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ABSTRACT 

 

Design and Analysis of Flexible Biodiesel Processes with Multiple Feedstocks. 

(August 2010) 

Grace Amarachukwu Pokoo-Aikins, B.A., Austin College; M.S., Texas A&M 

University 

Chair of Advisory Committee: Dr. Mahmoud El-Halwagi 

 

With the growing interest in converting a wide variety of biomass-based 

feedstocks to biofuels, there is a need to develop effective procedures for the design and 

optimization of multi-feedstock biorefineries. The unifying goal of this work is the 

development of systematic methodologies and procedures for designing flexible multi-

feedstock biorefineries.  This work addresses four problems that constitute building 

blocks towards achieving the unifying goal of the dissertation.  

The first problem addresses the design and techno-economic analysis of an 

integrated system for the production of biodiesel from algal oil.  With the sequestration 

of carbon dioxide from power plant flue gases, algae growth and processing has the 

potential to reduce greenhouse gas emissions.  Algae are a non-food oil feedstock source 

and various pathways and technologies for obtaining algal oil were investigated.  

Detailed economic and sensitivity analysis reveal specific scenarios that lead to 

profitability of algal oil as an alternative feedstock.   
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In the second problem, a new safety metric is introduced and utilized in process 

design and selection. A case study was solved to assess the potential of producing 

biodiesel from sewage sludge.  The entire process was evaluated based on multiple 

criteria including cost, technology and safety.   

The third problem is concerned with incorporating flexibility in the design phase 

of the development of multi-feedstock biofuel production processes.  A mathematical 

formulation is developed for determining the optimal flexible design for a biorefinery 

that is to accommodate the use of multiple feedstocks.  Various objective functions may 

be utilized for the flexible plant depending on the purpose of the flexibility analysis and 

a case study is presented to demonstrate one such objective function.   

Finally, the development of a systematic procedure for incorporating flexibility 

and heat integration in the design phase of a flexible feedstock production process is 

introduced for the fourth problem.  A mathematical formulation is developed for use in 

determining the heat exchange network design. By incorporating the feedstock scenarios 

under investigation, a mixed integer linear program is generated and a flexible heat 

exchange network scheme can be developed. The solution provides for a network that 

can accommodate the heating and cooling demands of the various scenarios while 

meeting minimum utility targets. 
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1 INTRODUCTION 
 

 

1.1 Integrated Biorefinery 

 An integrated biorefinery is a processing facility that uses physical, chemical, 

thermal, and/or biological techniques (conversion technologies and equipment) to 

produce value-added chemicals, fuel and energy.  According to Clark et al (2006) “a 

biorefinery can be considered as an integral unit that can accept different biological 

feedstocks and convert them to a range of useful products including chemicals, energy 

and materials.”  The structure of the biorefinery has been compared to the petroleum 

refinery but there are marked differences.  The biorefinery uses biomass (plants and 

plant based materials) as a feedstock, utilizes renewable resources, and utilizes various 

established unit operations as well as some yet to be developed or adapted technology in 

order to derive various products and co-products.  In comparison, the petroleum refinery 

uses crude oil as the sole feedstock, non-renewable carbon resources, and established 

unit operations in order to obtain a variety of products and co-products.  A structural 

overview of the biorefinery is presented in Fig. 1.1. 

 

 

 
____________ 
This dissertation follows the style of Chemical Engineering Science. 



   

 

2 

 

Fig. 1.1 Structural overview of the integrated biorefinery (adapted from Clark et al, 2006). 
 

 

 Major motivating factors for the development of integrated biorefineries are: 1. 

fossil based fuels are limited; 2. there is a growing interest and demand for sustainable 

fuel sources; 3. increased desire for more environmentally benign processing 

technologies or industries that contribute less to the emissions of Greenhouse gas and 

carbon.  Fuels, chemicals, energy and other products form the biorefinery can provide 

alternative fuel and energy sources to supplement the current major fuel and energy 

sources.  Key features of the biorefinery are the ability to incorporate for use diverse 

feedstock options, the availability of a number of conversion technologies and the 

variety of product possibilities (Carole et. al., 2004).  In addition biorefineries use 

renewable resources and have the potential to contribute less to environmental pollution 
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compared with petroleum refining.  There is an abundance of biomass feedstock 

resources. 

 Biorefinery feedstock include agricultural resources (including wastes and 

surpluses), forestry resources (namely residues), energy and non-food crops, wastes, 

genetically engineered and recombinant sources (such as plants and microorganisms), 

oils and other sources that do not fit into any of these categories.  The focus for a 

sustainable biorefinery is agricultural, food industry and other “waste” and forestry 

residue.  That which is considered waste or residue can be utilized as feed to generate 

chemicals and energy in the biorefinery (Clark et al, 2006).  The use of renewable 

resources in the biorefinery is diagramed in Fig. 1.2. 

 Several processing technologies are available for converting biomass to products 

(Fig. 1.2).  Not all portions of the biomass can be converted by all processing 

technologies, but different portions of biomass enter into the different processes.  For 

example, oils, lipids, sugars or carbohydrates could be processed chemically.  The sugars 

and carbohydrates would be processed via some form of acid hydrolysis while the oils 

and lipids would be process by chemical synthesis (i.e. transesterification).  The products 

from acid hydrolysis are sugars and ethanol while the products from chemical synthesis 

include furfural derivative, fatty acid derivatives, esters, biodiesels, and glycerol. 
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Fig. 1.2 Schematic representation of processing pathways in a biorefinery. 

 

 

Thermal processes include combustion, gasification, biomass cogeneration 

and/or combined heat and power, pyrolysis and liquefaction and co-firing.  Major 

products from thermal processing include heat, steam, electricity, liquid oils, syngas, 

chemicals and synthetic gasoline.  Solid biomass (i.e. lignocellulosic feedstock, 

carbohydrates, and residues and waste) are major feedstock for the thermal processes.  

Hydrolysis is the main example of physical processing and products from hydrolysis are 

primarily sugars.  Biological processing can be aerobic (such as enzymatic hydrolysis) or 

anaerobic (such as fermentation and digestion).  Products from aerobic processing 
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include ethanol while anaerobic processing can yield a variety of products such as 

various acids, ketones, alcohols and hydrogen and biogas.  Hydrothermal liquefaction is 

a form of thermochemical processing that can produce bio-oil, syngas, ethylene, phenols, 

organic acids and synthetic gasoline.  This diversity of feedstock, processing 

technologies, and products are one of the greatest strengths of the integrated biorefinery. 

 In spite of all the potential benefits of the integrated biorefinery, there are still 

some challenges that need to be overcome.  One such challenge is the need for 

decentralized biorefineries located closer to feedstock sources (Biocycle, 2005).  

Another is the need to develop processing technologies (Huber and Dumesic, 2006).  

New approaches for using biological material are also needed (Kamm et al, 2006).  

Feedstock currently used in biorefineries of different types contain mainly carbohydrates 

and lignin and to a much lesser extent other component (such as fats, oils and proteins) 

(Kamm et al, 2006).  A major focus in biorefinery research is thus the processing of 

lignin and carbohydrate feedstock.  Yet lipid (fat and oil) containing feedstock are not 

ignore as they can be readily converted to fuels.  Current and future governmental 

policies, legislation, and incentives will undoubtedly present continued challenges for 

the integrated biorefinery. 

 

1.2 Process Integration 

 “Process integration is a holistic approach to process design, retrofitting, and 

operation which emphasizes the unity of the process.” (El-Halwagi, 1997).  In utilizing 

process integration, it is important to recognize the chemical process as an integrated 
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system and that problem solving strategies must deal with root causes and not just 

symptoms of the problem.  Traditional approaches to process development and 

improvement have been limited in applicability, can be time and cost intensive, do not 

guarantee the global solution, and do not reveal solutions that can be non-intuitive.  

Integration techniques can be used in process synthesis and conserve valuable resources 

(El-Halwagi, 2006).  The holistic approach of process integration is of benefit in 

development of the integrated biorefinery because it provides a systematic and strategic 

approach for dealing with the associated challenges. 

 The focus will be on design, retrofitting and operation as these are key aspects 

for any process.  Since the biodiesel production facility is a simple type of biofuels 

biorefinery and it is a potential component of large-scale integrated biorefineries, it is an 

adequate starting point for the investigation to follow.  Increasing fuel demands, 

decreasing fossil fuel reserves, increasing costs of petroleum-based fuels and 

environmental concerns have propelled bio-based fuels to the forefront of the biorefinery 

scene.  Bioethanol and biodiesel are currently the major biofuels being produced.  

Biodiesel production utilizes a variety of oils to produce biofuel, namely biodiesel, as its 

main product and glycerol as a by-product.   

 

1.3 Dissertation Overview 

 Section 2 includes background information and a literature review pertaining to 

biodiesel, its significance, and the modeling of biodiesel processes.  
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 Section 3 outlines the main aim of this work which is to develop a systematic 

approach for the design and operation of biodiesel production from various feedstock 

with a goal towards the development of a flexible multi-feedstock production process for 

biorefineries.  The work is comprised of four case studies and the formal problem 

statement is presented to reflect this approach. 

 Section 4 details the first case study, the design and analysis of biodiesel 

production from algal oil.  Algal oil was processed from algae grown through the use of 

sequestered carbon.  Results from simulation, mass and energy integration, techno-

economic analysis and sensitivity analysis of various algal oil cost, oil content and 

process design alternatives.  Algal oil is a non-food feedstock investigated for potential 

inclusion into the integrated multi-feedstock biodiesel production process.  Results are 

presented for the various scenarios for the profitable production of biodiesel from algal 

oil. 

 Section 5 describes the second case study, the multi-criteria design and analysis 

of biodiesel produced from lipids extracted from raw sewage sludge.  Lipids from sludge 

are yet another non-food feedstock of interest for the use in the integrated multi-

feedstock biodiesel process.  Since there are possible safety hazards with the use of 

solvents for the extraction process, a safety metric is introduced for use with technical 

and cost metrics in designing and evaluating the sewage sludge to lipids to biodiesel 

process.  The results of the multi-criteria analysis are presented along with a discussion 

of the trade-offs between cost and safety. 
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 Section 6 presents the flexibility study.  In this section, a systemic procedure for 

the design and operation of flexible biodiesel plants accommodating a variety of 

feedstocks is developed. The results of a process simulation of a base-case design for a 

multiple feedstock biodiesel plant, integration of energy and mass resources, 

optimization of process design and operation, and techno-economic assessment are 

utilized in retrofitting the base case plant for scenarios where additional units must be 

incorporated into the flexibility analysis.  The developed optimization formulation is 

utilized to determine retrofitting cost for various throughputs for multiple feedstocks.  

Case study results are presented. 

 Section 7 describes a variation to the multiperiod flexible heat exchange network 

synthesis problem.  A base case multifeedstock biodiesel production process that can 

accept soy, palm and algal oil is developed utilizing design and optimization strategies.  

An optimization formulation is introduced for the assembly of a flexible heat exchange 

network that incorporates the various heating and cooling requirements of various 

scenarios.  The optimization results are presented. 

 Section 8 outlines the major conclusions for each of the four case studies and the 

work as a whole, as well as recommendations for future work. 
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2 BACKGROUND AND LITERATURE REVIEW 
 

 

2.1 Biodiesel History and Comparison to Petrodiesel 

2.1.1 History 

 Invention of the diesel engine was a precursor for the development of petroleum 

based diesel fuels and subsequently biodiesel.  In the 19th century Rudolph Diesel 

developed the concept of an engine that ran on vegetable oils.  The engine was patented 

in 1893 and a working engine was demonstrated in 1897.  Vegetable oils were the 

predominant fuel source in diesel engines (Demirbas, 2008) until the early 20th century 

as petroleum gained in popularity.  As early as the 1920s manufacturers, recognizing 

differences in the viscosity of vegetable oils and petroleum diesel, were compelled to 

alter engines to run on pertroleum diesel (Schmidt, 2007).  In 1937, biodiesel made its 

debut in a Belgian patent was granted to G. Chavanne that described the use of ethyl 

esters of palm oil and methyl esters of other oils as diesel fuel (Knothe et al., 1997, 

Knothe, 2001).   

 Prior to World War II biodiesel continued to be developed and utilized but 

widespread use of biodiesel was deterred by the low cost of petroleum derived fuels.  

Biodiesel was used as fuel in heavy-duty vehicles in the Belgian Congo in South Africa  

(Knothe, 2001; Demirbas, 2008).  In the period before World War II, increased demands 

for glycerol (or glycerin) for explosives (Van Gerpen, 2005) saw an increase in efforts to 

produce soap (a process with glycerol as the byproduct).  By converting oils and fats to 
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methyl esters, glycerol could be obtained by centrifugation or settling.  The methyl esters 

(major biodiesel components) were then used to produce soap by alkali reaction.  

Numerous patents for soap formation were issued in the 1940s mainly to researcher 

working for E.I. DuPont and Colgate-Palmolive-Peet. 

 The 1970s saw a renewed interest in biodiesel when crude oil prices skyrocketed 

in 1973 due to the Arab oil embargo (Schmidt, 2007).  Research and development of 

production technologies for converting vegetable oils to fatty acid esters continued 

throughout the 1970s and 1980s.  Oil prices jumped again in the 1990s due to the Gulf 

War, and with a national surplus of soybean oil, the developed transesterification 

technologies were used to domestically produce biodiesel fuel (Schmidt, 2007).  In 1992, 

the National SoyDiesel Development Board was formed in order to become familiar 

with biodiesel production already well-established in Europe.  By 1994, the group 

became the National Biodiesel Board, an organization that has been monitoring and 

reporting domestic biodiesel production since its onset. 

 

2.1.2 Comparison to Petrodiesel 

It has been mentioned that the rise in the cost of petroleum based fuels 

contributed to the development and widespread use of biodiesel as an alternative fuel.  

Biodiesel has numerous attributes that cause it to remain a popular fuel choice.  Some 

attributes are that biodiesel can be incorporated into existing engines with little or no 

modification (Tyson et al., 2004), offers similar power and performance to petro-based 
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diesel and B100 offers up to 95% of the energy content of petroleum-based diesel (EPA, 

2002). 

Growth of biodiesel feedstock consumes CO2 and thus biodiesel contributes less 

to Greenhouse gas emission and global climate change.  Biodiesel contributes 78% less 

to CO2 emissions and has lower tailpipe emission than petrodiesel (Sheehan et al., 1998) 

and has a lower emissions profile (Sheehan et al., 1998; Carraretto et al., 2004; Van 

Gerpen, 2005; Hill et al., 2006; Demirbas, 2009a).  While petroleum-based diesel has no 

oxygen content, biodiesel has oxygen content between 10-12 wt % which means 

biodiesel undergoes more complete combustion and emits less carbon monoxide (CO), 

particulates and visible smoke (Carraretto et al., 2004; Lotero et al., 2005).  

Unfortunately, the higher oxygen content also contributes to a higher NOx emission.  

NOx emissions are predominantly tailpipe emissions with an overall of 13% increase in 

NOx lifecycle emissions (Sheehan et al., 1998).  Biodiesel also emits no sulfur and is 

blended with petrodiesel to meet sulfur requirements for ultra low sulfur diesel (ULSD).  

Long chain fatty acids that are found in the alkyl esters of biodiesel likely contribute to 

its high cetane number (CN).  Cetane is a long unbranched hexadecane (16 carbons).  

Cetane number is a measure of ignition quality and a high cetane number corresponds to 

a shorter delay in ignition.  In addition to a high CN, biodiesel is also non-toxic and non-

flammable (Demirbas, 2003; Lotero et al., 2005; Demirbas, 2008).  Cloud point (CP) 

and pour point (PP) are properties that are used to indicate the temperature at which 

diesel fuels are likely to gel.  Biodiesel has a higher CP and PP than petroleum-based 

diesel and thus is more likely to lead to cold flow problems. 
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Much of the feedstock needed to produce biodiesel can be obtained domestically 

while a large percentage of crude oil used to produce petroleum diesel is imported.  

There are a wide range of feedstock options that include food and non-food derived 

choices.  Vegetable oils and animal oils and fats can be virgin or recycled (used) oils and 

tallow is also available for use.  One big step towards energy independence occurred in 

2005 when the U.S. Navy adopted biodiesel as the fuel choice for all non-tactical diesel 

vessels (Arny, 2005). 

 

2.2 Biodiesel Production in the U. S. 

Biodiesel produced in US must meet the appropriate standards.  Biodiesel can be 

blended with petroleum diesel to meet environmental and lubricity standards.  Blends are 

denoted by BX where “B” denotes biodiesel and “X” denotes the percentage of biodiesel 

in the blend.  Currently the specification for B100 it is ASTM D6751-09, and for blends 

B6-B20 it is ASTM D7467-09A (National Biodiesel Board, 2010).  There are special 

rules and guidelines for low blends, B5 blends and blends above B20.  Guidelines can be 

found on the National Biodiesel Board (NBB) website and are updated periodically.   

 Large-scale domestic biodiesel production saw its onset in the early 1990s as 

mentioned earlier.  Domestic production has shown continued and marked growth 

especially since the Biodiesel Tax Incentive of 2005 (Schmidt, 2007; National Biodiesel 

Board, 2010).  A tax credit of $1 per gallon of biodiesel produced is provided through 

the incentive.  On December 31, 2009, the incentive expired but a decision to extend the 

incentive is currently under consideration (National Biodiesel Board, 2010; U.S. 
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Congress, 2009).  Since 1999 U.S. biodiesel production has grown remarkably from 0.5 

million gallons per year to 700 million gallons per year in 2008 (Fig. 2.1).  This 

corresponds to 1400% increase in ten years. 

 

 

 

 

Fig. 2.1.  Estimated US biodiesel production by fiscal year for 1999-2008 (National Biodiesel Board, 
2009). 
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There are currently 183 biodiesel production facilities that are members of the 

National Biodiesel Board (National Biodiesel Board, 2010).  These plants have a 

combined estimated capacity of 2.69 billion gallons per year (National Biodiesel Board, 

2010).  Non-NBB member plants exist.  In addition, new biodiesel facilities are still 

being constructed.  Thus national biodiesel production may exceed number reported by 

the NBB but the NBB goes through strict measures to report estimates that are as 

accurate as possible. 

 

2.3 Feedstock 

2.3.1 Building Blocks-Glycerol and Fatty Acids 

2.3.1.1 Glycerol 

 Glycerol, also known as glycerin or glycerine is a common naturally occurring 

alcohol (a triol) composed of a three carbon chain with a hydroxyl group connected to 

each carbon.  The structure of glycerol can be seen in Fig. 2.2.  Glycerol is the backbone 

of all mono-, di- and triglylcerides and the major byproduct of biodiesel production. 

 

 

Fig. 2.2. Structure of glycerol. 
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2.3.1.2 Fatty Acids 

Fatty acids and glycerol are the building blocks of a triglyceride molecule.  The 

presence and position of various component fatty acids on a triglyceride molecule 

impact the physical and chemical properties of a fat or oil.  A fatty acid molecule is 

composed of a carbon chain (usually with an even number of carbon atoms) with a 

carboxyl group at the head.  The three main types of fatty acids are saturated fatty acids, 

unsaturated fatty acids, and polyunsaturated fatty acids.  Saturated fatty acids contain 

only carbon-to-carbon single bonds in the carbon chain.  They are the least reactive of 

the three types of fatty acids.  Monounsaturated fatty acids contain one carbon-to-carbon 

double bond in the carbon chain.  Oleic acid is the most common naturally occurring 

monounsaturated fatty acid.  Polyunsaturated fatty acids contain two or more carbon-to-

carbon double bonds in the carbon chain (Plant Oils, 2007).  The more saturated fatty 

acids an oil or fat contains, the lower the viscosity.  Fig. 2.3 shows a general structural 

formula for a fatty acid with a saturated carbon chain.  A more general representation of 

the fatty acid structure can be seen in Fig. 2.4.  The R-group in the free (unbound) fatty 

acid represents the saturated or unsaturated carbon chain. 

 

 

             

 

 

Fig. 2.3. General structural formula for a saturated fatty acid. 

       CH3- (CH2)X-COOH 

Saturated carbon chain      carboxyl group 
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Fig. 2.4.  General representation of a free fatty acid. 
 

 

2.3.2 Oils, Fats, and Triglycerides 

Fats and oils are composed mainly of triglycerides and both edible and inedible 

fats and oils exist.  A triglyceride molecule is composed of one glycerol molecule with 

three fatty acids attached, one to the oxygen atom of each hydroxyl group through an 

ester bond.  Simple triglycerides are those in which all three fatty acid groups are 

identical while “mixed” triglycerides are those in which two or three of the fatty acid 

chains differ.  In this work, simple triglycerides were assumed in modeling biodiesel 

components in the simulation software.  “Mixed” triglycerides are much more common 

than simple triglycerides.  Fig. 2.5 depicts the structure of triglycerides. Mono- and 

diglycerides, free fatty acids, phosphatides, sterols, fat-soluble vitamins, tocopherols, 

pigments, waxes, and fatty alcohols are the minor components, and with the exception of 

free fatty acids, make up approximately two percent of crude vegetable oils and much 

less than two percent in animal fats.  There is wide variation in the free fatty acid content 

of crude (unrefined) vegetable oils and animal fats (Food Fats and Oils, 2006).   
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Fig. 2.5. Depictions of simple and mixed triglycerides. 
 

 

Mono- and diglycerides occur naturally in plant oils and animal fats and are the 

mono- and diesters of fatty acids and glycerol.  Fig. 2.6 depicts the structure of mono- 

and diglycerides.  Free fatty acids are the fatty acids that are not attached to any glycerol 

molecule.  Free fatty acids are more common in fats but some unrefined oils have free 

fatty acid content up to several percent.  Fats and oils can be refined to greatly reduce the 

free fatty acid content (to less than 0.1%).   
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Fig. 2.6. Structures of mono- and diglycerides. 

 
 

2.3.3 Other Components 

Phosphatides, commonly known as phospholipids, are composed of an alcohol 

(usually glycerol), fatty acids and a phosphate ester and are almost completely removed 

by the refining process.  Sterols (for example cholesterol) are more prevalent in animal 

fats than in vegetable oils (only trace amounts) and the types of sterols in animal fats and 

plant oils differ.  Tocopherols and tocotrienols are antioxidants that slow rancidity and 
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contain vitamin E, thus are important minor components of vegetable fats, but fairly 

absent in animal fats.  They are partially removed during the refining process.  Pigments 

are naturally occurring color materials in fats and oils that are made up mostly of 

carotenes (for example lycopene) and xanthopylls (for example lutein).  Chlorophyll is 

one of the most common pigments in plant material and is the source of the green 

coloration.  Most pigments are removed during the refining process.  Fatty alcohols are 

long chain alcohols that for edible fats are of little importance in most edible fats, less 

prevalent in waxes (in an esterified form) but are more prevalent in marine oils.    Table 

2.1 summarizes some of the non-triglyceride components of crude fats and oils (Food 

Fats and Oils, 2006). 

 

 

   

 
Table 2.1 Some non-triglyceride components of crude fats and oils 

Fat or Oil Phosphatides 

(%) 

Sterols 

(ppm) 

Cholesterol 

(ppm) 

Tocopherols 

(ppm) 

Tocotrienols 

(ppm) 

Soybean 2.2 ± 1.0 2965 ± 1125 26 ± 7 1293 ± 300 86 ± 86 

Canola 2.0 ± 1.0 8050 ± 3230 53 ± 27 692 ± 85 --- 

Corn 1.25 ± 0.25 15,050 ± 7100 57 ± 38 1477 ± 183 355 ± 355 

Cottonseed 0.8 ± 0.1 4560 ± 1870 68 ± 40 865 ± 35 30 ± 30 

Sunflower 0.7 ± 0.2 3495 ± 1055 26 ± 18 738 ± 82 270 ± 270 

Safflower 0.5 ± 0.1 2373 ± 278 7 ± 7 460 ± 230 15 ± 15 

Peanut 0.35 ± 0.05 1878 ± 978 54 ± 54 482 ± 345 256 ± 216 
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Table 2.1 Continued 
Fat or Oil Phosphatides 

(%) 

Sterols 

(ppm) 

Cholesterol 

(ppm) 

Tocopherols 

(ppm) 

Tocotrienols 

(ppm) 

Olive <0.1 100 <0.5 110 ± 40 89 ± 89 

Palm 0.075 ± 0.025 2250 ± 250 16 ± 3 240 ± 60 560 ± 140 

Tallow <0.07 1100 ± 300 1100 ± 300 --- --- 

Lard <0.05 1150 ± 50 3500 ± 500 --- --- 

Coconut <0.07 805 ±335 15 ± 9 6 ± 3 49 ± 22 

Palm kernel <0.07 1100 ± 310 25 ±15 3 ± 30 ± 30 

 

 

2.3.4 Feedstock Considerations 

Oils, fats, and greases are feedstock sources for biosiesel production (Fukuda, 

2001; Van Gerpen, 2005; Demirbas and Karslioglu, 2007; Marchetti et al., 2007; 

Demirbas, 2008).  Animals fats and oils (plant and/or animal) that have not been used 

previously for other purposes are labeled virgin fats and oils while fats, oils and grease 

that were used previously are considered recycled (Ginder, 2004).  Animal sources of 

fats and oils include poultry, cattle, swine, and fish.  Numerous authors have identified 

potential vegetable oil feedstock.  Feedstock that have been studied include the 

following vegetable oils: canola (Singh et al., 2006), sunflower (Siler-Marinkovic and 

Tomasevic, 1998), palm (Kalam and Masjuki, 2002; Leevijit et al.; 2008), olive (Nelson 

et al., 1996; Dorado et al., 2004), jatrohpa (Shah et al., 2004), and camelina (Frohlich 

and Rice, 2005).  Various other feedstock have been studied (Fukuda et al., 2001; Van 

Gerpen, 2005; Demirbas and Karslioglu, 2007; Marchetti et al., 2007; Demirbas, 2008) 
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and a non-exhaustive list of potential feedstock by type can found in Appendix A.  The 

list is in no particular order and even includes extracted fat from meat and bone meal 

(Nebel and Mittelbach, 2006).   Soy has been the predominant oil feedstock in the U.S. 

while rapeseed has dominated the European industry (Peterson and Scarrah, 1984).  

