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ABSTRACT 

 

Investigation of the Emission Properties of Quantum Dot-Thermoresponsive Polymer 

Nanocomposite Hydrogels with Temperature. 

 (May 2010) 

Ameet Rajkumar Juriani, B.E., Mumbai University 

Co-Chairs of Advisory Committee:  Dr. Kenith E. Meissner 
                          Dr. Rainer Fink 

 

This thesis presents a novel method for the preparation of quantum dot- 

thermoresponsive polymer nanocomposite hydrogels. The quantum dots (QD’s) were 

synthesized in a microwave reactor using a high temperature organometallic synthesis 

procedure. The initial hydrophobic surface layer on the QD’s was coated with an 

amphiphilic polymer to enable phase transfer from non-polar solvent to water followed 

by physical immobilization of the QD’s in the thermoresponsive polymer hydrogel by 

photopolymerization. Their temperature dependent emission properties were 

investigated as a function of concentration of the incorporated QD’s. The resultant 

temperature dependent changes in the position of the peak emission wavelength of the 

QD-polymer nanocomposite hydrogels were found to be due to the change in the 

physical environment causing increased interaction between the embedded amphiphilic 

polymer coated QD’s and/or due to aggregation of QD’s. This change in peak emission 

position was found to be reversible in the temperature range from 29 to 37 °C.  
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NOMENCLATURE 

 

BIS   N, N’-methylenebisacrylamide 

CdO    Cadmium Oxide 

CdSe   Cadmium Selenide 

CdTe   Cadmium Telluride 

DI   Deionized 

DMZ   Dimethylzinc 

FRET Förster Resonance Energy Transfer 

FWHM Full Width at Half Maximum 

FWTM Full Width at Tenth Maximum 

HC High Concentration 

HMDS   Hexamethyldisilathiane 

IR   Infrared 

LC Low Concentration 

LCST Lower Critical Solution Temperature 

LED’s Light Emitting Diodes 

MC Medium Concentration 

MW Microwave 

NIPAM N-isopropylacrylamide 

PEI Polyethylenemine 

PL   Photoluminescent 
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PMMA Poly(methyl methacrylate) 

Poly(NIPAM) Poly(N-isopropylacrylamide) 

PNIPAM Poly(N-isopropylacrylamide) 

QD’s Quantum Dots 

RPM    Rotations per Minute 

RT   Room Temperature 

Se   Selenium 

T Temperature 

TDPA   Tetradecylphosphonic Acid 

TEM Transmission Electron Microscope 

TOP   Tri-n-octylphosphine 

TOPO  Tri-n-octylphosphine Oxide 

UV Ultra Violet 

ZnS   Zinc Sulfide 
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

 

Luminescent semiconductor nanocrystals, or quantum dots (QD’s) have gained 

increasing attention from researchers for their unique optical and electrical 

characteristics due to quantum confinement effects [1]. High luminescence, near 

Gaussian narrow emission, broad absorption band and resistance to photobleaching are 

some of the attractive properties which render QD’s suitable for a variety of 

technological applications ranging from biomarkers [2, 3], light emitting diodes (LED’s) 

[4, 5], solar cells [6] and optical sensing [7, 8].  

 Pioneering work by Murray et al. [9] on colloidal synthesis of monodisperse, size 

tunable type II-IV QD’s followed by significant improvements by Hines et al. [10] and 

Peng et al. [11] made QD synthesis in laboratory feasible. These synthesis methods were 

based on organometallic pyrolysis of precursors which often required heating at 

temperatures up to 300 °C. There were several disadvantages associated with the 

conventional heating methods employed; this affected the quality of the synthesized 

QD’s.  

 
 
 
 
 
 
 
 
____________ 
This thesis follows the style of Biomaterials. 
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Microwave (MW) assisted synthesis procedures gradually emerged as an 

alternative route for efficient QD synthesis [12, 13]. Commercially available MW 

reactors specifically designed for chemical synthesis and equipped with advanced 

control features enabled optimization of existing QD synthesis methods leading to 

precise control of the reaction parameters, faster reaction rates and synthesis of nearly 

monodisperse QD samples with high photoluminescent (PL) intensity. Thus, 

implementation of a MW based system for QD synthesis was considered favorable. This 

report discusses in detail the implementation of the system, methodology and the 

procedure followed for synthesis of QD’s in a MW reactor.   

Nanothermometry finds numerous applications in the areas of biotechnology, 

biosensors and bioMEMS. Various approaches have been devised and developed for 

effective temperature measurement at the nanoscale [14]. Optical nanothermometry 

using QD’s is one such approach. Efforts have been made to use luminescent QD’s as 

standalone optical temperature probes [8, 15]. When incorporated in thermoresponsive 

polymers such as poly(N-isopropylacrylamide), the emission properties of QD’s have 

shown strong dependence with varying temperature [16]. Poly(N-isopropylacrylamide) 

also popularly known as poly(NIPAM) or PNIPAM exhibits a temperature dependent 

phase transition phenomenon and switches from being hydrophilic to hydrophobic and 

vice-versa, in aqueous solution [17]. Thus, when optical properties of QD’s are 

effectively combined with the physical properties of thermoresponsive polymers, they 

can serve as building blocks for optical nanothermometers. 
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In this work, cadmium selenide/zinc sulfide (CdSe/ZnS) core-shell QD’s coated 

with an amphiphilic polymer were incorporated in poly(NIPAM) hydrogels. The 

temperature dependent emission spectra of the hydrogels were then recorded as a 

function of the concentration of the incorporated QD’s. This work has a potential to 

serve as a useful guideline in providing a comprehensive understanding of the feasibility 

of developing QD-thermoresponsive polymer nanocomposite hydrogel based optical 

temperature sensors. 
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CHAPTER II 

BACKGROUND 

 

This chapter explains the implementation of a MW based system for synthesis of 

QD’s. It also discusses the general characteristics of poly(N-isopropylacrylamide) 

thermoresponsive polymer and the temperature dependent behavior of QD-

thermoresponsive polymer nanocomposite hydrogels.  

  

2.1 Heating methods for synthesis of QD’s 

Conventional heating methods such as convective and conductive heating have 

been a primary choice of QD researchers for high temperature initiated QD synthesis. 

