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ABSTRACT 

 

Asymmetric Information in Common-Value 

Auctions and Contests: Theory and Experiments. (August 2010) 

Lucas Aaren Rentschler, B.S., Weber State University 

Chair of Advisory Committee: Dr. Rajiv Sarin 

 

 In common-value auctions and contests economic agents often have 

varying levels of information regarding the value of the good to be allocated.  

Using theoretical and experimental analysis, I examine the effect of such 

information asymmetry on behavior.  

Chapter II considers a model in which players compete in two sequential 

contests.  The winner of the first contest (the incumbent) privately observes the 

value of the prize, which provides private information if the prizes are related.  

Relative to the case where the prizes are independent, the incumbent is strictly 

better off, and the other contestants (the challengers) are strictly worse off.  

This increases the incentive to win the first contest such that the sum of 

expected effort over both contests increases relative to the case of independent 

prizes. 

Chapter III experimentally considers the role of asymmetric information 

in first-price, sealed-bid, common-value auctions. Bidders who observe a private 
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signal tend to overbid relative to Nash equilibrium predictions. Uninformed 

bidders, however, tend to underbid relative to the Nash equilibrium.  

Chapter IV examines asymmetric information in one-shot common-value 

all-pay auctions and lottery contests from both experimental and theoretical 

perspectives  As predicted by theory, asymmetric information yields information 

rents for the informed bidder in both all-pay auctions and lottery contests. 
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CHAPTER I

INTRODUCTION

When economic agents compete for a good, they often hold di¤erent levels of in-

formation regarding it�s value. Modeling such information asymmetries complicates

the analysis, so attention in the literature has largely focused on (ex ante) symmetric

information environments. As such, there are many open questions regarding the

e¤ects of information asymmetries. In this dissertation I analyze asymmetric infor-

mation environments in common-value auctions and contests. I focus on a particular

kind of information asymmetry; one of the economic agents privately observes a noisy

signal regarding the common, but uncertain, value of the good. The other agents

hold no private information. I utilize both theoretical and experimental methods in

my analysis.

In Chapter II, I consider a model in which contestants compete in two sequential

imperfectly discriminating contests where the prize in each contest has a common

but uncertain value, and the value of the prize in the �rst contest is positively related

to that in the second. The contestant who obtains the prize in the �rst contest (the

incumbent) privately observes its value, so that information in the second contest is

asymmetric.

Relative to the case where the prizes are independent random variables (so that

the incumbent�s private information does not provide a useful estimate of the value

of the prize in the second contest), the incumbent is strictly better o¤, the other

contestants (the challengers) are strictly worse o¤, and aggregate e¤ort expenditures

in the second contest strictly decrease.

� � � � � � � � � � � � � � �
This dissertation follows the style of the Journal of Economic Theory.
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Further, aggregate e¤ort expenditures in the �rst contest increases such that total

e¤ort expenditures over the two contests increase, relative to the case of independent

prizes. Counterintuitively, the incumbent�s ex ante probability of winning is strictly

less than that of a challenger, despite expending (weakly) more e¤ort than a chal-

lenger in expectation. In the second (terminal) contest, expected e¤ort expenditure

of an individual contestant is decreasing in the number of contestants, the expected

utility of a contestant is decreasing in the number of contestants, and the aggregate

expected e¤ort expenditure is increasing in the number of contestants. I also consider

the e¤ects of a incumbency cost advantage and a "status quo bias."

Chapter III considers the role of information in �rst-price, sealed-bid, common-

value auctions from an experimental perspective. We consider three information

structures in such auctions: (1) symmetric information in which bidders hold no

private information; (2) asymmetric information in which only one bidder observes

a private signal; (3) symmetric information in which each bidder observes a private

signal.

We �nd that bidders who observe a private signal tend to overbid relative to Nash

equilibrium predictions. Uninformed bidders, however, tend to underbid relative to

the Nash equilibrium. When both bidders observe a private signal, bidders overbid

such that they often fall victim to the winner�s curse. When neither bidder observes

a private signal, the winner�s curse is much less prevalent. This suggests that the

prevalence of the winner�s curse in previous studies may be an artifact of private

information. The information rent of informed bidders facing uninformed bidders is

greater than predicted by theory despite overbidding relative to the Nash equilibrium

bid function.

Chapter IV examines common-value contests with incomplete and asymmetric

information. In our experimental design one bidder observes an informative signal
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as to the realized common value of the good. The other bidder holds only public in-

formation; she knows only the distribution from which the value of the prize is drawn.

This asymmetric information environment is compared to a symmetric information

environment in which neither bidder observes a signal; both bidders know only the

distribution from which the value is drawn. We characterize the equilibrium in a

common value all-pay auction with this type of information asymmetry.

Consistent with theory, such asymmetric information yields information rents for

the informed bidder in both all-pay auctions and lottery contests. Also consistent

with theory, asymmetric information reduces the expected revenue in all-pay auc-

tions. In lottery contests, information asymmetry has no e¤ect on revenue. We

also observe that bidders who observe a signal are much more prone to bid above a

break-even bidding strategy than are bidders who do not observe a signal.
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CHAPTER II

INCUMBENCY IN IMPERFECTLY

DISCRIMINATING CONTESTS

OVERVIEW

Consider a group of workers who compete for a job with a particular �rm. One

of these workers prevails and begins working for the �rm. Suppose that at some

later date the �rm seeks to �ll a job opening which would be a promotion for the

worker who got the job in the earlier competition. The group of workers is now in

a position to compete for a second time. However, the second competition may be

signi�cantly di¤erent than the �rst.

In particular, it is natural to think that the worker who obtained the job in the

�rst round will have more information than the other workers regarding the value

of the second job. That is, she observes the intangible bene�ts of working for the

�rm, such as the corporate culture and how employees are treated. Further, such

asymmetric information in the second competition may a¤ect the incentives in the

�rst competition by increasing the value of winning.

This chapter considers a model in which contestants compete in two sequential

contests where the prize in each contest has a common but uncertain value, and the

value of the prize in the �rst contest is positively related to that in the second contest.

The contestant who obtains the prize in the �rst contest (the incumbent) privately

observes its value, which provides a noisy estimate of the value in the second contest,

thereby introducing asymmetric information. The contestants who do not obtain

the prize in the �rst contest (the challengers) do not hold any private information in

the second contest. Since contestants do not interact after the second contest, this

framework allows me to examine the e¤ect of information asymmetry on behavior
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in a one-shot game, as well as the e¤ect on behavior when information asymmetry

arises due to an incumbency advantage.

I utilize the well known model of imperfectly discriminating contests introduced

in Tullock [46]. The associated literature is vast. Such a contest is a game in which

economic agents expend unrecoverable e¤ort in order to increase the probability of

winning a prize. The contestant with the highest e¤ort level does not win with

certainty, but has the highest probability of winning.

Interestingly, I �nd that in the second contest, ex ante, the incumbent will expend

weakly more e¤ort than a challenger, but wins with a strictly lower probability. The

intuition behind this result is that the incumbent expends little or no e¤ort when she

believes the value of the prize is low. As a result, the incumbent obtains the prize

with low probability when its value is low. However, when the incumbent believes

the value of the prize is high, she expends more e¤ort than the challengers such that

in expectation, the incumbent expends weakly more e¤ort than a challenger. The

incumbent�s low e¤ort expenditures when she believes the value of the prize is low

dominates the higher e¤ort expenditures when she believes the value of the prize is

high, such that, ex ante, the incumbent�s probability of obtaining the prize is strictly

lower than that of a challenger.

I also �nd that, relative to the case where the value of the prizes in the two

contests are independent (rendering the incumbent�s private information strategically

irrelevant), aggregate e¤ort expenditures fall in the second contest, but increase in

the �rst contest such that total e¤ort expenditures summed over the two contests

weakly increases.1 This implies that, ex ante, contestants are worse o¤ when there

is an informational incumbency advantage. That is, the private incentive to acquire

1Aggregate e¤ort over the two periods strictly increases relative to the case of independent prizes
if the support of distribution from which prizes are drawn includes zero.
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information relevant to the second contest is su¢ ciently high that contestants will

increase their �rst period e¤ort expenditures relative to the case of independent

prizes such that they are, ex ante, worse o¤. The intuition behind this result is that

challengers are strictly worse o¤ than in the case of independent prizes, while the

incumbent is strictly better o¤. Thus, contestants in the �rst contest stand to gain in

the second contest by obtaining the prize in the �rst contest, and, conversely, stand

to lose in the second contest by not obtaining the prize in the �rst contest. This

added incentive is su¢ cient to increase aggregate e¤ort expenditures over the two

contests relative to the case of independent prizes. By way of contrast, in analogous

twice-repeated all-pay and �rst-price auctions, expected revenue summed over both

periods is unchanged between the case of an informational incumbency advantage

and the case of independent values.

In the second (terminal) contest, expected e¤ort expenditure of an individual

contestant is decreasing in the number of contestants, the expected utility of a con-

testant is decreasing in the number of contestants, and the aggregate expected e¤ort

expenditure is increasing in the number of contestants. Interestingly, in analogous

one-shot all-pay and �rst-price auctions, revenue and pro�t predictions are invariant

to the number of bidders.

The second period of my model, in which the incumbent has an informational

advantage, is a generalization of Wärneryd [48], which examines a one-shot, two-

player imperfectly discriminating contest where the prize is of common and uncertain

value. My model di¤ers in that there are n � 2 contestants, and I allow the

incumbent�s information to be imperfectly informative. Indeed, I assume that the

value of the prize in period two is positively regression dependent on the value in

period one, a weaker assumption of positive dependence than the notion of a¢ liated

random variables used extensively throughout the auction literature.
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The asymmetric information structure studied in the second contest of my model

has been studied in one-shot �rst-price auctions by Engelbrecht-Wiggans et al. [16]

and Milgrom and Weber [37]. They �nd that this asymmetric information structure

guarantees that the uninformed bidders have an expected payo¤ of zero. Further

the informed bidder earns a positive information rent. Expected revenue is less than

in a symmetric information structure due to the informed bidder�s information rent.

Chapter III considers this information structure in the context of an all-pay auction,

and �nds that expected revenue and the expected payo¤ of bidders are identical to

those in a �rst-price auction.

This type of asymmetric information structure has also been examined in repeated

games. Hörner and Jamison [23] study an in�nitely repeated �rst-price auction with

the information structure of Engelbrecht-Wiggans et al. [16]. In their model, bids

are observed at the end of each auction, such that uninformed bidders update their

beliefs regarding the value of the good by observing the behavior of the informed

bidder. Consequently, uninformed bidders are able, in �nite time, to infer the

informed bidder�s private information.

In a paper closely related to this one, Virág [47] examines a twice repeated �rst-

price auction with an initial information structure as in Engelbrecht-Wiggans et al.

[16]. There are two bidders, and one of them holds private information in the �rst

period. Bids are not observed at the end of the period. If the uninformed bidder

loses the �rst period auction, then asymmetric information still exists in the second

period. If the uninformed bidder wins the �rst period auction she observes the value

of the good, and information is symmetric in the second period. Virág �nds that

bidders bid more aggressively in the �rst period, because the uninformed bidder has

more to gain in the �rst period, and the informed bidder has a higher incentive to

win, in order to maintain the asymmetric information in the second period. My
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model di¤ers in that contestants are symmetricly uninformed in the �rst period, and

I consider an imperfectly discriminating contest rather than a �rst-price auction.

However, my results are similar to his in that contestants expend more e¤ort in

response to the information asymmetry.

In Appendix B I consider an incumbency advantage in which the incumbent has

a strictly greater probability of obtaining the prize for any vector of e¤ort levels.

Interestingly, I �nd that the e¤ect on aggregate e¤ort expenditures over the two pe-

riods is not monotonic in the magnitude of this "status quo bias." Indeed, regardless

of whether e¤ort expenditures are a social good or bad, the optimal status quo bias is

positive. This approach has not been considered in the literature. The closest paper

is Baik and Lee [3], which considers a contest where contestants can carry a portion

of their e¤ort in an early contest on to a �nal contest. They �nd that total e¤ort

levels increase in response to this carry-over. Their �ndings were generalized in Lee

[33]. Schmitt et al. [44] show that this kind of carry-over will not change aggregate

e¤ort in a repeated contest, although it will shift e¤ort towards early rounds.

Also in Appendix B, I consider a model in which the incumbent enjoys a cost

advantage. I �nd that aggregate e¤ort expenditures increase as a result. In a closely

related paper, Mehlum and Moene [36] show that, if the incumbent in an in�nitely

repeated imperfectly discriminating contest has an inheritable cost advantage over

its rival, the e¤ort level of both contestants rises in any given period. In their

model, information is complete.

MODEL

There are two periods t = 1; 2. In each of these periods a set of risk neutral

contestants N = f1; 2; :::; ng compete for a prize with a common value. The value

in period t is a realization of the random variable Vt, where V1 and V2 are both
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distributed according to the absolutely continuous distribution function FV , with

support contained in [v;1) with v > 0. The expected value of Vt = E (V ). This

distribution function is commonly known. In period t each contestant i 2 N expends

unrecoverable e¤ort, xit 2 R+ at a cost of Ci (xit) = xit in an e¤ort to obtain the

prize, vt. These e¤ort levels are chosen simultaneously. Contestants are not budget

constrained; the strategy space of each player is R2+. The vector of e¤ort levels in

period t is xt�fx1t; x2t; :::; xntg. Further, x�it � xtnxit and N�i � Nni.

The function pit : Rn+ ! [0; 1] maps xt into the probability that contestant i will

receive the good in period t. This function, which is typically called the contest

success function, is given by

pit (xit;x�it) =

8>><>>:
xit

xit+
P

j2N�i
xjt

if maxxt 6= 0

bi if maxxt = 0;

where bi 2 [0; 1] for any i and
X

i2N
bi � 1. Note that bi is the probability that

player i receives vt when none of the contestants expend positive e¤ort in t. Dif-

ferent applications suggest di¤erent assumptions regarding b �fb1; b2; :::; bng. Two

common assumptions are bi = 1
n
;8i 2 N or that bi = 0;8i 2 N. However, the choice

of b does not a¤ect the following results. This contest success function is a special

case of the class axiomized in Skaperdas [45] and de�nes what is sometimes called

a lottery contest because the probability that a contestant obtains the good is her

proportion of total e¤ort, as in a lottery.

Contestants in period t do not observe the value of vt before choosing xit. At

the conclusion of period t, one of the contestants receives the prize, and privately

observes vt. As such, before contestants choose their e¤ort expenditures in t = 2 the

contestant who received the prize in t = 1 (the incumbent) holds private information,
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while the remaining contestants (the challengers) hold only public information. The

incumbent is denoted as contestant I. The set of contestants who did not obtain the

prize in t = 1, the challengers, is C � N=I. C�j � N�j \C is the set of challengers

that does not include contestant j and xC � fxj2 : j 2 Cg is the vector of e¤ort

levels chosen by the challengers.

Intertemporal Independence of Values (IIV)

Consider the case in which v1 and v2 are independent draws from FV . In this

case E (V2 j v1) = E (V ); the incumbent�s private observation of v1 does not provide

information of strategic importance in t = 2. Thus, this game is a twice repeated

contest in which the outcome in t = 1 does not a¤ect the symmetry of contestants

in t = 2. This case provides a benchmark against which an incumbency advantage

can be compared.

The analysis of the incumbents problem is identical to that of a challenger. The

analysis begins in t = 2, where contestant i�s expected utility is

U IIVi2 �
1Z
v

pi2 (xi2;x�i2) v2dFV (v2)� xi2:

This objective function is strictly concave in xi2 given x�it, so the �rst order condition

de�nes a best response. This �rst order condition is

E (V )
P

j2N�i

xj2 
xi2 +

P
j2N�i

xj2

!2 � 1 = 0:

Note that there is no best response to
P

j2N�i
xj2 = 0; for any xi2 > 0 contestant

i obtains the prize with certainty, but has an incentive to reduce xi2 to a smaller
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positive number. As such, the best response function of contestant i is well de�ned

on the interval (0;1), and is given by

xi2 (x�i2) =

8>>><>>>:
r P
j2N�i

xj2E (V )�
P

j2N�i

xj2 if
P

j2N�i

xj2 2 (0; E (V )]

0 if
P

j2N�i

xj2 2 (E (V ) ;1) :

The well-known, unique2 equilibrium is symmetric, and 8i 2 N expends

xIIVi2 � E (V ) (n� 1)
n2

:

Note that xIIVi2 is decreasing in n, and limits to zero. Denoting equilibrium aggre-

gate e¤ort expenditures in period t of the IIV case as RIIVt , RIIV2 =
X

i2N
xIIVi2 =

E(V )(n�1)
n

which is strictly less thanE (V ) and increasing in n. Note that limn!1R
IIV
2 =

E (V ). Aggregate e¤ort expenditures in imperfectly discriminating contests are of-

ten referred to as rent dissipation, a reference to rent seeking applications in which

e¤ort expenditures are a social bad.

The equilibrium expected utility of contestant i in t = 2 is

E
�
U IIVi2

�
=

1Z
v

xIIVi2X
j2N

xIIVj2
v2dFV (v2)� xIIVi2 =

E (V )

n2
:

Note that E
�
U IIVi2

�
is decreasing in n and that limn!1E

�
U IIVi2

�
= 0. Contestants

have positive expected utility, despite not holding any private information. This

is attributable to the functional form of the contest success function, in which the

highest e¤ort level does not win with certainty, which induces contestants to expend

less e¤ort than E (V ). Since this equilibrium is symmetric, each of the contestants

2See, for example, Yamazaki [49].
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has an equal chance of obtaining the prize.

In t = 1 contestant i�s expected utility is

U IIVi1 �
1Z
v

pi1 (xi1;x�i1) v1dFV (v1)� xi1 + E
�
U IIVi2

�
:

Since E
�
U IIVi2

�
does not depend on x1 or v1, strategic considerations in t = 1 are

identical to those in t = 2, and the equilibrium e¤ort of contestant, xIIVi1 is identical

to that found in t = 2. That is, xIIVi1 = xIIVi2 , which also implies that RIIV1 = RIIV2

and that E
�
U IIVi1

�
= E

�
U IIVi2

�
. Further, each of the contestants has an equal chance

of obtaining the prize.

The sum of equilibrium e¤ort expenditures across t = 1; 2 , is

RIIV �
2X
t=1

RIIV =
2E (V ) (n� 1)

n
: (1)

Note that RIIV is increasing in n. Further limn!1E
�
U IIVi2

�
= 2E (V ).

Notice that if contestants observe the value of the prize in either or both contests

prior to choosing their e¤ort expenditures, the ex ante results are unchanged. In

particular, if all contestants observe the realization of vt, it is easy to show that the

equilibrium e¤ort level, xINFit , is

xINFit =
vt (n� 1)

n2
:

Since E
�
xINFit

�
= xIIVit , ex ante, the equilibrium predictions of the IIV case are

identical to the case in which contestants are symmetrically informed.
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Intertemporal Dependence of Values (IDV)

Consider the case in which V2 is positively regression dependent on V1. Positive

regression dependence dictates that P (V2 � v2 j V1 = v1) be non-increasing in v1 for

all v2.3 Intuitively, positive regression dependence implies that as v1 increases,

the probability that V2 will be large increases. Positive regression dependence is

a strictly weaker concept of positive dependence than a¢ liated random variables,

which is used extensively in auction theory; a¢ liation implies positive regression

dependence.4 Thus, the following results are also implied by a¢ liation between V1

and V2. Recall that the marginal distributions of V1 and V2 are identical, and equal

to FV . V1 and V2 are jointly distributed with the joint density function f (v1; v2).

The absolutely continuous joint distribution function of these random variables is

F (v1; v2). The distribution function of V2, conditional on V1, is F (v2 j v1). Since

V2 is positively regression dependent on V1, F (v2 j v1) is non-increasing in v1 for any

v2. To ensure that E (V2 j v1) is strictly increasing in v1, I assume that for v01 > v1,

F (v2 j v01) < F (v2 j v1) for at least one v2 2 [v;1).

In t = 2 the incumbent has observed v1, which provides information regarding v2

in the form of E (V2 j v1). This introduces asymmetric information into the contest in

t = 2; the incumbent holds private information which allows her to form an updated

expectation regarding v2, while the challengers hold only public information. The

information structure of the subgame in t = 2 is studied in Wärneryd [48], with

n = 2 and a perfectly informed contestant. What follows generalizes those results

since the informed contestant (the incumbent) need not be perfectly informed of v2

and there are n � 2 contestants.

As above, the incumbent is denoted as contestant I. The set of contestants who

3See Lehmann [34].
4For proof of this implication, see Yanagimoto [50]. This is also shown in de Castro [13].
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did not win the prize in t = 1, the challengers, is C � N=I. C�j � N�j \C is the

set of challengers that does not include contestant j and xC � fxj2 : j 2 Cg is the

vector of e¤ort levels chosen by the challengers. The incumbent�s expected utility

now depends on the privately observed v1, and is given by

U IDVI2 (v1) �
1Z
v

pI2 (xI2 (v1) ;xC) v2dF (v2 j v1)� xI2 (v1) :

This expected utility is strictly concave in xI2 (v1), given xC such that the �rst order

condition is su¢ cient to establish a maximum. The partial derivative with respect

to xI2 (v1) is P
j2C

xj2 
xI2 (v1) +

P
j2C

xj2

!2E (V2 j v1)� 1:

Any xI2 (v1) > 0 renders this expression negative if
P

j2C xj2 > E (V2 j v1) : Thus,

if the summed e¤ort of the challengers is greater than the incumbent believes the

prize is worth, the incumbent�s best response is to expend no e¤ort.. If
P

j2C xj2 �

E (V2 j v1) then there exists a xI2 (v1) > 0 for which the partial derivative is equal

to zero. Since E (V2 j v1) is strictly monotonically increasing in v1,
P

j2C xj2 �

E (V2 j v1) will hold with equality for exactly one v1 if
P

j2C xj2 � E (V2 j v). Thus,

if
P

j2C xj2 � E (V2 j v), then the expression
P

j2C xj2 = E (V2 j v1) de�nes a thresh-

old value of v1 above which the incumbent will expend positive e¤ort. Since of

E (V2 j v1) is monotonic in v1, its inverse, s (�), is well de�ned on [E (V2 j v) ;1), and

the threshold value of v1 that the challenger must observe in order for xI2 (v1) � 0
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to be a best response to
P

j2C xj2 is

q

 X
j2C

xj2

!
�

8>>><>>>:
s

 P
j2C

xj2

!
if

P
j2C

xj2 � E (V2 j v)

v if
P
j2C

xj2 < E (V2 j v) :

The best response function of the incumbent, which is de�ned on the domain (0;1),

can then be expressed as

xI2 (v1) =

8>>>><>>>>:
rP
j2C

xj2E (V2 j v1)�
P
j2C

xj2 if q

 P
j2C

xj2

!
� v1

0 if q

 P
j2C

xj2

!
> v1:

In equilibrium, the ex ante expected e¤ort expenditure of the IDV incumbent is

denoted as E
�
xIDVI2 (V1)

�
.

The expected utility of contestant j 2 C is

U IDVj2 � E

0B@ 1Z
v

xj2V2
xI2 (V1) + xj2 +

P
k2C�j

xk2

1CA� xj2:
As before, the strict concavity of this objective function in xj2 given x�i2 implies

that the �rst order condition yields a maximum. This �rst order condition is

E

0BBBBB@
 
xI2 (V1) +

P
k2C�j

xk2

!
V2 

xI2 (V1) + xj2 +
P

k2C�j
xk2

!2
1CCCCCA� 1 = 0:

The (n� 1) challengers each expend the same quantity of e¤ort in equilibrium. To
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see this, consider the case in which contestant m 2 C optimally expends xm2 > 0

while contestant l 2 C optimally expends xl2 > xm2 Since xl2 > xm2 > 0 the �rst

order conditions for contestants l and m hold with equality such that

E

0BBBB@
 
xI2 (V1) +

P
k2C=fl;mg

xk2 + xl2

!
V2�

xI2 (V1) +
P
k2C

xk2

�2
1CCCCA = E

0BBBB@
 
xI2 (V1) +

P
k2C=fl;mg

xk2 + xm2

!
V2�

xI2 (V1) +
P
k2C

xk2

�2
1CCCCA :

But this is a contradiction since xl2 > xm2. Thus, if challengers are optimally ex-

pending a positive amount of e¤ort, they each expend the same amount of e¤ort.

Likewise, the case in which one of the challengers is optimally expending zero ef-

fort implies that this is the optimal choice for the remaining challengers as well.

The (n� 1) challengers can not expend zero e¤ort in an equilibrium, since the best

response of the incumbent does not exist when
P

j2C xj2 = 0.

The equilibrium e¤ort of a challenger in the IDV case is denoted by xIDVC2 , and

the sum of the challengers�e¤ort expenditures is equal to xIDVC2 (n� 1). Utilizing the

incumbent�s best response function simpli�es the �rst order condition of a challenger.

The resulting equation relates the equilibrium e¤ort level of a challenger to the

expected equilibrium e¤ort level of the incumbent, where 1B is the indicator function

that is equal to one if B is true, and zero otherwise,

xIDVC2 =

�
1

(1 + FV (q (xIDVC2 (n� 1))) (n� 2))

�
E
�
xIDVI2 (V1)

�
(2)

+

�
n� 2

(n� 1) (1 + FV (q (xIDVC2 (n� 1))) (n� 2))

�
E
�
V21V1�q(xIDVC2 (n�1))

�
:

Note that this is not a closed form solution for xIDVC2 , as it appears on both sides of the

equation. Plugging in the best response function of the incumbent and simplifying
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(2) further yields the following equation, which characterizes equilibrium in t = 2

n� FV
�
q
�
xIDVC2 (n� 1)

��
(3)

=

�
(n� 2)

xIDVC2 (n� 1)

�
E
�
V21V1�q(xIDVC2 (n�1))

�
+

s
(n� 1)
xIDVC2

E
�p

E (V2 j V1)1V1�q(xIDVC2 (n�1))

�
:

Consider the special case where xIDVC2 (n� 1) < E (V2 j v). In this case there

is no v1 for which the incumbent believes the challengers are expending more e¤ort

than the prize is worth and xI2 (v1) > 0 for any v1. Following Wärneryd (2003), I

call this an interior equilibrium. In such a situation (2) and (3) become

E
�
xIDVI2 (V1)

�
= xIDVC2 ;

xIDVC2 =
(n� 1)

�
E
�p

E (V2 j V1)
��2

n2
:

Thus, if xIDVC2 (n� 1) � E (V2 j v), then there is an explicit solution for the equilib-

rium of this subgame. A su¢ cient condition for the existence of such an interior

equilibrium is

0@(n� 1)E
�p

E (V2 j V1)
�

n

1A2

� E (V2 j v) :

This su¢ cient condition restricts attention to a narrow set of distribution functions,

and a more general result is desirable.

If xIDVC2 (n� 1) > E (V2 j v) the incumbent does not expend positive e¤ort for

some realizations of v1. Consequently, there is no closed form solution for equilib-

rium. Furthermore, since the best response function of the incumbent is not de�ned
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at
P

j2C xj2 = 0, the Banach �xed point theorem cannot be utilized to guarantee

the existence or uniqueness of equilibrium in this subgame. However, the following

result holds.

Proposition 1 There is a unique Nash equilibrium in t = 2 of the IDV case.

Proof. See Appendix A.

If the unique equilibrium is interior, then E
�
xIDVI2 (V1)

�
= xIDVC2 , and x

IDV
I2 (v1) >

0, for all v1. When the equilibrium is not interior, there are values of v1 for which

the incumbent will not expend any e¤ort, which might suggest that a lack of an

interior equilibrium would depress E
�
xIDVI2 (V1)

�
relative to xIDVC2 : Accordingly, the

expected e¤ort expenditure of the incumbent relative to a challenger is of interest.

The following result refutes the line of thinking outlined above.

Proposition 2 In the IDV case, the ex ante expected e¤ort expenditure of the in-

cumbent is weakly greater than that of a challenger. If n = 2, or there is an interior

equilibrium, the incumbent�s ex ante expected e¤ort level is equal to that of a chal-

lenger, otherwise the inequality is strict.

Proof. See Appendix A.

The intuition behind this result relies on the fact that the incumbent�s best

response function is increasing in v1; she expends less e¤ort than a challenger when

v1 is low, and more when v1 is high. Consequently, a challenger is more likely to

obtain the prize when v1 is low, so that the expected value of the prize conditional

on having been obtained by a challenger is lower than E (V ). Challengers reduce
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their e¤ort expenditures relative to the incumbent to account for this. When the

equilibrium is not interior incumbents do not expend any e¤ort for low values of v1

so that a challenger obtains the prize with certainty, providing challengers a stronger

incentive to reduce their e¤ort expenditures than in an interior equilibrium. That is,

the presence of asymmetric information introduces a winner�s curse for challengers,

in which obtaining the prize depresses a challengers beliefs regarding its worth. A

similar winner�s curse arises in a �rst-price, sealed-bid auction with the t = 2 IDV

information structure.5

The lottery contest success function utilized in this model awards the prize to a

contestant with probability equal to her proportion of aggregate e¤ort expenditures

in the contest. SinceE
�
xIDVI2 (V1)

�
� xIDVC2 , the incumbent has, ex ante, the (weakly)

highest proportion of aggregate e¤ort. Recall that E
�
xIDVI2 (V1)

�
> xIDVC2 when the

equilibrium in not interior and n = 2. As such, the following result is somewhat

counterintuitive.

In equilibrium the incumbent will expend more e¤ort than a challenger when v1

is high, such that, ex ante, she is expected to expend more than a challenger, despite

choosing xI2 (v1) = 0 if v1 � q
�
xIDVC2 (n� 1)

�
. Further, in equilibrium the incumbent

obtains the prize with positive probability only when v1 > q
�
xIDVC2 (n� 1)

�
. Thus,

there are two e¤ects in�uencing the ex ante probability of the incumbent obtaining

the good in t = 2. I �nd the following, which holds in an interior equilibrium as

well.

Proposition 3 In the IDV case the incumbent�s ex ante expected probability of ob-

taining the prize is strictly less than that of a challenger.

Proof. See Appendix A.
5See Engelbrecht-Wiggans et al. [16] and Milgrom and Weber [38].
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This result yields an interesting insight into the e¤ect of an informed incumbent.

In particular, incumbents are less entrenched under this informational asymmetry

than in the IIV case; the incumbent is ex ante less likely to obtain the prize in

t = 2. The intuition is that, in equilibrium the incumbent obtains the prize with

positive probability only when v1 > q
�
xIDVC2 (n� 1)

�
: Further, since the incumbent

only expends more e¤ort than a challenger when xIDVC2 � (n� 1)E (V2 j v1) =n2, a

challenger will obtain the prize with high probability when v1 is low.

Contrasting this result with the analogous �ndings in standard auction formats

is worthwhile. As mentioned above, the information structure in t = 2 of the IDV

case has been studied in the context of �rst-price sealed-bid auctions in Engelbrecht-

Wiggans et al. [16] and in the context of all-pay auctions in Chapter IV. In both

of these auction formats, the ex ante probability that the informed bidder wins the

auction is 50%, regardless of the number of bidders.

To ascertain the e¤ect of the assumption that V2 is positive regression dependant

on V1, consider the equilibrium e¤ort expenditure of challengers in the IDV case to

that of contestants in t = 2 of the IIV case. If the equilibrium is interior, notice

that Jensen�s Inequality yields

E
�
xIDVI2 (V1)

�
= xIDVC2

=
(n� 1)

�
E
�p

E (V2 j V1)
��2

n2

<
(n� 1)E (V )

n2

= xIIVi2 :

Since E
�
xIDVI2 (V1)

�
= xIDVC2 < xIIVi2 , the expected revenue of such an interior equilib-

rium, RIDV2 , is strictly less than RIIV2 . Since, in general, there is not a closed form
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solution for the equilibrium in t=2 of the IDV case, comparisons between the IDV

and IIV cases are not straightforward. However, a necessary and su¢ cient condition

under which an IDV challenger will expend less e¤ort than an IIV challenger exists.

A more general result follows.

