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ABSTRACT 

 

Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method 

Based on a Simplified Strain Gradient Elasticity Theory. (May 2010) 

Hemei Ma, B.Sc., Tongji University, Shanghai, China; 

M.Sc., Tongji University, Shanghai, China 

Chair of Advisory Committee: Dr. Xin-Lin Gao 

 

Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic 

elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an 

eigenstrain gradient are analytically solved. The solutions are based on a simplified strain 

gradient elasticity theory (SSGET) that includes one material length scale parameter in 

addition to two classical elastic constants.  

For the infinite-domain inclusion problem, the Eshelby tensor is derived in a 

general form by using the Green’s function in the SSGET. This Eshelby tensor captures 

the inclusion size effect and recovers the classical Eshelby tensor when the strain gradient 

effect is ignored. By applying the general form, the explicit expressions of the Eshelby 

tensor for the special cases of a spherical inclusion, a cylindrical inclusion of infinite 

length and an ellipsoidal inclusion are obtained. Also, the volume average of the new 

Eshelby tensor over the inclusion in each case is analytically derived. It is quantitatively 

shown that the new Eshelby tensor and its average can explain the inclusion size effect, 

unlike its counterpart based on classical elasticity. 

To solve the finite-domain inclusion problem, an extended Betti’s reciprocal 



 

 
 

iv 

theorem and an extended Somigliana’s identity based on the SSGET are proposed and 

utilized. The solution for the disturbed displacement field incorporates the boundary 

effect and recovers that for the infinite-domain inclusion problem. The problem of a 

spherical inclusion embedded concentrically in a finite spherical body is analytically 

solved by applying the general solution, with the Eshelby tensor and its volume average 

obtained in closed forms. It is demonstrated through numerical results that the newly 

obtained Eshelby tensor can capture the inclusion size and boundary effects, unlike 

existing ones.  

Finally, a homogenization method is developed to predict the effective elastic 

properties of a heterogeneous material using the SSGET. An effective elastic stiffness 

tensor is analytically derived for the heterogeneous material by applying the Mori-Tanaka 

and Eshelby’s equivalent inclusion methods.  This tensor depends on the inhomogeneity 

size, unlike what is predicted by existing homogenization methods based on classical 

elasticity. Numerical results for a two-phase composite reveal that the composite 

becomes stiffer when the inhomogeneities get smaller.  
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CHAPTER I 

INTRODUCION 

 

1.1. Background 

Composites with complex microstructures are finding important applications in 

many engineering designs and products. For example, polymer matrix composites 

reinforced by various hard particles and short fibers (schematically shown in Fig. 1.1) are 

now widely used in the aerospace and automobile industries. These composites can be 

regarded as an assemblage of “pure” phases, which have significantly different physical 

properties and remain separate and distinct on a macroscopic level within the finished 

structure. For example, a polymer-based composite material reinforced with metal particles 

consists of two distinct phases, namely, the polymer matrix and the metal particles. To 

effectively analyze the macroscopic behavior of a composite, a heterogeneous material 

model including all individual phases in the composite is not practically favorable because 

of computational difficulties involved in the simulation process. For instance, an extremely 

fine mesh may have to be used in order to incorporate microscopic details of the composite, 

which could be prohibitively expensive in computation. In addition, the exact spatial 

distribution of the individual phases is far from ascertained due to the high randomness in 

the fabrication of the composite. Hence, an equivalent material model with homogenized or 

effective properties is desirable in the macroscopic analysis of the overall response of the 

composite, which has motivated the development of Micromechanics. Micromechanics is a 

branch of solid mechanics that aims to predict the macroscopic mechanical behavior of  
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materials based on the understanding of their microstructures (e.g., Mura, 1987; Qu and 

Cherkaoui, 2006; Nemat-Nasser and Hori, 1999; Li and Wang, 2008). It studies composites 

or heterogeneous materials by incorporating microstructures of individual phases that 

constitute these materials, and uses suitable homogenization methods to determine the 

effective properties that can be applied directly in the macroscale analysis.  

 

 
Fig.1.1. Macroscopic composite material and its microscopic structures. 

 
 
 

The beginning of micromechanics may be traced back to Eshelby’s seminal study in 

the 1950s (Eshelby, 1957, 1959). On the microscopic scale, the problem of inhomogeneities, 

whose material properties are different from their surrounding matrix, is encountered. This 

problem was not analytically solved until Eshelby proposed an eigenstrain method for an 

inclusion problem, which can be used to simulate the inhomogeneity problem. According to 

Eshelby’s original work, an inclusion is defined as a subdomain I  in an infinite domain 

 , where a stress-free eigenstrain *ε is prescribed in the inclusion I and vanishes outside 

(see Fig. 1.2a). The material property, denoted by MC in Fig. 1.2a, is the same in I and 

  I . In a similar way, an inhomogeneity is defined as a subdomain H in an infinite 

domain  (see Fig.1.2b), where the material properties in H and in   H , denoted 

respectively by FC and MC  in Fig.1.2b, are different. From the above definitions, it is clear 
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that in an inclusion problem, an eigenstrain is distributed in a homogeneous material, while 

in an inhomogeneity problem, a different material is embedded in a homogeneous matrix, 

leading to a heterogeneous (composite) material. The strain and stress fields will be 

disturbed due to the existence of the eigenstrain or the inhomogeneity.  

 




MC

FC
**,κε

I

MC

MC

H

             
 

           Fig.1.2a. Inclusion Problem.                                 Fig. 1.2b. Inhomogeneity problem. 
 
 

 
Eshelby showed that if a uniform eigenstrain *ε is prescribed inside an ellipsoidal 

inclusion, then the disturbed strain dε  is related to *ε by (Eshelby, 1957)  

                     *d
klijklij S   ,                                                          (1.1) 

where ijklS is a fourth-order tensor now known as the Eshelby tensor, which provides a 

direct link between the disturbed strain in  and the stress-free uniform transformation 

strain (eigenstrain) in I . The analytical expressions of ijklS  for an ellipsoidal inclusion 

have been provided in Eshelby (1957, 1959) and subsequent studies (e.g., Mura, 1987; Ju 

and Sun, 1999; Li and Wang, 2008). By adjusting the value of *ε , the stress and the strain 

fields in the inclusion and in the inhomogeneity can be made equivalent. As a result, the 

inhomogeneity problem, encountered in the composite analysis, can be solved once the 

Eshelby tensor for the inclusion problem is obtained. This is known as the Eshelby’s 

equivalent eigenstrain method. With the knowledge of the mechanical field within each 
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constituent of the heterogeneous material, it is now possible to determine the overall or 

effective mechanical properties based on some averaging theorems. Clearly, the Eshelby 

tensor ijklS  plays a key role in such homogenization analysis, and the development of new 

homogenization methods will hinge on the availability of new expressions of ijklS .  

 

1.2. Motivation  

Despite the significance of the Eshelby tensor ijklS in Micromechanics, it is  deduced  

by Eshelby and most subsequent researchers based on classical elasticity and depends only 

on the elastic constants and the inclusion shape (e.g., the aspect ratios for an ellipsoidal 

inclusion). As a result, the Eshelby tensor and the subsequent homogenization methods 

cannot capture the size effect exhibited by particle-matrix composites at the micro- or nano-

scale (e.g., Vollenberg and Heikens, 1989; Vollenberg, et al., 1989; Lloyd, 1994; Kouzeli 

and Mortensen, 2002). This has motivated the studies on Eshelby-type inclusion problems 

using higher-order elasticity theories, which, unlike classical elasticity, contain 

microstructure-dependent material length scale parameters and are therefore capable of 

explaining the size effect.  

The higher-order elasticity theories that have been used in studying the Eshelby 

inclusion problems include a micropolar theory (Cheng and He, 1995, 1997; Ma and Hu, 

2006), a microstretch theory (Kiris and Inan, 2006; Ma and Hu, 2007), a modified couple 

stress theory (Zheng and Zhao, 2004), and a strain gradient elasticity theory (Zhang and 

Sharma, 2005). However, most of the higher-order elasticity theories used in these studies 

involve at least four elastic constants, with two or more being the material length scale 

parameters. Due to the difficulties in determining these microstructure-dependent length 

scale parameters (e.g., Lakes, 1995; Lam et al., 2003; Maranganti and Sharma, 2007) and in 
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dealing with the fourth-order Eshelby tensor, it is very desirable to study the Eshelby 

inclusion problem using a higher-order elasticity theory containing only one material length 

scale parameter in addition to the two classical elastic constants.  Among the afore-

mentioned works,  the one reported in Zheng and Zhao (2004) appears to be the only study 

that involves just one additional length scale parameter, which is based on a couple stress 

theory modified from the classical couple stress theory (Koiter, 1964) that contains four 

elastic constants in the constitutive equations but three in the displacement-equations of 

equilibrium. There is still a lack of studies on the Eshelby-type inclusion problems based on 

strain gradient elasticity theories involving only one additional elastic constant. The 

objective of this dissertation is therefore to provide a systematic study of various Eshelby-

type inclusion problems involving a spherical, cylindrical or ellipsoidal inclusion embedded 

in an infinite or a finite homogeneous isotropic elastic body, applying a simpler one-length-

scale-parameter strain gradient theory. It will be based on a simplified strain gradient theory 

(SSGET) elaborated by Gao and Park (2007), which involves only one material length 

parameter in addition to two classical elastic constants. The resulting non-classical Eshelby 

tensors based on the SSGET will then be utilized to develop new homogenization methods 

for analyzing heterogeneous composites.   

 

1.3. Organization  

The rest of this dissertation is organized as follows. 

In Chapter II, the Green’s function in the SSGET is first obtained in terms of 

elementary functions by applying Fourier transforms, which reduces to the Green’s function 

in classical elasticity when the strain gradient effect is not considered. The Eshelby tensor is 

then derived in a general form for an inclusion of arbitrary shape, which consists of a 
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classical part and a gradient part. The former depends on two classical elastic constants only, 

while the latter depends on the length scale parameter additionally, thereby enabling the 

interpretation of the size effect.  

In Chapter III and Chapter IV, the explicit expressions of the Eshelby tensors for a 

spherical and for a cylindrical inclusion are obtained, respectively, by applying the general 

form of the Eshelby tenor derived in Chapter II. Both of the non-classical Eshelby tensors 

varies with positions even inside the inclusions and captures the inclusion-size dependence, 

unlike the classical Eshelby tensors. The volume averages of these newly derived Eshelby 

tensors over the spherical and the cylindrical inclusions are obtained in closed forms, to 

facilitate the further homogenization analyses of particle-reinforced and fiber-reinforced 

composites. 

In Chaper 5, the problem of an ellipsoidal inclusion (with three distinct semi-axes) 

in an infinite homogeneous isotropic elastic material is analytically solved by using the 

general form of the Eshelby tensor in the SSGET. Analytical expressions for the Eshelby 

tensor are derived for both the interior and exterior cases in terms of two line integrals with 

an unbounded upper limit and two surface integrals over a unit sphere. The Eshelby tensors 

for the spherical and cylindrical inclusion problems based on the SSGET are included in the 

current Eshelby tensor as two limiting cases. The volume average of the new Eshelby 

tensor over the ellipsoidal inclusion needed in homogenization analyses is also analytically 

obtained in this chapter. 

In Chapter VI, a solution for the Eshelby-type inclusion problem of a finite 

homogeneous isotropic elastic body containing an inclusion prescribed with a uniform 

eigenstrain and a uniform eigenstrain gradient is derived in a general form using the SSGET. 

An extended Betti’s reciprocal theorem and an extended Somigliana’s identity based on the 
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SSGET are proposed and utilized to solve the finite-domain inclusion problem. The 

solution for the disturbed displacement field is expressed in terms of the Green’s function 

for an infinite three-dimensional elastic body in the SSGET. It contains a volume integral 

term and a surface integral term. The former is the same as that for the infinite-domain 

inclusion problem based on the SSGET, while the latter represents the boundary effect. The 

solution reduces to that of the infinite-domain inclusion problem when the boundary effect 

is not considered. The problem of a spherical inclusion embedded concentrically in a finite 

spherical elastic body is analytically solved by applying the general solution, with the 

Eshelby tensor and its volume average obtained in closed forms.  

A homogenization method is developed in Chapter VII to predict the effective 

elastic properties of a heterogeneous material in the framework of the SSGET. At the 

macroscopic scale,  the heterogeneous material is modeled as a homogeneous strain-

gradient medium whose behavior can be characterized by the constitutive relations in the 

SSGET. The effective elastic properties of the heterogeneous material are found to be 

dependent not only on the volume fractions and shapes of the inhomogeneities but also on 

the inhomogeneity sizes, unlike what is predicted by the homogenization method based on 

classical elasticity. The effective elastic stiffness tensor is analytically obtained by using the 

Mori-Tanaka method and Eshelby’s equivalent inclusion method.  
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CHAPTER II 

GREEN’S FUNCTION AND ESHELBY 

TENSOR BASED ON A SIMPLIFIED STRAIN 

GRADIENT ELASTICITY THEORY 

 

2.1. Introduction 

In this chapter, a simplified strain gradient elasticity theory (SSGET) involving only 

one additional material length scale parameter (Altan and Aifantis, 1997; Gao and Park, 

2007) is used to analytically solve the Eshelby-type problem of an infinite homogeneous 

isotropic elastic medium containing an inclusion of arbitrary shape. A variationally 

consistent formulation of the SSGET was provided in Gao and Park (2007). This simplified 

strain gradient elasticity theory has been applied to solve a number of problems (e.g., 

Lazopoulos, 2004; Li et al., 2004; Gao and Park, 2007; Gao et al., 2009).  

 The rest of this chapter is organized as follows. In Section 2.2, the simplified strain 

gradient elasticity theory (SSGET) is fist reviewed. It is followed by Section 2.3 where a 

three-dimensional (3-D) Green’s function in the SSGET is obtained from directly solving 

the governing equations using Fourier transforms. Based on this Green’s function obtained, 

the Eshelby tensor is derived in Section 2.4 in a general form for a 3-D inclusion of 

arbitrary shape, which consists of a classical part and a gradient part. The former contains 

only one classical elastic constant (Poisson’s ratio), while the latter includes the length scale 

parameter additionally. This chapter concludes with a summary in Section 2.5.  
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2.2. Simplified Strain Gradient Elasticity Theory (SSGET) 

As reviewed in Gao and Ma (2010a), the SSGET is the simplest strain gradient 

elasticity theory evolving from Mindlin’s pioneering work (Mindlin, 1964, 1965; Mindlin 

and Eshel, 1968). It is also known as the first gradient elasticity theory of Helmholtz type 

(e.g., Lazar et al., 2005) and the dipolar gradient elasticity theory (e.g., Georgiadis et al., 

2004). The SSGET has been well studied and successfully used to solve a number of 

important problems on dislocations (e.g., Lazar and Maugin, 2005), cracking (e.g., Altan 

and Aifantis, 1992; Gourgiotis and Georgiadis, 2009), wave dispersion (e.g., Georgiadis et 

al., 2004), inclusions (Gao and Ma, 2009, 2010a, 2010b; Ma and Gao, 2009), beams (e.g., 

Giannakopoulos and Stamoulis, 2007), plates (e.g., Lazopoulos, 2004), and thick-walled 

shells (Gao and Park, 2007; Gao et al., 2009).  

However, for a better understanding of this relatively recent SSGET, further 

elaborations on the aspects of the theory interpretation and length scale parameter 

determination are still warranted. There has been a slow embracement of strain gradient 

elasticity and plasticity theories, as indicated earlier by Fleck and Hutchinson (1997) for 

strain gradient elasticity theories and very recently by Evans and Hutchinson (2009) for 

strain gradient plasticity theories. One reason for this slow embracement is the lack of 

clarity in the theory interpretation, and another is the ambiguity in determining length scale 

parameters through curve fitting (Evans and Hutchinson, 2009). These apply to the SSGET 

and therefore will be discussed further below. 

As stated in Gao and Park (2007), elements of the SSGET were first suggested by 

Altan and Aifantis (1992, 1997) by simplifying Mindlin’s first strain gradient theory in 

linear elasticity (Mindlin and Eshel, 1968) without derivations. The strain energy density 

function, w, employed by Mindlin and Eshel (1968) for an isotropic linearly elastic material 
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has the general form: 

,
2

1

),(

,,5,,4,,3,,2,,1

,

ikjkijkijkijkjjkiijkjkiikikjijijijjjii

kijij

ccccc

ww








     (2.1) 

where εij is the infinitesimal strain,  and  are the Lamé constants in classical elasticity, 

and c1–c5 are the five additional material constants (called strain gradient coefficients) 

having the dimension of force. By taking  

,,
2

1
,0 43521  ccccccc                                            (2.2) 

Eq. (2.1) becomes 

,
2

1

2

1
),( ,,,,, 






  kijkijkjjkiiijijjjiikijij cww                   (2.3) 

where c, as the only remaining strain gradient coefficient, has the dimension of length 

squared. Eq. (2.3) can also be written as (Gao and Park, 2007)  

 ,
2

1
),( , ijkijkijijkijijww                                           (2.4) 

where the Cauchy stress τij (energetically conjugated to εij), the double stress ijk 

(energetically conjugated to κijk), the infinitesimal strain  εij, and the strain gradient κijk are, 

respectively, defined by  

           ),2(,2 22
ijkijllkmnkijmnijkijijllklijklij μδλLCLμμεδεC    

   ,
2

1
,

2

1
,,,,, ikjjkikijijkijjiij uuuu                                (2.5a–d) 

where ui is the displacement and ij is the Kronecker delta. In Eqs. (2.5a,b), L is the material 

length scale parameter (with L2 = c, c being the strain gradient coefficient introduced in Eq. 

(2.3)) and Cijkl is the elastic stiffness tensor for isotropic elastic materials given by  
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)( jkiljlikklijijklC   .                                   (2.6) 

The simplified strain energy density function in Eq. (2.3) was first suggested in 

Altan and Aifantis (1997) without reasoning. Following Lazar and Maugin (2005), it can 

now be understood that this simplified strain energy density function is physical and 

exhibits the symmetry both in ij and ij and in ijk  and ijk  for the linearly elastic material, 

as shown in Eq. (2.4). Based on Eq. (2.3), a variationally consistent formulation of the 

SSGET has been provided in Gao and Park (2007), leading to the simultaneous 

determination of the governing equations and the complete boundary conditions. However, 

the form of the strain energy density function w given in Eq. (2.3) or Eq. (2.1) can be 

discussed further next. 

Physically, for linearly elastic materials, the dependence of w on 

kjikij eeeε  ,  included in Eq. (2.1) arises from the non-local nature of atomic forces, 

which was first studied by Kröner (1963), where the connection between the lattice 

curvature and the double stress was explored and the necessity of including the strain 

gradient effect for some elastic materials was demonstrated. This was pointed out earlier by 

Nix and Gao (1998). The mathematical framework that led to Mindlin’s strain energy 

density function in Eq. (2.1) was established by Toupin (1962) and Green and Rivlin 

(1964a, b).  

For plastically deformable materials, the strain gradient effect as reflected in Eq. 

(2.1) is associated with geometrically necessary dislocations, which is in addition to the 

homogeneous plastic strain arising from statistically stored dislocations (e.g., Ashby, 1970; 

Fleck et al., 1994; Nix and Gao, 1998; Gao et al., 1999). As a result, the strain energy 

density function given in Eq. (2.1) was adopted by Fleck and Hutchinson (1997) in 
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developing their strain gradient plasticity theory for incompressible materials, where 0ii  

and the first, fourth and fifth terms in Eq. (2.1) vanish, thereby leaving only three additional 

constants c1, c4 and c5 in the expression of w for the general case. These three constants can 

be determined from fitting experimental data obtained in micro-torsion, micro-bending and 

micro-indentation tests (e.g., Fleck and Hutchinson, 1997; Shi et al., 2000; Lam et al., 

2003). 

The determination of the only material length scale parameter L involved in the 

SSGET, which is introduced in Eq. (2.3) through c = L2, has been discussed in a number of 

publications. The most recent one is that by Gourgiotis and Georgiadis (2009), where it was 

stated that the coefficient c (and thus L) can be estimated from comparing the dispersion 

curves of Rayleigh waves obtained using the strain gradient theory based on Eq. (2.3) and 

those from lattice dynamics calculations, as was done in Georgiadis et al. (2004). This 

approach was also used earlier by Altan and Aifantis (1992). Similar to that in the strain 

gradient plasticity theory of Fleck and Hutchinson (1997) for determining c1, c4 and c5 

mentioned above, the parameter L can also be estimated by fitting experimental data from 

small-scale tests. This has been demonstrated by Giannakopoulos and Stamoulis (2007) by 

fitting the strain gradient elasticity based analytical results for the normalized stiffness of a 

cantilever beam to the experimental data obtained by Kakunai et al. (1985) using 

heterodyne holographic interferometry. Efforts have also been made to estimate L by fitting 

the measured data from bending and torsion tests of microstructured solids (including bones 

and polymeric foams) that are elastically deformed (Aifantis, 1999, 2003). These reported 

methods for determining the material length scale parameter L in the SSGET have been 

elaborated by Lakes (1995) together with other methods in a broader context. 

As shown in Gao and Park (2007), in the SSGET the equilibrium equations have the 
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form:  

0,  ijij f ,                                                         (2.7) 

where fi is the body force, and ij is the total stress, which is related to the Cauchy stress 

through 

,,kijkijij μτσ                                                         (2.8) 

with the Cauchy stress τij and the double stress ijk given in Eqs. (2.5a–d) in terms of the 

displacement ui.  

Substituting Eqs. (2.5a–d) and (2.8) into Eq. (2.7) yields the Navier-like 

displacement equations of equilibrium in the SSGET as  

    2
, , , , ,

( ) ( ) 0i ij j kk i ij j kk jmm
u u L u u f              .                     (2.9) 

Clearly, Eq. (2.9) reduces to the Navier equations in classical elasticity when L = 0 (i.e., 

when the strain gradient effect is not considered). Note that the standard index notation, 

together with the Einstein summation convention, is used in Eqs. (2.1)–(2.9) and 

throughout this dissertation, with each Latin index (subscript) ranging from 1 to 3 and each 

Greek index (subscript) ranging from 1 to 2, unless otherwise stated.  