Heated oil bath, heating mantle and sand bath are some of the previously utilized heating 

methods [18-22].  A major disadvantage of these methods is that the temperature on the 

outside surface of the reaction vessel is greater than the internal temperature. The 

reaction vessel acts as an intermediary for energy transfer from the heating source to the 

solvent and finally to the reactant molecules. This results in acute thermal gradients 

through the bulk solution causing non-uniform heating conditions [12] (Figure 1). Also, 

due to indirect method of heat transfer it is a time consuming process with limited 

control over the reaction parameters. Specifically for QD synthesis, precise control of 

the reaction parameters such as nucleation time and reaction temperature is a key factor 

for controlling the growth (size) of the nanocrystals and hence their emission 

wavelength. 
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Figure 1. Schematic representation of conventional heating for QD synthesis. 

 

 

On the other hand, MW’s in the form of domestic household microwave ovens 

have been used as a reliable heating source in the kitchen for many years. It was not until 

recently that MW technology gained tremendous impetus for organic synthesis purposes. 

With advances in MW assisted QD synthesis chemistry, MW’s have gradually emerged 

as an alternative energy source for QD synthesis [23]. MW’s are powerful enough to 

accomplish chemical transformations in a much quicker and energy efficient manner as 

compared to conventional heating methods. Energy is transferred rapidly and directly 

through the glass reaction vessel to the MW absorbing materials which bring about 

localized superheating of the reactant molecules (Figure 2).  
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Figure 2. Schematic representation of microwave heating for QD synthesis. 

 

 

Researchers have considered the idea of using modified domestic MW ovens for 

organic synthesis [24, 25]. In a domestic MW, the MW’s are generated as pulses of 

electromagnetic (EM) radiation which get reflected from the cavity walls (Figure 3). The 

EM field produced is inhomogeneous and leads to the formation of hot and cold spots in 

the reaction vessel. It is also hard to determine the reaction temperature in an accurate 

and reliable way. Another major drawback of these retrofitted household appliances is 

lack of proper control systems. Safety is a major concern as heating of organic solvents 

in open vessels inside a MW oven may lead to explosions or pose a serious fire hazard 

induced by electric arcs inside the cavity due to continuous switching of the magnetron.  

Localized 
Super Heating

Microwaves

Localized 
Super Heating

Microwaves
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These shortcomings lead to the need of a dedicated instrument designed of chemical 

synthesis. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of multimode cavity in a domestic microwave. 

 

Commercially available MW reactors specially designed for chemical synthesis 

allow precise control of essential reaction parameters such as the applied MW power, 

reaction temperature, reaction time and in some cases internal vessel pressure [26]. In 

these instruments MW’s are generated as continuous EM waves as opposed to pulses. 

These EM waves are then transferred through a waveguide to the reaction vessel 

mounted at a fixed distance from the irradiating source (Figure 4). This creates a 

standing wave and as a result the EM field is homogenous leading to uniform heating of 

the reaction vessel and hence the reactant molecules. 

  

 

  FRONT 
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Magnetron  

Stirrer Wave Guide 
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Figure 4. Schematic representation of single mode cavity in a microwave reactor. 

 
 

2.2 Implementation of MW based system for synthesis of QD’s 

CdSe/ZnS core-shell QD’s are synthesized in our laboratory by high temperature 

organometallic synthesis procedure. Previously, heating was carried out in a metal bath 

reactor containing an alloy of bismuth with a melting point of 110 °C (Figure 5). 

Temperature of the metal bath was measured using a thermocouple probe connected to a 

feedback controller with a digital read out. A standard drill press connected to a variable 

autotransformer was modified to act as a stirrer mechanism. The reaction time and 

temperature had to be controlled manually by lowering down and lifting up the glass 

reaction vessel inside the metal bath during the course of synthesis reaction. 

 

Circular Waveguide

Reaction Vessel

Magnetron

Circular Waveguide

Reaction Vessel

Magnetron
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Figure 5. Experimental setup for QD synthesis in metal bath reactor. 

 

Disadvantages of metal bath reactor QD synthesis system: (1) time consuming 

and labor intensive; (2) lack of control over the synthesis process; (3) lack of 

reproducibility of reaction results; (4) energy inefficient and (5) potential safety hazard 

due to molten metal at high temperature. 

To address these issues implementation of a MW based system for QD synthesis 

was advantageous. A commercially available MW reactor was purchased from CEM 

Corporation, NC. The ‘Discover®- BenchMate’ series of MW reactor provided 

versatility and simplicity of operation for carrying out synthesis of QD’s under 

laboratory conditions. It was equipped with single mode MW cavity with maximum 

power rating of 300 W. It had a built in magnetic stirrer mechanism and an infrared (IR) 
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probe for accurate and contact less temperature measurement. This instrument provided 

us with a convenient way of dynamically controlling the synthesis reaction with the help 

of a bundled computer software program (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Experimental setup for QD synthesis in microwave reactor. 

 

Advantages of MW based QD synthesis system: (1) time saving with minimum 

human intervention; (2) better control over the synthesis process; (3) better quality final 

product and possible to achieve reproducible results; (4) safe method for QD synthesis 

and (5) energy efficient. 

 Figure 7 shows a visual comparison of the QD synthesis reaction performed 

using a metal bath reactor and a MW reactor. In case of a metal bath reactor the dark 
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appearance of the supernatant is due to excessive heating of the coordinating solvent 

caused due to indirect method of energy transfer. This was absent in case of a MW based 

reactor as the supernatant is colorless and clear. The energy is transferred directly for a 

shorter period of time and there is no unnecessary overheating of the coordinating 

solvent. Post synthesis, QD’s are washed with methanol to remove the excess 

coordinating solvent and unreacted precursors. Due to charring of the coordinating 

solvent in a metal bath reactor the synthesized QD’s have to be washed twice as more 

compared to two methanol washes in a MW reactor. Excessive washing causes loss of 

QD’s thus decreasing the overall mass yield of the synthesis reaction. As a result, QD’s 

synthesized in a MW reactor can be easily recovered with less number of methanol 

washes as compared to when synthesized in a metal bath reactor.   