Proposition 4 The equilibrium e¤ort expenditure of a contestant in t = 2 of the

IIV case is strictly greater than the equilibrium e¤ort expenditure of a challenger in

t = 2 of the IDV case if and only if

(n� 2)
(n� 1) (n� FV (q (B)))

E
�
V21V1�q(B)

�
(4)

+
(n� 1)

p
E (V )

n (n� FV (q (B)))
E
�p

V21V1�q(B)

�
<

E (V ) (n� 1)
n2

;

where B � E(V )(n�1)2
n2

= xIIVi2 (n� 1).

Proof. See Appendix A.

Note that (4), which holds trivially when n = 2, states that if the IDV incumbent

were to best respond to the equilibrium strategy of the challengers in the IIV case

(
P

j2C xj2 = xIIVi2 (n� 1)), then the best response of the IDV challengers is to re-

duce their e¤ort expenditures relative to the IIV case. Suppose the IDV challengers

expend
P

j2C xj2 = xIIVi2 (n� 1). Since, in this scenario, the incumbent�s equilib-

rium e¤ort expenditure is monotonically increasing in v1 when v1 � q
�
xIIVi2 (n� 1)

�
,

and she expends more e¤ort than xIIVi2 only when xIIVi2 � (n� 1)E (V2 j v1) =n2, a

challenger who expends xIIVi2 is more likely to obtain the prize when it has a low

value. As discussed above, the expected value of the prize, conditional on a chal-

lenger having obtained it, is then less than E (V ). As such, it is reasonable to
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assume that risk-neutral challengers shade their e¤ort levels below xIIVi2 , as required

by (4). It is important to note that (4) is not a restrictive assumption; for example

the Pareto, Gamma, Uniform and Triangular distributions all satisfy if for a broad

range of parameterizations. In what follows, I assume that (4) is satis�ed.

Interestingly, the comparison between E
�
xIDVI2 (V1)

�
and xIIVi2 depends on n and

the distribution function FV . If there is an interior equilibrium or if n = 2, then

E
�
xIDVI2 (V1)

�
= xIDVC2 < xIIVi2 . When the equilibrium in not interior and n > 2, the

incumbent expends E
�
xIDVI2 (V1)

�
> xIIVi2 when

xIIVi2 � xIDVC2 < (n� 2)xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
�(n� 2)
(n� 1)E

�
V21V1�q(xIDVC2 (n�1))

�
:

Since the equilibrium is not interior if E
�
xIDVI2 (V1)

�
> xIIVi2 , and there is no closed

form solution for such an equilibrium, I am unable to give further conditions. How-

ever, examples demonstrate that E
�
xIDVI2 (V1)

�
> xIIVi2 in many cases. For example,

if V1 = V2 � U (1; 11), and n = 200, then E
�
xIDVI2 (V1)

�
= 0:79, while xIIVi2 = 0:03.

As mentioned above, the information structure in t = 2 of the IDV case has been

studied in a variety of auction formats. Engelbrecht-Wiggans et al. [16] �nds that

this asymmetric information structure guarantees that the uninformed bidders have

expected payo¤ of zero in any equilibrium of any standard auction format. Further,

in all-pay and �rst-price auctions, the informed bidder earns a positive information

rent. Since the expected payo¤o¤bidders in the symmetric information structure in

which no bidders hold private information is zero (as in the IIV case), this information

rent is extracted from the seller.6

Comparing the ex ante expected utility of contestants in t = 2 of the IIV and IDV

6See Chapter IV and Milgrom and Weber [38].
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cases is of interest as it reveals the e¤ect of information asymmetry. Additionally,

comparing these results to those found in all-pay and �rst-price auctions yields insight

into the e¤ect of utilizing an imperfectly discriminating contest success function.

Note that the expected utility of a contestant in t = 2 of the IIV case is E
�
U IIVi2

�
=

E (V ) =n2 > 0, whereas in the analogous �rst-price or all-pay auction her expected

utility would be zero.7 This is attributable to the imperfectly discriminating nature

of the lottery contest considered.

Notice that, in equilibrium, the expected utility of a challenger in the IDV case

can be written as

E
�
U IDVC2

�
=

1

(n� 1)2
E
�
V21V1�q(xIDVC2 (n�1))

�
+
xIDVC2

�
1� FV

�
q
�
xIDVC2 (n� 1)

���
(n� 1) :

Since xIDVC2 > 0 in equilibrium, E
�
U IDVC2

�
> 0. Since the expected utility of un-

informed bidders in all-pay auctions is zero, the imperfectly discriminating contest

success function allows IDV challengers to earn a positive expected utility, despite

the information asymmetry. While the presence of asymmetric information does not

reduce E
�
U IDVC2

�
to zero, I have the following result.

Proposition 5 If (4) is satis�ed, then the ex ante expected utility of a challenger is

strictly less in the IDV case than the IIV case.

Proof. See Appendix A.

In contrast to the aforementioned results in all-pay and �rst-price auctions, an

information asymmetry makes the challengers worse o¤. Notice that while bidders

7See Baye et al. [5] for an analysis of all-pay auctions under complete information.
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who do not observe a signal regarding the value of the good in an all-pay or �rst

price auction are indi¤erent between the information structures in t = 2 of the IDV

and IIV case, the same is not true in the lottery contest.

Next, I look at the expected utility of the incumbent. Utilizing (3) and the best

response function of the incumbent, the ex ante equilibrium expected utility of the

incumbent can be written as

E
�
U IDVI2

�
= E (V ) +

(n� 3)
(n� 1)E

�
V21V1�q(xIDVC2 (n�1))

�
�xIDVC2

�
(n+ 1) + FV

�
q
�
xIDVC2 (n� 1)

��
(n� 3)

�
:

I can now say the following.

Proposition 6 If (4) is satis�ed the ex ante expected utility of the incumbent is

strictly greater in the IDV case than in the IIV case.

Proof. See Appendix A.

The IDV incumbent earns a positive information rent. Since the challengers

are ex ante worse o¤ in the IDV case, at least some of this information rent is

extracted from them. The e¤ect of the information asymmetry on aggregate e¤ort

expenditures in t = 2 of the IDV case is closely related since for any v1, it must be

the case that the sum of e¤ort expenditures and realized payo¤s of the contestants

equal E (V2 j v1). In expectation, E
�
U IDVI2

�
+ E

�
U IDVC2

�
(n� 1) + RIDV2 = E (V ) :

As such, E
�
U IDVI2

�
+ E

�
U IDVC2

�
> 2E

�
U IIVi2

�
, would indicate that RIDV2 < RIIV2 .

The following result establishes this.

Proposition 7 If (4) is satis�ed, ex ante expected e¤ort expenditures are strictly

lower in t = 2 of the IDV case than in t = 2 of the IIV case.
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Proof. See Appendix A.

This result shows that the information rent earned by the IDV incumbent is

extracted from the challengers, and by reducing aggregate e¤ort expenditures in

t = 2. The ex ante expected value of obtaining the prize in t = 1 is then E (V ) +

E
�
U IDVI2

�
� E

�
U IDVC2

�
> E (V ). Thus, contestants in t = 1 of the IDV case have

an increased incentive to obtain the prize.

In t = 1 the n contestants are symmetric. None of them hold private information,

although they are aware that privately observing v1 will, in expectation earn them

an information rent. The expected utility of contestant i in t = 1 is

U IDVi1 � pi1 (xI2 (v1) ;xC)
�
E (V ) + E

�
U IDVI2

�
� E

�
U IDVC2

��
�xi1 + E

�
U IDVC2

�
This problem is strategically equivalent to a complete information contest with a

prize of E (V ) + E
�
U IDVI2

�
� E

�
U IDVC2

�
. As in the IIV case, there is a unique

equilibrium which is symmetric. The equilibrium e¤ort expenditure of contestant i

in t = 1 is

xIDVi1 �
�
E (V ) +

�
E
�
U IDVI2

�
� E

�
U IDVC2

���
(n� 1)

n2

8i 2 N.

Since E
�
U IDVI2

�
�E

�
U IDVC2

�
> 0, xIDVi1 > xIIVi1 , which implies that RIDV1 > RIIV1 .

The sum of ex ante expected e¤ort expenditures across both periods is RIDV �P2
t=1R

IDV
t . Since, RIDV2 < RIIV2 , the e¤ect of the information asymmetry on total

e¤ort expenditures across the two periods is of interest.

Proposition 8 When the equilibrium in t = 2 of the IDV case is not interior , total
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e¤ort expenditures in the IDV case, RIDV , strictly exceed those of the IIV case. If

the equilibrium in t = 2 of the IDV case is interior then RIDV = RIIV :

Proof. See Appendix A.

It is worth noting that if the game were modi�ed such that in t = 1, contestants

were to compete for the chance to privately observe v1 without obtaining it, that this

result holds. That is, if the contest in t = 1 is over the acquisition of information, the

result is the same. Notice that if v = 0, then there can not be an interior equilibrium,

and RIDV > RIIV . Since RIDV � RIIV , the reduction of e¤ort expenditures in t = 2

of the IDV case, are at least o¤set by the increase in e¤ort expenditures in t = 1.

Interestingly, in a twice repeated �rst-price or all-pay auction, analogous to the IIV

and IDV cases studied here, revenue summed across the two periods is, ex ante,

unchanged between the two information structures. The intuition is that in t = 2

of an IDV information structure the uninformed bidders earn an expected payo¤ of

zero, while the informed bidder earns a positive information rent. In t = 1 the value

of winning the auction is this information rent plus E (V ). The revenue t = 1 is

equal to this value, because the game in t = 1 is a complete information auction in

which the equilibrium expected utility is equal to zero.

Further, RIDV � RIIV implies that the ex ante expected utility of a contestant in

t = 1 of the IDV case is (weakly) less than in the IIV case. As such, if a contestant

were o¤ered the choice between the information structures in the IDV and IIV case,

she would weakly prefer the IIV case.

Recall that as n increases in the IIV case, aggregate e¤ort expenditures increase

in both periods, and so, overall. Likewise, the equilibrium expected utility of con-

testants is decreasing in n in both periods and overall. Also, the equilibrium proba-

bility of obtaining the prize in each period, 1=n, is decreasing in n as well. Consider
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the e¤ect of an increase in n on behavior in the IDV case. If the equilibrium in t = 2

of the IDV case is not interior, then the equilibrium is characterized by the implicit

function (3). Totally di¤erentiating (3) yields the following result.

Proposition 9 The equilibrium e¤ort expenditure of a challenger and of the in-

cumbent in the IDV case is decreasing in n. The ex ante expected aggregate e¤ort

expenditures in t = 2 is increasing in n.

Proof. See Appendix A.

In t = 1 of the IDV case the equilibrium is analogous to that of the IIV case, ex-

cept with an expected value of obtaining the prize equal toE (V )+
�
E
�
U IDVI2

�
� E

�
U IDVC2

��
.

It is therefore straightforward to show that the comparative statics in t = 1 of the

IDV case are consistent with those of the IIV case.

Contrasting this result with all-pay, �rst-price and second-price auctions reveals

signi�cant di¤erences. In an asymmetric information structure as in IDV case, equi-

librium bidding strategies and revenue predictions are invariant to the number of

bidders in �rst-price, all-pay and second-price auctions. In an imperfectly discrimi-

nating contest, this is not the case.

Another interesting exercise is to vary the level of positive dependence between

V1 and V2. The value of information has garnered considerable attention in the lit-

erature, mostly in the context of decision problems.8 These results do not generalize

to games, although the value of information in zero sum games has been, dealing

with a �nite partition of the state space has been studied. Unfortunately, this setup

does not directly apply to this model.

8See Blackwell.[7].
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However, the fact that there is a unique Nash equilibrium for the contest with

asymmetric information suggests that comparing equilibrium payo¤s under di¤erent

information structures may yield results. Consider two information structures, de-

�ned by their joint distribution functions: F (v1; v2) and G (v1; v2) where these two

distribution functions have identical marginals, namely FV . Kimeldorf and Samp-

son [31] say that G (v1; v2) is more positively quadrant dependent than F (v1; v2) if

G(v1; v2) � F (v1; v2) for all (v1; v2) 2 R2. In this positive dependence ordering, V1,

V2 are more positively dependent under G(v1; v2) than F (v1; v2). Since the equilib-

rium need not be interior, comparing the equilibria under G(v1; v2) than F (v1; v2)

yields ambiguous results. As such I am unable to give a general result regarding the

e¤ect of changes in the quality of signal.

I next introduce an example in which there is a particularly tractable way to vary

the informativeness of v1. In this example, n = 2, and the value of the prize in period

two is uniformly distributed on [v; v]. It is also assumed that v < 7v. Let a second

random variable, E, be uniformly distributed on [��; �], with � > 0. To ensure that

� is not so high as to render the signal devoid of information, it is also assumed that

� < v � v. The signal that the incumbent receives is then V1 = V2 + E. Thus, the

signal received by the incumbent must be within � of the actual value of the prize.

Examining how equilibrium e¤ort changes in response to changes in � is equivalent

to observing the e¤ect of changes in signal quality on equilibrium e¤ort. Note that

this example is not consistent with the model outlined above in that the distribution

of V1 is not the same as the distribution of V2. However, it does yield some insight

into how the quality of information a¤ects equilibrium e¤ort levels. Since v < 7v,
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the equilibrium is interior. The closed form of this equilibrium is

xIDVC2 =

�
E
�p

E (V2 j v1)
��2

4

=
2
�
4v

5
2 + 4v

5
2 � 4v2

p
v � � + 3v

p
v � ��

�
15 (v � v) �

+
2
�
4v2
p
v + � � 3v�

p
v + � + �2

�p
v � � +

p
v + �

��
15 (v � v) � :

The partial derivative of this expression with respect to � yields

@xIDVC2

@�
=

8v2
p
v � � � 8v 52 + 4v�

p
v � � � 4v�

p
v + �

15 (v � v) �

+
8v2
p
v + � � 8v 52 + 3�2

�p
v � � +

p
v + �

�
15 (v � v) �

This partial derivative is negative, so equilibrium e¤ort levels increase as the quality

of the signal decreases. Further, xIDVC2 converges to xIIVi2 as � increases. Since

n = 2, xIDVC2 = E
�
xIDVI2 (V1)

�
; aggregate e¤ort expenditures converge to RIIV2 . This

is consistent with the result that the presence of an information asymmetry decreases

e¤ort in the second period. As the value of this signal decreases, equilibrium e¤ort

levels get closer and closer to xIIVi2 .

Next, consider the problem faced by the contest designer. Suppose that this

contest designer can choose between two types of information revelation policies.

First, she can publicly announce the value of the prize in contest, either before

or after contestants have chosen their e¤ort levels. Notice that, ex ante, both of

these policies will result in expected equilibrium e¤ort expenditures as in the IIV

case. Second, she can privately reveal this value to the contestant who obtained it

(the IDV case). If the contest designer seeks to minimize e¤ort expenditures, then

Proposition 8 implies that she will adopt a policy of publicly revealing the value of
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the prize before or after the contestants choose their e¤ort levels. Adopting such

a policy ensures that, ex ante, e¤ort expenditures are expected to correspond to

the IIV case. If the contest designer seeks to maximize e¤ort expenditures she will

choose to adopt a policy of privately revealing the value of the prize to the contestant

who obtains the prize. Interestingly, this is the opposite of the predictions in a one-

shot asymmetric information contest. As such, taking account of the incentives to

acquire information is important when considering optimal information revelation

policy. In rent seeking applications, this result o¤ers support for the view that there

is social bene�t to public disclosure of information.
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CHAPTER III

AN EXPERIMENTAL INVESTIGATION OF ASYMMETRIC

INFORMATION IN COMMON-VALUE AUCTIONS

OVERVIEW

In much of the auction literature, bidders are assumed to be ex ante symmetrically

informed. However, in many situations such an assumption is problematic. For

example, in many auctions experienced dealers bid against non-dealers. In such an

auction, it is natural to assume that dealers have more information than non-dealers;

that is, bidders are asymmetrically informed.

One of the earliest and well known models analyzing auctions with asymmet-

rically informed bidders is found in Engelbrecht-Wiggans, Milgrom and Weber [16]

(hereafter EMW). EMW derive the unique equilibrium of a �rst-price, common-value

auction in which one of the bidders observes an informative signal regarding the re-

alized common value of the object for sale.9 The other bidders know only the joint

distribution from which the signal and realized value are drawn, which is common

knowledge. Thus, the uninformed bidders hold only public information, while the

informed bidder holds private information. This information structure guarantees

that, in equilibrium, the uninformed bidders have expected pro�ts of zero, and the

informed bidder has a positive expected pro�t. Further, this information asymme-

try reduces the expected revenue of the auction relative to a symmetric information

framework.

Several papers model information asymmetry in common-value auctions by vary-

ing the quality of information while allowing each bidder to hold private information.

9A correction to their proof of uniqueness is found in Dupra [14].
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Hausch [22] and Campbell and Levin [8] show that less informed bidders earn pos-

itive expected pro�t in equilibrium, provided they hold some private information.

Campbell and Levin [8] also demonstrate that a seller�s expected revenue can bene�t

from an information asymmetry between the bidders.

This paper experimentally investigates the role of asymmetric information in

two-bidder, �rst-price, sealed-bid, common-value auctions by varying the number

of bidders who receive a signal regarding the value of the good prior to bidding.

In one treatment bidders know only the distribution from which the value of the

good is drawn; no bidder holds any private information. In another, each bidder

observes a conditionally independent signal of the common value of the good. In the

asymmetric information treatment, only one of the bidders receives such a signal; the

other bidder holds no private information. Our asymmetric information treatment

is theoretically analyzed in EMW.

We �nd several interesting results. First, bidders who observe a signal overbid

relative to the Nash equilibrium prediction on average, regardless of whether or not

the other bidder observes a signal. Conversely, bidders who do not observe a signal

underbid relative to Nash equilibrium predictions on average. Indeed, when neither

bidder observes a signal, the average bid is 42% below the predicted bid.

This result cannot be explained by risk aversion, since the degree of risk aversion

required to induce such behavior is unreasonably large. Further, limited liability of

losses does not explain this behavior, since the balance held by bidders is much more

than the value of the good is able to be, even in later rounds. We interpret this result

in terms of overcon�dence. We suggest that providing bidders with a signal induces

overcon�dence. That is, bidders who observe a private signal become overcon�dent

regarding the value of their signal and overbid accordingly. This exempli�es the
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hypothesis that �a little knowledge is a dangerous thing.�10

The e¤ect of an information asymmetry among bidders is ambiguous, because

of the systematic overbidding of informed bidders, and underbidding of uninformed

bidders. In particular, the e¤ect of an information asymmetry depends on the

symmetric information structure against which it is compared. We �nd that the

revenue generated by an auction in which both bidders observe a signal is higher

than when only one bidder observes a signal; the informed bidder earns a substantial

information rent. However, the dramatic underbidding when no bidder is informed

results in much lower revenue than predicted. This result is surprising, since this

treatment is predicted to generate the highest revenue. That is, revenue is lowest

when bidders hold no private information.

Observed bidder payo¤s also deviate from theoretical predictions in interesting

ways. In particular, when neither bidder observes a signal both bidders underbid

signi�cantly and, on average, earn a substantial payo¤ as a result.11 Conversely,

when both bidders observe a signal, bidders overbid relative to the Nash equilibrium,

such that they earn less than theoretical predictions. Lastly, when only one bidder

observes a private signal, the informed bidder earns a substantial information rent,

despite overbidding relative to Nash predictions. This is because the uninformed

bidder, on average, bids less than the expected value of the good. When the informed

bidder observes a signal above this expected value, she can still win the auction by

bidding substantially less than the expected value, and earn a signi�cant payo¤ as a

10Alexander Pope �rst addressed this hypothesis by writing: �A little learning is a dangerous
thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and
drinking largely sobers us again.�
11The only di¤erence between auctions in which both bidders observe a private signal and auctions

in which neither bidder observes a private signal is the information structure. Since bidders overbid
when both bidders observe a signal, and underbid when both bidder do not observe a signal, the
fact that bidders earn such a large payo¤ when neither bidder observe private signals is unlikely to
be the result of collusion.
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result.

This bidding behavior has dramatic implications regarding the winner�s curse.

Experimental investigations of common-value auctions with symmetrically informed

bidders are numerous.12 Inexperienced bidders consistently fall victim to the win-

ner�s curse.13 However, throughout the literature, each bidder is provided with a

private signal as to the value of the good.14 Our results suggest that the persistent

winner�s curse observed throughout the literature may be an artifact of this private

signal.

In research of particular relevance to this Chapter, Kagel and Levin [27] report the

results of an experiment in which one of the bidders in a �rst-price auction observes

a more precise estimate of the common value of the good than other bidders, but all

bidders hold some private information. Our design di¤ers in that our uninformed

bidders do not hold private information. Interestingly, the predicted results of these

models di¤er considerably. For the parameters employed in Kagel and Levin [27],

seller revenue is expected to be higher than in a symmetric information environment

where all bidders have equally precise estimates. Our design that predicts seller

revenue will fall relative to both our symmetric information treatments. Note that

Kagel and Levin [27] compare their asymmetric information treatment to a single

12Kagel and Levin [28] provides an overview of this literature.
13Once bidders gain su¢ cient experience, bidders fall victim much less frequently. However, they

continue to overbid relative to the Nash equilibrium bid function. Further, this phenomenon is
not driven by a small subset of aggressive bidders who overbid such that the average bid is greater
than the value of the good conditional on winning. While this overbidding varies across bidders,
most inexperienced bidders fall victim to the winner�s curse, and earn negative pro�ts as a result.
14An exception is Bazerman and Samuelson [6] which reports the result of classroom experiments

in which bidders were asked to guess the value of a commodity (either an unknown quantity of coins
or paper clips) and place a bid. Each participant bid in four di¤erent auctions. A winner�s curse
is observed. Hovever, the number of bidders per auction was high (between 34 and 54), and an
increase in the number of bidders has typically increases how aggresively participants bid. Also,
bidders only particpated in four auctions; they did not have an opprotunity to learn. Lastly, the
pool of participants was made up of MBA students. Casari et al. [9] �nds that business majors
are much more susceptible to the winner�s curse than other majors.
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symmetric information structure.

Further, the theoretical predictions against which Kagel and Levin compare their

experimental data employ di¤erent assumptions regarding bidders. In particular,

in their asymmetric information treatment they test a model which assumes that

bidders are boundedly rational such that they employ an a¢ ne bid function. In

their symmetric information treatment (every bidder observes an equally precise

estimate of the value of the good) bidders are assumed to be unboundedly rational.

Indeed, the bid function against which the data is compared is nonlinear. In our

design, we test Nash equilibrium predictions with unboundedly rational bidders; we

have closed form solutions of the Nash equilibrium in each treatment.

Harrison and List [21] test the same model used in Kagel and Levin [27], but

change the population from which the participants are drawn. They perform the

same laboratory experiments as Kagel and Levin [27], but recruit participants from

attendees (dealers and non-dealers) of a sport-card show. They also run a �eld

experiment testing the asymmetric information structure using unopened packs of

sport cards as the good for sale. They �nd the winner�s curse is much less prevalent

among dealers.

EXPERIMENTAL DESIGN

Within a group of ten, participants are randomly and anonymously matched into

pairs. Each pair participates in a two-bidder, �rst-price, sealed-bid auction. Each

bidder submits a bid. The bidder who submits the highest bid wins the auction

and receives the good (in the event of equal bids, both bidders have a 50% chance of

obtaining the good) and pays her bid. Only the winner pays her bid. Participants

are randomly and anonymously rematched after each round. This process is repeated
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for thirty rounds.15

In each auction a good with a common but uncertain value is available. The

common value, x, is a realization of the random variable X, which is uniformly

distributed with support [25; 225]. The realized value of the good is not observed

by bidders before placing their bids. The distribution of X is common knowledge.

We employ a 3� 1 between-subject design which varies the information observed by

bidders prior to placing their bids.

1. Symmetric information with only public information (SPUB).� Neither bidder

observes any information regarding x beyond the distribution of X. As such,

no bidder holds any private information, and information is symmetric.

2. Symmetric information with private signals (SPRIV).� Each bidder privately

observes a signal. These signals, z1 and z2; are independently drawn from

a uniform distribution with support [x� 8; x+ 8]. In this treatment both

bidders hold private information in the form of their signal. Information is

symmetric in that each signal is an equally precise estimate of x.

3. Asymmetric information (ASYM).�One of the bidders is randomly chosen to

be the informed bidder, who privately observes a signal. This signal, zI , is

drawn from a uniform distribution with support [x� 8; x+ 8]. The other

bidder does not observe a signal; all the information available to them was

common knowledge. Since the informed bidder is randomly determined in

each auction, bidders change roles throughout each session.

15Since matching of participants occured within groups of ten, and thirty rounds were conducted,
participants were inevitably matched together more than once. However, participants were anony-
mously matched such that they were unable to build a reputation. Further, each session was ususally
run with twenty or thirty participants, and participants were not informed that they would only
interact within a group of ten.
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Table 1: Experimental design summary for �rst-price auctions
First-price auctions.

Symmetric information with only public information 5 groups of 10 participants
Symmetric information with private signals 5 groups of 10 participants

Asymmetric Information 5 groups of 10 participants

In each of these three treatments, the information structure of the auction is

common knowledge. That is, if a bidder observes a signal, this fact, as well as the

distribution from which the signal is drawn, is common knowledge. At the conclu-

sion of each auction each bidder observes both bids, the earnings of both bidders,

their own balance and, if applicable, the private signal(s) (participant numbers are

suppressed).16 This design is illustrated in Table 1.

Examining two-bidder auctions makes sense for several reasons. First, in ASYM

auctions the equilibrium bid function of the informed bidders does not depend on

the number of bidders. The expected payo¤s of ASYM bidders (and hence, expected

revenue) also do not depend on the number of bidders either. In SPUB auctions Nash

equilibrium bids and expected revenue are invariant to the number of bidders. Since

we are interested in the role of information, we leave the test of these comparative

statics to future research. Second, SPRIV auctions have been extensively examine

in the experimental literature, but we are unaware of any study which examines this

information structure in a two-bidder context. Thus, our SPRIV treatment provides

insight not already found in the literature.

All sessions were run at the Economic Research Laboratory (ERL) at Texas A&M

University, and our participants were matriculated undergraduates of the institution.

The sessions were computerized using z-Tree (Fischbacher [18]). Participants were

16Armantier [1] �nds that the ex post observation of bids, earnings and signals �homogenizes
behavior, and accelerates learning toward the Nash equilibrium� in common-value auctions with
the SPRIV information structure. Futher, this level of ex post observation has been widely used
throughout the literature, so this increases the comparability of our results with previous studies



38

separated by dividers such that they can not interact outside of the computerized

interface. They were provided with instructions, which were read aloud by an ex-

perimenter.17 After they instructions were read, questions were answered privately.

Each participant then individually answered a set of questions to ensure understand-

ing of the experimental procedure; their answers were checked by an experimenter

who also answered any remaining questions. Participants were provided with a his-

tory sheet which allowed them to keep track of bids, earnings and. if applicable,

signal(s) in each round. Each session lasted approximately two hours. Each partic-

ipant began with a starting balance of $20 to cover any losses; no participant went

bankrupt. At the end of all thirty rounds, each participant was paid their balance,

as well as a show-up fee of $5. The bids, signals and values were all denominated in

Experimental Dollars (ED), which were exchanged for cash at a rate of 160ED=$1.

The average payo¤ was $26:91, with a range of $23:31 and $32:33.

THEORETICAL PREDICTIONS

Symmetric Information With Only Public Information

If both bidders hold only public information, the distribution of X is the only

information regarding x available to bidders before placing their bids. Assuming

risk-neutral bidders, the unique Nash equilibrium of this auction is for both bidders

to bid E (X) = 125. To see this, note that if either bidder were to bid above 125,

they would earn negative expected pro�ts upon winning. For any bid b < 125, the

other bidder would have an incentive to bid b+� < 125, and earn a positive expected

pro�t. As only the bidder to whom the good is allocated pays her bid, the expected

revenue generated by an auction, E
�
RSPUB

�
= 125 and the expected pro�t of bidder

17The instructions for the ASYM treatment are found in Appendix D. Instructions for the
remaining treatments are available upon request.



39

i, E
�
�SPUBi

�
= 0.

Note that the Nash equilibrium in a SPUB auction also represents a break-even

bidding strategy. That is, conditional upon winning, bidding less than 125 guaran-

tees an expected pro�t greater than zero whereas bidding above 125 yields a negative

expected pro�t. Bidding above a break-even biding threshold is widely referred to

as the winner�s curse.18 We adopt this terminology, although this threshold is not

constant across information structures.

Symmetric Information With Private Signals

Each bidder i receives a private signal zi. The signals are independently drawn

from a uniform distribution on [x� 8; x+ 8].19 The symmetric equilibrium of this

game can be obtained by suitably specializing the results in Milgrom and Weber

[37]20 This gives the symmetric risk neutral Nash equilibrium bid function to be


 (zi) =

8>>>>>>>>>><>>>>>>>>>>:

1
3
(zi � 58) if zi 2 [17; 33)

zi � 8 + g (zi) if zi 2 [33; 217)

zi
3
+ 142 + h (zi) if zi 2 [217; 233]

where g (zi) = 16
3
exp

�
1
8
(33� zi)

�
is the nonlinear portion of the bid function when

zi 2 [33; 217), and h (zi) = 4096
3(zi�201)2 exp(23)

� 4096
3(zi�201)2

is the nonlinear part of the bid

18See, e.g., Kagel and Levin [28].
19These assumptions are widely used throughout the experimental literature on �rst-price,

common-value auctions. Examples include Casari et al. [9], Kagel and Richard [30] and Kagel and
Levin [27]. Our setup di¤ers in the parameter choice as well as in the number of bidders.
20The derivations of the symmetric Nash equilibrium bid function, are found in Appendix A.

Similar derivations can be found in Kagel and Levin [28] (Appendix to Chapter 6), and in Kagel and
Richard [30]. Derivations of expected revenue and bidders�expected payo¤s are also in Appendix
C.
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function when zi 2 [217; 233].

Notice that the equilibrium bid function is monotonically increasing. Bidders

shade their bids in equilibrium. Intuitively, this can be seen as arising for two rea-

sons. First, in �rst-price auctions, bidders shade their bids to what they expect the

second highest signal holder to bid, conditional on their own signal being the highest

signal. Second, in common-value auctions, bidders take into account that the bidder

with the highest signal will win the auction. Although zi is an unbiased estimate

of x, in equilibrium bidder i uses zi as a �rst order statistic because conditional on

winning bidder i has the highest signal.

The expected payo¤ of bidder i who observes zi is:

�SPRIVi (zi) =

8>>>>>>>>>><>>>>>>>>>>:

0 if zi 2 [17; 33)

8
3

�
1� exp

�
33�zi
8

��
if zi 2 [33; 217)

zi
3
� 217

3
� 128

3(zi�201) exp(23) +
128

3(zi�201) if zi 2 [217; 233].

Bidder i enjoys a positive expected payo¤ when zi > 33. This is the private infor-

mation rent to the bidder. The ex ante expected payo¤ of bidder i, E
�
�SPRIVi

�
, is

found by integrating over�SPRIVi (zi) with respect to FZi, which yields: E
�
�SPRIVi

�
=

2:5.21 We refer to this as the information rent a bidder earns in a SPRIV auction.

The expected revenue of this auction is, E
�
RSPRIV

�
= 2 E

�
�SPRIVi

�
= 120.

SPRIV auctions generate lower expected revenue that SPUB auctions due to the

private information held by the bidders in the former.

Bidders fall victim to the winner�s curse when they bid more than the expected

21Decimal numbers are rounded o¤ to two decimal places.
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value of the good conditional on having won the auction (the break even bidding

strategy). In an SPRIV auction, each bidder receives a signal regarding x. Since

the equilibrium bid function is monotonically increasing in the signal, the winner�s

curse is found when bids exceed the expected value of the good conditional on having

the highest signal. That is, bidder i falls victim to the winner�s curse when she bids

more than E (X j zi > zj).22 This threshold is:

E (X j zi > zj) =

8>>>>>>>>>><>>>>>>>>>>:

1
3
(zi + 58) if zi 2 [17; 33)

zi � 8
3

if zi 2 [33; 217)

zi(zi+257)�92570
3(zi�201) if zi 2 [217; 233].

