗(ω) is 2 on all cycle edges. As ω has

degree 2, we know that degv(ω) ≤ 2 and as a consequence:

e∗(ω) =





2 if e is a cycle edge

0 otherwise, i.e. e is a cycle leg.

Thus ω is twice the network consisting of all the cycle edges, as on the example on

Figure II.12.
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= + .

Fig. II.12.: Decomposition of a degree two element with all cycle edges of weight two

For the last two cases we let l1, . . . , lp be the set of all cycle legs with l∗i (ω) 6= 0

ordered anticlockwise and indexed by elements of Zp. Also we denote by i x j the

path that starts at li and goes anticlockwise along the intermediate cycle edges to lj

and ends there.

In the third case ωE\P = {1} and we will show that ω can be decomposed into a

sum of two networks if and only if the number of cycle legs for which ω has a coefficient

2 is even. Suppose we have decomposed ω = ω1 + ω2 into a sum of networks and

neither ω1 nor ω2 contains the path consisting of all cycle edges (in which case the

other one would be an empty network). Then both ω1 and ω2 contain a positive even

number of legs. Any path in ω1 (respectively ω2) is of the type i x i + 1, from the

cycle leg li to the next one. If the end was not the next one, there would be a path

in ω2 (respectively ω1) containing an intermediate leg and as a result there would be

a cycle edge e with ω(e) = 2, but ωE\P = {1}. Moreover, both ω1 and ω2 contain

all non-zero cycle legs, each with value 1, because they are both of degree 1 and in

the cone we have deg(ω) ≥ degmin(ω). This is only possible when the number p of

non-zero cycle legs is even, and in that case we have the obvious decomposition with

ω1 = i1 x i2 + . . . + ip−1 x ip and ω2 = i2 x i3 + . . . + ip x i1 . Otherwise ω is

a generator. Examples of both these situations are drawn on Figure II.13.
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a generator

= +

Fig. II.13.: Typical generator of degree two and a decomposition of a degree two

element with all cycle edges of weight one

In the last case ωE\P = {1, 2}. When l∗(ω) = 2 we call l a two-leg. Denote by

li1 , . . . , liq the subsequence of two-legs, numbered in such way that traveling along

the cycle anticlockwise from liq to li1 there is a one-leg, provided that ω has some

one-legs. We observe that the number of one-legs between two consecutive two-legs

is always even. This is best explained by drawing the picture from Figure II.14.

two−leg

...

one−leg

...

next two−leg

Fig. II.14.: Element of degree two has even number of one-legs between consecutive

two-legs

where the arcs are our xv, yv, zv’s introduced in II.9. To produce an element of the

lattice, the two on the same edge need to share the same value. If there would be

only zero-legs where the first dots are, the local paths would not agree on some cycle

edge.

The decomposition ω = (1, ω1) + (1, ω2) depends on the parity of q, which is

the number of two-legs. We first work in the case q = 2r is even, the odd case

uses the same idea with small modifications. The Figure II.15 visualizes how the

decomposition is constructed in the case q = 4.
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li2

li3li4

l3

l4 li1

= +

Fig. II.15.: Decomposition of a degree two element with even number of two-legs

First we place all paths between two consecutive two-legs starting at an leg with an

even (respectively odd) index into ω1 (respectively ω2). Then, to take care of the

one-legs, we add paths between consecutive one-legs lying between li2j and li2j+1
for

some j ∈ {1, . . . , p} to ω1. Thus we get

ω1 =

i1 x i2 + (i2 + 1) x (i2 + 2) + . . .+ (i3 − 2) x (i3 − 1)+
i3 x i4 + (i4 + 1) x (i4 + 2) + . . .+ (i5 − 2) x (i5 − 1)+

.

..
i2r−1 x i2r + (i2r + 1) x (i2r + 2) + . . .+ (i1 − 2) x (i1 − 1)

.

Similarly we add paths between consecutive one-legs lying between li2j−1
and li2j for

some j ∈ {1, . . . , p} to ω2. So we can write

ω2 =

i2 x i3 + (i3 + 1) x (i3 + 2) + . . .+ (i4 − 2) x (i4 − 1)+
i4 x i5 + (i5 + 1) x (i5 + 2) + . . .+ (i6 − 2) x (i6 − 1)+

...
i2r x i1 + (i1 + 1) x (i1 + 2) + . . .+ (i2 − 2) x (i2 − 1)

.

Clearly those paths in ω1 (resp. ω2) are disjoint, so both are networks and by con-

struction they yield a decomposition of our ω.

When the number q of two-legs is odd we need to adjust the above decomposition.

Again, we draw an example on Figure II.16 for q = 3
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l0

l1li1

li2

li3

= + .