 

  

 

 

 
 
 
 
 
 
 
Figure 7. Metal bath reactor vs. microwave reactor seen in ambient light (L) and seen in 

UV light (R). 
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2.3 Temperature dependent emission properties of QD’s 

Luminescent properties of QD’s are temperature dependent and therefore widely 

studied for potential applications as optical temperature indicators. Bawendi and co-

workers showed that the steady state PL properties of CdSe/ZnS QD’s dispersed in a 

poly(laural-methacrylate) (PLMA) matrix were strongly dependent on temperature in the 

range from 100 to 315 K (-173.15 to 41.85 °C). It was reported that the peak emission 

shifts to shorter wavelength accompanied by significant increase in the PL intensity with 

decreasing temperature [15]. Further; this change in the PL intensity was reported to be 

reversible with temperature. This phenomenon can be well explained by the band gap 

variation of the nanoscale semiconductor material with temperature. In case of CdSe 

QD’s in the temperature range from 235 to 385 K (-38.15 to 111.85 °C), an increase in 

temperature results in a size dependent decrease of the band gap which in turn causes the 

peak emission to exhibit a red shift [27]. In another approach, CdTe QD’s were 

deposited on optical fibers by layer-by-layer electrostatic self-assembly method to act as 

optical temperature sensors. These sensors showed a linear and reversible variation of 

the emission wavelength in the temperature range from 30 to 100 °C [8].  

 

2.4 Temperature sensitive polymers 

Thermoresponsive polymers fall under the category of “smart” polymers. They 

undergo a physical or chemical change in response to external stimuli, such as 

temperature. Some of the commonly known thermoresponsive polymers are PIOZ - 

poly(2-isopropyl-2-oxazoline), PVCL - poly(N-vinylcaprolactam), PDEAAM - 
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poly(N,N,-diethylacrylamide) and PNIPAM - poly(N-isopropylacrylamide) [28]. One 

important parameter of these polymers is their lower critical solution temperature 

(LCST) where the polymer undergoes phase transformation in response to change in 

temperature. For example, poly(NIPAM) thermoresponsive polymer (Figure 8) has its 

LCST closest to the body temperature, approximately 32 °C, which makes it suitable for 

biomedical applications. Poly(NIPAM) is hydrophilic at temperatures below LCST and 

hydrophobic at temperatures above LCST; in other words it undergoes a reversible 

thermoresponsive phase transition across the LCST [29] (Figure 9). This can be 

explained by the ability of poly(NIPAM) to undergo reversible formation and cleavage 

of hydrogen bonds between its monomer side groups and the surrounding water 

molecules. As a result, poly(NIPAM) undergoes changes in conformation during the 

phase transition regime. This property of PNIPAM polymers has been utilized for 

controlled release of cells [30, 31] and controlled drug delivery applications [32]. 

 

 

 

 

 

 

Figure 8. Chemical structure of poly(NIPAM) [28]. 
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Figure 9. Schematic illustration of temperature induced phase transition in 
poly(NIPAM). 

 

 

2.5 QD-thermoresponsive polymer nanocomposite hydrogels 

Spectral properties of QD’s depend to some extent upon their surrounding 

environment. Their overall behavior can be altered by changing the physical 

environment in which they exist. Thus, embedding QD’s in smart polymer matrices may 

be an efficient way of enhancing their functionality [33].  Gong and coworkers 

constructed luminescent microspheres by incorporating thioglycerol and thioglycolic 

acid capped CdTe QDs in poly(NIPAM) [34]. Their results indicated that there exists a 

hydrogen bond between the ligands capped on CdTe QD’s and the poly(NIPAM) chains. 

They also attempted to study the FRET effect between QD’s by loading two different 

sizes of TGA/TGOL capped CdTe QDs embedded in poly(NIPAM) spheres. In a similar 
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approach, Li and coworkers used poly(NIPAM) hydrogels as a solid matrix for the 

physical immobilization of aqueous CdTe QD’s [16]. It was reported that PL intensity of 

the nanocomposite gels decreased with increase in temperature accompanied by a linear 

red shift (~ 13 nm) of the PL maximum wavelengths in the temperature range from 25 to 

41 °C. Also, it was reported that the changes in the PL peak wavelengths due to 

temperature were reversible. According to the authors the possible reason for the 

observed red shift may be energy transfer between close packed CdTe QD’s at 

temperatures across the LCST. But, they had failed to report or consider the 

concentration of the QD’s inside the hydrogel; this information would have helped 

validate their claim of energy transfer between close packed QD’s inside the hydrogel. 

With the concentration information it would have been possible to estimate the 

approximate number of QD’s in the given volume and the average the inter dot spacing 

between them. This was necessary as energy transfer between two fluorophores greatly 

depends upon the spacing between them [35].  

In this work, amphiphilic polymer coated CdSe/ZnS QD’s were separately 

loaded in poly(NIPAM) hydrogels with varying concentrations of QD’s. As the spectral 

properties of QD’s are dependent upon temperature and the local environment, 

embedding QD’s in a thermoresponsive polymer will result in a change in the PL 

intensity and/or the position of the peak emission wavelength of the QD-

thermoresponsive polymer nanocomposite hydrogel with temperature. A systematic 

study was carried out to probe the effects of temperature variation on the emission 

properties of the nanocomposite hydrogel samples. This work has a potential to serve as 
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a useful guideline in providing a comprehensive understanding of the feasibility of 

developing QD-thermoresponsive polymer nanocomposite hydrogel based optical 

temperature sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

CHAPTER III 

EXPERIMENTAL   

 

This chapter describes the materials and methods that were used in this study, the 

procedure for synthesis of CdSe/ZnS QD’s in a MW reactor and the procedure for 

making QD’s water soluble with an amphiphilic polymer coating followed by 

incorporating them in poly(NIPAM) hydogels. 

 

3.1 Materials  

Cadmium oxide (CdO, 99.99%, Alfa Aesar), tetradecylphosphonic acid (TDPA, 

98%, Alfa Aesar), tri-n-octylphosphine oxide (TOPO, 99%, Aldrich), selenium (99 %, 

Aldrich), tri-n-octylphosphine (TOP, 99%, Aldrich), dimethylzinc (DMZ-1M in heptane, 

Aldrich), hexamethyldisilathiane (HMDS, Aldrich), polyethylenemine (PEI, 25 kD, 

Aldrich) were used as received. Anhydrous methanol and chloroform were purchased 

from Sigma-Aldrich. 

The monomer N-isopropylacrylamide (NIPAM; 97%, Aldrich) was purified by 

recrystallization using hexane and dried under vacuum before use. The crosslinker N, 

N’-methylenebisacrylamide (BIS, Fluka), hydrophilic photoinitiator 1-[4-(2-

hydroxyethoxy-phenyl]-2-hydroxy-2-methyl-1-propane-1-1 (Irgacure-2959, Aldrich). 