 

2.3. Green’s Function Based on SSGET 

The solution of Eq. (2.9) subject to the boundary conditions of ui and their 

derivatives vanishing at infinity, provides the fundamental solution and Green’s function in 

the SSGET, as will be shown next.  

The 3-D Fourier transform of a sufficiently smooth function F(x) and its inverse can 

be defined as  
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xxξ xξ deFF i




 )()(ˆ ,                                                 (2.10a) 

ξξx xξ deFF i




 )(ˆ
)2(

1
)(

3
,                                           (2.10b)                           

where x is the position vector of a point in the 3-D physical space, ξ  is the position vector 

of the same point in the Fourier (transformed) space, i is the usual imaginary number with i2 

= 1, and )(ˆ ξF  is the Fourier transform of F(x).  

Suppose that ui are sufficiently differentiable and that ui and their derivatives vanish 

at x. Then, applying Eq. (2.10a), the product rule and the divergence theorem gives 

).(ˆ)(ˆ),(ˆ)(ˆ,)()(ˆ ,,
i ξξξξxxξ xξ

klljiijllkkjiijkii uuuudeuu   

       (2.11) 

Taking Fourier transforms on Eq. (2.9) and using Eqs. (2.10a) and (2.11) will lead to 

  jijiijji fuLξ ˆˆ)()2()1( 0000222   ,                            (2.12) 

where   2/1
kk  ξ , and  /0

ii  are the components of the unit vector /0 ξξ  . 

Eq. (2.12) gives a system of three algebraic equations to solve for the three unknowns iû . 

This equation system can be readily solved to obtain 

)(ˆ)(ˆ)(ˆ ξξξ jiji fGu  ,                                                  (2.13a) 

where )(ˆ ξijG  is the inverse of the coefficient matrix of ξ)(ˆiu  in Eq. (2.12) given by (see 

Appendix A)   

  












 0000
222 2

11

)1(

1
)(ˆ

jijiijij Lξ
G 





ξ .                      (2.13b) 

Taking inverse Fourier transforms on both sides of Eq. (2.13a) then yields, with the 

help of the convolution theorem, the solution of Eq. (2.9) as    





 yyyxx dfGu jiji )()()( ,                                            (2.14) 
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where Gij (x), as the inverse Fourier transform of )(ˆ ξijG  listed in Eq. (2.13b), is (see Eq. 

(2.10b)) 

ξξx xξ deGG ijij 




 i
3

)(ˆ
8

1
)(


.                                      (2.15) 

Eq. (2.14) gives the fundamental solution in the SSGET in terms of the Green’s 

function Gij (x) defined in Eq. (2.15). Note that the Green’s function )( yxG  is a second-

order tensor. From Eq. (2.14), it is clear that its component )( yx ijG  represents the 

displacement component ui at point x in a 3-D infinite elastic body due to a unit 

concentrated body force applied at point y in the body in the jth direction. 

To evaluate the definite integral in Eq. (2.15), a convenient spherical coordinate 

system (, , ) in the transformed space is chosen such that the angle between x and ξ  is , 

with the direction of x being the axis where  = 0. Then, it follows that  cosxxkk xξ , 

with   2/1
kk xxx  x , and the volume element  dddd sin2ξ . Substituting Eq. 

(2.13b) into Eq. (2.15) yields 

 

  .sin
1

1

2

11

8

1

sin
2

11

1

1

8

1
)(

0 0

cosi
22

2

0

0000
3

2

0 0 0

cosi0000
223
















 

  

dde
L

d

ddde
L

G

x
jijiij

x
jijiijij

 

  
























































x

(2.16) 

From Eq. (2.13b) it is seen that ˆ ( )ijG ξ is an even function of ξwith )(ˆ)(ˆ ξξ ijij GG  , and 

from Eq. (2.15) it then follows that ( )ijG x  is also an even function of x with Gij(x) = 

Gij(x). Using this fact and the expression of Gij(x) in Eq. (2.16) gives 

Lxx e
L

de
L

de
L

 





coscosxi
220

cosi
22 21

1

2

1

1

1 









  ,              (2.17) 
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where the second equality follows from the Euler formula, integration properties of even 

and odd functions, and a known integration result in calculus. Also, it can be shown that 

(see Appendix B)  

 )cos31(sin 20022

0

00 


 jiijji xxd ,                           (2.18) 

where xxx ii /0   are the components of the unit vector x/0 xx  . Substituting Eqs. (2.17) 

and (2.18) into Eq. (2.16) then yields 

dtetxxt
L

G Lxt
jiijij



 













































1

1

2002 )31(
1

2

1
)1(

1

2

12

16

1
)(





x ,   (2.19) 

where use has been made of cost    to facilitate the integration.  

Evaluating the integral in Eq. (2.19) finally gives the Green’s function as  

 00)()(
)1(32

1
)( jiijij xxxx

v
G 


 


x ,                                  (2.20) 

where  is Poisson’s ratio, and 

 
































L

x

L

x

eLLxxL
x

ev
x

x )22(2
1

143
2

)(Ψ 222
2

,               (2.21a) 





























L

x

e
x

L

x

L

x

L

x
x

2

2

2

2 66
2

6
1

2
)(Χ                                (2.21b) 

are two convenient functions. Note that in reaching Eq. (2.20) use has also been made of 

the identities (e.g., Timoshenko and Goodier, 1970): 

,
)1(2

,
)21)(1( 











EE

                                       (2.22) 

where E is the Young’s modulus.         

The Green’s function derived here in Eqs. (2.20) and (2.21a,b) can be shown to be 

the same as that obtained by Polyzos et al. (Polyzos et al. 2003) using a different approach 
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based on the use of the Helmholtz decomposition and potential functions. This Green’s 

function can also be reduced to the Green’s function in classical elasticity when the strain 

gradient effect is ignored. That is, by setting L = 0, Eqs. (2.20) and (2.21a,b) become 

       0 01
( ) (3 4 )

16 (1 )ij ij i jG x v x x
v x




    
,                              (2.23) 

which is the Green’s function for 3-D problems in classical elasticity (e.g., Mura, 1987; Li 

and Wang, 2008).    

To facilitate the differentiation of the Green’s function needed for determining 

Eshelby tensor, the expressions given in Eqs. (2.20) and (2.21a,b) can be rewritten as 

follows. Note that 0
, / iii xxxx   and ijjiji xxx  /, . It then follows that 

  .
1

,
0000

, ijijjijiijij xxxxxx
x

x                                   (2.24) 

Inserting Eq. (2.24) into Eq. (2.20) then gives  

})()]()({[
)1(32

1
)( ,ijijij xxxxx

v
G 


 


x .                        (2.25) 

Next, using Eq. (2.21b) and the following two identities:   

ij
ijij xx

x
x ,

3,2

1

3

1

3

21






  ,                                             (2.26a) 

ij

L

x

ij
L

x

ij
L

x

e
x
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x

L

x
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x

L

x

L

,

2
3

2
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2 122133
1 




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







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







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





                    (2.26b) 

leads to  




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

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
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

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





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
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
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,
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2

,

22221
2

4
2)(Χ  .         (2.27) 

Substituting Eqs. (2.21a,b) and (2.27) into Eq. (2.25) finally yields 

 ijijij xBxA
v

G ,)()(
)1(16

1
)( 


 


x ,                                   (2.28) 
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where  

.
22

)(,1
1

)1(4)(
22

L

x

L

x

e
x

L

x

L
xxBe

x
vxA











                     (2.29) 

It can be readily shown that when L = 0, Eqs. (2.28) and (2.29) reduce to Eq. (2.23), 

the Green’s function in classical elasticity.  

Eqs. (2.28) and (2.29) give the final form of the strain gradient Green’s function for 

3-D elastic deformations in terms of elementary functions, which is different from the form 

obtained in Eqs. (2.20) and (2.21a,b) that involves )/(0 xxx ii   and )/(0 xxx jj   and is not 

convenient for differentiation. Eqs. (2.28) and (2.29) will be directly used in Section 2.4 to 

derive the general expressions of the Eshelby tensor based on the SSGET. 

 

2.4. Eshelby Tensor and Eshelby-Like Tensor  

Consider an infinite homogenous isotropic elastic body containing an inclusion in 3-

D space. An eigenstrain * and an eigenstrain gradient * are prescribed in the inclusion, 

while no body force or any other external force is present in the elastic body. * and * may 

have been induced by inelastic deformations such as thermal expansion, phase 

transformation, residual stress, and plastic flow (e.g., Qu and Cherkaoui, 2006). For the 

case of plastic flow induced deformations, * may be a plastic strain arising from 

statistically stored dislocations, and * may be a plastic strain gradient resulting from local 

storage of geometrically necessary dislocations (e.g.,  Ashby, 1970; Fleck et al., 1994; Gao 

et al., 1999) that can be prescribed independently of *. Besides * and *, there is no body 

force or surface force acting in the elastic infinite body containing the inclusion. Hence, the 

displacement, strain and stress fields induced by the presence of * and * here are 

disturbed fields, which may be superposed to those caused by applied body and/or surface 
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forces.   

From Eqs. (2.7) and (2.8), the stress-equations of equilibrium in the absence of body 

forces are  

0
,,


pjijpjij
 ,                                                     (2.30) 

where the Cauchy stress ij is related to the elastic strain *
ijij

e
ij    through the 

generalized Hooke’s law: 

),( *

klklijklij
C                                                  (2.31a) 

and the double stress ijk is obtained from Eq. (2.5b) as  

),( *2

klpklpijklijp
CL                                              (2.31b) 

with ijklC  being the components of the stiffness tensor of the isotropic elastic body given by 

Eq. 2.6. 

Substituting Eqs. (2.31a,b) into Eq. (2.30) then yields the displacement-equations of 

equilibrium as  

,0)()( *
,

2*
,,,

2  pjklpjklijkljpklpklijkl LCLC                             (2.32) 

where ijklC  are given in Eq. (2.6). A comparison of Eq. (2.32) with Eq. (2.9) shows that Eq. 

(2.32) will be the same as that of Eq. (2.9) if the body force components fj there are now 

replaced by )( *

,

2*

, pjklpjklijkl
LC    and Eqs. (2.5c,d) are used. As a result, the solution of Eq. 

(2.32) can be readily obtained from Eq. (2.14) as    

   







 y)yx(y)yx()x( dCLGdCGu pklmpjklmijklmjklmiji )( *

,
2*

,  .         (2.33) 

The use of the product rule, the divergence theorem and the fact that 0,0 ** 
lmplm

   

outside the inclusion (and thus at infinity) in Eq. (2.33), together with ijklC = constants, 
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gives 

  







 y)yx(y)yx()x( dCLGdCGu lmpjklmkpijlmjklmkiji )]([ *2

,
*

,  .       (2.34) 

Eq. (2.34) is valid for any (uniform or non-uniform) 
*
lm  and *

lmp
 . For the Eshelby problem 

with *
lm  and *

lmp
 being uniform in the inclusion and vanishing outside the inclusion and the 

elastic body being homogeneous (with ijklC = constants), Eq. (2.34) can be rewritten as  

 
Ω ,Ω

*2
,

* y)yx(y)yx()x( dGCLdGCu kpijlmpjklmkijlmjklmi  ,               (2.35) 

where   denotes the region occupied by the inclusion.  

It should be mentioned that all the derivatives in the integrals introduced so far are 

with respect to y, which is the integration variable. However, it can be easily proved that  

k

ij

k

ij

x

G

y

G




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

 )()( yxyx
.                                           (2.36) 

Using Eq. (2.36) in Eq. (2.35) then gives the displacement as  

   .
Ω

*2

Ω

*  







 y)yx(y)yx()x( dG
xx

CLdG
x

Cu ij
pk

lmpjklmij
k

lmjklmi     (2.37)              

Let 

 Ω )( yy dFF                                                     (2.38) 

be the volume integral of a sufficiently smooth function F(y) over the inclusion occupying 

region . Then, Eq. (2.37) can be written as 

kpijlmpjklmkijlmjklmi
GCLGCu

,

*2

,

*)(  x ,                          (2.39) 

where Gij is the volume integral of the Green’s function Gij(xy) defined according to Eq. 

(2.38), and the derivatives indicated are now with respect to x. Inserting Eq. (2.39) into Eq. 

(2.5c) then yields 
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
              (2.40) 

as the actual (disturbance) strain, ij, induced by the presence of the eigenstrain, *

lm
 , and the 

eigenstrain gradient, *

lmp
 , where 

    .
2

,
2

1
,,

2

,, qklmkpijqkpjiqijlmpqklmkijqkjiqijlm CGG
L

TCGGS        (2.41a,b) 

Clearly, Eq. (2.40) shows that ij is solely related to *

lm
  in the absence of *

lmp
 , and ij is 

linked to only *

lmp
  if *

lm
 = 0.      

The fourth-order tensor Sijlm defined in Eqs. (2.40) and (2.41a) is known as the 

Eshelby tensor. Since ij and *
ij  are both symmetric, Sijlm satisfies Sijlm = Sijml = Sjilm (a minor 

symmetry rather than the major symmetry that requires Sijmn = Smnij additionally) and 

therefore has 36 independent components. From Eqs. (2.28), (2.29), (2.38) and (2.41a) it 

then follows that 
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are three scalar-valued functions that can be obtained analytically or numerically by 

evaluating the volume integrals. Clearly, among these three functions only (x) depends on 

the length scale parameter L. As a result, the Eshelby tensor given in Eq. (2.42) can be 
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separated into the classical part, C
ijlmS , which is independent of the material length scale 

parameter L, and the gradient part, G
ijlmS , which depends on L, thereby being microstructure-

dependent. Accordingly, the general form of the Eshelby tensor in the SSGET derived in Eq. 

(2.42) for an inclusion of arbitrary shape can be rewritten as  
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where the scalar-valued functions (x), (x) and (x) are defined in Eq. (2.43) along with 

Eq. (2.38). Clearly, when L = 0 (i.e., when the strain gradient effect is ignored), Eqs. (2.43) 

and (2.44a–c) show that G
ijlmS = 0 and C

ijlmijlm
SS  . That is, the Eshelby tensor obtained in Eqs. 

(2.44a–c) using the SSGET reduces to that based on classical elasticity. 

The fifth-order Eshelby-like tensor Tijlmp defined in Eqs. (2.40) and (2.41b) links the 

eigenstrain gradient, *

lmp
 , to the actual (induced) strain, ij. Since ij is symmetric and 

**

mlplmp
  , Tijlmp satisfies Tijlmp = Tijmlp = Tjilmp and therefore has 108 independent 

components (as opposed to 35 = 243 such components). From Eqs. (2.28), (2.29), (2.38) 

and (2.41b) it follows that 
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as the expression of the fifth-order tensor, with the scalar-valued functions (x), (x) and 

(x) defined in Eq. (2.43) along with Eq. (2.38). Clearly, Tijlmp has only the gradient part 

and vanishes when L = 0 (i.e., when the strain gradient effect is not considered). In fact, in 

this special case without the microstructural effect (i.e., L = 0), both G
ijlmS  and Tijlmp vanish, 
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and Eq. (2.40) simply becomes *

ij

C

ijlmij
S   , the defining relation for the Eshelby tensor 

based on classical elasticity (Eshelby, 1957), as expected.      

It can be shown that (x), (x) and (x) defined in Eqs. (2.43a–c) satisfy the 

following relations (see Appendix C):  
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By using Eqs. (2.46a–c) and (2.26), the Eshelby tensor in Eqs. (2.44b,c) can be 

further simplified as  
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and the Eshelby-like tensor in Eq. (2.45) can be simplified as  
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where  

Γ)(Λ2Φ)(Γ,Λ)( 2  Lxx .                               (2.49)  

Note that in Eqs. (2.47a,b) and (2.48), v is the Poisson’s ratio, which is related to the Lamé 

constants  λ and μ through (e.g., Timoshenko and Goodier, 1970) 
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EE

                                     (2.50) 

where E is Young’s modulus.  

 

2.5. Conclusion  

The Eshelby-type inclusion problem is solved analytically by using the SSGET. 

This is accomplished by first deriving the Green’s function in the SSGET in terms of 
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elementary functions using Fourier transforms. The resulting Green’s function reduces to 

that in classical elasticity when the strain gradient effect is ignored. The Eshelby tensor is 

then obtained in a general form for an inclusion of arbitrary shape using the Green’s 

function method. The newly derived Eshelby tensor consists of two parts: a classical part 

depending only on Poisson’s ratio and the shape of the inclusion, and a gradient part 

involving the length scale parameter and depending on the size of the inclusion additionally. 

The classical part is identical to the Eshelby tensor based the classical elasticity theory; 

while the gradient part vanishes when the strain gradient effect is not considered.  
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CHAPTER III 

ESHELBY TENSOR FOR A SPHERICAL 

INCLUSION 

 

3.1. Introduction 

The Eshelby inclusion problem of a spherical inclusion embedded in an infinite 

homogeneous isotropic elastic medium is of great importance due to its direct relation to 

particle-reinforced composites (e.g., Weng, 1984; Gao, 2008). Therefore, in this chapter, the 

Eshelby tensor for the spherical inclusion problem based on the simplified strain gradient 

elasticity theory (SSGET) will be derived by directly applying the general formulas 

obtained in Chapter II.  

The rest of this chapter is organized as follows. In Section 3.2, the explicit 

expressions of the Eshelby tensor are obtained for the spherical inclusion problem by 

directly applying the general form of the Eshelby tensor derived in Chapter II. This specific 

Eshelby tensor is found to be position-dependent even inside the inclusion, unlike its 

counterpart based on classical elasticity. For homogenization applications, the volume 

average of this Eshelby tensor over the spherical inclusion is analytically determined. 

Sample numerical results are provided in Section 3.3 to illustrate the newly developed 

Eshelby tensor for the spherical inclusion problem. This chapter concludes in Section 3.4. 

 

 3.2. Eshelby Tensor for a Spherical Inclusion 

Consider a spherical inclusion of radius R and centered at the origin of the Cartesian 

coordinate system (x1, x2, x3) in the physical space. In this case, the three volume integrals 

defined in Eq. (2.43) along with Eq. (2.38) can be exactly evaluated to obtain the following 
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closed-form expressions: 
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Note that in Eqs. (3.1a–f),   2/1|| kk xxx  x , as defined earlier in Section 2.3. Note that 

(x), (x) and (x) in Eqs. (3.1a–f) are independent on the direction of position vector x 

due to the spherical symmetry of the inclusion. These expressions can be readily shown to 

be equivalent to those provided by Cheng and He (1995) and Zheng and Zhao (2004), 

where different definitions and notation were used for the three scalar-valued functions. 

Clearly, (x), (x) or (x) given in Eqs. (3.1a–f) are infinitely differentiable at any x  0.  

The general forms of the Eshelby tensor S and the Eshelby gradient tensor T, given 

in Eqs. (2.44a-c) and Eq. (2.45), respectively, are expressed in terms of the derivatives of 

(x), (x) and (x) with respect to xi. To facilitate the differentiation of these three 

functions, the following differential relations are given for a sufficiently smooth function 

F(x). 
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In Eq. (3.3) F = dF/dx, F = d2F/dx2, F = d3F/dx3, F(4) = d4F/dx4, and F(5) = d5F/dx5, as 

usual. Also, in Eqs. (3.2) and (3.3) F can be replaced by (x), (x) or (x) involved in Eqs. 

(2.44a–c) and Eq. (2.45). 

Using Eqs. (2.6), (3.2) and (3.3) in Eq. (2.44b) leads to 
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It is seen from Eqs. (3.4) and (3.5a–f) that C
ijlmS  depends only on one material 

constant (i.e., Poisson’s ratio ν) even for this spherical inclusion. Similarly, applying Eqs. 

(2.6), (3.2) and (3.3) to Eq. (2.44c) results in 
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Clearly, Eqs. (3.6) and (3.7a–f) show that 
G

ijlm
S depends not only on Poisson’s ratio ν 

but also on the material length scale parameter L, unlike C
ijlmS  given in Eqs. (3.4) and (3.5a–

f).   Finally, the use of Eqs. (2.6), (3.2) and (3.3) in Eq. (2.45) yields 
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Then, it follows from Eqs. (3.1a,c,e), (3.3), (3.4) and (3.5a–f ) that the classical part of the 

Eshelby tensor for the interior case with x locating inside the spherical inclusion (i.e., x  

 or x < R) is 
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Next, using Eqs. (3.1a,c,e) and (3.3) leads to 
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(3.10) 

for any interior point x   (or x < R). Substituting Eq. (3.10) into Eqs. (3.6) and (3.7a–f ) 

will then give the closed-form expression of the gradient part of the Eshelby tensor for the 
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interior case with x locating inside the spherical inclusion. Similarly, the use of Eq. (3.10) 

in Eq. (3.8) will yield the explicit formula for determining Tijlmp at any x inside the spherical 

inclusion (i.e., x   or x < R). 

Note that Eq. (3.9) clearly shows that for the spherical inclusion considered here the 

classical part of the Eshelby tensor, C
ijlmS , is uniform inside the inclusion, independent of L, 

R and x. In fact, C
ijlmS listed in Eq. (3.9) is identical to that based on classical elasticity (see, 

e.g., Equation (3.123) in Li and Wang, (2008)). In contrast, the gradient part, G
ijlmS , given in 

Eqs. (3.6), (3.7a–f) and (3.10) depends on L, R and x in a complicated manner, and is 

therefore non-uniform inside the spherical inclusion and differs for different materials (with 

distinct values of L) and inclusion sizes (with distinct values of R). However, if the strain 

gradient effect is ignored, then L = 0 and Eqs. (3.6), (3.7a–f) and (3.10) give 0G
ijlmS . It 

thus follows from Eq. (2.44a) that C
ijlmijlm SS  . That is, the Eshelby tensor for the spherical 

inclusion derived here using the SSGET reduces to that based on classical elasticity when L 

= 0. 