Fig. II.16.: Decomposition of a degree two element with odd number of two-legs

As there is an odd number of two-legs, we will use two consecutive one-legs lying

between liq and li1 to make up for the missing two-leg, and we proceed as before to

get

ω1 =

i1 x i2 + (i2 + 1) x (i2 + 2) + . . .+ (i3 − 2) x (i3 − 1)+
i3 x i4 + (i4 + 1) x (i4 + 2) + . . .+ (i5 − 2) x (i5 − 1)+

...
i2r−1 x i2r + (i2r + 1) x (i2r + 2) + . . .+ (i2r+1 − 2) x (i2r+1 − 1)
i2r+1 x i1 − 1

and

ω2 =

i2 x i3 + (i3 + 1) x (i3 + 2) + . . .+ (i4 − 2) x (i4 − 1)+
i4 x i5 + (i5 + 1) x (i5 + 2) + . . .+ (i6 − 2) x (i6 − 1)+

...
i2r x i2r+1 + (i2r+1 + 1) x (i2r+1 + 2) + . . .+ (i1 − 4) x (i1 − 3)
i1 − 2 x i1

This ends the proof of the lemma about the decomposable degree two elements of the

cone.

Proof of Theorem II.37. The proof yields an algorithm for decomposing an ar-

bitrary element ω of the cone τ(G) into a sum of degree 1 and 2 generators. By

Corollary II.40 we only need to prove the theorem when G is a polygon graph. First

we fix an orientation of the cycle of G and we call it anticlockwise in order to think of

a planar embedding of the graph. Let ω ∈ τ(G). We will find an element µ of degree

at most 2, such that ω − µ ∈ τ(G). Let v be a vertex and lv the cycle leg attached

it. We choose an map iv : → G so that the edge e3 is mapped to lv, the edge e2

is mapped to the edge which points anticlockwise from v, and the edge e1 is mapped

to the edge which points clockwise from v. In this notation the coefficient of ω at lv
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is measured by cv and coefficient of the edge anticlockwise (respectively clockwise)

from v is measured by av (respectively bv). We will also use the local paths xv, yv, zv

defined in (II.9).

Now we are ready to describe the algorithm to find µ.

Step 1. If there is a cycle edge e with e∗(ω) = 0, we cut e and obtain the graph Ge

which is a trivalent tree. Thus ρe(ω) is a sum of networks of path and this

decomposition lifts to graph G.

Step 2. Otherwise e∗(ω) ≥ 1 on all cycle edges e. We set µ to have value 1 on every

cycle edge. Equivalently µ is defined by setting at every cycle vertex zv(µ) = 1,

xv(µ) = 0, yv(µ) = 0. Now if ω − µ ∈ τ(G) we are done. Otherwise ω − µ

fails one of the inequalities defining τ(G). It is not the one with degrees, since

for each vertex v ∈ G we have degv(µ) = 1, which implies degmin(ω − µ) ≤

deg(ω) − deg(µ) = deg(ω − µ). Clearly all coefficients of ω − µ are positive.

Thus at some vertex v ∈ V our ω − µ fails one of the triangle inequalities.

Step 3. We will adjust µ to fix the triangle inequalities for ω−µ. If a triangle inequality

for ω−µ at v fails, then this is because zv(ω) = 0. In such a case we set µ(lv) = 2,

which will not make any coefficient of ω − µ negative provided cv(ω) ≥ 2. But

since av(ω), bv(ω) ≥ 1 and zv(ω) = 0 we must have xv(ω), yv(ω) ≥ 1. This

implies cv(ω) ≥ 2 as required. In terms of xv, yv, zv we have decreased zv(µ) by

one and increased both xv(µ) and yv(µ) by one.

Step 4. We need a last adjustment on µ to assure the additivity of degree where it is

attained, i.e. for any v such that degv(ω) = deg(ω) we need degv(µ) = 2 since

deg(µ) = 2. This is to ensure ω − µ ∈ τ . We call v degree deficient vertex if

degv(ω) = deg(ω) and degv(µ) = 1.
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If v is degree deficient and in addition xv(ω) > 0 and yv(ω) > 0 we set xv(µ) =

yv(µ) = 1 and zv(µ) = 0.

If v is degree deficient and both xv(ω) = yv(ω) = 0 are zero, then zv(ω) =

degv(ω), so at both next and previous cycle vertex the degree is attained

degvnext
(ω) = degvprev(ω) = deg(ω)

since zvnext + yvnext = zv + xv = zvprev + xvprev (II.42)

If all degree deficient vertices were of this type, then ω was a multiple of the

path consisting of all cycle edges.