Deionized (DI) water was used in all experiments. 
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3.2 Methods 

3.2.1 QD synthesis  

Luminescent CdSe/ZnS core-shell QD’s were synthesized in the laboratory by 

modifying a previously reported method by Peng et al. [11]. The synthesis reaction was 

performed in a single mode CEM Discover system operating at 300 W, 2.45 GHz. CdO 

(0.0514 g, 0.4 mmol) along with TDPA (0.0566 g, 0.2 mmol) and TOPO (3.7768, 9 

mmol) were heated with continuous stirring in a 125 ml glass flask. The mixture was 

heated to approximately 300 °C under argon (Ar) flow (approx. 1 ml/sec) for 25 min to 

reduce CdO to form Cd2+. TDPA acts as a stabilizer and helps in binding of Cd2+ to the 

coordinating solvent, TOPO.  

TOP:Se stock solution was prepared beforehand in a small 25 ml round bottom 

flask by dissolving Se powder (0.0411 g, 0.5 mmol) in TOP (2.4 ml). The sealed flask 

was heated to 70 °C with continuous stirring on a hot plate equipped with a magnetic 

stirrer. Periodic Ar purging of the TOP:Se solution prevented the oxidation of TOP. 

At approx. 265 °C TOP:Se was swiftly injected to start the nucleation process. 

The reaction time was varied between 1 to 4 min depending upon the desired emission 

wavelength of the QD’s. The nucleation temperature, reaction time and MW power were 

dynamically controlled in real time through computer software interfaced with the MW 

reactor. 

To improve the quantum yield and to protect the bare CdSe cores, a zinc sulfide 

(ZnS) shell was grown on them. To form the outer inorganic shell, the reaction 

temperature was reduced to approx. 180 °C and ZnS precursors made from DMZ (1.6 
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ml), HMDS (0.42 ml) and TOP (6.3 ml) was added drop wise (approx. 3 ml/min) into 

the reaction vessel. Approx. 30 min of heating ensures the formation of about 2 

monolayers of ZnS shell around the cores.  The core-shell QD’s were then annealed at 

100 °C for another 30 min. Finally the reaction was quenched using anhydrous 

methanol. The QD’s samples were cleaned three times with methanol to remove excess 

unreacted precursors. The QD samples were then redispersed in chloroform or toluene 

until further use. 

 

3.2.2 Amphiphilic polymer coating of QD’s 

 

 

 

 
 
 
 
 
 
 

Figure 10. Schematic representation of TOPO capped QD’s. 
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QD’s from chloroform to DI water. This was achieved by coating the QD’s with an 

amphiphilic polymer, PEI [36]. 

 

 

 

 

 

 

 

 

 

 

Figure 11. Schematic representation of PEI coating of CdSe/ZnS QD’s. 

 

The hydrophobic layer on the QD’s was exchanged with PEI in chloroform 

(Figure 11). 1 mg of branched PEI was added to 10 ml of CdSe/ZnS QD’s in chloroform 

inside a scintillation vial. This mixture was thoroughly vortexed until the PEI was 

dissolved in the solvent. The phase transfer was performed after 24 hours of adding PEI 

through direct extraction of the QD’s from the chloroform with water. The solution was 

repeatedly centrifuged at 13400 RPM to yield an optically clear supernatant of 

CdSe/ZnS/PEI QD’s dispersed in water. 
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3.2.3 Polymerization of NIPAM 

Poly(NIPAM) hydrogels were formed by the process of photopolymerization 

[37]. 0.28 g (2.4 mmol) of NIPAM was dissolved in 1.5 ml water followed by addition 

of 0.01 g (64 µmol) of BIS and 0.01 g (44 µmol) of photoinitiator. The solution was 

purged with argon for 5 min with continuous stirring. Photopolymerization was carried 

out using a long range UV lamp (365 nm, 16 W) for 10 min inside a poly(methyl 

methacrylate) (PMMA) cuvette. The temperature of the system was maintained below 

the LCST at approx. 4 °C using an ice bath. 

 

3.2.4 Incorporation of QD’s in poly(NIPAM) hydrogels 

 As a novel approach, PEI coated QD’s were incorporated in poly(NIPAM) 

hydrogels by carrying out in situ  photopolymerization of the monomer and QD’s in 

water in the presence of cross linker and photoinitiator. To best of my knowledge there 

have been no previous reports of incorporation of PEI coated CdSe/ZnS QD’s in 

poly(NIPAM) hydrogels. Photopolymerization was carried out inside 1.5 ml PMMA 

disposable cuvettes (Plastibrand, Germany) having dimensions 12.5 x 12.5 x 45 mm.  

 

3.3 Characterization 

Absorption spectra were recorded on a Hitachi U-4100 UV-VIS-NIR 

spectrophotometer. Temperature dependent PL spectra were recorded on a PTI – 

‘Quanta Master’ spectrofluorometer equipped with a temperature controlled cuvette 

holder (Figure 12).  
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Figure 12. PTI ‘Quanta Master’ spectrofluorometer with temperature controlled cuvette 

holder. 
 

Transmission electron microscopy images were recorded on JEOL 1200 EX 

transmission electron microscope. Standard TEM copper grids (3.05 mm diameter, 

Electron Microscopy Sciences, USA) were first coated with formwar (polyvinyl formal) 

followed by a coating of carbon using a carbon coater. The formwar film on the grid was 

dissolved using chloroform, leaving behind grids coated with a thin film of carbon. 

Approx. 3 µL of less than 0.1 µM concentration QD sample in chloroform was placed on 

the carbon coated grids for 30 sec. Excess sample was blotted dry with the help of a 

blotting paper placed perpendicular to the grid. 
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CHAPTER IV 

RESULTS 

 

This chapter summarizes all the results obtained during this project. Detailed 

procedures described in the previous chapter were followed for synthesis core-shell 

QD’s followed by their incorporation in poly(NIPAM) hydrogels. Structural 

characterizations of the QD samples were performed using TEM. Optical 

characterizations were performed to investigate the temperature dependent emission 

properties of PEI coated QD’s in water and QD/PEI/poly(NIPAM) hydrogels. 