Used restaurant cooking oil, trap grease, and yellow grease are all examples of recycled 

or waste oils, otherwise known as waste cooking oil (WCO). 

 Algae are a potential biodiesel feedstock that has gained much attention in recent 

years.  In “favorable” conditions algal organism synthesize compounds needed for 

growth such as sugars and proteins.  In unfavorable conditions nitrogen deprivation or 

receiving an excess of certain nutrients, oil synthesis in algae increases markedly (Hu et 

al., 2008; Sharma and Singh, 2009).  Miao and Wu (2006) grew microalgae 

heterotrophically to increase the oil content and subsequently successfully converted the 

algal oil to biodiesel.  Ongoing research may lead to improvements in lipid content and 

thus make algae a more utilized feedstock (Huang et al., 2009; Gouveia and Oliveira, 

2009).  Algal oil for use in biodiesel production is attractive also because of the 

increased oil yield per acre compared to tradition terrestrial oil crops for biodiesel 

production (Chisti, 2008a).   

Considerations for selecting biodiesel feedstock include: 

• Cost 

• %Oil content (dry weight) 

• Chemical content of feedstock (i.e. Saturated fatty acid content (gelling) and 

Unsaturated fatty acid content (oxidation)) 



   

 

22 

• Pretreatment Cost 

• Purity 

• Prevalence of crop domestically 

• Expandable harvest areas/Flexibility to increase supply 

• Regional availability (e.g. palm in tropical regions) 

• Regional agricultural and political requirements (e.g. EU’s iodine value 

parameter eliminates use of soy) 

• Transportation Cost 

• Quality 

• Free Fatty Acid content 

• Use as Food Source 

• Biodiesel Yield (gallons per acre) 

 Feedstock cost comprises the major cost for biodiesel production (Myint, 2007; 

Singh et al., 2007; Sharma and Singh, 2009).  In general, recycled feed cost less than 

virgin feedstock but can be more expensive to process and/or pretreat.  Refined virgin 

feedstock may cost more than recycled feed but usually no additional pretreatment and 

can be processed directly.   

 Biodiesel feedstock composition varies between different feed types and even 

among a particular feed type.  Feedstock composition is important because it can affect 

the processing of the feedstock and even impact the attributes of the resulting biodiesel.  

Chemical composition of feedstock is an important consideration for multiple feedstock 

processing.   
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2.4 Methods of Production 

 Currently, there are five main production methods.  They are: 1.) Direct use and 

blending, 2.) Microemulsion, 3.) Pyrolysis, 4.) Esterification, and 5.) Transesterification 

(Demirbas and Karslioglu, 2007; Meher et al., 2006).  Direct use and blending is a 

method that has waned in popularity since it was first proposed in the 1980s due to the 

various problems that vegetable oils cause to engines when use directly or as blends in 

the engines.  Micoremulsions are defined as optically isotropic fluid microstructures 

(ranging from 1-50nm) that are formed spontaneously from two normally immiscible 

liquids and one or more ionic or non-ionic amphiphiles that are in a colloidal equilibrium 

dispersion (Ma and Hanna, 1999).  Experiments have shown biodiesel produced via 

microemulsions to cause engine problems.  Pyrolysis involves the use of heat (with or 

without a catalyst) in the absence of air and oxygen to convert one substance into 

another (Ma and Hanna, 1999).  Pyrolysis also encompasses the processes of thermal 

and catalytic cracking.  While these processes have shown reasonable yields in past 

experiments (73-88% yield), the equipment for the processes can be expensive (Ma and 

Hanna, 1999).  Esterification is the process utilized in converting free fatty acids (FFAs) 

to alkyl esters.  This is recommended for processes with FFA content greater than 5% 

(Gerpen, 2005).  The two main types of transesterification are catalytic/non-supercritical 

transesterification and non-catalytic/supercritical transesterification (Demirbas, 2007).  

Catalytic/non-supercritical transesterification is the most common commercial process 

for producing biodiesel.  Non-Catalytic/supercritical transesterification is a simpler 

alternative to the common commercial process that is gaining in popularity.  In this work 
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the focus is on catalytic/nonsupercritical transesterification.  There are two main types of 

catalytic/non-supercritical transesterification, acid catalyzed and alkali catalyzed 

transesterification. 

 Any of the five methods mentioned above can be used for either unrefined or 

refined oils, fats and greases but studies have shown that oils that have been pretreated to 

within accepted ranges are easier to handle for further processing by a selected method, 

the current method of choice being transesterification.  Oils and fats with an FFA content 

less than one percent (<1.0%) can usually be processed without any problems but the 

accepted value is less than 0.5%.  Yellow grease, being a standard commodity product, 

is an exception.  The FFA content for yellow grease is <15%.6 pg14   Most refined oils 

have an FFA content of less than 0.05 percent (<0.05%).  The oils used in this study are 

assumed to have been refined and to have an FFA content of 0.5% or less.  The amount 

of water present in feedstock should be kept as low as possible.  Water content should be 

kept below point one percent (<0.1%) and the water content of feedstock is more 

important than the FFA content in regards to carrying out the transesterification process 

(Ma and Hanna, 1999; Gerpen, 2006). 

 

2.5 Transesterification 

Transesterification occurs when a triglyceride molecule reacts with an excess of 

alcohol in the presence of catalyst to produce glycerol and fatty acid alkyl esters (Myint, 

2007).  Fig. 2.7 illustrates the overall mechanism of transesterification, but in fact the 

process occurs through a series of reactions.  Reaction temperature, alcohol to oil ratio, 
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oil used, catalyst type and amount appear to be the most important process variables for 

transesterification (Freedman et al., 1984, 1986; Fukuda et al., 2001; Demirbas and 

Karslioglu, 2007; Demirbas, 2008). 

 

 

Fig. 2.7. Overall mechanism of transesterification. 
(Where R is either a methyl group (for methanol) or a carbon chain linked to the appropriate 
hydrogen bonds, as in R1, R2 or R3). 
 

 

 The process of transesterification actually occurs through a series of consecutive 

reversible reactions.  In the first step the triglyceride is converted to a diglyceride.  Next 

the diglyceride is converted to a monoglyceride.  Finally, the monoglyceride is 

converted to glycerol.  In each step, an alkyl ester is also released.  Although the 

reactions are reversible, equilibrium is towards the production of glycerol and fatty acid 

alkyl ester (Ma and Hanna, 1999).  Fig. 2.8 illustrates the stepwise reactions of 

transesterification. 
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Fig. 2.8. The transesterification reactions of triglycerides with alcohol to esters and glycerol 
(adapted from Ma and Hanna, 1999). 
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2.7), in practice, however, an excess of alcohol is needed to ensure that the reaction goes 

to completion.  As a result of numerous experiments, many sources (e.g. Rashid et al., 
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conducted some of the earlier experiments that confirmed the 6:1 alcohol to triglyceride 

ratio. 

 Catalyst type is also an important consideration in transesterification.  There are 

heterogeneous and homogeneous catalysts available for selection.  Heterogeneous 

catalysts include enzymes, titanium silicates, alkaline-earth metal compounds, anion 

exchange resins, guanadines heterogenized on organic polymers.  Heterogeneous 

catalysts have not been popular selections for transesterification.  Homogeneous 

catalysts are preferred catalysts and include acid catalysts and base or alkali catalysts.  

Acid catalysts are preferred for transesterification of oils high in free fatty acids or 

moisture content because they are not greatly affected by the presence of these 

compounds (Freedman et al., 1984; Lotero et al., 2005) or for direct esterification of oils 

high in free fatty acids to methyl esters (Lotero et al., 2005).  When used for 

transesterification, the acid catalyzed process proceeds more slowly that the alkali-

catalyzed process.  Acid catalysts include sulfuric acid, phosphoric acid, hydrochloric 

acid and organic sulfonic acids.  Alkali catalysts include sodium hydroxide (NaOH), 

potassium hydroxide (KOH), sodium methoxide (NaOCH3), and potassium methoxide 

(KOCH3).  Due to their low cost, NaOH and KOH are the most commonly used base 

catalysts (Akoh et al., 2007).    

 Methanol and ethanol are the two predominant alcohols used in 

transesterification.  Methanol is favored due to its lower cost and lower molecular 

weight.  Reaction type is also an important consideration for transesterification.  Batch 
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reactions are preferred for small scale production but most commercial or large scale 

production of biodiesel via transesterification requires continuous production.   

 

2.6 Pretreatment 

Crude, unrefined plant oils are usually obtained from the seeds of oilseed plants 

(Vegetable Fats and Oils, 2007).  Biodiesel feedstock includes vegetable oils (i.e. 

soybean, canola, palm, etc.), inedible oils (i.e. jatropha, crambe, linseed, tung, castor, 

etc.) (Vegetable Fats and Oils, 2007), rendered animal fats, rendered greases, and 

recovered material (trap grease, float grease, soapstock) (Gerpen, 2006).  Feedstock vary 

greatly in regards to free fatty acid (FFA) content, water content, and other impurities.  

Pretreatment is necessary for all unrefined feedstock in order to reduce the FFA content, 

decrease water content, and remove impurities all of which can complicate or even 

hinder the processing of triglycerides into biodiesel.  The greater the FFAs and water in 

a feedstock, the more alcohol and catalyst needed to process the triglycerides, the less 

effective the reaction (soap formation, reverse reaction, etc.), the lower the conversion 

and product yield, and the more expensive the product separation/purification.  The FFA 

content common in biodiesel feedstocks has ranges as follows (Gerpen et al, 2004): 

Refined vegetable oils < 0.05 % 

Crude vegetable oil 0.3 – 0.7% 

Restaurant waste grease 2 – 7% 

Animal fat 5 – 30% 

Trap grease 40 – 100%. 
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Methods of Pretreatment include esterification/acid catalysis, enzymatic 

methods, glycerolysis, acid catalysis followed by alkali catalysis (Gerpen et al, 2004).  

Of these methods, esterification or acid catalysis is preferred because of the capability of 

converting fatty acids in feedstock directly to methyl esters.  A two-step process 

consisting of acid catalysis followed by alkali catalysis has also been employed with 

success for less refined feedstock with higher free fatty acid content (Lepper and 

Friesenhagen, 1986, 1987) such as waste cooking oil (Canakci and Van Gerpen, 2001, 

2003; Zhang, 2003a, b; Wang et al., 2006, 2007). 

 

2.7 Acid Value, Alcohol Ratio and Adverse Reactions 

2.7.1 Acid Value 

The acid value is the number of milligrams of KOH needed to neutralize the FFA 

in 1g of oil sample (Ma and Hanna, 1999).  Triglycerides should have an acid value less 

than one with 0.8 being the maximum (ASTM D 6751 standard) (Gerpen, 2006).   

 

2.7.2 Alcohol Ratio 

Stoichiometrically alcohol to triglyceride ratio is 3:1 but experimentally, a ratio  

of 6:1 is widely accepted (Ma and Hanna, 1999). 

 

2.7.3 Adverse Reactions: Soap and FFA Formation 

Soap formation can occur when a free fatty acid reacts with the catalyst to form 

water (Gerpen et al, 2004; Lotero et al., 2005) (see Fig. 2.9) and soap or when water is 
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present the triglyceride can react with the catalyst to form glycerol and soap (Myint, 

2007) (see Fig. 2.10).  Soap formation can become a self-perpetuating cycle that can 

consume all the triglyceride feedstock and catalyst and produce glycerol, fatty acids, 

soap and water rather than biodiesel.  The cycle is perpetuated by the presence of water.  

The water can react with the triglyceride to form diglycerides and fatty acids (Gerpen et 

al, 2004) (see Fig. 2.11).  Adverse reactions decrease the yield of biodiesel and can 

substantially increase the cost of glycerol separation. 

 

 

 

Fig. 2.9. Soap formation and water production from free fatty acid and catalyst. 
 

 

 

Fig. 2.10. Soap formation from triglyceride and catalyst. 
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Fig. 2.11. Fatty acid and diglyceride production from water and triglyceride (Hydrolysis reaction). 
 
 
 

2.8 Modeling Biodiesel Processes 

Several researchers have modeled the biodiesel process.  Simple spreadsheets 

and/or simulation software (i.e. ASPEN, HYSIS, ICARUS, etc.) have been used to 

evaluate the process for performance and economics.  The majority of these process 

models have represented soy oil as the feed.  A few have attempted representing other 

feedstock such as waste cooking oil (WCO).  One on-going challenge for the 

representation of biodiesel feedstock in process models has been a lack of tools to 

properly represent the variety of biodiesel feedstock as feedstock compositions play an 

important role in biodiesel production.  The challenge of representing biodiesel and more 

broadly, biomass feedstock must be overcome in order for analysis tools to be able to be 

utilized in pre-screening feedstock and synthesizing various portions of multi-feedstock 

processes.  Some of the challenges pertaining to modeling biodiesel feedstock in 

simulations have been addressed in this work. 
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 The major steps in biodiesel processing involve the transesterification reaction, 

subsequent separation of the glycerol and methyl ester streams, followed by individual 

purification of the glycerol rich stream and the methyl ester rich stream.  Separation of 

the glycerol rich stream yields glycerol and recovered methanol.  Purification of the 

methyl ester rich stream by acid neutralization followed by water washing yields a 

methyl ester stream and a water rich stream containing impurities.  Most process models 

that have been developed for the transesterification incorporate variations of these key 

process steps.  

Haas et al. (2007) utilized ASPEN PLUS software to model a continuous 

biodiesel production facility that utilizes soy as the feedstock.  Crude, degummed soy oil 

was modeled as triolein and the process was assessed for economics in order to 

determine the cost ($/liter or $/gal) for biodiesel production for a 38MMGPY facility.  

Data from ASPEN PLUS were exported to EXCEL where cost calculations were 

conducted.  The process model involved two transesterification reactions in sequence.  

The unreacted triglycerides from the first reactor were sent to the next reactor.  90% 

conversion was assumed through each reactor and an overall conversion of 99% was 

achieved.  Subsequently glycerol and methyl ester streams were separated and purified.  

It was reported that the feedstock cost was a large portion of the production costs. 

A two reactor system was also used by Tapasavi et al (2005) and soy and canola 

oils were modeled as the feed in the biodiesel transesterification model.  The model for a 

continuous transesterification was developed using a spreadsheet and detailed mass 

balance calculations.  Results for the process inputs and outputs were presented. 
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Four process configurations for the one-reactor alkali transesterification of soy 

oil were evaluated by Myint (2007) and Myint and El-Halwagi (2009).  The process 

were designed, analyzed and optimized. Of the four scenarios, one scenario surpassed 

the rest and was selected for further evaluation.  The scenario involved biodiesel and 

glycerol separation after the reaction followed by subsequent purification of glycerol 

rich stream to obtain glycerol and methanol and separate acid neutralization and 

purification of the methyl ester rich stream by water washing in order to obtain a very 

pure biodiesel product.  ASPEN PLUS was the selected simulation software.  Economic 

assessment was conducted with the aid of ASPEN ICARUS software and payback 

period and return on investment decreased with increase soybean oil cost.  Feedstock 

cost was determined to be the bulk of the production cost.  

A process utilizing vegetable oil and WCO as the feedstock was designed by 

Zhang et al. (2003a) using HYSIS process simulation tools.  They evaluated four 

biodiesel production processes for the two feedstocks.  While the alkali-catalyzed 

processing of virgin oil required fewer and smaller equipment demands, the high raw 

material cost was a deterrent.  On the other hand, the process involving acid-catalyzed 

conversion of WCO feedstock yielded lower raw material cost and was more feasible 

than the alkali-catalyzed process.  Economic analysis was then conducted by Zhang et al 

(2003b) for the four biodiesel process.  They reported that while the alkali-catalyzed 

process utilizing virgin oil presented the lowest fixed capital cost, the acid-catalyzed 

WCO was more economically feasible. 
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Chongkhong et al (2009) presented a process model for the esterification of palm 

fatty acid distillate with high free fatty acid content.  The feedstock contained 93% FFA 

and mono- and diglycerides as well as triglycerides.  Acid catalysis utilizing sulfuric 

acid in the presence of methanol and sodium hydroxide was conducted to esterify the 

fatty acids directly to biodiesel.  The process involved reaction of the feed, cooling the 

resulting stream, separation of methanol (by drying and evaporation) and neutralization 

of the methyl ester stream and subsequent purification of the methyl esters to biodiesel.  

High yields were reported (>90%) and raw material costs once again were reported as 

the bulk of the production costs. 
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3 PROBLEM STATEMENT 
 

 

 The overall goal of this work is to develop systematic procedures for the design, 

evaluation, and optimization of integrated biorefineries. Four categories are selected to 

address important classes of the biorefinery-design problem. In the first two problems, 

alternative feedstocks were modeled and simulated in biodiesel production.  The two 

feedstock evaluated were algal oil and oils from sewage sludge.  In the case of algae, an 

integrated system was considered to sequester carbon dioxide, grow algae, and 

synthesize a process flowsheet for biodiesel production. Next, the problem of using 

multiple criteria (cost, environmental, and safety) is considered. A design procedure is 

developed to use these criteria in guiding and screening the design. A case study is 

developed for the processing of sewage sludge, extraction of oils from sludge, and 

pretreatment of the extracted oils.  The entire sludge process was then evaluated on the 

basis of technical, cost, and safety metrics.  Sensitivity analysis is also presented for 

differing costs of oil production and algae of varying oil content.  Next the problem of 

designing flexible biorefineries is addressed. The objective is to develop an 

optimization-based procedure for the design of biofuel-production facilities that are 

flexible enough to process multiple feedstocks.  Finally, the problem of synthesizing 

flexible heat exchange networks is solved using a multi-period optimization formulation. 

More information on the statements of the four problems is given below. 
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3.1 Problem 1:  The Design of Algal Oil for the Sequestration of CO2 and 

Production of Biodiesel 

 The problem to be addressed may be stated as follows:  

Given an industrial source (e.g., power plant) which produces flue gas (flowrate M and 

composition Z), it is desired to sequester CO2 from the flue gas to grow algae which is to 

be processed to produce biodiesel. For this case study a systems approach for the 

alternative process paths will be developed and a techno-economic analysis performed in 

order to determine the optimal design of a flue gas to biodiesel system through the 

cultivation of algae. The case study will also provide an analysis of the technical and 

economic metrics of the aforementioned steps. 

 

3.2 Problem 2:  A Multi-Criteria Approach to the Design of Biorefineries with 

Application to the Production of Biodiesel from Sewage Sludge 

The main aim in this problem is to develop a design procedure that uses multiple 

criteria (cost, environmental, and safety) to screen alternatives. The cases study is to 

design and optimize a process for extracting triglycerides and fatty acids from raw 

sewage sludge for use in biodiesel production while considering multiple criteria 

including cost, technical performance, and safety.  Specific objectives can be identified 

as follows: 

• Design an extraction process for obtaining lipids from sewage sludge. 

• Optimize the process design. 

• Utilize the design to simulate extraction of sludge using different solvents. 
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• Develop and apply a safety and cost metric for solvent selection. 

• Simulate a process design for the pretreatment of fatty acids to biodiesel. 

• Utilize the resulting triglycerides from the extraction process in a previously 

developed biodiesel production process. 

• Evaluate and analyze the process economics and safety (using a newly 

introduced index). 

 

3.3 Problem 3:  Flexible Design for Multi-Feedstock Biorefineries 

 An increasing number of plants are being built as multi-feedstock facilities to 

accommodate for the variation in availability, economics, and environmental impact of 

feedstock alternatives.  A base case process for a flexible plant must utilize pre-specified 

feedstocks to induce flexibility for biorefineries. Effective biorefineries need to be 

flexible in their capabilities to process a variety of feedstocks in a way that promotes 

sustainability and profitability.  In order to do this, the goals are to: 

 

1 Incorporate feedstock flexibility into the process design of the biodiesel production 

facilities. 

2 Conduct a techno-economic study for the selected feedstock options. 

 

The main aim of this case study is to develop a systematic approach for the flexible 

design of a biofuel production process.  Formally stated, the problem is as follows: 
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Given is a biofuel production facility of with a certain base-case design handling 

a specific feedstock.  A certain number (Nf) of alternative feedstock that can be used in 

conjunction with or in lieu of the current feedstock are available for consideration.  It is 

desired to develop a systematic procedure for the design of a flexible biorefinery that 

accommodates all of the pre-specified feedstocks that may be utilized while maintaining 

a certain production level and quality constraints. 

 The following questions will be addressed: 

• Should feedstocks be processed separately or co-fed?  

• Which scenarios must be accounted for in the process design? 

• What retrofitting changes are needed? 

 The following is a more detailed statement of the problem to be addressed. 

Given a continuous process with: 

• A set of pretreatment units P= {p|p= 1,2, …, NPT}. Each pretreatment unit, p, has 

a set of input streams INPUTp = }N1,2...,m |{m in
ppp = and a set of output streams 

OUTPUTp = }N1,2...,n |{n out
ppp = .  Input stream mp, has a flowrate,

pmA , 

composition of component x as x,mp
Y .  Output stream np, has a flowrate,

pnB , 

composition of component x as  x,np
Z .  

• A set of common process units C= {c|c= 1,2, …, NCP}. Each process unit, c, has 

a set of input streams INPUTc = }N1,2...,m |{m in
ccc = and a set of output streams 

OUTPUTc = }N1,2...,n |{n out
ccc = .  Input stream mc, has a flowrate,

cmA ,  
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composition of component x as x,mc
Y .  Output stream nc, has a flowrate,

cnB , 

composition of component x as  x,mc
Z .  

• A set of product discharges from the process R = {r|r= 1,2, …, NR}.  

• A set of intermediate streams I= {i|i= 1,2, …, NI} that are redirected back into 

the process. Input stream mi, has a flowrate,
imA ,  composition of component x 

as x,mi
Y .  Output stream nc, has a flowrate,

inB , composition of component x as  

x,mi
Z . 

• A set of waste discharges from the process L = {l|l= 1,2, …, NL}.  

• A set of feedstocks (scenarios) SCENARIOS = {s|s = 1,2, …, Ns} . Within each 

scenario, s, there is a certain feedstock, pre-treatment units, processing units, 

production capacity, etc. 

It is desired to form a systematic procedure that can be used to determine an optimal 

flexible process design that accommodates for a variety of feedstocks.   

 

3.4 Problem 4:  Flexible Heat Exchange Networks for Multi-Feedstock Biodiesel 

Processes 

 The use of multiple feedstocks in a biorefinery or the seasonal variation in 

capacity of biorefineries can lead to major differences in heating and cooling 

requirements for the process. It is, therefore, necessary to design heat exchange networks 

that can operate under the various conditions of anticipated changes. The objectives are 

to: 
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1 develop a flexible heat exchange network design that incorporates a variety of 

feedstock options 

2 incorporate feedstock flexibility in the design of biodiesel processes 

 

The main aim of this problem is to develop a systematic approach for the flexible heat 

exchange network design for a biodiesel production process.  Formally stated, the 

problem is as follows: 

A given biodiesel production facility has a known production and design process 

that utilizes a certain feedstock.  Available for consideration are a number (Nf) of 

alternative feedstock that can be combined with or used instead of the current feedstock.  

It is desired to develop a systematic procedure for the design of a flexible heat exchange 

network that accommodates for the various feedstock that may be utilized while 

maintaining a specified production level and quality. 