Now we divide the set of all deficient vertices (which all have at least one of

xv(ω) or yv(ω) equal to zero) into sequences of adjacent ones. Let us fix our

attention to such a sequence (we already excluded the case when it has the

same end and beginning). Call it v1, . . . , vr. Then because all vi’s are degree

deficient: deg(ω) = degvi(ω). The last one has yvr(ω) > 0 by (II.42)

deg(ω) = zvr−1
(ω) = yvr(ω) + zvr(ω) ≤ zvr(ω) < deg(ω)

In the same way xv1(ω) > 0. Finally all the middle ones have zvi(ω) > 1. This

implies that we can redefine µ on our fixed sequence v1, . . . , vr preserving all

other properties and fixing the degree deficiency:

xv1(µ) = 1 xvi(µ) = 0 xvr(µ) = 0

yv1(µ) = 0 yvi(µ) = 0 yvr(µ) = 1

zv1(µ) = 1 zvi(µ) = 2 zvr(µ) = 1

where i ∈ {2, . . . , r − 1}. We do this for all such sequences and we have the
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required µ.

Now µ is an element of degree 2 and is either a generator or can be decomposed into

a sum of two generators in degree 1, as described in Lemma II.41.

Remark II.43. If we allow more cycles, we can have generators of higher degree. As

we can see on Figure II.17 the graph with two loops and one leaf has a degree three

generator: one on the two loops, two on the three other edges.

Fig. II.17.: Example of a degree three generator

3.4. Embedding

The aim of this section is to find a common ambient space for phylogenetic models of

all graphs with the same topological invariants. The way to construct this ambient

space follows easily form the definition of the model.

Theorem II.44. The phylogenetic model of a trivalent graph G embeds in a projective

toric variety Pg,n, which is a good quotient of projective space by an action of a g-

dimensional torus. This action as well as the variety Pg,n depends only on the first

Betti number and number of leaves of G, up to reordering of coordinates.

Proof. Models of trivalent trees with N leaves embed naturally in P2N−1−1, with

coordinates xκ where κ ∈ {0, 1}N is a sequence of length N with values in {0, 1} and

even number of 1-entries, see Proposition II.36. We cut g cycle edges of the graph

G so that we obtain a trivalent tree T with set S of M = n + 2g leaves. Dividing
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P2M−1−1 by the action of the g-dimensional torus T(g, n) that corresponds to gluing

these leaves back together, yields the required embeddings.

We will now explain that this action does not depend on the graph G, up to

choice of coordinates on Let us label the set of leaves by 1 . . .M and divide it into

three disjoint sets S = S0 ⊔ S1 ⊔ S−1 as follows. S0 is the set of leaves of the original

graph G. The 2g new leaves of T come in pairs (l, l−), where both l and l− used to

be the same edge in G. We put l in S1 and l− in S−1.

The action of the g-dimensional torus T(g, n) on P
2M−1−1 is given by a matrix

{ζ lκ}
l=1...g
κ∈{0,1}M

, where ζ lκ = κl − κl−

Thus this action is independent of the shape of G and depends only on (g, n) up to

choice of order of coordinates.

We will now illustrate Theorem II.44.

Example II.45. We describe X ( ), the model of LittleMan, together with its em-

bedding into P1,2. We know that the model of a trivalent tree is a complete

intersection of two quadrics, see [5, Ex. 2.6],

(x1100x0011 − x0000x1111, x1001x0110 − x1010x0101)

⊂ ProjC[x0000, x1100, x0011, x1111, x1010, x1001, x0101, x0110] (II.46)

where each variable xκ corresponds to a degree 1 generator τ( ). By Proposition II.36

a generator is given by its values on the leaves, which form the index κ ∈ {0, 1}4.

To obtain X ( ), we glue two leaves, say leaf e1 is glued with the leaf e2 to get

the loop in LittleMan as shown on Figure II.18.
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1 2

3 4 3 4

Fig. II.18.: Obtaining LittleMan graph from a four-leaf tree

Now X ( ) is a GIT-quotient of X ( ) by the action λe1−e2.

In the same way it embeds in a GIT-quotient of P7. One easily sees that

P
7//C∗ = V (y1 · y2 − z1 · z2) ⊂ P(14, 24)

where

P(14, 24) = ProjC[x0000, x1100, x0011, x1111, y1, y2, z1, z2]

is a weighted projective space and

y1 = x1001 · x0110, y2 = x1010 · x0101, z1 = x1010 · x0110, z2 = x0101 · x1001

are the C∗–invariant variables of degree 2. From Theorem I.6 it follows that X ( )

is given by Equations (II.46) of X ( ) in P7, rewritten in the coordinates of P7//C∗.