Asymmetric Information

One bidder observes a signal before placing her bid. We refer to this bidder as

the informed bidder. The signal is a realization of ZI which is uniformly distributed

on [x� 8; x+ 8]. The distribution function of ZI is FZI . The other bidder holds no

private information. We refer to this bidder as the uninformed bidder. Engelbrecht-

Wiggans et al. [16] provide the unique, risk neutral Nash equilibrium of this game.23

22The derivation of E (X j zi > zj) can be found in Appendix C.
23The derivations of the bidding strategy, equilibrium payo¤s and expected revenue for the dis-

tributions we use are found in Appendix C.
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The risk neutral Nash equilibrium bid function of an informed bidder is given by

� (zI) =

8>>>>>>>>>><>>>>>>>>>>:

zI
3
+ 58

3
if zI 2 [17; 33)

zI
2
+ 75

6
+m (zI) if zI 2 [33; 217)

zI
3
+ 442

3
+ n (zI) if zI 2 [217; 233]

where m (zI) = 32
3(zI�25) is the nonlinear portion of the equilibrium bid function

when zI 2 [33; 217) and n (zI) = 1
3

�
15200
zI�313 �

8800
zI�153

�
is the nonlinear portion of the

equilibrium bid function when zI 2 [217; 233].

In equilibrium, the uninformed bidder employs a mixed strategy with the distri-

bution function Q, with support on [25; 125]. The probability that the uninformed

bidder will bid no more than b is given by:

Q (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
:

The uninformed bidder will not bid more than E (X), because this would ensure

negative expected pro�ts upon winning the auction.

Since, in equilibrium, the uninformed bidder employs a mixed strategy, it must

be the case that the expected payo¤ of any bid in the support of this strategy yields

the same expected payo¤. Engelbrecht-Wiggans et al. [16] demonstrate that the

uninformed bidder wins only when the informed bidder�s signal indicates that x is

low, such that the expected payo¤ of an uninformed bidder is zero, conditioned on

winning the auction. This implies that the ex ante expected payo¤of the uninformed

bidder, E
�
�ASYMU

�
, is zero.
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Let q (zI) � E (X j zI). Since q (zI) is monotonically increasing in zI , the dis-

tribution function of this random variable is just FZI (q
�1 (�)), where q�1 (�) is the

inverse of q (�). The expected payo¤ of the informed bidder, when zI is observed, is

�ASYMI (z1) =
R q(zI)
25

FZI (q
�1 (s)) ds. This yields

�ASYMI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�17)3
38400

if zI 2 [17; 33)

1811+3zI(zI�50)
1200

if zI 2 [33; 217)

12015737�143667zI+699z2I�z3I
38400

if zI 2 [217; 233] .

Integrating over �ASYMI (zI) with respect to FZI yields the ex ante expected pro�t

of the informed bidder, E
�
�ASYMI

�
= 33:23. We refer to this as the informed

bidder�s information rent in an ASYM auction. This large information rent is

largely due to the fact that the upper bound of the support of the uninformed

bidder�s equilibrium mixed strategy is 125. The ex ante expected revenue of an

ASYM auction, E
�
RASYM

�
, is equal to E (X)�E

�
�ASYMI

�
�E

�
�ASYMU

�
= 91:77.

Since the uninformed bidder has an expected payo¤ of zero for any bid b 2

[25; 125], 125 is a break-even strategy for uninformed ASYM bidders. Bidding

above 125 ensures negative expected pro�t upon winning, while bidding below 125

yields an expected payo¤ of zero conditional on winning the auction. That is, if an

uninformed bidder bids above 125, she is said to fall victim to the winner�s curse.

The expected value of the good conditional on zI is the same as the expected

value of the good conditional on zI and having won the auction. Winning the

auction does not provide the informed bidder additional information regarding x.
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Therefore, the break-even bidding strategy for an informed ASYM bidder is to bid:

E (X j zI) =

8>>>>>>>>>><>>>>>>>>>>:

zI+33
2

if zI 2 [17; 33)

zI if zI 2 [33; 217)

zI+217
2

if zI 2 [217; 233] .

So, if an informed bidder bidder bids above E (X j zI), she is said to fall victim to

the winner�s curse.

Testable Hypotheses

The revenue generated by auctions has garnered signi�cant interest in the lit-

erature. Much of this attention has focused on the revenue ranking of auction

formats, holding the information structure constant. Since the revenue predictions

of an auction format are not invariant to the information structure, we test the pre-

dicted revenue ranking of di¤erent information structures within a single auction

format. The ex ante expected revenue of each treatment is found above. Notice

that E
�
RASYM

�
< E

�
RSPRIV

�
< E

�
RSPUB

�
. If both bidders observe a private

signal, they are predicted to earn a positive payo¤ which reduces expected revenue

relative to a SPUB auction. Additionally, the introduction of asymmetric informa-

tion sharply reduces expected revenue in a ASYM auction below that of a SPRIV

auction.

Since auctions are constant sum games between the seller and the bidders, revenue

and bidder payo¤s are closely related. When there is an information asymmetry as

modeled in an ASYM auction, the decrease in revenue relative to either symmetric

information structure must improve the expected payo¤s of at least one bidder.
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Table 2: Revenue ranking of information structures in �rst price auctions
Information structure Ex ante expected revenue

SPUB 125
SPRIV 120
ASYM 91:77

Table 3: Ranking of ex ante expected bidder payo¤s in �rst-price auctions
Bidders Ex ante expected payo¤s

ASYM-Informed 32:23
SPRIV 2:5
SPUB 0

ASYM-Uninformed 0

Who gets this decrease in revenue, the informed bidder, the uninformed bidder or

both? There are a number of predictions with regards to bidder payo¤s which

we test. The ex ante expected payo¤s of bidders are found above. Notice that,

E
�
�ASYMU

�
= E

�
�SPUBi

�
< E

�
�SPRIVi

�
< E

�
�ASYMI

�
. These hypotheses are

summarized in Table 2 and Table 3.

Since E
�
�ASYMU

�
= E

�
�SPUBi

�
, a bidder who does not observe a private signal

has an expected pro�t of zero, regardless of whether or not the other bidder ob-

serves a signal. This implies that, in equilibrium, the ex ante expected payo¤ of

a bidder who observes a signal is a measure of the value of that signal, given the

information structure of the game. That is, an informed bidder�s ex ante expected

payo¤ represents the expected information rent associated with the signal. Since

E
�
�SPRIVi

�
< E

�
�ASYM1

�
, the information rent associated with a signal is greater

if the other bidder is uninformed.

EXPERIMENTAL RESULTS

Revenue

Table 4 reports summary statistics of revenue. Average predicted revenue was
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Table 4: Revenue in �rst-price auctions aggregated over all rounds and sessions
Average observed Average predicted

revenue revenue
Treatment (standard deviation) (standard deviation)
SPUB 84:06 125

(21:87) (0)
SPRIV 112:36 110:67

(55:94) (55:01)
ASYM 88:96 88:24

(37:33) (21:87)

calculated using the realized value of the signal(s) and x.

There are three revenue ranking predictions, which we test using the nonpara-

metric robust rank order test on session-level data.2425 Predictions are borne out

between SPRIV and ASYM auctions, where at least one bidder holds private infor-

mation; we �nd strong support for the prediction that E
�
RASYM

�
< E

�
RSPRIV

�
(robust rank-order test, �U = n:d:, p = 0:004).26 Predictions regarding SPUB auc-

tions, however, are o¤. We �nd that E
�
RSPRIV

�
> E

�
RSPUB

�
(robust rank-order

test, �U = n:d:, p = 0:004). Further, our data does not support the prediction that

E
�
RASYM

�
< E

�
RSPUB

�
. Rather, we are unable to reject revenue equivalence

between these treatments (robust rank order test, �U = �0:473, n.s.).

Clearly, the observed e¤ect on revenue of an asymmetry as modeled in ASYM

auctions depends on the symmetric information structure. While theory predicts

that the information asymmetry will reduce revenue relative to both SPUB and

SPRIV information structures, we �nd that this only holds true relative to the SPRIV

structure.
24See Castellan [10] for a description of the tests used in our analysis.
25The critical values of the robust rank order test are found in Feltovich [17].
26The highest average revenue observed within a group of ten participants in any SPUB session

is lower than the lowest average reveune observed within a group of ten participants any SPRIV
session. As such, the test statistic of the robust rank order test is not de�ned. We denote such a
test statistic as �U = n:d:.
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This is in contrast to the results reported in Kagel and Levin [27] and Harrison

and List [21]. They employed a design in which each bidder observed a private

signal, and one bidder observed a perfectly precise signal. This was compared to

a symmetric information structure as in our SPRIV treatment. Theory predicts

that such an information asymmetry will increase the expected revenue relative to

the SPRIV case, and their experimental results are consistent with that prediction.

Our results suggest that this type of information asymmetry would increase revenue

relative to a SPUB information structure as well.

Bidder Payo¤s

Table 5 reports summary statistics of bidder payo¤s per auction. Note that

uninformed bidders in ASYM auctions are losing money on average. Despite this,

96:4% of these bidders bid positive amounts. Indeed, the percentage of uninformed

ASYM bids below twenty is lower in the last ten periods than in the �rst ten.

We �nd, in keeping with theoretical predictions, that the average payo¤ of in-

formed ASYM bidders is signi�cantly greater that the average payo¤of SPUB bidders

(robust rank order test, �U = 7:19, p = 0:008) and SPRIV bidders (robust rank or-

der test, �U = n:d:, p = 0:004). Thus, informed ASYM bidders earn a signi�cant

information rent on average and are signi�cantly better o¤ than in either symmetric

information structure.

SPUB bidders earn more than SPRIV bidders (robust rank order test, �U = n:d:,

p = 0:004) and uninformed ASYM bidders (robust rank order test, �U = n:d:, p =

0:004). Additionally, we are unable to reject that uninformed ASYM bidders and

SPRIV bidders obtain the same payo¤s on average (robust rank order test, �U = 1:136,

n:s:). That is, we �nd that a SPRIV bidder would not be signi�cantly worse o¤ than

if she did not observe a signal, and would be signi�cantly better o¤ if both bidders
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Table 5: Bidder payo¤s in �rst-price auctions aggregated over all rounds and sessions
Average observed Average predicted

payo¤s payo¤s
Bidders (standard deviation) (standard deviation)
SPUB 15:74 0

(45:71) (0)
ASYM-Informed 28:37 27:29

(37:39) (27:7)
ASYM-Uninformed �1:81 0

(23:63) (0)
SPRIV 1:59 2:43

(5:66) (0:69)

Table 6: Information rents in �rst-price auctions aggregated across all rounds and
sessions

Average observed Average predicted
information rent information rent

Bidders (standard deviation) (standard deviation)
ASYM-Informed 12:63 27:29

(37:39) (27:7)
SPRIV 3:40 2:43

(5:66) (0:69)

did not observe a signal.

Uninformed ASYM bidders earn less than informed ASYM bidders (Wilcoxon

matched pairs test, z = �6:13, p = 0:000).27

Since bidders who do not observe a signal are, on average, not earning zero payo¤s,

the value of an observed signal is not accurately measured by the expected payo¤

of the bidder who observes said signal. The ex ante expected value of an informed

ASYM bidder�s signal is the di¤erence between the ex ante expected payo¤ of an

informed ASYM bidder and that of a SPUB bidder. Likewise, the ex ante expected

27In the ASYM treatment, participants switched roles throughout the experiment. To test
the prediction that E

�
�ASYMU

�
< E

�
�ASYMI

�
, the average payo¤ of a participant when she was

informed was matched with the average payo¤ of a participant when she was uninformed, for a
total of 50 matched pairs.
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value of a SPRIV bidder�s signal is the di¤erence between the ex ante expected payo¤

of a SPRIV bidder and that of an uninformed ASYM bidder. That is, the ex ante

expected information rent associated with a signal is the di¤erence between the ex

ante expected payo¤ of a bidder who observes the signal and that of a bidder who

does not observe the signal, given whether or not the other bidder observes a signal.

Table 6 reports summary statistics of this measure of information rent, aggregated

over all rounds and sessions. While the average payo¤s of uninformed ASYM bidders

and SPRIV bidders are not signi�cantly di¤erent, the average value of a SPRIV

bidder�s signal is positive. The positive average payo¤ of SPUB bidders drives the

value of an informed ASYM bidder�s signal down, but on average it is positive and

larger than that of a SPRIV bidder.

Winner�s Curse

A bidder is said to fall victim to the winner�s curse regardless of whether she

actually won the auction in which they bid. That is, the winner�s curse is de�ned

for all bidders; a victim of the winner�s curse has negative expected pro�ts if they

were to win the auction.

Table 7 contains summary statistics of the winner�s curse where the winner�s curse

is de�ned as the observed bid less the break-even bid. Thus, a positive winner�s curse

indicates that the observed bid is above the break-even bid.

There are several things worth noting. First, on average, bidders in all informa-

tion structures do not fall victim to the winner�s curse. In the symmetric treatment

with private signals the percentage of bidders who are cursed is signi�cantly lower

in our experiment than in other studies. Table 8 summarizes the frequency with

which inexperienced bidders fall victim to the winner�s curse in the literature. This

di¤erence is attributable to the fact that we examine two bidder auctions, while the
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Table 7: Winner�s curse in �rst-price auctions aggregated across all rounds and
sessions

Frequency of Frequency the
winner�s curse: high (or only)

All Winning signal holder
Bidders bidders bidders wins
SPUB 1:6% 3:2% NA

(24=1500) (24=750) NA
ASYM-Informed 6% 6:9% 65:5%

(45=750) (34=491) (491=750)
ASYM-Uninformed 3:3% 9:7% NA

(28=750) (25=259) NA
SPRIV 30:9% 45:3% 72:3%

(464=1500) (340=750) (542=750)
NA = not applicable.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.

rest of the literature has examined auctions with a larger number of bidders.28 As

number of bidders increases the adverse selection problem increases; in order to win

the auction a bidder�s estimate must be the largest of a larger number of signals,

driving the break-even bidding strategy down. Thus a bidding strategy which may

not lead to being cursed with a small number of bidders may do so with a larger

number of bidders. Further, bidders tend to bid more aggressively when there is a

larger number of bidders.29 Second, the frequency with which SPRIV bidders fall

victim to the winner�s curse is dramatically di¤erent than that of SPUB bidders.

Figure 1 illustrates how the bidders�susceptibility to the winner�s curse changes

as they gain experience. Note that the frequency with which bidders fall victim

to the winner�s curse decreases as bidders gain experience. However, even in the

last periods, many SPRIV bidders are cursed. In contrast, very few SPUB bidders

28n 2 f4; 6; 7g are typical. Frequently, n is varied. Examples include Kagel et al. [29] and Kagel
and Levin [26].
29This behavior has been observed in many studies. See Kagel and Levin [28].
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Figure 1: Frequency of the winner�s curse in �rst-price auctions depending on the
period

fall victim to the winner�s curse in later periods. This is also true of informed and

uninformed ASYM bidders.

Figure 2 contains box plots which illustrate how the magnitude of the winner�s

curse is related to the signals observed by SPRIV and informed ASYM bidders.

As we can see, the magnitude of a SPRIV bidder�s signal has little e¤ect on the

magnitude of the winner�s curse for all bidder�s or the winning bidders. This is not

surprising. since each bidder knows that x is within 8ED�s of their signal. Bidding

x � 8ED guarantees a payo¤ of at least zero conditional on winning the auction;

this implies that the break-even bid is within 8ED of their signal. Interestingly,

the magnitude of the winner�s curse for informed ASYM bidders is decreasing in

the observed signal. This is because uninformed ASYM bidders typically bid a low
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Figure 2: Magnitude of the winner�s curse in �rst-price auctions depending on the
signal
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Table 8: Frequency of the winner�s curse in the existing literature
Frequency of
winner�s curse Number

Information All Winning of
Paper Journal Structure Bidders Bidders bidders

Casari et al. [9] AER SPRIV 43.9 66.2 6
Kagel and Levin [26] AER SPRIV � 71.4 7
Kagel and Levin [26] AER SPRIV � 31.9 4
Kagel and Levin [27] Econometrica SPRIV 60.5 70.9 4
Kagel and Levin [27] Econometrica SPRIV 52.3 76.6 7
Kagel and Levin [27] Econometrica INSIDERa 57.5 78.7 4
Kagel and Levin [27] Econometrica INSIDERa 83.9 92.9 7
Kagel et al. [29] EI SPRIV 59.4 81.8 5-10b

Dyer et al. [15] EJ SPRIV 55 66 4
Kagel and Garvin [25] JEBO SPRIV 56.3 75.3 4
Kagel and Garvin [25] JEBO SPRIV 49.8 75.4 6,7
Lind and Plott [35] AER SPRIV � 59.5c �

aOne bidder is perfectly informed, while the remaining bidders observe noisy signals.
bThe number of bidders decreased as participants went bankrupt.
cThis is the percentage of winning bidders who realized a negative payo¤.

amount, allowing informed ASYM bidders to bid far below their break-even bid for

high values of the good, and still obtain it.

The most signi�cant result regarding the winner�s curse is the stark di¤erence be-

tween the two symmetric information structures studied: SPUB and SPRIV. SPRIV

bidders, who observe a signal, are much more susceptible to the winner�s curse than

SPUB bidders, who do not observe a signal.

Bidding

We next turn to the question of how bidders bid relative to the Nash equilibrium

predictions. Table 9 gives summary statistics on bidding aggregated across all rounds

and sessions. We �nd that SPUB bidders underbid relative to Nash predictions

(sign test, w = 50, p < 0:001).30 Further, SPRIV bidders overbid relative to Nash

30The unit of observation in this test is the individual participant. That is, the averge bid of
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Table 9: Bids in �rst-price auctions relative to the Nash equilibrium aggregated over
all rounds and sessions

Average Average Frequency
Nash percent of

Average equilibrium over positive
Bidders bid bid Nash bids
SPUB 72:57 125 �42% 100%

(23:62) (0:00) (0:11) (1500=1500)
SPRIV 108:34 105:93 3% 99:9%

(55:99) (55:03) (0:11) (1498=1500)
ASYM-Informed 77:94 69:54 10% 100%

(41:84) (27:65) (0:35) (750=750)
ASYM-Uninformed 57:81 75:23a �23% 96:4%

(30:99) (28:64) (0:42) (723=750)
aThis is the expected value of the equilibrium mixed strategy.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.

predictions (sign test, w = 39, p < 0:001). Informed ASYM bidders also overbid

relative to Nash predictions (sign test, w = 31, p = 0:0595).31 Figure 3 plots the

equilibrium bid functions of SPRIV and informed ASYM bidders over a scatterplot

of the respective experimental data from all periods and sessions. The SPRIV data

closely tracks the equilibrium bid function. The informed ASYM data does not

follow as closely, which is largely a result of the increased variance in overbidding as

the signal increases. Notice that there are a substantial number of bids at or just

below the 45� line, meaning that many bidders bid close to their signal.

Uninformed ASYM bidders are predicted to play a mixed strategy with support

[25; 125]. As such, we do not have a point prediction for Nash bidding. However,

comparing the expected value of the equilibrium mixed strategy with the observed

a participant averaged over all periods is compared with the average Nash equilibrium bid. This
unit of observation was used for all tests regarding bidding.
31The Wilcoxon signed-rank test assumes that the underlying distribution is symmetric, and is

more powerful than the sign test as a result. Consequently, the Wilcoxon signed-rank test �nds
that informed ASYM bidders overbid relative to Nash predictions with a higher degree of con�dence
(z = 2:891, p = 0:0038).
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Figure 3: Equilibrium bid functions and observed bids in �rst-price auctions

average bid demonstrates that, on average, uninformed ASYM bidders are bidding

below the expected value of the equilibrium mixed strategy. To test whether the

observed distribution of uniformed ASYM bids conforms to the predicted mixed

strategy, we employ the nonparametric Kolmogorov�Smirnov test, which strongly

rejects the null (Kolmogorov�Smirnov test, D = 0:6323, p < 0:001). Figures 4 and

5 provide further insight. Figure 4 provides the observed cumulative distribution

of uninformed ASYM bids (aggregated over all periods and sessions) relative to the

distribution function of the equilibrium mixed strategy. Notice that the observed

distribution is almost entirely to the left of the Nash equilibrium mixed strategy.

Figure 5 gives these observed distributions, but restricts attention to the �rst and

last ten periods. Notice that there are fewer bids of zero, and fewer bids above the

break-even bid of 125 in the last ten periods.

The above analysis of uninformed ASYM bidding uses aggregate data. At the

individual participant level, are uninformed ASYM bidders mixing at all? Analyzing

the individual data clearly demonstrates that they are not. Individual participants

tend to choose the same bid in consecutive instances of being uninformed. Individual

participants of the ASYM treatment chose their modal uninformed bid an average of
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Figure 5: Uninformed ASYM cumulative distribution (�rst and last ten periods)

29% of the instances in which they are uninformed. Additionally, 82% of uninformed

ASYM bids are integers, and 59.47% of uninformed ASYM bids are multiples of �ve.

This is strong evidence against the prediction that uninformed ASYM bidders are

mixing continuously on the interval [25; 225], much less mixing according to Q (b).

To summarize, in line with previous experimental �ndings, bidders who observe

a signal overbid relative to the Nash equilibrium on average. However bidders who

do not observe a signal bid below the expected Nash equilibrium bid, on average.

Indeed, the magnitude by which uninformed bidders bid below Nash predictions is

stunning. SPUB bidders bid a full 42% below Nash predictions. While underbidding

has been observed in independent private value auctions when bidders have low
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Figure 6: Overbidding in �rst-price auctions depending on the period

valuations, this is, as far as we know, the �rst observed underbidding in single-unit

common-value auctions.

Figure 6 illustrates how overbidding relative to the Nash equilibrium evolves over

time for bidders whose equilibrium bidding strategy is pure. Median overbidding of

informed ASYM bidders declines as bidders gain experience. It is important to note,

however, that substantial overbidding persists throughout the experiment. In stark

contrast, SPUB bidders bid dramatically less than the Nash predictions. While this

underbidding decreases in early rounds, median underbidding does not dramatically

change in later rounds.

Figure 7 yields insight into how the signal a SPRIV or an informed ASYM bidder

observes is related to overbidding. The variance of overbidding by informed ASYM
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Figure 7: Overbidding in �rst-price auctions depending on the signal

bidders is clearly positively related to the signal the bidder observes. The same does

not hold for SPRIV bidders.

Estimating Bid Functions

In estimating bid functions, we employ a random e¤ects Tobit estimation to

control for correlation of participant behavior over time, and the fact that bids were

restricted to be within the interval [0; 225]. In estimating bid functions, we restrict

our attention to observations in which the observed signal (or the signal that a bidder

would have observed had she been informed) is in the interval [33; 217), where the

majority of observations lie. Following Casari et al. [9], we employ speci�cations

with and without gender and learning interaction. For the SPUB treatment, the

speci�cation without gender interaction is given by

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �i + �it;

where zit is the (unobserved) signal, Mi is equal to one if the participant is a male,

and ln (1 + t) captures learning. We include zit as a test of whether or not the

signal which is observed by a bidder in the corresponding SPRIV auction has any
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explanatory value in the SPUB auction. The speci�cation which included gender

interaction is given by

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi ln (1 + t) + �i + �it:

For the SPRIV treatment, the speci�cation without gender interaction is given

by

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4g (zit) + �i + �it;

where g (zit) is the nonlinear portion of the SPRIV equilibrium bid function when

zit 2 [33; 217). Likewise the SPRIV speci�cation with the gender and learning

interaction is given by

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi ln (1 + t) + �5g (zit) + �i + �it:

When estimating bid functions for uninformed ASYM bidders, the speci�cation

without the gender and learning interaction is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �i + �it;

wherem (zit) is the nonlinear portion of the informed ASYM equilibrium bid function

when zit 2 [33; 217). With the gender and learning interaction the speci�cation is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi ln (1 + t) + �i + �it:

These speci�cations for uninformed ASYM bidders allows us to test whether or not
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the (unobserved) signal that is observed by the analogous bidder in the SPRIV

treatment has any explanatory value. +�4m (zit)

When estimating bid functions for informed ASYM bidders, the speci�cation

without the gender and learning interaction is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4m (zit) + �i + �it;

wherem (zit) is the nonlinear portion of the informed ASYM equilibrium bid function

when zit 2 [33; 217). With the gender and learning interaction the speci�cation is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi ln (1 + t) + �5m (zit) + �i + �it:

Lastly, we jointly estimate the bid function with and without the gender and

learning interaction. Without this interaction the speci�cation is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t)

+�4SPRIVit + �5AINFit + �6AUNFit

+�7SPRIVitzit + �8AINFitzit + �9AUNFitzit

+�10SPRIVitMi + �11AINFitMi + �12AUNFitMi

+�13SPRIVit ln (1 + t) + �14AINFit ln (1 + t) + �15AUNFit ln (1 + t)

+�16SPRIVitg (zit) + �17AINFitm (zit) + �i + �it;

where SPRIVit is a dummy variable for the SPRIV bidders, AINFit is a dummy for

informed ASYM bidders and AUNFit is a dummy for uninformed ASYM bidders.
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With the gender and learning interaction, the speci�cation is

bidit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi ln (1 + t)

+�5SPRIVit + �6AINFit + �7AUNFit

+�8SPRIVitzit + �9AINFitzit + �10AUNFitzit

+�11SPRIVitMi + �12AINFitMi + �13AUNFitMi

+�14SPRIVit ln (1 + t) + �15AINFit ln (1 + t) + �16AUNFit ln (1 + t)

+�17SPRIVitMi ln (1 + t) + �18AINFitMi ln (1 + t) + �19AUNFitMi ln (1 + t)

+�20SPRIVitg (zit) + �21AINFitm (zit) + �i + �it:

Tables10 contains estimated bid functions without the gender and learning inter-

action, and Table 11 contains estimated bid functions with the gender and learning

interaction.

Notice that, as expected, the (unobserved) signal is not signi�cant in the es-

timated SPUB and uninformed ASYM bid functions. Conversely, the (observed)

signal is highly signi�cant in the estimated bid function for SPRIV bidders. Indeed,

the coe¢ cient of the signal is only slightly less than one for SPRIV bidders. Further,

the nonlinear part of the bid function (g (zit)) is not signi�cant. A similar result is

found for informed ASYM bidders; the coe¢ cient of the signal is positive and highly

signi�cant, and the nonlinear portion of the bid function (m (zit)) in not signi�cant.

The magnitude of the coe¢ cient for informed ASYM bidders is less than for SPRIV

bidders; while bidders are not bidding according to the equilibrium bid functions,

informed ASYM bidders do reduce their bids relative to the signal to account for

uninformed ASYM bidders�bidding below 125, on average.

Interestingly, the results regarding learning di¤er substantially across treatments.
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Table 10: Estimated bid functions for �rst-price auctions without gender interaction
(standard errors in parentheses)

SPUB SPRIV
Informed
ASYM

Uninformed
ASYM Joint

zit �0:014 0:989��� 0:568��� �0:022 �0:014
(0:011) (0:005) (0:018) (0:021) (0:010)

ln (1 + t) 4:400��� �0:084 �12:072��� �5:113��� 4:400���

(0:846) (0:356) (1:420) (1:627) (0:793)

Mi �0:734 �2:137��� �5:260��� �3:317 �0:734
(1:211) (0:474) (1:915) (2:384) (1:135)

g (zit) � 0:093 � � �
(0:089)

m (zit) � � �0:199 � �
(0:208)

SPRIV it � � � � �65:359���
(3:543)

AINFit � � � � �14:645���
(4:368)

AUNFit � � � � 12:477���

(4:346)

SPRIVitzit � � � � 1:000���

(0:015)

AINFitzit � � � � 0:582���

(0:018)

AUNFitzit � � � � �0:008
(0:018)

SPRIV it ln (1 + t) � � � � �4:491���
(1:127)

AINFit ln (1 + t) � � � � �16:470���
(1:375)

AUNFit ln (1 + t) � � � � �9:644���
(1:376)

SPRIV itMi � � � � �1:411
(1:613)

AINFitMi � � � � �4:560��
(2:004)

AUNFitMi � � � � �2:318
(2:001)

AINFitm (zit) � � � � �0:209
(0:177)

SPRIVitg (zit) � � � � 0:101

(0:211)

Constant 63:100��� �2:254�� 48:496��� 75:194��� 63:100���

(2:652) (1:105) (4:448) (5:160) (2:485)
�Signi�cant at the 0.10 level.
��Signi�cant at the 0.05 level.
���Signi�cant at the 0.01 level.
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Table 11: Estimated bid functions for �rst-price auctions with gender interaction
(standard errors in parentheses)

SPUB SPRIV
Informed
ASYM

Uninformed
ASYM Joint

zit �0:014 0:989��� 0:568��� �0:022 �0:014
(0:011) (0:005) (0:018) (0:021) (0:010)

ln (1 + t) 3:350��� �0:288 �12:929��� �6:262�� 3:349���

(1:247) (0:524) (2:197) (2:615) (1:169)

Mi �5:797 �3:054� �8:815 �8:212 �5:797
(4:580) (1:791) (7:218) (9:044) (4:292)

Mi ln (1 + t) 1:945 0:352 1:371 1:873 1:945

(1:697) (0:663) (2:684) (3:339) (1:590)

g (zit) � 0:093 � � �
(0:089)

m (zit) � � �0:202 � �
(0:208)

SPRIV it � � � � �67:574���
(4:847)

AINFit � � � � �15:148��
(6:166)

AUNFit � � � � 12:547��

(6:139)

SPRIVitzit � � � � 1:000���

(0:015)

AINFitzit � � � � 0:583���

(0:018)

AUNFitzit � � � � �0:018
(0:018)

SPRIV it ln (1 + t) � � � � �3:641��
(1:695)

AINFit ln (1 + t) � � � � �16:287���
(2:173)

AUNFit ln (1 + t) � � � � �9:666���
(2:153)

SPRIV itMi � � � � �2:753
(6:100)

AINFitMi � � � � �3:096
(7:566)

AUNFitMi � � � � �1:814
(7:582)

SPRIV itMi ln (1 + t) � � � � �1:600
(2:260)

AINFitMi ln (1 + t) � � � � �0:557
(2:810)

AUNFitMi ln (1 + t) � � � � �0:200
(2:802)

AINFitm (zit) � � � � �0:211
(0:177)

SPRIVitg (zit) � � � � 0:100

(0:211)

Constant 65:839��� �1:719 50:703��� 78:207��� 65:839���

(3:569) (1:495) (6:199) (7:446) (3:344)
�Signi�cant at the 0.10 level.
��Signi�cant at the 0.05 level.
���Signi�cant at the 0.01 level.
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In SPUB auction, participants are learning to bid closer to equilibrium as they gain

experience. Since they are, on average, underbidding relative to the Nash equilib-

rium, this means that they are increasing their bid as they gain experience. In the

ASYM treatment, both informed and uninformed bidders are reducing their bids

as they gain experience. In the case of informed ASYM bidders this corresponds

to bidding closer to the Nash equilibrium, but for uninformed ASYM bidders this

means that as they gain experience they increase how much they underbid relative to

the Nash equilibrium. Given that uninformed ASYM bidders are losing money on

average, this is not surprising. In the case of SPRIV bidders, learning is not signi�-

cant. This is in contrast to previous studies, which typically �nd that bidders in this

information structure learn to bid closer to equilibrium as they gain experience.32

We �nd that when bidder�s hold private information there is a signi�cant gender

di¤erence, but that when they do not hold private information, this di¤erence is not

signi�cant. Namely, males bid less than females when they hold private information.

We �nd that the interaction between gender and learning is not signi�cant for any

type of bidders. Casari et al. [9] examine gender di¤erences in an SPRIV information

structure and �nd that males bid less than females, but that females learn faster than

males. Since we do not �nd evidence of learning in SPIRIV auctions, the fact that

there is not a signi�cant gender di¤erence in learning is not surprising.