 Questions to be addressed are: 

• What retrofitting changes are needed? 

• What is the minimum number of heat exchangers that can be used?  Which heat 

exchangers should be used and with which feedstock? When? 

The following is a statement of the problem to be addressed. 

 Given a continuous process with: 

• A set of common process units C= {c|c= 1,2, …, NCP}. Each process unit, c, has 

a set of input streams INPUTc = }N1,2...,m |{m in
ccc = and a set of output streams 

OUTPUTc = }N1,2...,n |{n out
ccc = .  Input stream mc, has a flowrate,

cmA ,  
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composition of component x as x,mc
Y  and a temperature, 

cmT .  Output stream nc, 

has a flowrate,
cnB , composition of component x as  x,mc

Z  and a temperature, 

cnT .  

• A set of hot streams HS={h|h= 1,2,…, NHS}, streams that need to be cooled or 

external heating utilities.       

• A set of cold streams CS={k|k= 1,2,…, NCS}, streams that need to be heated or 

external cooling utilities. 

• Intervals over which residual heat exchange loads are passed (y). 

• Residual heat exchange loads (δh,y,s) for hot streams being transferred to cold 

streams for each scenario.   

• A given scenario (s) in which there is a certain feedstock, processing units, 

production capacity, etc. 

It is desired to form a systematic procedure that can be used to determine an optimal 

process design that accounts for heat integration and used to synthesize a flexible heat 

exchange network (HEN) that operates for a variety of scenarios by incorporating 

different feedstock. 
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4 DESIGN AND ANALYSIS OF BIODIESEL PRODUCTION 

FROM ALGAE GROWN THROUGH CARBON 

SEQUESTRATION* 

 

 

4.1 Summary 

This study addresses the design and techno-economic analysis of an integrated 

system for the production of biodiesel from algal oil produced via the sequestration of 

carbon dioxide from the flue gas of a power plant. The proposed system provides an 

efficient way to the reduction in greenhouse gas emissions and yields algae as a potential 

alternative to edible oils currently used for biodiesel production.  Algae can be processed 

into algal oil by various pathways.  The algal oil can then be used to produce biodiesel. 

 

 

___________________ 

* Part of this section is reprinted with permission from Pokoo-Aikins, G., Nadim, A., El-Halwagi, M. M., 

and Mahalec, V., (2009). "Design and Analysis of Biodiesel Production From Algae Grown Through 

Carbon Sequestration."  Journal of Clean Technology and Environmental Policy, Copyright 2009 by 

Springer Verlag.  www.springerlink.com. DOI: 10.1007/s10098-009-0215-6.  
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A flowsheet of the integrated system is synthesized. Then, process simulation 

using ASPEN Plus is carried out to model a two stage alkali catalyzed transesterification 

reaction for converting microalgal oil of Chlorella species to biodiesel.  Cost estimation 

is carried out with the aid of ICARUS software.  Further economic analysis is performed 

to determine profitability of the algal oil to biodiesel process.  The results suggest that, 

for the algal oil to biodiesel process analyzed in this study, factors such as choosing the 

right algal species, using the appropriate pathway for converting algae to algal oil, 

selling the resulting biodiesel and glycerol at a favorable market selling prices, and 

attaining high levels of process integration can collectively render algal oil to be a 

competitive alternative to food based plant oils. 

 

4.2 Introduction 

Biodiesel is a transportation fuel that has grown immensely in popularity over the 

past decade. With the dwindling reserves of fossil fuels, it is now more important than 

ever to search for transportation fuels that can serve as alternatives to crude oil based 

fuels such as gasoline and diesel fuel. Common sources for biodiesel feedstock include 

soy, sunflower, safflower, canola, and palm.  Lately there has been growing controversy 

about the use of potential food sources for the production of fuel.  In attempt to address 

these concerns, researchers have turned their focus from the popular feedstock and are 

currently investigating the use of alternative, non-food related feedstock such as oil from 

algae.   
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Algae are a large and diverse group of simple plant-like organisms, ranging from 

unicellar to multicellar forms. These cells have the ability to convert carbon dioxide to 

biomass that can further be processed downstream to produce biodiesel, fertilizer and 

other useful products.  Photosynthetic growth of algae requires carbon dioxide, water 

and sunlight. Temperature should be in the range of 20-30 degrees Celsius in order to 

have good growing conditions. Algae also need other inorganic nutrients like 

phosphorus and nitrogen in order to grow. The fact that micro algae grow in aqueous 

suspensions, allows for more efficient access to H2O, CO2 and other nutrients which 

explains the potential for the production of more oil per unit area than other crops 

currently used. The chemical composition of algae differs based on species.  Algae have 

several characteristics that cause them to be a candidate biodiesel feedstock that deserves 

serious investigation.   

The advantages of using algae for biodiesel production include:  

• No competion for land with crops 

• No competition with the food market 

• Ability to grow in water with high levels of salt so there is no additional demand 

of fresh water. Also, areas with saline ground water that has no other useful 

applications can be targeted  

• Overall  use less water than oilseeds 

• High oil yield: algae (of the aquatic species) require less land for growth than 

biodiesel feedstock from terrestrial plants because they are capable of producing 
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more oil per hectare (Chisti, 2008a).  Table 4.1 shows the potential gallons of oil 

per acre per year from different crops. Furthermore, the oil content in algae (per 

dry weight) can reach as high as 80% (Chisti, 2008a). It is worth noting that the 

oil from microalgae can be extracted with yields up to 80-90% (Grima et al, 

1994; Fajardo et al, 2007; Belarbi et al, 2000). 

• Efficient sequestration of CO2: another reason why microalgae are attractive is 

that CO2 (of about ½ of dry algae weight) is needed for growth (Chisti, 2008a).  

CO2 is a common industrial pollutant, thus microalgae can contribute to reducing 

atmospheric CO2 by consuming CO2 wastes from industrial sources such as 

power plants. 

 

 
Table 4.1 Gallons of Oil per Acre per Year (Chisti, 2008a) 

Oil Feedstock Gallons of Oil 
per Acre per 
Year 

Corn 18 

Soybeans 48 

Safflower 83 

Sunflower 102 

Rapeseed 127 

Oil Palm 635 

Microalgae 5000-15000 
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There are nine major groups of algae which are cyanobacteria (Cyanophyceae), 

green algae (Chlorophyceae), diatoms (Bacillariophyceae), yellow-green algae 

(Xantophyceae), golden algae (Chrysophyceae), red algae (Rhodophyceae), brown algae 

(Phaeophyceae), dinoflagellates (Dinophyceae) and ‘pico-plankton’ (Prasinophyceae and 

Eustigmatophyceae) (Hu et al, 2008).  Of these nine groups, the green algae are the 

largest taxonomic group.  Microalgae have been known to survive under a wide range of 

conditions.  Under optimal conditions, microalgae have lipid content between 5-20% dry 

weight while under unfavorable conditions lipid content increases to between 20-50% 

(Hu et al, 2008).  Hence, it is ideal to cultivate microalgae under optimal conditions and 

later expose them to unfavorable conditions in order to increase lipid content. 

Lab experiments utilizing green algae, diatoms, and oleaginous species from 

other eukaryotic taxa show that the microalgae have oil content of 26, 23, and 27 % dry 

weight, respectively, under optimal conditions and 46, 38, and 45 % dry weight, 

respectively under stress conditions (Hu et al, 2008).  Depending on the species of 

microalgae, oil content can be further increased by limiting certain nutrients such as 

nitrogen, phosphorus or sulfur.  For example, limiting sulfur content can increase lipid 

content in Chlorella sp. (Otsuka, 1961). 

With the growing interest in growing algae for energy applications, different 

opinions have been expressed. The opinions range from concerns and skepticism about 

the energy efficiency, scaleup, and economic feasibility of microalgal use for 

transportation fuels and other energy needs (e.g., Anslow, 2008,; Sweeney, 2008,; 

Reijnders, 2008) to positive assessment of its efficiency and future industrial 
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applications in producing biodiesel meeting ASTM standards (e.g., Chisti, 2007; Chisti, 

2008a; Chisti, 2008b; Miao and Wu, 2006).   

 The growth of algae requires carbon dioxide as one of the main nutrients needed. 

There is an opportunity to sequester CO2 by using flue gas emissions from industrial 

sources as the CO2 feed for algae cultivation. The objective of this case study is to 

develop a techno-economic analysis of a process for sequestering CO2 from flue gas into 

growing algae which provides lipids that are processed to produce biodiesel. A 

combination of system synthesis, simulation, integration, and analysis is used to assess 

the technical and economic performance of the process. A case study is solved to discuss 

the various metrics of the process. 

 

4.3 Problem Statement 

 The problem to be addressed in this case study may be stated as follows:  

Given an industrial source (e.g., power plant) which produces flue gas (flowrate M and 

composition Z), it is desired to sequester CO2 from the flue gas to grow algae which is to 

be processed to produce biodiesel. The case study will develop a systems approach for 

the alternative process paths and perform a techno-economic analysis to determine the 

optimal design of a flue gas to biodiesel system through the cultivation of algae. The 

case study will also provide an analysis of the technical and economic metrics of the 

aforementioned steps. 
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4.4 System Overview 

The overall system is composed of two main sections: an upstream processing 

section which is aimed at sequestering the CO2, growing the algae, and producing the 

lipids and a downstream processing section which includes the pretreatment of the lipids 

followed by transesterification then separation and finishing, yielding the biodiesel.  Fig. 

4.1 illustrates these key steps. 

 

 

CO2
Sequestration

& Algae
Growth

Flue 
Gas

Algae 
Harvesting

&
Drying

Lipid
Extraction Pretreatment Trans-

estrification

Separation
&

Finishing

Biodiesel

Feedstock Production Biodiesel Production  
Fig. 4.1. Key elements of the algae-to-biodiesel production system 

 

 

4.4.1 Algae Selection 

The choice of algae species should address specific characteristics that allow the 

use of flue gas as the CO2 source. Much research has been done on the tolerance of 

different species to flue gases. Several species were found to be suitable for the growth 

of algae using flue gas. One of these many species is Chlorella species.  Hanagata et al 

(1992) found that Chlorella is tolerant to CO2 concentrations of up to 40% by volume.  

Sung et. al. (1999) reported that chlorella grew in conditions of up to 40 degrees Celsius. 

These results indicate that Chlorella is a good choice for this study.  
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In this work, the Chlorella species is chosen. The oil content of Chlorella 

typically ranges between 28-32% dry weight (Chisti, 2007) but can reach 46% dry 

weight under stress conditions (Hu et al, 2008) and 55% dry weight when grown 

heterotrophically (Miao and Wu, 2006).  Information about the fatty acid compositions 

of various microalgae (namely the green algae in the classes Chlorophyceae and 

Prasinophyceae) was published in 1992 (Dunstan et al).  Chlorella is in the class 

Chlorophycea and the fatty acid compositions of three Chlorella species were listed.  

Chlorella sp. (CS-195) was used in this analysis because of its potential ease for use in 

simulation.  It is interesting to note that the Chlorella protothecoides (CS-41) 

composition includes the same fatty acids present in the Chlorella sp. chosen (Dunstan et 

al, 1992) but in slightly different proportions.  Another reason why Chlorella sp. was 

chosen is the availability of information about its growth, harvesting and extraction. 

 

4.4.2 Feedstock Production 

 Algae can be cultivated via an open system or a closed system.  Raceway ponds 

are the most commercially used open system for growing algae.  Photobioreactors are a 

closed system for algae cultivation.  Both raceway ponds and photobioreactors are 

described by Chisti (2007).  Two systems are considered in this work:  the use of an 

open pond system versus the Bio-King system (CleanTech, 2008) that uses a reactor to 

cultivate algae.  The Bio-King process is utilized by a company in the Netherlands.  

 Methods for harvesting include centrifugation, filtration, and flocculation.  

Centrifugation is expensive but also one of the most effective ways to harvest algae.  
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The Alfa Laval PX series centrifuges will be used to harvest the algae.  Centrifugation 

will result in the algae being 30% solid with 70% moisture content. As a result, further 

drying is required.  

 Drying is considered to be the most energy intensive part of this process. There 

are many ways to dry the wet paste slurry that comes out of the centrifuge. As mentioned 

the slurry contains 30% solids with the remaining 70% water.  To try and save on energy 

costs for this process, the drying will be done using excess flue gas.   

 Extraction is the final step in the processing of algae for use in biodiesel 

production.  Algal oil can be extracted physically, chemically or both.  An expeller/press 

can be used to physically extract algal oil.  The BK-oil press is capable of processing 

20kg/h and will be used for this study.   

Chlorella is an algal species that contains anywhere from 29-32% lipids (oil 

content).  For this study it is assumed that Chlorella is about 30% oil and for sensitivity 

analysis purposes, the cost of producing algal oil assuming 50% oil content will also be 

evaluated.   

 

4.4.3 Cost of Producing Algal Oil 

 An analysis was conducted assuming a process that utilized the BioKing 

Bioreactor for growing the algae, centrifugation for harvesting, excess flue gas for 

drying, and the BioKing oil press for extraction.  Economic and sensitivity analyses were 

conducted for this process and used for estimating a range of costs for producing oil 

from algae.  Specifically, two factors were varied: oil content in the algae and 
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performance.  Two oil contents are considered: 30% and 50% (dry basis oil in algae).  

The second factor is the performance of the drying and extraction units.  For the high 

performance case, low cost of electricity ($0.05/kWh), high production (100ton/day 

plant), and the use of heat integration in drying using the hot flue gases were assumed.  

For the low performance case, high cost of electricity ($0.20/kWh), low production 

(1ton/day), and no heat integration for drying was assumed.  The cost estimates are 

presented in Table 4.2.  These costs are used later in the economic analysis of the 

production of biodiesel.   

 

 

Table 4.2 Estimated Costs for Producing Algal Oil 
 30% Oil 

Content 

50% Oil 

Content 

Units 

Low 

Performance 

1.14 0.63 $/lb 

High 

Performance 

0.21 0.07 $/lb 

Average 0.68 0.35 $/lb 

 

 

4.4.4 Biodiesel Process Description 

Miao and Wu (2006) have shown that a species of Chlorella (Chlorella 

protothecoides) can be used to produce biodiesel that meets ASTM standards.  The 

microalgae were grown heterotrophically to increase the oil content from 14.6% dry 
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weight to 55.2% dry weight.  Acid transesterification was used since the acid value for 

the algal oil was reported as 8.97 mg KOH/g.  The biodiesel yield was approximately 

70% at 50oC and conditions of 60% H2SO4 catalyst, 5 hours reaction time, 160 rpm, 

9.12g microalgal oil, and 30 to 1 methanol to oil ratio (Miao and Wu, 2006).  

The design, integration, and economic assessment of the process are based on the 

procedure shown in Fig. 4.2. This approach is based on well-established procedures in 

the areas of process synthesis, simulation, and integration. 

In this case study the algal oil is transesterified to biodiesel in a continuous 

process.  Biodiesel can be produced by one of three common routes.  They are: acid 

catalyzed transesterification, base catalyzed transesterification or acid catalyzed 

esterification of feedstock to fatty acids and then to alkyl esters (National Biodiesel 

Board, 2008). Base catalyzed transesterification is the well established means of 

processing biodiesel and the overwhelming option used in industry for economic and 

technical reasons.  Rashid et al (2008) produced methyl esters from sunflower oil 

utilizing NaOH catalyst at 1% wt concentration in a 6:1 methanol to oil ratio at 60oC at 

yields of 97.1%.  Georgogianni et al (2008) reported methyl ester yields from the 

processing of sunflower oil of 90% for conditions of 60oC, 7:1 methanol to oil molar 

ratio and 1%wt NaOH as catalyst.  In the results and discussion it was later stated that 

“the highest conversion to ester (93-98%) was observed at a ratio of 6:1” (Georgogianni 

et al, 1008).  Rashid and Anwar (2008) found that biodiesel could be produced from 

safflower oil with yields up to 98% for based-catalyzed transesterification utilizing 

sodium methoxide catalyst at 1%wt concentration, 60oC, and 6:1 methanol to oil ratio 
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and yields of above 90% could be achieved for the same conditions with the exception of 

the use of NaOH as a catalyst.  Meka et al (2007) also synthesized biodiesel from 

safflower oil and found that at 60oC for 6:1 methanol to oil ratio and 1%wt NaOH 

cataslyst, yield of 96% could be obtained.  Leung and Guo, (2006) performed 

experiments utilizing neat canola oil and used frying oil and found that for experiments 

exploring different parameters, a temperature of 60oC was optimum for a reaction time 

of 20 minutes used frying oil, that ester content was highest (98%) for canola oil for an 

alcohol to oil ratio of 6:1 (corresponding to a yield of 94%) and that for the three alkali 

catalyst explored sodium hydroxide was the cheapest and had an optimum concentration 

of 1.0 for neat canola oil and 1.1%wt for used frying oil.  Foon et al (2004) in exploring 

the kinetics of the transesterification of palm oil, performed experiments utilizing base-

catalyzed transesterification and found that formation of methyl esters was fastest  for 

NaOH at 60oC for the parameters explored.  Conversions above 97% were reported.  

Leevijit et al (2008) utilized alkali catalyzed transesterification in a 6-stage reactor to a 

fatty acid methyl ester product from palm oil.  NaOH was used at 60oC in a methanol to 

oil ratio of 6:1.  Gerpen et al (2004) describes the various possible routes for biodiesel 

production including alkali-transesterification. 
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Fig. 4.2. Overall approach for algae-to-biodiesel. 
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For this reason, base catalyzed transesterification is used in this investigation.  

Pretreatment is required for feedstock with high free fatty acid (FFA) content (i.e. 

greater than 1%, such as waste cooking oils) as well as feedstock with substantial 

amounts of impurities (such as some algal oils).  Feedstock with FFA content of 1wt% 

or less are generally required for base catalyzed transesterification.  The algal oil used 

for the processing of biodiesel in this case study is assumed to have only trace amounts 

of impurities and to have FFA content of 0.05wt% therefore no pretreatment is required. 

In general, the biodiesel process in this case study consists of seven sections: 

• Feedstock composition 

• Two-stage transesterification 

• FAME and glycerol separation 

• Methanol recovery 

• Alkali removal 

• Water washing (FAME purification) 

• Glycerol purification 

 

4.4.5 Feedstock Composition  

The feedstock in this case study is algal oil from Chlorella sp. and is 

characterized in terms of the composition of the individual fatty acids and triglycerides.  

The free fatty acid content is assumed to be 0.05wt% and thus pretreatment is not 

necessary.  Based on the data presented by Dunstan et al (1992) for Chlorella sp. (CS-
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195), the fatty acid composition is distributed such that the total weight percent is 0.05.  

For the remaining 99.95wt%, the same data (Dunstan et al, 1992) is distributed such that 

it encompasses the triglyceride composition.  For simplification, each triglyceride is 

represented as containing three identical component fatty acids, although in reality 

numerous possible combinations exist for the fatty acids comprising each triglyceride.  

Since the ASPEN Plus simulation software only has the thermodynamic data and other 

information for a limited number of fatty acids and the corresponding triglycerides and 

methyl esters that are found in plant oils, fats and algal oils (Myint, 2009), most of the 

components of the algal oil feedstock were entered manually using the user defined 

method and the structures of each compound were constructed using ISIS software.   

 

4.4.6 Two-Stage Transesterification 

 The overall reaction between the triglycerides (algal oil) and methanol is given 

by: 
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Consequently, one molecule of each triglyceride in the algal oil reacts with three 

molecules of methanol to produce three molecules of methyl esters, the biodiesel 

product, and one molecule of glycerol (Gerpen et al., 2004). 

Based on several studies of alkali-catalyzed transesterification, the reaction will 

be carried out at the temperature near the boiling point of the alcohol (60oC for 

methanol). A molar ratio of 6:1, alcohol:oil, is also confirmed to be the optimal ratio by 

numerous studies (Ma et al., 1999; Tapasvi et al., 2005; Meher et al., 2006; Myint, 

2009).  In this study, the temperature of 60oC, methanol as the alcohol, a molar ratio of 

6:1 methanol to oil, and NaOH as the base catalyst are the conditions used as a result of 

comprehensive literature review mentioned above in the section titled “Biodiesel Process 

Description.” 

 In the first reactor, sodium hydroxide with a concentration of 1.0 wt % of the 

feed algal oil was used. The concentration of NaOH for the unreacted oil suggested in 

patent documents by Wimmer (1995) and Tanaka et al. (1981) for the second reactor is 

0.2 wt % of inlet oils.  For the process where 97.7% conversion is assumed through each 

reactor, no additional NaOH is needed in the second reactor.  For the process where 70% 

conversion is assumed through each reactor, additional NaOH that is only 0.14 wt % of 

inlet oils is needed in the second reactor as a result of mass balance calculations, to bring 

the total NaOH to 1.0 wt% of the inlet to the second reactor.    The purity of algal oil is 

assumed to be 99.95 wt % while the free fatty acid (FFA) content was assumed to be 

0.05wt%.   
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In order to increase the conversion of the algal oil, two transesterification 

reactions are conducted in sequence.  Conversion of feedstock have been documented by 

Tanaka et al. (1981) to reach up to 99.5 wt % using this two step process. In this work, 

the conversion is set to the same percent in each reactor.  In the first scenario, the 

conversion through each reactor is set at 97.7% and in the second scenario the 

conversion through each reactor is set at 70%.  The reaction products biodiesel and 

glycerol from the first reactor (REACT1) are separated in a decanter (DECANT4) with 

the byproduct glycerol sent to a distillation column (MET-DIST2) for purification. The 

unreacted triglycerides (algal oil) is transesterified in the second reactor (REACT2), 

followed by a further separation of glycerol from biodiesel in another decanter 

(DECANT1). 

 

4.4.7 FAME and Glycerol Separation 

The transesterification products (Fatty acid methyl esters or FAME, and glycerol) 

are cooled to 92oF (33.3oC) in the first reactor from 60oC, and pumped to a decanter 

(DECANT4) where FAME and byproduct glycerol are separated. The biodiesel and 

glycerol from the second reactor are further separated in another decanter (DECANT1). 

FAME and glycerol are separated at a temperature below the reaction temperature and at 

atmospheric pressure simply because of their immiscibility and gravity difference. Since 

the glycerol phase is much denser than biodiesel phase, the two can be gravity separated.  

The glycerol is drawn off the bottom of the settling vessel. 
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4.4.8 Methanol Recovery 

FAME or biodiesel is the main component of the lighter products.  It is separated 

in a decanter (DECANT1), is heated to 60oC and then sent to a distillation column 

(MET-DIST1) with theoretical stages of 6, a total condenser and a kettle reboiler. In this 

distillation column, methanol is separated and recovered from the biodiesel phase 

through the overhead as a vapor. The reflux ratio is set at 1.5 in order to obtain a good 

separation between methanol and other components. 

 

4.4.9 Alkali Removal 

The bottom effluents from the distillation column (MET-DIST1) are cooled to 

25oC and then sent to another decanter (DECANT2), where the excess sodium hydroxide 

is neutralized with hydrogen chloride. Hydrogen chlorides is added not only to remove 

residual sodium hydroxide catalyst but also to split any soap that may form during the 

reverse saponification reaction given by: 

 

Neutralizing the stream before the water washing step aids in reducing the water 

required for purifying the FAME and in minimizing the chances of emulsion formation 

when the wash water is added to the FAME. 
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4.4.10 Water Washing (FAME Purification) 

Once separated from other components such as sodium hydroxide and 

triglycerides in the decanter (DECANT2), FAME (the biodiesel) is purified by washing 

gently with warm water to remove residual catalyst, salts, methanol, free glycerol and 

soaps. A biodiesel purity of 99.65 wt% is required to meet ASTM D 6751 of biodiesel 

specification. Waste water exiting the water washing unit can then be recycled. 

 

4.4.11 Glycerol Purification 

After separation in decanter (DECANT4), the glycerol stream is heated to 60oC 

and then sent to glycerol distillation column (MET-DIST2) with 5 theoretical stages, a 

total condenser and a kettle reboiler. Residual FAME exits via the overhead column in 

terms of vapor, while the glycerol exits through the bottoms, is cooled and can be used 

commercially. 

4.4.12 Process Simulation and Design of Biodiesel Production 

In this simulation, NRTL and RK-Soave thermodynamic properties were used.  

Although the thermodynamic data for some triglycerides, fatty acids and methyl esters 

are available in ASPEN Plus, certain crucial thermodynamic properties (i.e. ideal gas 

heat capacity) for the components available in the ASPEN Plus databanks are not 

present.  Most of the components were not available in the ASPEN Plus databanks at all.  