The second one becomes y1 − y2 = 0, so

X ( ) = ProjC[τ ( )] = V (x1100x0011 − x0000x1111, y
2
1 − z1z2) ⊂ P(14, 23)

‖

⋂
V (y1 − y2)

⋂

P1,2 = P7//C∗ = V (y1y2 − z1z2) ⊂ P(14, 24)

If we replace each variable in the equations of X( ) by its representation on the

graph, we get the picture from Figure II.19.
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+ = + + = +

Fig. II.19.: Ideal of the model LittleMan graph

Example II.47. As in the previous example, we work out properties of X ( ) —

the model of Hammock. We use the same action λl1−l2, but we change the embedding

X ( ) →֒ P7 by relabeling the leaves as on Figure II.20.

1 3

2 4 4

3

Fig. II.20.: Obtaining Hammock graph from a four-leaf tree

As the labeling of was modified, Equations (II.46) become

V (x1010x0101 − x0000x1111, x1001x0110 − x1100x0011) ⊂ P
7.

We again rewrite them in the invariant coordinates of P(14, 24) to get:

X ( ) = ProjC[τ ( )] = V (x0000x1111x1100x0011 − z1z2) ⊂ P(14, 22)

‖

⋂
V (y1 − x0000x1111, x1100x0011 − y2)

⋂

P1,2 = P7//C∗ = V (y1y2 − z1z2) ⊂ P(14, 24)

If we replace each variable in the degree 4 equation of X( ) by its representation

on the graph, we get the picture shown on Figure II.21.
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+ + + = +

Fig. II.21.: Ideal of the model of the Hammock graph
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CHAPTER III

FLAT FAMILIES

Like in many branches of mathematics, algebraic geometry aims often to classify

the objects of its study. One common restriction is to look only at (Zariski) closed

subvarieties of a fixed projective space. A variety of this type is called projective. The

class of projective varieties is a subclass of complete varieties, which are analogous to

the compact spaces in topology.

There are number of ways to classify algebraic varieties. The easiest is to define

discrete invariants, for example dimension or degree of a subvariety in a projective

space. All the discrete invariants are captured by the Hilbert polynomial.

Another way of determining how similar varieties are is to ask if they can be

deformed one to another by arranging a flat family with a connected base which

contains both of them. If this can be done, they are called deformation equivalent.

The most important property of the Hilbert polynomial is exhibited by the fol-

lowing theorem.

Theorem. Two subvarieties of a given projective space are deformation equivalent if

and only if they have the same Hilbert polynomial.

Another central fact of projective algebraic geometry says that there exists an

object called Hilbert scheme parametrizing all projective varieties with a common

ambient space. In 1966 Robin Hartshorne in his PhD thesis [12] proved that the

connected components of the Hilbert scheme are in one-to-one correspondence with

the set of possible Hilbert polynomials.

Models of trivalent trees that differ by one mutation live in a flat family in a

projective space [5]. This statement almost remains true for trivalent graphs, by the



53

same argument. The only difference is that we get a family in the projective toric

variety Pg,n instead of a usual projective space.

Recall that in Remark II.20 we have associated to a subset of leaves S ⊂ L with

k elements an action of a k-dimensional torus T(S) on the model X(G).

1. Key examples of flat families for graph models

We construct two-dimensional flat families containing models of small graphs. They

become the building blocks for deformations of bigger graphs.

Example III.1 (g=0, n=4). Let be a trivalent tree with four leaves. In [5, Ex.

2.20] we constructed a flat family

X 0 →֒ B × P
7,

where

• B is an open subset of P2 with coordinates b(1,2)(3,4), b(1,3)(2,4), b(1,4)(2,3)

• the torus T(L) acts on B × P7 via the second coordinate, that is, for a leaf l of

and coordinate xκ of P7 we have λvi(t)(b(.)(.), xκ) = (b(.)(.), t
κ(l)xκ),

• the equidimentional projection X 0 → B contains the three special fibers X 0
[1,0,0],

X 0
[0,1,0] and X 0

[0,0,1] which are models of aforementioned four-leaf trees,

• X 0 is a T(L)-invariant complete intersection in B × P
7 of the two quadrics
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b(12)(34) · x1100x0011 + b(13)(24) · x1010x0101 + b(14)(23) · x1001x0110

−
(
b(12)(34) + b(13)(24) + b(14)(23)

)
· x0000x1111

(
b(13)(24) − b(14)(23)

)
· x1100x0011 +

(
b(14)(23) − b(12)(34)

)
· x1010x0101

+
(
b(12)(34) − b(13)(24)

)
· x1001x0110.

Example III.2 (g = 1, n = 2). We construct a family which contains models of

graphs with one cycle and two leaves. It arises as a C∗-quotient of the family X 0 →֒ P7

from Example III.1. Let us fix a C∗-action λl1−l2 on the ambient P7, thus on X 0 and

tree models as well, by choosing leaves l1 and l2 labeled by 1 and 2 respectively. Each

of the three trees yields a graph, when two leaves are glued together. Up to graph

isomorphism, there are two graphs with one cycle and two leaves. As we are mutating

along fixed edge, the LittleMan appears once and the Hammock twice. The picture

of the three possible trees becomes the one on Figure III.1.

