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ABSTRACT

Practical Issues in Formation Control of Multi-Robot Sysse (May 2010)
Junjie Zhang, B.S., Dalian University of Technology;
M.S., University of Michigan-Ann Arbor

Chair of Advisory Committee: Dr. Suhada Jayasuriya

Considered in this research is a framework for effectivenfation control of multi-
robot systems in dynamic environments. The basic formataorrol involves two impor-
tant considerations: (1) Real-time trajectory generatilgorithms for distributed control
based on nominal agent models, and (2) robust tracking efeete trajectories under
model uncertainties.

Proposed is a two-layer hierarchical architecture foramive motion control of multi-
robot nonholonomic systems. It endows robotic systems tihability to simultaneously
deal with multiple tasks and achieve typical complex foipratnissions, such as collision-
free maneuvers in dynamic environments, tracking certasirdd trajectories, forming
suitable patterns or geometrical shapes, and/or varymg@dlktern when necessary.

The study also addresses real-time formation trackingfefeace trajectories under
the presence of model uncertainties and proposes robusbttaws such that over each
time interval any tracking errors due to system uncertagdre driven down to zero prior to
the commencement of the subsequent computation segmeobrBidering a class of non-
linear systems with favorable finite-time convergence atigristics, sufficient conditions
for exponential finite-time stability are established amehtapplied to distributed formation
tracking controls. This manifests in the settling time af tontrolled system being finite
and no longer than the predefined reference trajectory ssigeoenputing time interval,
thus making tracking errors go to zero by the end of the timezbo over which a segment

of the reference trajectory is generated. This way the renent of the reference trajec-



tory is properly initialized to go into the trajectory contption algorithm. Consequently
this could lead to a guarantee of desired multi-robot mo&eolution in spite of system
uncertainties.

To facilitate practical implementation, communicationarg multi-agent systems is
considered to enable the construction of distributed foionacontrol. Instead of requiring
global communication among all robots, a distributed comitation algorithm is em-
ployed to eliminate redundant data propagation, thus iaguenergy consumption and
improving network efficiency while maintaining connectyio ensure the convergence of

formation control.
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NOMENCLATURE

inertial coordinate system'_}f), E, I?E)

body-fixed coordinate system'_;(, ﬁ), E:)

mass of the robot platform & r) and driving wheel{ = w)

diameter of the circular robot platform £ ) and driving wheel{ = w)
distance between platform geometric center and center s§ ma
moment of inertia of the robot platform about tEEaxis

polar moment of inertia about the wheel axis

diametral moment of inertia about diameter of the drivingeeih

X/Y coordinate of center of mass in frameX'y

orientation angle of the platform in frand@Xy”

angle/angular velocity of the right and left£ R, L) driving wheels
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CHAPTER |

INTRODUCTION

Cooperating multi-robot systems have received considebention in recent years
due to technological advancements, and a wide range of jdtapplications. For ex-
ample, as claimed by Technology Development Committee anyAunmanned Ground
Vehicles (UGVs), National Research Council: The urgentdnieetransform the current
heavy armor and firepower army into a lighter, more resp@sijective force both to in-
crease combat effectiveness and to reduce the number adfrsgbthced in danger has made
development of practical UGV systems a necessity for futMi@reover, both the air force
and NASA have identified autonomous formations of Unmanned/@hicles (UAVS) as
key technological milestones for the 21st century [1, 2]t Nuited to military field, the
applications of multi-robotic systems can be expanded ¢tude housework assistance,
patient rehabilitation, industrial automation, autondatéghways, geophysical mapping,
facility monitoring and detection, disaster relief, anésp exploration.

In all the aforementioned applications, multiple robots @xpected to work coopera-
tively. Hence, establishing methodologies that can fultggrate and effectively organize
many possible behaviors is imperative. In this regard foiwnakeeping and formation
reconfiguration become vitally important. Moreover, thgrée of errors in formation de-
pends not only on the accuracy of the reference trajectdopledions that are based on
nominal models, but also on the realization of effectivekmag controllers. In [3], a dis-
tributed and scalable algorithm proposed for real-time motation of individual agent ref-

erence trajectories for formation tracking under realidiinamic and actuator constraints

The journal model is IEEE Transactions on Automatic Control



shows remarkable formation keeping and formation recordigan capability. In that ap-
proach the ultimate zero formation errors were achievedsByming no model uncertain-
ties. However, there always exist uncertainties in potdlanodels of actual physical
systems, and it is likely that during each time step of a Ipedh planning for cooperative
motion control, the online incrementally generated rafeeemotion trajectories may not
be exactly tracked in real time. If not carefully done traxgkierrors can accumulate over
each time segment over which reference trajectories ar@utad leading to the ultimate
formation to be significantly different from the desired ofidus to guarantee desired for-
mation control goals in spite of the ever present unceresnit is desirable and almost
necessary to achieve zero tracking errors by the end ofrtieeititerval.

Furthermore, besides the indispensable plant model wicgets, in practice it is al-
most impossible to have noise and latency free data chanRetsnstance, it is probable
that data transmission between agents could be delayedromere sampling periods,
interrupted for extended intervals, or even randomizedaddition, in many works on
formation control, synchronized and global communicai®nequired for practical im-
plementation. Therefore in essence each robot needs to goivate with all the others
in a multi-robot system. From an energy consumption viewpalobal communication
schemes are not cost-effective since they use the maxiarartrission power at all times.
It can interfere and reduce the communication capacity #idemcy of the communica-
tion network. It is also observed that more communicatioasdoot necessarily lead to

faster formation control convergence and may in fact eveulten loss of convergence [4].

A. Review of the State of the Art

Because multi-robot systems have many issues that mustoeamwe over a single robot,

such as scalability, flexibility, fault-tolerance and ceffectiveness, we have witnessed a



significant growth in research on formation control or caagige control. One fundamen-
tal question in formation control is how to prescribe desigéobal behaviors for a multi-
agent system using only local interactions [5—7]. The mieas in the state of the art of
formation control are outlined as follows. There is a coashle amount of literature that
addresses the formation control problem by utilizing thedir-follower idea, for exam-
ple, [8,9]. In such an approach, a group leader is designatadvance with a prescribed
reference trajectory to achieve desired behaviors. Thielefmllower method however has
a pitfall that if the leader fails, then the entire robot netkis paralyzed instantaneously.
Another widely used approach is the real-time reactive eptycsuch as the artificial po-
tential method, wherein a robot’s motion is controlled byaatificial force resulting from
virtual potential profiles [10,11]. Since the artificial patial technique is easy to realize, it
has been often applied to robot navigation. One drawback ik¢hat local potential min-
ima may result in the inability to conduct expected taskg41R], the authors considered a
strategy through which formation behavior is integratethwither navigational behaviors
for various types of formations. There the relative impoct of each behavior has to be
weighted in advance to get the final control. In [13] the atghpresented an algorithm for
geometric pattern formation of multiple autonomous rolawtd characterized the class of
geometric patterns that the robots can form in terms of thédial configurations. Issues
on controller development and stability analysis werewlsed in [14—-17]. Among them
in [14, 15] proposed was a method that used feedback liregamz techniques for con-
troller design to exponentially stabilize the inter-agéistances. Similar results were also
obtained in [17], where formation constraints and contrydpunov functions were em-
ployed to develop formation control strategies and stigtili the formation was discussed
as well. Recently, dynamic model-based formation contes heen studied by integrat-
ing backstepping control system design for asymptotidktrerwith the potential function

approach for collision avoidance [18].



It is well-known that in addition to performance degradatithe manifestation of
time-delays in a system can also cause extra disturbandes/an deteriorate the stability
of the closed-loop control systems. In the problem of foraratontrol the occurrence of
control time-delays is primarily due to inherent inforneattiflow delays when robots are
sensing and/or communicating with spatially separateghiring robots. Sufficient and
necessary conditions were given in [19] for reaching anay@iconsensus in presence of
communication time-delays. By using delayed output feekpb®u and Wanget al. in
[20] proposed a sampled-data predictive cooperative abstirategy for a general class of
dynamic systems that can be input-output feedback linglalezo a given canonical form.
Formation control of multi-vehicle systems under intetent and delayed state data was
demonstrated in [21] by utilizing an abbreviated zero oladd scheme in conjunction with
the potential function method. However, it targeted onhedéir and holonomic systems.
In [22,23] the problem of finite-time consensus control oftimagent networks was studied
based on a finite-time Lyapunov stability theorem in [24].

Not until recently have communication issues of wirelegssee networks attracted
much attention, especially in the computer science comtyputiis key idea is that, in-
stead of transmitting at maximal power, agents collabeggticonstruct a communication
network topology by forming proper neighborhood relatiamsler certain criteria to re-
duce energy consumption and improve network efficiencyevhieserving network con-
nectivity [25, 26]. Several connectivity-preserving coomication algorithms have been

proposed in formation control [27-30].

B. Problem Statement

As discussed above, without addressing the key practioadigningful issues, it is incon-

ceivable that theoretical developments in formation adntan be satisfactorily imple-



mented and executed on real robotic systems. Consequtnislyesearch is focused on
the key issues alluded to earlier that must be addressee isttlaly of formation control.

Namely,

(i) To develop a framework for formation control of multitrot nonholonomic systems

capable of handling multiple tasks

(i) To construct decentralized real-time robust conedlto ensure satisfactory collec-

tive motion of multiple robots subject to inevitable systencertainties

(iii) To relieve global communication requirement in fortiwa control with a local dy-

namic communication algorithm

C. Dissertation Outline

The rest of the dissertation is organized as follows. Chdpferesents a framework for
multi-task formation control of nonholonomic robotic sssts. The problem of stabilizing
uncertain time-delay multi-robot systems with saturatetdators is investigated in Chap-
ter Ill. Finite-time settling real-time formation traclgrcontrols under uncertainties are
considered in Chapter IV. In Chapter V by incorporating alatynamic communication
algorithm, formation control of multi-robot systems sudtj® interconnection time-delays
is discussed. Chapter VI concludes the work with a summagpofributions and a dis-

cussion of future work.



CHAPTER I

A FRAMEWORK FOR MULTI-TASK FORMATION CONTROL OF MULTI-ROBO
SYSTEMS

In this chapter, a formation control methodology for a claissonholonomic dynamic sys-
tems is presented. First, the nonholonomic system is wamsfd into a non-constrained
format that is favorable for control design. Tracking cohts then realized by employing
input-output feedback linearization. Additionally, tha@gration of a two-stage formation
control framework is proposed to simultaneously deal wiVesal tasks, such as collision
prevention, obstacle avoidance, trajectory tracking aatemn formation. The trajectory
planner at the top layer generates desired trajectorigbéaracking controller at the bot-
tom layer. The trajectory planner is based on defined taskctifog functions and a null-
space-based multi-task fusion methodology [31, 32]. Armnoigation method is employed
for each decomposed task. The effectiveness of the propgosethyer framework is il-
lustrated and validated through the successful fulfillnoérat series of desired multi-robot

behaviors.

A. Dynamic Model-based Tracking Control

1. Dynamic Model

Figure 1 is a schematic of the robot platform consideredcivhas two differentially driven

wheels powered by DC motors and one caster wheel (not shotine ifigure). The kine-



matics for this system can be expressed as:

d, d

chos¢ + Ygsimﬂ + 1#5 — (97«71” = Vg, (2.1)
: : d. . dy,

Xycosy + Yysiny — 1/)5 — 917 = Vy, (2.2)

Y,costh — X,sin — ol — By - 35 =0, (2.3)

whereP, is the position vector of the center of maBs= [X, Y,|”, andV; andV; are

the velocities of the contact points of the right and left elserespectively.