Considering that G
ijlmS is position-dependent inside the spherical inclusion, its 

volume average over the spherical region occupied by the inclusion is examined next. This 

averaged Eshelby tensor is needed for predicting the effective elastic properties of a 

heterogeneous composite containing spherical inclusions. The volume average of a 

sufficiently smooth function F(x) over the spherical inclusion occupying region  is 

defined by 
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where use has been made of the volume element dxddxdV sin2  in a spherical 
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coordinate system. Letting G
ijlmS  given in Eqs. (3.6) and (3.7a–f) be F(x) in Eq. (3.11) will 

lead to 
V

G
ijlmS .  

Note that in the spherical coordinate system adopted here,  
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Using Eqs. (3.13) and (3.6) in Eq. (3.11) then gives 
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with G

n
K (n = 1, 2, …, 6) to be substituted from Eqs. (3.7a–f ) and (3.10). The six integrals 

in Eq. (3.15) can be exactly evaluated, and Eq. (3.14) becomes 
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as the 12 non-vanishing, volume-averaged components of the gradient part of the Eshelby 

tensor inside the inclusion. Clearly, these components are constants, but they depend on the 

inclusion size, R, the length scale parameter, L, and Poisson’s ratio,, of the material. This 

differs from the components of the classical part of the Eshelby tensor inside the inclusion, 

which, as given in Eq. (3.9), are constants depending only on . However, when L = 0 (or 

R/L  ), Eq. (3.17a–c) shows that all non-zero components of 
V

G
ijlmS  will vanish, as will 

be further illustrated in the next section.      

By following the same procedure, the volume average of the classical part of the 

Eshelby tensor inside the inclusion, 
V

C
ijlmS , can also be obtained using Eqs. (3.9) and 

(3.11). Since C
ijlmS  is uniform inside the inclusion, there will be C

ijlm
C
ijlm SS 

V
. It then 

follows from Eqs. (2.6), (3.11), (3.9) and (3.16) that  
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  (3.18) 
as the volume average of the Eshelby tensor inside the spherical inclusion based on the 

SSGET. Clearly, when L = 0 (or R/L  ), Eq. (3.18) reduces to C
ijlm

C
ijlm SS 

V
 given in Eq. 

(3.9).            

The volume average of Tijlmp for x locating inside the spherical inclusion (i.e., x   

or x < R) can be readily shown to vanish, i.e.,  
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The reason for this is that Tijlmp involved in Eq. (3.19) and to be substituted from Eqs. (3.8) 
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and (3.10) is odd in 0

i
x , which makes the integration of Tijlmp over any spherical surface 

vanish (e.g., Li et al. 2007).   

Similarly, the Eshelby tensor for the exterior case with x locating outside the 

spherical inclusion (i.e., x   or x > R) can be determined by using Eqs. (3.1b,d,f) in the 

general formulas derived in Section 2.4 for an inclusion of arbitrary shape. Specifically, 

from Eqs. (3.3) and Eqs. (3.1b,d,f) it follows that 

 

 

 

 

  L

x

L

x

L

x

L

x

L

x

eLxLxLxLLxx
xL

L

R

L

R

L

R

D

eLxLxLLxx
Lx

L

R

L

R

L

R

D

eLxLLxx
x

L

R

L

R

L

R

D

eLLxx
x

L

R

L

R

L

R
L

D

eLx
x

L

R

L

R

L

R
L

D

xR
x

R
DxR

x

R
D

xR
x

R
DxR

x

R
D

x

R
D

x

R
D

x

R
D

x

R
D



















































































































































54233245
1125

432234
94

3223
73

22
52

3

2

1

22
9

3

4
22

7

3

3

22
5

3

2
22

3

3

1

9

3

47

3

35

3

23

3

1

94594542010515

coshsinh4

Γ

,1051054510

coshsinh4

Γ

,15156

coshsinh4

Γ

,33

coshsinh4

Γ

,

coshsinh4

Γ

),57(
4

Φ),(
4

Φ

),53(
15

4
Φ),5(

15

4
Φ

,
140

Λ,
20

Λ,
4

Λ,
3

4
Λ

















 

(3.20) 

for any exterior point x   (or x > R). Note that the functions listed in Eq. (3.20) for the 

exterior case with x   (or x > R) are clearly different from those defined in Eq. (3.10) for 

the interior case with x   (or x < R). From Eqs. (3.20), (3.4) and (3.5a–f) the classical 

part of the Eshelby tensor for any x outside the spherical inclusion (i.e., x   or x < R) is 

then obtained as 
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(3.21) 
 

It can be readily shown that the expression given in Eq. (3.21) is the same as that based on 

classical elasticity (e.g., Cheng and He, 1995). Clearly, a comparison of Eq. (3.21) with Eq. 

(3.9) shows that C
ijlmS  is not uniform outside the spherical inclusion, although it is uniform 

inside the same spherical inclusion.  

Finally, using Eq. (3.20) in Eqs. (3.6) and (3.7a–f) will result in the explicit formula 

for determining G
ijlmS  at any exterior point x   (or x > R), and the substitution of Eq. 

(3.20) into Eq. (3.8) will lead to the closed-form expression for Tijlmp at any point x locating 

outside the spherical inclusion. 

 

3.3. Numerical Results  

By using the closed-form expressions of the Eshelby tensor for the spherical 

inclusion derived in the preceding section, some numerical results are obtained and 

presented here to quantitatively illustrate how the components of the newly obtained 

Eshelby tensor vary with position and inclusion size.  

From Eqs. (3.6), (3.7a–f) and (3.10), the components of the gradient part of the 

Eshelby tensor at any x inside the spherical inclusion along the x1 axis (with x2 = 0 = x3) can 

be obtained as 
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               (3.22a–g) 
 

Note that in this special case (with x = x1, x2 = 0 = x3) there are only 12 non-zero 

components among the 36 independent components of G
ijlmS .    

In the numerical analysis, the Poisson’s ratio v is taken to be 0.3, and the material 

length scale parameter L to be 17.6 m. Figure. 3.1 shows the distribution of 

GC SSS 111111111111   along the x1 axis (or a radial direction of the inclusion due to the 

spherical symmetry) for five different values of the inclusion radius, where the values of 

CS1111  and 
GS1111  are, respectively, obtained from Eqs. (3.9) and (3.22a).   
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Fig. 3.1. 1111S  along a radial direction of the spherical inclusion.  

 
 

 
It is seen from Fig. 3.1 that 1111S  varies with x (the position) and depends on R (the 

inclusion size), unlike the classical part CS1111  which is a constant (i.e., CS1111 = 0.5238 from 

Eq. (3.9), as shown) independent of both x and R. When R is small (comparable to the 

length scale parameter L = 17.6 m here), 1111S  is much smaller than 
CS1111 , which indicates 

that the magnitude of GS1111 ( CSS 11111111  ) is very large and the strain gradient effect is 

significant. However, when R is much greater than L (e.g., R = 6L = 105.6 m shown here), 

1111S  is seen to be quite uniform and its value approaches from below CS1111 (= 0.5238), 

indicating that the magnitude of GS1111  is very small and the strain gradient effect become 

insignificant and can therefore be ignored.  

Similar trends are observed from Figs. 3.2 and 3.3, where the values of 1212S  and 

2222S  varying with x and R are displayed together with those of their classical parts that are 

horizontal lines independent of both x and R. The values of 
GS1212  and 

GS2222  included in 

)( 121212121212
GC SSS  and )( 222222222222

GC SSS   that are illustrated in Figs. 3.2 and 3.3 are, 

x1/L 

S1111 

Classical 
R = 6L 

R = L 

R = 2L 

R = 3L 

R = 4L 

0.5238 
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respectively, obtained from Eqs. (3.22c) and (3.22e), while those of CS1212  and CS2222  are both 

calculated using Eq. (3.9).  

 

 
   Fig. 3.2. 1212S  along a radial direction of the spherical inclusion.  

 
 

 
Fig. 3.3. 2222S  along a radial direction of the spherical inclusion. 

 
 

The variation of the component of the averaged Eshelby tensor inside the spherical 

inclusion,
V1111S , with the inclusion size (i.e., radius R) is shown in Fig. 3.4, where its 

x1/L 

S2222 

Classical 
R = 6L 

R = L 

R = 2L 

R = 3L 

R = 4L 

0.5238 

x1/L 

S1212 R = 2L 

R = 3L 

0.2381 

R = L 

R = 4L 
R = 6L 
Classical 
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counterpart in classical elasticity, 
V1111

CS , is also displayed for comparison. Note that 

V1111S  is obtained from Eq. (3.18), while 
V1111

CS  (= CS1111 = 0.5238) is from Eq. (3.9). The 

material properties used here are v = 0.3 and L = 17.6 m, which are the same as those used 

in generating the results shown in Figs. 3.1–3.3. It is observed from Fig. 3.4 that 
V1111S  is 

indeed varying with R: the smaller R, the smaller 
V1111S , while 

V1111
CS  is a constant 

independent of R. Moreover, the difference between 
V1111S  and 

V1111
CS , which is 

V1111
GS  

(=
V1111S 

V1111
CS ), is seen to be significantly large only when the inclusion is small (with 

R/L < 25 or R < 440 m here). As the inclusion size increases, 
V1111S  approaches from 

below the corresponding value of CS1111 (= 0.5238) based on classical elasticity. The same is 

true for all the other non-vanishing components of 
V1111S , as seen from Eqs. (3.18) and 

(3.9). These observations, once again, indicate that the strain gradient effect is insignificant 

for large inclusions and may be neglected.   

 
     Fig. 3.4. 

V1111S  varying with the inclusion radius. 

R/L 

<S1111>v < CS1111 >v 

<S1111>v 

0.5238 
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Clearly, the numerical results presented above quantitatively show that the newly 

obtained Eshelby tensor captures the size effect at the micron scale, unlike that based on 

classical elasticity.  

 

3.4. Summary 

The Eshelby tensor for the spherical inclusion problem is explicitly obtained by 

employing the general form of the non-classical Eshelby tensor derived in Chapter II using 

the SSGET. To further illustrate this Eshelby tensor, sample numerical results are provided, 

which reveal that the components of the new Eshelby tensor vary with both the position and 

the inclusion size, thereby capturing the size effect at the micron scale.  

In addition, the volume average of this new Eshelby tensor over the spherical 

inclusion is derived in a closed form, which is needed in homogenization analyses. The 

components of the averaged Eshelby tensor are found to decrease as the inclusion radius 

decreases, and these components are observed to approach from below the values of the 

corresponding components of the Eshelby tensor based on classical elasticity when the 

inclusion size is large enough. 
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CHAPTER IV 

ESHELBY TENSOR FOR A PLANE STRAIN 

CYLINDRICAL INCLUSION  

                          

4.1. Introduction 

The current chapter aims to apply the general formulas for a 3-D inclusion of 

arbitrary shape obtained in Chapter II to solve the Eshelby cylindrical inclusion problem, 

which is closely related to the fiber-reinforced composites (e.g., Luo and Weng, 1989) and 

hence of great importance. The solution is derived in a closed form, and the Eshelby tensors 

for the two regions inside and outside the cylindrical inclusion are obtained in explicit 

expressions for the first time using a higher-order elasticity theory.  

The rest of this chapter is organized as follows. In Section 4.2, the closed-form 

expressions of the Eshelby tensor and the Eshelby-like tensor for a plane strain cylindrical 

inclusion embedded in an infinite homogeneous isotropic elastic material are presented, 

which have 15 and 30 independent components, respectively. The non-classical Eshelby 

tensor is derived for the two regions inside and outside the inclusion, and the volume 

average of the new Eshelby tensor over the cylindrical inclusion is exactly determined. 

Numerical results are provided in Section 4.3 to quantitatively illustrate the position 

dependence and the inclusion size dependence of the newly obtained Eshelby tensor for the 

cylindrical inclusion. The chapter concludes in Section 4.4.  

 

4.2. Eshelby Tensor for a Cylindrical Inclusion   

A closed-form expression of the Eshelby tensor for a plane strain cylindrical 
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inclusion of infinite length embedded in an infinite homogeneous isotropic elastic body is 

derived here by using the general formulas obtained in Chapter II. 

Consider an infinitely long cylindrical inclusion of radius a whose symmetry axis 

(central line) passes through the origin of the cylindrical coordinate system (r, x3) in the 

physical space. In this case, (x), (x) defined in Eqs. (2.43a,b) can be obtained from their 

derivatives given in Mura (1987) for both interior points (i.e., Ωx  or x < a) and exterior 

points (i.e., Ωx  or x > a) as   
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where 2

2

2

1
xxx  x (unlike in the arbitrary 3-D case), and C1~C4 , M and N are 

constants whose values are of no interest here since only the second-order derivatives of  

and fourth-order derivatives of  are involved in the expressions of S and T given in Eqs. 

(2.44a–c) and (2.45), respectively. Also, (x) defined in Eq. (2.43c) can be evaluated to 

obtain the following closed-form expressions (see Appendix D): 
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where In() and Kn() (n = 0, 1) are, respectively, the modified Bessel functions of the first 

and second kinds of the nth order, which satisfy the following asymptotic relations (e.g., 

Arfken and Weber, 2005):  
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Note that ,  and  in Eqs. (4.1a,b)–(4.3a,b) are independent on the direction of the 

position vector x due to the circular symmetry of the inclusion. Clearly, (x), (x) and (x) 

are infinitely differentiable at any x  0.       

Note that for this case, the inclusion is infinitely long and can be treated as in a 

plane strain state,   2/12

2

2

1
xxx  x  and the derivatives of (x), (x) and (x), defined 

in Eq. (2.43a–c), with respect to x3 should vanish. Accordingly, the fourth-order Eshelby 

tensor, S, and the fifth-order Eshelby-like tensor, T, will have expressions different from 

those for the spherical inclusion, listed in Eqs. (3.4), (3.6) and (3.8), as will be seen below.  

Using the expression of (x), (x) and (x), given in Eqs. (4.1)–(4.3) into the 

general forms of S and T, given in Eqs. (2.44a–c) and (2.45), obtains the special 

expressions of S and T for the plane strain cylindrical inclusion. Considering that the 

general forms of S and T are expressed in terms of the derivatives of (x), (x) and (x) 

with respect to xi, it is convenient to first give the following differential equations for a 

sufficiently smooth function F(x) (with   2/12
2

2
1 xxx  ).  
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where use has been made of the results 2  and 
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(4.6) 

 
In Eq. (4.6), F = dF/dx, F = d2F/dx2, F = d3F/dx3, F(4) = d4F/dx4, and F(5) = d5F/dx5. Also, 

in Eqs. (4.5) and (4.6) F can be replaced by (x), (x) or (x) involved in the general form 

of the Eshelby tensor in Eqs. (2.44b,c) and the general form of the Eshelby-like tensor in 

Eq.(2.45). Note that each Greek index ranges from 1 to 2 in Eqs. (4.5) and (4.6) and 

throughout this dissertation unless otherwise stated.  

After using Eqs. (4.5) and (4.6) in Eqs. (2.44b,c), the components of the Eshelby 

tensor, with each index ranging from 1 to 2, for a plane strain cylindrical inclusion can be 

obtained in the form of  
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where xxx /0
   is the component of the unit vector x/0 xx  , and )(~)(

61
xJxJ   are 

scalar-valued functions in terms of (x), (x), (x) and  , which are different for each case 

and will be individually given below. The superscript “” in Eq. (4.7) can be replaced by 

“C” or “G” to represent the classical or the gradient part of the Eshelby tensor, respectively. 
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Clearly, 
S has 9 independent components (rather than 24 = 16 ones) due to the minor 

symmetry (i.e.,    SSS ) exhibited by the Eshelby tensor.    

For the classical part of the Eshelby tensor (i.e., CS
), )(~)(

61
xJxJ CC  are obtained 

as   
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Using Eqs. (4.8a–f) in Eq. (4.7) will yield the expression of CS

, which has 9 independent 

components.  

From Eqs. (2.44b) and (4.5), the other non-vanishing components of SC for a plane 

strain cylindrical inclusion can be readily obtained as  
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where use has been made of the fact that the derivatives of x and x with respect to x3 

involved in Eq. (2.44b) vanish. It is clear that CS
33

 has 3 independent components and 

CS
33

 has 3 independent components.  
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For the gradient part of the Eshelby tensor (i.e., 
GS

), )(~)(
61

xJxJ GG  are found to 

be  
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Substituting Eqs. (4.10a–f) into Eq. (4.7) will give the expression for GS , which 

has 9 independent components. The other non-vanishing components of SG are obtained 

from Eqs. (2.24c) and (4.5) as  
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where use has been made of the fact that the derivatives of (x), (x) and (x) with respect 

to x3 involved in Eq. (2.44c) vanish. Clearly, GS
33

 has 3 independent components, and GS
33

 

has 3 independent components.  

By using Eq. (4.5) in Eq. (2.45), the components of the fifth-order Eshelby-like 

tensor T, with each index ranging from 1 to 2, for a plane strain cylindrical inclusion can be 

determined as  
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        (4.12) 

which includes 18 independent components. The other non-vanishing components of T are 

obtained from Eqs. (2.45) and (4.5) as  
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which includes 6 independent components, and 
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which contains 6 independent components. The functions P(x) and G(x) involved in Eqs. 

(4.12) and (4.13a,b) are defined in terms of (x), (x) and (x) as  

   Γ)(Λ2Φ)G(Γ,Λ)P( 2  Lxx .                                (4.14)  

Eqs. (4.7)–(4.13a,b) give the expressions for the components of the fourth-order 

Eshelby tensor, S, and the fifth-order Eshelby-like tensor, T, based on the simplified strain 

gradient theory for a plane strain cylindrical inclusion and with an infinite length in the x3 

direction. As indicated earlier, for this plane strain inclusion problem, S has 15 independent 

components and T has 30 independent components, which are in contrast to 36 and 108, the 

numbers of independent components of S and T, respectively, in the general case of a 3-D 

inclusion of arbitrary shape (see Eqs. (2.47a,b) and (2.48)). In addition, these expressions 

for the components of S and T are in terms of the three scalar-valued functions (x), (x) 

and (x), which are independent of x3 (with   2/12

2

2

1
xxx  x ).  
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Using Eqs. (4.1a) and (4.2a) along with Eqs. (4.6) and (4.8a–f) in the expression of 

SC given in Eqs. (4.7) and (4.9a,b) leads to the non-zero components of the classical part of 

the Eshelby tensor at any x inside the cylindrical inclusion (i.e., x   or x < a) as 
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which are identical to those based on classical elasticity (e.g., Mura, 1987). Note that Eqs. 

(4.15a–c) list all 15 independent components of SC.  

The use of Eqs. (4.1a), (4.2a) and (4.3a) in Eqs. (4.7), (4.10a–f) and (4.11a,b) gives 

the expressions of the non-zero components of the gradient part of the Eshelby tensor SG 

for points inside the inclusion (i.e., x   or x < a) as   
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In Eqs. (4.17a–f) and (4.18a,b), I0 = I0( L
x

), I1 = I1( L
x

) and K1 = K1( L
a

) are modified Bessel 

functions of the indicated arguments, with x < a. Eqs. (4.16)–(4.18a,b) provide the explicit 

expressions of all 15 independent components of SG.  

It is clearly seen from Eqs. (4.15a–c) that the classical part of the Eshelby tensor, SC, 

is independent of x, a and L and is therefore uniform inside the cylindrical inclusion. In 

contrast, the gradient part, SG, given by Eqs. (4.16)–(4.18a,b) depends on x, a and L in a 

complicated manner. That is, SG is non-uniform inside the cylindrical inclusion and differs 

for materials with different values of a (the inclusion size) and/or L (the material length 

scale parameter). However, if the strain gradient effect is not considered, then L = 0 (so that 

x/L  , a/L  ) and Eqs. (4.4), (4.16)–(4.18a,b) give 0G
ijlmS . It thus follows from Eq. 

(2.44a) that S = SC. That is, the Eshelby tensor for the cylindrical inclusion derived here 

using the simplified strain gradient elasticity theory reduces to that based on classical 

elasticity when L = 0. 

Considering that SG is position-dependent inside the inclusion, the volume average 

of SG over the cylindrical inclusion will be needed in calculating the volume average of S 

(= SC + SG) to be used for predicting the effective properties of a heterogeneous fiber-

reinforced composite. Hence, the volume average of SG is evaluated next.  

Note that the volume average of a sufficiently smooth function F(x) (with 
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1
xxx  x ) over the domain u occupied by the cylindrical inclusion of a unit 

length is defined by 
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where use has been made of the volume element 3dxdxdxdV   in the cylindrical 
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coordinate system (r, x3) (with r =   2/12
2

2
1 xxx  ) and the fact that F = F(x) is 

independent of x3. In Eq. (4.19) and throughout this chapter, the volume average over the 

inclusion domain uis denoted by the symbol
V

. 

Consider the transformation from the Cartesian to the cylindrical coordinate system: 

.sin,cos 0
2

0
1   xx                                              (4.20)  

It follows from Eq. (4.20) that  
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Applying Eqs. (4.19) and (4.21a,b) to Eqs. (4.7), (4.10a–f) and (4.11a,b) leads to the 

volume average of the gradient part of the Eshelby tensor, 
V

GS , as 
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where 

 a G

n

G

n
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with 
G

n
J  (n = 1, 2, ..., 6) to be substituted from Eqs. (4.10a–f). The six integrals for GG JJ

61
~  

defined in Eq. (4.25) can be exactly evaluated with the help of the following results:    
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where c1~c4 are integration constants, F is a smooth function of x (with 2

2

2

1
xxx  x ) 

which can be (x), (x) or (x), D1F~D5F are differentials defined in Eq. (4.6), and D0F  

F.  

It then follows from Eqs. (4.10a–f), (4.1a), (4.3a) and (4.22)–(4.26) that the volume 

averages of the non-zero components of the gradient part of the Eshelby tensor,
V

GS , are  
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where I1() and K1() are modified Bessel functions of the indicated argument La . A 

comparison of the expressions of 
V

GS  in Eqs. (4.27a–c) with those of 
V

CS  SC given in 

Eqs. (4.15a–c) shows that  
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Hence, the volume average of the Eshelby tensor over the cylindrical inclusion of the unit 

length is obtained from Eqs. (2.44a), (4.15a–c), (4.19) and (4.28) as   
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where C
ijklS  are given in Eq. (4.15a–c). Eq. (4.29) shows that 

VijklS  depends on a/L. 