 

4.1 QD synthesis 

Luminescent CdSe/ZnS QD’s emitting at different wavelengths were synthesized 

using MW based synthesis system implemented as shown in Figure 6. Post synthesis, 

QD’s were washed twice with methanol and were suspended in a non-polar solvent, e.g. 

chloroform, for storage. Figure 13 shows image of QD’s of four different sizes (A, B, C 

and D) with peak emission ranging from 548 to 605 nm. Longer emission wavelengths 

correspond with the increasing size of the QD formed due to longer reaction times 

ranging from 1 to 4 min.  
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Figure 13. CdSe/ZnS QD’s in chloroform as seen in ambient light (L) and under UV 
light (R). 

                      
 
 
4.2 Optical and structural characterization 

4.2.1 TOPO capped QD’s  

 Figure 14 shows the normalized emission spectra of QD samples A, B, C and D 

suspended in chloroform in the emission scan range from 500 to 700 nm with 465 nm 

excitation. The integration time was kept constant at 1 sec for all the scans. Small 

amount of inherent inhomogeneity in the size distribution of the samples results in the 

broadening of the emission spectra commonly referred to as the ‘inhomogeneous 

broadening’. This broadening can be estimated by calculating the FWHM (full width at 

half maximum) of the Gaussian emission spectra of the samples. The FWHM of the 

samples were in the range of 40 to 50 nm.  
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Figure 14. Normalized emission spectra of CdSe/ZnS QD’s in chloroform.  
 
 
 

Structural characterization of the QD samples was performed using TEM 

imaging. TEM grids for the four different QD samples were prepared by following the 

method discussed in the previous chapter. The grids were observed under JEOL 1200 

EX transmission electron microscope operated at an acceleration voltage of 100 keV. 

TEM micrographs were recorded on Kodak 4489 films at a calibrated magnification of 

70,200. The resolution of the system was calculated and found to be 2.85 A°/ pixel. 

Figure 15 and Figure 16 shows the TEM micrographs of QD samples A, B, C and D. In 
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order to determine the average particle size, the TEM micrograph films were scanned at 

1270 DPI to digitize the image. The digitized images were then analyzed with the help 

of a GNU image manipulation program, GIMP Version 2.6.2. Using the built in 

measuring tool function the size of the particles in number of pixels was measured. This 

information along with the resolution of the system gave an estimate of the actual size of 

the particle. 10’s of such nanoparticles in the image were measured and averaged to 

determine the average size of the QD’s in the given sample. Basic statistical analysis was 

performed on the measured QD sizes to determine the standard deviation for each of the 

four QD samples. The sizes of the QD samples were also estimated using an empirical 

fitting function (1) used for determining the sizes of CdSe cores [38]. Approx. 1 nm 

radial thickness for the ZnS shell of about 2 monolayers was assumed for calculating the 

theoretical sizes of the synthesized CdSe/ZnS core-shell QD’s. In the following 

equation, D (nm) is the calculated size of the CdSe core and λ (nm) is the wavelength of 

the first excitonic absorption peak of the corresponding QD sample.  

 

CdSe: D = (1.6122 x 10-9)λ4 – (2.6575 x 10-6)λ3 + 

                                     (1.6242 x 10-3)λ2 – (0.4277)λ + (41.57)                          (1) 
 

Peak emission wavelengths and size approximation for the four QD samples A, B, C and 

D are summarized in Table 1. 
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Figure 15. TEM micrograph of QD sample A (L) and QD sample B (R). 
 

 

 

 

 

 

 

 

 

 

 
Figure 16. TEM micrograph of QD sample C (L) and QD sample D (R). 
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Table 1. Peak emission wavelengths and size approximation of QD sample A, B, C and 
D. 
 

QD sample Peak Emission (nm) Estimated size (nm) Measured size (nm) 

Sample A 548 4.79 3.8 ± 0.57 

Sample B 576 5.36 4.3 ± 0.68 

Sample C 587 5.66 4.6 ± 0.6 

Sample D 605 6.29 5.5 ± 0.7 

 
 

 

4.2.2 PEI coated QD’s 

 To make the QD’s water soluble, TOPO capped QD’s were coated with PEI in 

chloroform. Figure 17 shows the image of two of the above synthesized CdSe/ZnS 

samples A and B after coating with PEI followed by suspension in DI water. The PEI 

coated QD samples are denoted by A’ and B’ respectively. Figure 18 shows the emission 

spectra of QD samples before and after PEI coating. On comparing the emission spectra 

of QD’s in chloroform and PEI coated QD’s in water, it was observed that after PEI 

coating there was a red shift of 4 nm in peak emission position of both the samples A’ 

and B’. This observation is consistent with reports of red shift in QD emission due to 

coating with an amphiphilic copolymer [39]. The FWHM of the emission spectra before 

and after PEI coating remained the same. 
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Figure 17. QD/PEI in DI water as seen in ambient light (L) and under UV light (R). 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 18. Normalized emission spectra of QD’s (dotted) in chloroform and QD/PEI 
(solid) in DI water. Sample A (peak at 548 nm), Sample B (peak at 576 nm), Sample A’ 

(peak at 552 nm) and B’ (peak at 580 nm). 
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4.3 Poly(NIPAM) hydrogels  

Poly(NIPAM) hydrogles were prepared by polymerization of the monomer, 

crosslinker in the presence of a photosensitive hydrophilic polymerization initiator in DI 

water. Figure 19 shows an image of plain poly(NIPAM) hydrogel casted inside a glass 

vial by photopolymerization method described in previous chapter. Figure 20 shows the 

thermoresponsive behavior of poly(NIAPM) hydrogel. At temperatures across the LCST 

reversible phase transformation occurs inside the polymer matrix.  

 

 

 

 

 
 
 

 
 
 
 
 
 
 

Figure 19. Poly(NIPAM) hydrogel casted inside a glass vial. 
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Figure 20. Thermoresponsive behavior of poly(NIPAM) hydrogel.                                
(a) at room temperature, (b) at temperature at which phase transition just occurs, (c) at 

temperature greater than LCST and (d) on returning back to room temperature. 
 

 

4.4 QD/PEI/poly(NIPAM) nanocomposite hydrogels 

PEI coated QD’s suspended in DI water were incorporated inside poly(NIPAM) 

hydrogels by directly carrying out the photopolymerization of the NIPAM monomer in 

the solvent (QD/PEI in DI water) in presence of crosslinker and polymerization initiator. 

Figure 21 shows images of plain poly(NIPAM) and poly(NIAPM) embedded with QD’s. 

 

 

 

 

 

 

 

Figure 21. Poly(NIPAM) and QD/PEI/poly(NIPAM) hydrogels as seen 
in ambient light (L) and under UV light (R). 