1 2

3 4

l1=l2

3 4

1 3

2 4

l1=l2

4

3 1 4

2 3

l1=l2

3

4

Fig. III.1.: Mutations of graphs with one cycle and two leaves

The new ambient space P7//C∗ = (y1 · y2 − z1 · z2) ⊂ P(14, 24) was discussed in

Example II.45.

By Theorem I.6, the new family X 0//C∗ is given by the same, T(S)-invariant
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equations of X 0. We rewrite them in the (invariant) coordinates of P(14, 24)

b(12)(34) ·x1100x0011+b(13)(24) ·y2+b(14)(23) ·y1−(b(12)(23) +b(13)(24) +b(14)(23)) ·x0000x1111,

(b(23)(14) − b(14)(23)) · x1100x0011 + (b(14)(23) − b(12)(34)) · y2 + (b(12)(34) − b(23)(14)) · y1,

y1 · y2 − z1 · z2.

To understand how this works a little better, let us look at particular coordinate

of P(14, 24), say y2 = x1001x0110, and draw on Figure III.2 its representation for each

graph.

1 2

3 4

+
1 2

3 4

l1=l2

3 4

1 4

3 2

+
1 4

3 2

l1=l2

3

4

+
3

4

1 3

2 4

+
1 3

2 4

l1=l2

4

3

=
4

3

+
4

3

Fig. III.2.: Behavior of coordinates of P1,2 under mutations

2. Deformation equivalent models

We construct a flat family containing models of all mutations of a given trivalent

graph G along a fixed edge e ∈ E \ P. We follow [5, Const. 3.5] replacing polytopes

by cones.

Let G be a graph with an inner edge e0 which contains two trivalent inner vertices.

We can write G as a sum of a not necessarily connected graph G1 with a set S of k

distinguished leaves l1, . . . , lk with k ∈ {0, . . . , 4} and a graph G0 having the edge e0
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as its inner edge and G0 is one of the following three small graphs

(i) a tree with four leaves v1, . . . , v4, where the edge incident to the leaf li is

identified with the edge incident to the leaf vi,

(ii) LittleMan or Hammock — a graph with four edges and two leaves v1 and

v2,

(iii) Dumbell a graph with three edges and two loops and no leaves.

From Proposition II.29 we can compute the lattice Mgr(G) and the cone τ(G) from

those of the pieces G0 and G1

Mgr(G) = Mgr(G0)×g M
gr(G1) ∩

k⋂

i=1

ker(ℓi − vi)

τ(G) = τ(G0)×g τ(G1) ∩

k⋂

i=1

ker(ℓi − vi).

We consider the lattice Mgr
amb and the cone τamb, which are the combinatorial

data of the ambient space Pg(G0),n(G0) described by Theorem II.44, Example II.45 and

Example II.47. The inclusion X(G0) ⊂ Pg(G0),n(G0) yields maps: Mgr
amb →Mgr(G0) and

τamb → τ(G0). Forms vi, i = 1, . . . k pull-back to Mgr
amb and we denote them by ṽi,

respectively. Now we define

Mgr
Y = Mgr

amb(G0)×g M
gr(G1) ∩

k⋂

i=1

ker(ℓi − ṽi)

τY = τamb(G0)×g τ(G1) ∩

k⋂

i=1

ker(ℓi − ṽi).
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We define a toric variety Y = ProjC[τY ]. Since the good quotient is a categorical

quotient, by the construction we have the embedding

X(G) →֒ Y .

Lemma III.3. The inclusions

Mgr
Y →֒ Mgr

amb × Mgr(G1) and τY →֒ τamb × τ(G1)

induce a rational map

Pg(G0),n(G0) ×X(G1) 99K Y

which is a good quotient map (of the set over which it is defined) with respect to the

action of the k-dimensional torus T0 generated by one-parameter groups λvi−ℓi, where

i = 1, . . . k. The subvariety

X̂ = X 0 ×X(G1) →֒ B × P
7 ×X(G1)

is T0-invariant and its quotient X is locally complete intersection in B × Y.

Proof. The map given by inclusions of cones and lattices is a good quotient map by

Theorem I.14. Invariance of the resulting subvariety X̂ follows by the invariance of

X 0 →֒ B × P7 discussed in Example III.1. Finally, since X̂ is a complete intersection

in B×P7×X(G1) its image X is a locally complete intersection in the quotient B×Y .

This follows from the definition of good quotient, which locally is an affine quotient,

[2, Ch. 5], hence functions defining X̂ locally descend to functions defining X .