When L = 0 (or a/L  ), Eq. (4.4) gives 
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to C

ijklijkl SS 
V

, as will be further illustrated in the next section. Based on the closed-form 

expression of the average Eshelby tensor derived in Eq. (4.29), the inhomogeneity problem 
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involving the cylindrical inclusion of a different material (e.g., Mura, 1987) and the related 

homogenization of strain gradient composites reinforced by cylindrical fibers can then be 

analyzed by using Eshelby’s equivalent eigenstrain method, as was done by Xun et al. 

(2004) for micropolar composites.  

The volume averages of the components of the fifth-order Eshelby-like tensor T 

inside the cylindrical inclusion of the unit length are, based on Eq. (4.19),      
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where Tijklm, given in Eqs. (4.12) and (4.13a,b), is odd in 0
x . As a result, the integration of 

Tijklm with respect to   on the interval of [0, 2] vanishes, thereby leading to 
VijklmT = 0.   

Finally, the Eshelby tensor for exterior points x   (or x > a) can be similarly 

determined as follows. Using Eqs. (4.1b), (4.2b), (4.3b) and (4.6) in Eqs. (4.7)–(4.9a,b) 

yields the non-vanishing components of SC as 
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which are the same as those of the Eshelby tensor outside a cylindrical inclusion based on 

classical elasticity (Cheng and He, 1997). Clearly, Eqs. (4.31a–c) show that the classical 

part of the Eshelby tensor, SC, is not uniform outside the inclusion (with x   or x > a) but 

changes with x, which is the distance from x (the point of interest) to the central line of the 

cylindrical inclusion. This is different from the case for x inside the inclusion (with Ωx . 
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or x < a), where SC is uniform for all Ωx , as shown in Eqs. (4.15a–c)..   

Substituting Eqs. (4.1b), (4.2b), (4.3b) and (4.6) into Eqs. (4.10a–f) and (4.11a,b) 

yields  
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and 
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In Eqs. (4.32a–f) and (4.33a,b), I1 = I1( L
a

), K0 = K0( L
x

) and K1 = K1( L
x

) are modified 

Bessel functions of the indicated arguments, with x > a. Using Eqs. (4.32a–f) in Eq. (4.7) 

will then yield the expression for GS , which has 9 independent components. The other 6 

non-vanishing components of SG in this case are obtained from Eqs. (4.33a,b). It is 

observed from Eqs. (4.7), (4.4), (4.32a–f) and (4.33a,b) that the components of SG in this 

exterior case (with x   or x > a) will vanish when L = 0 (or x/L  , a/L  ). By 

substituting the components of SG obtained here and the components of SC derived in Eqs. 

(4.31a–c) into Eq. (2.44a) will finally give the explicit expressions of the Eshelby tensor S 

(= SC + SG) for any point x outside the cylindrical inclusion (i.e., x   or x > a).  
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4.3. Numerical Results 

In this section, some numerical results are presented to quantitatively illustrate how 

the components of the Eshelby tensor for the cylindrical inclusion vary with position and 

inclusion size, which has been analytically demonstrated in the preceding section.  

From Eqs. (4.16)–(4.18a,b), the non-zero components of the gradient part of the 

Eshelby tensor, SG, for any x inside the cylindrical inclusion (i.e., x   or x < a) along the 

x1 axis (with x2 = 0, x = x1) can be obtained as 
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where I0 = I0( L
x

), I1 = I1( L
x

) and K1 = K1( L
a

) are modified Bessel functions of the indicated 

arguments. As shown in Eqs. (4.34a–i), in this special case (with x = x1, x2 = 0) there are 

only 9 non-zero components among the 15 independent non-zero components of SG. 

The distribution of GC SSS 111111111111   along the x1 axis (a generic radial direction of 

the inclusion due to the axial symmetry) for five different values of a is shown in Fig. 4.1, 

where the values of 
CS1111  and 

GS1111  are, respectively, obtained from Eqs. (4.15a) and (4.34a). 

For illustration purpose, in the numerical analysis leading to the results displayed in Figs. 
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4.1–4.3, Poisson’s ratio v is taken to be 0.3, and the length scale parameter L to be 17.6 m.   

 

 
Fig. 4.1. 1111S  along a radial direction of the cylindrical inclusion. 

 
 
 

It is seen from Fig. 4.1 that 1111S  varies with x (the position) and depends on a and L, 

unlike its counterpart CS1111  in classical elasticity, which is a constant (i.e., CS1111 = 0.6786 

from Eq. (4.15a), as shown) independent of x, a and L. When a is small (comparable to the 

value of L here), 1111S  is much smaller than 
CS1111 , which indicates that the magnitude of 

GS1111 ( CSS 11111111  ) is large and the strain gradient effect is significant. As a increases, the 

value of 1111S  approaches from below 
CS1111 (= 0.6786), and the curves of 1111S  become 

increasingly flatter. When a is much larger than L (e.g., a = 6L = 105.6 m here), the curves 

of 1111S  and 
CS1111  almost coincide, which means that the magnitude of 

GS1111  is very small 

and the strain gradient effect becomes insignificant and can therefore be ignored.  

Similar trends are observed from Fig. 4.2, where the values of 1212S  varying with x 

and a are displayed and compared to the value of 
CS1212 , which is a constant (i.e., 0.3214) 

a = L 

a = 2L 

a = 3L 

a = 4L 
a = 6L 

    x / L

0.6786 

S1111 

Classical 
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independent of both x and a. The values of 
GS1212  (included in 

GC SSS 121212121212  ) showing 

in Fig. 4.2 are from Eq. (4.34e), while that of 
CS1212  is determined using Eq. (4.15a). 

 
Fig. 4.2. 1212S  along a radial direction of the cylindrical inclusion. 

 
 
 

The variation of the volume averaged component 
V1111S  inside the cylindrical 

inclusion with the inclusion size is plotted in Fig. 4.3, where its counterpart in classical 

elasticity, 
V1111

CS (= CS1111), is also displayed for comparison. Note that 
V1111S  is obtained 

from Eq. (4.29), while CS1111  (= 0.6786) is from Eq. (4.15a). It is observed from Fig. 4.3 that 

V1111S  indeed depends on the inclusion size: the smaller a, the smaller 
V1111S . Also, Fig. 

4.3 shows that as a increases, 
V1111S  approaches CS1111  (from below), which is a constant 

independent of a. Moreover, the difference between 
V1111S  and CS1111 , which is 

V1111
GS (=

V1111
S  CS1111), is seen to be significantly large only when the inclusion is small 

(with a/L < 20 or a < 352 m here). The same is true for all of the other non-vanishing 

S1212 

 x / L 

a = L

a = 2L 

a = 3L 
a = 4L

a = 6L0.3214 Classical 
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components of 
VijklS , which is mathematically dictated by Eq. (4.29). These observations 

indicate that the strain gradient effect is insignificant for large inclusions and may therefore 

be neglected, which agrees with what is observed above from examining Figs. 4.1 and 4.2.       

 
Fig. 4.3. 

V1111S  varying with the inclusion radius. 

 

4.4. Summary  

The Eshelby tensor for a cylindrical inclusion in the two regions inside and outside 

the inclusion is obtained in explicit expressions for the first time using the general form of 

the Eshelby tensor for a plane strain inclusion based on the strain gradient theory. The 

newly obtained Eshelby tensor has 15 independent non-zero components (as opposed to 36 

such components in the case of a 3-D inclusion of arbitrary shape) and consists of a 

classical part (depending only on Poisson’s ratio) and a gradient part (depending on the 

length scale parameter additionally). The gradient part vanishes when the strain gradient 

effect is not considered. This non-classical Eshelby tensor contains a material length scale 

parameter and can explain the size effect at the micron scale, unlike that based on classical 

elasticity. When the strain gradient effect is suppressed, this Eshelby tensor reduces to that 

a / L

<S1111> V1111
CS

V1111S  

0.6786 



 57

for a cylindrical inclusion based on classical elasticity.  

To further illustrate the newly derived Eshelby tensor, sample numerical results are 

provided. These results quantitatively show that the new Eshelby tensor depends on both 

the position and inclusion size and can capture the size effect at the micron scale.  

In addition, the volume average of the newly derived position-dependent Eshelby 

tensor over the cylindrical inclusion of a unit length is obtained in a closed form, which is 

needed in homogenization analyses of fiber-reinforced composites. The volume averaged 

components of the Eshelby tensor are found to become smaller as the inclusion radius 

decreases, but they are observed to approach (from below) the constant values of the 

corresponding components of the Eshelby tensor based on classical elasticity when the 

inclusion size becomes sufficiently large.  



 58

CHAPTER V 

STRAIN GRADIENT SOLUTION FOR 

ESHELBY’S ELLIPSOIDAL INCLUSION 

PROBLEM  

 

5.1. Introduction 

The simplified strain elasticity theory (SSGET) introduced in Chapter II has been 

found a success in capturing the size effect exhibited by composite materials filled with 

inhomogeneities of micron scale, as discussed in the preceding chapters. A spherical 

inclusion and a cylindrical inclusion problem have been solved in the framework of the 

SSGET. This chapter aims to solve a more general and complex ellipsoidal inclusion 

problem based on the SSGET, which are of fundamental interest in a wide range of physical 

and engineering problems in the micromechanics of heterogeneous solids.  

The rest of this chapter is organized as follows. In Section 5.2, analytical 

expressions of the Eshelby tensor inside and outside an ellipsoidal inclusion are deduced by 

applying the general form of the Eshelby tensor derived in Chapter II. The volume average 

of this Eshelby tensor over the ellipsoidal inclusion is analytically evaluated. Numerical 

results are provided in Section 5.3 to quantitatively illustrate the position dependence and 

the inclusion size dependence of the newly obtained Eshelby tensor for the ellipsoidal 

inclusion problem. This chapter concludes with a summary in Section 5.4.  

 

5.2. Ellipsoidal Inclusion 

Consider an ellipsoidal inclusion of three semi-axes a1, a2 and a3 and centered at the 
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origin of the coordinate system (x1, x2, x3) in the physical space, as shown in Fig. 5.1. Then, 

the region  occupied by the inclusion is given by 
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Fig. 5.1.  Ellipsoidal inclusion problem.  
 
 
 

For this ellipsoidal inclusion, (x) and (x) defined in Eqs. (2.43a,b) can be shown 

by integration and differentiation to satisfy (Mura, 1982) 
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which are functions of , with I, J{1, 2, 3}. For x   (interior points)  = 0, and for x   

(exterior points)   is the largest positive root of the following equation: 
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which shows that  is a function of x. Note that in Eqs. (5.2a–d) and in the sequel each 

repeated lower-case index implies summation from 1 to 3, while each upper-case index 

takes the same value as its corresponding lower-case index but implies no summation. 

For interior points with x  , it follows from Eqs. (2.47a) and (5.2a,c) that the 

classical part of the Eshelby tensor is 
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which is the same as that provided in Li and Wang (2008). It is clear from Eq. (5.5) that the 

Eshelby tensor INC
ijlmS ,  is uniform (i.e., independent of position x) inside the ellipsoidal 

inclusion, which is a well-known result (e.g., Markenscoff, 1998) and has recently been 

elaborated in a broader context by Liu (2008). In fact, it can be shown that the components 

of INC
ijlmS , given in Eq. (5.5) depend only on the two aspect ratios of the ellipsoidal inclusion, 

defined by α1 = a1/a3 and α2 = a2/a3, and Poisson’s ratio of the matrix material, .  

For exterior points with x  , it can be shown that the use of Eqs. (2.47a) and 

(5.2b,d) yields the classical part of the Eshelby tensor as (Mura, 1982) 
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Clearly, Eq. (5.6) involves the first- and second-order derivatives of II() and IIJ() defined 

in Eqs. (5.3a,b), which are not explicit and will be replaced with more direct expressions. It 

can be shown from Eqs. (5.3a,b), after some lengthy algebra, that  
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Using Eqs. (5.7) and (5.8a–c) in Eq. (5.6) then gives 
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Note that the expression for the classical part of the Eshelby tensor outside the ellipsoidal 

inclusion (i.e., for exterior points with x  ) given in Eqs. (5.10) and (5.11) no longer 

contains derivatives of II() and IIJ() and is therefore more convenient and more accurate 

to use (since differentiation tends to introduce more errors in numerical approximations). It 

can be readily shown that the expression of EXC
ijlmS , in Eq. (5.10) is the same as that derived 

earlier by Ju and Sun (1999) using a different notation. Clearly, it is seen from Eqs. (5.6) 

and (5.7) that EXC
ijlmS , , being dependent on the position x, is not uniform outside the 

ellipsoidal inclusion, although INC
ijlmS ,  (see Eq. (5.5)) is uniform inside the same inclusion.  

The determination of the gradient part of the Eshelby tensor requires the evaluation 

of the integral defining (x) in Eq. (2.43c). For the ellipsoidal inclusion described in Eq. 

(5.1), a closed-form expression for (x) can hardly be derived. However, the following 

results can be obtained (see Appendix E for derivations): 
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for interior points x  , where  
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for exterior points x  , where  
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Clearly, Eqs. (5.12) and (5.14) show that (x) = 0 when L = 0 (i.e., when the strain gradient 

effect is not considered), as expected.   

It should be mentioned that for interior points x  , evaluating (x) defined in Eq. 

(2.43c) can also be reduced to the evaluation of one line integral on the interval [0, ) by 

using an expression of the Helmholtz potential inside an ellipsoidal region derived in 

Michelitsch et al. (2003) (see their Eq. (3.18)), as was done in Ma and Hu (2006) for 

spheroidal inclusion cases with a1 = a2. 

For the special case of a spherical inclusion with a1 = a2 = a3 = R, thereby s = R and 

m = xcos according to Eqs. (5.13a–c), it can be readily shown by using Eqs. (5.12) and 

(5.14) respectively that 
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which are the same as those obtained in Eqs.(3.1e,f) by direct integration. 

For the special case of a cylindrical inclusion with a1 = a2 = a and a3  , it can be 

shown, after evaluating the integrals analytically, that Eqs. (5.12) and (5.14) give 
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where In() and Kn() (n = 0, 1) are, respectively, the modified Bessel functions of the first 

and second kinds of the nth order. Eqs. (5.17a,b) are the same as those derived in Eqs. 

(4.3a,b). In reaching Eqs. (5.17a,b), use has been made of the identities: 
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It can be shown that differentiating Eq. (5.12) or Eq. (5.14) leads to   
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Clearly, it is seen from Eqs. (5.18c,d) that f(P) = 0 in both the interior and exterior cases 

when L = 0, as expected. Note that in reaching Eq. (5.18a) use has been made of the 

coordinate transformation: 

iIi nPax  ,                                                        (5.19)  

which transforms the ellipsoidal region  defined in Eq. (5.1) into a unit sphere X 1  
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with the unit outward normal n on its surface X= 1. 

It then follows from Eqs. (5.18a,b) and (5.19) that 
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(5.21) 

with ni = xi/(PaI) according to Eq. (5.19). 

Note that Eqs. (5.20a–d) hold for both the interior and exterior cases, with f defined 

in Eq. (5.18c) and Eq. (5.18d), respectively. In Eq. (5.21), f , f, f and f (4) denote, 

respectively, the first-, second-, third- and fourth-order derivatives of f with respect to P. 

For the interior case with x  , f , f, f and f (4) can be obtained from Eq. (5.18c) by 

direct differentiation. For the exterior case with x  , the use of Eq. (5.18d) leads to 
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              (5.22) 

where F(1) and F(2) are defined in Eqs. (5.15a,b). In reaching Eq. (5.22) use has also been 

made of the result [F(1)F(2)] =  = 0, which enables the terms involving /P to vanish.  

Using Eqs. (5.20a,c) in Eq. (2.47b) then yields the gradient part of the Eshelby 

tensor as  

   

       ,2
2

)1(

)1(
2

)1(8

1

,
2

3162
2

3
4

2

1
2

1
2









































 




ijlmlmijmlijmlji
MLJI

LJ

jlim

MI

jlim

MJ

jmil

LI

jmil

LI

lijm

LJ

ljim

MI

mijl

MJ

mjil
lmijji

JI

G
ijlm

LδδfdnnδfdPnnnnfdP
aaaa

L

aa

δδ

aa

δδ

aa

δδ

aa

δδ

P

f
v

aa

nnδ

aa

nnδ

aa

nnδ

aa

nnδ
fdPvδδ

P

f
nnfdP

aa

v

vπ
S

(5.23) 

where ni = xi/(PaI) from Eq (5.19), and P is defined in Eq. (5.18b).  

Equation (5.23) applies to both the interior and exterior cases, but the expressions 

for f(P) and ,ijlm are different in each case. For the interior case with x  , f(P) is given in 

Eq. (5.18c) and ,ijlm = 0 (see Eq. (5.2c)), while for the exterior case with x  , f(P) is 

provided in Eq. (5.18d) and ,ijlm is obtained from Eq. (5.2d), after some lengthy algebra, as  
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where  
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From Eqs. (5.23)–(5.25a–d) it is seen that the gradient part of the Eshelby tensor, 

G
ijlmS , is position-dependent inside and outside the ellipsoidal inclusion, since f, P, ni, and 

,ijlm (for the exterior case) involved in G
ijlmS  are all functions of x. This differs from the 

classical part, INC
ijlmS , , which is uniform inside the same inclusion.  

Next, substituting Eqs. (5.20b,d) into Eq. (2.48) gives the fifth-order Eshelby-like 

tensor as  

 

 
 ],)2()Λ)(1(2

)1(8

)()()(2

))(()1(

))(()1(

)()(2
1

)1(8

,
2

,,,,,

2

152103
3

4
52

33331

2
3

312
3

2

ijlmpimjlpjmilpiljmpjlimplmijp

plmijmljippmlji

MIimpjlMJjmpilLIilpjmLJjlmip

MIimpljMJjmpliLIilpmjLJjlpmi

jippjiMLlm
PMLJI

ijlmp

Lδδδδvδv
vπ

L

nδδfdPnnnδfdPnnnnnfdPL

aaδnδaaδnδaaδnδaaδnδfdPv

aaδnnnaaδnnnaaδnnnaaδnnnfdPv

nδfdPnnnfdPaaδv
aaaaavπ

L
T

















 

(5.26) 

where ni = xi/(PaI) from Eq (5.19), P is defined in Eq. (5.18b), and ,ijp, ,ijlmp, ,ijlmp can be 

obtained from Eqs. (5.2a–d). Clearly, Tijlmp = 0 whenever L = 0. That is, this fifth-order 

Eshelby-like tensor vanishes both inside and outside the ellipsoidal inclusion when the 

strain gradient effect is not considered.   

Equation (5.26) is valid for both the interior and exterior cases, but the expressions 
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for f(P),  and  are different in each case. For the interior case with x  , f(P) is given in 

Eq. (5.18c) and the derivatives of  and  involved are obtained from Eqs. (5.2a,c) as 
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For the exterior case with x  , f(P) is provided in Eq. (5.18d) and the derivatives of  

and  are determined from Eqs. (5.2b,d), after some tedious derivations, as 
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and MIJK and NIJKL are given in Eqs. (5.25a,b). 

Considering that G
ijlmS is position-dependent inside the ellipsoidal inclusion, its 

volume average over the ellipsoidal region occupied by the inclusion is examined next. 

This averaged Eshelby tensor is needed for predicting the effective elastic properties of a 

heterogeneous composite containing ellipsoidal inhomogeneities.  

The volume average of a sufficiently smooth function F(x) over the ellipsoidal 

inclusion occupying region  is defined by, with the help of the coordinate transformation 

defined in Eq. (5.19), 
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where dV = a1a2a3P
2sin dP d d, with P = X  (see Eq. (5.18b)). It then follows from Eqs. 

(2.47b), (5.2c) and (5.29) that 
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where 
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with f defined in Eq. (5.18c). Note that in reaching Eqs. (5.31a,b) use has been made of the 

integral identities given in Eq. (3.13). Using Eqs. (5.31a,b) in Eq. (5.30) finally gives 
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as the average of the gradient part of the Eshelby tensor over the ellipsoidal inclusion . It 

can be readily shown that for the spherical inclusion case with a1 = a2 = a3 = R, Eq. (5.32) 

recovers the closed-form expression of 
V

G
ijlmS derived in Eq. (3.18). 

Since INC
ijlmS ,  is uniform inside the inclusion, the use of Eqs. (5.5) and (5.29) gives 

INC
ijlm

INC
ijlm SS ,

V

,  . It then follows from Eqs. (2.44a), (5.5) and (5.32) that 
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as the volume average of the Eshelby tensor inside the ellipsoidal inclusion based on the 

SSGET. In Eq. (5.33), II(0) and IIJ(0) are constants obtainable from Eqs. (5.3a,b), and f = 

f(P) is defined in Eq. (5.18c). Clearly, when L = 0, Eq. (5.33) reduces to INC
ijlm

INC
ijlm SS ,

V

,   

given in Eq. (5.5), since f(P)  0 for any value of P (> 0) when L = 0 (see Eq. (5.18c)).            

The volume average of Tijlmp for x locating inside the ellipsoidal inclusion (i.e., x  

) can be readily shown to vanish, i.e.,  
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This is based on the fact that Tijlmp(x) involved in Eq. (5.34), which is to be substituted from 

Eqs. (5.26) and (5.27), contains the components of the unit normal vector n = niei = 

(sincos)e1+(sinsin)e2+(cos)e3 on the unit sphere surface X= 1 through ni, ninjnl and 

ninjnlnmnp, which satisfy the following integral identities:  
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It then follows from Eqs. (2.40), (5.29) and (5.34) that  

,*

VV lmijlmij εSε                                               (5.36) 

where 
VijlmS  is given in Eq. (5.33). Equation (5.36) shows that the average disturbed 

strain is only related to the eigenstrain * even in the presence of the eigenstrain gradient 

*.  

