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ABSTRACT

Rethinking Pen Input Interaction: Enabling Freehand Sketching Through Improved

Primitive Recognition. (May 2010)

Brandon Chase Paulson, B.S., Baylor University

Chair of Advisory Committee: Dr. Tracy Hammond

Online sketch recognition uses machine learning and artificial intelligence tech-

niques to interpret markings made by users via an electronic stylus or pen. The

goal of sketch recognition is to understand the intention and meaning of a partic-

ular user’s drawing. Diagramming applications have been the primary beneficiaries

of sketch recognition technology, as it is commonplace for the users of these tools to

first create a rough sketch of a diagram on paper before translating it into a machine

understandable model, using computer-aided design tools, which can then be used to

perform simulations or other meaningful tasks.

Traditional methods for performing sketch recognition can be broken down into

three distinct categories: appearance-based, gesture-based, and geometric-based. Al-

though each approach has its advantages and disadvantages, geometric-based methods

have proven to be the most generalizable for multi-domain recognition. Tools, such as

the LADDER symbol description language, have shown to be capable of recognizing

sketches from over 30 different domains using generalizable, geometric techniques.

The LADDER system is limited, however, in the fact that it uses a low-level rec-

ognizer that supports only a few primitive shapes, the building blocks for describing

higher-level symbols. Systems which support a larger number of primitive shapes have

been shown to have questionable accuracies as the number of primitives increase, or

they place constraints on how users must input shapes (e.g. circles can only be drawn

in a clockwise motion; rectangles must be drawn starting at the top-left corner).
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This dissertation allows for a significant growth in the possibility of free-sketch

recognition systems, those which place little to no drawing constraints on users. In

this dissertation, we describe multiple techniques to recognize upwards of 18 primi-

tive shapes while maintaining high accuracy. We also provide methods for producing

confidence values and generating multiple interpretations, and explore the difficulties

of recognizing multi-stroke primitives. In addition, we show the need for a standard-

ized data repository for sketch recognition algorithm testing and propose SOUSA

(sketch-based online user study application), our online system for performing and

sharing user study sketch data. Finally, we will show how the principles we have

learned through our work extend to other domains, including activity recognition

using trained hand posture cues.
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CHAPTER I

INTRODUCTION

Sketching conveys much information between two people. According to Johnson et al.,

“sketches are quickly made depictions that facilitate visual thinking” [23]. Concepts

and interactions that would take a significant amount of time to describe in words

can often be explained by a simple diagram or sketch. Because of this, sketching is a

powerful form of human-human communication. Recently, sketching has also become

a popular form of human-computer interaction due to the rise of technologies like

Tablet PCs, interactive pen displays, and electronic whiteboards.

The goal of sketch recognition is to understand the meaning behind a user’s

sketch, in order to provide a richer user experience. Thus far, sketch recognition has

proved to be a beneficial tool in many different design, education, and engineering

domains where hand-drawn graphical diagrams are used to express information be-

tween two individuals. A full survey of the applications that utilize sketch recognition

can be found in Chapter II, Section F.

A. Sketch Recognition in Design

Current designers often find themselves sketching out a rough design on paper, then

translating that paper sketch into a computer-aided design (CAD) model in order

to perform some form of simulation to test the viability of their design. In order

to remove this extra step of translating paper sketches into computer-understandable

forms through CAD tools, some designers opt to work directly with the toolbar-based

authorware software. However, researchers have discovered that not only do “design-

The journal model is IEEE Transactions on Neural Networks.
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ers spend too much time working with the [authorware] tool and not enough time

exploring design ideas” [24, 25], but that constrained-input, cleaned diagrams often

hinder the creativity of a designer [26]. Computer-aided design (CAD) systems that

accept freely-drawn diagrams for input may encourage greater originality [27, 28].

Sketch recognition will allow designers to rapidly conceive their ideas using familiar

materials like the pen, yet be able to perform computational processes without re-

quiring a shifting of modes from the paper to the computer. Sketch recognition will

allow designers to continue working in a low-fidelity space, yet achieve high-fidelity

feedback.