Notice that the dummy variables for types of bidders are all highly signi�cant

when the bid functions are estimated jointly. Also, gender di¤erences are largely

insigni�cant between types of bidders.

32See e.g., Casari et al. [9].
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CHAPTER IV

ASYMMETRIC INFORMATION IN CONTESTS:

THEORY AND EXPERIMENTS

OVERVIEW

In a contest a set of economic agents expend unrecoverable e¤ort to increase

the probability of obtaining a good. One of the contestants wins the contest and

obtains the good. In a perfectly discriminating contest, also known as an all-pay

auction, the contestant who expends the most e¤ort wins the contest with certainty.

In an imperfectly discriminating contest, an increase in e¤ort relative to the other

contestants increases the probability of winning, but no contestant wins the contest

with certainty. The applications of such games are abundant and diverse. Contests

are used to model research and development, elections, sports, labor markets and

many more.

The theoretical analysis of contests is a vast and burgeoning literature which

traces its roots to Tullock.[46] A survey of this literature can be found in Konrad

[32]. An important topic in this literature is the role of asymmetric information.

However, the literature concerning asymmetric information in contests is quite small.

Wärneryd [48] analyses a two player imperfectly discriminating contest in which

one contestant is informed of the common but uncertain value of the good prior

to bidding, while the other contestant knows only the distribution from which this

value was drawn. In this framework, revenue decreases relative to the cases in

which neither, or both, contestants are informed regarding the realized value of

the good.. The informed contestant is better o¤ in expectation than in either of

these symmetric information cases, and the uninformed contestant is worse o¤ in

expectation. Chapter II extends these results in a two period model with more
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than two contestants. In the �rst round information is symmetric; no contestant

holds information regarding the common and uncertain value of the good, beyond

the distribution from which it is drawn. The winner of the �rst contest privately

observes the value of the good in the �rst contest, and this value serves as a noisy

signal regarding the value of the good in the second contest. The results in Wärneryd

[48] extent to this generalized case. Further, the increased incentive to win the

�rst contest is su¢ cient to increase aggregate e¤ort relative to the case in which

information is symmetric in both contests.

In a related paper, Hurley and Shogren [24] analyze a two player contest in which

one contestant knows the other�s valuation of the good, while the informed contes-

tant�s valuation is private information. They �nd that such an information asym-

metry reduces the uninformed contestant�s probability of winning. Fu [19] considers

a model in which contestants are asymmetrically informed and endogenously choose

the order in which they choose their respective bids. In this model the uninformed

contestant chooses to move �rst, and e¤ort expenditures are reduced relative to a

simultaneous move game. Prior to this paper, the role of asymmetric information

in perfectly discriminating contests has not been analyzed theoretically.

This Chapter experimentally examines the role of asymmetric information in

incomplete information contests, both perfectly and imperfectly discriminating. In

our experimental design two contestants, or bidders, simultaneously submit bids, in

an e¤ort to obtain a good.33 This good has a common but uncertain value. We vary

the contest success function between perfectly discriminating (all-pay auction), and

imperfectly discriminating (lottery contest). We also vary the information structure

33In the contest literature players are typically called contestants. In the all-pay auction lit-
erature, players are typically called bidders, and their e¤ort expenditures are refered to as bids.
Throughout the body of the paper we refer to players as bidders, and e¤ort expenditures as bids.
Our experimental instructions also used this terminology to frame the game.
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of the game. In the symmetric information structure, neither bidder holds any

private information regarding the value of the good. In the asymmetric information

structure one bidder observes a noisy signal regarding the value of this good, while

the other does not. We also examine an all-pay auction in which each bidder observes

a private signal, which allows us to compare our results to those found in Chapter

III.

We also characterize the Nash equilibrium in an asymmetric information all-pay

auction; one contestant receives a noisy estimate regarding the common and uncer-

tain value of the good, while the other contestant does not. We �nd that aggregate

e¤ort falls in expectation relative to the case in which neither bidder observes a

signal. Further, the informed contestant is better o¤ relative to this symmetric

information case, while the uninformed contestant has an expected payo¤ of zero.

Our experimental analysis yields several interesting results. First, information

asymmetry reduces revenue in all-pay auctions. However, this in not the case in

lottery contests; we are unable to reject revenue equivalence. We also �nd that

the symmetric information all-pay auctions yields higher revenue that the symmetric

information lottery contest. Interestingly, when there is asymmetric information,

this does not hold. That is, we are unable to reject revenue equivalence between

all-pay auctions and lottery contests when there is asymmetric information.

We also �nd, in both all-pay auctions and lottery contests, that the informed

bidder is better o¤than the uninformed bidder. Additionally in both all-pay auctions

and lottery contests, the informed bidder in the asymmetric information environment

is better o¤ than bidders in the symmetric information environment; the informed

bidder earns a positive information rent. In accordance with theory, the uninformed

bidder in the asymmetric information lottery contest is worse o¤ than bidders in

the symmetric information lottery contest. Also in accordance with theory, the
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uninformed bidder in the asymmetric information all-pay auction is not worse o¤than

bidders in the symmetric information all-pay auction; we are unable to reject payo¤

equivalence between these two types of bidders. We also �nd that bidders in the

symmetric information lottery contest are better o¤ than bidders in the symmetric

information all-pay auction. Additionally, we are unable to reject payo¤ equivalence

between uninformed bidders in all-pay auctions and lottery contests, as well as payo¤

equivalence between informed bidders in all-pay auctions and lottery contests. This

observation provides additional insight into the revenue equivalence between the two

asymmetric information environments

We also compare bidding behavior to a strategy above which a bidder is guaran-

teed to earn negative payo¤s, provided the other bidder is bidding according to the

Nash equilibrium. We call such a bidding strategy a break-even bidding strategy.

Such a threshold is of interest, since experimentalists have observed that bidders in

contests often overbid relative to Nash predictions and go bankrupt as a result. Bid-

ding above a break-even bidding strategy is analogous to falling victim to the winner�s

curse, which has been widely observed in the experimental auction literature.34 We

observe that informed bidders in the asymmetric information environments are much

more prone to bid above this break-even bidding strategy than are uninformed bid-

ders in the asymmetric or symmetric information environments. This is consistent

with the �ndings of Chapter III, which experimentally analyses the e¤ect of asym-

metric information in �rst-price, sealed-bid, common-value auctions. We also ran

sessions in which bidders participate in a series of all-pay auctions and both bidders

privately observe a signal (the signals are independent, conditional on the realized

value of the good). While we do not have theoretical predictions for this game,

bidding above a break-even bidding strategy is much more prevalent than in the

34For an overview of this literature see Kagel and Levin.[28].
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symmetric information all-pay auctions in which neither bidder observed a signal.35

As such, we can con�dently say that asymmetric information is not the determining

factor in informed bidders bidding above the break-even bidding strategy.

We also �nd evidence that men bid less than women regardless of the contest

success function or the information structure of the game. In asymmetric information

lottery contests, women learned to decrease their bids faster than men, such that by

the �nal periods behavior had converged. This accelerated learning of women was

not signi�cant for bidders with symmetric information, or bidders in all-pay auctions

with symmetric or asymmetric information.

Most of the existing experimental literature regarding contests and all-pay auc-

tions study complete information environments. That is, each bidder�s valuation of

the good is common knowledge. Miller and Pratt [39], examines lottery contests

with complete information and �nd signi�cant overbidding. Miller and Pratt [40]

�nds that bidding is decreasing in risk aversion in complete information, common-

value lottery contests. Davis and Reilly [12] and Potters et al. [42] both examine

lottery contests and all-pay auctions in a complete information and common value

context, and �nd that the all-pay auction generates more revenue than lottery con-

tests. Rapoport and Amaldoss [43] experimentally examine all-pay auctions with

complete information, a common-value good, and binding budget constraints. They

�nd that behavior is consistent with equilibrium predictions at the aggregate, but

not individual, level. Gneezy and Smorodininsky [20] study common-value all-pay

auctions with complete information and �nd dramatic overbidding relative to Nash

predictions.

The experimental literature regarding contests with incomplete information is

35The break even bidding-strategy in the all-pay auction in which each bidder observes a private
signal is de�ned under the assumption that bidders employ a monotonically increasing bid function.
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surprisingly small. Noussair and Silver [41] study all-pay auctions in an indepen-

dent private value environment. They �nd that this all-pay auction yields more

revenue than predicted by theory, as well as yielding more revenue than the analo-

gous �rst-price, sealed-bid auction. Barut et al. [4] examines an independent private

value all-pay auction with multiple units of the good, and �nd that bidder�s over-

bid relative to the Baysian equilibrium. To the best of our knowledge, this is the

�rst experimental analysis of perfectly or imperfectly discriminating contests with

asymmetric information.

EXPERIMENTAL DESIGN

We employ a between-subject design which varies the game between an all-pay

auction (perfectly discriminating contest) and a lottery contest (imperfectly discrim-

inating contest) and varies the information observed by bidders prior to placing their

bids. This design is summarized in Table 12. Participants engage in either a series

of common-value, two-player all-pay auctions or lottery contests. Within a group of

ten, participants are randomly and anonymously matched into pairs at the beginning

of each session. Each bidder submits a bid, which must be paid. In all-pay auction

sessions the bidder who submits the highest bid wins the all-pay auction and receives

the good (in the event of equal bids, both bidders have a 50% chance of obtaining

the good). In lottery contest sessions the probability that a bidder obtains the good

is her proportion of the sum of bids. Participants are randomly and anonymously

rematched after each round. This process is repeated for thirty rounds.3637

36Since matching of participants occured within groups of ten, and thirty rounds were conducted,
participants were inevitably matched together more than once. However, participants were anony-
mously matched such that they were unable to build a reputation. Further, each session was ususally
run with twenty or thirty participants, and participants were not informed that they would only
interact within a group of ten.
37In one of the contest sessions, there are only 29 rounds.
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In each all-pay auction or lottery contest a good with a common but uncertain

value is available. The common value, x, is a realization of the random variable

X, which is uniformly distributed with support [25; 225]. The realized value of the

good is not observed by bidders before placing their bids. The distribution of X

is common knowledge. Prior to placing their bid, bidders may privately observe a

signal, which is drawn from a uniform distribution with support [x� 8; x+ 8]. The

treatments of our experimental design are as follows.

1. Symmetric information all-pay auction (SAP).� Participants engage in 30 all-

pay auctions. In each of these all-pay auctions neither bidder observes any

information regarding x beyond the distribution of X. As such, no bidder

holds any private information, and information is symmetric.

2. Asymmetric information all-pay auction (AAP).� Participants engage in 30

all-pay auctions. In each of these all-pay auctions one of the bidders is ran-

domly chosen to be the informed bidder, who privately observes a signal. This

signal, zI , is drawn from a uniform distribution with support [x� 8; x+ 8].

The other bidder does not observe a signal; all the information available to

them was common knowledge. Since the informed bidder is randomly deter-

mined in each auction, bidders change roles throughout each session.

3. Symmetric information lottery contest (SLC).� Participants engage in 30 lot-

tery contests auctions. Neither bidder observes any information regarding x

beyond the distribution of X. As such, no bidder holds any private informa-

tion, and information is symmetric.

4. Asymmetric information lottery contest (ALC).� Participants engage in 30 lot-

tery contests auctions. One of the bidders is randomly chosen to be the in-



72

Table 12: Experimental design summary for contests
Between-subject design

All-pay auctions. Lottery contests
Symmetric information 5 groups of 10 5 groups of 10
Asymmetric information 5 groups of 10 5 groups of 10

formed bidder, who privately observes a signal. This signal, zI , is drawn from

a uniform distribution with support [x� 8; x+ 8]. The other bidder does not

observe a signal; all the information available to them was common knowledge.

Since the informed bidder is randomly determined in each auction, bidders

change roles throughout each session.

In each of these treatments, the information structure is common knowledge.

That is, if a bidder observes a signal, this fact, as well as the distribution from which

the signal is drawn, is common knowledge. At the conclusion of each auction each

bidder observes both bids, the earnings of both bidders, their own balance and, if

applicable, the private signal(s) (participant numbers are suppressed).

Examining two-bidder games makes sense because in all-pay auctions with asym-

metric information the equilibrium bid function of the informed bidder does not

depend on the number of bidders. The expected payo¤s of these bidders (and

hence, expected revenue) also do not depend on the number of bidders. Since we

are interested in the role of information, we leave the test of these comparative sta-

tics to future research. Second, existing experimental analysis on all-pay auctions

with symmetric information examines games with more than two bidders. Thus,

our SAP treatment provides insight not already found in the literature.

All sessions were run at the Economic Research Laboratory (ERL) at Texas A&M

University, and our participants were matriculated undergraduates of the institution.

The sessions were computerized using z-Tree (Fischbacher [18]). Participants were
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separated by dividers such that they can not interact outside of the computerized

interface. They were provided with instructions, which were read aloud by an ex-

perimenter.38 After they instructions were read, questions were answered privately.

Each participant then individually answered a set of questions to ensure understand-

ing of the experimental procedure; their answers were checked by an experimenter

who also answered any remaining questions. Participants were provided with a

history sheet which allowed them to keep track of bids, earnings and. if applica-

ble, signal(s) in each round. Each session lasted approximately two hours. Each

participant began with a starting balance of $20 to cover any losses; no participant

went bankrupt. At the end of all rounds, each participant was paid their balance,

as well as a show-up fee of $5. The bids, signals and values were all denominated in

Experimental Dollars (ED), which were exchanged for cash at a rate of 160ED=$1.

The average payo¤ was $25:57, with a range of $9:44 to $33:62.

THEORETICAL PREDICTIONS

A set of risk neutral players N �f1; 2g compete for a good with a common but

uncertain value. The value of the good is a realization of the random variable X,

which is uniformly distributed on [25; 225]. This distribution function is commonly

known. The expected value of X = E (X) = 125. Player i 2 N chooses an

unrecoverable bid, bi 2 R+ at a cost of Ci (bi) = bi in an e¤ort to obtain the good.

These bids are chosen simultaneously, and players do not observe the value of x before

choosing bi. Players are not budget constrained; the strategy space of each player

is R+. The vector of bids is b �fb1; b2g. Further, b�i � bnbi and N�i � Nni.

The function pi : R+ ! [0; 1] maps b into the probability that contestant i will

receive the good. This function is typically called the contest success function in
38The instructions for the ALC treatment are found in Appendix I. Instructions for the remaining

treatments are available upon request.
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the contest literature. Di¤erent functional forms of pi have been studied in the

literature. Depending on the functional form of pi a contest may be characterized

as either a perfectly discriminating contest or an imperfectly discriminating contest.

In a perfectly discriminating contest, pi as is given by

pi =

8>>>>>>>>>><>>>>>>>>>>:

1 if bi = max fb1; b2g

0 if bi = max fb1; b2g

1
2
if b1 = b2:

Note that in such a perfectly discriminating contest the bidder with the highest bid

obtains the good with certainty. Since bids are unrecoverable, this perfectly discrim-

inating contest is equivalent to a �rst-price, sealed-bid, all-pay auction. Indeed, this

game is typically referred to as an all-pay auction. As this terminology is prevalent

throughout the literature, we adopt it.

In an imperfectly discriminating contest the bidder with the highest bid does

not obtain the good with certainty. Skaperdas [45] axiomises a class of imperfectly

discriminating contest success functions. A special case of this class is

pi =

8>>>><>>>>:
bi

b1+b2
if max fb1; b2g > 0

1
2

if max fb1; b2g = 0;

which characterizes a lottery contest. Notice that each bidder�s probability of ob-

taining the good is proportional to the revenue generated by the contest. Also,

when bi = bj = 0 then each bidder has an equal probability of obtaining the good.
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However if both bidders were to bid nothing, there is an incentive to bid an arbitrar-

ily small amount and win the good with certainty. Thus this boundary case does

not arise in equilibrium. As such, any assumption regarding this case would serve

equally well. This particular contest success function is widely utilized throughout

the experimental literature regarding contests. To aid in the comparability of our

result with this literature we utilize it as well.

Symmetric Information All-Pay Auctions (SAP)

In a SAP auction, neither bidder holds private information. The distribution

from which the value of the good is drawn is common knowledge. Assuming risk

neutral bidders, this is strategically equivalent to an all-pay auction with complete

information in which E (X) is the common value of the good. The equilibria of

all-pay auctions with complete information are completely characterized in Baye et

al. [5]. In a two-bidder all-pay common-value auction with complete information,

there is a unique, symmetric, risk neutral Nash equilibrium. In this equilibrium,

both bidders employ a mixed strategy with support on [0; 125]. The distribution

function of this equilibrium mixed strategy is given by

K (bi) =
bi
125

.

where bi is the bid of bidder i.

Notice that zero is an element of the support of this mixed strategy, which implies

that the bidders have an expected payo¤ of zero for every bid in that support.

That is E
�
�SAP

�
= 0. The expected revenue generated by this equilibrium is

E
�
RSAP

�
= E (X) = 125.
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Suppose that bidder j were to employ the equilibrium mixed strategy described

above. Bidder i then has an expected payo¤ of zero for any bi 2 [0; 125]. For any

bi > 125, bidder i has a negative expected payo¤in expectation. As such, �SAP = 125

is a break-even bidding strategy; any bid above 125 guarantees a negative payo¤ in

expectation.

Asymmetric Information All-Pay Auctions (AAP)

One of the bidders observes a signal, zI , prior to bidding; we refer to this bidder

as the informed bidder. This signal is a realization of the random variable ZI which

is uniformly distributed on [x� 8; x+ 8]. The distribution function of ZI is denoted

as FZI . The other bidder, who we refer to as the uninformed bidder, does not observe

a signal. She only knows the distribution of X, ZI and the fact that the informed

bidder will observe a realization of ZI .

This model is similar to the one in Engelbrecht-Wiggans et al. [16], which studies

this information structure in the context of a �rst-price, sealed-bid auction. The

primary di¤erence is that the low bidder must also pay her bid. The model found

in Engelbrecht-Wiggans et al. [16] is experimentally tested in Chapter III.

The equilibrium for this model is derived for general joint distribution ofX and ZI

in Appendix E. For the distributions and parameters employed in our experimental

design the risk neutral Nash equilibrium bid function for the informed bidder is given
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by

� (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI+58)(zI�17)2
19200

if zI 2 [17; 33)

zI + g (zI) if zI 2 [33; 217)

151683zI�z3I+24z2I�21595738
19200

if zI 2 [217; 233] ;

where g (zI) =
3z2I�1200zI�1811

1200
is the nonlinear portion of the informed AAP bidder�s

equilibrium bid function when zI 2 [33; 217).39

The uninformed bidder mixes on the interval [0; 125], where the probability that

she bids b is

J (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
.

The derivation of J (b) can be found in Appendix F. Note that the uninformed

bidder will not bid more than 125 in equilibrium, because this would ensure negative

expected pro�ts upon winning the auction. Further, note that J (b) indicates that

the distribution of bids of the uninformed bidder is identical to that of the informed

bidder. As such, the ex ante probability that the uninformed bidder will obtain

the good is equal to the ex ante probability that the informed bidder will obtain the

good.

Since, in equilibrium, the uninformed bidder employs a mixed strategy, it must

be the case that the expected payo¤ of any bid in the support of this strategy yields

39This de�nition of g (zI) is for notational convenience; we utilize this notation when estimating
bid functions.
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the same expected payo¤. As above, the fact that zero is in the support of the

uninformed bidder�s equilibrium bidding strategy implies that the ex ante expected

payo¤ of the uninformed bidder, E
�
�AAPU

�
, is zero.

Let q (zI) � E (X j zI). Since q (zI) is monotonically increasing in zI , the dis-

tribution function of this random variable is FZI (q
�1 (�)), where q�1 (�) is the in-

verse of q (�). The expected payo¤ of the informed bidder, when zI is observed, is

�AAPI (z1) =
R q(zI)
25

FZI (q
�1 (s)) ds. This yields

�AAPI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�17)3
38400

if zI 2 [17; 33)

1811+3zI(zI�50)
1200

if zI 2 [33; 217)

12015737�143667zI+699z2I�z3I
38400

if zI 2 [217; 233] .

Integrating over �AAPI (zI) with respect to FZI yields the ex ante expected pro�t of

the informed bidder, E
�
�AAPI

�
= 33:23. We refer to this as the informed bidder�s

information rent in an AAP auction. This large information rent is largely due to

the fact that the upper bound of the support of the uninformed bidder�s equilibrium

mixed strategy is 125. The ex ante expected revenue of an AAP auction, E
�
RAAP

�
,

is equal to E (X)� E
�
�AAPI

�
� E

�
�AAPU

�
= 91:77.

Interestingly, the expected payo¤s of both bidders in this AAP auction are exactly

the same as in the analogous �rst-price sealed-bid auction. These results extend to

a more general model, the proof of which is found in Appendix E.

For the informed bidder a break-even bidding strategy is a bid which satis�es

FZI
�
��1 (b)

�
E (X j zI)� b = 0.
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Since the uninformed bidder will never bid above E (X) = 125 in equilibrium, when

zI � 125, b = E (X j zI) is the break-even bid. For brevities sake, we do not include

the derivations of the break-even bidding strategy when zI < 125. These derivations

can be found in Appendix F.

For the uninformed bidder, the break-even bidding strategy is �AAPU = 125. The

reasoning behind this is similar to that of SAP bidders. Namely, for any bid less or

equal to 125, the expected payo¤ is zero. To obtain a negative expected payo¤, the

uninformed bidder must bid more than 125:

Symmetric Information Lottery Contests (SLC)

If both bidders hold only public information, the distribution of X is the only

information regarding x available to bidders before placing their bids. Assuming risk

neutral bidders, the well known unique equilibrium of this game is for each bidder

to bid E(X)
4

= 31:25.40. The revenue generated by this equilibrium, E
�
RSLC

�
, is

simply the sum of the bids, which is 62:5. The expected payo¤ of each bidder is

E
�
�SLC

�
= 31:25, which is equal to the equilibrium bid.

Notice that bidders earn a positive payo¤ in equilibrium, despite holding no

private information. Further the E
�
RSLC

�
is half of E (X). Contrasting this with

the revenue prediction of the analogous all-pay auction, E
�
RSAP

�
= 125, we see

that a SLC generates half the revenue of a SAP, in equilibrium.

The break-even bidding strategy of bidder i in a SLC is the bi which satis�es

bi
bi + 31:25

E (X)� bi = 0.

That is, the break-even bidding strategy of a SLC bidder is �SLC = 93:75. This

40This well known result can be found in Cornes and Hartly [11]. The derivations of this
equilibrium is found in Appendix F.
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break-even bidding strategy is de�ned assuming the other bidder is bidding according

to the Nash equilibrium. Notice that if the other bidder were to bid more than the

Nash equilibrium bid, as is often observed, the bid which ensures an expected payo¤

of zero is lower than 93:75. As such, this measure of overbidding is conservative,

given the behavior typically observed in lottery contest experiments.

Asymmetric Information Lottery Contests (ALC)

One bidder observes a private signal before placing her bid. We refer to this

bidder as the informed bidder. The signal is a realization of ZI which is uniformly

distributed on [x� 8; x+ 8] The distribution of ZI is FZI . The other bidder

holds no private information, and we refer to this bidder as the uninformed bidder.

Chapter II provides the unique, risk neutral Nash of this game.41 The equilibrium

bid function of the informed bidder is:

� (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)p
14:68 (zI + 33)� 29:37 if zI 2 [25:74; 33)

m (zI) if zI 2 [33; 217)p
14:68 (zI + 217)� 29:37 if zI 2 [217; 233] ,

where m (zI) =
p
29:37zI � 29:37 is the nonlinear portion of � (zI) when zI 2

[33; 217).42

The equilibrium bid of the uninformed bidder, rounded to the nearest cent, is

bU = 29:37. Integrating � (zI) over ZI yields the ex ante expected bid of the

informed bidder, E (� (zI)) = 29:37.

41The derivations of this Nash equilibrium bidding strategy, as well as the equilibrium payo¤
and expected revenue predictions for the distributions used in our experimental design are found
in Appendix F.
42This de�nition of m (zI) is done for notational convenience. We will utilize this notation when

estimating bid functions.
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Notice that, in expectation, the informed bidder and the uniformed bidder bid the

same amount. Also, notice that if the informed bidder observes a value of zI such that

E (X p zI) < 29:37, the informed bidder will bid zero. When E (X p zI) < 29:37,

the informed bidder has no incentive to bid; submitting a positive bid in such a

circumstance yields negative expected pro�ts. An interesting consequence of this

observation is that, ex ante, the uniformed bidder is expected to obtain the good

with a higher probability than the informed bidder.

The expected payo¤ of the informed bidder, when he observes zI , is given by

�ALCI (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)
zI+91:74

2
� 2
p
14:685 (zI + 33) if zI 2 [25:74; 33)

zI + 29:3663� 2
p
29:37zI if zI 2 [33; 217)

zI+275:74
2

� 2
p
14:685 (zI + 217) if zI 2 [217; 233] .

The ex ante expected payo¤ of the informed bidder is E
�
�ALCI

�
= 36:92. The

expected payo¤of the uninformed bidder is E
�
�ALCU

�
= 29:72. The ex ante expected

revenue of an ALC is E
�
RALC

�
= 58:74:

Note that E
�
�ALCI

�
> E

�
�SLC

�
. This is a result of the private information

held by the informed bidder. As such, we refer to E
�
�ALCI

�
� E

�
�SLC

�
> 0 as

the informed bidder�s information rent in an ALC. This is a measure of the value of

observing a private signal in a lottery contest.

The break-even bidding strategy of an informed ALC bidder, when she observes

zI is the largest bI that satis�es

bI
bI + 29:37

E (X j zI)� bI = 0.
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That is, the break-even bidding strategy of the informed ALC bidder is

�ALCI (zI) =

8>>>>>>><>>>>>>>:

0 if zI 2 [17; 25:74)
zI+33
2
� 29:37 if zI 2 [25:74; 33)

zI � 29:37 if zI 2 [33; 217)
zI+217
2

� 29:37 if zI 2 [217; 233] .

For the uninformed bidder in an ALC, the break-even bidding strategy is the bid

that satis�es

E

�
bU

bU + �
ALC (zI)

X

�
� bU = 0.

That is, the break-even bidding strategy for the uninformed bidder in an ALC is

�ALCU = 90:17.

Testable Hypotheses

Revenue predictions of all-pay auctions and lottery contests are not invariant

to the information structure. The ex ante expected revenue predictions of each

treatment where we have theoretical predictions are found above. Notice that

E
�
RALC

�
< E

�
RSLC

�
< E

�
RAAP

�
< E

�
RSAP

�
. When one bidder observes a

signal, she is expected to earn an information rent which reduces expected revenue

relative to the case where neither bidder observes a signal. Also, holding the infor-

mation structure constant, all-pay auctions are expected to generate more revenue

than lottery contests. These hypotheses are summarized in Table 13.

Since all-pay auctions and lottery contests are constant sum games between the

seller and the bidders, revenue and bidder payo¤s are closely related. When there

is an information asymmetry as in our experimental design, the decrease in revenue
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Table 13: Revenue ranking of contests in decreasing order
Information structure Ex ante expected revenue

SAP 125
AAP 91:77
SLC 62:50
ALC 58:74

Table 14: Ranking of ex ante expected bidder payo¤s in contests in decreasing order
Bidders Ex ante expected payo¤s

ALC-Informed 36:92
AAP-Informed 33:23

SLC 31:25
ALC-Uninformed 29:72

SAP 0
AAP-Uninformed 0

relative to the symmetric information structure in which neither bidder observes

a signal must improve the expected payo¤s of at least one bidder. Who gets this

decrease in revenue, the informed bidder, the uninformed bidder or both? There

are a number of predictions with regards to bidder payo¤s which we test. The

ex ante expected payo¤s of bidders are found above. Notice that, E
�
�AAPU

�
=

E
�
�SAPi

�
< E

�
�ALCU

�
< E

�
�SLCi

�
< E

�
�AAPI

�
< E

�
�ALCI

�
. These hypotheses

are summarized in Table 14.

Since E
�
�AAPU

�
= E

�
�SAPi

�
, a bidder who does not observe a private signal

in an all-pay auction has an expected pro�t of zero, regardless of whether or not

the other bidder observes a signal. This implies that, in equilibrium, the ex ante

expected payo¤ of a bidder who observes a signal in an all-pay auction is a measure

of the value of that signal, given the information structure. That is, an informed

bidder�s ex ante expected payo¤ represents the expected information rent associated

with the signal in an all-pay auction.

Since E
�
�ALCU

�
> 0, E

�
�ALCI

�
is not the expected value of observing a signal in
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a lottery contest. This value, or information rent, is given by E
�
�ALCI

�
�E

�
�SLCi

�
.

Notice that the expected information rent obtained by an informed bidder is greater

in an all-pay auction than in a lottery contest.

EXPERIMENTAL RESULTS

Revenue

Table 15 reports summary statistics of revenue. Average predicted revenue was

calculated using the realized value of the signal(s) and x. As a result, the predictions

where there is an informed bidder di¤ers slightly from the ex ante revenue predictions.

Note, however, that the revenue ranking remains the same.

There are six revenue ranking predictions, which we test using the nonparamet-

ric robust rank order test on session-level data.4344 Predictions are borne out be-

tween SAP and AAP auctions; we �nd support for the prediction that E
�
RSAP

�
>

E
�
RAAP

�
(robust rank-order test, �U = 2:36, p < 0:048). Further, we �nd strong

support for the predictions that E
�
RSAP

�
> E

�
RSLC

�
(robust rank-order test,

�U = 7:19, p = 0:008) and E
�
RSAP

�
> E

�
RALC

�
(robust rank-order test, �U = n:d:,

p = 0:004).45

We are, however, unable to reject equivalence between E
�
RSLC

�
and E

�
RALC

�
(robust rank order test, �U = �0:09, n:s:). That is, our data indicates that the

presence of asymmetric information does not reduce revenue in lottery contests,

contrary to theory.

Interestingly, we are also unable to reject equivalence between E
�
RAAP

�
and

43See Castellan [10] for descriptions of the tests used in our analysis.
44The critical values of the robust rank order test are found in Feltovich [17].
45The highest average revenue observed within a group of ten participants in any ALC session is

lower than the lowest average reveune observed within a group of ten participants any SAP session.
As such, the test statistic of the robust rank order test is not de�ned. We denote such a test
statistic as �U = n:d:.
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Table 15: Revenue in contests aggregated across all rounds and sessions
Average observed Average predicted

revenue revenue
Treatment (standard deviation) (standard deviation)

SAP 119:09 125:00
(65:77) (0:00)

AAP 95:23 88:24
(69:31) (29:80)

SLC 96:76 62:50
(44:44) (0:00)

ALC 95:97 56:13
(56:83) (14:65)

E
�
RSLC

�
(robust rank order test, �U = �0:09, n:s:). Likewise, we are unable

to reject equivalence between E
�
RAAP

�
and E

�
RALC

�
(robust rank order test,

�U = �0:09, n:s:). This observed revenue equivalence between the asymmetric

information all-pay auction and the asymmetric information lottery contest is sur-

prising, given the magnitude of the di¤erence in the theoretical predictions. The

revenue in lottery contests, regardless of the information structure is much higher

than predicted. As such, the observed revenue equivalence between the ALC, SLC

and AAP treatments is largely the result of signi�cant overbidding on the part of

bidders in lottery contests.

Bidder Payo¤s

Table 16 provides summary statistics regarding bidder payo¤s. Average predicted

payo¤s are calculated using the signals observed by participants. Notice that, on

average, the only bidders who have positive payo¤s when not observing a signal are

bidders in symmetric information lottery contests.

We �nd, in keeping with theoretical predictions, that informed AAP bidders earn

signi�cantly more than uninformed AAP bidders (sign test, w = 46, p < 0:001)46 and

46In the asymmetric information treatments (AAP and ALC), participants switched roles
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Table 16: Bidder payo¤s in contests aggregated over all rounds and sessions
Average observed Average predicted

payo¤s payo¤s
Bidders (standard deviation) (standard deviation)
SAP �1:72 0

(62:77) (0)
AAP-Informed 26:38 27:29

(59:50) (27:70)
AAP-Uninformed �6:08 0

(44:06) (0)
SLC 9:39 31:25

(68:58) (0)
ALC-Informed 22:72 31:20

(60:96) (26:85)
ALC-Uninformed �3:16 29:72

(54:68) (0)

SAP bidders (robust rank-order test, �U = n:d:, p = 0:004). That is, informed AAP

bidders earn a signi�cant information rent by virtue of holding private information.

