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ABSTRACT 

 

New Mechanism Based Anticancer Drugs for Treatment of Pancreatic and 

Bladder Cancers. (May 2010) 

Indira Devi Jutooru, B.V.Sc & A.H., Acharya N. G. Ranga Agricultural 

University, India. 

Chair of Advisory Committee: Dr. Stephen H. Safe 

 

Methyl 2-cyano-3,11-dioxo-18-olean-1,12-dien-30-oate (CDODA-

Me) is a synthetic triterpenoid that inhibits growth of Panc1 and Panc28 

pancreatic cancer cell lines and activates peroxisome proliferator-activated 

receptor  (PPAR)-dependent transactivation in these cells.  CDODA-Me 

has also induced p21 and p27 protein expression and downregulated cyclin 

D1; however, these responses were receptor-independent.  CDODA-Me 

induced apoptosis, which was accompanied by receptor-independent 

induction of the proapoptotic proteins early growth response-1 (Egr-1), 

nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and 

activating transcription factor-3 (ATF3).  Induction of NAG-1 in Panc28 cells 

was p38-mitogen-activated protein kinase (MAPK) and phosphatidylinositol-

3-kinase (PI3-K)-dependent, but Egr-1-independent, whereas induction in 

Panc1 cells was associated with activation of p38-MAPK, PI3-K and p42-

MAPK and was only partially Egr-1-dependent.   
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Specificity protein (Sp) transcription factors Sp1, Sp3 & Sp4 are 

overexpressed in multiple tumor types and negative prognostic factors for 

survival. Since Sp proteins regulate genes associated with survival 

(survivin), angiogenesis [vascular endothelial growth factor and its 

receptors] and growth [cyclin D1, epidermal growth factor receptor], 

research in this laboratory has focused on development of anticancer drugs 

that decrease Sp protein expression. Arsenic trioxide, curcumin, 2-cyano-

3,12-dioxoleana-1,9-dien-28-oic acid (CDDO), CDDO-Me, and celastrol 

exhibit antiproliferative, antiangiogenic and proapoptotic activity in many 

cancer cells and tumors. Treatment of cancer cells derived from urologic 

and gastrointestinal tumors with arsenic trioxide decreased Sp1, Sp3 and 

Sp4 transcription factors and cotreatment with the proteosome inhibitor 

MG132 did not inhibit downregulation of Sp proteins in these cancer cells. 

Mechanistic studies suggested that compound-dependent downregulation 

of Sp and Sp-dependent genes was due to decreased mitochondrial 

membrane potential and induction of reactive oxygen species, and the role 

of peroxides in mediating these responses was confirmed using hydrogen 

peroxide, demonstrating that the mitochondriotoxic effects of these 

compounds are important for their anticancer activities. 

Moreover, repression of Sp and Sp-dependent genes by CDDO-Me 

and celastrol was due to downregulation of microRNA-27a and induction of 

ZBTB10, an Sp repressor, and these responses were also reversed by 
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antioxidants.  Thus, the anticancer activity of CDDO-Me and celastrol is 

due, in part, to activation of ROS which in turn targets the microRNA-

27a:ZBTB10–Sp transcription factor axis to decrease growth inhibitory, pro-

apoptotic and antiangiogenic genes and responses. 
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I. INTRODUCTION 

Cancer statistics 

Cancer arises when cells undergo uncontrolled proliferation due to gain of 

function of oncogenes and loss of function of tumor suppressors (1); and cancer 

cells are characterized by unrestrained growth and spread to other organs and 

tissues. Cancer is a major public health problem in the United States and many 

other parts of the world and one in four deaths in the United States is due to this 

disease and approximately 1,479,350 new cancer cases are expected to be 

diagnosed in 2009  (2).  This estimate does not include carcinoma in situ 

(noninvasive cancer) of any site except urinary bladder, and does not include 

basal and squamous cell skin cancers. It is estimated that more than 1 million 

unreported cases of basal and squamous cell skin cancers were to be 

diagnosed in 2009 and about 562,340 Americans died of cancer alone in 2009; 

that is more than 1,500 people a day. Cancer is the second most common cause 

of death in the US, exceeded only by heart disease. The 5-year relative survival 

rate for all cancers diagnosed between 1996-2004 is 66% which is increased 

from 50% in 1975-1977.  The increase in survival is due to progress in 

diagnosing certain cancers at an earlier stage and improvements in treatment. 

___________ 

This dissertation follows the style of Cancer Research. 
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Survival statistics vary greatly by country/region, cancer type and stage at 

diagnosis. The lifetime probability of being diagnosed with an invasive cancer is 

higher for men (44%) than for women (37%) in the United States. Among men, 

cancers of the prostate, lung and bronchus, colon and rectum, and urinary 

bladder are most common and account for about 50% of all newly diagnosed 

cancers. The three most commonly diagnosed types of cancer among women in 

2009 are cancers of the breast, lung and bronchus, and colon and rectum which 

accounting for 51% of estimated cancer cases in women (Figure 1).  

 

Figure 1. Estimated new cancer cases, by sex, for ten major cancer types 

in United States, 2009 (2). 

Cancers of the lung and bronchus, prostate, colorectum and pancreas in 

men, and cancers of the lung and bronchus, breast, colorectum and pancreas in 
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women continue to be the most common fatal cancers (Figure 2) (2). The focus 

of this discussion will be on gastrointestinal cancers which include colon, rectum, 

stomach, liver, gall bladder, esophagus, small intestine, pancreas and other 

digestive organs and urinary system cancers which include bladder, kidney & 

renal pelvis and ureter and other urinary organs. 

 

Figure 2. Estimated new cancer deaths, by sex, for ten major cancer types 

in United States, 2009 (2). 

Gastrointestinal cancer 

Major organs in digestive/gastrointestinal system include esophagus, 

stomach, small intestine, colon and rectum, anus, pancreas, liver and gall 

bladder. An estimated 275,720 new cases and about 135,830 estimated deaths 

from gastrointestinal cancers are expected to occur in United States in 2009 with 
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highest incidence and deaths due to colon cancer in both men and women 

followed by pancreatic cancer (Table 1). 

Esophageal cancer: Esophageal cancer is the third most frequent cancer of the 

digestive system and has the highest rate of malignancy.  An estimated 16,470 

new cases and about 14,530 estimated deaths of oesophgeal cancer are 

expected to occur in US in 2009 alone (3).   

Gastric cancer: Stomach cancer is the second most common cancer worldwide 

and fourth most commonly diagnosed malignancy worldwide (4). In western 

countries the incidence of gastric cancer is declining, however, it has been a 

major concern in Asia and parts of South America. It is the most common 

epithelial malignancy (5) and in United States an estimated 21,130 new cases 

and 10, 620 deaths from gastric cancer are expected to occur in 2009.  

Pancreatic cancer: An estimated 42,470 new cases of pancreatic cancer and 

an estimated 35,240 deaths are expected to occur in the US in 2009. Incidence 

and death rates of pancreatic cancer have been stable in men but the incidence 

and death rates have been increasing in women by 0.6% and 0.1% per year.   

Colorectal cancer: An estimated 106,100 cases of colon and 40,870 cases of 

rectal cancer are expected to occur in 2009. Colorectal cancer is the third most 

common cancer in both men and women. Colorectal cancer incidence rates 

have been decreasing for most of the past two decades (from 66.3 cases per 

100,000 population in 1985 to 46.4 in 2005) due to increase in screening that 

allows for the detection and removal of colorectal polyps before they progress to 
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cancer. An estimated 49,920 deaths from colorectal cancer are expected to 

occur in 2009, accounting for almost 9% of all cancer deaths. Mortality rates for 

colorectal cancer have declined in both men and women over the past two 

decades, with a steeper decline since 2002 (4.3% per year from 2002 to 2005 in 

both men and women, compared to 2.0% per year from 1990 to 2002 in men 

and 1.8% per year from 1984 to 2002 in women) (2).  

Liver cancer: Hepatocellular carcinoma (HCC) is one of the most common 

malignant tumors in the world and it accounts for 5.6% of all human cancers 

(7.5% among men and 3.5% among women). Well established risk factors for 

hepatocellular carcinoma include chronic infection with hepatitis B or C virus 

which is present in >85% of primary liver cancers (6, 7). The estimated new 

cases for liver and intrahepatic bile duct cancer is 22,260 and estimated deaths 

from this cancer is 18,160 including both men and women in US in 2009. When 

it comes to cancer mortality, liver and intrahepatic bile duct cancer is the sixth 

and ninth most common cause of death in men and women. 

Other gastrointestinal cancers: Other gastrointestinal cancers include cancers 

of gall bladder, small intestine, anus, anal canal, anorectum and other digestive 

organs. The estimated number of new cases for these cancers are 26,060 and 

estimated deaths are 7,360 in 2009 in United States alone (2). 
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Table 1. Estimated new gastrointestinal cancer cases and deaths by sex, 

US, 2009 (2).

 

Urinary tract 

The urinary tract includes kidney, ureters, urethra, urinary bladder. An 

estimated 131,010 new cases and 28,100 estimated deaths from urinary tract 

cancer are expected to occur in 2009 with the highest incidence and deaths from 

bladder cancer (Table 2). 

Urinary bladder:  An estimated 70,980 new cases of bladder cancer and an 

estimated 14,330 deaths from bladder cancer are expected to occur in 2009. 

Over the past two decades, bladder cancer incidence and mortality rates have 

been stable among men. In women the incidence rates are increasing slightly 

(0.2% per year) but bladder cancer death rates are declining since 1975. 
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Bladder cancer incidence is nearly four times higher in men than in women and 

more than two times higher in Caucasian than in African American men (2).  

Kidney and renal pelvis:  There are about 57,760 cases of kidney cancer 

diagnosed in the US annually and nearly 13,000 deaths are caused by this 

disease each year. Kidney cancer is the seventh most common cancer in men 

and the ninth most common cancer in women and the incidence of kidney 

cancer, unlike that of other genitourinary malignancies, is rapidly increasing by 

2.5% per year (8).  

Other urinary organs: Estimated cancer cases from ureter and other renal 

organs is about 2,270 and about 790 cancer deaths (men and women) are 

reported in the United States in 2009 (2). 

 

Table 2. Estimated new urinary tract cancer cases and deaths by sex, US, 

2009 (2).
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Cellular and molecular mechanisms in progression of cancer 

During the last ten years many important genes and gene mutations 

involved in development of various cancers and the pathways through which 

they act have been characterized. In essence, cancer is now recognized as a 

genetic disease that is associated with multistep processes in which a normal 

cell is converted into a cancer cell. In cancer cells the regulatory circuits involved 

in normal cell proliferation and homeostasis are defective and there are >100 

distinct types of cancer and subtypes of tumors that can be found within specific 

organs. In general tumors are broadly classified as hematopoietic and solid 

tumors. Hematopoietic tumors include leukemias and lymphomas composed of 

neoplastic cells whose precursors are normally mobile. Solid tumors generally 

arise from epithelial or mesenchymal cells that are not normally mobile.  It has 

been estimated that at least three mutations are required to develop a malignant 

solid tumor in adults whereas only one or two mutations are required for 

hematopoietic tumors since their precursors are already mobile and have 

invasive characteristics that solid tumors must develop to become malignant.  

There are many other molecular distinctions that add to cytogenetic, 

epidemiologic and medical evidence demonstrating that liquid and solid tumors 

are distinct from one another (9-11).  

Unlike many genetic diseases where mutations in one gene can cause a 

disease, no single gene defect „causes‟ cancer, since several mutated genes are 

required for development of cancer in order to circumvent multiple safeguards in 
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normal cells. Usually normal cells perform their functions in a tightly regulated 

manner and when placed in a distant tissue or organ they undergo self 

destruction (anoikis) whereas cancer cells grow uninterruptedly and can invade 

and survive in other organs. Alterations in three types of genes are responsible 

for tumorigenesis: oncogenes, tumor-suppressor genes and stability genes (11). 

Oncogenes are mutated in ways that render the gene constitutively active 

and this can result from chromosomal translocations, gene amplifications or 

intragenic mutations affecting crucial residues that regulate activity of the gene. 

An activating somatic mutation in one allele of an oncogene is usually sufficient 

to bestow the cell with certain growth advantage (11).  

Mutations in tumor suppressor genes result in decreased gene activity 

due to missense mutations at critical residues, or mutations that result in 

truncated proteins, deletions or insertions or from epigenetic silencing. For 

example point mutations in tumor suppressor gene p53 may result in loss of its 

activity to inhibit cell growth and induce cell death during stress. Amplification of 

MDM2 which binds to p53 and inactivates p53 by proteosomal degradation can 

also result in loss of p53 activity. Mutations in both maternal and paternal alleles 

is usually required to provide a selective growth advantage to a cell. At the 

physiological level both oncogene and tumor suppressor gene mutations drive a 

cancer cell by increasing tumor cell growth by activation of the cell cycle, 

inhibition of apoptosis or by increasing access to nutrients through increased 

angiogenesis (11).  
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A third class of genes involved in minimizing genetic alterations in cells 

are called stability genes and these include mismatch repair (MMR), nucleotide-

excision repair (NER) and base-excision repair (BER) genes which are 

responsible for repairing errors during normal or drug induced DNA replication. 

These repair genes are also important during mitotic recombination or 

chromosomal segregation involving large portions of the chromosomes. By 

inactivating stability genes mutations in other genes occur at higher rates (11).  

Mutations in all three classes of genes can occur at germline or in single 

somatic cells resulting in hereditary predisposition to cancer or in sporadic 

cancers respectively. Somatic mutations in either oncogenes or tumor 

suppressor genes can initiate clonal expansion resulting in tumor formation. 

Germline mutations in any of these three classes of genes can predispose 

individuals to cancer but not directly induce cancer per se; however, individuals 

carrying these mutations develop cancer at earlier age. Interestingly, the most 

common forms of hereditary cancer leading to early and increased rates of 

breast and colon cancers are caused by inherited mutations of stability genes 

rather than tumor-suppressor genes or oncogenes. Tumors that become 

malignant must accumulate several rate-limiting mutations in cancer genes and 

these mutations generally occur over a period of time. Most cancers do not have 

a high mutation rate when compared to a normal cell (that has passed through 

several generations) when the mutation rate is measured at the nucleotide level 

where the number of mutations in a typical cancer cell is <1 per megabase of 
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DNA. Recent research has shown that genetic instability can contribute to 

cancer predisposition and chromosomal instability in cancer cells is much more 

common than mutations at the nucleotide level. Aneuploidy is observed in 

almost all solid tumors leading loss of heterozygosity (LOH) where an average of 

25-30% of the alleles present in normal cells are lost in cancer cells and over 

75% of the cell‟s alleles have been observed in some tumors. LOH gives the 

cancer cell an advantage due to loss of tumor suppressor genes and expression 

of variant gene products that facilitate rapid cell growth and adaptation to 

changing microenvironments.  These genetic instabilities not only play a central 

role in cancer development but also in development of resistance to cancer 

chemotherapy (11, 12).  

These genetic instabilities in cancer cells result in alterations in cell 

physiology that dictate their malignant phenotype and these are described as the 

six hallmarks in cancer progression (Figure 3) :  self-sufficiency in growth 

signals, insensitivity to growth-inhibitory (antigrowth) signals, evasion of pro-

grammed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis (13). 
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Figure 3. Hallmarks of cancer (13). 

1. Self sufficiency in growth signals: Cancer cells unlike normal cells show 

reduced dependency on exogenous growth factors to proliferate and they 

can generate their own growth-promoting signals. In contrast to cancer cells, 

normal cells depend on growth factors to proliferate and these signals are 

transmitted through transmembrane receptors that bind various growth 

factors, extracellular matix components and other interacting molecules. This 

property of a non-transformed cell is important for maintainence of normal 

homeostasis in a tissue. With reduced dependency on exogenous growth 

factors, cancer cells become autonomous by constitutively activating 
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oncogenes and overexpressing growth factors such as PDGF (platelet 

derived growth factor), VEGF (vascular endothelial growth factor), TGF 

(transforming growth factor), EGF (epidermal growth factor). This creates a 

positive feedback signaling loop called autocrine stimulation. For example, in 

glioblastomas and sarcomas, cancer cells upregulate growth factors such as 

PDGFα and TGFα which obviates their dependency on growth factors from 

other cells within the tissue/organ. Cancer cells also overexpress certain cell 

surface receptors that transmit intracellular growth signals. These are usually 

transmembrane receptors whose cytoplasmic domains often carry tyrosine 

kinase activites; by overexpressing tyrosine kinase receptors, cells become 

highly responsive to physiological levels of growth signals that do not induce 

proliferation in normal cells. For example, the epidermal growth factor 

receptor family (EGFR/ErbB) includes EGFR, ErbB2/HER-2, ErbB3/HER-3 

and ErbB4/HER-4. Recent studies have shown that EGFR which binds to 

EGF and TGFα is upregulated in stomach, brain and breast tumors and 

HER-2/ErbB2 which binds to heregulin is overexpressed in stomach and 

mammary tumors (13, 14).        

2. Insensitivity to antigrowth signals: Cancer cells elude antiproliferative 

signals which inhibit proliferation by arresting cells in G0 phase or by 

abandoning their proliferative potential in the postmitotic state usually by 

acquiring differentiation-associated states.  For example, Retinoblastoma 

(Rb), tumor suppressor gene, is mutated in childhood cancers, plays an 
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important role in transition from quiescent (G0 or G1) phase to replicating (S) 

phase of the cell cycle. Many genes are involved in Rb pathway such as 

cyclin D1 and p16 which activate cyclin dependent kinase 4 (CDK4) that 

phosphorylate Rb liberating E2Fs to allow cell proliferation. These 

antiproliferative signals are circumvented in the cells by disruption of Rb 

pathway, loss or mutation of Rb allowing cancer cells to propagate 

incessantly.  (13, 15).    

3. Evading apoptosis: Programmed cell death (apoptosis) is one of the major 

mechanisms of cell death and by evading apoptosis there is an imbalance 

between cell proliferation and cell death and this can result in tumor 

formation. Cancer cells overcome the balance between anti and pro-

apoptotic signals and grow in adverse environmental conditions such as 

hypoxia, stress and chemotherapy which are toxic to normal cells. For 

example during hypoxia in normal cells, hypoxia inducible transcription factor 

(HIF)-1α induces apoptosis in a p53 dependent manner by promoting release 

of cytochrome c from mitochondria which subsequently activates apoptosis.  

However cancer cells evade HIF-1α induced apoptosis by upregulation of 

MDM2 which inhibits p53 resulting in increased resistance to hypoxia and 

decreased apoptosis (13, 16). 

4. Limitless replicative potential: After a finite number of replications/cell 

divisions, normal cells undergo a process called senescence and stop 

growing. In contrast, cancer cells acquire the property of immortalization and 
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fail to undergo senescence by upregulating telomerase (hTERT) enzyme 

activity to maintain their telomere length. This property of cancer cells is 

essential for tumor progression and for their malignant state. For example, 

homozygous p16INK4a (cell cycle inhibitor) knockout mouse are susceptible to 

cancer development when exposed to carcinogens due to increased activity 

of telomerase; whereas in mice that are double null for both p16INK4a and 

telomerase, the cancer incidence was decreased by >50% due to shortened 

telomeres (13, 16) (17).  

5. Sustained angiogenesis: Neovascularization or formation of new blood 

vessels is observed during early to mid-stage of tumor progression and is 

essential for supplying oxygen and nutrients that are crucial for survival and 

rapid clonal expansion. In cancer cells there is a shift in the balance between 

expression of angiogenesis inducers and inhibitors. For example, 

overexpression of vascular endothelial growth factor (VEGF) and/or fibroblast 

growth factors (FGF1/2) is observed in many cancers when compared to 

normal tissue and angiogenic  inhibitors such as thrombospondin-1 or 

interferon β are decreased in cancer cells compared to normal cells (13). 

6. Tissue invasion and metastasis: Metastasis of tumor cells is the major 

reason (>90%) for cancer deaths. Cancer cells acquire the capability of 

invasion and metastasis and cells migrate to distant organs resulting in 

outgrowth of the metastatic tumors in a new environment. This process is 

complex and includes activation of extracellular proteases, cell to cell 
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adhesion molecules such as cadherins and integrins which gives cancer cells 

the potential to become invasive and metastatic. In normal cells E-cadherin, 

belonging to family of CAMs, play an important role in bridging cell-cell and 

cell-surrounding environment interactions and transmit antigrowth and other 

signals through β-catenin to the cytoplasmic compartment of cells. This 

function of E-cadherin is lost in majority of epithelial cancers due to 

inactivating mutations, transcriptional repression or proteolysis of the 

extracellular domain of E-cadherin (13).  

Metabolic changes in tumor development 

The six hallmarks of cancer (Figure 3) noted above are also accompanied 

by changes in cellular metabolism. The phenomenon of altered metabolism in 

cancer cells was first discovered by Otto Warburg and is known as the „Warburg 

phenomenon‟ which describes an altered increase in glycolysis and lactate 

production in the presence of high oxygen tension (anabolic reaction). This 

phenomenon is observed in many cancers which exhibit an increased uptake of 

glucose compared to normal cells. This increased uptake of glucose is the basis 

for positron emission tomography (PET) where the glucose analog 2-(18F)-

fluoro-2-deoxy-D-glucose (FDG) is used to visualize/image cancers and 

metastasis (18). 

In the presence of oxygen, normal nonproliferating differentiated cells 

metabolize glucose in the tricarboxylic acid (TCA) cycle to give carbon dioxide 

and water by oxidation of pyruvate (produced from glycolysis) and acetyl-CoA in 
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the mitochondria. During this reaction NADH (reduced nicotinamide adenine 

dinucleotide) is produced in TCA cycle and is used in mitochondrial oxidative 

phosphorylation to produce ATP with minimal formation of lactate. Lactate is 

produced in normal cells only during anaerobic glycolysis whereas large 

amounts of lactate are formed in cancer cells and this is independent of oxygen 

availability and hence called aerobic glycolysis (18, 19).  

The high rate of glycolysis in cancer (also observed in normal proliferating 

cells) facilitates production of large amounts of ATP for energy and de novo 

synthesis of nucleotides, lipids and proteins necessary for rapid cell proliferation, 

invasion and metastasis. Hence glucose is diverted into the pentose phosphate 

pathway to produce NADPH (reduced nicotinamide adenine dinucleotide 

phosphate) and ribose-5-phosphate which is either utilized to synthesize nucleic 

acids or enters into glycolysis to produce ATP. Cancer cells utilized both glucose 

and glutamine as the two major sources of energy. Glucose is required only for 

lipid and nucleotide synthesis whereas glutamine replenishes TCA cycle with 

intermediates involved in anabolic reactions, for amino acid synthesis and for 

corporation of nitrogen into purines and pyrimidines required for nucleotide 

synthesis (Figure 4) (18-20). 

 In tumor cells, glycolysis appears to be aborted at either of the two steps. 

1) The first aborted step is conversion of glucose into pyruvate which generates 

only 2 ATP molecules per glucose molecule and lactic acid. 2) In most cancers 

the TCA cycle appears truncated and acetyl-CoA is introduced to TCA cycle and 
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converted to citrate and exported to cytosol via the tricarboxylate transporter 

where it is cleaved by ATP citrate lyase (ACL) to generate oxaloacetate and 

acetyl-CoA. Acetyl-CoA serves as a building block for cell growth and 

proliferation and reduction of oxaloacetate gives malate which is imported into 

the mitochondria, reconverted to oxaloacetate and interacts with acetyl-CoA to 

complete the cycle. It has been proposed that enhanced glucose uptake for 

anabolic reactions can be advantageous for tumor cell progression for the 

following reasons (18): 

1) Rapid growth of cancer cells is accompanied by fluctuating oxygen levels 

due to variable hemodynamics of distant blood vessels in a tumor 

environment and under these conditions cancer cells cannot survive by 

depending on oxidative phosphorylation to generate ATP. However, aerobic 

glycolysis provides the capability of producing ATP in oxygen-rich and 

deprived conditions. Even though aerobic glycolysis is less efficient in the 

production of ATP, the rate at which ATP is produced is approximately 100 

times higher than in oxidative phosphorylation and the overall increased rate 

of glycolysis is beneficial for tumor growth. If this glycolysis-dependent 

energy requirement is not provided then the cells will undergo apoptosis (18, 

19).  
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Figure 4. Schematic representation of the differences between oxidative 

phosphorylation, anaerobic glycolysis, and aerobic glycolysis (Warburg 

effect) (19). 

2) Bicarbonate and lactic acid are generated as end products of aerobic 

glycolysis and this favors tumor invasion since the resulting acidic 

environment suppresses anticancer immune effectors. Nontransformed 

stromal cells can also take up lactate produced by cancer cells to regenerate 

pyruvate that can either be used to refuel cancer cells or to enhance 

oxidative phosphorylation by stromal cells themselves. This creates a 

microenvironment that engages in complementary metabolic pathways and  
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products of aerobic glycolysis are recycled to sustain tumor growth and 

survival (18).  

3) Glucose is metabolized through the pentose phosphate pathway (PPP) to 

provide glycolytic intermediates such as NADPH (reduced nicotinamide 

adenine dinucleotide phosphate) and ribose-5-phosphate which can enter 

into glycolysis. NADPH is not only used for generation of reduced glutathione 

that protects against oxidative insults and chemotherapeutic agents but also 

participates in lipid and cholesterol biosynthesis. For example glioblastoma 

cells in culture use up to 90% of glucose and 60% of glutamine to generate 

lactate or alanine which is transported out of the cell as waste but also 

facilitates formation of NADPH as a by-product (18, 19).  

4) Aerobic glycolysis gives cancer cells the potential to use intermediates 

produced for anabolic reactions. Glycolytic intermediates such as ribose-5-

phosphate can be used for nucleic acid biosynthesis, glucose-6-phosphate is 

used for glycogen production, dihydroxyacetone phosphate is used for 

triacylglyceride and phospholipid synthesis and pyruvate is utilized for 

alanine and malate synthesis. The embryonic isoform of pyruvate kinase 

which dephosphorylates phospoenolpyruvate to give pyruvate is absent from 

most adult tissues (except adipocytes) but is highly expressed in tumors. 

This isoform plays a role in the accumulation of phosphometabolites 

upstream of pyruvate synthesis and these are subsequently available as 

precursors for synthesis of amino acids, lipids and nucleic acids.  In 



21 
 

proliferating cancer cells pyruvate enters into the truncated TCA cycle 

resulting in the export of acetyl-CoA from the mitochondrial matrix and 

pyruvate then becomes available for synthesis of fatty acids, cholesterol and 

isoprenoids. It has also been reported that fatty acid synthase is upregulated 

in numerous cancers and plays an important role in conversion of acetyl-

CoA, malonyl-CoA and NADPH into long-chain fatty acids (18, 19). 

During cellular metabolism increased production of reactive oxygen 

species (ROS) and oxidative stress is one of the hallmarks of cancer and is due 

to an imbalance between generation of ROS and the cell‟s ability to produce 

antioxidants. A recent report suggests that many types of cancers exhibit 

increased ROS (21, 22). ROS are broadly defined as oxygen containing reactive 

chemical species. The two main types of ROS include: 1) those which contain 

one or more unpaired electrons in their outer orbitals such as superoxide, nitric 

oxide and hydroxyl radicals and 2) non-radical ROS which do not contain 

unpaired electrons but are chemically reactive and can be converted to radical 

ROS. These ROS include hydrogen peroxide, ozone and peroxynitrate. 

Mitochondria are a major source of ROS generated in cells and ROS are formed 

through electron leakage from the electron transport system which reacts with 

O2 to form superoxide and then to other ROS. ROS is also produced from 

phagocytic reactions and as a byproduct of many biochemical reactions such as 

β–oxidation in peroxisomes, prostaglandin synthesis and cytochrome P450-

dependent oxidation reactions. Exposure to environmental factors such as 
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pollutants, tobacco smoke, radiation and iron salts can also produce ROS in 

cells (Figure 5) (23-25) (26). 

ROS also has biological functions that regulate many signal transduction 

pathways either by direct interactions or by modifying the structure of proteins, 

transcription factors and genes. A moderate increase in ROS can induce cell 

proliferation and differentiation whereas excess levels of ROS can result in 

oxidative damage to lipids, DNA and proteins. Therefore, maintenance of ROS 

homeostasis is important for normal cell growth and survival. Cells are equipped 

with many ROS-scavenging systems such as glutathione peroxidases, 

peroxiredoxins, glutaredoxin, thioredoxin, superoxide dismutases and catalase 

(23).  

Recent reports suggest that malignant cells function under higher levels 

of oxidative stress than normal cells (21, 22). For example freshly isolated 

leukemia cells from blood of chronic lymphocytic leukemia or hairy-cell leukemia 

patients exhibited increased ROS levels compared to normal lymphocytes. Even 

in solid tumors, increased oxidative damage products such as the oxidized DNA 

base (8OHdG), and lipid peroxidation products are seen in tumor samples, 

plasma and in cancer cell lines. Not only ROS but also antioxidant (SOD, 

glutathione peroxidase and peroxiredoxin) status is significantly altered in 

tumors suggesting abnormal regulation of redox homeostasis and stress 

adaption (23).   
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The precise mechanism for increased redox status in cancer cells and 

tumors remains unclear but activation of oncogenes (Ras, Bcr-Abl and c-Myc), 

aberrant metabolism, mitochondrial dysfunction and functional loss of p53 are 

some of the factors that may be involved (Figure 5). For example NIH3T3 

fibroblast cells transformed by overexpressing H-Rasv12 generate large amounts 

of superoxide through activation of the membrane associated ROS-producing 

enzyme NADPH oxidase (NOX) suggesting that increased ROS is required for 

the oncogenic function of Ras (23, 24).  

Apart from oncogenic transformations, mitochondrial dysfunction also 

contributes to higher levels of ROS. Mitochondrial DNA (mtDNA) encodes for 37 

genes/gene products and a number of these are involved in the electron 

transport chain. In many cancers mRNA levels of several mtDNA encoded 

genes are upregulated.  For example, in hepatic tumors, hexokinase II is 

overexpressed whereas in normal cells hexokinase IV (glucokinase) is 

expressed. Hexokinase II differs from hexokinase IV by having two catalytic sites 

and low Kms (Km1/4 0.02-0.03 mM) value whereas hexokinase IV has one 

catalytic site and high Km (Km1/4 5-8 mM) value. Hexokinase II binds to the 

mitochondrial outer membrane protein VDAC (voltage-dependent anion channel) 

which is a part of the mitochondrial permeability transition pore (mtPTP). The 

mtPTP is formed from the assembly of pro- and anti-apoptotic proteins Bax and 

Bcl2 family members, outer membrane protein VDAC, inner membrane protein 
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adenine nucleotide translocator (ANT), cyclophilin D and the benzodiazepine 

receptor. 

 

Figure 5. The vicious cycle of ROS stress in cancer (23). 

Hexokinase II bound to VDAC allows solutes such as ATP to pass 

through the membrane and thereby catalyze rapid phosphorylation of glucose to 

glucose-6-phosphate which then undergoes aerobic glycolysis to generate ATP 

and lactate. Also the VDAC bound hexokinase II stabilizes the mitochondrial 
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permeability transition pore (mtPTP) and inhibits the effect of Bax and Bak and 

thus blocks apoptosis. Phosphorylation of hexokinase II by protein kinase D 

(PKB) promotes the interaction of hexokinase II with VDAC and inhibits 

apoptosis (27).  Some germline and somatic mutations are also responsible for 

mitochondrial dysfunction and play an important role in cancer development. For 

example germline mutations causing polymorphisms on nucleotides 10398 

(A>G) and 16189 (T>C) have been associated with breast cancer in African 

American women and endometrial cancer.  Even somatic mutations ranging 

from severe insertion-deletion and chain termination mutations to mild missense 

mutations are detected in many cancers. For example in about 50% of renal 

adenocarcinoma patients, mtDNA contain an in-frame deletion of 294 

nucleotides in the nicotinamide adenine dinucleotide dehyrogenase 1 (ND1) 

gene. ND1 is part of complex I in the electron transport chain which oxidizes 

NADH and transfers electrons to coenzyme Q (27, 28). 

p53 is a tumor suppressor gene that plays an important role in protecting 

nuclear DNA and mtDNA by sensing and decreasing oxidative stress in order to 

prevent oxidative gene mutations and genomic instability. In addition p53 also 

regulates expression of many pro-oxidant and antioxidant genes and thus loss 

or inactivating mutations of p53 which is observed in >50% of cancers, is 

associated with redox imbalance, increased oxidative stress and aggressive 

tumor growth. For example p53 positively regulates the gene encoding 

cytochrome c oxidase 2 (SCO2) protein which is important for the assembly of 
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cytochrome c oxidase; and thus functional loss of p53 results in metabolic 

disorders and increased ROS levels (20, 23).  

Multistage tumor progression 

Tumor formation is a complex and multistep process that usually takes 

decades and tumor progression is defined as the evolution of normal cells into 

cells with an increasingly neoplastic phenotype. During tumorigenesis many 

mutations and epigenetic alterations occur randomly within DNA and this affects 

genes controlling cell proliferation and survival and other traits associated with 

malignant phenotypes (29). Epidemiological studies show that the risk of death 

due to colon cancer in a 70 year old man is about 1000 times higher than in a 10 

year old boy. Cancer is usually a late onset disease indicating that formation of 

most cancer requires years to decades to develop (2). It is estimated that the 

onset of lung cancer due to cigarette smoking has a lag period of up to 35 years 

(30). Cancer incidence increases with age and with multiple mutations. A 

mathematical model for this process is I=ktr-1 where „I‟ is age specific incidence, 

„r‟ is the successive mutations occurring in some cells at a constant rate „k‟ k1, 

k2, k3…kr per unit time „t‟. A log-log of the equation (ln I = ln k+(r-1) ln t) gives a 

linear relationship in which the slope would yield „r-1‟  and it will predict the 

incidence and mortality rate due to various cancers as a function of I4 to I7, 

where „I‟ represents the age of patients at initial diagnosis. Many cancers exhibit 

this relationship and for colon cancer r=6. This is based on calculations taking 

five or six of the slowest „rate limiting‟ steps involved in the kinetics of cancer 



27 
 

progression and does not consider the more rapid changes that might occur in 

tumor development (31) (32). 

The multi-hit hypothesis describes cancers that require 4-10 mutational 

events for development of malignant tumors. For example during the 

development of colorectal adenocarcinoma events include mutations in APC and 

p53 (two alleles) and also in one copy of the RAS oncogene (Figure 6).  The 

multi-hit hypothesis is applicable to most cancers where preneoplastic cells and 

tumors grow by clonal expansion and are driven by successive mutations. The 

first mutation results in limited expansion and the second mutation will allow 

cells to form a benign growth; one of the cells may subsequently undergo a third 

mutation resulting in outgrowth of these cells into a malignant and invasive 

cancer.  In vitro transformation studies in human primary cells indirectly support 

the multi-hit hypothesis, even though rodent cells can be easily transformed. At 

least five distinct cellular regulatory circuits need to be altered experimentally in 

“normal” human cells before they can form tumors in immunocompromised mice. 

These changes involve a 1) Ras mitogenic signaling pathway 2) pRb-mediated 

cell cycle control 3) p53 4) and telomere pathways and 5) protein phosphatase 

(PP2A) 2A pathway (31, 33-36).  
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Figure 6. Five hit hypothesis for development of colorectal cancer (31).  
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However, this hypothesis does not fit all cancers.  For example, childhood 

cancers occur early in life and include cancers such as osteosarcoma which has 

its highest incidence during adolescence when the rate of long bone growth is 

highest. Alveolar rhabdomyosarcoma is another pediatric cancer predominantly 

observed in the trunk and extremities (31, 37).  

Even though formation of most tumors is a multistep process, there are 

some notable exceptions (Figure 7). Chronic myelogenous leukemia (CML) 

arises from a reciprocal translocation between chromosomes 9 and 22 resulting 

in the fusion of BCR-ABL oncogenes; B-cell lymphoma is the result of a 

translocation that activates Bcl2, an antiapoptotic gene.  There are many 

leukemias, lymphomas and sarcomas that are characterized by single specific 

translocations and they are consistent with Knudson‟s „One hit hypothesis‟ which 

states that a single abnormality is functionally crucial for cancer to develop (31).  

Retinoblastoma is observed exclusively in children and arises from 

retinoblasts that normally differentiate into postmitotic retinal photoreceptor cells 

and neurons. Differentiation fails in these tumors and the cells continue to 

proliferate leading to tumor invasion and metastasis. Retinoblastoma arises from 

mutations in Rb1, a tumor suppressor gene (recessive mutation on both the 

alleles) which can be hereditary or nonhereditary in nature. In the United States, 

about 40% of the cases carry germline mutations in the Rb1 gene. Both 

hereditary and nonhereditary retinoblastoma involve two mutations and hence 

the term „two hit hypothesis‟.  In hereditable retinoblastoma, germline mutations 
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are seen as deletion or chromosomal loss or recombination of chromosome 

band 13q14. The other notable disease consistent with the „two hit hypothesis‟ is 

Li-Fraumeni syndrome (LFS) which is due to mutations in p53 tumor suppressor 

gene. p53 was found to be complexed with transforming proteins of certain DNA 

tumor viruses and p53 plays an important role in mediating repair of DNA 

damage induced by oncogenes or radiation by activating pathways that result in 

cell cycle arrest, DNA repair or apoptosis. Ataxia telangiectasia mutated (ATM) 

and hCHK2 and/or p14ARF proteins act as important intermediates in these 

p53-induced pathways. Germline mutations of p53 and in some cases hCHK2 

are observed in Li-Fraumeni syndrome. Individuals carrying this mutation often 

develop different tumors such as osteosarcoma, brain tumors, leukemia, 

adrenocortical tumors and breast cancer in female carriers at an early age. In 

both retinoblastoma and LFS the initial somatic mutation gives rise to a mutant 

clone of cells and a second hit, whether it is hereditary or nonhereditary, results 

in tumor formation (31).  

The age-dependent incidence of cancer explained by the multi-hit 

hypothesis may not play a major role in hormone-dependent carcinomas 

particularly when considering the effects of timing and dose level of various 

agents alone or in combination. For example breast cancer incidence is 

dependent in part on exposure to estrogen and is modified by other factors such 

as pregnancy (increased incidence), late menarche, early menopause, early first 

child birth and high parity (decreased incidence). Other cancers including 
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mesothelioma in humans are also dependent on the time and dose of asbestos 

exposure and lung cancer incidence depends on the duration and amount of 

smoking and incidence decreases when smoking stops (31, 38).  These are 

examples of cancers where age is important but the exposure to modifying 

factors can also be a major contributing factor. 

 

Figure 7. Tumor spectrum in pediatric and adult population (32). 
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Pancreatic and bladder cancer 

Anatomical classification of tumors 

Tumors are broadly classified based on their tissue of origin 1) epithelial, 

2) nonepithelial (mesodermal) and 3) other types of cancers which do not fit 

either epithelial or nonepithelial cancers.  

1) Majority of human cancers are epithelial in origin and account for more than 

80% of all cancers reported worldwide. Epithelial tumors or carcinomas 

include gastrointestinal, mammary gland, lung, skin, and urogenital cancers 

(39). These cancers arise from epithelial cells which line the walls of cavities 

and channels or in the case of skin they form the outer covering of the body.  

Most cancers of epithelial origin fall into two major categories reflecting the 

biological function of the epithelium: A) cancers that arise from the cells that 

layer and protect the cavity or channel such as squamous cell carcinoma of 

the skin or esophagus. B) Epithelia which secrete substances that protect 

and line cavities give rise to adenocarcinoma. This includes cancers of 

stomach, pancreas, prostate, breast, colon and lung (39-41).   

2) Tumors of nonepithelial origin are broadly classified into three groups: A) 

Sarcomas which arises from connective tissues and include osteosarcoma 

(osteoblasts), liposarcoma (adipocytes), rhabdomyosarcoma (myocytes) and 

fibrosarcoma (fibroblasts). B) Hematopoietic malignancies which arise from 

blood forming tissues and include leukemia (white blood cells), and 

lymphoma (lymphoid tissue- B and T lymphocytes). C) Neuroectodermal 
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tumors arise from outer cell layers of early embryos and include 

glioblastomas (glial cells), neuroblastomas (cells of sympathetic ganglia of 

the peripheral nervous system), schwannomas (Schwann cells) and 

medulloblastomas (cells of granular layer of the brain) (39-41).  

3) The examples of tumors which do not fit epithelial or nonepithelial origin 

include melanomas which are derived from melanocytes, small cell lung 

carcinomas and transitional cell carcinoma of urinary bladder. Melanocytes 

and cells in small cell lung carcinomas are derived from the neural crest and 

migrate during development to skin/retina and lung in order to perform their 

functional role and are not connected with the nervous system (39-41).  

Tumor development is characterized by progressive evolution of normal 

cells into aggressive metastatic disease. The progression away from normal to 

an invasive cancer is observed in the following steps (Figure 8):  

1) Hyperplastic growth is seen in which cells deviate minimally from their normal 

tissues and may exhibit an increase in the number of normal cells. 

2) Metaplasia is seen where normal cells are displaced by different cell types 

that are not usually found in that particular tissue. These metaplastic cells are 

most often found in epithelial transition zones (where two different tissue 

meet) and appear normal under microscopic examination. The transition 

zones are seen at the junction of the cervix and uterus and also between the 

esophagus and stomach and are usually lined with squamous epithelium. For 

example, the squamous epithelium in the esophagus undergoes a 
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metaplastic change into mucous secreting gastric epithelium which is 

considered to be an early indication of premalignant change in the 

esophagus and is termed “Barrett‟s esophagus”. This metaplastic change in 

patients suffering with Barrett‟s esophagus increases the risk by thirty-fold for 

developing esophageal carcinoma.   

3) Cells with dysplasia exhibit abnormal cytology and differ considerably from 

normal cells. The cytological changes include changes in the size of the 

nucleus and cytoplasm, increased mitotic activity and proliferation. This 

abnormal increase in number of cytologically different cells results in 

alterations of tissue morphology and this dysplastic growth is considered to 

be a transitional state between benign growths and premalignant lesions. 

4) Abnormal growths, termed adenomas, polyps and papillomas, are large 

enough to be detected with naked eye. Cells in these growths are dysplastic 

and considered benign as they grow to a certain size; these cells stop 

growing, respect boundaries and do not penetrate the basement membrane. 

5) Abnormal growths can result in neoplasias which invade underlying tissues 

and become malignant. Cells in primary tumors become invasive and spread 

to distant sites in the body through blood and lymph vessels and this process 

is called metastasis (33, 39-41) (42). 

Pancreatic cancer 

The pancreas is composed of exocrine and endocrine components. The 

exocrine component consists of acinar, ductal and centroacinar cells and the 
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endocrine portion consist of islets of langerhans. The exocrine portion of the 

pancreas secretes zymogen which is a digestive enzyme that is released into 

the duodenum. The endocrine component of the pancreas secretes insulin and 

other proteins which regulate glucose homeostasis.   

Pancreatic ductal adenocarcinoma is the most frequently diagnosed 

pancreatic cancer and is the fourth leading cause of cancer deaths in the United 

States with 35,000 deaths reported in 2009. Other cancers of the pancreas are 

much less common and account for about 4% of pancreatic cancers. 

 

Figure 8. The microenvironments of multistage carcinogenesis (43). 

 

 

Classification of pancreatic cancers 
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Pancreatic cancers are classified into 3 categories; a) solid non-endocrine 

neoplasms, b) cystic non-endocrine neoplasms and c) endocrine neoplasms, 

which represent the three main epithelial lineages of the pancreas: the ductal 

cell, the acinar cell and the endocrine cell (44) (45, 46) (47).   

a) Solid non-endocrine neoplasms: The following cancers are included. 

1) Pancreatic ductal adenocarcinoma (PDAC) and its variants: PDAC is 

commonly localized on the head of the pancreas and has infiltrating duct-

like and tubular structures embedded in highly fibrous or connective 

stromal tissue. These growths obstruct and dilate the bile and pancreatic 

ducts and results in development of jaundice in many patients with PDAC. 