7
Y 4

s )
Vi S

N

o

@0

Fig. 1. Sketch of the robot platform

Unlike skid-steered mobile robots [33], nonholonomic doaist of zero lateral veloc-
ity is normally considered for differentially driven mobitobots. Thus for this two-wheel
robot prototype, we assume it has negligible lateral vgjo@r lateral skid) and longi-

tudinal slip, and obtain the following nonholonomic kingmaonstraints in the matrix



form:
C(q)g =0, (2.4)
whereq £ [X, Y, ¥ 05 0;]" and
cosy  siny %T —%” 0

42 y T w
C(q) = | cosyp  siny —% 0 —dw

—siny  cosyp  —l 0 0

The kinetic energy is derived as

. : 1 e
T :%|RO\2 o+ my Ro - (@ % bog) + 50" T

:%(ng + Ygz) + mpl(Yycost) — X ysinab)
1. . Aoy L7
+5 (0% + 1,68 + [La+ma, () + 5] 2, (2.5)

where
Ro = X,In+Y,Tp
: — - — —
= X, (cosypip, — sinp jy) + Yy(sin) iy, + cosy jp)
: S .
= (Xgcosy + Yysin) i, + (Yycosp — Xysin) gy,

w = (H'R—FH.L)ﬂ)—FIbEZ, bog:lz'_;and

Li+me(%)” 0 0
[ = 2 0 I, 0
0 0 Iy+my (%) + L&

ThenLagrangian Principleyields the following dynamic equations of motion for thipéy

of wheeled mobile robotic system:

M(q)j+ Alq,q) = C(q)" X + Br, (2.6)



where
m, 0 — My lstna 0 O
0 my, My, lcosy 0 0
M(q) £ | —mylsing mylcosy Q[Id+mw(%)2+1—éf} 0o ol,
0 0 0 I, 0
0 0 0 0 I,
-—mwhﬁcosw-
—mylp2sing
Alg.4) = 0 B2 Ovez|
0 Isxo
L 0 A

T denotes the control input torquesjs thelLagrange Multiplier andO, I denotes zero
and identity matrix, respectively.
In [34], quasi-velocities) £ [éR éL] are introduced and its differentials d@réaffian

forms in terms of; andt:
g = E(q)9 = i = E(q)9 + E(q)0. (2.7)

As shown in [35], it is always possible to find a matfiXq) € R™*™~™) in thenull space
of C'(q), namely,
C(g)E(q) = 0. (2.8)

One way to construct thi&(¢) matrix is

~C1 7 () Oy
E(g) (¢)C2(q) | (2.9)

I(n—m) X (n—m)

whereC;(q) € R™™ andCy(¢q) € R™ (=™ are sub-matrices af'(q), that is,C(q) =



10

[C1(q) Ca(q)]. Note that the existence @f, ' (q) is guaranteed by the fact that(q) is

full rank: ~(C'(q)) = 3. Therefore, for this type of robotic system,

(5 = 152) (52 4 155)
d

D5+ ) (- )

E(q) = 2 e . (2.10)
1 0
- O 1 -
By augmenting the generalized coordinagesto z = [¢ ]”, and using the following

input transformation
u —[ET(q)M(q)E(q)] " [E"(0)M () E(a)d + ET(q)Alq,d) — E" (q) Br], (2.11)
the nonholonomic system (2.6) can be put into a state spacaf$36]:

&= f(x) + g(z)u, (2.12)

y = h(z), (2.13)

wherez € D C R7, the mappings : D — R” andg : D — R are vector fields oD,

and

2. Tracking Controller

Similar to [37], input-output linearization is applied t@slgn controls for this class of

mobile robots with nonholonomic constraints. With outpit) £ [X, Y,]7 used for
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trajectory, the decoupling matrix(q) becomes

dw cosyp  lsingp dw cos + lsiny
=02 Loty = |05 ) WO (2.14)
(524 520) (2 - )

whereL ) is theLie Derivativealong(.). From [38] a necessary and sufficient condition for

input-output linearization is that the decoupling matriMsnbe full rank, which is satisfied

in this case, since ran€) = 2.

The nonlinear system (2.12)-(2.13) is transferred intoravabform via the new state

transformation:

| Sl(l') ] ] )
sa(z) i 1 n
n
T(x) 2 K P I _;_, (2.15)
C g
h(x) - - I = |
_th(flf)_

wherep = 2 is the relative degree of the nonlinear system (2.12)-(2 498 Appendix A
for calculation. s;(z), i = 1,2,3, are chosen such thdt(z) is adiffeomorphisrhon a
domainD, C D and aSé—?g(x) =0,V x € Dy. The existence (at least locally) ef(x)

is captured by Theorem 13.1 in [39]. Using the above statestoamation, the following

normal form can be obtained

n=fo(n,¢), (2.16)
¢ =AC + BA(2)[u — a(x)], (2.17)
y =C¢, (2.18)

*Namely, bothl’(.) and7T~*(.) are continuously differentiable.
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where¢ € R, 7 € R3, anda(x) andj3(z) are independent of the choice 9fx):

B(x) =LyLi ™ h(x) = LyLh(x) = 2, (2.19)

a(z) == BN (@) Lhh(zx) = —Z7 ' Ly(29) = —=7'20, (2.20)

where in the last step, we use a calculation similar to whah@vn in Appendix A. Ma-
. A A A . . . ~ 02 2 I2 2 ~ 02 2

trices(A, B, C) are in canonical forms given by £ ) “1, B2 ““| and
02><2 O2><2 IZXZ

~

C é |:]2><2 O2><2}'
To achieve trajectory tracking, a state feedback contmlisadesigned such that the

outputy asymptotically tracks a reference sigmét). The reference signail(t) with its

higher derivatives is generated by the trajectory planinatr will be discussed in the next

section. Let
re || 2| andee core |
P pd =0 — P4
and we obtain
n=fo(n,e+R), (2.21)
¢ =Ae + B{f(x)[u — a(x)] — r?}. (2.22)

The choice of state feedback control
u 2 a(x)+ N x)(v+rl) (2.23)
reduces the above normal form into the cascade system:

77 :fo(ﬁ>€+R)a (224)

¢ =Ae + Bu. (2.25)
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With controlv = — Ke, where the gaids € R?*4 s selected such that— BK is Hurwitz,

the control of (2.23) becomes

P, — P!

u=-E"Z9+={ P, - K (2.26)

=0 — Pd
Substituting into Eq. (2.11) and noticing th&t (¢) B = I,«», the driving torque is then
obtained as

7 =[E"(¢)M(q) E(q)]u+ E" ()M (q) E(q)9 + E" (¢)A(q, §). (2.27)

Besides, the internal dynamics is

on(x)

n= o f(z) = FEY = FEZ7'(,, (2.28)

é on(z) ]5><5

whereF 5
T
02><5

. Therefore, the zero dynamics

0= fo(n,0) =0 (2.29)

indicates that the internal dynamics is bounded fot &l0.

B. Trajectory Planner

In this section, to accomplish desired behaviors of malbiat systems, a null-space-based
methodology [32,40] is first summarized and then utilizethtegrate and prioritize multi-
ple specific tasks. These tasks are accounted for by defirseges of objective functions
along with the desired behaviors in the task space. Noterhhe rest of the chapter n

denotes the number of robots in the multi-robot system.



14

1. Null-space Method

The objective function for a given taskis denoted as

J (t) 2 f(PL(t),... P(t),... P,(t)), (2.30)

whereP;(t) is the position vector of robat defined asP;(t) = [X;(t) Yi(t) Zi(t)]" € R,

Taking the derivative of Eq. (2.30) with respective to timave obtain

o - 8Ja<t) 5
il

Ja(t)
The desired velocity vector for tagkcan be obtained through

VA £ Pt = (1) J2(8) £ T (8) [@a()®L ()] 1 J2(1),

a

where the superscrigtdenotes pseudo-inverse afg(t) = gﬁgg gﬁg)) g}ﬁa((?) .
1 7 n

Then the desired position vecté!(t) can be acquired by numerically integrating(¢).
To avoid numerical drift,/¢(¢) is replaced by shifting with position error. This leads te th

following discrete time version:
VAk+1) = O (k + 1) [@,(k + DO (k + 1)] 7 [J4k + 1) + Aadaye (k + 1)],

where position errod,,. (k+1) = J4(k+1) — J,(k + 1) andA, is a gain matrix with ap-
propriate dimension. This in turn leads to the desired vglaector for multiple different

tasksa, b, c, etc!:
Vik+1) = VHk+1)+ [I -l (k+ 1)®,(k + 1)]

x {Vbd(k: F 1) 4 [T =@k + 1)@k + D] [V +1) +..] } (2.31)

TTask priorities are a-priori. Taskis assumed to have the highest priority, then comes
taskd, which is followed by task;, etc.
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Using Simpson’s ruldor smoother trajectory,
Pi(k) = %At (VA — 1)+ 4V4k) + VUK + 1)] + Pk — 1), (2.32)

whereAt is the integration time step.

The idea here is that the desired velocity vector for a lowgnrity task is projected
onto the null space of the desired velocity of the immedyateher one to eliminate its
interference with the higher priority task; see Appendixd flerivation. In this way,
the highest priority task is always fully accomplished, hihe immediately lower one is
partially completed by keeping its velocity component egticular to the velocity of the
highest priority one, instead of being completely shut dolivthere are more tasks, then a

hierarchical structure is enforced based on priorities.

2. Objective Functions

How expected tasks may be integrated and prioritized byuHespace-based approach are
described through a series of objective functions thatespond to the desired behaviors

in the task space in what follows. Some typical formationsioiss are highlighted.

a. Collision Prevention

In most work on rigid formation keeping, such as [41], a keynpds that random ini-
tial conditions do not guarantee the avoidance of intertigellision during the transient
phase before stabilizing into a formation pattern. A neviisioh prevention mechanism is
introduced here to resolve this issue.

Define the following objective function of collision avoidee for robot

Jop = In(u||P; — P, (2.33)

J#
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where|| || denotesEuclidean normandu € R* is used to adjust the internal distances

between robots for a given desired objective function vdﬁ,;eA: d., € R*. We obtain

P — |0Jep 0oy Oep ey Dep Dep
cp X, 0y, ' 80X, 0Y;, "' 0X, 0Y, |’
where )
2(X;—Xi) TN
OJep ) PRI ifj # 1,
0xX,
J .
QZI#Z e PII2 otherwise
and )
2(Y;-Yi) oy
OJep ) PP ity #1,
v,

—2>7% it W otherwise
The above proposed objectlve function is inspired by thaidibigmic barrier approach,
which was first proposed in [42] and further developed in §43, This method transforms

the nonlinearly constrained optimization problem into asanstrained one by construct

ing a sequence of logarithmic barrier functions. Noticeehiiwat the objective function,
which one may label the logarithmic two-body potential, usitowith regard to each robot
by adding up all the distances between it and the other rehtitsr than distinguishing the
internal distances between two robots one pair at a time. W/ kf any two robots occupy
the same spot at the same time, then collision would occutlaadbjective function of
collision avoidance/,,, defined in (2.33), would go infinity. As illustrated in SextiC as
follows, a proper control gain for collision preventiah,,, can drive and confiné,, to a
given desired finite valué.,. Thus this prevents robots from colliding each other. This
treatment can also tremendously lower the computationaldmy especially with a very
large number of robots, and is favorable for real-time impatation. In most practical
circumstances, the ultimate internal distances betweem gair of robots are not required

to be accurately constrained to be at certain fixed valueshwee rigid formation. The
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above objective function secures the in-between distaiodes non-zero and within a cer-
tain range to ensure that collisions would not happen. M&dewthe proposed objective
function also guarantees that no robot would escape frontetima so that they can work

cooperatively as a whole to conduct given tasks effectiaaly efficiently.

b. Obstacle Avoidance

The objective function of robatfor obstacle avoidance is defined as the distance between
it and the obstacle
Jisoa = || P — Foll, (2.34)

where P, is the position vector of the obstacle. Thép, = ¢, 7 and®!, = ¢;, where
e; & JT,;P The desired objective function value is specified/as, £ 4, € R*, which
is both the desired objective function value and the threstocactivate the task to achieve
obstacle avoidance.

Note that the objective function for obstacle avoidanceuidt individually for each
robot and is not an objective function for the whole multbod system, and it is activated
solely in the bounded sensing region of each individual toBoe of the attractive features

of the above obstacle avoidance scheme is its ability tocserfiily avoid obstacles, as long

as the obstacle is detected by any one of the robots.

c. Mean of Formation

The overall multi-robot system is taken into considerati@ne by defining the following

mean of formation function

Ao o s 1
Jm=P2[XY 7T & - ZB. (2.35)
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Accordingly, ®.,, = 2[I1...1;... I,)sx3, Where®! = n®l andI; denotes identity
matrix. J¢ £ P¢ £ [X?Yd Z4T is the desired objective function value.

By defining the above objective function as the center of ptagswhole multi-robot
system can be regulated to a target position or made to trackdefined trajectory. In

other words, it lends itself to local control of the multibat system.

d. Variance of Formation

Define variance objective functiod,, as

Jo ==Y (P,—P) (2.36)

Then,®, = 2 {51...5i...5n},

X,—X 0

whereN; & | 2 (Xi=X)?
0 e
i (YimY)?

By changing the desired objective functioff. € R2*!, the diffusion of the multi-
robot system will vary accordingly, namely, how big is thenf@tion or to what extent to

deploy the multi-robot system.

e. Rigid Formation

DenoteP, = [ry...7;...7,)T, wherer; is the position vector of robatwith respect to the

center of mass of the multi-robot system. Then define thevotlg objective function for
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rigid formation task,

JLA2E o) o]+ 1D (1] +(B |0])® |0] =P @ Usper, (2.37)

where® denotes<ronecker producandU is unit matrix.

In this case,

Mnxn Onxn Onxn
1
(br = Onxn Mnxn Onxn ’ where M £ Inxn - _Uan'
n
Onxn Onxn Mnxn

The desired objective function is specified.Bsc R***!. Then it is said that the multi-

1 1 0
robot system converges to formatidfi(t) ® Jf J.(1) ® + %{Jr(t) ® } —
0 0 1

1
J4t) ® — 0, ast — oo.

0
Additionally, through varying the desired objective fuct, formation reconfigura-

tion can be thus accomplished.

f. Chasing

Chasing can be achieved by combining the following two sgix4.

(a) Circle Formation Define this objective function asrar 1 vector,

T
Je= ... Y P, —P)'(P,—P),...| : (2.38)
whereP., is the position vector of the center of the circle. Thép= blockdiag(. .., (P; —

P)T,...)and®] = blockdiag(. . ., %, ...), which isn x 2n and2n x n diag-
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onal matrix, respectively. The desired objective functoi? =S %Unxl, wherer € R* is

the desired circle radius.