As predicted by theory, we are unable to reject that SAP bidders and uninformed

AAP bidders have equal payo¤s (robust rank-order test, �U = 0:669, n:s:). So, a

bidder who does not observe a signal is not made worse o¤when the other bidder does.

This implies that the positive information rent obtained on average by informed AAP

bidders is extracted from the seller.

Informed ALC bidders have higher payo¤s than uninformed ALC bidders (sign

test, w = 45, p < 0:001) and SLC bidders (robust rank-order test, �U = 7:188,

p = 0:008). Uninformed ALC bidders earn less than SLC bidders (robust rank-order

test, �U = 2:859, p = 0:028). So informed ALC bidders earn a signi�cant information

rent. Unlike all-pay auctions, uninformed bidders in asymmetric information lottery

throughout the experiment. To test the prediction that informed bidders in asymmetric infor-
mation structures have greater expected pro�ts than their uninformed counterparts, the average
payo¤ of a participant when she was informed was matched with the average payo¤ of that same
participant when she was uninformed, for a total of 50 matched pairs. As such, the test of these
predictions are within subject.
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contests are worse o¤ than if neither bidder were informed. That is, the information

rent that accrues to informed ALC bidders is extracted, at least in part, from the

uninformed bidder.

These results have interesting implications in terms of the value of information

in contests, and are in line with theoretical predictions. In particular, a bidder in a

SAP auction is not worse o¤ if the other bidder were to observe a signal, and would

have no incentive to expend resources to prevent such an information asymmetry.

The same does not hold true in lottery contests. An interesting question for further

research would be whether or not an uninformed bidder would be willing to pay to

observe a signal that has been observed by the other bidder. Theory predicts that a

bidder in an all-pay auction would be indi¤erent, while a bidder in a lottery contest

would be willing to expend resources to eliminate the information asymmetry.

As predicted by theory, SLC bidders have higher payo¤s than SAP bidders (robust

rank-order test, �U = 7:188, p = 0:008). Interestingly, we are unable to reject that

informed ALC bidders and informed AAP bidders have equal payo¤s (robust rank-

order test, �U = 0:435, n:s:). Likewise, we are unable to reject that uninformed ALC

bidders and uninformed AAP bidders have equal payo¤s (robust rank-order test,

�U = 0:473, n:s:). This yields additional insight into the observed revenue equivalence

between the ALC and AAP treatments. In particular, it seems that the observed

revenue equivalence between the AAP and ALC treatments is simply because bidders,

both informed and uninformed, are equally well o¤under all-pay auctions and lottery

contests; the change in contest success function does not change the welfare of bidders

in an asymmetric information structure. Note that this does not hold when neither

bidder observes a signal. The imperfectly discriminating contest success function

actually makes bidders better o¤ than the perfectly discriminating contest success

function.
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Lastly, we �nd that SAP bidders have lower payo¤s than informed ALC bidders

(robust rank-order test, �U = n:d:, p = 0:004), and are unable to reject that SAP

bidders and uninformed ALC bidders have equal payo¤s (robust rank-order test,

�U = 0:473, n:s:). We �nd that SLC bidders have higher payo¤s than uninformed

AAP bidders (robust rank-order test, �U = 7:188, p = 0:008), and that SLC bidders

have lower payo¤s than informed AAP bidders (robust rank-order test, �U = 4:20,

p < 0:028).

Break-even Bidding

In standard auctions, the bidders who do not win the auction do not expend any

money; their payo¤ from losing the auction is zero. As such, a bid above the break-

even bidding strategy is a bid above the expected value of the good, conditional on

winning the auction. In the experimental auction literature it is widely observed

that inexperienced bidders bid above the break-even bidding strategy when they

observe a private signal. Such bidders are said to fall victim to the winner�s curse.

This �nding is very robust, and has been observed in many di¤erent auction formats.

However, Chapter III �nds that bidders who do not observe a private signal in a �rst-

price, sealed-bid auction are much less prone to fall victim to the winner�s curse than

bidders who do observe a private signal. This �nding is true of informed bidders

who face informed opponents, and bidders who do not.

In contests, bidders must pay their bid whether or not they obtain the good. As

a result, the break-even bidding strategy in a contest (the bid above which a bidder

has a negative expected payo¤, given that the other bidder is bidding according to

equilibrium) is substantially less than the expected value of the good, conditional on

obtaining the good. Prior to this paper, experimental analysis of contests have often

observed signi�cant overbidding, even in very simple environments. The benchmark
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against which this overbidding has been measured is the Nash equilibrium predic-

tions. While we do compare behavior to Nash predictions, we are interested in

whether bidders in common-value contests with incomplete information overbid such

that they guarantee themselves negative expected payo¤s, as bidders in standard

auctions do. We are also interested in the role of observing a private signal on this

overbidding. Does observation of such a signal make bidders more prone to bid

above the break-even bidding strategy?

Table 17 contains summary statistics regarding when bidders bid above the break-

even bidding strategy, aggregated across all rounds and sessions. There are several

things worth noting. First, on average, bidders who observe a signal (i.e. informed

bidders in the asymmetric information treatments) bid above the break-even bidding

threshold much more frequently than bidders who do not observe a signal. Second,

the proportion of informed AAP and informed ALC bidders who bid above the break-

even bidding threshold is actually greater than the proportion such winning bids that

fall above the break-even threshold. This is largely due to the fact that for low signal

values, the break-even bidding strategy for informed bidders is quite low. As such,

for low signal values a bidder may bid above the break-even strategy, and still be

unlikely to obtain the good. Third, notice that informed AAP bidders win almost

70% of the time. Theory predicts that the informed and uninformed AAP bidders

have an equal probability of obtaining the good. Further, the informed ALC bidder

wins just over 50% of the time, while theory predicts that the uninformed ALC

bidder has a higher ex ante probability of obtaining the good.

Figure 8 illustrates how the bidders�propensity to bid above the break-even bid-

ding strategy varies as they gain experience. Note that as bidders gain experience

the frequency with which they bid more than their break-even bidding strategy de-

creases. This is most pronounced for bidders who do not observe a signal. Also,
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Table 17: Bidding above the break-even bidding strategy in contests aggregated
across all rounds and sessions

Frequency bid exceeds Frequency the
break-even bid: informed

All Winning bidder
Bidders bidders bidders wins
SAP 6:2% 12:1% NA

(93=1490) (90=745) NA
AAP-Informed 32:7% 30:4% 69:2%

(245=750) (158=519) (519=750)
AAP-Uninformed 4% 11:3% NA

(30=750) (26=205) NA
SLC 8:1% 12:1% NA

(122=1500) (91=750) NA
ALC-Informed 34:3% 32:8% 50:7%

(257=750) (168=512) (380=750)
ALC-Uninformed 8:3% 16% NA

(62=750) (38=238) NA
NA = not applicable.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.
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Figure 8: Frequency of bids above the break-even bidding strategy in contests by
period

the bidders who do observe a signal are much more likely to bid more than their

break-even bidding strategy than uninformed bidders. Indeed, in the last periods,

many informed bidders bid continue to bid above this break-even bidding threshold.

In contrast, uninformed bidders, regardless of whether or not they face an informed

bidder, have stopped bidding above this threshold almost entirely.

This interesting result is consistent with the behavior observed in Chapter III in

the context of �rst-price, sealed-bid auctions; informed bidders are much more likely

to bid above a break-even bidding strategy than are uninformed bidders. We have

now observed this bidding behavior in three separate games: �rst-price auctions,

all-pay auctions and lottery contests. As before, we interpret this behavior as

overcon�dence on the part of informed bidders; informed bidders are overcon�dent
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regarding the value of observing a private signal, and bid accordingly. In Appendix

G, behavior when both bidders in an all-pay auction observe a signal is analyzed.

The same pattern emerges; these informed bidders are much more prone to bid above

the break-even bidding threshold than are bidders in an all-pay auction who do not

observe a signal.

This behavior is particularly interesting in the context of contests, because a

bidder who loses must still pay her bid. As a result, there are two ways in which

a bid may result in negative payo¤s. First, an informed bidder may bid more than

the value of the good, and end up with a negative payo¤ despite obtaining the good.

Second, the informed bidder may not obtain the good, and still be forced to pay her

bid. This is in contrast to �rst-price auctions, in which the only way a bidder may

end up with a negative payo¤ is by obtaining the good by bidding more than its

value.

Figure 9 illustrates how the frequency with which winning bidders bid more than

the break-even bidding strategy changes as bidders gain experience. Here, the

analysis is less clear. This is largely attributable to the fact that uninformed bidders

who won when facing an informed bidder were likely to have bid more than the

break-even bidding threshold in order to do so, while the other uninformed bidders

typically bid conservatively and lost as a result. Spikes in the proportion of winning

bids of uninformed AAP or ALC bidders who bid above the break-even bidding

threshold re�ect this. However, in later periods is it clear that informed winning

bidders are much more prone to bid above the break-even bidding threshold.

Figure 10 contains box plots which illustrate how the magnitude of the di¤erence

between observed bids and the break-even bidding threshold depends on the signal

observed by informed bidders. Interestingly, for small signal values, this magnitude

is larger than for large signals. This is true of all informed bids, as well as winning



93

0
.2

.4
.6

.8
1

Fr
eq

ue
nc

y

0 5 10 15 20 25 30
Period

SAP
Winning Bids Above Break­Even Threshold

0
.2

.4
.6

.8
1

Fr
eq

ue
nc

y

0 5 10 15 20 25 30
Period

Informed AAP Uninformed AAP

AAP
Winning Bids Above Break­Even Threshold

0
.2

.4
.6

.8
1

Fr
eq

ue
nc

y

0 5 10 15 20 25 30
Period

SLC
Winning Bids Above Break­Even Threshold

0
.2

.4
.6

.8
1

Fr
eq

ue
nc

y

0 5 10 15 20 25 30
Period

Informed ALC Uninformed ALC

ALC
Winning Bids Above Break­Even Threshold

Figure 9: Frequency of winning bids above the break-even bidding strategy in con-
tests by period

informed bids. This is a consequence of the fact that these bidders are facing

uninformed opponents. Since an uninformed bidder is unlikely to bid a large amount,

an informed bidder who observes a high signal is likely to win the contest, even if

she bids much less than the value of the good. Taking this into account reduces her

bid relative to the break-even bidding threshold.

Notice that the range of the di¤erence between observed bids and the break-even

bidding threshold increase with signal size. This is a result of the fact that for low

signal values, the range of rationalizable bids is smaller than when the observed signal

is high. An informed bidder knows that the value of the good will never exceed her

signal by more than eight. Further, she cannot bid less than zero. These bounds,

or course, expand in the signal size, and the range of bidding behavior expands as
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Figure 10: The di¤erence between observed bids and break-even bids in contests
depending on the signal

well.

Lastly, notice that for large signal values very few informed AAP bidders bid

more than the break-even bidding threshold. In contrast, a non-trivial number of

informed ALC bids fall above this threshold, for all but the highest signals. In spite

of this, recall that we are unable to reject payo¤ equivalence between informed AAP

and informed ALC bidders.

Bidding

We now compare the bidding behavior of participants across bidder types. Sev-

eral interesting observations arise. First, we �nd that informed AAP bidders bid
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more than uninformed AAP bidders (sign test, w = 45, p < 0:001).47 This result is

contrary to theory; the distribution of Nash equilibrium bids for the informed AAP

bidder is the same as that of the uninformed AAP bidder. In lottery contests. we

�nd that, contrary to theory, informed ALC bidders are bidding more than unin-

formed ALC bidders (sign test, w = 45, p < 0:001). Theory predicts that, ex ante,

the expected bid of an uninformed ALC bidder is equal to that of an informed ALC

bidder (recall that the realized signals in our design reduce the average predicted bid

of informed ALC bidders slightly). These two results, of course, are consistent with

the hypothesis that the observation of a private signal induces a bidder to increase

her bid, on average.

Comparing the behavior of bidders who do not observe signals yields interesting

results. SAP bidders bid more than uninformed AAP bidders (robust rank-order

test, �U = n:d:, p = 0:004).48 Likewise, SLC bidders bid more that uninformed ALC

bidders (robust rank-order test, �U = n:d:, p = 0:004). That is, in all-pay auctions

and lottery contests, uninformed bidders bid less if their opponent observes a signal

than if they do not. This is interesting, in light of the fact that a SAP bidder is

not signi�cantly worse o¤ than if her opponent were to observe a signal, while a

SLC bidder is signi�cantly better o¤ than if her opponent were to observe a signal.

While uninformed AAP bidders are able to reduce their bids relative to SAP bids

such that they avoid a reduced payo¤, uninformed ALC bidders are not. This

is largely due to the fact that bidders in lottery contests have a positive expected

payo¤ regardless of the whether they, or their opponent, observe a signal. In all-

47The average uninformed bid of a participant is paired with the average informed bid of the
same participant. As such, there are 50 observations for this test.
48Since both SAP and uninformed AAP bidders are predicted to employ a mixed strategy in

equilibrium, we also employ a two sample Kolmogorov-Smirnov equaltiy of distributions test, in
which the average uninformed bid of an individual participant is the unit of observation. The null
is strongly rejected (Kolmogorov-Smirnov test, D = 0:400, p = 0:001).
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pay auctions, uninformed bidders have an expected payo¤ of zero, regardless of the

information structure. As such, SLC bidders have something to lose if their opponent

were to observe a signal; SAP bidders do not.

We are unable to reject the hypothesis that SAP and informed AAP bidders bid

the same amount (robust rank-order test, �U = 0:341, n:s:). This result runs contrary

to theory, because informed AAP bidders are expected to bid less in equilibrium than

SAP bidders. Similarly, in lottery contests we �nd that informed ALC bidders bid

more than SLC bidders (robust rank-order test, �U = 2:064, p = 0:048), which is also

contrary to theory; informed ALC bidders are, ex ante, predicted to reduce their bids

relative to SLC bids. That informed bidders do not bid less than their symmetric

information counterparts suggests that informed bidders are not taking advantage

of the fact that their uninformed opponents are predicted to reduce their bids in

response to the asymmetric information, and may be overbidding relative to Nash

predictions as a result. This assertion is tested explicitly below.

In addition, we are unable to reject the hypothesis that informed AAP bidders

and informed ALC bidders bid the same amount (robust rank-order test, �U = 0:088,

n:s:). Likewise, we are unable to reject the hypothesis that uninformed AAP bidders

and uninformed ALC bidders bid the same amount (robust rank-order test, �U =

�0:258, n:s:). Recall that we are also unable to reject payo¤ equivalence between

informed AAP and informed ALC bidders, as well as between uninformed AAP and

uninformed ALC bidders. Furthermore, we are unable to reject revenue equivalence

between these two asymmetric information treatments. Consequently, these results

are not surprising.

Lastly, SAP bidders bid more than SLC bidders (robust rank-order test, �U =

7:188, p = 0:008). This result is consistent with theory. Likewise, it is consistent

with the existing literature. For example, Potters et al. [42] �nd that bidders in
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all-pay auctions bid more than bidders in lottery contests.

Nash Equilibrium

We now turn to the question of how bidders bid relative to the Nash equilibrium

predictions. Table 18 contains summary statistics regarding observed and predicted

bids, using data aggregated across all rounds and sessions. Average Nash equilibrium

bids are calculated using realized signals, rather than ex ante predictions. When

Nash predictions involve mixed strategies, the expected value and standard deviation

of the mixed strategy are reported. Notice that in the case of all-pay auctions, both

SAP and uninformed AAP bidders bid below Nash predictions, on average. In stark

contrast, informed AAP bidders bid a staggering 385:48% above Nash predictions, on

average. Furthermore, informed ALC bidders overbid relative to Nash predictions

much more than SLC or uninformed ALC bidders on average, although all bidders

in lottery contests overbid.

Also of interest is the fact that bidders do bid positive amounts, even when

uninformed. This is of particular interest for uninformed bidders in all-pay auctions

because for every bid in the support of their respective mixed strategies, they have an

expected payo¤ of zero. As such, uninformed bidders are, in equilibrium,.indi¤erent

between the Nash equilibrium mixed strategy, and bidding zero with probability one.

Indeed, uninformed AAP bidders had negative payo¤s on average, but submitted

positive bids 73:86% of the time.

Figure 11 plots the equilibrium bid functions of informed bidders against a scat-

terplot of the observed bids. Notice that a great many bids lie on the 45� line, for

both informed AAP and informed ALC bidders. This indicates that some bidders

are naive, in that they simply bid their signal. Further, most bids lie above the

equilibrium bid function, indicating that informed bidders tend to overbid relative
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Figure 11: Equilibrium bid functions and observed bids for contests
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Figure 12: SAP and Uninforrmed AAP cumulative distribution (all periods)

to the Nash equilibrium.

For bidders whose Nash equilibrium bidding strategy is pure, we compare bidding

behavior using the nonparametric sign test. Accordingly, we �nd that informed

AAP bidders overbid relative to Nash predictions (sign test, w = 41; p < 0:001).49

Further, informed ALC bidders overbid relative to Nash predictions (sign test, w =

48; p < 0:001). As described above, these informed bidders are prone to bidding in

excess of the break-even bidding strategy. This measure of overbidding is looser than

Nash equilibrium predictions. As such, it is hardly surprising to �nd that informed

49The unit of observation in this and subsequent sign tests is the average bid of an individual
participant. That is, the bid of an individual participant averaged over all periods relative to the
Nash equilibrium bid averaged over all periods. There are then 50 observations.
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Table 18: Bids relative to the Nash equilibrium in contests aggregated over all rounds
and sessions

Average Average Frequency
Nash percent of

Average equilibrium over positive
Bidders bid bid Nash bids
SAP 59:54 62:5a �4:73% 90:13%

(46:50) (36:08) (0:74) (1353=1490)
AAP-Informed 61:11 38:49 385:48% 98:40%

(50:54) (34:55) (20:54) (738=750)
AAP-Uninformed 34:13 45:89a �25:63% 73:86%

(42:99) (36:85) (0:94) (554=750)
SLC 48:38 31:25 54:81% 94:20%

(30:38) (0:00) (0:97) (1413=1500)
ALC-Informed 61:02 26:53 229:95% 99:73%

(44:30) (14:59) (6:83) (748=750)
ALC-Uninformed 34:95 29:37 19:00% 89:47%

(33:69) (0:00) (1:15) (671=750)
aThis is the expected value of the equilibrium mixed strategy.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.
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bidders overbid relative to equilibrium. However, we also �nd that SLC bidders

overbid relative to Nash predictions (sign test, w = 41, p < 0:001). This is in

contrast to the results of Chapter III, which found bidding in �rst-price auctions was

signi�cantly below Nash predictions when neither bidder observed a signal. In lottery

contests, then, observation of a signal increases the magnitude of overbidding, rather

than swinging a bidder to overbidding from underbidding as in �rst-price auctions.

We are unable to reject that uninformed ALC bidders bid according to the Nash

equilibrium (two-tailed sign test, w = 27; p = 0:6718).50 That is, the only bidders in

lottery contests who bid according to Nash predictions are uninformed ALC bidders.

Next, recall that there are two types of bidders whose Nash equilibrium involves

a mixed strategy: SAP and uninformed AAP bidders. The support for both of

these equilibrium mixed strategies is [0; 125]. As such, we do not have point pre-

dictions for these bidders. Comparing the expected value of the equilibrium mixed

strategy with the average bid tells us that, on average, uninformed AAP bidders are

underbidding. The same is true of SAP bidders, although the di¤erence is small.

To test whether observed distribution of bids is consistent with the CDF of the

equilibrium mixed strategies, we employ the nonparametric Kolmogorov�Smirnov

test. We reject the hypothesis that the observed distribution of uninformed AAP

bids is equal to that of the equilibrium mixed strategy (Kolmogorov�Smirnov test,

D = 0:1943, p = 0:0459).51 However, we are unable to reject the hypothesis that the

observed distribution of SAP bids is equal to that of the equilibrium mixed strategy

(Kolmogorov�Smirnov test, D = 0:1030, p = 0:6630).52

50If we assume that participant�s bids are independent over time, such that there are 750 obser-
vations, we �nd that uninformed ALC bidders underbid relative to Nash predictions, although this
result is only marginally signi�cant (sign test, w = 397, p = 0:0582).
51The unit of observation is the average uninformed AAP bid of an individual participant.
52If we assume that an individual participant�s bids are independent over time, such that there

are 1490 independent observations, then the Null is strongly rejected (Kolmogorov�Smirnov test,
D = 0:8013, p < 0:001).
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Figure 13: SAP and Uninforrmed AAP cumulative distribution (periods 1-10 and
21-30)

Figures 12 and 13 yield additional insight. Figure 12 plots the empirical cu-

mulative distribution of bids in all periods against the distribution function of the

equilibrium mixed strategy for both SAP and uninformed AAP bidders. For SAP

bidders, there are more bids at both tails than predicted by theory. However, for

uninformed AAP bidders, the empirical distribution is almost entirely to the left of

the Nash distribution, save for several bids in at the right tail. Figure 13 restricts

attention to the �rst and last ten periods. In the �rst ten periods, both uninformed

AAP and SAP bidders have more bids on the right tail than predicted. However, in

the last ten periods the empirical distribution of SAP bids has shifted dramatically

to the left, such that the equilibrium mixed strategy lies almost entirely to the right

of the empirical distribution. The change is even more dramatic for uninformed
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AAP bidders. In the last ten rounds the empirical distribution is far to the left of

the equilibrium distribution. Clearly, as SAP and uninformed AAP bidders gain

experience they reduce their bids such that, on average, they are underbidding.

The above analysis of uninformed AAP and SAP bids relies on aggregated data.

Of interest is whether or not an individual participant is mixing at all, regardless of

the distribution. Examining the behavior of bidders over time clearly demonstrates

that they are not. A participant in a SAP session bids her modal bid 32:48% of the

time. While the equilibrium distribution function for SAP bidders is continuous on

[0; 125], SAP bids are integers 69:93% of the time, and are multiples of �ve 49:4% of

the time. For uninformed AAP bidders, an individual bids her modal uninformed

AAP bid 44:00% of the time. Uninformed AAP bids are integers 81:07% of the

time, and multiples of �ve 61:73% of the time. Clearly, these bidders are not mixing

continuously. The fact that the modal bids are submitted so frequently suggests

that they are not mixing at all.

Estimating Bid Functions

In estimating bid functions, we employ a random e¤ects Tobit estimation to

control for correlation of participant behavior over time, and the fact that bids were

restricted to be within the interval [0; 225]. We restrict our attention to observations

in which the observed signal (or the signal that a bidder would have observed had

she been informed) is in the interval [33; 217), where the majority of observations

lie.

The speci�cation for bidders who do not observe a signal (SAP, SLC, uninformed

AAP, and uninformed ALC bidders) is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �i + �it;
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where bit is participant i�s bid in period t, zit is the (unobserved) signal of participant

i in period t, Mi is equal to one if participant i is a male, and ln (1 + t) captures

learning.53 This speci�cation is estimated separately for each type of uninformed

bidder, for a total of four such estimations. Recall that SAP and uninformed AAP

bidders are predicted to employ a mixed strategy in equilibrium. We justify our

estimation of bid functions for these bidders by noting that the data demonstrates

that these bidders are not mixing. We include zit as a test of whether or not the

signal which would have been observed by the bidder if she were informed has any

explanatory value. In each contest (there are 150 contests in each group of ten

contestants) a realization of the good was drawn, as well as two signals, which are

independent conditional on the realized value of the good. These same realizations

were used for each group of ten participants, for all treatments (these are the same

realizations used in Chapter III). As such, in SAP and SLC sessions, neither bidder

in any given contest observed the signal that was �assigned� to them. In AAP

and ALC treatments, one of the bidders was randomly chosen to observe one of the

signals. The other bidder did not observe one, although there was one �assigned�

to them. We also ran sessions with all-pay auction in which both bidders observed

the signal that was �assigned� to them. For SAP, SLC, uninformed AAP and

uninformed ALC bidders, the (unobserved) signal that was assigned to them should

not have any predictive power concerning bidding behavior. Inclusion of this signal

as a covariate tests this assertion.

Following Casari et al. [9], we also employ speci�cations which interact gender

and learning. Casari et al. [9] �nds that women initially bid more than men, but that

they learn faster than men such that bidding behavior quickly converges. We are

53Since period de�nes the panel, it cannot be included as a covariate. The inclusion of ln (1 + t)
captures learning. Moreover, since ln (1 + t) is nonlinear in t, it takes account of diminishing
returns to learning.
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interested in whether or not this observation holds in the context of contests. The

speci�cation for uninformed bidders which includes gender and learning interaction

is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi � ln (1 + t) + �i + �it:

For informed AAP bidders, the speci�cation without the gender and learning

interaction is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4g (zit) + �i + �it;

where g (zit) is the nonlinear portion of the informed AAP equilibrium bid function

when zit 2 [33; 217). Furthermore, the informed AAP speci�cation with the gender

and learning interaction is given by

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi � ln (1 + t) + �5g (zit) + �i + �it:

Similarly, when estimating bid functions for informed ALC bidders, the speci�-

cation without the gender and learning interaction is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4m (zit) + �i + �it;

wherem (zit) is the nonlinear equilibrium bid function of informed ALC bidders when

zit 2 [33; 217). By including both zit and m (zit), we are testing whether informed

ALC bidders bid according to a linear function of their signal, or whether they bid

according to the nonlinear bid function, as predicted by theory. With the gender
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and learning interaction the speci�cation is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t) + �4Mi � ln (1 + t) + �5m (zit) + �i + �it:

Lastly, we jointly estimate bid functions. Without the gender and learning

interaction the speci�cation is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t)

+�4IAAPit + �5UAAPit + �6SLCit + �7IALCit + �8UALCit

+�9IAAPit � zit + �10UAAPit � zit + �11SLCit � zit

+�12IALCit � zit + �13UALCit � zit + �14IAAPit �Mi

+�15UAAPit �Mi + �16SLCit �Mi + �17IALCit �Mi

+�18UALCit �Mi + �19IAAPit � ln (1 + t) + �20UAAPit � ln (1 + t)

+�21SLCit � ln (1 + t) + �22IALCit � ln (1 + t) + �23UALCit � ln (1 + t)

+�24IAAPit � g (zit) + �25IALCit �m (zit) + �i + �it;

where IAAPit is a dummy variable for informed AAP bidders, UAAPit is a dummy

for uninformed AAP bidders, SLCit is a dummy for SLC bidders, IALCit is a dummy

variable for informed ALC bidders, and UALCit is a dummy variable for uninformed
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ALC bidders. When the gender and learning interaction, the joint speci�cation is

bit = �0 + �1zit + �2Mi + �3 ln (1 + t)

+�4IAAPit + �5UAAPit + �6SLCit + �7IALCit + �8UALCit

+�9IAAPit � zit + �10UAAPit � zit + �11SLCit � zit + �12IALCit � zit

+�13UALCit � zit + �14IAAPit �Mi + �15UAAPit �Mi

+�16SLCit �Mi + �17IALCit �Mi + �18UALCit �Mi

+�19IAAPit � ln (1 + t) + �20UAAPit � ln (1 + t) + �21SLCit � ln (1 + t)

+�22IALCit � ln (1 + t) + �23UALCit � ln (1 + t)

+�24IAAPit �Mi � ln (1 + t) + �25UAAPit �Mi � ln (1 + t)

+�26SLCit �Mi � ln (1 + t) + �27IALCit �Mi � ln (1 + t)

+�28UALCit �Mi � ln (1 + t) + �29IAAPit � g (zit)

+�30IALCit �m (zit) + �i + �it;

Table 19 contains estimated bid functions for all-pay auction without the gender

and learning interaction (as well as a joint estimation with all tretments). Table 20

contains estimated bid functions for lottery contests without the gender and learning

interaction (as well as a joint estimation with all treatments. Tables 21 and 22

contain the analogous estimated bid functions, but with the gender and learning

interaction included.

Notice that, as expected, the (unobserved) signal is not signi�cant in the esti-

mated bid functions of SAP, SLC, uninformed AAP and uninformed ALC bidders.

