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ABSTRACT

Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method
Based on a Simplified Strain Gradient Elasticity Theory. (May 2010)
Hemei Ma, B.Sc., Tongji University, Shanghai, China;
M.Sc., Tongji University, Shanghai, China

Chair of Advisory Committee: Dr. Xin-Lin Gao

Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic
elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an
eigenstrain gradient are analytically solved. The solutions are based on a simplified strain
gradient elasticity theory (SSGET) that includes one material length scale parameter in
addition to two classical elastic constants.

For the infinite-domain inclusion problem, the Eshelby tensor is derived in a
general form by using the Green’s function in the SSGET. This Eshelby tensor captures
the inclusion size effect and recovers the classical Eshelby tensor when the strain gradient
effect is ignored. By applying the general form, the explicit expressions of the Eshelby
tensor for the special cases of a spherical inclusion, a cylindrical inclusion of infinite
length and an ellipsoidal inclusion are obtained. Also, the volume average of the new
Eshelby tensor over the inclusion in each case is analytically derived. It is quantitatively
shown that the new Eshelby tensor and its average can explain the inclusion size effect,
unlike its counterpart based on classical elasticity.

To solve the finite-domain inclusion problem, an extended Betti’s reciprocal



theorem and an extended Somigliana’s identity based on the SSGET are proposed and
utilized. The solution for the disturbed displacement field incorporates the boundary
effect and recovers that for the infinite-domain inclusion problem. The problem of a
spherical inclusion embedded concentrically in a finite spherical body is analytically
solved by applying the general solution, with the Eshelby tensor and its volume average
obtained in closed forms. It is demonstrated through numerical results that the newly
obtained Eshelby tensor can capture the inclusion size and boundary effects, unlike
existing ones.

Finally, a homogenization method is developed to predict the effective elastic
properties of a heterogeneous material using the SSGET. An effective elastic stiffness
tensor is analytically derived for the heterogeneous material by applying the Mori-Tanaka
and Eshelby’s equivalent inclusion methods. This tensor depends on the inhomogeneity
size, unlike what is predicted by existing homogenization methods based on classical
elasticity. Numerical results for a two-phase composite reveal that the composite

becomes stiffer when the inhomogeneities get smaller.
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CHAPTER1

INTRODUCION

1.1. Background

Composites with complex microstructures are finding important applications in
many engineering designs and products. For example, polymer matrix composites
reinforced by various hard particles and short fibers (schematically shown in Fig. 1.1) are
now widely used in the aerospace and automobile industries. These composites can be
regarded as an assemblage of “pure” phases, which have significantly different physical
properties and remain separate and distinct on a macroscopic level within the finished
structure. For example, a polymer-based composite material reinforced with metal particles
consists of two distinct phases, namely, the polymer matrix and the metal particles. To
effectively analyze the macroscopic behavior of a composite, a heterogeneous material
model including all individual phases in the composite is not practically favorable because
of computational difficulties involved in the simulation process. For instance, an extremely
fine mesh may have to be used in order to incorporate microscopic details of the composite,
which could be prohibitively expensive in computation. In addition, the exact spatial
distribution of the individual phases is far from ascertained due to the high randomness in
the fabrication of the composite. Hence, an equivalent material model with homogenized or
effective properties is desirable in the macroscopic analysis of the overall response of the
composite, which has motivated the development of Micromechanics. Micromechanics is a

branch of solid mechanics that aims to predict the macroscopic mechanical behavior of

This dissertation follows the style of Journal of the Mechanics and Physics of Solids.
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materials based on the understanding of their microstructures (e.g., Mura, 1987; Qu and
Cherkaoui, 2006; Nemat-Nasser and Hori, 1999; Li and Wang, 2008). It studies composites
or heterogeneous materials by incorporating microstructures of individual phases that
constitute these materials, and uses suitable homogenization methods to determine the

effective properties that can be applied directly in the macroscale analysis.

~

Fig.1.1. Macroscopic composite material and its microscopic structures.

The beginning of micromechanics may be traced back to Eshelby’s seminal study in
the 1950s (Eshelby, 1957, 1959). On the microscopic scale, the problem of inhomogeneities,
whose material properties are different from their surrounding matrix, is encountered. This
problem was not analytically solved until Eshelby proposed an eigenstrain method for an
inclusion problem, which can be used to simulate the inhomogeneity problem. According to

Eshelby’s original work, an inclusion is defined as a subdomain Q, in an infinite domain
Q_, where a stress-free eigenstrain € is prescribed in the inclusionQ, and vanishes outside
(see Fig. 1.2a). The material property, denoted by C™in Fig. 1.2a, is the same in Q,and
Q_—-Q,. In a similar way, an inhomogeneity is defined as a subdomain Qin an infinite
domain Q_ (see Fig.1.2b), where the material properties in Q, and in Q_—€,, denoted

respectively by C" andC™ in Fig.1.2b, are different. From the above definitions, it is clear
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that in an inclusion problem, an eigenstrain is distributed in a homogeneous material, while
in an inhomogeneity problem, a different material is embedded in a homogeneous matrix,
leading to a heterogeneous (composite) material. The strain and stress fields will be

disturbed due to the existence of the eigenstrain or the inhomogeneity.

Fig.1.2a. Inclusion Problem. Fig. 1.2b. Inhomogeneity problem.

Eshelby showed that if a uniform eigenstrain € is prescribed inside an ellipsoidal

inclusion, then the disturbed strain €° is related to " by (Eshelby, 1957)

€ =Suu (1.1)

)

where S, is a fourth-order tensor now known as the Eshelby tensor, which provides a
direct link between the disturbed strain in €2 and the stress-free uniform transformation
strain (eigenstrain) in Q,. The analytical expressions of S, for an ellipsoidal inclusion

have been provided in Eshelby (1957, 1959) and subsequent studies (e.g., Mura, 1987; Ju

and Sun, 1999; Li and Wang, 2008). By adjusting the value of &, the stress and the strain
fields in the inclusion and in the inhomogeneity can be made equivalent. As a result, the
inhomogeneity problem, encountered in the composite analysis, can be solved once the
Eshelby tensor for the inclusion problem is obtained. This is known as the Eshelby’s

equivalent eigenstrain method. With the knowledge of the mechanical field within each
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constituent of the heterogeneous material, it is now possible to determine the overall or
effective mechanical properties based on some averaging theorems. Clearly, the Eshelby

tensor S;;, plays a key role in such homogenization analysis, and the development of new

homogenization methods will hinge on the availability of new expressions of S, .

1.2. Motivation

Despite the significance of the Eshelby tensor S, in Micromechanics, it is deduced

by Eshelby and most subsequent researchers based on classical elasticity and depends only
on the elastic constants and the inclusion shape (e.g., the aspect ratios for an ellipsoidal
inclusion). As a result, the Eshelby tensor and the subsequent homogenization methods
cannot capture the size effect exhibited by particle-matrix composites at the micro- or nano-
scale (e.g., Vollenberg and Heikens, 1989; Vollenberg, et al., 1989; Lloyd, 1994; Kouzeli
and Mortensen, 2002). This has motivated the studies on Eshelby-type inclusion problems
using higher-order elasticity theories, which, unlike classical -elasticity, contain
microstructure-dependent material length scale parameters and are therefore capable of
explaining the size effect.

The higher-order elasticity theories that have been used in studying the Eshelby
inclusion problems include a micropolar theory (Cheng and He, 1995, 1997; Ma and Hu,
2006), a microstretch theory (Kiris and Inan, 2006; Ma and Hu, 2007), a modified couple
stress theory (Zheng and Zhao, 2004), and a strain gradient elasticity theory (Zhang and
Sharma, 2005). However, most of the higher-order elasticity theories used in these studies
involve at least four elastic constants, with two or more being the material length scale
parameters. Due to the difficulties in determining these microstructure-dependent length

scale parameters (e.g., Lakes, 1995; Lam et al., 2003; Maranganti and Sharma, 2007) and in
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dealing with the fourth-order Eshelby tensor, it is very desirable to study the Eshelby

inclusion problem using a higher-order elasticity theory containing only one material length
scale parameter in addition to the two classical elastic constants. Among the afore-
mentioned works, the one reported in Zheng and Zhao (2004) appears to be the only study
that involves just one additional length scale parameter, which is based on a couple stress
theory modified from the classical couple stress theory (Koiter, 1964) that contains four
elastic constants in the constitutive equations but three in the displacement-equations of
equilibrium. There is still a lack of studies on the Eshelby-type inclusion problems based on
strain gradient elasticity theories involving only one additional elastic constant. The
objective of this dissertation is therefore to provide a systematic study of various Eshelby-
type inclusion problems involving a spherical, cylindrical or ellipsoidal inclusion embedded
in an infinite or a finite homogeneous isotropic elastic body, applying a simpler one-length-
scale-parameter strain gradient theory. It will be based on a simplified strain gradient theory
(SSGET) elaborated by Gao and Park (2007), which involves only one material length
parameter in addition to two classical elastic constants. The resulting non-classical Eshelby
tensors based on the SSGET will then be utilized to develop new homogenization methods

for analyzing heterogeneous composites.

1.3. Organization

The rest of this dissertation is organized as follows.

In Chapter II, the Green’s function in the SSGET is first obtained in terms of
elementary functions by applying Fourier transforms, which reduces to the Green’s function
in classical elasticity when the strain gradient effect is not considered. The Eshelby tensor is

then derived in a general form for an inclusion of arbitrary shape, which consists of a
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classical part and a gradient part. The former depends on two classical elastic constants only,
while the latter depends on the length scale parameter additionally, thereby enabling the
interpretation of the size effect.

In Chapter III and Chapter IV, the explicit expressions of the Eshelby tensors for a
spherical and for a cylindrical inclusion are obtained, respectively, by applying the general
form of the Eshelby tenor derived in Chapter II. Both of the non-classical Eshelby tensors
varies with positions even inside the inclusions and captures the inclusion-size dependence,
unlike the classical Eshelby tensors. The volume averages of these newly derived Eshelby
tensors over the spherical and the cylindrical inclusions are obtained in closed forms, to
facilitate the further homogenization analyses of particle-reinforced and fiber-reinforced
composites.

In Chaper 5, the problem of an ellipsoidal inclusion (with three distinct semi-axes)
in an infinite homogeneous isotropic elastic material is analytically solved by using the
general form of the Eshelby tensor in the SSGET. Analytical expressions for the Eshelby
tensor are derived for both the interior and exterior cases in terms of two line integrals with
an unbounded upper limit and two surface integrals over a unit sphere. The Eshelby tensors
for the spherical and cylindrical inclusion problems based on the SSGET are included in the
current Eshelby tensor as two limiting cases. The volume average of the new Eshelby
tensor over the ellipsoidal inclusion needed in homogenization analyses is also analytically
obtained in this chapter.

In Chapter VI, a solution for the Eshelby-type inclusion problem of a finite
homogeneous isotropic elastic body containing an inclusion prescribed with a uniform
eigenstrain and a uniform eigenstrain gradient is derived in a general form using the SSGET.

An extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the
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SSGET are proposed and utilized to solve the finite-domain inclusion problem. The
solution for the disturbed displacement field is expressed in terms of the Green’s function
for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral
term and a surface integral term. The former is the same as that for the infinite-domain
inclusion problem based on the SSGET, while the latter represents the boundary effect. The
solution reduces to that of the infinite-domain inclusion problem when the boundary effect
is not considered. The problem of a spherical inclusion embedded concentrically in a finite
spherical elastic body is analytically solved by applying the general solution, with the
Eshelby tensor and its volume average obtained in closed forms.

A homogenization method is developed in Chapter VII to predict the effective
elastic properties of a heterogeneous material in the framework of the SSGET. At the
macroscopic scale, the heterogeneous material is modeled as a homogeneous strain-
gradient medium whose behavior can be characterized by the constitutive relations in the
SSGET. The effective elastic properties of the heterogeneous material are found to be
dependent not only on the volume fractions and shapes of the inhomogeneities but also on
the inhomogeneity sizes, unlike what is predicted by the homogenization method based on
classical elasticity. The effective elastic stiffness tensor is analytically obtained by using the

Mori-Tanaka method and Eshelby’s equivalent inclusion method.



CHAPTER 11

GREEN’S FUNCTION AND ESHELBY

TENSOR BASED ON A SIMPLIFIED STRAIN

GRADIENT ELASTICITY THEORY

2.1. Introduction

In this chapter, a simplified strain gradient elasticity theory (SSGET) involving only
one additional material length scale parameter (Altan and Aifantis, 1997; Gao and Park,
2007) is used to analytically solve the Eshelby-type problem of an infinite homogeneous
isotropic elastic medium containing an inclusion of arbitrary shape. A variationally
consistent formulation of the SSGET was provided in Gao and Park (2007). This simplified
strain gradient elasticity theory has been applied to solve a number of problems (e.g.,
Lazopoulos, 2004; Li et al., 2004; Gao and Park, 2007; Gao et al., 2009).

The rest of this chapter is organized as follows. In Section 2.2, the simplified strain
gradient elasticity theory (SSGET) is fist reviewed. It is followed by Section 2.3 where a
three-dimensional (3-D) Green’s function in the SSGET is obtained from directly solving
the governing equations using Fourier transforms. Based on this Green’s function obtained,
the Eshelby tensor is derived in Section 2.4 in a general form for a 3-D inclusion of
arbitrary shape, which consists of a classical part and a gradient part. The former contains
only one classical elastic constant (Poisson’s ratio), while the latter includes the length scale

parameter additionally. This chapter concludes with a summary in Section 2.5.



2.2. Simplified Strain Gradient Elasticity Theory (SSGET)

As reviewed in Gao and Ma (2010a), the SSGET is the simplest strain gradient
elasticity theory evolving from Mindlin’s pioneering work (Mindlin, 1964, 1965; Mindlin
and Eshel, 1968). It is also known as the first gradient elasticity theory of Helmholtz type
(e.g., Lazar et al., 2005) and the dipolar gradient elasticity theory (e.g., Georgiadis et al.,
2004). The SSGET has been well studied and successfully used to solve a number of
important problems on dislocations (e.g., Lazar and Maugin, 2005), cracking (e.g., Altan
and Aifantis, 1992; Gourgiotis and Georgiadis, 2009), wave dispersion (e.g., Georgiadis et
al., 2004), inclusions (Gao and Ma, 2009, 2010a, 2010b; Ma and Gao, 2009), beams (e.g.,
Giannakopoulos and Stamoulis, 2007), plates (e.g., Lazopoulos, 2004), and thick-walled
shells (Gao and Park, 2007; Gao et al., 2009).

However, for a better understanding of this relatively recent SSGET, further
elaborations on the aspects of the theory interpretation and length scale parameter
determination are still warranted. There has been a slow embracement of strain gradient
elasticity and plasticity theories, as indicated earlier by Fleck and Hutchinson (1997) for
strain gradient elasticity theories and very recently by Evans and Hutchinson (2009) for
strain gradient plasticity theories. One reason for this slow embracement is the lack of
clarity in the theory interpretation, and another is the ambiguity in determining length scale
parameters through curve fitting (Evans and Hutchinson, 2009). These apply to the SSGET
and therefore will be discussed further below.

As stated in Gao and Park (2007), elements of the SSGET were first suggested by
Altan and Aifantis (1992, 1997) by simplifying Mindlin’s first strain gradient theory in
linear elasticity (Mindlin and Eshel, 1968) without derivations. The strain energy density

function, w, employed by Mindlin and Eshel (1968) for an isotropic linearly elastic material
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has the general form:
w=w(g;,&; ;)
(2.1)

1
=—A&,E, + HEE; +CE &y i T CE Ey  F CELE

S ACiE +CoEy1Eyh T CsE i

Ji sk

where ¢g; 1s the infinitesimal strain, 4 and u are the Lamé constants in classical elasticity,
and c;—cs are the five additional material constants (called strain gradient coefficients)

having the dimension of force. By taking
1
¢ =c,=¢;=0, ¢ zaci, c, =CU, (2.2)
Eq. (2.1) becomes
1 1
w=w(E;, ;)= Exlgﬁgﬂ + g e, +c E/Igﬁ,kgjjyk +HE 5k | (2.3)

where ¢, as the only remaining strain gradient coefficient, has the dimension of length

squared. Eq. (2.3) can also be written as (Gao and Park, 2007)
1
w=w(E;,6;,) = E(Tijgij T MK ), (2.4)

where the Cauchy stress 7; (energetically conjugated to ¢;), the double stress sy
(energetically conjugated to x;;), the infinitesimal strain &;, and the strain gradient x;; are,
respectively, defined by

7, =Cyéy = A0, +2ue

i Mg = LzCijmnKmnk =L (AKy Oy + 21Ky, ),

& = %(”f,j + ”_,-,,-l Kijk = €jx = %(ui,jk + ”.;,ik) (2.5a-d)

where u; 1s the displacement and Jj 1s the Kronecker delta. In Egs. (2.5a,b), L is the material
length scale parameter (with L”= ¢, ¢ being the strain gradient coefficient introduced in Eq.

(2.3)) and Cj, is the elastic stiffness tensor for isotropic elastic materials given by
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Cyy = 40,0, + 11(6,6,, + 6,0, . (2.6)

The simplified strain energy density function in Eq. (2.3) was first suggested in
Altan and Aifantis (1997) without reasoning. Following Lazar and Maugin (2005), it can
now be understood that this simplified strain energy density function is physical and

exhibits the symmetry both in 7, and &;and in g, and &, for the linearly elastic material,

as shown in Eq. (2.4). Based on Eq. (2.3), a variationally consistent formulation of the
SSGET has been provided in Gao and Park (2007), leading to the simultaneous
determination of the governing equations and the complete boundary conditions. However,
the form of the strain energy density function w given in Eq. (2.3) or Eq. (2.1) can be
discussed further next.

Physically, for linearly elastic materials, the dependence of w on

Ve=¢, e, ®e, ®e, included in Eq. (2.1) arises from the non-local nature of atomic forces,

which was first studied by Kroner (1963), where the connection between the lattice
curvature and the double stress was explored and the necessity of including the strain
gradient effect for some elastic materials was demonstrated. This was pointed out earlier by
Nix and Gao (1998). The mathematical framework that led to Mindlin’s strain energy
density function in Eq. (2.1) was established by Toupin (1962) and Green and Rivlin
(1964a, b).

For plastically deformable materials, the strain gradient effect as reflected in Eq.
(2.1) is associated with geometrically necessary dislocations, which is in addition to the
homogeneous plastic strain arising from statistically stored dislocations (e.g., Ashby, 1970;
Fleck et al., 1994; Nix and Gao, 1998; Gao et al., 1999). As a result, the strain energy

density function given in Eq. (2.1) was adopted by Fleck and Hutchinson (1997) in
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developing their strain gradient plasticity theory for incompressible materials, where &, =0

and the first, fourth and fifth terms in Eq. (2.1) vanish, thereby leaving only three additional
constants ci, ¢4 and ¢s in the expression of w for the general case. These three constants can
be determined from fitting experimental data obtained in micro-torsion, micro-bending and
micro-indentation tests (e.g., Fleck and Hutchinson, 1997; Shi et al., 2000; Lam et al.,
2003).

The determination of the only material length scale parameter L involved in the
SSGET, which is introduced in Eq. (2.3) through ¢ = L?, has been discussed in a number of
publications. The most recent one is that by Gourgiotis and Georgiadis (2009), where it was
stated that the coefficient ¢ (and thus L) can be estimated from comparing the dispersion
curves of Rayleigh waves obtained using the strain gradient theory based on Eq. (2.3) and
those from lattice dynamics calculations, as was done in Georgiadis et al. (2004). This
approach was also used earlier by Altan and Aifantis (1992). Similar to that in the strain
gradient plasticity theory of Fleck and Hutchinson (1997) for determining c;, ¢4 and cs
mentioned above, the parameter L can also be estimated by fitting experimental data from
small-scale tests. This has been demonstrated by Giannakopoulos and Stamoulis (2007) by
fitting the strain gradient elasticity based analytical results for the normalized stiftness of a
cantilever beam to the experimental data obtained by Kakunai et al. (1985) using
heterodyne holographic interferometry. Efforts have also been made to estimate L by fitting
the measured data from bending and torsion tests of microstructured solids (including bones
and polymeric foams) that are elastically deformed (Aifantis, 1999, 2003). These reported
methods for determining the material length scale parameter L in the SSGET have been
elaborated by Lakes (1995) together with other methods in a broader context.

As shown in Gao and Park (2007), in the SSGET the equilibrium equations have the
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form:

o, +f=0, (2.7)

where f;is the body force, and oj; is the total stress, which is related to the Cauchy stress

through
0 =Ty — Uy i (2.8)

with the Cauchy stress 7; and the double stress i given in Eqgs. (2.5a-d) in terms of the

displacement u;.
Substituting Egs. (2.5a—d) and (2.8) into Eq. (2.7) yields the Navier-like

displacement equations of equilibrium in the SSGET as

(At )+ pa = L[ (A o+ pau |+ f,=0. (2.9)

,mm

Clearly, Eq. (2.9) reduces to the Navier equations in classical elasticity when L = 0 (i.e.,
when the strain gradient effect is not considered). Note that the standard index notation,
together with the Einstein summation convention, is used in Egs. (2.1)~2.9) and
throughout this dissertation, with each Latin index (subscript) ranging from 1 to 3 and each

Greek index (subscript) ranging from 1 to 2, unless otherwise stated.

2.3. Green’s Function Based on SSGET

The solution of Eq. (2.9) subject to the boundary conditions of u; and their
derivatives vanishing at infinity, provides the fundamental solution and Green’s function in
the SSGET, as will be shown next.

The 3-D Fourier transform of a sufficiently smooth function F(x) and its inverse can

be defined as
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FE) =] f:F(x)e-"é*dx, (2.10a)
F(x) = (271[)3 ” f:ﬁ(g)efﬁ"‘dz;, (2.10b)

where x is the position vector of a point in the 3-D physical space, § is the position vector
of the same point in the Fourier (transformed) space, i is the usual imaginary number with 72
=—1,and F (&) is the Fourier transform of F(x).
Suppose that u; are sufficiently differentiable and that u; and their derivatives vanish
at x| -o0. Then, applying Eq. (2.10a), the product rule and the divergence theorem gives
0,8 = [[ [ u,(xe=dx, ;@) =-EEi, @), @)= EEEERE).  (211)
Taking Fourier transforms on Eq. (2.9) and using Egs. (2.10a) and (2.11) will lead to
E(1+ LA+ 2088 + w8, NN = . 2.12)
where & E| 14 |= (cfkcfk )1/2 , and &’ =&, /£ are the components of the unit vector &° =&/&.
Eq. (2.12) gives a system of three algebraic equations to solve for the three unknowns i, .
This equation system can be readily solved to obtain
0, =G,®)f,®), (2.13a)
where éij (§) is the inverse of the coefficient matrix of #,(§) in Eq. (2.12) given by (see

Appendix A)

~ 1 1 0£0 1 0£0
Gy(é)_m{;(é‘y_é é:j )+/1+2/Jé:i éj:| (213b)

Taking inverse Fourier transforms on both sides of Eq. (2.13a) then yields, with the

help of the convolution theorem, the solution of Eq. (2.9) as

)= [[[G,x-y)f,wdy . (2.14)
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where Gj (x), as the inverse Fourier transform of GAU. (§) listed in Eq. (2.13b), is (see Eq.
(2.10b))

1

87’

G, =—|[[ G, @ . (2.15)

Eq. (2.14) gives the fundamental solution in the SSGET in terms of the Green’s
function Gj; (x) defined in Eq. (2.15). Note that the Green’s function G(x—y)1is a second-
order tensor. From Eq. (2.14), it is clear that its component G,(x—y) represents the

displacement component u; at point x in a 3-D infinite elastic body due to a unit
concentrated body force applied at point y in the body in the jth direction.

To evaluate the definite integral in Eq. (2.15), a convenient spherical coordinate

system (&, 6, @) in the transformed space is chosen such that the angle between x and & is 6,
with the direction of x being the axis where = 0. Then, it follows that &-x=¢&,x, = &cosé,
with x=|x |=(xx,)'?, and the volume element d&=¢&sin@d& dode . Substituting Eq.

(2.13b) into Eq. (2.15) yields

" 1 1 0 £0 1 0 £0 | iccosd .
.[0 {.[0 m{;(@ -G ¢ )+m§i ¢ }e"zx df}sm@d6’>d(p

) | 0£0 1 0 £0 = 1 i&cosd .
.[0 |:;(5lj _51' ng )+mgi ng :|d¢}(j0 We i d§j> sin 6.
(2.16)

G _ 1 27
==,

_ Ll
_87z3 0

From Eq. (2.13b) it is seen that G‘U (§)is an even function of & with G’U (€)= (A}y &), and
from Eq. (2.15) it then follows that G, (x) is also an even function of x with Gy(-x) =

Gji(x). Using this fact and the expression of Gj(x) in Eq. (2.16) gives

. 1 i&cos 6 1 o 1 i& cos O 7T |xcosd|/L
e dé=— e dé=—e , 2.17
jo 1+ L& d 2 Lo 1+ L2&° g 2L @17)
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where the second equality follows from the Euler formula, integration properties of even
and odd functions, and a known integration result in calculus. Also, it can be shown that

(see Appendix B)
["&tetdp = als, sin* 6 - xx0(1-3cos* 0)] (2.18)

where x = x, /x are the components of the unit vector x’ = x/x. Substituting Egs. (2.17)

and (2.18) into Eq. (2.16) then yields

1 1 2 1 1 1 1 N
G.(x)=——[ = ——la=)ls. - XX =3) e g, (219

where use has been made of # = —cos @ to facilitate the integration.

Evaluating the integral in Eq. (2.19) finally gives the Green’s function as

1
where vis Poisson’s ratio, and
2 - 1 2 2 2 -
P(x)== (3—4v l—e b |[+— |20 —(x" +2Lx+2L")e * |}, (2.21a)
X X
2 2\ x
X(x):zﬁl_g}[%&g} } .21
X X X X

are two convenient functions. Note that in reaching Eq. (2.20) use has also been made of
the identities (e.g., Timoshenko and Goodier, 1970):

Ev E
A= =
(1+v)1-2v) 2(1+v)

(2.22)

where E is the Young’s modulus.
The Green’s function derived here in Egs. (2.20) and (2.21a,b) can be shown to be

the same as that obtained by Polyzos et al. (Polyzos et al. 2003) using a different approach
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based on the use of the Helmholtz decomposition and potential functions. This Green’s
function can also be reduced to the Green’s function in classical elasticity when the strain
gradient effect is ignored. That is, by setting L = 0, Egs. (2.20) and (2.21a,b) become

1 0_0
Gij(x) _m[(?,_él‘})é‘lj +Xi Xj] , (223)

which is the Green’s function for 3-D problems in classical elasticity (e.g., Mura, 1987; Li
and Wang, 2008).
To facilitate the differentiation of the Green’s function needed for determining

Eshelby tensor, the expressions given in Egs. (2.20) and (2.21a,b) can be rewritten as

follows. Note that x, =x,/x=x, and x, , =dx,/0x, = 6, It then follows that

X . :l(é‘y —x?x?) = xl.ox? =0. —XX.. (2.24)

B y R
X

Inserting Eq. (2.24) into Eq. (2.20) then gives

1
G, (x)= m {{Y(x)+ X(x)]o; — X(x)xx, } . (2.25)

Next, using Eq. (2.21b) and the following two identities:

1 2 1(1
Cx =5 - =], 2.26a
x2 U 3x3 iy 3()(:)’” ( )
31 3L 1 2L 217 -2 1 =
(1 —2+_j x,,,z[—+ S ] L@»—L{—eﬂ] (2.26b)
X X X X X X i

leads to

2 2\ _x 2 2 x
X(x)xx, —2{{ 4L3 +2(l+2—§+2i3} L}5y+[x+2i_2i L] } (2.27)
X X X X X X i

Substituting Egs. (2.21a,b) and (2.27) into Eq. (2.25) finally yields

G, (x) = [ A(x)S, - B(x), ), (2.28)

167, (1



18

where

2 2 x
2L 2 (2.29)

X X

A(x) = 4(1— v)%(l o ] B(x)=x+
It can be readily shown that when L = 0, Egs. (2.28) and (2.29) reduce to Eq. (2.23),

the Green’s function in classical elasticity.
Egs. (2.28) and (2.29) give the final form of the strain gradient Green’s function for
3-D elastic deformations in terms of elementary functions, which is different from the form
obtained in Egs. (2.20) and (2.21a,b) that involves x; (= x, /x) and x}(=x,/x) and is not

convenient for differentiation. Egs. (2.28) and (2.29) will be directly used in Section 2.4 to

derive the general expressions of the Eshelby tensor based on the SSGET.