The pathological features of PDAC are described as „pancreatic 

intraepithelial neoplasias or PanINs‟ which vary from morphological 

precursors to invasive cancer. PanINs arise in small ducts and ductules of 

pancreas and comprise mucin-producing cells that exhibit varying 

degrees of nuclear and architectural atypia. PanINs are considered 

precursors of infiltrating pancreatic ductal adenocarcinoma and studies 

have shown that PanINs can progress to infiltrating cancer over time. For 

example three patients diagnosed with high grade PanINs developed 

infiltrating PDAC over a span of time (months to years) (47) (48).  

i) PanIN-1A: Flat epithelial lesions composed of tall columnar cells with 

basally located nuclei and abundant supranuclear mucin; nuclei are small 

and round to oval in shape. In normal pancreatic cells the ductal 
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epithelium is composed of cuboidal to low columnar epithelium with 

amphophilic cytoplasm. At this stage there is no considerable difference 

between non-neoplastic flat hyperplastic lesions and flat neoplastic 

lesions without atypia.  

ii) PanIN-1B: The lesions appear similar to PanIN-1A apart from exhibiting 

papillary, micropapillary or basally pseudostratified architecture.  

iii) PanIN-2: These are mucinous flat epithelial lesions with cells exhibiting 

nuclear abnormalities with loss of polarity, nuclear crowding, enlarged 

nuclei, pseudo-stratification and hyperchromatism. Cells undergoing 

mitosis are rare. 

iv) PanIN-3: These lesions are papillary or micropapillary but rarely flat. True 

cribriforming, budding off of small clusters of epithelial cells into the lumen 

and luminal necroses is observed. Cells are characterized by loss of 

polarity, dystrophic goblet cells, high abnormal mitotic figures, nuclear 

irregularities and large nucleoli. These lesions appear neoplastic but 

invasion through the basement membrane is not observed (Figure 9) (44, 

49) (47) (50).  
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Figure 9. Tumor progression model of pancreatic carcinogenesis: bottom, 

schematic drawing; middle, in men; and top, in mice (44). 

The pathological staging of PDAC is based on TNM classification which 

takes into account the size and extent of invasion of the primary tumor (pT1 – 

pT4) and the presence or absence of regional metastatic lymph nodes (pN1a or 

pN1b if multiple lymph nodes are involved) as well as distant metastases (pM) 

(Table 3) (47).  
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Table 3. TNM classification of pancreatic ductal adenocarcinoma (47). 
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Variants of pancreatic ductal adenocarcinoma: Pancreatic carcinomas which 

are closely related to PDAC are categorized under this section (45, 46) (47). 

i) Adenosquamous carcinoma: It resembles PDAC in terms of localization 

in the pancreas and macroscopic appearance and sex distribution. The 

tumor is characterized by a variable mix of neoplastic tubuloglandular and 

squamous (flat epithelial) cells. The squamous portion may obliterate the 

glandular portion resulting in squamous carcinoma. Undifferentiated 

spindle cells are observed in adenosquamous carcinoma (45-47). 

ii) Undifferentiated carcinoma: Also called anaplastic, pleomorphic large 

cell, pleomorphic gaint cell or sarcomatoid carcinoma. It accounts for 

about 2-5% of exocrine pancreatic cancers and they have similar age and 

sex distribution as PDAC but are more aggressive. The tumors of 

undifferentiated carcinoma are usually soft and large with conspicuous 

hemorrhages, necrosis and/or cystic changes. The tumors consist of 

mononuclear pleomorphic (variability in shape and size) cells embedded 

in scanty stroma with occasional multinucleated giant cells or spindle 

cells. The cancer cells grow either in poorly cohesive sheets or in a 

sarcoma like fashion and exhibit high mitotic rates and extensive 

lymphatic and vascular invasion (45-47).  

iii) Undifferentiated carcinoma with osteoclast like giant cells: These 

carcinomas are characterized by two different populations of 

mononuclear pleomorphic (spindle or polygonal) cells and osteoclast like 
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multinucleated giant cells. The pleomorphic cells exhibit properties of 

undifferentiated carcinoma with high mitotic rates whereas osteoclast like 

giant cells resemble normal osteoclast (bone resorption) cells with no 

mitotic figures. These tumors frequently exhibit point mutations in codon 

12 of the K-ras gene. Recent studies showed that the patients with 

undifferentiated carcinoma with osteoclasts have no better prognosis than 

PDAC and most patients die within one year of diagnosis with the disease 

(45-47). 

iv) Mixed ductal-endocrine carcinoma: It is a rare carcinoma which 

consists of non-neoplastic endocrine cells and is most often seen in 

differentiated PDAC.    

2) Acinar cell carcinoma: These malignant epithelial neoplasms arise from 

the head of the pancreas and exhibit smooth borders. Cells are pink and 

granular and form small glands called acini. These glands usually reveal 

the presence of zymogen granules which hold the digestive enzymes 

such as trypsin, lipase, chymotrypsin and/or amylase and staining for 

these substances is helpful in distinguishing acinar cell carcinomas from 

other pancreatic neoplasms.  Acinar cell carcinoma accounts for about 1-

2% of pancreatic tumors and occurs mostly in adults especially in males. 

The carcinoma is metastatic like PDAC and spreads to lymph nodes, liver 

and lungs but the clinical course is not as rapid and the median survival is 

about 18 months. These cancers exhibit genetic mutations in APC/β-
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catenin pathway but do not show any alterations in genes such as K-ras 

and p53 which are involved in PDAC development (50).  

3) Pancreatoblastoma: This is a rare pancreatic cancer observed in the 

children of 1-15 years of age and is referred to as pancreatic carcinoma 

of infancy. It is observed more often in boys than girls and the survival 

rate is better than PDAC. The causes responsible for this cancer are still 

unknown and the cells are small and necrotic with a white-grey 

appearance of the neoplastic tissue (47).  

b) Cystic non-endocrine neoplasms:  

1) Serous cystic neoplasms: These neoplasms are usually benign and are 

more common in women than men. Patients with von Hippel-Lindau 

syndrome frequently develop benign serous cystic adenomas that can be 

very large (football size) but they can be cured by surgical removal of the 

growths. The cells in this neoplasm contain large amounts of glycogen 

and can be detected by staining with periodic acid-Schiff (PAS) stain.  

2) Mucinous cystic neoplasms: These tumors are usually benign and less 

invasive and are seen more often in women than men and are similar to 

serous cystic adenomas. The tumors consist of cysts containing mucin 

and the inner surfaces may show papillary projections. The prognosis is 

better than for PDAC and patients can be cured if the tumors are 

surgically removed in the benign stage. Patients with invasive mucinous 

cystic carcinomas have median survival rates up to 5 years.  
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3) Intraductal papillary mucinous neoplasm (IPMN):  Unlike mucinous 

cystic neoplasms, IPMN develop mucinous papillar projections in the 

pancreatic ductal system and are more invasive. IPMNs are most often 

detected in men than women. These tumors stain for MUC1, MUC2, 

MUC5 or CDX2 depending upon the type of papillae (intestinal type, 

pancreatobiliary type, oncotypic type and gastric type) present.  

4) Solid-pseudopapillary neoplasm: These neoplasms form large cystic, 

haemorrhagic and necrotic masses with papillary components. They 

mostly occur in women in their 20‟s, but most patients can survive for 

many years after surgical resection of the tumors (45, 46) (47).  

c) Endocrine tumors: Endocrine tumors account for about 1% of 

pancreatic tumors and the malignant behavior of these tumors is highly 

unpredictable except in poorly differentiated carcinomas. These tumors 

are characterized into 3 sub-categories and are summarized below (45, 

46) (47). 

1) Well- and moderately-differentiated endocrine neoplasms: This 

category includes benign, borderline and malignant tumors of endocrine 

origin. However it is hard to predict the outcome of these tumors since 

even benign tumors can later develop into a malignant tumor. These 

tumors usually stain for endocrine markers such as chromogranin, 

synaptophysin and neuron specific enolase. Patients with endocrine 

tumors can produce excessive quantities of hormones such as insulin 
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produced by islet of langerhans and these patients present symptoms of 

hypoglycemia.  

2) Multiple endocrine neoplasia syndrome, type 1 (MEN1 syndrome): 

This syndrome is called as Werner‟s syndrome which results from a 

germline mutation or deletion in MEN1 gene on the long arm of 

chromosome 11 (11q13). About 80% of patients with MEN1 syndrome 

develop pancreatic tumors. 

3) Poorly differentiated endocrine neoplasms: As the name suggests, 

the tumors are very poorly differentiated with high mitotic rates and exhibit 

invasive characteristics. Survival rates for these patients is very low (47).  

Aetiology of pancreatic cancers 

PDAC affects both sexes almost equally and has its peak incidence in the 

sixth or seventh decade of life and is extremely rare before the age of 40 

(observed primarily in cases of pancreatoblastoma). The age adjusted annual 

incidence of PDAC ranges from 3.1 to 20.8 cases per 100,000 people in 

industrialized countries. Risk factors for developing ductal adenocarcinoma are 

older age, cigarette smoking, previous gastric surgery, diabetes mellitus, chronic 

pancreatitis, familial history of pancreatic cancer and a high intake of dietary fat 

and low in fruits and vegetables. Smoking increases the risk of developing 

pancreatic cancer by 2-5 fold over non-smokers and the risk increases with the 

number of cigarettes smoked (51-55).  
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Studies showed an association between previous gastric surgery and 

pancreatic cancer. For example the patients who have had peptic ulcer surgery 

have a 2 to 5-fold increased risk of developing pancreatic cancer and the 

reasons for this are unknown. Some studies have also shown that diets rich in 

fruits and vegetable reduce the risk whereas the diets high in polyunsaturated fat 

increase the risk of pancreatic cancer. This has been attributed to vitamins such 

as folate. A nested case control in male Finnish smokers found that there is an 

inverse dose-response relationship between serum folate and pyridoxal-5‟-

phosphate concentrations and pancreatic cancer (52, 53).  

Diabetes mellitus and chronic pancreatitis are also risk factors for 

pancreatic cancer and patients with familial pancreatitis have a 40% risk of 

developing pancreatic cancer and they show signs of acute pancreatitis at an 

early age. This eventually results in endocrine and exocrine failure of the 

pancreas. Familial pancreatitis is cause by an inherited mutation in the cationic 

trypsinogen (PRSS1) gene which results in increased autoactivation of 

trypsinogen or stability of trypsin causing necrosis and pancreatitis (51, 54).  

Familial predisposition is seen in pancreatic patients expressing BRCA1, 

BRCA2, p16, STK11/LKB1 germline mutations and other genetic syndromes 

associated with PDAC include familial atypical multiple melanoma syndrome, 

telangiectatic ataxia and Peutz-Jeghers syndrome (PJS). Germline mutations of 

BRCA2 increase the incidence of PDAC by 3.5-fold and germline mutations of 

BRCA1 increased the incidence by 2-fold.  Peutz-Jeghers syndrome is caused 
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by dominantly inherited mutations of the STK11/LKB1 gene. Patients with PJS 

develop a variety of cancers such as gastrointestinal, lung, breast and 

pancreatic cancers and they have >132-fold increased risk of developing 

pancreatic cancer.  Familial atypical multiple melanoma syndrome (FAMMM) is 

an autosomal dominant inherited syndrome and is associated with many 

cancers apart from melanoma. Patients with FAMMMs that develop pancreatic 

cancer express a germline mutation in the p16/CDKN2A gene (51, 54, 55). 

Cellular and molecular mechanisms in development of pancreatic cancer 

Many inherited and somatic mutations are associated with PDAC and 

these include the K-ras, HER-2, BRAC2, p16, p53 and Smad4 genes and 

approximately 50 - 60% of the cases show mutations in p53 and Smad4.  

1) Oncogenes: Activated or overexpressed oncogenes possess 

transforming properties and the oncogenes which play an important role 

in pancreatic cancer development include K-ras, HER2, AKT2, AIB1, 

BRAF and MYB genes. K-ras is activated in about 90% of pancreatic 

cancers by a point mutation on codon 12 and occasional mutations in 

codon 13 or 61 of chromosome 12p. K-ras encodes a member of RAS 

family of guanosine triphosphate (GTP)-binding proteins that mediate a 

number of important functions in cell proliferation, survival, cytoskeletal 

remodeling and motility.  A variety of stimuli, such as binding of growth 

factor ligands to their cognate growth factor receptor, results in signal 

transduction via intermediary proteins that are important in activation of 
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the Kras protein. The active protein is bound to GTP, and inactivation 

occurs through guanosine-triphosphatase-activating proteins, which 

promote GTP hydrolysis to the diphosphate GDP resulting in attenuation 

of Kras signaling. Activated Kras affects several downstream effector 

pathways such as RAF-mitogen activated protein kinase (RAF-MAPK), 

phosphoinositide-3-kinase (PI3K) and RalGDS pathways. Activating 

mutations impair the intrinsic GTPase activity of the K-ras gene product, 

resulting in a protein that is constitutively active. K-ras gene mutations are 

one of the earliest genetic abnormalities observed in the progression of 

pancreatic cancer and are observed in approximately 36%, 44% and 87% 

of PanIN-1A, PanIN-1B and PanIN-2/3 precursor lesions respectively. For 

example, mice expressing codon 12 K-ras gene mutations in the 

pancreas develop lesions which vary from PanINs to invasive and 

metastatic ductal adenocarcinoma (56) (46, 57-60) (61).  

Approximately 5% of pancreatic cancers express wild type K-ras 

but exhibit mutations in one of the member of RAF-MAPK signaling 

pathway called the BRAF gene which is located on chromosome 7q. This 

results in activation of RAF-MAPK signaling even in the absence of K-ras 

gene mutations.  For example small molecule inhibitors or antisense 

inactivation of the kinase suppressor of ras 1 (KSR1) which is an 

essential transducer of Ras signaling to RAF results in inhibition of tumor 

growth in athymic nude mice bearing Panc-1 cells as xenografts (60). 
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However in pancreatic cancers either K-ras or BRAF mutations are 

observed; and the occurrence of both events together appears to be 

mutually exclusive (46, 56, 59) (61).  

The PI3-AKT pathway is an essential cell survival pathway that is 

constitutively activated in pancreatic cancer. The AKT2 gene is 

overexpressed in about 10-20% of pancreatic cancers and is located on 

chromosome 19q. Additional oncogenes that are overexpresed in 

pancreatic cancers are AIB1, C-Myc and MYB gene; these are amplified 

by 60%, 20-30%  and 10% respectively (46, 56, 59) (61).  

2) Tumor suppressor genes: In contrast to dominantly acting oncogenes, 

tumor suppressor genes are recessive and inhibition of their function 

typically requires mutations in both paternal and maternal copies. Tumor 

suppressor genes, as the name suggest inhibit tumor growth and the 

most common tumor suppressor genes that are inactivated in 

development of pancreatic tumor are p16/INK4A, p53 and DPC4/SMAD4 

(44, 46, 56, 59, 61). 

The CDKN2A gene encodes for p16/INK4A and ARF tumor 

suppressor genes and is located on chromosome 9p. p16/INK4A is the 

most frequently inactivated tumor suppressor in pancreatic cancer 

(~95%) and about 40% of the cases, a homozygous deletion of both 

alleles of the gene is observed; an intragenic mutation on one allele 

coupled with loss of the other allele is observed in 40% of pancreatic 
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cancers and inactivating hypermethylation of the promoter is observed in 

the remaining 15%. Loss of INK4A function is seen in early precursor 

lesions and is found in about 30%, 55% and 70% of PanIN-1, PanIN-2 

and PanIN-3 lesions respectively. p16 regulates the cell cycle by binding 

to Cdk4 and Cdk6 to  inhibit binding of cyclin D1 to the Cdks and  

phosphorylation of Rb leading to cell cycle arrest.  Thus the loss of p16 

deregulates the cell cycle check point leading to the development of 

pancreatic cancer and this is also observed in patients with germline 

mutations of this gene (44, 46, 56, 59, 61). 

p53 gene is located on chromosome 17p and is inactivated in 

about 50-75% of pancreatic tumors. Loss of function of p53 occurs due to 

intragenic mutations in one allele coupled with loss of the other allele and 

inactivation of p53 appears to be a late event in the development of 

pancreatic cancer and is observed predominantly in high grade precursor 

lesions (PanIN-3) and invasive adenocarcinomas. p53 plays an important 

role in regulation of G1-S cell cycle checkpoint, maintenance of G2-M 

arrest, induction of apoptosis and inactivation of p53 leads to uninhibited 

cell growth in the presence of DNA damage resulting in further 

accumulation of genetic abnormalities (44, 46, 56, 59, 61, 62).   

SMAD4/DPC4/MADH4 is located on chromosome 18q21 and is 

another tumor suppressor that is inactivated in about 55% of pancreatic 

cancers (rarely seen in extrapancreatic cancers). In about 50% of the 
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pancreatic patients loss of function of SMAD4 is caused by homozygous 

deletion and an intragenic mutation in one allele coupled with loss of the 

other allele is observed in the other 50%. Like p53, inactivation of SMAD4 

is a late event in pancreatic tumorigenesis and SMAD4 is an intermediate 

protein in the transforming growth factor (TGF) signaling pathway. Upon 

activation of TGF-β SMAD2 and SMAD3 proteins are phosphorylated and 

heterodimerize with SMAD4 protein and the complex translocates into the 

nucleus to activate target genes involved in growth inhibition and 

apoptosis (44, 46, 56, 59, 61).  

In addition to the above, several other tumor suppressor genes are 

inactivated to a lesser extent (5-10%) in pancreatic cancers and these 

include serine threonine kinase (LKB1/STK11), TGF-β receptors TGFBR1 

and TGFBR2 and MKK4 which encodes for stress activated protein 

kinase (44, 56, 59, 61).   

3) DNA repair or mismatch repair genes: Mismatch repair genes play an 

important role in identifying and repairing DNA damage and in 

maintaining the integrity of the genome. This includes the DNA mismatch 

repair genes MLH1 and MSH2 which encode proteins that repair small 

insertions, deletions and other sequence mismatches in newly replicated 

DNA. These mismatches are common in simple repetitive DNA 

sequences such as poly-A-tracts. Inactivation of either MLH1 or MSH2 

results in accumulation of mutations in poly-A-tracts of various genes 



51 
 

(TGFBR2 and ACVR2) producing DNA changes called “microsatellite 

instability”. Microsatellite instability is observed in about 4% of pancreatic 

cancers which exhibit a specific microscopic appearance known as 

„medullary histology‟. Medullary histology is characterized by pushing 

borders, syncytial growth pattern and poor differentiation (44, 56, 59, 61).  

The Fanconi anemia family of genes is associated with genome 

maintenance and encodes proteins involved in repair of double-stranded 

DNA breaks that are induced upon the interstrand crosslinking of DNA 

through homologous recombination. Genes included in this family are 

BRCA2 on chromosome 13q; the FANCC and FANCG gene on 

chromosome 9q and 9p respectively are mutated in the germline (in 

Ashkenazi Jewish population) and are linked with familial aggregation of 

pancreatic cancer. The affected family members develop hematological 

malignancies at a young age and if they survive these malignancies they 

develop solid tumors at an older age (44, 56, 59, 61).  

4) Telomere length abnormalities: Telomeres are hexameric TTAGGG 

repeats and form caps at the ends of chromosomes to protect the 

terminal sequences and prevent the ends of chromosomes from joining 

during cell division. Loss of telomeres or shortening of telomeres is 

observed very early (PanIN stage) in the development of pancreatic 

cancer. Shortening of telomeres promote abnormal fusion of chromosome 

ends which break and result in the gaining of genetic material by some 
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daughter cells and losing of genetic material in other daughter cells. This 

process is called as breakage-fusion-bridge cycles, often seen in 

pancreatic cancers, and this results in loss of tumor suppressor genes 

and gain of oncogenes leading to chromosome instability and progression 

of pancreatic cancer. However, in invasive pancreatic cancers, telomere 

reactivation is observed and this might help cancer cells to attenuate 

genomic instability (44, 56, 59, 61). 

5) Epigenetic abnormalities: Tumor suppressor genes are not only 

inactivated by homozygous deletion and intragenic mutations but also by 

epigenetic events such as CpG island hypermethylation of 5‟ promoter 

regions. Epigenetic hypermethylation of CG dinucleotides (CpG islands) 

in the 5‟ regulatory regions of tumor suppressor genes abrogates RNA 

polymerase from binding and initiating transcription and is frequently 

observed in pancreatic cancer cells but not in the normal cells derived 

from corresponding pancreatic tissue. About 60% of the pancreatic 

cancers exhibit hypermethylation of genes involved in tumor suppression 

such as p16/CDKN2A, MLH1, E-cadherin, reprimo, TIMP3, CDH1 and 

these are observed in the early events (PanINs) of multistage progression 

of pancreatic cancers. For example, reprimo gene products are 

associated with p53-induced G2-M arrest and aberrant methylation leads 

to increased genetic instability (59, 63). 
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Recent studies suggest that hypomethylation of candidate genes 

resulting in overexpression is also important for development of 

pancreatic cancers. For example VAV1, a Rho-guanine exchange factor 

in the RAS superfamily, is overexpressed due to demethylation of the 

promoter resulting in activation of K-ras and overepression of VAV1 

protein in primary cancers and is associated with a poor prognosis (59, 

63, 64). 

6) Expression abnormalities: The global analysis of expression profiles 

such as cDNA, oligonucleotide microarrays and serial analysis of gene 

expression in pancreatic cancer has provided insights into large number 

of transcripts that are differentially expressed in pancreatic cancers and 

precursor lesions. Genes overexpressed in pancreatic cancer are growth 

factors and their receptors such as HER2/NEU, EGFR (epidermal growth 

factor family members) and their cognate ligands EGF, TGFα, 

amphiregulin and also FGFR, FGF (fibroblast growth factor), IGF-1R, 

IGF-1 (insulin growth factor), NGF (nerve growth factor) and VEGF 

(vascular endothelial growth factor). For example HER2 encodes a 

transmembrane glycoprotein with tyrosine-kinase activity which is 

expressed in exocrine and endocrine cells but not in ductal epithelial cells 

of the pancreas and overexpression of HER2 in precursor (PanIN) lesions 

as well as in well differentiated PDACs correlates with the severity of 

dysplasia in PanIN lesions and increased tumorigenicity (59, 63).  
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In addition to the genes noted above, expression of microRNAs is 

also altered in human cancers. MicroRNAs (miRNAs) are highly 

conserved 18-22 nucleotide RNAs that regulate transcription of 

complementary target mRNAs. miRNAs regulate cellular differentiation, 

proliferation and apoptosis in normal cells and abnormal expression of 

miRNAs plays an important role in many cancers. For example human 

let-7 miR expression is reduced in lung cancers correlating with increased 

expression of RAS. Similarly upregulation of miR-216, miR-217 and lack 

of expression of miR-133a is observed in PDAC (63, 65).    

7) Mitochondrial DNA mutations: Mitochondria play an important role in 

cellular energy metabolism and apoptosis and defects in mitochondrial 

function contribute to development and progression of many cancers. 

Southern blot analysis and direct sequencing showed that the intracellular 

mtDNA mass is increased by 6-8 fold in cancer cells compared to normal 

cells. In pancreatic cancer cell lines and xenografts, mtDNA mutations are 

observed in many genes encoding 12srRNA, ND1, ND2, ND5, ND6, 

ATPase, cytochrome oxidase I, II and XIII (63, 66, 67).  

8) Developmental signaling pathway: Hedgehog and Notch signaling 

pathways play an important role in normal pancreatic organogenesis, 

tissue homeostasis and development of cancer. The secreted signaling 

proteins of Hedgehog family are Sonic, Indian and Desert Hedgehog 

(SHH, IHH and DHH) and they regulate the growth of pancreas during 
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embryogenesis. The Hedgehog pathway is negatively regulated by 

Patched (PTC) tumor suppressor protein which inactivates Smoothened 

protein (SMO). Binding of Hedgehog ligands to SMO disrupts the 

inhibition by PTC and SMO and activates the Gli family of transcriptional 

regulators. Activation of Hedgehog pathway due to loss of PTC, activating 

mutations of SMO or overexpression of Gli and Hedgehog ligands, has 

been implicated in the initiation and maintenance of pancreatic cancer 

(59, 68).  

The notch signaling pathway is comprised of membrane bound 

Notch ligands (Jagged and Delta-like) which interact with Notch receptors 

1-4 resulting in intramembrane proteolysis of the Notch receptor by tumor 

necrosis factor α-converting enzyme and γ-secretase enzyme that allows 

nuclear translocation of the Notch intracellular domain (NICD). Nuclear 

NICD mediates transcriptional activation of basic helix-loop-helix genes 

such as Hes1, Hey1 and HeyL which inhibit differentiation and maintain 

cells in an undifferentiated precursor state. For example the Notch 

signaling pathway maintains the pool of precursor cells required for 

exocrine differentiation during development of the pancreas and in the 

mature pancreas, Notch and its ligands are expressed at low or 

undetectable levels.  However, in PanIN lesions and PDAC, elevation of 

Notch and its ligands and HES-1 is observed suggesting the role for this 

pathway during progression of cancer (59, 68).  
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Pancreatic tumor biomarkers 

An ideal tumor biomarker should be highly sensitive and specific for 

pancreatic cancer; however, none of the current markers are sufficiently 

sensitive or specific for use in screening for pancreatic cancer. The carbohydrate 

antigen 19-9 (CA 19-9), K-ras and telomerase tumor markers have been 

extensively evaluated.  

CA 19-9: CA 19-9 is sialylated Lewisa blood group antigen and is used to follow 

the therapeutic response in patients treated for pancreatic cancer. CA 19-9 

levels correlate well with tumor volume and response to therapy and the 

sensitivity of this test to about 80% in cancer patients and about 55% in small 

resectable cancers but is not useful for screening early pancreatic cancer 

patients with precursor lesions (high grade PanINs). The limitations of using CA 

19-9 as a marker is that approximately 10-15% of individuals do not secrete this 

antigen due to their Lewis antigen blood type and these limitations are 

applicable to other carbohydrate antigens such as CA-125, KAM17.1, CA2.2, 

CA-50 and CA-242. 

K-ras: K-ras mutations can be detected in pancreatic juice (preferred), duodenal 

fluid, stool and blood using polymerase chain reaction (PCR). Limitations for 

detecting K-ras include 1) K-ras gene mutations are increased in individuals with 

increasing age and with small non-invasive PanINs. For example during 

autopsy, PanINs can be found in about 10-30% of individuals, especially in 

smokers and patients with chronic pancreatitis. 2) Pancreatic juice is more 
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appropriate for detecting biomarkers but is only obtained after invasive 

endoscopic procedures and hence cannot be used as a general screening 

procedure. This assay is more applicable for high risk individuals.  3) Mutant K-

ras is detected in serum of patients with advanced inoperable pancreatic 

cancers.  

Telomerase: In about 90% of pancreatic cancer patients telomerase enzyme is 

measurable in pancreatic juice but the specificity and sensitivity of the enzyme to 

distinguish between benign and malignant lesions of the pancreas have not 

been determined. 

DNA methylation: DNA methylation abnormalities can be detected using 

quantitative methylation-specific polymerase chain reaction even when they are 

mixed with normal copies of DNA.  For example DNA methylation of the p16 

gene has been found in the sputum of patients with early lung cancer and is 

being investigated as a possible screening tool for early detection of pancreatic 

cancer. 

Identifying new markers: New biomarkers specific for pancreatic cancers are 

being investigated. One approach is serial analysis of gene expression (SAGE) 

which can be used to compare expression of genes in cancer and normal tissue 

to identify overexpressed genes. Expression of macrophage inhibitory cytokine 1 

(MIC1) is overexpressed in invasive pancreatic cancers as well as in PanINs 

and appears to be more sensitive than CA 19-9 antigen. Other tumor markers 

include tissue inhibitor metalloproteinase 1 (TIMP-1), osteopontin and 
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mesothelin genes and preliminary studies in cohorts of pancreatic cancer and 

control patients indicate that these markers can be used to identify early stage 

pancreatic cancers (59, 61, 69, 70). 

Current therapies available for pancreatic cancer 

1) Surgical management: Pancreaticoduodenectomy is the curative 

resection strategy used in the management of pancreatic cancer and is 

performed on patients with adenocarcinoma of the head of the pancreas. 

Median survival rates after surgical resection for localized PDAC range 

from 12.7 to 17.5 months and 4- and 5-year survival rates range from 

6.8% to 21% (69, 71-73). 

2) Chemotherapy: 5-FU and gemcitabine are currently used as 

chemotherapeutic agents and like radiation therapy; chemotherapy for 

pancreatic cancer has limited effectiveness. 5-FU is a thymidylate 

synthase inhibitor and inhibits the synthesis of thymidine which is required 

for DNA replication. In many solid tumors combination therapy has been 

beneficial over single agent therapy. 5-FU alone or combinations with 

doxorubicin, mitomycin C; streptozotocin, mitomycin C and 5-FU; 5-FU, 

doxorubicin, cisplatin or the mallinson regimen (5-FU, cyclophosphamide, 

methotrexte, vincristin and mitomycin C) have improved survival rates 

compared to no chemotherapy or best supportive care but survival 

benefits among 5-FU combinations and 5-FU alone are not observed (69, 

71-73).  
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Since 1996 gemcitabine has been the drug of choice for treating 

pancreatic cancer. Gemcitabine is a prodrug which is phosphorylated to 

its active metabolite that inhibits DNA chain elongation resulting in DNA 

fragmentation and cell death. The clinical response to gemcitabine was 

23.8% compared 4.8% to 5-FU and the overall survival was 5.65 and 4.41 

months for gemcitabine and 5-FU treated patients respectively and 1-year 

survival rates were 18% and 2% for gemcitabine and 5-FU treated group 

respectively. Even with gemcitabine, the combination therapies in 

pancreatic cancer patients failed to produce any significant overall 

survival benefits. A randomized trial assigned to GemOx (gemcitabine 

and oxaliplatin) or Gem (gemcitabine alone) demonstrated improved 

response rate, progression-free survival and clinical benefits. The median 

overall survival rate was 9.0 and 7.1 months for GemOx and Gem 

respectively, although there was a higher incidence of grade 3 and 4 

toxicity in patients on GemOx. The pooled analysis comparing 

gemcitabine alone or with combinations suggested that patients with 

performance status (PS) 0 had better survival outcome (8.3 months vs 

6.7 months) (69, 71-74).  

3) Radiation therapy: Radiation therapy is used for locally advanced 

unresectable cancer or as a palliative or adjuvant therapy when the 

patient is undergoing a surgical resection of the pancreas. Radiation 

therapy is being used as postoperative regimen along with chemotherapy 
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(5-FU) which improves the survival of the patients from a median of 10.9 

months (for surgery alone) to 21 months (with chemoradiotherapy). 

Recently a study at the MD Anderson Cancer Center compared the 

benefits of preoperative chemoradiotherapy versus postoperative 

chemoradiotherapy and observed that more patients benefited from the 

multimodality therapy when chemoradiotherapy was delivered before 

pancraticoduodenectomy rather than after surgery. This was due in part 

to postoperative complications or delayed recoveries. However no 

significant difference was observed in the survival rates of the patients 

with both modalities. Another phase III study using gemcitabine alone or 

in combination with radiotherapy suggested that chemoradiotherapy 

significantly improved the overall survival rates form 9.2 to 11 months 

when compared with chemotherapy alone. However, there were no 

differences in progression-free survival and response rates between the 

treatments. Chemoradiotherapy also increased fatigue and 

gastrointestinal toxicities compared to chemotherapy alone (69, 71-73).   

The effects of chemotherapeutic agents such as doxorubicin, and 

other combinations, streptozotocin, mitomycin C, cisplatin with 5-FU to 

enhance pancreatic cancer radiotherapy have been investigated but did 

not increase in patient survival rates and severe toxic side effects were 

observed with these combination therapies. Different radiation techniques 

such as radiosensitizers, particle irradiation, interstitial irradiation and 
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intraoperative radiation have also been investigated, but none of these 

have in improved therapeutic results (69, 71-73). 

4) Targeted therapies: Research is also focused on understanding 

molecular pathways and factors that play an important role in pancreatic 

cancer progression; and therapies that target specific pathways are being 

developed for treatment of pancreatic cancer. VEGF is overexpressed in 

PDAC and inhibitors of VEGF inhibit tumor growth and metastasis. 

Bevacizumab (Avastin) is a recombinant humanized anti-VEGF 

monoclonal antibody which has been used in combination with 

gemcitabine in a phase II study and 6 month and 1 year survival rates 

were 77 and 29% (71-73, 75).   

The EGFR is also a target for drug development since 

overexpression of EGFR is a negative prognostic factor for survival of 

pancreatic cancer patients. Erlotinib is an oral tyrosine kinase inhibitor 

that inhibits EGFR activation through the phosphorylation of the 

intracellular tyrosine kinase domain. A phase III trial using erlotinib in 

combination with gemcitabine or gemcitabine alone has been conducted 

in pancreatic cancer patients. The overall survival was significantly 

prolonged in the combination therapy (median survival time of 6.24 vs 

5.91 months) and the 1 year survival rate was higher with erlotinib plus 

gemcitabine (23% vs 17%). There was a higher incidence rate of adverse 

effects of grade 1 and 2 with erlotinib plus gemcitabine and patients with 
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good PS had a higher likelihood of developing a rash which was also 

associated with significantly increased survival. Another study with 

gemcitabine plus erlotinib plus bevacizumab compared to gemcitabine 

alone showed that combination improved progression free survival but not 

overall survival compared to gemcitabine plus erlotinib (71-73, 75).  

Cetuximab is a monoclonal antibody against EGFR and a phase III 

trial compared cetuximab plus gemcitabine and gemcitabine alone. No 

significant difference in the overall survival rate was observed between 

the groups. However the addition of cetuximab to gemcitabine-oxaliplatin 

in a phase II trial showed a 38% response rate and 54% increase in 6 

month survival rate; results of the phase III trial have not yet been 

released. Sorafenib, a small molecule inhibitor of VEGFR2 and Raf1 was 

evaluated in combination with gemcitabine. The combination therapy was 

well tolerated but ineffective for treating metastatic pancreatic cancer. 

Sunitinib, an inhibitor of VEGF and PDGF receptor is currently being 

evaluated as a second line of therapy and is in a phase II clinical trial (71-

73, 75).  

New agents are being evaluated for treatment of pancreatic 

cancer. Immunogenic telomerase peptide GV1001 is administered along 

with granulocyte macrophage colony stimulating factor and the treatment 

period was 10 weeks with monthly booster vaccinations. The vaccine was 

well tolerated in phase II clinical studies and the 1 year survival rate was 
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approximately 25%. Additionally patients with BRCA-2 germline mutations 

are sensitive to mitomycin C which is also being tested in pancreatic 

cancer patients (71-73, 75).  

Animal models of pancreatic cancer  

1) Chemical carcinogen models: Even though several chemical 

carcinogens induce pancreatic tumors in rodents, these tumors do not 

resemble human pancreatic cancer. For example, azaserine induces 

acinar cell hyperplasia, dysplasia and carcinomas in the rat pancreas but 

only minimal changes in ductal cell histology are present. Local 

administration of 9, 12-dimethylbenzanthracene (DMBA) in rats develop 

mucinous adenocarcinomas that invade bile ducts and metastasize to 

regional lymph nodes, peritoneum and liver similar to human PDAC. 

These tumors express ductal markers such as cytokeratin 19 and 20 but 

do not express acinar cell specific markers such as chymotrypsin. The 

tumors also exhibit K-ras mutations; however mutations of p16 and p53 

genes that are observed in human cancers are not present in the 

pancreatic tumors. The most well characterized chemical carcinogen 

induced animal model of human pancreatic cancer is the Syrian Golden 

hamster treated with N-nitrosobis (2-oxopropyl) amine (BOP). The tumors 

exhibit mutations in K-ras and p16 gene and display perineural invasion 

and patterns of metastasis similar to human cancers. Unlike human 

PDAC which develops in the head of the pancreas, BOP-induced tumors 
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arise in both head and tail of pancreas. The limitations of this model 

include lack of knowledge of the hamster genome, lack of success in 

performing transgenic work in hamsters, the expense of hamsters as a 

tumor model. In C57BL/6J mice, implantation of cotton thread coated with 

3-methylcholanthrene into the pancreas induces pancreatic ductal 

cancers, however, the implantation is tedious, time-consuming and costly 

(76).  

2) Genetically engineered mice (GEM): Transgenic mice are created by 

introduction of foreign gene/genes (transgene) that undergo a stable 

chromosomal integration into the mouse genome. The early GEM model 

expressed activated oncogenes such as early region of SV40 genome 

(that produces large and small T antigens) in the regulatory regions of 

elastase I, trypsin I, amylase and glucagon genes in the pancreas. T 

antigen (TAg) is expressed diffusely in acinar cells and the cells undergo 

hyperplasia, dysplasia but very few acinar cells progress into pancreatic 

acinar adenocarcinoma. The TAg model exhibits a multistep process of 

tumor development but unlike human pancreatic cancer which expresses 

markers of both ductal and acinar origin, the TAg model yields neoplasms 

of acinar histogenesis (59, 76) (68). 

A major breakthrough was achieved with the development of GEM 

expressing K-rasG12D allele which is activated by the Pdx1-Cre transgene. 

Pdx1 is homeodomain protein and both exocrine and endocrine cells of 
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pancreas develop from Pdx1 expressing progenitor cells and Pdx1 

protein expression persists postnatally in the exocrine acinar component 

of the pancreas. The Pdx1-Cre- K-rasG12D mice developed murine PanINs 

(mPanIN) of various degrees and some (about 10%) develop metastatic, 

invasive adenocarcinomas after a long latency period of several months. 

The mPanINs not only resemble human lesions microscopically but also 

overexpress proteins such as Notch, Hedgehog and cyclooxygenase 2 

(COX-2). However, the low frequency and longer latency in the 

development of pancreatic cancer in the K-ras model suggests that 

cooperating mutations in tumor suppressor genes such as INK4A/Arf or 

p53 are also important. K-ras mice crossed with biallelic INK4A/Arf 

deletions or p53 null allele or conditional knock-in mutant p53R172H, 

develop more aggressive tumors that metastasize, they exhibit shorter 

latency and full penetrance. With deletion of either INK4A/Arf or p53 in 

the absence of K-rasG12D expression, the animals do not develop 

pancreatic cancer (44, 59, 76-78) (68). 

In addition, the presence or absence of an intact TGF-β signaling 

pathway in pancreatic cancer development has also been investigated. 

Deletion of either TGFβR2 or Smad4 in mice is not sufficient to induce 

pancreatic neoplasia but both genes cooperate with mutant K-ras in 

inducing pancreatic cancer with a shorter latency period. The pancreatic 

tumors that develop due to loss of TGFβR2 and mutant K-ras are well 



66 
 

differentiated adenocarcinomas with 100% penetrance, however, the 

combination of Smad4 allele loss with mutant K-ras yields cystic 

neoplasms that are either IPMNs or MCNs respectively (44, 59, 76-78) 

(68).  

Bladder cancer 

Classification of bladder cancers  

The urinary bladder is lined by a highly specialized epithelium called the 

urothelium or transitional cell epithelium and it can modify the number of layers 

of epithelial cells depending on the level of distention of the urinary bladder wall. 

Approximately 95% of the bladder tumors are of epithelial in origin of which 90% 

are urothelial cancer and it is the fifth most common cancer and is responsible 

for approximately 3% of all cancer deaths in the United States (79-81).   

Other types of epithelial cancers arising from bladder include squamous 

cell carcinomas and adenocarcinomas usually composed of malignant 

squamous or glandular foci and these are also typically seen in high grade 

urothelial tumors. Squamous cell carcinoma accounts for up to 75% of urinary 

bladder cases in areas where schistosomiasis is endemic and in the developed 

world they constitute <10% of all urinary bladder cancers. Small cell carcinoma 

and other neuroendocrine carcinomas of the bladder epithelium are also 

observed (Table 4) (79-81). 
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Bladder cancers of mesenchymal origin range from benign proliferations 

to highly malignant and aggressive tumors, however, invasive malignant tumors 

are less common. Leiomyoma is the most common benign mesenchymal cancer 

and rhabdomyosarcoma and leiomyosarcoma are the most common sarcomas 

in children and adults. Lymphomyoma, plastocytoma and infiltration by 

leukaemia are rarely present in bladder; secondary involvement of the urinary 

bladder by tumors is rare, however it usually occurs as an extension from 

adjacent organs such as rectum and uterus (Table 4) (47).  

Transitional cell carcinoma is typically seen in patients over 50 years and 

only occasionally seen in younger adults and is a rare disease in children. 

Urothelial cancer occurrence is approximately 3 times more common in men 

than in women. The 5 year survival rate for all stages combined is 82%, 

however, the 5 year survival rate for localized and metastatic cancers is 94% 

and 6% respectively. Tumors usually occur in the lateral and posterior walls and 

rarely in the dome of urinary bladder. Urothelial carcinoma is broadly divided into 

two types 1) the papillary and 2) nonpapillary (flat sessile) type (Table 4) (47) 

(82) (83). 
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Table 4. Tumor classification of the urinary bladder (79). 

 

1) Papillary transitional cell carcinoma: About 25% of urothelial cancers 

are noninvasive papillary in origin, however, 10-20% of the patients with 

noninvasive tumors subsequently progress to develop invasive tumors.  

The course of development of papillary lesions to become invasive is 

prolonged and may take many years before grade 2 and 3 type of tumors 
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are presented. Small papillary excrescences to large masses of confluent 

papillary tissue are observed. The large masses present a „cauliflower-

like‟ (sarcomatoid) appearance and may fill the bladder lumen. These 

papillae are usually soft, delicate and friable and may be creamy-white, 

tan, or pink to red in color. Sarcomatoid urothelial carcinoma is a high 

grade neoplasm that has partially or totally lost its carcinomatous 

morphological phenotype and differentiates into spindle-cell 

mesenchymal tissue. The noninvasive papillary tumors present a sharp 

interface between normal and tumor tissue (47).    

The histological appearance of papillary transitional cell carcinoma 

is characterized by papillae that are tall and often branched, and may be 

separated or adherent to their neighbors and are covered by more than 7 

cell layers whose appearance may vary from almost normal to atypical. 

Papillary carcinoma is graded as grade 1, 2 and 3 based on their 

cytological appearance. Grade 1 lesions show slightly atypical cells with 

an increase in the number of layers of urothelial cells but mitotic figures 

are rare. Grade 2 lesions show moderate atypia and occasional mitotic 

figures. Grade 3 lesions show high-grade atypia and mitotic figures 

(Figure 10) (47) (84).  
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Figure 10. Dual tract concept of bladder carcinogenesis (80). 

2) Nonpapillary transitional cell carcinoma: Grossly the bladder mucosa 

appears slightly granular or bulbous and is frequently associated with 

inflammation, edema and hypervascularization. Microscopically the 

abnormal urothelium may vary in thickness with cells exhibiting normal to 

hyperplastic appearance. Cells are usually pleomorphic and loss of 

intercellular cohesion and adherence to the basement membrane 

resulting in urothelium denudation. The tumor tissue is usually white but 
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may vary from tan to red and often be hemorrhagic and necrotic in 

appearance. The invasive tumor displays a high nuclear grade and may 

grow in nests, cords or trabeculae of neoplastic cells infiltrating muscular 

and adipose tissue of the bladder. The extent of invasion varies from 

microscopic tumor foci invading the lamina propria to tumors extending 

through the wall of the urinary bladder. In invasive neoplasms, the 

underlying bladder wall is replaced by firm, white tumor tissue (Figure 10) 

(Table 5) (47) (84).  

Aetiology of bladder cancer 

Several aetiological factors have been associated with bladder cancer 

development these include chemical and environmental exposures, radiation, 

chronic irritation due to bladder infections and schistosomiasis. Approximately 

33% of urinary bladder tumors are associated with high exposure to tobacco 

smoke. The risk of developing bladder cancer increases 3-7 fold in smokers 

compared to non-smokers, depending upon the number of pack-years. The 

carcinogen present in cigarette smoke responsible for bladder cancer 

development is unknown; however nitrosamines, 2-naphthylamine and 4-

aminobiphenyl have been associated with bladder cancer as evidenced by 

increased urinary tryptophan metabolites in cigarette smokers. Other forms of 

tobacco use are also associated with higher risk of bladder cancer (85, 86) (83). 
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Table 5. Stages of bladder cancer. 
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Occupational exposure to arylamines which are used in producing aniline 

dyes (coloring of fabrics) and in the rubber industry, is associated with up to one-

third of urinary bladder cancers. Exposure to other chemicals such as 2-

naphthylamine, 4-4-diaminobiphenyl (benzidine), 4-aminobiphenyl, and 2-amino-

1-naphthol, combustion gases and soot from coal, possible chlorinated aliphatic 

hydrocarbons and certain aldehydes are also considered risk factors involved in 

bladder cancer development. Other potential sources include dietary nitrites and 

nitrates that are acted on by intestinal bacterial flora (85, 86) (83).  