Conversely, the (observed) signal is highly signi�cant in the estimated bid function of

informed AAP and informed ALC bidders. Interestingly, in the joint speci�cations,

the coe¢ cient on signal is larger for informed ALC bidders than for informed AAP
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Table 19: Estimated bid functions for all-pay auctions without gender interaction
(standard errors in parentheses)

SAP
Informed
AAP

Uninformed
AAP Joint

zit 0:015 0:415��� �0:015 0:014
(0:024) (0:092) (0:035) (0:019)

ln (1 + t) �5:535��� �22:824��� �20:490��� �5:672���
(1:842) (1:964) (2:720) (1:479)

Mi �17:982��� �7:340��� �2:030 �17:323���
(2:646) (2:941) (4:064) (2:215)

g (zit) � �0:379 � �
(0:230)

m (zit) � � � �

IAAP it � � � �30:837���
(10:913)

UAAPit � � � 2:734
(8:080)

SLCit � � � �17:079���
(6:532)

IALCit � � � �39:189���
(8:617)

UALCit � � � �29:935���
(7:993)

IAAP it � zit � � � 0:400���

(0:100)
UAAPit � zit � � � �0:029

(0:033)
SLCit � zit � � � �0:027

(0:027)
IALCit � zit � � � 0:598��

(0:253)
UALCit � zit � � � �0:004

(0:033)
IAAP it � ln (1 + t) � � � �17:139���

(2:564)
UAAPit � ln (1 + t) � � � �14:253���

(2:565)
SLCit � ln (1 + t) � � � �2:300

(2:084)
IALCit � ln (1 + t) � � � �7:311���

(2:557)
UALCit � ln (1 + t) � � � 0:767

(2:556)
IAAP it �Mi � � � 9:944���

(3:788)
UAAPit �Mi � � � 15:588���

(3:804)
SLCit �Mi � � � 28:465���

(3:045)
IALCit �Mi � � � 5:986

(3:789)
UALCit �Mi � � � 8:686��

(3:752)
IAAPit � g (zit) � � � �0:381

(0:245)
IALCit �m (zit) � � � �0:294

(0:976)
Constant 78:789��� 49:037��� 81:644��� 79:658���

(5:728) (9:280) (8:632) (4:599)
Observations 1450 710 750 5830
Left Censored 143 9 196 514
Right Censored 2 0 0 3
Log Likelihood �7116:064 �3546:939 �3140:289 �27703:290

�Sign i�cant at the 0.10 level.
�Sign i�cant at the 0.05 level.
�Sign i�cant at the 0.01 level.
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Table 20: Estimated bid functions for lottery contests without gender interaction
(standard errors in parentheses)

SLC
Informed
ALC

Uninformed
ALC Joint

zit �0:012 0:613��� 0:016 0:014
(0:015) (0:199) (0:025) (0:019)

ln (1 + t) �7:893��� �12:980��� �4:975�� �5:672���
(1:138) (1:648) (2:126) (1:479)

Mi 10:729��� �11:351��� �8:687��� �17:323���
(1:690) (2:479) (2:789) (2:215)

g (zit) � � � �

m (zit) � �0:301 � �
(0:772)

IAAP it � � � �30:837���
(10:913)

UAAPit � � � 2:734
(8:080)

SLCit � � � �17:079���
(6:532)

IALCit � � � �39:189���
(8:617)

UALCit � � � �29:935���
(7:993)

IAAP it � zit � � � 0:400���

(0:100)
UAAPit � zit � � � �0:029

(0:033)
SLCit � zit � � � �0:027

(0:027)
IALCit � zit � � � 0:598��

(0:253)
UALCit � zit � � � �0:004

(0:033)
IAAP it � ln (1 + t) � � � �17:139���

(2:564)
UAAPit � ln (1 + t) � � � �14:253���

(2:565)
SLCit � ln (1 + t) � � � �2:300

(2:084)
IALCit � ln (1 + t) � � � �7:311���

(2:557)
UALCit � ln (1 + t) � � � 0:767

(2:556)
IAAP it �Mi � � � 9:944���

(3:788)
UAAPit �Mi � � � 15:588���

(3:804)
SLCit �Mi � � � 28:465���

(3:045)
IALCit �Mi � � � 5:986

(3:789)
UALCit �Mi � � � 8:686��

(3:752)
IAAPit � g (zit) � � � �0:381

(0:245)
IALCit �m (zit) � � � �0:294

(0:976)
Constant 62:947��� 40:498��� 49:629��� 79:658���

(3:595) (5:758) (6:538) (4:599)
Observations 1460 710 750 5830
Left Censored 85 2 79 514
Right Censored 0 0 1 3
Log Likelihood �6782:575 �3454:378 �3441:625 �27703:290

�Sign i�cant at the 0.10 level.
�Sign i�cant at the 0.05 level.
�Sign i�cant at the 0.01 level.
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Table 21: Estimated bid functions for all-pay auctions with gender interaction (stan-
dard errors in parentheses)

SAP
Informed
AAP

Uninformed
AAP Joint

zit 0:016 0:418��� �0:017 0:014
(0:024) (0:092) (0:035) (0:019)

ln (1 + t) �4:106 �26:202��� �23:722��� �4:002��
(2:591) (3:282) (4:441) (2:080)

Mi �10:462 �20:805� �15:349 �8:606
(9:884) (10:895) (15:085) (7:930)

Mi � ln (1 + t) �2:885 5:233 5:135 �3:368
(3:681) (4:078) (5:600) (2:954)

g (zit) � �0:371 � �
(0:230)

m (zit) � � � �

IAAP it � � � �17:630
(13:667)

UAAPit � � � 13:976
(11:512)

SLCit � � � �8:031
(8:964)

IALCit � � � �18:186
(11:866)

UALCit � � � �14:653
(11:307)

IAAP it � zit � � � 0:403���

(0:100)
UAAPit � zit � � � �0:031

(0:033)
SLCit � zit � � � �0:027

(0:027)
IALCit � zit � � � 0:622��

(0:253)
UALCit � zit � � � �0:004

(0:033)
IAAP it � ln (1 + t) � � � �22:204���

(4:071)
UAAPit � ln (1 + t) � � � �18:505���

(4:021)
SLCit � ln (1 + t) � � � �5:807�

(3:169)
IALCit � ln (1 + t) � � � �15:386���

(4:047)
UALCit � ln (1 + t) � � � �5:136

(4:013)
IAAP it �Mi � � � �12:312

(14:066)
UAAPit �Mi � � � �3:782

(14:125)
SLCit �Mi � � � 12:120

(11:356)
IALCit �Mi � � � �28:695��

(14:122)
UALCit �Mi � � � �17:367

(14:046)
IAAP it �Mi � ln (1 + t) � � � 8:631

(5:256)
UAAPit �Mi � ln (1 + t) � � � 7:476

(5:250)
SLCit �Mi � ln (1 + t) � � � 6:315

(4:229)
IALCit �Mi � ln (1 + t) � � � 13:372

(5:247)
UALCit �Mi � ln (1 + t) � � � 10:066�

(5:231)
IAAPit � g (zit) � � � �0:375

(0:245)
IALCit �m (zit) � � � �0:395

(0:976)
Constant 75:050��� 57:826��� 90:265��� 75:288���

(7:453) (11:524) (12:725) (5:985)
Observations 1450 710 750 5830
Left Censored 143 9 196 514
Right Censored 2 0 0 3
Log Likelihood �7115:757 �3546:116 �3139:862 �27697:128

�Sign i�cant at the 0.10 level.
�Sign i�cant at the 0.05 level.
�Sign i�cant at the 0.01 level.
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Table 22: Estimated bid functions for lottery contests with gender interaction (stan-
dard errors in parentheses)

SLC
Informed
ALC

Uninformed
ALC Joint

zit �0:012 0:638��� 0:016 0:014
(0:015) (0:198) (0:025) (0:019)

ln (1 + t) �9:549��� �19:347��� �9:205��� �4:002��
(1:854) (2:731) (3:258) (2:080)

Mi 3:854 �37:162��� �26:001�� �8:606
(6:305) (9:191) (10:443) (7:930)

Mi � ln (1 + t) 2:656 9:944��� 6:687� �3:368
(2:347) (3:411) (3:887) (2:954)

g (zit) � � � �

m (zit) � �0:401 � �
(0:768)

IAAP it � � � �17:630
(13:667)

UAAPit � � � 13:976
(11:512)

SLCit � � � �8:031
(8:964)

IALCit � � � �18:186
(11:866)

UALCit � � � �14:653
(11:307)

IAAP it � zit � � � 0:403���

(0:100)
UAAPit � zit � � � �0:031

(0:033)
SLCit � zit � � � �0:027

(0:027)
IALCit � zit � � � 0:622��

(0:253)
UALCit � zit � � � �0:004

(0:033)
IAAP it � ln (1 + t) � � � �22:204���

(4:071)
UAAPit � ln (1 + t) � � � �18:505���

(4:021)
SLCit � ln (1 + t) � � � �5:807�

(3:169)
IALCit � ln (1 + t) � � � �15:386���

(4:047)
UALCit � ln (1 + t) � � � �5:136

(4:013)
IAAP it �Mi � � � �12:312

(14:066)
UAAPit �Mi � � � �3:782

(14:125)
SLCit �Mi � � � 12:120

(11:356)
IALCit �Mi � � � �28:695��

(14:122)
UALCit �Mi � � � �17:367

(14:046)
IAAP it �Mi � ln (1 + t) � � � 8:631

(5:256)
UAAPit �Mi � ln (1 + t) � � � 7:476

(5:250)
SLCit �Mi � ln (1 + t) � � � 6:315

(4:229)
IALCit �Mi � ln (1 + t) � � � 13:372

(5:247)
UALCit �Mi � ln (1 + t) � � � 10:066�

(5:231)
IAAPit � g (zit) � � � �0:375

(0:245)
IALCit �m (zit) � � � �0:395

(0:976)
Constant 67:162��� 57:033��� 60:523��� 75:288���

(5:176) (8:059) (9:102) (5:985)
Observations 1460 710 750 5830
Left Censored 85 2 79 514
Right Censored 0 0 1 3
Log Likelihood �6781:935 �3450:154 �3440:149 �27697:128

�Sign i�cant at the 0.10 level.
�Sign i�cant at the 0.05 level.
�Sign i�cant at the 0.01 level.
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bidders. Also of interest is the fact that the nonlinear part of the informed AAP

bidder�s bid function (g (zit)) is not signi�cant. A similar result is found for informed

ALC bidders; the coe¢ cient of the signal is positive and highly signi�cant, and the

nonlinear informed ALC bidder�s bid function (m (zit)) in not signi�cant. As such,

it is clear that informed bidder�s bid function is linear in their signals, contrary to

theory.

Interestingly, the results regarding learning di¤er substantially across treatments,

when we do not include the gender and learning interaction. In SAP auctions,

participants learn relatively slowly to reduce their bids as they gain experience. The

same holds for SLC bidders. The fact that SLC bidders learn slowly is surprising,

since they are, on average, bidding more than equilibrium predictions. However,

as discussed above, SLC bidders are typically not bidding more than the break-even

bidding strategy. As such, most SLC bidders are earning positive payo¤s on average.

These average positive payo¤s are less likely to reduce bidding behavior than negative

payo¤s.

In stark contrast, informed AAP and informed ALC bidders learn to reduce their

bids much faster than SAP and SLC bidders. We attribute this to the fact that

these informed bidders are much more prone to bid above the break-even bidding

strategy than are uninformed bidders. The resulting negative payo¤s provides a

strong incentive for these bidders to reduce their bids. It is important to recall that

when informed bidders observe a high signal, they bid above the break-even bidding

strategy infrequently. When they observe a small signal, the probability of obtaining

the good is small, because the uninformed bidder cannot take the low value of the

good into account when choosing her bid. If the informed bidder does not take this

into account by, in some sense, ceding the contest to the uninformed bidder she is

likely to bid such that she loses the contest and still must pay her bid. This process
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is, for the most part, the mechanism through which informed bidders learn to reduce

their bids. Notice that this allows the average payo¤ of the informed bidders to be

quite high (since they are likely to earn a substantial payo¤ for high signal values),

while still facing negative payo¤s which induce learning that is quicker than that of

uninformed bidders.

Also, notice that uninformed AAP bidders learn to reduce their bids faster than

SAP bidders, but uninformed ALC bidders do not. This is attributable to the fact

that, on average, uninformed AAP bidders quickly learn that when they obtain the

good, it is because the informed AAP bidder has observed that it is low valued. This

induces the uninformed AAP bidders to reduce their bids faster than SAP bidders,

who do not face this �winner�s curse.� On the other hand, an uninformed ALC

bidder has a positive probability of obtaining the good, regardless of the informed

ALC bidder�s bid, provided she has submitted a positive bid of her own.54 As such,

uninformed ALC bidders often obtain the good, and earn a substantial payo¤ in

the process. Consequently, they have less incentive to reduce their bids than the

uninformed AAP bidders.

Interestingly, when we do not include the gender and learning interaction, there

are signi�cant gender di¤erences. In particular, notice that women bid more than

men everywhere except in symmetric information lottery contests (although the mag-

nitude of this di¤erence is quite small in the case of uninformed AAP bidders).

Clearly this fact is not simply a consequence of the imperfectly discriminating con-

test success function; women bid more than men in asymmetric information lottery

contests, regardless of whether or not they are informed.

Notice that when we include the gender and learning interaction, it is not signif-

54Note that this argument neglects the boundary case in which neither bidder submits a positve
bid. As this case does not arise in our data, there is no need to consider it.
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icant in all-pay auctions, regardless of the information structure. Indeed, inclusion

of this interaction renders the gender dummy insigni�cant for SAP and uninformed

AAP bidders, and only marginally signi�cant for informed AAP bidders. Further,

note that when we include the gender and learning interaction, the gender dummy

in the SLC treatment is also no longer signi�cant.

In contrast, note that inclusion of this gender and learning interaction does not

render the gender dummy insigni�cant for ALC bidders, regardless of whether or not

they are informed. Indeed, the magnitude of the coe¢ cients has increased. Also,

the gender and learning interaction itself is signi�cant for informed and uninformed

ALC bidders. That is, we �nd that in asymmetric information lottery contests,

women bid more than men, but also learn faster. This result does not extend to

other treatments.
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CHAPTER V

CONCLUSION

In Chapter II I examine the case where the values of the prizes are positively

related in a twice repeated imperfectly discriminating contest. If the incumbent

privately observes the value of the prize in the �rst contest, then she is better informed

than the challengers in the subsequent contest.

I �nd that in the second contest, the incumbent has a strictly lower ex ante

probability of obtaining the prize than a challenger, despite expending (weakly)

more e¤ort than a challenger in expectation. The incumbent expends low e¤ort for

low values of the prize and high e¤ort for high values of the prize; the incumbent�s

low probability of obtaining the prize when its value is low is such that the ex ante

probability of obtaining the prize is lower than that of a challenger.

Since the incumbent expends low e¤ort for low values of the prize, the challengers

face an analogue of the winner�s curse, and reduce their second period e¤ort expen-

ditures relative to the symmetric information case as a result. This is su¢ cient to

reduce aggregate e¤ort expenditure in the second contest relative to the IIV case, de-

spite the fact that the incumbent�s expected e¤ort expenditures may have increased

relative to the IIV case.

The incumbent�s ex ante expected utility is strictly higher than in the IIV case;

the incumbent obtains an information rent. This information rent creates an in-

creased incentive to obtain the prize in the �rst contest, which increases aggregate

e¤ort expenditures in the �rst contest. This incentive is su¢ ciently high to increase

total e¤ort expenditure over both contests, o¤setting the decrease in expected e¤ort

expenditure in t = 2 caused by the information asymmetry.

In Chapter III the role of asymmetric information in �rst-price common-value
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auctions is experimentally examined by varying the information available to bidders

before placing their bids. We compare three information structures. In the �rst,

no bidders hold any private information regarding the uncertain value of the good

(SPUB). In the second, both bidders privately observe noisy signals regarding the

value of the good (SPRIV). In the third, only one bidder observes a noisy signal;

the other bidder does not hold private information (ASYM).

The most surprising result is that bidders who do not hold private information

underbid relative to the Nash predictions, while bidders who hold private information

overbid relative to the Nash predictions. Indeed the underbidding by uninformed

bidders is dramatic. Bidders in the SPUB treatment bid 42% less than predicted

by theory. Overbidding by informed bidders is a widely observed phenomenon

in laboratory experiments, but the behavior of uninformed bidders has not been

studied previous to this paper. Our results suggest that the overbidding typically

observed may be an artifact of the private signal that is typically provided to subjects.

As such, our result o¤er support for the hypothesis that �a little knowledge is a

dangerous thing.�That is, people who have a little information become overcon�dent.

Our results have signi�cant implications regarding the widespread observation of

the winner�s curse in common-value auctions. In particular, we �nd that the winner�s

curse is almost entirely eliminated when bidders are not given private information.

In addition, the winner�s curse is largely eliminated when only one of the bidder�s

holds private information. This is despite the fact that the informed bidder overbids.

The observed bidding behavior also has signi�cant e¤ects on bidder payo¤s. In

particular, when neither bidder holds private information, bidders earn a substantial

payo¤, on average. When bidders both hold private information, bidder payo¤s are

positive, but quite small as a result of informed overbidding relative to Nash pre-

dictions. Note that informed ASYM bidders earn, on average, more than predicted
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despite overbidding relative to the Nash predictions.

Additionally, the observed bidding behavior has signi�cant e¤ects on the revenue

ranking of the three information structures studied. Namely, the SPUB auction,

which is predicted to have the highest revenue, is observed to have the lowest revenue

because the uninformed bidders underbid. However, when both bidders hold private

information, revenue is higher than when only one bidder holds private information,

as predicted.

In Chapter IV the role of asymmetric information in two types of contests is

examined: all-pay auctions and lottery contests. In particular, we examine these

contests in a common-value environment in which there is uncertainty regarding

the value of the good. We employ a 2 � 2 between subject design which varies

the information structure of the game and the contest success function. In the

symmetric information structure, neither bidder observes a signal regarding the value

of the good; both bidder know only the distribution from which the value is drawn.

In the asymmetric information structure, one of the bidders is randomly chosen to

privately observe a signal in the form of a noisy estimate of the value of the good.

The other bidder does not observe a signal, and holds no private information. The

two contest success functions we utilize in our design represent opposite extremes

of discrimination. At one end, there is perfectly discriminating contest success

function, which allocates the good to the bidder with the highest bid with certainty.

At the other, there is the lottery contest success function which allocates the good

to each bidder with probability equal to her proportion of the sum of bids.

In addition to the 2 � 2 design outlined above, we also ran sessions in which

participants played a series of all-pay auctions where both bidders observe a private

signal. While we do not have theoretical predictions for this game, behavior in this

environment is of interest in light of the fact that bidders who observe a signal in �rst-



117

price auctions are much more prone to bid above their break-even bid, regardless of

whether or not their opponent observed a signal (Chapter III). As such, we ran these

additional sessions to compare behavior in all-pay auctions to behavior in �rst-price

auctions.

Perhaps the most interesting result is that bidders in asymmetric information

treatments who observe a signal are much more prone to bid above their break-even

bidding strategy than are bidders who do not observe a signal. Similarly, we �nd

that when both bidders in an all-pay auction observe a signal, they are much more

likely to bid above their break-even bidding strategy than are bidders who do not

observe a signal. As such, the results of Chapter III do extend to all-pay auctions.

We also �nd that when neither bidder observes a signal, all-pay auctions generate

more revenue than lottery contests. Consequently, bidders in such all-pay auctions

earn more than bidders in lottery contests, on average. Interestingly the same does

not hold when information is asymmetric. We are unable to reject revenue equiva-

lence between asymmetric information all-pay auctions and asymmetric information

lottery contests. Further, we are unable to reject payo¤ equivalence between unin-

formed bidders in these two asymmetric information games. Likewise, we are also

unable to reject payo¤equivalence between the informed bidders in these asymmetric

information games.

Another interesting result we �nd is that, in asymmetric information lottery

contests, women bid signi�cantly more than men in early periods, but learn at a

faster rate than men such that behavior converges in later periods. This result does

not extend to the other treatments.

Our results suggest several questions which provide avenues for future research.

First, what induces informed bidders to overbid so dramatically? Is it that the

information is privately observed? Second,.what happens to behavior as the quality
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of the signal decreases? Third, does the observed revenue equivalence in the asym-

metric information treatments extend to other games? Lastly, how much are bidders

willing to pay for a signal? Could a seller increase revenue by selling signals?
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APPENDIX A

This appendix contains proof of the propositions in Chapter II.

Proof of Proposition 1

De�ne the function

g(x) � (n� 2)
x (n� 1)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+

r
(n� 1)
x

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

+FV (q (x (n� 1)))� n:

Notice that g(x) = 0 satis�es (3), which de�nes an equilibrium. Note that q( v
n�1) =

v.

g

�
v

n� 1

�
=

s
(n� 1)�

v
n�1
� 1Z
v

p
E (V2 p v1)dFV (v1)� n

=
(n� 1)
p
v

1Z
v

p
E (V2 p v1)dFV (v1)� n

Now, suppose that g( v
n�1) � 0. In this case,

�
(n�1)

�
E
�p

E(V2jV1)
��

n

�2
� v �

E (V2 j v). That is, there is interior equilibrium. If g( v
n�1) > 0; there need not

be an interior equilibrium. However,

lim
x!1

g(x) = 1� n < 0:

Thus, either there is an interior equilibrium, or the intermediate value theorem as-
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sures at least one �nite value of x where g(x) = 0. If there is an interior equilibrium,

then it has a unique closed form solution. To prove the uniqueness of a non-interior

equilibrium note that:

@g(x)

@x
=

(n� 2) (n� 1)
1Z
v

v2f(q (x (n� 1)) ; v2)dv2q0 (x (n� 1))

x (n� 1)
�fV (q (x (n� 1)))q0 (x (n� 1)) (n� 1)2

+fV (q (x (n� 1)))q0 (x (n� 1)) (n� 1)

�

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) :

If there is not an interior equilibrium, E (V2 j q (x (n� 1))) = x (n� 1). Using this

to reduce the above expression yields:

@g(x)

@x
= �

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) :

Since this expression is negative, g(x) is monotonically decreasing in x, which means

that the equilibrium whose existence was shown above is unique. �

Proof of Proposition 2
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Rearranging (3), which characterizes equilibrium e¤ort yields:

xIDVC2 � E
�
xIDVI2 (v1)

�
=

�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
�xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
(n� 2)

Note that the right hand side of this equation is equal to zero if n = 2; or if the

equilibrium in interior (q
�
xIDVC2 (n� 1)

�
= v), yielding the desired result. Now

suppose the equilibrium is not interior, n > 2, and that xIDVC2 � E
�
xIDVI2 (v1)

�
. This

implies that:

�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
� xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
(n� 2) :

This simpli�es to

E
�
V2 j V1 � q

�
xIDVC2 (n� 1)

��
� xIDVC2 (n� 1)

= E
�
V2 j q

�
xIDVC2 (n� 1)

��
:

Since E (V2 j v1) is strictly increasing in v1, this is a contradiction.�

Proof of Proposition 3

First consider the case where n = 2, or there is an interior equilibrium. Re-

call that, when n = 2, or there is an interior equilibrium, xIDVC2 = E
�
xIDVI2 (v1)

�
.

In this case, note that the probability contestant j 2 C will obtain the prize,

pj2 (xI2 (v1) ;xC) =
xj2�

xi2(v1)+xj2+
P
k2C�j

xk2

� , is strictly convex in xI2 (v1). Jensen�s

Inequality yields:

E (pj2 (xI2 (v1) ;xC)) > pj2
�
ExIDVI2 (v1) ;xC

�
:
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Further, since pI2 (xi2 (v1) ;xC) =
xI2(v1)

(xI2(v1)+
P
k2C xk2)

is strictly concave in xI2 (v1),

Jensen�s Inequality also tells us that:

E
�
pI2
�
xIDVI2 (v1) ;xC

��
< pI2

�
E
�
xIDVI2 (v1)

�
;xC

�
:

Dividing both sides of xIDVC2 = E
�
xIDVI2 (v1)

�
by E

�
xIDVI2 (v1)

�
+ (n� 1)xIDVC2 , and

using the above inequalities yields:

E (pj2 (xI2 (v1) ;xC)) > pj2
�
E
�
xIDVI2 (v1)

�
;xC

�
= pI2

�
E
�
xIDVI2 (v1)

�
;xC

�
> E (pI2 (xI2 (v1) ;xC)) :

When n > 2 and there is not an interior equilibrium xIDVC2 � E
�
xIDVI2 (v1)

�
. The ex

ante probability that the incumbent obtains the good is given by

E (pI2 (xI2 (v1) ;xC))

=
�
1� FV

�
q
�
xIDVC2 (n� 1)

���
�
q
xIDVC2 (n� 1)E

 
1p

E (V2 j V1)
1V1�q(xIDVC2 (n�1))

!
:

The ex ante probability that a challenger j 2 C obtains the good is given by

E (pj2 (xI2 (v1) ;xC))

=
FV
�
q
�
xIDVC2 (n� 1)

��
(n� 1)

+

s
xIDVC2

(n� 1)E
 

1p
E (V2 j V1)

1V1�q(xIDVC2 (n�1))

!
:
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Suppose that E (pj2 (xI2 (v1) ;xC)) < E (pI2 (xI2 (v1) ;xC)). This simpli�es to

1� 1

n ((1� FV (q (xIDVC2 (n� 1)))))

>
q
xIDVC2 (n� 1)E

 
1p

E (V2 j V1)
jV1 � q

�
xIDVC2 (n� 1)

�!
> 1:

This is a contradiction.�

Proof of Proposition 4

Notice that, when n = 2, Jensen�s inequality implies that (4) holds. Further,

notice that (4) states that g
�
E(V )(n�1)

n2

�
< 0 (g (x) was de�ned in the proof of

Proposition 1). Recall that in the proof of Proposition 1 it was shown that g (x)

is a monotonically decreasing function, and that g (x) = 0 de�nes the unique equi-

librium of the game. So if xIDVC2 < xIIVi2 = E(V )(n�1)
n2

, then g
�
xIDVC2

�
> g

�
xIIVi2

�
=

g
�
E(V )(n�1)

n2

�
. Since g

�
xIDVC2

�
= 0 in equilibrium, g

�
xIIVi2

�
= g

�
E(V )(n�1)

n2

�
< 0,

which is the condition given in (4). To see that (4) implies xIDVC2 < xIIVi2 , con-

sider g
�
xIIVi2

�
= g

�
E(V )(n�1)

n2

�
< 0. Since g

�
xIDVC2

�
= 0, and g (x) is monotonically

decreasing in x, it must be the case that xIDVC2 < xIIVi2 .�

Proof of Proposition 5

De�ne the following function:

h(x) � 1

(n� 1)2
E
�
V21V1�q(x(n�1))

�
+
x (1� FV (q (x (n� 1))))

(n� 1) :
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Note that:

h0(x) =
1

(n� 1)

1Z
v

v2f (q (x (n� 1)) ; v2) q0 (x (n� 1)) dv2

+
(1� FV (q (x (n� 1))))

(n� 1) �
1Z
v

xf (q (x (n� 1)) ; v2) q0 (x (n� 1)) dv2

But if x (n� 1) > v, then x (n� 1) = E (V2 p q (x (n� 1))). Plugging this in simpli-

�es this expression down to the following:

h0(x) � (1� FV (q (x (n� 1))))
(n� 1) > 0

Since h0(x) > 0, and (4) is satis�ed my assumption, xIDVC2 < E(V )(n�1)
n2

= xIIVi2 . Thus,

h
�
xIDVC2

�
< h(E(V )(n�1)

n2
). Note that (where the second line follows from the de�nition

of conditional probability):

h

�
E (V ) (n� 1)

n2

�
=

1

(n� 1)2

1Z
v

q(B)Z
v

v2f(v1; v2)dv1dv2 +
E (V )

n2
(1� FV (q (B)))

=
FV (q (B))

(n� 1)2
E (V2 j V1 � q (B)) +

E (V2)

n2
(1� FV (q (B)))

� FV (q (B))

(n� 1)2
E (V ) (n� 1)2

n2
+
E (V2)

n2
(1� FV (q (B)))

=
E (V )

n2
FV (q (B)) +

E (V2)

n2
(1� FV (q (B)))

=
E (V )

n2
�:

Proof of Proposition 6
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Notice that E
�
U IIVi2

�
< E

�
U IDVI2

�
when

E (V ) +

�
n� 3
n� 1

�
E
�
V21V1<q(xIDVC2 (n�1))

�
�xIDVC2 (n+ 1)� xFV

�
q
�
xIDVC2 (n� 1)

��
(n� 3) > E (V )

n2
:

This expression can be rewritten as

�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) > RIDV2 �RIIV2 :

Similarly, E
�
U IIVi2

�
> E

�
U IDVI2

�
when

�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) < RIDV2 �RIIV2 :

Likewise, E
�
U IIVi2

�
= E

�
U IDVI2

�
when

�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) = RIDV2 �RIIV2 :

De�ne the function

r (x) �
p
x (n� 1)E

�p
V21V1�q(x(n�1))

�
+ x (n� 1)FV (q (x (n� 1))) ;

which corresponds to RIDV2 , and

w (x) =

�
1

n� 1

�
E
�
V21V1<q(x(n�1))

�
+ x (1� FV (q (x (n� 1)))) ;

which corresponds to E
�
U IDVC2

�
(n� 1). Note that

r0 (x) = (n� 1)FV (q (x (n� 1))) +
1

2

r
n� 1
x

E
�p
V21V1�q(x(n�1))

�
;
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and that

w0 (x) = 1� FV (q (x (n� 1))) :

Now notice that r0 (x) > w0 (x) > 0. Since r (x) and w (x) are both strictly monoton-

ically increasing, and r0 (x) > w0 (x), the expressions E
�
U IIVi2

�
(n� 1) � w (x) and

r (x)�RIIV2 intersect only once. Let ex � �x : r (x)�RIIV2 = E
�
U IIVi2

�
(n� 1)� w (x)

	
,

which has a single element. Notice that if xIDVC2 = ex, then the IDV incum-

bent�s expected utility in the IDV case is the same as in the IIV case. It has

been proven that E
�
U IDVC2

�
< E

�
U IIVi2

�
, which implies that xIDVC2 < ex. Thus,

E
�
U IIVi2

�
(n� 1) � w

�
xIDVC2

�
> E

�
U IIVi2

�
(n� 1) � w (ex). Also, xIDVC2 < ex implies

that r
�
xIDVC2

�
�RIIV2 < r (ex)�RIIV2 . Since r0 (x) > w0 (x) > 0,

E
�
U IIVi2

�
(n� 1)� w

�
xIDVC2

�
� E

�
U IIVi2

�
(n� 1)� w (ex)

< r (ex)�RIIV2 �
�
r
�
xIDVC2

�
�RIIV2

�
:

This simpli�es to

r
�
xIDVC2

�
+ w

�
xIDVC2

�
< w (ex) + r (ex)
= E

�
U IIVi2

�
(n� 1) +RIIV2 .

That is,
�
E
�
U IIVi2

�
� E

�
U IDVC2

��
(n� 1) > RIDV2 �RIIV2 .�

Proof of Proposition 7

Suppose that RIDV2 > RIIV2 . Since E
�
U IDVI2

�
> E

�
U IIVi2

�
RIIV2 �RIDV2 >

�
E
�
U IDVC2

�
� E

�
U IIVi2

��
(n� 1) :
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But this can be rewritten as

�
E
�
U IIVi2

�
� E

�
U IDVC2

��
n (n� 1) + 2xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
�2
�

1

n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
>

�
E
�
U IDVC2

�
� E

�
U IIVi2

��
(n� 1) :

Since, xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
�
�

1
n�1
�
E
�
V21V1�q(xIDVC2 (n�1))

�
, and E

�
U IDVC2

�
<

E
�
U IIVi2

�
, the LHS of this inequality is positive. RIDV2 > RIIV2 implies that the LHS

is negative, a contradiction.�

Proof of Proposition 8

In equilibrium, the di¤erence between the IDV incumbent�s ex ante expected

utility and that of the challenger is:

E
�
U IDVI2

�
� E

�
U IDVC2

�
= E (V ) +

�
n� 3
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
� 1

(n� 1)2
E
�
V21V1�q(xIDVC2 (n�1))

�
�
xIDVC2

�
1� FV

�
q
�
xIDVC2 (n� 1)

���
(n� 1) :

Notice that total e¤ort expenditure in the IPV case will increase relative to the IIV

case if:

2E (V ) (n� 1)
n

�
�
E (V ) + E

�
U IDVI2

�
� E

�
U IDVC2

��
(n� 1)

n
+

nxIDVC2 + xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
(n� 2)

�
�
n� 2
n� 1

�
E
�
V21V1�q(xIDVC2 (n�1))

�
:
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This condition simpli�es to:

E
�
V21V1�q(xIDVC2 (n�1))

�
� FV

�
q
�
xIDVC2 (n� 1)

��
xIDVC2 (n� 1) :

Since E (V2 j v1) is strictly increasing in v1 the inequality is strict if the equilibrium

in t = 2 is not interior. If the equilibrium is interior, then RIDV = RIIV .�

Proof of Proposition 9

Recall that g(x) = 0 satis�es (3), which de�nes an equilibrium

g(x) =
(n� 2)
x (n� 1)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+

r
(n� 1)
x

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

+FV (q (x (n� 1)))� n:

The partial derivative with respect to x is

@g

@x
= �

p
(n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1

2x
3
2

�

(n� 2)
q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

x2 (n� 1) < 0:
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The partial derivative with respect to n is

@g

@n
=

1

x (n� 12)

q(x(n�1))Z
v

1Z
v

v2f(v1; v2)dv2dv1

+
1

2
p
x (n� 1)

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1 � 1:

(3) immediately demonstrates that this expression is negative. Since both of these

partial derivatives are negative,

dx

dn
= �

�
@g
@n

��
@g
@x

� < 0:
That is dxIDVC2

dn
< 0.

Next, note that

@E
�
xIDVI2 (V1)

�
@n

= xIDVC2 FV
�
q
�
xIDVC2 (n� 1)

��
� x

+
1

2

s
xIDVC2

n� 1

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

@E
�
xIDVI2 (V1)

�
@xIDVC2

= (n� 1)FV
�
q
�
xIDVC2 (n� 1)

��
� n

+
1

2

s
n� 1
xIDVC2

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

Utilizing (3), it is straightforward to show that both of these are positive. Plugging
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these partial derivatives into

dE
�
xIDVI2

�
dn

=
@E
�
xIDVI2 (V1)

�
@n

+
@E
�
xIDVI2 (V1)

�
@xIDVC2

dxIDVC2

dn
;

and simplifying demonstrates that
dE(xIDVI2 )

dn
< 0. Next, note that

@RIDV2

@n
= xIDVC2 FV

�
q
�
xIDVC2 (n� 1)

��
+
1

2

s
xIDVC2

n� 1

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

@RIDV2

@xIDVC2

= (n� 1)FV
�
q
�
xIDVC2 (n� 1)

��
+
1

2

s
n� 1
xIDVC2

1Z
q(x(n�1))

1Z
v

p
E (V2 p v1)f(v1; v2)dv2dv1:

These partial derivatives are positive. Plugging them into

dRIDV2

dn
=
@RIDV2

@n
+
@RIDV2

@xIDVC2

dxIDVC2

dn
;

and simplifying demonstrates that dR
IDV
2

dn
> 0.�
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APPENDIX B

This appendix contains two alternative ways of modeling an incumbency advan-

tage. Both of these maintain the information structure of the IIV case, such that

information is complete in t = 1; 2.

Status Quo Bias (SQB)

One way in which an incumbent might have an advantage over a challenger is

through an increased probability of winning the subsequent contest for any vector

of e¤ort x2. That is, by virtue of holding the high ground, the incumbent has an

exogenously higher probability of winning than she would otherwise have. I call

such an incumbency advantage a status quo bias.