 

5.3. Numerical Results  

To quantitatively illustrate how the newly derived Eshelby tensor changes with the 

position and inclusion size, some numerical results are presented in this section.  

Figure 5.2 shows the distribution of GC SSS 333333333333   along the x3 axis (with x1 = 
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0 = x2) for four different values of a3, where the values of 
CS3333  and 

GS3333  are, respectively, 

obtained from Eqs. (5.5) and (5.23), with f(P) given in Eq. (5.18c) and ,ijlm = 0 from Eq. 

(5.2c). For comparison, the value of the counterpart component of the classical Eshelby 

tensor, which is the same as CS3333 , is also displayed in Fig. 5.2, where α1 = a1/a3 and α2 = 

a2/a3 are the two aspect ratios of the ellipsoidal inclusion.    
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Fig. 5.2. 3333S  along the x3 axis of the ellipsoidal inclusion.  

 
 
 

From Fig. 5.2 it is observed that 3333S  varies with the position (with x1 = x2 = 0, x = 

x3) and depends on the inclusion size (a3), unlike its classical part CS3333  which, for the 

specified values of the aspect ratios α1 and α2, is a constant independent of both x3 and a3 

(i.e., CS3333 = 0.7678 from Eq. (5.5), as shown). When a3 is small (with a3 = L = 17.6 m 

here), 3333S  is much smaller than 
CS3333 , which indicates that the magnitude of 

GS3333 ( CSS 33333333  ) is very large and the strain gradient effect is significant. However, 
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when a3 is much greater than L (e.g., R = 5L = 88.0 m shown here), 3333S  is seen to be 

quite uniform and its value approaches CS3333  from below, meaning that the magnitude of 

GS3333  is very small. This indicates that for large inclusions the strain gradient effect is 

insignificant and may be neglected. Similar trends have been observed for other 

components of Sijlm (=
C
ijlmS + G

ijlmS ). 
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Fig. 5.3. 

v3333S  changing with the inclusion size for different aspect ratio values. 

 
 
 

The variation of the component of the averaged Eshelby tensor inside the ellipsoidal 

inclusion, 
V3333S , with the inclusion size a3 is shown in Figs. 5.3 and 5.4. In Fig. 5.3, the 

spherical inclusion and the cylindrical inclusion cases are included as two limiting cases of 

the ellipsoidal inclusion problem solution with α1 = 1 and with α1  , respectively. Note 

that 
V3333S is obtained from Eq. (5.33) for all cases displayed in Figs. 5.3 and 5.4.  

For the spherical inclusion (with α1 = 1 = α2) and cylindrical inclusion (with α1  
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 and α2 = 1) cases, the numerical results of 
V3333S obtained using Eq. (5.33) and shown 

in Fig. 5.3 are almost identical to those determined using the closed-form formulas derived 

in Eqs. (3.18) and (4.29). Moreover, it is clearly seen from Fig. 5.3 that the spherical 

inclusion case having α1 = 1 = α2 provides a lower bound, while the cylindrical inclusion 

case having α1   and α2 = 1 furnishes an upper bound for the ellipsoidal (spheroidal) 

inclusion cases with 1 < α1 <  (and α2 = 1), as expected. These facts verify and support the 

current analysis of the ellipsoidal inclusion problem. 
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Fig. 5.4. Comparison of 

v3333S  and 
v

,
3333

INCS . 

 
 
 

It is observed from Fig. 5.3 that 
V3333S is indeed varying with the inclusion size 

for all five cases considered: the smaller a3, the smaller 
V3333S . This size effect is seen to 

be significant when the inclusion is small (with a3/L < 10 or a3 < 176 m here). However, 

as the inclusion size increases, 
V3333S in each case approaches from below the 

corresponding value of 
V

,
3333

INCS (= INCS ,
3333 ) based on classical elasticity, which, for given 
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values of the aspect ratios, is a constant independent of a3, as discussed in Section 5.2. This 

comparison is further illustrated in Fig. 5.4, where it is shown that the classical Eshelby 

tensor component, as a constant (i.e., 
V

,
3333

INCS = 0.7678 from Eq. (5.5) for α1 = 3 and α2 = 

2), cannot explain the inclusion size effect. 

 
 

5.4. Summary  

The Eshelby problem of an ellipsoidal inclusion (with three distinct semi-axes) in an 

infinite homogeneous isotropic elastic material is analytically solved by using a simplified 

strain gradient elasticity theory (SSGET) that involves one material length scale parameter. 

Analytical expressions for the Eshelby tensor are derived for both the interior and exterior 

cases in terms of two line integrals with an unbounded upper limit and two surface integrals 

over a unit sphere.  

The newly obtained fourth-order Eshelby tensor for each case consists of two parts: 

a classical part depending only on Poisson’s ratio, and a gradient part depending on the 

length scale parameter additionally. As a result, the new Eshelby tensor based on the 

SSGET can capture the inclusion size effect, unlike its classical counterpart. The fourth-

order Eshelby tensor is accompanied by a fifth-order Eshelby-like tensor that links the 

eigenstrain gradient to the disturbed strain and contains only a gradient part. In the absence 

of the microstructure-dependent strain gradient effect, both the gradient part of the Eshelby 

tensor and the Eshelby-like tensor vanish, and the non-classical Eshelby tensor is reduced 

to that based on classical elasticity. Moreover, the Eshelby tensors for the spherical and 

cylindrical inclusion problems based on the SSGET are included in the current Eshelby 

tensor as two limiting cases.  
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In addition, the newly obtained Eshelby tensor inside or outside the ellipsoidal 

inclusion depends on the position, differing from the classical Eshelby tensor that is 

uniform inside the inclusion. This necessitates the determination of the volume average of 

the new Eshelby tensor over the ellipsoidal inclusion needed in homogenization analyses, 

which is done analytically in this study.  

To further illustrate the newly derived non-classical Eshelby tensor, sample 

numerical results are provided. These results reveal that the non-classical Eshelby tensor 

varies with both the position and the inclusion size, thereby capturing the size effect at the 

micron scale, unlike the classical Eshelby tensor. The components of the averaged Eshelby 

tensor are found to decrease as the inclusion size decreases, and these components are 

observed to approach (from below) the values of the corresponding components of the 

Eshelby tensor based on classical elasticity when the inclusion size is large enough. 
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CHAPTER VI 

SOLUTION OF AN ESHELBY-TYPE 

INCLUSION PROBLEM WITH A BOUNDED 

DOMAIN AND THE ESHELBY TENSOR FOR 

A SPHERICAL INCLUSION IN A FINITE 

SPHERICAL MATRIX 

 

6.1. Introduction 

 In the last four chapters, the Eshelby tensor for an inclusion embedded in an infinite 

homogeneous isotropic elastic body is obtained using the simplified strain gradient elastic 

theory (SSGET). This non-classical Eshelby tensor contains a material length scale 

parameter and, therefore, is capable of explaining the microstructure-dependent size effect 

in the composites at the micro- or nano- scale. However, both the classical Eshelby tensor 

and the newly derived non-classical Eshelby tensor are for an inclusion embedded in an 

infinite elastic matrix. This implies that the disturbed displacement due to the inclusion 

makes no influence on the displacement at the boundary of the elastic body, and vice versa.  

Consequently, these Eshelby tensors and the subsequent homogenization methods cannot 

account for the boundary effect of a finite body. Hence, there has been a need to obtain the 

Eshelby tensor for an inclusion in a finite matrix subject to traction, displacement or mixed 

boundary conditions.  

A few analytical studies have been performed using classical elasticity to solve the 

problem of an inclusion in a finite homogeneous isotropic elastic body. Kinoshita and Mura 
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(1984) provided the first theoretical study of the finite-domain inclusion problem based on 

classical elasticity. They proved the existence and uniqueness of the Neumann tensor for a 

bounded homogeneous elastic body, which reduces to the Green’s function (also a second-

order tensor) when the body is unbounded. The use of this Neumann tensor would then lead 

to solutions of finite-domain eigenstrain problems. However, the determination of the 

Neumann tensor for a bounded elastic body is rather challenging, and only the Neumann 

tensor for a half space was given in Kinoshita and Mura (1984). By using a displacement 

method in classical elasticity and solving the boundary-value problems directly, Luo and 

Weng (1987) determined the elastic field in a spherically concentric three-phase solid 

consisting of an inclusion, an interphase layer, and an infinite matrix. The presence of the 

finite interphase layer between the inclusion and matrix enabled a modification of the Mori-

Tanaka method, but no explicit expression of Eshelby tensor for the modified problem was 

provided there. More recently, Eshelby tensor for a spherical inclusion in a finite spherical 

elastic matrix was analytically obtained in Li et al. (2007) by using Somigliana’s identity 

and Green’s function for an infinite three-dimensional (3-D) elastic body in classical 

elasticity. In contrast, no analytical solution has been provided for the finite-domain 

inclusion problem using any higher-order elasticity theory. This motivated the current study. 

In the present chapter, a solution for the Eshelby inclusion problem of a finite 

homogeneous isotropic elastic body containing an inclusion prescribed with a uniform 

eigenstrain and a uniform eigenstrain gradient is first derived in a general form. It makes 

use of an extended Betti’s reciprocal theorem and an extended Somigliana’s identity based 

on a simplified strain gradient elasticity theory elaborated in Gao and Park (2007), which 

involves only one material length scale parameter and has been successfully employed to 

obtain analytical solutions of several problems (e.g., Gao and Ma, 2009; Gao et al., 2009; 



 79

Ma and Gao, 2009). The problem of a spherical inclusion embedded concentrically in a 

finite spherical elastic body is then analytically solved by applying the general solution, 

with the Eshelby tensor and its volume average derived in closed forms. 

The rest of this chapter is organized as follows. In Section 6.2, an extended Betti’s 

reciprocal theorem is first proposed and proved. It is then followed by the derivation of a 

general solution for the finite-domain Eshelby inclusion problem based on this reciprocal 

theorem and an extended Somigliana’s identity that arises subsequently. The finite-domain 

spherical inclusion problem is solved in Section 6.3 by using the general formulas derived 

in Section 6.2, which leads to closed-form expressions of the Eshelby tensor and its volume 

average. In Section 6.4, sample numerical results are presented to quantitatively show how 

the components of the Eshelby tensor obtained in Section 6.3 vary with the position, 

inclusion size, matrix size, and inclusion volume fraction, where the size and boundary 

effects are observed and discussed. The chapter concludes with a summary in Section 6.5.  

 

6.2. Strain Gradient Solution of Eshelby’s Inclusion Problem in a Finite Domain 

6.2.1. Extended Betti’s reciprocal theorem 

For an elastic body satisfying the SSGET reviewed in Section 2.1, Betti’s first 

reciprocal theorem in classical elasticity (e.g., Sadd, 2009) can be extended to 
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where the superscripts “(I)” and “(II)” represent two loading sets, and is the region 

occupied by the elastic body.  

To prove this extended Betti’s reciprocal theorem based on the SSGET, it is noted 

that the second term in the strain energy density function on each side of Eq. (6.1), which is 
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absent in classical elasticity, is required in the SSGET (see Eq. (2.4)). Also,    
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where use has been made of Eqs. (2.5a,b) and the major symmetry of the stiffness tensor 

(i.e., Cijkl = Cklij). Substituting Eq. (6.2) into the left hand side of Eq. (6.1) will immediately 

give the right hand side of Eq. (6.1), thereby proving Eq. (6.1).  

Physically, the extended Betti’s theorem expressed in Eq. (6.1) states that the strain 

energy in the elastic body induced by the loading set (I) through the displacement field 

caused by the loading set (II) is equal to that induced by the loading set (II) through the 

displacement field caused by loading set (I).  

Using Eqs. (2.5a–d) and (2.7) gives, with the help of the divergence theorem, 
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for any region   bounded by a smooth surface   (without any edge), where n = niei is 

the outward unit normal vector on  , and ti and qi are, respectively, the Cauchy traction 

and double stress traction defined by (Gao and Park, 2007), 

          kjijkijllkijkjkijkjiji nnqnnnnnt   ,)()( ,, .                        (6.4a,b) 

With the help of Eq. (6.3), Eq. (6.1) can be rewritten as  
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Eq. (6.5), as the extended Betti’s second reciprocal theorem based on the SSGET, will be 

directly used to derive the solution of the finite-domain inclusion problem next. 
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6.2.2. Extended Somigliana’s identity and solution of Eshelby’s inclusion problem in a 

finite domain 

Consider an inclusion I of arbitrary shape embedded in a finite homogeneous 

isotropic elastic body  of arbitrary shape, as shown in Fig.6.1(a). A uniform eigenstrain * 

and a uniform eigenstrain gradient * are independently prescribed inside the inclusion, as 

discussed in Section 2.4. Besides * and *, there is no body force or surface force acting in 

the elastic body containing the inclusion. Hence, the displacement, strain and stress fields 

induced by the presence of * and * here are disturbed fields, which may be superposed to 

those caused by applied body and/or surface forces.   
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Fig. 6.1. Inclusion in a finite elastic body. 

 
 
 

According to the derivation in Section 2.4, in the absence of body forces, the 

equations of equilibrium for this inclusion problem can be written as (See Eq. (2.32)) 

0)()( *
,

2*
,,,

2  pjklpjklijkljpklpklijkl LCLC  .                               (6.6) 

It can be seen from comparing Eqs. (2.7) and (6.6) that Eq. (2.7) will be the same as 

Eq. (6.6) if the total stress ij and the body force fj in Eq. (2.7) are, respectively, replaced by 
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The total stress expression listed in Eq. (6.7) is exactly what is given by Eqs. (2.5a,b) 

and (2.7). Hence, Eqs. (2.7), (6.7) and (6.8) can be used as an alternative to the equilibrium 

equations provided in Eq. (6.6).  

On the other hand, consider an infinite homogeneous isotropic elastic body ∞ 

subject to a unit concentrated body force applied at point x, as shown in Fig.6.1(b). 

Substituting the special body force fi(y) = (x  y)ei(x) into Eq. (2.7), leads to the 

equilibrium equations for this point-force problem as  

0)()()(,  xyxy ijij e ,                                             (6.9) 

where )( yx  is the 3-D Dirac delta function, and )(xie is the ith component of the unit 

force. Note that the Green’s function )( yxG  in the SSGET, given in Eq. (2.28) and (2.29) 

is a second-order tensor whose component )( yx ijG  represents the displacement 

component ui at point y in a 3-D infinite elastic body due to a unit concentrated body force 

applied at point x in the body in the jth direction. That is, )( yx ijG  (= )( yx jiG ) satisfies 

the equilibrium equations in Eq. (6.9). Actually, the use of this Green’s function will give 

the solution of the this concentrated-force problem based on the SSGET for the 

displacement, stress, traction and double stress traction at point y in the 3-D infinite elastic 

body due to the unit concentrated body force applied at point x (see Eqs. (6.11a–c)). 

The complete boundary conditions in the SSGET have been derived in Gao and 

Park (2007) using a variational formulation. Two typical kinds of such boundary conditions 

are the Dirichlet-like boundary conditions: 
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  



 on, , n

u
nuuu i

lliii ,                                      (6.10a) 

i.e., the displacement and displacement gradient are specified on the smooth boundary  , 

and the Neumann-like boundary conditions:  

 on, iiii qqtt ,                                           (6.10b) 

i.e., the Cauchy traction and double stress traction are specified on  . For the inclusion 

problem under consideration, the disturbed displacement, strain and stress fields due to * 

and * can be obtained by setting the prescribed field quantities on   to zero (i.e., using 

homogeneous boundary conditions), as was done in Li et al. (2007) in the context of 

classical elasticity.  

To solve the finite-domain inclusion problem satisfying Eqs. (6.6) and (6.10a) or 

Eqs. (6.6) and (6.10b), the extended Betti’s theorem expressed in Eq. (6.5) can be used. The 

loading by * and * in the current inclusion problem shown Fig. 6.1(a)  is taken to be the 

loading set (II), while that by a unit concentrated body force applied at a point inside a 

finite elastic body identical to that of  (see Fig. 6.1(b)) as the loading set (I). For the latter, 

the finite elastic body is cut out of an infinite body ∞ having the same elastic properties ( 

and ), and the displacement, Cauchy traction and double stress traction at any point y on 

the boundary (cutting surface)   are respectively given by 

)()()( xyxy jiji eGu  ,                                             (6.11a) 

)()()( xyxy jiji eTt  ,                                             (6.11b) 

)()()( xyxy jiji eQq  ,                                             (6.11c) 

 
where Gij(x  y) is the 3-D Green’s function based on the SSGET listed in Eq. (2.28), and 

Tij(x  y) and Qij(x  y) are, respectively, the second-order Cauchy traction and double 

stress traction transformation tensors related to the Green’s function Gij(x  y), which lead 
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to, respectively, the traction and double stress traction in the ith direction at point y due to 

the unit concentrated body force applied in the jth direction at point x. The expressions of 

Tij(x  y) and Qij(x  y) based on the SSGET can be obtained from Eqs. (6.11a), (2.5a–d) 

(2.7) and (6.4a,b) as (see Appendix F) 
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where A = A(r) and B = B(r) are defined in Eqs. (2.29). When L = 0, Tik and Qik in Eqs. 

(6.12a,b) reduce to 
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which are the traction transformation tensors based on classical elasticity. It can be readily 

shown that Eq. (6.12c) is the same as that provided in Paris and Canas (1997) (see Eq. 

(5.4.20) there).  

Using Eqs. (2.7), (6.7–6.9) and (6.11a–c) in Eq. (6.5) yields, with the help of the 

divergence theorem, the disturbed displacement field at any point x   for the finite 

domain inclusion problem as 
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                 (6.13)  
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where the derivatives are with respective to y (the integration variable), and use has been 

made of the fact that the eigenstrain and eigenstrain gradient vanish on the boundary of the 

finite body  , which is outside the inclusion. It is seen from Eq. (6.13) that the 

displacement contains contributions from field quantities distributed both in the volume  

and on its surface  . If the two surface integrals in Eq. (6.13) are suppressed, the 

disturbed displacement field given in Eq. (6.13) reduces to that for the problem of an 

inclusion in an infinite elastic body based on the SSGET (see Eq. (2.34)). This means that 

the two surface integrals in Eq. (6.13) represent the boundary effect due to the finite size of 

the elastic body and/or the constraints existing on the finite boundary. Eq. (6.13) can be 

viewed as an extended Somigliana’s identity based on the SSGET, which plays a role 

similar to that of the Somigliana’s identity in classical elasticity (e.g., Paris and Canas, 

1997; Sadd, 2009).  

Furthermore, if the microstructure-dependent strain gradient effect is neglected by 

setting L = 0, the higher-order terms involved in Eq. (6.13) vanish (with ijk = 0, qi = 0 and 

Qij = 0 from Eqs. (2.5b), (6.4b) and (6.12b), respectively), and Eq. (6.13) reduces to  
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C
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m dAtGuTdVGCu  

 yxyyxyyxx    (6.14)  

where C
ijG  is the Green’s function for a 3-D infinite elastic body in classical elasticity listed 

in Eq. (2.23), j
C
im

C
jim yGG  /)(, yx , C

imT  is the classical Cauchy traction transformation 

tenor given in Eq. (6.12c), and )( II
it is the traction related to the Cauchy stress )( II

ij by 

j
II

ij
II

i nt )()(  . It can be readily verified that Eq. (6.14) is the same as the Somigliana’s 

identity in classical elasticity used by Li et.al. (2007). 

Now, with 0,0 




n

u
u i

i on  for the loading set (II), it follows from Eqs. (6.10a) 
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and (6.13) that   
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which is the disturbed displacement field in the finite elastic body subject to the 

homogeneous Dirichlet-like boundary conditions. Similarly, using Eq. (6.10b) in Eq. (6.13) 

gives, with 0,0  ii qt  on  for the loading set (II),  
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which is the disturbed displacement field in the finite elastic body subject to the 

homogeneous Neumann-like boundary conditions.  

Clearly, Eqs. (6.15) and (6.16) are integral equations that involve the unknown 

displacement components in the integrands of the surface integrals. It is very challenging to 

obtain analytical solutions of such integral equations even for inclusion problems involving 

simple-shape elastic bodies and inclusions. Hence, only the inclusion problems defined in 

Eq. (6.15), which are associated with the simpler Dirichlet-like boundary conditions, will 

continue to be formulated in the rest of this section.   

As stated earlier, the derivatives involved in the integrals in Eqs. (6.13)–(6.16) are 

with respect to y, which is the integration variable. Note that  
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Using Eq. (6.17) in Eq. (6.15) then gives  
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In Eq. (6.18) and all of the ensuing equations, the derivatives are taken with respect to x 

unless otherwise stated. 

Substituting Eq. (6.18) into Eq. (2.5c) yields the disturbed strain as  
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where the surface integral term represents the boundary effect on the disturbed strain field 

for the finite-domain inclusion problem. Note that in Eq. (6.19) and other subsequent 

equations, the superscript “(II)” is dropped for convenience, since the strain, traction and 

double stress traction involved in Eq. (6.19) and ensuing equations are all for the inclusion 

problem under the loading set (II) shown in Fig. 6.1(a). 

For uniform * and *, the volume integral term in Eq. (6.19) represents the 

disturbed strain field in an infinite (unbounded) elastic body containing the inclusion (see 

Eq. (2.34)), which can be written as  

                  *,*,)( klpmnklpklmnklmn TS   x  ,                                         (6.20a) 

,)(
2

1
,,

, 
  yjminjnimijklmnkl dVGGCS                                   (6.20b) 

,)(
2 ,,

2
, 
  yjpminjpnimijklmnklp dVGGC

L
T                                  (6.20c) 

where ,
mnklS  and ,

mnklpT , as defined, are, respectively, the fourth-order Eshelby tensor and the 

fifth-order Eshelby-like (gradient) tenor for the unbounded-domain inclusion problem, and 

the superscript “ ” can be either “I”, representing the interior case with x located inside the 

inclusion, or “E”, representing the exterior case with x located outside the inclusion.                    