(b) Regular Polygon Formation Similarly, define the obpfunction as

n—1

Jop = |1Pa = PA|* + ) ||Pia — Bl (2.39)

=1
Accordingly,®,, is al x 2n row vector,

_ - T
(P —P)" + (P — P,)"

(Po—P)" + (P, — P5)"
Oy =21 (P,— Py)" + (P — Piy1)”

(Pn—l - Pn—2>T+ (Pn—l - Pn)T
(Pn_Pn—l)T+(Pn_P1)T

The desired objective function is defined &5 < n[QRsm(%)}z, whereR € R* is the
circumradius.

Consequently, by incorporating the above defined objeétinetion, mean of forma-
tion, a moving target can be successfully chased and caught.

For formation control purposes, a two-layer hierarchicehdecture is proposed; see
Fig. 2. The tracking controller is the bottom layer, wherdeastrajectory planner is the
top layer. Based on the defined task objective functions laadnulti-task fusion scheme,
the trajectory planner generates motion reference inputthé tracking controller. Thus,

complex missions of a team of robots may be successfullyeaeHi
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ETraj ectory Planner

;Tracking Controller

Fig. 2. A framework for formation control

C. Case Studies

In this section, as an immediate illustration and applaabf the proposed methodology,
a series of realistic case studies are presented to vegfgftactiveness of the introduced
framework for formation control and also the incorporatgdaimics modeling and tracking
control design strategies. The parameters of the nonhol@mmbotic system and also the

selected control gains are listed in Tables | and Il, respelgt
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Table I. Parameters of the robotic system

m, 32 kg
My 1 kg
d, 1.5m
dy 0.3m
l 0.6m

I, | 15.625 kgm?
I, | 0.005 kgm?

I; | 0.0025 kgn?

Case 1:

In this case study, from any initial distribution, multiptebots are required to arrange them-
selves into a desired regular polygon pattern and trackcalair trajectory while avoiding
both inter-agent collisions and obstacles in the enviramme

Figure 3 shows three robots that are randomly posed arougith @rea (plus sign)
successfully accomplish the tracking circle task (dashdej without any inter-agent col-
lision, even during the transient phase before stabilirmg formation. Furthermore, an
external obstacle (solidline) is avoided when it is presamd trajectory tracking is lowered
from the 2nd to the 3rd priority. Collision avoidance is ajwassigned the highest prior-
ity. Figure 4 shows the internal distances between robdig;willustrates that the three

robots, while tracking the circular reference trajectagproximately form an equilateral
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Table Il. Selected control gains

K 810 0 126 O
0 810 0 126

Collision Prevention), 10
Obstacle Avoidance),, 10
Mean of FormationA.,, Ioxo
Variance of Formationj,, 0.21549

Rigid Formation A, 0.1110x10

Circle FormationA. I3y 3

Regular Polygon Formatiom,,., 1

triangle. Note that even when avoiding the obstacle thenatedistances are bounded
within a certain range: The lower bound prevents collisang the upper bound constrains
the formation to be in cohesion and guarantees no robot westdpe from the team.
This result demonstrates the effectiveness of the propocsiéidion-prevention approach.
Smooth curves in Fig. 5 are the transients of the right arietteftrol inputs of each robot.
This satisfactory performance demonstrates the effeatis® of the above tracking control
design.

The proposed framework is scalable. One simulation withrédots in an obstacle-
free environment is shown in Fig. 6. A change in the tasksggavenore interesting ob-

servation as shown in Fig. 7, where each robot travels altsngwn circle while simul-
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Fig. 3. Three robots track a circle avoiding inter-agenlisioin and external obstacle.

taneously forming a rigid circle formation (dashed line)osh center tracks the desired
circular trajectory (dashdot line). Although it is desiathat multi-robot systems should
self-organize themselves into fixed patterns, it is pratifianore beneficial to accommo-
date scenarios that some robots can loiter around theillegum states to acquire more
sensor readings. Such enhanced sensor network capahititiecachieved by averaging

the measured data as they cover their local neighborhootiteitimes.

Case 2:

Two snapshots (Fig. 8) give an appealing and practicallyminggul case—chase a moving
target. Three robots (solid circles) cooperatively andraygpgly steer themselves such

that their center of mass always falls onto the moving quioitys sign). At the same time
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Fig. 5. Control input torques
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Fig. 6. Ten robots track a circle avoiding inter-agent sadin (., = 10 andu = 0.1).

the "net”, the circle on which the three robots uniformlytdisute, is gradually drawn in
until the prey is captured.

In this case study, three of the above defined objective iimetre applied: mean of
formation, circle formation and regular polygon formatidine priorities are also assigned

in this order.

Case 3:

In dynamic environments, especially when passing throggtam areas, members of the
robot team may need to change their relative positions im&bion in order to avoid haz-
ards, subsequently resuming the deployment pattern agde&luich a scenario is illus-

trated in Fig. 9. A team of robots adaptively congregate sgedues to tunnel through when
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Fig. 7. Ten robots track a circle forming a rigid circle fortioa (d., = 100 andy = 1).

moving forward. Figure 10 shows the smooth gradual transesponse of the objective

function, J,, relative to the desired one (solid line).

Case 4:

In this simulation, multiple robots are required to track-specified spatial paths while
both reconfiguring inter-robot formation patterns and digg obstacles. Formation re-
configuration is demonstrated in the snapshots of five robmiton evolvement (Fig. 11-

Fig. 15). While their center of mass tracks a sinusoid cuhay start from point formation,



15
101
57 . ‘.
_ N
B i\
> oot o
0 N , e
o \+J/
_5,
o .
-10
-10 -5 0 5 10 15 20
X (m)
()
15
10
5,
/ N
B ;N
£ \ -
= Y S
\ ‘/
_5,
_10,
-10 -5 0 5 10 15 20
X (m)

Fig. 8. Chasing a moving target: (a) t=5.15 sec, and (b) 84L5ec.



Y (m)

150

100 —

=100 —

-150

100 200 0 500 600
X (m)

Fig. 9. Six robots pass a tunnel.

200

180

140~

120—

80—

60 ;¢

40

20

E 100

1 1
25 30

)

20

Fig. 10. Objective function of variance of formation

29



30

then change to wedge, followed by line and pentagon pattefasthermore, obstacles are
properly avoided. In terms of task priority, obstacle aamice is assigned the highest, then

tracking, which is followed by formation reconfiguration.

100 b

Y (cm)
o
\
/
‘/
\

50+ - . a

-100 b

-50 0 50 100 150 200 250 300 350 400 450
X (cm)

Fig. 11. Point formation (t=6 sec).

iThe desired formation pattern is predefined by expressioly edot’s position vector
relative to the center of mass.
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Fig. 12. Wedge formation (t=18 sec).
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. Line formation before colliding with obstacle (6:37 sec).
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Fig. 15. Pentagon formation (t=37.4 sec).
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CHAPTER III

MULTI-TASK FORMATION CONTROL OF MULTI-ROBOT SYSTEMS WITH
DYNAMICS UNCERTAINTIES AND CONTROL TIME-DELAYS
For practical implementation of the formation control fmork developed in the previous
chapter, we propose in this chapter a systematic and pmdaisign procedure for control-
ling collective motion of multi-robotic systems subjectdynamics modeling uncertainties
and control input time-delays. First, modeling uncertamand input time-delays are intro-
duced into this class of time-varying nonlinear system$22(2.13). After transforming
into a perturbed system, a robust compensation trackintyaltar is proposed and justi-
fied based on Lyapunov stability theorem. The compensatadmsyeffectively suppresses
the perturbation effects to guarantee robust stabilith tacking errors exponentially con-

verging to a bounded residual set.

A. Robust Tracking Control

To make the problem more realistic, during the following cgleling and robust control de-
sign, modeling uncertainties and control time-delays avedht into the previously treated

nominal system (2.12)-(2.13):

= fla(t) + g(x(t))ult — 7) + S(a(t), u(t — 7)), 3.1)
y(t) = h(z(t), 3.2)
whereX(z(t), u(t — 7)) =4 f(z(t))+ A g(z(t))u(t — 7) andis time constant. This is

similar in spirit to early work in [45], which investigatedutput tracking control of this

class of nonlinear systems with mismatched uncertaintBag. it did not consider input
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time-delays.

First, the external dynamics are obtained as

96y dw Ohdx

S Ordt Ovdt
=Lsh(x(t)) = 02(x(t)) = G(1), (3.3)

Gi(t)

. 00y dr  OLhdg
)= % = or @
=L57 () = d,(x(1)) = G(1), (3.4)
90,dr  OLYhdx
WO~ d = or @
=LOh(x(t)) + Ly Ly h(a(t))u(t). (3.5)

The internal dynamics are as the following:

i) =25 (F(a(0) + glal0)u(r)

=L;8;(w(t)) + Lydy((t))u(?)
Thus, the transformed nominal system has the followinggstpace representation: Thus,

combining equations (3.3)-(3.6) the transformed nomigatesm has the following state

space representation:

Go(t) =Lih(x(1)) + Ly L5~ h(a(t))u(t), (3.8)
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where((t) € R™ andn(t) € R"~™*. Note thatm is the dimension of output(t).

Accordingly, the linearized nonlinear state feedback e@méw can be derived as
ult) = [LyLh  h(a(8)] [ = Loh(x(t) + 0(2)]., (3.11)

whereu(t) is the newly introduced control to be designed for signalkireg. Applying the

above transformation and control design to the perturbstény(3.1)-(3.2) yields

) =Gt + T

(X(x(t),u(t —7))) (3.12)

) AL *h(x
s =60) + Lt (a0, - 7)) 313

. OL ' h(z
Cp(t) =0(t) + % [S(z(t),ut — 7))

+g(x(t))(u(t — 1) — u(t))] (3.14)
() =LyAi(a(t) + 5258 (S(a(t) utt = 7))
20 (G0 1(0) + 525 (et u(t = 7) (3.15)
in-n(t) =L yfa(0) + 51 (S(alt) ut = )
(G0 (0) + s (a(t) e = 7)) (3.16)
Namely,

¢ = AC + Bo+ o Q(z,u,u(t — 7)), (3.17)
7 :p(C}n)ﬂL A \I/(:L',u(t—T)), (318)

y = O, (3.19)
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T
WhereB:[() 0...1} ERP“,C‘zll 0...0}61&1“,

010 -~ 0
001 - 0 Lot 3, u(t — 7))
oz )
A= CRP AT = ,
000 .- 1 Pon 33 (2, u(t — 7))
0 0 0 0]
ag—?Z(x, u(t — 1))
AQ= »
W D5 ult — 7))
AL h(x)
— [Z@wﬁ—7ﬂ+gwﬂwﬁ—ﬂ—UGm_

Note thatar ¥ € R(=2)*1 gnda Q € RP*L,

For tracking control purpose, we define tracking errors, & ¢; —~1 € R™ where

r is reference trajectory and= 1,2, --- , p. Then
é=Ae+ B0 —r?)+ A Q, (3.20)
n=p(C,n+ AoV (3.21)

Controlo(t) was postulated as follows
0=rP) —ciey — cgeg — -+ — Cp€p + Uq, (3.22)

wherecy, - - -, ¢, are chosen such that + ¢,s”~' + - - + cas + ¢ is aHurwitz polyno-
mial with the resulting closed systef., 3) controllable. Heres is the Laplace operator.
Notice that in order to compensate perturbations, an axfditirobust control term,(¢) is

brought in.
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Hence, we obtain the closed-loop system as follows:

é = Ace + Bug+ A Q(z,u,u(t — 7)), (3.23)
n=np,n)+ A Y(z,u(t—71)), (3.24)
where ~ .
0 1 0
A 2 : : c € RP*P,
0 0 1
_—Cl —Cy —Cp_

The robust control objective is to design a robust feedbaokrol law such that despite
the effects of perturbations resulting from system unaaies and input time-delays, the
desired output trajectories of the closed-loop system @teashieved while maintaining
the boundedness of all signals. To this end, it is known thatlj, 3) given in system
(3.23) is controllable, then for any symmetric positive digd matrix (spdmjy) € R™>"?

the algebraic Riccati equation
ATP+ PA.+Q —~yPBB"P =0 (3.25)

has a solutior? € R™*™ which is also a spdm. Then this particular matrix is utilize

propose the following local state feedback controller:
u, = —kyBT Pe, (3.26)
where the decentralized control gdirsatisfies
I
=5+ ; Ki (3.27)

and depends on dynamics uncertainties, which will be addcem the following.

Before stating the main theorem, the following conditioresgiven.
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(C1): The trajectory planner guarantees the reference sigheand its firstp deriva-
tives are all uniformly bounded b, € R*, namely,||r(t)|| < B,, fori=10,1,---, p.

Then
Gl < [led]| + B (3.28)
(C2): As discussed above, the internal dynamj€s) in nominal system (2.12) is

stable. Moreover, by Lyapunov converse theorem [39], asstiiare exists a Lyapunov

functionV;(t) : R"* — R* that for somey; > 0 (i = 1, ...,4) satisfies

DI < Vin(®) < xalln®)|P (3.29)
S0, 1(6) < xallo)I P (330)
M < e (331)

(C3): For uncertainty terma 2 andA W, unlike most work on control of time-delay
systems where matched conditions are a prerequisite, leemnly assume less conserva-

tive mismatched conditions. Suppose there exist; € R™ (i = 1,2, 3) such that

12P & Qx, u, u(t — 7)) < ma S]] + w0l + As, (3.32)
o W (z,ut — 7)) < elld]] + elnll + e, (3.33)

whereP is defined in (3.25). Moreover, if(¢(t), n(t)) is Lipschitzin {(t), then it is known
that the following holds:

[p(¢(#), n(t)) — p(O,n()I < LICHI], ¥ n(t) € R*7, (3.34)

whereL € R*, aLipschitzconstant ofp({(¢), n(t)) with respective t@ ().