2.4. Eshelby Tensor and Eshelby-Like Tensor

Consider an infinite homogenous isotropic elastic body containing an inclusion in 3-
D space. An eigenstrain € and an eigenstrain gradient ¥~ are prescribed in the inclusion,
while no body force or any other external force is present in the elastic body. g and K’ may
have been induced by inelastic deformations such as thermal expansion, phase
transformation, residual stress, and plastic flow (e.g., Qu and Cherkaoui, 2006). For the
case of plastic flow induced deformations, & may be a plastic strain arising from
statistically stored dislocations, and K may be a plastic strain gradient resulting from local
storage of geometrically necessary dislocations (e.g., Ashby, 1970; Fleck et al., 1994; Gao
et al., 1999) that can be prescribed independently of ¢". Besides € and k, there is no body
force or surface force acting in the elastic infinite body containing the inclusion. Hence, the
displacement, strain and stress fields induced by the presence of ¢ and k here are

disturbed fields, which may be superposed to those caused by applied body and/or surface
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forces.
From Egs. (2.7) and (2.8), the stress-equations of equilibrium in the absence of body

forces are

t,, —Mu,, =0, (2.30)
where the Cauchy stress 7; is related to the elastic strain ¢; =¢, — g; through the
generalized Hooke’s law:

r,=C,(e,~¢&,), (2.31a)
and the double stress g is obtained from Eq. (2.5b) as
u, =LC, (x, —x,), (2.31b)

with C,,, being the components of the stiffness tensor of the isotropic elastic body given by

Eq. 2.6.
Substituting Egs. (2.31a,b) into Eq. (2.30) then yields the displacement-equations of
equilibrium as
Cu(ey — LKy, ) —Con(€n, —Li ) =0, (2.32)
where C,,, are given in Eq. (2.6). A comparison of Eq. (2.32) with Eq. (2.9) shows that Eq.

(2.32) will be the same as that of Eq. (2.9) if the body force components f; there are now

replaced by — Cﬁkl(g;,j - LZK;p’pj) and Egs. (2.5¢,d) are used. As a result, the solution of Eq.

(2.32) can be readily obtained from Eq. (2.14) as
1,00 ==[][6,0-9) Cpisdy + [ [ G, x =y (C iy )by (233)
The use of the product rule, the divergence theorem and the fact that g;“ =0, K;m =0

outside the inclusion (and thus at infinity) in Eq. (2.33), together with C,, = constants,



20

gives
() = [[[ G x=¥) Crnndy + [[[ Gy (k=9I (C iy, My . (2.34)
Eq. (2.34) is valid for any (uniform or non-uniform) ¢, and K;np' For the Eshelby problem

with ¢, and Kz:w being uniform in the inclusion and vanishing outside the inclusion and the

elastic body being homogeneous (with C;;, = constants), Eq. (2.34) can be rewritten as
1,0 = C oy, [[[ Gy (x=y)dy + LC s, [[[ G (x =)y (2.35)

where Q denotes the region occupied by the inclusion.
It should be mentioned that all the derivatives in the integrals introduced so far are
with respect to y, which is the integration variable. However, it can be easily proved that

anj (X - Y) __ aGlj (X - y)
oV, ox, '

(2.36)

Using Eq. (2.36) in Eq. (2.35) then gives the displacement as

*

U, (x)=~C % [”L G, (x —y)dy]+ L’Cy [”L G, (x~- y)dy] (2.37)

o ey a
Let

(F)= [l F(y)dy (2.38)
be the volume integral of a sufficiently smooth function F(y) over the inclusion occupying

region Q. Then, Eq. (2.37) can be written as

u,(x)=-C,e.(G,) +L'C,x. (G, . (2.39)

Jkim ™™ Imp

where (Gy) is the volume integral of the Green’s function G;(x—y) defined according to Eq.
(2.38), and the derivatives indicated are now with respect to x. Inserting Eq. (2.39) into Eq.

(2.5c) then yields
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2
&y = _% (<qu >,kj * <qu >,kl- )qulm € ¥ % (<G"‘1 >,kpj " <qu >,kpi )qulm Ky (2.40)

=S.

ijlm glm + T

*
ijlmp K Imp

as the actual (disturbance) strain, &;, induced by the presence of the eigenstrain, 5;,, , and the
eigenstrain gradient, /(;p , where

2

S = _5(<qu >k] + <qu >’k,- )qulm o Ty = ?(<qu >’kpj + <qu>,kpi)chlm' (2.41a,b)

Clearly, Eq. (2.40) shows that &; is solely related to ¢ in the absence of /c;p, and g; is

linked to only K;np if & =0.

Im

The fourth-order tensor Sy, defined in Eqgs. (2.40) and (2.41a) is known as the

. Ed . . .
Eshelby tensor. Since &; and &, are both symmetric, Sy, satisfies Sijim = Sijm = Sjirm (a minor

symmetry rather than the major symmetry that requires Sjmu, = Sms; additionally) and
therefore has 36 independent components. From Egs. (2.28), (2.29), (2.38) and (2.41a) it

then follows that

1 1
S =—~|AS+A S — ® |C
ijlm 87Z'ﬂ|: K g ki jq 2(1—V) JJ’“I:| gkim (242)
b -8, + T8+ EA-T), ]C,
872_/1(1_‘)) K q R 9 JljRq qf
where
Il
L

o =(x-y), Ax= L . (=4 — (2.43a—<)

x-y x -yl

are three scalar-valued functions that can be obtained analytically or numerically by
evaluating the volume integrals. Clearly, among these three functions only I'(x) depends on

the length scale parameter L. As a result, the Eshelby tensor given in Eq. (2.42) can be
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C
ijlm >

separated into the classical part, S, , which is independent of the material length scale

G
ijlm

parameter L, and the gradient part, S, , which depends on L, thereby being microstructure-

dependent. Accordingly, the general form of the Eshelby tensor in the SSGET derived in Eq.

(2.42) for an inclusion of arbitrary shape can be rewritten as

Sijlm = Stjc;m + Siqum H
¢ 1 1 -
ijlm = _% Ay/‘jé‘[q + Avkié‘jq _mq),ijkq qulm’ (2.44a C)
s¢ =L J1owr,s,+T,6,)+ AT, |C
ijlm m ( _V)( 4iYiq + ki jq) + ( - ),ijkq gklm >

where the scalar-valued functions A(x), @(x) and I'(x) are defined in Eq. (2.43) along with
Eq. (2.38). Clearly, when L = 0 (i.e., when the strain gradient effect is ignored), Egs. (2.43)

and (2.44a—c) show that S =0 and S, = S; That is, the Eshelby tensor obtained in Eqgs.

ijlm
(2.44a—c) using the SSGET reduces to that based on classical elasticity.

The fifth-order Eshelby-like tensor Tjj,, defined in Egs. (2.40) and (2.41b) links the

eigenstrain gradient, /(;p , to the actual (induced) strain, &;. Since &; is symmetric and

K :K;zp s Tyjimp satisfies Tyimp = Tymp = Tjmp and therefore has 108 independent

Imp
components (as opposed to 3° = 243 such components). From Egs. (2.28), (2.29), (2.38)
and (2.41b) it follows that

L2

A 2.45
32 u(1-v) (2.45)

fa-vla-r),,8,+(A-1),8,]-2or22(a-D),,, )

Jpi 7 jq qkim

as the expression of the fifth-order tensor, with the scalar-valued functions A(x), ®(x) and
I'(x) defined in Eq. (2.43) along with Eq. (2.38). Clearly, T}, has only the gradient part

and vanishes when L = 0 (i.e., when the strain gradient effect is not considered). In fact, in

G

this special case without the microstructural effect (i.e., L = 0), both ;) and T}, vanish,
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and Eq. (2.40) simply becomes & = S¢ &, the defining relation for the Eshelby tensor

ijim© j
based on classical elasticity (Eshelby, 1957), as expected.

It can be shown that A(x), ®(x) and I'(x) defined in Egs. (2.43a—) satisfy the
following relations (see Appendix C):

—4r, xe),
0, x ¢ Q,

1

D =274, T :L_ZF”’" VZA(x) ={ (2.46a-c)

By using Egs. (2.46a—c) and (2.26), the Eshelby tensor in Egs. (2.44b,c) can be
further simplified as

: I
SS, = Py 2v1=20)A 65, + (=)A= 20) (A, 0, + A S + Al + A0, )~ (=20, |,
(2.47a)

G 1 +2I°A ] (2.47b)

i T 5, +(A=v)(T 8, +T 8, +T ;8, +T ;8,)—2L°T

,jm il Jm gl im Jijlm

and the Eshelby-like tensor in Eq. (2.45) can be simplified as

2
Tijlmp = Li [2le
87(1—v)

, (2.48)

5lm +(1_V)(‘P .5” +V¥ 6]] +V¥ ,ijlmp]

,mpj ,mpt

o, +¥

1pjOim + ¥ pi0 ) — 11

p

where

Y(x)=A-T, I(x)=0+2L*(A-T). (2.49)
Note that in Egs. (2.47a,b) and (2.48), v is the Poisson’s ratio, which is related to the Lamé
constants 4 and u through (e.g., Timoshenko and Goodier, 1970)

Ev E
/1:—9 H= s
(1+v)(1-2v) 2(1+v)

(2.50)

where E is Young’s modulus.

2.5. Conclusion
The Eshelby-type inclusion problem is solved analytically by using the SSGET.

This is accomplished by first deriving the Green’s function in the SSGET in terms of



24

elementary functions using Fourier transforms. The resulting Green’s function reduces to
that in classical elasticity when the strain gradient effect is ignored. The Eshelby tensor is
then obtained in a general form for an inclusion of arbitrary shape using the Green’s
function method. The newly derived Eshelby tensor consists of two parts: a classical part
depending only on Poisson’s ratio and the shape of the inclusion, and a gradient part
involving the length scale parameter and depending on the size of the inclusion additionally.
The classical part is identical to the Eshelby tensor based the classical elasticity theory;

while the gradient part vanishes when the strain gradient effect is not considered.
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CHAPTER III

ESHELBY TENSOR FOR A SPHERICAL

INCLUSION

3.1. Introduction

The Eshelby inclusion problem of a spherical inclusion embedded in an infinite
homogeneous isotropic elastic medium is of great importance due to its direct relation to
particle-reinforced composites (e.g., Weng, 1984; Gao, 2008). Therefore, in this chapter, the
Eshelby tensor for the spherical inclusion problem based on the simplified strain gradient
elasticity theory (SSGET) will be derived by directly applying the general formulas
obtained in Chapter II.

The rest of this chapter is organized as follows. In Section 3.2, the explicit
expressions of the Eshelby tensor are obtained for the spherical inclusion problem by
directly applying the general form of the Eshelby tensor derived in Chapter II. This specific
Eshelby tensor is found to be position-dependent even inside the inclusion, unlike its
counterpart based on classical elasticity. For homogenization applications, the volume
average of this Eshelby tensor over the spherical inclusion is analytically determined.
Sample numerical results are provided in Section 3.3 to illustrate the newly developed

Eshelby tensor for the spherical inclusion problem. This chapter concludes in Section 3.4.

3.2. Eshelby Tensor for a Spherical Inclusion
Consider a spherical inclusion of radius R and centered at the origin of the Cartesian
coordinate system (xi, x, x3) in the physical space. In this case, the three volume integrals

defined in Eq. (2.43) along with Eq. (2.38) can be exactly evaluated to obtain the following
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closed-form expressions:

—%x4 +2—7ZR2x2 +7R*, x e Q,
O(x) = s (3.1a,b)
4_7Z-R_+4_7Z-R3x’ X%Q,
15 x 3
—%sz +27R?, xeQ,
A(x) = Ar R (3.1c,d)
- X & €
3 x

R
4717 — 47l (L + R)e - lsinh(%), xeQ,
X

Az’ R) R R)\| = (3-1e.0)
— sinh(—j ——cosh(—j el, xgQ.
X L) L L

Note that in Egs. (3.1a—-f), x =[x |= (xkxk )”2, as defined earlier in Section 2.3. Note that

@(x), A(x) and I'(x) in Egs. (3.1a—f) are independent on the direction of position vector x
due to the spherical symmetry of the inclusion. These expressions can be readily shown to
be equivalent to those provided by Cheng and He (1995) and Zheng and Zhao (2004),
where different definitions and notation were used for the three scalar-valued functions.
Clearly, d(x), A(x) or I'(x) given in Egs. (3.1a—f) are infinitely differentiable at any x # 0.
The general forms of the Eshelby tensor S and the Eshelby gradient tensor T, given
in Egs. (2.44a-c) and Eq. (2.45), respectively, are expressed in terms of the derivatives of
@(x), A(x) and I'(x) with respect to x;. To facilitate the differentiation of these three
functions, the following differential relations are given for a sufficiently smooth function

F(x).
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F,=x,DF,
F,=xx,D,F+6,DF,
F =x,x,x,D,F + <5,,j.xk >3D2F,

(3.2)
F =x,x,x,x,D,F + <5ijxkx,>6D3F + <§i/.5k,>3D2F,
F oy = X°%,%,D,F +(x28, + 7x,x, )D,F +55,D,F,
F g = XX, x,%,%, DS F + <5l.jxkx1xm>loD4F + <§y.5k1xm>15 D,F,
F tiom =x,.xjxmxzDsF + (x2<é'ijxm>3 +9x,x,x, )D4F + 7<5l.jxm>3D3F,

where

pr=L D2F=i(F"—£j, D3F=i(F"'—3i+3ij,

2 3
X

X X X X ¥
D4F=L4{F<4>_6F +15127 _151;" }
X X X X
(4 3) " '
D5F=i5 po 10F +451~'2’ _1053F +1054F }

<5l.jxk>3 =0;X, +0,x, +0,x,,

1
<5ijxkxl>6 = 5l.jxkxl +5k,xixj +5ﬂxixk +5jkxl.x, +5ﬂxjxk +5ikxjxl,

<5kax,xm>lo =0,%,%,X,, +0,X,X,X, +0,X,X X, +0,%,%X,+0,X,X,X, +0,XXX,

m

+§jmxkx,xl. +5k,xl.xjxm +5kmxl.x,xj +§,mxkxl.xj,

(8,000 ), = (8,0 + 8,8, + 8,8, 0%, +(5,0,, + 8,8, +3,8,)%, +(5,8, + 548, +5,0,

im~ jl

+(0,,04 +040,, +0,0,,)%; +(8,,0, +8;0,, +0,0,,)%,,

(6,04), 26,04 +0,0,+5,5,.
(3.3)

In Eq. (3.3) F’= dF/dx, F”= d*F/dx*, F”= &F/dx°, FY = d'F/dx*, and F® = &°F/dx’, as
usual. Also, in Egs. (3.2) and (3.3) F can be replaced by ®@(x), A(x) or I'(x) involved in Egs.
(2.44a—c) and Eq. (2.45).

Using Egs. (2.6), (3.2) and (3.3) in Eq. (2.44b) leads to

S, =K (x)9,6, +K;(x)(5,0, +6,0,)+K;(x)d,x'x) + K, (x),xx, (3.4)

+K; (x)(é'ﬂxfxz + 5,.mxfxl° + 5ﬂxl.°x:7 + §jmxl.°x10) +K; (x)(xf’xfx,oxi ),

where
1

_ (3.5a)
87(1—v)(1-2v)

K¢ (x) [~ 4v(1 =)D, A +w*D,® + (1+3v)D,®],

)X,
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R N Y (3.5b)
KS(x)= =) [-2(1-v) DA+ D,®],
K= 5 [a-vDA+wD®+(1+5vDD] (3.5¢)
8r(1-v)(1-2v)

K¢ = xizD o, (3.5d)

fo8x(1-v)
;= xiz[— (1-v)D,A + D,®], (3.5¢)

8z(1-v)

K= puo. (3.5)

©8r(1-v)

It is seen from Egs. (3.4) and (3.5a—f) that S$ depends only on one material

ijlm
constant (i.e., Poisson’s ratio v) even for this spherical inclusion. Similarly, applying Eqgs.
(2.6), (3.2) and (3.3) to Eq. (2.44c) results in

S, =K' (x)0,0, +K](x)(5,6, +0,0,)+K(x)0,xx] +K](x)d,x/x, (3.6)

ijln
+ K (x)(0,x)x, +0,x'x] +6,x/x) +5, x/x)+ K] (x)(x/x]x)x)),

J i

where
K- 1 {2\;(1—\;) pr-—Y pepr- A)_1+3v LD - A)} (3.7a)
4r(1-v)| 1-2v 1-2v 1-2v
K'=— 1 [d-vw)Dr-I'D,T=-A) (3.7b)
47(1-v)
Koo X {2\;(1—\;) pr-—Y pep@-n)-t pp - A)} (3.7¢)
4r(1-v)L 1-2v 1-2v 1-2v
K=—LtY pron, (3.7d)
4z(1-v)
K= —[1-»Dr-20,0-A)} (3.7¢)
8z(1-v)
K =——L% _pa-n), (3.79
4(l1-v)

Clearly, Egs. (3.6) and (3.7a—f) show that S’_j‘_jm depends not only on Poisson’s ratio v

but also on the material length scale parameter L, unlike S UC,m given in Egs. (3.4) and (3.5a—

f). Finally, the use of Egs. (2.6), (3.2) and (3.3) in Eq. (2.45) yields
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r 4v(1-v)
Ty = F—— {— 5, O [x,xjxpD3 (C=A)+(x,5;) D, (F-A)]
-(=-v)(xx,x,06, +x,x,x,0;, +x,x,x,0,, +x,xx,6,)D;(T = A)
~(1=)(x8,,),8,+(x,3,,) 64 +(x:8,) 6, +(x,3,) 5,)D,(T=A) (3.8)
v’ [ ()
+ E&,m {x[xjxpxzD5 Tr-A- E) +(x* <xp5[j >3 +9x,x,x,)D,(I'=A— E)

m”p

® ®
+7(x,8;) Ds(T= A~ T )} +20° [xixjxlx x,D5(C=A=—7)
(o) ®
(85%,%, ), Da (= A= Y2l (8,8,,x,),,Dy(T _A_ZLZ)}}'

Then, it follows from Egs. (3.1a,c,e), (3.3), (3.4) and (3.5a—f") that the classical part of the
Eshelby tensor for the interior case with x locating inside the spherical inclusion (i.e., x €
Qorx<R)is

c _ Sv-l1 4-5v

0 =———0.0, +——— (0,0, +0,0,) 3.9
ijlm 15(1—\/') ijIm 15(1—\/)( il™ jm im jl) ( )

Next, using Egs. (3.1a,c,e) and (3.3) leads to

1

DA:—?;;, DA=DA=DA=0,

D(D:%ﬂ-(_xz‘Fst): qu):_%ﬂ-, Ds(DZDA(D:O’

1

DI’ = —w {x cosh(z) —-L sinh(iﬂ,

1
X

pr=_47LARet) 5, cosh(z) +(x* +30 )sinh(zﬂ,

2 x)

pr=_4rLrRe’| (o +15L2)cosh(x ~3L(2x" +5L)sinh x) :
Ly L L

pr=-LrRe ] sy 21L2)cosh(x) +(x* +450%° + 105L4)sinh(x) ,
rx | L L
DT = —4”(12%‘?)6 (x* +1050°x° + 945L"x)cosh(z) —15L(x* +280°x" + 63L“)sinh(zﬂ
, X

(3.10)
for any interior point x € Q (or x < R). Substituting Eq. (3.10) into Egs. (3.6) and (3.7a—f)

will then give the closed-form expression of the gradient part of the Eshelby tensor for the
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interior case with x locating inside the spherical inclusion. Similarly, the use of Eq. (3.10)
in Eq. (3.8) will yield the explicit formula for determining 7}, at any x inside the spherical
inclusion (i.e., x € Q or x <R).

Note that Eq. (3.9) clearly shows that for the spherical inclusion considered here the

classical part of the Eshelby tensor, S, , is uniform inside the inclusion, independent of L,

ijlm >

R and x. In fact, S¢

ijlm

listed in Eq. (3.9) is identical to that based on classical elasticity (see,
e.g., Equation (3.123) in Li and Wang, (2008)). In contrast, the gradient part, Sﬁm , given in

Egs. (3.6), (3.7a—f) and (3.10) depends on L, R and x in a complicated manner, and is
therefore non-uniform inside the spherical inclusion and differs for different materials (with

distinct values of L) and inclusion sizes (with distinct values of R). However, if the strain

gradient effect is ignored, then L = 0 and Egs. (3.6), (3.7a—f) and (3.10) give S =0. It

ijlm

thus follows from Eq. (2.44a) that S, =S ¢ . That is, the Eshelby tensor for the spherical

ijlm *
inclusion derived here using the SSGET reduces to that based on classical elasticity when L
=0.

Considering that SJ is position-dependent inside the spherical inclusion, its

ijlm
volume average over the spherical region occupied by the inclusion is examined next. This
averaged Eshelby tensor is needed for predicting the effective elastic properties of a
heterogeneous composite containing spherical inclusions. The volume average of a
sufficiently smooth function F(x) over the spherical inclusion occupying region Q is

defined by

(F), Vol(sz)ma 47[R3/3j [7[ Fx* sin G i, (3.11)

where use has been made of the volume element dV = x’sin@ d@ de dx in a spherical
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coordinate system. Letting S given in Egs. (3.6) and (3.7a—f) be F(x) in Eq. (3.11) will

ijlm

lead to <S.G

ijlm >V :
Note that in the spherical coordinate system adopted here,

x| =sinf cosp, x) =sinfsingp, x; =cosb. (3.12)

It then follows from Eq. (3.12) that

2z 7 0.0 - _i
[ sin@ do dp =7 &

jj b
7T @t 4 8,000 4 8,300 4.8, 050) Sin0 4O dp = 7 (5,6, +6,8,), (313)

im”j im~ jl

21 o . 4
[ (x)xixn) sin6 d6 dep = 7 0,8+ 8,8, +8,0).

im~ jl

Using Egs. (3.13) and (3.6) in Eq. (3.11) then gives

1 [ [ [

(s5) = FH”{IG LKO KT +§K—gj5ij5,m +(3K—g+zK—g+§K—gj(5,,5jm 55 } (3.14)

im™ jl
where

KC = jOszK,? (x) dx, (3.15)

with K¢(n =1, 2, ..., 6) to be substituted from Egs. (3.7a—f) and (3.10). The six integrals

in Eq. (3.15) can be exactly evaluated, and Eq. (3.14) becomes

(s) =] (Lf{l—(Rjz—(lejze25}[(5\/—1)5”5,,”+(4—5v)(5i,§,,n+§im§,l RERT)

“100-w R L

which gives

¢ 7-5v (LY|. (RY RY | o .
<S1111>V Zﬁ(Ej [1—(2J _(1+Zj e’ :|=<S2222>V :<S3333>Va

3 2 2
<S10122>V = 1(?(‘1:1‘}) (]LQJ {1 - (fj _(1 + ILQJ eZLR:l = <510133 >v = <S20233>V = <S26211>V = <S3G311>V = <S30;22>v’
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(520, = o2t (4] [1_@ (1+5) }<S> ss) GaT

as the 12 non-vanishing, volume-averaged components of the gradient part of the Eshelby

tensor inside the inclusion. Clearly, these components are constants, but they depend on the
inclusion size, R, the length scale parameter, L, and Poisson’s ratio, v, of the material. This
differs from the components of the classical part of the Eshelby tensor inside the inclusion,

which, as given in Eq. (3.9), are constants depending only on v. However, when L = 0 (or

R/L — ), Eq. (3.17a—c) shows that all non-zero components of <S “

,j,m> will vanish, as will

be further illustrated in the next section.
By following the same procedure, the volume average of the classical part of the

Eshelby tensor inside the inclusion, <Syclm

>V , can also be obtained using Egs. (3.9) and

(3.11). Since Sl.jC, is uniform inside the inclusion, there will be <Sl2m> = SUC,m . It then
follows from Egs. (2.6), (3.11), (3.9) and (3.16) that

1 3(LY'|, (RY RY
<S"f”’">v_15(1—v){1+5(ﬁj [l_(fj _(”Z) }[(w 1)5,8,, +(4=35vX8,8,, + 3,5 ,)]

(3.18)
as the volume average of the Eshelby tensor inside the spherical inclusion based on the

ijlm

SSGET. Clearly, when L = 0 (or R/L — ), Eq. (3.18) reduces to <S < > = Sl],m given in Eq.

(3.9).
The volume average of Tjj,,, for x locating inside the spherical inclusion (i.e., X € Q

or x < R) can be readily shown to vanish, i.e.,

<Tiilmp >V = Vol(©Q) J-”QT},-,,,,pd mj J-MJ. T, x° Sin 6d6dpdx = 0. (3.19)

The reason for this is that 7}, involved in Eq. (3.19) and to be substituted from Egs. (3.8)
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and (3.10) is odd in x", which makes the integration of T, over any spherical surface
vanish (e.g., Li et al. 2007).

Similarly, the Eshelby tensor for the exterior case with x locating outside the
spherical inclusion (i.e., X ¢ Q or x > R) can be determined by using Egs. (3.1b,d,f) in the

general formulas derived in Section 2.4 for an inclusion of arbitrary shape. Specifically,

from Egs. (3.3) and Egs. (3.1b,d,f) it follows that

3 3 3 3
D1A:_4lR735 D2A=4L§, D3A:_2077Z7R’ D4A:14079rR ,
3 x x X x
Ar R , N 4r R? N 2
DO =-"T2 (R?_5x%), D,®=-"T2 (L3R 45x2),
! 15 x* ( ) ’ 15 x° ( )
3 3
Do=- (R ) po=-T (7p 15,
x x
Anl? {sinh(lz] - % cosh[iﬂ ;
DT = . (x+L)e t,
x
472'L{sinh(lzj - % cosh(lzﬂ .
DT =— . (x> +3Lx+302)e 7,
x

o () fenl)] 1

X} +6Lx> +150x+15L e

o)l

x* +10Lx° +4502x> +105Lx +105L° Je ©,
47{sinh(Rj - Rcosh(Rﬂ
L) L \L
DT = (

X0 +15Lx" +105L2x° + 420L°x” + 9451 x + 945L° Je

(3.20)
for any exterior point x ¢ Q (or x > R). Note that the functions listed in Eq. (3.20) for the
exterior case with x ¢ Q (or x > R) are clearly different from those defined in Eq. (3.10) for
the interior case with x € Q (or x < R). From Egs. (3.20), (3.4) and (3.5a—f) the classical
part of the Eshelby tensor for any x outside the spherical inclusion (i.e., x € Q or x <R) is

then obtained as
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S¢ = R{l[— 5(1-2v)x* +3R*| 5.5, + L [50-2v)x* +3R*| (5,6, +5,5),)
"X (1-v) |30 30 ’ ’

1 1
+ 5 [1-2v)x* - R*] 0,x x) — E(R2 —x") o,x/x,
- ;(R2 —x?) (0,x)x), +0,x'x] +0,x'x, +5,x/x])~ ;(sz ~7R?) x)xx)x).
(3.21)
It can be readily shown that the expression given in Eq. (3.21) is the same as that based on

classical elasticity (e.g., Cheng and He, 1995). Clearly, a comparison of Eq. (3.21) with Eq.

(3.9) shows that Sif,m is not uniform outside the spherical inclusion, although it is uniform

inside the same spherical inclusion.
Finally, using Eq. (3.20) in Egs. (3.6) and (3.7a—f) will result in the explicit formula

for determining Slf’;m at any exterior point x ¢ Q (or x > R), and the substitution of Eq.

(3.20) into Eq. (3.8) will lead to the closed-form expression for 7}, at any point x locating

outside the spherical inclusion.