Consider the case in which v1 and v2 are independent draws from the distribution

FV (the information structure found in the IIV case). To model a status quo bias,

the contest success function is modi�ed such that the probability that contestant i

obtains the prize in t = 2 is now given by

epi2 (xi2;x�i2) = xi2 + �1fi =Ig
xi2 + � +

P
j2N�i

xj2
;

where � > 0 is added to the aggregate e¤ort expenditures in t = 2, and the probability

�=
�
� +

P
i2N xi2

�
> 0 represents the status quo bias. This is similar to the incum-

bent having a negative �xed cost of e¤ort. However, it di¤ers in that the incumbent

is not awarded � if she were to expend zero e¤ort. Notice that �=
�
� +

P
i2N xi2

�
is

decreasing in
P

i2N xi2. This captures the idea that an incumbent has an increased

probability of obtaining the prize in t = 2, but that challengers are at less of a disad-

vantage as they increase their e¤ort. If
P

i2N xi2 = 0, then the incumbent wins with
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certainty. As such there is no need to separately de�ne the border case in which no

contestant expends any e¤ort. In t = 1, the contest success function is unchanged

from that of the IIV and IDV cases.

I now turn attention to the incumbent�s problem in the t = 2. (as before, player

I is the incumbent). The incumbent�s expected utility is

USQBI2 �
1Z
v

epi2 (xI2;xC) v2dFV (v2)� xI2:
The partial derivative is given by

E (V )
P
j2C

xj2 
xI2 + � +

P
j2C

xj2

!2 � 1:

Similarly, the expected utility of contestant j 2 C is

USQBj2 �
1Z
v

epj2 (xj2;x�j2) v2dFV (v2)� xj2
with partial derivative

E (V )

 P
k2C�j

xk2 + xI2 + �

!
 
xI2 + � +

P
j2C

xj2

!2 � 1:

Reasoning identical to that used in the IDV case demonstrates that the chal-

lengers will exert the same amount of e¤ort in equilibrium. In the SQB case, I

denote equilibrium e¤ort by the incumbent as xSQBI2 and equilibrium e¤ort of a chal-
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lenger as xSQBC2 . The magnitude of � determines whether contestants will expend

positive e¤ort in equilibrium.

First, consider � � E (V ). Notice that when � � E (V ), a challenger�s will

optimally expend zero e¤ort. Also, when
P

j2C xj2 = 0, then the incumbent�s best

response is to expend zero e¤ort because she will obtain the prize with certainty

regardless of expenditure. Thus, when � > E (V ), xSQBI2 = xSQBC2 = 0. The intuition

of this scenario is clear: when the incumbent has an advantage so signi�cant that

xSQBC2 � E (V ) just to have an equal probability of winning the prize (even when the

incumbent doesn�t expend any e¤ort), the challengers will not expend any e¤ort. In

this case, the incumbent obtains the prize with certainty. Thus, if � � E (V ), the

ex ante value of obtaining the good in t = 1 is 2E (V ) :

Now consider � 2 [E (V ) (n� 1) =n2; E (V )). The status quo bias is signi�cant

enough that xSQBI2 = 0. The �rst order condition of a challenger holds, and

xSQBC2 =
(n� 2)E (V )� 2 (n� 1) � +

q
(n� 2)2E (V )2 + 4E (V ) (n� 1) �

2 (n� 1)2
:

In this case, the status quo bias is not so large that a challenger will not attempt

to obtain the prize, but it is large enough that that the incumbent does not expend

any e¤ort. Notice that this is the case if � � xIIVi2 .

Next, consider � 2 (0; E (V ) (n� 1) =n2). Here every contestant�s �rst order

condition holds. Solving the set of n simultaneous equations yields equilibrium

e¤ort levels xSQBC2 = xIIVi2 , and xSQBI2 = xIIVi2 � �. Notice that xSQBI2 > 0 only when

� < E (V ) (n� 1) =n2.

So, to summarize, the equilibrium e¤ort levels of a challenger in t = 2 of the SQB
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case are given by

xSQBC2 =

8>>>><>>>>:
E(V2)(n�1)

n2
if � 2

�
0; E(V )(n�1)

n2

�
(n�2)E(V )�2(n�1)�+

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1)2 if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Notice that xSQBC2 is decreasing in n when � < E (V ), and that limn!1 x
SQB
C2 = 0 as

in the IIV case. The equilibrium e¤ort expenditure of the incumbent is

xSQBI2 =

8>>>><>>>>:
E(V )(n�1)

n2
� � if � 2

�
0; E(V )(n�1)

n2

�
0 if � 2

h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :

Which is decreasing in � and n when � < E (V ) (n� 1) =n2. Since

lim
n!1

E (V ) (n� 1) =n2 = 0

for any � > 0 there exists some n large enough that � > E (V ) (n� 1) =n2 and

xSQBI2 = 0 above this n. Therefore limn!1 x
SQB
I2 = 0.

The equilibrium aggregate e¤ort expenditures in t = 2 of the SQB case, RSQB2 , is

given by

RSQB2 =

8>>>><>>>>:
E(V )(n�1)

n
� � if � 2

�
0; E(V )(n�1)

n2

�
(n�2)E(V )�2(n�1)�+

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1) if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :
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Notice that RSQB2 is decreasing in � and n when � < E (V ). As such

lim
n!1

RSQB2 = lim
n!1

(n� 2)E (V )� 2 (n� 1) � +
q
(n� 2)2E (V )2 + 4E (V ) (n� 1) �

2 (n� 1)
= E (V )� �:

The equilibrium expected utility of the incumbent in the SQB case is given by

USQBI2 =

8>>>><>>>>:
E(V )
n2

+ � if � 2
�
0; E(V )(n�1)

n2

�
p
(n�2)2E(V )2+4E(V )(n�1)��(n�2)E(V )

2
if � 2

h
E(V )(n�1)

n2
; E (V )

�
E (V ) if � 2 [E (V ) ;1) :

When � 2 (0; E (V ) (n� 1) =n2), the incumbent�s expected utility has increased by

exactly � relative to the IIV case. For � 2 [E (V ) (n� 1) =n2; E (V )), the incum-

bent�s expected utility is increasing at a decreasing rate in �. Once � � E (V ), the

status quo bias is so large that the incumbent wins the prize with certainty with-

out expending any e¤ort. As such increasing the magnitude of � does not increase

her expected utility. Likewise increasing n does not a¤ect USQBI2 when � � E (V ).

When � < E (V ), USQBI2 is decreasing in n. Because limn!1E (V ) (n� 1) =n2 = 0,

limn!1 U
SQB
I2 = 0.

The equilibrium expected utility of a challenger in the SQB case is given by

USQBC2 =

8>>>><>>>>:
E(V )
n2

if � 2
�
0; E(V )(n�1)

n2

�
E(V )(n(n�2)+2)+2�(n�1)�n

p
(n�2)2E(V )2+4E(V )(n�1)�

2(n�1)2 if � 2
h
E(V )(n�1)

n2
; E (V )

�
0 if � 2 [E (V ) ;1) :
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Notice that when � 2 (0; E (V ) (n� 1) =n2), USQBC2 = U IIVi2 . For

� 2
�
E (V ) (n� 1) =n2; E (V )

�
the expected utility of a challenger is decreasing in �. Once � � E (V ), a challenger

does not obtain the prize with certainty, and has an expected utility of zero as a result.

Notice that when � < E (V ), USQBC2 is decreasing in n and that limn!1 U
SQB
C2 = 0

An interesting result arises when � 2 (0; E (V ) (n� 1) =n2]. The expected utility

of the incumbent has increased by � relative to the IIV case, and the expected utility

of a challenger remains unchanged relative to the benchmark case. Further, RIIV2 �

RSQB2 = �. If a contest designer were concerned with the welfare of the contestants,

and would also like to decrease total e¤ort in t = 2, choosing � = E (V ) (n� 1) =n2

reduces equilibrium e¤ort expenditures, and strictly increases the expected utility of

the incumbent without reducing the expected utility of the challengers. Put another

way, in a one-shot game, where e¤ort is a social bad, choosing � = E (V ) (n� 1) =n2

Pareto dominates � < E (V ) (n� 1) =n2.

Turning attention to t = 1, note that the incentives the contestants face in t = 1

will be di¤erent, depending on the magnitude of �. Thus, each of the three cases

outlined above must be considered individually. The expected utility of contestant

i is

USQBi1 �
1Z
v

p (xi1;x�i1) v1dFV (v1)

�xi1 +
�
p (xi1;x�i1)

�
USQBI2

��
+(1� p (xi1;x�i1))

�
USQBC2

�
:

The �rst period is, in essence, a contest in which the prize over which the contestants
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compete is E (V ) +
�
USQBI2 � USQBC2

�
. The unique and symmetric equilibrium in-

volves every contestant i 2 N expending

xSQBi1 �

�
E (V ) +

�
USQBI2 � USQBC2

��
(n� 1)

n2

in t = 1. The equilibrium aggregate e¤ort expenditures in t = 1 is then

RSQB1 � nxSQBi1 =

�
E (V ) +

�
USQBI2 � USQBC2

��
(n� 1)

n

and the equilibrium expected utility of contestant i in t = 1 is

USQBi1 =

�
E (V ) +

�
USQBI2 � USQBC2

��
n2

:

Total equilibrium e¤ort expenditures across both periods is given by

RSQB �

8>>>><>>>>:
2E(V )(n�1)

n
� �

n
if � 2

�
0; E(V )(n�1)

n2

�
(E(V )+(USQBI2 �USQBC2 ))(n�1)

n
+ (n� 1)xSQBC2 + xSQBI2 if � 2

h
E(V )(n�1)

n2
; E (V )

�
E(V )(n�1)

n
if � 2 [E (V ) ;1) :

When � 2 [E (V ) (n� 1) =n2; E (V )), I have not simpli�ed RSQB due to space con-

straints. RSQB > RIIV if�
E (V ) +

�
USQBI2 � USQBC2

��
(n� 1)

n
+ (n� 1)xSQBC2 + xSQBI2 >

2E (V ) (n� 1)
n

:
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When

� 2
�
0; E (V ) (n� 1) =n2

�
RSQB � RIIV = ��=n. When � 2 [E (V ) (n� 1) =n2; E (V )), RSQB is concave, and

has a maximum value such that RSQB > RIIV . Once � 2 [E (V ) ;1), RSQB = RIIV .

Indeed, RSQB = RSQB1 .

A contest designer who seeks to maximize RSQB, would would choose

� 2
�
E (V ) (n� 1) =n2; E (V )

�
:

Doing so ensures the the incumbent will not expend any e¤ort. E¤ort expenditures

in t = 1 more than make up for the decrease expenditures in t = 2. Further, if a

contest designer sought to minimize e¤ort expenditures (that is, maximize the sum

of the contestants expected utility) she would choose � = E (V ) (n� 1) =n2. Notice

that this is the largest � which does not reduce the expected utility of the challengers

relative to the IIV case. Of interest is the fact that the optimal level of � is positive,

regardless of whether or not e¤ort expenditures are a social bad.

Cost Advantage (CST)

Another way to approach the concept of incumbency advantage is to allow the

incumbent to have a cost advantage over the challenger. That is, allow the incumbent

to have a lower marginal cost than the challenger. A model using this approach was

introduced in Mehlum and Moene [36]. They model an in�nitely repeated contest

between two contestants in which a cost advantage is held by the contestant who
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obtained the prize in the previous period.

Below is a modi�ed version of their model in which contestants compete in t = 1

with symmetric costs, and in t = 2, the incumbent has a lower marginal cost of

e¤ort than the challengers. Modeling it in this fashion allows me to examine the

incentive to acquire this cost advantage when contestants are symmetric; and change

in behavior in t = 1 relative to the IIV case is then attributable to the incumbents

cost advantage. As such, the only di¤erence between this model and the IIV case is

that the incumbent has a cost of e¤ort of CI (xI2) = cxI2, where c 2 (0; 1).

In t = 2 the expected utility of the incumbent is

UCSTI2 �
1Z
v

pI2 (xI2;xC) v2dFV (v2)� cxI2:

Similarly, the expected utility of contestant j 2 C is

UCSTj2 �
1Z
v

pj2 (xj2;x�i2) v2dFV (v2)� xj2:

This subgame has a unique equilibrium. I denote the equilibrium e¤ort expen-

diture of the incumbent as xCSI2 and that of a challenger as x
CST
C2 . The equilibrium

e¤ort levels are given by

xCSI2 =
E (V ) (n� 1) (n (1� c) + 2c� 1)

(n� 1 + c)2

xCSTC2 =
c (n� 1)E (V )
(n� 1 + c)2

:

The equilibrium aggregate e¤ort expenditures in t = 2 is

RCST2 � E (V ) (n� 1)
(n� 1 + c) :
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Further, the equilibrium expected utility of the incumbent is

UCSTI2 =
cE (V )

(n+ c� 1)2

and the equilibrium expected utility of a challenger is

UCSTC2 =
c2E (V )

(n+ c� 1)2
:

Next, consider contestant i�s expected utility in t = 1.

UCSTi1 �
1Z
v

pi1 (xi1;x�i1) v1dFV (v1)� xi1

+pi1 (xi1;x�i1)

�
cIE (V1)

(n+ cI � 1)2
�

+(1� pi1 (xi1;x�i1))
c2IE (V1)

(n+ cI � 1)2
:

Equilibrium e¤ort expenditure in t = 1 is

xCSTi1 � 2 (n� 1)E (V )
n2 (c+ 1)

:

Total equilibrium e¤ort expenditures across t = 1; 2 is

RCST � 2 (n� 1)E (V )
n2 (c+ 1)

+
E (V ) (n� 1)
(n� 1 + c) :

Notice that RCST > RIIV . This is because the reduced marginal cost causes the

incumbent to increase her e¤ort expenditures in t = 2 relative to the IIV case. In

response, the challengers also increases their expenditures. Further, contestants in

t = 1 increase their e¤ort expenditures relative to the IIV case an attempt to obtain
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the incumbent cost advantage. Also, notice that RCST is monotonically decreasing

in c; as the incumbents cost advantage increases, so does RCST . This is in contrast to

the status quo bias model discussed above. In that model, there were two competing

e¤ects, one of which increased e¤ort, while the other decreased e¤ort. As such, the

e¤ect of an incumbency advantage is sensitive to how it is modeled.
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APPENDIX C

This Appendix contains derivations for Chapter III.

The common value of the available good, x, is a realization of a random variable

X with a uniform distribution with support [x; x]. The realization of this value, x, is

not observed by the two bidders before placing their bids. However, the distribution

from which it is drawn is common knowledge.

In a SPRIV auction, bidder i 2 f1; 2g observes an estimate of the realized value

of the good. Each estimate is the realization of X plus an error term Xi. This

error term is U (��; �), and is independent of X and X�i. That is, each estimate is a

realization of Zi = X+Xi:(We denote the distribution function of Zi as FZi). Notice

that Zi is independent of Z�i, conditional on the realization of X: Throughout, we

use fA to denote the density function of the random variable A. A joint density

function will be denoted as f (x) where the vector x indicates the random variables

for which f (x) pertains.

Since Zi is simply the sum of independent random variables, it�s density function

is easily calculated. To do so, we use the following, well known, formula:

fZi(zi) =

1Z
�1

fX (zi � xi) fXi (xi) dxi

=

�Z
��

fX (zi � xi) fXi (xi) dxi
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This becomes a piecewise linear function:

fZi(zi) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

zi�xZ
��

�
1

2�(x�x)

�
dxi =

zi+��x
2�(x�x) if zi 2 [x� �; x+ �)

�Z
��

�
1

2�(x�x)

�
dxi =

1
(x�x) if zi 2 [x+ �; x� �)

�Z
zi�x

�
1

2�(x�x)

�
dxi =

��zi+x
2�(x�x) if zi 2 [x� �; x+ �] :

:

The distribution function of Zi is

FZi (c) =

8>>>>>>>>>><>>>>>>>>>>:

(c�x+�)2
4�(x�x) if c 2 [x� �; x+ �)

c�x
(x�x) if c 2 [x+ �; x� �)

x�x��
(x�x) +

(x+3��c)(c�x+�)
4�(x�x) if c 2 [x� �; x+ �] :

:

In a SPRIV auction, both bidders receive a signal. The joint density function of

X, Z1, and Z2 is given by:

f (x; z1; z2) =
1

4�2 (x� x)
:

In an ASYM auction, only one of the bidders observes a signal. Thus the joint
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distribution of X and Zi is of interest. Integrating Zj out of f (x; z1; z2) yields:

f (x; zi) =

x+�Z
x��

1

4�2 (x� x)
dzj =

1

2� (x� x) :

The density function of x given the realized value of a bidders signal is:

fX (x j zi) =

8>>>>>>>>>><>>>>>>>>>>:

1
zi+��x if zi 2 [x� �; x+ �)

1
2�

if zi 2 [x+ �; x� �)

1
��zi+x if zi 2 [x� �; x+ �] :

The joint density function of X and Zj given that Zi = zi is:

f (x; zj j zi) =

8>>>>>>>>>><>>>>>>>>>>:

1
2�(zi+��x) if zi 2 [x� �; x+ �)

1
4�2

if zi 2 [x+ �; x� �)

1
2�(��zi+x) if zi 2 [x� �; x+ �] :

The Prob(zi > zj) is

FZj jZi (zj j zi) =

8>>>>>>>>>><>>>>>>>>>>:

R zi
x��

zj+��x
2�(zi+��x)dzj =

zi�x+�
4�

if zi 2 [x� �; x+ �)

R zi
zi�2�

zj�zi+2�
4�2

dzj =
1
2

if zi 2 [x+ �; x� �)

R x��
zi�2�

zj�zi+2�
2�(x�zi+�)dzj +

R zi
x��

1
2�
dzj =

zi�x+3�
4�

if zi 2 [x� �; x+ �] :
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Symmetric Information With Private Signals

The derivations to �nd the symmetric Nash equilibrium bid function can be found

in Kagel and Levin [28] and Kagel and Richard [30]. Assume that bidder j 6= i

bids according to the symmetric Nash equilibrium bid function, 
 (zj). Consider

bidder i who observes a signal zi but bids as though he/she observed y. If a (zi) =

max (x; zi � �) and b (zi) = min (x; zi + �), then the expected payo¤ of such a bidder

is as follows:

�(zi; y) =

b(zi)Z
a(zi)

(x� 
 (y))F (y j x) fX (x j zi) dx

=

b(zi)Z
a(zi)

(x� 
 (y))
�
y � x+ �

2�

��
1

b (zi)� a (zi)

�
dx:

The revelation principle tells us that:

d�(zi; y)

dy
jy=zi= 0:

Using the initial condition 
 (x� �) = x and assuming continuity of the equilibrium

bid function yields the solution:


 (zi) =

8>>>>>>>>>><>>>>>>>>>>:

x+ 1
3
(zi � x+ �) if zi 2 [x� �; x+ �)

zi � � + 2�
3
exp

�
1
�
(x+ � � zi)

�
if zi 2 [x+ �; x� �)

2x3+z3i+3�z
2
i�9�

2zi+12�x(zi+3�)�3x2(zi+5�)+�3(8 exp[ 2�+x�x� ]�35)
3(zi�x+3�)2

if zi 2 [x� �; x+ �] :
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The expected payo¤ of bidder i when she observes a private signal zi is

�SPRIVi (zi) =

b(zi)Z
a(zi)

(x� 
 (zi))F (zi j x) fX (x j zi) dx

=

b(zi)Z
a(zi)

(x� 
 (zi))
�
zi � x+ �

2�

��
1

b (zi)� a (zi)

�
dx:

This simpli�es to

�SPRIVi (zi) =

8>>>>>>>>>>><>>>>>>>>>>>:

0 if zi 2 [x� �; x+ �)

�
3

�
1� exp

�
x�zi+�

�

��
if zi 2 [x+ �; x� �)

x2+z2i+4zi�+�
2(5�2 exp(2� (x�x)

� )�2x(zi+2�))
3(zi�x+3�) if zi 2 [x� �; x+ �] :

Bidder i�s ex ante expected payo¤ is obtained by integrating over zi. This yields

E
�
�SPRIVi

�
=

x+�Z
x��

�SPRIVi (zi) fZi(zi)dzi

=
� (3x� 3x+ � (13� 12 ln (2))) + 3�2 exp

�
2�+x�x

�

�
(ln (16)� 3)

9 (x� x) :

For the parameter�s employed in our design, E
�
�SPRIVi

�
= 2:50019. Since the ex

ante expected revenue in an auction is the expected value of the good, minus the

ex ante expected payo¤�s of the bidders, the ex ante expected revenue of a SPRIV
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auction, E
�
RSPRIV

�
, is

E
�
RSPRIV

�
=

�
x+ x

2

�
�

2� (3x� 3x+ � (13� 12 ln (2))) + 6�2 exp
�
2�+x�x

�

�
(ln (16)� 3)

9 (x� x) :

For the parameters in our design, this is E
�
RSPRIV

�
= 119:99962.

Winner�s Curse in SPRIV Auctions

In a SPRIV auction a bidder is said to fall victim to the winner�s curse if she

bids more than the expected value of the good conditional on winning the auction,

which de�nes a break-even bidding strategy. If all bidder�s bid according to a

monotonically increasing bid function, the bidder with the highest signal wins the

auction. Therefore, if bidders are bidding according to monotonically increasing bid

function, bidders are said to fall victim to the winner�s curse if they bid more that

the expected value of the good conditional on having the largest signal. If bidder�s

do not use their signal as an order statistic for the value of the good, they will

overestimate it, and will have negative expected pro�ts upon winning the auction.

In our design, if bidder i observes a signal zi and bids more than E (X j Zi = zi > zj),

then she is a victim of the winner�s curse. When zi 2 [x� �; x+ �),

E (X j Zi = zi > zj) =
1

FZj jZi (zi j zi)

ziZ
x��

zj+�Z
x

xfX (x; zj j zi) dxdzj

=

�
4�

zi � x+ �

� ziZ
x��

zj+�Z
x

x
1

2� (zi + � � x)
dxdzj

=
1

3
(zi + 2x+ �) .
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When zi 2 [x+ �; x� �) ;

E (X j Zi = zi > zj) =
1

FZj jZi (zi j zi)

ziZ
zi�2�

zj+�Z
zi��

xfX (x; zj j zi) dxdzj

= 2

ziZ
x��

zj+�Z
x

x
1

4�2
dxdzj

= zi �
�

3
.

When zi 2 [x� �; x+ �]

E (X j Zi = zi > zj) =
1

FZj jZi (zi j zi)

ziZ
zi�2�

zj+�Z
zi��

xfX (x; zj j zi) dxdzj

=

�
4�

zi � x+ 3�

� x��Z
zi�2�

zj+�Z
zi��

x
1

2� (x+ � � zi)
dxdzj +

�
4�

zi � x+ 3�

� ziZ
x��

xZ
zi��

x
1

2� (x+ � � zi)
dxdzj

=
(zi + 5�) (zi � �) + x (zi + 5�)� 2x2

3 (zi � x+ 3�)
.

That is,

E (X j Zi = zi > zj) =

8>>>>>>>>>><>>>>>>>>>>:

1
3
(zi + 2x+ �) if zi 2 [x� �; x+ �)

zi � �
3

if zi 2 [x+ �; x� �)

(zi+5�)(zi��)+x(zi+5�)�2x2
3(zi�x+3�) if zi 2 [x� �; x+ �] :

This is the threshold that de�nes the winner�s curse in a SPRIV auction.
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Asymmetric Information

Engelbrecht-Wiggans et. al. [16] provides the unique equilibrium of this game.

We denote the informed bidder as bidder I. In this equilibrium, when the informed

bidder observes zI she bids according to the function

� (zI) = E (E (X j ZI) j ZI � zI)

=
1

FZI (zI)

zIZ
x��

E (X j ZI = s) fZI (s) ds:

When zI 2 [x� �; x+ �), this is

� (zI) =
4� (x� x)
(c� x+ �)2

zIZ
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds

=
2x+ zI + �

3
:

When zI 2 [x+ �; x� �), this is

� (zI) =
(x� x)
zI � x

0@ x+�Z
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+

zIZ
x+�

s

�
1

(x� x)

�
ds

1A
=

zI + x

2
+

�2

6 (zI � x)
:
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When zI 2 [x� �; x+ �] this is

� (zI) =

�
4� (x� x)

4� (x� x� �) + (x+ 3� � zI) (zI � x+ �)

� x+�Z
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+

�
4� (x� x)

4� (x� x� �) + (x+ 3� � zI) (zI � x+ �)

� x��Z
x+�

s

�
1

(x� x)

�
ds+

�
4� (x� x)

4� (x� x� �) + (x+ 3� � zI) (zI � x+ �)

� zIZ
x��

�
x+ s� �

2

��
x+ � � s
2� (x� x)

�
ds:

=
2x3 + (zI � �)3 + 6x2� � 3x2 (zI + �)
3
�
x2 + (zI � �)2 + 4x� � 2x (zI + �)

� :
That is, the equilibrium bid function for the informed bidder in an ASYM auction is

� (zI) =

8>>>>>>>>>>><>>>>>>>>>>>:

2x+zI+�
3

if zI 2 [x� �; x+ �)

zI+x
2
+ �2

6(zI�x) if zI 2 [x+ �; x� �)

2x3+(zI��)3+6x2��3x2(zI+�)
3(x2+(zI��)2+4x��2x(zI+�))

if zI 2 [x� �; x+ �] :

In equilibrium, the uninformed bidder will mix on the interval [x;E (X)] according

to the following distribution function:

Q (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
:
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So, the uninformed bidder will mix according using this distribution function:

Q (b) =

8>>>>>>>>>>><>>>>>>>>>>>:

(��1(b)�x+�)
2

4�(x�x) if b 2 [� (x� �) ; � (x+ �))

��1(b)�x
(x�x) if b 2 [� (x+ �) ; � (x� �))

4�(x�x��)+(x+3����1(b))(��1(b)�x+�)
4�(x�x) if b 2 [� (x� �) ; � (x+ �)] :

Engelbrecht-Wiggans et al [16] shows that, in equilibrium, the uninformed bid-

der obtains an expected payo¤ of zero for any bid in the support of Q (b). Let

q (zI) := E (X j zI). Since q (zI) is monotonically increasing in zI , the distribution

function of this random variable is just FZI (q
�1 (�)), where q�1 (�) is the inverse of

q (�). Engelbrecht-Wiggans et al [16] shows that when the informed bidder observes

zI his/her expected payo¤ is

�ASYMI (zI) =

q(zI)Z
x

FZI
�
q�1 (s)

�
ds:

When zI 2 [x� �; x+ �) this is

�ASYMI (zI) =

q(zI)Z
x

(q�1 (s)� x+ �)2

4� (x� x) ds =
(zI � x+ �)3

12� (x� x) :

When zI 2 [x+ �; x� �) this is

�ASYMI (zI) =

x+�Z
x��

(q�1 (s)� x+ �)2

4� (x� x) ds+

q(zI)Z
x+�

q�1 (s)� x
(x� x) ds

=
3 (x� zI)3 � �2

6 (x� x) :
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If zI 2 [x� �; x+ �] this is

�ASYMI (zI) =

x+�Z
x��

(q�1 (s)� x+ �)2

4� (x� x) ds+

x��Z
x+�

q�1 (s)� x
(x� x) ds

+

q(zI)Z
x��

4� (x� x� �) + (x+ 3� � q�1 (s)) (q�1 (s)� x+ �)
4� (x� x) ds

=
(x� zI + �)3

24� (x� x) +
(x+ zI � �)

2
� (x� x)

2
:

That is, the expected payo¤ of an informed bidder is

�ASYMI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�x+�)3
12�(x�x) if zI 2 [x� �; x+ �)

3(x�zI)3��2
6(x�x) if zI 2 [x+ �; x� �)

(x�zI+�)3
24�(x�x) +

(x+zI��)
2

� (x�x)
2

if zI 2 [x� �; x+ �] :

The ex ante expected payo¤ of the informed bidder can be found by integrating over

z1. This yields

E
�
�ASYMI

�
=

x+�Z
x��

�ASYMI (zI) dzI

=
5 (x� x)3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameters employed in our design, E
�
�ASYMI

�
= 33:2301. The ex ante

expected revenue for the seller is found by subtracting the ex ante expected payo¤
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of the informed bidder from the expected value of X. This yields

E
�
RASYM

�
=

�
x+ x

2

�
� 5 (x� x)

3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameter values used in our design E
�
RASYM

�
= 91:7699.

Winner�s Curse in ASYM Auctions

Since the uninformed bidder has an expected payo¤ of zero for any bid b 2

[x;E (X)], E (X) is a break-even strategy for uninformed ASYM bidders. Bidding

above E (X) ensures negative expected pro�t upon winning, while bidding below

E (X) yields an expected payo¤ of zero conditional on winning the auction. That is,

if an uninformed bidder bids above E (X), she is said to fall victim to the winner�s

curse.

The expected value of the good conditional on zI is the same as the expected

value of the good conditional on zI and having won the auction. Winning the

auction does not provide the informed bidder additional information regarding x.

Therefore, the break-even bidding strategy for an informed ASYM bidder is to bid:

E (X j zI) =

8>>>>>>>>>><>>>>>>>>>>:

zI+�+x
2

if zI 2 [x� �; x+ �)

zI if zI 2 [x+ �; x� �)

zI��+x
2

if zI 2 [x� �; x+ �] :

So, if an informed bidder bidder bids above E (X j zI), she is said to fall victim to

the winner�s curse.
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APPENDIX D

This Appendix contains the experimental instructions for the ASYM treatment

in Chapter III.

Introduction

Welcome. This experiment is about decision making in markets. The following

instructions describe the markets you will be in and the rules that you will face.

The decisions you make during this experiment will determine how much money you

earn. If you make good decisions, you can earn a substantial amount of money. You

will be paid in cash privately at the end of our experiment.

It is important that you remain silent and do not look at other people�s work. If

you have any questions, or need assistance of any kind, please raise your hand and an

experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be

asked to leave and you will not be paid. We expect and appreciate your cooperation.

We will go over these instructions with you. After we have read the instructions,

there will be time to ask clarifying questions. When we are done going through the

instructions, each of you will have to answer a few brief questions to ensure everyone

understands.

Overview

Our experiment will consist of 30 rounds. In each of these rounds, you will be

randomly paired with another participant in today�s experiment. Both of you will

be buyers in a market. In each market, there will be a single unit of an indivisible

good for sale. As a buyer, your task is to submit a bid for the purchase of the good.

You will receive earnings based on the outcome of the market. This process will be

repeated until all 30 rounds have been completed.
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Determination of Your Earnings

Each participant will receive a show-up fee of $5. In addition, each participant

in this experiment will start with a balance of $3; 200 �experimental dollars�(EDs).

EDs will be traded in for cash at the end of the experiment at a rate of $160ED = $1.

Your starting balance can increase or decrease depending on your payo¤s in each

round. That is, if you have a negative payo¤ in a round, this loss will be deducted

from your balance. If you earn a positive payo¤, this is added to your balance.

You are permitted to bid more than your remaining balance. However, if after a

round is completed your balance is less than or equal to zero, you will not be able to

participate in any future rounds.

In each round, you and the other buyer in the market will submit a bid. The

higher bid will have to be paid, and the buyer with the higher bid will receive the

good. The buyer who submits the lower bid does not get the good, but does not

pay his/her bid. That is, for each market, the buyer who submits the higher bid

will receive:

(Value of the good) � (Own bid)

The person who submits the lower bid will receive:

0

If both buyers bid the same amount, then the winner is determined randomly,

with both buyers having equal probability of receiving the good. You can think of

this as a �ip of a fair coin, which determines the winner in the event of a tie. Only

the bidder who receives the good must pay his/her bid.
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Notice that the buyer who submits the highest bid can end up with a negative

payo¤, if he/she bids more than the good is worth. No buyer is permitted to submit

a bid that is lower than zero.

In each round, the value of the good, which we will denote as v�, will not be

known to the buyers. The value of this good will be between $25ED and $225ED.

Any value between $25ED and $225ED is equally likely to be chosen as v�. The

value of the good in any given round is independent of the value in any other round.