 (a)  (c)  (b)  (d) 
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The final aim of this experimental work was to separately load PEI coated QD’s 

with increasing concentration inside the poly(NIPAM) and study the effects of 

temperature variation on the PL spectra of the nanocomposite hydrogels. A high 

concentrated sample of PEI coated QD’s dots (peak emission at RT ~ 576 nm and 

FWHM 42 nm) was prepared. Calculated dilution of this sample was carried out to 

obtain samples with three different concentrations. Low concentration being ~ 0.28 µM, 

medium ~ 1.43 µM and high ~ 2.86 µM. The concentration of QD’s in the solution was 

estimated using a method describe elsewhere [38]. Briefly, first absorption peak (Am) 

was obtained from the absorption spectra; FWHM of the PL spectra was obtained from 

the emission spectrum. Calibrated absorbance (A) was calculated as A = 

(Am*FWHM)/25. Finally, concentration (C) in mol/L was calculated as C = A/ε where, ε 

is the extinction coefficient per mole of QD’s expressed in cm-1mol-1. Figure 22 shows 

PEI coated QD’s at low, medium and high concentration. Approx. 1.5 ml of each of the 

three QD samples were loaded separately in poly(NIPAM) hydrogels. The 

photopolymerization process was carried out inside semi micro PMMA cuvettes as 

shown in Figure 23. The PL spectra for each of the nanocomposite hydrogel samples 

were recorded in the temperature range from 29 to 37 °C at 2 °C increments. Emission 

scan range was 470 to 700 nm at fixed excitation of 450 nm. The emission and excitation 

slits were set at 1.5 nm and the integration time was kept constant at 0.1 sec. The 

emission spectra were collected after a brief interval of 3.5 min between each 

temperature change to ensure thermal equilibrium between the set temperature and the 

actual temperature of the hydrogel. To delineate the effects of phase transformation due 
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to poly(NIPAM) polymer on the emission properties of embedded QD’s as a control the 

emission spectra of each of the QD/PEI samples suspended in water were also collected 

in the temperature range from 29 to 37 °C at 2 °C increments at same instruments 

settings. Figures 24 to 26 show the emission spectra of the PEI coated QD’s suspended 

in water at low, medium and high concentrations respectively.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. QD/PEI in DI water at three different concentrations.  (a) low concentration: 
~ 0.28 µM, (b) medium concentration: ~1.28 µM and (c) high concentration: ~2.86 µM. 
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Figure 23. QD/PEI/poly(NIPAM) hydrogels at three different concentrations. (a) low 
concentration sample, (b) medium concentration sample and (c) high concentration 

sample. 
 
 
 
 

 
 
 
 
 

 

 

 

 
 
 
 
 
 
 

Figure 24. Temperature dependent emission spectra of QD/PEI in DI water - low 
concentration sample. 
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Figure 25. Temperature dependent emission spectra of QD/PEI in DI water - medium 
concentration sample. 

 
 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 26. Temperature dependent emission spectra of QD/PEI in DI water - high 
concentration sample. 
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 It can been observed that on increasing the temperature from 29 to 37 °C the 

emission intensity linearly decreases without any change in the position of the peak 

emission wavelength for each of the three QD/PEI samples. Figure 27 shows the 

emission spectra of plain poly(NIPAM) hydrogel with respect to temperature. I speculate 

that the characteristics peak in the emission spectra arise due to the scattering of 

excitation light and inherent nature of the monochromator. The information in this 

spectra will be used later for background subtraction from the raw temperature 

dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel samples. 
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Figure 27. Temperature dependent emission spectra of plain poly(NIPAM) hydrogel. 
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Figures 28 to 30 show the raw temperature dependent emission spectra of 

QD/PEI/poly(NIPAM) hydrogel samples at low, medium and high concentration 

respectively. It can be seen that there is a large of background contribution due to 

poly(NIPAM) and it is more apparent for low and medium concentration sample where 

the overall luminescence is lower. To accurately estimate the effects of temperature 

variation on the emissions properties of the QD’s incorporated inside poly(NIPAM) 

hydrogel it was necessary to eliminate the background contribution due to 

poly(NIPAM).  Detailed discussion of the experimental results and poly(NIPAM) 

background subtraction technique is provided in the next chapter. 

 

 

 

 
 

 

 

 

 

 

 
 
 
Figure 28. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel - 

low concentration sample. 
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Figure 29. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel -  

medium concentration sample. 
 
 
 
 
 

 

 

  

 

 
 
 
 
 
 
 
 

 
Figure 30. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel -  

high concentration sample. 
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CHAPTER V 

DISCUSSION 

 

The experiments reported in this work present a novel method for the preparation 

of QD-thermoresponsive polymer nanocomposite hydrogels. CdSe/ZnS QD’s were 

successfully synthesized in a MW reactor by following one pot synthesis procedure. The 

MW system allowed precise control of the reaction parameters such as nucleation 

temperature and reaction time which in turn controlled the emission wavelength (size) of 

the QD’s. TEM characterization of the samples showed that the synthesized QD’s were 

monodisperse and they did not aggregate in the solvent. With the implementation of 

MW based system reproducibility of QD synthesis results was possible as the reaction 

parameters were now automatically controlled with the help a computer software 

program interfaced with the MW reactor thus, minimizing errors due to imprecise 

temperature control and timing variation as compared to manually employed procedures 

in a metal bath reactor.  

PEI coating of the QD’s provided us with a straight forward method for 

performing the phase transfer of QD’s from chloroform to water. Post coating with PEI 

the QD’s formed highly stable colloids in water and did not redisperse back in non-polar 

solvents. PEI coated QD’s presented good compatibility with poly(NIPAM) hydrogels 

following the method of photopolymerization. The QD/PEI/poly(NIPAM) hydrogels 

maintained their PL intensity for several hours followed by gradual decrease in the PL 

intensity possibly due to photooxidation effects [36]. Recrystallization of the NIPAM 
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monomer by hexane, prior to use helped remove some of the impurities which in other 

case had drastically affected the PL intensity of the embedded QD’s.  