Based on Eqs. (6.20a–c) and the similarity between the unbounded and bounded 

cases, it is postulated that for the present bounded-domain inclusion problem the disturbed 
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strain field has the following form:  

*,*, )()()( klp
F

mnklpkl
F

mnklmn TS  xxx   ,                                     (6.21) 

which is similar to the one given in Eqs. (6.20a–c) for the unbounded-domain inclusion 

problem. In Eq. (6.21), F
mnklp

F
mnkl TS ,, and,   denote, respectively, the Eshelby tensor and the 

Eshelby-like tensor for the current finite-domain inclusion problem.  

Using Eqs. (2.5a,b), (2.7) and (6.21) in Eqs. (6.4a,b) gives    
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Substituting Eqs. (6.20a–c), (6.21) and (6.22a,b) into Eq. (6.19) then yields  
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From Eq. (6.24) it follows that   
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Here FB
mnklS ,  and FB

mnklpT ,  can be regarded, respectively, as the boundary parts of the finite-

domain Eshelby tensor and Eshelby-like tensor. In the absence of the boundary effect, 

FB
mnklS , = 0, FB

mnklpT , = 0, and F
mnklS ,  and F

mnklpT ,  reduce, respectively, to their counterparts ,
mnklS  and 

,
mnklpT for the unbounded-domain inclusion problem, as shown in Eqs. (6.25a,b). 

Clearly, Eqs. (6.25a,b), (6.26a,b) and (6.23a-d) define the integral equations to solve 

for  F
mnklS ,  and F

mnklpT , , which depend on the shape and size of both the elastic body (through 

the surface integrals listed in Eqs. (6.26a,b)) and the inclusion (via ,
mnklS  and ,

mnklpT ). Hence, 

closed-form solutions may be derived only for problems involving simple-shape finite 

elastic bodies and inclusions. The spherical inclusion problem to be discussed next is one of 

such problems that have been solved analytically.     

 

6.3. Eshelby Tensor for a Finite-Domain Spherical Inclusion Problem 

6.3.1. Position-dependent Eshelby tensor 

Consider a finite spherical elastic body  of radius H containing a concentric 

spherical inclusion I of radius R, as illustrated in Fig. 6.2.  

 
 

     

** κ,ε






 
 

Fig. 6.2. Spherical Inclusion in a finite spherical elastic body. 
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For the unbounded spherical inclusion problem, the Eshelby tensor inside the 

inclusion based on the SSGET, which is derived in obtained in Section 3.2, can be written 

as   

)()( ,,, xx GI
mnkl

CI
mnkl

I
mnkl SSS  ,                                            (6.27) 

where x is a point located inside the inclusion (i.e., x  I or 0 < |x| < R), CI
mnklS ,  is the 

classical part that is uniform for all x  I, and )(, xGI
mnklS is the gradient part that varies with 

the position of point x. It can be readily shown that ,I
mnklS  obtained in Eqs. (3.4) – (3.7a–f) 

and involved in Eq. (6.27) can be written in a matrix form as 
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The differentials  4321 ,,, DDDD and  4321 ,,, DDDD  involved in Eqs. (6.30a–

f) are given by Eq. (3.10). In Eq. (6.29a) and throughout this dissertation, xxx ii /0   is the 

ith component of the unit vector x0 = x/x, and mm xxx  x  is the distance from point x 

to the center of the spherical body that serves as the origin of the coordinate system. 

For the unbounded spherical inclusion problem, the Eshelby tensor outside the 

inclusion based on the SSGET has been obtained in Section 3.2 and is summarized here,  

)()()( ,,, xxx GE
mnkl

CE
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E
mnkl SSS  ,                                          (6.31) 

where x is a point located outside the inclusion (i.e., x  I or R < |x| < H), )(, xCE
mnklS is the 

classical part, and )(, xGE
mnklS is the gradient part. Both CE

mnklS , and GE
mnklS ,  vary with the position of 

x in this exterior case, unlike in the interior case. In a matrix form, Eq. (6.31) can be written 

as 
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  xx                                         (6.32) 

where T
mnkl )]([ 0x is the same as that defined in Eq. (6.29a), and 
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in which  
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       (6.34a)   

           TGEGEGEGEGEGEGE SSSSSSxS ,
6

,
5

,
4

,
3

,
2

,
1

, ,,,,,)(  ,                      (6.34b)                           

with GES ,
1 – GES ,

6 obtainable from using Eq. (3.20) in their interior counterparts GIS ,
1 –

GIS ,
6 given in Eqs. (6.30a–f).   

Based on the similarity between the unbounded- and bounded-domain inclusion 

problems and the forms of the Eshelby tensor for the unbounded-domain problem given in 

Eqs. (6.28) and (6.32), it is postulated that the Eshelby tensor for the current bounded-

domain spherical inclusion problem can be expressed in a similar form as  

)]([)]([)( ,0, xSS FT
mnkl

F
mnkl

  xx ,                                          (6.35) 

where  T
mnkl )]([ 0x is the same as that defined in Eq. (6.29a), and  

 TFFFFFFF xSxSxSxSxSxSxS )(),(),(),(),(),()]([ ,
6

,
5

,
4

,
3

,
2

,
1

,                    (6.36) 

is an array of six components yet to be determined.  

Using Eq. (6.35) in Eqs. (6.23a,b) yields, after carrying out the algebra, 

                         )(, HSg FE
iklikl  ,     0iklh ,                                   (6.37a,b) 

on , where  

    T
lkikillikiklikl Mnnnnnn ,,   ,                                (6.38) 
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,                   (6.39) 

with 22 / HL ,  and  being the Lamé constants, yyn ii /  being the ith component of 

the unit vector n representing the direction of y, and mm yyy  y .   

Using Eqs. (6.37a,b)–(6.39) in Eq. (6.26a) gives the boundary part of the finite-

domain Eshelby tensor, in a matrix form, as 

    )(,,
2

1 ,
321

, HSMQQQS FETFB
mnkl   ,                                      (6.40) 

where  

,)(

,))((,)(

,,3

,,2,,1












yminnimlki

yminnimkillikyminnimikl

dAGGnnnQ

dAGGnnQdAGGnQ 
          (6.41) 

with ijG , given in Eqs. (2.28) and (2.29), being the 3-D Green’s function for an infinite 

elastic body based on the SSGET. The use of Eqs. (2.28) and (2.29) in Eq. (6.41) results in 

 
imninmmnkl BnAnAnQ

,,,1 2  ,                                (6.42a) 

lmnkkmnlmklnnklmmlknnlkm BnBnAnAnAnAnQ
,,,,,,2 22      (6.42b)  

imn
lki

m
lkn

n
lkm nnnBnnnAnnnAQ

,,,
3 2 ,                         (6.42c) 

where  
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1
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1
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,          (6.43a,b) 

with yx r . In Eqs. (6.42a–c) and in the sequel, f  denotes the surface integral of 

function f over ∂Ω (i.e., the surface of the spherical elastic body of radius H) defined by  
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 
 ydAff .                                                   (6.44)   

The integrals in Eqs. (6.42a–c) can be analytically evaluated with the help of the 

following relations (see Appendices G and H): 

 ii xxfnrf )()( 0 ,                                                  (6.45)        

  kjiijkikjjkikji xxxxfxxxxfnnnrf )()()( 21   ,                  (6.46)                      

where       


1

1

2

0 )(
2

)( tdtrf
x

H
xf


,                                           (6.47a) 

 
1

1

2
2

1 )1()()( dtttrf
x

H
xf


,                                       (6.47b) 

  
1

1

2
3

2

2 )35()()( dtttrf
x

H
xf


,                                      (6.47c)                          

with  

xHtHxr 222  yx , t  cos ,                             (6.48a,b)  

in which  is the angle between x ( ) and y ( ), as shown in Fig. 6.3. Clearly, Eq. 

(6.48a) follows directly from the cosine law.         

 
 

1e

2e

3e

2ê

3ê

1ê

 
 

Fig. 6.3. Locations of x ( ) and y ( ). 
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Applying Eqs. (6.45) and (6.47a) to )(rA and )(rB defined in Eqs. (6.43a,b), 

respectively, yields, together with Eq. (6.44),  

,)()( 0 ii xxAnrA  ii xxBnrB )()( 0 ,                            (6.49a,b)        

where 
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with 

          )]/cosh()/sinh()[()( /
1 LxxLxLLHLex LH   .                       (6.51) 

Similarly, the application of Eqs. (6.46) and (6.47b,c) to )(rA and )(rB respectively results 

in  

 
  ,)()()(

,)()()(

21

21

kjiijkikjjkikji

kjiijkikjjkikji

xxxxBxxxxBnnnrB

xxxxAxxxxAnnnrA








              (6.52a,b) 
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(6.53a–f ) 

Using Eqs. (6.49a,b)–(6.53a–f) in Eqs. (5.42a–c) then leads to, in a matrix form,  
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    TT

mnkl xQQQQ )]([)(,, 0
321 x ,                                      (6.54) 

where  )( 0xmnkl T is the same as that given in Eq. (6.29a), and [Q(x)] is a 3 by 6 matrix 

whose components are given by 
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(6.55) 

with 

  00 3)( BBxx  ,  11 3)( BBxx  ,  22 5)( BBxx  .                     (6.56) 

The differential operators D1(·), D2(·) and D3(·) involved in Eq. (6.55) are defined in Eq. 

(3.3).  

Substituting Eq. (6.54) into Eq. (6.40) then yields the boundary part of the finite-

domain Eshelby tensor as  

       )()()(
2

1
)( ,0, HSMxQS FETTT

mnkl
FB

mnkl xx  ,                          (6.57) 

where [Q(x)] is the 3 by 6 matrix whose components are listed in Eq. (6.55), [M] is given in 

Eq. (6.39), and )]([ , HS FE  can be determined as follows.  

Note that Eq. (6.57) can be rewritten as     

     )()()()( ,0, HSxKS FET

mnkl
FB

mnkl xx  ,                               (6.58) 

where                      

TT MxQxK ][)]([
2

1
)]([                                               (6.59) 

is a six by six matrix. Using Eqs. (6.28), (6.32), (6.35) and (6.58) in Eq. (6.25a) gives, 
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noting that the six components of  )( 0xmnkl  are linearly independent,  

)]()][([)]([)]([ ,,, HSxKxSxS FEIFI                                   (6.60) 

for the interior case with 0 < x < R, and  

)]([)]([)]([)]([ ,,, HSxKxSxS FEEFE                                   (6.61) 

for the exterior case with R < x < H. By setting x  H, Eq. (6.61) gives  

)]([)](I[)]([ ,1, HSHKHS EFE  ,                                   (6.62) 

where [I] is the six by six identity matrix, [K(H)] is obtainable from Eq. (6.59) with x = H, 

and )]([ , HS E   can be determined from Eq. (6.33) with x = H. 

Finally, it follows from Eqs. (6.62), (6.60), (6.29b) and (6.35) that the Eshelby 

tensor inside the spherical inclusion for the finite-domain inclusion problem can be 

expressed as  

 )]([)]([][)]([)( ,,,0, xSxSSS FBGICIT
mnkl

FI
mnkl  xx ,                         (6.63) 

)]([)](I[)]([)]([ ,1, HSHKxKxS EFB  ,                                (6.64) 

where x  I, 0 < x < R, and [SI,C], [SI,G] and [SB,F] are, respectively, the classical, gradient 

and boundary parts of the interior Eshelby tensor based on the SSGET. Note that [SI,C], as 

given in Eq. (6.29c), is uniform inside the inclusion, while [SI,G], as listed in Eqs. (6.29d) 

and (6.30a–f), depends on L, R and x in a complicated manner. In addition, [SB,F] given in 

Eq. (6.64) varies with L, R, H and x. That is, [SB,F] is non-uniform inside the inclusion and 

is different for the elastic body with different body and/or inclusion sizes (i.e., with varying 

H and/or R) and different materials (with changing L).  
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6.3.2. Volume averaged Eshelby tensor  

Considering that the finite-domain Eshelby tensor SI,F is position-dependent inside 

the inclusion, the volume average of SI,F over the spherical inclusion will be needed in 

predicting effective properties of a heterogeneous particle-reinforced composite. Hence, the 

volume average of SI,F is evaluated here. 

The volume average of a sufficiently smooth function F(x) over the spherical 

inclusion occupying the region I is defined in Eq. (3.11). Replacing F(x) in Eq. (3.11) 

with )(, xFI
mnklS  given in Eq. (6.63) then leads to, with the help of Eqs. (3.11) and (6.29a), 

V

,

V

,

V

, FB
mnkl

I
mnkl

FI
mnkl SSS   ,                                           (6.65) 

where the volume averaged Eshelby tensor for the unbounded spherical inclusion problem 

has been obtained in a closed-form in Eq. (3.16). And the volume averaged boundary part 

of the Eshelby tensor for the bounded spherical inclusion problem is given by 

)(),,(),,( 21V

,
nkmlnlmkklmn

FB
mnkl HLRSHLRSS   ,               (6.66) 

with 
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
R FB

n
FB

n dxxSxS
0

,2, )( .                                              (6.67c) 

Note that )(, xS FB
n (n = 1, 2, …, 6) in Eq. (6.67c) is the nth component of the array [SB,F(x)] 

given in Eq. (6.64).  

By following a similar procedure, the volume average of the fifth-order Eshelby-

like tensor FI
mnklpT , over the spherical inclusion can also be evaluated, which gives  
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0
V

, FI
mnklpT . It then follows from Eqs. (5.21) and (3.11) that  

,*

V

,

V kl
FI

mnklmn S                                                      (6.68) 

where 
V

,FI
mnklS  is given in Eq. (6.65) along with Eqs. (6.67a–c). Equation (6.68) shows that 

the average disturbed strain is only related to the eigenstrain * even in the presence of the 

eigenstrain gradient *. This result will have important applications in homogenization 

analyses. 

 

6.4. Numerical Results 

To demonstrate how the components of the Eshelby tensor for the finite-domain 

spherical inclusion problem derived in Section 6.3 quantitatively change with the position x, 

inclusion size R and matrix size H, some numerical results are provided in this section. In 

the numerical analysis presented here, the Poisson’s ratio v is taken to be 0.3, and the 

material length scale parameter L to be 17.6 m.  

Figure 6.4 shows the distribution of )( ,
1111

,
1111

,
1111

,
1111

FBGICIFI SSSS   along the x1 axis (or 

any radial direction due to the spherical symmetry) of a spherical inclusion concentrically 

embedded in a finite spherical elastic matrix. The values of FIS ,
1111 displayed in Fig. 6.4 are 

obtained from Eqs. (6.63), (6.64), (6.29a,c,d) and (6.30a–f) while those of ,
1111
IS are 

determined from Eqs. (6.28) and (6.29a–j). The inclusion has a fixed size of R = L, while 

the matrix domain has three different sizes: H = 2R, H = 3R, and H = 5R, as indicated in Fig. 

6.4, where the distribution of )( ,
1111

,
1111

,
1111

GICII SSS   for the unbounded spherical inclusion 

problem along the same direction is also plotted for comparison. Note that CIS ,
1111  is a 

constant (i.e., CIS ,
1111  = 0.5238 from Eqs. (6.28) and (6.29a–c)).  
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Fig. 6.4. FIS ,

1111  along a radical direction of the inclusion for the matrix with different sizes. 

 
 
 

When H=5R, the inclusion volume fraction, defined by  = (R/H)3, is very small 

(with  = 0.8%), and FIS ,
1111  is quite close to ,

1111
IS , indicating that the contribution of the 

boundary part FBS ,
1111  (= FIS ,

1111−
,

1111
IS ) is insignificant and may therefore be ignored. However, 

the contribution of the boundary part FBS ,
1111 to the total value of FIS ,

1111 increases with increasing 

. When  increases from 0.8% to 12.5% (i.e., H decreases from 5R to 2R), FIS ,
1111  becomes 

much larger than ,
1111
IS , revealing that the boundary effect is significant and can no longer 

be neglected. Clearly, these observations based on Fig. 6.4 indicate that the value of ,
1111
IS  (a 

component of the Eshelby tensor for the infinite-domain spherical inclusion problem) 

provides a lower bound of the values of FIS ,
1111 (the counterpart component of the Eshelby 

tensor for the finite-domain spherical inclusion problem).  

The variation of the component of the averaged Eshelby tensor inside the spherical 

inclusion, )(
V

,
111V

,
1111V

,
1111

FBIFI SSS   , with the inclusion volume fraction  is illustrated 
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in Fig. 6.5. The values of 
V

,
1111
IS based on the SSGET for the unbounded spherical 

inclusion problem and those of 
V

,
1111

FIS based on classical elasticity for the finite-domain 

spherical inclusion problem are also displayed in Fig. 6.5 for comparison. Note that the 

values of 
V

,
1111

FIS shown in Fig. 6.5 are obtained from Eqs. (6.65), (3.16), (6.66) and 

(6.67a–c), with those for the classical elasticity-based cases determined by setting L  0. 

From Eq. (3.16) it is seen that 
V

,
1111
IS based on the SSGET is independent of H and is 

therefore the same for all of the SSGET-based 
V

,
1111

FIS curves with different values of  

shown in Fig. 6.5 (including the curve with   0 or H  ). Therefore, the distance 

between a line for 
V

,
1111

FIS with a specified  ( 0) and the line for 
V

,
1111
IS with   0, 

based on either the SSGET or classical elasticity, are actually the boundary part 
V

,
111

FBS (=  

V

,
1111

FIS 
V

,
1111
IS ) (see Eq. (6.65)).   

Figure 6.5 shows that the inclusion size effect is predicted by the current finite-

domain inclusion problem solution based on the SSGET – unbounded (with   0) and 

bounded (with different values of   0). That is, in each case with a fixed inclusion volume 

fraction , the smaller the inclusion radius R is, the smaller the value of 
V

,
1111

FIS  is. This 

size effect is seen to be more significant for the cases with small inclusion volume fractions, 

where the boundary effect is small, as will be discussed below. However, as the inclusion 

size becomes large (with R > 264 m or R/L > 15 for  = 12.5% here), the size effect is 

seen to be diminishing. In contrast, the solution based on classical elasticity gives a 

constant value of 
V

,
1111

FIS for each value of , which provides an upper bound of the values 
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of 
V

,
1111

FIS based on the SSGET for the same value of , as shown in Fig. 6.5. However, 

each of these constant values is independent of the inclusion radius R, indicating that the 

classical elasticity-based solution for the finite-domain inclusion problem does not have the 

capability to predict the inclusion size effect.  

 

V

FIS ,
1111

 
Fig. 6.5. 

V

,
1111

FIS varying with the inclusion size at different inclusion volume fractions. 

 
 
 

From Fig. 6.5 it is also observed that 
V

,
1111

FIS changes with the inclusion volume 

fraction : the smaller  is, the smaller 
V

,
1111

FIS is, and the closer the curve of 
V

,
1111

FIS is to 

that of 
V

,
1111
IS . This indicates that the boundary effect, as measured by 

V

,
111

FBS (=  

V

,
1111

FIS 
V

,
1111
IS ), becomes smaller as  gets smaller. However, when  is big enough 

(with  = 12.5% and above here), 
V

,
111

FBS  and therefore the boundary effect become 

significantly large. The same is true for all of the other non-vanishing components 
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of
V

,FI
mnklS , which is dictated by Eqs. (6.66) and (6.67a–c). These observations indicate that 

the boundary effect is insignificant and may be neglected only when inclusion volume 

fraction is sufficiently low. In addition, the numerical results reveal that the average 

Eshelby tensor for the finite-domain spherical inclusion problem is bounded from below by 

the average Eshelby tensor based on the SSGET for the infinite-domain spherical inclusion 

problem and is bounded from above by the average Eshelby tensor based on classical 

elasticity for the same inclusion problem. 

 

6.5. Summary 

An Eshelby-type inclusion problem of a finite elastic body of arbitrary shape 

containing an arbitrarily-shaped inclusion prescribed with a uniform eigenstrain and a 

uniform eigenstrain gradient is solved using an extended Betti’s reciprocal theorem and an 

extended Somigliana’s identity based on a simplified strain gradient elasticity theory 

(SSGET), which are proposed and proved in this chapter. The solution for the displacement 

field in the bounded elastic body induced by the eigenstrain and eigenstrain gradient is 

obtained in a general form in terms of the Green’s function for the unbounded 3-D elastic 

medium based on the SSGET. This solution recovers that for the unbounded-domain 

inclusion problem if the boundary effect is suppressed.  

The solution for the finite-domain spherical inclusion problem is derived by using 

the general solution, which leads to closed-form expressions of the Eshelby tensor and its 

volume average. Being dependent on the position, inclusion size, matrix size, and material 

length scale parameter, this Eshelby tensor can capture the inclusion size and boundary 

effects, unlike existing Eshelby tensors for bounded or unbounded inclusion problems. In 

the absence of both the strain gradient and boundary effects, this Eshelby tensor recovers 
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that for the spherical inclusion in an infinite elastic body based on classical elasticity.  

To quantitatively illustrate the Eshelby tensor for the finite-domain spherical 

inclusion problem, sample numerical results are presented, which show that the inclusion 

size effect can be significant if the inclusion is small and that the boundary effect can be 

dominant if the inclusion volume fraction is large. But the inclusion size effect becomes 

insignificant for a large inclusion, and the boundary effect tends to be vanishingly small at a 

sufficiently low inclusion volume fraction. In addition, it is found that the components of 

both the Eshelby tensor and its volume average for the finite-domain spherical inclusion 

problem are bounded from below by those of the Eshelby tensor and its volume average for 

the infinite-domain spherical inclusion problem based on the SSGET. Furthermore, the 

averaged Eshelby tensor for the finite-domain spherical inclusion problem based on the 

SSGET is bounded from above by its counterpart based on classical elasticity. 
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CHAPTER VII 

A HOMOGENIZATION METHOD BASED ON 

THE ESHELBY TENSOR 

 

7.1. Introduction 

With the solution for an Eshelby-type inclusion problem obtained, the 

corresponding inhomogeneity problem, where a homogeneous matrix contains a different 

material (inhomogeneity) subject to uniform boundary conditions, can be solved by using 

the equivalence between the inclusion and the inhomogeneity problems. Hence, the local 

elastic fields in the inhomogeneity and in the matrix are obtainable. However, in many 

engineering applications, the overall or effective properties of a heterogeneous material are 

more desirable than the local behavior in each constituent, considering that a structure 

component may contain numerous constituents. This has motivated the development of 

homogenization methods, which have been recognized as a great success in predicting the 

effective properties of a composite material based on the geometrical and mechanical 

characteristics of all constituents and their distributions in the composite (Hashin, 1983; 

Nemat-Nasser and Hori, 1999). 