That is, the value of the good in one round will not have any e¤ect on the value of

the good in a di¤erent round.

Private Information

In each market, one of the two buyers will be randomly chosen to receive some

private information about the value of the good (you can think of this as �ipping

a coin to determine which of the buyers will receive this information, where the

probability of the coin landing on each side is 50%). The person who receives the

private information will be given an estimate of the value of the good. The estimate

will be a randomly chosen number that is within $8ED above or below the real value

of v� (see the illustration below). Any number between v��$8ED, and v�+$8ED is

equally likely to be chosen as the estimate. For example, if you receive an estimate

of $125ED, then you know that v� is between $117ED and $133ED, inclusive. It

is possible for the estimate to be a value below $25ED or above $225ED, but the

real value of v� will always be between $25ED and $225ED.
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Rounds

As mentioned before, there will be 30 rounds in this experiment. In each round

there will be several markets going on simultaneously, with two buyers in each market.

After each round you will be randomly paired with another participant in today�s

experiment. This random assignment is done every round so that two buyers will

probably not be in the same market together for two consecutive rounds. Further,

this pairing is anonymous. That is, if you are a buyer in a given market, you do

not know which of the other participants in the experiment is the other buyer in

that market. Remember that these di¤erent markets and rounds are independent

from all others, and from one another. The bids and the value of the good and the

estimate in one market or round do not have any e¤ect on other markets or rounds.

Markets and rounds operate independently.

Summary

1. Each participant has a starting balance of $3; 200ED.

2. In every round, each participant will be a buyer in one market. Two partici-

pants are randomly assigned to a market in each round.

3. The value of the good, v�, is unknown. It is known that it is somewhere

between $25ED and $225ED. Every value between $25ED and $225ED is
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equally likely to be v�.

4. One buyer in a market is randomly chosen to receive an estimate of v�. A

buyer�s estimate is not observed by the other buyer in the market. These

estimates are randomly and independently drawn from the interval between

v� � $8ED and v� + $8ED, inclusive. Any number from this interval is

equally likely to be chosen as the estimate.

5. In each market the high bidder gets v�� (Own bid), and the low bidder gets 0.

This payo¤ is added to the balance of each bidder (a bidder�s balance will go

down if the value is negative, up if this value is positive, and remain unchanged

if this value is zero).

6. Every participant will receive the show-up fee of $5. Additionally, each par-

ticipant will receive his/her balance at the end of all 30 rounds, based on the

$3; 200ED beginning balance and earnings in each market.

7. If a participant�s balance should become negative at any point during this

experiment, he/she will not be permitted to participate in future rounds.

If you have any questions, raise your hand and one of us will come help you.

Please do not ask any questions out loud.

Questions

Before we begin the experiment, we would like you to answer a few questions that

are meant to review the rules of today�s experiment. Please raise your hand once

you are done, and an experimenter will attend to you.

1. How many buyers are in each market?
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2. Who pays their bid in each market, the high bidder, the low bidder, or both?

3. Each estimate must be within what range of v�?

4. Are you allowed to bid more than your current balance?

5. For each market, how many buyers get to see an estimate of v�?

6. If the highest bid in a market is $152:10ED, and the value of the good is re-

vealed to be $200:90ED, what is the winner�s payo¤for that market?

7. What would the earnings from question six have been if the value of the good

had been $25:90ED?

8. If Buyer 1 bids $150:00ED, and Buyer 2 bids $200:00ED, and the value of the

good is revealed to be $220:75ED, what are the payo¤s for Buyer 1 and Buyer

2?
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APPENDIX E

This appendix supplies a general proof of the equilibrium in an AAP auction as

de�ned in Chapter IV.

In a �rst price sealed bid auction, each bidder submits a bid, and the highest bid

wins with certainty. In the �rst price all-pay auction, every bidder must pay his/her

bid.

Consider the �rst-price all-pay auction where the value of the prize has a common,

but uncertain, value. This value, X, has the distribution function H (x), with

support contained in [0;1) It is assumed that E (X) <1. Let there be two risk

neutral bidders, one of whom observes an informative signal, Z, regarding the value

of the good prior to bidding. The other bidder knows only the distributions from

which both these random variables are drawn. Let V = E (X j Z), and let F (v)

denote the distribution function of V , which is assumed to be absolutely continuous.

Let the informed bidder be bidder one, and the uninformed bidder be bidder two.

Proposition 10 The following strategies characterize an equilibrium in this game:

Bidder one bids:

� (v) = F (v)E (V j V � v) :

Bidder two mixes on the interval [0; E (V )], where the probability that she bids x is:

G (x) = Prob [F (v)E (V j V � v) � x] :

Proof. Note that if both bidders bid according to the strategy outlined above, and
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bidder two bids x 2 [0; E (V )], and wins, her expected payo¤ will be:

E (V j � (V ) < x)� x

=
�
�
��1 (x)

�
F
�
��1 (x)

� � x
=

x

F
�
��1 (x)

� � x:
Further, if bidder two bids x and loses, her payo¤ is �x. Thus, the expected payo¤

of bidding x is:

E (U2) =

 
x

F
�
��1 (x)

� � x!Prob (x wins)� x (1� Prob (x wins))
=

 
x

F
�
��1 (x)

� � x!Prob (� (V ) < x)� x (1� Prob (� (V ) < x))
=

 
xProb (� (V ) < x)
F
�
��1 (x)

� � x
!

= 0:

Thus, the uninformed bidder is indi¤erent over the interval [0; E (X0)]. Now con-

sider the case in which the informed bidder bids � (z) when he observes v. If the

uninformed bidder is following the equilibrium strategy outlined above, then the ex-

pected payo¤ for the informed bidder is:

E (U1) = G (� (z)) v � � (z)

= Prob (� (V ) � � (z)) v � � (z)

= Prob (V � z) v � � (z)

= F (z) v � � (z)
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Di¤erentiating this with respect to z yields:

f (z) v � d

dz
� (z)

= f (z) v � d

dz
F (z)E (V j V � z)

= f (z) v � d

dz

zR
0

tdF (t)

= f (z) v � zf (z)

= f (z) (v � z)

Notice that bidding where v 6= z diminishes the expected payo¤ of the informed agent,

and so he should bid � (v).

Proposition 11 In equilibrium, the informed bidder�s ex ante expected payo¤ is

1Z
0

(1� F (z))F (z) dz:

Proof. When an informed bidder bids z, he wins with probability F (z). His payo¤

is thus

�1 (z) = F (z) v � � (z)

= F (z) v � F (v)E (V j V � v)

= F (z) v � F (z) v +
zZ
0

F (t) dt

=

zZ
0

F (t) dt:
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Integrating this over z gives us

E (�1) =

1Z
0

zZ
0

F (t) dtf (z) dz

=

1Z
0

F (z)

0@ 1Z
z

f (t) dt

1A dz
=

1Z
0

(1� F (z))F (z) dz:
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APPENDIX F

This Appendix contains derivations of theoretical predictions for Chapter IV.

The common value of the available good, X, is drawn from a uniform distribution

on the interval [x; x]. The realization of this value, x, is not observed by the two

bidders before placing their bids. However, the distribution from which it is drawn

is common knowledge.

In asymmetric information treatments, the informed bidder observes an estimate

of the realized value of the good. This estimate is the realization of X plus an

error term XI . This error term is U (��; �), and is independent of X. That is, the

estimate is a realization of ZI = X + XI :(We denote the distribution function of

ZI as FZI ). Throughout, we use fA to denote the density function of the random

variable A. A joint density function will be denoted as f (x) where the vector x

indicates the random variables to which f (x) pertains.

Since ZI is simply the sum of independent random variables, it�s density function

is easily calculated. To do so, we use the following, well known, formula:

fZI (zI) =

1Z
�1

fX (zI � x) fX (x) dx

=

�Z
��

fX (zI � x) fX (x) dx:
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This becomes a piecewise linear function:

fZI (zI) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

zI�xZ
��

�
1

2�(x�x)

�
dx = zI+��x

2�(x�x) if zI 2 [x� �; x+ �)

�Z
��

�
1

2�(x�x)

�
dx = 1

(x�x) if zI 2 [x+ �; x� �)

�Z
zI�x

�
1

2�(x�x)

�
dx = ��zI+x

2�(x�x) if zI 2 [x� �; x+ �] :

The distribution function of ZI is

FZI (c) =

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

cZ
x��

z+��x
2�(x�x)dz if c 2 [x� �; x+ �)

x+�Z
x��

z+��x
2�(x�x)dz +

cZ
x+�

1
(x�x)dz if c 2 [x+ �; x� �)

x+�Z
x��

z+��x
2�(x�x)dz +

x��Z
x+�

1
(x�x)dz +

cZ
x��

��z+x
2�(x�x)dz if c 2 [x� �; x+ �] :
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This reduces to:

FZI (c) =

8>>>>>>>>>><>>>>>>>>>>:

(c�x+�)2
4�(x�x) if c 2 [x� �; x+ �)

c�x
(x�x) if c 2 [x+ �; x� �)

x�x��
(x�x) +

(x+3��c)(c�x+�)
4�(x�x) if c 2 [x� �; x+ �] :

It is easy to check that the joint density function of X and ZI is given by:

f (x; zI) =
1

2� (x� x) :

The density function of X given the realized value of ZI is:

fX (x j zI) =

8>>>>>>>>>><>>>>>>>>>>:

1
zI+��x if zI 2 [x� �; x+ �)

1
2�

if zI 2 [x+ �; x� �)

1
��zI+x if zI 2 [x� �; x+ �] :

Equilibrium Bidding in SAP

Theorem 1 in Baye et al. [5] demonstrates that in any Nash equilibrium of this

game, the expected payo¤ of both bidder�s is zero, and that both bidders randomize

continuously on [0; E (X)]. In a symmetric equilibrium, this implies that for any

bi 2 [0; E (X)]

�SAPi (bi) = K (bi)E (X)� bi = 0
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where K (�) is the distribution function of the symmetric equilibrium mixed strategy.

Thus,

K (bi) =
bi

E (X)
.

Since both bidders have expected payo¤s of zero, the expected revenue of this auction

is E (X).

Equilibrium Bidding in AAP

Appendix E provides the unique equilibrium of this game. In this equilibrium,

when the informed bidder observes zI he/she bids according to the function

� (zI) = FzI (zI)E (E (X j ZI) j ZI � zI)

=

zIZ
x��

E (X j ZI = s) fZI (s) ds:

When zI 2 [x� �; x+ �), this is

� (zI) =

zIZ
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds

=
(2x+ zI + �) (zI � x+ �)2

12� (x� x) :

When zI 2 [x+ �; x� �) this is

� (zI) =

x+�Z
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+

zIZ
x+�

s

�
1

(x� x)

�
ds

=
3z2I + �

2 � 3x2
6 (zI � x)

:
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When zI 2 [x� �; x+ �] this is

� (zI) =

x+�Z
x��

�
x+ s+ �

2

��
s+ � � x
2� (x� x)

�
ds+

x��Z
x+�

s

�
1

(x� x)

�
ds+

zIZ
x��

�
x+ s� �

2

��
x+ � � s
2� (x� x)

�
ds:

=
2x3 + (zI � �)3 + 6x2� � 3x2 (zI + �)

12� (x� x)

That is, the equilibrium bid function for the informed bidder in AAP auctions is

� (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(2x+zI+�)(zI�x+�)2
12�(x�x) if zI 2 [x� �; x+ �)

3z2I+�
2�3x2

6(zI�x) if zI 2 [x+ �; x� �)

2x3+(zI��)3+6x2��3x2(zI+�)
12�(x�x) if zI 2 [x� �; x+ �] :

In equilibrium, the uninformed bidder will mix on the interval [0; E (X)] according

to the following distribution function:

J (b) = Prob [� (ZI) � b]

= FZI
�
��1 (b)

�
:
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So, the uninformed bidder will mix according using this distribution function:

J (b) =

8>>>>>>>>>>><>>>>>>>>>>>:

(��1(b)�x+�)
2

4�(x�x) if b 2 [� (x� �) ; � (x+ �))

��1(b)�x
(x�x) if b 2 [� (x+ �) ; � (x� �))

4�(x�x��)+(x+3����1(b))(��1(b)�x+�)
4�(x�x) if b 2 [� (x� �) ; � (x+ �)] :

The expected payo¤ of the informed bidder is given by:

�AAPI (zI) =

8>>>>>>>>>><>>>>>>>>>>:

(zI�x+�)3
12�(x�x) if zI 2 [x� �; x+ �)

3(x�zI)2��2
6(x�x) if zI 2 [x+ �; x� �)

(x�zI+�)3
24�(x�x) +

(x+zI��)
2

� (x�x)
2
: if zI 2 [x� �; x+ �] :

The ex ante expected payo¤ of the informed bidder is

E
�
�AAPI

�
=

x+�Z
x��

�AAPI (zI) dzI

=
5 (x� x)3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameters employed in our design, E
�
�AAPI

�
= 33:2301. Recall that the

uninformed bidder has an expected payo¤ of zero.

The ex ante expected revenue for the seller is found by subtracting the ex ante
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expected payo¤ of the informed bidder from the expected value of X. This yields

E
�
RAAP

�
= E (X)� E

�
�AAPI

�
=

�
x+ x

2

�
� 5 (x� x)

3 � 10�2 (x� x) + 8�3

30 (x� x)2
:

For the parameter values used in our design E
�
RAAP

�
= 91:7699.

Equilibrium Bidding in SLC

Recall that the probability that player i will obtain the good is given by:

pi (bi; bj) =

8><>:
bi

bi+bj
if max fbi; bjg 6= 0

1
2

if bi = bj = 0:

We assume that the marginal cost of bidding is constant and equal to one. Bidder

i�s seeks to maximize his expected payo¤ which is given by:

�SLCi = pi (bi; bj)E (X)� bi.

This expenditure function is strictly concave in xi given xj. As discussed above,

bidding zero is not an equilibrium strategy, so the best response is determined by

the following �rst order condition:

bjE (X)

(bi + bj)
2 � 1 = 0.

Utilizing the fact that the bidders are symmetric, this yields the equilibrium bids of:

bi = bj =
E (X)

4
:
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Using these equilibrium bids, we can easily calculate the equilibrium expected payo¤

of the bidders:

�SLCi = pi2

�
E (X)

4
;
E (X)

4

�
E (X)� E (X)

4

=
E (X)

2
� E (X)

4

=
E (X)

4
.

Revenue in this game is the expected value of the good less the expected payo¤s of

the bidders. Therefore, the expected revenue in this treatment, E
�
RSLC

�
, is E(X)

2
.

Equilibrium Bidding in ALC

This game is a special case of the model analyzed in the last period of Chapter

II. If a (z) = max (x; z � �) and b (z) = min (x; z + �), then the informed bidder�s

problem is:

�ALCI (zI) =

b(zI)Z
a(zI)

�
�ALC (zI)

�ALC (zI) + bALCU

�
xf (x j zI) dx� �ALC (zI)

=

�
�ALC (zI)

�ALC (zI) + bALCU

�
E (X p zI)� �ALC (zI) ,

where bALCU is the bid of the uninformed ALC bidder. As in the SLC, this function

is strictly concave given the bid of the uninformed bidder. The �rst order condition

is:

bALCU E (X p zI)�
�ALC (zI) + bALCU

�2 � 1 = 0.
Any �ALC (zI) > 0 makes this condition negative if bALCU > E (X p zI) : Thus, the

best response function of the informed bidder is:
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�ALC (zI) =

8><>:
p
bALCU E (X p zI)� bALCU if zI � q�1

�
bALCU

�
0 if zI < q

�1 �bALCU

�
:

where q (z) = E (X p zI), and q�1 (�) is the inverse of q (�).

The uninformed bidder�s problem is given by:

�ALCU =

x+�Z
x��

xZ
x

bALCU

�ALC (zI) + bALCU

xf(x; zI)dxdzI � bALCU

This yields the following �rst order condition:

x+�Z
x��

xZ
x

�ALC (zI)�
�ALC (zI) + bALCU

�2xf(x; zI)dxdzI � 1 = 0
Plugging in the informed bidder�s best response function and simplifying charac-

terizes the equilibrium in this game:

1 =

 
1p
bALCU

! x+�Z
q�1(bALCU )

p
E (X p zI)f (zI) dzI �

�
1� FZI (q�1

�
bALCU

�
)
�
:

In our experimental design bALCU = 29:37.

The uninformed bidder�s expected payo¤ is given by:

E
�
�ALCU

�
=

q�1(bALCU )Z
x��

xZ
x

xf(x; zI)dxdzI + b
ALC
U

�
1� FZI (q�1

�
bALCU

�
)
�
:
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For the parameter values employed in our experimental design, E
�
�ALCU

�
= 29:72:

The expected payo¤ of the informed bidder when he/she observes an estimate

ZI = zI is given by:

�ALCI (zI) =

8><>: 0 if z < q�1
�
bALCU

�
E (X j zI)� 2

p
bALCU E (X j zI) + bALCU if z � q�1

�
bALCU

�
:

The ex ante expected payo¤ of the informed bidder is given by:

E
�
�ALCI (zI)

�
=

x+�Z
q�1(bALCU )

xZ
x

xf(x; zI)dxdzI � bALCU

�
3� FZI

�
q�1
�
bALCU

���
:

For the parameter values employed in our experiment, E
�
�ALCI (zI)

�
= 36:92.

The ex ante expected revenue in this treatment is found by adding the expected

equilibrium bid of the informed ALC bidder and the equilibrium bid of the unin-

formed ALC bidder. In our experimental design this is E
�
RATC

�
= 58:74.
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APPENDIX G

This Appendix contains the description and results for all-pay auctions in which

each bidder observes a private signal. Such an auction is a symmetric information

all-pay auction with private signals (SAP-PRIV).

DESIGN

Participants engage in 30 all-pay auctions. In each of these all-pay auctions each

bidder privately observes a signal. These signals, z1 and z2; are independently drawn

from a uniform distribution with support [x� 8; x+ 8]. In this treatment both

bidders hold private information in the form of their signal. Information is symmetric

in that each signal is an equally precise estimate of x. We do not have theoretical

predictions for this treatment.55 We include this treatment for comparison with the

results of Chapter III. Additionally, the susceptibility of bidders to bidding above

the break-even bidding strategy in such an environment is of interest.

Break-even Bidding in SAP-PRIV

A long literature experimentally studies this information structure in the context

of �rst-price, sealed-bid auctions. It is well documented that when inexperienced

bidders privately observe private signals they consistently fall victim to the winner�s

curse.56 Further, Chapter III demonstrates that when inexperienced bidders in a

�rst-price, sealed-bid auction do not observe a signal prior to bidding the winner�s

curse is almost completely eliminated. Including the SAP-PRIV information struc-

ture for all-pay auctions allows us to compare the results for all-pay auctions to those

55As noted in Athey [2], a common value all-pay auction with conditionally independent signals
does not satisfy the single crossing property.
56The winner�s curse is de�ned as bidding above a break-even threshold, such that when a bidder

wins an auction, they have negative expected pro�ts.
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found in Chapter III. Do bidders who observe signals in all-pay auction bid above

the beak-even bidding strategy when their opponent also observes a signal?

As such, de�ning the break-even bidding strategy in the context of an all-pay

auction when both bidder�s observe private signals is important. If bidders bid ac-

cording to a monotonically increasing bid function, then the bidder who observes the

highest signal will win the auction. Thus, the expected value of the good, condi-

tional on winning the all-pay auction is the same as the expected value of the good

conditional on having the highest signal. So, if bidder i bids above, E (X j zi > zj),

the bidder will have a negative expected payo¤, conditional on winning the auc-

tion. However, if the bidder were to lose the auction, she would still have to pay

her bid. As such, the break-even bidding threshold, assuming the bidders are bid-

ding according to a monotonically increasing bid function is any bid greater than

F (Zj = zi j Zi = zi)E (X j zi > zj).

When zi 2 [x� �; x+ �),

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

ziZ
x��

zj+�Z
x

xfX (x; zj j zi) dxdzj

=

ziZ
x��

zj+�Z
x

x
1

2� (zi + � � x)
dxdzj

=

�
zi + � � x

4�

��
zi + 2x+ �

3

�
.
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When zi 2 [x+ �; x� �) ;

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

ziZ
zi�2�

zj+�Z
zi��

xfX (x; zj j zi) dxdzj

=

ziZ
x��

zj+�Z
x

x
1

4�2
dxdzj

=
zi
2
� �
6
.

When zi 2 [x� �; x+ �]

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj)

=

ziZ
zi�2�

zj+�Z
zi��

xfX (x; zj j zi) dxdzj

=

x��Z
zi�2�

zj+�Z
zi��

x
1

2� (x+ � � zi)
dxdzj +

ziZ
x��

xZ
zi��

x
1

2� (x+ � � zi)
dxdzj

=
(zi + 5�) (zi � �) + x (zi + 5�)� 2x2

12�
.

That is,

F (Zj = zi j Zi = zi)E (X j Zi = zi > zj) =

8>>>>>>>>>>><>>>>>>>>>>>:

�
zi+��x
4�

��
zi+2x+�

3

�
if zi 2 [x� �; x+ �)

zi
2
� �

6
if zi 2 [x+ �; x� �)

(zi+5�)(zi��)+x(zi+5�)�2x2
12�

if zi 2 [x� �; x+ �] :

EXPERIMENTAL RESULTS
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Table 23: Revenue in contests (including SAP-PRIV) aggregated across all rounds
and sessions

Average observed Average predicted
revenue revenue

Treatment (standard deviation) (standard deviation)
SAP 119:09 125:00

(65:77) (0:00)
AAP 95:23 88:24

(69:31) (29:80)
SAP-PRIV 140:88 �

(104:49)
SLC 96:76 62:50

(44:44) (0:00)
ALC 95:97 56:13

(56:83) (14:65)

Revenue

Table 23 contains summary statistics regarding revenue. Notice that SAP-PRIV

auctions generate more revenue than any other treatment, on average.

We �nd dramatic results regarding revenue in all-pay auctions when both bidders

observe a private signal. In particular, we �nd that revenue is greater than in any

other treatment. Revenue in all-pay auctions where both bidders observe a private

signal is greater than when neither bidder observes a signal (robust rank-order test,

�U = 3:086, p < 0:028). Typically, auction theory predicts that bidders who hold

private information earn a positive information rent, and reduce revenue relative to

the case in which their information is unobserved or made public. Our data suggests

that providing bidders with private information can increase revenue.

We also �nd that revenue in all-pay auctions when both bidders observe a private

signal is greater than in asymmetric information all-pay auctions (robust rank-order

test, �U = n:d:, p = 0:004). This is also true in lottery contests with symmetric
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Table 24: Bidder payo¤s in contests (including SAP-PRIV) aggregated over all
rounds and sessions

Average observed Average predicted
payo¤s payo¤s

Bidders (standard deviation) (standard deviation)
SAP �1:72 0

(62:77) (0)
AAP-Informed 26:38 27:29

(59:50) (27:70)
AAP-Uninformed �6:08 0

(44:06) (0)
SAP-PRIV �12:67 �

(62:34)
SLC 9:39 31:25

(68:58) (0)
ALC-Informed 22:72 31:20

(60:96) (26:85)
ALC-Uninformed �3:16 29:72

(54:68) (0)

(robust rank-order test, �U = n:d:, p = 0:004) and asymmetric (robust rank-order

test, �U = n:d:, p = 0:004).information.

Bidder Payo¤s

Table 24 contains summary statistics regarding bidder payo¤s. Notice that SAP-

PRIV bidders have the lowest payo¤s, on average.

We �nd that informed AAP bidders earn more than SAP-PRIV bidders (robust

rank-order test, �U = n:d:, p = 0:004). SAP bidders, who hold no private informa-

tion, have payo¤s signi�cantly greater than SAP-PRIV bidders, who do hold private

information (robust rank-order test, �U = 2:564, p < 0:048). This surprising result

is consistent with the �ndings in Chapter III in which bidders in common-value,

�rst price auctions earn higher payo¤s when bidders do not observe private signals
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Table 25: Bidding above the break-even bidding strategy in contests (including SAP-
PRIV) aggregated across all rounds and sessions

Frequency bid exceeds Frequency the
break-even bid: high (or only)

All Winning signal holder
Bidders bidders bidders wins
SAP 6:2% 12:1% NA

(93=1490) (90=745) NA
AAP-Informed 32:7% 30:4% 69:2%

(245=750) (158=519) (519=750)
AAP-Uninformed 4% 11:3% NA

(30=750) (26=205) NA
SAP-PRIV 62:87% 83:73% 58:67%

(943=1500) (628=750) (440=750)
SLC 8:1% 12:1% NA

(122=1500) (91=750) NA
ALC-Informed 34:3% 32:8% 50:7%

(257=750) (168=512) (380=750)
ALC-Uninformed 8:3% 16% NA

(62=750) (38=238) NA
NA = not applicable.
The decimal numbers in parentheses are standard deviations.
The fractions in parentheses are relative frequencies.

than when all bidders observe private signals. We also �nd that uninformed AAP

bidders earn signi�cantly higher payo¤s than SAP-PRIV bidders (robust rank-order

test, �U = n:d:, p = 0:004).

Break-even Bidding

Table 25 contains summary statistics regarding break-even bidding.

Figure 14 illustrates how the observed signal of SAP-PRIV bidders relates to

signal.

Bidding
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Figure 14: The di¤erence between observed bids and break-even bids for SAP-PRIV
depending on the signal

We �nd that SAP-PRIV bidders bid more than SAP bidders (robust rank-order

test, �U = 2:361, p < 0:048). We can not reject the hypothesis that SAP-PRIV

bidders bid the same amount as informed AAP bidders (robust rank-order test,

�U = 0:853, n:s:). SAP-PRIV bidders also bid more than uninformed AAP bidders

(robust rank-order test, �U = n:d:, p = 0:004).
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APPENDIX H

What follows is a sample set of instructions from Chapter IV. Instructions for

the remaining treatments are available upon request.

Introduction

Welcome. This experiment is about decision making in markets. The following

instructions describe the markets you will be in and the rules that you will face.

The decisions you make during this experiment will determine how much money you

earn. If you make good decisions, you can earn a substantial amount of money. You

will be paid in cash privately at the end of our experiment.

It is important that you remain silent and do not look at other people�s work. If

you have any questions, or need assistance of any kind, please raise your hand and an

experimenter will come to you. If you talk, laugh, exclaim out loud, etc., you will be

asked to leave and you will not be paid. We expect and appreciate your cooperation.

We will go over these instructions with you. After we have read the instructions,

there will be time to ask clarifying questions. When we are done going through the

instructions, each of you will have to answer a few brief questions to ensure everyone

understands.

Overview

Our experiment will consist of 30 rounds. In each of these rounds, you will be

randomly paired with another participant in today�s experiment. Both of you will

be buyers in a market. In each market, there will be a single unit of an indivisible

good for sale. As a buyer, your task is to submit a bid for the purchase of the good.
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You will receive earnings based on the outcome of the market. This process will be

repeated until all 30 rounds have been completed.

Determination of Your Earnings

Each participant will receive a showup fee of $5. In addition, each participant

in this experiment will start with a balance of $3; 200 �experimental dollars�(EDs).

EDs will be traded in for cash at the end of the experiment at a rate of $160ED = $1.

Your starting balance can increase or decrease depending on your payo¤s in each

round. That is, if you have a negative payo¤ in a round, this loss will be deducted

from your balance. If you earn a positive payo¤, this is added to your balance.

You are permitted to bid more than your remaining balance. However, if after a

round is completed your balance is less than or equal to zero, you will not be able to

participate in any future rounds.

In each round, you and the other buyer in the market will submit a bid. Both

of those bids will have to be paid, but only one of the buyers will receive the good.

Each of the buyers has the following probability of receiving the good:

(Own Bid)
(Own Bid)+(Other�s Bid)

Notice that if one a buyer submits a bid of zero, there is no chance of that buyer

receiving the good; the other buyer will receive the good with certainty. If both

buyers submit the same bid, then each of the buyers has a 50% chance of receiving

the good.

Notice that a buyer who receives the good can end up with a negative payo¤, if

he/she bids more than the good is worth. The buyer who does not receive the good

will always have a negative payo¤ if their bid was greater than zero. No buyer is



189

permitted to submit a bid that is lower than zero.

In each round, the value of the good, which we will denote as v�, will not be

known to the buyers. The value of this good will be between $25ED and $225ED.

Any value between $25ED and $225ED is equally likely to be chosen as v�. The

value of the good in any given round is independent of the value in any other round.

That is, the value of the good in one round will not have any e¤ect on the value of

the good in a di¤erent round.

Private Information

In each market, one of the two buyers will be randomly chosen to receive some

private information about the value of the good (you can think of this as �ipping

a coin to determine which of the buyers will receive this information, where the

probability of the coin landing on each side is 50%). The person who receives

the private information will be given an estimate of the value of the good. The

estimate will be a randomly chosen number that is within $8ED above or below the

real value of v� (see the illustration below). Any number between v� � $8ED, and

v�+$8ED is equally likely to be chosen as the private estimate. For example, if you

receive a private estimate of $125ED, then you know that v� is between $117ED

and $133ED, inclusive. It is possible for the estimate to be a value below $25ED or

above $225ED, but the real value of v� will always be between $25ED and $225ED.

Rounds
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As mentioned before, there will be 30 rounds in this experiment. In each round

there will be several markets going on simultaneously, with two buyers in each market.

After each round you will be randomly paired with another participant in today�s

experiment. This random assignment is done every round so that two buyers will

probably not be in the same market together for two consecutive rounds. Further,

this pairing is anonymous. That is, if you are a buyer in a given market, you do

not know which of the other participants in the experiment is the other buyer in

that market. Remember that these di¤erent markets and rounds are independent

from all others, and from one another. The bids and the value of the good and the

private estimate in one market or round do not have any e¤ect on other markets or

rounds. Markets and rounds operate independently.

Summary

1. Each participant has a starting balance of $3; 200ED.

2. In every round, each participant will be a bidder in one market. Two partici-

pants are randomly assigned to a market in each round.

3. In each market each buyer gets v� � (Own bid) with probability�
(Own Bid)

(Own Bid)+(Other�s Bid)

�
, and gets 0� (Own bid) with the remaining probability�

1� (Own Bid)
(Own Bid)+(Other�s Bid)

�
. This payo¤ is added to the balance of each bidder

(a bidder�s balance will go down if the value is negative, and up if this value is

positive).

4. The value of the good, v�, is unknown. It is known that it is somewhere

between $25ED and $225ED. Every value between $25ED and $225ED is

equally likely to be v�.
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5. One of the two bidders in each market is randomly chosen to receive a private

estimate of v�. This estimate is not observed by the other bidder in the

market. This estimate is randomly drawn from the interval between v��$8ED

and v� + $8ED, inclusive. Any number from this interval is equally likely to

be chosen as the private estimate.

6. Every participant will receive the show-up fee of $5. Additionally, each par-

ticipant will receive his/her balance at the end of all 30 rounds, based on the

$3; 200ED beginning balance and earnings in each market.

7. If a participant�s balance should become negative at any point during this

experiment, he/she will not be permitted to participate in future rounds.

If you have any questions, raise your hand and one of us will come help you.

Please do not ask any questions out loud.

Questions

Before we begin the experiment, we would like you to answer a few questions that

are meant to review the rules of today�s experiment. Please raise your hand once

you are done, and an experimenter will attend to you.

1. How many buyers are in each market?

2. Who pays their bid in each market, the bidder who gets the good, the bidder

who doesn�t get the good, or both?

3. The private estimate must be within what range of v�?

4. Are you allowed to bid more than your current balance?

5. For each market, how many buyers get to see the estimate of v�?
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6. If the bid of a buyer who receives the good in a market is $152:10ED, and the

value of the good is revealed to be $200:90ED, what is the winner�s payo¤ for

that market?

7. What would the earnings from question six have been if the value of the good

had been $25:90ED?

8. If Buyer 1 bids $150:00ED, and Buyer 2 bids $200:00ED, and the value of the

good is revealed to be $220:75ED, what are the payo¤s for Buyer 1 and Buyer

2 if Buyer 2 receives the good?

9. What would the earnings from question eight have been if Buyer 1 received the

good?
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