Urinary tract infection and chronic irritation are associated with increased 

risk of squamous cell carcinoma of the bladder. For example, paraplegic patients 

with long-term indwelling catheters develop bladder cancer and 80% of which 

are squamous cell carcinomas. Individuals with Schistosoma haematobium 

parasitic infection especially in endemic areas such as Egypt and other parts of 

Africa are at high risk of developing squamous cell carcinoma and transitional 

cell carcinoma. Eggs of S.haematobium are deposited in the bladder wall 

eliciting a chronic granulomatous inflammatory response, fibrosis, calcification 

and squamous or glandular metaplasia of the urothelium. High levels of 

nitrosamines have also been found in patients with schistosomiasis. Exposure to 

human papilloma virus (HPV) in individuals whose immune system is 

compromised also increases the risk of developing transitional cell tumors (85, 

86) (83).  
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Women treated with radiotherapy for cervical cancers are at increased 

risk (2-4 fold) of developing bladder cancer compared to women who undergo 

surgical resection of the cancer. Bladder cancer incidence further increases if 

chemotherapy with cyclophosphamide is administered. Also men treated with 

external beam irradiation for prostate cancer are at high risk of developing 

bladder cancer. Similarly, individuals exposed to irradiation due to the Chernobyl 

nuclear reactor accident had 52% increase in incidence of carcinoma in situ 

(noninvasive lesions) and 6.4% increase in incidence of urothelial carcinoma 

compared to individuals from uncontaminated areas (85, 86) (83).  

Individuals exposed to large quantities of arsenic through contaminated 

drinking water are at higher risk of developing bladder cancer and this is 

associated with RASSF1A promoter hypermethylation and with several 

chromosome-type breaks, gaps, exchanges and other aberrations in blood and 

urothelial cells. Women exposed to Aristolochia fangchi (substituted for 

Stephania tetrandra in weight reduction aid) developed aristolochic acid-related 

DNA adducts in urothelium of both upper tract and bladder resulting in an 

increased risk of developing urothelial carcinoma (86) (83). 

Cellular and molecular mechanisms in development of bladder cancer 

Bladder cancer is broadly classified into papillary and flat carcinoma in 

situ. Papillary carcinoma recurs locally but is rarely invasive and metastatic; 

however, flat carcinoma in situ is highly invasive and metastatic. Two distinct 

molecular pathways are activated in the development of urothelial carcinoma. 
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Low-grade papillary tumors usually exhibit constitutive activation of the receptor 

tyrosine kinase-Ras pathway with mutations in H-ras (Harvey rat sarcoma viral 

oncogenes homolog gene) and fibroblast growth factor receptor 3 (FGFR3) 

genes. Approximately 70% of noninvasive papillary tumors harbor FGFR3 

mutations compared to 10-20% of invasive tumors suggesting a role for FGFR3 

in development of low-grade papillary tumors. In contrast, alterations in p53 and 

Rb pathway are observed in flat carcinoma in situ and invasive tumors and 

homozygous deletion of p16/INK4A is observed in high grade papillary tumors 

(Figure 11) (82, 83, 87).  

Ras-MAPK signal transduction pathway: Even though the FGFR3-Ras-MAPK 

pathway is activated in noninvasive papillary tumors, other receptor tyrosine 

kinases such as EGFR and ERBB2/HER2 are overexpressed in invasive 

carcinoma and are associated with a poor prognosis. RASSF1A is a tumor 

suppressor gene that encodes Ras association domain family 1 protein and 

inhibits the function of activated Ras protein.  RASSF1A gene is highly 

methylated in bladder cancer and is associated with increasing tumor stage (82, 

83, 87).  

p53 and Rb cell cycle regulation pathway:  Most urothelial cancers exhibit 

loss of 17p allele and this is accompanied by mutations in the remaining allele 

resulting in inactivation of p53. p21WAF1/CIP1, a cyclin dependent kinase inhibitor 

(CDKI), is located on chromosome 6p21 and p21 is regulated by p53 dependent 

and independent pathways. p53 inhibits G1-S phase cell cycle progression 
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through activation of p21 and loss of p21 expression associated with p53 

alterations and this plays an important role in tumor progression. For example, 

patients with p21-negative and p53 mutations in tumors had a greater 

recurrence and lower survival rate compared to patients with p21-positive 

tumors. p14/ARF gene is inactivated due to promoter hypermethylation or by a 

homozygous deletion which transcriptionally inhibits expression of Mdm2 

protein. Mdm2 protein binds p53 and activates ubiquitin-mediated degradation of 

p53 and the resulting lower levels of p53 results in decreased Mdm2 in an 

autoregulatory feed-back loop. Loss of p14 and amplification of Mdm2 is 

observed in urothelial cancers and correlated with poor prognosis in these 

patients (82, 83, 88). 

Inactivating mutations of the Rb gene are observed in low to high grade 

and invasive bladder cancers and inactivation of Rb results in the loss of p16 

(CDKI) and/or overexpression of cyclin D1 and this enhances tumor proliferation. 

Patients were classified into four groups taking the number altered genes (p53, 

p21 and Rb) and in patients with 0, 1, 2 or 3 altered genes, the 5 year 

recurrence rates were 23%, 32%, 57% and 93% respectively (Figure 11) (82, 

83, 88). 
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Figure 11. Proposed model for urothelial tumorigenesis and progression 

(83). 

Tumor angiogenesis pathways: Many factors are involved in tumor 

angiogenesis which facilitates interactions with stroma to recruit endothelial cells 
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and establish a vascular system that provides nutrients for rapidly growing 

cancer cells. Hypoxia inducible factor (HIF)-1α regulates oxygen concentrations 

and also induces VEGF which stimulates tumor vascularization. Overexpression 

of HIF-1α and VEGF are observed in many urothelial cancers. Expression of the 

enzyme thymidine phosphorylase (TP) in invasive cancers is 33-fold higher than 

in superficial tumors and 260-fold higher than in normal bladder. TP promotes 

the production of interleukin-8 and MMPs. MMPs activate acidic and basic FGF 

which play an important role in endothelial cell migration and tumor 

angiogenesis (82, 83).  

Cell death pathway: Antiapoptotic Bcl-2 plays an important role in the intrinsic 

pathway of apoptosis and overexpression of Bcl-2 correlates with poor prognosis 

in urothelial cancer patients treated with radiotherapy or chemoradiotherapy (82, 

83).  

Other pathways: Many different pathways are altered in urothelial cancers and 

these include activating mutations in genes involved growth signaling pathway 

such as FGFR3, EGFR, ERBB2, VEGR1 and VEGFR2. Kinase pathways such 

as Ras-MAPK pathway, phopholipase C (PLC)-protein kinase C (PKC) pathway, 

PI3K-Akt pathway, the Janus kinase (JAK)-signal transducer and activator of 

transcription (STAT) pathways and the nuclear factor-kappa B (NF-κB) also play 

a role in bladder tumor development. NF-κB is important for inflammation, 

autoimmune response, cell proliferation and apoptosis. Bacille Calmette-Guerin 

(BCG) induces interleukin-6 expression through NF-κB and is used for treatment 
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of urothelial cancers. Patients with homozygous deletion of NF-κB1 gene exhibit 

a higher risk of recurrence than those with a homozygous insertion. MicroRNA 

expression is altered in many cancers and in urothelial cancers microRNAs such 

as miR-223, miR-26b, miR-221, miR-103-1, miR-185, miR-23b, miR-17-5p, miR-

23a and miR-205 are increased in urothelial tumors.  For example, miR-17-5p 

and its cluster miR-17-92 are overexpressed in lung, breast, colon, pancreas 

and bladder. MiR-17-5p and miR-20a are associated with c-Myc amplification 

and negatively regulate the expression of E2F1 (83) (89). 

Prognostic and molecular markers of bladder cancer 

Clinical screening for urothelial cancer is carried out on individuals with a 

history of environmental or occupational exposures to potential bladder 

carcinogens and also in individuals with microscopic hematuria or irritative 

voiding symptoms. Urine cytology and cystoscopy are still considered the gold 

standard for detection of bladder cancers. Urine cytology is a noninvasive test 

which is useful for identification of high-grade bladder tumors and for monitoring 

patients with persistent or recurrent disease. This test has a high specificity (95-

100%) but low sensitivity (66-79%) for detection of asymptomatic and low-grade 

bladder cancers, hence limiting its use. Cystoscopy is used for determining 

tumor size, location and appearance and the sensitivity of cystoscopy can be 

increased by using fluroscence methods and photosensitizer and 5-

aminolevulinic acid or hexaminolevulinic acid.  Bladder wash cytology is helpful 

in detecting most cases of carcinoma in situ even when the urothelium appears 
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grossly normal.  A number of urinary tumor markers are being developed for 

detection of bladder cancer and some of these are indicated below (79, 90). 

Bladder tumor antigen (BTA): BTA is a human complement factor H-related 

protein similar to human complement factor H. BTAstat test is a one step 

qualitative immunochromatographic assay in which two monoclonal antibodies 

are used to recognize two epitopes of human complement factor H-related 

protein. BTA TRAK is a quantitative two step enzyme-linked immunosorbent 

assay (ELISA) and shows higher sensitivity (52-83%) for detecting high-grade 

tumors (79, 83, 90, 91). 

Nuclear matrix protein (NMP) 22: NMP22 is a nuclear scaffold protein that 

regulates mitosis and distributes chromatin to daughter cells. The intracellular 

concentration of the NMP22 protein is approximately 25-fold higher in bladder 

cancer cells than normal urothelial cells and this protein is also released in 

soluble form during apoptosis. The specificity and sensitivity of the test is 85.7 

and 55.7% respectively (79, 83, 90, 91). 

Fibrinogen degenerative product (FDP): VEGF increases vessel wall 

permeability for blood and plasma proteins such as plasminogen, fibrinogen and 

other clotting factors. Clotting factors convert plasminogen to plasmin and 

fibrinogen to fibrin and plasmin can further degrade fibrin into FDPs and these 

are released into circulation and are detected in urine using the FDP test. The 

sensitivity of FDP test is approximately 68-83% and FDP levels increase in 
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patients with cancer as the grade and stage increase, however the sensitivity of 

this test for detecting carcinoma in situ is not yet proven (79, 83, 90, 91).  

ImmunoCyt: This is an immunofluorescence assay which uses 3 antibodies 

against high molecular weight forms of carcinoembryonic antigen (19A211) and 

mucins (M344 and LDQ10) that are expressed in bladder cancer but not in 

normal epithelium. The sensitivity of the test can be improved in combination 

with conventional cytology (79, 83, 90, 91). 

Fluorescence in situ hybridization (FISH): FISH detects genetic alterations in 

urine sediments in bladder cancer patients using fluorescently-labeled DNA 

probes to assess centromeres of chromosomes 3, 7, 17 and 9q21 

(p16/CDKN2A). FISH exhibits higher sensitivity when compared to cytology in 

detection of bladder cancer while maintaining the higher specificity of cytology 

(79, 83, 90, 91).  

Hyaluronic acid (HA)-hyaluronidase (HAase) test: HA is a nonsulfated 

glycosaminoglycan with repeating disaccharide units of D-glucuronic acid and N-

acetyl-D-glucosamine that is secreted by stomal fibroblasts and HA regulates 

cell adhesion. HA levels are 3-4 fold higher in tumor than in normal tissue. 

HAase is an endoglycosidase which degrades HA into smaller fragments to 

promote angiogenesis and in bladder cancer patients the secretion of both HA 

and HAase is observed in urine. The overall sensitivity and specificity of this test 

is 91.2 and 84% respectively (79, 83, 90, 91). 
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Survivin: Survivin is a member of the inhibitor of apoptosis (IAP) family that 

inhibits apoptosis by binding to caspase 3 and 7. Overexpression of survivin is 

observed in various cancers such as lung, colon, pancreas, prostate, bladder 

and breast and is associated with biologically aggressive disease, resistance to 

therapy and poor clinical outcome in patients with various cancers. The 

sensitivity and specificity of identifying survivin expression in urine specimens 

are 64-100% and 93-100% respectively in bladder cancer patients (79, 83, 90, 

91).  

Telomerase: Telomeric repeat amplification protocol (TRAP) detects the activity 

of telomerase enzyme which catalyzes the synthesis of telomeres that maintain 

chromosomal ends. The overall sensitivity of the TRAP assay is about 70-86% 

with a false-positive rate of 21-76%. Recent studies using RT-PCR for detecting 

mRNA of human telomerase reverse transcriptase (hTERT) has better sensitivity 

(74-92%) and specificity (70-93%) than the TRAP assay (79, 83, 90, 91).     

Microsatellite alterations: Microsatellites are inherited short tandem DNA 

repeat sequences and mutations in mismatch repair genes such as hMSH1, 

hMSH2 and hMSH6 results in microsatellite instability. The microsatellite assay 

is performed using PCR and this assay is highly sensitive and specific but is also 

complex and expensive. Blunt-end single strand DNA conformation 

polymorphism (blunt-end SSCP) analysis detects loss of heterozygosity (LOH) 

on chromosome 9 in urine samples of bladder cancer patients (79, 83, 90, 91). 
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Cytokeratins: These are intermediate filament proteins specific for epithelial 

cells and CK18, CK19 and CK20 proteins are overexpressed in bladder cancer. 

CYFRA21-1 is an ELISA assay that detects fragments of CK-19 with sensitivity 

and specificity of 76.2 and 84.2% respectively (79, 83, 90, 91). 

Other markers including Ki-67 and p27 may predict recurrence and 

disease progression but are not yet clinically applicable. Ki-67 is marker for cell 

proliferation and correlates with grade and stage of tumor progression. p27 is a 

cyclin dependent kinase inhibitor regulating G1 cell cycle arrest and low levels of 

p27 have been associated with unfavorable prognosis  (81, 91).   

Current therapies for bladder cancer 

Superficial bladder cancer: Bladder cancer is commonly observed as a 

superficial disease with 70% confined to bladder mucosa (Ta or Tis) and 30% 

involving submucosa (T1). These are initially treated with transurethral resection 

followed by close observation or intravesical chemotherapy or immunotherapy. 

Immunomodulators such as BCG and interferon α and chemotherapeutic agents 

such as mitomycin, doxorubicin, thiotepa and gemcitabine are used for 

intravesical therapy. BCG therapy stimulates the local immune response to 

induce cytokines attracting inflammatory cells and interferon α synergistically 

augments BCG by prolonging the T-helper type 1 immune response in 

leukocytes (92). Intravesical chemotherapy is used when the side-effects of 

BCG are intolerable. Thiotepa is a 189 d molecule with alkylating properties and 

inhibits nucleic acid synthesis. However, thiotepa causes toxicity from systemic 
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absorption and patients exhibit signs of leucopenia or thrombocytopenia. 

Doxorubicin is an anthracycline antibiotic that binds to DNA and interrupts DNA 

replication, transcription and protein synthesis. Systemic effects from 

doxorubicin are low due to its high molecular weight (580 d). Tumor recurrence 

rates with both of these treatments were similar. Mitomycin-C is another 

alkylating agent used for intravesical treatment of bladder cancer. Due to high 

molecular weight (334 d), mitomycin-C is minimally absorbed and exhibits low 

systemic toxicity. Repeat installation of mitomycin-C after transurethral resection 

decreased tumor recurrence rates and increased the duration of disease free 

interval (93) (94, 95) (79).   

Laser treatment also allows the effective ablation of superficial tumors 

and is best suited for the treatment of recurrent superficial disease. Argon, 

potassium titanyl phosphate and holmium yttrium-aluminum-garnet lasers are 

being used for treatment of bladder cancer (90, 93).  

Photodynamic therapy is used in patients whose conditions do not 

respond to intravesical therapy with BCG or mitomycin-C. A hemoporphyrin 

(photofrin-porfimer sodium) photosensitizer is given intravenously with 

subsequent activation by mercury light illuminating the whole bladder. After light 

exposure the photosensitizer reacts with oxygen to form cytotoxic free radicals, 

however, effective photosensitization is dependent on oxygen levels in the 

bladder (93) (90).  
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Invasive bladder cancer: Radical cystectomy with pelvic lymph node dissection 

is used for treatment of invasive bladder cancer and this includes removal of the 

bladder, regional pelvic lymph nodes, distal ureters as well as the prostate 

gland, seminal vesicles and proximal urethra in men and the urethra, uterus, 

fallopian tubes, anterior vaginal wall and surrounding fascia in women. Radical 

cystectomy is usually performed in older patients and in healthier younger 

patients trimodal therapy consisting of transurethral resection of the bladder 

tumor followed by chemoradiotherapy is used. A number of radiosensitizing 

drugs such as 5-FU, cisplatin, gemcitabine, paclitaxel and more recently 

cetuximab are used. Cisplatin is not used in patients with kidney disease and 

gemcitabine, as a single agent, displays minimal toxicity (81, 94, 95) (79).   

Unresectable and metastatic disease: The combination of methotrexate, 

vinblastine, doxorubicin and cisplatin (M-VAC) or a combination of gemcitabine 

and cisplatin are used for the treatment of bladder cancer. Gemcitabine plus 

cisplatin has become a standard therapy due to significant toxicity associated 

with M-VAC therapy and gemcitabine plus cisplatin gives response rates and 

median survival rates similar to MVAC but with better safety and tolerability in 

bladder cancer patients (79, 81, 94, 95) (80). 

Targeted therapies:  A wide range of therapeutic agents are being developed 

against specific genes/proteins that are important in key urothelial cancer 

pathways. These therapies include cetuximab, an anti-EGFR monoclonal 

antibody; Gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; 
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trastuzumab, an anti-ERBB2 monoclonal antibody; lapatinib, a dual inhibitor of 

EGFR and ERBB2 associated tyrosine kinases; sorafenib, a multitarget kinase 

inhibitor of c-Raf-1, B-Raf, VEGFR1/2/3 and PDGFRβ;  and bevacizumab, an 

anti-VEGF monoclonal antibody. These are all in clinical trials for treatment of 

bladder cancer (80, 81, 96). 

Animal models of bladder cancer 

Chemical carcinogen models: Rats and mice are most commonly used as in 

vivo models for studying urothelial cancer. N-[4-(5-nitro-2-furyl)-2-thiazolyl] 

formamide (FANFT), N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) and N-

methyl-N-nitrosourea (MNU) are the three chemicals that induce bladder cancer. 

FANFT can act as an initiator or promoter and is highly specific to the bladder in 

rat, mouse, hamster and dog. Oral administration of FANFT results in DNA 

adducts and requires 8-11 months to induce urothelial cancer.  MNU is the only 

carcinogen that directly acts on the urotheilum after undergoing a spontaneous 

pH-dependent activation. Intravesical treatment with MNU induces lesions such 

as hyperplasia, atypia, carcinoma in situ, papillary carcinoma and finally large 

bulky muscle invasive tumors that completely fill the bladder lumen (97-99).   

Genetically engineered mice (GEM): The development of transgenic mouse 

models has allowed researchers to recapitulate the dual track pathway of 

bladder cancer development. The uroplakin II gene promoter is specific to 

bladder and is used to drive the expression of SV-40 large T antigen which 

inactivates both p53 and Rb pathways resulting in development of carcinoma in 



87 
 

situ and highly invasive tumors. Alternatively mutant H-ras expression driven by 

uroplakin promoter in mice results in development of papillary lesions that 

become invasive when these animals are crossed with p53 null mice. Similarly 

overexpression of EGFR in the urothelium results in hyperplasia; the phenotype 

of animals expressing both mutant H-ras and EGFR is indistinguishable from 

animals expressing mutant H-ras alone. However, EGFR overexpression in 

animals with SV-40 low copy number resulted in high grade urothelial 

carcinomas. Loss of LoxP-flanked PTEN by Cre recombinase driven by the fatty 

acid binding protein 1 promoter resulted in urothelial hyperplasia and in a few 

case urothelial cancers were observed. This indicates that loss of PTEN alone is 

not sufficient for initiation of bladder cancer and requires another genetic event. 

Double knockout of PTEN and p53 resulted in invasive bladder cancer (80, 97-

99).  

Cancer chemotherapy 

From 1950-1970 agents that interact with DNA or its precursors and 

inhibit the DNA synthesis or compounds that damageDNA were widely used in 

cancer chemotherapy. Recent research has focused on natural products 

(paclitaxel) and semisynthetic agents such as etoposide which target specific 

pathways involved in cancer cell proliferation, survival and angiogenesis (100). 

Chemotherapeutic agents can be classified into the following groups. 

1) Alkylating agents: Alkylating agents are the oldest class of drugs and 

are used in treatment of leukaemia, lymphoma and solid tumors. 
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Alkylating agents form covalent bonds with DNA through specific sites on 

purine bases leading to cross-linking of DNA and induction of apoptosis. 

Six major types of alkylating agents are used in cancer chemotherapy 

(101). 

a) Nitrogen mustards: Nitrogen mustards (N-mustard) are related to sulfur-

containing mustard gases and N-mustards form DNA adducts at O6 and 

N3 sites of guanine, N1, N3, N7 of adenine and N1, N3 of cytosine. N-

mustards have two electrophilic sites and acts as bifunctional alkylating 

agents resulting in intrastrand and interstrand cross-linking of DNA 

leading to inhibition of replication and transcription. Drugs included in this 

class are chlormethine, chlorambucil, melphalan, cyclophosphamide, 

bendamustine and ifosfamide. Chlormethine is the first N-mustard to be 

introduced and is the most reactive of all the drugs in this class. It is 

primarily used for treatment of Hodgkin‟s disease in combination with 

vincristine plus procarbazine plus prednisone (MOPP regimen). 

Chlorambucil is used for treatment of chronic lymphocytic leukemia (CLL) 

and primary (Waldenstrom‟s) macroglobulinaemia and melphalan is used 

for treatment of multiple myelomas. Cyclophosphamide is the most widely 

used N-mustard for treatment of malignant diseases of the brain, breast, 

endometrium, lung, bladder, cervical, testis and ovary. It is also used as 

an immunosuppressive agent (101-103).   
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b) Methylmelamines and ethylenimines: This class includes thiotepa and 

altretamine and even though N-mustards have replaced ethylenimines, 

some of these agents are used for specific therapies. For example 

thiotepa is used as intravesical therapy for bladder cancer and in high-

dose chemotherapy for solid tumors in combination with 

cyclophosphamide and carboplatin (CTCb regimen). Altretamine is used 

for treatment of ovarian cancer when the first line therapy has failed (101, 

102, 104). 

c) Methylhydrazine derivatives: Procarbazine was initially synthesized as 

a monoamine oxidase (MAO) inhibitor and was later found to have 

antineoplastic properties. It is used for treatment of Hodgkin‟s disease in 

a combination therapy (MOPP regimen) and also for the treatment of non-

Hodgkin‟s lymphoma, small-cell lung cancer and tumors of the brain (101, 

102) (105).    

d) Alkylsulfonates: Busulfan is also a bifunctional alkylating agent which 

has 2 methanesulfonate groups and upon hydrolysis produces reactive 

carbonium ions that alkylate DNA. Busulfan, at low doses causes 

selective depression of granulocytopoiesis and is primarily used for 

treatment of chronic myelogenous leukemia (CML). At low doses 

cytotoxic effects are not observed on lymphoid tissue or gastrointestinal 

epithelium, however, at high doses it causes myelosuppression, 

pulmonary fibrosis, liver damage and other toxicities (101, 102).  
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e) Nitrosoureas: Nitrosoureas are used in treatment of wide range of 

cancers including solid and non-solid tumors. Most nitrosourea 

compounds are lipophilic and can cross blood-brain barrier and provide 

high CSF to plasma ratio of these drugs compared to other alkylating 

agents. Compounds included in this class are carmustine, lomustine, 

fotemustine, nimustine and streptozocin.  The therapeutic efficiency of 

these drugs is limited by the development of resistance which involves 

multiple DNA repair pathways such as O6-methylguanine DNA-

methyltransferase (MGMT) and mismatch repair (MMR) genes (101, 

102).  

f) Triazines: This class includes dacarbazine and temozolomide which 

cause methylation of DNA at the N7 position of guanine, followed by the 

N3 postion of adenine and O6 postion of guanine. Dacarbazine is used in 

treatment of metastatic malignant melanoma and temozolomide is used 

for treatment of refractory high-grade glioma (101, 102).   

2) Antimetabolites: An antimetabolite is a chemical with a structure similar 

to a metabolite but is sufficiently different to interfere with the normal 

function of cells including cell division. Their chemical structure is similar 

to either folate or nucleotides that become the building blocks of DNA.  

a) Folate antagonists: Folic acid is a water soluble member of vitamin B 

class that is essential for cell proliferation and tissue regeneration and 

plays an important role in nucleotide synthesis. Dihydrofolate reductase 
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(DHFR) reduces folate to dihyrofolate and tetrahydrofolate (active form). 

Tetrahydrofolate donates methyl groups to specific molecules in the 

presence of thymidylate synthase (TS) and these are used for the 

synthesis of purine nucleotides and thymine. This class of drugs includes 

methotrexate, permetrexed, ralitrexed, nolatrexed, pralatrexate and 

talotrexin. Methotrexate binds to DHFR and inhibits synthesis of 

tetrahydrofolate and thus inhibits cellular synthesis of DNA and RNA.  

Methotrexate is used for treatment of lymphoblastic lymphoma, 

osteosarcoma in children, choriocarcinoma and related trophoblastic 

tumors of women and carcinomas of head, neck, ovary and bladder. To 

mitigate the toxic side effects of methotrexate, reduced folate (leucovorin, 

citrovorum factor) is supplemented to patients to bypass inhibited DHFR. 

Permetrexed inhibits TS and is used for treatment of malignant pleural 

mesothelioma and non-small cell lung cancer. Ralitrexed, a quinozoline 

folate analog that blocks TS is used for treatment of advanced colorectal 

cancer.  pralatrexate and talotrexin are DHFR inhibitors that are currently 

in clinical trials for treatment of various cancers (101, 102) (106, 107). 

b) Pyrimidine antagonists: This class includes many drugs such as 5-FU, 

capecitabine, gemcitabine, cytarabine, azacitidine, CP-4055, tegafur, 

floxuridine, doxifluridine, sapacitabine and decitabine.  5-FU is converted 

to two active metabolites, 5-fluoroxyuridine monophosphate (F-UMP) and 

5-5‟-fluoro-2‟-deoxyuridine-5‟-O- monophosphate (F-dUMP). F-UMP 
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competes with uracil and is incorporated into RNA and thereby inhibits 

RNA synthesis and F-dUMP inhibits TS resulting in thymidine depletion 

and decreased DNA synthesis. 5-FU is used for treatment of colorectal 

cancer and pancreatic cancer. Capecitabine is an oral prodrug of 5-FU 

and the reaction is catalyzed by thymidine phosphorylase which is found 

at a higher level in cancer cells and is selectively activated in tumors. 

Capecitabine is in clinical trials for treatment of breast, colorectal cancer 

and other solid tumors. 

  Gemcitabine is converted into two active metabolites 

difluorodeoxycytidine di- and triphosphate (dFdCDP and dFdCTP). 

dFdCDP inhibits ribonucleotide reductase and decrease deoxynucleotide 

pool required for DNA synthesis and dFdCTP is incorporated into DNA 

resulting in termination of DNA strand synthesis. Gemicitabine is used 

widely for treatment of pancreatic, breast, bladder, lung, ovarian and renal 

cell carcinoma. Azacitidine, an analogue of cytidine, is incorporated in to 

DNA and inhibits DNA methyltransferase resulting in hypomethylation of 

DNA thereby activating tumor suppressor genes silenced by 

hypermethylation. It also is incorporated into RNA and inhibits tRNA 

cytosine-5-methyltransferase activity. Azacitidine is in clinical trials for 

treatment of myelodysplasia and AML (101, 102). 

c) Purine antagonists: Mercaptopurine was the first synthetic purine 

antagonist and is an analogue of the purine bases adenine and 
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hypoxanthine. Mercaptopurine is incorporated into DNA and inhibits DNA 

synthesis. Mercaptopurine is used for treatment of ALL, AML, Hodgkin‟s 

lymphoma in children and lymphoblastic lymphoma. Other drugs included 

in this class are fludarabine, pentostatin, cladribine, thioguanine, 

nelarabine, cordycepin, clofarabine, triciribine phosphate, pelitrexol and 

dezaguanine. Fludarabine is fluorinated nucleotide analogue of the 

antiviral agent vidarabine and is used to treat acute non-lymphocytic 

leukaemia (ANLL) and CLL. Pentostatin is a purine analogue isolated 

from Streptomyces antibioticus that blocks adenosine deaminase which is 

essential for purine synthesis. Thioguanine is a synthetic guanosine 

analogue and cordycepin is an adenosine analogue isolated from fungus 

cordyceps militaris (101, 102). 

3) Antimicrotubule agents: 

a) Taxanes: Paclitaxel (Taxol) was the first taxane isolated from the bark of 

the pacific yew, Taxus brevifolia. Docetaxel is the semisynthetic durg 

derived from an inactive taxane precursor. Taxanes bind β-tubulin 

preferentially in microtubules rather than to soluble tubulin and they 

stabilize the microtubules. This inhibits microtubule polymerization and 

disrupts the normal dynamic reorganization of the microtubule network 

required for mitosis and cell proliferation resulting in cell cycle arrest in 

the G2/M phase. The binding affinity of docetaxel to microtubules is 

higher than paclitaxel and docetaxel is twice as potent as paclitaxel. 
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Taxanes are used in treatment of ovarian, breast, prostate and non-small 

cell lung cancer (101, 102) (108, 109). 

b) Vinca alkaloids: Vinca alkaloids (vincristine and vinblastine) are 

extracted from Catharanthus roseus (Madagascar periwinkle). 

Vincrinstine and vinblastine along with semisynthetic derivatives such as 

vindesine, vinorelbine and vinflunine are used in treatment of various 

cancer including leukemia, lymphoma, melanoma, breast and lung 

cancers. Vinca alkaloids bind to the both microtubule and soluble portion 

of  β-tubulin and they destabilize the microtubules by inhibiting 

polymerization results in the inhibition of mitosis and cell cycle 

progression (101, 102) (110, 111).  

4) Antitumor antibiotics: Drugs that are classified as antitumor antibiotics 

are produced by microorganisms that interact with DNA to produce their 

anticancer effects. 

a) Actinomycin D: Actinomycin D is extracted from Actinomyces 

antibioticus or Streptomyces parvulus and is used for treatment of Wilm‟s 

tumor, rhabdomyosarcoma, Ewing‟s sarcoma, trophoblastic neoplasms 

and testicular carcinomas. Actinomycin D is a phenoxazinone 

chromophore linked to two pentapeptide lactones which intercalate into 

the DNA with their lactone moieties residing in the minor groove. This 

binding is sequence selective for GpC base pairs by forming hydrogen 
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bonds between the N2 amino group of guanine and carbonyl groups in 

the peptide side-chains of the drug (101, 102). 

b)  Mitomycin C: Mitomycin C is isolated from Streptomyces caespitosus 

and is used in combination therapy for treatment of solid tumors such as 

adenocarcinoma of stomach or pancreas, superficial bladder cancer, 

epidermoid anal carcinomas and esophageal carcinomas. Mitomycin C 

forms interstrand and intrastrand crosslinks with DNA. In the interstrand 

crosslink mitomycin C links two guanines in opposite strands at 5‟-CpG 

sequences and the intrastrand crosslinks are formed at GpG sites of 

DNA. The major reduced metabolite of mitomycin C, 2, 7-

diaminomitosene, generates two additional monoadducts by reacting with 

DNA. The selective toxicity of mitomycin C towards solid tumors is 

primarily due to reductive activation since solid tumors are characterized 

by low oxygen levels and the hypoxic cells readily reduce mitomycin C to 

give active metabolites. Many potent synthetic analogues of mitomycin C 

are also less toxic and for example, apaziquone is in clinical trials for 

treatment of advanced colorectal, breast, gastric, pancreatic, non small 

cell lung cancer and noninvasive bladder cancer (101, 102) (112).  

c) Bleomycin: Bleomycin A2 and B2 are linear glycosylated peptides 

isolated from Streptomyces verticellus and the clinical drug Blenoxane 

contains a mixture of bleomycin A2 and B2. Blenoxane is used in 

combination therapy for treatment of Hodgkin‟s and non-Hodgkin‟s 
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lymphomas, squamous cell carcinomas, testicular carcinomas and 

malignant pleural effusions. The clinical applications of bleomycin are 

limited by its secondary effects and its lack of permeability through cell 

membranes. The use of electroporation techniques has increased the 

permeability of bleomycin by approximately 1000-fold and clinical studies 

with bleomycin using electroportation in patients with cutaneous and 

subcutaneous nodes of melanoma, breast, colon cancer, squamous cell 

carcinoma of skin and cervix exhibited high response rates with minor-

side effects and is well tolerated by the patients. Bleomycin induces RNA 

and DNA breaks and the cofactors involved in this process are a metal 

ion (usually Fe2+/Fe3+), oxygen and an electron reducing agent (101, 

102) (113). 

d)  Anthracyclines: The major anticancer agents in this class include 

doxorubicin and daunorubicin which are isolated from Streptomyces 

peucetius. The only difference between daunorubicin and doxorubicin is 

its lack of hydroxyl group in the chromophore side chain. The activity of 

daunorubicin is narrow and is used for treatment of ALL, AML and CML. 

Doxorubicin is used for treatment of various solid tumors such as breast 

cancer, ovarian cancer, urothelial bladder cancer, bronchogenic lung 

cancer, thyroid cancer and gastric cancer.  Anthracyclines mediate their 

anticancer effects as topoisomerase IIα inhibitors which play an important 

role in regulation of DNA supercoiling during replication or transcription 
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and these drugs induce double stranded DNA breaks leading to 

apoptosis. Semisynthetic analogues of doxorubicin are epirubicin and 

idarubicin and these compounds are also in clinic trials for treatment of 

solid and nonsolid tumors (101, 102) (114). 

e) Camptothecins: Camptothecin is a pentacyclic antibiotic isolated from 

Camptotheca acuminate. The activity of camptothecin is limited due to its 

low water solubility and toxic side effects, however, many synthetic 

analogues with increased water solubility have been developed. The two 

analogues which are in clinic trials are topotecan and irinotecan which 

inhibit topoisomerase I and block religation of the cleaved DNA strand 

and inhibits DNA synthesis and decreases cell viability. They are used in 

treatment of AML, small cell lung cancer, ovarian cancer and colorectal 

cancers (101, 102) (115).  

f) Podophyllotoxins: Podophyllotoxins are aryltetralinlactone lignans 

isolated from Podophyllum peltatum and despite their strong anticancer 

activities clinical applications are not ongoing due to their severe toxic 

side effects. Their synthetic analogues etoposide and teniposide are used 

clinically for treatment of various cancers. Podophyllotoxins inhibit 

assembly of microtubules by binding to tubulin, however, their analogues, 

etoposide and teniposide, inhibit topoisomerase II (101, 102) (116).  

5) Platinum based drugs: Cisplatin is used in combination therapy for 

treatment against cancers of the lung, head-and-neck, esophagus, 
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stomach, colon, bladder, testis, ovaries, and cervix. Cisplatin induces 

DNA crosslinking, oxidative stress and stress-signaling pathways 

involving MAP kinase cascades.  Carboplatin and oxaliplatin are 

analogues of cisplatin but none of them are as effective as cisplatin. 

Carboplatin is less toxic than cisplatin to kidneys and the nervous system 

and retains equivalent antitumor activity. Carboplatin is highly effective for 

treatment of advanced ovarian cancers in women and is also used in 

combination therapies for treatment of hormone-refractory prostate 

cancer, anaplastic astrocytomas and glioblastomas (101, 102) (117, 118).  

6) Targeted based therapies: The rationale for designing and developing 

targeted- based therpies comes from the knowledge and understanding 

the biology of cancer cells which typically exhibit aberrant protein 

expression and signal transduction networks and drugs that inhibit 

proliferation and survival pathways are being developed (101).  

a) Hormonal therapy: Hormonal therapy is used for treatment of several 

cancers that are derived from hormone-responsive tissue including 

breast, prostate, endometrium and adrenal cortex.  

i) Estrogen receptor targeted therapies: The estrogen receptor (ER) is 

expressed as two isoforms, ERα and ERβ that exhibit distinct tissue 

specific expression. Estrogens induce gene expression and cellular 

changes through genomic and non-genomic mechanisms. Estrogen binds 

to ER located in the nucleus and this nuclear estrogen-ER complex binds 
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directly to estrogen response elements or indirectly through protein-

protein interactions involving AP1 or Sp1 bound to AP1 or GC-rich sites 

respectively. In the non-genomic mechanism estrogen binds to ER 

located in or adjacent to plasma membranes, or through other non-ER 

plasma membrane associated factors resulting in increased levels of Ca2+ 

or NO and activation of kinases. ERs are implicated in several diseases 

such as breast and ovarian cancers, and the feasibility of anti-hormone 

endocrine therapy is determined by level of ER expression (101, 102) 

(119).  

Selective estrogen receptor modulators (SERMs) bind with high 

affinity to ER and mimic the effect of estrogens in some tissues but act as 

estrogen antagonists in other tissues. Tamoxifen has been the most 

widely used SERM treating ER positive breast cancer and exhibits 

antiestrogenic activity in breast tumors, estrogen-like activity in bone and 

also decreases cholesterol. However tamoxifen increases proliferation in 

the endometrium and is a risk factor for endometrial cancers. Response 

rates in patients treated with tamoxifen ranged from 16-56% and the 5 

year survival rate is approximately 26% in breast cancer patients (101, 

102) (120).   

Antiestrogens such as fulvestrant and GW5638 bind to ER and 

induce ER degradation. These drugs are in clinical trials and are being 
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considered as a third line of therapy where tamoxifen and aromatase 

inhibitors have failed (101, 102) (121).  

Estrogen deprivation therapy is attained by removal of ovaries or 

through chemicals such as LH releasing hormone analogues and 

aromatase inhibitors. Aromatase inhibitors are of two types, irreversible 

steroidal inhibitors (exemestane) and reversible non-steroidal imidazole 

based inhibitors (anastrozole, letrozole). These drugs reduce aromatase 

activity and estradiol concentrations and are clinically used for treating 

breast cancer patients (101, 102) (121).  

ii) Progesterone targeted therapy: Progestins or progestational agents are 

used in treatment of endometrial carcinoma and metastatic hormone 

dependent breast cancer; these cancers express progesterone receptor 

(PR). Hydroxyprogesterone caproate, medroxyprogesterone and 

megestrol acetate are used in progestin therapy (101, 102).  

iii) Adrenocorticosteroids: These compounds are used for treatment of 

acute leukemia in children and malignant lymphoma in children and 

adults since they exhibit lympholytic effects and suppress mitosis in 

lymphocytes. Glucocorticoids such as dexamethasone and prednisone in 

combination with other chemotherapeutics are used (102).  

b) Tyrosine kinase inhibitors: In many cancers, mutations or 

overexpression or autocrine/paracrine stimulation of tyrosine kinase 

pathway is observed. For example nonsmall cell lung cancers (NSCLC) 
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overexpress EGFR which plays an important role in tumor cell 

proliferation, angiogenesis and metastasis and EGFR expression 

correlates with poor prognosis and decreased patient survival. 

Monoclonal antibodies (cetuximab) against the extracellular ligand 

binding domain of EGFR and also small molecule inhibitors (gefitinib and 

erlotinib) of the intracellular tyrosine kinase domain of EGFR have been 

developed. Erlotinib exhibited antitumor activity and improved the quality 

of life of NSCLC patients (101) (122) (123).  

CML patients exhibit a reciprocal chromosomal translocation 

between chromosome 9 and 22 which give rise to the bcr-abl gene 

(Philadelphia chromosome). Small molecule inhibitors (imatinib, dasatinib 

and nilotinib) of bcr-abl tyrosine kinase activity were developed that binds 

to the ATP pocket and inhibit downstream signal transduction have been 

developed. In phase II clinical trials with imatinib there was a 95% 

response rate in CML patients and imanitib also targets PDGFR and 

other tyrosine kinases. Nilotinib has higher binding affinity and selectivity 

of bcr-abl kinase than imatinib and dasatinib binds to the active and 

inactive confirmations of bcr-abl kinase domain. Dasatinib and nilotinib 

are in clinical trials for treatment of imanitib resistant CML  (101) (124).  

In metastatic breast cancer HER2 is overexpressed in 

approximately 25-30% of the patients. Patients treated with herceptin, a 

monoclonal antibody against the extracellular domain of HER2 protein 
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exhibit sustained improvement and increased-progression-free survival in 

clinical trials with herceptin plus doxorubicin or paclitaxel or epirubicin 

plus cyclophosphomide (101) (125).  

c) Angiogenic inhibitors: The proliferation of new capillaries is known as 

angiogenesis and is usually short lived (1-2 weeks); however 

angiogenesis is upregulated in tumor cells. When the distance between a 

tumor cell and a blood vessel exceeds 1 mm, the supply of oxygen and 

nutrients diminish resulting in hypoxia and hypoxic cells that secrete 

VEGF which is essential for endothelial recruitment and angiogenesis. 

The monoclonal antibody against VEGF (Bevacizumab) in combination 

with chemotherapy is used as first line of therapy for treatment of 

metastatic colorectal cancer. The tyrosine kinase inhibitor, sunitinib also 

inhibits VEGFR and PDGFR and is used in clinical trials against renal cell 

carcinoma and AML (101) (13) (126) (127).  

d) Targeting cell cycle: Cyclin dependent kinases (CDKs) are 

serine/threonine kinases that are involved in the control of cell cycle 

progression. Flavopiridol is a synthetic flavonoid derived from the alkaloid 

rohitukine that inhibits CDKs. Ispinesib inhibits kinesin spidle protein 

(KSP) which is essential for cell proliferation. P276-00 is also derived 

from rohitukine and selectively inhibits the CDK4-cyclin D1 and CDK1-

cyclin B complexes. These drugs are all in clinical trials for treatment of 

various cancers (101) (128, 129). 
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e) Targeting mTOR: The mammalian target of rapamycin (mTOR) is a 

serine threonine kinase that regulates cell growth, proliferation, survival, 

protein translation and angiogenesis. Rapamycin, a macrolide antibiotic 

isolated form Streptomyces hygroscopicus, is an inhibitor of the mTOR 

pathway and temsirolimus is a rapamycin derivative which is in clinical 

trials for treatment of renal cell carcinoma (101) (130) (131).   

f) Targeting apoptosis: Obatoclax is an inhibitor of Bcl2 and activates 

apoptosis and this drug is in clinical trials for treatment of myelodysplastic 

syndromes, NSCLC, follicular lymphoma, myelofibrosis and Hodgkin‟s 

lymphoma (101) (132).  

Transcription factors as targets for cancer therapy 

Peroxisome proliferator-activated receptor (PPAR) γ 

Nuclear receptors (NR) are transcription factors that regulate 

transcriptional activation and repression in ligand-dependent or –independent 

manner. In contrast to the cell surface receptors such as EGFR, IGFR, which 

regulate gene transcription through complex intracellular signaling cascades, 

NRs regulate transcription by binding to specific DNA-sequences called 

hormone response elements (HRE). Nuclear receptors are classified into 7 

subfamilies based on sequence comparision (Table 6) and they contain a N-

terminal regulatory domain (activation function1-AF1), a DNA-binidng domain 

(DBD), a ligand binding domain (LBD) and a C-terminal domain (activation 
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function -2 -AF2). Even though NRs exhibit a conserved structural organization, 

they are functionally distinct and have been divided into two classes. 

Cytoplasmic NRs are present in cytoplasm as multiprotein complexes and after 

ligand binding they translocate into nucleus and bind to HREs as homo- or 

heterodimers. Some NRs reside in the nucleus in a complex with corepressors 

and ligand binding triggers corepressor dissociation and coactivator 

recruitement. Since NRs modulate several functions including cell proliferation, 

apoptosis, invasion and migration, they are important targets for cancer drug 

development (133). For example the estrogen receptor which is linked to breast 

cancer is antagonized by tamoxifen or raloxifene and PPARγ, a receptor 

important for the differentiation of cancer cells is another drug target (134).   