Thermodynamic properties not available in ASPEN Plus must be either entered by a 

user-defined method or estimated by ASPEN Plus upon providing the molecular 
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structure of the compounds (Myint, 2009). The molecular structure of all the 

triglycerides, fatty acids and methyl esters were created using ISIS draw software and 

exported as .mol files and then imported to ASPEN Plus. Furthermore, ASPEN Plus 

UNIFAC group contribution method was used based on the molecular structures.  Since 

the component database in ASPEN Plus does not automatically distinguish between cis 

and trans compounds, there are some expected deviations between the actual 

thermodynamic data and the data estimated from the imported molecular structure. 

(Myint, 2009). 

Na+ and OH- ions were used instead of solid NaOH because the simulation does 

not support the use of the solid form in the reaction (Myint, 2009). Similarly, H+ and Cl- 

ions were used instead of the HCl in the ASPEN Plus databank.  Electrolyte properties 

must be defined for the Na+, OH-, H+ and Cl- ions. 

Feed wash water amount was determined by performing the water sensitivity 

analysis in order to achieve methyl esters purity higher than 99.65 wt% as required by 

the ASTM D 6751 standards for biodiesel purity. In addition, a sensitivity analysis was  

performed of distillate mass flow rate in distillation column (MET-DIST2) in order to 

guarantee that the purity of glycerol is higher than 90% the temperature of glycerol is 

lower than its decomposition temperature 554oF (290oC given by Material Safety Data 

Sheet of glycerol, available at http://avogadro.chem.iastate.edu/MSDS/glycerine.htm).  
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Similarly, sensitivity analysis of distillate mass flow rate in column (MET-DIST1) was 

performed as well in order to keep the biodiesel stream temperature below its 

decomposition temperature 482oF (250oC). 

4.5 Results and Discussion 

For the processing of the algal oil to biodiesel, two simulations were conducted.  

Figures 4.3 and 4.4 depict the processes.  In the first simulation, there was 70% 

conversion through each reactor and an overall conversion of 90%.  In the second 

simulation, 97.7% conversion was assumed through each reactor and an overall 

conversion of 99.7% was achieved.  Both simulations used the same initial amount of 

methanol and sodium hydroxide.  Also both simulations have the same initial free fatty 

acid (FFA) and triglyceride composition. 

In the simulation with 70% conversion through each reactor, there is a substantial 

amount of unreacted triglycerides (7,920 lb/h), and much additional methanol (1,901 

lb/h) and additional sodium hydroxide (80 lb/h) required.  The overall conversion is 

90%.    Some  of  the  methanol  that  is utilized  cannot  be  recovered.    In contrast,  the  
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simulation with 97.7% conversion through each reactor has much less unreacted 

triglycerides (607 lb/h) and needs no additional methanol or sodium hydroxide in the 

second reactor.    The overall conversion is 99.7%.  For both cases, the resulting 

biodiesel is 99.7% pure and the density is calculated to be 6.4 lb/gal.  

 

4.5.1 Heat Integration via Pinch Analysis 

Data for the hot and cold streams for the cases of 90% and 99.7% overall 

conversions are presented in Tables 4.3 and 4.4.  Next, the thermal pinch analysis (e.g., 

Linnhoff and Hindmarsh, 1983; Papoulias and Grossmann, 1983) is used to carry out 

heat integration and to determine minimum heating and cooling utility requirements. The 

grand composite curves (Linnhoff, 1993) are illustrated by Figures 4.5 and 4.6 and show 

the utility saving for 90% and 99.7% overall conversion, respectively. The results are 

summarized by Tables 4.5 and 4.6.  The second simulation (99.7% overall conversion) 

has greater utility savings (63% for heating and 53% cooling) than the first simulation 

(90% overall conversion) (39% for heating and 37% for cooling).  Additionally, mass 

integration for recycling methanol and water was carried out using source-sink mapping 

techniques (e.g., El-Halwagi, 2006; 1997). 
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90% Overall Conversion 
Table 4.3 Hot and cold streams for heat integration for 90% overall conversion 

Cold Streams 

Supply 
Temp 
(OF) 

Target 
Temp 
(OF) 

Enthalpy 
Change      
103 Btu*h-

1 

Specific Heat 
103 Btu*h-

1*OF-1 
HEX1 77 140 50 1 
HEX2 78 140 2598 42 
HEX4 92 140 700 15 
HEX6 92 140 344 7 
HEX7 77 140 80 1 
HEX8 77 140 982 16 
MET-DIST1 
(Reboiler) 191 192 157 157 
MET-DIST2 
(Reboiler) 128 129 8045 8045 
Total Heating Utility     12957   
     

Hot Streams 

Supply 
Temp 
(OF) 

Target 
Temp 
(OF) 

Enthalpy 
Change      
103 Btu*h-

1 

Specific Heat 
103 Btu*h-

1*OF-1 
HEX3 140 77 1223 19 
HEX5 140 77 1041 16 
HEX9 128 77 980 19 
HEX10 192 77 854 7 
HEX11 78 77 1 1 
MET-DIST1 
(Condenser) 62 61 374 374 
MET-DIST2 
(Condenser) 62 61 7473 7473 
REACT1 140 139 695 69 
REACT2 140 139 1018 1018 
Total Cooling Utility     13659   
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99.7% Overall Conversion 
Table 4.4 Hot and cold streams for heat integration for 99.7% overall conversion 

Cold Streams 

Supply 
Temp 
(OF) 

Target 
Temp 
(OF) 

Enthalpy 
Change      
103 Btu*h-

1 

Specific Heat 
103 Btu*h-

1*OF-1 
HEX1 77 140 50 1 
HEX2 78 140 2598 42 
HEX4 92 140 794 16 
HEX6 92 140 312 6 
HEX7 77 140 6 0.09 
HEX8 77 140 1043 16 
MET-DIST1 
(Reboiler) 207 208 1666 1666 
MET-DIST2 
(Reboiler) 111 112 4800 4800 
Total Heating Utility     11269   
     

Hot Streams 

Supply 
Temp 
(OF) 

Target 
Temp 
(OF) 

Enthalpy 
Change      
103 Btu*h-

1 

Specific Heat 
103 Btu*h-

1*OF-1 
HEX3 140 77 1353 21 
HEX5 140 77 1051 17 
HEX9 112 77 1054 30 
HEX10 208 77 1955 15 
HEX11 78 77 1 1 
MET-DIST1 
(Condenser) 62 61 860 860 
MET-DIST2 
(Condenser) 62 61 4125 4125 
REACT1 140 139 2611 2611 
REACT2 140 139 309 309 
Total Cooling Utility     13320   
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Fig. 4.5. GCC for 90% overall conversion. 
 
 
 
  

 
Fig. 4.6. GCC for 99.7% overall conversion. 
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Table 4.5 Utility Savings for 90% Overall Conversion 
  Heating 

Utility 
Cooling 
Utility 

Utility without integration 
(Btu/h) 

12957 13659 

Utility after integration (Btu/h) 7859 8561 
Savings from heat integration 5098 5098 
Percentage of savings 39% 37% 

 
 
  
Table 4.6 Utility Savings for 99.7% Overall Conversion 
  Heating 

Utility 
Cooling 
Utility 

Utility without integration (10^3 Btu/h) 11269 13320 
Utility after integration (10^3 Btu/h) 4175 6226 
Savings from heat integration (10^3 
Btu/h) 

7094 7093 

Percentage of savings 63% 53% 
 
 
 
 

4.5.2 Economics 

ASPEN ICARUS has been used to compute project capital and equipment cost.  

Once the simulation has been completed and ASPEN Plus is run, the information from 

ASPEN Plus can be exported into ICARUS.  For the algal oil to biodiesel process, the 

total capital investment is $10.9 million for 99.7% overall conversion and $10.5 million 

for 90% overall conversion).  The total direct equipment costs estimated from ASPEN 

ICARUS are $2.6 million for the 90% overall conversion process  and $2.8 million for 

the 99.7% overall conversion process.  Raw material costs are presented in Table 4. 7 for 

the 90% overall conversion case and in Table 4. 8 for the 99.7% overall conversion case.  

Cost of algal oil comprises the bulk of the raw material costs in each case. 
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Profit (P), payback period (PP), return on investment (ROI) and breakeven (BE) 

analysis calculations were done for the low performance and high performance scenarios 

for the cost of producing algal oil and for the assumptions of 30% and 50% oil content of 

algae for both the 90% and the 99.7% overall conversion processes.  The same for 

calculations (P, PP, ROI, BE) were repeated for the assumptions of 30% and 50% oil 

content but this time for the cost of producing algal oil that is an average of the low 

performance and high performance values.  This was done for both the 90% and the 

99.7% overall conversion processes.  In addition, for all of these calculations, a low 

selling price of $3.69/gal and a high selling price of $4.20/gal for biodiesel were 

assumed for all the calculations (P, PP, ROI, BE) mentioned previously.  The selling 

prices were obtained or assumed based on data from the Clean Cities Alternative Fuel 

Price Report (2008) from January to October 2008.  The assumptions of glycerol selling 

price ($0.60/gal and $0.88/gal) were made based on information from ICIS Pricing 

(2008) for the same period. 

Based on the results of the economic and sensitivity analysis, the most profitable 

results where those utilizing process integration.  For the cases assuming oil content of 

50%, the high performance and average cases were profitable and the low performance 

case was not highly profitable or unprofitable in some cases.  When assuming 30% oil 

content, only the high performance cases were profitable.  Return on investment results 

are presented in Figures (4.7-4.18) for the cases assuming 50% oil content with heat 

integration and in Figures (4.19-4.30) for the cases assuming 30% oil content with heat 

integration. 
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Varying Biodiesel Selling Price for 90% Conversion and Glycerol 
Selling Price $0.88/gal
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Fig. 4.7.  Varying biodiesel selling price at constant conversion (90%) and constant glycerol selling 
price ($0.88/gal) for 50% oil content, with process integration. 
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Varying Biodiesel Selling Price for 99.7% Conversion and Glycerol 
Selling Price $0.88/gal
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Fig. 4.8.  Varying biodiesel selling price at constant conversion (99.7%) and constant glycerol selling 
price ($0.88/gal) for 50% oil content, with process integration. 
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Varying Biodiesel Selling Price for 90% Conversion and Glycerol 
Selling Price $0.60/gal
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Fig. 4.9.  Varying biodiesel selling price at constant conversion (90%) and constant glycerol selling 
price ($0.60/gal) for 50% oil content, with process integration. 
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Varying Biodiesel Selling Price for 99.7% Conversion and Glycerol 
Selling Price $0.60/gal
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Fig. 4.10.  Varying biodiesel selling price at constant conversion (99.7%) and constant glycerol 
selling price ($0.60/gal) for 50% oil content, with process integration. 
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Varying Glycerol Selling Price for 90% Conversion and Biodiesel 
Selling Price of $4.20/gal
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Fig. 4.11. Varying glycerol selling price at constant conversion (90%) and constant biodiesel selling 
price ($4.20/gal) for 50% oil content, with process integration. 
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Varying Glycerol Selling Price for 99.7% Conversion and Biodiesel 
Selling Price of $4.20/gal
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Fig. 4.12.  Varying glycerol selling price at constant conversion (99.7%) and constant biodiesel 
selling price ($4.20/gal) for 50% oil content, with process integration. 
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Varying Glycerol Selling Price for 90% Conversion and Biodiesel 
Selling Price of $3.69/gal
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Fig. 4.13.  Varying glycerol selling price at constant conversion (90%) and constant biodiesel selling 
price ($3.69/gal) for 50% oil content, with process integration. 
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Varying Glycerol Selling Price for 99.7% Conversion and 
Biodiesel Selling Price of $3.69/gal
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Fig. 4.14.  Varying glycerol selling price at constant conversion (99.7%) and constant biodiesel 
selling price ($3.69/gal) for 50% oil content, with process integration. 
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Varying Conversion at Glycerol Selling Price $0.60/gal and 
Biodiesel Selling Price of $4.20/gal
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Fig. 4.15.  Varying conversion at constant glycerol selling price ($0.60/gal) and constant biodiesel 
selling price ($4.20/gal) for 50% oil content, with process integration. 
 

 

 

Varying Conversion at Glycerol Selling Price $0.88/gal and 
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Fig. 4.16.  Varying conversion at constant glycerol selling price ($0.88/gal) and constant biodiesel 
selling price ($4.20/gal) for 50% oil content, with process integration. 
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Varying Conversion at Glycerol Selling Price $0.60/gal and 
Biodiesel Selling Price of $3.69/gal

-400.00

-200.00

0.00

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Cost of Producing Algal Oil ($/lb)

R
O

I (
%

)

90% Overall Conversion
99.7% Overall COnversion

 
Fig. 4.17.  Varying conversion at constant glycerol selling price ($0.60/gal) and constant biodiesel 
selling price ($3.69/gal) for 50% oil content, with process integration. 
 

 

 

Varying Conversion at Glycerol Selling Price $0.88/gal and 
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Fig. 4.18.  Varying conversion at constant glycerol selling price ($0.88/gal) and constant biodiesel 
selling price ($3.69/gal) for 50% oil content, with process integration. 
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Varying Biodiesel Selling Price for 90% Conversion and Glycerol 
Selling Price $0.88/gal
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Fig. 4.19.  Varying biodiesel selling price at constant conversion (90%) and constant glycerol selling 
price ($0.88/gal) for 30% oil content, with process integration. 
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Varying Biodiesel Selling Price for 99.7% Conversion and Glycerol 
Selling Price $0.88/gal
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Fig. 4.20.  Varying biodiesel selling price at constant conversion (99.7%) and constant glycerol 
selling price ($0.88/gal) for 30% oil content, with process integration. 
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Varying Biodiesel Selling Price for 90% Conversion and Glycerol 
Selling Price $0.60/gal
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Fig. 4.21.  Varying biodiesel selling price at constant conversion (90%) and constant glycerol selling 
price ($0.60/gal) for 30% oil content, with process integration. 
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Fig. 4.22.  Varying biodiesel selling price at constant conversion (99.7%) and constant glycerol 
selling price ($0.60/gal) for 30% oil content, with process integration. 
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Varying Glycerol Selling Price for 90% Conversion and Biodiesel 
Selling Price of $4.20/gal
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Fig. 4.23.  Varying glycerol selling price at constant conversion (90%) and constant biodiesel selling 
price ($4.20/gal) for 30% oil content, with process integration. 
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Varying Glycerol Selling Price for 99.7% Conversion and Biodiesel 
Selling Price of $4.20/gal
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Fig. 4.24.  Varying glycerol selling price at constant conversion (99.7%) and constant biodiesel 
selling price ($4.20/gal) for 30% oil content, with process integration.  
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Varying Glycerol Selling Price for 90% Conversion and Biodiesel 
Selling Price of $3.69/gal
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Fig. 4.25.  Varying glycerol selling price at constant conversion (90%) and constant biodiesel selling 
price ($3.69/gal) for 30% oil content, with process integration. 
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Varying Glycerol Selling Price for 99.7% Conversion and 
Biodiesel Selling Price of $3.69/gal
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Fig. 4.26.  Varying glycerol selling price at constant conversion (99.7%) and constant biodiesel 
selling price ($3.69/gal) for 30% oil content, with process integration. 
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Varying Conversion at Glycerol Selling Price $0.60/gal and Biodiesel 
Selling Price of $4.20/gal
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Fig. 4.27.  Varying conversion at constant glycerol selling price ($0.60/gal) and constant biodiesel 
selling price ($4.20/gal) for 30% oil content, with process integration.  
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Fig. 4.28.  Varying conversion at constant glycerol selling price ($0.88/gal) and constant biodiesel 
selling price ($4.20/gal) for 30% oil content, with process integration. 
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Fig. 4.29.  Varying conversion at constant glycerol selling price ($0.60/gal) and constant biodiesel 
selling price ($3.69/gal) for 30% oil content, with process integration. 
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Fig. 4.30.  Varying conversion at constant glycerol selling price ($0.88/gal) and constant biodiesel 
selling price ($3.69/gal) for 30% oil content, with process integration. 
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4.6 Conclusion 

In this study the use of microalgal oil from the Chlorella species to produce 

biodiesel via a two step alkali catalyzed reaction was investigated and simulated in 

ASPEN Plus.  The oil content of the algae was assumed as 30% and 50%.  Using a 

previously analyzed cultivation process, it deemed possible to obtain algal oil from high 

performance and low performance alternatives that could be analyzed for both the 30% 

and 50% oil content cases.  The transesterification reaction simulation was performed 

twice for two cases: 70% conversion through each reactor and 97.7% conversion through 

each reactor.  Economic analysis was performed on ASPEN ICARUS utilizing both 

simulation results.  The economic analysis included sensitivity analyses incorporating 

the various aspects that were investigated (30% and 50% oil content, high performance 

and low performance cases, an average of the high and low performance cases, and the 

two simulation results).  As a outcome of analyzing the results of the calculations for 

profit, payback period, return on investment and breakeven analyses, it was found that 

the most profitable scenarios for producing biodiesel from Chlorella species microalgal 

oil are those assuming 50% oil content and incorporating heat integration.  These results 

reveal that the production of biodiesel from microalgal oil will indeed prove profitable 

and will be a competitive alternative to food derived plant oils under the appropriate 

conditions (selection of algae, algal growth and processing, selection of a high yield 

biodiesel process, and achieving high levels of process integration). 
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5 A MULTI-CRITERIA APPROACH TO SCREENING 

ALTERNATIVES FOR CONVERTING SEWAGE SLUDGE TO 

BIODIESEL* 

 

 

5.1 Summary 

The search for cheaper feedstock for use in the production of biofuels such as 

biodiesel has turned attention to various forms of waste products including animal fats, 

waste oils and now lipids in sludge.   With the potential of obtaining sludge at a reduced 

cost, free, or possibly with incentives, sewage sludge is being investigated as a potential 

feedstock for biofuel production.  For the extraction of oils from the sewage sludge and 

the subsequent processing, there are various alternatives that should be designed, 

analyzed, and screened.  In developing and screening these alternatives, it is necessary to 

have a consistent basis for comparing alternatives based on key criteria.  

 

___________________ 

* 
Part of this section is reprinted with permission from Pokoo-Aikins, G., Heath, A., Mentzer, R.A., 

Mannan, M.S., Rogers, W.J., and El-Halwagi, M. M., 2010. “A Multi-Criteria Approach to Screening 

Alternatives for Converting Sewage Sludge to Biodiesel, Journal of Loss Prevention in the Process 

Industries, in press.  Copyright 2010 by Elsevier Ltd. http://www.sciencedirect.com/science/journal.  

DOI:10.1016/j.jlp.2010.01.005.  



   

   

93 

While most of the design studies focus on techno-economic criteria, it is also 

important to include safety metrics in the multi-criteria analysis.  In this work, a detailed 

economic analysis and a safety evaluation are performed on a process involving 

extraction of triglycerides and fatty acids, pretreatment of fatty acids (direct conversion 

to biodiesel), and transesterification of triglycerides to biodiesel.  Four solvents, toluene, 

hexane, methanol and ethanol, are individually used in the extraction process.  The 

resulting triglycerides and fatty acids from each extraction are modeled in the 

pretreatment process.  ASPEN Plus software is used to simulate the detailed process.  

Economic analysis is performed using ASPEN ICARUS, and scale-up of a previously 

analyzed process is used to estimate the cost of the biodiesel portion of the process.  A 

new safety metric (referred to as the Safety Index “SI”) is introduced to enable 

comparison of the various solvent extraction processes.  The SI is based on solvent 

criteria as well as process conditions.  A case study is presented to demonstrate the 

insights and usefulness of the developed approach.  The results of the techno-economic 

analysis reveal that of the four solvents used for the initial extraction, hexane and toluene 

were least costly (2.89 and 2.79 $/gal, respectively).  Conversely, the safety analysis 

utilizing the SI reveals that methanol and ethanol are the safer solvent options.  The issue 

of cost/safety trade-offs is also discussed. 
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5.2 Introduction 

Sewage sludge is an abundant by-product from wastewater treatment facilities.  

Solids and grease, the main components of untreated sludge, are screened to remove grit 

and then sent to a primary clarifier from which the primary sludge is obtained.  The 

untreated wastewater from the primary clarifier is treated in an aerobic bio-oxidation 

unit and sent to a secondary clarifier from which the secondary (activated) sludge is 

obtained (Mondala, Liang, Toghiani, Hernandez and French, 2009).  Sludge treatment 

comprises a substantial portion (~50%) of the wastewater treatment costs (Boocock, 

Konar, Leung and Ly, 1992).  Handling and disposing of sewage sludge also pose 

economic and environmental challenges for wastewater treatment facilities.  

Incineration, land application (i.e., use in fertilization) or landfill disposal of sewage 

sludge have the potential of releasing toxins and heavy metals into the environment.  

Therefore, there is a need to identify cost-effective and sustainable solutions to the 

utilization of raw untreated sewage sludge.  Given the lipid content of sludge, there is a 

promising potential in extracting these oils and converting them to a biofuel (e.g., 

biodiesel). 

Traditional biodiesel feedstocks have primarily been oils from potential food 

sources (e.g., Haas et al., 2006; Myint and El-Halwagi, 2008).  With a growing food 

versus fuel debate, non-food biodiesel feedstocks are growing in popularity.  Feedstocks 

such as algae have been investigated previously (e.g., Pokoo-Aikins et al., 2009).  As 

mentioned earlier, sewage sludge is another non-food feedstock that offers significant 

potential for biodiesel production.  The feedstock cost is typically the major cost items 
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for the biodiesel process.  As sludge disposal poses a challenge for wastewater treatment 

plants, the cost of sewage sludge as a biodiesel feedstock is projected to be less than the 

cost of traditional seed oils. 

The purpose of this case study is to develop and apply a systems approach to the 

assessment of process alternatives for converting sewage sludge to biodiesel.  In order to 

extract oils and fatty acids from sewage sludge, several solvents are considered for 

extraction.  The associated processes are simulated and analyzed.  The solvent extraction 

alternatives are screened based on economic, technical, and safety metrics.  The 

extracted oil is processed via a transesterification process. Computer-aided simulation is 

used to analyze the process.  Sensitivity analysis is also used to evaluate the overall 

process under different conditions. 

 

5.3 Background 

Solvents have been used to extract lipids from sewage sludge.  As noted by 

Boocock et al (1992) such solvents should be selected based on various properties (e.g., 

polarity, volatility, non-miscibility with water, boiling point, cost, and environmental 

consideration).  Examples of these solvents include toluene (Boocock et al, 1992), 

methanol, ethanol, and hexane  (Dufreche et al, 2007).  Once the oils are extracted from 

the sludge, they can be converted to biodiesel.  Dufreche et al (2007) conducted in-situ 

transesterification of dried sludge and reported a yield of 6.23%.  Upon evaluating the 

cost of the in-situ transesterification process and determined that the cost for producing 

biodiesel was $3.11 per gallon.  A slightly higher but comparable biodiesel cost of $3.23 
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per gallon was reported by Mondala et al (2009) for another in-situ transesterification 

process.  In both of these studies, acid-catalyzed transesterification was used, because 

the reactions were occurring directly in the sludge, and the lipid portion of the sludge has 

high free fatty acid (FFA) content with regard to transesterification.  If the lipids (FFAs 

and TGs) can be separated prior to transesterification, then alkali-catalyzed 

transesterification can be used to obtain FAMEs.  It is anticipated that a higher yield than 

that obtained by Dufreche et al (2007) (6.23%) and Mondala et al (2009) (between 

11.5% and 15.5%) can be achieved with extraction and conversion to biodiesel in 

separate steps rather than in-situ transesterification.   

In addition to the triglycerides in the lipid portion of sewage sludge, there is a 

fatty acid portion that in general is the bulk (~ 60%) of the lipid content of the sludge 

(Higginset al., 1982).  When extracted and separated from the other lipids, the fatty acid 

portion will be significantly greater than 1 wt% free fatty acid (FFA) (Van Gerpen, 

Shanks, Pruszko, Clements and Knothe, 2004) and thus unacceptable for conversion to 

biodiesel by traditional alkali transesterification methods.  A separate pretreatment 

method can be employed to convert the fatty acids to biodiesel.  Pretreatment is used to 

reduce the amount of free fatty acid in a feedstock.  There are various pretreatment 

methods such as enzymatic methods, glycerolysis, acid catalysis or acid catalysis 

followed by alkali catalysis (Van Gerpen et al, 2004) but of particular interest is the acid 

catalyzed esterification of high free fatty acid feedstock because of the capability of 

converting free fatty acids directly to methyl esters which can then be purified to obtain 

biodiesel.   
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Marchetti and Errazu (2008) esterified free fatty acids in the presence of 

triglycerides using sulfuric acid as the catalyst to achieve high (>90%) conversion of free 

fatty acids in a high FFA feedstock (~11% FFA, ~89% TG).  Chongkhong, Tongurai, 

Chetpattananondh and Bunyakan (2007) conducted experiments in which they evaluated 

conditions that would influence the conversion of FFAs in palm fatty acid distillate 

(PFAD) to fatty acid methyl esters (FAME).  It was found that the weight percent of 

FAME increased with increased methanol to PFAD ratio, with increased reaction time 

and with increased reaction temperature.  A detailed process for converting PFAD to 

FAME was presented by Chongkhong, Tongurai and Chetpattananondh (2009).  At 

conditions of 8.8:1:0.05 molar ratio of methanol to PFAD to sulfuric acid catalyst, 60 

minutes residence time, 75oC reaction temperature, ~133kPa reaction pressure, an 

esterification yield of 97% could be achieved from a continuous process (Chonkhong et 

al, 2009).  When the fatty acids in a feedstock are greater than 1 wt% but are not the 

major portion of the feedstock, acid catalysis followed by alkali catalysis is another 

pretreatment method that can be used.  In this analysis, depending on the feedstock 

composition of the fatty acid portion from the extraction process, either acid catalysis 

will be used to lower the FFA content followed by alkali catalysis, or acid catalysis will 

be used to convert the FFAs directly to methyl esters. 