Theorem A.1. For the uncertain nonlinear system (3.1)-(3.2) with cohirput time-
delays satisfying conditions (C1)-(C3), under control 168\22) and (3.25)-(3.27) there

exists* ande* forall 0 < 1 + x; < min(2minl® )k, € (0,5*] ande; € (0, €3] such that
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the states of the closed loop system (3.23)-(3.24) are nmiydoounded. Furthermore, the

output tracking errore(t) converges to a residual set

T, 2 {e(t) € R™[V(e(t)) < kI'b.}

)\min Q — Rk — :
g\mix(P)l 2 and be £ (K,QBZ')Q + (KllBr + 1‘63)2.

wherek, =

Proof. See Appendix C. O

As a demonstration and verification of the presented renmagl@ind robust control
schemes for the perturbed nonholonomic robotic systempitbielem of coordinated tra-
jectory tracking is reconsidered. We employ the previodslyeloped two-stage hierarchi-
cal architecture for formation control and incorporatedbeve dynamics remodeling and

robust tracking control design into the bottom trackingtcolter layer.

B. Case Study

The lumped nonlinear perturbation in system (3.1) is matlake

w1

w1
wa|1 — sina)|
S(w(t),u(t — 7)) £ @3 (0 + 01) )
ws(cosilr + sinabfy)

ug(t — 7)ws

ur(t —7)|cosy|
wherew; andw, are uncertain parameters that randomly lie within [-0.@8pand [-0.1
0.1], respectively. Sampling period ist = 0.1 sec andr = 6At. The selected control

gains are listed in Table Il
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Fig. 16. Three robots track a circle avoiding inter-ageritision and external obstacle
(d., = 10 andy = 1): (a) without robust contral,, and (b) withu,,.



Table Ill. Selected control gains with time-delays
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Fig. 18. Delayed control inputs

As indicated in Fig. 16(a), without augmented robust cdnirg the desired forma-
tion mission cannot be achieved. However, by includiggsimilar with the scenario of
Case 1 in pervious chapter, figure 16(b) shows that in spiteefppearance of pertur-
bations three robots that are randomly posed around origia @lus sign) successfully
accomplish the tracking circle task (dashdot line) withamy inter-agent collision, even
during the transient phase before stabilizing into fororatiFurthermore, an external ob-
stacle (solid line) is avoided when it is present, and ttajgctracking is lowered from the
2nd to the 3rd priority. Collision avoidance is always assigj the highest priority. Fig-
ure 17 shows the internal distances between robots, whidirétes that the three robots,
while tracking the circular reference trajectory, appnoately form an equilateral triangle,
though the multi-robotic system is subject to dynamics nindeincertainties and control
input time-delays. Note that even when avoiding the obst#et internal distances are
bounded within a certain range: The lower bound preventsmoi, and the upper bound

constrains the formation to be in cohesion and guaranteestwd would escape from the
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team. This result demonstrates the effectiveness of theogeal collision-prevention ap-
proach. Smooth curves in Fig. 18 are the transients of th# agd left delayed control
inputs of each robot. This satisfactory performance demnates the effectiveness of the

Lyapunov-based local robust tracking control design.

C. An Afterthought: Actuator Saturation

Another issue possibly encountered when implementingaimedtion control algorithm on
real robotic systems is control input saturation. Consetiyethis research also considers
an investigation of robust stabilization of a class of lasgale networked robotic systems
subject to multiple time-varying state delays in the intentections, parameter perturba-
tion uncertainties and also saturated actuators. Dedigetianemoryless state feedback
control is studied mainly via the Lyapunov-Krasovskii ftinoal concept. By checking the
Hamiltonian matrix and solving an algebraic Riccati equticontrol gain matrix can be
obtained to achieve global asymptotical stability of tHesse of large-scale interconnected

dynamical systems.

1. Problem Formulation

Consider a class of large-scale multi-robot systéht®mposed ofV robotic subsystems
Si, i =1,--- N, described by the following perturbed linear differentlference dy-
namic equations with saturated control inputs:
& (t) =A;xi(t)+ A filzi(t), t) + Z Ajjxi(t —75(t))
JEN;

+ Bysat(u(t))+ A gi(sat(u(t)), 1), (3.35)

Wherexi(t) £ [PZX Piy PiX Piy]T € R4; Ul(t) £ [Ull(t) uig(t)]T € Rz; A fl() : R4 X

R — R* represents unknown parameter perturbation uncertaimtiish can be constant,
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linear, nonlinear, and/or time-varying, but is bounded|as f;(z;(t),t)|| < a||zi(t)

wherewo; € R*; 7;;(t) € R is unknown inconsistent state time-delays, occurring evhil
roboti sensing or communicating with neighboring rooin order to achieve desired
formation; setN; refers to the neighboring robots of robotsat(u;(t)) € R? symbolizes
actuator saturation and ¢;(-) : R? x R — R? represents perturbed control inputs, which

is bounded af A :qi(sat(ui(t)),t)H < Bil|sat(u(t))||, wheregs; € RT;

0100
T
0 a 0O 01 00
A & andB; £ :
0 001 0 001
0 0 0D

where&, be R A_Z-j are constant matrices with appropriate dimensions.
Note that in the following analysis, the arguments of fumesi may be omitted when

no confusion arises.

2. Control Design

The saturation function is defined as follows:
(

Us if U < Uz(t) < Umaz

sat(u;(t)) £ wi(t) if —us < uit) < us, (3.36)

—us I —Upae < wi(t) < —us.
\

Most of the work considering saturated actuators in theditee simply assumes the non-
linear saturation is inside the sector 1|, which leads to conservative results. Here we

consider only a finite part of the actual system operatien,inside the sectdr, 1], where

*Without loss of generality, here choose a=b=0 to have typicable integrators.
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0 < a < 1, as illustrated in Fig. 19. Moreover , this implies

a—+1 a—1
[sat(ui(t)) — ——w@)]| < [|—5—w@)l]. (3.37)
A
sat(ui(t))
sector [a, 1]
i | A /}
| |
/}/ % sector [0, 1]
| r
| |
: 1 1
-Umax=-Us/a -Us y arcitan a) i i R
i } | Us Umax=Us/a ul(t)'
| |
| BN
| e
|
3 A S
|
1 ]

Fig. 19. Saturation functiosat (u;(t))

For this class of large-scale systefmcluding delayed states in the interconnections,
the objective is to introduce a decentralized local menemylstate feedback controller

u; = —K;x; for each subsyster; such that the overall system with parameter pertur-
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bation uncertainties and saturated controls is globadpibzed. Note that the feedback
controller only intends to utilize local delay-free statesl does not include any delayed
state information of neighboring robots, thus the requeetrof the knowledge of time-

delays is certainly released. Hence, we have the followiogecl-loop system:

i) =(A— o

+ Y Ayt — 7)) + By[sat(ui(t))

JEN;
a+1
2

wi(t)]+ & gi(sat(u(t)),t). (3.38)

The above equation can be further formulated into

. a+1
JEN;
a+1

a+1
:(Az — TBZK ).TZ< )"‘ A fz .TZ + Z AZJ.T]

JEN;

t a+1
— Ajj Aj — ——B,K;)z,(s
]gi /t_T”(t) {( 2 o)
+ A fi(x(s Z Ajprr(s — Tir(s)) + Bj[sat(u;(s))
_a ; 1uj<3)]+ b gi(sat(u;(s)), s) pds + By [sat(ui(t))
ot Lus®)]+ & gilsat(ui(t)), ). (3.39)

Before giving the main theorem, we need the following lemma.
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Lemma [46]: Given the Hamiltonian matrix defined as

.| A BB
H = ,Where~y > 0.

—~I —AT

(i) A is Hurwitz, and
(i) H has no purely imaginary eigenvalues,

then the algebraic Riccati equation
ATP + PAT + PBBTP = —~1I (3.40)

always has a symmetric positive definite solutidpwherel denotes identity matrix.

Theorem C.1. If the local state feedback gain matrix; is selected such that the above

Lemma is satisfied, where

a+1

AZS A — B K] (3.41)
and
BB" = Z [Az'j[Aj - aTHBjKj] a; Ajj \/MAU

Jlej—Via

g WA By BV Ay /TNl (342)

and

7 > 204 |Pl| + (1 = a) || PBil[[[ K| + 26| | P K]

+ Z (472 + (| Ay P)p; + Z 05l Ajel Ppr] (3.43)

jENi k‘ENj
then the class of large-scale multi-robot systesh€onsisting ofV subsystems (3.35), is

globally asymptotically stable.

Before proceeding to give the proof of the above theoremfdhewing conditions



48

are needed.
(C1): According to the well-known Razumikhin Theorem [43&finelV () = ()T P(-),

whereP is the solution to the algebraic Riccati equation (3.40( e assumption that
W (x;(t —7i;())) < W (x4(t)),
whereq > 1, we obtain

[l (¢ = 75 ()] < gpll; (D], (3.44)

wherep £ i” (See Appendix D for derivation). The above condition clatiret if

delay-free states are bounded, then the correspondingedietames are also bounded.

(C2):dpj,pr > 1, wherej € N; andk € N;, such that
|| (O] <p;ll: @)]], (3.45)

w (O] <prlle; (O] < prpslle: (0] (3.46)

Namely, neighboring robots perform similarly as a whole dnchot have great disparity

in motion behaviors.

Proof. To investigate the stability of each closed loop subsystgmvhich contains mul-

tiple state time-delays in the interconnections, intredad_yapunov-Krasovskii function

vilt) 22T (1) Pay(t) + 4 Z / / 5)dsdr

fX Yl [ [ dease @

JEN; kEN;

v;(t) of the form:

whereP satisfies equation (3.40) and< 0.
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With the aid of formula

d

bt b (5 "
G s = [ Db o0 B0~ .00, @ae

o Ot dt dt

differentiatingv; along the trajectory of closed system (3.39) yields

v; =i () Pa;(t) + z;(t) Pal (t) + 4 Z Tij [Tijx;fr(t)xj (t) — /t_ x?(s)xj(s)ds}

JEN; i

+ Z Z Tl | Al [7ijk (£) 2k () — / o . (8)zy(s)ds], (3.49)

JEN; kEN; t—Tij Tk

in which

i} (t)Px;(t) + x;(t) P (t)

a i\ T a B, K;
=T {[4: - %] P+ P[A; - %} b

! a+1
—2) @ PA; / {(Aj — —5 BiKj)z;(s)
t Tij

JEN;
+ 8 filws(s),s) + Y Apan(s = Tls)) + Bj [sat(u;(s))
kEN;

a ;L 1uj(5)}+ A gj(sat(u;i(s)), s)}ds +2 Z xl PA;jxi(t)

JEN;

a+1

+2x] P A f; + 2] PB; [Sat(ui) — ul} +22TP A g, (3.50)

Moreover, under assumptiofjsa f;(z;(t),t)|| < a;l|z(t)|] and|| A gi(sat(u,(t)),t)|] <

Billsat(u;(t))||, inequality (3.37), and also the inequali?yp < % + cb?, for anya,b € R
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andc > 0, one obtains

t
1
2xZTPAU/t (AJ — %BjKj)l’j(S)dS

—Tij

t a+1
<2 o] PAij(A; — —— B, K))||[lz;(s)||ds
t 2

1B K; 1)B. K
<alPA[A; - %} A — %}T&ijxi
t
—l—n-j/ x} (s)z;(s)ds, (3.51)
t

—Tij

t

27 PA;; / A fi(z(s),s)ds
t

—Tij

t
<2 / a7 P A 505 ds
t

—Tij
t

< a?x?PAijAz;Pxi + Tij/ x;*-r(s)xj(s)ds, (3.52)
t—Tij

t
21T P A, / > Ajpe(s = ms(s))ds
t—

Tij kJENj

t
<2 31 PA [ Asellleets = () lds
kEN; =i
t—Tjk
keN; 1=Tij —Tjk
t—Tjk

keN; E=Tig=Tjk

where|N;| denotes the cardinality of the neighboring 3&tof roboty, i.e., the number of



members ofV;, and the same goes foF;, which will appear subsequently.

t
227 PA,; / B, [sat(u;(s)) — “'51%(5)}613
t

—Tij

L 1—a

2 / 5 1 PAG B[] (s)]lds
t

2

) HKJ'HQ%TPAMBJ‘BJ'TA?J‘P%+Tij/ ;] (s)x;(s)ds,

J

1—a
2

<

t—Tij

t

2I?PAZJ/ A gj(sat(uj(s)), S)dS
t—Tij
t
< 2] PA; Billu;(s)|lds
t—Tij4
t
<2 Bill K[l P Ayl ||| (s)|ds
t—Tij
t
< ﬁi2||Kj||2x?PA,-jA;§Pxi + Tij/ x;‘r(s)zj(s)ds,

t—Tij

JEN;
<23 |l PA e, ()]
JEN;
< (@T PP + || APl (1)]2)

JEN;