This chapter aims to develop a homogenization method for predicting the effective 

elastic properties of a heterogeneous material using the SSGET elaborated in Section 2.2. 

To this end, an energetically equivalent homogeneous medium, whose elastic behavior is 

described by the SSGET, is constructed. The effective elastic properties of the 

heterogeneous material are found to depend not only on the volume fractions, shapes and 

distributions of the inhomogeneities but also on the inhomogeneity sizes, unlike what is 
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predicted by the classical elasticity-based homogenization methods. Note that the materials 

considered in this chapter are primarily heterogeneous materials with non-periodic 

microstructures. Hence, the term ‘heterogeneous material’ refers to a heterogeneous 

material with non-periodic microstructures, unless indicated otherwise. 

The chapter is organized as follows. In Section 7.2, a homogenization scheme based 

on the strain energy equivalence and the SSGET is proposed. A non-classical boundary 

condition is applied, which gives a uniform strain gradient on the boundary. An effective 

elastic stiffness tensor and an effective material length scale parameter for a heterogeneous 

material are obtained in terms of the volume fractions and elastic fields in each constituent. 

In Section 7.3, an analytical solution for the effective elastic stiffness tensor is derived by 

using the Mori-Tanaka method and Eshelby’s equivalent inclusion method. Numerical 

examples for a two-phase composite are presented in Section 7.4. This chapter concludes 

with a summary in Section 7.5. 

 

7.2. Homogenization Scheme Based on the Strain Energy Equivalence 

Consider a representative volume element (RVE) of a composite material, as 

schematically shown in Fig.7.1, where ellipsoidal inhomogeneities, with dimensions being 

much smaller than the size of the RVE, are aligned along the x3-axis and are uniformly 

dispersed in the homogeneous matrix. The matrix and the inhomogeneities are taken to be 

perfectly bounded. This model composite is heterogeneous (but not necessarily isotropic), 

while each inhomogeneity and the matrix are assumed to be homogeneous. For 

convenience, no body force is considered in the remaining part of this chapter unless 

indicated otherwise.  
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Fig. 7.1. Heterogeneous RVE.  

 

 
In order the find the effective elastic properties of this heterogeneous composite 

material using the SSGET, a homogeneous comparison solid element of identical shape and 

size is introduced. This homogeneous material element is regarded as a strain-gradient 

elastic medium, whose elastic behavior can be described using the constitutive relations in 

Eqs. (2.5a,b). The elastic properties of this comparison solid can always be accommodated 

such that the two volume elements restore the same strain energy under identical boundary 

conditions. The homogenization method in this chapter aims to find the elastic properties of 

this homogeneous solid that is energetically equivalent to the heterogeneous material. This 

strain energy-based homogenization method was first proposed by Hill (1963) using 

classical elasticity, and is now widely used in predicting effective elastic properties of 

heterogeneous materials.  

In the classical elasticity-based homogenization method, surface displacements that 

produce a uniform strain in the homogeneous Cauchy elastic medium are prescribed on the 

boundary (Hill, 1963). By applying such displacement boundary conditions, the strain 

energy of a Cauchy elastic material, homogeneous or heterogeneous, can be calculated 
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from the averaged stress and averaged strain. This uniform-strain boundary condition is 

based on the assumption that the fluctuation wavelength of the applied strain is much larger 

than the size of the RVE. That is, the applied strain to the RVE is macroscopically uniform.  

However, when a material experiences a larger deformation gradient such that the mean 

fields vary with the position of the RVE in the material, non-uniform strain boundary 

conditions have to be applied to account for the strain gradient. One of such boundary 

conditions is that the displacement on the boundary is approximated by the following 

quadratic expression (e.g., Forest, 1998; Bigoni and Drugan, 2007): 

0 0ˆ ( ) ( )i ij j ijk j ku x x x   x x ,                                   (7.1) 

where 0
ij  and 0

ijk  are, respectively, the components of a second-order tensor and a third-

order tensor, xi is the ith component of the position vector x, and  is the boundary of the 

domain  occupied by the RVE. Clearly, Eq. (7.1) shows that 00
ikjijk   . If 0

ijk = 0, Eq. 

(7.1) recoveres the uniform-strain boundary condition used in Hill’s homogenization 

method (Hill, 1963). The displacement in Eq. (7.1) must satisfy the Navier-like 

displacement equilibrium equations give in Eq. (2.9) without body forces. Using Eq. (7.1) 

in Eq. (2.9) together with 0jf , results in  

0 0(2 1)iik kiiv   ,                                                  (7.2) 

which gives three constraints on specifying 0
ijk . 

Substituting Eq. (7.1) into Eqs. (2.5c,d) yields the strain and strain gradient on the 

boundary as 

  0 0 0 0 0ˆ ˆ( ) ( ) , ( )ij ij ijp jip p ijk ijk jikx          x x                  (7.3a,b) 
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for any x . From Eqs. (7.3a,b), it is seen that the strain ij̂ is linearly dependent on the 

position x, while the strain gradient ijk̂  is uniform on the boundary of the RVE. For a 

homogeneous material subject to the boundary condition in Eqs. (7.3a,b), it is conceivable 

that the strain gradient will be uniform throughout the material. This indicates that the 

displacement throughout the material takes the same form as that given in Eq. (7.1), subject 

to the constraints listed in Eq. (7.2). In other words, for a homogeneous material Eqs. (7.1) 

and (7.3a,b) also hold for the interior points (i.e., x ).  

However, if a heterogeneous material model is subject to the boundary condition 

given in Eq. (7.1), the strain gradient in the interior will not be uniform as shown in Eq. 

(7.3b) due to the disturbance of existing inhomogeneities. In general, for a heterogeneous 

material, the strain and stress fields depend on the morphology and properties of the 

constituents and their distributions in the material.  

The volume-averaged strain energy, U, stored in a material based on the SSGET can 

be expressed in terms of quantities on the boundary as (see Appendix I) 

1 1
( ) ( )

2Vol( ) 2Vol( )ij ij ijk ijk ij i j ijk ij kU dV u n n dA      
 

   
   ,      (7.4)                  

where n = niei is the outward unit normal vector on  , ijk is the component of the strain 

gradient tensor defined in Eq. (2.5d), and ijk is the component of the double stress tensor 

defined in Eq. (2.5b). Using Eqs. (7.1) and (7.3a) in Eq. (7.4) gives 

0 0 0 0 01
( ) .

2Vol( ) ij im m j ijk ij k ij imn m n j ijk ijp jip p kU x n n x x n x n dA        

            (7.5) 

Applying the divergence theorem and the equilibrium equations 0, jij  in Eq. (7.5) yields 

dVxdVU ijppijijpijij )(
)(Vol

1

)(Vol2

1 00  






  .                  (7.6) 



 110

Eq. (7.6) gives the strain energy in an equilibrated material subject to the uniform strain 

gradient boundary condition listed in Eq. (7.1). Note that Eq. (7.4)–(7.6) are valid for both 

homogeneous and heterogeneous materials, for no assumption is made on material 

properties in reaching Eq. (7.4). 

For a homogeneous material, using the constitutive equations in Eqs. (2.5a,b) and 

Eqs. (7.3a,b), which are valid for x , into Eq. (7.6) leads to   

 pkpklmkijp
H
ijlmplmijp

H
ijlmklmkij

H
ijlmlmij

H
ijlmH LxxCxCxCCU 

200000000 2
2

1



, (7.7) 

where HU  is the volume-averaged strain energy in the homogenous material, H
ijlmC and 

L are, respectively, the stiffness tensor and the material length scale parameter of the 

homogeneous material, and 


 denotes the volume average over the domain  .   

On the other hand, for a heterogeneous material with (N+1) phases (with each phase 

defined as a collection of inhomogeneities whose shape, size and elastic properties are 

identical), the volume-averaged strain energy obtained in Eq. (7.6) can be further expressed 

as  

   )(
2

1 )(

0

0

0

)(0

nnn
ijppij

n
N

n
ijp

N

n
ij

n
ijC xU





   ,                  (7.8) 

where use has been made of  

                                                
n

ff
N

n

n




 
0

)(  ,                                             (7.9) 

in which f is a continuous quantity in the domain  , n is a subdomain of  occupied by 

the nth phase,  is the union of n with n ranging from 0 to N. In Eqs. (7.8) and (7.9) and 

throughout this chapter, the matrix is designated as the phase with n = 0, 
n
represents 

the volume-averaged value over n , and )(n is the volume fraction of the nth phase.  
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Note that in reaching Eq. (7.8), it has been assumed that each constituent of the 

heterogeneous material is a homogeneous strain-gradient medium whose constitutive 

behavior can be described by Eqs. (2.5a,b). Using Eqs. (2.5a,b) in Eq. (7.8) yields 

     








N

n
klp

n
pkl

n
ijkl

n
ijp

N

n
kl

n
ijkl

n
ijC

nnn
LxCCU

0

2)()()(0

0

)()(0

2

1  ,        (7.10) 

where )(n
ijklC and L(n) are, respectively, the stiffness tensor and the material length scale 

parameter for the nth phase.  

To get the effective elastic property of the heterogeneous material, the volume-

averaged strain energy in the homogeneous comparison solid element given in Eq. (7.7) and 

that in the heterogeneous material element given in Eq. (7.10) should be identical, which 

requires  

 
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  (7.11) 

From Eq. (7.11) H
ijlmC and L , which are, respectively, the effective stiffness tensor and the 

effective material length scale parameter  of the heterogeneous material can be determined.  

Note that H
ijlmC  and L  should be independent of the location of the RVE. Therefore, the 

origin of the coordinate system can be placed at the centroid of the RVE for convenience. 

This gives
px = 0. Then, Eq. (7.11) becomes  

 
     .
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                (7.12) 

Considering that 0
ij  and 0

ijp  can be chosen independently, Eq. (7.12) gives two sets 
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of equations 

 ,
0

)()(0 
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From Eqs. (7.13) and (7.14), it is seen that once the relation between 
n

ε and 0ε , and the 

relation between 
n

 xε , 
n

κ  and 0β are known, the effective stiffness tensor H
ijlmC  and 

the effective material length scale parameter L can be determined for given volume fraction, 

stiffness tensor and material length scale parameter of each constituent of the composite. Eq. 

(7.13) is the same as what is obtained from the classical homogenization method (e.g., 

Weng, 1984; Li and Wang, 2008), where only a uniform strain 0ε is applied on the 

boundary and both the constituents of the heterogeneous material and its homogeneous 

equivalent are treated as Cauchy media.  

It is clear from Eq. (7.12) that if only the uniform-strain boundary condition is 

prescribed, i.e., 0
ijk = 0 in Eqs. (7.1) and (7.12), the terms involving 0

ijp on the both sides of 

Eq. (7.12) will vanish. As a result, Eq. (7.12) will be reduced to Eq. (7.13). In this case, the 

effective material length scale parameter L  will not be involved.  This implies that if the 

overall behavior of the heterogeneous material is expected to be characterized by the 

constitutive relations in the SSGET, the uniform strain gradient boundary condition in Eq. 

(7.1) (at least) has to be applied. This will lead to the determination of the effective material 

length scale parameter L  from Eq. (7.14).  

H
ijlmC  and L  can be readily obtained from Eqs. (7.13) and (7.14) if the exact elastic 

strain and strain gradient fields in each phase are known. The exact solution for the elastic 

fields in a heterogeneous RVE subject to the boundary condition in Eq. (7.1) may only be 



 113

derived using the SSGET for inhomogeneities of simple shapes such as spherical and 

cylindrical ones. For inhomogeneities of complex shapes, numerical/approximate solutions 

will have to be sought and implemented to computationally complete the homogenization 

analysis.  

In the next section, an analytical method is utilized to solve H
ijlmC from Eq. (7.13). 

The volume-averaged strain in each phase will be determined analytically using the 

Eshelby tensors obtained in Chapters III–V.  

 

7.3. New Homogenization Method Based on the SSGET  

To solve Eq. (7.13) subject to the boundary condition in Eq. (7.1), the concept of 

averaged strain, which was first proposed by Mori and Tanaka (1973), is used. It can be 

imagined that the volume-averaged strain over the matrix, 
0

ε , is different from that over 

the whole heterogeneous material due to the presence of inhomogeneities. For simplicity, 

one inhomogeneity will be considered here.  The volume-averaged strain over this 

inhomogeneity further differs from that over the matrix by a perturbed value 
n

d


ε . That is,  

nn

d


 εεε

0
.                                               (7.15) 

To determine the volume-averaged strain 
n

ε  in Eq. (7.15), an inclusion problem 

will be introduced, where a homogeneous body, , made of the same material as that of the 

matrix, contains an inclusion which is of identical shape and size with those of the 

inhomogeneity. The inclusion is prescribed with a uniform stress-free eigenstrain *ε  and 

subject to the same averaged strain as in Eq. (7.15). The volume-averaged stresses over the 

inclusion and over the inhomogeneity can be made equivalent by suitably adjusting *ε . In 
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other words, the inclusion and the inhomogeneity problems are equivalent in the sense that 

their averaged strain and stress fields are identical. This equivalence states (Eshelby, 1957) 

)(:)(:
00

)(*)0(

nn

dnd


 εεCεεεC ,                         (7.16) 

where )0(C  and )(nC are, respectively, the fourth-order stiffness tensors of the matrix and the 

inhomogeneity.   

From the derivations in Chapter II (see Eq. (2.40)) and considering that the size of 

the RVE is much larger than that of the inclusion, the volume-averaged disturbed strain due 

to the uniform eigenstrain *ε  over the domain occupied by an arbitrarily shaped 3-D 

inclusion is  

*: εSε
nn

d


 ,                                                 (7.17) 

where
n

S is the volume-averaged Eshelby tensor based on the SSGET over the inclusion 

domain and has been obtain for spherical, cylindrical and elliptical inclusions in Chapters 

III–V (see Eqs. (3.18), (4.29) and (5.33)).  

Using Eq. (7.17) in Eq. (7.16), the eigenstrain can be obained as  

           
0

:*


 εQε ,                                                       (7.18) 

with           

 )(:]:)[( )0()(1)0()()0( CCCSCCQ  


nn

n
.                              (7.19) 

Then from Eqs. (7.17)–(7.19) and (7.15), the volume-averaged strain over the inclusion 

domain is related to that over the matrix through 

0
( : ) :

n n  
 ε I S Q ε ,                                             (7.20) 

where I is the fourth-order identity tensor. Using the following identity (Li and Wang, 
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2008): 

 (0) 1 ( ) (0) 1: { :[ ] : ( )}
n n

n 
 

   I S Q I S C C C ,                          (7.21) 

Eq. (7.20) is found to be identical to what is obtained using the classical Mori-Tanaka 

homogenization method based on classical elasticity (see Eqs. (7.16) and (7.17) in Qu and 

Cherkaoui, 2006) except for the expression of .
n

S  
n

S  in Eq. (7.20) based on the 

SSGET contains a material length scale parameter and hence can capture the inclusion size 

effect, unlike its counterpart based on classical elasticity.   

The above analysis involving a single inhomogeneity phase, which is a collection of 

inhomogeneities with identical size, shape and elastic properties and hence having the 

same
n

S and Q, remains valid for other phases. Therefore, from Eq. (7.20), it follows   
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where the volume-averaged strain over the matrix domain is related to that over the whole 

RVE. 

Using Eqs. (2.5c) and (7.1) and 0


x gives 

0εε 


.                                                    (7.23) 

Through Eqs. (7.20), (7.22) and (7.23) the relation between the applied strain, 0ε , on the 

boundary of the RVE and the volume-averaged strain over the domain of each phase is 

determined. Then, substituting Eqs. (7.23), (7.22) and (7.20) into (7.13) and letting the 

coefficients of 
0

ε on both sides of the equation be equal will result in  
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as the effective stiffness tensor of the heterogeneous material. Note that the 

inhomogeneities are assumed to be unidirectional. Therefore, the influence of the 

inhomogeneity orientation distribution is not incorporated in Eq. (7.24).  

From Eq. (7.24) it is seen that the effective stiffness tensor HC depends not only on 

the shapes but also on the sizes of the inhomogeneities through the volume-averaged 

Eshelby tensor, 
n

S , which involves the material length scale parameter of the matrix. 

Therefore, this effective stiffness tensor based on the SSGET is expected to be able to 

capture the experimentally observed particle size effect in composites (e.g., Kouzeli and 

Mortensen, 2002; Vollenberg, and Heikens, 1989; Vollenberg, et al., 1989). 

  

7.4. Numerical Results 

Several examples are provided here to quantitatively illustrate the dependence of the 

effective elastic properties of a heterogeneous material on inhomogeneity sizes, as 

analytically demonstrated in the preceding section. For simplicity, a composite material 

with two isotropic phases is chosen for analysis. For such a material, the total phase number 

N = 2, and Eq. (7.24) becomes 

1 1

(0) (1) 1[(1 ) : ( : )] :[(1 ) ( : )]H     
 

      C C C I S Q I I S Q ,              (7.25) 

where )0(C and )1(C are, respectively, the fourth-order isotropic stiffness tensors of the 

matrix and the inhomogeneity phase,  is the volume fraction of the inhomogeneity phase, 

and Q can be obtained from Eq. (7.19) with n = 1. 

For a spherical inclusion with radius R, the volume-averaged Eshelby tensor 

1
S based on the SSGET given in Eq. (3.18) can be rewritten as  
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1

P S
P SS S
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and PI and SI are two fourth-order tensors whose components are, respectively, given by 
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When the gradient effect is not considered (i.e., when L = 0), Eqs. (7.26) and (7.27) can be 

reduced to the Eshelby tensor for a spherical inclusion based on classical elasticity:  

1

C C P C S
P SS S


 S I I ,                                             (7.29a) 

where                     
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Using IP and IS given in Eq. (7.28), the stiffness tensors )0(C and )1(C can also be 

decomposed as 

(0) (0) (0)3 2P SK G C I I  ,    (1) (1) (1)3 2P SK G C I I ,                     (7.30) 

where )0(K and )1(K are, respectively, the bulk moduli of the matrix and the inhomogeneity, 

and )0(G and )1(G are, respectively, the shear moduli of the matrix and the inhomogeneity.  

After using Eqs. (7.30) and (7.26) in Eq. (7.25), the effective stiffness tensor can be 

obtained in the following closed form: 

3 I 2 IH H P H SK G C ,                                            (7.31)  
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where 
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is the effective bulk modulus, and  
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is the effective shear modulus. In reaching Eqs. (7.31)–(7.33), use has been made of  
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,                                          (7.34) 

where  and  are two arbitrary non-zero scalars (see Appendix A).  

The effective Young’s modulus can be readily obtained in term of KH and GH given 

in Eq. (7.32) and Eq. (7.33) as (e.g., Sadd, 2009) 
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3
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 .                                               (7.35) 

For all of the examples included below in this chapter, the Young’s modulus of the 

inhomogeneity material is taken to be 20 times that of the matrix, i.e., 20/ )0()1( EE . The 

Poisson’s ratio, , for both the matrix and the inhomogeneity materials is taken to be 0.3. 

The length scale parameter for the matrix material, L(0), is 17.6 m.  

Figure 7.2 shows the effective Young’s modulus, EH, of the two-phase composite 

with spherical inhomogeneities varying with the volume fraction of the inhomogeneity 

material, . The values of EH based on the SSGET are calculated using Eqs. (7.27), (7.32), 

(7.33) and (7.35), for the composites with four different inhomogeneity sizes: R = L, R = 2L, 

R = 3L and R = 10L. For comparison, the values of the effective Young’s modulus based on 

classical elasticity are also displayed in Fig. 7.2, which are computed using Eqs. (7.29b), 
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(7.32) (7.33) and (7.35).  
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Fig. 7.2. Effective Young’s modulus of a composite with spherical inhomogeneities. 

 

 
From Fig. 7.2, it is observed that EH based on the SSGET depends not only on the 

volume fraction of the inhomogeneity phase, but also on the inhomogeneity size R. Also, it 

is seen that the values of EH based on the SSGET are much larger than those based on 

classical elasticity when R is small (with R = L = 17.6 m here). This agrees with the 

experimental observations (Kouzeli and Mortensen, 2002): the smaller the inhomogeneity 

size is, the stiffer the composite material is. As R increases, the curves for EH with the strain 

gradient effect become closer to that (the dashed curve) based on classical elasticity, which 

indicates that the strain gradient effect decreases as the inhomogeneity size increases. When 

the inhomogeneity size R is much larger than L (e.g., R = 10L = 176 m here), the values of 

EH approach the classical values, indicating that the strain gradient effect becomes 

insignificant and therefore may be ignored. The same trend is observed for the effective 

shear modulus of this composite containing spherical inhomogeneities.  
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The effective in-plane Young’s modulus, HE11 , of a composite with cylindrical 

inhomogeneities (fibers) of infinite length is shown in Fig. 7.3, where a is the fiber radius. 

The central lines of all the cylindrical fibers are aligned with x3-axis. The values of 

HE11 based on the SSGET are calculated using Eqs. (7.25), (7.19) and (4.29), while the 

values of its counterpart based on classical elasticity are obtained from Eqs. (7.25), (7.19) 

and (4.15a–c). Both the volume fraction dependence and the fiber size dependence can be 

seen from Fig. 7.3. As the radius a of the cylindrical fiber increases, the distance between 

the curves for HE11  based on the SSGET and that for its classical counterpart decreases, 

which indicates that the gradient effect is diminishing. A comparison between Figs. 7.2 and 

7.3 shows that the size effect is stronger for the composite containing spherical 

inhomogeneities than that filled with cylindrical inhomogeneities.  
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Fig.7.3. In-plane Young’s Modulus of a composite with cylindrical inhomogeneities. 