3.3. Numerical Results

By using the closed-form expressions of the Eshelby tensor for the spherical
inclusion derived in the preceding section, some numerical results are obtained and
presented here to quantitatively illustrate how the components of the newly obtained
Eshelby tensor vary with position and inclusion size.

From Egs. (3.6), (3.7a—f) and (3.10), the components of the gradient part of the
Eshelby tensor at any x inside the spherical inclusion along the x; axis (with x, = 0 = x3) can
be obtained as

o LER L — v 12+ 4L 4241 ]sinh[x) —2xL(wx* +12L7) cosh(xj ,
x’(1-v) L L
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s =50 = EFR H e r v Sy r <121 ]sinh(x) +xL(x* + 2 +120°) cosh(xJ :
x’(1-v) L L
s¢ —go = LER 14 Fla=vx' +A1=-v)x’L + 24L4]sinh(zj

1212 1313 m

+xL[(3 - v)x* +24L ]cosh(zj},

Szin S36311 - l);gfl—if)) { L[(S v)x + 12L2)]Slnh(l,) + )C[(l - V)xz + 12L2)]C0Sh(;j},

(,_G_L(L+R)” _ 2 b P i _ 2 2 f
S¢. =8° = =) { L[(5-v)x* +9L ]51nh(Lj+x[(2 VX +9L ]cosh(Lj},

Sy =S = L(f;r f)) { [A+v)x* +3L° )]sinh(;j — x(vx* +3L%) cosh(;ﬂ},
= m {L[(Z Vx> +30 ]smh(Lj - x[(l Vx4 3L )]COSh(zJ}-
(3.22a—g)

Note that in this special case (with x = x;, x, = 0 = x3) there are only 12 non-zero

components among the 36 independent components of S i -

In the numerical analysis, the Poisson’s ratio v is taken to be 0.3, and the material
length scale parameter L to be 17.6 um. Figure. 3.1 shows the distribution of
S =S5, +8,, along the x; axis (or a radial direction of the inclusion due to the
spherical symmetry) for five different values of the inclusion radius, where the values of

S, and S, are, respectively, obtained from Egs. (3.9) and (3.22a).
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0.5238 Classical
0.5 R=6L
] R=4L

0.4—_—‘_“1-\_'\““—\ R=3L

0.3
S R=2L
0.2
_I I B o o o B I B N P
0.2 0.4 0.6 0.8 1.0

)C]/L

Fig. 3.1. S|,,, along a radial direction of the spherical inclusion.

It is seen from Fig. 3.1 that S|, varies with x (the position) and depends on R (the

inclusion size), unlike the classical part SJ;,, which is a constant (i.e., S, = 0.5238 from
Eq. (3.9), as shown) independent of both x and R. When R is small (comparable to the

length scale parameter L = 17.6 pum here), S,,,, is much smaller than S, , which indicates

that the magnitude of S, (=S,,,, —S,,) is very large and the strain gradient effect is
significant. However, when R is much greater than L (e.g., R = 6L = 105.6 um shown here),
S,,,, is seen to be quite uniform and its value approaches from below S, (= 0.5238),
indicating that the magnitude of S, is very small and the strain gradient effect become

insignificant and can therefore be ignored.

Similar trends are observed from Figs. 3.2 and 3.3, where the values of S,,,, and
S, varying with x and R are displayed together with those of their classical parts that are
horizontal lines independent of both x and R. The values of S, and S;,,, included in

S (=85, +S5,)and S,,,, (= S5, +S5,,) that are illustrated in Figs. 3.2 and 3.3 are,



37
respectively, obtained from Egs. (3.22¢) and (3.22¢), while those of SJ;,, and Ss,,, are both

calculated using Eq. (3.9).

0.2381 Classical

- R=6L

] R=4L
0.2

i R=3L
0.15—

Sia12 T R=2L
0.1 -

7] R=L

T T T T T T T [T T T T [ T T T T [T 1171
0.2 04 0.6 0.8 1.0
xl/L

Fig. 3.2. §,,,, along a radial direction of the spherical inclusion.

_ Classical

0.5203.58_ R=6L

] R=4L

0.4.] R=3L

S2222 03] R=2L

0.2
0.1:\ =1L
L I O I B B |
0.2 0.4 0.6 08 1.0
xl/L

Fig. 3.3. S,,,, along a radial direction of the spherical inclusion.

The variation of the component of the averaged Eshelby tensor inside the spherical

inclusion, <S“ “>V, with the inclusion size (i.e., radius R) is shown in Fig. 3.4, where its



38

counterpart in classical elasticity, <S1Cm>V , 1s also displayed for comparison. Note that

<S1111>V is obtained from Eq. (3.18), while <S1Cm>v (=S, = 0.5238) is from Eq. (3.9). The

material properties used here are v = 0.3 and L = 17.6 um, which are the same as those used
in generating the results shown in Figs. 3.1-3.3. It is observed from Fig. 3.4 that <S11 11>V is

indeed varying with R: the smaller R, the smaller <Sml>v, while <Slcm>V is a constant

independent of R. Moreover, the difference between <S1111>V and <S1Cm>v , which is <SIG”1>v
(= <Sm1>v —<Slc1 “>V ), 1s seen to be significantly large only when the inclusion is small (with

R/L <25 or R < 440 um here). As the inclusion size increases, <S“ “>V approaches from

below the corresponding value of S, (= 0.5238) based on classical elasticity. The same is

true for all the other non-vanishing components of <S“ “>v, as seen from Egs. (3.18) and

(3.9). These observations, once again, indicate that the strain gradient effect is insignificant

for large inclusions and may be neglected.

0.5238

o
4]
|

o
=

(=]
(93]

<S>y

o
]

o
a

25 50 75 100
R/L

Fig. 3.4. <S i >v varying with the inclusion radius.
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Clearly, the numerical results presented above quantitatively show that the newly
obtained Eshelby tensor captures the size effect at the micron scale, unlike that based on

classical elasticity.

3.4. Summary

The Eshelby tensor for the spherical inclusion problem is explicitly obtained by
employing the general form of the non-classical Eshelby tensor derived in Chapter II using
the SSGET. To further illustrate this Eshelby tensor, sample numerical results are provided,
which reveal that the components of the new Eshelby tensor vary with both the position and
the inclusion size, thereby capturing the size effect at the micron scale.

In addition, the volume average of this new Eshelby tensor over the spherical
inclusion is derived in a closed form, which is needed in homogenization analyses. The
components of the averaged Eshelby tensor are found to decrease as the inclusion radius
decreases, and these components are observed to approach from below the values of the
corresponding components of the Eshelby tensor based on classical elasticity when the

inclusion size is large enough.
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CHAPTER 1V

ESHELBY TENSOR FOR A PLANE STRAIN

CYLINDRICAL INCLUSION

4.1. Introduction

The current chapter aims to apply the general formulas for a 3-D inclusion of
arbitrary shape obtained in Chapter II to solve the Eshelby cylindrical inclusion problem,
which is closely related to the fiber-reinforced composites (e.g., Luo and Weng, 1989) and
hence of great importance. The solution is derived in a closed form, and the Eshelby tensors
for the two regions inside and outside the cylindrical inclusion are obtained in explicit
expressions for the first time using a higher-order elasticity theory.

The rest of this chapter is organized as follows. In Section 4.2, the closed-form
expressions of the Eshelby tensor and the Eshelby-like tensor for a plane strain cylindrical
inclusion embedded in an infinite homogeneous isotropic elastic material are presented,
which have 15 and 30 independent components, respectively. The non-classical Eshelby
tensor is derived for the two regions inside and outside the inclusion, and the volume
average of the new Eshelby tensor over the cylindrical inclusion is exactly determined.
Numerical results are provided in Section 4.3 to quantitatively illustrate the position
dependence and the inclusion size dependence of the newly obtained Eshelby tensor for the

cylindrical inclusion. The chapter concludes in Section 4.4.

4.2. Eshelby Tensor for a Cylindrical Inclusion

A closed-form expression of the Eshelby tensor for a plane strain cylindrical
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inclusion of infinite length embedded in an infinite homogeneous isotropic elastic body is
derived here by using the general formulas obtained in Chapter II.

Consider an infinitely long cylindrical inclusion of radius @ whose symmetry axis
(central line) passes through the origin of the cylindrical coordinate system (7, 6, x;) in the
physical space. In this case, A(x), ®(x) defined in Egs. (2.43a,b) can be obtained from their
derivatives given in Mura (1987) for both interior points (i.e.,x € Q or x < a) and exterior

points (i.e.,x & Q or x > a) as

2

- C Q

Ay={ 7% o X e (4.1a,b)
—27R"Inx+C,, xgQ,

—lﬂ'x4+Mx2+C3, xeQ,
O =1 8 (4.2a,b)
—EﬂR4lnx—7ZR2lenx+Nx2+C4, X ¢ Q,

where x = ‘x‘ =] xf + xz2 (unlike in the arbitrary 3-D case), and C;~Cy , M and N are

constants whose values are of no interest here since only the second-order derivatives of A
and fourth-order derivatives of @ are involved in the expressions of S and T given in Egs.
(2.44a—c) and (2.45), respectively. Also, I'(x) defined in Eq. (2.43c) can be evaluated to

obtain the following closed-form expressions (see Appendix D):

x a
ral|L—al | — |K |— ||, xeQ,
I(x)= { (L) (Lﬂ (43a.b)
4rlal, (ajKO(XJ, x ¢ Q,
L L
where /,(+) and K,(-) (n = 0, 1) are, respectively, the modified Bessel functions of the first

and second kinds of the nth order, which satisfy the following asymptotic relations (e.g.,

Arfken and Weber, 2005):
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In(Z)N#ez, KH(Z)~\/7€'Z as z —> oo, 4.4)
27z 2z

Note that A, @ and I' in Egs. (4.1a,b)—(4.3a,b) are independent on the direction of the
position vector x due to the circular symmetry of the inclusion. Clearly, A(x), @(x) and I'(x)
are infinitely differentiable at any x # 0.

Note that for this case, the inclusion is infinitely long and can be treated as in a

plane strain state, x =|x| = (xl2 +x )”2 and the derivatives of ®(x), A(x) and I'(x), defined

in Eq. (2.43a—), with respect to x; should vanish. Accordingly, the fourth-order Eshelby
tensor, S, and the fifth-order Eshelby-like tensor, T, will have expressions different from
those for the spherical inclusion, listed in Egs. (3.4), (3.6) and (3.8), as will be seen below.
Using the expression of A(x), ®(x) and I'(x), given in Egs. (4.1)~(4.3) into the
general forms of S and T, given in Egs. (2.44a—c) and (2.45), obtains the special
expressions of S and T for the plane strain cylindrical inclusion. Considering that the
general forms of S and T are expressed in terms of the derivatives of A(x), ®(x) and I'(x)

with respect to x;, it is convenient to first give the following differential equations for a

sufficiently smooth function F(x) (with x = (xf +x3 )1/2 ).

Ea =x,D/F, Eaﬂ = xaxﬁDzF + 5aﬂD1F,
F 5 = X,X,x,DF + <§aﬁx7>3D2F,
F,, =xx,x,D,F +(x’5,, +6x,x,)D,F +45,,D,F,
(4.5)
F s, =X, %5x,x D,F + <§aﬁxyxl>6D3F + <5aﬁ5yl >3D2F,
Eopoy = XXX, %, X DsF + <5aﬁxrxzx€>1oD o+ <5aﬁ5y9xl>1sD 3Fs
Eaﬁw = xaxﬂxyxzDsF + (x2<5aﬂx7>3 + 8xaxﬂxy )D4F + 6<5aﬁx7>3D3F,

where use has been made of the results ,, =2 and
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2 x x} 2

F 1 F 1 F'3F
DF="", Dze(F”—), D3F=(F”’—3 3 j
X X X X

D4F=14[F<4>_6F +15127 _1557 }
X X X X
(4) m ” ,
DSF:15|:F(5)_10F +452 _1053F 1054F }
X X X x X
<5aﬂx*x7>6 = OupXy X, + 5zyxax/f + 5ayx1xﬂ +5a}(x7-xﬂ +5/;yxzxa + 5ﬁlxax7,
<§“ﬂ57l >3 =04p0y + 040, + 6,04, <5aﬁxy> L =0uX, +0,,%5 +0,,%,,

<5aﬂx5x7xl>lo = 0,5XpX, X, +0,pX X, X, +0,,XyX X, +0,,XpX, X5 + 05X, X, X,
04, XX, X, + 05 XgX X, + 0y X, XX, + 0y X, XX, +0,,X,X,%,,

<§aﬁ§79xl>15 =(0,0p, + 040, +04,0,)%, +(0,,04, +0,40,, +0,,05)%5+(04,0,, + 040, +05,05,)%,
+(04,0,, 04,0, +0,,0,)%, +(05,04, +040,, +0,,0,)X,.

Pa~yx Bx~ay

(4.6)

In Eq. (4.6), F’=dF/dx, F”= d*F/dx*, F"”= d*F/dx’, F¥ = d*F/dx*, and F®¥'= &F/dx’. Also,
in Egs. (4.5) and (4.6) F can be replaced by ®(x), A(x) or I'(x) involved in the general form
of the Eshelby tensor in Egs. (2.44b,c) and the general form of the Eshelby-like tensor in
Eq.(2.45). Note that each Greek index ranges from 1 to 2 in Egs. (4.5) and (4.6) and
throughout this dissertation unless otherwise stated.

After using Egs. (4.5) and (4.6) in Egs. (2.44b,c), the components of the Eshelby
tensor, with each index ranging from 1 to 2, for a plane strain cylindrical inclusion can be
obtained in the form of

S.,=J (x)6,0,+J(x)(,0,+05,0,)+J; (x)é'ygx;)x“ +J; (x)5aﬁxfx2

0 0

+J(x)(0, x,x, +0,,x,x +0,xx, +0,,x,x )+ J. (X)(x,x,x'x,),

(4.7)

where x) =x,/x is the component of the unit vector x° =x/x, and J'(x) ~ J:(x) are

scalar-valued functions in terms of A(x), I'(x), ®(x) and v, which are different for each case

[T 1]

and will be individually given below. The superscript in Eq. (4.7) can be replaced by

“C” or “G” to represent the classical or the gradient part of the Eshelby tensor, respectively.
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Clearly, S, ,has 9 independent components (rather than 2* = 16 ones) due to the minor
symmetry (i.e., S, =8,.,= S;ﬂg,) exhibited by the Eshelby tensor.

For the classical part of the Eshelby tensor (i.e., S(ICM ), J < (x) ~ J¢ (x) are obtained

as
. : [~ 4v(1—v)D A +w’D,® + (1+2v)D,®],
8r(1-v)(1-2v) ‘
1
‘=——|-2(1-v) DA+ D,®],
: 87z(l—v)[ (1-v) DA+D,0]
i = : [~ 4v(1-v)D,A + v’ D,® + (1+4v)D,®], (4.8a-)
o 8r(1-v)(1-2v)
o X
bo8x(1-v) ’
¢ X’

‘= 87[(1—\/)[_ (1-v)D,A + D @],

4
c X

J,=———D®
8r(1-v)
Using Egs. (4.8a—f) in Eq. (4.7) will yield the expression of SaCM , which has 9 independent
components.

From Egs. (2.44b) and (4.5), the other non-vanishing components of S for a plane

strain cylindrical inclusion can be readily obtained as

Sesp = —81 (x*x2x°D,A+8,D,A): (4.92)
T

. \%
S =- 41 - 'x’x’D,A+6 DA
o 87z(1—v)(1—2v){( v)(x\x,x'D,A+5,D,A) (4.9b)

—[x'x'x'D,®+x*(5,, +6xx)D,® + 45, D, 0l

a

where use has been made of the fact that the derivatives of A(x) and ®(x) with respect to x3

involved in Eq. (2.44b) vanish. It is clear that S;ﬂ} has 3 independent components and

Saclm has 3 independent components.
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For the gradient part of the Eshelby tensor (i.e., §¢

B0

), J¢(x) ~ J¢(x) are found to

be

. 1

' 4z(1-v)(1-2v)
/R
4r(1-v)

G ‘xz

J{ =
4r(1-v)1-2v)

[2v(1=v)DI = v’ x*D,(T = A)— 1+ 2v)[* D, (T — A)],

[A-v)DT - LD, (T - A)],

[2v(1=v)D,T —vL*x*D (T = A) = (1+4v)L*D (T - A)],

Jo=—EY pr-n, (4.10a-)
Ar(1-v) ~
x2

‘= [1-v)D,[-2I'D.(T-A)],

L= ey P, RN

oo LY pr-a
4(1-v)

Substituting Egs. (4.10a—f) into Eq. (4.7) will give the expression for S(fﬂw , which

has 9 independent components. The other non-vanishing components of $¢ are obtained

from Egs. (2.24c) and (4.5) as

1
S, =g(x2x2,x2D2F+5aﬂDlr) : (4.11a)

G v
Sa/i}} =

4r(1-v)1-2v)

+x'x%*[2(0-v)D,T = x*D,(T = A) - 6L D, (T — A)]},

{6,20-WDI-Lx’D,(T=A)-4L'D,(T-A)]  (4.11b)

where use has been made of the fact that the derivatives of A(x), ®(x) and I'(x) with respect

G

to x3 involved in Eq. (2.44c¢) vanish. Clearly, Sfm has 3 independent components, and S

has 3 independent components.
By using Eq. (4.5) in Eq. (2.45), the components of the fifth-order Eshelby-like
tensor T, with each index ranging from 1 to 2, for a plane strain cylindrical inclusion can be

determined as
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e {‘”(l‘v) 8, [¢xtxx' DP+ (x5, ) xD,P]
o 8r(l-v) [ 1-2v :

+(I=v)(xX)x;x,0, +X,x,X,0, +x.x/X,0, +x,xx,0,,)x D,P (4.12)

/f¢'9 HW

F1A-n|(x8,) 5, +(x5 >5y+<xa5ﬁ>35ﬂ¢+<x;5w>35a¢]xD2P

B 90

- l_vz w[xa ﬁXSxSDG+(< ), +8xx0x))x’D,G+6(x,5,,) xDzG]
[x2x2x7x¢x9x5D G+ <§aﬁxf X)X 2> x'D,G + <5a,;57¢x2 xD G] }

which includes 18 independent components. The other non-vanishing components of T are

obtained from Eqgs. (2.45) and (4.5) as

2

= 8L [x x,x,x,D.P+ x<5aﬁx2>zD2P]= (4.13a)
7 :

3p360

which includes 6 independent components, and

L 3,000
]-:1;3330 = S (1 _‘;)(1 9 ) {4(1 - v)[x X xﬁx0D3P + X<5 >3D2P] (4 13b)

- [xsx x;D.G+x’ (<5aﬂx2 >3 +8x)x)x, )D4G + 6x<5aﬂx2 >3D3G]},

ﬂ Xo s

which contains 6 independent components. The functions P(x) and G(x) involved in Egs.
(4.12) and (4.13a,b) are defined in terms of A(x), ['(x) and ®(x) as
P(x)=A-T, G(x)=®+2L(A-T). (4.14)
Egs. (4.7)—(4.13a,b) give the expressions for the components of the fourth-order
Eshelby tensor, S, and the fifth-order Eshelby-like tensor, T, based on the simplified strain
gradient theory for a plane strain cylindrical inclusion and with an infinite length in the x3
direction. As indicated earlier, for this plane strain inclusion problem, S has 15 independent
components and T has 30 independent components, which are in contrast to 36 and 108, the
numbers of independent components of S and T, respectively, in the general case of a 3-D
inclusion of arbitrary shape (see Eqs. (2.47a,b) and (2.48)). In addition, these expressions

for the components of S and T are in terms of the three scalar-valued functions A(x), ®(x)

and I'(x), which are independent of x; (with x = |x| = (x? +x2)").
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Using Egs. (4.1a) and (4.2a) along with Egs. (4.6) and (4.8a—f) in the expression of

S¢ given in Egs. (4.7) and (4.9a,b) leads to the non-zero components of the classical part of
the Eshelby tensor at any x inside the cylindrical inclusion (i.e., x € Q or x < a) as

c 4v—-1 3-4y

1 v
T 0,0 + 8(1 )(5 59+ 0u005,)s Sezgs = Z5 §¢. =—— 5 ., (4.15a<)

IR (1-v) San
which are identical to those based on classical elasticity (e.g., Mura, 1987). Note that Egs.
(4.15a—c) list all 15 independent components of S©.

The use of Egs. (4.1a), (4.2a) and (4.3a) in Egs. (4.7), (4.10a—f) and (4.11a,b) gives
the expressions of the non-zero components of the gradient part of the Eshelby tensor S¢
for points inside the inclusion (i.e., x € Q or x <a) as

S, =J'(x)0,0,+J](x)(5,0,+06,0,)+J](x)0,x)x,+J](x),x x, (4.16)

+JI (X0, x,x, +0,x,x +0, x\x, +0,,x.x")+J ] (x)(x)x,x'x,),

where

¢ ak
1 (l—v)x3

[Lxl, + (=" v —20)1 ],

[Lxl, — (vx* +20°)1],

J; =
(1- V)
J = ol “1§ SL[ X" + 40, + L(x* + 2w + 801 | (4.17a-1)
V)X
Jo = ak,
fo(-v)x

[-4Lxl, + (x* +80)1 ],

ak,

Ji=————|-x(x—wx’+8L), +2L(2x* —vx’ +8L")I
e i M, +2L( )}

Jo = ak,

‘ ﬁ[x(x +241°)1, —8L(x* + 61)I ]

and
¢ _ 4 0.0
S5y =5 K[y (=t +2L1) =6, L1, (4.18a)
X

v ak,

1-v x

A [5 LI, + x0x5(xl, —2L1)). (4.18b)
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In Egs. (4.17a—f) and (4.18a,b), I = 10(% ), [ = 11(%) and K| = Kl(%) are modified Bessel
functions of the indicated arguments, with x < a. Egs. (4.16)—(4.18a,b) provide the explicit
expressions of all 15 independent components of S.

It is clearly seen from Eqgs. (4.15a—c) that the classical part of the Eshelby tensor, S¢,
is independent of x, @ and L and is therefore uniform inside the cylindrical inclusion. In
contrast, the gradient part, S, given by Eqs. (4.16)—(4.18a,b) depends on x, a and L in a
complicated manner. That is, SY is non-uniform inside the cylindrical inclusion and differs
for materials with different values of a (the inclusion size) and/or L (the material length

scale parameter). However, if the strain gradient effect is not considered, then L = 0 (so that

x/L — o, a/L. — ) and Egs. (4.4), (4.16)—(4.18a,b) give S =0. It thus follows from Eq.

ijim
(2.44a) that S = S©. That is, the Eshelby tensor for the cylindrical inclusion derived here
using the simplified strain gradient elasticity theory reduces to that based on classical
elasticity when L = 0.

Considering that S is position-dependent inside the inclusion, the volume average
of Y over the cylindrical inclusion will be needed in calculating the volume average of S
(= S©+ S9) to be used for predicting the effective properties of a heterogeneous fiber-
reinforced composite. Hence, the volume average of S¢ is evaluated next.

Note that the volume average of a sufficiently smooth function F(x) (with

X = ‘X‘ =/x’ +x.) over the domain Q, occupied by the cylindrical inclusion of a unit

length is defined by

)=yl = [ Fraoas . (4.19)

where use has been made of the volume element dV =xd@ dx dx, in the cylindrical
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coordinate system (r, 6,x;) (with r =x=(x>+x2)") and the fact that F = F(x) is
independent of x;. In Eq. (4.19) and throughout this chapter, the volume average over the

inclusion domain Q, is denoted by the symbol< >V .

Consider the transformation from the Cartesian to the cylindrical coordinate system:

x; =cos@, xj=sin6. (4.20)

It follows from Eq. (4.20) that
[xixy do=n5,,. [ xixlxix) 40 =78, + 0,0 + 0,40, (421a)
Applying Egs. (4.19) and (4.21a,b) to Egs. (4.7), (4.10a—f) and (4.11a,b) leads to the

volume average of the gradient part of the Eshelby tensor, <SG >V , as

afyd af ™~ yo ay ~ po ad = fy

w%{@mmmij )” (e o, 0.0 62
a

(885,), = ”‘ﬂ (¥ D, +2D,T Judx, (4.23)
(SS)., = Yup [[a-v(x*p,r+20r)
DIV 4x(1-v)(1=2v)a> D (4.24)
— 28D, (T = A)+8x* Dy (T = A)+ x* D, (T = A) |xax,
where
JO=[xJ(x)dx (n=1,2,..,6), (4.25)

with J¢ (n=1, 2, ..., 6) to be substituted from Eqs. (4.10a—f). The six integrals for j¢ ~ J¢
defined in Eq. (4.25) can be exactly evaluated with the help of the following results:
JxDFdx—Ix——(Dn FYdx=D_F+c, (n=1,2,..,5),
j X*D,T dx = j (xT"'-T") dx = j [(xT")—2I"] dx =xI"—2T +¢,,

jx3D3rdx=j(r”'—3 3L)d =I"- 3—+c3,
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I I
[ XD, dx =[[(x0"y=TI" +15(=) T dx =xT"'=T1"415—+ ¢, (4.26)
X X
where c¢,~c, are integration constants, F' is a smooth function of x (with x = ‘X‘ =./ xlz + xzz )

which can be ®@(x), A(x) or ['(x), D|F~DsF are differentials defined in Eq. (4.6), and DoF =
F.

It then follows from Egs. (4.10a—f), (4.1a), (4.3a) and (4.22)—(4.26) that the volume

averages of the non-zero components of the gradient part of the Eshelby tensor, <SG >V , are

G | 1-4 4v -3 a a
<Saﬁ79 >v = [mé‘aﬂ§;ﬁ + m(§a7§ﬂ9 + 5a95ﬂ7 )}K1 (Zjll (Zj , (4.27a)
G 1 a a
<Ssa3ﬂ>v = —EKl (Zjll (Zj%’ (4.27b)
\% a a
(S%ss), = -k, (zjll [Zjaaﬂ, (4.27¢)

where I;(+) and Ki(-) are modified Bessel functions of the indicated argument a/L. A
comparison of the expressions of <SG>V in Egs. (4.27a—c) with those of <SC>VE S given in
Egs. (4.15a—) shows that

(s, :—2K1[ZJII(Z)S,;Z. (428)
Hence, the volume average of the Eshelby tensor over the cylindrical inclusion of the unit

length is obtained from Egs. (2.44a), (4.15a—), (4.19) and (4.28) as

(S,), = {1 2K, (ZJII[EJ}S;,, (4.29)

where S, are given in Eq. (4.15a—c). Eq. (4.29) shows that <SW> depends on a/L.

\%

When L =0 (or a/L — ), Eq. (4.4) gives K, (%)Il (%) — 0, and hence Eq. (4.29) reduces

to <S,jk1> — §¢ . as will be further illustrated in the next section. Based on the closed-form
4 \Y

ijkl >

expression of the average Eshelby tensor derived in Eq. (4.29), the inhomogeneity problem
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involving the cylindrical inclusion of a different material (e.g., Mura, 1987) and the related
homogenization of strain gradient composites reinforced by cylindrical fibers can then be
analyzed by using Eshelby’s equivalent eigenstrain method, as was done by Xun et al.
(2004) for micropolar composites.

The volume averages of the components of the fifth-order Eshelby-like tensor T

inside the cylindrical inclusion of the unit length are, based on Eq. (4.19),

(Tyn), = — [ T,y xd x (4.30)

2
wa

where Ty, given in Egs. (4.12) and (4.13a,b), is odd inx) . As a result, the integration of

Tijum with respect to 6 on the interval of [0, 2rt] vanishes, thereby leading to <TWm>v =0.