Lemma III.4. Over an open set B′ ⊂ P2 containing points [1, 0, 0], [0, 1, 0], [0, 0, 1]

the projection morphism X → B′ is flat. The fibers over points [1, 0, 0], [0, 1, 0],

[0, 0, 1] are reduced and isomorphic to, respectively, the geometric model of G and of

its elementary mutations along the edge e0.
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Proof. First we note that the fibers in question, X[∗,∗,∗], of X → B are geometric

models as we claim. Indeed this follows from the universal properties of good quo-

tients, c.f. [2], as they are quotients of the respective products X 0
[∗,∗,∗]×X(G1), which

are located, as three invariant subvarieties, in X̂ = X 0 ×X(G1). This, in particular,

implies that the respective fibers of X → B are of the expected dimension, hence they

are contained in a set B′ ⊂ P2 over which the map in question is equidimentional.

Since Y is toric it is Cohen-Macaulay and because X is a locally complete intersec-

tion in Y , it is Cohen-Macaulay too [7, Prop. 18.13]. Finally, the map X → B′ is

equidimentional hence it is flat, because B′ is smooth, see [7, Thm. 18.16]

Theorem III.5. Geometric models of connected trivalent graphs with the same num-

ber of leaves n and cycles g are deformation equivalent in the projective toric variety

Pg,n, which is a quotient of P2n+2g−1−1 by a g-dimensional torus.

Proof. This is a combination of Proposition II.11 and of Lemma III.4.

Remark III.6. Since the phylogenetic model of disjoint union of graphs is a product

of the models of the pieces, see II.29, we have proved that models of graphs with the

same topological invariants are deformation equivalent.
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CHAPTER IV

HILBERT FUNCTION OF THE PHYLOGENETIC MODEL

As we mentioned in Chapter III, given a projective variety embedded in a projective

space we have Hilbert function coming from the grading of the coordinates ring,

or equivalently from the action of the one-dimensional torus C∗. If our projective

variety is equipped with an action of a bigger torus it is natural (see [11]) to consider

a multigraded Hilbert function, whose domain consists of the characters of the torus.

We study multigraded Hilbert function of an embedded projective toric variety

with the multigrading given by a subtorus of the big torus. For the graph model

X(G) the subtorus comes from a subset of leaves. We prove in Theorem IV.5 that the

Hilbert function depends only on the topological invariants of the graph by showing

that deformations constructed in the proof of Theorem III.5 preserve the whole Hilbert

series. As tools we use Lemma IV.3 to compute the Hilbert series of a torus invariant

complete intersection. Lemma IV.4 gives the formula for the Hilbert series of a

quotient of a toric variety by a subtorus of the big torus. We first state them in the

algebraic setting.

1. Rings with torus actions

Let R be a commutative C-algebra with an action of a torus T. Let MT = {χ : T→

C∗} denote the group of characters of the torus T. Then we can write

R =
⊕

χ∈MT

Rχ
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as a sum of isotypical pieces indexed by the characters of the torus. We assume that

each Rχ has finite dimension over C. Then its Hilbert function HR,T : MT → N is

HR,T(χ) := dimRχ.

The Hilbert series is the generating series of HR,T

hR,T(t) :=
∑

χ∈MT

dimRχ · t
χ.

Lemma IV.1. Let R =
⊕

χ∈MT
Rχ be a ring with a torus action. If f1, . . . , fq are

homogeneous with fi ∈ Rχi
and form a regular sequence in R, then

hR/〈f1,...,fq〉,T(t) = hR(t) · (1− tχ1) · . . . · (1− tχq).

Proof. The statement for the single graded Hilbert series is explicitly given in [22,

Cor. 3.2]. Its multigraded, more general, with minor additional assumption can be

found in [16, Claim 13.38]. The lemma follows by induction on the length of the

regular sequence. For any homogenous f ∈ Rχf
which is not a zero divisor in R and

any χ ∈M we have the exact sequence of T-modules

0 Rχ−χf

f ·
Rχ (R/(f))χ 0,

which implies that

HR/(f)(χ) = dim (R/(f))χ = dimRχ − dimRχ−χf
= HR(χ)−HR(χ− χf)

This is equivalent to the required equality for Hilbert series.

Given a subtorus ι : S →֒ T we have the corresponding epimorphism of the

character groups ι∗ : MT ։ MS and we can form the S-invariant subring RS of R
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equipped with the residual action of the quotient torus T/S

RS =
⊕

χ∈MT/S

Rχ.

Then we have the following formula for the Hilbert series.

Lemma IV.2. Let R be a ring equipped with an action of a torus T and let ι : S →֒ T

be a subtorus. Then the Hilbert series of the invariant ring RS is

hRS,T/S =
∑

χ∈ker ι∗

tχ dimRχ,

where ι∗ : MT ։MS is the dual map of the character groups.