PPARs are a family of ligand-activated transcription factors belonging to 

the nuclear hormone receptor family and related to retinoid, glucocorticoid and 

thyroid hormone receptors. There are three different PPAR subtypes, PPARα, 

PPARβ and PPARγ which are widely expressed and exert a wide range of 

effects on metabolism, cell proliferation and immune responses. PPARα is 

expressed predominantly in liver and skeletal muscles and plays an important 

role in fatty-acid catabolism. PPARβ is present in moderate levels in all human 

tissues exhibiting higher expression in placenta and large intestine. Very little is 

known about its functional role but PPARβ has been implicated as a regulator of 

glucose and lipid metabolism. PPARγ is the most frequently studied PPAR and 

is involved in glucose and lipid metabolism, modulates inflammation in immune 
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cells, induces adipose cell differentiation and exhibits antiproliferative activity 

(135-137).  

Table 6. Classification of the NR superfamily into subfamilies according to 

sequence homology (133). 

 

PPARs have similar structural organization that includes an A/B (ligand-

independent activation domain), C (DNA binding domain-DBD), D (hinge 

domain) and E/F (ligand binding domain –LBD) domains (Figure 12). The N-

terminal A/B domain is well conserved  among PPARs and the α-helix fragment 

has ligand-independent activating function (AF-1) and the C-domain is the most 

conserved of all the functional domains and contains two zinc finger-like motifs 

that bind to a PPRE (PPAR response elements) in target gene promoters. Apart 

from the zinc finger motifs, PPAR binding is determined by amino-acid motifs 

present on C-domain and the C-domain also takes part in dimerization with other 
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NRs such as RXR. Domain D is less conserved and acts as a flexible hinge 

between C and E/F domains. It contains the nuclear localization signal which 

plays an important role in transporting the receptor from the cytoplasm to the 

nucleus. The D-domain takes part in dimerization and recognition of PPREs and 

also regulates binding of co-factors to the receptor. The LBD is the largest 

domain located on the C-terminus and contains a fragment (AF-2) that is 

responsible for ligand-dependent activation of PPARs (135-137).   

 

Figure 12. Schematic representation of genomic structure of PPARγ (137). 

PPARγ exists as two isoforms (PPARγ1 and PPARγ2) encoded by 

multiple transcript variants and PPARγ1 is the major isoform expressed in 

humans. PPARγ undergoes heterodimerization with RXRα and is constitutively 

bound to PPREs within promoters of PPARγ-targeted genes. The PPRE motif 

contains a 13-nucleotide sequence, AGGTCA N AGGTCA (N-any nucleotide) 

that is composed of 2 hexanucleotides separated by one nucleotide (direct 

repeat-1, DR-1) which is specifically recognized by PPARγ/RXRα heterodimer. 
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PPARγ/RXRα heterodimer is activated by various ligands including natural and 

synthetic lipophilic ligands. The natural ligands include polyunsaturated fatty 

acids (linoleic and arachidonic acid), prostaglandin J2 (PGJ2) derivatives and 

oxidized fatty acids and the synthetic ligands include thiazolidinediones (TZD) 

such as rosiglitazone, pioglitazone and troglitazone (137).  

PPARγ plays a role in adipocyte differentiation, glucose metabolism (used 

as antidiabetic drugs) and inflammation and PPARγ agonists such as TZDs are 

used for treatment of insulin-resistant type II diabetes. Recent studies have 

shown that PPARγ is widely expressed in many tumors and cancer cell lines. 

For example, PPARγ is expressed in colon, breast, lung, prostate, 

osteosarcomas, glioblastomas, AML, ALL, non-Hodgkin‟s lymphoma and 

myelodisplsatic syndrome clinical tumor samples (138) (139). Expression of 

PPARγ is associated with cellular differentiation which decreased or blocks cell 

growth; and PPARγ agonists (natural and synthetic) inhibit liposarcoma, breast 

cancer, colon cancer, bladder cancer, pancreatic cancer, prostate cancer and 

gastric cancer growth. For example PPARγ is expressed in pancreatic tumors 

and cell lines and treatment with the PPARγ agonist troglitazone results in 

G0/G1 arrest and increased p27 expression in Panc-1 cells (140).  These growth 

inhibitory effects are highly variable and dependent on ligand structure and cell 

context and can be PPARγ-dependent or -independent. For example, PGJ2, 

troglitazone and GW7845 induce apoptosis, increase PPARγ-dependent activity 

and expression of CD36 (PPARγ-dependent) gene in breast cancer cell lines 
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and treatment with GW9662 (an irreversible PPARγ antagonists) decreased the 

PPARγ activity and expression of CD36 but did not block apoptosis (141). 

Troglitazone induced apoptosis in PPARγ-independent manner in colon cancer 

cell lines through activation of early growth respose-1 (Egr-1) and NSAID-

activated gene (NAG-1) (142, 143).   

Several new classes of PPARγ agonists have been developed and these 

also exhibit anticancer activities through PPARγ-dependent and independent 

mechanism in various cancer cell lines. For example, 1,1-bis(3'-indolyl)-1-(p-

substitutedphenyl)methanes containing p-trifluoromethyl (DIM-C-pPhCF3), p-t-

butyl (DIM-C-pPhtBu), and phenyl (DIM-C-pPhC6H5) substitutes inhibited 

bladder cancer growth in vitro and in vivo through induction of caveolin-1 and 

p21 and these effects were reversed with treatment of PPARγ antagonists 

GW9662 in a PPARγ-dependent manner. In contrast, 2-cyano-3,12-dioxoolean-

1,9-dien-28-oic acid (CDDO), CDDO-Me and CDDO-Im which are the synthetic 

triterpenoids derived from oleanolic acid, inhibited colon cancer growth through 

PPARγ-independent mechanisms (144). Methyl 2-cyano-3,11-dioxo-18beta-

olean-1,12-dien-30-oate (β-CDODA-Me) which is a synthetic analogue derived 

from glycyrrhetinic acid, also induced PPARγ-dependent activity and inhibited 

colon cancer growth in a  PPARγ-dependent manner, however, inhibition of 

prostate and pancreatic cancer growth was PPARγ-independent and involved 

induction of  NAG-1 (145-147). 
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Specificity protein (Sp) transcription factors  

The Sp/KLF (Kruppel-like factor) family is subdivided into the Sp family 

which bind GC-boxes and the KLF family which binds to GT-boxes that act as 

activators as well as repressors of transcription. The Sp/KLF family of 

transcription factors contains three C2H2-type zinc finger DNA-binding domains 

and recognizes GC-(GGGCGG or GGCG) and GT-(GGTGTGGGG) boxes with 

different affinities due to differences in the amino acid substitutions in the zinc 

fingers (Figure 13). The Sp family genes (Sp1-9) are located on the HOX gene 

cluster which encodes a large family of transcription factors that specify head-tail 

axis in embryonic development (148). Sp1 and Sp7 (osterix) are on 12q13.13 

(HOX C); Sp2 and Sp6 on 17q21.31/32 (HOX B); Sp3, Sp5 and Sp9 on 2q31.1 

(HOX D) and Sp4 and Sp8 on 7q21.2 (HOX A). The Sp family is divided into 

Sp1-4 which contain N-terminal glutamine rich transactivation domains (TADs) A 

and B and Sp5-9 which lack the N-terminal glutamine rich TADs respectively. 

Sp1, 3 and 4 posses two glutamine rich TADs (A and B domain) and binds to 

GC-boxes whereas Sp2 has one TAD and does not bind to GC-boxes due to 

substitution of a critical histidine by a leucine residue in the zinc finger 1; Sp2 

exhibits higher binding specificity to GT-boxes. Serine/threonine-rich sequences 

(C-domain) are located next to the A and B domains and are targets for post-

translational modifications. All the Sp family proteins contain a buttonhead box 

N-terminal to the zinc finger domain and a conserved stretch of 11 amino acid 

residues which contribute to their transactivation potential; deletion of this region 
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in Sp1 results in decreased activity of Sp1 (149). The Sp box 

(SPLALLAATCSR/KI) is located at the N-terminus of Sp proteins and contains a 

endoproteolytic cleavage site that plays an important role in proteolysis of Sp 

proteins (figure 14) (150, 151) (152).  

 

Figure 13. The zinc fingers of Sp/XKLF transcription factors (150). 

  Sp1 was the first transcription factor identified and binds GC-boxes and 

also binds to CT and GT-boxes with lower affinity. Sp1 and Sp3 are expressed 

ubiquitously whereas Sp4 exhibits tissue specific (brain, testis and epithelial 

tissues) expression. Sp1 and Sp3 exhibit similar DNA-binding affinities and 

compete for binding to the same GC-, GT- and CT-boxes and the Sp1 to Sp3 

ratio may play an important role in regulation of some genes. On some 

promoters Sp3 cooperates with Sp1 whereas on other promoters Sp3 competes 

and represses Sp1-mediated transactivation. For example, all 3 Sp proteins 
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cooperatively regulate VEGF expression in Panc-1 cells (153); however, in 

human umbilical vein endothelial cells hypoxia enhances Sp1 proteins levels but 

not Sp3 levels. In general, increased Sp1/Sp3 ratios have been correlated with 

the increased gene expression and many of these genes are activated by Sp1 

and repressed by Sp3 (150, 151).  

 

Figure 14. Structural motifs in Sp1/2/3/4 proteins (150). 

Sp1-knockout embryos are severely retarded in development and die 

around day 11 of gestation; however Sp1 null embryos express Sp1 target 

genes at normal levels and only thymidine kinase and the methyl-CpG binding 

protein 2 (MeCP2) gene expression was decreased. MeCP2 gene is associated 

with maintainance of differentiated cells suggesting a role of Sp1 in regulation of 

differentiation (154). This demonstrates that other Sp-family members may 

compensate for loss of Sp1 during early embryogenesis. Sp3 loss in mouse 

embryos results in growth retardation and mice die at birth due to respiratory 



112 
 

failure (155). Approximately 2/3 of Sp4 null mice die within 4 weeks after birth 

and the mice which survive exhibit growth retardation. Male Sp4 null mice do not 

breed and females exhibit a pronounced delay in sexual maturation (150) (156). 

Sp proteins are involved in many signal transduction pathways linked to 

cancer and carcinogen or stable transfection of H-RasV12 induced transformation 

of human fibroblast cells results in a 8-18 fold incresase in Sp1. The malignant 

cells formed tumors in athymic mice (157). Also Sp1 mRNA and Sp1 and Sp3 

DNA binding activity is increased in skin tumors compared to papillomas and the 

increased expression of these proteins correlates with increased tumor 

progression. The promoters of many pro- and anti-apoptotic genes such as Bcl-

2, Bak, Bax, survivin, Fas and Fas ligand, TGFβ and its receptors, TNFα and 

TRAIL contain GC-rich Sp binding sites and Sp proteins also regulate 

expression of angiogenic genes, VEGFR1, VEGFR2 and VEGF (153, 158, 159). 

GC-rich sites on the wild type p53 gene are also involved in upregulation of 

growth inhibitory genes such as p21 and caveolin and functional GC-boxes are 

present on the Rb, c-Myc, c-jun, c-fos, E2F1, NFκB and Egr-1 gene promoters 

(Table 7). Sp1 overexpression in patients with pancreatic ductal 

adenocarcinoma is associated with metastasis and the 5-year survival rate was 

19% in patients with Sp1 overexpression compared with 55% in patients without 

Sp1 overexpression (160) (161). Several studies in this laboratory have reported 

that Sp1, Sp3 and Sp4 are highly expressed in pancreatic, breast, bladder and 

colon cancer cell lines (153, 158, 159, 162-164) (165) and tumors derived from 
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these cells in xenograft models (162, 163) (165). Even though the knockout of 

Sp proteins in mice is embryolethal, the expression of these proteins is 

significantly decreased in rodent and human tissues with increasing age (166, 

167) and studies in this laboratory have shown that Sp1, Sp3 and Sp4 

expression is low in most organs when compared to tumors (168).    

Table 7. Functions of Sp1 target genes (152). 

 

Several compounds decrease Sp protein expression and this contributes 

to their inhibition of tumor growth. COX-2 inhibitors/NSAIDS such as celecoxib, 

nimesulide or NS-398 decrease VEGF expression through degradation of Sp1 

and Sp4 but not Sp3 in colon cancer cell lines. In contrast, the NSAID tolfenamic 

acid inhibited VEGF expression in pancreatic cancer cells and this was 

associated with decreased Sp1, Sp3 and Sp4 expression (162, 169). Betulinic 

acid, a pentacyclic triterpenoid isolated from birch bark induces proteosome-
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dependent degradation of all 3 Sp proteins in prostate cancer cells and in tumors 

(xenografts) (168). Curcumin, a polyphenolic anticancer agent from rhizome of 

Curcuma longa also induced proteosome-dependent degradation of Sp1/3/4 

proteins in bladder cancer cells; however, β-CDODA-Me decreased expression 

of Sp proteins in a proteosome independent manner in colon cancer cells and 

downregulation of Sp proteins was due to decreased expression of miR-27a 

which in turn increased expression of ZBTB10 (an Sp repressor) (163) (170).       

The proposed studies in this thesis research are focused on curcumin, 

arsenic trioxide, CDDO and celastrol and their mechanism of action as 

anticancer drugs in pancreatic and bladder cancer cells and in mouse tumor 

xenograft or orthotopic models. The research will also investigate the effects of 

these compounds on Sp1, Sp3 and Sp4 expression and the role of these 

proteins in mediating genes that are important for cancer cell proliferation (cyclin 

D1), survivial (survivin, NFκB) and angiogenesis (VEGF, VEGFR1, VEGFR2).   
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II. INDUCTION OF APOPTOSIS AND NONSTEROIDAL 

ANTIINFLAMMATORY DRUG-ACTIVATED GENE 1 IN PANCREATIC 

CANCER CELLS BY A GLYCYRRHETINIC ACID DERIVATIVE* 

Methyl 2-cyano-3,11-dioxo-18-olean-1,12-dien-30-oate (CDODA-Me) is 

a synthetic triterpenoid derived from glycyrrhetinic acid, a bioactive 

phytochemical in licorice,  CDODA-Me inhibits growth of Panc1 and Panc28 

pancreatic cancer cell lines and activates peroxisome proliferator-activated 

receptor  (PPAR)-dependent transactivation in these cells.  CDODA-Me also 

induced p21 and p27 protein expression and downregulates cyclin D1; however, 

these responses were receptor-independent.  CDODA-Me induced apoptosis in 

Panc1 and Panc28 cells, and this was accompanied by receptor-independent 

induction of the proapoptotic proteins early growth response-1 (Egr-1), 

nonsteroidal anti-inflammatory drug-activated gene-1 (NAG-1), and activating 

transcription factor-3 (ATF3).  Induction of NAG-1 and Egr-1 by CDODA-Me was 

dependent on activation of phosphatidylinositol-3-kinase (PI3-K) and/or p42 and 

p38 mitogen-activated protein kinase (MAPK) pathways but there were 

differences between Panc28 and Panc1 cells.  Induction of NAG-1 in Panc28 

cells was p38-MAPK- and PI3-K-dependent but Egr-1-independent, whereas 

_________ 

* Reprinted with permission from “Induction of Apoptosis and Nonsteroidal 
Antiinflammatory Drug-Activated Gene 1 in Pancreatic Cancer Cells by A 
Glycyrrhetinic Acid Derivative” by Jutooru I, Chadalapaka G, Chintharlapalli S, 
Papineni S and Safe S. Mol. Carcinogenesis. 48(8):692-702, 2009. Copyright 
2009 by Wiley and Sons. 
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induction in Panc1 cells was associated with activation of p38-MAPK, PI3-K and 

p42-MAPK and was only partially Egr-1-dependent.   

Introduction 

Glycyrrhetinic acid (GA) is a pentacyclic triterpenoid acid that is found as 

a conjugate (glycyrrhizin) in licorice extracts (171) (172).  GA is one of the 

medicinally active compounds of licorice and exhibits multiple activities which 

include the enhancement of corticosterone levels which contributes to 

decreased body fat index in human studies with GA (173) (174).  In addition, 

several derivatives of GA are also biologically active, and carbenoxolone, a 3-

hemisuccinate of GA, has been used for the treatment of ulcers and arthritis 

(171) (172) (175).  Previous studies with closely related triterpenoid acids, 

ursolic acid and oleanolic acid, have demonstrated that introduction of a 2-

cyano-1-en-3-one function in their A ring greatly enhances their anti-

inflammatory activity in a mouse macrophage model (176, 177), and one of 

these compounds, 2-cyano-3,12-dioxo-18-olean-1,9(11)-dien-28-oic acid 

(CDDO), its methyl ester (CDDO-Me), and imidazole derivatives exhibit 

antitumorigenic activity (178, 179).  We have synthesized 2-cyano-3,11-dioxo-

18-olean-1,12-dien-30-oic acid (CDODA) and its methyl ester (CDODA-Me) 

from GA and have demonstrated that these compounds are highly cytotoxic in 

colon, prostate, bladder and pancreatic cancer cells (145, 147, 180).  The most 

active member of these GA derivatives is CDODA-Me (18 isomer) which 

activates peroxisome proliferator-activator receptor  (PPAR) and induces both 
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receptor-dependent and -independent responses in colon and prostate cancer 

cells.  For example, in colon cancer cells, -CDODA-Me induced receptor-

dependent caveolin-1 expression in HT-29 and HCT-15 but not SW480 colon 

cancer cells, whereas -CDODA-Me induced receptor-mediated caveolin-1 

protein levels in all three cell lines (145).  In contrast, the pattern of receptor-

dependent induction of Krüppel-like factor-4 (KLF-4) in HT-29, HCT-15 and 

SW480 colon cancer cells was similar for both - and -CDODA-Me.  -

CDODA-Me induced apoptosis and several proapoptotic proteins in LNCaP 

prostate cancer cells and these included nonsteroidal anti-inflammatory drug-

activated gene-1 (NAG-1) and activating transcription factor 3 (ATF3), and 

activation of these pathways was not inhibited by PPAR antagonists (147).   

In this study, we demonstrate that -CDODA-Me induced PPAR-

dependent transactivation in Panc28 and Panc1 pancreatic cancer cells and -

CDODA-Me induced the characteristic PPAR-dependent differentiation of 3T3-

L preadipocytes.  -CDODA-Me induced expression of several growth inhibitory 

and proapoptotic proteins including p21, p27, NAG-1 and ATF3 and 

downregulated cyclin D1 proteins, and effects on these growth inhibitory 

responses were receptor-independent.  -CDODA-Me also activated multiple 

kinases in pancreatic cancer cells including p38 and p42 mitogen-activated 

protein kinase (MAPK), phosphotidylinositol-3-kinase (PI3-K), and c-jun N-

terminal kinase (JNK) pathways, and the role of these kinases in the induction of 

NAG-1 and apoptosis was cell context-dependent. 
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Materials and methods 

Cell lines 

The Panc28 cell line was a generous gift from Paul Chiao (University of 

Texas M.D. Anderson Cancer Center, Houston, TX) and Panc1 cells were 

obtained from the American Type Culture Collection (ATCC, Manassas, VA).  

Antibodies and reagents 

Both pancreatic cancer cell lines were maintained in DMEM-F12 

supplemented with 5% FBS, 0.22% sodium bicarbonate, and 10 ml/L of 100X 

antibiotic/antimycotic cocktail solution (Sigma Aldrich Co., St. Louis, MO).  Cells 

were grown in 150 cm2 culture plates in an air/CO2 (95:5) atmosphere at 37C.  

Cyclin D1, p21, p27, ATF3, p-c-jun, c-jun, p-Akt 1/2/3, Akt 1/2, p-Erk, Erk and 

p38 antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA).  Cleaved PARP, Egr-1 and p-p38 antibody were purchased from Cell 

Signaling Technology (Danvers, MA) and NAG-1 antibody was purchased from 

Upstate USA, Inc. (Lake Placid, NY). -actin antibody was 

purchased from Sigma-Aldrich.  Horseradish peroxidase substrate for western 

blot analysis was obtained from NEN Life Science Products (Boston, MA).  

Proteinase K was obtained from Sigma Aldrich.  Lipofectamine was purchased 

from Invitrogen (Carlsbad, CA).  β-Galactosidase reagent was obtained from 

Tropix (Bedford, MA).  LY294002, PD98059 and SB203580 were purchased 

from EMD Chemicals, Inc (Gibbstown, NJ). 
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Cell proliferation assay 

Pancreatic cancer cells (3 x 104 per well) were plated in 12-well plates 

and allowed to attach for 24 hr.  The medium was then changed to 

DMEM:Ham's F-12 medium containing 2.5% charcoal-stripped FBS, and either 

vehicle (DMSO) or CDODA-Me were added.  Fresh medium and test 

compounds were added every 48 hr, and cells were then trypsinized and 

counted at the indicated times using a Coulter Z1 particle counter.  Each 

experiment was done in triplicate and results are expressed as means  SE for 

each treatment group. 

Transfection and luciferase assay 

The pancreatic cancer cells (1 x 105 per well) were plated in 12-well 

plates in DMEM:Ham's F-12 medium supplemented with 2.5% charcoal-stripped 

FBS.  After 24 hr, various amounts of DNA (i.e., 0.4 µg pGal4, 0.04 µg β-

galactosidase, and 0.04 µg PPARγ-GAL4 or 0.4 µg of PPRE3-Luc) were 

transfected using Lipofectamine reagent according to the manufacturer‟s 

protocol.  Five hours post-transfection, the transfection mix was replaced with 

complete medium containing either vehicle (DMSO) or the indicated compound 

in DMSO.  After 22 hr, cells were then lysed with 100 µL of 1x reporter lysis 

buffer, and cell extracts (30 µL) were used for luciferase and β-galactosidase 

assays.  A Lumicount luminometer was used to quantitate luciferase and β-

galactosidase activities, and the luciferase activities were normalized to β-

galactosidase activity.  
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Western blots 

Pancreatic cancer cells were initially seeded in DMEM:Ham's F-12 

medium containing 2.5% charcoal-stripped FBS and, after 24 hr, cells were 

treated with either vehicle (DMSO) or the indicated compounds.  Cells were 

collected using high-salt buffer [50 mmol/L HEPES, 0.5 mol/L NaCl, 1.5 mmol/L 

MgCl2, 1 mmol/L EGTA, 10% glycerol, and 1%  Triton-X-

Protease Inhibitor Cocktail.  Protein lysates were incubated for 3 min at 100C 

before electrophoresis, and then separated on 10% SDS-PAGE 120 V for 3 to 4 

hr.  Proteins were transferred onto polyvinylidene difluoride (PVDF) membranes 

by wet electroblotting in a buffer containing 25 mmol/L Tris, 192 mmol/L glycine, 

and 20% methanol for 1.5 hr at 180 mA.  Membranes were blocked for 30 min 

with 5% TBST-Blotto [10 mmol/L Tris-HCl, 150 mmol/L NaCl (pH 8.0), 0.05% 

Triton X-100, and 5% nonfat dry milk] and incubated in fresh 5% TBST-Blotto 

with 1:500 primary antibody overnight with gentle shaking at 4°C.  After washing 

with TBST for 10 min, the PVDF membrane was incubated with secondary 

antibody (1:5000) in 5% TBST-Blotto for 2 hr by gentle shaking.  The membrane 

was washed with TBST for 10 min, incubated with 6 mL of chemiluminescence 

substrate for 1 min, and exposed to Kodak X-OMAT AR autoradiography film. 

DNA fragmentation 

The isolation of DNA was performed according to the protocol 6.2 "Rapid 

Isolation of Mammalian DNA".  Extracted DNA was run on 0.9% agarose gel and 
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stained with 0.5 µg/mL ethdium bromide and the fragmented DNA was 

visualized using a Transilluminator on an ultraviolet light. 

Fluorescence-activated cell-sorting assays (FACS) 

Both Panc1 and Panc28 pancreatic cancer cells were treated with either 

the vehicle (DMSO) or the indicated compounds for 48 hr.  Cells were 

trypsinized, centrifuged and re-suspended in staining solution containing 50 

mg/ml propidium iodide, 4 mM sodium citrate, 30 units/ml RNase and 0.1% 

Triton X-100.  After incubation at 37°C for 10 min, sodium chloride was added to 

give a final concentration of 0.15 M.  Cells were analysed on a FACS Calibur 

flow cytometer using CellQuest acquisition software (Becton Dickinson 

Immunocytometry Systems, Franklin Lakes, NJ).  PI fluorescence was collected 

through a 585/42 nm band pass filter, and list mode data were acquired on a 

minimum of 20,000 single cells defined by a dot plot of PI width versus PI area.  

Data analysis was performed in Modfit LT using PI width versus PI to exclude 

cell aggregates. 

Differentiation and oil red O staining 

3T3-L1 preadipocytes were cultured on Lab-Tek Chamber 4-well Slide 

with DMEM-F12 and 10% FBS at 5% CO2.  At 2 days postconfluence, fresh 

media supplemented with 3-isobutyl-1-methylxanthine (0.5 mM), 

dexamethasone (1 mM), insulin (1.7 mM), and DMSO or CDODA-Me (0.25 M) 

was added.  After 48 hr, fresh media was added and cells were treated with 
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DMSO and CDODA-Me for 5 days.  Cells without any treatment for the entire 7 

days were used as controls.  Cells were then fixed with 10% formalin, washed 

with 60% isopropanol and stained with filtered 60% Oil Red O in deionized 

water.  After staining, cells were washed with water and photographed to 

visualize the staining. 

Results 

Effects on cell proliferation and apoptosis 

Previous studies in colon and prostate cancer cells show that the 

cytotoxicity of a series of glycyrrhetinic acid derivatives is dependent on the 

introduction of a 2-cyano group and a 1-en-3-one functionality in the A ring (145, 

147, 180).  Figure 15 compares the cytotoxicities of DODA-Me, which contain 

the A-ring 1-en-3-one function, to CDODA-Me, which contains both the 1-en-3-

one and 2-cyano substituents.  At concentrations of 1 - 15 M, DODA-Me had 

minimal effects on Panc1 and Panc28 pancreatic cancer cell growth (Figures 

15A and 15B) with growth inhibitory IC50 values > 15 M.  In contrast, CDODA-

Me was a potent inhibitor of pancreatic cancer cell growth.  The IC50 values for 

CDODA-Me in Panc1 and Panc28 cells were 1.21 and 1.79 M, respectively.  

We also investigated the cytotoxicities of the free acids (DODA and CDODA); 

IC50 values for DODA were > 15 M and the values for CDODA were 7.31 and 

3.8 M in Panc28 and Panc1 cells, respectively (data not shown).  Thus, the 
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methyl ester was the most cytotoxic of the 2-cyano derivatives and was used as 

a model compound for subsequent studies in pancreatic cancer cells.  

 

Figure 15. Cytotoxicity of glycyrrhetinic acid derivatives in pancreatic 

cancer cells. 

Effects of DODA-Me on Panc28 (A) and Panc1 (B) cell proliferation.  

Cells were treated with different concentrations of DODA-Me for up to 6 d and 

cell numbers were determined as described in the Materials and Methods.  

Growth inhibitory IC50 values were > 15 M in both cell lines.  Effects of CDODA-

Me on Panc28 (C) and Panc1 (D) cell proliferation.  Cells were treated with 

different concentrations of CDODA-Me for up to 6 d and cell numbers were 
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determined as described in the Materials and Methods.  Growth inhibitory IC50 

values were > 1.79 and 1.21 M in Panc28 and Panc1 cell lines, respectively.  

Results are expressed as means  SE for 3 replicate determinations for each 

treatment group.  Similar studies were carried out for the corresponding free 

acids (DODA and CDODA) (data not shown) which exhibited lower cytotoxicity 

in both cell lines as previously described for these compounds in colon and 

pancreatic cancer cells (145, 147). 

Figures 16A and 16B summarize the concentration-dependent effects of 

CDODA-Me on percent distribution of Panc28 and Panc1 cells in G0/G1, S and 

G2/M phases of the cell cycle after treatment for 48 hr.  In Panc28 cells, 

CDODA-Me decreased the percentage of cells in G0/G1 and increased the 

percentage in S and G2/M phases, whereas in Panc1 cells, CDODA-Me induced 

cell cycle arrest in G0/G1 and inhibited G0/G1 to S phase progression.  Thus, the 

effects of CDODA-Me on the cell cycle are cell context-dependent in the two 

pancreatic cancer cell lines.  Treatment of Panc28 and Panc1 cells with 

CDODA-Me (5.0 and 7.5 M) for 24 hr induced a DNA ladder indicative of 

apoptosis (Figure 16), and similar effects were observed in previous studies with 

this compound in prostate cancer cells (147). 
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Figure 16. Effects of CDODA-Me on cell cycle progression and apoptosis.  

Cell cycle progression in Panc28 (A) and Panc1 (B) cells. 

Cells were treated with DMSO or different concentrations of CDODA-Me 

for 48 hr, and % distribution of cells in G0/G1, S and G2/M phases were 

determined by FACS analysis as described in the Materials and Methods.  

Results are expressed as means  SE for 3 replicate determinations for each 

treatment group, and significant (p < 0.05) CDODA-Me-induced increases (*) or 

decreases (**) in percentages of a phase compared to the solvent (DMSO) 

control are indicated.  Induction of DNA laddering in Panc28 (C) and Panc1 (D) 

cells.  Cells were treated with DMSO or CDODA-Me for 24 hr and DNA 
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laddering was determined as described in the Materials and Methods.  The 

standard (S) of 1 kb was used as a marker for DNA laddering. 

Activation of PPAR by CDODA-Me 

CDODA-Me activates the nuclear receptor PPAR in colon and prostate 

cancer cells (145, 147).  Results in Figure 17A show that CDODA-Me induced 

transactivation in Panc28 and Panc1 cells transfected with a GAL4-PPAR 

chimera and pGAL45 which contains 5 tandem GAL4 response elements linked 

to the luciferase gene.  Similar results were obtained in the pancreatic cancer 

cells transfected with a PPRE3-luc construct which relies on activation of 

endogenous PPAR and RXR (Figure 17B).  Using this same construct, we also 

showed that induction of luciferase activity in Panc28 and Panc1 (Figure 17C) 

cells by CDODA-Me was inhibited after cotreatment with the PPAR antagonist 

T007.  These results confirm that CDODA-Me exhibits PPAR agonist activity in 

pancreatic cancer cells, and the PPAR activity of CDODA-Me was confirmed 

using 3T3-L1 preadipocytes in which treatment with concentrations as low as 

0.25 M induced differentiation of these cells and formation of highly 

characteristic oil-Red-O droplets (Figure 17D).  In contrast, these droplets were 

not observed in cells treated with solvent control (DMSO); however, these cells 

were also weakly stained due to endogenous triglycerides. 
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Figure 17. Activation of PPARγ by CDODA-Me.  Transfection with PPARγ-

GAL4/pGAL4 (A) and PPRE-luc (B). 

Panc1 or Panc28 cells were transfected with PPAR-GAL4/pGAL4 or 

PPRE-luc constructs, treated with DMSO or different concentrations of CDODA-

Me, and luciferase activity was determined as described in the Materials and 
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Methods.  Inhibition of transactivation in Panc28 or Panc1 cells (C) by T007.  

Cells were transfected with PPAR-GAL4/pGAL4, treated with DMSO, CDODA-

Me, T007 or their combination, and luciferase activity was determined as 

described in the Materials and Methods.  Results in (A) - (C) are expressed as 

means  SE for 3 replicate determinations for each treatment group, and 

significant (p < 0.05) induction by CDODA-Me (*) or inhibition after cotreatment 

with T007 (**) is indicated.  (D) CDODA-Me induces differentiation.   3T3-L1 

preadipocytes were treated with DMSO and CDODA-Me, and differentiation was 

detected by oil-red-O staining as described in the Materials and Methods. 

Modulation of cell cycle proteins 

Several studies report the growth inhibitory and proapoptotic effects of 

PPAR agonists in pancreatic cancer cells (140, 181-190).  The effects of 

CDODA-Me on expression of the key cell cycle genes p21, p27 and cyclin D1 

that are often affected by different classes of PPAR agonists that inhibit growth 

of pancreatic cancer cells were also investigated in the Panc28 and Panc1 cell 

lines.  In Panc28 cells, treatment with 0.5 - 7.5 M CDODA-Me induced 

expression of both p21 and p27 but downregulated cyclin D1 protein (Figure 

18A).  p21 and cyclin D1 were induced and repressed, respectively, in Panc1 

cells treated with CDODA-Me, whereas p27 protein was unchanged (Figure 

18B).  This may be due, in part, to the high constitutive levels of p27 in Panc1 

cells.  There were also response-specific differences in the sensitivity of Panc1 



129 
 

and Panc28 cells to CDODA-Me.   Induction of p21 in Panc1 and Panc28 cells 

was observed after treatment with 2.5 and 5.0 M CDODA-Me, respectively, 

whereas 7.5 and 1.0 M CDODA-Me were required for cyclin D1 

downregulation, respectively.   

 

Figure 18. Effects of CDODA-Me on cell cycle proteins. 

Induction of p21, p27, cyclin D1 in Panc28 (A) or Panc1 (B) cells by 

CDODA-Me, and the effects of PPAR antagonists on induction of these 

proteins in Panc28 (C) and Panc1 (D) cells.  Cells were treated for 24 hr with 

DMSO, different concentrations of CDODA-Me alone, or in combination with 
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GW9662, and whole cell lysates were analyzed by western blots as described in 

the Materials and Methods.  -Actin served as a protein loading control. 

Thus, CDODA-Me differentially modulated expression of cell cycle genes 

in Panc1 and Panc28 cells.  These effects correlated with the G0/G1 arrest in 

Panc1 but not in Panc28 cells (Figures 16A and 16B) and the reason for these 

cell context-dependent differences are currently being investigated.  Previous 

studies on PPAR-active 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-

DIM) compounds show that induction of p21 is receptor-dependent in Panc28 

cells and inhibited by the PPAR antagonist GW9662 (181).  Therefore, we 

examined the effects of the PPAR antagonist GW9662 on CDODA-Me-induced 

p21, p27 and cyclin D1 in Panc28 (Figure 18C) and Panc1 (Figure 18D) cells.  

The results show that cotreatment of these cells with GW9662 plus CDODA-Me 

did not modulate the activity of the latter compound and similar results were 

obtained for other PPAR antagonists (data not shown) and GW9662 alone did 

not affect cyclin D1, p27 or p21 protein expression in these cells (Figure 18).  

Previous studies showed that CDODA-Me induces receptor-dependent 

activation of caveolin-1 and KLF-4 in colon cancer cells (145); however, in 

Panc1 and Panc28 cells, CDODA-Me did not induce expression of either protein 

(data not shown) demonstrating that CDODA-Me is a selective PPAR 

modulator in pancreatic cancer cells. 
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Figure 19. Induction of apoptosis and proapoptotic NAG-1 and ATF3 

proteins.   

Concentration-dependent induction of NAG-1/PARP cleavage (A) and 

ATF3 (B) by CDODA-Me. Panc28 and Panc1 cells were treated with DMSO and 

CDODA-Me for 24 hr, and whole cell lysates were analyzed by western blots as 

described in the Materials and Methods.  Band intensities in (A) and (B) were 

quantitated relative to -actin from 3 replicate determinations, and DMSO values 

were set at 1.0.  Significant (p < 0.05) induction of NAG-1, PARP cleavage and 



132 
 

ATF3 in Panc28 cells were observed at concentrations of CDODA-Me  2.5, 2.5 

and 1.0 M, respectively.  The induction responses in Panc1 cells were 

observed at concentrations of  5.0, 2.5 and 2.5 M, respectively.  Effects of 

GW9662 on induction of NAG-1/PARP cleavage in Panc28 (C) and Panc1 (D) 

cells.  Cells were treated and analyzed as described above in (A) and (B).  -

Actin served as a protein loading control. 

Induction of NAG-1 and other responses 

CDODA-Me induced DNA fragmentation in pancreatic cancer cells 

(Figures 16C and 16D) and, in prostate cancer cells, CDODA-Me also induced 

apoptosis and the proapoptotic proteins NAG-1, ATF3 and early growth 

response-1 (Egr-1) (147) and the effects of CDODA-Me on these proapoptotic 

responses was also investigated in pancreatic cancer cells.  Figures 19A and 

19B show that CDODA-Me induced NAG-1 and ATF3 in Panc28 and Panc1 

cells, respectively.  Significant induction of these proteins was observed at 2.5 or 

5.0 M concentrations of CDODA-Me, and Panc28 cells were more sensitive 

than Panc1 cells for induction of these proteins (Figure 19).  NAG-1 is induced 

by a variety of anticancer agents in colon and other cancer cell lines (142, 143, 

191-200), and this includes induction by PPAR agonists such as PGJ2, 

troglitazone and PPAR-active C-DIMs (142, 143, 200); however, among these 

compounds, PPAR-dependent induction is only observed for PGJ2 in colon 

cancer cells (143).  Results in Figures 19C and 19D show that different 
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concentrations of CDODA-Me induced both NAG-1 and caspase-dependent 

PARP cleavage and cotreatment with the PPAR antagonist GW9662 did not 

affect the magnitude of these responses, suggesting induction of these 

responses was also PPAR-independent.  Similar results were observed for 

ATF3 (data not shown). 

NAG-1 induction is complex and dependent on the chemical agent and 

cell context (142, 143, 147, 192-200), and the effects of CDODA-Me on 

induction of the protein in Panc1 and Panc28 cells was further investigated.  In a 

time course study (Figure 20A), NAG-1 protein levels were increased in Panc28 

cells after treatment for 8, 16 and 24 hr, whereas induction in Panc1 cells was 

observed at later time points (18 - 24 hr).  ATF3 was induced 4 - 6 hr after 

treatment in both cell lines.  Previous studies have shown that prior induction of 

Egr-1 is involved in enhanced expression of NAG-1 in some cell lines (142, 143, 

147, 192, 193, 199, 200), and  Figure 20A illustrates that Egr-1 protein was 

increased in Panc28 cells within 2 hr after treatment with CDODA-Me and was 

rapidly induced in Panc1 cells within 1 hr and declined thereafter.  
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Figure 20. Kinase-dependent activation of NAG-1, Egr-1, PARP cleavage 

and ATF3 proteins induced by CDODA-Me. 
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Time-dependent induction of NAG-1, Egr-1 and ATF3 (A) and kinases (B) 

by CDODA-Me in Panc1 and Panc28 cells.  Cells were treated with DMSO or 5 

M CDODA-Me for 1, 2, 4, 6, 8, 16 or 24 hr, and whole cell lysates from each 

treatment group were analyzed by western blots as described in the Materials 

and Methods.  Effects of kinase inhibitors on induction of Egr-1 (C) and NAG-1 

(D) in Panc1 and Panc28 cells.  Cells were treated with DMSO, CDODA-Me 

alone or in the presence of kinase inhibitors, and whole cell lysates from each 

treatment group were analyzed by western blots as described in the Materials 

and Methods.  -Actin served as a protein loading control.  The concentrations 

of kinase inhibitors were 20 M LY294002 (LY), 20 M PD98059 (PD), and 20 

M SB203580 and similar results we observed in duplicate studies.  LY294002 

and SB203580 inhibited Akt and p38 phosphorylation (positive control, data not 

shown).  Band intensities in (C) and (D) were quantitated relative to -actin from 

3 replicate determinations and mean values are given relative to DMSO (set at 

1.0).  Significant (p < 0.05) inhibition of Egr-1 induction was observed for 

PD98059 in both cell lines.  LY294002 and SB20358 significantly (p < 0.05) 

inhibited induction of NAG-1 in Panc1 and Panc28 cells, and PD98059 

significantly (p < 0.05) inhibited induction of NAG-1 only in Panc1 cells. 

The temporal pattern of Egr-1 induction prior to NAG-1 induction in both 

cell lines is similar to that previously reported for other NAG-1 inducers including 

CDODA-Me in prostate cancer cells (147) in which CDODA-Me-dependent 

activation of PI3-K- and/or MAPK-dependent pathways was important for 
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induction of Egr-1 and NAG-1 (Figure 20).  Results in Figure 20B were 

determined as part of the time course study shown in Figure 20A and show that 

CDODA-Me induced phosphorylation of Akt, c-jun and p38- and p42-MAPK after 

treatment of Panc28 and Panc1 cells for 1 hr, whereas levels of Akt, c-jun and 

MAPK proteins were unchanged.  The temporal patterns of increased kinase 

phosphorylation were cell context-dependent (Figure 20B); in Panc28 cells, 

increased phosphorylation of Akt and p42-MAPK was observed 1 - 8 and 1 - 2 

hr, respectively, after treatment with CDODA-Me, whereas in Panc1 cells, 

enhanced phosphorylation persisted for at least 24 hr.  In contrast, p38-MAPK 

phosphorylation was variable but maximally induced after treatment for 24 hr.  

Results of kinase inhibitor studies show that induction of Egr-1 by 

CDODA-Me was inhibited by PD98059 but not by LY294002 or SB203580, 

suggesting that induction of Egr-1 was p42-MAPK-dependent in both cell lines 

(Figure 20C).  PD98059 also inhibited induction by NAG-1 by CDODA-Me in 

Panc1 cells, suggesting that this response may be, in part, Egr-1-dependent 

(Figure 20D).  However, even in Panc1 cells, NAG-1 induction was also inhibited 

by LY294002 and SB203580 and since these compounds did not affect Egr-1 

expression, the induction of NAG-1 in Panc1 cells was Egr-1-independent.  

Moreover, in Panc28 cells NAG-1 induction was inhibited by LY294002 and 

SB205380 but not PD98059 (Figure 20D), confirming an Egr-1-independent 

pathway in this cell line.  
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Discussion 

PPAR is an orphan nuclear receptor that is overexpressed in multiple 

tumor types and cancer cell lines, and this receptor is a potential target for 

cancer chemotherapy (201, 202).  Different structural classes of PPAR 

agonists, including the thiazolidinediones (TZDs), 15-deoxy-12,14-prostaglandin 

J2 (PGJ2), CDDO-Me and PPAR-active 1,1-bis(3'-indolyl)-1-(p-substituted 

phenyl)methanes (C-DIMs), activate overlapping and compound-specific growth 

inhibitory and proapoptotic responses in pancreatic cancer cells (183-190).  

Many of these compounds induce p21 and/or p27 expression, downregulate 

cyclin D1 protein, and cause G0/G1 to S phase arrest and these effects are both 

cell context- and structure-dependent.  For example, troglitazone, a TZD, 

induces p27 and not p21 protein expression in several pancreatic cancer cell 

lines, whereas in another study TZD induces p21 and differentiation markers in a 

number of pancreatic cancer cells (140, 181-183).  PPAR-active C-DIMs also 

induce p21 but not p27 in Panc28 cancer cell lines and this is accompanied by a 

significantly higher percentage of cells in G0/G1 (28%) and a decreased 

percentage in S phase (21%) after treatment for 24 hr (183).  The induction of 

p21 in Panc28 cells by PPAR-active C-DIMs is inhibited by PPAR agonists; 

however, most other studies in pancreatic cancer cells have not investigated the 

role of this receptor in mediating these responses.   

In this study, CDODA-Me inhibited Panc1 and Panc28 cell proliferation 

(Fig. 15), and comparative studies with DODA-Me demonstrated the importance 
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of the 2-cyano group which markedly enhanced antiproliferative activity.  The 2-

cyano group was necessary for the PPAR agonist activities of the glycyrrhetinic 

acid derivatives (145, 147) and structurally related oleane and lupane derivatives 

(177, 203).  CDODA-Me induced PPAR-dependent transactivation and activity 

(Figure 17), whereas DODA-Me which does not contain a 2-cyano substituent 

exhibited decreased antiproliferative activity (Fig. 15) and did not exhibit PPAR 

agonist activity (data not shown).  In addition, CDODA-Me induced differentiation 

of 3T3-L pre-adipocytes and this is a highly prototypical PPAR-dependent 

response (Figure 17D).  These results on activation of PPAR by DODA-Me and 

CDODA-Me in Panc1 and Panc28 cells are similar to those observed in prostate 

and colon cancer cells (145, 147). 