While much attention has been given to the chemistry and economics of 

biodiesel production, significantly less effort has been dedicated to the inclusion of 

safety metrics in the design and assessment stages, The need for a method for comparing 

the inherent safety of conventional chemical processes has been identified for several 
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years, and many process safety researchers have developed versions of an inherent safety 

index for use in comparing alternatives.  Heikkila et al.(1996) developed an inherent 

safety index (ISI) for evaluating the inherent safety of process alternatives.  Indices were 

designated for evaluating chemical and process safety.  Parameters considered in the 

evaluation of chemical safety included heat of main reaction, heat of side reaction, 

flammability, explosiveness, toxicity, corrosiveness, and chemical interaction.  Rahman 

et al. (2005) compared three safety index methods (Prototype ISI, ISI and i-Safe index) 

by applying them to a methyl methacrylate process case study.  Edwards and Lawrence 

(1993) evaluated the possible relation between plant cost and inherent safety.  They 

investigated the Dow Fire and Explosion Index (FandE I) and the Mond Fire and 

Explosion Index in developing an index, which they applied to a methyl methacrylate 

example.  Safety index methods can be applied for one unit or for a whole process (e.g., 

Suardin et al., 2007)  or in evaluating different alternative processes (e.g. Prototype ISI, 

ISI and i-Safe). 

 

5.4 Problem Statement  

The main aim in this case study is to design and optimize a process for extracting 

triglycerides and fatty acids from raw sewage sludge for use in biodiesel production 

while considering multiple criteria including cost, technical performance, and safety.   

Specific objectives can be identified as follows: 

• Design an extraction process for obtaining lipids from sewage sludge. 

• Optimize the process design. 
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• Utilize the design to simulate extraction of sludge using different solvents. 

• Develop and apply a safety and cost metric for solvent selection. 

• Simulate a process design for the pretreatment of fatty acids to biodiesel. 

• Utilize the resulting triglycerides from the extraction process in a previously 

developed biodiesel production process. 

• Evaluate and analyze the process economics and safety (using a newly 

introduced index). 

 

5.5 Approach 

In the overall approach, the first step is to synthesize the process utilizing 

information about reaction pathways, production capacity and feedstock from literature 

search and other sources (i.e., MSDS, property databases).  The process is comprised of 

three portions: extraction, pretreatment of fatty acids and biodiesel production.  Once the 

process is synthesized, the initial flowsheet is defined and simulated using ASPEN Plus.  

Mass and energy balances and preliminary process integration are conducted from the 

simulation results.  Preliminary integration and mass and energy balance results are used 

to decide whether or not technical performance criteria are met.  If technical criteria are 

not met, the previous steps are repeated until they are met.  Once the technical criteria 

are fulfilled, detailed material and energy integration are performed and the integrated 

process is simulated.  Next, the integrated process is evaluated to determine economics 

and profitability.  Subsequently, a newly-introduced safety metric is used to assess the 
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process.  Finally, the alternatives can be screened using multiple criteria to generate a 

detailed analysis of the process.  The overall approach is detailed in Fig. 5.1. 

 

 

Fig. 5.1.  Overall approach for multi-criteria analysis sludge-to-biodiesel. 
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5.6 Overall Process 

The overall process consists of several steps that include three main portions: 

extraction, pretreatment, and transesterification (Fig. 5.2).  The following sections detail 

these steps. 

 

Fig. 5.2. Schematic of main processes for sludge-to-biodiesel. 

 

5.6.1 Extraction 

Lipids and oils can be extracted from sewage sludge.  Four different solvents 

were evaluated for use in lipid extraction from sludge and they are toluene, hexane, 

ethanol and methanol.  The first step in the extraction process is to mix sludge and 

solvent and pump to a filter where solids are removed.  Fluids obtained from the 

filtration process are then distilled to obtain the bulk of the triglycerides (oils) and 

recover most of the solvent (>98 wt%).  Solvent is separated from the triglycerides in a 

decanter after the stream exiting the distillation column is cooled.  In the decanter the  
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heavier triglycerides (oils) settle to the bottom, are recovered and then are stored in a 

tank.  The recovered solvent is recycled to the process.  The fatty acid rich stream from 

the bottoms of the distillation process includes some residual ash and some valuable 

triglycerides.  Three flash operations are used to remove ash and obtain free fatty acids 

(FFA).  Ash is removed in the first flash operation.  The fatty acid rich stream from the 

top of the flash operation is cooled and enters a decanter where the remainder of the 

triglyceride is recovered.  In extraction processes where methanol and ethanol are used 

as the solvents, an additional decanter is required in this step to remove residual xylose 

and obtain the triglycerides (oils).  The triglycerides (oils) obtained from the latter 

decantation process(es) are stored in the same tank as the triglycerides from the first 

decantation process.  Two flash operations are used to separate the free fatty acids from 

the remaining lipids in the stream.  The free fatty acids (FFA) obtained are cooled and 

stored for use in the pretreatment process.  Schematics of the extraction process are 

depicted for the process utilizing hexane or toluene as solvent (Fig. 5.3) and for the 

process utilizing methanol and ethanol (Fig. 5.4). 
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Fig. 5.3. Sewage sludge extraction process with hexane or toluene as solvent. 
 

 

 

 

 

Fig. 5.4.  Sewage sludge extraction process with methanol or ethanol as solvent. 
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Several assumptions were made in order to carry out the process.  The amount of 

solvent required was based on the ratio of sludge to solvent calculated from information 

from Boocock et al (1992).  Ratios of solvent to dried sludge were essentially the same 

for both the Soxhlet extraction method and the boiling extraction method.  For the 

Soxhlet extraction method, 300ml of solvent was used for 50g of dried sludge, and for 

the boiling extraction method, 600ml of solvent was used for 100g of dried sludge.  By 

approximating the density of toluene to be 0.8669g/mL, the ratio of solvent to sludge 

was determined to be 5:1.  In the filter used to separate the solids from the fluids, it was 

assumed that the solid particle size for all solids was 0-2cm and a screen opening of 

0.001mm was used. 

The composition of the sludge was determined based on the information 

presented by Higgins et al (1982) for raw dried primary sewage sludge.  The 

composition was then modified to favor the lipids portion based on the fact that 

composition of sewage sludge varies and that the lipid fraction of sludge can reach up to 

35% (Mara and Horan, 2003; Richardson, 1996).  The composition of ash was obtained 

from a paper by Lin (2006).  For simplification and to accommodate modeling in 

ASPEN Plus, only SiO2, Fe2O3, CaO, and MgO were represented.  Also, pectins, 

tannins and carbohydrates were not considered part of the composition because they 

could not be modeled in ASPEN Plus simulator.  Since to composition of sewage sludge 

varies, this is a reasonable assumption.  Table 5.1 presents the composition of sewage 

sludge that was assumed for the analysis.   
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Table 5.1 Composition of raw dried primary sewage sludge 
Component %total sludge (wt%) 

Hemicellulose 1.5 

Cellulose 19.3 

Lignin 8.2 

Ash 22.0 

Water 0.8 

Amino Acids 13.2 

Grease 35.0 

Total 100.0 

 

 

5.6.2 Pretreatment 

The FFAs extracted from sludge can be converted to biodiesel via pretreatment, 

namely acid catalyzed esterification.  In the process, one mole of fatty acid reacts with 

one mole of methanol to form one mole of methyl ester and one mole of water.  A 

process was simulated using ASPEN Plus based on the process used by Chongkhong et 

al (2009). Conditions specified by Chongkhong et al (2009) were used and comparable 

results were achieved for a continuous process.  These conditions are 8.8:1:0.05 molar 

ratio of methanol to water to sulfuric acid, reaction temperature of 75oC, reaction 

pressure of 133kPa, and for every 100g of FAME phase, 10.24g of NaOH- H2O solution 

was used for neutralization.  A stoichiometric reactor was used in ASPEN Plus for both 

the esterification and neutralization reactions.  In the esterification reactor, a fractional 
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conversion of 0.97 was assumed.  Neutralization is conducted so that the remaining fatty 

acids are converted to soap and the soap can then be removed.  The neutralization 

reaction is as follows: 

 

     

 

 

 

 

Components of the soap resulting from the neutralization reaction were modeled as ions 

in ASPEN.  Since NaOH- H2O was used rather than NaOH, two moles of water appear 

on the products side.   

The methyl ester containing stream from the esterification reactor is fed to a 

separator, which was modeled in ASPEN Plus as a distillation column.  Much of the 

methanol can be removed in this first separator.  The stream is cooled and sent to an 

evaporator (modeled in ASPEN Plus as a flash separator), where almost all the 

remaining methanol is removed as well as most of the water.  Sodium hydroxide is then 

used to neutralize the remaining product stream.  Neutralization is modeled in a 

stoichiometric reactor at 80oC and 1 atm.  A general separator was used to model the 

second separation process.  In this separator, it was assumed that all of the methyl esters 

are recovered and only 1% of the soap and water remain with the methyl esters.    

    O                                                                                O 

    | |                                                                                 | | 

R-C-O-H +  NaOH   �   R-C-O- Na+  + H2O 

Fatty Acid  Sodium Hydroxide  Soap   Water 
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Next, the product stream is washed with water.  Water needed in the washing 

process is determined to be 1.2 times the mass flowrate of the FAME phase by linear 

scaling of that used by Chongkhong et al (2009).  The washed FAME phase is sent to yet 

another separator (also modeled as a distillation column), where some of the water is 

removed.  The remainder of the water is removed in an evaporator (modeled as a flash 

column), and the purified biodiesel product is obtained. 

 

5.6.3 Transesterification 

Triglycerides obtained from the sewage sludge extraction process can be 

transesterified to biodiesel.  Cost and performance data for the transesterification process 

can be obtained by scaling the processes, as presented by Myint and El-Halwagi (2009).  

The annual operating cost was scaled linearly, and the fixed cost was scaled utilizing the 

six-tenths factor rule (Peters et al., 2003).   

 

5.7 Solvent Selection 

5.7.1 Safety Metric 

 As indicated earlier, several index methods exist for evaluating the inherent 

safety of process alternatives.  For ease of application to the process being developed in 

this work, a simplified matrix was developed.  The matrix includes a process or 

operations specific and a chemical specific category.  Chemical specific categories 
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included here are toxicity and vapor density, and process specific categories consist of 

temperature and pressure.  The elements of the matrix and index are described. 

 

5.7.1.1 Chemical Specific and Operations Specific Categories 

The indexing categories under the priority ranking category “Extent of Chemical 

Hazards” were separated into two sections delineating which categories deal more with 

the chemical (Chemical Specific) and which categories deal more with the process or 

operation (Operations Specific).  The “Chemical Specific” categories are LC50 and 

Vapor Density, and the “Operations Specific” categories are Temperature Factor and 

Pressure Factor. 

 

5.7.1.2 Priority Indexing 

The selected priority index range is 1-5.  For each chemical, a priority index is 

assigned for each indexing category.  The index value assigned depends on the 

properties of the chemical or the process.  In general, the higher priority index is 

associated with a higher safety risk or an increased hazard, and the lower priority index 

is linked to a lower hazard. 
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5.7.1.3 Chemical Specific Categories 

5.7.1.3.1. Toxicity- LC50 

LC50 is a measure of inherent toxicity that is defined as the lethal concentration 

that would kill fifty percent of the affected population.  LC50 was chosen for use in the 

Safety Index (SI), because it is a toxicity measure for which data can be obtained easily 

for the solvents.  Other toxicity values were considered but rejected during the 

development of the SI.  IDLH, AEGL and ERPG were all considered, but IDLH and 

AEGL were dismissed due to inconsistencies in their literature values, and ERPG values 

were dismissed because the LC50 values are more applicable for the solvents.  The 4-

hour inhalation exposure for rats is used as a base measure.  An equation is needed for 

estimation of the LC50 for an animal other than a rat and for a time period different from 

4 hours.  For example if the time is 8 hours rather than 4 hours, the concentration can be 

divided by 2 (following Haber’s rule).  Even though concentrations often do not obey 

Haber’s rule, if the chosen equations are applied consistently throughout the assessment, 

the resulting concentrations should be comparable and valid for use in relative ranking. 

 

5.7.1.3.2. Vapor Density 

Toxic chemicals should also be ranked based on other intrinsic properties such as 

vapor density (compared to STP air =1).  Vapor density was chosen, because if the vapor 

form of the density of the chemical is greater than that of the density of air, the chemical 

is more likely to disperse close to ground level and affect the population.  Therefore, the 
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greater the vapor density is than air, the higher the priority index assigned to the 

chemical.  It should also be noted that chemicals with a greater density may also be less 

likely to travel long distances and more likely to affect the immediate population, 

recognizing that the distance traveled and population affected depend on the specific 

conditions.  The purpose of including the property vapor density is not to address these 

scenarios but to use a general property for comparing the chemicals aside from other 

specific conditions.  If the basis for the vapor density differs from the specified STP 

air=1, the data for the vapor pressure should be adjusted for the specific conditions.   

 Vapor pressure and boiling point are two other properties that were initially 

investigated for inclusion as chemical specific categories but were eventually used in the 

operations specific categories.  It was chosen to relate vapor pressure at a certain 

temperature to the operating pressure, and to relate boiling point at a certain pressure to 

the operating pressure. 

 

5.7.1.4 Operations Specific Categories 

5.7.1.4.1. Temperature Factor  

The temperature factor (Tf) is based on boiling point and maximum operating 

temperature (MOT, in Kelvin).  The equation for the temperature factor is: 

 

BP
BPMOT

T f

−=          (5.1) 
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where MOT is the maximum operating temperature for a process involving the chemical 

of interest, and BP is the boiling point of the chemical at standard conditions (one 

atmosphere).  For the temperature factor, a higher priority index corresponds to an 

increased value for Tf and an increased hazard.  Tf is unitless. 

5.7.1.4.2. Pressure Factor 

The pressure factor (Pf) is based on vapor pressure (VP, in atm) and maximum 

operating pressure (MOP, in atm) for a process involving the particular chemical being 

investigated. The equation for the pressure factor is: 
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where ST is standard temperature.  The equation for calculating pressure factor differs 

from the one for calculating temperature factor, because in the event that the vapor 

pressure at the MOT (VPMOT, in atm) approaches the vapor pressure at standard 

temperature (VPST, in atm) and the MOP approaches 1 atm the pressure factor 

approaches zero.  Since pressure behaves in more of a logarithmic fashion, the equation 

chosen for Pf is more suited for evaluating pressure.    For the pressure factor, a higher 

priority index corresponds to the absolute value of Pf moving further from zero and an 

increased hazard.  Pf is unitless. 
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5.7.1.5 Safety Index, Safety Ranking Matrix and Equation 

  An overall inherent safety index (SI) table should be prepared for each chemical 

in question, and the results of the safety and security analysis can be used to rank each 

chemical.  An SI value can be obtained by applying the Safety Ranking Equation (SRE), 

Equation 3, to each of the priority indices obtained using the Safety Ranking Matrix 

(SRM).  An overall SI value (Equation 4) can then be obtained by summing the SI 

values for each chemical   being evaluated.   

The Safety Ranking Equation for use in calculating the SI is as follows:  

kifikifikiikiiki PaTaVDaLCaSI
,4,,3,.2,,501,, **** +++=     (5.3) 

where LC50 = lethal concentration for 50% of population, VD = Vapor Density, Tf = 

Temperature Factor, Pf = Pressure Factor and ai,j is a weighting factor for each index 

parameter, where i corresponds to a chemical, k corresponds to a particular process step 

(in this case the extraction process step), and where j=1,corresponds to LC50, j=2, 

corresponds to VD, j=3 corresponds to Tf, j=4 corresponds to Pf. 

 The overall SI for a given process alternative is calculated as follows: 

Overall SI k = �
=

n

i
kiSI

1
,          (5.4) 

Below is an SRM (Table 5.2) for priority categories and indices for ranking the 

safety levels associated with process chemicals.   
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Table 5.2 Safety ranking matrix 
 Extent of Chemical and Process Hazards 

  CHEMICAL SPECIFIC  OPERATIONS SPECIFIC  

Priority Index  LC50  

(4hr Inhalation- 

ppm) 

Vapor Density (Air 

=1) 

Tf (Temperature 

Factor) 

|Pf | 

(Pressure Factor) 

1 >2,000 <1 <0.2 0-3 

2 1001-2000 1-1.9 0.2-0.9 4-6 

3 500-1000 2-2.9 1-2 7-9 

4 4-500 3-4 3-4 10-12 

5 <=3 >=4.1 >5 >12 

 

 

5.7.1.6 Weighting Factors 

Weighting factors can be applied to emphasize index parameters that contribute 

significantly to the SI.  Weighting factors should be applied based on the difference 

between the largest and smallest index values (∆Ij), and ai,j is equal to ∆Ij + 1. For a 

difference in index value of 0, ∆Ij =0, the weighting factor (ai,j) is 1, for a difference in 

index value of 1 (∆Ij =1) the weighting factor is 2, for ∆Ij =2, the weighting factor is 3, 

and for ∆Ij =3, the weighting factor is 4. In this way, the parameters that vary more are 

weighted more heavily.  The difference in index values and corresponding weighting 

factors are listed in Table 5.3.  Data used to determine the Safety Indices for the four 

solvents are presented in Tables 5.4 and 5.5. 
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5.7.1.7 Application of Index 

In this analysis, the processes are very similar and the main differences arise 

from the type of solvent used.  In order to focus on the differences among the processes, 

the safety analysis was only conducted for the extraction step, because the solvents are 

introduced and used almost exclusively in this step.  As a result, equations 1-3 are 

applicable and useful for comparing the chemicals used in the process.  Equation 4 is 

also applicable, but because only one process step is being evaluated, k=1, equations 3 

and 4 are the same. 

 

 

Table 5.3 Change in index values and corresponding weighting factors 
Difference in Index values, ∆Ij Weighting factor, ai,j 

0 1 

1 2 

2 3 

3 4 

4 5 
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Table 5.4 Chemical specific data used for safety ranking of extraction solvents 
Chemicals 

of Interest MW 

LC50 (ppm)    (time-mode-animal) 

mode:I=inhalation,O=oral 

Vapor Density (Air = 1, 

unless otherwise indicated) 

Ethanol 46.0 20,000ppm (10h)-I (rat)1  1.6 

Hexane 86.2 48,000ppm (4h) -I (rat or mouse) 2  3 

Methanol 32.0 64,000ppm (4h) -I (rat) 3  1.1 

Toluene 92.1 

49000mg/m3(4h) (rat) 4 -I; 400ppm-I (24hr) 

(mouse) 4,5 3.1 

 

1(Fisher Ethanol MSDS, 2009) 

2(HSDB n-Hexane, 2009) 

3(Sysmex MSDS, 2009) 

4(Fisher Toluene MSDS, 2009) 

5(HSDB Toluene, 2009)



   

   

Table 5.5 Operations specific data used for safety ranking of extraction solvents 

Chemicals of 

Interest 

Boiling Point 

(oC), 

@760mmHg 

BP 

(K) 

Vapor 

Pressure 

(mmHg), 

@25oC 

VPMOT 

(atm) 

VPST 

(atm) 

Operating 

Temperature 

of Unit (K) 

Operating 

Pressure of 

Unit (atm) 

Tf 

(Temperature 

Factor)   

(MOT-P)/BP) 

Pf (Pressure Factor) 

|ln(VPMOT/VPST)| + 

|ln(MOP/1atm)| 

Ethanol 78 351 59.3 180 0.078 588 1 0.675 8 

Hexane 69 342 129.3 61.7 0.170 570.5 1 0.668 6 

Methanol 64.7 337.7 128 226 0.168 588 1 0.741 7 

Toluene 110.6 383.6 28.5 39 0.038 560 1 0.460 7 
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5.7.2 Cost Analysis 

For the raw materials 99.9% of the solvent used in extraction is recovered; 

therefore, the solvent cost is only assessed for the approximately 1% needed to make up 

the lost solvent.  Water treatment plants incur a cost for sludge handling and processing.  

It is assumed that plants will be willing to give away or pay an incentive to get rid of raw 

sludge to avoid the associated costs of dealing with sludge.  As a result, it is assumed 

that the sewage sludge can be obtained for free.  An economic analysis was conducted 

for sewage sludge obtained at no cost.   

 With the exception of the raw materials and the cost of utilities, information for 

calculating the annual operating cost, as well as the total capital cost, were obtained from 

ASPEN ICARUS.  A salvage value of 10% and useful life period of 10 years were 

assumed in calculating the annualized fixed cost. 

 Feedstock and solvent prices were obtained from the Internet.  For the extraction 

process, the price of each solvent was found through ICIS pricing.  Ethanol can be 

obtained at a cost of $0.27/lb (ICIS Pricing Ethanol, 2009), hexane at $0.45/lb (ICIS 

Pricing Hexane, 2009), methanol at $0.23/lb (ICIS Pricing Methanol. 2009), and toluene 

at $0.30/lb (ICIS Pricing Toluene, 2009).  Sewage sludge, the feedstock into the 

extraction process and the main feedstock overall, can be obtained at a cost of $0.03/lb 

(WDEL News, 2009), for free (Hope, 1986), or with an incentive (of $0.025/lb) 

(Israel21c, 2009).  For the pretreatment process, the price for sodium hydroxide 

($0.20/lb) was obtained from ICIS (ICIS Pricing Sodium Hydroxide, 2009), and the 

price of sulfuric acid ($0.03/lb) was obtained from The Innovation Group (The 
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Innovation Group, 2009).  All items of the operating cost have the same time basis 

(March 2009). 

 

5.8 Results and Discussion 

5.8.1 Extraction 

For all extraction processes, the maximum yield of 3.4% was obtained for the 

triglyceride stream.  The yield of fatty acids for extraction using toluene and hexane was 

24.8% and 24.9%, respectively.  Extraction utilizing methanol and ethanol resulted in a 

slightly higher fatty acid yield of 25.5% for either process. 

 

5.8.2 Pretreatment 

Biodiesel of 99.6% purity and overall yield of 95% was achieved from the 

pretreatment of fatty acids from the extraction process using various solvents.  

 

5.8.3 Heat Integration of Extraction and Pretreatment Processes 

It was found that the heating and cooling duties for toluene and hexane were very 

similar.  The heating and cooling duties were also similar for methanol and ethanol.  

Heat integration tools (e.g., El-Halwagi, 2006) were used twice, once for toluene and 

hexane, and again for methanol and ethanol.  It was found that the minimum heating 

utilities and cooling utilities are 9.31 and 8.86 MMBtu/hr, respectively, for the extraction 
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with toluene and hexane.  The minimum heating utilities and cooling utilities are 31.91 

and 31.54 MMBtu/hr, respectively, for the extraction with methanol and ethanol.  

Considerably more heating and cooling utilities are needed for the extraction with 

methanol and ethanol than for the extraction with toluene and hexane. As was 

observed in the calculations for heat integration of the extraction process, integration 

could be performed once for the pretreatment of free fatty acids resulting from toluene 

and hexane extraction and once for the pretreatment of free fatty acids resulting from 

methanol and ethanol extraction.  The minimum heating and cooling utilities are 9.66 

and 2.07 MMBtu/hr, respectively, for pretreatment of free fatty acids from toluene and 

hexane extraction.  For the pretreatment of free fatty acids from methanol and ethanol, 

the minimum heating and cooling utilities are 8.96 and 1.66 MMBtu/hr, respectively.  

The minimum heating and cooling utilities for the pretreatment processes are similar.  

Slightly more heating and cooling utilities are needed for the pretreatment of free fatty 

acids from toluene and hexane extraction. 