 

 

 

On the other hand, the size effect is not observed for the out-of-plane effective 
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Young’s modulus HE33 for the composite with cylindrical inhomogeneities. Both HE33 based 

on the SSGET and its counterpart base on classical elasticity are linearly dependent on the 

volume fraction .  
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Fig. 7.4. Effective HE11 of a composite with ellipsoidal inhomogeneities. 

 

 

 

The effective Young’s moduli are displayed in Figs. 7.4 and 7.5 for composites 

containing ellipsoidal inhomogeneities with three distinct semi-axes satisfying a1 : a2: a3 = 

3 : 2 : 1. The a3-axis of each of the ellipsoidal inhomogeneities is aligned with the x3-axis in 

the chosen Cartesian coordinate system. HE11  plotted in Fig. 7.4 is the effective Young’s 

modulus in the x1-direction, while  HE33  shown in Fig. 7.5 is the effective Young’s modulus 

in the x3-direction. Both HE11 and HE33  are obtained from the orthotropic effective stiffness 

tensor CH, calculated using Eqs. (7.25), (7.19) and (5.33).  The size effect is clearly seen 

from Figs. 7.4 and 7.5 for both HE11 and HE33 : the smaller a3 is, the larger the effective 

Young’s modulus is. The size effect is more significant on HE33  than on HE11 , as indicated in 
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Figs. 7.4 and 7.5. This can be explained by the fact that the ellipsoidal inhomogeneities 

have the smallest dimension along the x3-axis.  
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Fig. 7.5. Effective HE33 of a composite with ellipsoidal inhomogeneities. 

 

7.5. Summary 

A homogenization method is developed in this chapter for predicting the effective 

elastic properties of a heterogeneous material using the SSGET. The overall behavior of the 

heterogeneous material is modeled as a homogeneous strain-gradient medium which is 

characterized by the SSGET. The effective elastic properties of the heterogeneous material 

are found to be dependent not only on the volume fractions, shapes and material properties 

of the inhomogeneities but also on the inhomogeneity sizes, unlike what is predicted by the 

homogenization methods based on classical elasticity. The effective elastic stiffness tensor 

is analytically obtained by using the Mori-Tanaka and Eshelby’s equivalent inclusion 

methods.  
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To quantitatively illustrate the effective elastic properties of the composite material, 

sample numerical results are presented, which show that the inhomogeneity size has a 

strong influence on the effective Young’s moduli when the inhomogeneity size is small (at 

the micron scale). The composite becomes stiffer when the inhomogeneities become 

smaller. It is also found that the inhomogeneity size effect on the effective Young’s moduli 

becomes insignificant and may be neglected for composites filled by large inhomogeneities.  
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CHAPTER VIII 

SUMMARY 
 
 

The Eshelby inclusion problem of an inclusion embedded in an infinite homogeneous 

isotropic elastic material and prescribed with an eigenstrain and an eigenstrain gradient is 

solved analytically by using a simplified strain gradient elasticity theory (SSGET). This is 

accomplished by first deriving the three-dimensional Green’s function in the SSGET in 

terms of elementary functions using Fourier transforms. The fourth-order Eshelby tensor is 

then obtained in a general form for an inclusion of arbitrary shape. The newly derived 

Eshelby tensor consists of two parts: a classical part depending only on Poisson’s ratio, and 

a gradient part depending on the length scale parameter additionally. The accompanying 

fifth-order Eshelby-like tensor relating the prescribed eigenstrain gradient to the disturbed 

strain is also obtained analytically. When the strain gradient effect is not considered, the 

new Eshelby tensor reduces to that based on classical elasticity, and the Eshelby-like tensor 

vanishes.  

The expressions of the Eshelby tensor for the special cases of a spherical inclusion 

and a cylindrical inclusion of infinite length are explicitly obtained by employing the 

general form of the newly derived Eshelby tensor. The numerical results quantitatively 

show that the components of the non-classical Eshelby tensor for either the spherical or the 

cylindrical inclusion vary with both the position and the inclusion size, unlike their 

counterparts in classical elasticity. For both the spherical and cylindrical inclusion problems, 

it is found that when the inclusion radius is small the contribution of the gradient part is 

significantly large and thus should not be ignored. For homogenization applications, the 

volume average of the non-classical Eshelby tensor over the spherical inclusion or the 
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cylindrical inclusion is derived in a closed form. It is observed that the components of the 

volume-averaged Eshelby tensor change with the inclusion size: the smaller the inclusion 

radius is, the smaller the component values are. Also, the values of these components are 

seen to approach from below those of their classical counterparts when the inclusion size 

becomes sufficiently large.  

Moreover, the more general and complex ellipsoidal inclusion problem is 

analytically solved. By applying the general form of the Eshelby tensor in the SSGET, the 

Eshelby tensor for an ellipsoidal inclusion is obtained in analytical expressions for both of 

the regions inside and outside the inclusion in terms of two line integrals and two surface 

integrals over a unit sphere. The Eshelby tensor for the ellipsoidal inclusion problem 

includes those for the spherical and cylindrical inclusion problems based on the SSGET as 

two limiting cases. The volume-averaged Eshelby tensor over the ellipsoidal inclusion is 

also analytically obtained. Numerical results quantitatively show both the inclusion size 

dependence and the position dependence exhibited by the components of the Eshelby tensor 

derived. The same trend as that in the spherical and cylindrical inclusion problems is found 

here: the smaller the ellipsoidal inclusion is, the smaller the values of the components of the 

Eshelby tensor and its volume average are.  

In order to incorporate the boundary effect, in addition to the particle size effect, a 

solution for the Eshelby-type inclusion problem of a finite homogeneous isotropic elastic 

body containing an inclusion is derived in a general form by using the SSGET. An extended 

Betti’s reciprocal theorem and an extended Somigliana’s identity based on the SSGET are 

proposed and utilized to solve the finite-domain inclusion problem. The solution for the 

disturbed displacement field is expressed in terms of the Green’s function for an infinite 

three-dimensional elastic body in the SSGET. It contains a volume integral term and a 
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surface integral term. The former is the same as that for the infinite-domain inclusion 

problem based on the SSGET, while the latter represents the boundary effect. The solution 

reduces to that of the infinite-domain inclusion problem when the boundary effect is not 

considered. The problem of a spherical inclusion embedded concentrically in a finite 

spherical elastic body is analytically solved by applying the general solution, with the 

Eshelby tensor and its volume average obtained in closed forms. This Eshelby tensor 

depends on the position, inclusion size, matrix size, and material length scale parameter and, 

as a result, can capture the inclusion size and boundary effects, unlike existing ones. It 

reduces to the Eshelby tensor based on classical elasticity for the spherical inclusion in an 

infinite matrix if both the strain gradient and boundary effects are suppressed. Numerical 

results reveal that the inclusion size effect can be quite large when the inclusion is very 

small and that the boundary effect can dominate when the inclusion volume fraction is very 

high. However, the inclusion size effect is diminishing as the inclusion becomes large 

enough, and the boundary effect is vanishing as the inclusion volume fraction gets 

sufficiently low.  

Finally, a homogenization method based on the SSGET is developed to predict the 

effective elastic properties of a heterogeneous (composite) material. The overall elastic 

behavior of the heterogeneous material is characterized by a homogeneous elastic medium 

that obeys the SSGET. An effective elastic stiffness tensor and an effective material length 

scale parameter are obtained for the heterogeneous material by applying the Mori-Tanaka 

and Eshelby’s equivalent inclusion methods. Numerical results show that both of them are 

dependent not only on the volume fractions and shapes of the inhomogeneities but also on 

the inhomogeneity sizes, unlike what is predicted by existing homogenization methods 

based on classical elasticity. It is illustrated through numerical results for a two-phase 
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composite that the inhomogeneity size has a strong influence on the effective Young’s 

moduli when the inhomogeneity size is small (at the micron scale). The composite becomes 

stiffer when the inhomogeneities get smaller. However the inhomogeneity size effect on the 

effective Young’s moduli becomes insignificant and may be neglected for a composite filled 

with large inhomogeneities. 
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APPENDIX A 

 

Note that in reaching Eq. (2.13b) use has been made of the following identity: 

 

  ,I
1

I
1

II
1









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 S
ij

P
ij

S
ij

P
ij 

                                           (A.1) 

where ,  are two arbitrary non-zero scalars, 00I ji
S
ij   are the components of a second-

order spin tensor 00 ξξI S  (with 0ξ being a unit vector introduced in Eq. (2.12)), 

00I jiij
P
ij    are the components of the associated projection tensor IP = I  IS, with I = 

ijeiej being the second-order identity tensor. Eq. (A.1) can be easily proved by using the 

definition of an inverse matrix. 
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APPENDIX B 

                                                        

In this appendix, it is shown that the integration result given in Eq. (2.18) is true. 

That is,  

 )cos31(sin 20022
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00 
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 jiijji xxd .                              (B.1) 

[Proof] For the chosen spherical coordinate system (, , ) in the transformed space where 

the position vector  =  0ξ  makes the angle  with the position vector x (with the direction 

of x being where  = 0) in the physical space, one can write the unit vector in the  

direction as  

,)sinsincos(cos 0000  zyxξ                                      (B.2) 

where x0 is the unit vector along the x direction, and y0 and z0 are the unit vectors 

perpendicular to x0. In component form, Eq. (B.2) reads 

.)sinsincos(cos 0000  iiii zyx                                     (B.3) 

Then, it follows from Eq. (B.3) that 
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Note that 
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Integrating on both sides of Eq. (B.4), together with the use of Eq. (B.5), results in 
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Notice that 
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where the fourth equality is based on the fact that the three orthogonal unit vectors x0, y0 

and z0 form a set of base vectors in the 3-D physical space. Using Eq. (B.7) and the identity 

sin2θ = 1  cos2θ  in Eq. (B.6) will immediately give Eq. (B.1).    
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APPENDIX C 

                        

In this appendix the following two identities, which are given in Eqs. (2.46a,b), are 

proven:  

ijijkkijijkk L ,2,,, Γ
1

Γ,Λ2Φ  .                                  (C.1a,b) 

The proof for Eq. (2.46c) can be found in Li and Wang (2008).  

[Proof] From Eqs. (2.43a,b) it follows that 
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Differentiating both sides of Eq. (C.2) with respect to xi and xj sequentially will 

immediately give Eq. (C.1a), thereby proving Eq. (2.46a). 

To prove Eq. (C.1b), note from Eq. (2.43c) that  
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where yx r , and    denotes the volume integral over the inclusion region . 

Differentiating (C.3) two times and four times respectively yields, with the help of the 

product and chain rules,   
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where 
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It follows from Eqs. (C.4b) and (C.5) that 
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and from Eqs. (C.4a) and (C.5) that 
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A comparison of Eqs. (C.6) and (C.7) immediately shows that Eq. (C1.b) is an identity, 

thereby completing the proof of Eq. (2.46b). 
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APPENDIX D 

 

For the infinitely long cylindrical inclusion of the radius a, which occupies the 

domain , the scalar-valued function (x) defined in Eq. (2.43c) becomes, in the 

cylindrical coordinate system (r, , y3) originated from the symmetry axis (as the y3-axis) of 

the inclusion,  
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where K0, as defined, is the modified Bessel function of the second kind of the zeroth order 

(e.g., Gradshteyn and Ryzhik, 2007). Eq. (D.2a) can be rewritten as 

cos222 rxrxR  ,                                              (D.4) 
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xxx  x (as defined earlier) and α is the angle between the vectors x = 

x1e1+x2e2 and R1 = y1e1+y2e2 on the plane y3 = 0. Clearly, α = θ − c, where c is the angle 

between the specified vector x and the y1 axis and is a constant. Using the expression of R 

given in Eq. (D.4) in K0( L
R

) defined in Eq. (D.3) leads to (Magnus et al, 1966)  
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where In() and Kn() (n = 0, 1, 2, …) are the modified Bessel functions of the indicated 
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arguments.   

Using Eqs. (D.3) and (D.5a,b) in Eq. (D.1) then gives, for any point x located inside 

the inclusion (with x < a),  
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where use has been made of the following results:  
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Note that Eq. (D.7a) is a result of direct integration, whereas Eqs. (D.7b–d) are obtained 

using the general formulas given in Magnus et al. (1966).  

Similarly, substituting Eqs. (D.3) and (D.5b) into Eq. (D.1) yields, for any point x 

located outside the inclusion (with x > a and thus r < a < x), 
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where use has been made of Eqs. (D.7a,b). The final results obtained in Eqs. (D.6) and 

(D.8) are exactly those listed in Eqs. (4.3a,b). They are also the same as those given in 

Cheng and He (1997) for a similar scalar-valued function involved in their analysis based 
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on a micropolar elasticity theory. However, in this appendix the more general case with α = 

θ – c (≠ θ) is considered and the derivation details are provided, which differ from what 

was presented in Cheng and He (1997). 
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APPENDIX E 

 

In this appendix, the expressions of (x) for the ellipsoidal inclusion problem given 

in Eqs. (5.12) and (5.14) are derived.  

Note that )(x in Eq. (2.43c) can be rewritten as 
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where yx r . It can be shown using an inverse Fourier transform that 
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where r (= x y) is the position vector of a point in the 3-D physical space, ξ is the position 

vector of the same point in the Fourier (transformed) space Ω, i is the usual imaginary 

number with i2 = −1. Using Eq. (E.2) in Eq. (E.1) then gives 
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where   is the region occupied by the ellipsoidal inclusion. Consider the coordinate 

transformations: 
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where yi, Yi, i and i are, respectively, the components of y, Y,  and , ,ξ and 

     233
2

22
2

11
1

aξaξaξ
ξ
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Clearly, , as defined in Eq. (E.4), is a unit vector. Then, it follows from Eq. (E.4) that 
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The use of Eq. (E.6) leads to 
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where the inclination angle 


 in the chosen spherical coordinate system (Y, 


, ) is 

measured relative the direction of . Substituting Eq. (E.7) into Eq. (E.3) then yields 
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To evaluate the integral in Eq. (E.8), consider the following coordinate 

transformations:   

I

i
iIii a

x
XaK  , ,                                             (E.9a,b) 

where Ki and xi are, respectively, the components of K (with the magnitude K) and x (with 

the magnitude x). Also, a convenient spherical coordinate system (K, , ) is chosen such 

that the angle between K and X (with the magnitude X) is , with the direction of X being 

the axis where = 0. As a result, 

.cos,sinsin,cossin 321  KKKKKK                         (E.10) 

Using Eqs. (E.9a,b) and (E.10) then gives 
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where use has also been made of Eq. (E.5) in reaching Eq. (E.11a) and the fact that 
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ii  to obtain Eq. (E.11c). Finally, it follows from Eqs. (E.9a), (E.10) and (E.11a) that 
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as the coordinate transformation from the Cartesian system (1, 2, 3) to the curvilinear 

system (, , ). The Jacobian of this transformation can be readily obtained from Eq. 

(E.12) as 
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which leads to the volume element relation: 
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With the help of the coordinate transformation in (E.12) and the associated volume 

element relation in (E.14), Eq. (E.8) becomes 
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where m and s are defined in Eqs. (E.11b,c), and 
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Note that (e.g., Gradshteyn and Ryzhik, 2007) 
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For the interior case with x  , there is .1/// 2
3

2
3

2
2

2
2

2
1

2
1  axaxax  This means 
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that XiXi < 1 (see Eq. (E.9b) or 1 XX , thereby giving 0 < m < s for 0 <cos <1 or 0 < 

m < s for 1 <cos <0 according to Eq. (E.11b) for any x  . It then follows from Eqs. 

(E.16a,c) that for the interior case with both 0 < m < s (or 0 < </2) and 0 < m < s (or /2 

< <) there is  
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Using Eq. (E.17) in Eq. (E.15a) then results in 
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for the interior case with x  , where m = sXcos from Eq. (E.11b), and s = s(, ) is 

given in Eq. (E.11c). This completes the derivation of Eq. (5.12).  

For the exterior case with x  , there is 1/// 2
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2
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1  axaxax  or 1X , 

which makes the comparison between the values of m and s (satisfying m = sXcos given in 

Eq. (E.11b)) more involved. In fact, the following four situations now need to be 

considered separately. 

(1) 0 < s < m  or Xθ /1cos  > 0 (see Eq. (E.11b)): Using Eqs. (E.16a,b) gives 
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(2) 0 < m < s  or Xθ /1cos0  (see Eq. (E.11b)): Applying Eqs. (E.16a,c) yields 
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which is the same as F for the interior case given in Eq. (E.17).                                                                  

(3) 0 < m < s  or 0cos||/1  X (see Eq. (E.11b)): The use of Eqs. (E.16a,c) leads to 
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(4) 0 < s < m  or Xθ /1cos1  (see Eq. (E.11b)): Utilizing (E.16a,b) results in 
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It then follows from Eqs. (E.15a) and (E.19)–(E.22) that 
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where )/1(cos 1 Xα  . Note that 
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where use has been made of the results s(, ) = s(, ) and m(, ) = m(,). 

Using Eq. (E.24) in Eq. (E.23) then yields 
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for the exterior case with x  , where F(1) and F(2) are given in Eqs. (E.19) and (E.20), 

respectively. This completes the derivation of Eq. (5.14).  



 149

APPENDIX F 

 

In the appendix, the expressions of the transformation tensors Tij(x  y) and Qij(x  

y) given in Eqs. (6.12a,b) are derived.  

From Eqs. (2.5a,c), (2.28) and (6.11a), it follows that 
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Using Eqs. (2.5b) and (2.7) in Eq. (6.4a) gives 
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Substituting Eq. (F.1) into Eq. (F.2) results in  
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Equation (F.3) can be rewritten as 

kiki eTt  ,                                                        (F.4) 
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with A = A(r) and B = B(r) defined in Eqs. (2.29). The expression of the Cauchy traction 
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transformation tensor Tik obtained in Eq. (F.5) is exactly what is given in Eq. (6.12a). 

Next, using Eqs. (2.5b) and (F.1) in Eq. (6.4b) leads to  
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with A = A(r) and B = B(r) defined in Eqs. (2.29). The expression of the double stress 

traction transformation tensors Qik obtained in Eq. (F.7) is exactly what is given in Eq. 

(6.12b). This completes the derivation of Eqs. (6.12a,b).  
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APPENDIX G 

 

In this appendix, the following integral result (given in Eq. (6.45)) is proved: 

iii xxfdAnrfnrf )()()( 0 
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[Proof] To evaluate the surface integral in Eq. (G.1), a particular Cartesian coordinate 

system is chosen, in which the e3 axis is taken to be along the direction of position vector x 

(with 0 < |x| < H), as shown in Fig. 6.3. The unit vector n, which represents the direction of 

position vector y (with |y| = H) and coincides with the unit outward normal vector on the 

spherical surface, ∂, of the spherical elastic body having radius H, can then be expressed 

as 

                     321 cossinsincossin eeen   ,                               (G.3) 

where ]2,0[   is the azimuth angle relative to the e1 direction in the plane passing 

through the origin o and perpendicular to the e3 direction, and ],0[    is the inclination 

angle that equals the angle between x and y. Also, the distance between x and y, r, can be 

obtained from the cosine law as  

cos222 xHHxr  yx ,                                     (G.4) 

where x = |x| and H = |y|.  
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Note that the surface integral of n)(rf over ∂ is given by 
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where use has been made of the surface element  ddHdA sin2  on ∂. Using Eq. (G.3) 

in Eq. (G.5) leads to 
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Since e3 coincides with the direction of x, Eq. (G.6) can be rewritten in the index 

form as  
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   ,                                      (G.7)                 

where xxx ii /0   is the ith component of the unit vector x0 = x/x (= e3), and t = cos. 

Equation (G.7) is exactly Eq. (G.1) or Eq. (6.45). This concludes the proof of Eq. (6.45). 
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APPENDIX H 

 

In this appendix, the following integral result (given in Eq. (6.46)) is proven: 
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[Proof] After rotating the Cartesian coordinate system with the base vectors 

),,( 321 eee defined in Appendix G into a Cartesian coordinate system with the base vectors 

)ˆ,ˆ,ˆ( 321 eee  (see Fig. 6.3), the unit vector n becomes 
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or, in the index form,  

                    iiii RRRn 321 cossinsincossin   ,                       (H.3b) 

where Rij is the rotation tensor satisfying jiji R ee ˆ and  
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From Eq. (H.3b) it follows that 
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         (H.5)               

Using Eq. (H.4) and the fact that the position vector x coincides with the e3 axis (i.e., 

iieR ˆ33
0  ex or ii Rx 3

0  ), Eq. (H.5) can be rewritten as 
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The use of Eq. (H.6) leads to  
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With the surface element  ddHdA sin2  on ∂ and the unit vector component 

xxx ii /0  , Eq. (H.7) then becomes  
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Using t = cos and Eq. (5.44) in Eq. (H.8) will immediately give Eq. (H.1) or Eq. (5.46). 

This concludes the proof of Eq. (5.46). 
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APPENDIX I 

 

In this appendix, the following integral result (given in Eq. (7.4)) is proven: 

1 1
( ) ( )

2Vol( ) 2Vol( )ij ij ijk ijk ij i j ijk ij kU dV u n n dA      
 

   
   .       (I.1) 

 

From Eqs. (2.5c,d), it follows that  

, ,( ) ( )ij ij ijk ijk ij i j ijk i jkdV u u dV     
 

    .                            (I.2) 

Using the divergence theorem and 0,,,  kjijkjijjij μτ  (see Eq. (2.8), Eq. (I.2) becomes 

,( ) ( )ij ij ijk ijk ij i j ijk ij k ijk k i jdV u n n u n dA       
 

     .               (I.3) 

With the help of Eq. (2.8), Eq. (I.3) can be rewritten as 

( ) ( )ij ij ijk ijk ij i j ijk ij kdV u n n dA      
 

    ,                       (I.4) 

from which Eq. (I.1) or (7.4) is immediately proved. This completes the derivation of Eq.  

(I.1) or (7.4). 
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