= [Ni|z{ PPz + ) || Ayl[Pllz; (DI,

JEN;
267 P A f; < 204l |2T Pl < 20| P s ] 1P
z; P A fi < 20|20y Pl||]a]| < 204 Pl|[24]]7,

a+1
2

< (L= o)l PBil[[ K] | < (1 = a)[|[PBy| || K]l

2] PB;[sat(u;) —

i
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(3.54)

(3.55)

(3.56)

(3.57)

(3.58)



52

22 P & gi < 28| PI||| Kzl | < 28| | P[] K|l . (3.59)

Then,

i, <al {[a, - CHIBEGTp  ppg (X UBE,

+Z TPA[A (a‘l'l)BjKjHAj_ (a+1)BjKj}T

2 2
JEN;

X A?;Parl + ofa] PA AL Pr; + |Njla] PAy Al P

1—

+ G aT PAG AL Prs + (475 + || Ay |2 llas (0]
+ > 72l Aul Pz} + |NifaT PPa;
kEN;
+ [204] [Pl + (1 = a)l[PBl|| Kl | + 26| P[]l (3.60)

Based on equations (3.40)-(3.42), it follows that

0 <Y {47+ APl P+ Y 7l Ael Pl ex] 7]

JEN; keN;
+ [ =7+ 204 [Pl + (1 = a)|[PB[[[ | Kil| + 26| P [ Kl [] ] (3.61)
(C2) implies
v < —wl|zil|?, (3.62)

where

w £y = 204||P|| = (1 = a)||PBi| ||| Kl | — 28| PII] K|

= > [T+ 1ALl + D 7wl Al Pox). (3.63)

JEN; keN;

Accordingly, in light of Razumikhin Theorem [47], if (3.48plds, then the global asymp-
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totical stability of this class of large-scale dynamicatgynsS can be immediately follows

from defining Lyapunov functiofy (z,¢) £ ZiNzl v;. This completes the proof. O

Feedback linearization techniques generally requirerateylant models to achieve
exact linearization. However, there inevitably exist utaaties in the constructed models
of physical systems. Furthermore, in practice it is almogtassible to have noise and
latency free data channels. To this end, as a further dewvenpof the previous chapter, a
methodology for a class of nonholonomic nonlinear systargest to dynamics modeling
uncertainties and control input time-delays is presenfedobust compensation tracking
controller is then developed and justified based on Lyapwstalility theorem. The com-
pensated system effectively suppresses the perturbdtémtseto guarantee robust stability
with tracking errors exponentially converging to a boundesidual set. The problem of
robust stabilization of large-scale networked multi-roggstems subject to multiple state
time-varying delays in the interconnections, saturatedadors and also parameter pertur-
bation uncertainties is also investigated. Decentralinethoryless state feedback control
is studied mainly via the Lyapunov-Krasovskii functionahcept. By checking the Hamil-
tonian matrix and solving an algebraic Riccati equatiom, ¢bntrol gain matrix can be
obtained to achieve global asymptotical stability of tHesse of large-scale interconnected

dynamical systems.
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CHAPTER IV

FINITE-TIME SETTLING REAL-TIME FORMATION CONTROL OF MULTFROBOT
SYSTEMS
Considered is the problem of formation keeping and recordigan under individual agent
constraints and formation requirements. A motion plan@ilggrithm which takes into ac-
count all constraints in real time computes appropriateregfce trajectories to be followed
by each agent over a small time interval. Piecing togethen seference trajectory seg-
ments defines the trajectories over the entire time horiddw accuracy of the reference
trajectories computed in this manner depends on the regairethat the state of the sys-
tem is accurately known at the beginning of each time steps€guently, if such reference
trajectory computations are to be utilized in real-timekiag then it is imperative that the
tracking errors be zero at the end of the computation timensegy Since such compu-
tation time intervals are small the system controls shoelduch that the tracking errors
are driven to zero within that short time interval. This resaily calls for a very short
settling time. This in turn calls for finite-time settlingmwoollers which necessarily means
that the control strategies must have nonlinear featuress. requirement is fairly obvious
because it is well-known that systems under linear contval’erge asymptoticalty that
is, the closer to the target, the slower the convergencereaath equilibria in infinite time.
Thus when high precision (namely, system performance aliledg) and stringent settling
time are required, controllers enabling asymptotic siighihay not perform adequately.
Some nonlinear controlg,g, sliding mode control as the main mode of variable structure
control resorting to discontinuous control laws have thiétgtio drive systems to steady
state in finite time [48]. But one of the weaknesses of slidimagle control is the chatter-

*This also applies even for some nonlinear contrelg, the tracking controller de-
signed in Chapter II.
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ing that occurs with the control input switching at high fuegqcy when imperfections are
present, and in certain applications this can be very detriai [49]. Researchers in the
control community have already realized these issues avelstadied finite-time control,
e.g, [24,50]. Very recently Nersesov, Haddad and Hui providegeral framework for
finite-time stability analysis based on vector Lyapunowtions [51].

In Chapter 1l the tracking control design did not take thergresent model uncer-
tainties into consideration. Thus, as alluded to abovedh#pter focuses on the problem
of real-time formation tracking controls in a receding on setting for multiple robots
under uncertainties and entails the study of designingstotontrol laws such that, over
each time interval tracking errors are driven down to zeexjadtely fast in the presence of
uncertainties. The key idea here is that if at the beginnirepoh time step the reference
and actual trajectories are aligned, at the end of the tiepetbiey are again aligned. Even
if they diverge in between, convergence to a desired foonatan be anticipated. Conse-
quently, we strive to make the settling time of the contikgstem finite and not longer
than the predefined reference trajectory segment comptitireginterval, while making
tracking errors go to zero by the end of the segment. This Wwaynext segment of the
reference trajectory can be properly initialized to go itiite trajectory computation algo-
rithm. As a result, the desired motion evolution of multbod systems can still be ensured

in spite of the ever present system uncertainties.

A. Preliminaries

In this section, inspired by work [52] finite-time settlingrdrol strategies are introduced
to achieve zero formation tracking errors over each timerval for multi-robot systems
under uncertainties by employing effective control lawswiiactional powers as discussed

below.
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Consider the class of nonlinear systems,
i = —asgn(z)|z|7,z € R, 4.1)

wherea > 0, sgn(.) denotes signum function, apd ¢ are rational numbers of the form

2m+1

amT - +
L m <nandm,n € Z" U{0}. 4.2)

It is apparent that, if:(¢y) > 0, z(¢) monotonically decreases until it becomes zero when
time ¢ reaches a certain value and remains zero value thereaftethéother hand, if
x(to) < 0, z(t) monotonically increases until it settles at zero equilibriafter the same
finite time. Obviously this is better than asymptotic bebawvhich would never die out
until infinite time. So we say that system (4.1) is finite-tistable, which is defined as

follows [24,53].

Definition 1. Consider the system
&= f(x), with f(0) =0, z € R", (4.3)

wheref : D — R" is continuous with respect toin an open neighborhoo® C R" of
origin. x(zo,t) is a solution of system (4.3) with initial condition € R at¢ = ¢,. Itis
said that system (4.3) is finite-time stable if there exister@empty neighborhood of origin

N C D inR” such that:

(i) there exists a functiof’(z) : N\{0} — R > 0 such thatifr, € N'\{0} thenz(z, t)
is defined (and particularly unique) dmy 7'(xq)]. Moreover,z(z,t) € N'\{0} for
all t € [ty T'(xo)], imy—1(z0) (20, t) = 0, andx(xo,t) = 0 forall ¢ > T'(x,). Thus

T is called the settling-time function of system (4.3);

(il) denoteB™ as the open unit ball iR”, V ¢ > 0, there exists)(¢) > 0, for every

zo € [6(e)B"\{0} N D, z(xg,t) € eB" forall t € [ty T(zo)]. In addition, the
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system is said to be globally finite-time stable at origirt i§ifinite-time stable with

N =D=R"

Actually given every initial conditiofR\ {0}, as shown in [50] nonlinear systems (4.1)

has a unique solution and can be analytically solved as:

9—p
©r =4 z(to) 9
sgn(z(to))[x(to) © —a(l = EB)(t —to)]or if to <t <tp+ E 22—,
2(t) = I H(q P (4.4)
i q(to) T
0 if t >ty + TR

It is clear that according to the above definition system)(&. lobally finite-time stable

at the origin and the settling-time function is determingd b

(to) ™
qr\lo) ?
T(x) = to + L0 " (4.5)
a(g —p)

2==—oC

ir o T~

ok . Sy U G G
_l . ',l"

/
_2 <2
/
_3 /
7
» / x(numencall solunon? |
7 = = = xdot(numerical solution)
analytical solution
iy '/ : ytical soluti
e
_6 /
74
_7 = l/
e

-8 !. i

0 2 4 6 8 10

Fig. 20. Simulation of: = —sgn(z)|z|3 with initial conditionz(0) = —8

Figure 20 shows a typical example of this class of nonlingstiesn and further verifies
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this observation. One can see that the system is "locked®roatl” = 6 sec and thereafter.

xdoubledot

5 10 15 20 25 30
t (sec)

Fig. 21. Simulation ofi = —i:3 — 25 with initial conditionsz(0) = 3 andi:(0) = —10

For a second order system, for example,
. s
&= —13 — x5, (4.6)

indeed as shown in Fig. 21 it also settles down in finite time.
Furthermore, according to Theorem 4.2 of [24], it can alsagserted that this one
dimensional system is finite-time stable through using Wymy functionV(z) = “"/’2—2

Indeed, we have for alt € R,

V(z) = zi = —asgn(z)z|z|d = —a|x|% = —QQCIJTPV(x)%, with q2ﬂ € [01].
q

It should be noted that there is a close relationship betiage-time settling system

(4.1) and time optimal control. As in [54] it is well estalilexd that the time optimal control
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for the double integrator system
.jl'lzl’g, x'2:u, ‘U‘ <1

can be designed as
u = sgn(E(z))

wherer £ [z, z,]” and

C(x) = 21 + 3wa]aa| if C(2) #0,
To otherwise

where functior((z) = 0 describes the arc on which the system trajectory will reaeb.z
If odd numbersg andq in (4.1) are very large such thgtz % andg = 24, replacingz
with z; yields

p
q

@y 4 2ag,9 =0,

which is equivalent to

3 1 4 1
1 =0= 21+ =297 %$1+—1’2|l’2| :C(l')zo.

2
2a
T + T 5 B

Hence, the finite-time settling system (4.1) can be usedpoopmate the time optimal arc
for the double integrator system with any accuracy regasdbé the sign of,.

Note that forp andq satisfying (4.2) and < 0, sgn(m)\xﬁ is different fromz s . This
is because the fractional powémay lead to the term ¢ R, which results ini ¢ R.
However,sgn(x)|x|§ does not have this issue.

Consider the Jacobian of system (4.1) around the equitibgiu= 0, i.e.,

i

ap 1
ox q |x|q7

J

— —oo,whenz — 0,

which indicates that with such an infinitely large negatiskpe” at origin the system tra-
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A dx/dt

)
<Y

-~
~,
~,

Fig. 22. Phase flows in the neighborhood of equilibriumifer —asgn(z)|z|”

jectory will converge to the equilibrium with an infinitelgige speed. Namely, the closer
to the equilibrium, the faster the convergence rate. Thedhiction of the nonlinear term
sgn(z)|z|« improves the convergence toward the equilibrium and leadisite-time con-
vergence. As illustrated in Fig. 22 it can be observed thamwhis at a threshold distance
away from the equilibrium, system (4.1) does not prevairatgdinear counterpart (setting

p = q), since the termgn(z)|z| tends to reduce the magnitude of convergence rate before

reaching the threshold distance from origin. One immediatetion is to introduce
i = —ax — Bsgn(z)|z]1, o, B> 0. 4.7)

When x is far away from the equilibrium zero, system (4.7) banapproximated with
© = —ax, Whose exponential convergence when far away from zero lisunderstood.
When close to the origin, the dominant dynamics turns inte —Bsgn(z)|z| 7, which has

finite-time settling robustness as discussed above.
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More precisely, one can solve (4.7) analytically. The exiace to reach originy’, is

determined by

T(z) =ty+ (4.8)

ala—p) g
Hence, the appealing finite-time convergence charadtefesitures of this class of
nonlinear systems (4.7) are incorporated into the formatantrol design under uncertain-
ties to enable reference tracking with the requirementtifaaking errors be zero by the
end of each time horizon over which a segment of referengectay is generated.
Based on the analysis in [55], the following lemma is usedtiersubsequent expo-

nential finite-time stability analysis.

Lemma A.1. Suppose there exists a continuous funciiéfi:(¢), ¢) on an open connected
set, namelV (z(t),t) : D € R? — Y € R. Assume that given an initial valuét,) = z,

the scalar equation

has a unique solution(z, t) ont € [ty, t1). Continuous functiofy (¢) is a solution to the

according differential inequality
fort € [ty t1). If Vo < zo, thenV (t) < x(¢t) forall ¢ € [t t1).