2. Toric variety with a distinguished subtorus

Let X = ProjR be a projective toric variety of dimension d with an ample Weil

divisor L where R =
⊕

m∈N Rm =
⊕

m∈N H
0(X,mL) as in Section 3. Then R has an

action of a d + 1 dimensional torus which is the product of the d-dimentional torus

T of X and the C
∗ from the grading. Any subtorus S →֒ T of dimension r induces

a Zr+1-sub-grading. Then its multigraded Hilbert function HX,S : MC∗×S → N

with respect to S is

HX,S(χ) := HR,S(χ) = dimRχ.

The generating series of hR,S is the multigraded Hilbert series with respect to S

hX,S(t) := hR(t) =
∑

χ∈MS

dimRχ · t
χ.

We have the following corollary of Lemma IV.1.

Corollary IV.3. Let Y = ProjR be a projective toric variety with an action of an

r-dimensional subtorus S ⊂ T of the big torus. Let us assume that X ⊂ Y is a
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S-invariant complete intersection in Y given by the ideal I(X) = 〈f1, . . . , fq〉, where

deg fi = χi. Then the S-graded Hilbert series of X is

hX,S(t) = hY (t) · (1− tχ1) · . . . · (1− tχq).

The next statement is a corollary of Lemma IV.2 by using the description of the

quotient as the spectrum of invariants given in Theorem I.6.

Lemma IV.4. Let X = ProjR be a projective toric variety with a subtorus ι : S →֒ T

of the big torus as before. We assume that both actions are linearized with respect

to the ample Weil divisor L. Let ι∗ : MT ։ MS be the correspoding surjection of

character lattices. Then

hX//S(t0, t1, . . . , tr) =
∑

χ∈τ(X)∩ker ι∗

tχ · dimRχ.

We combine the above facts to get the equality of the Hilbert series of models of

mutation equivalent graphs.

Theorem IV.5. Let G1 and G2 be mutation-equivalent graphs and S1 (respectively

S2) be a subset of leaves of G1 (respectively S2). Assume that |S1| = |S2|. Then the

multigraded series with respect to the tori associated to those sets of leaves are equal

hX(G1),T(S1) = hX(G2),T(S2)

Proof. Since they are mutation-equivalent by Lemma II.11 we can assume the se-

quence of mutation takes the set S1 to the set S2. We can assume G1 and G2 differ by

one mutation. In Section III.2 we have constructed a flat family which is a complete

intersection having the models X(G1) and X(G2) as fibers. Because both those mod-

els are complete intersections of the same type in the same ambient space by using

Lemma IV.3 we conclude that the Hilbert series are equal.
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We illustrate Theorem IV.5 on examples.

Example IV.6. We compute the Hilbert series for the models of graphs with two

leaves and the first Betti number one X( ) and X( ). As we saw in Example II.38

and in the notation of Example II.45, the cone τ( ) has generators of the following

multidegrees

coordinate x0000 x1100 x0011 x1111 y1 z1 z2

degree (1, 0, 0) (1, 0, 0) (1, 1, 1) (1, 1, 1) (2, 1, 1) (2, 2, 0) (2, 0, 2)

and that X( ) is a complete intersection in P(14, 23) of a quadric x1100x0011−x0000x1111

of multidegree (2, 1, 1) and a quartic y21 − z1z2 of multidegree (4, 2, 2). Thus

hX( ),L( )(t, s1, s2) = �
�
�
�
�
��

(1− t2s1s2) · (1− t4s21s
2
2)

(1− t)2 · (1− ts1s2)2 ·
�
�
�
�
�
��

(1− t2s1s2) · (1− t2s21) · (1− t2s22)

Ignoring the multigrading by the two dimensional torus spanned by leaves (by setting

s1 = s2 = 1) we get:

hX( )(t) =
(1− t2) · (1− t4)

(1− t)4 · (1− t2)3
=

1 + t2

(1− t)4 · (1− t2)

We have seen in Example II.47 that τ( ) has six generators: those are the elements

in the above table for apart from y1. The model X( ) is a hypersurface of degree

(4, 2, 2) in P(14, 22) so

hX( ),L( )(t, s1, s2) =
(1− t4s21s

2
2)

(1− t)2 · (1− ts1s2)2 · (1− t2s21) · (1− t2s22)

= hX( ),L( )(t, s1, s2).

Again we can ignore the multigrading and get

hX( )(t) =
(1− t4)

(1− t)4 · (1− t2)2
=

1 + t2

(1− t)4 · (1− t2)
.
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We expand to see the first few terms

hX( )(t) = 1 + 4t + 12t2 + 28t3 + 57t4 + 104t5 + 176t6 + 280t7 + O(t8).