B. Sketch Recognition in Engineering & Education

Sketch recognition has already proved itself to be a valuable tool in the field of

education. Some domains that use sketch systems for educational purposes include:

UML diagrams [29], circuit diagrams [30], geography [20], mechanical engineering

[18, 31, 32, 33], mathematics [34], chemistry [35, 36], Kanji [37, 38], biology [39],

and civil engineering [40]. A future goal of sketch recognition researchers is the

development of accurate recognizers which will allow sketched diagrams to be graded

for examinations. Because the correction of hand-drawn diagrams takes a significant

amount of instructor time, they are typically omitted from traditional exams and

replaced with easier to grade, multiple-choice questions. This is unfortunate because

not only do diagrams test a student’s problem-solving ability, but they are also widely

used in the industry where they may one day be employed.



3

Fig. 1. Example high-level shape description from LADDER.

C. Proposal

Current state-of-the-art sketch recognizers are typically implemented in a hierarchical

manner. Low-level primitive shapes, such as lines, polylines, ellipses, circles, and arcs,

are used as building blocks for structural sketch grammars that describe more complex

symbols. For example, a hand-sketched pendulum may be described as a combination

of a line and a circle that meet certain geometric constraints (e.g., the line is above

the circle, the endpoint of the line meets the top of the circle, and so forth), as seen in

Figure 1. The main problems with existing primitive shape recognizers is that they

either a) are not adequately accurate, b) do not support a large number of shapes,

typically less than 5, or c) place drawing constraints on how users must input shapes.

The goal of this work is to create better low-level recognizers that support a large

number of primitive shapes without sacrificing classification accuracy or requiring

special drawing constraints. More specifically, we hope to create sketching algorithms

that support many primitives (upwards of 18), while maintaining at least equal or

better accuracy to existing state-of-the-art recognizers. By recognizing more primitive

shapes, we allow high-level sketch grammars to become more expressive and capable of

describing many domains. For example, in mechanical engineering diagrams, springs
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are typically drawn as helixes. Because existing primitive recognizers cannot classify

this shape, the domain has either been unsupported by the sketch system or it uses

an alternative symbol in place of the helix. This alternative symbol may not have

been an intuitive substitution for the end-user. Because drawing habits are hard to

break, the sketch system may have required additional learning time.

In order to achieve our goal of creating better sketch recognizers for pen-based

interfaces, we aim to answer the following research questions:

1. Can we achieve high primitive recognition accuracy without constraining a user’s

drawing style through the development of geometric-based features? Current rec-

ognizers rely either on appearance-based features that are sensitive to changes

in scale and rotation, or gesture-based features that are concerned solely with

the motion in which a stroke is drawn (e.g., users must draw circles in a counter-

clockwise direction to be recognized). We aim to see if geometric-based features

can be a valid alternative for recognizing a large number of primitive shapes

without sacrificing accuracy or requiring special drawing constraints. Our ap-

proach is evaluated with naturally drawn sketch data (1800 total samples) pro-

vided by 20 different users. The results are compared with those of current

state-of-the-art recognizers including the Sezgin recognizer [41], $1 recognizer

[42], Rubine recognizer [43], CALI recognizer [14, 15], and HHReco recognizer

[44]. This question is the basis for Chapter III of this dissertation.

2. Is our approach robust and capable of working in a sketch domain consisting of a

large number of unique symbols? Most sketch recognizers are typically evaluated

on domains consisting of tens of symbols. The military course-of-action domain

consists of hundreds (possibly thousands) of unique symbols. We have used our

approach, PaleoSketch, to recognize sketched symbols from this domain. The
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domain presented a number of challenges, including the need to introduce a new

set of primitives that were necessary to fully recognize the complete gamut of

symbols. This will be covered in Chapter IV.

3. Can multi-stroke primitives be recognized without requiring strokes to be drawn

consecutively? We want to remove as many drawing constraints from the user

as possible; this includes the single-stroke constraint placed by most primitive

recognizers. Unlike other multi-stroke approaches, we wish to produce an al-

gorithm that will work with both linear and curvy strokes, will not require

timeouts or special button presses to denote shape completion, and will al-

low stroke interspersing. We have collected isolated symbol data from a large

number of real-world domains to evaluate our approach in Chapter V.

4. How can we make the results of sketch recognition work reproducible by other

researchers? Currently, it is difficult to reproduce the results of existing sketch

recognizers due to the lack of standardized benchmark data. We propose

SOUSA (sketch-based online user study applets), a web-based system that will

be designed to allow researchers to collect, label, and share data. By creating an

online repository of sketched data, researchers can easily compare algorithms on

common data sets. This not only saves researcher time in data collection, but

will also advance the field of sketch recognition because algorithms can more

accurately be compared. Chapter VI discusses the SOUSA system.