 Two processes for the extraction of lipids from sewage sludge were developed 

using ASPEN PLUS.  The processes differ primarily in the use of an additional decanter 

for extraction utilizing methanol and ethanol as solvents. 
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5.8.4 Economics Results 

5.8.4.1 Extraction 

Economic analysis results are presented for the extraction processes (Tables 5.6-

5.8).  It is possible to receive sludge for free an thus the case for sewage sludge received 

at no cost was evaluated and is labeled as “Free Sludge”.  Two other cases for obtaining 

sewage sludge, paying for sewage sludge and receiving an incentive for taking away the 

sludge, were also evaluated but were not presented here.  The cost for utilities includes 

the savings from integration. 

 Raw materials costs are essentially the same for all processes and differ only in 

the cost for the solvent (Table 5.6).  Hexane was found to be the most costly solvent, 

followed by toluene, followed by ethanol, and the least costly solvent is methanol.  

Although the solvent costs for hexane and toluene are higher than methanol and ethanol 

for the extraction process, the utilities cost for using methanol and ethanol 

($3,556,000/year) are significantly greater than for toluene and hexane ($1,021,00/year) 

(Table 5.7).  The annualized fixed costs are similar for extraction with all solvents but 

are slightly higher for extraction with methanol and ethanol (Table 5.8).  Annual 

operating costs and total annualized costs (Table 5.8) for methanol and ethanol are 

considerably higher, primarily due to the higher utilities costs. 
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Table 5.6 Raw material costs for extraction processes using free sewage sludge 
Raw Materials (Extraction) Amount (lb/hr) Unit Price ($/lb)      103 $/yr 

Toluene – Total 33,333 0.3 800 

Hexane – Total 33,333 0.45 1,200 

Ethanol –Total 33,333 0.27 720 

Methanol –Total 33,333 0.23 613 

 

 
Table 5.7 Total utilities for extraction processes 

Utilities for Toluene or 

Hexane Extraction 

Amount 

(MMBtu/hr) 

Unit Cost 

($/MMBtu) 103 $/yr 

Heating (steam) 18.29 8 1,171 

Cooling (Water) 17.85 6 857 

Utilities with Integration       

Heating (steam) 9.31 8 596 

Cooling (Water) 8.86 6 425 

Savings with Integration   1,006 

Total   1,021 

Utilities for Ethanol or 

Methanol Extraction 

Amount 

(MMBtu/hr) 

Unit Cost 

($/MMBtu) 103 $/yr 

Heating (steam) 40.96 8 2,621 

Cooling (water) 40.58 6 1,948 

Utilities with Integration    

Heating (steam) 31.91 8 2,042 

Cooling (water) 31.54 6 1,514 

Savings with Integration   1,013 

Total      3,556 
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Table 5.8 Annual operating cost, annualized fixed cost, and total annualized cost for 
extraction processes 

Annual Operating Cost (Extraction) 103 $/yr 

Toluene Extraction Total 2,495 

Hexane Extraction Total 2,898 

Ethanol Extraction Total 4,969 

Methanol Extraction Total 4,886 

Annualized Fixed Cost 103$ 

Toluene Extraction 463 

Hexane Extraction 469 

Ethanol Extraction 506 

Methanol Extraction 522 

Total Annualized Cost 103$/yr 

Toluene Extraction 2,958 

Hexane Extraction 3,367 

Ethanol Extraction 5,474 

Methanol Extraction 5,389 

 

 

5.8.4.2 Pre-treatment Economics 

Economic analysis results are presented for the pre-treatment of free fatty acids 

from extraction.  The unit operations and equipment for the pretreatment process are the 

same regardless of the stream entering the process from the extraction process.  The 

stream from the extraction process containing fatty acids (FFA) are very similar in 

composition, and the raw materials used to process the fatty acid stream are also very 
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similar, thus the results for the pretreatment costs are also very similar.  The raw 

materials costs for pretreatment are $4.9 MM per year.  Cost for utilities including 

savings from integration is approximately $0.7 MM per year.  Annual operating costs are 

approximately $6.7 MM.  The annualized fixed cost for pretreatment is $0.544 MM 

regardless of which solvent was used in the extraction process.  Pre-treatment of the 

process streams from extraction with toluene and extraction with hexane ($7.251 MM) 

are slightly more costly than pretreatment of streams from extraction with ethanol and 

extraction with methanol ($7.239 MM) when comparing the total annualized cost for an 

annual production rate of 3.5 MM gallons per year. 

 

5.8.4.3 Conversion of Triglycerides to Biodiesel 

Based on the work by Myint and El-Halwagi (2008), the biodiesel production 

process was scaled down for the triglycerides extracted from sewage sludge.  The annual 

operating cost was scaled linearly while the fixed cost was scaled according to the six-

tenths rule (Peters, Timmerhaus, and West, 2003).  The annual operating cost for 

biodiesel regardless of the solvent used in extraction is $1.3 MM per year for the 

conversion of triglycerides from extraction.  Annualized fixed cost for the biodiesel 

production from toluene, hexane, methanol, or ethanol extraction is $52,000/year.  Total 

annualized cost for the biodiesel production from any of the four solvents is $1.3 MM 

per year.  For the biodiesel processing, it is assumed that the process equipment and 

procedures are the same for the streams regardless of which solvent was used in the 

initial extraction step.  Moreover, the flowrate and composition of the triglyceride stream 
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entering the biodiesel step are very similar.  For this reason, the total annualized cost for 

the biodiesel process is essentially the same ($1.34 MM) regardless of which solvent 

was used for extraction. 

 

5.8.4.4 Economics for Overall Process 

For the overall process, the resulting economics vary when different solvents are 

used in the initial extraction step.  From the results for the total annualized cost for the 

overall process, using methanol or ethanol as the initial solvent leads to a higher total 

annualized cost ($14 MM per year) than for the case of using toluene or hexane ($12 

MM).  Annual production rates for the overall process are very similar (4.1 MM gallons 

per year).  Although toluene and hexane were the more costly solvents for biodiesel 

production, the overall processes utilizing methanol and ethanol in the extraction steps 

have a higher cost.    The resulting prices (in $/gal) for biodiesel production from oils 

from the solvent extraction of sewage sludge are (for free sludge) 2.79 when using 

toluene, 2.89 when using hexane, 3.37 when using methanol and 3.39 when using 

ethanol. 

 

5.8.4.5 Safety Metric 

A greater index value corresponds to a higher safety risk.  Based on the 

assessment utilizing the Safety Index (SI), toluene has the greatest index value, followed 
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by hexane, followed by methanol, and finally ethanol.  Parameter values for the solvents 

are listed in Table 5.9. The resulting index values can be seen in Table 5.10.  

  

 
 
Table 5.9 Values for the safety index categories 

Chemical 

Alternatives 

LC50 

(ppm) 

Vapor Density 

(Air =1) 

Tf 

(Temperature 

Factor) 

|Pf| (Pressure 

Factor) 

Ethanol 20,000 1.59 0.68 8 

Hexane 48,000 3 0.67 6 

Methanol 64,000 1.11 0.74 7 

Toluene >400 3.1 0.46 7 

 

 

 
Table 5.10 Index values for the safety index 
Chemical 

Alternatives 

LC50 Vapor 

Density 

(Air =1) 

Tf (Temperature 

Factor) 

|Pf| (Pressure 

Factor) 

Total Safety 

Index (without 

weighting factor) 

Total Safety 

Index (with 

weighting 

factor) 

Ethanol 1 2 2 3 8 18 

Hexane 1 4 2 2 9 22 

Methanol 1 2 2 3 8 18 

Toluene 5 4 2 3 14 45 
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In Table 5.9, the category values used to calculate the safety index values are 

presented.  The toxicity values (LC50 in ppm), vapor density, boiling point temperature 

and vapor pressure at standard temperature were found in Material Safety Data Sheets 

(MSDS) and are presented in Tables 5.4 and 5.5.  Vapor pressure at maximum operating 

temperature was extrapolated using Antoine’s Equation.  Antoine’s Coefficients were 

found in Yaw’s Handbook (Yaws, Narasimhan and Gabbula, 2005).  Boiling point 

temperature and the operating temperature for the unit with the highest temperature and 

Eq. (1) were used to calculate the temperature factor (Tf).  Vapor pressure at maximum 

operating temperature, vapor pressure at standard temperature and maximum operating 

pressure of the extraction process were used along with Eq. (2) to calculate the pressure 

factor (Pf).  The maximum operating pressure for each solvent in the extraction process 

is 1atm, the portion of Eq. (2) involving MOP goes to zero leaving only the VP portion.  

Equation 3 was then used to calculate the index values for all the parameters (toxicity, 

vapor density, Tf, Pf) for each solvent.  

Recommendation of a solvent depends on a company’s goals.  Safety and cost 

are usually high priorities within a company.  There are tradeoffs that a company must 

make when making decisions pertaining to safety and cost.  The tradeoff for selecting 

ethanol or methanol, which were characterized as the safest would be an increased cost.  

The cost penalty will be a 20% increase but the safety index will be enhanced by 60%.  

Although toluene is the least costly of the solvents, looking at the tradeoffs between cost 

and safety, the penalty for safety would be higher than the penalty for cost.  Since 

methanol is used in the pretreatment and biodiesel steps of the process and methanol is 
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the one of the safest of the solvents evaluated, it may be of benefit to use methanol as the 

solvent and modify the process to reduce costs.  Safety analysis should be done at the 

design stages along with analysis of other criteria to obtain a comprehensive evaluation 

of a process.  For example, if methanol is used in the extraction step, it may be possible 

to eliminate some of the separation processes and send the methanol along with the fatty 

acid, triglycerides or both to the pretreatment process.  If cost is the main deterrent to 

using a certain solvent, it should not be eliminated without further evaluation.  In 

modifying or redesigning a process, a new comprehensive (including safety and cost) 

evaluation would be necessary to determine the benefits or drawbacks of the modified 

process.  

 

5.9 Conclusions 

A systematic procedure was introduced for the design, simulation, integration, 

screening, and analysis of sewage sludge-to-biodiesel process. Different solvent 

extraction alternatives were considered, and the associated process flowsheets were 

simulated and analyzed.  In addition to techno-economic metrics, a new safety metric 

was introduced that is based on a combination of the solvent properties and the process 

conditions.  A case study was solved to focus on extracting oils from sewage sludge 

followed by pretreatment, transestrification, and separation. The cost of utilities (such as 

for the extraction process for methanol or ethanol) and the price of solvents and other 

raw materials (such as methanol for the biodiesel processes) are key factors in the 

profitability of the process.  Safety, as well as cost and performance, should be 



   

   

128 

considered in the evaluation and selection of process alternatives.  Based on a detailed 

economic analysis, the process utilizing toluene is the least costly followed by hexane 

and methanol, with ethanol being the most expensive, especially due to the high demand 

of utilities for the extraction with methanol and ethanol in comparison to the extraction 

with hexane and toluene.  On the other hand, based on the safety index calculations, 

ethanol and methanol are the preferred solvents followed by hexane with toluene being 

the least safe.  The estimated cost of biodiesel for the overall process with sewage sludge 

provided for free is $3.39 per gallon for ethanol, $3.37 per gallon for methanol, $2.89 for 

hexane, and $2.79 per gallon for toluene used as the extraction solvent.   
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6 FLEXIBLE DESIGN STRATEGIES FOR THE MULTI-

FEEDSTOCK BIOREFINERY 

 

 

6.1 Summary 

Numerous feedstocks are currently being explored for the production of biofuels 

in integrated biorefineries.  Given the variation in the availability and cost of these 

feedstocks, it is important to include flexibility in the design to enable the use of various 

feedstocks in the biorefinery.  In this work, the objective is to introduce a systematic 

procedure for incorporating flexibility in the design phase of the development of a multi-

feedstock biofuel production process.  A flexible design must incorporate all the 

evaluated feedstocks, and thus, differing demands on the design of the process.  A 

mathematical formulation is developed for determining the optimal flexible design for a 

biorefinery that is to accommodate all feedstocks to be incorporated. Various objective 

functions can be utilized for the flexible plant depending on the purpose of the flexibility 

analysis.  Such objectives include minimizing the retrofitting cost or maximizing 

production or throughput. A biodiesel production process is examined in the case study.  

It incorporates a base case for soy transesterification and two possible pretreatment 

options for waste cooking oil and free fatty acids extracted from sewage sludge. 
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6.2 Introduction 

Biofuels and the integrated biorefinery are the subject of growing interest in the 

world of alternative energy.  With increased concerns about greenhouse gases (GHG), 

the debates are inevitable on food versus fuel, the availability and evaluation of new and 

alternative feedstock, and the surge of multi-feedstock biorefineries.  One example of the 

growing emergence of the multi-feedstock biorefinery is the spread of multi-feedstock 

biodiesel plants in the United States.  An increasing number of biodiesel producers are 

being classified as “Multi-feedstock” producers.  Of the 185 producers that are members 

of the National Biodiesel Board, 104 are classified as Multi-feedstock producers 

(National Biodiesel Board, 2010).  Multi-feedstock is a term used for plants that can use 

a variety of feedstocks, namely vegetable oils, animal fats, and recycled cooking oil or 

yellow grease (National Biodiesel Board, 2010).  Fifteen additional producers utilize 

more than one feedstock, but were not classified as Multi Feedstock producers.   

Biodiesel is a relevant and growing alternative fuel source that helps to ease the demand 

on fossil fuel resources and a biorefinery model that can be used to study the use of 

multiple feedstocks.   

 In the case of biodiesel, most vegetable oils are refined oils, meaning that free 

fatty acid (FFA) content is low enough that no pretreatment is needed.  Refined oils, 

however, are more costly feedstocks than waste or recycled oils.  Non-food feedstocks 

such as animal derived feedstocks (i.e. renderings and tallow) or waste oils or recycled 

oils (which can be from vegetable or animal sources) are typically less expensive than 

refined oils, but have a higher FFA content and require pretreatment (an added cost).  
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Examples of waste oils or recycled oils are restaurant cooking oil, yellow grease, and 

trap grease.   The use of waste cooking oil in scheduling biodiesel production was 

recently explored by Elms and El-Halwagi (2009).  Oils from sewage sludge are yet 

another non-food oil source that is being used for biodiesel production. 

Sewage sludge is an unwanted component of wastewater treatment facilities.  

There are significant lipids in the sludge that can be extracted for use in biodiesel 

production.  These lipids include triglycerides that can be transesterified to fatty acid 

methyl esters (FAME) which can then be purified to obtain biodiesel.  Fatty acids 

comprise a large portion (up to 60%) of the lipids portion of sludge.  Fatty acids can be 

pretreated (i.e. by acid catalyzed esterification) to obtain FAME which can then be 

further processed to obtain biodiesel.  The extraction of lipids from sewage sludge was 

investigated by Pokoo-Aikins et al. (2010).  It is of importance to the flexibility analysis 

for the multifeedstock biorefinery to include a variety of feedstocks. 

The flexible biorefinery is one that accommodates a variety of feedstocks with no 

change to the design of the overall plant.  It can be described as a “super plant” that can 

process all pre-determined feedstocks because the flexible plant must have components 

(processing units, capacity, operating conditions, etc.) for processing all these 

feedstocks. The concept of flexibility is one that has been under investigation for many 

years.  Flexibility analysis is useful for the design, synthesis, and analysis of chemical 

processes with levels of uncertainty. For example, for the multi-feedstock biorefinery, 

there are uncertainties about when each feedstock will be utilized and design and 

operating conditions are based on feedstock choices.   
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Pioneering works in the area of flexibility include works by Grossmann and 

Sargent (1978), Halemane and Grossmann (1983), Grossmann, Halemane, and Swaney 

(1983), Swaney and Grossmann (1985), and Grossmann and Floudas (1986) in which 

earlier works dealt with uncertainty in process design and the term “flexibility” 

increased in usage over time.  More recently Pintaric and Karavanja (2008) addressed 

the problem of reducing the set of uncertain parameter points in flexibility problems 

through the approach of identifying a minimum set of critical points.  These authors 

proposed three methods for reducing the set of uncertain parameters by identifying 

critical points.  Al-Qahtani and Elkamel (2008) investigated multisite integration for a 

petroleum refinery network with different combinations of feedstock (namely various 

crude oil compositions).  In their analysis, they developed a mixed-integer linear 

program with the overall objective of minimizing total annualized cost.  While their 

study does not mention flexibility directly, conceptually it is a flexibility problem as it 

involves modeling and optimization of a multicomponent and multifeed process that 

involves varying degrees of uncertainty.   

Flexibility analysis was used by Cheng and Friis (2007) to evaluate a milk 

treatment process.  They utilized modeling tools (e.g. Pro/II) and engineering know-how 

to simulate a treatment process for reducing the fat content in milk.  Flexibility is 

important in this study because a goal in the food production industry is to maximize the 

usefulness of an existing production line by making the production line able to handle a 

variety of products and production demands.  The flexibility formulation used for 

optimization is presented in their paper.   A parallel hybrid algorithm was developed by 
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Moon et al. (2008) for flexiblility analysis.  The algorithm employs stochastic search and 

nearest constraint projection to solve the flexibility index problem for the global solution 

aside from design constraint convexity.  They employ a flexibility formulation by 

Floudas, Gumus, and Ierapetritou (2001). Flexibility formulation involves several 

components.  Constraints can be functions of vectors of design variables, state variables, 

controls, fixed parameters, and uncertain parameters.  The objective function can be 

subject to inequality and equality constraints.  Flexibility formulations found in the 

literature include some or all of the components mentioned above. Notwithstanding the 

usefulness of the previous works, it is important to develop a specific approach for the 

design of flexible biorefineries which focuses on the problem of utilizing multiple 

feedstocks. This is the primary objective of this work. 

 

6.3 Motivation and Problem Statement 

 An increasing number of plants are being built as multi-feedstock facilities to 

accommodate for the variation in availability, economics, and environmental impact of 

feedstock alternatives.  A base case process for a flexible plant must utilize pre-specified 

feedstocks to induce flexibility for biorefineries. Effective biorefineries need to be 

flexible in their capabilities to process a variety of feedstocks in a way that promotes 

sustainability and profitability.  In order to do this, it is a goal to: 

 

1 Incorporate feedstock flexibility into the process design of the biodiesel production 

facilities. 
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2 Conduct a techno-economic study for the selected feedstock options 

The main aim of this work is to develop a systematic approach for the flexible 

design of a biofuel production process.  Formally stated, the problem is as follows: 

Given is a biofuel production facility of with a certain base-case design handling a 

specific feedstock.  A certain number (Nf) of alternative feedstock that can be used in 

conjunction with or in lieu of the current feedstock are available for consideration.  It is 

desired to develop a systematic procedure for the design of a flexible biorefinery that 

accommodates all of the pre-specified feedstocks that may be utilized while maintaining 

a certain production level and quality constraints. 

The following questions will be addressed: 

• Should feedstocks be processed separately or co-fed?  

• Which scenarios must be accounted for in the process design? 

• What retrofitting changes are needed? 

The following is a more detailed statement of the problem to be addressed. 

Given a continuous process with: 

• A set of pretreatment units P= {p|p= 1,2, …, NPT}. Each pretreatment unit, p, has 

a set of input streams INPUTp = }N1,2...,m |{m in
ppp = and a set of output streams 

OUTPUTp = }N1,2...,n |{n out
ppp = .  Input stream mp, has a flowrate,

pmA , 

composition of component x as x,mp
Y .  Output stream np, has a flowrate,

pnB , 

composition of component x as  x,np
Z .  
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• A set of common process units C= {c|c= 1,2, …, NCP}. Each process unit, c, has 

a set of input streams INPUTc = }N1,2...,m |{m in
ccc = and a set of output streams 

OUTPUTc = }N1,2...,n |{n out
ccc = .  Input stream mc, has a flowrate,

cmA ,  

composition of component x as x,mc
Y .  Output stream nc, has a flowrate,

cnB , 

composition of component x as  x,mc
Z .  

• A set of product discharges from the process R = {r|r= 1,2, …, NR}.  

• A set of intermediate streams I= {i|i= 1,2, …, NI} that are redirected back into 

the process. Input stream mi, has a flowrate,
imA ,  composition of component x 

as x,mi
Y .  Output stream nc, has a flowrate,

inB , composition of component x as  

x,mi
Z . 

• A set of waste discharges from the process L = {l|l= 1,2, …, NL}.  

• A set of feedstocks (scenarios) SCENARIOS = {s|s = 1,2, …, Ns} . Within each 

scenario, s, there is a certain feedstock, pre-treatment units, processing units, 

production capacity, etc. 

It is desired to form a systematic procedure that can be used to determine an optimal 

flexible process design that accommodates for a variety of feedstocks.   
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6.4 Approach 

 Process modifications to the base-case design include two options.  The first 

option is that modifications are conducted by manipulation of certain design and 

operating variables for each unit within permissible ranges.  The second option is the 

addition of new units (e.g., pretreatment systems). The task of designing a flexible plant 

must insure that the design is retrofitted so as to accommodate for the various scenarios.  

A scenario can be described by a certain flowrate of a feedstock. For each scenario, the 

process may have to be retrofitted to adjust plant requirements (raw materials, unit 

operations, equipment, operating conditions, etc.) that are needed for processing a 

certain feedstock. Given the multiple scenarios, it is necessary to adopt a process 

integration approach which addresses the various scenarios simultaneously. Fig. 6.1 

shows a schematic of individual scenarios. The optimal design of the flexible plant 

should take into consideration the requirements of each scenario such that the selected 

flexible plant design can process any pre-specified feedstock without any change to the 

plant design.  Fig. 6.1 also gives a schematic representation of the flexible plant which 

will simultaneously consider the two scenarios.   
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Fig. 6.1. Schematic of individual scenarios and of a flexibly designed plant for the simultaneous 
consideration of the two scenarios. 
 

 

The first step in the approach is the development of a structural representation of 

the problem. A source-sink representation (Fig. 6.2) is used to connect the flow of the 

core processes that can occur within each scenario and to provide a superstructure to 

facilitate optimization.  For each scenario, there are potential pre-treatment units, 
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common process units, input and output flows to and from these units (respectively), and 

waste, product, and intermediate streams.  Flows from the pretreatment or common 

process units can split into fractions which can later mix with other streams. 
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Fig. 6.2. A structural representation of the problem. 
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Given this structure, the following mathematical formulation is developed: 

 

6.4.1 Pretreatment Units 

The mass balance equation for the pretreatment unit p for scenario s is written as: 

�� =
p

p

p

p
m

,m
n

,n AB ss     sp,∀       (6.1) 

and the xth component balance for unit p for scenario s is given by: 

( )�� +=
p

ppp

p

p
m

sx,p,sx,,m,msx,,n
n

,n Net_GenY*AZ*B ss
           spx ,,∀    (6.2) 

where the additional index, s, in the flowrate and composition terms, corresponds to the 

scenario for which these flowrates and compositions are considered.  Additionally, the 

performance model for unit p for scenario s is expressed as a set of algebraic equations 

represented by: 

)1,2,...Nx ,N1,2,...,n:Z,(B components
out
pp,,n,n pp

==sxs    

)o,d ,1,2,...Nx ,N1,2,...,m:Y,(A sp,sp,components
in
pp,,m,mp pp

=== sxsf  sxmp p ,,,∀   (6.3) 

 

6.4.2 Common Process Units 

The mass balance equation for the common process unit c for scenario s is 

written as: 

�� =
c

c

c

c
m

,m
n

,n AB ss     sc,∀       (6.4) 
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and the xth component balance for unit c for scenario s is given by: 

( )�� +=
c

ccc

c

c
m

sx,c,sx,,m,msx,,n
n

,n Net_GenY*AZ*B ss            scx ,,∀    (6.5) 

and the performance model for the cth common process unit is expressed as a set of 

algebraic equations represented by: 

)1,2,...Nx ,N1,2,...,n:Z,(B components
out
cc,,n,n cc

==sxs       

)o,d ,1,2,...Nx ,N1,2,...,m:Y,(A sc,sc,components
in
cc,,m,mc cc

=== sxsf  sxmc c ,,,∀   (6.6) 

 

6.4.3 Product Streams 

The flowrate of the rth product out of the process is written as: 

���� +=+=
c

c
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where 

��=
p

p
n

,,n
p

, r sr
PT

srR  sr,∀  

is the total flowrate of the rth product from the NPT pretreatment units for scenario s and 

��=
c

c
n

,,n, r sr
c

CP
srR  sr,∀  

is the total flowrate of the rth product from the NCP common process for scenario s. The 

xth component material balance for the rth product stream from the process is given by: 
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sxnsr
c

sxnsr cp
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n
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p
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p

p ���� +=   sxr ,,∀    (6.8) 

where srnp
r ,,  is the flowrate assigned from the np to the rth product stream and Wr,x,s is the 

composition of component x in the product outlet stream for scenario s and  

PT
sxr

PT
sr WR ,,, * sxnsr p

Z ,,
n

,,n
p

*r
p

p��=  sxr ,,∀      (6.9) 

is the xth component material balance for the rth product stream coming from the NPT 

pretreatment units and 

CP
sxr

CP
sr WR .,, * sxnsr

c
c

Z ,,
n

,,n *r
c

c��=  sxr ,,∀      (6.10) 

is the xth component material balance for the rth product stream coming from the NCP 

common process units. 