It is well-known that the classical Lyapunov stability tingas only applicable to a
system whose solution from any initial condition is unigéesufficient condition for the
existence of a unique solution to the nonlinear differdrguation: = f(z) is that the
function f(x) is locally Lipschitzcontinuous. Such a nonlinear system can at best have
asymptotic convergence behavior. Based on the above disaysve present the following

theorem that states the sufficient conditions for expoaéfitiite-time stability.
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Theorem A.2. Suppose there exi€t positive definite Lyapunov functién: D — R > 0,
real constantsy, 5 > 0 and~ € [0 1], and an open neighborhoad C D of origin, such

that for all t > ¢,
V(x(t)) < —aV(x(t) — BV (x(t)), x(t) € V\{0}. (4.9)

Then it is said that system (4.3) is exponentially finiteststable at origin. If\V is defined

as in Definition 1 and’ is the settling-time function, then

_ 1 no‘v(x(to))l_V +
T(x)_t0+a(1—7)l ﬁ

Proof. Consider the following ordinary differential equation it, 5 > 0 and~y satisfying

(4.2)

. a(t) € M\{0). (4.10)

i(t) = —ax(t) — B2 (1), x(ty) = V(toy).

Although it does not satisfy the globlaipschitzcondition, the unique solution to this equa-

tion can be found as shown in the following.

(

sgn(x(to)){ :[(ax(te) '~
1, ax(to)l—
x(t) = _‘_6)6—04(1—“/)(15—150) _ 5]}14 if to <t<to+ Ot(ll—'y) In (tO)ﬁ W+5’
; 1 ax(to)'~"+8
\O ift>t)+ Y= In 5 )

According to Lemma A.1 and with (4.9), one obtairi&) < xz(t). Because as given above

x(t) exponentially converges to zero in finite time

1 1=
T=ty+ In az(to) 7 + 6,
a(l—7) B
positive definitel’(¢) will also exponentially reach origin no later thd@h O

Clearly the reaching tim& depends on parametets and initial valuex(t,). Given

x(to) # 0, one can tuner and such that” is as small as needed and systems settle down
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adequately fast. It is finite-time stable, thus robust.

"\ 0

=V

Fig. 23. Sketch of car-like robot platform

B. Finite-time Formation Control

In this section, to design formation tracking controls foulthrobot systems subject to
uncertainties, the development in Section A is applied enidy a control law that is

exponentially finite-time stable and is suitable for preatimplementation.

1. Kinematic Control

Figure 23 is a schematic of a front-wheel drive car-like tol¥dhe kinematic behavior of

point R, the center of rear axis, can be described through the welivk unicycle model:

TR = vgcosH, (4.11)
Yr = vgrsind, (4.12)

0 =w. (4.13)
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For the kinematic control design 0fz, w), the following nonholonomic system, also

called nonholonomic integrator, is first investigated. &m

l"l = Uy, (414)
l"g = U2, (415)
l"g = T1U9 — XU, (416)

where states, z, andxzs; € R, andu;, uy are control inputs. The following stabilization

control law is postulated for the above system:
uy = wa(aws + Bsgn(ws)|ws|) — Ky, (4.17)
up = —1 (0w + Bsgn(xs)|zs|v) — K, (4.18)
whereq, 5 andx € R*, andp, ¢ are defined as in (4.2).

Proof. Define the following Lyapunov function:
1 2 2
V(t) = 5(551 + x3).

Differentiating it along the trajectories of system (4-14)16) and substituting; andu,

with (4.17)-(4.18) yield

V(t) :xlx’l + l’gl"g
P
=z135(axs + Bsgn(ws)|zs|c) — kad

D
— 1122 (aws + Bsgn(xs)|rs|a) — ’mg

=— k(2] +13) < 0.

Therefore, control law (4.17)-(4.18) stabilizes stateandz,.

For stater;, combining (4.16) with (4.17)-(4.18) yields the nonlinegstem discussed
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above:

T3 =T1U — Tl
= — 23 (axs + ﬁsgn(x3)|x3\§) — KTy
— [w3(ams + Bsgn(ws)|as| 7) — k1]
= — (2% + 235) (w3 + Bsgn(ﬁs)‘%ﬁ)

= —2V(axs + Bsgn(xg)\:cg\%).

Here it is necessary to point out that control parameteasnd 5 need to be tuned large
enough to regulate variablg to the origin in finite time before; andx, are stabilized,
otherwise it will converge to a nonzero constant. Namejymust converge faster than

andz,. This completes the proof. O

We know that the problem of trajectory tracking, — =7, vo — 2} andxs — %, IS
equivalent to stabilizing; £ z; — 17, T, = 1, — 25 andZ; = x3 — x%. Through this new

state transformation, one obtains

.%1 - ?_Ll, (419)
Ty = Uy, (4.20)
T3 = T1ly — Tolly + h, (4.21)

whereh & h — i%, andh & —abiy — (zo — ab)d} + 249 + (z1 — 2})i%. Likewise, the

stabilization control law for the above new system is wnités

Uy = To(0Zs + ﬁsgn(f3)|53|§) — K7, (4.22)

Uy = —%1(aZs + Bsgn(Z3)|Ts|7) — K, (4.23)
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where

koOf5(25 +13) > €,
K= (4.24)

0 otherwise
%k € R*, ande can be chosen arbitrarily small and it denotes the neighiuatiof desired

reference trajectoriesge.,
(2], 25, 25) — (21, 22, 3) || = [|(21, T2, T3)|| < €. (4.25)

Then tracking control law for the original nonholonomic tgya (4.14)-(4.16) is obtained

as

U = Uy + 1'71", (426)

Uy = Ty + 3. (4.27)

Proof. Similarly introduce Lyapunov functiolf (t) = 3(z7 + z3). Then take its derivative
along the trajectories of system (4.19)-(4.21) and alsh wWie aid of (4.22) and (4.23),

V(t) = —k(Z? + 73) = —2xV/(t). Its solution can be solved as
1
V(t)=V(0)e " = 5(atﬁ(o) + 75(0))e 2. (4.28)

Hence, if3(z1 + 23) = V > €2, then because = & > 0, V will decrease until it reaches
thee-neighborhood of the origin im;, 5 subspace and the trajectories are confined to this
manifold. At this time, as fofes, &5 = —2e2(aZs + Bsgn(Z3)|Zs|7) + h, wherea and3

are chosen to be large enough such thas stabilized no later than

q | af?,(to)% +
5 n .
2a€%(q — p) 8

T—t+ (4.29)

At this moment and hereafte(z,, 75, z3)|| = ||(Z1,Z2)||. Accordingly (4.25) becomes

[(Z1, Za, T3)|| = (27 + 73) = V < €. Then combine with (4.28) and replatevith T
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a-p
n azg(tO)B q +B}

from (4.29),
(4.30)

1 _— K‘/ q
S @(0) + 23(0))e <e

Namely, to regulat&(z,, 7o, Z3) into ane-neighborhood of the origin of its according sub-

space in finite timd’, the weighting gains need to further satisfy

a_ . a-p —a 1 ,730)+73(0), L
(Bx3(t0) T+ 1)@ 2 E(T)Q : (4.31)
O

Then, to bring forth kinematic tracking control possesdinge-time settling robust-

ness over each time step, define the state variables andisootrsystem (4.11)-(4.13)

as:

TR = l(Qxlcosxg + (129 + x3)sinz,), (4.32)
yr = 1(2:1:1$inx2 — (x1m9 + 3)COSTS), (4.33)
2 1, (4.34)
and
Vg 2 uy + %(mlxg + x3), (4.35)
(4.36)

A
W = U9,

then the unicycle model (4.11)-(4.13) can be transformatiéanonholonomic integrator

system (4.14)-(4.16).
Substitute (4.26)-(4.27), (4.22)-(4.23) and (4.24) imtd36)-(4.36), we got the ulti-
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mate finite-time tracking control law for the unicycle madel

w=— (21— a})[a(xs — x}) + Bsgn(zs — a})|xs — 25| 7]
— K(xy — xh) + &, (4.37)
vp =(z9 — ) [alzs — 25) + Bsgn(zs — afy)|ws — 4] 4]

— Rlwy — o) + 3] + - (w12 + ), (4.38)

wherez, (z7), z2(z}) andxs(2%) can be solved through (4.32)-(4.34),

x1 = xRcosl + yrsind, (4.39)
Ty =0, (4.40)
x3 = xg(2sind — Ocost) — yr(2cosh + Osind), (4.41)
and
x] = xhcosl” + ypsind’, (4.42)
xh=0", (4.43)
xh = xR(2sin0" — 0" cosl") — yi(2cosd” + 0" sind"). (4.44)

For continuously differentiable reference trajectorid® continuity of the resulting
finite-time kinematic control allows the extension of thesbcontrol at the dynamic level
by having the dynamic subsystem outputs track the desinmegidtic control inputs of
the kinematic subsystem. Accordingly the overall conttnilcure for the car-like robotic
systems can be described as in Fig. 24. Thus the finite-tittlengeobustness at both the
kinematic and dynamic levels ensures zero tracking ernptisdoend of reference trajectory
segment computing time interval. The dynamic subsystemitnfihite-time dynamic

control design in this control structure are summarizeaHts\'s.
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Fig. 24. Control structure for car-like robot platform

2. Dynamic Control

Assuming no lateral skid and no longitudinal slip, usitagyrangian Principle the dynam-

ics of steering at poink’, the center of front axis, can be derived as [56]

I
M*cos?¢ + l%sngb

Fr — sin2¢(M* — LYupQ .
_ Fp — sin2¢( =)Ur tw, ¢=Q, (4.45)

(%

whereuv is the velocity at point’, F- is the component of driving force along the direction
of vr, ¢ is steering angle)! is robot mass, andis moment of inertial of the robot around
the vertical axis passing through (.)* represent unknown constant parameters with
denoting noise signal.

To ultimately achieve zero errors in formation trackingypose the following control

design for the above dynamic subsystem: Control law

I
Fr =(Mcos*¢ + l—zsinng)(—,uve — vsgn(ve)|ve|” + 0%)
+ sin2¢(M — —)vpQl, (4.46)

Q= — ude — vsgn(ee)| " + 4", (4.47)

whereu, v > 0 and~y satisfies (4.2), drives dynamic system (4.45) to exponé&ntan-



70

verge to origin in finite time.

Proof. ChooseV = 1¢? + 102 = 1(¢ — ¢")? + (v — v")%. Then its derivative along the

trajectories of system (4.45) is derived as

Fp — sin2¢(M — £)vpQ

V=,
Mcos®¢ + Lsin®¢

+ ¢€Q - 'Ue'i};? - ¢e¢r'

Substitute the above dynamic control law (4.46)-(4.47)

V = _:UQSz - ngn(¢e)¢e|¢e|ﬂy - ,U’Ug - V‘Sgn(ve)veh}ep

= =2V — v(|ge"7 + |ve[ ).
Since fora > 0,5 > 0and0 < ¢ < 1, (a + b)) < a“ + b°, one obtains

V < =20V = v(|@e] + [ve )1

14y

< =20V = (| + vel*) =

14y o 14y

=24V —v2 2 V2|

with ”TV € [0 1]. Then according to Theorem A.2, under control law (4.463{% system

(4.45) exponentially converges to zero no later than

T—ty L M) H )] Y
(1 =) v

(4.48)

This completes the proof. 0

The connection between the kinematic subsystem (4.113)4nd dynamic subsys-

tem (4.45) can be obtained as

VR = UpCOSO, W = UTFsmgb, (4.49)
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or
l

o= arctanw—, vp = U (4.50)

VR oS

Accordingly,
DRCOSP + Vpdsing . (wvg — wig)l

= == TP 4.51
vr cos%¢ ¢ vh 4 (wl)? (4.51)

wherevy can be calculated through taking derivative of
VR = Trcoslh + yrsind. (4.52)

Therefore, the control structure that embeds finite-tinttiisg robust controls guar-
antees that the settling time of the controlled roboticesysis finite and not longer than the
preassigned reference trajectory segment computing titeeval, while making tracking
errors go to zero by the end of the segment. Thus convergertioe tlesired formation can
still be accomplished even if in the presence of parametreettainties and noise distur-

bances as verified in the following section.

C. Case Study

As alluded to previously, the proposed finite-time setttogtrol is integrated into an exist-
ing motion planning algorithm to further verify its feadity and effectiveness. In particu-
lar, the real-time algorithm proposed and developed by Migidla and Jayasuriya [3] that
explicitly takes dynamic feasibility into account is usedést out these finite-time settling
controllers. The approach to this algorithm is to embed Wotiot nonholonomic con-
straints and formation constraints into the generatioretdrence trajectories to be used
simultaneously by the decentralized tracking controldrendividual robots. The algo-
rithms computation time step is chosenéas= 1 sec. Then, over each time interval each
robot needs to converge to the incrementally generateckerefe trajectories in less than 1

sec to eliminate the accumulating errors.
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Fig. 25. Formation keeping and formation reconfiguratiartiioee car-like mobile robots

In this case study the above motion planning algorithm gemrerthe following sce-
nario: As illustrated in the form of a series of snapshotdoéé robots’ motion evolution
(Fig. 25), a team of three mobile robots are required to mbxaugh a given set of way-
points (marked as solid circles) while maintaining and reéiguring predetermined inter-
robot formation patterns. While their center of mass trablestrajectory generated from
the algorithm, they start from a triangular formation, themsition to a column formation,
followed by triangle pattern again.