Example IV.7. The Hilbert series of models of both graphs and with no leaves

(thus no additional grading) and two cycles is

hX( )(t) = hX( )(t) =
1

(t4 − 4t3 + 6t2 − 4t + 1)
= 1 + 4t + 10t2 + 20t3 + 35t4 + 56t5

+ 84t6 + 120t7 + O(t8).

This is because X( ) is P3 = (P3 × P3)//(C∗ × C∗ × C∗).

3. Computing the Hilbert function

Given a trivalent tree T with n leaves we computed the Hilbert function HX(T ) of its

model in [5] as

HX(T ),S({l})(m, k) = 1⋆n
m (k),

where the additional grading corresponds to a distinguished leaf l, ⋆ is an appropri-

ate summing formula and 1m is the constant function. This inductive formula for

HX(T ) uses the decomposition of the tree T as a sum of tripods, which leads to the

presentation of the polytope ∆(T ) as a fiber product of tetrahedrons ∆( ).

The same method works for any trivalent graph. We proved in Theorem IV.5

that the Hilbert function of mutation-equivalent graphs are equal. By Lemma II.11

we know that any graph is mutation-equivalent to a graph of the shape depicted on

Figure IV.1.
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Fig. IV.1.: Caterpillar graph

This means we have reduced the calculation to this case of caterpillar graphs. As

we have described in Section 1, any graph is presented as union of tripods with

identifications. More precisely, any trivalent graph is built from by the operations

of grafting two graphs and gluing two leaves.

Remark IV.8. To produce a caterpillar graph G from |’s (leaves) and ’s (leaves with

loop) using ⋆ and ⊃, we need the second operation only once per graph and only in

the case when G has no leaves.

Remark IV.9. On the level of graph models we have

X(G1 ⋆ G2) = (X(G1)×X( )×X(G2)) //(C∗)2

and

X(Gl1l2⊃) = X(G)//C∗,

where the actions of the tori were described in Section II.3.3.

We give a formula for hX(G1⋆G2),S(L(G1⋆G2)) and for h
X(G

l1
l2
⊃),S(L(G

l1
l2
⊃)

, using the above

fact about how the model of G1 ⋆ G2 is constructed from smaller pieces.

hX(G1⋆G2),S(L(G1⋆G2)) = hX(G1),S(L(G1)) ⋆ hX(G2),S(L(G2)) :=

the part containing monomials of the form (t1t2t3)
i(s′)0(s′′)0(s′′′)jsIof

hX(G1)(t1, s1, . . . , sn1
,

1

s′
) · h

X( )
(t3, s

′, s′′, s′′′) · hX(G2)(t2, sn1+1, . . . , sn1+n2
,

1

s′′
)

(IV.10)
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where s = (s1, . . . , sn2
) and I is the exponent vector.

Let us compute the input functions: apart from the constant one which corre-

sponds to leaves of G we have HX( ),S({l}) the Hilbert function of the model of graph

with two edges. Recall that the model X( ) is P
3//C∗ = P(1, 1, 2), where the C

∗

action has weights [010−1] on P3. Here is the list of generators with weights and the

resulting graded Hilbert function

t 1 1 2

s 0 0 2

 h(t, s) = 1
(1−t)(1−s2t2)

We can expand Formula (IV.10), setting f to be a Hilbert function of some graph,

to get for k ≤ m
2

hX( ) ⋆ f(k) = (m− k + 1)
m−k−1∑

a0=0

f(a)[2|k + a](a + 1)+

(k + 1)

k∑

a0=m−k

f(a)[2|k + a](m + 2− a)+

k

m∑

a0=k+1

f(a)[2|k + a](m + 1− a)

and for k ≥ m
2

h ⋆ f(k) = (m− k + 1)

m−k−1∑

a0=0

f(a)[2|k + a](a + 1)+

(m− k + 1)
k∑

a0=m−k

f(a)[2|k + a](2m− 2k − a + 1)+

(m− k)
m∑

a0=k+1

f(a)[2|k + a](2m− 2k − a)

where a = (a0, a1, . . . , an).
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In the same way we can write

h
X(G

l1
l2
⊃)

(t, s1, . . . , sn) = the part that contains monomials ti(s′)0sI of

hX(G)(t, s1, . . . , sn, s
′,

1

s′
) (IV.11)

where s = (s1, . . . , sn) and I is the exponent vector.
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CHAPTER V

SUMMARY

We defined phylogenetic models on trivalent graphs by generalizing the quotient de-

scription of the binary symmetric models on trivalent trees. For the graphs with at

most one cycle the set of minimal generators of the corresponding cone has a clear

description. It remains an open question how to extend this result to all trivalent

graphs.

We constructed torus invariant flat families inside some toric varieties which

contain models of graphs with the same topological invariants. Moreover, we proved

that they share the same multigraded Hilbert function. We provided an algorithm to

compute it.
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