5. Do the HCI principles learned from this work in sketch recognition translate

to other research domains? One of the main principles we wish to promote

in sketch recognition is that users should be allowed to interact freely with a

system and not be forced to do something that is unnatural to them [45]. We

believe this principle translates to other research areas. We test this belief
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through experiments in activity recognition. Users are asked to interact with

real-world objects using a data glove. The goal will be to see if a user’s hand

posture can be used to determine the objects he interacts with. We have seen

that, when allowed to perform studies naturally, object interaction is different

across users. This experiment is covered in Chapter VII.

In summary, the work presented in this dissertation will advance the field of

sketch recognition by introducing new techniques for accurately recognizing a large

number of primitive shapes. This will allow sketch recognition algorithms to describe

a larger number of graphical domains, which, consequently, will allow for tools and

interfaces to be built for more educational, design, and engineering applications. In-

telligent, sketch-based tutoring systems will allow students to sketch out diagrams and

receive real-time, interactive feedback. Teachers will be allowed to test a student’s

problem-solving ability and receive automatic feedback through the recognition of

hand-drawn sketches. Designers, who tend to produce hand-drawn sketches during

the initial stages of design, can receive high-fidelity feedback through their low-fidelity

prototypes. They will avoid the intermediate stages of translating a hand-sketched de-

sign into a computer-understandable form through the use of computer-aided design

(CAD) tools, which perform analysis and simulation on a design.

Areas that will directly benefit from improved sketch recognition technology

include (but are not limited to): computer science (UML, finite state machines,

flowcharts, user interface design), mathematics, chemistry, mechanical engineering,

electrical engineering (circuits), civil engineering, geography, biology, physics, and

language studies (e.g. Japanese, Korean, Chinese, and Urdu).
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CHAPTER II

PREVIOUS WORK IN PEN-BASED INTERFACES

Within the field of pen-based computing, there are many different research areas.

While each area is typically analyzed independently of the others, they all share the

common goal of providing a better experience to the users of pen-based interfaces.

The research areas of pen-based computing can typically be broken into one of the

following categories: hardware, human-computer interaction (HCI) studies, recogni-

tion, and applications. Hardware research focuses on creating devices for translating

pen-based input into an electronic form. HCI researchers focus on how to use these

pen-based devices as an effective and efficient means of input into traditional com-

puter applications. Recognition focuses on adding the extra dimension of computer

understanding to pen-based input. Finally, application researchers focus on creating

novel, real-world programs that utilize existing pen-based technologies.

A. Hardware Research

The idea of interacting with computers via stylus input began in 1964 with the work

of Ivan Sutherland’s Sketchpad system [46], which was developed even before the in-

vention of the computer mouse [47]. Although the system contained no form of recog-

nition and used modal buttons and switches to input graphical models, it showed that

early computer graphics researchers initially envisioned users inputting information

into a computer via a pen-based medium. Figure 2 shows Sutherland interacting with

his Sketchpad system using his novel light pen.

In 1969, RAND Corporation took pen-based computing one step further [48]. Un-

like Sutherland’s Sketchpad system, RAND Corporation’s GRAIL (GRAphical Input

Language) system did not require the use of modal switches to input diagrams and
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Fig. 2. Ivan Sutherland’s Sketchpad system.

flowcharts. Instead, integrated software solutions were used to perform recognition

based on domain-specific context.

MIT researcher, Nicholas Negroponte, arguably may have been the first to coin

the term “sketch recognition” when he introduced his HUNCH system [49]. According

to Negroponte, “sketch recognition is the step by step resolution of the mismatch

between the user’s intentions (of which he himself may not be aware) and his graphical

articulations” [50]. The primary motivation of the HUNCH system was that pen-

based devices should not just simply computerize a user’s input, but should also aid

them in their design through the recognition of the user’s intention. These seminal

works helped pave the way for today’s modern pen-based computing research.

The current pen-based computing devices of today vary from portable handheld

units to large, shared workspaces (see Figure 3). Personal digital assistants (PDAs)

like the Palm Pilot and Apple Newton allowed for stylus-based input and were pre-
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Fig. 3. Various hardware devices that allow for pen-based input.

cursors for many of the current “smart” phones that we see today [51, 52, 53, 54].