Like other PPAR agonists, CDODA-Me induced p21 and p27 and 

decreased cyclin D1 expression in Panc1 and Panc28 cells (Figure 18) and, in 

Panc1 cells (Fig. 16B), this was accompanied by a G0/G1 to S phase arrest.  

However, studies with the PPAR antagonist GW9662 indicated that these 

responses were receptor-independent, and this contrasted to the receptor-

dependent induction of p21 in Panc28 cells by PPAR-active C-DIMs and the 2-

cyano derivative of betulinic acid which, like CDODA-Me, contains a 1-en-3-one 

function in the A-ring 0 (183, 202).  Thus, among the three PPAR agonists, 

there was a structure-dependent induction of p21 and similar results have been 

observed for induction of KLF4, suggesting that CDODA-Me, PPAR-active C-
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DIMs, and the cyano derivative of betulinic acid are selective PPAR 

modulators.  

CDODA-Me also induces apoptosis (DNA laddering) in Panc1 and 

Panc28 cells (Figure 16C) and previous studies indicate that CDODA-Me, other 

PPAR agonists, and anticancer drugs induce the proapoptotic proteins NAG-1 

and ATF3 in colon, prostate and other cancer cells (142, 143, 191-200); 

however, induction of these proteins has not previously been investigated in 

pancreatic cancer cells.  Results in Figures 19A and 19B demonstrate that 

CDODA-Me induced NAG-1 and ATF3 proteins in Panc28 and Panc1 cells and 

cotreatment with the PPAR antagonist GW9662 did not affect the induction 

responses or activation of caspase-dependent PARP cleavage (Figures 19C 

and 19D).  Previously, we also observed receptor-independent induction of the 

proapoptotic proteins NAG-1 and ATF3 by CDODA-Me in LNCaP prostate 

cancer cells (147), and these responses were kinase-dependent and the prior 

induction of Egr-1 was associated with induction of NAG-1.  In prostate cancer 

cells, induction of ATF3 by CDODA-Me was JNK-dependent (147); however, in 

pancreatic cancer cells, JNK and other kinase inhibitors had no effect on ATF3 

induction (data not shown) which was not further investigated. 

Egr-1 was induced in Panc1 and Panc28 cells within 1 - 2 hr after 

treatment with CDODA-Me, whereas NAG-1 was induced at later time points in 

Panc28 (6 - 24 hr) and Panc1 (24 hr) cells (Figure 20A).  This temporal pattern 

of NAG-1 and Egr-1 induction is similar to that observed in other studies where 
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Egr-1 activates NAG-1 through interactions with the GC-rich proximal region of 

the NAG-1 promoter (142, 143, 192, 195, 199, 200).  CDODA-Me induces 

phosphorylation of several kinases (PI3K, p38/p42MAPK and JNK) in both 

Panc28 and Panc1 cells (Figure 20B) as previously observed in prostate cancer 

cells (147); however, induction of Egr-1 was p42MAPK-dependent (Figure 20C).  

In Panc1 cells, the p42MAPK inhibitor PD98059 also inhibited induction of NAG-

1 which is consistent with a role for Egr-1 in mediating the induction of NAG-1 by 

CDODA-Me.  However, the PI3-K and p38 MAPK inhibitors LY294002 and 

SB203580, respectively, also decreased induction of NAG-1, demonstrating the 

contributions of Egr-1-independent pathways in Panc1 cells.  Kinase inhibitor 

studies in Panc28 showed that induction of NAG-1 by CDODA-Me was primarily 

Egr-1-independent and was inhibited by LY294002 and SB20358 which had no 

effect on induction of Egr-1 in this cell line.  This is one of the first examples of 

drug-dependent activation of both Egr-1 and NAG-1 in which induction of the 

latter gene is Egr-1-independent in one cell line (Panc28) and partially Egr-1-

independent in another (Panc1 cells). 

In summary, results of this study demonstrate for the first time that 

CDODA-Me inhibits growth and induces apoptosis in pancreatic cancer cells.  

Although CDODA-Me activates PPAR in Panc28 and Panc1 cells, induction of 

growth inhibitory and proapoptotic proteins and activation of multiple kinase 

activities is receptor-independent.  This is the first report of the induction of the 

proapoptotic protein NAG-1 in pancreatic cancer cells; however, it was evident 
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from studies with kinase inhibitors that the mechanisms of NAG-1 induction and 

the role of Egr-1 is cell context-dependent in Panc28 and Panc1 cells and differs 

from results of previous studies on NAG-1 induction (142, 143, 192, 195, 199, 

200).  Current studies are investigating the interplay between kinase activation, 

induction of proapoptotic proteins, and apoptosis by CDODA-Me in pancreatic 

cancer cells and the contributions of other pathways in mediating the 

proapoptotic effects of CDODA-Me in pancreatic cancer cells and tumors.   
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III. ARSENIC TRIOXIDE DOWNREGULATION OF SPECIFICITY PROTEIN 

(Sp) TRANSCRIPTION FACTORS IN BLADDER CANCER CELLS IS 

DEPENDENT ON REACTIVE OXYGEN SPECIES (ROS) 

Arsenic trioxide exhibits antiproliferative, antiangiogenic and proapoptotic 

activity in cancer cells, and many genes associated with these responses are 

regulated by specificity protein (Sp) transcription factors.  Treatment of cancer 

cells derived from urologic (bladder and prostate) and gastrointestinal (pancreas 

and colon) tumors with arsenic trioxide demonstrated that these cells exhibited 

differential responsiveness to the antiproliferative effects of this agent and this 

paralleled their differential repression of Sp1, Sp3 and Sp4 proteins in the same 

cell lines.  Using arsenic trioxide responsive KU7 and non-responsive 253JB-V 

bladder cancer cells as models, we show that in KU7 cells,  5 M arsenic 

trioxide decreased Sp1, Sp3 and Sp4 and several Sp-dependent genes and 

responses including cyclin D1, epidermal growth factor receptor, bcl-2, survivin 

and vascular endothelial growth factor, whereas at concentrations up to 15 M, 

minimal effects were observed in 253JB-V cells.  Arsenic trioxide also inhibited 

tumor growth in athymic mice bearing KU7 cells as xenografts, and expression 

of Sp1, Sp3 and Sp4 was significantly decreased.  Inhibitors of oxidative stress 

such as glutathione or dithiothreitol protected KU7 cells from arsenic trioxide-

induced antiproliferative activity and Sp repression, whereas glutathione 

depletion sensitized 253JB-V cells to arsenic trioxide.  Mechanistic studies 

suggested that arsenic trioxide-dependent downregulation of Sp and Sp-
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dependent genes was due to decreased mitochondrial membrane potential and 

induction of reactive oxygen species, and the role of peroxides in mediating 

these responses was confirmed using hydrogen peroxide.  

Introduction 

Arsenical compounds alone or in combination with other agents have 

been used widely in medicine to treat a variety of conditions and diseases 

including syphilis, psoriasis, trypanosomiasis, pernicious anemia and Hodgkin's 

disease (204, 205).  Moreover, until the mid-1990s, arsenic trioxide was used as 

the major drug for treatment of chronic myeloid leukemia (CML) and other 

leukemias (204, 205).  Arsenic trioxide has been associated with adverse side-

effects and studies on individuals occupationally or environmentally exposed to 

high levels of arsenicals exhibit increased incidence of skin cancer.  These 

observations contributed to a temporary decrease in the medicinal use of 

arsenicals until studies from China reported that arsenic trioxide was remarkably 

effective for treating patients with acute promyelocytic leukemia (APL) (206-

208).  Subsequent clinical studies have confirmed the effectiveness of this 

compound which is now routinely used for treating APL (204, 205).  Based on 

the success of arsenic trioxide for treating APL, the clinical applications of this 

drug alone or in combination with other agents for treatment of solid tumors is 

currently being investigated (204, 209, 210).   

The chemotherapeutic effectiveness of arsenic trioxide is due to 

modulation of several pathways in cancer cells leading to increased apoptosis, 
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enhanced differentiation, inhibition of cell proliferation, and angiogenesis (204, 

205).  Most cases of APL overexpress the PML-RAR fusion gene resulting 

from t(15;17) chromosome translocation and PML-RAR inhibits expression of 

genes involved in myeloid differentiation (211, 212).  Arsenic trioxide induces 

PML-RAR inactivation or degradation by multiple pathways resulting in the 

subsequent activation of myeloid differentiation pathways (213, 214).  Arsenic 

trioxide also targets the mitochondria in cancer cell lines resulting in decreased 

mitochondrial membrane potential, induction of reactive oxygen species (ROS), 

release of cytochrome c, and activation of several cell death pathways (215-

219).   

Previous studies indicate that arsenic trioxide decreases expression of 

genes associated with angiogenesis (VEGF), survival (bcl-2 and NFB), and cell 

proliferation (cyclin D1) in cancer cell lines (220-228).  Recent studies in this 

laboratory show that anticancer drugs such as curcumin, tolfenamic acid and 

betulinic acid also decrease expression of these same genes (153, 159, 165, 

169, 229) and this was due, in part, to decreased expression of specificity 

proteins (Sp), Sp1, Sp3 and Sp4 which are overexpressed in many tumors (164, 

230-233).  These genes and others are also decreased in cancer cells 

transfected with a mixture (iSp) of small inhibitory RNAs for Sp1, Sp3 and Sp4 

(153, 159, 165, 169, 229).  Since arsenic trioxide decreases expression of 

several Sp-dependent genes, we hypothesized that the anticancer activity of this 

compound may be due, in part, to repression of Sp transcription factors Sp1, 
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Sp3 and Sp4.  Results of this study show that arsenic trioxide does indeed 

decrease expression of Sp1, Sp3 and Sp4 proteins and Sp-dependent genes in 

several cancer cell lines derived from solid tumors and the mechanism of this 

response is related to decreased mitochondrial membrane potential (MMP) and 

induction of ROS.  This demonstrates for the first time that mitochondrial-

induced ROS also results in repression of Sp1, Sp3 and Sp4 and several Sp-

dependent genes and these effects contribute to the anticancer activity of 

arsenic trioxide. 

Materials and methods 

Cell lines, reagents and antibodies 

KU-7 and 253JB-V human bladder cancer cells were provided by Dr. A. 

Kamat (M.D. Anderson Cancer Center, Houston, TX).  LNCaP and PC3 human 

prostate carcinoma cells were obtained from American Type Culture Collection 

(Manassas, VA).  RKO and SW480 human colon carcinoma cell lines were 

provided by Dr. Stanley Hamilton (University of Texas M.D. Anderson Cancer 

Center, Houston, TX).  The Panc28 cell line was a generous gift from Dr. Paul 

Chiao (University of Texas M.D. Anderson Cancer Center, Houston, TX).  

L3.6pL cell line was developed at the M.D. Anderson Cancer Center (Houston, 

TX) and kindly provided by Dr. I.J. Fidler.  SW480, L3.6pL, RKO and Panc28 

cells were maintained in Dulbecco's modified/Ham's F-12 (Sigma-Aldrich, St. 

Louis, MO) with phenol red supplemented with 0.22% sodium bicarbonate, 5% 
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fetal bovine serum and 10 ml/L 100x antibiotic anti-mycotic solution (Sigma).  

253JB-V, KU7, LNCaP and PC3 cells were maintained in RPMI 1640 

supplemented with 10% fetal bovine serum (FBS), 0.15% sodium bicarbonate, 

0.011% sodium pyruvate, 0.24% Hepes and 10 ml/L of antibiotic/antimycotic 

cocktail solution.  The cells were grown in 150 cm2 culture plates in an air/CO2 

(95:5) atmosphere at 37C and passaged approximately every 3-5 days.  With 

the exception of cleaved poly (ADP) ribose polymerase (PARP) (Cell Signaling 

Technology, Danvers, MA), Sp1 (Millipore, Temecula, CA), survivin (R&D 

Systems, Minneapolis, MN) and -actin antibodies (Sigma-Aldrich), all remaining 

antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  

Diethyl maleate (DEM), glutathione, 98% (-glu-cys-Gly, GSH), butylated 

hydroxyanisole (BHA), proline, N-acetylcysteine (NAC), catalase, and arsenic 

trioxide (99.995% pure) were purchased from Sigma-Aldrich.  Dithiothreitol 

(DTT, 98%) was obtained from Boehringer Mannheim Corp, (Indianpolis, IN).   

Cell proliferation assays 

All the above-mentioned cancer cell lines were plated (3 x 104 per well) 

using DMEM:Ham's F-12 medium containing 2.5% charcoal-stripped fetal 

bovine serum (FBS) in 12-well plates and left to attach for 24 hr.  Cells were then 

treated with either vehicle or the indicated concentrations of arsenic trioxide.  

After 24 hr of treatment, cells were counted using a Coulter Z1  particle counter.  

RNA interference studies using a small inhibitory RNA for Sp1 as a prototype 
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was carried out essentially as described (28; 30).  Each experiment was done in 

triplicate and results are expressed as means ± SE for each determination.  

Western blot assays 

All the above-mentioned cancer cells were seeded in DMEM:Ham's F-12 

medium containing 2.5% charcoal-stripped FBS.  Twenty-four hours later, cells 

were treated with either vehicle or the indicated compounds for 24 hr and 

western blot analysis was performed.  The tumor tissues from the KU7 bladder 

cancer xenograft study were also processed similarly and probed for proteins of 

interest and -actin served as loading control.  Pretreatment with diethyl maleate 

for 60 min was carried out to deplete the GSH levels, and 253JB-V cells were 

then treated with solvent control or arsenic trioxide.  Cells were also co-treated 

with dithiothreitol (DTT) and glutathione (GSH) in the presence or absence of 

arsenic trioxide for a time interval of 24 hr.  Protein quantification used Image  J 

software, and optical densities for each protein were normalized to -actin and 

the solvent control group.  

Terminal deoxyribonucleotide transferase–mediated nick-end labeling 

(TUNEL) assay  

253JB-V and KU7 cells (7 x 104) were seeded in four-chambered glass 

slides and left overnight to attach.  After treatment with indicated compounds for 

18 hr, the in situ cell death detection POD kit was used for the terminal 

deoxyribonucleotide transferase-mediated nick-end labeling (TUNEL) assay 
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according to the instructions in the protocol manual for fixed cells.  The 

percentage of apoptotic cells was calculated by counting the stained cells in 

eight fields, each containing 50 cells.  The total number of apoptotic cells was 

plotted as a percentage in both cell lines.   

Xenograft tumor study 

Athymic female nude mice, age 3 to 5 weeks, were purchased from 

Harlan Laboratories (Indianapolis, IN).  KU7 cells (1 x 106) in 1:1 ratio of Matrigel 

(BD Biosciences, San Jose, CA) were injected into both the sides of the flank 

area of nude mice.  A week after the tumor cell  inoculation, mice were divided 

into two groups of six animals each.  The first group received 100 L of 

vehicle(PBS/KOH) by i.p. injection, and the second group of animals received 5 

mg/kg/d injection of arsenic trioxide in PBS/KOH every other day for 24 days (12 

doses) by i.p. injection.  Mice were weighed, and tumor areas were measured 

throughout the study.  After 24 days, the animals were sacrificed; final body and 

tumor weights were determined and plotted.  At the end of the experiment, major 

visceral organs were collected and analyzed for Sp protein expression levels 

using western blotting as described earlier.   

GSH estimation 

The Stallion Imaging workstation, equipped with a Zeiss Axiovert 200M 

microscope (Carl Zeiss Microimaging, Thornwood, NY ) and slidebook software 

(Intelligent Imaging Innovations Inc., Denver, Co), was used with a 20X objective 
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0.75NA for acquiring images.  Cellular GSH levels were evaluated with the cell 

permeant probe mBCl.  mBCl is nonfluorescent, but forms a fluorescent adduct 

with GSH in a reaction catalyzed by glutathione 5-transferase.  Following 20-22 

hr treatment, kinetic analysis of mBCl-GSH conjugation was performed at room 

temperature by exciting the cells at 365 nm wavelength and recording changes 

in fluorescence intensity with a BP 445/50 nm filter at 1-min intervals for up to 15 

min.  GSH level per cell was then determined by applying non linear regression 

analysis to acquire data.  Two experiments were preformed on different days.  At 

least 50 cells per treatment group were collected in these studies.  

ROS estimation 

Cellular reactive oxygen species (ROS) levels were evaluated with the 

cell permanent probe CM-H2DCFDA (5-(and-6)-chloromethyl-2',7' 

dichlorodihydrofluorescein diacetate acetyl ester).  CM-H2DCFDA is 

nonfluorescent until removal of the acetate groups by intracellular esterases and 

oxidation occurs within the cell.  Following 20-24 hr treatment, cells plated on 96 

well cell culture plate were loaded with 10 M CM-H2DCFDA for 30 min, washed 

once with serum free medium, and analyzed for ROS levels using the BioTek 

Synergy 4 plate reader (BioTek Instruments, Inc., Winooski, VT) set at 480 nm 

and 525 nm excitation and emission wavelengths respectively.  Following 

reading of ROS, cultures were washed twice with PBS and fixed with methanol 

for 3 min at room temperature.  Methanol was then completely removed and 1 

mg/ml Janus green was added to the cultures for 3 min.  Following removal of 
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Janus green, cultures were washed twice with PBS and 100 l of 50% methanol 

was added to each well.  Cell counts were then determined with the plate reader 

set to an absorbance of 654 nm and ROS intensities were then corrected 

accordingly.  Two experiments were preformed on different days.  At least 16 

wells per treatment were analyzed for each experiment.   

Measurement of mitochondrial membrane potential (MMP) 

The MMP was measured with Mitochondrial Membrane Potential 

Detection Kit (Stratagene, Cedar Creek, TX).  Briefly, cells were seeded on Lab-

Tek Coverglass system (NUNC, NY) and treated with compounds alone or with 

inhibitors for 24 hr.  They were then incubated with 1X JC-1 cationic dye at 37C 

for 30 min according to the manufacturer‟s instruction.  After washing with 1X 

JC-1 assay buffer twice, cells were subjected to microscopic analysis using a 

confocal instrument (Zeiss LSM510, Germany).  The mitochondrial potential shift 

was also measured by flow cytometry analysis (Beckman Coulter, Miami, FL).  

Cells were seeded in cell culture plates and treated with indicated compounds 

for 24 hr.  They were then incubated with JC-1 dye for a further 30 min.  After 

washing with JC-1 assay buffer twice, cells were trypsinized and suspended in 

cell culture medium.  J-aggregates are detected as red fluorescence and J-

monomers are detected as green fluorescence.  
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Statistical analysis 

Statistical significance of differences was determined by an analysis of 

variance and student t-test, and the levels of probability were noted.  IC50 values 

were calculated using non-linear regression analysis and expressed in M, at 

95% confidence intervals.  

Results 

Arsenic trioxide inhibits cancer cell and tumor growth and decreases Sp1, 

Sp3 and Sp4 proteins 

KU7 and 253JB-V bladder cancer cells were used as models for 

investigating the molecular mechanisms associated with the anticarcinogenic 

activity of arsenic trioxide and Figure 21A shows that  treatment of KU7 cells 

with 2.5, 5.0 and 10 M arsenic trioxide for 24 hr resulted in decreased 

proliferation.  IC50 values were 2.3 and 1.4 M after treatment for 24 or 72 hr, 

respectively.  In contrast, 253JB-V cells were more resistant to the growth 

inhibitory effects of arsenic trioxide and IC50 values were 14.1 and 5.1 M after 

treatment for 24 and 72 hr, respectively.  The anticancer activity of arsenic 

trioxide in different cancer cell lines is accompanied by decreased expression of 

genes/responses such as bcl-2, VEGF and angiogenesis, cyclin D1, and NFB 

(220-228).  Studies in this laboratory show that expression of these 

genes/responses is dependent on Sp transcription factors (153, 159, 162, 163, 

165, 168, 169, 229), and we hypothesized that the anticarcinogenic activity of 
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arsenic trioxide may be due, in part, to downregulation of Sp1, Sp3 and Sp4.  

Figure 21A shows that arsenic trioxide induces a concentration-dependent 

downregulation of Sp1, Sp3 and Sp4 proteins in KU7 cells which are also 

sensitive to the growth inhibitory effects of this compound. In addition, we also 

observed a parallel decrease in Sp1, Sp3 and Sp4 mRNA levels in KU7 cells 

treated with arsenic trioxide for 24 hr (data not shown).  In contrast, arsenic 

trioxide only minimally decreased Sp1, Sp3 and Sp4 in 253JB-V cells after 

treatment for 24 hr and there was a correlation between resistance if this cell line 

to arsenic trioxide-induced Sp degradation and growth inhibition.  Treatment of 

253JB-V cells with arsenic trioxide for 72 hr resulted in more pronounced 

repression of Sp1, Sp3 and Sp4 (data not shown).  Previous studies reported 

that treatment of NB4 leukemia cells for 10 days with 0.75 M arsenic trioxide 

resulted in oxidation of Sp1 but changes in Sp1 levels were not observed (234).  

Figure 21B shows that treatment of KU7 cells with 1.0 or 0.75 M arsenic 

trioxide decreased both cell growth and expression of Sp1, Sp3 and Sp4 

proteins.  This corresponded with the 24 hr studies (Figure 21A) which required 

higher concentrations of arsenic trioxide to inhibit growth and induce Sp 

downregulation. 
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Figure 21. Arsenic trioxide inhibits bladder cancer cell and tumor growth 

and downregulates Sp1, Sp3 and Sp4. 
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 (A) Inhibition of cell growth and Sp downregulation.  Cells were treated 

with arsenic trioxide for 24 hr and cell growth and Sp proteins were determined 

as outlined in the Materials and Methods.  (B) Prolonged treatment of KU7 cells.  

Cells were treated with 0.75 or 1.0 M arsenic trioxide for 120 or 144 hr and cell 

proliferation and Sp protein were determined as described in the Materials and 

Methods.  (C) Arsenic trioxide inhibits bladder tumor growth and downregulates 

Sp proteins.  Athymic nude mice were treated with PBS/KOH (solvent control) or 

arsenic trioxide (5 mg/kg/day) in PBS/KOH for 24 days.  Tumor volumes were 

determined every second day and tumor weights were determined at sacrifice as 

described in the Materials and Methods.  Expression of Sp proteins was 

determined in triplicate (3 animals/group) by western blot analysis of tumor 

lysates as described in the Materials and Methods, and significant (p < 0.05) 

decreases in Sp1, Sp3 and Sp4 proteins were observed in the arsenic trioxide-

treated tumors.  (D) Western blot analysis.  Lysates from tumors, the 

gastrointestinal tract (GIT) and liver from control (untreated) animals were 

analyzed by western blots as described in the Materials and Methods. Results 

are expressed as means  SE for 3 replicate experiments (A and B) or 3 animals 

per treatment group, and significant (p < 0.05) decreases in cell proliferation (A 

and B) and in tumor growth (B) are indicated (*). 

The effectiveness of arsenic trioxide as a tumor growth inhibitor was 

investigated in athymic nude mice bearing KU7 bladder cancer cells as 

xenografts.  After the initial appearance of palpable tumors, mice were treated 
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with buffered arsenic trioxide (5 mg/kg/d) or buffer alone, and tumor volumes 

were measured over the 24 day treatment period.  The results (Figure 21C) 

show that arsenic trioxide significantly inhibited tumor volume, and tumor 

weights (data not shown) were also significantly decreased in the arsenic 

trioxide-treated animals.  Lysates from tumors of treated and control mice were 

analyzed by western blots and there was a significant (p < 0.05) decrease in 

expression of Sp1, Sp3 and Sp4 proteins in tumors from arsenic trioxide-treated 

animals (Figure 21C) and this has previously been observed with other 

anticancer agents that also decrease Sp1, Sp3 and Sp4 expression in cancer 

cell culture and tumors in athymic nude mice (162, 165, 168).  Figure 21D 

illustrates the relatively high expression of Sp1, Sp3 and Sp4 in tumors, whereas 

relatively low to non-detectable levels of these proteins were observed in the 

gastrointestinal tract and liver lysates, confirming the high expression of these 

transcription factors in tumor vs. non-tumor tissue. 

The comparative effects of arsenic trioxide on growth inhibition and 

downregulation of Sp proteins was also examined in pancreatic (L3.6pL and 

Panc28), colon (SW480 and RKO), and prostate (LNCaP and PC3) cancer cell 

lines (Figures 22A - 22C).  L3.6pL and Panc28 exhibited differential arsenic 

trioxide responsiveness as observed for KU7 and 253JB-V cells, whereas in the 

other four cell lines, there was a similar concentration-dependent decrease in 

growth inhibition and Sp1, Sp3 and Sp4 proteins (Figure 22).  These results 

suggest that arsenic trioxide induces downregulation Sp transcription factors in 
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multiple cancer cell lines and tumors and this effect may contribute to the 

anticarcinogenic activity of this compound. 

 

Figure 22. Arsenic trioxide decreases cell growth and Sp1, Sp3 and Sp4 

expression in cancer cell lines. 
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Pancreatic (A), colon (B), and prostate (C) cancer cells were treated with 

solvent (control) and arsenic trioxide in PBS/KOH for 24 hr; cell growth was 

determined, and whole cell lysates were analyzed by western blots as described 

in the Materials and Methods.  Western blot results illustrated in the right panels 

were typical of duplicate (or more) determinations.  Results of cell proliferation 

studies are expressed as means  SE for 3 replicate determinations for each 

treatment group, and significant (p < 0.05) inhibition of cell growth is indicated 

(*).   

Arsenic trioxide decreases Sp-dependent genes and responses 

Previous RNA interference studies in bladder cancer cells demonstrated 

that several genes associated with cell proliferation (EGFR, CD1), survival 

(survivin and bcl-2), and angiogenesis (VEGF) were regulated by Sp1, Sp3 and 

Sp4 (165).  Results in Figures 23A and 23B confirm that arsenic trioxide 

decreased expression of these proteins in KU7 cells.  In contrast, arsenic 

trioxide-dependent downregulation of these proteins was minimal in 253JB-V 

cells after treatment for 24 hr and there was a correlation between 

responsiveness to arsenic trioxide-induced downregulation of Sp1, Sp3 and Sp4 

and the parallel decrease of Sp-dependent genes in the two bladder cancer cell 

lines.  In addition, the relative responsiveness of KU7 vs. 253JB-V cells to 

arsenic trioxide was also observed with respect to induction of PARP cleavage 

(Figure 23B) and in the apoptotic TUNEL assay where increased TUNEL 

staining was observed for KU7 but not 253JB-V cells (Figure 23C).   
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Figure 23. Arsenic trioxide differentially affects Sp-dependent responses in 

KU7 and 253JB-V cancer cells. 
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Effects on (A) EGFR, cyclin D1 (CD1), and VEGF and (B) proapoptotic 

proteins/responses.  Cells were treated with 5, 10 or 15 M arsenic trioxide for 

24 hr and whole cell lysates were analyzed by western blots as described in the 

Materials and Methods.  Similar results were observed in duplicate experiments.  

(C) TUNEL staining.  KU7 and 253JB-V cells were treated with 5 M arsenic 

trioxide for 24 hr and cells were examined for TUNEL staining as described in 

the Materials and Methods.  Significant TUNEL staining was observed only in 

KU7 cells in replicate experiments.  (D) RNA interference studies.  KU7 cells 

were transfected with siRNA for Sp1 as indicated and the effects of Sp1 

knockdown on cell proliferation and PARP cleavage were determined by cell 

counting and western blot analysis, respectively as described in the Materials 

and Methods.  Significant (p < 0.05) effects on cell proliferation are indicated (*) 

from replicate (3) determinations. 

Confirmation that downregulation of Sp proteins by arsenic trioxide 

contributes to the growth inhibitory and proapoptotic effects of this compound 

was determined in KU7 cells transfected with a small inhibitory RNA for Sp1 

(iSp1) as a prototype for the Sp proteins.  Results in Figure 23D confirm that 

knockdown of Sp1resulted in inhibition of KU7 cell growth and induction of 

caspase-dependent PARP cleavage.  Thus, downregulation of Sp proteins 

resulted in growth inhibition and apoptosis which was comparable to the effects 

of arsenic trioxide in this cell line (Figures 21B, 23B and 23C).  Attempts to 

reverse the effects of arsenic trioxide on Sp proteins by overexpression of Sp1 
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(as a model) were unsuccessful (data not shown).  This may be due to the 

sensitivity of cells to levels of Sp1 and this is supported, in part, by the 

proapoptotic effects observed after overexpression of Sp1 in cancer cells (235).   

Arsenic trioxide induces ROS; and ROS inhibitors block downregulation of 

Sp transcription factors 

Several reports indicate that the proapoptotic and growth inhibitory effects 

of arsenic trioxide were associated with decreased MMP and induction of 

reactive oxygen species (ROS) (216-219).  Moreover, the susceptibility of 

several cancer cell lines to the cytotoxicity of arsenic trioxide correlated with the 

relative expression of the antioxidant GSH (236).  Constitutive GSH(253JB-

V)/GSH(KU7) ratios were 1.47 and the corresponding ROS ratio was 

approximately 1.0 in the two cell lines indicating that enhanced expression of 

GSH in 253JB-V cells may contribute to the differences in the arsenic trioxide-

responsive and -nonresponsive KU7 and 253JB-V bladder cancer cells.  

Treatment of KU7 cells with arsenic trioxide significantly decreased GSH and 

this response was blocked after treatment with the antioxidants GSH or DTT 

(Figure 24A).  Moreover, arsenic trioxide also induced ROS in KU7 cells and this 

effect was inhibited after cotreatment with DTT (Figure 24A).  Since GSH and 

DTT inhibited arsenic trioxide-induced ROS, we investigated the role of ROS in 

mediating the effects of arsenic trioxide on KU7 cell proliferation and Sp protein 

expression.  Arsenic trioxide alone inhibited KU7 cell proliferation and decreased 

Sp1, Sp3 and Sp4 protein expression (Figures 24B and 24C, respectively). 
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Figure 24. Role of glutathione/oxidative stress in mediating the anticancer 

activity of arsenic trioxide in KU7 cells. 
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(A) Effects of arsenic trioxide and ROS inhibitors on GSH and ROS.  KU7 

cells were treated with aqueous solvent, arsenic trioxide alone, or in combination 

with GSH or DTT.  Cellular GSH levels and ROS were determined as described 

in the Materials and Methods.  Results are expressed at means  SE for 3 

separate experiments for each treatment group and significant (p < 0.05) effects 

by arsenic trioxide (*) and reversal by DTT or GSH (**) are indicated.  GSH 

values in control (100%), arsenic trioxide, arsenic trioxide + GSH or DTT groups 

were 1000.7, 40.00.1, 101.51.9 and 157.61.2, respectively.  ROS values in 

control (100%), arsenic trioxide alone (5 or 10 M), and DTT + arsenic trioxide (5 

or 10 M) were 1002, 15613, 2696, 974 and 1206, respectively.    (B) GSH 

and DTT inhibit the antiproliferative activity of arsenic trioxide.  KU7 cells were 

treated with solvent control, 2.5, 5 or 10 M arsenic trioxide alone, or in 

combination with DTT (left) or GSH (right).  After 24 hr, cells were counted as 

described in the Materials and Methods.  Results are means  SE for 3 

determinations for each treatment group and significant (p < 0.05) inhibition by 

arsenic trioxide (*) and reversal by DTT or GSH (**) are indicated.  (C) Sp 

expression levels.  KU7 cells were treated with arsenic trioxide alone or in the 

presence of DTT (left) or GSH (right) for 24 hr and whole cell lysates were 

examined by western blot analysis as described in the Materials and Methods.  

(D) TUNEL assay.  KU7 cells were treated with solvent (control), 5 M arsenic 

trioxide alone, or in combination with DTT and the TUNEL assay was 

determined and quantified as described in the Materials and Methods.  The 
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percent of apoptotic cells in control (100%), arsenic trioxide alone, DTT alone, 

and arsenic trioxide + DTT were 10046, 223458, 18235 and 7714, 

respectively.  Results are expressed as means  SE for 3 replicate 

determinations for each treatment group and significant (p < 0.05) induction of 

TUNEL staining (*) and inhibition of this response by DTT (**) are indicated. 

However, after cotreatment with GSH or DTT, there was significant 

reversal of the arsenic trioxide-induced responses (Figure 24).  Moreover, in gel 

mobility shift assays, we also observed that nuclear extracts from KU7 cells 

treated with arsenic trioxide exhibited decreased binding to a GC-rich 

oligonucleotide that binds Sp proteins, and cotreatment of KU7 cells with DTT 

restored binding to this oligonucleotide (Supplement Figure 1).  In addition, we 

also used the TUNEL assay and the quantitative results in Figure 24D shows 

that the increased TUNEL staining observed in KU7 cells after treatment with 

arsenic trioxide was significantly inhibited after cotreatment with DTT.   

253JB-V cells were resistant to the cytotoxic effects of arsenic trioxide 

and the role of GSH and ROS in regulating resistance was investigated using 

diethylmaleate (DEM), a reagent that depletes intracellular GSH.  Figure 25A 

shows that treatment of 253JB-V cells with arsenic trioxide or DEM resulted in a 

10.2% decrease in GSH levels; however, in cells cotreated with DEM plus 

arsenic trioxide, a 55.6% decrease in GSH was observed.  Using the same 

treatment protocol, arsenic trioxide or DEM alone had minimal effects on ROS 

levels, whereas in 253JB-V cells treated with DEM plus arsenic trioxide, there 
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was a 2.2- or 4.9-fold increase in ROS in cells treated with 5 or 10 M arsenic 

trioxide (compared to untreated cells).  Treatment of 253JB-V cells with arsenic 

trioxide alone or in combination with DEM showed that DEM-dependent 

depletion of GSH sensitized these cells to arsenic trioxide-induced inhibition of 

cell proliferation (Figure 25B) and repression of Sp1, Sp3 and Sp4 proteins 

(Figure 25C).  Moreover, quantitation of the TUNEL staining results (Figure 25D) 

show that minimal staining was observed in 253JB-V cells treated with arsenic 

trioxide; however, in cells cotreated with DEM plus arsenic trioxide, there was a 

significant increase in TUNEL staining.  Thus, GSH expression and induction of 

ROS are critical factors that regulate arsenic trioxide-induced anticarcinogenic 

responses in bladder cancer cells and this includes downregulation of Sp 

proteins and Sp-dependent gene products and induction of apoptosis.  

Antioxidants block hydrogen peroxide and arsenic trioxide-dependent 

growth inhibition and Sp downregulation 

These results in bladder cancer cells suggest that induction of ROS by 

arsenic trioxide appears to be a critical common factor in mediating growth 

inhibition and Sp protein downregulation, and therefore, we investigated the 

effects of hydrogen peroxide alone on expression of Sp1, Sp3 and Sp4 in KU7 

cells (Figure 26).   
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Figure 25. Role of glutathione/oxidative stress in mediating the anticancer 

activity of arsenic trioxide in 253JB-V cells. 
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(A) Effects of arsenic trioxide and DEM on GSH and ROS.  253JB-V cells 

were treated with aqueous solvent, arsenic trioxide alone, or in combination with 

DEM.  Cellular GSH levels and ROS were determined as described in the 

Materials and Methods.  Results are expressed at means  SE and significant (p 

< 0.05) effects by arsenic trioxide (*) and enhancement by DEM (**) are 

indicated.  GSH values in control (100%), DEM, arsenic trioxide alone or in 

combination with DEM were 1000.7, 79.80.5, 85.00.3 and 44.40.4, 

respectively.  ROS values in control (100%), arsenic trioxide alone (5 or 10 M), 

DEM alone, and DEM + arsenic trioxide (5 or 10 M) were 1002, 850.7, 

751.2, 851.7, 16330 and 36815, respectively.  (B) DEM enhances the 

antiproliferative activity of arsenic trioxide.  253JB-V cells were treated with 

solvent control, 2.5, 5 or 10 M arsenic trioxide alone, or in combination with 

DEM.  After 24 hr, cells were counted as described in the Materials and 

Methods.  Results are means  SE for 3 determinations for each treatment 

group and significant (p < 0.05) inhibition by arsenic trioxide (*) and 

enhancement by DEM (**) are indicated.  (C) Sp expression levels.  253JB-V 

cells were treated with arsenic trioxide alone or in the presence of DEM for 24 hr 

and whole cell lysates were examined by western blot analysis as described in 

the Materials and Methods.  (D) TUNEL assay.  253JB-V cells were treated with 

solvent (control), 5 M arsenic trioxide alone, or in combination with DEM and 

the TUNEL assay was determined and quantitated as described in the Materials 

and Methods.  The percent of apoptotic cells in control (100%), arsenic trioxide 
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alone, DEM alone, and arsenic trioxide + DEM were 10025, 19318, 12512 

and 566105, respectively.  Results are expressed as means  SE for 2 

replicate determinations for each treatment group and significant (p < 0.05) 

induction of TUNEL staining (*) is indicated. 

The results show that treatment of KU7 cells with hydrogen peroxide (500 

M) for 24 hr decreased expression of Sp1, Sp3 and Sp4 proteins and 

cotreatment with hydrogen peroxide plus GSH blocked downregulation of Sp 

proteins, whereas only minimal effects were observed for DTT (Figure 26A).  In 

addition, hydrogen peroxide (500 M) inhibited KU7 cell growth and this 

response was also inhibited after cotreatment with GSH.  Downregulation of Sp 

proteins and growth inhibition was also observed using t-butylhydroperoxide 

(data not shown).  In some cancer cell lines, arsenic trioxide-induced ROS has 

been associated with mitochondriotoxicity and loss of MMP (215, 216, 237).   
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Figure 26. Comparative effects of hydrogen peroxide and arsenic trioxide 

on Sp proteins and MMP in KU7 cells. 

(A) Hydrogen peroxide downregulates Sp proteins and inhibits 

proliferation.  KU7 cells were treated with 500 M hydrogen peroxide alone or in 
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combination with GSH or DTT, and Sp protein expression and cell growth were 

determined by western blot analysis and cell counting as described in the 

Materials and Methods.  Cell proliferation results are given as means  SE for 

replicate (3) determinations, and significant (p < 0.05) growth inhibition by 

hydrogen peroxide (*) and reversal of this effect by GSH (**) are indicated.  (B) 

Effects of arsenic trioxide and hydrogen peroxide on MMP.  KU7 cells were 

treated with the compounds or catalase, and MMP was determined by confocal 

microscopy or FACS analysis as described in the Materials and Methods.  

Effects of various inhibitors on hydrogen peroxide (C)- or arsenic trioxide (D)-

induced downregulation of Sp1, Sp3 and Sp4.  KU7 cells were treated with the 

compounds alone or in combination with various inhibitors, and Sp proteins were 

examined by western blot analysis as described in the Materials and Methods.  

-Actin served as a loading control for the western blots.  The following 

concentrations of inhibitors were used:  SB203580 (20 M); SP6000125 (20 

M); NAC (10 mM), ascorbic acid (200 M); BHA (200 M); DPI (10 M), and 

catalase (2 KU). 

The comparative effects of arsenic trioxide and hydrogen peroxide on 

MMP was determined by confocal microscopy in KU7 cells (Figure 26B) using 

JC-1, a red fluorescent dye that accumulates and forms oligomers in the 

mitochondrial matrix.  In solvent-treated cells, the green (cytosol) and red 

(mitochondrial) staining was evident using confocal microscopy, whereas after 

treatment with 10 M arsenic trioxide or 500 M hydrogen peroxide, there was a 
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decrease in red and an increase in green staining consistent with decreased 

MMP (Figure 26B).  Similar results were observed in FACS analysis where there 

was an increase in the ratio of green/red stained cells.  Moreover, the effects of 

arsenic trioxide and hydrogen peroxide on decreased MMP were partially 

reversed in KU7 cells cotreated with the thiol antioxidant GSH; catalase, which 

catalyzes the detoxication of peroxides, blocked the effects of hydrogen 

peroxide but was minimally effective against arsenic trioxide in this assay 

(Figure 26B).  These results are consistent with a comparable mechanism of 

action for both arsenic trioxide and hydrogen peroxide which includes decreased 

MMP and the subsequent induction of ROS which has previously been reported 

for arsenic trioxide and also observed in this study (Figure 24).   

The effects of the antioxidant BHA on arsenic trioxide- and hydrogen 

peroxide-dependent decrease in MMP were investigated.  BHA did not 

ameliorate the effects of these compounds on MMP and was minimally effective 

as an inhibitor of ROS in the bladder cancer cell lines (data not shown).  The 

linkage between arsenic trioxide- and hydrogen peroxide-induced ROS and 

downregulation of Sp proteins was further investigated using several inhibitors 

including catalase, proline, an inhibitor of oxidative stress, N-acetylcysteine 

(NAC), BHA, diphenyliodonium (DPI), an inhibitor of NADPH oxidase, and 

inhibitors of p38 (SB203580) and JNK (SP6000125) kinase pathways.  Catalase 

and NAC blocked hydrogen peroxide-induced downregulation of Sp1, Sp3 and 

Sp4 proteins (Figure 26C), whereas minimal (DPI and BHA) or no inhibition was 
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observed with the other compounds.  The same set of inhibitors was used to 

investigate arsenic trioxide-dependent downregulation of Sp proteins (Figure 

26D) and similar results were observed except that minimal inhibition was 

observed for ascorbate, proline and SB203580.  Thus, thiol reducing agents, 

such as NAC, GSH and DTT that block arsenic trioxide-dependent decrease in 

MMP and formation of ROS, or catalase, which decreases ROS, also inhibited 

downregulation of Sp proteins.  This suggests that, in KU7 cells, the 

anticarcinogenic activity of arsenic trioxide is associated, in part, with Sp 

downregulation which is due to decreased MMP and induction of ROS. 

Discussion 

Sp transcription factors are members of the Sp/Krüppel-like family (KLF) 

of 25 transcription factors that bind GC-rich promoter sequences and regulate 

basal expression of multiple mammalian and viral genes (150).  Although 

knockout of many of the Sp genes in mice is embryolethal or induces serious 

defects in the neonates, the expression of Sp1, the most widely distributed 

Sp/KLF member, is significantly decreased in rodent and human tissues with 

increasing age (166, 167).  Studies in this laboratory show that in mouse 

xenograft studies, Sp1, Sp3 and Sp4 expression is low in liver (168) and also in 

more proliferative tissues such as the gastrointestinal tract (Figure 21D).  In 

contrast, expression of Sp1, Sp3 and Sp4 is high in breast, colon, pancreatic, 

prostate and bladder cancer cells (153, 159, 162-165, 168, 169, 229) and in 

other cancer cell lines (data not shown).  RNA interference studies in which Sp1, 
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Sp3 and Sp4 are knocked down simultaneously demonstrate that these 

transcription factors regulate several genes critical for cancer cell survival, 

angiogenesis and proliferation (153, 165, 168, 169, 229).  For example, in 

bladder cancer cells, results of RNA interference studies show that Sp1, Sp3 

and Sp4 regulate expression of EGFR, cyclin D1, survivin, bcl-2, VEGF and 

NFB-dependent activity and this is only a partial list of Sp-regulated genes 

(165).   

Therefore, based on the overexpression of Sp proteins in cancer cells 

and tumors (153, 159, 162-165, 168, 169, 229) and the fact that Sp1 is a 

negative prognostic factor for survival of patients with some solid tumors (230, 

231), we have been investigating the mechanism of action of several anticancer 

agents that may act, in part, through decreasing expression of Sp transcription 

factors in tumors.  Tolfenamic acid and betulinic acid induce proteasome-

dependent degradation of Sp1, Sp3 and Sp4 in pancreatic and prostate cancer 

cells and tumors (162, 163, 168) and curcumin also induces proteasome-

dependent degradation of these proteins in bladder cancer cells (165).  The 

remarkable anticancer activity of arsenic trioxide for treating leukemia and the 

potential of this drug for treatment of solid tumors coupled with the reported 

effects of arsenic trioxide on downregulation of several Sp-dependent genes and 

responses (VEGF, angiogenesis, survivin, bcl-2, NFB activity) (221-228) 

prompted us to examine the effects of arsenic trioxide on Sp expression.  A 

previous study with promyeolcytic leukemia cells treated with arsenic trioxide for 
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10 days showed that Sp1-DNA binding was decreased and this was correlated 

with increased Sp1 oxidation and not decreased expression of this transcription 

factor (234).  In contrast, we observed that, in KU7 bladder cancer cells, arsenic 

trioxide (1 M) decreased expression of Sp1, Sp3 and Sp4 after treatment for 6 

days indicating comparable sensitivity in leukemia vs. bladder cancer cells but 

clearly different effects on Sp1, Sp3 and Sp4 protein expression.  The effects of 

arsenic trioxide on Sp1 (downregulation) observed in this study were also 

reported in gall bladder carcinoma (227); however, the mechanism of this 

response and the effects on Sp3 and Sp4 were not determined.   