Finally, the Eshelby tensor for exterior points x ¢ Q (or x > @) can be similarly
determined as follows. Using Egs. (4.1b), (4.2b), (4.3b) and (4.6) in Egs. (4.7)—(4.9a,b)

yields the non-vanishing components of S as

R2
SC,, = W[(4vx2 — 227 £ R?)5,55,, + (—4vx® +25° + R*)(S5,,6, +6,,6,,)

—42vx* —x* +R2)§y9x2x2 +4(x* —=R*)S

Q

ﬁxfxg +4(vx? —Rz)(é'ayxzxg (4.31a)

0.0 0_0 0.0 2 2 0.0_0_0
+0,9XpX, + 0, X, Xy +055x,x,)+8BR" —2x )xaxﬂxyxg],

Br-a
RZ
Sas =0 (6, —2x2x%), (4.31b)
X
c v R’ 0.0
SC 1 :mx_2(5“ﬂ ~2x%xY), 431c)

which are the same as those of the Eshelby tensor outside a cylindrical inclusion based on
classical elasticity (Cheng and He, 1997). Clearly, Egs. (4.31a—c) show that the classical
part of the Eshelby tensor, S, is not uniform outside the inclusion (with x ¢ Q or x > @) but
changes with x, which is the distance from x (the point of interest) to the central line of the

cylindrical inclusion. This is different from the case for x inside the inclusion (with x € Q



52

or x < a), where S© is uniform for all x € Q, as shown in Egs. (4.15a—c).

Substituting Egs. (4.1b), (4.2b), (4.3b) and (4.6) into Egs. (4.10a—f) and (4.11a,b)

yields
L’R*
JO = ——[LxK +(w + 210K, |+ T (4.32a)
(I- V)X
2p2
Jg =—[ LxK, + (—x" + vx —2L2)K]+L4, (4.32b)
1- —V)x

al AL’R®

Jo = T v)lﬂ [x(x? + 412)K, + L(x? + 2w + 812K, |- e (4.32¢)
2p2
JE =—[4Lx1< + (x> +8)K, |- 4L—R4, (4.32d)
(1- V)X
2p2
JS = —[x(x —vx® + 811K, +2L(2x* —vx* + 811K, ]——4L R - (4.32¢)
2(1-v)x —V)x
2
J¢ = ——[x(x +2412)K, +8L(x> + 61K, |+ 24L—4, (4.321)
(1-v)x V)X
and

SS s :2i11 X0 (xK, +2LK,) =5, LK, ], (4.332)
SC = % i[ 6,2, +x0x%(xK, + 21K ). (4.33b)

In Eqs. (4.32a-f) and (4.33a,b), I, = I,(T), Ko = Ko(7) and K, = K,(T ) are modified
Bessel functions of the indicated arguments, with x > a. Using Egs. (4.32a—f) in Eq. (4.7)

will then yield the expression for S¢ , which has 9 independent components. The other 6

afyd
non-vanishing components of S® in this case are obtained from Egs. (4.33a,b). It is
observed from Egs. (4.7), (4.4), (4.32a—f) and (4.33a,b) that the components of S in this
exterior case (with x ¢ Q or x > @) will vanish when L = 0 (or x/L — o, a/L — ). By
substituting the components of S obtained here and the components of S derived in Egs.
(4.31a—) into Eq. (2.44a) will finally give the explicit expressions of the Eshelby tensor S

(=S¢ + §%) for any point x outside the cylindrical inclusion (i.e., x & Q or x > q).
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4.3. Numerical Results

In this section, some numerical results are presented to quantitatively illustrate how
the components of the Eshelby tensor for the cylindrical inclusion vary with position and
inclusion size, which has been analytically demonstrated in the preceding section.

From Egs. (4.16)—(4.18a,b), the non-zero components of the gradient part of the
Eshelby tensor, SY, for any x inside the cylindrical inclusion (i.e., X € Q or x < a) along the

x; axis (with x, = 0, x = x;) can be obtained as

Sin —L[)CGL2 +wx’ —x*)1, — L(vx’ +6L2)[] (4.34a)
(1-v)x’L
AN =7[( 6L +vx’ —2x*)I, +3Lx1] (4.34Db)
1-v)x’
50, = [ xGI 1)1, + Lo + 612 + 1)1} (4.34¢)
(1-v)x’L
S¢ =—[—3Lx1 + (612 + x> — v, (4.34d)
(1-v)x’
Stz zm[—x(6L2 +x? =), +2L(x° +6L2)I] (4.34¢)
Siia = 5 LK( ~xl, + L), S5y, = ZixKIII, (4.341f,g)
St ==l 1), S5, = (434n,)
1-vx I-v x

where Ih=I1o(T 7 ), L=01(T 3 )and K; = Ki( %) are modified Bessel functions of the indicated

arguments. As shown in Eqgs. (4.34a—1), in this special case (with x = x;, x, = 0) there are

only 9 non-zero components among the 15 independent non-zero components of S°.

The distribution of S,,,, = S;,, +S,;;, along the x; axis (a generic radial direction of
the inclusion due to the axial symmetry) for five different values of a is shown in Fig. 4.1,
where the values of S, and S, are, respectively, obtained from Egs. (4.15a) and (4.34a).

For illustration purpose, in the numerical analysis leading to the results displayed in Figs.
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4.1-4.3, Poisson’s ratio v is taken to be 0.3, and the length scale parameter L to be 17.6 um.

Classical

0.6786 1 a=6L

a1 a=4L
0.6:

. a=3L
0.5

:\a =2L
St 0.4
0.3
0.2

N a=1L
T T T T T T T T T T T T [ T T T T T T T T
0.2 0.4 0.6 0.8 1.0

x/L

Fig. 4.1. §,,,, along a radial direction of the cylindrical inclusion.

It is seen from Fig. 4.1 that S|, varies with x (the position) and depends on @ and L,
unlike its counterpart S,;,, in classical elasticity, which is a constant (i.e.,S};,,= 0.6786
from Eq. (4.15a), as shown) independent of x, a and L. When a i1s small (comparable to the
value of L here), S,,,, is much smaller than S;,,, which indicates that the magnitude of
S5, (=8, —S5,,) is large and the strain gradient effect is significant. As a increases, the
value of S,,,, approaches from below S, (= 0.6786), and the curves of S,,,, become
increasingly flatter. When a is much larger than L (e.g., a = 6L = 105.6 pum here), the curves
of S,,,, and S{,, almost coincide, which means that the magnitude of S, is very small
and the strain gradient effect becomes insignificant and can therefore be ignored.

Similar trends are observed from Fig. 4.2, where the values of S,,,, varying with x

and a are displayed and compared to the value of S,,, which is a constant (i.e., 0.3214)
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=85, +S,

independent of both x and a. The values of Sj3,, (included in S,, =S5, + S5,

) showing

in Fig. 4.2 are from Eq. (4.34¢), while that of S,, is determined using Eq. (4.15a).

lassjcal
0.3214- Clasgica
037 a=4L
. a=3L
0.25t

02:\a=2L

7] a=1L

0.2 0.4 0.6 0.8 1.0
x/L

Fig. 4.2. §,,,, along a radial direction of the cylindrical inclusion.

The variation of the volume averaged component <S1111>V inside the cylindrical

inclusion with the inclusion size is plotted in Fig. 4.3, where its counterpart in classical

elasticity, <Sﬁ”>v(= SS,,), is also displayed for comparison. Note that <S1111>V is obtained

from Eq. (4.29), while S,, (= 0.6786) is from Eq. (4.15a). It is observed from Fig. 4.3 that

<S1111>v indeed depends on the inclusion size: the smaller a, the smaller <S1m>v . Also, Fig.
4.3 shows that as a increases, <Sm 1>v approaches S;,, (from below), which is a constant
independent of a. Moreover, the difference between <S11 “>V and S, , which is

<S16111>v (=(S,,,,), =S¥, is seen to be significantly large only when the inclusion is small

(with a/L <20 or a < 352 pum here). The same is true for all of the other non-vanishing
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components of <Sifk1>v’ which is mathematically dictated by Eq. (4.29). These observations

indicate that the strain gradient effect is insignificant for large inclusions and may therefore

be neglected, which agrees with what is observed above from examining Figs. 4.1 and 4.2.

0.6786

o
=]

o
(4]
I T T Y

<S>

o
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©
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|

1

10 20 30 40 50
a/L

Fig.4.3. (S, l>v varying with the inclusion radius.

4.4. Summary

The Eshelby tensor for a cylindrical inclusion in the two regions inside and outside
the inclusion is obtained in explicit expressions for the first time using the general form of
the Eshelby tensor for a plane strain inclusion based on the strain gradient theory. The
newly obtained Eshelby tensor has 15 independent non-zero components (as opposed to 36
such components in the case of a 3-D inclusion of arbitrary shape) and consists of a
classical part (depending only on Poisson’s ratio) and a gradient part (depending on the
length scale parameter additionally). The gradient part vanishes when the strain gradient
effect is not considered. This non-classical Eshelby tensor contains a material length scale
parameter and can explain the size effect at the micron scale, unlike that based on classical

elasticity. When the strain gradient effect is suppressed, this Eshelby tensor reduces to that
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for a cylindrical inclusion based on classical elasticity.

To further illustrate the newly derived Eshelby tensor, sample numerical results are
provided. These results quantitatively show that the new Eshelby tensor depends on both
the position and inclusion size and can capture the size effect at the micron scale.

In addition, the volume average of the newly derived position-dependent Eshelby
tensor over the cylindrical inclusion of a unit length is obtained in a closed form, which is
needed in homogenization analyses of fiber-reinforced composites. The volume averaged
components of the Eshelby tensor are found to become smaller as the inclusion radius
decreases, but they are observed to approach (from below) the constant values of the
corresponding components of the Eshelby tensor based on classical elasticity when the

inclusion size becomes sufficiently large.
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CHAPTER V

STRAIN GRADIENT SOLUTION FOR
ESHELBY’S ELLIPSOIDAL INCLUSION

PROBLEM

5.1. Introduction

The simplified strain elasticity theory (SSGET) introduced in Chapter II has been
found a success in capturing the size effect exhibited by composite materials filled with
inhomogeneities of micron scale, as discussed in the preceding chapters. A spherical
inclusion and a cylindrical inclusion problem have been solved in the framework of the
SSGET. This chapter aims to solve a more general and complex ellipsoidal inclusion
problem based on the SSGET, which are of fundamental interest in a wide range of physical
and engineering problems in the micromechanics of heterogeneous solids.

The rest of this chapter is organized as follows. In Section 5.2, analytical
expressions of the Eshelby tensor inside and outside an ellipsoidal inclusion are deduced by
applying the general form of the Eshelby tensor derived in Chapter II. The volume average
of this Eshelby tensor over the ellipsoidal inclusion is analytically evaluated. Numerical
results are provided in Section 5.3 to quantitatively illustrate the position dependence and
the inclusion size dependence of the newly obtained Eshelby tensor for the ellipsoidal

inclusion problem. This chapter concludes with a summary in Section 5.4.

5.2. Ellipsoidal Inclusion

Consider an ellipsoidal inclusion of three semi-axes a,, a, and a; and centered at the
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origin of the coordinate system (xi, x2, x3) in the physical space, as shown in Fig. 5.1. Then,

the region Q occupied by the inclusion is given by

2 2 2
X X X
L+ =2 +=2<1 (5.1)
a a, a

Fig. 5.1. Ellipsoidal inclusion problem.

For this ellipsoidal inclusion, ®(x) and A(x) defined in Egs. (2.43a,b) can be shown
by integration and differentiation to satisfy (Mura, 1982)
- [IK 0)- aIZIIK 0) y5kl - [IJ 0)- aIZIIJ (O)ké‘iké‘jl + 5;'1511(% x € Q,
0,00 =~ = a1 B8, =1, - a1, (0)8,8,+6,5,)

- [IK(V) - aIZIIK(y):I[é‘ijxk - [11(7) - aﬁ]J(?’)L(@k% + 5jkxi)
Lo -2, 6x 5,510 -aL,)]exx,  xew

(5.2a,b)
A oo=1 1O% e (5.2¢.d)
(X) = .zC,
N _11(7/)5ij_[1,j(7)xi> X £ Q,
where
d (5.3)

1;()=2 , ’
1) =27ayay05 | (a? +00(a? +0)(a3 + 1)@ +1)
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. dt
. , (5.3b)
u (1) =20, (a7 +0)(a] + (@ +0)(a3 +0(a3 +0)

which are functions of y, with 7, Je {1, 2, 3}. For x € Q (interior points) y= 0, and for x ¢ Q

(exterior points) y is the largest positive root of the following equation:

2 2 2
X1 " X2 X3

al+y a+y ai+y

=1, 5.4)

which shows that y is a function of x. Note that in Egs. (5.2a—d) and in the sequel each
repeated lower-case index implies summation from 1 to 3, while each upper-case index
takes the same value as its corresponding lower-case index but implies no summation.

For interior points with x € Q, it follows from Egs. (2.47a) and (5.2a,c) that the

classical part of the Eshelby tensor is

1
SCIN - = v (0)=1, (0)+a>l, (0)p.0
ijlm 87r(1—v){[ I( ) L( ) 1 IL( )kz] Im

+ [(1 _ V)[L 0)+(1—- V)IM 0)— IJ 0)+ CZ%IU(O):kéﬂéjm + éiméjl)}a

(5.5)

which is the same as that provided in Li and Wang (2008). It is clear from Eq. (5.5) that the
Eshelby tensor Sif;;,fN is uniform (i.e., independent of position x) inside the ellipsoidal
inclusion, which is a well-known result (e.g., Markenscoff, 1998) and has recently been
elaborated in a broader context by Liu (2008). In fact, it can be shown that the components

of § UCZWIlN given in Eq. (5.5) depend only on the two aspect ratios of the ellipsoidal inclusion,

defined by a; = aj/as and a, = ay/as, and Poisson’s ratio of the matrix material, v.
For exterior points with x ¢ Q, it can be shown that the use of Eqgs. (2.47a) and

(5.2b,d) yields the classical part of the Eshelby tensor as (Mura, 1982)
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i = S04 = O+ U 005+ s+ a1,
(5.6)
L et LLC R A C0) MR GO R A2 ORI
0=t G, + 3,00+ =31 v,
where
Sin )= oy R L) T Dy, 57

A=D1+ A=V ) =1, )+ Ly (D610 + 00 1))

Clearly, Eq. (5.6) involves the first- and second-order derivatives of /() and I;/(y) defined
in Egs. (5.3a,b), which are not explicit and will be replaced with more direct expressions. It

can be shown from Eqs. (5.3a,b), after some lengthy algebra, that

—47mla2a3w.,wl,x —47[a1a2a3w1@'1w1)x
1,,(r)= 7 =1, = 7 ) (5.8a,b)
[ 2 ] 4ra,a,a, aml. . . .
x x|, () —a; 1,(n)],, =T A 2—2y(w,+w, +wP+wQ)—79+7 iR LA, + Y@ 0, i, ¢,
(5.8¢)
where
2 2 2 X, X _ 1 B
A= \/(al +y)a; +y)as +y), Z E%, @, = PR (5.9a—c)
(aM +7/) 1 7/
X, X X,
Y=o +ov,+@,, n=—""—, n=—"——. (5.9d-1)
L (ay, +7) (a; +yWZ

Using Egs. (5.7) and (5.8a—) in Eq. (5.6) then gives

Sint =816,68,,+87(8,6,,+6,0,)+S w,@,6,xx,+5 w,w,5,xx

ijlm IL ~ij M™ij Im7 i j

+8 @ ,@,,0,x,

X, t@,@.0,,X, x1)+S( (@, @0, XX, +@,@,0,,XX) (5.10)
7
+ S XX X%,

where
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1
S = 5ra =y 2O -1+ el )
1
S =1L+ 1L, 1,0 +a’1, ()}
8r(1-v)
o _ Gl @ _aaa; 1 (v, —2v) (5.11)
! AZ 2(1-v) " F AZ 2(1-v) ’
¢ _ Gaa; 1 © _ Maa; 1
=123 _ __— (yow,-1+v), SP="22_—  (yo,-1+v),
I A7 2(1—\/)(]/ 1 ) S A7 2(1—\))(]/ J )
a,a,a 1 4vn
I(JL)M = 1A2223 20— w,waLwM[2—2}/(w, +@,+@, +zUM)—}/.9+Z}

Note that the expression for the classical part of the Eshelby tensor outside the ellipsoidal
inclusion (i.e., for exterior points with x ¢ Q) given in Egs. (5.10) and (5.11) no longer
contains derivatives of /(A) and I;/(A) and is therefore more convenient and more accurate

to use (since differentiation tends to introduce more errors in numerical approximations). It

can be readily shown that the expression of Sl.fl;fX in Eq. (5.10) is the same as that derived

earlier by Ju and Sun (1999) using a different notation. Clearly, it is seen from Egs. (5.6)

and (5.7) that S;l;fX , being dependent on the position X, is not uniform outside the

ellipsoidal inclusion, although Sycl;rIzN (see Eq. (5.5)) is uniform inside the same inclusion.

The determination of the gradient part of the Eshelby tensor requires the evaluation
of the integral defining I'(x) in Eq. (2.43c). For the ellipsoidal inclusion described in Eq.
(5.1), a closed-form expression for I'(x) can hardly be derived. However, the following

results can be obtained (see Appendix E for derivations):
_ 2 g2 27 o1 i _ i _ ﬂ .
I'x)=4nL"-L IO IO (1+ Ljexp( L)exp( Ljsm@d@d(/) (5.12)

for interior points x € QQ, where

. 2 . . 2 2 _1/2
S_[(sm@cosgp} J{sm@sm(p] +[c0s0j] _ s(0.0). (5.13)
a, a, a,




m =S‘X\cose, X=x—1e1 +x—2e2 +x—3e3,
a4 ) as
and
4L2 i a . v .
r@=-—1[ U FOsingdo+ [ F® sdeH)d(p
T 90 0 a

for exterior points x ¢ €2, where
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(5.13b,c)

(5.14)

(5.15a)

(5.15b)

(5.15¢)

Clearly, Egs. (5.12) and (5.14) show that I'(x) = 0 when L = 0 (i.e., when the strain gradient

effect is not considered), as expected.

It should be mentioned that for interior points x € Q, evaluating I'(x) defined in Eq.

(2.43c¢) can also be reduced to the evaluation of one line integral on the interval [0, ) by

using an expression of the Helmholtz potential inside an ellipsoidal region derived in

Michelitsch et al. (2003) (see their Eq. (3.18)), as was done in Ma and Hu (2006) for

spheroidal inclusion cases with a; = a».

For the special case of a spherical inclusion with a; = a, = a3 = R, thereby s = R and

m = xcosd according to Eqgs. (5.13a—c), it can be readily shown by using Eqgs. (5.12) and

(5.14) respectively that

2 _R
Arl* — 4zl (L+ R)e * sinh (%j, xeQ,
X

= . P
4zl sinh R —Ecosh R el, xegQ,
X L) L L

(5.16a,b)
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which are the same as those obtained in Egs.(3.1e,f) by direct integration.
For the special case of a cylindrical inclusion with a; = a; = a and a3 — oo, it can be

shown, after evaluating the integrals analytically, that Egs. (5.12) and (5.14) give

4L {L - alo(x)Kl(aﬂ, xeQ,
I(x) = L) \L (5.17a,b)

4nLal, (CLZJKO (zj x¢Q,

where 7,(-) and K,(-) (n = 0, 1) are, respectively, the modified Bessel functions of the first

and second kinds of the nth order. Egs. (5.17a,b) are the same as those derived in Egs.

(4.3a,b). In reaching Egs. (5.17a,b), use has been made of the identities:
0 = 1,(2)+2Y I,(z)cos(k), j:”cos[k(q)—%)] dp=0 (k=1,2,..). (5.17¢,d)
k=1

It can be shown that differentiating Eq. (5.12) or Eq. (5.14) leads to

r, == f(P), (5.18a)
a;

P

where
1/2

2 2 2
P=|X|= 0 U R - B 3 , (5.18b)
4 ) as
2r e K) ) .
f(P)E,L J; s(L+s)exp(—zj exp[—chosé’j cos@sin@ dfdp for xeQ, (5.18¢c)

or

f(P)= —%Lz j:”(j:%sine o+ j:”%i]jsine daj dp forxeQ.  (5.18d)

Clearly, it is seen from Egs. (5.18c,d) that f{/P) = 0 in both the interior and exterior cases
when L = 0, as expected. Note that in reaching Eq. (5.18a) use has been made of the
coordinate transformation:

x, = Pan,, (5.19)

which transforms the ellipsoidal region Q defined in Eq. (5.1) into a unit sphere |X|< 1
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with the unit outward normal n on its surface | X|=1.

It then follows from Egs. (5.18a,b) and (5.19) that

= [zﬂ(az1 Fngn, + ﬁa‘]} (5.200)
Ty = a]aIJaL [P3 (dyf) mn m, + P(d, f)<5,.jn,>3], (5.20b)
r,l.j,mzMJ(IWM[P“(OI3 S Imin gy, + P2 (do fYSymmy, ) +(dif X6 (5,m>l (5.20¢)
T jimp = W[Ps(d4f)n s, + PP (ds S, mm, )+ Py /) 0y0m,) 1(5-20@
where
0 = L) ren) g = ()= e P -seraay)
d,f = %afip(dzf) - #(P3f'”—6P2f"+15Pf'—15f),
d,f = %%(ag f)= #(P“ @ —10P f1"'+45P f-105Pf'+105 )

n o+, +8,mn, (8,0,) =8,6,+06,5, +5,0

im™~ jl°

/\/\/\
Qo
3 \/

T > =o;mn, +ounn, +06,nn +6,nn,+38, nn +38,nn,,
o,n;mn > =o,n,mn, +o,nnn, +0o,nnn, +5mp nn +6,nnn, +06,nnn,
+38,,mmn, +o,n.n,n, +0o,nn,n, +o,nn,n,
(8,8n,) . =0,0,n, +8,8,1,+08,8,n,+8,8,n,+5,5,n,+8,0,n+8,0,n,+8,05,n,
+5,p5mn,+5,15mp /+5115m " +5 5mpn, +5lp5 n, +5,,5mp +9, 51pnm,
(5.21)

with n; = x;/(Pa;) according to Eq. (5.19).

Note that Egs. (5.20a—d) hold for both the interior and exterior cases, with f defined
in Eq. (5.18¢c) and Eq. (5.18d), respectively. In Eq. (5.21), /7, /% /" and /' © denote,
respectively, the first-, second-, third- and fourth-order derivatives of f with respect to P.
For the interior case with x € Q, 17, /% f””and £ can be obtained from Eq. (5.18c) by

direct differentiation. For the exterior case with x ¢ Q, the use of Eq. (5.18d) leads to
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>

/= —%LZDOMUO 88?” sin @ d¢9+r/ *0 ]:2) sin @ dgjﬂ”:
f"= —%LZ{J.O [J.O 6;)’“) sin @ dl9+r/ 0 F(Z) sin @ d@]d :
f"= —%LZ{L ['[0 665)'“) sin @ d9+r/ 0 F(z) ——sinéd dﬁjd }
£ = EL{J-O UO a@i(l) sin @ d9+r/ 20 I;(Z) sin @ d@jd }

where F\" and F® are defined in Egs. (5.15a,b). In reaching Eq. (5.22) use has also been

g

(5.22)

made of the result [F(l)—F(z)] | 0= o= 0, which enables the terms involving 0a/0P to vanish.

Using Egs. (5.20a,c) in Eq. (2.47b) then yields the gradient part of the Eshelby

tensor as

G 1 2v 2 f lln 5"lninm
Siim g {[ {P (d, f)n;n, +p5"f}51"’ +(1-v)P*(d, f)( mo,

aray a;ay apay
(5.23)
51m /nl 5jmninl \J " (1 _v)f(éiléjm " 51‘15_/ 51m5]l 6zm5]1]
aaj aray, apa;, a;ay aIaM aap
L[ ‘(a 2(dyf)o di f 9,0 ] ?
- P 3f)”i”j”l”m + P 2f)< ijnlnm>6 +( 1f)< i lm>3 +2LA i s
aja;apdy

where n; = x;/(Pay) from Eq (5.19), and P is defined in Eq. (5.18Db).

Equation (5.23) applies to both the interior and exterior cases, but the expressions
for f(P) and A,;u, are different in each case. For the interior case with x € Q, f{(P) is given in
Eq. (5.18¢c) and A,;, = 0 (see Eq. (5.2¢)), while for the exterior case with x ¢ Q, f(P) is

provided in Eq. (5.18d) and A, 1s obtained from Eq. (5.2d), after some lengthy algebra, as

1
Ay, = 47Zala2a{—(5y T T, +5,,5 20,0, + 0, 5],wle)+4xixjx,meULM

+2(5 xx, M, +54x.x M +5lmxj M, +5 x.x, M, (5.24)
+§jmxl M, +0,,xx M,JL)],

Im™i?vj

where
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1 1 2
M., zw,wLwME{—(wlﬁLwL+wM)—EI9+777}, (5.25a)

1
Ny =0,0,0,0,— AZ> [(wl + ZUJ + ZUL + ZUM) t(@ +o,+@, + ZUM)

(5.25b)
1 3(n9+2B) 12717
+ (93— o, +@,+w, +@,,)+— 92 + ,
( )( I J L M) Zg 7 Zz
c=w +@, +@,, f=o'x +@ix] +@ix]. (5.25¢,d)

From Egs. (5.23)—(5.25a—d) it is seen that the gradient part of the Eshelby tensor,

SG

iim> is position-dependent inside and outside the ellipsoidal inclusion, since f, P, n;, and

A,ijm (for the exterior case) involved in Si]Glm are all functions of x. This differs from the

GC.IN

classical part, , which is uniform inside the same inclusion.

Next, substituting Egs. (5.20b,d) into Eq. (2.48) gives the fifth-order Eshelby-like

tensor as

LZ

8qr(1-v)a;a a ayap

{f2v51maLaM [P (dyf)nin;n, +P(d1f)< ip .i>3]

T;'jlmp
—(1-v)P’ (dr ) mn,n,0 ya a;, +n;n,n,o,aa; +nmn,o ,d dy +nn,0,,d;d )
_(1 V)P(dlf)(< zp m> laJaL <5]mnp> 5ila1aL +<5ilnp> 5jmaJaM +<5jlnp>35ima1aM)

+2L2[P (dyf)nnmn,n, +P (d3f)<(5,p ninn,, >1 +P(d2f)<5y51m p>15

87[(11})[2VA ipOm A=A 18 i1+ A Oy + A 0 + A 03) — QLA+ D) 1,

(5.26)
where n; = x;/(Pay) from Eq (5.19), P is defined in Eq. (5.18b), and A j,, A jjimp, P jjimp can be

obtained from Egs. (5.2a-d). Clearly, T}y, = 0 whenever L = 0. That is, this fifth-order
Eshelby-like tensor vanishes both inside and outside the ellipsoidal inclusion when the

strain gradient effect is not considered.