Raw temperature dependent emission spectra of QD/PEI/poly(NIPAM) 

hydrogels shows the presence of characteristic peaks similar to that seen for plain 

poly(NIPAM) hydrogel. These peaks were more prominent at temperatures higher than 

the LCST (35 and 37 °C).  At temperatures above the LCST poly(NIPAM) undergoes a 

phase transition resulting in collapse of the hydrogel and presents a nonlinear behavior 

with respect to temperature as shown in Figure 27. In order to estimate the change in the 

position of peak emission wavelength for the QD/PEI/poly(NIPAM) samples with 

temperature, it was necessary to remove the background contribution due to 

poly(NIPAM). A straight forward method to remove this background was to perform the 

direct spectral subtraction of the emission data of plain poly(NIPAM) hydrogel from the 

emission data of QD/PEI/poly(NIPAM) hydrogels at a given temperature. Figures 31 to 

33 show the background free emission spectra of QD/PEI/poly(NIPAM) samples at low, 

medium and high concentration respectively obtained following the method of direct 

spectral subtraction.  Direct spectral subtraction of the emission data for temperatures 

lower than LCST (29, 31 and 33 ºC) eliminated the poly(NIPAM) background effects to 

some extent but for temperatures higher than the LCST (35 and 37 ºC) it resulted in 

negative y-axis values particularly for wavelengths lower than 540 nm. Due to the 

nonlinear behavior of poly(NIPAM) emission a slight variation at a given temperature 

possibly due to temperature controller inconsistency resulted in large variations in the 

overall emission spectra particularly at lower wavelengths in the range from 470 to 540 
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nm. Hence, direct spectral subtraction of the emission data was not a feasible way to 

eliminate the poly(NIPAM) background.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 31. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel 
after background subtraction via direct method -  low concentration sample. 
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Figure 32. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel 

after background subtraction via direct method - medium concentration sample. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 33. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel 

after background subtraction via direct method - high concentration sample. 
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An algorithm was developed in MATLAB that interpolated the temperature 

dependent emission spectra of the poly(NIPAM) hydrogel in the temperature range from 

29 to 37 °C in steps of 0.1 °C at each wavelength in the emission scan range from 470 to 

700 nm. ‘Spline’ interpolation function in MATLAB was used to interpolate the 

temperature dependent emission spectra for the plain poly(NIPAM) hydrogel at correct 

temperature. The obtained spectra was then superimposed on the QD/PEI/poly(NIPAM) 

temperature dependent emission spectra to obtain an estimate of a best fit to the spectra 

of QD/PEI/poly(NIPAM) and the corresponding interpolate (corrected) temperature 

value was recorded. In other words, the interpolated temperature value was selected such 

that the temperature response of the plain poly(NIPAM) hydrogel matched as closely as 

possible to that of the QD/PEI/poly(NIPAM) hydrogel at that particular temperature in 

the lower wavelength range from 470 to 540 nm and higher than 640 nm. This 

interpolated poly(NIPAM) emission spectra was then subtracted from the original 

QD/PEI/poly(NIPAM) emission spectra to remove the poly(NIPAM) background. For 

example, Figure 34 shows the emission spectra of QD/PEI/poly(NIPAM) medium 

concentration sample at 37 ºC before and after background subtraction via interpolation 

method. It was observed that the emission spectra of poly(NIPAM) when interpolated at 

36.3 °C in this case, completely removes the background from the raw 

QD/PEI/poly(NIPAM) emission spectra. A Savitzky–Golay smoothing filter algorithm 

was applied to this background free emission data to reduce noise and estimate the peak 

emission wavelength at that temperature. Savitzky–Golay smoothing filter is often used 

with spectroscopic data and it performs better than averaging filters in removing noise 
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without significantly compromising the features of the distribution such as relative 

maxima, minima and line width. A constant smoothing window of 7 nm was used as it 

was significantly smaller than the spectral width of the emission spectrum having 

FWTM (full width at tenth maximum) approx. 89 nm. Similar data processing 

operations were performed for the low, medium and high concentration 

QD/PEI/poly(NIPAM) samples at 29, 31, 33, 35 and 37 ºC. Figure 35 to 37 show the 

final background free temperature dependent emission spectra of QD/PEI/poly(NIPAM) 

samples at low, medium and high concentration respectively. 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
 
 

Figure 34. Emission spectra of QD/PEI/poly(NIPAM) - medium concentration 
sample at 37 ºC. Raw QD/PEI/poly(NIPAM) emission spectrum (blue dotted), 

QD/PEI/poly(NIPAM) emission spectrum after background subtraction (blue solid), 
poly(NIPAM) emission at measured temperature (red dotted) and poly(NIPAM) 

emission spectrum at interpolated temperature (red solid). 
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Figure 35. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel 
after background subtraction via interpolation method - low concentration sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36. Temperature dependent emission spectra of QD/poly(NIPAM) hydrogel after 
background subtraction via interpolation method - medium concentration sample. 
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Figure 37. Temperature dependent emission spectra of QD/PEI/poly(NIPAM) hydrogel 

after background subtraction via interpolation method - high concentration sample. 
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corresponding corrected temperature value for each of the samples were recorded. 
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Figures 38 to 40 show the peak emission wavelength shift vs. corrected temperature for 

each of the QD/PEI/poly(NIPAM) samples at low, medium and high concentrations 

respectively.  The temperature range represents the error between the thermocouple and 

the actual corrected temperature of the hydrogel samples obtained by interpolation.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 38. Peak emission wavelength shift vs. temperature for QD/PEI/poly(NIPAM) 
low concentration sample. 
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Figure 39. Peak emission wavelength shift vs. temperature for QD/PEI/poly(NIPAM) 
medium concentration sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 40. Peak emission wavelength shift vs. temperature for QD/PEI/poly(NIPAM) 

high concentration sample. 
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Figure 41. Schematic representation of QD’s incorporated inside poly(NIPAM) 
hydrogel. (a) at temperature < LCST (swollen state) and (b) at temperature > LCST 

(shrunken state). 
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 Figure 41 shows the schematic representation of thermoresponsive behavior of 

PEI coated QD’s inside poly(NIAPM) hydrogel. At temperatures lower that the LCST 

the interchange network remains intact and I assumed that the PEI coated QD’s are 

distributed homogenously throughout the hydrogel, represented by Figure 41 (a). At 

temperatures higher that LCST the interchain network collapses causing the PEI coated 

QD’s to become close-packed in the hydrogel [16], represented by Figure 41 (b). This 

phenomenon accompanied by the overall shrinking of the hydrogel resulted in increased 

interaction between PEI coated QD’s. For low concentration samples there is no shift of 

peak emission wavelengths with temperature (Figure 38). For medium concentration 

samples there is red shift of the peak emission wavelength at temperatures near the phase 

transition temperature of the hydrogel (Figure 39). For the high concentration samples 

there is an increasing linear red shift of the peak emission wavelength with temperature 

in the range from 29 to 36 °C (Figure 40). A linear regression fit was plotted for the high 

concentration sample and the slope of the fit was calculated to be approx. 0.5 nm/°C. 