Figures 21 and 22 demonstrate that in a series of urological- and 

gastrointestinal-derived cancer cell lines, there was a correspondence between 

their responsiveness to the antiproliferative effects of arsenic trioxide and their 

downregulation of Sp1, Sp3 and Sp4 proteins.  Using KU7 and 253JB-V bladder 

cancer cells as prototypical models of arsenic trioxide responsive and non-

responsive cells, respectively, it was apparent that relatively low concentrations 

( 5 M) inhibited KU7 cell proliferation (Fig. 21A) and KU7 tumor growth in 

athymic nude mice (Figure 21C).  Arsenic trioxide also downregulated Sp1, Sp3 

and Sp4 in KU7 cells and tumors (Figures 21A and 21C), whereas at 

comparable concentrations, only minimal effects on growth and Sp 

downregulation were observed in 253JB-V cells.  Results in Figure 22 confirm 

that arsenic trioxide inhibits growth and induces Sp downregulation at similar 

concentrations in pancreatic, colon and prostate cancer cell lines.  A comparison 
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of arsenic trioxide induced antiproliferative, antiangiogenic and proapoptotic 

genes/responses in KU7 and 253JB-V cells (Figure 23) also demonstrated 

comparable cell context-dependent responsiveness and non-responsiveness to 

the effects of arsenic trioxide, respectively.  Interestingly, unlike betulinic acid, 

tolfenamic acid and curcumin (162, 165, 168) (in the same bladder cancer cells), 

arsenic trioxide did not induce proteasome-dependent degradation of Sp1, Sp3 

and Sp4 proteins but decreased Sp1, Sp3 and Sp4 mRNA levels (data not 

shown).  In summary, our results show that arsenic trioxide decreases Sp 

transcription factors and Sp-dependent genes and results of Sp protein 

knockdown studies in bladder cancer cells (165) (Figure 24D) indicate that the 

effects of arsenic trioxide on Sp proteins contribute to the growth inhibitory, 

proapoptotic and antiangiogenic activity of this compound.   

Previous studies in 19 different cancer cell lines (including bladder cancer 

cells) reported that their differential responsiveness to the antiproliferative effects 

of arsenic trioxide were related, in part, to their expression of GSH (236).  

Moreover, since intracellular GSH is an important buffer against mitochondrial 

disruption and ROS which is rapidly induced by arsenic trioxide in cancer cell 

lines (204, 205, 211, 213-218), we hypothesized that ROS/GSH levels may be 

responsible for the cytotoxic/proapoptotic effects of arsenic trioxide and be an 

important determinant for regulating Sp expression.  Absolute levels of ROS 

were similar in KU7 and 253JB-V cells, but there was a 47% higher level of GSH 

in 253JB-V compared to KU7 cells and this may contribute to their 
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responsiveness to arsenic trioxide.  It was also apparent that arsenic trioxide 

induced ROS and decreased GSH in KU7 cells and these responses were 

ameliorated after cotreatment with the thiol antioxidants GSH or DTT (Figure 

24A).  GSH and DTT also significantly protected against the antiproliferative 

effects of arsenic trioxide in KU7 cells (Figure 24B) and inhibited downregulation 

of Sp1, Sp3 and Sp4 proteins in KU7 cells treated with arsenic trioxide (Figure 

24C).  In contrast, the decrease in GSH levels in 253JB-V cells treated with 

arsenic trioxide (Fig. 25A) was much less than observed in KU7 cells and, in the 

former cell line, this was not accompanied by changes in ROS.  However, 

depletion of GSH by diethyl maleate in 253JB-V cells sensitized this "non-

responsive" cell line to arsenic trioxide-mediated antiproliferative and 

proapoptotic activity and downregulation of Sp proteins (Figure 25).  These 

results in KU7 and 253JB-V cells suggest that induction of ROS by arsenic 

trioxide is a key element in the subsequent downregulation of Sp proteins and 

ROS has been directly linked to the cytotoxicity of arsenic trioxide and other 

mitochondriotoxic anticancer drugs (205, 215, 216, 237). 

Hydrogen peroxide and other pro-oxidants are cytotoxic to various 

transformed cell lines (234).  The linkage between ROS and downregulation of 

Sp proteins was investigated in KU7 cells treated with 500 M hydrogen 

peroxide for 24 hr (Figure 26A).  Like arsenic trioxide, hydrogen peroxide 

inhibited growth and decreased expression of Sp1, Sp3 and Sp4 proteins in KU7 

cells and these responses were blocked after cotreatment with the antioxidant 
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glutathione.  Arsenic trioxide induces ROS by several pathways and this 

includes direct effects on mitochondria and thiol-containing mitochondrial 

proteins which leads to decreased MMP, release of proapoptotic factors such as 

cytochrome c, and induction of ROS (205, 237).  Using confocal microscopy and 

FACS analysis, we showed that both arsenic trioxide and hydrogen peroxide 

decreased MMP in KU7 cells and this response was partially blocked after 

cotreatment with GSH (Fig. 26B).  Catalase blocked hydrogen peroxide-

dependent decrease in MMP in KU7 cells (Figure 26B) and induction of ROS by 

hydrogen peroxide was also inhibited by catalase (data not shown).  Catalase 

also inhibited induction of ROS by arsenic trioxide (data not shown) but had 

minimal effects on decreased MMP in KU7 cells treated with arsenic trioxide 

(Figure 26B).  These results suggest that induction of extramitochondrial ROS 

by arsenic trioxide in KU7 cells has a minimal effect on MMP, indicating that 

arsenic trioxide-dependent decrease in MMP and induction of ROS are due to 

direct effects on the mitochondria.  This data is also consistent with the 

effectiveness of thiol reducing agents such as GSH in ameliorating the activity of 

arsenic trioxide in cancer cells since these agents act not only as antioxidants 

but also counteract interactions of arsenic trioxide on thiol-containing 

mitochondrial proteins (205, 237).  Arsenic trioxide-mediated induction of ROS 

and downstream effects have also been linked to activation of the flavoprotein-

dependent NADPH oxidase enzyme (219) or inhibition of thioredoxin reductase 

which can result in activation of downstream stress kinase pathways such as 
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p38MAPK and JNK (238, 239).  A recent report also showed that inhibition of 

arsenic trioxide-induced ROS by BHA in some leukemia cell lines did not affect 

induction of apoptosis, suggesting an ROS-independent pathway (240).  We 

therefore compared the effects of catalase and NAC, an additional thiol 

antioxidant, with BHA, stress kinase inhibitors of p38MAPK and JNK (SB203580 

and SP600125), and the NADPH oxidase inhibitor DPI on hydrogen peroxide- 

and arsenic trioxide-mediated downregulation of Sp1, Sp3 and Sp4 in KU7 cells 

(Figures 26C and 26D).  The results showed that SB203580, SP6000125, DPI 

and BHA had minimal to non-detectable effects on arsenic trioxide-induced 

downregulation of Sp1, Sp3 and Sp4 proteins, suggesting that the major 

pathway targeting these transcription factors involves mitochondria and 

induction of ROS. 

Low dose toxicity of arsenic trioxide in endothelial cells and increased 

growth of some tumors has been associated with increased angiogenesis (241-

243).  In contrast, this study shows that 1.0 M arsenic trioxide decreased KU7 

cell growth and expression of Sp1, Sp3 and Sp4 and this corresponded to 

comparable effects of higher concentrations of arsenic trioxide in several 

different cancer cell lines (Figures 21 and 22).  However, the overall 

contributions of downregulation of Sp transcription factors to the anticancer 

activity of arsenic trioxide will be variable and dependent on cancer cell and 

tumor type and other activities and/or pathways activated by this compound.  

Currently, we are investigating the role of drug-induced ROS and specific 
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oxidative stress pathways that are important for downregulation of Sp 

transcription factors in cancer cells and the mechanism of oxidative stress-

Sp1/Sp3/Sp4 interactions.  In contrast to results of a recent study in colon 

cancer cells (163), arsenic trioxide did not affect expression of microRNA-27a 

and ZBTB10, an Sp-repressor (data not shown) in KU7 cells; however, the role 

of other microRNAs as proximal regulators of other Sp repressor proteins is 

currently being investigated in bladder and other cancer cell lines and tumors. 
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IV. INHIBITION OF NFB AND PANCREATIC CANCER CELL AND TUMOR 

GROWTH BY CURCUMIN IS DEPENDENT ON SPECIFICITY PROTEIN 

DOWNREGULATION 

Curcumin activates diverse anticancer activities that lead to inhibition of 

cancer cell and tumor growth, induction of apoptosis, and antiangiogenic 

responses.  In this study, we observed that curcumin inhibits Panc28 and L3.6pL 

pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as 

xenografts.  In addition, curcumin decreased expression of p50 and p65 proteins 

and NFB-dependent transactivation and also decreased Sp1, Sp3 and Sp4 

transcription factors which are overexpressed in pancreatic cancer cells.  Since 

both Sp transcription factors and NFB regulate several common genes such as 

cyclin D1, survivin and vascular endothelial growth factor that contribute to the 

cancer phenotype, we also investigated interactions between Sp and NFB 

transcription factors.  Results of Sp1, Sp3 and Sp4 knockdown by RNA 

interference demonstrate that both p50 and p65 are Sp-regulated genes and 

that inhibition of constitutive or tumor necrosis factor-induced NFB by curcumin 

is dependent on downregulation of Sp1, Sp3 and Sp4 proteins by this 

compound.  Curcumin also decreased mitochondrial membrane potential and 

induced reactive oxygen species in pancreatic cancer cells, and this pathway is 

required for downregulation of Sp proteins in these cells, demonstrating that the 

mitochondriotoxic effects of curcumin are important for its anticancer activities.  
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Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-

related deaths in developed countries and, in 2009, it is estimated that in excess 

of 34,000 new cases will be diagnosed in the United States (2).  PDAC is a 

highly aggressive disease that invariably evades early diagnosis (244).  The 

mean survival time for patients with metastatic disease is only 3 – 6 months, and 

only 20-30% of pancreatic cancer cases are alive after 12 months.  Several 

factors are associated with increased risk for pancreatic cancer and these 

include chronic pancreatitis, prior gastric surgery, smoking, diabetes, exposure 

to certain classes of organic solvents, radiation, and specific gene 

polymorphisms (245, 246).  In addition to heritable mutations, several acquired 

gene mutations have been identified in sporadic pancreatic tumors (247, 248).  

The K-ras oncogene is primarily mutated in codon 12 in >90% of pancreatic 

tumors and the mutation results in a constitutively active form of ras which can 

lead to increased cell proliferation.  Mutations in the cyclin-dependent kinase 

inhibitor p16, the tumor suppressor gene p53, and SMAD4, a downstream target 

of transforming growth factor  (TGF) also exhibit high mutation frequencies in 

pancreatic tumors.   

Since pancreatic cancers are frequently detected at an advanced stage, 

treatments have provided very limited improvements in tumor regression and 

overall survival times after diagnosis (249, 250).  5-Fluorouracil (5-FU) alone or 

in combination with other drugs has been extensively used for treatment of 
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advanced pancreatic cancer, and gemcitabine, a deoxycytidine analog (or 

antimetabolite), has partially replaced 5-FU as a treatment for pancreatic cancer.  

Gemcitabine provides increased clinical benefits in terms of response rate, time 

to progression, and median survival and several other drugs for treatment of 

pancreatic cancer are also being investigated (251-254).  Curcumin 

(diferuloylmethane) is a polyphenolic phytochemical that exhibits a broad 

spectrum of anticancer activities against multiple tumor types (255-257), 

including pancreatic cancer (258-262).  Curcumin decreased survival and 

induced apoptosis in pancreatic cancer cells and, in the same cells, curcumin 

also decreased the pro-survival nuclear factor B (NFB) DNA binding in a gel 

mobility shift assay (258).  Treatment of athymic nude mice with orthotopically 

implanted tumors with 1 g/kg curcumin daily did not inhibit tumor volume but in 

combination studies, curcumin enhanced the activity of gemcitabine as an 

inhibitor of pancreatic tumor growth (260).  Curcumin also decreased several 

NFB-regulated genes in tumors and these include cyclin D1, c-myc, bcl-2, 

cyclooxygenase-2 (COX-2), and vascular endothelial growth factor (VEGF) 

(260). 

Recent studies in this laboratory demonstrated that the anticancer activity 

of curcumin in bladder cancer cells and tumors was associated with repression 

of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 which was 

accompanied by decreased expression of Sp-regulated survival, angiogenic and 

growth promoting genes (165).  In this study, we show that curcumin also 
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decreased expression of Sp proteins and Sp-dependent gene products in 

pancreatic cancer cells and in mouse tumors (xenograft).  Moreover, in 

pancreatic cancer cells, the p65 and p50 subunits of NFB are also Sp-

regulated genes and inhibition of constitutive and induced NFB expression by 

curcumin is also due, in part, to downregulation of Sp transcription factors.  

Moreover, the mechanism of Sp downregulation by curcumin is due to the 

mitochondriotoxicity of this compound and the subsequent induction of reactive 

oxygen species (ROS).     

Materials and methods 

Cell lines 

The Panc28 cell line was a generous gift from Dr. Paul Chiao and L3.6pL 

cells were kindly provided by Dr. Isaiah Fidler (Univesity of Texas M.D. 

Anderson Cancer Center, Houston, TX).  

Antibodies and reagents 

Both pancreatic cancer cell lines were maintained in DMEM-F12 

supplemented with 5% FBS, 0.22% sodium bicarbonate, and 10 mL/L of 100X 

antibiotic/antimycotic cocktail solution (Sigma-Aldrich Co., St. Louis, MO).  Cells 

were grown in 150 cm2 culture plates in an air/CO2 (95:5) atmosphere at 37C.  

Cyclin D1, Sp3, Sp4, VEGF and p50 antibodies were purchased from Santa 

Cruz Biotechnology (Santa Cruz, CA).  Cleaved PARP and COX-2 antibody 

were purchased from Cell Signaling Technology (Danvers, MA) and Sp1 
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antibody was purchased from Millipore (Billerica, MA).  Survivin antibody was 

purchased from R&D systems (Minneapolis, MN).  NFB-p65 antibody was 

ordered from Abcam (Cambridge, MA).  Monoclonal -actin antibody was 

purchased from Sigma-Aldrich.  Horseradish peroxidase substrate for western 

blot analysis was obtained from Millipore.  Dithiothreitol and -L-glutamyl-L-

cysteinyl-glycine (GSH) were obtained from Sigma-Aldrich.  TNF was 

purchased from R&D systems.  Curcumin (98% pure) was purchased from 

Indofine Chemical Company, Inc. (Hillsborough, NJ).  LipofectAMINE and 

LipofectAMINE 2000 were purchased from Invitrogen (Carlsbad, CA).  

Luciferase reagent was from Promega (Madison, WI).  -Galactosidase reagent 

was obtained from Tropix (Bedford, MA).  The VEGF and survivin promoter 

constructs were provided by Drs. Gerhard Siemeister and Gunter Finkenzeller 

(Institute of Molecular Medicine, Tumor Biology Center, Freiburg, Germany) and 

Dr. M. Zhou (Emory University, Atlanta, GA).  Sp1 and Sp3 promoter constructs 

were kindly provided by Drs. Carlos Cuidad and Veronique Noe (University of 

Barcelona, Barcelona, Spain).  NFB promoter construct was purchased from 

Stratagene (Cedar Creek, TX).   

Cell proliferation assay 

Pancreatic cancer cells (1X105 per well) were plated in 12-well plates and 

allowed to attach for 24 hr.  The medium was then changed to DMEM/Ham‟s F-

12 medium containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) 



184 
 

or GSH or DTT and/or curcumin were added.  Cells were then trypsinized and 

counted at the indicated times using a Coulter Z1 particle counter.  Each 

experiment was done in triplicate and results are expressed as means ± SE for 

each treatment group.  

Transfection and luciferase assay 

The pancreatic cancer cells (1x105 per well) were plated in 12-well plates 

in DMEM/Ham‟s F-12 medium supplemented with 2.5% charcoal-stripped FBS.  

After 24 hr, various amounts of DNA [i.e., 0.4 g PGL2-Luc, 0.4 g PGL2-Luc, 

0.04 g -galactosidase, and 0.4 g pSp1 (4)-Luc or 0.4 g pSp3-Luc or 0.4 g 

VEGF (2068)-Luc or 0.4 g pSurvivin (269)-Luc] were transfected using 

Lipofectamine reagent according to the manufacturer‟s protocol.  Five hr post-

transfection, the transfection mix was replaced with complete medium containing 

either vehicle (DMSO) or the indicated compound in DMSO.  After 22 hr, cells 

were then lysed with 100 L of 1X reporter lysis buffer, and cell extracts (30 mL) 

were used for luciferase and -galactosidase assays.  A Lumicount luminometer 

was used to quantitate luciferase and -galactosidase activities, and the 

luciferase activities were normalized to -galactosidase activity. 

Western blots 

Pancreatic cancer cells were seeded in DMEM/Ham‟s F-12 medium 

containing 2.5% charcoal-stripped FBS and after 24 hr, cells were treated with 

either vehicle (DMSO) or the indicated compounds.  Cells were collected using 



185 
 

high-salt buffer [50 mmol/L HEPES, 0.5 mol/L NaCl, 1.5 mmol/L MgCl2, 1 

mmol/L EGTA, 10% glycerol, and 1% Triton-X-100] and 10 L/mL of Protease 

Inhibitor Cocktail (Sigma-Aldrich).  Protein lysates were incubated for 3 min at 

100C before electrophoresis, and then separated on 10% SDS–PAGE 120 V 

for 3 to 4 hr.  Proteins were transferred onto polyvinylidene difluoride (PVDF) 

membranes by wet electroblotting in a buffer containing 25 mmol/L Tris, 192 

mmol/L glycine, and 20% methanol for 1.5 hr at 180 mA.  Membranes were 

blocked for 30 min with 5% TBST-Blotto [10 mmol/L Tris-HCl, 150 mmol/L NaCl 

(pH 8.0), 0.05% Triton X-100, and 5% nonfat dry milk] and incubated in fresh 5% 

TBST-Blotto with 1:500 primary antibody overnight with gentle shaking at 4C.  

After washing with TBST for 10 min, the PVDF membrane was incubated with 

secondary antibody (1:5000) in 5% TBST-Blotto for 2 hr by gentle shaking.  The 

membrane was washed with TBST for 10 min, incubated with 6 mL of 

chemiluminescence substrate for 1 min, and exposed to Kodak image station 

4000mm Pro (Carestreamhealth, Woodbridge, Connecticut).   

Electrophoretic mobility shift assay 

Cells were rinsed in cold PBS buffer and harvested in reporter lysis buffer 

(Promega).  After 15-min incubation on ice and 10-min centrifugation at 16,000 x 

g, 4C, the pellet was resuspended in 1X reporter lysis buffer (Promega) 

supplemented with 0.5 mol/L KCl and incubated on ice for 30 min.  The 

supernatant containing nuclear proteins was collected after centrifugation for 10 

min at 16,000 x g, 4C and quantified for protein concentrations by Bradford 
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method.  The NFB probe was prepared by annealing the two complementary 

polynucleotides and NFB sense strand probe was 5'-AGT TGA GGG GAC TTT 

CCC AGG C-3'.  The annealed probe was 5'-end–labeled using T4 

polynucleotide kinase (Invitrogen) and [-32P] ATP (Perkin-Elmer).  The labeled 

probe was purified with the Chroma Spin TE-10 column (BD Biosciences, San 

Jose, CA).  The electrophoretic mobility shift assay reaction was carried out in 

the reporter lysis buffer supplemented with 0.1 mol/L KCl.  Each reaction 

contained 2 g nuclear protein, 1 g of poly(dI-dC) (Roche Molecular 

Biochemicals) with or without unlabeled competitor oligonucleotides, and 10 fmol 

of labeled probe; the mixture was incubated for 15 min on ice.  Protein-DNA 

complexes were resolved by 5% native PAGE at 160 V at room temperature for 

1.5 hr and visualized after exposing it to ImageTek-H autoradiography X-Ray 

film.  

siRNA interference assays 

SiRNAs for Sp1, Sp3, Sp4, p65, p50 and LMN were purchased from 

Sigma-Aldrich.  The siRNA complexes used in this study are indicated as 

follows:  

LMN  SASI_Hs02_00367643 

Sp1  SASI_Hs02_00363664   

Sp3  5'-GCG GCA GGU GGA GCC UUC ACU TT  
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Sp4  5'-GCA GUG ACA CAU UAG UGA GCT T  

p65 (REL1096)  5'-GAT TGA GGA GAA ACG TAA ATT  

p50 (REL 1911)  5'-GTC ACT CTA ACG TAT GCA ATT  

The Panc28 and L3.6pL pancreatic cancer cell lines were seeded (6 x 104 

per well) in 12-well plates in DMEM:Ham's F-12 medium supplemented with 

2.5% charcoal-stripped FBS without antibiotic and left to attach for 1 d.  The 

triple Sp siRNA knockdown (iSp1, iSp3, iSp4 complex) along with iLamin as 

control was performed using LipofectAMINE 2000 transfection reagent as per 

the manufacturer's instructions.  

Xenograft study 

Female athymic nude mice, age 4 to 6 weeks, were purchased from 

Harlan.  L3.6pL cells (3 x 105) in 1:1 ratio of Matrigel (BD Biosciences) were 

injected into the either side of the flank area of nude mice.  Seven days after the 

tumor cell inoculation, mice were divided into two groups of 10 animals each.  

The first group received 100 L vehicle (corn oil) by i.p. injection, and the second 

group of animals received 100 mg/kg/d injection of curcumin in corn oil every 

2nd day for 18 d (9 doses) by i.p. injection.  The mice were weighed, and tumor 

areas were measured throughout the study.  After 20 d, the animals were 

sacrificed; final body and tumor weights were determined and plotted.  
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GSH estimation 

GSH-Glo Glutathione assay kit (Promega) was used to estimate GSH 

levels according to manufacturer‟s protocol using a 96 well cell culture plate and 

luminescence is measured using a Lumicount luminometer. 

ROS estimation 

Cellular ROS levels were evaluated with the cell permeant probe CM-

H2DCFDA (5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate 

acetyl ester) from Invitrogen.  Following 20-24 hr treatment, cells plated on 96 

well cell culture plate were loaded with 10 M CM-H2DCFDA for 30 min, washed 

once with serum free medium, and analyzed for ROS levels using the BioTek 

Synergy 4 plate reader (Winooski, VT) set at 480 nm and 525 nm excitation and 

emission wavelengths, respectively.  Following reading of ROS, cultures were 

then treated with Janus green and cell counts were determined with the plate 

reader set to an absorbance of 610 nm, and ROS intensities were then 

corrected accordingly.  Each experiment was done in triplicate and results are 

expressed as means  SE for each treatment group. 

Measurement of mitochondrial membrane potential (MMP) 

MMP was measured with Mitochondrial Membrane Potential Detection Kit 

(Stratagene) according to manufacturer‟s protocol using JC-1 dye and 

mitochondrial membrane potential shift was measured using FACS Calibur flow 

cytometer using CellQuest acquisition software (Becton Dickinson 
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Immunocytometry Systems).  J-aggregates are detected as red fluorescence 

and J-monomers are detected as green fluorescence. 

Statistical analysis 

Statistical significance of differences between the treatment groups was 

determined by an analysis of variance and Student‟s t-test, and levels of 

probability were noted.  IC50 values were calculated using linear regression 

analysis and expressed in M, at 95% confidence intervals. 

Results 

Curcumin inhibits constitutive NFB 

Figure 27 illustrates the concentration-dependent inhibition of Panc28 and 

L3.6pL pancreatic cancer cell proliferation after treatment with 10 - 50 M 

curcumin for 24 hr, and IC50 values for this response were 34.0 and 28.8 M, 

respectively.  After prolonged treatment of these cells for 96 and 144 hr, IC50 

values were 12.4 and 11.2 M and 11.8 and 9.9 M in Panc28 and L3.6pL cells, 

respectively, and concentrations of curcumin required for growth inhibition 

decreased with increasing treatment times as observed for many anticancer 

drugs.  Interactions between curcumin and NFB signaling have been 

extensively reported (255-257).  Figure 27B illustrates western blots of nuclear 

extracts from DMSO- and curcumin (35 and 50 M)-treated L3.6pL and Panc28 

cells; 35 M decreased p65 and p50 protein levels in L3.6pL but not Panc28 

cells, whereas 50 M curcumin decreased expression of both proteins in both 
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cell lines.  It has also been reported that curcumin decreases NFB binding to its 

cognate response element in gel mobility shift assays (258), and Figure 27C 

summarizes binding nuclear extracts from L3.6pL cells treated with DMSO 

(solvent) or curcumin (25 and 50 M) to an oligonucleotide containing a 

consensus NFB site.  The free probe in the absence of nuclear extract (lane 1) 

did not form a retarded band; however, nuclear extracts from solvent-treated 

cells formed an NFB retarded band (lane 2, indicated by an arrow).  The 

retarded band intensity was decreased when nuclear extracts from cells treated 

with 25 or 50 M curcumin were used (lanes 3 and 4).  The intensity of the 

NFB-DNA complex (lane 2) was decreased after competition with 100-fold 

excess of unlabeled wild-type (lane 5) but not mutant (lane 6) NFB 

oligonucleotide.  In addition, the intensity of the NFB-DNA complex was also 

decreased after incubation with p50/p65 (combined) antibodies due to 

immunodepletion (lane 7); however, we did not observe a supershift complex 

with these antibodies.  We also investigated the effects of curcumin on NFB-

dependent transactivation in pancreatic cancer cells transfected with pNFB-luc, 

a construct containing 5 tandem NFB response elements linked to a luciferase 

reporter gene.  The results show that curcumin decreased luciferase activity 

(Figure 27D) and this was consistent with results in Figures 27A - 27C showing 

that curcumin repressed constitutive NFB primarily through downregulation of 

p50 and p65 proteins. 
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Figure 27. Curcumin inhibits pancreatic cancer cell growth, decreases 

expression of p65, p50 proteins, NFκB-DNA binding and transactivation of 

the NFκB promoter. 
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(A)  Inhibition of Panc28 and L3.6pL cell growth.  Cells were treated with 

DMSO (solvent control) or 10, 25, 35 or 50 mol/L curcumin, and effects on cell 

growth were determined after treatment for 24 hr as described in the Materials 

and Methods.  (B)  Effects of curcumin on p65 and p50 subunits of NFB in 

Panc28 and L3.6pL cells.  Cells were treated with DMSO (0), 35 or 50 mol/L 

curcumin for 24 hr, and p65 and p50 protein levels in nuclear extracts were 

determined as described in Materials and Methods.  -Actin served as loading 

control.  (C)  Gel mobility shift assay.  Panc28 and L3.6pL cells were treated with 

DMSO or 25 or 50 mol/L curcumin for 24 hr, and nuclear lysates were 

incubated with 32P-labelled GC rich oligonucleotide alone or in the presence of 

other factors.  Retarded bands were analyzed by electrophoretic mobility shift 

assay as described in Materials and Methods.  (D)  Decrease in transactivation 

of NFB promoter.  Panc28 and L3.6pL cells were transfected with NFB-luc 

construct, then treated with DMSO or 25 and 50 M of curcumin, and luciferase 

activity was determined as described in Materials and Methods.  Results are 

expressed as means   SE for three replicate determinations for each treatment 

group, and significant (P<0.05) compared to the solvent (DMSO) control are 

indicated by an asterisk. 

Curcumin decreases Sp transcription factors and Sp-dependent responses 

Recent studies in this laboratory showed that curcumin decreased 

expression of the Sp transcription factors Sp1, Sp3 and Sp4 in bladder cancer 

http://www3.interscience.wiley.com/cgi-bin/fulltext/121609811/main.html,ftx_abs#SEC1-2#SEC1-2
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cells (165).  We also observed that these proteins were overexpressed in L3.6pL 

(Figure 28A) and Panc28 (Figure 28B) cells, and curcumin induced a 

concentration-dependent decrease of these proteins in both cell lines.  In 

bladder cancer cells, curcumin-induced Sp downregulation was blocked by 

proteasome inhibitors; however, results in Figure 28B show that the proteasome 

inhibitor MG132 did not alter the effects of curcumin on Sp1, Sp3 and Sp4 

protein expression in pancreatic cancer cells.  Curcumin also decreased 

expression of several Sp-dependent genes in Panc28 and L3.6pL cells and 

these included VEGF, VEGFR1, cyclin D1 and survivin (Figure 28C).  This was 

accompanied by increased PARP cleavage, a marker of apoptosis.  Using 

Panc28 cells as a model, curcumin decreased luciferase activity in cells 

transfected with constructs containing GC-rich promoter inserts from the Sp1 

(pSp1For4), Sp3 (pSp3For5), VEGF (pVEGF) and survivin (pSurvivin) genes 

linked to a luciferase reporter gene (Figure 28D).  Thus, curcumin decreased 

expression of Sp1, Sp3, Sp4 and several Sp-dependent gene products in 

pancreatic cancer cells.   
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Figure 28. Curcumin activates proteosome-independent downregulation of 

Sp proteins, decrease cell growth, angiogenic and apoptotic proteins and 

their promoters. 
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(A)  Decreased Sp proteins Panc28 and L3.6pL cells were treated with 

DMSO or 10, 25, 35 and 50 mol/L curcumin for 24 hr and whole-cell lysates 

were analyzed by western blot analysis as described in Materials and Methods.  

(B)  Curcumin causes proteasome-independent Sp degradation.  Cells were 

treated with DMSO or 50 mol/L curcumin in the presence or absence of 

proteasome inhibitor MG132, and the effects on Sp protein degradation were 

determined after treatment for 24 hr by western blot as described in Materials 

and Methods.  (C)  Curcumin decreases expression of Sp-dependent gene 

products.  Panc28 and L3.6pL cells were treated with DMSO or 10, 25, 35 or 50 

mol/L curcumin for 24 hr, and whole-cell lysates were analyzed by western blot 

analysis as described in Materials and Methods.  -Actin served as a loading 

control.  (D)  Curcumin decreases transactivation in cells transfected with Sp1, 

Sp3, VEGF and survivin promoter constructs.  Cells were treated with DMSO 

(solvent control) or 25 or 40 mol/L curcumin, and the effects on transactivation 

of promoters were determined after treatment for 24 hr as described in Materials 

and Methods.  Results are expressed as means  SE for three replicate 

determinations for each treatment group, and significant (P<0.05) decreases in 

luciferase activity compared to the solvent (DMSO) control are indicated (*).  

Sp transcription factors regulate NFB 

The role of Sp transcription factors in regulating p65 and p50 proteins that 

form the NFB complex was investigated in Panc28 and L3.6pL cells transfected 
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with a cocktail (iSp) containing small inhibitory RNAs for Sp1 (iSp1), Sp3 (iSp3) 

and Sp4 (iSp4) as previously described (165).  Figure 29A illustrates that after 

transfection of these cells with iSp, there was a decrease in p65 and p50 

expression and Sp proteins were also downregulated.  Similarly, transfection of 

cells with siRNA for p65 plus p50 (combined) (ip65-50) decreased expression of 

p65 and p50 proteins (Figure 29B); however, Sp1, Sp3 and Sp4 protein 

expression was unchanged (data not shown).  These results demonstrate that 

Sp transcription factors regulate expression of p65 and p50.  Results in Figure 

29C compare the effects of transfection of iSp and ip65-50 on expression of 

putative NFB- and Sp-regulated gene products, cyclin D1, VEGF and surviving  

(153, 158, 162, 165, 168, 260, 263-267) and iSp > ip65-50 in decreasing 

expression of all three proteins.  In these studies, cells were transfected with 

siRNAs and whole cell lysates were analyzed by western blots and, therefore, 

the observed extent of downregulation was limited not only by the effectiveness 

of the siRNAs but also by transfection efficiencies.  We also investigated the 

effects of iSp and individual siRNAs for Sp1, Sp3 and Sp4 on luciferase activity 

in Panc28 and L3.6pL cells transfected with pNFB-luc, and luciferase activity 

was significantly decreased in all treatment groups (Figure 29D).   
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Figure 29. Sp and NFκB knockdown and effects on NFκB subunits, 

angiogenic and survival proteins. 

Sp (A) and NFB (B) knockdown by RNA interference.  Panc28 and 

L3.6pL were transfected with iSp (A) or ip65/p50 (B) and effects on Sp proteins, 

and p65 and p50 subunits of NFB were determined by western blot analysis as 
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described in Materials and Methods.  (C)  Effect of Sp and NFB knockdown on 

expression of CD1, VEGF and survivin proteins.  Protein lysates from Panc28 

and L3.6pL cells transfected with iSp or ip65/p50 were analyzed for CD1, VEGF 

and survivin proteins by western blot analysis as described in Materials and 

Methods.  (D)  Effects of iSp on transactivation of NFB promoter.  Cells were 

transfected iSp and NFB-luc, and luciferase activity was estimated as 

described in Materials and Methods.  -Actin and Lamin served as a loading 

control and similar results were observed in duplicate experiments (A - C).  

Luciferase activity (D) in transfection experiment was expressed as means  SE 

for 3 replicated experiment a significant (P<0.05) decreases are indicated (*).  

Stressors such as TNF induce NFB-dependent responses through 

increased formation of the nuclear NFB complex and this was observed in 

L3.6pL cells, whereas minimal induction by TNF was observed in Panc28 cells.  

Using L3.6pL cells as a model, we show that 1 and 10 ng/ml TNF increased 

nuclear p65/p50 levels and cotreatment with curcumin decreased TNF-induced 

nuclear accumulation of p65/p50 (Figure 30A).  Similar results were observed in 

a gel mobility shift assay (Figure 30B).  Nuclear extracts from cells treated with 

solvent (control) or 1 and 10 ng/ml TNF formed an NFB-DNA retarded band 

using a 32P-labeled consensus NFB oligonucleotide and TNF increased 

retarded band intensity, whereas band intensities decreased using extracts from 

cells cotreated with TNF plus curcumin.  Retarded band intensities decreased 
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after cotreatment with unlabeled wild-type but not with mutant NFB 

oligonucleotide, and after coincubation with p65 plus p50 antibodies (combined).  

Figure 30C shows that TNF had minimal effect on expression of Sp1, Sp3, Sp4 

and Sp-dependent gene products VEGF; cyclin D1 was induced and COX-2 

expression was the most highly induced by TNF.  Curcumin alone (50 M) or in 

combination with TNF resulted in decreased expression of all of these proteins.  

Results in Figure 29A show that iSp inhibited basal expression of p65 and p50, 

and this is confirmed in Figure 30D which also shows that iSp inhibited TNF-

induced p65 and p50 expression in L3.6pL cells.   TNF had minimal effects on 

Sp expression but enhanced levels of cyclin D1 and COX-2; however, in cells 

cotransfected with iSp, there was a significant decrease in Sp1, Sp3 and Sp4, 

and TNF-induced expression of COX-2 and cyclin D1 was also decreased.  

These results suggest that although TNF-dependent induction of cyclin D1 and 

COX-2 correlated with induction of p65/p50, these responses were blocked after 

downregulation of Sp transcription factors. 
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Figure 30. Role of Sp proteins in curcumin-dependent inhibition of TNFα 

inducible responses in L3.6pL pancreatic cancer cells. 

(A) Curcumin decreases TNF induced expression of p65 and p50 

proteins.  Cells were treated with TNF in the presence or absence of 50 M 
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curcumin, and the nuclear lysates were examined for expression of p65 and p50 

proteins by western blots as described in Materials and Methods.  (B)  Curcumin 

decreased TNF induced NFB oligonucleotide-protein binding.  L3.6pL cells 

were treated with DMSO or 50 mol/L curcumin in the presence or absence of 

TNF for 24 hr, and nuclear extracts were incubated with 32P-labelled NFB 

oligonucleotide alone or in the presence of other factors.  Retarded bands were 

analyzed by electrophoretic mobility shift assay as described in Materials and 

Methods.  Effects of curcumin (C) and iSp (D) on Sp/ NFB-dependent protein 

expression.  L3.6pL cells were treated with 50 M curcumin (C) or transfected 

with iSp (D) in the presence or absence of TNF, and the whole cell and nuclear 

lysates were analyzed for Sp1, Sp3, Sp4, p65, p50, CD1, COX-2 and VEGF 

proteins by western blot analysis as described in Materials and Methods.  The 

gels were typical of results of at least two replicate determinations per treatment 

group. 

Ongoing studies in this laboratory indicate that drug-induced 

downregulation of mitochondrial membrane potential (MMP) and induction of 

ROS in cancer cell lines leads to decreased expression of Sp1, Sp3 and Sp4 

and this is also observed after treatment with hydrogen peroxide (Unpublished 

data).  Results in Figure 31A show that after treatment of L3.6pL and Panc28 

cells with 40 M curcumin for 20 hr, there was a significant loss of MMP, 

respectively (also see Supplemental Figure 1).  Moreover, in these same cells, 

cotreatment with curcumin and the thiol antioxidants dithiothreitol (DTT) and 
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glutathione (GSH), the curcumin-induced loss of MMP was significantly inhibited.  

In addition, the loss of MMP in L3.6pL and Panc28 cells treated with curcumin 

was accompanied by induction of ROS which was also significantly attenuated 

after cotreatment with DTT or GSH (Figure 31B).  The role of antioxidants in 

protecting against curcumin-induced downregulation of Sp1, Sp3 and Sp4 was 

also investigated in Panc28 and L3.6pL cells.  Treatment with curcumin alone 

decreased expression of Sp1, Sp3 and Sp4 proteins in L3.6pL and Panc28 cells; 

however, cotreatment with the antioxidants GSH or DTT blocked downregulation 

of these transcription factors (Figure 31C).  The direct effects of ROS on 

expression of Sp1, Sp3 and Sp4 proteins was determined by treatment of 

Panc28 and L3.6pL cells with 500 M hydrogen peroxide and this resulted in 

decreased expression of Sp1, Sp3 and Sp4 proteins in both cell lines.  These 

effects were inhibited after cotreatment with glutathione (Supplemental Figure 

2).  It was evident that L3.6pL cells were more resistant to the effects of 

hydrogen peroxide than Panc28 cells in terms of Sp downregulation.  Curcumin-

dependent inhibition of Panc28 and L3.6pL cell growth was also reversed in 

cells cotreated with GSH or DTT and the effects of the antioxidants were more 

pronounced in Panc28 than L3.6pL cells (Figure 29D). 
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Figure 31. Effects of curcumin on mitochondrial membrane potential 

(MMP) and ROS and related responses. 
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Induction of changes in loss of MMP (A) and ROS (B) by curcumin.  

Panc28 and L3.6pL cells were treated with DMSO or 25 or 40 mol/L curcumin 

for 24 hr, in the presence or absence of antioxidant GSH, and mitochondrial 

membrane potential and ROS were determined as described in Materials and 

Methods.  ROS-mediated Sp degradation (C) cell growth inhibition (D) in the 

presence or absence of antioxidants.  Cells were treated with DMSO or 35 or 50 

mol/L curcumin in the presence or absence of thiol antioxidants for 24 hr, and 

cells were then counted or the whole cell lysates were analyzed by western blots 

as described in Materials and Methods.  -Actin served as a loading control. 

Results in A, B and D are expressed as means  SE for three replicate 

determinations for each treatment group, and significant (P<0.05).  Curcumin-

mediated decreases (*) or increases after cotreatment with antioxidants (**) 

compared to the solvent (DMSO) control are indicated.  GSH levels in Panc28 

(4.33 M) and L3.6pL (2.64 M) cells were also determined as described in the 

Materials and Methods. 

Curcumin inhibits tumor growth and downregulates Sp transcription 

factors 

 The in vivo antitumorigenic activity of curcumin was investigated in 

athymic nude bearing L3.6pL cells as xenografts.  At a dose of 100 mg/kg/d, 

curcumin inhibited tumor weights (Figure 32A) and growth (Figure 32B) over an 

18-day treatment period.  We also examined Sp1, Sp3 and Sp4 protein 
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expression in tumors from the corn oil (control)- and curcumin-treated mice 

(Figures 32C and 32D).  All three transcription factors were decreased after 

treatment with curcumin; however, only Sp1 and Sp4 were significantly (p < 

0.05) lower due to the inter-animal variability.  Curcumin treatment also 

decreased cyclin D1 protein expression in tumors.  Thus, curcumin-dependent 

downregulation of Sp transcription factors correlated with the growth inhibitory 

effects of this compound in both in vitro and in vivo pancreatic cancer cells, 

suggesting that targeting these transcription factors play a role in the 

antitumorigenic activity of curcumin.   

 

Figure 32. Curcumin inhibits pancreatic cancer xenograft tumor growth. 
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Tumor weights (A) and volume (B).  Athymic nude mice bearing L3.6pL 

xenografts were treated with corn oil or curcumin (100 mg/Kg/d), and tumor 

weights and tumor volumes (mm3) were determined as described in Materials 

and Methods.  (C)  Western blot analysis of tumor lysates.  Lysates from three 

mice in the treated and control groups were analyzed by western blots as 

described in Materials and Methods.  -Actin served as loading control and for 

standardizing quantitative protein determinations, Sp proteins levels of control 

animals were set at 100%.  Columns, means for three separate determinations; 

bars, SE. *, significantly (P<0.05) decreased protein levels. 

Discussion 

The nuclear NFB complex containing p65 (Rel A) and p50 (NFB1) or 

closely related proteins is a multifunctional nuclear transcription factor that 

regulates expression of multiple genes that promote inflammation and 

carcinogenesis (263, 265, 267).  The inactive cytosolic NFB-IB complex is 

activated and processed through phosphorylation and proteasome-dependent 

degradation of IB and this results in enhanced accumulation of nuclear NFB 

and modulation of NFB-dependent gene expression.  Upstream activators of 

nuclear NFB include various cellular stressors such as cytokines, apoptosis 

inducers, carcinogens and tumor promoters, ROS, endotoxins, and bacterial and 

viral infections (263, 265, 267).  Activation of NFB in a cancer cell context 

results in the induction of cancer cell proliferation, survival, angiogenesis and 
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metastasis, epithelial to mesenchymal transition (EMT), and inflammation, and 

this is accompanied by induction of genes such as cyclin D1, survivin, VEGF, 

bcl-2, and COX-2 that contribute to these responses (263, 265, 267).  Curcumin 

has been extensively characterized as an anti-inflammatory and anticancer 

agent and these effects have been linked to modulation of several pathways and 

genes in different cancer cell lines (255-257).  In addition, curcumin has been 

extensively investigated as an inhibitor of basal and induced NFB-dependent 

responses and this plays an important role in the remarkable anticancer 

activities of this compound (255-257).   

Studies in this laboratory have been focused on drugs such as tolfenamic 

acid, betulinic acid and the synthetic triterpenoid methyl 2-cyano-3,11-dioxo-18-

olean-1,12-dien-30-oate (CDODA-Me) that also inhibit tumor growth and this is 

due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors (158, 

162, 163, 168).  These agents also decrease expression of several Sp-

dependent genes including survivin, VEGF and its receptors, cyclin D1, bcl-2, 

EGFR and several other genes.  Initial studies showed that Sp1 was highly 

expressed in many pancreatic cancer cell lines and was required for VEGF 

expression (268), and it has subsequently been shown that Sp1, Sp3 and Sp4 

are highly expressed in pancreatic and other cancer cell lines (Unpublished 

data)  (158, 162, 163, 168, 268).  Moreover, a recent report showed that Sp1 

was a negative prognostic factor for pancreatic cancer patient survival (160).  