Equation (5.26) is valid for both the interior and exterior cases, but the expressions
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for f{P), A and @ are different in each case. For the interior case with x € Q, f(P) is given in
Eq. (5.18c) and the derivatives of ® and A involved are obtained from Egs. (5.2a,c) as

(I),Ulmp :0, A’Up :A,imp :A,jmp :A7llp :A,ﬂP :O’ A,ljlmp :O (527)

For the exterior case with x ¢ Q, f(P) is provided in Eq. (5.18d) and the derivatives of @

and A are determined from Egs. (5.2b,d), after some tedious derivations, as

(O
gilmp YO
- [wLwP5ij5lmxp + T ;Wp (5116/m + 51'»15/’[ )xp + ZD-Lz’U-Mé‘i]’é‘[pxm
draa,a, AZ
tw,T,, (51‘161‘;; + 6‘ipé‘j1)xm to,o, (é‘imé‘jp + 6‘ipé‘jm )x;]
LS 2w m,@,0, - T By, 5 M)
ij'x] AZZ xmxp 7/w] mp xm'xp LMP
2w w,m, T, w,T,,

xmxp + }/wl (5mp

vz + 2xmxpMJMP)}

+ (5ilxj + 5_/1)@){

+(0,x.+0

im™ j Jjm

i’ o, @ o,
I I J P JYL
xl.){—AZ2 XX, +y@, ((5',1, —AZ + ZxIxPMJLP)

2_2
20,0, 0,0,
AZ?

w,w,

+ (5ip'xj + 6jpxi)|: xlxm + }/wl (5101 + 2‘xlmeJLM ):|

2w 2n olo o,
2
+ xix‘]- {2611 |:5mp — ZP xmxp [2@'1 + ZD-M + ZD-P _7ji| 1=7J 2L M xl

o,

2a’w? w,o
= [xmwM (&) =+ 255, M) + X058,

+2x,%,M ):|

+2}/w,(§mpx,MJLM +6,x M, +0,x M,,+2xx,x NJLMP)},

Ip?m Im* p m”p

(5.28a)

4ma,a,a
A, = #(m,wpé}jxp +@,@,0,X, + w,wjé'jpxi)
(5.28b)
87 a,a4 @, @ ,TpX,X X —(ZUI +a@, +ZUP)—119+2—77 ,
AZ? s 2 Z
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A
—— = )x 2 (030m M 11p + 040 ;1M 11p + 040 y M 1yp) +2X,;(0 1,01, M 111 + 0 1,01 M 11
4ra a,as

+0 10y M 1101) + 2% (0110,p M 1101 + 01Oty M 11, + 0101y M 11,) + 2, (050 1, M 110
+0 100, M jps + 20,01, M 1100) + 257(6,0 15y M g1, + 050, M 1101 + 630 1, M 1)

ip%jm ij%mp
+4(5,- XXX, +5Jp X; X)X, +5,px» : +5mp ixjx,)NULM +4(5l-jx, pNILMP

+0,X X, X, N agp + 0 X ;X)X , N 1 + 0y XX, X, N 1yp +9

im ] Jm lxlx NIJLP
+ 0, X;% ;X , N 11p) + 8%, XX, pHIJLMP’
(5.28¢)
where

H _ 0,0,0,0,0,
IJLMP —
AZ*

{2(@ ‘@, t@, @, @) +(%9— 247,

607
Zz

(w,+wj+wL+wM+wP)2—{

12 3 3
-8 +2p)+=9 +=

Z (18+28)+7 2%
(@, +@,+o,+@, +@,)+6(z, +@, +@, +@, +o,)

3, 12 120 30

+(519— R A Z? ( 23+477ﬁ) (5.28d)
1 2 2_5 2_5 2_5 3 1 3

+E[—37719 —12ﬂ19—677g—24(x1 @, +X,0, + X, @, )]+Zl9g+§l9

3 3 3
+(zU1 + @, +w3)— 6o,0,0, +o,0,0, +0,0,0,+0,0,0, +0,0,0,

+0,0,0,+0,0,0,+0,0,0,+0,0,0,+ wLwaP)},
and My and Nk, are given in Egs. (5.25a,b).

Considering that S is position-dependent inside the ellipsoidal inclusion, its

ijlm
volume average over the ellipsoidal region occupied by the inclusion is examined next.
This averaged Eshelby tensor is needed for predicting the effective elastic properties of a
heterogeneous composite containing ellipsoidal inhomogeneities.

The volume average of a sufficiently smooth function F(x) over the ellipsoidal
inclusion occupying region Q is defined by, with the help of the coordinate transformation

defined in Eq. (5.19),

(F(x)), = o 1(9) ” L ()dV=— j j j F(x)P? sin 6d6dpdP, (5.29)
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where dV = a1a,a;P*sinf dP d6 dop, with P = |X| (see Eq. (5.18Db)). It then follows from Eqgs.

(2.47b), (5.2¢) and (5.29) that

1
<S‘YGI’” >v B 8r(1-v) [2v <FU >v51m +(1- V)(<F,jm >v Oy + <FJ’” >V Op+ <F’ﬂ>V6im (5.30)
+ <F,il >V5jm ))_ 212 <F,iﬂm >V ]’

where

Ty, = (fP=1)a,ZJ’ (T i), :;[(f”+ 212, + (2f)P:0]<f’>3, (5.31a,b)

arajarday

with f defined in Eq. (5.18c). Note that in reaching Egs. (5.31a,b) use has been made of the

integral identities given in Eq. (3.13). Using Egs. (5.31a,b) in Eq. (5.30) finally gives

G — ; 5,751," - : 1
<Slﬂ’”>v B 8r(1-v) {2v<f|Pl) aa, Ha V)(f|P:1 {(alaL ' @rlu Jé‘llé‘

(6,0,) (5.32)

+( ; ’ 1 j5”" ﬂ} = [(f”-l—Zf 2f)|}>1+(2f)|P0

a,ay 4a,a, a,a,a ay
as the average of the gradient part of the Eshelby tensor over the ellipsoidal inclusion Q. It

can be readily shown that for the spherical inclusion case with a; = a = a3 = R, Eq. (5.32)

recovers the closed-form expression of <Sigm >V derived in Eq. (3.18).
Since SU%N is uniform inside the inclusion, the use of Egs. (5.5) and (5.29) gives

< GCIN > - S@_}C} VTt then follows from Egs. (2.44a), (5.5) and (5.32) that

ijlm

8z(1-v) aa,
[(1 I, (0)+(1-v)I,,(0)-1 (0)+a,2]H(O)K§§ +0, 5)

im™ jl

1 1 1 (5.33)
+(1—V)(f|P_11:(a p +FJ51'15JM +[a ; P ]51m5]1:|
19 79 1y 74

2 10 im
2L a2, s, ]<—>}

<Si/'lm >V - ;H:zvh (O) o IL (0) + aIZIIL (O) + 2V(f|P:1 ):|5 5lm

a,a,a;a,,
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as the volume average of the Eshelby tensor inside the ellipsoidal inclusion based on the
SSGET. In Eq. (5.33), 1(0) and [;/(0) are constants obtainable from Egs. (5.3a,b), and f' =

A(P) is defined in Eq. (5.18c¢). Clearly, when L = 0, Eq. (5.33) reduces to <S.AI’IN > _ gC.IN
\'%

ijim ijim
given in Eq. (5.5), since f{P) = 0 for any value of P (> 0) when L = 0 (see Eq. (5.18¢)).

The volume average of T}, for x locating inside the ellipsoidal inclusion (i.e., X €
Q) can be readily shown to vanish, i.e.,

1

(o 90, = iy I 007 = L[] T sintttar 0. 530

This is based on the fact that 7}, (x) involved in Eq. (5.34), which is to be substituted from
Egs. (5.26) and (5.27), contains the components of the unit normal vector n = ne; =
(sinBcosg)e+(sinsing)e,+(cosH)es on the unit sphere surface 1X|=1 through n;, nnn; and
ninjnn,ny,, which satisfy the following integral identities:

[ [y sin6d0dg =0, [ [Tnnn; sin6d6dp=0, [ [“mnnyn,,n,sin6d6dp=0. (5.35)

mnp

It then follows from Egs. (2.40), (5.29) and (5.34) that
%
where <S./., > is given in Eq. (5.33). Equation (5.36) shows that the average disturbed
ym [~y

strain is only related to the eigenstrain €* even in the presence of the eigenstrain gradient

K*.

5.3. Numerical Results
To quantitatively illustrate how the newly derived Eshelby tensor changes with the

position and inclusion size, some numerical results are presented in this section.

Figure 5.2 shows the distribution of S,,;; = S5,; + Sus; along the x3 axis (with x; =
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0 = x,) for four different values of a3, where the values of Sy, and S;,,; are, respectively,

obtained from Egs. (5.5) and (5.23), with f{P) given in Eq. (5.18¢c) and A, = 0 from Eq.
(5.2¢). For comparison, the value of the counterpart component of the classical Eshelby
tensor, which is the same as Sfm, is also displayed in Fig. 5.2, where a; = aj/a; and o, =

a»/az are the two aspect ratios of the ellipsoidal inclusion.

**1 [w=3,0,=2,v=03, L=17.6 um|

0.8
0.7678

0.7 1 & & & 2 2 A a .,

0.6 - -_._.*_\.\.\.\.\.

0.5 ~
S3333
0.4 4
0.3 ~
0.2 +a3=L —.— a3=2L
o1 1 —4— a,;=3L —— a,=5L
—— Classical
O T T T T 1
0 0.2 0.4 0.6 0.8 1

x, /L

Fig. 5.2. S,,,, along the x3 axis of the ellipsoidal inclusion.

From Fig. 5.2 it is observed that §,,,, varies with the position (with x; = x; =0, x =

x3) and depends on the inclusion size (a3), unlike its classical part S3C333 which, for the

specified values of the aspect ratios a; and ay, is a constant independent of both x3; and a3

(i.e., S3C333= 0.7678 from Eq. (5.5), as shown). When a3 is small (with a3 =L = 17.6 um
here), S,;;; is much smaller than S3C333 , which indicates that the magnitude of

S3G333(= Si333 — S3C333) is very large and the strain gradient effect is significant. However,
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when a3 is much greater than L (e.g., R = 5L = 88.0 um shown here), S,,, is seen to be
quite uniform and its value approaches S3C333 from below, meaning that the magnitude of

S3G333 is very small. This indicates that for large inclusions the strain gradient effect is

insignificant and may be neglected. Similar trends have been observed for other

€ 4809

components of S, (=S, +S5,,,)-

079 |ay2a,=a;, v=03, L=17.6 um
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0.1 1 —a,=10—+a, =20—a,=50——a, =100 —a, >

0 T T T T T 1
0 5 10 15 20 25 30
a,/ L
Fig. 5.3. <S3333> changing with the inclusion size for different aspect ratio values.
v

The variation of the component of the averaged Eshelby tensor inside the ellipsoidal

inclusion, < >v’ with the inclusion size a3 is shown in Figs. 5.3 and 5.4. In Fig. 5.3, the

S$3333
spherical inclusion and the cylindrical inclusion cases are included as two limiting cases of
the ellipsoidal inclusion problem solution with a; = 1 and with a; — o, respectively. Note

that <S3333>Vis obtained from Eq. (5.33) for all cases displayed in Figs. 5.3 and 5.4.

For the spherical inclusion (with a; = 1 = a;) and cylindrical inclusion (with a; —
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o and a, = 1) cases, the numerical results of <S3333>V0btained using Eq. (5.33) and shown

in Fig. 5.3 are almost identical to those determined using the closed-form formulas derived
in Egs. (3.18) and (4.29). Moreover, it is clearly seen from Fig. 5.3 that the spherical
inclusion case having a; = 1 = a, provides a lower bound, while the cylindrical inclusion
case having a; — o and a; = 1 furnishes an upper bound for the ellipsoidal (spheroidal)
inclusion cases with 1 <a; <oo (and a, = 1), as expected. These facts verify and support the

current analysis of the ellipsoidal inclusion problem.

08+ |m=3a,=2,v=03,L=17.6 pm

0.7678
0.7 1
0.6
<S3333>V 05 7
0.4 1 —‘—<S3333>V
—/gCW
<S3333 >v
0.3
0.2 T T T T T 1
0 5 10 15 20 25 30
a,/ L

Fig. 5.4. Comparison of (S3555) and <S3C33’§V>V

It 1s observed from Fig. 5.3 that <S3333>Vis indeed varying with the inclusion size
for all five cases considered: the smaller a3, the smaller <S3333>V. This size effect is seen to

be significant when the inclusion is small (with a3/L < 10 or a3 < 176 um here). However,

as the inclusion size increases, <S3333>V in each case approaches from below the

corresponding value of <S3C33’§V >V (=S5) based on classical elasticity, which, for given
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values of the aspect ratios, is a constant independent of a3, as discussed in Section 5.2. This

comparison is further illustrated in Fig. 5.4, where it is shown that the classical Eshelby

tensor component, as a constant (i.e., <S3C33’§V>V =0.7678 from Eq. (5.5) for a; = 3 and a, =

2), cannot explain the inclusion size effect.

5.4. Summary

The Eshelby problem of an ellipsoidal inclusion (with three distinct semi-axes) in an
infinite homogeneous isotropic elastic material is analytically solved by using a simplified
strain gradient elasticity theory (SSGET) that involves one material length scale parameter.
Analytical expressions for the Eshelby tensor are derived for both the interior and exterior
cases in terms of two line integrals with an unbounded upper limit and two surface integrals
over a unit sphere.

The newly obtained fourth-order Eshelby tensor for each case consists of two parts:
a classical part depending only on Poisson’s ratio, and a gradient part depending on the
length scale parameter additionally. As a result, the new Eshelby tensor based on the
SSGET can capture the inclusion size effect, unlike its classical counterpart. The fourth-
order Eshelby tensor is accompanied by a fifth-order Eshelby-like tensor that links the
eigenstrain gradient to the disturbed strain and contains only a gradient part. In the absence
of the microstructure-dependent strain gradient effect, both the gradient part of the Eshelby
tensor and the Eshelby-like tensor vanish, and the non-classical Eshelby tensor is reduced
to that based on classical elasticity. Moreover, the Eshelby tensors for the spherical and
cylindrical inclusion problems based on the SSGET are included in the current Eshelby

tensor as two limiting cases.
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In addition, the newly obtained Eshelby tensor inside or outside the ellipsoidal
inclusion depends on the position, differing from the classical Eshelby tensor that is
uniform inside the inclusion. This necessitates the determination of the volume average of
the new Eshelby tensor over the ellipsoidal inclusion needed in homogenization analyses,
which is done analytically in this study.

To further illustrate the newly derived non-classical Eshelby tensor, sample
numerical results are provided. These results reveal that the non-classical Eshelby tensor
varies with both the position and the inclusion size, thereby capturing the size effect at the
micron scale, unlike the classical Eshelby tensor. The components of the averaged Eshelby
tensor are found to decrease as the inclusion size decreases, and these components are
observed to approach (from below) the values of the corresponding components of the

Eshelby tensor based on classical elasticity when the inclusion size is large enough.
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CHAPTER VI

SOLUTION OF AN ESHELBY-TYPE

INCLUSION PROBLEM WITH A BOUNDED

DOMAIN AND THE ESHELBY TENSOR FOR

A SPHERICAL INCLUSION IN A FINITE

SPHERICAL MATRIX

6.1. Introduction

In the last four chapters, the Eshelby tensor for an inclusion embedded in an infinite
homogeneous isotropic elastic body is obtained using the simplified strain gradient elastic
theory (SSGET). This non-classical Eshelby tensor contains a material length scale
parameter and, therefore, is capable of explaining the microstructure-dependent size effect
in the composites at the micro- or nano- scale. However, both the classical Eshelby tensor
and the newly derived non-classical Eshelby tensor are for an inclusion embedded in an
infinite elastic matrix. This implies that the disturbed displacement due to the inclusion
makes no influence on the displacement at the boundary of the elastic body, and vice versa.
Consequently, these Eshelby tensors and the subsequent homogenization methods cannot
account for the boundary effect of a finite body. Hence, there has been a need to obtain the
Eshelby tensor for an inclusion in a finite matrix subject to traction, displacement or mixed
boundary conditions.

A few analytical studies have been performed using classical elasticity to solve the

problem of an inclusion in a finite homogeneous isotropic elastic body. Kinoshita and Mura
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(1984) provided the first theoretical study of the finite-domain inclusion problem based on
classical elasticity. They proved the existence and uniqueness of the Neumann tensor for a
bounded homogeneous elastic body, which reduces to the Green’s function (also a second-
order tensor) when the body is unbounded. The use of this Neumann tensor would then lead
to solutions of finite-domain eigenstrain problems. However, the determination of the
Neumann tensor for a bounded elastic body is rather challenging, and only the Neumann
tensor for a half space was given in Kinoshita and Mura (1984). By using a displacement
method in classical elasticity and solving the boundary-value problems directly, Luo and
Weng (1987) determined the elastic field in a spherically concentric three-phase solid
consisting of an inclusion, an interphase layer, and an infinite matrix. The presence of the
finite interphase layer between the inclusion and matrix enabled a modification of the Mori-
Tanaka method, but no explicit expression of Eshelby tensor for the modified problem was
provided there. More recently, Eshelby tensor for a spherical inclusion in a finite spherical
elastic matrix was analytically obtained in Li et al. (2007) by using Somigliana’s identity
and Green’s function for an infinite three-dimensional (3-D) elastic body in classical
elasticity. In contrast, no analytical solution has been provided for the finite-domain
inclusion problem using any higher-order elasticity theory. This motivated the current study.

In the present chapter, a solution for the Eshelby inclusion problem of a finite
homogeneous isotropic elastic body containing an inclusion prescribed with a uniform
eigenstrain and a uniform eigenstrain gradient is first derived in a general form. It makes
use of an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based
on a simplified strain gradient elasticity theory elaborated in Gao and Park (2007), which
involves only one material length scale parameter and has been successfully employed to

obtain analytical solutions of several problems (e.g., Gao and Ma, 2009; Gao et al., 2009;
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Ma and Gao, 2009). The problem of a spherical inclusion embedded concentrically in a
finite spherical elastic body is then analytically solved by applying the general solution,
with the Eshelby tensor and its volume average derived in closed forms.

The rest of this chapter is organized as follows. In Section 6.2, an extended Betti’s
reciprocal theorem is first proposed and proved. It is then followed by the derivation of a
general solution for the finite-domain Eshelby inclusion problem based on this reciprocal
theorem and an extended Somigliana’s identity that arises subsequently. The finite-domain
spherical inclusion problem is solved in Section 6.3 by using the general formulas derived
in Section 6.2, which leads to closed-form expressions of the Eshelby tensor and its volume
average. In Section 6.4, sample numerical results are presented to quantitatively show how
the components of the Eshelby tensor obtained in Section 6.3 vary with the position,
inclusion size, matrix size, and inclusion volume fraction, where the size and boundary

effects are observed and discussed. The chapter concludes with a summary in Section 6.5.

6.2. Strain Gradient Solution of Eshelby’s Inclusion Problem in a Finite Domain
6.2.1. Extended Betti’s reciprocal theorem
For an elastic body satisfying the SSGET reviewed in Section 2.1, Betti’s first

reciprocal theorem in classical elasticity (e.g., Sadd, 2009) can be extended to

) ) ),..(0) — 1) () ury, (1)
[ leem + w0 lav = [eel® + uiip lav . (6.1)

where the superscripts “(/)” and “(/])” represent two loading sets, and €2 is the region
occupied by the elastic body.
To prove this extended Betti’s reciprocal theorem based on the SSGET, it is noted

that the second term in the strain energy density function on each side of Eq. (6.1), which is
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absent in classical elasticity, is required in the SSGET (see Eq. (2.4)). Also,

) U _ ) ) _ un () _ ) ()
Ty &y =Cuen' ey =Cuyéy &y =Ty &4 6.2)
), U _ g2 ) ) _ g2 un, .y _ . .(I) )
luijk Kijk =L CijmnKmnkK{/'k =L Cmninijk Kok = Mot Kok »

where use has been made of Egs. (2.5a,b) and the major symmetry of the stiffness tensor
(1.e., Cyju= Cuyj). Substituting Eq. (6.2) into the left hand side of Eq. (6.1) will immediately
give the right hand side of Eq. (6.1), thereby proving Eq. (6.1).

Physically, the extended Betti’s theorem expressed in Eq. (6.1) states that the strain
energy in the elastic body induced by the loading set (/) through the displacement field
caused by the loading set (/) is equal to that induced by the loading set (//) through the
displacement field caused by loading set (/).

Using Eqgs. (2.5a—d) and (2.7) gives, with the help of the divergence theorem,
[ [0em + utPxi0lav = [ oty +_[iOul™ + g "utn, Jas (6.3)

for any region Q bounded by a smooth surface 0Q (without any edge), where n = nse; is
the outward unit normal vector on 0Q, and ¢; and ¢; are, respectively, the Cauchy traction

and double stress traction defined by (Gao and Park, 2007),

L =oun; — (/'l{jknk),j + (/Jg//cn/cnl),l s q; = Hynny. (6.4a,b)
With the help of Eq. (6.3), Eq. (6.1) can be rewritten as

(1), (D (1, (D) (D, (D) _ an,, (h (U0, (D
—Igay,jui dV+Iag[lf u +q; uy, n,]dA——IQG.HuA dV+LQ[ti u +q; ug)n, ]dA. (6.5)

i i Ui i

Eq. (6.5), as the extended Betti’s second reciprocal theorem based on the SSGET, will be

directly used to derive the solution of the finite-domain inclusion problem next.
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6.2.2. Extended Somigliana’s identity and solution of Eshelby’s inclusion problem in a

finite domain

Consider an inclusion € of arbitrary shape embedded in a finite homogeneous
isotropic elastic body Q of arbitrary shape, as shown in Fig.6.1(a). A uniform eigenstrain g
and a uniform eigenstrain gradient k¥~ are independently prescribed inside the inclusion, as
discussed in Section 2.4. Besides ¢ and «, there is no body force or surface force acting in
the elastic body containing the inclusion. Hence, the displacement, strain and stress fields
induced by the presence of € and k" here are disturbed fields, which may be superposed to

those caused by applied body and/or surface forces.

Fig. 6.1. Inclusion in a finite elastic body.

According to the derivation in Section 2.4, in the absence of body forces, the

equations of equilibrium for this inclusion problem can be written as (See Eq. (2.32))
Co (64 —L’k, ) ;= Coy (64, —LKy, ) =0. (6.6)

It can be seen from comparing Egs. (2.7) and (6.6) that Eq. (2.7) will be the same as

Eq. (6.6) if the total stress oy and the body force f; in Eq. (2.7) are, respectively, replaced by
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o; = Cyu(&y _Lz’(kzp,p) ) (6.7)

J

*

fi= —Cij.,d(g,f,,j —Lzlck,pvpj) . (6.8)

The total stress expression listed in Eq. (6.7) is exactly what is given by Egs. (2.5a,b)

and (2.7). Hence, Eqgs. (2.7), (6.7) and (6.8) can be used as an alternative to the equilibrium
equations provided in Eq. (6.6).

On the other hand, consider an infinite homogeneous isotropic elastic body Q.

subject to a unit concentrated body force applied at point x, as shown in Fig.6.1(b).

Substituting the special body force fiy) = &x — y)e(x) into Eq. (2.7), leads to the

equilibrium equations for this point-force problem as

o, (Y)+o(x—-y)e(x)=0, (6.9)
where 6(x—y)is the 3-D Dirac delta function, and e,(x)is the ith component of the unit
force. Note that the Green’s function G(x —y) in the SSGET, given in Eq. (2.28) and (2.29)
is a second-order tensor whose component G, (x—y) represents the displacement

component u; at point y in a 3-D infinite elastic body due to a unit concentrated body force

applied at point x in the body in the jth direction. That is, G, (x—y) (= G,(x—Yy)) satisfies

the equilibrium equations in Eq. (6.9). Actually, the use of this Green’s function will give
the solution of the this concentrated-force problem based on the SSGET for the
displacement, stress, traction and double stress traction at point y in the 3-D infinite elastic
body due to the unit concentrated body force applied at point x (see Egs. (6.11a—)).

The complete boundary conditions in the SSGET have been derived in Gao and
Park (2007) using a variational formulation. Two typical kinds of such boundary conditions

are the Dirichlet-like boundary conditions:
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w,=u, u,m=—- on 0Q, (6.10a)
’ on
1.e., the displacement and displacement gradient are specified on the smooth boundary 0Q,

and the Neumann-like boundary conditions:

t.=t, g=q, on Q, (6.10b)

l

i.e., the Cauchy traction and double stress traction are specified ondQ2 . For the inclusion
problem under consideration, the disturbed displacement, strain and stress fields due to g
and k~ can be obtained by setting the prescribed field quantities on dQ to zero (i.e., using
homogeneous boundary conditions), as was done in Li et al. (2007) in the context of
classical elasticity.

To solve the finite-domain inclusion problem satisfying Egs. (6.6) and (6.10a) or
Egs. (6.6) and (6.10b), the extended Betti’s theorem expressed in Eq. (6.5) can be used. The
loading by € and k~ in the current inclusion problem shown Fig. 6.1(a) is taken to be the
loading set (/I), while that by a unit concentrated body force applied at a point inside a
finite elastic body identical to that of Q (see Fig. 6.1(b)) as the loading set (/). For the latter,
the finite elastic body is cut out of an infinite body €., having the same elastic properties (4
and g), and the displacement, Cauchy traction and double stress traction at any point y on

the boundary (cutting surface) 0Q are respectively given by

u(y) = G (x-y)e,(x), (6.11a)
L(y)=T,(x-y)e,(x), (6.11b)
q,(y) =0, (x-y)e,(x), (6.11¢)

where Gj(x —y) is the 3-D Green’s function based on the SSGET listed in Eq. (2.28), and
Tj(x —y) and Qj(x — y) are, respectively, the second-order Cauchy traction and double

stress traction transformation tensors related to the Green’s function G;(x — y), which lead
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to, respectively, the traction and double stress traction in the ith direction at point y due to
the unit concentrated body force applied in the jth direction at point x. The expressions of
T(x —y) and Q;(x — y) based on the SSGET can be obtained from Eqgs. (6.11a), (2.5a—d)

(2.7) and (6.4a,b) as (see Appendix F)

1
e 327u(l—v) [/1(14 =B ) i+ gl Ay + A 0un; = 2By, )]
+L—2{—/1[V2(A—B Y, n, +(A-B,,) —(4-B ) 1
32au(l—v) ) g T mm ) ikp T p mm Dt TH 1L, 11
h ﬂ[vz (Avink) + Vz (A:j5ik - ZBwi/k )nj + (A,ipk + VZA,[)5ik - ZVZB,ikp )np (6' 123)
L2
— A mn,n, — (46, —2B,) . njnpnl]}+ WM(A ~B,.)10,
+ (A, 05 + A, 04 2By )=,y mn, tn,nn),
L2
0=y [A(4=B,,),, 6, + (4,0, +4,5,~2B, )|nn, (6.12b)

where 4 = A(r) and B = B(r) are defined in Eqgs. (2.29). When L = 0, T and Qy in Eqgs.
(6.12a,b) reduce to

O
8r(1-v)r

{(1 —~20)(rm, —rm,) + nn{@v—l)@ UL }} 0f =0,  (6.12¢d)
r

which are the traction transformation tensors based on classical elasticity. It can be readily
shown that Eq. (6.12¢) is the same as that provided in Paris and Canas (1997) (see Eq.
(5.4.20) there).

Using Egs. (2.7), (6.7-6.9) and (6.11a—) in Eq. (6.5) yields, with the help of the
divergence theorem, the disturbed displacement field at any point x € Q for the finite

domain inclusion problem as

0" =[_C,lG,,x-yes )+ LG, , (x~y)xi, W],
[ [,y () + 0, (x =y (), (y)Jad, (6.13)

+ J"‘Q [Glm (X - y)ti(”) + Gim,l (X - y)qi(”)nl (Y)]dAy H
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where the derivatives are with respective to y (the integration variable), and use has been
made of the fact that the eigenstrain and eigenstrain gradient vanish on the boundary of the
finite body 0Q , which is outside the inclusion. It is seen from Eq. (6.13) that the
displacement contains contributions from field quantities distributed both in the volume Q
and on its surface 0Q) . If the two surface integrals in Eq. (6.13) are suppressed, the
disturbed displacement field given in Eq. (6.13) reduces to that for the problem of an
inclusion in an infinite elastic body based on the SSGET (see Eq. (2.34)). This means that
the two surface integrals in Eq. (6.13) represent the boundary effect due to the finite size of
the elastic body and/or the constraints existing on the finite boundary. Eq. (6.13) can be
viewed as an extended Somigliana’s identity based on the SSGET, which plays a role
similar to that of the Somigliana’s identity in classical elasticity (e.g., Paris and Canas,
1997; Sadd, 2009).

Furthermore, if the microstructure-dependent strain gradient effect is neglected by
setting L = 0, the higher-order terms involved in Eq. (6.13) vanish (with g = 0, g; = 0 and

Q;=0 from Egs. (2.5b), (6.4b) and (6.12b), respectively), and Eq. (6.13) reduces to
w0 = [ CulGS = yewlav, - [ 1S =y () - Go(x -y Jd,, (6.14)
where G; is the Green’s function for a 3-D infinite elastic body in classical elasticity listed

in Eq. (2.23), G, . =0G;, (x—y)/dy i T is the classical Cauchy traction transformation

im,j
tenor given in Eq. (6.12c), and 7 is the traction related to the Cauchy stress z"’ by

ti(H) — F.II)

; 'n;. It can be readily verified that Eq. (6.14) is the same as the Somigliana’s

identity in classical elasticity used by Li et.al. (2007).