The finite-time settling control structure is implementedai decentralized manner
on each individual robot. In addition to adding random npisgknown system parame-
ters M*, I* and[* in the dynamic subsystem are bounded(by € [(.)min (.)maz) @nd
0 < (Dmin < ()maz < 00, respectively. Figure 26 shows the tracking errors of faroma

center. By comparing Fig. 26(a) with 26(b), it can be obseéthat these finite-time settling
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Fig. 26. A comparison of tracking errors of control desigm@nuncertainties: (a) linear
feedback control, and (b) the proposed nonlinear finiteets@ttling control.
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controllers substantially reduce the errors from conwerdi linear control (setting both

in kinematic control (4.37)-(4.38) andin dynamic control (4.46)-(4.47) to zero). Except
for the unaligned initial condition for the first time intexy this class of novel finite-time
settling controllers effectively suppresses uncertagéind disturbances, keeps "locking”
formation tracking errors to zero, and precisely alignsréference and actual trajectories
by the end of each time step, though at times it diverges flmanréference trajectories
inside the time step. The minimum, maximum and average tita&es to converge within
a time segment are.87 sec,0.96 sec and).92 sec, respectively, which are all less than
the algorithms preassigned computation time gtepc. Thus the ultimate formation con-
trol goals can still be guaranteed despite noise distugsand parametric uncertainties.
Moreover it is practically implementable in real time in teense that simulation time,

14.69 sec, is shorter than the actual tim8,sec.
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CHAPTER V

COMMUNICATION ISSUE IN FORMATION CONTROL OF MULTI-ROBOT
SYSTEMS

Inspired from recent development in topology control amdtigh applying graph theory
[26,57,58], a Local Minimum Spanning Tree (LMST)-based ommication algorithm is
presented in this chapter to relax the global communicatieeds in formation control.
Namely, no central command is required, and robots indaligihperceive neighborhood
relations. A communication topology is constructed by hguwach robot independently
build its own minimum spanning tree merely based on localrimiation and keep only
one-hop on-tree agents as its neighbors. Accordingly,atdsvsuperfluous information
exchange, reduces energy consumption, and improves rkegffaiency while still pre-
serving network connectivity ensuring convergence intesiréd formation.

As an application example, based on grapiplacianand feedback control theory a
desired rigid formation acquisition is accomplished byoiporating the developed LMST-
based dynamic communication algorithm. Emphasis is plagech the time-delay influ-
ence on the acquired formation in the situation where iot@mection time-delays occur in
certain information flow channels while robots are commaitiigy with spatially separated
neighboring robots. A robust stabilization scheme is preskto improve or even recover

from a destroyed formation pattern.

A. LMST-based Dynamic Communication Algorithm

Before discussing this communication algorithm, the folltg graph theory preliminaries

are needed [57,58].

Definition A.1 (Cycle/Tree) A cycleis a close path (that is, a path from vertexo itself),
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in which the intermediate edges are all distinct. A conreégtaph without cycles is defined

as atree
The following two lemmas are fundamental.
Lemma A.1. Every connected graph contains a spanning tree.

Lemma A.2. The number of edges in a tree witlvertices isn—1. Conversely, a connected

graph withn vertices anch — 1 edges is a tree.
Next we define physical neighbors and logical/physical adegree.

Definition A.2 (Physical Neighbors)For a team of robot®, the physical neighbors for
robot R; are a subsel; C R defined asV; = {R; € R| ||r; — || < d;}, wherer, are

position vectors for robak ) andd; > 0 is the communication range of robat.

Definition A.3 (Logical/Physical Agent Degree).ogical agent degree means the number
of logical neighbors, derived from LMST-based topologywéwer, physical degree of an
agent refers to the number of agents within its communinatamge. A smaller average

agent degree usually implies less contention and interéereand better spatial reuse.

Through communication, the robotic team forms an undicesienple graphG =
(V, E), whereV is the set of robots, and is the edge set defined by the physical neighbors
N; of each robotk;, namely,E = {(R;, R;)|R; € N;}. We denote by, = (V;, E;) the
induced subgraph af such that; = N;. A uniqueid is assigned to each roba&t;, for
examplejd(R;) = i.

The communication algorithm consists of the following tweapesinformation col-
lectionandtopology constructionFirst, each agent periodically broadcastsedio mes-
sage through applying its maximal transmission power taialithe attention of its physi-

cal neighborsV;. Based onV;, agentR; constructs an LMST; = (V(T;), E(T;)) of G;
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which spans all its neighboring agentsii. The generation of LMST can be formed by
utilizing existing algorithms, such as Prim’s algorithn®][5Here a unique weight function

has been defined on the edge(&%, R;) in terms of||r; — r;

, max(id(R;),id(R;)) and
min(id(R;), id(R;)) such that the constructed LMST is unique [26]. Then topolbgyywed
from LMST has all robots as its agent $étand their individually perceived neighborhood

relations. Note that the derived topology is not a simplessppsition of all local MSTs.

Definition A.4 (Topology by LMST,G). LMST-based topology is a directed gragh =
(‘/0, Eo), Where‘/o =V andE() = {(RZ, R])|RZ — Rj,WheraQi, Rj € V(G)}

With generated LMST, a logical neighboring relationship &rgical neighbor set can

be defined as follows.

Definition A.5 (Logical Neighbors) RobotR; is a logical neighbor of robak;, denoted as
R, — Rj,ifandonly if (R;, R;) € E(T;). R; <+ R;ifand only if R, — R; andR; — R,.
The logical neighbor setN; of robot R; is defined ad.N; = {R; € V(G;)|R; — R;}.

Connectivity can then be formally defined as follows.

Definition A.6 (Network Connectivity) For any two agent®;, R; € V(G,), agentR; is
said to beconnectedo agentR;, denoted ast; < R;, if there exist agentsl, € V(G))
wherek = 0,1,---,m forming a pathAy, = R;, Ay, -, A1, A = R; such that

Aj < Ajywherej =0,1,--- ,m — 1.
The above topology may be further simplified as follows.

Definition A.7 (Topology by LMST with Link Removal(G,). The topology,G,, is a
undirected grapltz, = (V; , E, ), whereV, = V; and E;y = {(R;, R;)|(Ri, R;) €
E(Go) and (Rj, Rl) c E(Go)}
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The main reason for employing LMST-generated topology escttimmunication al-
gorithm among multi-robot systems is because it posselssdsltowing favorable proper-

ties [26].

Proposition 1. The network topolog§, under LMST preserves the connectivityhfi.e.,

G, is connected as long &3 is connected.

Proposition 2. The degree of any agent @, is bounded by 6, i.e., def;) < 6,VR; €
V(Gy).

Proposition 1 implies that the connectivity of the mobildotic network is always
guaranteed by the LMST topolody,. This property is extremely important, if not imper-
ative, as explicitly pointed out in [60]: "Shared informati is a necessary condition for
coordination”. It is known that connectivity of the assde@information graphs among
networked robots is one of the fundamental requirementasare convergence of forma-
tion control [61].

Proposition 2 says no robot has more than 6 logical neighb@osnpared with uti-
lizing maximum transmission power, this would eliminateigngicant number of those
redundant topology links and results in more cost-effectind efficient communication.

As a demonstration of the proposed LMST-based communitalgorithm, the fol-
lowing scenario is considered here: 100 agents are randdeplpyed in a000 x 1000m?
region with communication rangé = 250m. Intuitively from Fig. 27 it is observed that
the algorithm largely simplifies the much denser topologsvee from using maximum
transmission power. Furthermore, no agent is isolatedsmodinected from the network
and connectivity is preserved as well. In addition, Comgaséth the average logical
agent degree of one-to-all communication among neighliaNsel5.06, LMST achieves
the much smaller value, 2.08. This is very close to the th@alebound: It is known

that among all the spanning graphs, global spanning trethhdsast average logical agent
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Fig. 27. Communication topology: (a) by maximal transndagpower, and (b) by LMST.

degree2—(%) — 2,asn — oo [62]. Therefore, the LMST-constructed communication al-
gorithm seems to reduce superfluous information exchaegdirig itself to a cost-effective
communication strategy.
It should be noted that the topology derived from LMST is nagdi or time-invariant.
It evolves dynamically depending on several factors, fetance, time period of broadcast-
ing, current motion conditions of each robot, and its mopédind communication range.
Hence, the LMST-based communication algorithm not onlynglates the global
communication requirement, but also favorably guarantieesininterrupted information
propagation among multi-robot systems and greatly immamergy consumption and
communication quality, efficiency and capacity. Moreovke algorithm is localized and
distributed, because no central authority is required aoth eobot dynamically constructs
its own local topology solely relying on locally gatheredammation. So this LMST-

based algorithm realistically models less required comoaiion among robots, and is
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very amenable to practical implementation on formationt@n Hence, in the follow-
ing section through incorporating the presented LMST-8a@mamic communication al-
gorithm, a desired rigid formation pattern is achieved hiizing graph Laplacianand

feedback control theory.

B. Laplacian Formation Control

1. Without Interconnection Time-delays

The following model is an idealization of the real world, e analysis can provide guid-
ing principles for actual implementations of decentralizentrol laws. The simplest model
involves what we call holonomic point robots or point roblmisshort. Each robot is mod-
eled as a point which undergoes holonomic motion.

For roboti, consider the following dynamic model,

(1) = Ax;(t) + Bui(?), (5.1)
0100
A . . R , L 10 a 00
Wherel’l(t> = [B:p lDz:p Pz'y Piy]T, Ul(t) = [Ull(t> Uig(t)]T,Z = 1, 2, e N, A= ,
00 01
00 0 b
. L i
L 10100 _ o
andB = , Wherea, b € R. Without loss of generality, in this chapter also
0001

choose a=b=0 to have typical double integrator model.

The above dynamics is utilized throughout this work for th&esof presenting the
main formation control design for multi-robot systems gabjto interconnection time-
delays rather than getting involved in the technical de@fildealing with nonlinear control

of nonholonomic mechanical systems, which was studiedvblsee [63, 64].
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Then for N robots,

#(t) = Ax(t) + Bul(t), (5.2)

wherez(t) £ [21(t) ...x;(t)... ex(O)]7, u(t) £ [uy(t) .u;(t)... uny (). A2 Iy ® A, and
B2 Iy ® B. Herely isanN x N identity matrix.

Consider the coordination system with dynamics (5.1), m&seach robot has ac-
cess to its own state and exchanges information with somleeof¢ighboring robots, as
determined by the constraints of the underlying commuignatetwork defined by the
Laplacianmatrix L [65, 66]. This also facilitates considering time-delayuss in the in-

terconnection states. Similar to [66], define the followmmgput function,

y(t) = L(x(t) —r(1)), (5.3)

wherer(t) £ [ri(t) ...ri(t)... rn (0], ri(t) £ rd(t) @ [L O, ré(t) £ [PL(t) PL(t)]", and
L £ Lg ® I,. HereL is theLaplacianof the corresponding communication topology
graph and-¢(¢) is the desired final position vector for rohot

To achieve a certain formation configuration, design thiovdhg output feedback
controller,

u(t) = Ky(t), (5.4)

N , ) ki ko 0 O
whereK £ Iy ® K and the feedback gain matrix has the formaé

0 0 k k|
Then we have the following closed loop system,
i(t) =Ax(t) + Bu(t) = Az(t) + BKy(t) = Ax(t) + BKL(x(t) — r(t))

—Ax(t) + BK (Lg ® L)(z(t) — r(t)) = (In @ A)z(t) + (Le ® (BK))(z(t) — r(t))

2 Ax(t) — Br(t), (5.5)

whereAd £ [y ® A+ Lg ® (BK) andB £ Lg ® (BK).
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Moreover, we know the following statements are equivalesunverge to desired
formation<= G is a rooted directed tree= L has only one zero eigenvalue=
A + \;BK is Hurwitz for every nonzero eigenvalug of Ls. So control gaing; andk,

are chosen such that the above is satisfied.

2. With Interconnection Time-delays

If time-delays come into the system, then the above equéi&) becomes
@(t) = Agz(t) + Arz(t — 7) — Br(t), (5.6)

with z(t — 7) £ 2(0), whent € [0,7),7 € R* and7 = 0.

llluminated by Razumikhin Theorem, for this time-delayteys, state feedback sta-
bilization design is more convenient to increase the delaggm or even make the system
stable independent of delay. For the above system, (5.8) departure from most of the
memoryless state feedback control in the literature, hddelay Proportional (DP) two-

term memory state feedback controller is proposed,

ur(t) = Goz(t) + Grz(t — 1), (5.7)

i

whereGy £ goA, andG, £ g, A..

Note due to the information flow topology constraint for tdistributed system (rel-
ative to lumped system)4, and A_ are analogous tel, and A, respectively. In other
words, the zero entries if, and A, should still remain zero inl, and A_. By choosing

Ay = AgandA. £ A, then the new closed loop system has the following format,

i(t) =Aoz(t) + Arx(t — 7) + u, — Br(t)

= (14 go)Aoz(t) + (1 + g;)Acx(t — 7) — Br(t). (5.8)
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C. Case Study
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Fig. 28. Delay-free case: (a) hexagon formation under ramohitial position conditions,
and (b) corresponding contrdle; () u(t)]”.
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In the delay-free case, namely, data propagation delaysotd@atur when robots
are sensing and/or communicating with spatially separagghbors. Figure 28 shows
validating simulation results of hexagon formation acijias in the case of six robots and
validates the Laplacian-based control design (5.4). Hetle &y andk; are chosen as 3.