Many Sp-dependent genes are also co-regulated in some cells by NFB and not 
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surprisingly, there is also a striking similarity between Sp- and NFB-dependent 

growth inhibitory, angiogenic and survival responses and genes.  Moreover, our 

recent studies with curcumin in bladder cancer cells (165) showed that this 

compound also decreased expression of Sp transcription factors and Sp-

dependent genes, and there was evidence in 253JB-V cells that p65 was also 

an Sp-regulated gene.  Curcumin is currently in clinical trials for pancreatic 

cancer (262) and we used this tumor type as a model for investigating the 

effects of this compound on Sp1, Sp3, Sp4 and NFB and also Sp-NFB 

interactions. 

Curcumin inhibited Panc28 and L3.6pL cell proliferation (Figure 27A) and 

decreased expression of both p65 and p50 and their DNA binding activity 

(Figures 27B and 27C) and luciferase activity in cells transfected with an NFB-

luc construct (Figure 27D).  Thus, basal NFB which is overexpressed in many 

cancer cell lines and tumors including pancreatic cancer (258), is also inhibited 

in Panc28 and L3.6pL cells treated with curcumin and this is related, in part, to 

decreased expression of p65 and p50.  In parallel experiments, we also 

demonstrated that curcumin decreased expression of Sp1, Sp3 and Sp4 (Figure 

28A) and several Sp-dependent genes (Figure 28C), and similar results were 

previously observed in bladder cancer cells (165).  However, in bladder cancer 

cells, Sp downregulation after treatment with curcumin was blocked by the 

proteasome inhibitor MG-132, whereas in pancreatic cancer cells, MG-132 did 

not affect curcumin-dependent repression of Sp1, Sp3 and Sp4 (Fig. 28B).  
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Curcumin decreased pancreatic tumor growth in athymic nude mice bearing 

L3.6pL cells as xenografts and this was also accompanied by Sp downregulation 

(Figure 32) and parallels the in vitro effects of curcumin in pancreatic cancer 

cells (Figure 28).  Thus, curcumin decreases both Sp and NFB transcription 

factors in pancreatic cancer cells and this is accompanied by decreased 

expression of several genes that may be regulated by both NFB and Sp 

transcription factors, depending on the cell context. 

Since curcumin decreased p65 and p50 proteins in Panc28 and L3.6pL 

cells (Figure 27B), we hypothesized that this response may be dependent, in 

part, on downregulation of Sp1, Sp3 and Sp4 in pancreatic cancer cells (Figure 

28A).  Direct evidence for the role of Sp transcription factors in regulating NFB 

was obtained by RNA interference in which cells were transfected with iSp, 

which contained siRNAs for Sp1, Sp3 and Sp4 (in combination).  The results 

showed that knockdown of Sp transcription factors decreased expression of both 

p65 and p50 proteins (Figure 29A); combined knockdown of p65 and p50 (ip65-

p50) by RNA interference decreased expression of both proteins (Figure 29B).  

Moreover, a comparison of the effects of iSp vs. ip65-p50 on several putative 

Sp- and NFB-regulated genes [cyclin D1, VEGF and survivin (Figure 29C)] 

confirmed that expression of these genes was primarily dependent on Sp 

transcription factors, and luciferase activity in cells transfected with NFB-luc 

was also decreased by Sp knockdown (Fig. 29D).  Moreover, while TNF 

induced levels of nuclear p65 and p50 proteins (Figs. 30A and 30B) and this 
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resulted in induction of some NFB-dependent gene products such as COX-2 

(Figure 30C), both curcumin and iSp inhibited not only basal (Figure 30) but 

TNF-induced responses (Figure 31) in pancreatic cancer cells.  Thus, 

curcumin-dependent inhibition of NFB is due, in part, to downregulation of Sp 

transcription factors and these results are consistent with previous reports 

showing that the p65 and p50 promoters contain functional GC-rich Sp binding 

sites and both genes are regulated by Sp1 (269, 270).  However, the role of 

Sp1, Sp3 and Sp4 in regulation of p65 and p50 will also be dependent on cell 

context since we previously observed that knockdown of Sp transcription factors 

in bladder cancer cells decreased p65 but not p50 proteins (165). 

Ongoing studies in this laboratory have been investigating the 

mechanisms associated with drug-induced Sp downregulation in cancer cells 

(Unpublished data) (163), and recently we have shown that induction of ROS is 

a critical element for this response (163).  For example, arsenic trioxide 

decreased MMP and induced ROS and this resulted in downregulation of Sp1, 

Sp3 and Sp4 in bladder and pancreatic cancer cells.  Treatment with hydrogen 

peroxide also induced Sp downregulation and in cells cotreated with arsenic 

trioxide or hydrogen peroxide and the thiol antioxidants DTT or GSH, the effects 

of Sp protein and cell growth inhibition were reversed (Unpublished data).  

Previous reports show that curcumin decreases MMP and induces ROS in some 

cancer cell lines (271-273), and this was also observed in pancreatic cancer 

cells (Figures 31A and 31B).  Moreover, in cells cotreated with curcumin and 
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GSH or DTT, the effects of curcumin on downregulation of Sp1, Sp3 and Sp4 

and growth inhibition were significantly reversed by the antioxidants (Figures 

31C and 31D).  In addition, hydrogen peroxide also decreased expression of 

Sp1, Sp3 and Sp4 proteins in Panc28 and L3.6pL cells and cotreatment with 

glutathione attenuated these effects (Supplemental Figure 2).  Interaction of 

curcumin with pancreatic cancer cell mitochondria, induction of ROS, and the 

attenuation of curcumin-induced Sp downregulation by antioxidants is also 

consistent with a role for ROS in regulating expression of Sp1, Sp3 and Sp4.  

Previous studies showed that among several cancer cell lines, their sensitivity to 

arsenic trioxide was dependent, in part, on constitutive glutathione levels (236), 

and the higher levels of glutathione in Panc28 (4.33 M) vs. L3.6pL (2.64 M) 

cells may explain the increased resistance of the former cell line to curcumin-

mediated repression of Sp1, Sp3 and Sp4 proteins (Figure 28A).  In contrast, we 

also observed that antioxidants were less effective in reversing curcumin-

mediated inhibition of cell proliferation in L3.6pL compared to Panc28 cells 

(Figure 31D) and this is an example of cell context-dependent differences in the 

contribution of the ROS-Sp degradation pathway to pancreatic cancer cell 

growth inhibition. 

Thus, like arsenic trioxide and other mitochondriotoxic drugs, curcumin 

induces ROS in pancreatic cancer cells and this results in downregulation of Sp 

and Sp-dependent gene products which includes NFB.  These results highlight 

a novel mechanism of action for curcumin which includes ROS-Sp and Sp-NFB 
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interactions and further demonstrates that in pancreatic cancer cells, Sp 

transcription factors are an important drug target.  The downstream targets of 

curcumin-induced ROS are also being investigated and these include 

microRNAs such as miR-27a that inhibit expression of the Sp repressor, 

ZBTB10 (163).  Preliminary studies indicated that only minimal induction of 

ZBTB10 by curcumin is observed in pancreatic cancer cells and a search for 

activation of other Sp repressor genes is ongoing.  Current studies are also 

focused on development of new agents that repress expression of Sp 

transcription factors in pancreatic cancer and their applications as stand-alone 

drugs or in combination with other agents such as gemcitabine for treatment of 

this devastating disease. 
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V. METHYL 2-CYANO-3,12-DIOXOOLEANA-1,9-DIEN-28-OATE (CDDO-Me) 

DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS AND 

INHIBITS PANCREATIC TUMOR GROWTH 

The anticancer agent 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid 

(CDDO) and its methyl ester (CDDO-Me) typically induce a broad spectrum of 

growth inhibitory, proapototic and antiangiogenic responses.  Treatment of 

Panc1, Panc28 and L3.6pL pancreatic cancer cells with low M concentrations 

of CDDO or CDDO-Me resulted in growth inhibition, induction of apoptosis, and 

downregulation of cyclin D1, survivin, vascular endothelial growth factor (VEGF) 

and its receptor (VEGFR2).  RNA interference studies indicate that these 

repressed genes are regulated by specificity protein (Sp) transcription factors 

Sp1, Sp3 and Sp4, and western blot analysis of lysates from pancreatic cancer 

cells treated with CDDO and CDDO-Me shows for the first time that both 

compounds decreased expression of Sp1, Sp3 and Sp4.  Moreover, CDDO-Me 

(7.5 mg/kg/day) also inhibited pancreatic human L3.6pL tumor growth and 

downregulated Sp1, Sp3 and Sp4 in tumors using an orthotopic pancreatic 

cancer model.  CDDO-Me also induced reactive oxygen species (ROS) and 

decreased mitochondrial membrane potential (MMP) in Panc1 and L3.6pL cells, 

and cotreatment with antioxidants (glutathione and dithiothreitol) blocked 

formation of ROS, reversed the loss of MMP, and also inhibited downregulation 

of Sp1, Sp3 and Sp4.  Repression of Sp and Sp-dependent genes by CDDO-Me 

was due to downregulation of microRNA-27a and induction of ZBTB10, an Sp 
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repressor, and these responses were also reversed by antioxidants.  Thus, the 

anticancer activity of CDDO-Me is due, in part, to activation of ROS which in turn 

targets the microRNA-27a:ZBTB10–Sp transcription factor axis to decrease 

growth inhibitory, pro-apoptotic and antiangiogenic genes and responses. 

Introduction 

Extracts of plants and microorganisms and individual natural products 

have been extensively used as traditional medicines for treatment of several 

diseases including cancer.  Individual natural products including aspirin, 

morphine, quinine, statins, penicillins, taxanes and many other compounds are 

widely used pharmaceutical agents and also serve as templates for the 

synthesis of more potent analogs (274-276).  Triterpenoid are derived from 

cyclization of oxidosqualene, and different cyclization pathways coupled with 

post-cyclization modifications can give several thousand possible analogs 

including oleanolic acid which contains a pentacyclic oleanane skeleton and a 

C28 carboxyl group (277, 278).  Oleanolic acid has been used by Sporn, Honda 

and their collaborators as a template for extensive structure-activity studies to 

identify antiinflammatory drugs, and the most active compounds identified were 

2-cyano-3,12-dioxoleana-1,9-dien-28-oic acid (CDDO) and its corresponding 

methyl (CDDO-Me) and imidazole (CDDO-Im) esters (176, 177, 279, 280).   

The anticancer activities of CDDO and related compounds have been 

extensively investigated in several different cancer cell lines and in vivo and their 

remarkable potency is due to modulation of several important pathways 



215 
 

[reviewed in (280)].  Initial studies showed that CDDO was a peroxisome 

proliferator-activated receptor  (PPAR) agonist (281); however, most 

subsequent studies indicate that the anticancer activities of CDDO and related 

compounds were PPAR-independent (203, 282-284).  The effects of CDDO, 

CDDO-Me and CDDO-Im vary among different cell lines and are dependent on 

the specific parameters measured; however, treatment with these compounds 

invariably resulted in growth inhibition, antiangiogenic activity and induction of 

apoptosis (280).  Induction of these responses is associated with modulation of 

several pathways and genes including activation of endoplasmic reticulum (ER) 

stress, microtubule disruption, inhibition of NFB signaling, and 

mitochondriotoxicity, resulting in decreased mitochondrial membrane potential 

(MMP) (185, 285-290).  For example, in pancreatic cancer cells, CDDO-Im 

inhibits cell growth and induces apoptosis and this is associated with decreased 

MMP and mitochondrial glutathione (GSH) and induction of reactive oxygen 

species (ROS) (185).   

Studies in this laboratory have characterized the anticancer activity of 2-

cyano-3,11-dioxo-18-olean-1,12-dien-30-oic acid (CDODA) and its methyl ester 

(CDODA-Me) which are structurally similar to CDDO and CDDO-Me but are 

derived from the triterpenoid glycyrrhetinic acid, a bioactive component of 

licorice (145-147, 163, 180).  A recent study reported that one of the underlying 

mechanism of action of CDODA-Me in colon cancer cells was due to 

downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 
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and Sp-dependent genes (163).  In this study, we demonstrate for the first time 

that CDDO and CDDO-Me also decrease expression of Sp1, Sp3 and Sp4 and 

Sp-dependent gene products (VEGF, cyclin D1, survivin and VEGFR2) in 

pancreatic cancer cells and tumors in an orthotopic mouse model.  The 

mitochondriotoxicity of CDDO-Me results in decreased mitochondrial membrane 

potential (MMP), induction of reactive oxygen species (ROS), ROS-dependent 

downregulation of microRNA-27a, and induction of ZBTB10 (an Sp repressor 

protein) which in turn downregulates Sp transcription factors and Sp-dependent 

genes.  Thus, CDDO-Me-dependent repression of Sp1, Sp3 and Sp4 contributes 

to the potent anticancer activity of CDDO and related compounds.   

Materials and methods 

Cell lines 

Panc28 cell line was a generous gift from Dr. Paul Chiao and L3.6pL cells 

were kindly provided by Dr. Isaiah Fidler (University of Texas M.D. Anderson 

Cancer Center, Houston, TX) and Panc1 cells were obtained from the American 

Type Culture Collection (ATCC, Manassas, VA). 

Antibodies and reagents 

All three pancreatic cancer cell lines were maintained in DMEM-F12 

supplemented with 5% FBS, 0.22% sodium bicarbonate, and 10 mL/L of 100X 

antibiotic/antimycotic cocktail solution (Sigma-Aldrich Co., St. Louis, MO).  Cells 

were grown in 150 cm2 culture plates in an air/CO2 (95:5) atmosphere at 37C.  
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Cyclin D1, Sp3, Sp4, VEGF and VEGFR2 antibodies were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA).  Cleaved PARP antibody was 

purchased from Cell Signaling Technology (Danvers, MA) and Sp1 antibody was 

purchased from Millipore (Billerica, MA).  Survivin antibody was purchased from 

R&D systems (Minneapolis, MN).  Monoclonal -actin antibody was purchased 

from Sigma-Aldrich.  Horseradish peroxidase substrate for western blot analysis 

was obtained from Millipore.  Dithiothreitol and -L-glutamyl-L-cysteinyl-glycine 

(GSH) were obtained from Sigma-Aldrich.  Superscript II, LipofectAMINE and 

LipofectAMINE 2000 was purchased from Invitrogen (Carlsbad, CA).  Reporter 

lysis buffer and luciferase reagent were purchased from Promega (Madison, 

WI).  -Galactosidase reagent was obtained from Tropix (Bedford, MA).  Primers 

for TBP and ZBTB10 were purchased from Integrated DNA Technologies 

Technologies (Coralville, IA).  Primers for Sp3 and Sp4 were obtained from 

Qiagen (Valencia, CA); ZBTB10 expression vector and empty vector (pCMV6-

XL4) were from Origene (Rockville, MD).  MiRNA mirvaRNA extraction kits and 

the reverse transcription (RT) and real-time PCR amplification kits were 

purchased from Applied Biosystems (Foster City, CA).  The VEGF and survivin 

promoter constructs were provided by Drs. Gerhard Siemeister and Gunter 

Finkenzeller (Institute of Molecular Medicine, Tumor Biology Center, Freiburg, 

Germany) and Dr. M. Zhou (Emory University, Atlanta, GA).  Sp1 and Sp3 

promoter constructs were kindly provided by Drs. Carlos Cuidad and Veronique 

Noe (University of Barcelona, Barcelona, Spain).   
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Cell proliferation assay 

Pancreatic cancer cells (3x104 per well) were plated in 12-well plates and 

allowed to attach for 24 hr.  The medium was then changed to DMEM/Ham‟s F-

12 medium containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) 

or different doses of CDDO or CDDO-Me were added.  Cells were trypsinized 

and counted every 48 hr using a Coulter Z1 particle counter for 6 days.  Fresh 

medium and test compounds were added every 48 hr.  Each experiment was 

done in triplicate and results are expressed as means  SE for each treatment 

group.  

Transfection and luciferase assay 

Pancreatic cancer cells (1x105 per well) were plated in 12-well plates in 

DMEM/Ham‟s F-12 medium supplemented with 2.5% charcoal-stripped FBS.  

After 24 hr, various amounts of DNA [i.e., 0.4 g PGL2-Luc, 0.4 g PGL3-Luc, 

0.04 g -galactosidase, and 0.4 g pSp1 (4)-Luc or 0.4 g pSp3-Luc or 0.4 g 

VEGF (2068)-Luc or 0.4 g pSurvivin (269)-Luc] were transfected using 

Lipofectamine reagent according to the manufacturer‟s protocol.  Five hr 

posttransfection, the transfection mix was replaced with complete medium 

containing either vehicle (DMSO) or the indicated compound in DMSO.  After 22 

hr, cells were then lysed with 100 L of 1X reporter lysis buffer, and cell extracts 

(30 mL) were used for luciferase and -galactosidase assays.  A Lumicount 
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luminometer was used to quantitate luciferase and -galactosidase activities, 

and the luciferase activities were normalized to -galactosidase activity.   

Transfection with ZBTB10 expression vector 

Pancreatic cancer cells (1x105 per well) were plated in 12-well plates in 

DMEM/Ham‟s F-12 medium supplemented with 2.5% charcoal-stripped FBS.  

After 24 hr, cells were transfected with empty vector (pCMV6-XL4) or 4 g/well 

ZBTB10 expression plasmid pCMV6-XL4 vector using Lipofectamine 2000 

reagent according to the manufacturer‟s protocol.  After transfection for  5 hr, the 

transfection mix was replaced with complete medium and incubated for 48 hr.  

Western blots 

Pancreatic cancer cells (3x105 per well) were seeded in 6-well plates in 

DMEM/Ham‟s F-12 medium containing 2.5% charcoal-stripped FBS and after 24 

hr, cells were treated with either vehicle (DMSO) or the indicated compounds.  

Cells were collected using high-salt buffer [50 mmol/L HEPES, 0.5 mol/L NaCl, 

1.5 mmol/L MgCl2, 1 mmol/L EGTA, 10% glycerol, and 1% Triton-X-100] and 10 

L/mL of Protease Inhibitor Cocktail (Sigma-Aldrich).  Protein lysates were 

incubated for 3 min at 100C before electrophoresis, and then separated on 

10% SDS–PAGE 120 V for 3 to 4 hr.  Proteins were transferred onto 

polyvinylidene difluoride (PVDF) membranes by wet electroblotting in a buffer 

containing 25 mmol/L Tris, 192 mmol/L glycine, and 20% methanol for 1.5 hr at 

180 mA.  Membranes were blocked for 30 min with 5% TBST-Blotto [10 mmol/L 
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Tris-HCl, 150 mmol/L NaCl (pH 8.0), 0.05% Triton X-100, and 5% nonfat dry 

milk] and incubated in fresh 5% TBST-Blotto with 1:500 primary antibody 

overnight with gentle shaking at 4C.  After washing with TBST for 10 min, the 

PVDF membrane was incubated with secondary antibody (1:5000) in 5% TBST-

Blotto for 2 hr by gentle shaking.  The membrane was washed with TBST for 10 

min, incubated with 6 mL of chemiluminescence substrate for 1 min, and 

exposed to Kodak image station 4000 mm Pro (Carestreamhealth, Woodbridge, 

Connecticut).   

Animals and orthotopic implantation of tumor cells 

Male athymic nude mice (NCI-nu) were purchased from the Animal 

Production Area of the National Cancer Institute Frederick Cancer Research and 

Development Center (Frederick, MD).  Mice were housed and maintained under 

specific pathogen-free conditions in facilities approved by the American 

Association for Accreditation of Laboratory Animal Care and in accordance with 

current regulations and standards of the United States Department of 

Agriculture, United States Department of Health and Human Services, and the 

National Institutes of Health.  Mice with 8-12 wk of age were used for the current 

study. L3.6pL cells were harvested from subconfluent cultures by a brief 

exposure to 0.25% trypsin and 0.02% EDTA.  Trypsinization was stopped with 

medium containing 10% fetal bovine serum, and the cells were washed once in 

serum-free medium and resuspended in HBSS.  Only suspensions consisting of 

single cells with >90% viability were used for the injections.  Injection of cells into 
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the pancreas was performed as described previously (27).  One week after the 

injection of the cells, 4-5 mice were randomly selected and sacrificed, and the 

pancreas was isolated from all the animals and tested under microscope to 

confirm the initiation of tumor growth.  The remaining mice were divided into two 

groups (at least 5 animals/group) and treated with vehicle (control) or 7.5 mg/kg 

CDDO-Me daily for 4 weeks.  Animals were sacrificed and the primary 

pancreatic tumors were isolated.  All the tumors were measured and their 

weights were recorded.  The tumor tissues were properly isolated into 3 portions 

for preparing (1) protein extracts (snap frozen in liquid nitrogen and stored at -

80C); (2) RNA [treated with RNA stabilization solution (RNAlater) and then 

stored at -80C]; and (3) paraffin sections for immunohistochemistry (fixed in 

formaldehyde). 

ROS estimation 

Cellular ROS levels were evaluated with the cell-permeable probe CM-

H2DCFDA (5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate 

acetyl ester) from Invitrogen.  Following treatment for 20-24 hr, cells plated on 

96-well cell culture plates were loaded with 10 M CM-H2DCFDA for 30 min, 

washed once with serum free medium, and analyzed for ROS levels using the 

BioTek Synergy 4 plate reader (Winooski, VT) set at 480 nm and 525 nm 

excitation and emission wavelengths, respectively.  Following reading of ROS, 

cultures were then treated with Janus green and cell counts were determined 

with the plate reader set to an absorbance of 610 nm, and ROS intensities were 
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then corrected accordingly.  Each experiment was done in triplicate and results 

are expressed as means  SE for each treatment group.   

Measurement of mitochondrial membrane potential (MMP) 

MMP was measured with Mitochondrial Membrane Potential Detection Kit 

(Stratagene Cedar Creek, TX) according to manufacturer‟s protocol using JC-1 

dye.  Pancreatic cancer cells were plated on 2-well Lab-Tex Coverglass slides 

(NUNC, NY) and, after 24 hr, cells were treated with DMSO or CDDO-Me alone 

or with GSH for 16 hr.  Cells were then incubated with 1X JC-1 dye at 37C for 

15 min and washed twice with assay buffer according to manufacturer‟s protocol 

and then cells were subjected to microscopic analysis using Zeiss Stallion Dual 

Detector Imaging System (Carl Zeiss Microimaging Inc., Thornwood, NY) using 

a C-Apochromat 63X, 1.2 NA water immersion lens.  J-aggregates are detected 

as red fluorescence and J-monomers are detected as green fluorescence.  The 

ratio of red fluorescence to green fluorescence was measured using Image J 

Software.  Cells were examined in more than ten fields per slide on multiple 

slides.  Data represent the average of all the fields. 

Quantitative real-time PCR of mRNA and miRNA 

cDNA was prepared from Panc1 and L3.6pL cell lines using Superscript II 

reverse transcriptase (Invitrogen) according to manufacturer‟s protocol.  Each 

polymerase chain reaction (PCR) was carried out in triplicate in a 20-l volume 

using SYBR GreenER (Invitrogen) for of 95C for 10 min, then 40 cycles of 95C 
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for 15 s and 60C for 1 min in the Applied Biosystems 7500 Fast Real-time PCR 

System.  The following primers were used.  

TBP (F):  5'-TGCACAGGAGCCAAGAGTGAA-3'  

TBP (R):  5'-CACATCACAGCTCCCCACCA-3'  

ZBTB10 (F):  5'-GCTGGATAGTAGTTATGTTGC-3'  

ZBTB10 (R):  5'-CTGAGTGGTTTGATGGACAGA-3'  

mirVana miRNA extraction kit (Applied Biosystems) was used for 

extraction of miRNA according to manufacturer‟s protocol.  Quantification of 

miRNA (RNU6B and miRNA-27a) was done using the Taqman miRNA kit 

(Applied Biosystems) according to the manufacturer's protocol with real-time 

PCR.  U6 small nuclear RNA was used as a control to determine relative miRNA 

expression. 

Statistical analysis 

Statistical significance of differences between the treatment groups was 

determined by an analysis of variance and/or Student‟s t-test, and levels of 

probability were noted.  IC50 values were calculated using linear regression 

analysis and expressed in M, at 95% confidence intervals.   

Results 

The synthetic oleanolic acid derivatives CDDO, CDDO-Me and CDDO-Im 

are cytotoxic to several different cancer cell lines and the latter derivative was a 
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potent inhibitor of pancreatic cancer cell proliferation (185).  In this study, we 

initially compared the effects of CDDO and CDDO-Me on proliferation of Panc1, 

Panc28 and L3.6pL pancreatic cancer cell lines for up to 144 hr (Figures 33A 

and 33B).  IC50 values for growth inhibition by CDDO-Me and CDDO after 

treatment for 48 hr were 5.2 and 0.37 (Panc1), 5.3 and 0.37 (Panc28), and 3.0 

and 0.4 M (L3.6pL), respectively.  CDDO-Me was more active than CDDO in all 

three pancreatic cancer cell lines and there were minimal differences between 

cell lines to the cytotoxic effects of both compounds.  After prolonged treatment 

(144 hr) with CDDO-Me and CDDO, IC50 values were 0.25 and 1.8 (Panc1), 

0.30 and 2.3 (Panc28), and 0.28 and 1.4 M (L3.6pL), respectively, and the 

relative potencies of both compounds and cellular responsiveness were similar 

to that observed after 48 hr (Figure 33).  Inhibition of Panc1, Panc28 and L3.6pL 

cell growth by CDDO and CDDO-Me was also accompanied by apoptosis, and 

Figures 33C and 33D show that both compounds induced caspase-dependent 

PARP cleavage in the pancreatic cancer cell lines.   
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Figure 33. CDDO and CDDO-Me inhibit cell growth and induce apoptosis in 

pancreatic cancer cell lines. 
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Inhibition of Panc1, Panc28 and L3.6pL cell growth by CDDO (A) and 

CDDO-Me (B).  Cells were treated with DMSO (solvent control), CDDO (0.5, 1.0 

or 2.5 mol/L), or CDDO-Me (0.01, 0.1, 0.5 or 1.0 mol/L), and effects on cell 

growth were determined over a period of 6 days as described in the Materials 

and Methods.  Induction of PARP cleavage by CDDO (C) and CDDO-Me (D).  

Panc1, Panc28 and L3.6pL cells were treated with DMSO, CDDO (1.0, 2.5 or 

5.0 mol/L), or CDDO-Me (0.5, 1.0 or 1.25 mol/L) for 24 hr, and whole-cell 

lysates were analyzed by western blot analysis as described in Materials and 

Methods.  -Actin served as a loading control. 

CDDO and related compounds inhibit growth, induce apoptosis, and 

exhibit antiangiogenic activity in cancer cells derived from multiple tumor types 

[reviewed in (280)], and the effects of CDDO-Me and CDDO on expression of 

prototypical gene products representing these activities were investigated in the 

three pancreatic cancer cell lines.  Results in Figure 34A show that 0 - 1.25 M 

CDDO-Me and 0 - 5 M CDDO decrease expression of cyclin D1, survivin, 

VEGF and VEGFR2 proteins in Panc1 cells.  Moreover, similar results were 

observed in Panc28 (Figure 34B) and L3.6pL (Figure 34C) cells, and results in 

Figures 33 and 34 are consistent with previous studies on CDDO and related 

compounds in cancer cells (176, 177, 185, 279-290).   
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Figure 34. CDDO and CDDO-Me decrease expression of VEGF, VEGFR2, 

cyclin D1 (CD1) and survivin proteins in Panc1 (A), Panc28 (B) and L3.6pL 

(C) pancreatic cancer cell lines. 

Cells were treated with DMSO, CDDO (1.0, 2.5 or 5.0 mol/L), or CDDO-

Me (0.5, 1.0 or 1.25 mol/L) for 24 hr, and whole-cell lysates were analyzed by 
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western blot analysis as described in Materials and Methods.  -Actin served as 

a loading control.  The gels were typical of results of at least two replicate 

determinations per treatment group. 

Knockdown of Sp1, Sp3 and Sp4 transcription factors by RNA 

interference in pancreatic cancer cells showed that VEGF, VEGFR1 and 

VEGFR2 expression were regulated by Sp1, Sp3 and Sp4 (153, 159, 162), 

suggesting that an underlying mechanism of action of CDDO and CDDO-Me 

may involve downregulation of Sp proteins as previously described for other 

bioactive triterpenoids in cancer cells (163, 168).  Results in Figure 35A 

demonstrate that 0 - 1.25 M CDDO-Me and 0 - 5.0 M CDDO decreased 

expression of Sp1, Sp3 and Sp4 proteins in Panc1 cells and similar results were 

observed in Panc28 (Figure 35B) and L3.6pL (Figure 35C) cells.  The observed 

CDDO-/CDDO-Me-dependent downregulation of Sp transcription factors 

(Figures 35A - 35C) is consistent with their parallel decrease in Sp-dependent 

genes as illustrated in Figure 34.  Previous studies show that the NSAID 

tolfenamic acid induced proteasome-dependent downregulation of Sp1, Sp3 and 

Sp4 in Panc1 cells that was blocked by the proteasome inhibitor MG132 (162); 

however, results in Figure 35D using CDDO-Me, indicate that downregulation of 

Sp1, Sp3 and Sp4 by this compound in pancreatic cancer cells was not blocked 

by the proteasome inhibitor MG132, indicating a proteasome-independent 

pathway.   
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Figure 35. CDDO-Me downregulates Sp proteins in a proteosome-

independent manner. CDDO-Me decreases Sp protein expression in Panc1 

(A), Panc28 (B), and L3.6pL (C).  

Cells were with DMSO, CDDO (1.0, 2.5 or 5.0 M), or CDDO-Me (0.5, 1.0 

or 1.25 M) for 24 hr, and whole-cell lysates were analyzed for Sp1, Sp3 and 



230 
 

Sp4 by western blot analysis as described in Materials and Methods.  D. 

Proteosome-independent downregulation of Sp proteins by CDDO-Me.  Cells 

were treated with DMSO and CDDO-Me (1.0 mol/L) in the presence or 

absence of proteasome inhibitor MG132 (10 M), and the effects on Sp protein 

degradation were determined after treatment for 24 hr by western blot as 

described in Materials and Methods.  -Actin served as a loading control. 

The proximal regions of the Sp1, Sp3, VEGF and survivin promoters are 

GC-rich and the effects of CDODA-Me and CDDO on promoter activity were 

investigated in Panc1 cells transfected with pSp1For4, pSp3For5, pVEGF and 

pSurvivn constructs which contain -751 to -20 (Sp1), -417 to -38 (Sp3), -2018 to 

+50 (VEGF), and -269 to +49 (survivin) promoter inserts, respectively.  CDDO 

and CDDO-Me significantly decreased luciferase (reporter gene) activity in 

Panc1 cells transfected with these constructs (Supplement Figure 1) indicating 

that CDDO and CDDO-Me act at the transcriptional levels and this is consistent 

with the observed proteasome-independent downregulation results shown in 

Figure 35D.  We also observed that CDDO-Me decreased Sp1 mRNA levels 

(Supplement Figure 2) which is consistent with the inhibitory effects of this 

compound on transcription.    

Previous reports showed that the imidazole derivative of CDDO was 

mitochondriotoxic in pancreatic cancer cells and this was characterized by 

decreased MMP and accompanied by induction of ROS (185).  Treatment of 

Panc1 or L3.6pL cells with CDDO-Me also increased total ROS levels as 
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determined by CM-H2DCFDA fluorescent dye and this response was also 

attenuated after cotreatment with the antioxidant glutathione (Figure 36A).  

Panc1 and L3.6pL cells were incubated with the fluorescent dye JC-1 and after 

treatment with DMSO or GSH, the typical orange/red fluorescent staining of 

mitochondria was observed (Figure 36A).  However, in Panc1 or L3.6pL cells 

treated with 1.25 or 1.0 M CDDO-Me, respectively, there was a significant 

decrease in orange/red staining and an increase in green fluorescence indicative 

of decreased MMP and this response was attenuated after cotreatment with 

GSH in both cell lines (Figure 36B).  These results demonstrate that CDDO-Me 

was mitochondriotoxic in pancreatic cancer cells and we therefore investigated 

the possible connection between CDDO-Me-induced ROS and mitochondrial 

effects and CDDO-Me-dependent downregulation of Sp1, Sp3 and Sp4 proteins.  

Results in Figure 36C demonstrate that Sp1, Sp3 and Sp4 are downregulated in 

Panc1 and L3.6pL cells after treatment with CDDO-Me and decreased 

expression of Sp1, Sp3 and Sp4 proteins was inhibited after cotreatment with 

thiol antioxidants (DTT and/or GSH) and similar results were observed in 

Panc28 cells (data not shown).  Hydrogen peroxide or t-butyl hydroperoxide 

were used as prototypical model ROS and both compounds decreased 

expression of Sp1, Sp3 and Sp4 proteins (data not shown), confirming that 

induction of ROS in pancreatic cancer cells is a critical upstream response in 

targeting repression of Sp transcription factors, and comparable results have 

been observed in other cancer cell lines.   
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Figure 36. Role of oxidative stress and mitochondrial membrane potential 

(MMP) in mediating the effects of CDDO-Me on Sp proteins in pancreatic 

cancer cells.  Effect of CDDO-Me on ROS (A) and MMP (B, C). 

Panc1 and L3.6pL cells were treated with DMSO and CDDO-Me (0.5, 1.0 

or 1.25 mol/L) for 24 hr in the presence or absence of antioxidant GSH.  ROS 
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was measured using BioTek Synergy 4 plate reader using CM-H2DCFDA (10 

M) dye as described in Materials and Methods, and normalized fluorescence 

intensity against control is plotted as a bar diagram.  MMP was determined using 

JC-1 dye and quantitation of the ratio of red to green fluorescence was 

measured using Image J Software as described in Materials and Methods.  D. 

Reversal of CDDO-Me-mediated downregulation of Sp proteins by thiol 

antioxidants.  Cells were treated with DMSO or CDDO-Me (1.0 mol/L) in the 

presence or absence of DTT or GSH for 24 hr, and whole cell lysates were 

analyzed by western blots as described in Materials and Methods.  -Actin 

served as a loading control.  Results in A and C are expressed as means  SE 

for three replicate determinations for each treatment group, and significant (P < 

0.05) CDDO-Me-mediated decreases (*) or increases (**) after cotreatment with 

antioxidants compared to the solvent (DMSO) control are indicated.  
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Figure 37. Effect of CDDO-Me on expression miR-27a and ZBTB10 mRNA 

and role of ZBTB10 overexpression on Sp proteins in pancreatic cancer 

cells. 
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CDDO-Me decreases miR-27a (A) and induces ZBTB10 mRNA (B).  

Panc1 and L3.6pL cells were treated with the indicated doses of CDDO-Me for 

24 hr, and miR-27a and ZBTB10 levels were analyzed by real time PCR as 

described in Materials and Methods.  C. Effect of ZBTB10 overexpression on Sp 

proteins and Sp-dependent genes.  Panc1 and L3.6pL cells were transfected 

with empty vector (pCMV6-XL4) or 4 g/well ZBTB10 expression plasmid 

pCMV6-XL4 vector, and whole cell lysates were analyzed by western blots as 

described in Materials and Methods.  D. Effect of GSH on CDDO-Me-mediated 

miR-27a and ZBTB10 mRNA expression.  Panc1 and L3.6pL cells were treated 

with indicated doses of CDDO-Me in the presence or absence of GSH for 24 hr, 

and miR-27a and ZBTB10 mRNA levels were analyzed by real time PCR as 

described in Materials and Methods.  Results in A, B and D are expressed as 

means  SE for three replicate determinations for each treatment group and 

significant (P < 0.05) inhibition (*) or induction (**) of responses are indicated. 

CDODA-Me, a triterpenoid structurally-related to CDDO-Me, decreased 

Sp proteins in colon cancer cells through downregulation of microRNA-27a 

(miR-27a) and induction of ZBTB10, a zinc finger Sp-repressor protein (163).  

After treatment of Panc1 and L3.6pL cells with CDDO-Me, there was a decrease 

in expression of miR-27a (Fig. 37A) and this was accompanied by increased 

ZBTB10 mRNA levels (Fig. 37B).  Since ZBTB10 suppresses expression of Sp-

regulated genes through competitive interactions with GC-rich promoter 

elements (163, 164, 291), we investigated the effects of ZBTB10 overexpression 
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in Panc1 and L3.6pL cells (Fig. 37C).  Overexpression of ZBTB10 in pancreatic 

cancer cells decreased expression of Sp1, Sp3 and Sp4 proteins and similar 

results have previously been observed in breast and colon cancer cells (163, 

164).  CDDO-Me-dependent induction of ROS and downregulation of Sp 

proteins is inhibited after cotreatment with antioxidants (Fig. 36) and, therefore, 

we investigated the role of ROS induction and the effects of antioxidants on 

expression of ZBTB10 and miR-27a.  CDDO-Me decreased miR-27a and 

induced ZBTB10 in Panc1 and L3.6pL cells and, in cells cotreated with CDDO-

Me plus glutathione, these responses were significantly reversed (Fig. 37D).  

This demonstrates that CDDO-Me-induced ROS is a common upstream factor 

regulating disruption of miR-27a:ZBTB10–Sp axis.   

The in vivo anticancer activity of CDDO-Me was also investigated in an 

orthotopic model of pancreatic cancer in which L3.6pL cells were injected 

directly into the pancreas of 8 - 12 week old male thymic nude mice (162, 292).  

Treatment with CDDO-Me (7.5 mg/kg daily) was initiated 7 days after injection of 

the cells and continued for an additional 28 days.  Treatment with CDDO-Me 

significantly decreased pancreatic tumor volume and weight (Figs. 38A and 38B) 

compared to the vehicle control group.  In addition, lysate from tumors treated 

with the vehicle or CDDO-Me (from 3 different animals/group) were also 

analyzed by western blots and there was a marked decrease in expression of 

Sp1, Sp3 and Sp4 proteins in tumors from mice treated with CDDO-Me 

compared to the control group (Fig. 38C).   
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Figure 38. CDDO-Me inhibits pancreatic tumor growth and downregulates 

Sp proteins and Sp dependent genes. 

Tumor weights (A) and volume (B).  Male athymic nude mice bearing 

orthotopic pancreatic (L3.6pL) tumors were treated with corn oil or CDDO-Me 

(7.5 mg/Kg) for 4 weeks and tumor weights and tumor volumes (mm3) were 

determined as described in Materials and Methods.  Significant (P < 0.05) 

inhibition (*) is indicated in results as means  SE for five animals per treatment.  
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Western blot analysis of tumor lysates for Sp proteins (C) and Sp-dependent 

proteins (D).  Lysates from three mice in the treated and control groups were 

analyzed by western blots as described in Materials and Methods.  -Actin 

served as loading control. 

Moreover, we also observed decreased expression of VEGF, cyclin D1 

and survivin in tumors from CDDO-Me-treated mice compared to animals 

receiving vehicle control (Fig. 38D).  These in vivo results are consistent with cell 

culture studies (Figs. 34 and 35) demonstrating for the first time that CDDO-Me 

represses expression of Sp1, Sp3 and Sp4 transcription factors and Sp-

dependent gene products, suggesting that this hitherto unrecognized pathway 

also contributes to the anticancer activity of CDDO-Me and related compounds. 

Discussion 

Sp1 was the first transcription factor identified and is a member of the 

Sp/Krüppel-like family (KLF) of zinc finger transcription factors that exhibit a 

broad range of tissue-specific and overlapping functions (150, 170).  Although 

Sp transcription factors are important during embryonic development, there is 

evidence that in humans and laboratory animals of a marked decrease in Sp1 

with aging (166, 167) and studies in this laboratory show that Sp1, Sp3 and Sp4 

levels in non-tumor tissue of mice are minimal to non-detectable (158, 162, 168).  

Several reports show that Sp1 protein is overexpressed in different human tumor 

types including gastric, colorectal, pancreatic, epidermal, thyroid and breast 

cancers (160, 164, 230-233, 268, 293).  In gastric cancer patients, there was an 
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association between Sp1 expression with advanced stage of the tumor, VEGF 

expression, and poor survival (231).  Although the mechanism of Sp 

overexpression has not been determined, Lou and coworkers (157) have shown 

that malignant transformation of human fibroblasts resulted in an 8- to 18-fold 

increase in Sp1 expression and the transformed cells formed tumors in athymic 

nude mouse xenografts.  In contrast, these transformed cells were not 

tumorigenic after knockdown of Sp1.  Sp1 is overexpressed in pancreatic cancer 

cells (268) and there is a correlation between expression of Sp1 and the 

angiogenic factor vascular endothelial growth factor (VEGF).  Moreover, it was 

recently reported that Sp1 was a biomarker that identifies patients with a highly 

aggressive sub-type of pancreatic ductal adenocarcinomas (160).  Studies in 

this laboratory show that Sp1, Sp3 and Sp4 are overexpressed in pancreatic and 

other cancer lines and knockdown of Sp1, Sp3 and Sp4 by RNA interference 

indicates that expression of several growth promoting, pro-survival and 

angiogenic genes/responses are regulated by these transcription factors (153, 

162, 164, 165, 168).   

The high expression of Sp1, Sp3 and Sp4 proteins in cancer cells and 

tumors coupled with their regulation of several critical pro-oncogenic genes 

suggests that these transcription factors are potentially important drug targets.  

The non-steroidal antiinflammatory drug tolfenamic acid, the triterpenoid 

betulinic acid, curcumin and CDODA-Me have previously been characterized as 

agents that inhibit cancer cell and tumor growth in rodent models and induce 
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downregulation of Sp1, Sp3 and Sp4 through proteasome-dependent and -

independent pathways (162, 163, 165, 168).  CDDO/CDDO-Me and 

CDODA/CDODA-Me activate PPAR and exhibit some common and also 

different activities in colon and pancreatic cancer cells (145, 203, 281).  A recent 

study in colon cancer cells showed that CDODA-Me downregulated expression 

of Sp1, Sp3 and Sp4 and Sp-regulated gene products (163).  Results in Figures 

34 and 35 show that CDDO and CDDO-Me also decreased expression of Sp1, 

Sp3 and Sp4 and Sp-regulated genes such as cyclin D1, VEGF, VEGFR2 and 

survivin in Panc1, Panc28 and L3.6pL pancreatic cancer cells.  Moreover, 

repression of these gene products by CDDO and CDDO-Me were observed at 

concentrations that were comparable to those required for inhibition of Panc1, 

Panc28 and L3.6pL cell growth and induction of apoptosis (Figure 33).  In 

contrast to previous reports with tolfenamic acid in pancreatic cancer cells (158, 

162), CDDO-Me induced proteasome-independent downregulation of Sp1, Sp3 

and Sp4 in pancreatic cancer cells (Figure 35D).  CDDO-Me also decreased 

luciferase activity in cells transfected with constructs containing Sp1, Sp4, VEGF 

and survivin gene promoter inserts and decreased Sp1 mRNA expression 

(Supplement Figures 33 and 34) which is consistent with the effects of CDDO-

Me on transcription.  These in vitro cell culture studies confirm the potency of 

CDDO-Me as an inhibitor of pancreatic cancer cell growth and demonstrate for 

the first time that that anticancer activity is due, in part, to targeting of Sp 

transcription factors and Sp-regulated genes.  Further evidence for the role of 
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this pathway in the activity of CDDO-Me was observed in an orthotopic model for 

pancreatic cancer where CDDO-Me (7.5 mg/kg/day) not only inhibited tumor 

growth but also decreased expression of Sp1, Sp3 and Sp4 proteins in 

pancreatic tumors (Figure 38).  These results suggest that CDDO-Me activates 

comparable pathways both in vitro and in vivo and this has previously been 

observed for other agents that target Sp transcription factors (158, 162, 163, 

165). 

CDDO-Im-dependent anticarcinogenic activity in pancreatic cancer cells 

has been linked to its mitochondriotoxic activity (185) which was characterized 

by decreased MMP and GSH and induction of ROS and these responses were 

blocked in cells cotreated with thiol antioxidants.  Not surprisingly, CDDO-Me 

also induced a similar pattern of mitochondriotoxic responses in pancreatic 

cancer cells which were inhibited after cotreatment with thiol antioxidants (Figure 

36).  A recent study in prostate cancer cells also linked the pro-apoptotic activity 

of CDDO-Me to induction of ROS (294)  Since induction of ROS and ROS-

dependent responses play an important role in the anticancer activity of 

mitochondriotoxic anticancer drugs such as arsenic trioxide (205), we 

hypothesized that repression of Sp transcription factors may be an ROS-

dependent response.  Results in Figure 36D show that CDDO-Me-dependent 

downregulation of Sp1, Sp3 and Sp4 proteins is significantly inhibited in Panc1 

and L3.6pL cells after cotreatment with GSH and DTT.  Moreover, using 

hydrogen peroxide and t-butyl hydroperoxide as prototypical ROS, both oxidants 
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also decreased expression of Sp1, Sp3 and Sp proteins in pancreatic cancer 

cells (data not shown).  These results demonstrate that the effects of CDDO-Me 

on mitochondria are linked to ROS-dependent downregulation of Sp1, Sp3 and 

Sp4 and we have also observed similar effects with arsenic trioxide in pancreatic 

cancer cells (205).   