_ ou.
Now, with u;, =0, % = 0 on 0Q for the loading set (Z]), it follows from Egs. (6.10a)
n
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and (6.13) that
u (x) = IQ Cy [Gim,j (x-y)e(y)+ LG,  (X—y)ky, (Y)]dVy

(6.15)
+ J‘wQ [Gim (x— y)ti(H) +G,, (x- y)qi(H)nl (y)]dAy’

which is the disturbed displacement field in the finite elastic body subject to the

homogeneous Dirichlet-like boundary conditions. Similarly, using Eq. (6.10b) in Eq. (6.13)

gives, with Z =0, 61_1 =0 onoQ for the loading set (/]),

ur(n][) (x) = _[Q Cijkl [Gim,j (x— Y)g;:z (y)+ LzGim,jp (x— Y)K;p (Y)]dV}

n n (6.16)
[ 1=y () + 0, (x = )L (¥, (y)]dA,.

which is the disturbed displacement field in the finite elastic body subject to the
homogeneous Neumann-like boundary conditions.

Clearly, Egs. (6.15) and (6.16) are integral equations that involve the unknown
displacement components in the integrands of the surface integrals. It is very challenging to
obtain analytical solutions of such integral equations even for inclusion problems involving
simple-shape elastic bodies and inclusions. Hence, only the inclusion problems defined in
Eq. (6.15), which are associated with the simpler Dirichlet-like boundary conditions, will
continue to be formulated in the rest of this section.

As stated earlier, the derivatives involved in the integrals in Eqgs. (6.13)—(6.16) are
with respect to y, which is the integration variable. Note that

oG, (x-y) :_aGij(x—y)

6.17
oy, ox, (6.17)
Using Eq. (6.17) in Eq. (6.15) then gives
u" () = [ Cpul- G, x=V)Es () + £G,, , (x—y)Ki, ()],
(6.18)

+ J.ag [Gim (x-y)r" - G, (X = Vg, (Y)]dAy-
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In Eq. (6.18) and all of the ensuing equations, the derivatives are taken with respect to x
unless otherwise stated.

Substituting Eq. (6.18) into Eq. (2.5¢) yields the disturbed strain as

& _[ Cz}kl[ (Glm Jn + Gm jm)gkl + L2 (Glm /pn in,jpm )Kltlp ]dVy

n’ll’l

(6.19)
+2 kG + G (G + G Jad

where the surface integral term represents the boundary effect on the disturbed strain field
for the finite-domain inclusion problem. Note that in Eq. (6.19) and other subsequent
equations, the superscript “(/[)” is dropped for convenience, since the strain, traction and
double stress traction involved in Eq. (6.19) and ensuing equations are all for the inclusion

problem under the loading set (//) shown in Fig. 6.1(a).
For uniform ¢ and ', the volume integral term in Eq. (6.19) represents the
disturbed strain field in an infinite (unbounded) elastic body containing the inclusion (see

Eq. (2.34)), which can be written as

8mn (X) Smnklgkl + ];nnklp Kklp b (6203)

Sy = I Cy (G o + Gy o)AV, (6.20b)
LZ

Tonir = By J. o Gt (G jon + Gy )V (6.20c)

.’w
where S, and 77 nklp

as defined, are, respectively, the fourth-order Eshelby tensor and the

fifth-order Eshelby-like (gradient) tenor for the unbounded-domain inclusion problem, and

54 2

the superscript can be either “I”, representing the interior case with x located inside the
inclusion, or “E”, representing the exterior case with x located outside the inclusion.

Based on Egs. (6.20a—c) and the similarity between the unbounded and bounded

cases, it is postulated that for the present bounded-domain inclusion problem the disturbed
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strain field has the following form:

& (X) = S;:,’n}jd (x)g; + Tr;:zzp (X)K/:lp 5 (6.21)

mn

which is similar to the one given in Egs. (6.20a—c) for the unbounded-domain inclusion

problem. In Eq. (6.21), S** and T"" denote, respectively, the Eshelby tensor and the

mnkl > mnkip
Eshelby-like tensor for the current finite-domain inclusion problem.

Using Egs. (2.5a,b), (2.7) and (6.21) in Egs. (6.4a,b) gives

ti = gimn 5:;,1 + f;'mnr Kr*nm' K qi = himn gr:n + timnr K;:mr s (622a’b)
where
Gim = CoulA=LV)SGn, = (LS, n,)  + (LS5, n,n,) 0], (6.23a)

Soww = Co[A=LPVT ot n, — (LT n,)  + LT, non) nl, (6.23b)

Imnr'*® j kimnr,p kimnr,p

Ry =L*CyySpiv nin (6.23¢)

Kmn ,p""j " p

Linr = L2Co T 11 (6.23d)

imnr klmnr ,p"" j"" p *

Substituting Egs. (6.20a—), (6.21) and (6.22a,b) into Eq. (6.19) then yields

o F ¥ o F *o_ e ¥ .0 *
Sooii€it T Doniar Kty = Soumit€s F Lot Kty

mnkip mnklp 6 24
" % [ Mewes + Fii, XGon + Gooa) gty + 1150, G gy oI, 1A, (29
From Eq. (6.24) it follows that
St = St T Sizs Tt = Toitp Doty (6.25a,b)
where
St =3 ] al80(Gun + Goo) (G + Gy L, (6.260)

1
T;'i,/gp = E‘[OQ [f;klp (Gim,n + Gin,m) - tik[p (Gim,qn + G[n,qm )nq ]dAy : (626b)
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Here S, and 7, can be regarded, respectively, as the boundary parts of the finite-

domain Eshelby tensor and Eshelby-like tensor. In the absence of the boundary effect,

B,F _ BF _ oF oF . . oo
St =0, T, = 0,and S and 7, reduce, respectively, to their counterparts S, and

T, for the unbounded-domain inclusion problem, as shown in Egs. (6.25a,b).

Clearly, Egs. (6.25a,b), (6.26a,b) and (6.23a-d) define the integral equations to solve

for S and T ,;;’,:,p, which depend on the shape and size of both the elastic body (through

0,00
mnk

the surface integrals listed in Egs. (6.26a,b)) and the inclusion (via S, and 7, ). Hence,

closed-form solutions may be derived only for problems involving simple-shape finite
elastic bodies and inclusions. The spherical inclusion problem to be discussed next is one of

such problems that have been solved analytically.

6.3. Eshelby Tensor for a Finite-Domain Spherical Inclusion Problem
6.3.1. Position-dependent Eshelby tensor
Consider a finite spherical elastic body Q of radius H containing a concentric

spherical inclusion ) of radius R, as illustrated in Fig. 6.2.

Fig. 6.2. Spherical Inclusion in a finite spherical elastic body.
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For the unbounded spherical inclusion problem, the Eshelby tensor inside the
inclusion based on the SSGET, which is derived in obtained in Section 3.2, can be written

as

S (X) = S;’nil + Sril;’l(};([ (x), (6.27)
where x is a point located inside the inclusion (i.e., x € Q or 0 < |x| < R), S-¢, is the
classical part that is uniform for all x € Q;, and S’% (x)is the gradient part that varies with

the position of point x. It can be readily shown that S’ obtained in Egs. (3.4) — (3.7a-1)

mnk
and involved in Eq. (6.27) can be written in a matrix form as

S ()= iy (X [S77 (1)]

: (6.28)
where
[©,,.u ] = (8,045 0,k Gs + 0,05 5mnxkx1 5 5klxm no (6.29a)
S, X0x) + 8, XX, + 8, X0x, + 0, XX, Xoxox, X, |,
[S" ()] =[S"1+[S"° (0], (6.29b)
T
(she1=| Y=L A= G 6.0,0] (6.29¢)
15(1-v)" 15(1-v)
[S"9 ()] = [$7°¢, 519, 519, 519, 51, 81T, (6.29d)
with
Ry — [Ml_v) DI =L D,(T=A)~ 3 op (- A)} (6.302)
4r(1-v)| 1-2v 1-2v —2v
S0 =————|(1-v) DT = I’D,(T - A)|, 6.30b
; 4ﬂ(1_v)[( V) DI~ I'D,(T=A)] (6.30b)
2 —_—
§io =% {Ml Y pr-—Y p,r- IV LS g - A)}, (6.30¢)
4rz(l-v)| 1-2v 1-2v 1-2v
L’ x?
== D,(T=A), (6.314d)

Y 4n(-v)
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2

I,G_ X _ _ 2 _

S! P [a=v)D,r—22D,(T - A)), (6.30¢)
G _ L*x* 3
16 = —4ﬂ(l_v)D4(r A). (6.30f)

The differentials DA, D,A, D;A, D,A and D,I', D,I', D,T", D,T" involved in Egs. (6.30a—
f) are given by Eq. (3.10). In Eq. (6.29a) and throughout this dissertation, x’ = x, /x is the
ith component of the unit vector x” = x/x, and x = |x| = /x,x, I1s the distance from point x

to the center of the spherical body that serves as the origin of the coordinate system.
For the unbounded spherical inclusion problem, the Eshelby tensor outside the

inclusion based on the SSGET has been obtained in Section 3.2 and is summarized here,

Spi(X) = S0 (X)+ 8,0 (X)), (6.31)

mnkl

where x is a point located outside the inclusion (i.e., X ¢ Q or R < |x| < H), S (x)is the

mnkl

classical part, and S%% (x)is the gradient part. Both S”¢ and S%7 vary with the position of

mnkl
X in this exterior case, unlike in the interior case. In a matrix form, Eq. (6.31) can be written
as

St () =10, X[ ()], (6.32)
where [@, ., (x")]" is the same as that defined in Eq. (6.29a), and

(S5 ()] =[S ()]+[S" ()], (6.33)

in which
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pe ~ 1 5 3 5 2_ B B 2 ~ ~ B 2
[S (x)]_—w(l_v)(xjhxj 5(1-2v), 3(xj +5(1=2v), 15 15(Xj,

RY RY RY '
15(1—2\/)—15[—J ,15v—15[—j , 105(-} —75} ,
X X X

T
$900) = [sPe.sEo 800 s sEe sEe] (6:34b)

(6.34a)

with §7¢ — S5 obtainable from using Eq. (3.20) in their interior counterparts S, —

§.9 given in Egs. (6.30a—f).

Based on the similarity between the unbounded- and bounded-domain inclusion
problems and the forms of the Eshelby tensor for the unbounded-domain problem given in
Eqgs. (6.28) and (6.32), it is postulated that the Eshelby tensor for the current bounded-

domain spherical inclusion problem can be expressed in a similar form as
St (¥ =[0,,,,, x)]" [S™ (x)], (6.35)
where [@, . (x")]" is the same as that defined in Eq. (6.29a), and
L] L] L] L] L] L] L] T
[S™F (1 =[S (), S (x), 857 (6), S5 (x), $2 (), 537 ()] (6.36)

is an array of six components yet to be determined.

Using Eq. (6.35) in Egs. (6.23a,b) yields, after carrying out the algebra,
g =[Eulls* (], my =0, (6.37a.b)
on 0Q2, where

[Eikl] = [5klni’ Oyny + O,ymy ”i”k”l] [M]T > (6.38)



30+2u
24
| —2a(BA+2u)
A+2u+8ucx
-8la
| —2(A+2u)ax

0
2u
0
0
2u(l+2a)
—4ua

0
0
(BA+2u)(1+6a)
0
424+ p)(1+ 6a)

A+2u+2Q6A+14p)a |
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(6.39)

with o = [’/ H?, A and u being the Lamé constants, n, = y, / y being the ith component of

the unit vector n representing the direction of y, and y = |y| =YV -

Using Egs. (6.37a,b)—(6.39) in Eq. (6.26a) gives the boundary part of the finite-

domain Eshelby tensor, in a matrix form, as

st =3[0, 0. 0)) s 1]

where

0 = | _8um(G,, +G,,)d4,,

im,n in,m

0, =[ nmn(G,,+G,,)d,,

im,n in,m

with G,

ij 2

Q= .[ag (T + é‘ilnk)(Gim,n +G,

(6.40)

(6.41)

given in Egs. (2.28) and (2.29), being the 3-D Green’s function for an infinite

elastic body based on the SSGET. The use of Egs. (2.28) and (2.29) in Eq. (6.41) results in

0, =9y (<”nz>m + <nm Z>,1 B 2<nf§>,imn )’

0, = 5km<nl A>’n + §kn<n12>’m +0,, <nk2>’n +0, <nk2>m - 2<nl§> o 2<nk B>,lmn

Jkmn

0, = <annkn,> + <Znnnknl> - 2<§ninknl> ,

N

where

A(r)= Ll(l —e !t j
4mur

B(r)

,m Jimn

- 167u(1—v)

r r

[ 212 212 -
r+—-"0c

(6.422)

(6.42b)

(6.42¢)

J , (6.43a,b)

with » = |x—y|. In Egs. (6.42a—) and in the sequel, < f > denotes the surface integral of

function fover 0€ (i.e., the surface of the spherical elastic body of radius H) defined by
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(f)=] rdd,. (6.44)

The integrals in Egs. (6.42a—c) can be analytically evaluated with the help of the

following relations (see Appendices G and H):

(f(rm)= fo(0)x,, (6.45)
(fImnnn) = L0 6, +x,6, +x,8, )+ f,(0)x,%,x,. (6.46)
where
fi(x) = 2A [ reryar, (6.47a)
x ol
f =2 [ reywa-eyar, (6.47b)
x 91
fi =L [ reyse -3y, (6.47¢)
X -1
with
r=[x—y|=vx*+H? ~2xHt , t=cos6, (6.48a,b)

in which @ is the angle between x (€ Q) and y (e 0Q0), as shown in Fig. 6.3. Clearly, Eq.

(6.48a) follows directly from the cosine law.

Fig. 6.3. Locations of x (¢ Q) and y (€ 0Q).
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Applying Egs. (6.45) and (6.47a) to A(r) and B(r) defined in Egs. (6.43a,b),

respectively, yields, together with Eq. (6.44),

<Z(r)nl.> = A, (x)x, , <§(r)ni> = B,(x)x, , (6.49a,b)
where
R A165) _ X’ =SH*+100  L’Y¥,(x)
A0=3 s B = oy T (6-502,0)
with
¥ (x)=e " L(H + L)[Lsinh(x/ L) — xcosh(x/L)]. (6.51)

Similarly, the application of Egs. (6.46) and (6.47b,c) to Z(r) and E(r) respectively results

in
<Z(r)nin_/nk> =4, (x)(xi Oy +x;0, +x,6; )+ A, (x)x; x;x;,
_ (6.52a,b)
<B(r)ninjnk> =B, (x)(x,. O, +Xx,0, +x,6, )+ B, (x)x, x;x,,
where
-3x’ +7H’ 1
Al(x) = P - 2 5 \PZ(x)a
105 uH MH “x
B,(x) =;[21H2(H2 —20)+6x*(3L° —H2)+x4]+L—2‘I’2(x),
1260 u(v—1)H? 2u(v-1)H*x’
1 1
Az(x) = 7,LLH2 + /1H2X7 \PS(X) s
90L* +5x* —9H* r
B, (x) = ¥i(x),

2 + 2.7
1260 u(1-v)H 2u(1-v)Hx
Y, (x)= et {1 S8LY[(LH? + Lx* + Hx*)sinh(x/ L) — H*xcosh(x/ L)]
+30[LHsinh(x/ L) —x(H’ + Lx* + Hx*)cosh(x/ L)]+ 7L H*x* sinh(x/ L) +
+451° (L+ H)[Lsinh(x/ L) - xcosh(x/ L)]+ I*H x*[H sinh(x/ L) - x cosh(x/ L)1},
Y, (x)=e " {90L“[(LH2 +Lx* + Hx*)sinh(x/ L) — H’xcosh(x/L)]— H’ Lx’ cosh(x/ L)
+15L[LH’ sinh(x/ L) —x(H> + Lx* + Hx*)cosh(x/ L)]+36L’ H*x* sinh(x/ L) +
+2250 (L + H)[Lsinh(x/L)—xcosh(x/L)]+6L*H’x*[H sinh(x/ L) — xcosh(x/L)]}.
(6.53a—f)
Using Egs. (6.49a,b)—(6.53a—f) in Egs. (5.42a—c) then leads to, in a matrix form,
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[0,0,,0,]=[0,..] [T, (6.54)

where [@mnk,(xo)]T is the same as that given in Eq. (6.29a), and [Q(x)] is a 3 by 6 matrix

whose components are given by

0,=2(4,-DN), 0,=2x"(D4,-D,N), 0,=0,=0;5=0,=0,
0, =-4DB,, Q,,=2A4,-4D,B,, Q,,=-4x"D,B,, 0,, =0,
Oy = x? (D4, —4D,B,), Q= _4X4DSBOJ
Q,, =24 -DZ-2D,B), Q,,=2(4—-X-2DB,), O, =2x>(4,-2D,B,—DX),
0,, =2x*(D,4, — D,Z-2D,B,), O,; = x*(A, + DA, —2D,X —4D,B,),
Q,, =2x*(D,A, - D,X -2D,B,),
(6.55)
with
N(x)=xB,+3B,, Z(x)=xB/+3B,, X(x)=xB,+5B,. (6.56)

The differential operators Di(+), D(-) and Ds(+) involved in Eq. (6.55) are defined in Eq.
(3.3).
Substituting Eq. (6.54) into Eq. (6.40) then yields the boundary part of the finite-

domain Eshelby tensor as
B,F 1 N T T|QEF
S1 (00 =210, "] TOC] "M ][5 )], (6.57)

where [Q(x)] is the 3 by 6 matrix whose components are listed in Eq. (6.55), [M] is given in
Eq. (6.39), and [S*" (H)] can be determined as follows.

Note that Eq. (6.57) can be rewritten as

20 (x) = [0, )] [K )] [s7 (). (6.58)

where
[K(x)]= %[Q(X)]T[M I (6.59)

is a six by six matrix. Using Egs. (6.28), (6.32), (6.35) and (6.58) in Eq. (6.25a) gives,
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noting that the six components of [@mnk, (xo)] are linearly independent,
[S"" ()] =[S"" (01 + [K()I[S™" (H)] (6.60)
for the interior case with 0 <x <R, and
[S5" ()]=[S"" ()] +[K()I[S™" (H)] (6.61)
for the exterior case with R <x < H. By setting x - H, Eq. (6.61) gives
(S5 (H)]=[1-KE)]'[S""(H)] (6.62)
where [I] is the six by six identity matrix, [K(H)] is obtainable from Eq. (6.59) with x = H,

and [S®”(H)] can be determined from Eq. (6.33) with x = H.
q

Finally, it follows from Egs. (6.62), (6.60), (6.29b) and (6.35) that the Eshelby
tensor inside the spherical inclusion for the finite-domain inclusion problem can be

expressed as

SLE (%) =[O, (X {S"C1+[S" (0)]+[S* ()]}, (6.63)

mnkl

[S”" (0)]=[K)][1-K(H)]'[S™"(H)], (6.64)
where x € Q, 0 <x <R, and [S"“], [$"“] and [$®] are, respectively, the classical, gradient
and boundary parts of the interior Eshelby tensor based on the SSGET. Note that [S"], as
given in Eq. (6.29¢), is uniform inside the inclusion, while [S"“], as listed in Eqgs. (6.29d)
and (6.30a—f), depends on L, R and x in a complicated manner. In addition, [$®/] given in
Eq. (6.64) varies with L, R, H and x. That is, [S*/] is non-uniform inside the inclusion and
is different for the elastic body with different body and/or inclusion sizes (i.e., with varying

H and/or R) and different materials (with changing L).
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6.3.2. Volume averaged Eshelby tensor

Considering that the finite-domain Eshelby tensor S* is position-dependent inside
the inclusion, the volume average of 8" over the spherical inclusion will be needed in
predicting effective properties of a heterogeneous particle-reinforced composite. Hence, the
volume average of S is evaluated here.

The volume average of a sufficiently smooth function F(x) over the spherical
inclusion occupying the region () is defined in Eq. (3.11). Replacing F(x) in Eq. (3.11)

with S’2 (x) given in Eq. (6.63) then leads to, with the help of Egs. (3.11) and (6.29a),
(St )y =(Sma). +(Smir) (6.65)
where the volume averaged Eshelby tensor for the unbounded spherical inclusion problem

has been obtained in a closed-form in Eq. (3.16). And the volume averaged boundary part

of the Eshelby tensor for the bounded spherical inclusion problem is given by

(Snh), =S((R, L, H) 8,8, +S,(R, L, H) (3,48, +5,6,,)., (6.66)
with
S/(R,L,H)= %(SS{B’F +SPT + 82+ %Sﬁ” j , (6.67a)
S,(R, L, H)= %Kssff +2857 + %Sf’F ﬂ , (6.67b)
SBF = j: X2SPF (x) dx . (6.67¢)

Note that S*"(x)(n =1, 2, ..., 6) in Eq. (6.67¢) is the nth component of the array [S*"(x)]
given in Eq. (6.64).
By following a similar procedure, the volume average of the fifth-order Eshelby-

like tensor Tri;l‘;lp over the spherical inclusion can also be evaluated, which gives



99
<T”F >V =0. It then follows from Egs. (5.21) and (3.11) that

mnklp

<gmn >V = <Sim[;(l >V gljl 4 (668)
where <S:'3fk’>v is given in Eq. (6.65) along with Egs. (6.67a—). Equation (6.68) shows that
the average disturbed strain is only related to the eigenstrain €* even in the presence of the
eigenstrain gradient k*. This result will have important applications in homogenization

analyses.

6.4. Numerical Results

To demonstrate how the components of the Eshelby tensor for the finite-domain
spherical inclusion problem derived in Section 6.3 quantitatively change with the position x,
inclusion size R and matrix size H, some numerical results are provided in this section. In
the numerical analysis presented here, the Poisson’s ratio v is taken to be 0.3, and the
material length scale parameter L to be 17.6 um.

Figure 6.4 shows the distribution of S};’, (= S/;5 + S8/, + S&/) along the x; axis (or
any radial direction due to the spherical symmetry) of a spherical inclusion concentrically

embedded in a finite spherical elastic matrix. The values of S,,], displayed in Fig. 6.4 are

obtained from Egs. (6.63), (6.64), (6.29a,c,d) and (6.30a-f) while those of S/, are

determined from Egs. (6.28) and (6.29a—j). The inclusion has a fixed size of R = L, while

the matrix domain has three different sizes: H = 2R, H= 3R, and H = 5R, as indicated in Fig.

6.4, where the distribution of S/;7 (= S|, + S/;}}) for the unbounded spherical inclusion
problem along the same direction is also plotted for comparison. Note that S/ is a

constant (i.e., S/, = 0.5238 from Egs. (6.28) and (6.29a—)).
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Fig. 6.4. S lll’lFl along a radical direction of the inclusion for the matrix with different sizes.

When H=5R, the inclusion volume fraction, defined by ¢ = (R/H)’, is very small

(with ¢ = 0.8%), and S/}{, is quite close to S/}7;, indicating that the contribution of the
boundary part S\, (=S/;/,—S/;7) is insignificant and may therefore be ignored. However,
the contribution of the boundary part S;}/ to the total value of S,;{, increases with increasing

@. When ¢ increases from 0.8% to 12.5% (i.e., H decreases from 5R to 2R), S;/, becomes

much larger than S/}7, revealing that the boundary effect is significant and can no longer

be neglected. Clearly, these observations based on Fig. 6.4 indicate that the value of S/} (a
component of the Eshelby tensor for the infinite-domain spherical inclusion problem)
provides a lower bound of the values of S/, (the counterpart component of the Eshelby

tensor for the finite-domain spherical inclusion problem).

The variation of the component of the averaged Eshelby tensor inside the spherical

inclusion, <S L >V (= <S o >V + <S b >V ), with the inclusion volume fraction ¢ is illustrated
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in Fig. 6.5. The values of <S111"1’°1>V based on the SSGET for the unbounded spherical

inclusion problem and those of <S111’1F1>Vbased on classical elasticity for the finite-domain

spherical inclusion problem are also displayed in Fig. 6.5 for comparison. Note that the

values of <S1’1’1F1>V shown in Fig. 6.5 are obtained from Egs. (6.65), (3.16), (6.66) and

(6.67a—c), with those for the classical elasticity-based cases determined by setting L — 0.

From Eq. (3.16) it is seen that <S{1‘T]>vbased on the SSGET is independent of A and is
therefore the same for all of the SSGET-based <Slll’f1 >V curves with different values of ¢

shown in Fig. 6.5 (including the curve with ¢ — 0 or H — ). Therefore, the distance

between a line for <S111‘f]>vwith a specified ¢ (# 0) and the line for <S111‘;’°]>vwith ¢ — 0,
based on either the SSGET or classical elasticity, are actually the boundary part <S e >V (=

(Sfih),— (817, ) (see Eq. (6.65)).

Figure 6.5 shows that the inclusion size effect is predicted by the current finite-
domain inclusion problem solution based on the SSGET — unbounded (with ¢ — 0) and

bounded (with different values of ¢ 0). That is, in each case with a fixed inclusion volume

fraction ¢, the smaller the inclusion radius R is, the smaller the value of <S{1’1F1>V is. This

size effect is seen to be more significant for the cases with small inclusion volume fractions,
where the boundary effect is small, as will be discussed below. However, as the inclusion
size becomes large (with R > 264 um or R/L > 15 for ¢ = 12.5% here), the size effect is

seen to be diminishing. In contrast, the solution based on classical elasticity gives a

constant value of <S b >V for each value of @, which provides an upper bound of the values
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of <S1’1’ﬁ>vbased on the SSGET for the same value of ¢, as shown in Fig. 6.5. However,

each of these constant values is independent of the inclusion radius R, indicating that the
classical elasticity-based solution for the finite-domain inclusion problem does not have the

capability to predict the inclusion size effect.

0.7 5
0.6418| o e e e e
0.625]| =smemmesmemcscssssssasenmsamsnsssemssmsansamanmnnnmnn
0.6
0.5648| - @ __.
0.5427| = cammeemesmammmea s esmmasmaam—a
0.5238
0.5 4
(Sfih), 04 -
0.3 - ,/ —a— #=29.6 % (SSGET) — — - ¢=29.6 % (Classical)
/ ——¢=12.5% (SSGET) ----- ¢=12.5 % (Classical)
Jr —a— $=3.7% (SSGET) — - — ¢=3.7% (Classical)
024 ¢/ —— $=1.56% (SSGET) — - - = ¢=1.56 % (Classical)
/ == 0 -- 50 (SSGET) — ¢ >0 (Classical)
0.1 T T T T T T T 1
0 50 100 150 200 250 300 350 400
R (pm)

Fig. 6.5. <S lll’ﬁ >V varying with the inclusion size at different inclusion volume fractions.

From Fig. 6.5 it is also observed that <S1[1’f1>vchanges with the inclusion volume
fraction ¢: the smaller ¢ is, the smaller <Slll’f1>vis, and the closer the curve of <S1[1’1F1>Vis to
that of <Sl’;‘;°1>v. This indicates that the boundary effect, as measured by <S1‘f’f >V (=
<S1’1°1F1 >V—<S1’1"f1>v ), becomes smaller as ¢ gets smaller. However, when ¢ is big enough

(with ¢ = 12.5% and above here), <S£1F >V and therefore the boundary effect become

significantly large. The same is true for all of the other non-vanishing components



103
of <S’ o’ >v, which is dictated by Egs. (6.66) and (6.67a—c). These observations indicate that

mnkl

the boundary effect is insignificant and may be neglected only when inclusion volume
fraction is sufficiently low. In addition, the numerical results reveal that the average
Eshelby tensor for the finite-domain spherical inclusion problem is bounded from below by
the average Eshelby tensor based on the SSGET for the infinite-domain spherical inclusion
problem and is bounded from above by the average Eshelby tensor based on classical

elasticity for the same inclusion problem.

6.5. Summary

An Eshelby-type inclusion problem of a finite elastic body of arbitrary shape
containing an arbitrarily-shaped inclusion prescribed with a uniform eigenstrain and a
uniform eigenstrain gradient is solved using an extended Betti’s reciprocal theorem and an
extended Somigliana’s identity based on a simplified strain gradient elasticity theory
(SSGET), which are proposed and proved in this chapter. The solution for the displacement
field in the bounded elastic body induced by the eigenstrain and eigenstrain gradient is
obtained in a general form in terms of the Green’s function for the unbounded 3-D elastic
medium based on the SSGET. This solution recovers that for the unbounded-domain
inclusion problem if the boundary effect is suppressed.