 

6.4.4 Intermediate Block 

The mass balance equation for the intermediate block i for scenario s is written 

as: 

�� =
i

i

i

i
m
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and the xth component balance for the intermediate block for scenario s is given by: 
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i
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n

,n Net_GenY*AZ*B ss            six ,,∀    (6.12) 

 



   

   

142 

6.4.5 Waste Streams 

The flowrate of the lth waste stream out of the process is given by: 
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where 
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p
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PT
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is the total flowrate of the lth product from the NPT pretreatment units for scenario s and  

��=
c

c
n

,,n, l sl
c

CP
slL  sl,∀         (6.15) 

is the total flowrate of the rth product from the NCP common process for scenario s.   

The xth component material balance for the lth waste stream from the process is given by: 
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where slnp
l ,,  is the flowrate assigned from the np to the lth product stream and Wl,x,s is the 

composition of the waste outlet stream and 
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is the xth component material balance for the lth product stream coming from the NPT 

pretreatment units and 
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is the xth component material balance for the lth product stream coming from the NCP 

common process units. 

 

6.4.6 Mixing and Splitting of Streams 

6.4.6.1 Splitting of Source np 

The term smn cp
b ,,  is used to represent the flowrate assigned from source np to 

destination mc for scenario s.  Output flow from the pretreatment units has four possible 

destinations.   Flow from source np can be directed to other pretreatment units, the 

common processing units, final product streams, and/or waste streams. The material 

balance for the splitting of source np is written as: 

� ����� +++=
r l

slnsrnsm
c

smsn ppcpp
lrB ,,,,

n
,,n

n
,,n

p
,

c

p

p

p
bb  snp p ,,∀   (6.20) 

 

6.4.6.2 Mixing of the Split Flowrate before the mc
th Input to the cth Common Process 

 Unit 

Some streams leaving the common process units join the intermediate stream and 

are recycled back to the common process units.  These streams along with streams 

leaving the pretreatment units contribute to the mc
th input to the cth common process unit.  

The term smn ci
j ,,

 represents the flowrate from the intermediate source ni to destination mc 

for scenario s.  The material balance for the mixing of the split flowrate before the mc
th 

input to the cth common process unit is written as:   
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and the xth component balance for scenario s is expressed as: 
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i
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,,n
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6.4.6.3 Splitting of the nc
th Stream L:eaving cth Common Process Unit 

Streams leaving the NCP common process units can split and are destined to one 

of three destinations.  These output streams (nc) are destined for waste streams, product 

streams and intermediate streams that are recycled back to the process.  The term 

slnc
l ,,

represents the flowrate assigned to the lth waste stream, the term srnc
r ,,

represents the 

flowrate assigned to the rth product stream, and the term sinc
j ,,

 represents the flowrate 

assigned to the ith intermediate stream.  The material balance for the splitting of the nc
th 

stream is written as: 

��� ++=
i

sin
r

srn
l

slnsn cccc
jrlB ,,,,,,,   snc c ,,∀      (6.23) 

 

6.4.6.4 Intermediate Streams Recycled back into the Process 

Mixing of the Split Flowrate before the mi
th Input to the Intermediate Block 

The flowrate of the ith intermediate stream from the NCP common process units is 

written as: 
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��=
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 and the xth component material balance for the ith intermediate stream from the NCP 

common process units is given by: 

sxnsi
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c

c��= sxi ,,∀       (6.25) 

Streams leaving the common process units serve as the mi
th input to the 

intermediate block. The term smn ic
j ,,

 represents the flowrate from source nc to destination 

mi for scenario s.  The material balance for scenario s for the mixing of the split flowrate 

before the mi
th input to the intermediate block is written as: 

�=
c

c
n

,,n, j smsm ii
A   smi i ,,∀       (6.26) 

and xth component balance for scenario s is given by: 

sxnsmsxmsm cccc
ZYA ,,

n
,,n,,, *j*

c

c�=  sxmi i ,,,∀      (6.27) 

 

6.4.6.5 Splitting of the ni
th Stream Leaving the Intermediate Block 

The term smn ci
j ,,

 refers to the flowrate from source ni to destination mc for 

scenario s.  The material balance for the splitting of source ni is written as: 
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i
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, j smsn ci
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6.4.7 Constraints 

The design and operating constraints for the pretreatment units are: 

max
,

min
pspp ddd ≤≤          (6.29) 

max
,

min
pspp ooo ≤≤          (6.30) 

The design and operating constraints for the common process units are: 

max
,

min
cscc ddd ≤≤          (6.31) 

max
,

min
cscc ooo ≤≤          (6.32) 

The product demand and composition constraints are expressed as: 

Demand
srsr RR ,, ≤           (6.33) 

max
,,,

min
, xrsxrxr WWW ≤≤          (6.34) 

The flowrate constraints for the mp
th input to the pretreatment unit and the mc

th input to 

the common process units are given by: 

max
,

min
ppp msmm AAA ≤≤          (6.35) 

max
,

min
ccc msmm AAA ≤≤          (6.36) 

The composition constraints for mp
th input to the pretreatment unit and the mc

th input to 

the common process units are given by: 

max
,

min
ppp msmm YYY ≤≤          (6.37) 

max
,

min
ccc msmm YYY ≤≤          (6.38) 
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6.4.8 Objective Function 

Different objective functions can be pursued depending on the goals of a 

flexibility study.  One objective is to maximize the plant throughput of feedstocks 

subject to a limitation on the retrofitting budget, i.e.: 

 max ��
c

c
m

,mA s
s

         (6.39) 

subject to: 

Budgeth odt ≤=
−−

),(cosψ           (6.40) 

and the rest of the aforementioned model. 

0),( ≤
−−

odg           (6.41) 

Another objective is to minimize the retrofitting cost subject a certain desired 

throughput.  Another objective is to maximize the product flowrate subject to budget 

constraints, inequality constraints and constraints on the flowrate through the common 

process unit, i.e.: 

max ��
r

,sr
s

R          (6.42) 

subject to constraints (6.40) and (6.41). 

The optimization problem may be one in which the objective function is to 

minimize the cost of retrofitting the plant for a given flowrate of each feedstock.  This 

can be the cost of retrofitting an existing plant with a flexible design or the cost of a 
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grassroots flexible multi-feedstock plant. which can be expressed as a function of the 

design and operating variables: 

�
�
�

�
�
�
�

�
+

−−−−

�� ),(),(min c

c

cp
p

p odod ψψ         (6.43) 

 

6.5 Case Study 
The base case is a process for producing 40 MM gal/yr of biodiesel from soy 

bean oil. More information on this process can be found in literature (e.g., Myint and El-

Halwagi, 2009; Elms and El-Halwagi, 2009). It is desired to retrofit the plant to enable it 

to be flexible enough to process free fatty acids (FFAs) extracted from sewage sludge. In 

addition to retrofitting existing units, it is also necessary to introduce a pretreatment 

system to extract the lipids and render them in a state that can be processed by the trans-

esterification plant.  

The process model and cost data were developed by running ASPEN Plus and 

ICARUS for the two feedstocks at different flowrate scenarios. For each flowrate 

scenario, the simulation results identify the necessary extent of retrofit for each process 

unit, the size of the pretreatment facility, and the associated cost of retrofitting. These 

data were entered into the optimization formulation which was solved to maximize the 

product flow subject to a constraint on available budget for the total retrofitting cost 

(pretreatment and trans-esterification). Three values for the budget constraint were used. 

A plot of the product flowrates versus budget constraint, pretreatment and retrofitting 

cost is given in Fig. 6.3. 
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Fig. 6.3. Product flowrate versus budget constraints and pretreatment and trans-esterification FCI. 
 

6.6 Conclusions 

A systematic procedure has been introduced to design multi-feedstock flexible 

biorefineries. A mathematical formulation has been developed for use in representing, 

modeling and optimizing the flexible multi-feedstock biorefinery.  By considering soy 

bean and sewage sludge as feedstocks, a case study has been solved to demonstrate the 

concepts of flexibility as applied to the multifeedstock biodiesel example.  An objective 

function for maximizing throughput was applied.  Results for the example indicate that 

there will be added costs for retrofitting the plant to accommodate the necessary added 

pretreatment units as well as increase in the flowrate.  These results can be used to 

determine an optimum level of flexibility by comparing the cost of flexibility versus the 

value added by producing more biofuel. 
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7 SYNTHESIS OF FLEXIBLE HEAT EXCHANGER 

NETWORKS FOR MULTI-FEEDSTOCK BIODIESEL 

PRODUCTION PROCESSES 

 

 

7.1 Summary 

Feedstock cost is the largest contributor to the biodiesel production cost.  

Therefore, it is important to enable the process to handle multiple feedstocks to 

correspond to fluctuations in price and availability of the potential feedstocks. By 

designing processes that can utilize a variety of feedstocks, choices can be made to 

promote the use of the more sustainable and economical feedstock at a given time.  One 

aspect of process flexibility that is being examined is the synthesis of heat exchanger 

networks in the flexible biodiesel production process.  In this work, the objective is to 

develop a systematic procedure for incorporating flexibility and heat integration in the 

design phase of the development of a flexible feedstock production process.  A two-

phase biodiesel production process is examined for three feedstocks in the case study.  

Each feedstock incurs differing demands on the design of the process.  A mathematical 

formulation is developed for determining the heat exchange network design for the case 

study. By incorporating the three feedstock scenarios into a combined mixed integer 

linear program formulation, a flexible heat exchange network scheme can be developed 
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that provides for a process that can accommodate the heating and cooling demands of 

the various scenarios.   

 

7.2 Introduction 

Biodiesel is now a well established renewable fuel source often used as an 

alternative to petroleum derived diesel since it can be used in existing engines with 

comparable performance (EPA, 2002).  Traditionally, biodiesel is made from vegetable 

oils (or plant oils or plant seed oils), animal fat and tallow.  Common vegetable oils used 

in preparing biodiesel are soy, sunflower, safflower, canola, and palm.  Palm oil has 

numerous positive aspects for biodiesel production.  Among those attributes are that it 

has a high production rate, a high oil content, 27 times more oil can be produced per acre 

than soy, and life cycle analysis (LCA) reveals that production of palm based biodiesel 

can reduce green house gases (GHG) more than other leading vegetable oils (Abdullah et 

al., 2009).  Algal oil is a non-food feedstock that is growing in research, development 

and use for biodiesel production.  Like terrestrial plants, algae grow by photosynthesis 

through the use of CO2, water and sunlight.  Unlike terrestrial plants, algae grow in 

aqueous suspensions, allowing for more efficient use of H2O, CO2, and other nutrients.  

This gives algae the potential to produce more oil per unit area than other crops currently 

being used for biodiesel production.  Lipid content in algae has been known to increase 

up to 50% under the appropriate conditions.  An in-depth investigation into the potential 

use of algae to produce biodiesel was conducted by Pokoo-Aikins et al., 2009.   
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The use of non-food oil sources for biodiesel production is particularly important 

with newer biodiesel plants that are being constructed.  Some older biodiesel plants 

continue to use vegetable oils but many are converting to utilize a variety of feedstock, 

not just vegetable oils.  Government incentives drive down the cost of vegetable oils and 

the cost of pretreating waste oils and triglycerides from waste animal fats and algal oil 

means that vegetable oils will continue to be used to produce biodiesel until the cost of 

using non-food feedstock is stable and lower than the cost of using food feedstock 

options.  In the meantime an increasing number of biodiesel plants are being considered 

“Multi Feedstock” producers because they utilized a variety of feedstock namely 

vegetable oils, animal fats and recycled cooking oil or yellow grease (National Biodiesel 

Board, 2010).  Use of variety of feedstock is important as biodiesel continues to be an 

important fuel source that is helping to reduce the demand on petroleum based fuels and 

shows continued promise as one of many alternative fuel sources for a more fuel-stable 

future.  The United States biodiesel industry has seen a dramatic increase since the 

implementation of the Biodiesel Tax Incentive.  Production has increased from 25 

million gallons per year in 2004 to 450 million gallons per year in 2007 to 700 million 

gallons per year in 2008 (National Biodiesel Board, 2009). 

 Synthesis of heat exchange networks (HEN) is a topic that has gained much 

interest in recent decades and one in which there are still many opportunities for study, 

contribution and expansion of the design methods.  A detailed review of the research in 

the area of the synthesis of HENs was reported by Furman and Sahinidis (2002).  

Papaoulias and Grossmann (1983) proposed an approach for designing heat recovery 
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networks based on the transshipment model.  Integral to the HEN design problem is an 

understanding of heat integration and the pinch analysis method (Linnhoff and 

Hindmarsh, 1983).   

 The flexible heat exchange network problem is considered an over-design 

problem (i.e. over-design of process units).  It generally involves considering 

uncertainties in relation to streams entering the process (e.g. stream number, flowrate, 

and temperature).  A new approach to the design of flexible heat exchange networks was 

introduced by Chen (2005) that considers cost while incorporating disturbances in range 

of source-stream temperatures and flowrates.  A strategy for synthesizing flexible 

networks that account for variations in process inlet stream flowrates, temperatures 

(HEN) and composition (MEN) was extended to heat and mass exchange networks 

(Chen and Hung, 2007).  Xiangkun et al (2007) also proposed a two-stage approach for 

the synthesis of flexible multi-stream HENs.   

 Yee and Grossmann (1990) developed a mixed integer linear program for the 

simultaneous optimization of utility cost, exchanger areas and the selection of matches.  

Aaltola (2002) later applied the work of Yee and Grossmann (1990) to the multi-period 

problem.  Zhang (2006) then extended the two works to the application of flexible heat 

exchange networks. 

The term flexibility as it is used in current literature refers to variations in the 

number of streams, and the flowrates and compositions of the streams.  The use of 

flexibility in this work is broader (i.e. plant flexibility) and which in this case must be 

achieved by incorporating a variety of feedstock scenarios in the design of the heat 
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exchange network for the plant.  Formulations for the multi-period heat exchange 

network deal more with a scheduling problem.  Multi-period HEN formulations can be 

modified, extended for and applied to the flexible multi-feedstock facility by considering 

various scenarios that are time-independent in place of the time horizon of the multi-

period HEN problem. 

 
 

7.3 Motivation and Problem Statement 

Although and increasing number of biodiesel plants are becoming or being built as 

“Multi Feedstock” facilities, the primary feedstock continues to be vegetable oils such as 

soybean.  It is important to consider traditional biodiesel feedstock as well as alternative 

feedstock such as algal oil in the design of grassroots production facilities or in the 

retrofitting of existing plants.  Feedstock cost is the bulk of the operating cost for the 

biodiesel production process.  Flexibility in feedstock choices could provide an 

economic and environmental advantage to the biodiesel industry.  In order to promote 

energy conservation which results in cost savings and reduction in greenhouse gas 

emissions, it is important to design heat-exchange networks that are flexible enough to 

operate properly even when feedstocks are altered.  The main aim of this work is to 

develop a systematic approach for the flexible heat exchange network design for a 

biodiesel production process.  Formally stated, the problem is as follows: 

A given biodiesel production facility has a known production and design process 

that utilizes a certain feedstock.  Available for consideration are a number (Nf) of 

alternative feedstock that can be combined with or used instead of the current feedstock.  
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It is desired to develop a systematic procedure for the design of a flexible heat exchange 

network that accommodates for the various feedstock that may be utilized while 

maintaining a specified production level and quality. 

Question to be addressed are: 

• What are the targets for minimum heating and cooling utilities for different 

feedstock alternatives? 

• What is the minimum number of heat exchangers that can be used under 

variations in types and flowrates of the feedstocks?   

• Which heat exchangers should be used and with which feedstock? When? 

The following is a detailed statement of the problem to be addressed. 

Given a continuous biodiesel production process with: 

• A set of operational scenarios: {s|s = 1,2, …, Ns}. Each scenario corresponds to a 

given feedstock, throughput, and process operation. 

• A set of common process units C= {c|c= 1,2, …, NCP}. Each process unit, c, has 

a set of input streams INPUTc = }N1,2...,m |{m in
ccc = and a set of output streams 

OUTPUTc = }N1,2...,n |{n out
ccc = .  Input stream mc, has a flowrate,

cmA ,  

composition of component x as x,mc
Y  and a temperature, 

cmT .  Output stream nc, 

has a flowrate,
cnB , composition of component x as  x,mc

Z  and a temperature, 

cnT .  

• For each feedstock operation, s, a set of hot streams HSs={hs|hs= 1,2,…, NHS, s}, 

streams that need to be cooled or external heating utilities.       
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• For each feedstock operation, s, a set of cold streams CSs={ks|ks= 1,2,…, NCS, s}, 

streams that need to be heated or external cooling utilities. 

It is desired to form a systematic procedure that can be used to determine an optimal 

process design that accounts for heat integration and used to synthesize a flexible heat 

exchange network (HEN) that operates for a variety of scenarios by incorporating 

different feedstock. 

The problem is presented in a diagram illustrating the common process units, 

process streams, subsets of hot and cold streams and HENs (Fig. 7.1).  

 

 

Fig. 7.1. Diagram for the process and HEN. 
 

  

Inputs       

Cold 

  Streams in 

  

    

Hot       
Streams       

out   
    

    
c=1       

    
c=2       

    
c=N   c      

    

Process       
Units       

   HENs       

Output s   

Hot     
Streams       

in   
    

Cold   
Streams out   

    



   

   

157 

7.4 Approach 

The HEN must be synthesized to account for various expected scenarios. The 

challenge is to synthesize a single configuration accommodating all expected changes.  

A number of expected scenarios are identified in advance.  A multi-scenario HEN 

synthesis problem is solved to generate a single network configuration that 

accommodates all expected scenarios. 

Simplifying assumptions were made as follows: 

• The scenarios are looked at as individual processes.  Each scenario is discretized into 

Ns components, a set of scenarios is defined as SCENARIOS = {s|s = 1,2, …, Ns}.  The 

scenarios are taken into account for each feedstock and used in determining the optimal 

flexible design.  

• Process modifications are limited to two options.  The first option is that modifications 

are conducted by manipulation of certain design and operating variables for each unit 

within permissible ranges.  The second option is the addition of new heat exchangers. 
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The approach for synthesizing the flexible multi-scenario heat exchange network 

is presented in Fig. 7.2.  First, the relevant input data and constraints are gathered and a 

number of excepted scenarios are identified. Next, the process model is developed with 

the proper level of detail to account for the process performance in terms of the design 

and operating decision variables. Then, a linear programming (LP) formulation is 

developed to incorporate the expected scenarios into the design.  The LP formulation is 

generated for heat integration utilizing data about hot and cold inputs and outputs for 

each scenario.  Next, a mixed integer linear program (MILP) formulation is developed to 

determine the minimum heating and cooling utility targets for the HEN. The MILP 

formulations for each scenario are combined to allow the simultaneous optimization of 

the HEN while accounting for the expected scenarios.   An MILP multi-scenario HEN 

formulation is developed to determine the configuration of the flexible heat exchange 

network that can address all the variations associated with the expected scenarios.  
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Fig. 7.2. Flowchart of heat exchange network synthesis approach. 
 
 
 
 
 
 
 
 
 



   

   

160 

7.5 Mathematical Formulation 

7.5.1 Heat Integration 

Heat integration is performed for each scenario prior to heat exchange network 

synthesis. Procedures for heat integration that were used are described by Kemp (2007), 

El-Halwagi (2006), and Smith (2005). 

 

7.5.2 Heat Exchange Network Synthesis 

A method for stream matching and HEN design was developed by Papoulias and 

Grossman (1986).  This method was extended to address the multiple operational with 

modifications to allow for flexible HEN synthesis considering the different feedstock 

scenarios.  The formulation is entered into optimization software (e.g. LINGO) for each 

individual scenario to confirm that the matching is working for all scenarios before 

combining the formulations and introducing the MILP to include all scenarios being 

investigated.  According to the pinch rule, no heat should be passed through the pinch.  

This rule is incorporated into the program formulation by taken the problem as two 

subnetworks (SN), one above the pinch and one below the pinch.  Denotation for the 

subnetworks will be as follows:  index v is defined as 1 for above pinch and 2 for below 

pinch.  Each interval over which heat is passed is denoted as y. The objective function is 

to minimize number of heat exchangers (Eh,k,v). 

�� �
= ∈ =2,1

.,min
v HSh CSk

vkhE          (7.1) 

s.t. 
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Heat balance for hot stream around the temperature intervals: 

2,1,SN yHS,h       v,,,,,,1,,, =∈∈=+− �
∈

− vQQ H
syh

CSk
sykhsyhsyh δδ    (7.2) 

Heat balance for each cold stream around the temperature intervals: 

2,1,SN yCS,k       v,,,,, =∈∈=�
∈

vQQ C
syk

HSh
sykh      (7.3) 

Matching of loads: 

1,2 v,SN y CS,k HS,h        0 v,,,,,,,, =∈∈∈≤−�
∈

vkhsykh
SNy

sykh EUQ
v

   (7.4) 

Non-negative residuals: 

2,1,SN yHS,h       0 v,, =∈∈≥ vsyhδ       (7.5) 

Non-negative loads: 

2,1,SN yCS,k HS,h       0 v,,, =∈∈∈≥ vQ sykh      (7.6) 

Binary integer variables for matching streams:  

2,1 CS,k HS,h       1/0,, =∈∈= vE vkh       (7.7) 

where Qh,k,y,s is the heat exchanged between the hth hot stream and the kth cold stream in 

interval y for scenario s and QH
h,y,s is the total heat load for the hth hot stream in interval 

y for scenario s and QC
k,y,s is total heat load for the kth cold stream in interval y for 

scenario s and Uh,k,y,s is an upper bound on the exchangeable heat between streams h and 

k in SNv. 

Solving the above mathematical program will lead to matches for the minimum 

number of heat exchangers for the multi-scenario problem.  Due to the nature of the 
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units and streams being investigated for the various scenarios, careful inspection of the 

solution will be required to ensure that the result is indeed the minimum number.   

 

7.6 Case Study 

There are three feedstocks investigated in the case study: soy, palm and algal oil.  

The biodiesel process is based on a base-case design as described by Pokoo-Aikins et al 

(2009).  In the base-case design vegetable oils or algal oil can be processed to produce 

44-52 MMGPY of biodiesel via transesterification (Fig. 7.3).  Two reactors are used to 

increase throughput.  An 8,000 hour work year is assumed.  Reaction temperature is 

60oC in each reactor.  Conversion through each reactor is assumed to be 97.7%.  The 

alcohol to triglyceride (oil) ratio is 6:1.  Oils entering the transesterification process are 

assumed to have a free fatty acid (FFA) content of 0.5% or less.  Glycerol is separated 

from the resulting methyl esters and purified.  Biodiesel is washed with water.  Biodiesel 

purity for each feedstock ranges from 99.5-99.7% and glycerol purity is approximately 

98% regardless of feedstock. 

For each of the feedstock, heat integration was performed for the biodiesel 

process without any heat exchangers to determine the pinch point and minimum heating 

and minimum cooling utilities.  Results from the heat integration are used to determine 

the minimum number of heat exchangers required for each process as well as to 

synthesize the heat exchange network.   
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Heat integration was performed for each feedstock scenario.  Integration results 

revealed the minimum heating and cooling utilities needed for each scenario.  Integration 

results were used to generate a MILP for determination of optimal HEN for the given 

scenario.  The minimum number heat exchangers required for each individual scenario 

were 6 for soy, and 7 each for palm and algal oil.  The total number of heat exchangers 

needed to accommodate the three scenarios is 9 units (Table 7.1). The heat exchange 

network designs for the individual scenarios are depicted in Figures 7.4, 7.5, and 7.6 for 

soy, palm and algal oil respectively.  Fig. 7.7 represents the superstructure for the HEN 

accommodating the three scenarios.  Fig. 7.7 depicts the flexible heat exchanger 

configuration relative to the process units involved.  The process design configuration 

with the minimum number of heat exchangers for the flexible plant will have the nine 

heat exchangers positioned where needed.  All nine heat exchangers must be present and 

associated with the necessary units in order for the flexible plant to accommodate all 

three of the feedstock investigated.   