The role of miR-27a and its suppression of the zinc finger protein ZBTB10 

in regulating expression of Sp1, Sp3 and Sp4 has previously been characterized 

in breast and colon cancer cells (27, 31).  Both antisense miR-27a and ZBTB10 

overexpression decrease Sp and Sp-dependent genes in these cell lines (162, 

164), and this is related to the effects of ZBTB10 which binds GC-rich sites and 

acts as an transcriptional repressor (291).  Treatment of Panc1 and L3.6pL cells 

with CDDO-Me decreased expression of miR-27a (Figure 37A) and this was 

accompanied by induction of ZBTB10 (Figure 37B).  These results are 

comparable to those observed for the structurally-related triterpenoid CDODA-

Me in colon cancer cells (162, 164).  We also confirmed that ZBTB10 

overexpression in Panc1 and L3.6pL cells decreased levels Sp1, Sp3 and Sp4 

proteins as observed in colon and breast cancer cells (162, 164).  These studies 

also demonstrate for the first time that CDDO-Me-dependent induction of ROS is 

critical for downstream events since antioxidants inhibit downregulation of miR-

27a, induction of ZBTB10 (Figure 38C), and repression of Sp1, Sp3 and Sp4 

(Figure 36D) in Panc1 and L3.6pL cells treated with CDDO-Me.   
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In summary, we have shown that CDDO-Me is highly cytotoxic to 

pancreatic cancer cells and tumors and this is consistent with previous reports 

on the potent anticancer activity of CDDO and related compounds (176, 177, 

185, 203, 234, 279-289).  Our results demonstrate for the first time that CDDO 

and CDDO-Me induce downregulation of Sp1, Sp3 and Sp4 transcription factors 

as well as several Sp-dependent genes that are associated with cancer cell 

survival, growth and angiogenesis.  These observations suggest that this 

pathway contributes to the potent antitumorigenic activity of CDDO and related 

compounds and may also explain, in part, the broad spectrum of activities of 

these drugs in cancer cell lines.  CDDO-Me, like its imidazole derivative (185), 

also induces ROS and decreases MMP in pancreatic cancer cells.  We show 

that the induction of ROS leads to a cascade of events in which miR-27a is 

decreased and this is accompanied by induction of ZBTB10, a suppressor of Sp 

transcription factors and Sp-dependent genes (158, 162, 164).  Activation of the 

ROS-miR-27a:ZBTB10–Sp axis by CDDO-Me represents a novel and highly 

practical route for targeting several Sp-regulated genes that play an important 

role in carcinogenesis.  Current research is focused on improving the efficacy of 

drugs that target Sp transcription factors and also determining the specific ROS-

induced factors and other pathways that lead to downregulation of miR-27a and 

other miRs that regulate potential Sp-repressor genes. 
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VI. CELASTROL INHIBITS PANCREATIC CANCER CELL AND TUMOR 

GROWTH AND DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION 

FACTORS 

Specificity protein (Sp) transcription factors Sp1, Sp3 & Sp4 are 

overexpressed in multiple tumor types and negative prognostic factors for 

survival. Since Sp transcription factors regulate genes associated with survival 

(survivin), angiogenesis [vascular endothelial growth factor (VEGF) and its 

receptors] and growth (cyclin D1), research in this laboratory has focused on 

development of anticancer drugs that decrease Sp protein expression. Celastrol, 

a naturally occurring triterpenoid acid from an ivy-like vine exhibits anticancer 

activity and treatment of Panc-28 and L3.6pl pancreatic cancer cells with 1.0 – 

5.0 µM celastrol decreased cell survival and IC50 values for inhibition of cell 

proliferation were 3.2 & 3.6 µM respectively. Celastrol also induced apoptosis 

and decreased expression of survivin, cyclin D1, epidermal growth factor 

(EGFR), insulin growth factor receptor (IGFR)-1β and VEGF in Panc-28 and 

L3.6pl cells suggesting that decreased expression of these genes may be due to 

downregulation of Sp proteins. Treatment of Panc-28 and L3.6pl cells with 1 – 5 

µM celastrol decreased Sp1, Sp3 and Sp4 protein expression in both cell lines 

and cotreatment with the proteosome inhibitor MG132 did not inhibit down-

regulation of Sp proteins. The mechanism of celastrol-induced repression of Sp 

proteins was associated with down regulation of microRNA-27a (mir-27a). 

Decreased mir27a results in the induction of ZBTB10, a zinc finger protein that 
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acts as a Sp-repressor by competitive interaction with Sp proteins bound to GC-

rich promoter elements. At a dose of 4 mg/kg every second day celastrol also 

inhibited pancreatic tumor growth in athymic nude mice bearing L3.6pl cells as 

xenografts and Sp proteins were also decreased in tumors from treated mice. 

This study demonstrates that the anticancer activity of celastrol in pancreatic 

cancer due to celastrol-mir27a interactions resulting in ZBTB10-dependent 

repression of Sp and Sp-dependent genes 

Introduction 

Traditional medicines have been extensively used for treating a wide 

variety of diseases including cancer and many individual natural products 

identified in plant and microbial-derived medicinal extracts have become 

important pharmaceuticals (274-276). Extracts of Taxus species have been used 

by Native American tribes and Indians for various health problems (295) and one 

of the active constituents (taxol, paclitaxel) and structurally related taxanes are 

widely used anticancer drugs (296). Extracts of the Chinese plant Artemisia 

annua have been used for several centuries to treat fever and artemisinin, the 

active component is used for clinical management of malaria and shows promise 

as an anticancer drug (297-299). Extracts from Tripterygium wilfordii (“Thunder 

of God Vine”) have been used in traditional Chinese medicine for treating 

various health problems and its efficacy is due, in part to celastrol, one of the 

bioactive components. Celastrol is a quinone methide derived from the 

triterpenoid glycyrrhetinic acid which is also a bioactive compound.  Celastrol 
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exhibits anti-inflammatory activity and has been used for treatment of asthma, 

chronic inflammation autoimmune and neurodegenerative diseases (300-306).  

Several studies show that celastrol exhibits anticarcinogenic activity in 

various cancer models. For example, celastrol inhibit human prostate cancer cell 

and tumor growth and this has been associated with its activity as a proteasome 

inhibitor which blocks chymotrypsin-like activity of a purified 20S proteasome 

(307). Celastrol also inhibits induced NFκB-dependent responses in several 

different cell lines (308), modulates expression and function of heat shock 

responses (309, 310) and induces apoptosis and activation of c-jun N-terminal 

kinase (JNK) in melanoma (311). Celastrol also inhibited growth, angiogenesis 

and expression of angiogenic genes including vascular endothelial growth factor 

receptor 1 (VEGFR1) and VEGFR2 in glioma tumors in a mouse xenograft 

model (312). RNA interference studies in this laboratory have shown that 

knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 that 

are overexpressed in pancreatic cancer cells is accompanied by downregulation 

of several Sp-dependent genes including VEGF, VEGFR1 and VEGFR2 (153, 

158, 159, 162). In previous studies we have identified several anticancer drugs 

including the non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid, 

curcumin and two triterpenoids, betulinic acid and methyl 2-cyano-3,11-dioxo-

18βolean-1,12-dien-30-oate (CDODA-Me) that also decreased expression of 

angiogenic genes and other Sp-regulated genes through their downregulation of 



247 
 

Sp1, Sp3 and Sp4 proteins in pancreatic and other cancer cell lines (147, 162-

165, 168).  

Therefore we hypothesized that the anticancer activity of celastrol in 

pancreatic cancer may also be due, in part, to downregulation of Sp1, Sp3, Sp4 

and Sp-regulated genes in this study and pancreatic cancer cells and a mouse 

xenograft model was used to test the hypothesis. Celastrol inhibited Panc28 and 

L3.6pL pancreatic cancer cell growth and induced apoptosis in these cells. 

Celastrol also decreased expression of several Sp-regulated genes including 

VEGF and NFκB and we also observed downregulation of Sp1, Sp3 and Sp4 

proteins. Celastrol also decreased microRNA-27A (miR-27a) and increased 

expression of ZBTB10, a zinc finger Sp repressor protein that interacts with GC-

rich Sp binding sites to inhibit gene expression (163, 164, 291). This mechanism 

of action for celastrol was similar to that previously reported for CDODA-Me in 

colon cancer cells (163) however, we also show that Sp downregulation due to 

the induction of reactive oxygen species (ROS), and current studies are focus on 

mitochondria as an initial cellular target for celastrol and the role of ROS on miR-

27a and ZBTB10. 
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Materials and methods 

Cell lines 

Panc28 cell line was a generous gift from Dr. Paul Chiao and L3.6pL cells 

were kindly provided by Dr. Isaiah Fidler (University of Texas M.D. Anderson 

Cancer Center, Houston, TX).  

Antibodies and reagents 

Both pancreatic cancer cell lines were maintained in DMEM-F12 

supplemented with 5% FBS, 0.22% sodium bicarbonate, and 10 mL/L of 100X 

antibiotic/antimycotic cocktail solution (Sigma-Aldrich Co., St. Louis, MO).  Cells 

were grown in 150 cm2 culture plates in an air/CO2 (95:5) atmosphere at 37C.  

Cyclin D1, IGFR1β, p65, p50, Sp3, Sp4 and VEGF antibodies were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA).  Cleaved PARP antibody was 

purchased from Cell Signaling Technology (Danvers, MA) and Sp1 antibody was 

purchased from Millipore (Billerica, MA).  Survivin antibody was purchased from 

R&D systems (Minneapolis, MN).  Monoclonal -actin antibody was purchased 

from Sigma-Aldrich.  Horseradish peroxidase substrate for western blot analysis 

was obtained from Millipore.  Dithiothreitol and -L-glutamyl-L-cysteinyl-glycine 

(GSH) were obtained from Sigma-Aldrich.  Superscript II, LipofectAMINE and 

LipofectAMINE 2000 was purchased from Invitrogen (Carlsbad, CA).  Reporter 

lysis buffer and luciferase reagent were purchased from Promega (Madison, 

WI).  -Galactosidase reagent was obtained from Tropix (Bedford, MA). Primers 
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for TBP and ZBTB10 were purchased from Integrated DNA Technologies 

Technologies (Coralville, IA). Primers for Sp3 and Sp4 were obtained from 

Qiagen (Valencia, CA); and ZBTB10 expression vector and empty vector 

(pCMV6-XL4) were from Origene (Rockville, MD). MiRNA mirvaRNA extraction 

kits and the reverse transcription (RT) and real-time PCR amplification kits were 

purchased from Applied Biosystems (Foster City, CA). The VEGF and survivin 

promoter constructs were provided by Drs. Gerhard Siemeister and Gunter 

Finkenzeller (Institute of Molecular Medicine, Tumor Biology Center, Freiburg, 

Germany) and Dr. M. Zhou (Emory University, Atlanta, GA).  Sp1 and Sp3 

promoter constructs were kindly provided by Drs. Carlos Cuidad and Veronique 

Noe (University of Barcelona, Barcelona, Spain).   

Cell proliferation assay 

Pancreatic cancer cells (3X104 per well) were plated in 12-well plates and 

allowed to attach for 24 hr.  The medium was then changed to DMEM/Ham‟s F-

12 medium containing 2.5% charcoal-stripped FBS, and either vehicle (DMSO) 

or different doses of celastrol in the presence or absence of ROS inhibitors was 

undertaken. Cells were trypsinized and counted after 24 hr using a Coulter Z1 

particle counter. Each experiment was done in triplicate and results are 

expressed as means ± SE for each treatment group.  
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Transfection and luciferase assay  

Pancreatic cancer cells (1x105 per well) were plated in 12-well plates in 

DMEM/Ham‟s F-12 medium supplemented with 2.5% charcoal-stripped FBS.  

After 24 hr, various amounts of DNA [i.e., 0.4 g PGL2-Luc, 0.4 g PGL3-Luc, 

0.04 g -galactosidase, and 0.4 g pSp1 (4)-Luc or 0.4 g pSp3-Luc or 0.4 g 

VEGF (2068)-Luc or 0.4 g pSurvivin (269)-Luc or 0.4 µg pNFκB-Luc] were 

transfected using Lipofectamine reagent according to the manufacturer‟s 

protocol.  Five hr post-transfection, the transfection mix was replaced with 

complete medium containing either vehicle (DMSO) or the indicated compound 

in DMSO.  After 22 hr, cells were then lysed with 100 L of 1X reporter lysis 

buffer, and cell extracts (30 mL) were used for luciferase and -galactosidase 

assays. A Lumicount luminometer was used to quantitate luciferase and -

galactosidase activities, and the luciferase activities were normalized to -

galactosidase activity. 

Western blots 

Pancreatic cancer cells (3x105 per well) were seeded in 6 well plate in 

DMEM/Ham‟s F-12 medium containing 2.5% charcoal-stripped FBS and after 24 

hr, cells were treated with either vehicle (DMSO) or the indicated compounds.  

Cells were collected using high-salt buffer [50 mmol/L HEPES, 0.5 mol/L NaCl, 

1.5 mmol/L MgCl2, 1 mmol/L EGTA, 10% glycerol, and 1% Triton-X-100] and 10 

L/mL of Protease Inhibitor Cocktail (Sigma-Aldrich).  Protein lysates were 
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incubated for 3 min at 100C before electrophoresis, and then separated on 

10% SDS–PAGE 120 V for 3 to 4 hr.  Proteins were transferred onto 

polyvinylidene difluoride (PVDF) membranes by wet electroblotting in a buffer 

containing 25 mmol/L Tris, 192 mmol/L glycine, and 20% methanol for 1.5 hr at 

180 mA.  Membranes were blocked for 30 min with 5% TBST-Blotto [10 mmol/L 

Tris-HCl, 150 mmol/L NaCl (pH 8.0), 0.05% Triton X-100, and 5% nonfat dry 

milk] and incubated in fresh 5% TBST-Blotto with 1:500 primary antibody 

overnight with gentle shaking at 4C.  After washing with TBST for 10 min, the 

PVDF membrane was incubated with secondary antibody (1:5000) in 5% TBST-

Blotto for 2 hr by gentle shaking.  The membrane was washed with TBST for 10 

min, incubated with 6 mL of chemiluminescence substrate for 1 min, and 

exposed to Kodak image station 4000 mm Pro (Carestreamhealth, Woodbridge, 

Connecticut).   

Xenograft study 

Female athymic nude mice, age 4 to 6 weeks, were purchased from 

Harlan.  L3.6pL cells (3 x 105) in 1:1 ratio of Matrigel (BD Biosciences) were 

injected into the either side of the flank area of nude mice.  Seven days after the 

tumor cell inoculation, mice were divided into two groups of 10 animals each.  

The first group received 100 L vehicle (corn oil) by i.p. injection, and the second 

group of animals received 4 mg/kg/d injection of celastrol in corn oil every 2nd 

day for 16 d (8 doses) by i.p. injection.  The mice were weighed, and tumor 
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areas were measured throughout the study.  After 18 d, the animals were 

sacrificed; final body and tumor weights were determined and plotted. 

ROS estimation  

Cellular ROS levels were evaluated with the cell-permeable probe CM-

H2DCFDA (5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate 

acetyl ester) from Invitrogen.  Following treatment for 20-24 hr, cells plated on 

96 well cell culture plate were loaded with 10 M CM-H2DCFDA for 30 min, 

washed once with serum free medium, and analyzed for ROS levels using the 

BioTek Synergy 4 plate reader (Winooski, VT) set at 480 nm and 525 nm 

excitation and emission wavelengths, respectively.  Following reading of ROS, 

cultures were then treated with Janus green and cell counts were determined 

with the plate reader set to an absorbance of 610 nm, and ROS intensities were 

then corrected accordingly.  Each experiment was done in triplicate and results 

are expressed as means  SE for each treatment group.  

Statistical analysis 

Statistical significance of differences between the treatment groups was 

determined by an analysis of variance and/or Student‟s t-test, and levels of 

probability were noted.  IC50 values were calculated using linear regression 

analysis and expressed in M, at 95% confidence intervals. 
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Results 

Panc28 and L3.6pL pancreatic cancer cells were treated with 1.0 – 5.0 

µМ celastrol for 24 hr and this resulted in significant inhibition of cell proliferation 

with IC50 values of 3.2 and 3.6 µМ respectively (Figure 39A). After treatment for 

longer time periods (144 hr) IC50 values decreased (data not shown) 

demonstrating that celastrol was a potent inhibitor of pancreatic cancer cell 

growth. We also examined the effects of celastrol on expression of several gene 

products associated with cell growth [cyclin D1, epidermal growth factor receptor 

(EGFR), insulin-like growth factor receptor 1β (IGFR1β), vascular endothelial 

growth factor (VEGF)] and apoptosis (survivin, PARP cleavage) (Figure 39). The 

results show that celastrol decreased expression of cyclin D1, EGFR, IGFR1β 

and the angiogenic growth factor VEGF and decreased expression of the 

antiapoptotic protein survivin and this was accompanied by induction of 

caspase-dependent PARP cleavage (Figures 39B & 39C).  
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Figure 39. Celastrol inhibits cell growth, induces apoptosis and 

downregulates VEGF, survivin, CD1, IGFR1β and EGFR in pancreatic 

cancer cell lines. 

Inhibition of L3.6pL and Panc-28 cell growth by celastrol (A). Cells were 

treated with DMSO (solvent control), 1.0, 2.5 or 5.0 µM celastrol and effects on 

cell growth were determined over a period of 24 hr as described in the Materials 
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and Methods. Results are expressed as means ± SE for three replicate 

determinations for each treatment group and significant (P < 0.05) inhibition (*) 

of responses are indicated. Downregulation of VEGF, survivin, CD1 (B), IGFR1β 

and EGFR (C) proteins in L3.6pL and Panc-28 cell lines by celastrol. L3.6pL and 

Panc-28 cells were treated with DMSO and 1.0, 2.5 or 5.0 µM celastrol for 24 hr 

and whole-cell lysates were analyzed by western blot analysis as described in 

Materials and Methods. β-Actin served as a loading control.  

Previous studies in this laboratory show that genes such as survivin, 

VEGF, cyclin D1 and EGFR are regulated by Sp1, Sp3 and Sp4 transcription 

factors which are overexpressed in pancreatic and other cancer cell lines (147, 

162-165, 168). Treatment of L3.6pL and Panc28 cells with 1.0 – 5.0 µМ celastrol 

decreased expression of Sp1, Sp3 and Sp4 proteins in both cell lines (Figure 

40A) and this response was not reversed after cotreatment with the proteasome 

inhibitor MG132 (Figure 40B). These results are in contrast to previous studies 

with tolfenamic acid which induces proteasome-dependent downregulation of 

Sp1, Sp3 and Sp4 in pancreatic cancer cells and tumors (Figure 40) (162).  
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Figure 40. Celastrol downregulates Sp proteins in a proteosome-

independent manner. 

Celastrol decreases Sp protein expression in L3.6pL and Panc-28 cells 

(A). Cells were treated with DMSO and 1.0, 2.5 or 5.0 µM celastrol for 24 hr and 

whole-cell lysates were analyzed for Sp1, Sp3 and Sp4 by western blot analysis 
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as described in Materials and Methods. B. Proteosome-independent 

downregulation of Sp proteins by celastrol. L3.6pL and Panc-28 Cells were 

treated with DMSO and 5.0 µM celastrol in the presence or absence of 

proteasome inhibitor MG132 (10 µM) and the effects on Sp protein degradation 

were determined after treatment for 24 hr by western blot as described in 

Materials and Methods. β-Actin served as a loading control. 

Recent studies in this laboratory demonstrated the p65 and p60 subunits 

of NFκB were also regulated by Sp transcription in bladder and pancreatic 

cancer cells (146, 147) (Curcumin-In revision) and results in Figure 41A show 

that treatment of L3.6pL and Panc28 cells with celastrol decreased expression 

of p65 and p50 proteins. Moreover, celastrol also decreased luciferase activity in 

cells transfected with a construct (NFκB-luc) containing 5 tandem NFκB 

response element linked to luciferase (Figure 41B). The effects of celastrol on 

constructs containing GC-rich promoter inserts from the Sp1, Sp3, survivin and 

the VEGF genes were also investigated using L3.6L cells (Figures 41C & 41D) 

and celastrol decreased luciferase activity in cells transfected with all of these 

constructs (Figure 41).  
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Figure 41. Celastrol downregulates p65 and p50 protein subunits of NFkB 

and decreases the activity of NFkB, Sp1, Sp3, VEGF and survivin 

promoters in L3.6pL and Panc-28 cell lines. 

Effect of celastrol on p65 and p50 proteins (A). L3.6pL and Panc-28 cells 

were treated with DMSO and 2.5 or 5.0 µM Celastrol for 24 hr and the nuclear 

extracts were analysed by western blot as described in materials and methods. 

L3.6pL and Panc-28 cells were transfected with pNFkB (B), pSp1, pSp3 (C), 
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psurvivin or pVEGF-Luc (D), and treated with DMSO and 2.5 or 5.0 µM Celastrol 

for 22 hr and the luciferase activity was determined as described in Materials 

and Methods. Results are expressed as means ± SE for three replicate 

determinations for each treatment group and significant (P < 0.05) inhibition (*) 

of responses are indicated. 

In ongoing studies with the synthetic triterpenoid anticancer drug methyl –

cyano-3,12-dioxooleana-1,9(11)-dien-29-oate (CDOD-Me) we observed that this 

compound also decreased expression of Sp1 proteins and that this response 

was dependent on induction of ROS and reversed by thiol antioxidants GSH 

and/or DTT (In review). Results in Figure 42A shows that celastrol induced ROS 

in L3.6pL and Panc28 cells and this response was significantly inhibited after 

cotreatment with celastrol plus GSH. In addition, we also observed that celastrol-

dependent downregulation of Sp1, Sp3 and Sp4 proteins in pancreatic cancer 

cells was also reversed after cotreatment with DTT or GSH (Figure 42B). The 

role of ROS in mediating the growth inhibitory activity of celastrol was also 

investigated in pancreatic cancer cells (Figure 42C). Celastrol decreased 

proliferation of L3.6pL and Panc28 cells however cotreatment with GSH or DTT 

completely reversed this response demonstrating that induction of ROS was 

critical for both celastrol-induced growth inhibition and Sp downregulation 

(Figure 42). Currently we are investigating the role of ROS in mediating 

downregulation of microRNA-27a and induction of the SP-repressor ZBTB10 by 

celastrol in pancreatic cancer cells. 
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Figure 42. Role of oxidative stress in mediating the effects of celastrol on 

Sp proteins and cell growth in pancreatic cancer cells. 

Reversal of celastrol mediated downregulation of Sp proteins by thiol 

antioxidants (A) and cell growth (B). Cells were treated with DMSO, 2.5 or 5.0 

µmol/L celastrol in the presence or absence of DTT or GSH for 24 hr and the 

cells were either counted or whole cell lysates were analyzed by western blots 
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as described in Materials and Methods. β-Actin served as a loading control. C. 

Effect of celastrol on ROS. Cells were treated with DMSO, 2.5 or 5.0 µmol/L 

celastrol alone or in combination with GSH. ROS was measured using BioTek 

Synergy 4 plate reader using 10 M CM-H2DCFDA dye as described in 

Materials and Methods and normalized fluorescence intensity against control is 

plotted as a bar diagram. Results are expressed as means ± SE for three 

replicate determinations for each treatment group, and significant (P < 0.05) 

CSL-induced increases (**) or decreases (*) compared to the solvent (DMSO) 

control are indicated. 

The in vivo anticancer activity of celastrol was determined in athymic 

nude mice bearing L3.6pL cells as xenografts. Celastrol at a dose of 4 mg/kg/d 

decreased tumor growth and tumor weights (Figures 43A & 43B), decreased 

expression of Sp1, Sp3 and Sp4 proteins and also decreased survivin in VEGF 

levels in tumors compared to corn oil-treated animals. The in vivo studies were 

carried out only over a relatively short period due to the rapid growth of the 

L3.6pL-derived tumors. The in vivo data complemented the cell culture results 

and show that the potent anticancer activity of celastrol is due, in part, to 

downregulation of Sp1, Sp3 and Sp4 transcription factor which are 

overexpressed in pancreatic cancer cells and in human tumors (Figure 43) (158, 

162).  
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Figure 43. Celastrol inhibits pancreatic tumor growth and downregulates 

Sp proteins and Sp dependent genes. 

Tumor Volume (A) and weights (B). Female athymic nude mice bearing 

pancreatic (L3.6pL) tumors were treated with corn oil or celastrol (4 mg/Kg) for 

14 days after tumors have reached palpabale size and tumor weights and tumor 

volumes (mm3) were determined as described in Materials and Methods.  
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Significant (P < 0.05) inhibition (*) is indicated in results as means ± SE for six 

animal per treatment.  Western blot analysis of tumor lysates for Sp proteins and 

Sp dependent proteins (C). Lysates from fours mice in the treated and control 

groups were analyzed by western blots as described in Materials and Methods. 

β-Actin served as loading control. 

Discussion 

Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer-

related deaths in developed countries and, in 2009, it is estimated that in excess 

of 34,000 new cases will be diagnosed in the United States (2). PDAC is a highly 

aggressive disease that invariably evades early diagnosis (313). The mean 

survival time for patients with metastatic disease is only 3 – 6 months, and the 1-

year survival time for all pancreatic cancers cases is approximately 20-30%. 

Moreover, current therapies for pancreatic cancer use cytotoxic drugs which are 

accompanied by toxic side-effects and are largely ineffective. Therefore, 

research in this laboratory has focused on development of new mechanism-

based drugs that target Sp transcription factors and Sp-dependent genes in 

pancreatic tumors but are accompanied by minimal toxic side-effects (146, 153, 

158, 159, 162) (curcumin-In revision). Although Sp transcription factors are 

important during embryonic development, there is evidence that in humans and 

laboratory animals that there is a marked decrease in Sp1 with aging (166, 167) 

and studies in this laboratory show that Sp1, Sp3 and Sp4 levels in non-tumor 

tissue of mice are minimal to non-detectable (163, 165). Several reports show 
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that Sp1 protein is overexpressed in different tumor types including gastric, 

colorectal, pancreatic, epidermal, thyroid and breast cancers (160, 230-232, 

268). Lou and coworkers (157) have shown that malignant transformation of 

human fibroblasts resulted in an 8- to 18-fold increase in Sp1 expression and the 

transformed cells formed tumors in athymic nude mouse xenografts. In contrast, 

Sp1 knockdown gave cells that were non-tumorigenic in the same mouse 

xenograft model. Sp1 is overexpressed in pancreatic cancer cells (153, 162, 

268) and there is a correlation between expression of Sp1 and the angiogenic 

factor vascular endothelial growth factor (VEGF). Moreover, it was recently 

reported that Sp1 was a biomarker that identifies patients with a highly 

aggressive sub-type of pancreatic ductal adenocarcinomas (160). 

Tolfenamic acid induces proteasome-dependent degradation of Sp1, Sp3 

and Sp4 in pancreatic cancer cells (162); however, results of preliminary studies 

show that although both BA and CDODA-Me decrease Sp1, Sp3 and Sp4 in 

pancreatic cancer cells, these effects are proteasome-independent. The 

triterpenoid betulinic acid in LNCaP prostate cancer cells (168) and curcumin in 

bladder cancer cells (165) also induced proteasome-dependent degradation of 

Sp proteins, however a new synthetic pentacyclic is triterpenoid, CDODA-Me 

decreased Sp1, Sp3 and Sp4 expression in colon cancer cells and this response 

was proteasome-independent (163). The cytotoxic and antiangiogenic activity of 

celastrol is similar to that of other triterpenoids, however, based on a report that 

celastrol decreased VEGFR1 and VEGFR2 expression in glioma tumors (312) 
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we hypothesized that these and possibly other responses may be due, in part, to 

downregulation of Sp transcription factors. Results in Figure 39 show that 

celastrol inhibited growth of L3.6pL and Panc28 cells and this was accompanied 

by downregulation of several proteins associated with the growth, survival and 

angiogenic activity of these cells. Previous studies in pancreatic and other 

cancer cell lines how that cyclin D1, p65/p50 (NFκB), survivin, EGFR and VEGF 

are regulated by Sp transcription factors (147, 153, 158, 162-165, 168) 

(curcumin – In revision). Moreover, the IGFR1β, gene is also an Sp regulated 

gene (314) and we observed that celastrol also decreased expression of this 

receptor (Figure 39C). Not surprisingly, decreased expression of these proteins 

was paralleled by celastrol-induced downregulation of Sp1, Sp3 and Sp4 

proteins in L3.6pL and Panc28 cells (Figure 40) and in tumors from athymic 

nude mice bearing L3.6pL cells as xenografts (Figure 43). The NSAID 

tolfenamic acid was the first compound identified that decreased all 3 Sp 

proteins in pancreatic cancer cells (162) and this effect was due to activation of 

proteasomes and the subsequent proteasome-dependent degradation of Sp1, 

Sp3 and Sp4. In contrast, celastrol did not induce proteasome-dependent 

degradation of Sp transcription factors (Figure 40B) and studies with various 

promoter constructs suggest that celastrol decreased transcription of Sp1, Sp3 

and Sp4 (Figure 41). 

Recent studies with the synthetic triterpenoid CDDO-Me (In review) in 

pancreatic cancer cells indicate that this compound was mitochondrio toxic and 
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induced ROS and this has previously been reported for this compound in other 

cell lines (294, 314). Treatment of Panc28 and L3.6pL cells with celastrol also 

induced ROS, however, after cotreatment with the thiol antioxidant GSH there 

was a significant decrease in ROS levels (Figure 42A). Moreover celastrol 

dependent growth inhibition (Figure 42C) and downregulation of Sp1, Sp3 and 

Sp4 proteins (Figure 42B) was also inhibited after cotreatment with the cellular 

antioxidants GSH or DTT. Previous studies indicate that at least one mechanism 

of transcriptional repression of Sp transcription factors involves drug-induced 

downregulation of miR-27a with the subsequent upregulation of the miR-27a 

regulated ZBTB10 gene (291) which is an Sp-repressor (163, 164, 291). 

Celastrol downregulates miR-27a and induces ZBTB10 expression in L3.6pL 

cells (data not shown) and we are currently investigating the role of antioxidants 

in modulating the effects of celastrol of miR-27a:ZBTB10. 

In summary our results confirm that celastrol, like other triterpenoids 

inhibits cancer cell and tumor growth and in pancreatic cancer cells these effects 

are accompanied by ROS-dependent downregulation of Sp1, Sp3, Sp4 and Sp-

dependent genes and we are currently investigating the ROS:miR-27a:ZBT10-

Sp axis as a mechanism for these responses. The results also show that 

induction of ROS is a critical determinant in the cytotoxicity of celastrol (Figure 

42C) and this is also accompanied by ROS-dependent downregulation of Sp 

transcription factors suggesting that celastrol-induced downregulation of Sp1, 

Sp3 and Sp4 contributes to the cytotoxicity. These results expand the reported 
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anticancer activities of celastrol and the relative contributions of celastrol-

induced repression of Sp1, Sp3 and Sp4 to the overall effects of this drug will be 

dependent on cancer cell context. However, for those pancreatic cancer patients 

that overexpress Sp1 and have tumors that exhibit aggressive behavior (160) it 

is possible that drugs such as celastrol and other compounds that target Sp 

downregulation may be a treatment option for this devastating disease. 
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VII. SUMMARY 

PPAR is a ligand-activated transcription factor belonging to the nuclear 

hormone receptor family and related to retinoid, glucocorticoid and thyroid 

hormone receptors. PPAR is overexpressed in multiple tumor types and cancer 

cell lines suggesting that this receptor may be a potential target for cancer 

chemotherapy.  CDODA-Me activated PPAR in Panc28 and Panc1 cells and 

induced PPAR-dependent transactivation and differentiation of 3T3-L1 pre-

adipocytes which is a prototypical PPAR-dependent response. CDODA-Me 

also induced p21 and p27 and decreased cyclin D1 expression in Panc1 and 

Panc28 cells, however, studies with the PPAR antagonist GW9662 indicated 

that these responses were receptor-independent. CDODA-Me inhibited growth 

and induced apoptosis through induction of proapoptotic proteins NAG-1 and 

ATF3 in Panc28 and Panc1 cells and cotreatment with the PPAR antagonist 

GW9662 did not reverse these responses.   Previous studies show that CDODA-

Me induced proapoptotic proteins NAG-1 and ATF3 in a receptor independent 

manner in LNCaP prostate cancer cells, and these responses were dependent 

on induction of Egr-1 (147). In pancreatic cancer cells, Egr-1 was induced prior 

to induction of NAG-1 and this temporal pattern of NAG-1 and Egr-1 induction is 

similar to that observed in other studies where Egr-1 activates NAG-1 through 

interactions with the GC-rich proximal region of the NAG-1 promoter. CDODA-

Me induces phosphorylation of several kinases (PI3K, p38/p42MAPK and JNK) 

in both Panc28 and Panc1 cells, however, induction of Egr-1 was p42MAPK-
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dependent.  In Panc1 cells, the PI3-K and p38 MAPK inhibitors LY294002 and 

SB203580 also blocked induction of NAG-1 demonstrating the contributions of 

Egr-1-dependent and -independent pathways for induction of NAG-1 in Panc1 

cells.  Kinase inhibitor studies in Panc28 showed that induction of NAG-1 by 

CDODA-Me was primarily Egr-1-independent and was inhibited by LY294002 

and SB20358 which did not affect induction of Egr-1 in this cell line.  In 

summary, results of this study demonstrate that CDODA-Me-mediated induction 

of NAG-1 and Egr-1 is cell context-dependent in Panc28 and Panc1 cells and 

current studies are investigating the interplay between kinase activation, 

induction of proapoptotic proteins, and apoptosis by CDODA-Me in pancreatic 

cancer cells and the contributions of other pathways in mediating the 

proapoptotic effects of CDODA-Me in pancreatic cancer cells and tumors (146).  

Sp transcription factors are members of the Sp/Krüppel-like family (KLF) 

of 25 transcription factors that bind GC-rich promoter sequences and regulate 

basal expression of multiple mammalian and viral genes. Knockout of most Sp 

genes in mice is embryolethal or induces serious defects in the neonates. 

However, expression of Sp1 is significantly decreased in rodent and human 

tissues with increasing age (170).  Studies in this laboratory show that in mouse 

xenograft studies, Sp1, Sp3 and Sp4 expression is low in liver, kidney and also 

in more proliferative tissues such as the gastrointestinal tract (168). In contrast, 

expression of Sp1, Sp3 and Sp4 is high in breast, colon, pancreatic, prostate 

and bladder tumor xenografts and their derived cancer cell lines. RNA 
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interference studies in which Sp1, Sp3 and Sp4 are knocked down 

simultaneously demonstrate that Sp transcription factors regulate several genes 

involved in cancer cell survival (survivin, bcl-2, NFB), angiogenesis (VEGF and 

its receptors) and proliferation (cyclin D1, EGFR) (153, 158, 159, 165, 229). 

Malignant transformation of human fibroblasts resulted in an 8- to 18-fold 

increase in Sp1 expression and the transformed cells formed tumors in athymic 

nude mouse xenografts whereas cells were not tumorigenic after knockdown of 

Sp1 (157).  (158, 162, 163, 168, 268)(158, 162, 163, 168, 268)Moreover, a 

recent report showed that Sp1 was a negative prognostic factor for pancreatic 

cancer patient survival (160) and therefore we have been investigating the 

mechanism of action of several anticancer agents that may act, in part, through 

decreasing expression of Sp transcription factors in tumors.  Previous studies 

showed that tolfenamic acid and betulinic acid induced proteasome-dependent 

degradation of Sp1, Sp3 and Sp4 in pancreatic and prostate cancer cells and 

tumors respectively and curcumin also induced proteasome-dependent 

degradation of Sp proteins in bladder cancer cells.   

Arsenic trioxide is currently being used for treatment of leukemia and is 

also being investigated for treating solid tumors. Previous studies reported that 

arsenic trioxide downregulation of several Sp-dependent genes and responses 

(VEGF, angiogenesis, survivin, bcl-2, NFB activity) and in gall bladder 

carcinoma arsenic trioxide decreased Sp1 protein expression (227). However, 

the mechanism of this response and the effects on Sp3 and Sp4 were not 
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determined.  In this study we demonstrated that arsenic trioxide downregulated 

expression of Sp proteins in urological and gastrointestinal-derived cell lines and 

KU7 and 253JB-V bladder cancer cells were used as models for investigating 

the mechanisms of Sp downregulation. Arsenic trioxide inhibited growth of KU7 

cells at low concentrations ( 5 M) and downregulated Sp1, Sp3 and Sp4 

proteins in KU7 cells and tumors whereas only minimal effects on growth and Sp 

downregulation were observed in 253JB-V cells.  In this study we demonstrated 

that differential expression of GSH contributed to the responsiveness of KU7 

and 253JB-V to the effects of arsenic trioxide on cell growth and Sp protein 

downregulation. Arsenic trioxide also induced ROS and decreased GSH and 

MMP in KU7 cells and these responses, in addition to Sp protein downregulation 

were ameliorated after cotreatment with the thiol antioxidants GSH or DTT.  

Induction of ROS by arsenic trioxide and the subsequent downregulation of Sp 

proteins has been directly linked to the cytotoxicity of this compound and other 

mitochondriotoxic anticancer drugs. Like arsenic trioxide, hydrogen peroxide is a 

pro-oxidants and inhibited growth and decreased expression of Sp proteins in 

KU7 cells and these responses were blocked after cotreatment with the 

antioxidant glutathione. Catalase blocked hydrogen peroxide-dependent 

decrease in MMP but had minimal effects on decreased MMP in KU7 cells 

treated with arsenic trioxide. These results suggest that induction of 

extramitochondrial ROS by arsenic trioxide in KU7 cells has a minimal effect on 

MMP, indicating that arsenic trioxide-dependent decrease in MMP and induction 
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of ROS are due to direct effects on the mitochondria.  We also investigated the 

effects of catalase, NAC, and BHA, stress kinase inhibitors of p38MAPK and 

JNK (SB203580 and SP600125), and the NADPH oxidase inhibitor, DPI on 

hydrogen peroxide- and arsenic trioxide-mediated downregulation of Sp1, Sp3 

and Sp4 in KU7 cells.  The results showed that SB203580, SP6000125, DPI and 

BHA had minimal to non-detectable effects on arsenic trioxide-induced 

downregulation of Sp1, Sp3 and Sp4 proteins, suggesting that the major 

pathway targeting these transcription factors involves mitochondria and 

induction of ROS. 

Curcumin is an anti-inflammatory drug and an inhibitor of basal and 

induced NFB-dependent-responses and these activies are important for the 

anticancer effects of curcumin. The nuclear NFB complex containing p65 (Rel 

A) and p50 (NFB1), is a multifunctional nuclear transcription factor that 

regulates expression of multiple genes in a cancer cell context and this results in 

cancer cell proliferation, survival, angiogenesis and metastasis, and promotes 

epithelial to mesenchymal transition (EMT), and inflammation. These responses 

are accompanied by induction of genes such as cyclin D1, survivin, VEGF, bcl-2, 

and COX-2 that contribute to the NFB-regulated effects. Studies in our 

laboratory with curcumin in bladder cancer cells showed that curcumin 

decreased expression of Sp proteins and Sp-dependent genes and in 253JB-V 

cells and it was shown that p65; a subunit of NFB was also an Sp-regulated 

gene (165). Curcumin is currently in clinical trials for treatment of pancreatic 
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cancer and we hypothesized that effects of this compound on NFB were due, in 

part to Sp1, Sp3 and Sp4 downregulation in pancreatic cancer cells (Panc28 

and L3.6pL). Curcumin inhibited proliferation of Panc28 and L3.6pL pancreatic 

cancer cells and decreased basal and TNF-induced expression of both p65 

and p50. Curcumin also downregulated expression of Sp1, Sp3 and Sp4 and 

Sp-dependent genes in Panc28 and L3.6pL pancreatic cancer cells as 

previously observed in bladder cancer cells (165).  However, in bladder cancer 

cells, curcumin-mediated-Sp downregulation was blocked by the proteasome 

inhibitor MG-132, whereas in pancreatic cancer cells, MG-132 did not affect 

curcumin-dependent repression of Sp proteins.  This study also showed that 

after knockdown of Sp proteins using siRNAs for Sp1, Sp3 and Sp4 (in 

combination) decreased expression of both basal and TNF induced levels of 

nuclear p65 and p50 proteins was observed indicating that curcumin-dependent 

inhibition of NFB is due, in part, to downregulation of Sp transcription factors. 

Curcumin also decreased MMP and induced ROS in pancreatic cancer cells and 

cotreatment with GSH or DTT reversed the effects of curcumin on 

downregulation of Sp1, Sp3 and Sp4 and growth inhibition.  

The triterpenoids, CDDO and CDDO-Me also decreased expression of 

Sp1, Sp3 and Sp4 and Sp-regulated genes such as cyclin D1, VEGF, VEGFR2 

and survivin in Panc1, Panc28 and L3.6pL pancreatic cancer cells.  Previous 

studies in pancreatic cancer cells showed that CDDO-Im decreased MMP and 

GSH and induced ROS and these responses were blocked in cells cotreated 
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with thiol antioxidants (185).  Not surprisingly, CDDO-Me also induced a similar 

pattern of mitochondriotoxic responses in pancreatic cancer cells and these 

were inhibited after cotreatment with thiol antioxidants. We also demonstrated 

that CDDO-Me-dependent downregulation of Sp proteins is inhibited in Panc1 

and L3.6pL cells after cotreatment with GSH and DTT. Previous studies in 

breast and colon cancer cells demonstrated that miR-27a suppresses zinc finger 

protein ZBTB10 which regulates expression of Sp1, Sp3 and Sp4 (163, 164).  

Both antisense miR-27a and ZBTB10 overexpression decreased Sp and Sp-

dependent genes in these cell lines, and this was related to the effects of 

ZBTB10 which binds GC-rich sites and acts as an transcriptional repressor.  

Treatment of Panc1 and L3.6pL cells with CDDO-Me decreased expression of 

miR-27a and this was accompanied by induction of ZBTB10 in cells cotreated 

with CDDO-Me plus GSH on miR-27a and ZBTB10 were reversed.  These 

studies demonstrate that CDDO-Me-dependent induction of ROS is critical for 

downstream events since antioxidants inhibit the effects of CDDO-Me on the 

miR-27a:ZBTB10-Sp protein axis in Panc1 and L3.6pL cells.   

Celastrol also inhibited growth of L3.6pL and Panc28 cells and this was 

accompanied by downregulation of Sp protein and Sp-dependent genes 

involved in growth, survival and angiogenesis. Celastrol also decreased 

expression of IGFR1β gene which is another an Sp regulated gene. Celastrol 

did not induce proteasome-dependent degradation of Sp transcription factors; 

however, cotreatment with thiol antioxidants reversed the effects of celastrol on 
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Sp protein downregulation and this was similar to the results observed with 

curcumin, CDDO-Me and arsenic trioxide in pancreatic cancer cells. Celastrol 

downregulated miR-27a and induced ZBTB10 expression in L3.6pL cells and the 

role of antioxidants in modulating the effects of celastrol on miR-27a:ZBTB10 is 

currently being investigated. 

In summary, these drugs (curcumin, arsenic trioxide, CDDO-Me and 

celastrol) inhibit growth of pancreatic and bladder cancer through 

downregulation of Sp proteins and Sp-dependent genes. These compounds 

induce ROS, decrease MMP and this is accompanied by decreased expression 

of miR-27a and induction of ZBTB10 (a Sp repressor) and mechanism for these 

effects is illustrated in Figure 44.   

 

Figure 44. Mechanisms involved in downregulation of Sp transcription 

factors. 
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