The solution for the finite-domain spherical inclusion problem is derived by using
the general solution, which leads to closed-form expressions of the Eshelby tensor and its
volume average. Being dependent on the position, inclusion size, matrix size, and material
length scale parameter, this Eshelby tensor can capture the inclusion size and boundary
effects, unlike existing Eshelby tensors for bounded or unbounded inclusion problems. In

the absence of both the strain gradient and boundary effects, this Eshelby tensor recovers
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that for the spherical inclusion in an infinite elastic body based on classical elasticity.

To quantitatively illustrate the Eshelby tensor for the finite-domain spherical
inclusion problem, sample numerical results are presented, which show that the inclusion
size effect can be significant if the inclusion is small and that the boundary effect can be
dominant if the inclusion volume fraction is large. But the inclusion size effect becomes
insignificant for a large inclusion, and the boundary effect tends to be vanishingly small at a
sufficiently low inclusion volume fraction. In addition, it is found that the components of
both the Eshelby tensor and its volume average for the finite-domain spherical inclusion
problem are bounded from below by those of the Eshelby tensor and its volume average for
the infinite-domain spherical inclusion problem based on the SSGET. Furthermore, the
averaged Eshelby tensor for the finite-domain spherical inclusion problem based on the

SSGET is bounded from above by its counterpart based on classical elasticity.
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CHAPTER VII

A HOMOGENIZATION METHOD BASED ON

THE ESHELBY TENSOR

7.1. Introduction

With the solution for an Eshelby-type inclusion problem obtained, the
corresponding inhomogeneity problem, where a homogeneous matrix contains a different
material (inhomogeneity) subject to uniform boundary conditions, can be solved by using
the equivalence between the inclusion and the inhomogeneity problems. Hence, the local
elastic fields in the inhomogeneity and in the matrix are obtainable. However, in many
engineering applications, the overall or effective properties of a heterogeneous material are
more desirable than the local behavior in each constituent, considering that a structure
component may contain numerous constituents. This has motivated the development of
homogenization methods, which have been recognized as a great success in predicting the
effective properties of a composite material based on the geometrical and mechanical
characteristics of all constituents and their distributions in the composite (Hashin, 1983;
Nemat-Nasser and Hori, 1999).

This chapter aims to develop a homogenization method for predicting the effective
elastic properties of a heterogeneous material using the SSGET elaborated in Section 2.2.
To this end, an energetically equivalent homogeneous medium, whose elastic behavior is
described by the SSGET, is constructed. The effective elastic properties of the
heterogeneous material are found to depend not only on the volume fractions, shapes and

distributions of the inhomogeneities but also on the inhomogeneity sizes, unlike what is
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predicted by the classical elasticity-based homogenization methods. Note that the materials
considered in this chapter are primarily heterogeneous materials with non-periodic
microstructures. Hence, the term ‘heterogeneous material’ refers to a heterogeneous
material with non-periodic microstructures, unless indicated otherwise.

The chapter is organized as follows. In Section 7.2, a homogenization scheme based
on the strain energy equivalence and the SSGET is proposed. A non-classical boundary
condition is applied, which gives a uniform strain gradient on the boundary. An effective
elastic stiffness tensor and an effective material length scale parameter for a heterogeneous
material are obtained in terms of the volume fractions and elastic fields in each constituent.
In Section 7.3, an analytical solution for the effective elastic stiffness tensor is derived by
using the Mori-Tanaka method and Eshelby’s equivalent inclusion method. Numerical
examples for a two-phase composite are presented in Section 7.4. This chapter concludes

with a summary in Section 7.5.

7.2. Homogenization Scheme Based on the Strain Energy Equivalence

Consider a representative volume element (RVE) of a composite material, as
schematically shown in Fig.7.1, where ellipsoidal inhomogeneities, with dimensions being
much smaller than the size of the RVE, are aligned along the x3-axis and are uniformly
dispersed in the homogeneous matrix. The matrix and the inhomogeneities are taken to be
perfectly bounded. This model composite is heterogeneous (but not necessarily isotropic),
while each inhomogeneity and the matrix are assumed to be homogeneous. For
convenience, no body force is considered in the remaining part of this chapter unless

indicated otherwise.
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Fig. 7.1. Heterogeneous RVE.

In order the find the effective elastic properties of this heterogeneous composite
material using the SSGET, a homogeneous comparison solid element of identical shape and
size is introduced. This homogeneous material element is regarded as a strain-gradient
elastic medium, whose elastic behavior can be described using the constitutive relations in
Egs. (2.5a,b). The elastic properties of this comparison solid can always be accommodated
such that the two volume elements restore the same strain energy under identical boundary
conditions. The homogenization method in this chapter aims to find the elastic properties of
this homogeneous solid that is energetically equivalent to the heterogeneous material. This
strain energy-based homogenization method was first proposed by Hill (1963) using
classical elasticity, and is now widely used in predicting effective elastic properties of
heterogeneous materials.

In the classical elasticity-based homogenization method, surface displacements that
produce a uniform strain in the homogeneous Cauchy elastic medium are prescribed on the
boundary (Hill, 1963). By applying such displacement boundary conditions, the strain

energy of a Cauchy elastic material, homogeneous or heterogeneous, can be calculated
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from the averaged stress and averaged strain. This uniform-strain boundary condition is
based on the assumption that the fluctuation wavelength of the applied strain is much larger
than the size of the RVE. That is, the applied strain to the RVE is macroscopically uniform.
However, when a material experiences a larger deformation gradient such that the mean
fields vary with the position of the RVE in the material, non-uniform strain boundary
conditions have to be applied to account for the strain gradient. One of such boundary
conditions is that the displacement on the boundary is approximated by the following

quadratic expression (e.g., Forest, 1998; Bigoni and Drugan, 2007):
0,(x)=gx, +fxx,  (xedQ), (7.1)

where g; and ,B;k are, respectively, the components of a second-order tensor and a third-

order tensor, x; is the ith component of the position vector x, and 0C2 is the boundary of the
domain Qoccupied by the RVE. Clearly, Eq. (7.1) shows that g, = g;.. If =0, Eq.

(7.1) recoveres the uniform-strain boundary condition used in Hill’s homogenization
method (Hill, 1963). The displacement in Eq. (7.1) must satisfy the Navier-like
displacement equilibrium equations give in Eq. (2.9) without body forces. Using Eq. (7.1)

in Eq. (2.9) together with f, =0, results in

ﬂi(i)k = (2V - l)ﬂlgl > (72)
which gives three constraints on specifying ,6’;,( .

Substituting Eq. (7.1) into Egs. (2.5¢,d) yields the strain and strain gradient on the

boundary as

&)=l + (B +BO)x,,  Ry(X)= S5+ B (7.3a,b)
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for any x € Q. From Egs. (7.3a,b), it is seen that the strain &;is linearly dependent on the
position x, while the strain gradient x, is uniform on the boundary of the RVE. For a

homogeneous material subject to the boundary condition in Egs. (7.3a,b), it is conceivable
that the strain gradient will be uniform throughout the material. This indicates that the
displacement throughout the material takes the same form as that given in Eq. (7.1), subject
to the constraints listed in Eq. (7.2). In other words, for a homogeneous material Egs. (7.1)
and (7.3a,b) also hold for the interior points (i.e., x € Q).

However, if a heterogeneous material model is subject to the boundary condition
given in Eq. (7.1), the strain gradient in the interior will not be uniform as shown in Eq.
(7.3b) due to the disturbance of existing inhomogeneities. In general, for a heterogeneous
material, the strain and stress fields depend on the morphology and properties of the
constituents and their distributions in the material.

The volume-averaged strain energy, U, stored in a material based on the SSGET can

be expressed in terms of quantities on the boundary as (see Appendix I)

! 1
) 2Vol(Q2) IQ (&% * Kty AV 2Vol(Q) LQ( oy iy ggn) dA, - (7.4)

where n = n;e; is the outward unit normal vector on 0Q, Kk is the component of the strain

gradient tensor defined in Eq. (2.5d), and g, is the component of the double stress tensor

defined in Eq. (2.5b). Using Egs. (7.1) and (7.3a) in Eq. (7.4) gives

- 1 0 0
_WI(Q)LQ[% glmxmn] + Ly £;1 + 0, ﬂlmnxmxnnl + by (B, + By )xpnk} dA. (7.5)

Applying the divergence theorem and the equilibrium equations o, ; =0 in Eq. (7.5) yields

— 1 0
_mg,}j{zrg dv + 1(9) —— B [ yx, + ) dV (7.6)
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Eq. (7.6) gives the strain energy in an equilibrated material subject to the uniform strain
gradient boundary condition listed in Eq. (7.1). Note that Eq. (7.4)—(7.6) are valid for both
homogeneous and heterogeneous materials, for no assumption is made on material
properties in reaching Eq. (7.4).

For a homogeneous material, using the constitutive equations in Egs. (2.5a,b) and

Egs. (7.3a,b), which are valid for x € Q, into Eq. (7.6) leads to

U, = %c;,’mg;g;; + Cony B (%) + ComBinen(x, ). +2C51, By, B (<xkxp ) 11’5, ) (7.7)
where U, is the volume-averaged strain energy in the homogenous material, Cgm and
L are, respectively, the stiffness tensor and the material length scale parameter of the
homogeneous material, and < > ,, denotes the volume average over the domain Q.

On the other hand, for a heterogeneous material with (N+1) phases (with each phase
defined as a collection of inhomogeneities whose shape, size and elastic properties are
identical), the volume-averaged strain energy obtained in Eq. (7.6) can be further expressed

as

Uc :%‘9@? > [¢(n)<rif>g ]+ /[’:?pi [¢(H)(<Ti/x >Qn +<ﬂ@/p>gn)]’ (7.8)

n=0 " n=0

where use has been made of

() =20"(1)a, - (7.9)

in which f'is a continuous quantity in the domain Q, Q is a subdomain of Q occupied by
the nth phase, Qis the union of Q with » ranging from 0 to N. In Eqgs. (7.8) and (7.9) and

throughout this chapter, the matrix is designated as the phase with n = 0, < > ,, Tepresents

the volume-averaged value over Q, , and ¢ is the volume fraction of the nth phase.
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Note that in reaching Eq. (7.8), it has been assumed that each constituent of the

heterogeneous material is a homogeneous strain-gradient medium whose constitutive

behavior can be described by Egs. (2.5a,b). Using Egs. (2.5a,b) in Eq. (7.8) yields

gk,x (L(”) )2<K'k[p >Q ]}, (7.10)

(n) (') (n) ( )
81/ Z [¢ ' Cz/kll gkl + ﬂupZ{¢ ! Cz;/rcll

n=0

where CU(.Z,) and L are, respectively, the stiffness tensor and the material length scale

parameter for the nth phase.

To get the effective elastic property of the heterogeneous material, the volume-
averaged strain energy in the homogeneous comparison solid element given in Eq. (7.7) and
that in the heterogeneous material element given in Eq. (7.10) should be identical, which

requires

1 —2
ECUFIIITL(E‘I/ glm + CtjPl[mgz/ﬂlmk <xk> + C:;mﬂl/pglm <x > + ZCIZmﬂszﬂl(r)nk (<xkxp >Q + L §pk)

1 N N
LS brcaied, Jem S bocnles), ), |
n=l1 n=1 n n

(7.11)

From Eq. (7.11) C}I and L, which are, respectively, the effective stiffness tensor and the

l

effective material length scale parameter of the heterogeneous material can be determined.

Note that CZ and L should be independent of the location of the RVE. Therefore, the

ijlm
origin of the coordinate system can be placed at the centroid of the RVE for convenience.

This gives <xp >Q =0. Then, Eq. (7.11) becomes

1 —2
5 Clel[mgl/ glm + ZCJIImﬂszﬂl(r)nk (<xkxp >Q + L 5[71{ )

1 N N
Laslcnten, [ brcales), +ehs,), )
n=l1 n=l1 n n

(7.12)

Considering that g; and ﬂyop can be chosen independently, Eq. (7.12) gives two sets
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of equations

ylmglm Z |:¢(’1)Cl§/rcll) gkl l (7 13)

n=0
2ct Bl (<xkxp>g A ) z{qﬁ“”c;z; (0%, (L(n))2<l('klp>9” ]} (7.14)

From Egs. (7.13) and (7.14), it is seen that once the relation between <£> , and ¢”, and the

relation between <s®x> 0o <K> and B° are known, the effective stiffness tensor C;; and

Q, ijlm

the effective material length scale parameter L can be determined for given volume fraction,
stiffness tensor and material length scale parameter of each constituent of the composite. Eq.
(7.13) is the same as what is obtained from the classical homogenization method (e.g.,
Weng, 1984; Li and Wang, 2008), where only a uniform strain €’ is applied on the
boundary and both the constituents of the heterogeneous material and its homogeneous
equivalent are treated as Cauchy media.

It is clear from Eq. (7.12) that if only the uniform-strain boundary condition is

prescribed, i.e., ﬂyok =01n Egs. (7.1) and (7.12), the terms involving ,B;p on the both sides of

Eq. (7.12) will vanish. As a result, Eq. (7.12) will be reduced to Eq. (7.13). In this case, the

effective material length scale parameter L will not be involved. This implies that if the
overall behavior of the heterogeneous material is expected to be characterized by the
constitutive relations in the SSGET, the uniform strain gradient boundary condition in Eq.

(7.1) (at least) has to be applied. This will lead to the determination of the effective material
length scale parameter L from Eq. (7.14).
CH

ijlm

and L can be readily obtained from Eqgs. (7.13) and (7.14) if the exact elastic

strain and strain gradient fields in each phase are known. The exact solution for the elastic

fields in a heterogeneous RVE subject to the boundary condition in Eq. (7.1) may only be
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derived using the SSGET for inhomogeneities of simple shapes such as spherical and
cylindrical ones. For inhomogeneities of complex shapes, numerical/approximate solutions
will have to be sought and implemented to computationally complete the homogenization

analysis.

In the next section, an analytical method is utilized to solve Ciﬁm

from Eq. (7.13).

The volume-averaged strain in each phase will be determined analytically using the

Eshelby tensors obtained in Chapters III-V.

7.3. New Homogenization Method Based on the SSGET
To solve Eq. (7.13) subject to the boundary condition in Eq. (7.1), the concept of

averaged strain, which was first proposed by Mori and Tanaka (1973), is used. It can be

imagined that the volume-averaged strain over the matrix, <£> o » 1s different from that over

the whole heterogeneous material due to the presence of inhomogeneities. For simplicity,

one inhomogeneity will be considered here. The volume-averaged strain over this

inhomogeneity further differs from that over the matrix by a perturbed value <ad >Q . That is,

<£>Q" = <£>QO +<sd>gn . (7.15)

To determine the volume-averaged strain <8> in Eq. (7.15), an inclusion problem

Qﬂ
will be introduced, where a homogeneous body, €2, made of the same material as that of the
matrix, contains an inclusion which is of identical shape and size with those of the

inhomogeneity. The inclusion is prescribed with a uniform stress-free eigenstrain &  and

subject to the same averaged strain as in Eq. (7.15). The volume-averaged stresses over the

inclusion and over the inhomogeneity can be made equivalent by suitably adjusting € . In
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other words, the inclusion and the inhomogeneity problems are equivalent in the sense that

their averaged strain and stress fields are identical. This equivalence states (Eshelby, 1957)
) . d e . d
C:((g),, + (2 >Qn -&)=C":((g), + (2 >o,, ), (7.16)

where C” and C™ are, respectively, the fourth-order stiffness tensors of the matrix and the
inhomogeneity.
From the derivations in Chapter II (see Eq. (2.40)) and considering that the size of

the RVE is much larger than that of the inclusion, the volume-averaged disturbed strain due

to the uniform eigenstrain & over the domain occupied by an arbitrarily shaped 3-D

inclusion 1s
<£d>gn =(8), €, (7.17)

where <S> , 18 the volume-averaged Eshelby tensor based on the SSGET over the inclusion

domain and has been obtain for spherical, cylindrical and elliptical inclusions in Chapters
III-V (see Egs. (3.18), (4.29) and (5.33)).

Using Eq. (7.17) in Eq. (7.16), the eigenstrain can be obained as
£ =Q:<£>QO, (7.18)
with

Q=[(C”-C"):(S), —C"T":(C" -C?). (7.19)

Then from Egs. (7.17)—(7.19) and (7.15), the volume-averaged strain over the inclusion

domain is related to that over the matrix through

(€),, =@+(8), :Q):(e), . (7.20)

where I is the fourth-order identity tensor. Using the following identity (Li and Wang,
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2008):

L+(S),, :Q={I+(S), :[C"T":(C"-C")}", (7.21)

Qﬂ
Eq. (7.20) is found to be identical to what is obtained using the classical Mori-Tanaka
homogenization method based on classical elasticity (see Egs. (7.16) and (7.17) in Qu and

Cherkaoui, 2006) except for the expression of <S>Q . <S> in Eq. (7.20) based on the

Q,
SSGET contains a material length scale parameter and hence can capture the inclusion size
effect, unlike its counterpart based on classical elasticity.

The above analysis involving a single inhomogeneity phase, which is a collection of

inhomogeneities with identical size, shape and elastic properties and hence having the

same<S> o and Q, remains valid for other phases. Therefore, from Eq. (7.20), it follows

N N
(g), = Z¢(")<3>Qn - {¢(o)1 ) g+ <S>Qn : Q)} : <8>QO , (7.22)
n=0 n=1
where the volume-averaged strain over the matrix domain is related to that over the whole
RVE.

Using Egs. (2.5¢) and (7.1) and <X>Q =0gives

(g), =¢". (7.23)

Through Egs. (7.20), (7.22) and (7.23) the relation between the applied strain,”, on the
boundary of the RVE and the volume-averaged strain over the domain of each phase is

determined. Then, substituting Eqgs. (7.23), (7.22) and (7.20) into (7.13) and letting the

coefficients of <a> ., on both sides of the equation be equal will result in

0

c” {w‘”cw) +§N: §C H(1+(S),, :Q)}:[¢(°)I+§: ¢ A+(S),, :Q)] (7.24)

n=1
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as the effective stiffness tensor of the heterogeneous material. Note that the
inhomogeneities are assumed to be unidirectional. Therefore, the influence of the
inhomogeneity orientation distribution is not incorporated in Eq. (7.24).

From Eq. (7.24) it is seen that the effective stiffness tensor C” depends not only on

the shapes but also on the sizes of the inhomogeneities through the volume-averaged

Eshelby tensor, <S> o » Which involves the material length scale parameter of the matrix.

Therefore, this effective stiffness tensor based on the SSGET is expected to be able to
capture the experimentally observed particle size effect in composites (e.g., Kouzeli and

Mortensen, 2002; Vollenberg, and Heikens, 1989; Vollenberg, et al., 1989).

7.4. Numerical Results

Several examples are provided here to quantitatively illustrate the dependence of the
effective elastic properties of a heterogeneous material on inhomogeneity sizes, as
analytically demonstrated in the preceding section. For simplicity, a composite material
with two isotropic phases is chosen for analysis. For such a material, the total phase number

N =2, and Eq. (7.24) becomes
C" =[(1-p)C?” +pC": (1 +<s>Ql Q) [1=)I + o + <s>Ql Q)] (7.25)

where C” and C" are, respectively, the fourth-order isotropic stiffness tensors of the
matrix and the inhomogeneity phase, ¢ is the volume fraction of the inhomogeneity phase,
and Q can be obtained from Eq. (7.19) with n = 1.

For a spherical inclusion with radius R, the volume-averaged Eshelby tensor

<S> ., based on the SSGET given in Eq. (3.18) can be rewritten as
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(S)g, =S,1"+S,I°, (7.26)

where

0) 3 2 2 Y
s, =L 3L 1—(%) —(1+i0j e |,
31-v)| 2( R LY v
_ 0 2 LYY
S, = 8=10v ]y 3 L2 1—(%) —(1+i0j e ™ |t
15(1-v) 2\ R L Y

and I”and I° are two fourth-order tensors whose components are, respectively, given by

(7.27)

1 1 1
I;’Zd zz(é‘iké‘jl +5il5/’k)_§§1j5k15 I

ik = 551']5/(1- (7.28)
When the gradient effect is not considered (i.e., when L = 0), Eqgs. (7.26) and (7.27) can be

reduced to the Eshelby tensor for a spherical inclusion based on classical elasticity:
<SC>Ql = SS1” + 8515, (7.29a)

where

C V+1 C_ 8_10V

PU3a=v) Y 15(1-y)

(7.29b)

Using I and I° given in Eq. (7.28), the stiffness tensors C® and C" can also be
decomposed as
C” =3K97T" +2G1° , CV =3K"T" +2G"1° (7.30)

where K“and K are, respectively, the bulk moduli of the matrix and the inhomogeneity,

and G'” and G are, respectively, the shear moduli of the matrix and the inhomogeneity.
After using Egs. (7.30) and (7.26) in Eq. (7.25), the effective stiffness tensor can be

obtained in the following closed form:

C” =3K"1" +2G"1°, (7.31)
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where

_ K -K®)
o :KUP+K®+U—¢WAKm—K®J 7

is the effective bulk modulus, and

R (G -G
¢ =G”P+G@+G—¢WAGW—G®J 79

is the effective shear modulus. In reaching Eqgs. (7.31)—(7.33), use has been made of

@repe) =Lrilep, (7.34)
a B

where « and f are two arbitrary non-zero scalars (see Appendix A).
The effective Young’s modulus can be readily obtained in term of K and G given

in Eq. (7.32) and Eq. (7.33) as (e.g., Sadd, 2009)

£ 9K G
3K+ G

(7.35)

For all of the examples included below in this chapter, the Young’s modulus of the
inhomogeneity material is taken to be 20 times that of the matrix, i.e., E"/E® =20. The
Poisson’s ratio, v, for both the matrix and the inhomogeneity materials is taken to be 0.3.
The length scale parameter for the matrix material, L%, is 17.6 pm.

Figure 7.2 shows the effective Young’s modulus, E”, of the two-phase composite
with spherical inhomogeneities varying with the volume fraction of the inhomogeneity
material, ¢. The values of £ based on the SSGET are calculated using Eqgs. (7.27), (7.32),
(7.33) and (7.35), for the composites with four different inhomogeneity sizes: R = L, R = 2L,

R =3L and R = 10L. For comparison, the values of the effective Young’s modulus based on

classical elasticity are also displayed in Fig. 7.2, which are computed using Egs. (7.29b),
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(7.32) (7.33) and (7.35).

—e— R=1L

—=— R=2L
—&— R=3L
—<— R=10L

H | Classical

Fig. 7.2. Effective Young’s modulus of a composite with spherical inhomogeneities.

From Fig. 7.2, it is observed that £ based on the SSGET depends not only on the
volume fraction of the inhomogeneity phase, but also on the inhomogeneity size R. Also, it
is seen that the values of E” based on the SSGET are much larger than those based on
classical elasticity when R is small (with R = L = 17.6 um here). This agrees with the
experimental observations (Kouzeli and Mortensen, 2002): the smaller the inhomogeneity
size is, the stiffer the composite material is. As R increases, the curves for E™ with the strain
gradient effect become closer to that (the dashed curve) based on classical elasticity, which
indicates that the strain gradient effect decreases as the inhomogeneity size increases. When
the inhomogeneity size R is much larger than L (e.g., R = 10L = 176 um here), the values of
E™ approach the classical values, indicating that the strain gradient effect becomes
insignificant and therefore may be ignored. The same trend is observed for the effective

shear modulus of this composite containing spherical inhomogeneities.
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The effective in-plane Young’s modulus, £/, of a composite with cylindrical
inhomogeneities (fibers) of infinite length is shown in Fig. 7.3, where a is the fiber radius.
The central lines of all the cylindrical fibers are aligned with x;3-axis. The values of
E/!! based on the SSGET are calculated using Egs. (7.25), (7.19) and (4.29), while the
values of its counterpart based on classical elasticity are obtained from Egs. (7.25), (7.19)
and (4.15a—). Both the volume fraction dependence and the fiber size dependence can be
seen from Fig. 7.3. As the radius a of the cylindrical fiber increases, the distance between
the curves for E/! based on the SSGET and that for its classical counterpart decreases,
which indicates that the gradient effect is diminishing. A comparison between Figs. 7.2 and
7.3 shows that the size effect is stronger for the composite containing spherical

inhomogeneities than that filled with cylindrical inhomogeneities.

18 —— 4=1

—®—a=2L

—>— g =5L

Classical

O T T T T T 1
0 0.2 0.4 0.6 0.8 1

¢

Fig.7.3. In-plane Young’s Modulus of a composite with cylindrical inhomogeneities.

On the other hand, the size effect is not observed for the out-of-plane effective
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Young’s modulus Ej: for the composite with cylindrical inhomogeneities. Both EJ: based

on the SSGET and its counterpart base on classical elasticity are linearly dependent on the

volume fraction ¢.

18 | —*— a3=1L
16 1 —®—a3;=2L

—>— a3 =5L
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Fig. 7.4. Effective £ 11{ of a composite with ellipsoidal inhomogeneities.

The effective Young’s moduli are displayed in Figs. 7.4 and 7.5 for composites
containing ellipsoidal inhomogeneities with three distinct semi-axes satisfying a; : ax: a3 =

3:2: 1. The as-axis of each of the ellipsoidal inhomogeneities is aligned with the xs-axis in

the chosen Cartesian coordinate system. E/ plotted in Fig. 7.4 is the effective Young’s
modulus in the xj-direction, while E. shown in Fig. 7.5 is the effective Young’s modulus
in the x;-direction. Both E/[and E;. are obtained from the orthotropic effective stiffness

tensor C”, calculated using Eqs. (7.25), (7.19) and (5.33). The size effect is clearly seen

from Figs. 7.4 and 7.5 for both Eﬁ and Eﬁ: the smaller a; is, the larger the effective

Young’s modulus is. The size effect is more significant on EJ} than on E,], as indicated in
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Figs. 7.4 and 7.5. This can be explained by the fact that the ellipsoidal inhomogeneities

have the smallest dimension along the x3-axis.

18 - —0—a3:L
—*— a3 =2L
—»— a3 =5L
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Fig. 7.5. Effective Eg of a composite with ellipsoidal inhomogeneities.

7.5. Summary

A homogenization method is developed in this chapter for predicting the effective
elastic properties of a heterogeneous material using the SSGET. The overall behavior of the
heterogeneous material is modeled as a homogeneous strain-gradient medium which is
characterized by the SSGET. The effective elastic properties of the heterogeneous material
are found to be dependent not only on the volume fractions, shapes and material properties
of the inhomogeneities but also on the inhomogeneity sizes, unlike what is predicted by the
homogenization methods based on classical elasticity. The effective elastic stiffness tensor
is analytically obtained by using the Mori-Tanaka and Eshelby’s equivalent inclusion

methods.
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To quantitatively illustrate the effective elastic properties of the composite material,
sample numerical results are presented, which show that the inhomogeneity size has a
strong influence on the effective Young’s moduli when the inhomogeneity size is small (at
the micron scale). The composite becomes stiffer when the inhomogeneities become
smaller. It is also found that the inhomogeneity size effect on the effective Young’s moduli

becomes insignificant and may be neglected for composites filled by large inhomogeneities.
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CHAPTER VIII

SUMMARY

The Eshelby inclusion problem of an inclusion embedded in an infinite homogeneous
isotropic elastic material and prescribed with an eigenstrain and an eigenstrain gradient is
solved analytically by using a simplified strain gradient elasticity theory (SSGET). This is
accomplished by first deriving the three-dimensional Green’s function in the SSGET in
terms of elementary functions using Fourier transforms. The fourth-order Eshelby tensor is
then obtained in a general form for an inclusion of arbitrary shape. The newly derived
Eshelby tensor consists of two parts: a classical part depending only on Poisson’s ratio, and
a gradient part depending on the length scale parameter additionally. The accompanying
fifth-order Eshelby-like tensor relating the prescribed eigenstrain gradient to the disturbed
strain is also obtained analytically. When the strain gradient effect is not considered, the
new Eshelby tensor reduces to that based on classical elasticity, and the Eshelby-like tensor
vanishes.