 

7.7 Conclusions 

This work has addressed the problem of designing a common heat exchange 

network for a multi-feedstock biodiesel production facility. For each feedstock type and 

throughput, a detailed simulation study was carried out to determine the process 

performance and the heating and cooling requirements. Minimum heating and cooling 

utility requirements were determined for each scenario. Then, a multi-period mixed-

integer linear program was developed and solved to generate the common structure for 
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all the scenarios that will minimize the number of heat exchangers while satisfying 

minimum heat and cooling utility requirements for each scenario. A case study was 

solved to address a three-feedstock biodiesel facility using soy bean, palm, and algal oil. 
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8 CONCLUSIONS AND RECOMMENDATIONS 
 

 

The focus of this work has been on the development of systematic procedures for 

the design and analysis of flexible biodiesel processes with multiple feedstocks.  

Biodiesel production was used as a representative biofuel for the case studies.  

First, the use of algae produced via CO2 sequestration to produce biodiesel was 

analyzed. By incorporating the high and low performance scenarios as well as the 

assumptions for oil content, four costs for the production of algal oil, as well as two 

average costs for the 30% and 50% oil content cases (averages of the high and low 

performance cases), were obtained for later use in economic analysis of the biodiesel 

production from algal oil.  A species of algae with the potential to produce high oil 

yields was selected (Chlorella species) and a two stage alkali-catalyzed 

transesterification reaction was simulated in ASPEN PLUS.  ASPEN ICARUS was used 

to evaluate economics for both transesterification scenarios.  Detailed sensitivity analysis 

for all performance cases, oil content cases, and transesterification processes stated 

previously, was conducted.    Specifically, sensitivity analysis included the following 

parameters: 30% and 50% oil content, high performance and low performance cases, an 

average of the high and low performance cases, and the two transesterification 

simulations.  The results of the calculations for profit, payback period, return on 

investment and breakeven analyses revealed that the most profitable scenarios for 

producing biodiesel from Chlorella species microalgal oil are those assuming 50% oil 
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content and incorporating heat integration.  Considering the variety of scenarios 

evaluated, careful selection of the right parameters can and will indeed lead to the 

profitable production of biodiesel from microalgal oil.  Biodiesel production form algal 

oil will be a competitive alternative to food derived plant oils under the appropriate 

conditions including the selection of algae with a high oil content, consideration of 

technology choice for algal growth and processing, selection of a high yield biodiesel 

process, and achieving high levels of process integration.  Biodiesel and glycerol selling 

prices vary under normal market conditions and selling prices of product and by-product 

also affect the profitability of the algal oil-to-biodiesel process.  In addition to algae, 

there are other innovative non-food oil sources for biodiesel production, including oil 

sources from waste. 

With the possibility of obtaining raw sewage sludge with an incentive or at no 

cost, oils from sewage sludge were investigated as a possible alternative feedstock for 

biodiesel production.  Using a systematic procedure for designing, simulating, 

integrating, screening, and analyzing the sewage sludge-to-biodiesel process, different 

solvent alternatives were considered for the extraction of sewage sludge, the associated 

process flowsheets were designed, simulated and analyzed.  A new safety metric was 

introduced that is based on a combination of the solvent properties and the process 

conditions.  The metric was used in conjunction with technical and economic criteria as 

part of a multi-criteria approach to the evaluation of the process.  Extraction of oils from 

sewage sludge was followed by pretreatment of the extracted oils, transesterification, 

and separation.  Utilities cost were notable higher for the extraction utilizing methanol 
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and ethanol although the cost of raw materials for extraction with methanol and ethanol 

were considerably cheaper.  Utility cost contributed most to the economics of the 

extraction process.  Heat integration provided a significant savings in utility costs.  

Safety was considered together with cost and performance in the evaluation of process 

alternatives.  Use of toluene as the extraction solvent proved to be the least costly 

solvent choice for the process that is presented.  Hexane is the next least costly followed 

by methanol, with ethanol being the most expensive, mainly due to the high demand of 

utilities for the extraction with methanol and ethanol in comparison to the extraction 

with hexane and toluene.  Safety analysis revealed by the newly developed safety index 

used to evaluate the process, however, revealed that ethanol and methanol are the 

preferred solvents followed by hexane with toluene being the least safe.  The estimated 

cost of biodiesel for the overall process with sewage sludge provided for free is $3.39 

per gallon for ethanol, $3.37 per gallon for methanol, $2.89 for hexane, and $2.79 per 

gallon for toluene used as the extraction solvent.  Once alternative non-food feedstock 

have been evaluated for technical, economic, safety and other criteria to check for 

potential feasibility of use of the feedstock, the feedstock can be incorporated into the 

multi-feedstock process assessment.  As the technology for processing alternative 

feedstock continues to be developed, traditional feedstock may continue to be used and 

should also be incorporated into a flexible multi-feedstock biorefinery. 

A systematic procedure and mathematical formulation were also introduced for 

representing, modeling and optimizing the flexible multi-feedstock biorefinery.  Various 

objective functions can be developed and applied to the multi-feedstock biorefinery 
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depending on the goals of the flexibility analysis.  Soybean oil and oils from sewage 

sludge were considered as feedstocks to demonstrate the concepts of flexibility as they 

apply to the multi-feedstock biodiesel example.  The objective function in the example 

provided involved the maximization of throughput subject to cost constraints.  A base 

case transesterification process was presented with added pretreatment processes.  In 

increasing throughput, retrofitting of the base case process may be required.  Results 

indicate that added costs for retrofitting the plant to accommodate the necessary added 

pretreatment units as well as increase in the flowrate may be required.  These results can 

be used to determine an optimum level of flexibility by comparing the cost of flexibility 

versus the added values of producing more biofuel.  It is important to note that the utility 

of the flexibility formulation is not limited to the example provided.  Numerous other 

scenarios exist for issues pertaining to the design of a flexible multi-feedstock 

biorefinery (i.e. minimizing the cost of building a grassroots facility).  The formulation 

is generalized enough for broad application.  In developing a flexible multi-feedstock 

process, various aspects of the process design must be taken into consideration, 

including the design of various process units and equipment.  One such important design 

aspect is the design of heat exchange networks within the multi-feedstock process. 

 With focus on energy efficiency, a systematic procedure was developed for 

addressing the problem of designing a common heat exchange network for a multi-

feedstock biodiesel production facility.  The formulation is an extension of the multi-

period heat exchange network problem.  To demonstrate the utility of the formulation, a 

detailed simulation study was carried out for each feedstock type and throughput to 
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determine the process performance and the heating and cooling requirements.  Minimum 

heating and cooling utility requirements were determined for each scenario and then 

used to develop and solve a multi-period mixed-integer linear program.  A common 

structure was generated that will minimize the number of heat exchangers while 

satisfying minimum heat and cooling utility requirements for each scenario.  Soybean 

oil, palm oil and algal oil were simulated and incorporated into a three-feedstock 

biodiesel facility in order to demonstrate the use of the flexible heat exchange network 

formulation and methods.   

 

8.1 Recommendations for Future Work 
 

The following topics are recommended for future work: 

• Integration of process design and operation for biorefineries 

• Combing the flexible design problem with the scheduling and operating problem.  The 

flexible design problem is more or less one that can be independent of scheduling but 

that would benefit from scheduling.  Numerous works deal with and focus on scheduling 

issues for chemical processes (including the biodiesel process and the biorefinery).  

Fewer attempts have been made at addressing the flexible design problem.  It would be 

of benefit to develop systematic procedure for incorporating scheduling and operating 

formulation into the flexible design problem. 

• Development of procedures for designing combined heat and power for multi-

feedstock biorefinereis. This will be an extension of the heat integration work developed 
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in this dissertation and will include steam systems that will serve to provide heating and 

turbine systems to provide power. 

• Design under uncertainty:  For example work investigating how to deal with design 

when there are fluctuations in feedstock cost and selling price of products. 

• Incorporation of Life Cycle Analysis into Design: This will enable global assessment 

of various biofuel production pathways and impact on land and global climatic issues. 
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NOMENCLATURE 

 

 

Description of symbols and acronyms in alphabetical order 

 
AEGL    Measure of toxicity 

ai,j    Weighting factor for safety index equation 

cmA    Flowrate of input stream mc 

imA    Flowrate of input stream mi 

maxmin ,
cc mm AA    Minimum and maximum flowrate for the mc

th input to common 

process unit c, respectively 

pmA    Flowrate of input stream mp 

maxmin ,
pp mm AA    Minimum and maximum flowrate for the mp

th input to 

pretreatment unit p, respectively 

ASPEN   A type of simulation software for synthesizing chemical processes 

ASPEN ICARUS  A type of simulation software for estimating economics of a 

process 

ASPEN PLUS  A type of simulation software for synthesizing chemical processes 

(here FFA pretreatment and transesterification) 

B100    Biodiesel that is 100% biodiesel and 0% petroleum diesel; 

essentially, non-blended biodiesel 
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Description of symbols and acronyms in alphabetical order (continued) 

 
B20    Biodiesel blend that is 20% biodiesel 

B5    Biodiesel blend that is 5% biodiesel 

B6    Biodiesel blend that is 6% biodiesel 

BE   Breakeven point 

cnB    Flowrate of output stream nc 

inB    Flowrate of output stream ni 

pnB    Flowrate of output stream np 

smn cp
b ,,   Assigned from source np to destination mc for scenario s 

smn pp
b ,,   Flowrate from source np to destination mp for scenario s 

BP    Boiling point of chemical (in Kelvin) 

BX   Notation for biodiesel blends where B represents biodiesel and X 

represents the percentage of biodiesel in the blend 

C   A set of common process units 

c   Index for common process units 

CN   Cetane number; biodiesel property that is a measure of ignition 

quality 

CP   Cloud point; a fuel property for biodiesel that is an indication of 

likelihood of gelling 

CS   A set of cold streams 
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Description of symbols and acronyms in alphabetical order (continued) 

 

d
−    Design vector 

cd
−

   Design vector for common process units 

maxmin , cc dd    Minimum and maximum vectors describing the design variables 

of unit c, respectively 

scd ,    Vectors describing the design variables of unit c for scenario s 

pd
−

   Design vector for pretreatment units 

maxmin , pp dd   Minimum and maximum vectors describing the design variables 

of unit p, respectively 

spd ,    Vectors describing the design variables of unit p for scenario s  

Eh,k,v   Number of heat exchangers  

ERPG    Measure of toxicity 

EXCEL  Microsoft brand software for creating spreadsheets 

f   Index for feedstock alternatives 

FAME   Fatty Acid Methyl Esters 

FCI   Fixed capital cost 

FFA    Free fatty acid 

HYSIS    A type of simulation software for synthesizing chemical 

processes 

g    A function designated for inequality constraints 
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Description of symbols and acronyms in alphabetical order (continued) 

 
GHG   Greenhouse Gas 

H    A function designated for equality constraints (section 6) 

h   Index to represent hot streams (section 7) 

HEN   Heat exchange network 

HS   A set of hot stream loads 

I   A set of intermediate streams that are redirected back into the 

process 

i    Index for intermediate streams that are redirected back into the 

process (section 6) 

i   Index corresponding to chemical in sludge safety analysis (section 

5) 

ICARUS  A type of simulation software for estimating economics of a 

process; software used to generate economic analysis information 

for ASPEN Plus simulation results 

ICIS   Source for obtaining prices of chemicals 

IDLH    Measure of toxicity 

∆Ij    Weighting factor for each category in sludge safety analysis 

INPUTc   The set of input streams for common process unit, c 

INPUTp   The set of input streams for pretreatment unit, p 

ISIS   Software for constructing molecules for export into ASPEN 
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Description of symbols and acronyms in alphabetical order (continued) 

 
j   Ranking category in sludge safety analysis (i.e. j = 1 for LC50, j=2 

for VD, j=3 for Tf, j=4 for Pf) 

CP
siJ ,     Flowrate of the ith intermediate stream from the NCP common 

process units for scenario s 

sinc
j ,,     Flowrate assigned from output stream nc to the ith intermediate 

stream for scenario s 

sinc
j ,,    Flowrate assigned from source nc to the ith intermediate stream for 

scenario s 

smn ic
j ,,    Flowrate assigned from source nc to destination mi for scenario s 

smn ci
j ,,    Flowrate assigned from intermediate source ni to destination mc 

for scenario s 

k   Index for process step in sludge safety analysis (section 5) 

k   Index to represent cold streams for CS (section 7) 

L   A set of waste discharges 

l   Index for waste discharges 

LCA   Life cycle analysis 

LC50    Lethal concentration to kill 50% of population 

LINGO  Optimization software program 

 



 

   

182 

Description of symbols and acronyms in alphabetical order (continued) 

 
CP

slL ,     Flowrate of the lth waste stream from the NCP common process 

units for scenario s 

PT
slL ,    Flowrate of the lth waste stream from the NPT pretreatment units 

for scenario s 

slL ,     Flowrate of the lth waste stream out of the process for scenario s 

slnc
l ,,     Flowrate assigned from output stream nc to the lth waste stream for 

scenario s 

slnp
l ,,    Flowrate from np to the lth waste stream for scenario s 

LP   Linear programming  

mc    Index to represent input streams for common process unit, c 

mi   Index to represent input stream for the ‘intermediate block’ 

MILP    Mixed integer linear program 

MM    Million 

MMGPY   Million gallons per year 

MOP    Maximum operating pressure 

MOT    Maximum operating temperature (in Kelvin) 

mp    Index to represent input streams for pretreatment unit, p 

MSDS    Material safety data sheet 

nc   Index to represent output streams for common process unit, c 



 

   

183 

Description of symbols and acronyms in alphabetical order (continued) 

 
Nc

in    Number of input streams for common process unit, c 

Ncomponents   Number of components, x 

Nc
out    Number of output streams for common process unit, c 

NCP    Number of common process units, c 

NCS    Number of hot streams for CS 

Net_Gen c,x,s   Net generation of component x in common process unit c for 

scenario s 

Net_Gen i,x,s   Net generation of component x in intermediate stream i for 

scenario s 

Net_Gen p,x,s   Net generation of component x in pretreatment unit p for scenario 

s 

Nf    Number of feedstock alternatives, f 

NHS    Number of hot streams for HS 

NI    Number of intermediate streams that are redirected back into the 

process 

ni    Index to represent output stream for the ‘intermediate block’ 

NL    Number of waste discharges 

NOX    Nitrogen oxide emissions that are greenhouse gases to the 

environment 

np    Index to represent output streams for pretreatment unit, p 

Np
in    Number of input streams for pretreatment unit, p 
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Description of symbols and acronyms in alphabetical order (continued) 

 
Np

out    Number of output streams for pretreatment unit, p 

NPT    Number of pretreatment units, p 

Nr    Number of product discharges, r 

Ns      Number of scenarios, s 

o
−    Operating vector 

co
−

   Operating vector for common process units 

maxmin , cc oo    Minimum and maximum vectors describing the operating 

variables of unit c, respectively 

oc,s     Vectors describing the operating variables of unit c for scenario s 

−

po    Operating vector for pretreatment units 

maxmin , pp oo    Minimum and maximum vectors describing the operating 

variables of unit p, respectively 

op,s    Vectors describing the operating variables of unit p for scenario s 

OUTPUTc   The set of output streams for common process unit, c 

OUTPUTp   The set of output streams for pretreatment unit, p 

P    Profit (section 4) 

P    A set of pretreatment units (section 6) 

p   Index for pretreatment units 

Pf    Pressure factor (unit less) 
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Description of symbols and acronyms in alphabetical order (continued) 

 
PFAD    Palm fatty acid distillate 

PP    Payback period (section 4) 

PP    Pour point; a fuel property for biodiesel that is an indication of 

likelihood of gelling (section 2) 

QC
k,y,s    Total heat load for the kth cold stream in interval y for scenario s 

QH
h,y,s    Total heat load for the hth hot stream in interval y for scenario s 

Qh,k,y,s   Heat exchanged between the hth hot stream and the kth cold stream 

in interval y for scenario s 

R    A set of product discharges 

r    Index for product discharges 

RB    Retrofitting budget 

srnc
r ,,     Flowrate assigned from output stream nc to the rth product stream 

for scenario s 

srn p
r ,,

    Flowrate assigned from np to the rth product stream for scenario s 

ROI    Return on investment 

srR ,    Flowrate of the rth product out of the process 

CP
srR ,     Total flowrate of the rth product from the NCP common process 

units in scenario s 

Demand
srR ,    Demand for product r for scenario s 
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Description of symbols and acronyms in alphabetical order (continued) 

 
PT

srR ,     Total flowrate of the rth product from the NPT pretreatment units in 

scenario s 

s    Index for a given scenario for a certain feedstock 

SCENARIOS   A set of scenarios 

SI    Safety index 

SIi,k    Safety index for chemical i in process k 

SN    Subnetworks; one above the pinch and one below the pinch 

SNv    Subnetwork for index v  

SRE    Safety ranking equation 

SRM    Safety ranking matrix 

STP   Standard temperature and pressure 

TDC   Ttotal direct cost 

Tf    Temperature factor (unit less) 

TG    Triglyceride 

cmT    Temperature of process input stream mc 

cnT    Temperature of process output stream nc 

ULSD    Ultra low sulfur diesel 

WCO    Waste cooking oil 

CP
sxiW ,,     Composition of component x in the ith intermediate stream from 

the NCP common process units for scenario s 
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Description of symbols and acronyms in alphabetical order (continued) 

 
sxlW ,,     Composition of component x in the lth waste stream out of the 

process for scenario s 

sxrW ,,    Composition of component x in the rth product stream out of the 

process for scenario s 

CP
sxrW ,,     Composition of component x in the rth product stream coming 

from the NCP common process units in scenario s 

PT
sxrW ,,    Composition of component x in the rth product stream coming 

from the NPT pretreatment units for scenario s 

CP
sxlW ,,    Composition of component x in the lth waste stream coming from 

the NCP common process units for scenario s 

PT
sxlW ,,     Composition of component x in the lth waste stream coming from 

the NPT pretreatment units for scenario s 

Uh,k,y,s    Upper bound on the exchangeable heat between streams h and k in 

SNv 

v    Index for subnetworks defined as 1 for above pinch and 2 for 

below pinch 

VD    Vapor density 

VP    Vapor pressure (in atm) 

VPMOT   Vapor pressure at maximum operating temperature  
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Description of symbols and acronyms in alphabetical order (continued) 

 
VPST    Vapor pressure at standard temperature 

y    Intervals over which residual heat exchange loads are passed 

x,mc
Y    Composition of component x in input stream mc 

max
,

min
, , xmxm cc

YY    Minimum and maximum composition of component x for the mc
th 

input to pretreatment unit c, respectively 

x,mi
Y    Composition of component x in input stream mi 

x,mp
Y    Composition of component x in input stream mp  

max
,

min
, , xmxm pp

YY    Minimum and maximum composition of component x for the mp
th 

input to pretreatment unit p, respectively 

x,nc
Z    Composition of component x in output stream nc 

x,mi
Z    Composition of component x in output stream mi 

x,np
Z    Composition of component x in output stream np 
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Description of Greek symbols and acronyms in alphabetical order 

 
δh,y,s    Residual heat exchange loads (δh,y,s) for hot streams transferred to 

cold streams for each scenario 

syh ,1, −δ    Residuals from previous intervals 

ψ    A variable used in the objective function; a function 

tcosψ    A scalar cost variable 
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APPENDIX A 
 

 

Potential Biodiesel Feedstocks 
 

Virgin Plant-based 
1.) soy 
2.) canola 
3.) palm 
4.) rapeseed 
5.) corn 
6.) sunflower 
7.) peanut 
8.) olive 
9.) castor oil 

10.) cottonseed 
11.) jatropha 
12.) camelina 
13.) tallow 
14.) safflower 
15.) sesame 
16.) babassu 
17.) coconut 
18.) jojoba 
19.) kola nut 
20.) linseed 
21.) mustard 
22.) tung  
23.) algae 
24.) vegetable oil soapstock 
25.) partially hydrogenated methyl esters of soybean oil (PHSME) 

Virgin Animal-based 
26.) virgin animal renderings 
27.) fat from meat and bone meal (MBM) 

Recycled Feedstocks 
28.) Waste cooking oil (yellow and brown grease) 
29.) Tall oil (Turkey – by-product of paper pulp manufacturing) 
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APPENDIX B 

 

 

Stoichiometry 

 

Excess Methanol 

In practice, an excess of alcohol in needed to ensure that the reaction goes to 

completion.  As a result of numerous experiments, many sources agree on the 

alcohol:triglyceride ratio of 6:1, which relates to 100% excess. 

 

Oil     + 6 MeOH � Glycerol + 3 Biodiesel + 3 MeOH 

1 mol + 6 mol     � 1mol        + 3 mol          + 3 mol 

Oil: MWoil g/mol 

MeOH: 32.04 g/mol 

Glycerol: 92.10g/mol 

Biodiesel: MWbiodiesel g/mol 

Excess MeOH: 32.04g/mol 

 

The molecular weights of methanol and glycerol are fixed.  It is necessary to calculate 

the molecular weight of each oil and the molecular weight of the biodiesel produced.  
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Once the molecular weights of the oil and biodiesel are calculated, the mass of each 

component can be calculated. 

 

In order to calculate the molecular weights of oil and biodiesel, the fatty acid 

composition of the oils must be known.  Fatty acid composition of oils is readily 

available in literature.  For the calculation of the molecular weights, it is assumed that 

the triglycerides are in the same proportion as the fatty acids.  To calculate the molecular 

weight of the oil, multiply the molecular weight of each component triglyceride by the 

weight fraction of the corresponding fatty acids, take the sum and divide by the sum of 

the weight fractions.  This equation is written below. 

 

�

�

=

== n

i
iFA

n

i
iFAidetriglyceri

oil

WF

WFMW
MW

1
,

1
,, )*(

,        (A.1) 

where WFFA,i is the weight fraction of each individual fatty acid in the appropriate oil, 

MWoil is the molecular weight of oil, MWtriglyceride,i is the molecular weight of a given 

triglyceride in the oil. 

Similarly, to calculate the molecular weight of the biodiesel, multiply the 

molecular weight of each component methyl ester by the weight fraction, take the sum 

and divide by the sum of the weight fractions.  The resulting equation is written below. 
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where WFFA,i is the weight fraction of each individual fatty acid in the appropriate oil, 

MWbiodiesel is the molecular weight of biodiesel, MWmethyl esters,i is the molecular weight of 

a given methyl ester in the biodiesel. 

 

If: 

MO= the mass of the oil 

MMe = the mass of the methanol 

MG = the mass of the glycerol 

MBD = the mass of the biodiesel 

MEM = the mass of the excess methanol, 

then a mass calculation for the transesterification reaction with excess methanol would 

look like, 

 

Oil                 + 6 MeOH                   � Glycerol        + 3 Biodiesel     + 3 MeOH 

1mol* MWoil g/mol+6mol*32.04g/mol�1mol*92.10g/mol+ 3mol* MWbiodieselg/mol + 3mol*32.04g/mol 

 

MWoil = molecular weight of oil 

MWbiodiesel = molecular weight of biodiesel 
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Mass: 

MO g oil + MMe g methanol � MG g glycerol + MBD g biodiesel + MEM g excess methanol 

 

MO = 1mol* MWoil g/mol oil = MWoil     g oil 

MMe = 6mol*32.04g/mol =192.24 g methanol 

MG = 1mol*92.10g/mol = 92.10 g glycerol 

MBD = 3mol* MWbiodiesel g/mol biodiesel = 3* MWbiodiesel g biodiesel 

MEM = 3mol*32.04g/mol = 96.12 g excess oil 

 

Another way to calculate the molecular weight of the biodiesel for validation of the 

Equation A.2 was: 

 

MWbiodiesel = 
mol

gMMMM EMGMeO

3
][ −−+

    (A.3) 

 

 

 
 



 

   

212 

VITA 
 

 
Grace Amarachukwu Pokoo-Aikins was born in Benin City, Nigeria but was 

raised in Dallas, TX where she attended Talented and Gifted Magnet High School (in 

Townview Magnet Center).  She received a Bachelor of Arts in biology from Austin 

College, Sherman, TX in May 2002.  She joined the graduate program at the Department 

of Chemical Engineering in Texas A&M University in August 2003 and completed her 

Master’s degree in August 2006 and her Ph.D. in August of 2010.  During her time at 

Texas A&M University she was a Graduate Diversity Fellow, and a Texas Space Grant 

Consortium (TSGC) Fellow.  While at Texas A&M University, she was involved with 

process systems related projects with NASA and Tuskegee University, biofuels related 

projects and research pertaining to the development of the integrated biorefinery, namely 

biodiesel processes involving alternative feedstock, research related to chemical safety 

and safety metrics, and research pertaining to process optimization and integration. 

 

Her permanent contact details are: 

Grace A. Pokoo-Aikins 

3122 TAMU, Jack E. Brown Chemical Engineering Building 

Department of Chemical Engineering, Texas A&M University 

College Station, TX 77843 

Grace_ChemE_Ag_2006@AggieNetwork.com 