Similar linear red shift of the peak emission wavelength with temperature in the range 

from 25 to 41 °C and slope approx. 0.81 nm/°C was reported by Li and coworkers [16]. 

This shift in peak emission wavelength was found to be reversible with temperature.  

There was no change observed in the FWHM of the emission spectra of the 

QD/PEI/poly(NIPAM) samples in the given temperature range i.e. the FWHM remained 

constant at 42 nm and it was independent of temperature. Hence, it can be deduced that 

there is a definite relation between the concentration of the QD’s that are incorporated 

inside the hydrogel and their temperature dependent peak emission wavelength.  
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 I have reduced the possibility of non-radiative energy transfer between individual 

dots by coating the QD’s with an amphiphilic polymer, PEI. Typically, the distance over 

which Förster resonance energy transfer (FRET) occurs is in the range of 1 to 10 nm 

[40]. Bawendi and coworkers have demonstrated efficient resonance energy transfer 

between closed packed CdSe QD’s with an inter dot spacing of approximately 1.1 nm. 

They calculated the critical radius for energy transfer, R0
 = 4.7 nm [41]. FRET efficiency 

varies as a function of the distance between the QD’s. In my case, high molecular weight 

(25 kD) PEI coating of the QD’s resulted in an average hydrodynamic diameter of 17.5 

± 2.5 nm [36]. Thus, the average distance between any two PEI coated QD’s was greater 

than the Förster distance over which the energy transfer can occur efficiently. With the 

concentration information available, I estimated the interdot spacing between PEI coated 

QD’s incorporated inside the poly(NIPAM) hydrogel for homogeneously distributed 

QD’s. I assumed a cubic lattice type of geometry with PEI coated QD’s homogenously 

distributed throughout the hydrogel. Figure 42 shows the schematic representation of the 

cubic lattice with PEI coated QD’s present at each of its vertices. The interdot distance 

‘r’ was calculated using the known concentration (C) and volume (V) information. Table 

2 summarizes the estimated interdot distance for the low, medium and high 

concentration QD/PEI/poly(NIPAM) samples. 
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Figure 42. Schematic representation of the distribution of PEI coated QD’s inside 

poly(NIPAM) hydrogel. ‘r’ is the interdot distance. 
 
 
 
 
 

Table 2. Estimation of interdot spacing in QD/PEI/poly(NIPAM) samples. 
 

 

* 6.023e+23 
 

 

 

Sample 

 
C 

(µmol/L) 
 

V 
(L) 

n = C x V 
(mol) n x Avogadro constant* r 

(nm) 

Low 0.28 1.5e-3 4.2e-10 2.52e+14 181 
Medium 1.28 1.5e-3 1.92e-9 1.15e+15 109 

High 2.86 1.5e-3 4.29e-9 2.58e+15 83 

r 
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 The estimated interdot spacing for the low, medium and high concentration 

samples were theoretically very large for energy transfer to occur efficiently. I speculate 

that the possible reason for the increasing red shift of the peak emission wavelengths for 

the medium and high concentration QD/PEI/poly(NIPAM) sample may have been due to 

interaction of PEI coated QD’s resulting from the physical change in their surrounding 

environment due to collapse of the interchain network at temperatures greater than the 

LCST. PEI coated QD’s are positively charged due to the presence of large number of 

free amine groups in PEI and reported to have a zeta potential of about +29 mV [42]. 

Loading PEI coated QD’s at different concentrations was crucial as the experimental 

results suggest that this phenomenon depends upon the number of PEI coated QD’s 

present inside the hydrogel. Increasing amount of red shift in the emission spectra was 

observed for the high concentration sample as compared to medium and low 

concentration sample of QD’s under similar experimental conditions. Another possible 

reason for the red shift in the high concentration sample may be due to possible 

aggregation of the PEI coated QD’s inside the hydrogel at temperatures higher than the 

LCST causing the emission spectra to shift red due to reabsorption of the excitation 

light. But, this would not have resulted in a linear red shift across the entire temperature 

range from 29 to 37 °C for my experiments and as reported by Li and coworkers in 

temperature range from 25 to 41 °C [16]. With my assumption that PEI coated QD’s are 

distributed homogenously in the hydrogel matrix the possibility of energy transfer was 

reduced however, cannot be completely ruled out. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

 

This work demonstrated the successful implementation of an efficient method for 

synthesis of luminescent CdSe/ZnS core-shell QD’s in a MW reactor. A MW based QD 

synthesis system proved to be much safer and time saving as compared to the previously 

used metal bath reactor system.  It helped achieve better overall control of the reaction 

parameters with minimal human intervention. Optical and structural characterizations of 

the QD samples synthesized in the MW reactor were performed to estimate their peak 

emission wavelengths and their approximate size.  

A novel method for the preparation of QD-thermoresponsive polymer 

nanocomposite hydrogel was presented. A straight forward method of coating the QD’s 

with PEI for performing phase transfer from non-polar solvents to water was effectively 

utilized followed by the successful incorporation of PEI coated QD’s in  poly(NIPAM) 

hydrogel by method of photopolymerization. The temperature dependent emission 

properties of the QD/PEI/poly(NIPAM) samples showed a definite relation between 

change in the position of the peak emission wavelength and concentration of the 

incorporated PEI coated QD’s. The possibility of energy transfer between individual 

QD’s was reduced due to PEI coating and it was speculated that the changes in the 

physical environment i.e. shrinking and swelling behavior of the poly(NIPAM) hydrogel 

due to the temperature change across the LCST caused the spectral properties of the 

QD’s change accordingly.  
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Future work will include conducting similar experiments to investigate the 

effects of various other QD-amphiphilic polymer coating sizes on the temperature 

dependent emission spectra for high concentration samples. Also, incorporation of QD’s 

in a thermoresponsive polymer matrix enables us to form an optically active scaffold, 

fine tuning of this phenomenon would help to establish a correlation between the 

spectral changes and the corresponding temperature for potential optical temperature 

sensing applications. A possible limitation of such a system is the limited operational 

temperature range which is specifically across the LCST of the thermoresponsive 

polymer under consideration. 
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