The expressions of the Eshelby tensor for the special cases of a spherical inclusion
and a cylindrical inclusion of infinite length are explicitly obtained by employing the
general form of the newly derived Eshelby tensor. The numerical results quantitatively
show that the components of the non-classical Eshelby tensor for either the spherical or the
cylindrical inclusion vary with both the position and the inclusion size, unlike their
counterparts in classical elasticity. For both the spherical and cylindrical inclusion problems,
it is found that when the inclusion radius is small the contribution of the gradient part is
significantly large and thus should not be ignored. For homogenization applications, the

volume average of the non-classical Eshelby tensor over the spherical inclusion or the
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cylindrical inclusion is derived in a closed form. It is observed that the components of the
volume-averaged Eshelby tensor change with the inclusion size: the smaller the inclusion
radius is, the smaller the component values are. Also, the values of these components are
seen to approach from below those of their classical counterparts when the inclusion size
becomes sufficiently large.

Moreover, the more general and complex ellipsoidal inclusion problem is
analytically solved. By applying the general form of the Eshelby tensor in the SSGET, the
Eshelby tensor for an ellipsoidal inclusion is obtained in analytical expressions for both of
the regions inside and outside the inclusion in terms of two line integrals and two surface
integrals over a unit sphere. The Eshelby tensor for the ellipsoidal inclusion problem
includes those for the spherical and cylindrical inclusion problems based on the SSGET as
two limiting cases. The volume-averaged Eshelby tensor over the ellipsoidal inclusion is
also analytically obtained. Numerical results quantitatively show both the inclusion size
dependence and the position dependence exhibited by the components of the Eshelby tensor
derived. The same trend as that in the spherical and cylindrical inclusion problems is found
here: the smaller the ellipsoidal inclusion is, the smaller the values of the components of the
Eshelby tensor and its volume average are.

In order to incorporate the boundary effect, in addition to the particle size effect, a
solution for the Eshelby-type inclusion problem of a finite homogeneous isotropic elastic
body containing an inclusion is derived in a general form by using the SSGET. An extended
Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET are
proposed and utilized to solve the finite-domain inclusion problem. The solution for the
disturbed displacement field is expressed in terms of the Green’s function for an infinite

three-dimensional elastic body in the SSGET. It contains a volume integral term and a
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surface integral term. The former is the same as that for the infinite-domain inclusion
problem based on the SSGET, while the latter represents the boundary effect. The solution
reduces to that of the infinite-domain inclusion problem when the boundary effect is not
considered. The problem of a spherical inclusion embedded concentrically in a finite
spherical elastic body is analytically solved by applying the general solution, with the
Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor
depends on the position, inclusion size, matrix size, and material length scale parameter and,
as a result, can capture the inclusion size and boundary effects, unlike existing ones. It
reduces to the Eshelby tensor based on classical elasticity for the spherical inclusion in an
infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical
results reveal that the inclusion size effect can be quite large when the inclusion is very
small and that the boundary effect can dominate when the inclusion volume fraction is very
high. However, the inclusion size effect is diminishing as the inclusion becomes large
enough, and the boundary effect is vanishing as the inclusion volume fraction gets
sufficiently low.

Finally, a homogenization method based on the SSGET is developed to predict the
effective elastic properties of a heterogeneous (composite) material. The overall elastic
behavior of the heterogeneous material is characterized by a homogeneous elastic medium
that obeys the SSGET. An effective elastic stiffness tensor and an effective material length
scale parameter are obtained for the heterogeneous material by applying the Mori-Tanaka
and Eshelby’s equivalent inclusion methods. Numerical results show that both of them are
dependent not only on the volume fractions and shapes of the inhomogeneities but also on
the inhomogeneity sizes, unlike what is predicted by existing homogenization methods

based on classical elasticity. It is illustrated through numerical results for a two-phase
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composite that the inhomogeneity size has a strong influence on the effective Young’s
moduli when the inhomogeneity size is small (at the micron scale). The composite becomes
stiffer when the inhomogeneities get smaller. However the inhomogeneity size effect on the
effective Young’s moduli becomes insignificant and may be neglected for a composite filled

with large inhomogeneities.
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APPENDIX A

Note that in reaching Eq. (2.13b) use has been made of the following identity:

P s\ 1op 1o
(ea? + 1) =(;1,.j +EIZ.J, (A1)
where a, f are two arbitrary non-zero scalars, If = §i°§/9 are the components of a second-
order spin tensor I° =£° ®E&° (with &° being a unit vector introduced in Eq. (2.12)),

I/ =6, — &' are the components of the associated projection tensor I' =1 — I°, with I =

o;e,®e; being the second-order identity tensor. Eq. (A.1) can be easily proved by using the

definition of an inverse matrix.
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APPENDIX B

In this appendix, it is shown that the integration result given in Eq. (2.18) is true.
That is,
jj”;‘zﬁd(o = 7[5, sin” 6 - x’x°(1-3cos” 0) . (B.1)
[Proof] For the chosen spherical coordinate system (&, €, ¢) in the transformed space where
the position vector & = £&° makes the angle @ with the position vector x (with the direction
of x being where € = 0) in the physical space, one can write the unit vector in the §
direction as
g’ =x’cosf + (y° cos @ + z’sing)siné, (B.2)
where x° is the unit vector along the x direction, and y” and z° are the unit vectors
perpendicular to x”. In component form, Eq. (B.2) reads
&Y =x] cosO+ (y] cosp+ z/sing)siné. (B.3)

Then, it follows from Eq. (B.3) that

E'E) = x/x) cos’ O+ x;'y) sin@cosOcos g + x; z) sin @ cos Gsing
0.0 : 0.0 _: 2 2 0_0 _: 2 :
+y,x;sin@cos@cosp+y; y;sin” @cos” @+ y, z; sin” Osin pcos @ (B.4)

+z/ x| sin @ cos ing+ z; y) sin’ Gingcosp + z;'z] sin® Gin’p.
Note that
J.OZ” cospdp =0, _[:”singﬁd(p =0, J:)zﬂsin(pcoswd(z) =0, J.OZ” cos’ pdo =1, J.OZ” sin’ gpdo = 7.
(B.5)
Integrating on both sides of Eq. (B.4), together with the use of Eq. (B.5), results in

J.:” EE)dp =2 x] cos® O+ ay! y) sin® O+ 7z 2] sin? 6. (B.6)

i



138
Notice that

xxl eyl zz) =(x" e )(x" e )+ (¥ e )y’ -e;)+ (2" -e)(z" -e))
=e,-(x"®x")e, +e, - (y' ®y')e, +e, - (z° ®z")e,
=e  [(xX"®x)+(y’' ®y") +(z’ ®z°)]ej

=e, -le, =0,

(B.7)

where the fourth equality is based on the fact that the three orthogonal unit vectors x’, y’
and z° form a set of base vectors in the 3-D physical space. Using Eq. (B.7) and the identity

sin®0 = 1 — cos’@ in Eq. (B.6) will immediately give Eq. (B.1).
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APPENDIX C

In this appendix the following two identities, which are given in Egs. (2.46a,b), are

proven:
1
Cpp =204 Dyu="3T (C.1a,b)
The proof for Eq. (2.46c) can be found in Li and Wang (2008).
[Proof] From Eqgs. (2.43a,b) it follows that
MR () R P NN PR S S8
kk axkaxk Q axkﬁxk Q i i i i Q 8xk (xi —y, )(xi _yi) (C.2)
=2[, ay = 2A(%).

(xi — Vi )(xi — Vi

Differentiating both sides of Eq. (C.2) with respect to x; and x; sequentially will
immediately give Eq. (C.1a), thereby proving Eq. (2.46a).

To prove Eq. (C.1b), note from Eq. (2.43¢) that

B e—‘x—y‘/L ~ efr/L
“")=<|x—y|>‘< , >

, and ( - ) denotes the volume integral over the inclusion region Q.

(F(r)), (C.3)

where rz‘x—y

Differentiating (C.3) two times and four times respectively yields, with the help of the

product and chain rules,

o°T
5%5();); = <(D2F)(x =V =)+ (D) > (C.4a)

o'r
T (D, Py - )~ 0 =30 = 30+ (D3P oy (e = ) = ;)
0x;0x;0x,0x (C.4b)

+0 (o = i) = ) + 0y (X =y )X =) +0 5 (x) =y )(x; — ;)
+0u(x; =y )x; =y ;) +0;(xp = y) (X =y )]+ (DyF) (00 jp + 00 + 5y‘5k1)>,

where
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! d(D, F ! d(D,F " !
DIFEL(F),Dz El (D, )ZI(F"_F], D El (D, ):i F"'_3F+3F}
r rodr 72 r roodr P r p2

B 2 3

—r/L 2
1 L) _
Fo ’ F'=dF:—1(l+rje_r/L, F”:d F_ 1(2+r)+[1+jeru’
r dr r2 L drz r3 L Lzr r

1 d(D3F) 1 (4) 6F" 15F" 15F'
D,Ff=———7"-= F — —
4 P " . (C.5)

r r

It follows from Egs. (C.4b) and (C.5) that

~ 24T (x)
Y 0x,0 x ;0 X0 xp

1 1 3 3) L. 1 1 1) /1
= —t—+—|e X =y )x —y)———| —+— e 0. ),
<r2L2 (FLZ L r3j ( / y'l)( im0 rL? [VL rzj v

and from Egs. (C.4a) and (C.5) that

2
0’I'(x) =<1 (1+3+33je_ru(xj_yj)(xi _yi)_1[1+12je—r/L5[j>' (C.7)

0x;0x; rf2 > rPL r\rL r

v2r

= ([P F)? + D3P = 3 )i = 7)) + (DI F )P + 5D E0; ) ()

A comparison of Egs. (C.6) and (C.7) immediately shows that Eq. (C1.b) is an identity,

thereby completing the proof of Eq. (2.46b).
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For the infinitely long cylindrical inclusion of the radius a, which occupies the
domain Q, the scalar-valued function I'(x) defined in Eq. (2.43c) becomes, in the
cylindrical coordinate system (7, 6, y;) originated from the symmetry axis (as the y;-axis) of

the inclusion,

27 pa -+00 e_\/m/L
I(x)= jo jor [[— — dy, \drdo, (D.1)
w\/R +(x3—y3)
where
R=( =7) +(x, =) r=yy/+¥l, f=tan” 2. (D.2a-c)
Note that

(D.3)

o mu AL
[ =2 "C——ar=2K (Rj
\/R2+(x3 y3 VR +1*

where K,, as defined, is the modified Bessel function of the second kind of the zeroth order

(e.g., Gradshteyn and Ryzhik, 2007). Eq. (D.2a) can be rewritten as

R=+x*+r’ —2rxcosa , (D.4)

where x = ‘x‘ =/x’ +x_ (as defined earlier) and « is the angle between the vectors x =

xe,txe, and R, = y,e,ty,e, on the plane y; = 0. Clearly, a« = 8 — ¢, where c is the angle

between the specified vector x and the y, axis and is a constant. Using the expression of R

given in Eq. (D.4) in KO(% ) defined in Eq. (D.3) leads to (Magnus et al, 1966)

I, (ﬁjKo (Lj + Zi I, (ﬁjl{n (Lj cos(na)  (x<r)
K, (ﬁj _] L L (D.5a,b)
L 1 [Lj ( j+221 ( j [chos(na) (x>r)

where 7,(-) and K,(-) (n = 0, 1, 2, ...) are the modified Bessel functions of the indicated
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arguments.
Using Egs. (D.3) and (D.5a,b) in Eq. (D.1) then gives, for any point x located inside

the inclusion (with x < a),

r(x) = 2{[ [ {1(2} ( j+221 (ZJK,(;jcosn(e—c)}dedr
() el omeof]
U)o L) )] v
v o o )
s

where use has been made of the following results:

N~ =

[ cos[n(@-)d0 =0, “Lr1, (1)1 =11y (r), 1K ()] = =K, (),
0 dr dr

LK )+ (2K, ()= (D.7a-d)

Note that Eq. (D.7a) is a result of direct integration, whereas Egs. (D.7b—d) are obtained
using the general formulas given in Magnus et al. (1966).
Similarly, substituting Egs. (D.3) and (D.5b) into Eq. (D.1) yields, for any point x

located outside the inclusion (with x > a and thus r < a <x),

reo=2[' Iozn { L)(%)KO G} + 2i I (%)K (%j cosn(0 - c)} rd 6dr
=4z’ Io(ino[ij rdr = 4nlal, (ﬁjKo(i}
o\ )L L)L

where use has been made of Egs. (D.7a,b). The final results obtained in Egs. (D.6) and

(D.8)

(D.8) are exactly those listed in Egs. (4.3a,b). They are also the same as those given in

Cheng and He (1997) for a similar scalar-valued function involved in their analysis based
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on a micropolar elasticity theory. However, in this appendix the more general case with a =
6 — ¢ (# 0) is considered and the derivation details are provided, which differ from what

was presented in Cheng and He (1997).
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APPENDIX E

In this appendix, the expressions of I'(x) for the ellipsoidal inclusion problem given
in Egs. (5.12) and (5.14) are derived.

Note that I'(x) in Eq. (2.43¢) can be rewritten as

r

T(x)= J‘Q%dy, (E.1)

where r = ‘x - y‘ . It can be shown using an inverse Fourier transform that

L 4rl? o
de\, (E.2)
{IQ 1+ [2&2 &}

where r (= x —y) is the position vector of a point in the 3-D physical space, & is the position
vector of the same point in the Fourier (transformed) space Q., i is the usual imaginary

number with i* = —1. Using Eq. (E.2) in Eq. (E.1) then gives

Lz —i Ee 1 i Eex
F(X) = ? RG{[Q € Gey (J.Q” W € & d&]dy:|, (E3)

where Q is the region occupied by the ellipsoidal inclusion. Consider the coordinate

transformations:
y=2, 5 =04 (E4)
a, s&
where y; Y;, & and Z; are, respectively, the components of y, Y, € and &, & =|€|,and
_1 2
V@) + () + (G €5)

Clearly, &, as defined in Eq. (E.4), is a unit vector. Then, it follows from Eq. (E.4) that
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a, a, a,

2 2 2
Q:(&J +[&J +(&J <I=|Y|<1, dy=aaadY, Eey=&EeY. (E6)

The use of Eq. (E.6) leads to

—ite L7 iseYeosd o A 1A
_[Qe aya’yz27zalaza3J.0J‘0 e sing dO YdY
(E.7)

3
A

= —4m,a,a, %[Sf cos(s&) —sin(s&)}

where the inclination angle 0 in the chosen spherical coordinate system (7, 9, ¢?) is

measured relative the direction of E. Substituting Eq. (E.7) into Eq. (E.3) then yields

2, s&cos(sé)—sin(sé)
[0 == Laaa [, =T Ty coslgex) (ES)

To evaluate the integral in Eq. (E.8), consider the following coordinate

transformations:

K, =&a, X, =7t (E.9a,b)

1

al
where K; and x; are, respectively, the components of K (with the magnitude K) and x (with
the magnitude x). Also, a convenient spherical coordinate system (K, &, ¢) is chosen such
that the angle between K and X (with the magnitude X) is €, with the direction of X being
the axis where 8= 0. As a result,
K, =Ksinfcosep, K,=Ksinfsing, K, =K cosf. (E.10)

Using Egs. (E.9a,b) and (E.10) then gives

Eex  KeX

——— =sX cosdH,
‘ ‘ (E.11a,b)
1/2

, 2 . : 2 2
S_[[smé’cosgoJ +(smﬁsm(pj +[c0s6’j} _ 5(6,0), (E.11c)
a, a, e

where use has also been made of Eq. (E.5) in reaching Eq. (E.1la) and the fact that

K=\KK =s&, m=
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& =,/&.&, to obtain Eq. (E.11c). Finally, it follows from Egs. (E.9a), (E.10) and (E.11a) that

& zis(ﬁ,(p)sinﬁcosw, g, zis(é’,go)sin Osing, £ zis(H,(p)cos@ (E.12)

a4 a, a,
as the coordinate transformation from the Cartesian system (&, &, &3) to the curvilinear

system (&, 6, ). The Jacobian of this transformation can be readily obtained from Eq.

(E.12) as

$3

J=—% o, (E.13)
aaras
which leads to the volume element relation:
3

de=—"" 2 5inGdédbdg . (E.14)

a,a,a,

With the help of the coordinate transformation in (E.12) and the associated volume

element relation in (E.14), Eq. (E.8) becomes

207 (2n pn w[Sé‘cos(sf)—sin(sf)]cos(mé‘) .

rx)=——- - sin 8d&d 6d ¢
T b S+ 1¢?) (E.15a)
20

= ——J:)ZEJ:)”Fsin 6dad o,

T

where m and s are defined in Egs. (E.11b,c), and

_ J-w{scos(s@cos(mﬁ) _sin(s&)cos(mé)

d&E =F(0,p). E.15b
1+ 28 F(1+ 28 }5 (©:9) (E130)

Note that (e.g., Gradshteyn and Ryzhik, 2007)

[ COS(gf);s)(bé) dé = % :e““‘b‘ N e—(a+b)] for a>0, b>0; (E.162)
_|_

(E.16b,c)

o
Ioosin(ai)cos(bf) dé = 2¢ sinh(a), O<a<h
2
O+ —%e_”cosh(b)+§, O<b<a.

For the interior case with x € Q, there is xlz /a]2 + x% /ag + x32 /a32 < 1. This means
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that X;X; < 1 (see Eq. (E.9b) or X =|X| <1, thereby giving 0 < m < s for 0 <cos#<1 or 0 <

-m < s for —1 <cos@ <0 according to Eq. (E.11b) for any x € Q. It then follows from Egs.
(E.16a,c) that for the interior case with both 0 <m < (or 0 <@<#/2) and 0 < -m <s (or /2

<@ <) there is

F=-24 E(l + ijeL cosh(ﬂ} (E.17)
2 2 L L

Using Eq. (E.17) in Eq. (E.15a) then results in
27 T KY 3 m .
rx)=4al’ -L["[ (1 + Zj el exp(— f) sin 6d6d g (E.18)

for the interior case with x € Q, where m = sXcosO from Eq. (E.11b), and s = s(6, @) is
given in Eq. (E.11¢). This completes the derivation of Eq. (5.12).

For the exterior case with x ¢ Q, there is xlz /a12 +x§ /a% +x32 /a32 >lor X >1,

which makes the comparison between the values of m and s (satisfying m = sXcosé given in
Eq. (E.11b)) more involved. In fact, the following four situations now need to be
considered separately.

(1)0<s<m or cosf >1/ X >0 (see Eq. (E.11b)): Using Egs. (E.16a,b) gives

FO=Z¢ L Scosh(sj - sinh(sj . (E.19)
2 L L L
(2)0<m<s or 0<cosf <1/ X (see Eq. (E.11b)): Applying Egs. (E.16a,c) yields
FO=_Z 245 o eosh| 22|, (E.20)
2 2 L L

which is the same as F' for the interior case given in Eq. (E.17).

3)0<-m<s or —1/| X |<cos@ <0(see Eq. (E.11b)): The use of Egs. (E.16a,c) leads to
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FO-_Z, 7 (1 + ]eL cosh(ﬂ) =F"%, (E.21)

2 2 L L

4)0<s<-m or —1<cos@<—1/ X (see Eq. (E.11b)): Utilizing (E.16a,b) results in

FW = { cosh( j — sinh[sﬂ. (E.22)

2 L L L

It then follows from Egs. (E.15a) and (E.19)—(E.22) that
2L’ () 2 @

F(x)——— J. F sm9d¢9+J FZsnfdf+| F"snddf|dp, (E.23)

where a = cos™' (1/.X) . Note that

T—o

F®singdo = ['F@ \9 sin B(-dp) = [iF O sin 6de,
a” lo=r- (E.24)

/2 /2

CFPsingdo=[""FPsingdo+[ ) FPsin0do=2[""F?sin6 do,
where use has been made of the results s(7—6, @) = s(6, ¢) and m(76, @) = —-m(6, @).
Using Eq. (E.24) in Eq. (E.23) then yields

Ix )__ﬂ U FOsing do+[" Fsin6 d&}d(o (E.25)

for the exterior case with x ¢ Q, where F*" and F** are given in Egs. (E.19) and (E.20),

respectively. This completes the derivation of Eq. (5.14).
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APPENDIX F

In the appendix, the expressions of the transformation tensors 7j(x —y) and Qj(x —
y) given in Egs. (6.12a,b) are derived.

From Egs. (2.5a,c), (2.28) and (6.11a), it follows that

7, = W[Z(A — B, )5, + (A5, + 4,5, —2B,)e, (F.1)

Using Egs. (2.5b) and (2.7) in Eq. (6.4a) gives

2 2
t=tn,+L[—(Vt)n, -7, n, +7, nnn, 1+ t,,(=n, +n, nn +nnn). (F2)

Substituting Eq. (F.1) into Eq. (F.2) results in

[f 3272.#(1 V)[ (A Bmm)knt +;u(A n; +A 511(1’11 yk j)]ek

L2
+ .
327zu(l—v)
~ HV*(An)+ V(4,5

{_ ﬂ’[vz(A_B,mm),kni +(A_B,mm)1kp P (A Bmm)kpl’/Z n[]

2B, + (A + VA, S, ~2VPB, I, (F3)

ik Lipk

L2
— (45, =2B ) ,n,mn, e, +m[zm ~B,.) .0,
+u(A4,0, +4,06, 2B, )(-n,,; +n,,mn, +n,n,n,e,.

Lip ™~ jk ,jp ik

- A

Lipl nk p

Equation (F.3) can be rewritten as

L=Te,. (F4)

where

1
T;'k :m[ﬂ’(A_B,mm),k ni +1U(A,ink +A151kn 2B,ijknj)]

L2
+ e —
327mu(l—v)
~ UV (4,n,) + V(4,6

LAV A-B,,) n +(A=B, ) n, —(A=B,.) o mnn]

lkp p

—2By)n, + (A, +V2 4,5, —2V B, In, (F.5)
LZ
—Apn,ny = (A0 =2B;) jyn,mn; ]}+ WM(A =B ) 1y 9

+u(d,0, +4,0, 2B, )(-n,,; +n,,mn, +n,n,n,),

Jip ™ jk SJp ik

,J ik Lipk

with 4 = A(r) and B = B(r) defined in Egs. (2.29). The expression of the Cauchy traction
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transformation tensor 7 obtained in Eq. (F.5) is exactly what is given in Eq. (6.12a).

Next, using Egs. (2.5b) and (F.1) in Eq. (6.4b) leads to

g, = —327ru(1 [A4-B,,) 6, + 14,5, + 4,5, 2B, )nne =0e, (E6)
where
L2
Qikzm[ (A=B )00, + (A, 5, + 4,5, —2B, )|nn, (F.7)

with 4 = A(r) and B = B(r) defined in Egs. (2.29). The expression of the double stress
traction transformation tensors Qj obtained in Eq. (F.7) is exactly what is given in Eq.

(6.12b). This completes the derivation of Egs. (6.12a,b).
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APPENDIX G

In this appendix, the following integral result (given in Eq. (6.45)) is proved:

(foIm) =] fmda=f,(x)x,, G1)

where

27H

X

r=Ax+ H - 2xH, fy(x)= [ f@yar. (G2a,b)

[Proof] To evaluate the surface integral in Eq. (G.1), a particular Cartesian coordinate
system is chosen, in which the e; axis is taken to be along the direction of position vector x
(with 0 < |x| < H), as shown in Fig. 6.3. The unit vector n, which represents the direction of
position vector y (with |y| = H) and coincides with the unit outward normal vector on the
spherical surface, 0Q, of the spherical elastic body having radius H, can then be expressed
as

n=sinfcosg e, +sinfsing e, +cosb e, (G3)
where ¢ €[0, 27] is the azimuth angle relative to the e, direction in the plane passing
through the origin o and perpendicular to the e;direction, and 8 €0, ] is the inclination
angle that equals the angle between x and y. Also, the distance between x and y, 7, can be

obtained from the cosine law as

r:|x—y|:\/x2+H2—2chost9, (G4)

where x = |x| and H = |y|.



152

Note that the surface integral of f(»)n over 0€2 is given by
(femy=[_femda=t>["[" f(rmsinodad (GS5)
“Jan o Jo P, )
where use has been made of the surface element dA = H’sin@d@dg on 6Q. Using Eq. (G.3)
in Eq. (G.5) leads to
(f(rn)=27H" j 0” f(r)cos@sind db e, . (G6)
Since e; coincides with the direction of x, Eq. (G.6) can be rewritten in the index
form as
1
(f(r)m)= [2;;112]1 F(r)t dz]x;’ , (G.7)

where x = x,/x is the ith component of the unit vector x’ = x/x (= e3), and ¢ = cosé.

Equation (G.7) is exactly Eq. (G.1) or Eq. (6.45). This concludes the proof of Eq. (6.45).
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APPENDIX H

In this appendix, the following integral result (given in Eq. (6.46)) is proven:

<f(r)ninjnk> = fl(x)(xi §jk + xj5ik + xké'l.j)Jr 1o (x)x, XXy (H.1)
where
fi(x)= ”Z : [ roya-ar, fx)= ”g 2 [ reset -3y (H2)

[Proof] After rotating the Cartesian coordinate system with the base vectors
(e,, e,, e;)defined in Appendix G into a Cartesian coordinate system with the base vectors
(e,,€,,e,) (see Fig. 6.3), the unit vector n becomes
n=sinfcose R,e, +sinfsing R,.e, +cosd R;e,, (H.3a)
or, in the index form,
n, =sinfcospR,, +sinfdsinp R,, +cosd R;;, (H.3b)
where R;; is the rotation tensor satisfying e, = R, €  and

R.R =6, (H.4)

mi= ~mj i

From Eq. (H.3b) it follows that

2z
_[0 nnndp=2rx cos’ @ Ry Ry Ry, + 7(cos O — cos’ 9)[R3i (R Ry, + Ry R,;) (115)
+ R3j (Rlile + RZiRZk) +R 3k (Rlile + RZiRZj )]

Using Eq. (H.4) and the fact that the position vector x coincides with the e; axis (i.e.,

x’ =e, =R,é0r x =R,,), Eq. (H.5) can be rewritten as
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0

2z .
IO nnnde =7(5 cos’ @ —3cosH) x?x?x,? + 7 cos@Osin® O(x; ’

Oy +Xx,0, +x,?5y.). (H.6)

The use of Eq. (H.6) leads to

i

HZ'[O” _[;ﬁf(r)n,«njnkd(psine do = H27Z'|:J.Oﬁf(l’)(5 cos’ @ —3cosH)sin @ dO xoxjo.x,?

+j0”f(r)cosesin3ede (x°5, +x°5, +x,‘35,.j)}

i Y jk j ik

(H.7)
With the surface element d4=H’sin@d@dp on 0Q and the unit vector component

x] = x,/x, Eq. (H.7) then becomes

2
[ reymnmda= - [7 £ ()cosOsin® 0. d6 (x,8, +x,8, +x.5,)
Q x 90
(IL8)
at

2
5 J‘O f(r)(5cos’ @ —3cos0)sin b db x,x x,.

Using ¢ = cosd and Eq. (5.44) in Eq. (H.8) will immediately give Eq. (H.1) or Eq. (5.46).

This concludes the proof of Eq. (5.46).
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APPENDIX I

In this appendix, the following integral result (given in Eq. (7.4)) is proven:

1 1

U= Wl(ﬂ)jg (7,6; + My Ky AV = WI(Q)LQ (oun, +u,en)dd.  (L1)
From Egs. (2.5¢,d), it follows that
[ @y + AV = [ (2, + gy, )dV (1.2)

Using the divergence theorem and o, ; =7, ; — u; ., =0 (see Eq. (2.8), Eq. (1.2) becomes

J.Q (z‘ijgij + ,uyk/([jk)dV = LQ (rijuinj Ll Ey —,u,.jk,kuinj)dA . (1.3)
With the help of Eq. (2.8), Eq. (I.3) can be rewritten as
[ @+ 0dV = [ (oyun, +uye,m)dd, (1.4)
from which Eq. (I.1) or (7.4) is immediately proved. This completes the derivation of Eq.

(I.1) or (7.4).
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