Then assume robdt, for some reason receives delayed data from neighboringsobo
That is, delays occur in the unidirectional channelsfot= {(R;, R2)|R; € N»}. By
comparing with Fig. 29(a) and 29(b), it can be clearly seext the two-term memory
state feedback controller, successfully recovers the hexagon formation acquisitioarw
delays exist in the unidirectional channels of rolit and its neighboring robots. This
satisfactory performance demonstrates the effectivesfebe robust control design in the

appearance of interconnection time-delays. The paramaterselected ag = 22m, 7 =
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() (b)

Fig. 29. Hexagon formation with interconnection time-gsta(a) without robust control
u,, and (b) withu..

2sec, andgy = g, = 0.5.

Figure 30 shows a few snapshots of the LMST topology of thetrtdam during the
simulation period. These snapshots illustrate that theltgy of the LMST dynamically
varies with robots’ motion. Since the LMSTSs are always cated, the convergence results

are obtained. These simple simulation results demonghateroposed algorithms.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

A. Conclusion

There always exist uncertainties in postulated models mfahphysical systems, and it is
likely that during each time step of local path following inaperative motion control, the
online incrementally generated reference motion trajegtamay not be exactly tracked
in real time. If not carefully done tracking errors due to #wer present uncertainties can
accumulate over each time segment over which refereneetoaies are computed moving
the ultimate formation to be significantly different frometdesired one. Thus, one goal
of this research was to guarantee incrementally calculatéide reference motion trajec-
tories are exactly tracked in real time, and tracking eremesnot accumulated over each
time segment to influence the next piecewise control contiputal hus the desired forma-
tion can still be fulfilled despite the presence of uncettag By virtue of the finite-time
convergence behaviors of a class of nonlinear systems yvalgecontrol methodology to
accomplish exponential finite-time stability was presdntid was then employed for de-
centralized control of car-like mobile robots to enable ribigotic systems with the ability
to react rapidly enough to ensure time constrained conmesgeand provide robustness
to parametric uncertainties in the dynamic model. Stabditalysis showed guaranteed
control precision and a straightforward way to get the adrparameters. Simulations
verified the satisfactory multi-robot motion evolution antgproved formation control per-
formances.

A two-stage framework for multi-task formation control otkass of nonholonomic
dynamic systems was also presented. The trajectory plaatthe top layer, while track-

ing controller sits at the bottom layer. In the trajectorgmpier, tasks are accounted for by



87

specifying a series of objective functions along with thsideel behaviors in the task space.
The motion planner for each robot integrates and priostibese tasks of the robot team
in a systematic and dynamic fashion by dynamically exchapgiformation with the rest
of the team to generate motion reference for trajectorking; whereby the assigned task
evolution is ensured by proper local robust dynamic tragkiantrol strategies. The pro-
posed methodology enables a robotic team to intelligerathdie multiple tasks for a wide
range of complex practical applications as long as thedeaddsehaviors are appropriately
described, such as reaching a navigational goal, avoidiagrds and inter-robot collision,

while simultaneously maintaining or reconfiguring fornoais.

B. Summary of Contributions

As discussed in previous chapters, this research addresseel key issues that must be

considered in formation control.

(i) We achieved decentralized real-time robust trackingetérence trajectories for sat-
isfactory collective motion of multi-robot systems undedispensable model uncer-
tainties. It is well-known that systems under linear contanverge asymptotically
and can only settle in infinite time. In this research congtodtegies with nonlinear
features were developed to guarantee high precision areldonstrained conver-
gence by employing a novel class of real-time controlletsaah the kinematic and
dynamic levels of the robotic systems. This manifested endéttling time of the
controlled system being finite and no longer than the preééfieference trajectory
segment computing time interval, thus making trackingrsrgm to zero by the end
of the time interval. This led to a guarantee of zero errofsimation over the entire
time horizon and ensured desired multi-robot motion evoituin spite of uncertain-

ties.
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(i) To meet the challenge of the increasingly wide range atieptial applications of
multi-robot systems, we developed a systematic and prewadsign framework for
effective multi-task formation control. The proposed feamork endows multi-robot
nonholonomic systems with the ability to simultaneouslgldeth multiple tasks in
dynamic environments. The established methodologiegifuttgrate and effectively
organize many possible behaviors in a systematic and dynfastiion. Including a
proposed novel collision prevention scheme, tasks areuated for by specifying a
series of objective functions along with the desired bebra\in the task space. These
prioritized tasks are then taken into consideration by eabbt through dynamically
exchanging information with other robots to generate nmotéference for trajectory
tracking. The assigned task evolution is ensured by thegpriogal robust dynamic
tracking control strategies. This enables a robotic teamétligently deal with mul-
tiple tasks for a wide range of complex practical appliaagias long as these desired
formation missions are appropriately described, suchahieg a navigational goal,
avoiding hazards and inter-robot collision, while simo#&ausly either maintaining
or reconfiguring formations. Although we targeted diffdralty driven two-wheel
mobile robots for this study, through proper modeling arsigleof appropriate con-
trollers the presented formation control architecture aligdrithms are immediately
applicable more generally to different mobility platformssich as Unmanned Air

Vehicles (UAVs) and Unmanned Underwater Vehicles (UUVS).

(iif) We studied the inherent time-delay influence on theuae formation in situations
where delayed data propagation occur in certain informaflimnv channels while
robots are communicating with spatially separated neighfaobots. A robust sta-
bilization scheme was proposed to improve or even recoeedéistroyed formation

pattern. The formation as a whole still manages to stedf resssonably well along
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sufficiently smooth time-varying spatial reference trégeies, despite the effects of

perturbations resulting from interconnection time-dslay

(iv) To facilitate practical implementation, communicatiat the inner-loop control level
was also investigated. An LMST-based distributed comnmatiwn algorithm was
presented to relax the global communication needs amongpalts. Instead of trans-
mitting at maximal power, robots can individually perceieighborhood relations
and a communication topology is dynamically constructelis Tvas done by hav-
ing each agent independently build its own local topologglgaelying on locally
gathered information and by keeping only one-hop on-tremigas its neighbors.
Hence, the proposed communication algorithm mitigatesslyous information ex-
change and unnecessary data propagation. Thus it redueey @nsumption, ac-
cordingly, extending battery life, a critical resource iamy mobile applications, and
also improves communication quality, efficiency and cayaghile still maintaining

connectivity for ensuring formation control convergence.

C. Future Work

There is still some work yet to be done. A rigorous proof of diteen A.2 proposed in
Chapter IV needs to be studied and also it would be intergstinvestigate how the con-
trol performances are affected if the fractional power ®imthe controllers change in
real time. Moreover, it needs pointing out that the trajgctolanner of the framework
proposed in Chapter Il does not embed robot nonholonomistraints into the generation
of reference trajectories. Namely, dynamic infeasibifigeds to considered. Also it will
be worthwhile to replace the global communication needsranad robots in the frame-
work with the developed LMST-based dynamic communicatignrthm to see whether a

desired collective motion of multiple robots is still mairied. Additionally, in this study
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constant time-delays are assumed. However, it is probhbtdan practice data transmis-
sion between spatially separated agents could be delay@dramore sampling periods,
interrupted for extended intervals, or even randomizedother words, it is likely that

time-delays are inconsistent and unknown, which would mucoine jeopardize both the

two important considerations in formation control as sumpeal in the abstract. Hence,
further investigation along this direction is of necesdily example, design time-advanced
nonlinear state predictor to estimate future states fdebetal-time trajectory generation
and also robust tracking. All these issues need to be fuattidressed before implementing

the developed formation control approaches on real rolsgstems.
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APPENDIX A

RELATIVE DEGREE OF THE NONLINEAR SYSTEM (2.12)-(2.13)

The nominal system (2.12)-(2.13), is said to have a consttative degree, if there exists

a positive integet < p < oo, such that

LyLih(z) =0, i=0,1,---,p—2
and
LyLf ' h(x) #0

forall z € R™ andt € [0, ).

It is straightforward to calculate

Oh Osx2
LyLih(x) = Lyh(z) = a—g(x) = [Lox2 Oaxs] =0,
v [2><2
and
[@ () —
oz 8 :’19
LLihe) = Ly |8(w)] =5 et = 25 g00)
_ O5><2 —
= |Oax2 Waxqi Oaxa E =Z#0,
[2><2

whereW,,, is a certain vector. Thep = 2 in the regionD, C R’, that is, the relative

degree of the nonlinear system (2.12)-(2.13) is 2.
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APPENDIX B

VERIFICATION OF NULL-SPACE METHOD

(I — @[,V - V!
(I — B D)} (T + Aydyse ) - L (JE+ AuToe )
=) (Ji + Ao Ty ) - RL(JL + Aaane)
— LD (T + Nyde ) - (L + Aaase)
=) (Ji + Ao Ty ) - RL(JL + Ao o)
— BT (D, 0]) B (S + My ) - DT + AgTure)
=) (Ji + Aoy ) - RL(JL + Ao ane)
— (@Y™ (@, ) D) (S + ApTpye) - BL(JE+ AgTaye)
=) (JE+ Apdiye) - OF (T + Agdase)
— I (JE + AyTyre ) - L (T + Ay Tuse )

=0.
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APPENDIX C

PROOF OF THEOREM A.1 IN CHAPTER IlI

Proof. To investigate the boundedness, define the following Lyapdianction
V(e(t),n(t)) = Ve(e(t)) +<Vi(n(t)) £ €' (t) Pe(t) + <Vi(n(t)), (C.1)

where P satisfies (3.25) and € R*. Notice functionV;(n(t)) is added to ensure the
stability of internal dynamics.

DifferentiatingV/(¢) along the trajectory of closed system (3.23)-(3.24) yields

V =T Pe 4 ePe + ¢V
—(Ace + Bug+ A Q)T Pe+ T P(Ace + Bug+ A Q)
+ <% [p(Cm)+ 2 0], (C.2)
With the aid of (3.25),
V =e"(-=Q +~yPBB" P)e + 2¢" PBu, + 2¢"P A Q
+ <% [p(¢,n)+ A V]
= —e"Qe + (1 — 2k)||e" PB||> +2e"P A Q

+ <% [p(0,m) 4+ p(¢,n) = p(0,1)+ A T]. (C.3)

Under (3.27), it follows that

: Vi
V<—eTQe+2PaQ+ o [p(0,7) + p(¢, )

—p(0,n)+ & ¥]. (C.4)
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Based on Rayleigh Principlg(C2) and (C3),

V<= Xin (@)l + [lell(al 1] + izl n]] + ri3) — <xsl ] [?

+ xaLlnlICOI + sxal Il (e [[CI] + e2l[n]] + €s). (C.5)

Under the constraint of external dynamics (3.28), (C.5)lmafurther formulated into

V (k1 = Amin (@)l + (k1 By + #3)[[el| + [k + oxaler + L)]

 lel|l[nl] + s(e2xa — xs)|Inl|* + sxa[es + Br(ex + L)][n]l. (C.6)
Since

1
(k1By + ig)llel| < Zllel® + (k1 B, + rs)’

1 2
(k2 + oxaler + L)] [[ellln]] < ZII6I|2 + [k2 + oxaler + L)) [Inl]?

2

xsllnl® | xiles + Br(e1 + L)] }

_l_
4 X3

Y

sxales + Buler + D) Inl] < o

. 1 3
V<= (nin(Q) = k1 = 3)llel* = \\n\\2{<(—><3 — X4€2)

4
2 2
sxiles + By(er + L
— [k + sxaler + L)}Z} + (k1 B, + k3)? + xils 8 (a+ D] (C.7)
3
Let¢* & —— X3 ande; = X2 then the hypotheses of the Theorem A.1 imply
12 [1+X4(el +L)] x4
: Amin (@ $*x
V<A@ X g c8

X3[es + By(er + L))

wheredy = (k1 B, + k3)* +
X3

If ko £ min(2minl@) <35) thenV < —ko([le]|? + ||n]]?) + do, which says for sufficiently

large||e(t)|| or ||n(t)||, the states of closed system (3.23)-(3.24) are uniformiynded for

Amin (Q)|]€]]* < e'Qe < Amaz(Q)]le][?
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allt <0.

To investigate the ultimate bound of tracking error, indu#éC.7) yields:
: 1
Ve < =(Omin(@Q) = 51 = H)llell” + ol [nl* + (k1 By + i5)”. (C.9)

Suppose internal dynamics are constrained & < R*, such that|n|| < B;,then
(Amin(Q) — K1 — %)
)\max(P)

g _kev + be; (ClO)

V. < — V + (ko By)? + (k1 B, + K3)?

which impliesV, (e(t)) < Vi(e(to))el ™) + (1 — e(=F) k1,

Hence, the output tracking erreft) will eventually converge to the residual d&t
L. = {e(t) € R™[V(e(t)) < k7 'be}.

Clearly, the size of the compact set relies on the systenrtaictes and design parameters.

This completes the proof. O
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APPENDIX D
DERIVATION OF p
Applying Rayleigh Principle to this particular problem,,.,(P)||()||? < ()TP(:) <
Amaz (P)||())]|2, and definingV (-) = ()T P(-), it can be directly obtained that

W (@;(t)) < Amaz(P)||2;(£)]]7

and

Amin (P)||2;(t — 7ij)|I? < W (2 (t — 735)).

Combining with the following equation from (C1)

W (2 (t — 735(t))) < W (25(t))

yields
Amin (P[5t = mij)|[I? < W (z;(t — 735)) < W (w(1))
< qumax(P)||$](t)||2
Hence,
|25 (t —7i5)|| < apllz;(#)]],
wherep £ | /2mez(D)
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