Desktop systems can allow for pen-based input either through external tablets [55],

or through interactive pen displays that allow users to draw directly on the screen

[56]. As laptop computers have become popular, so too have Tablet PCs, which also

allow users to draw directly on the laptop monitor [57, 58]. Electronic whiteboards

have also become popular, because they provide a large, shared workspace that pro-

motes collaboration amongst users [59, 60]. For those who still prefer pen and paper

over their electronic counterparts, devices exist which allow ink markings on paper

to be translated into an electronic form [61, 62]. For more information on the hard-

ware advances between today’s modern pen-based devices and those from the days

of Sketchpad, we refer the reader to Meyer’s pen computing survey [63].

In addition to the pen-based devices mentioned previously, new advances in hard-

ware have been made which could lead to new applications for interaction researchers.

For example, multi-touch displays allow users to interact with programs using multi-

finger gestures on the screen [1]. This concept has also been expanded to include

bimanual pen and touch interaction [2]. Furthermore, some researchers have focused

on creating portable projectors that allow users to sketch on any surface using an
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Fig. 4. Examples of new pen-based input devices currently being developed (from left

to right): multi-touch displays [1], bimanual pen and touch displays [2], IR

projected sketching systems [3], and surfaceless pen-based interfaces [4].

infrared (IR) pen [3]. Still, others have focused using IR technology to create writing

devices that are not bound to any physical surface [4]. Devices such as these could

potentially become new forms of interaction and lead to new applications for sketch

and gesture recognition researchers. Figure 4 shows some screenshots of these devices.

B. Human-computer Interaction

Many researchers have focused on the HCI aspects of sketching. For example, Al-

varado created rules and guidelines for developing sketch recognition user interfaces

(SkRUIs) [64]. Davis addressed the problem of creating “Wizard of Oz” studies for

sketch-based interfaces [65]. Eoff and Hammond looked at the physical manner in

which user’s sketch and realized that properties like pen tilt and pressure could be

used to perform user identification [66]. Other HCI aspects of sketch-based inter-

faces include editing, gestures, beautification, toolkit development, and multimodal

systems.
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1. Sketch Editing

Due to the fact that the pen is used both to create elements and to modify elements,

many HCI studies have focused on how to edit sketch elements once they have been

drawn (e.g., scale, translate, rotate, cut, copy, delete). Saund and Moran’s PerSketch

system focused on utilizing the principles of Perceptual Organization in order to per-

form complex editing tasks [67]. PerSketch followed a draw/select/modify paradigm

and used a modal button press to switch between drawing and editing modes. Saund

and Lank would later show that a modeless switch was possible using pen trajectory

and context [68]. The principles of Perceptual Organization were also used in Scan-

Sribe to form composite groupings of prime sketch elements and also showed to be

promising for grouping text strokes [69, 70]. Other sketch editors used recognition

themselves to perform different editing tasks. For example, Zhu et al. recognized

drawn circles along a stroke which could then be used as control points for stroke

manipulation [71].

2. Incorporating Gestures

Many systems have used sketched gestures to perform editing tasks since gestures

have been shown to be easier to remember than textual commands [72]. For example,

Hinckley et al.’s Scriboli system used a pigtail gesture at the end of a lasso, where the

end direction of the pigtail denoted a different operation (move, cut, copy, delete) [73].

Zeleznik and Miller showed how prefix flicks and postfix terminal punctuation (e.g.,

pause, tap, click) could be used to disambiguate sketched gestures from creative ink

[74]. Sketched gestures have also been used as substitutes for alphanumeric characters

in order to write simple textual letters [75]. Examples of these systems are seen in

Figure 5.
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(a) Scriboli’s pigtail gesture and associ-
ated pie menu [73].

(b) Zeleznik’s prefix flicks (shown as
slashes) and postfix taps (shown as de-
gree signs) [74].

(c) Unistroke gesture substitutes for alphanumeric
characters [75].

Fig. 5. Example usage of gestures in pen-based interfaces.
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3. Beautification

Another area of concern for HCI researchers has been beautification, both on the

local stroke level and global sketch level. Beautification is the process of taking the

user’s rough strokes and translating them, through recognition, into a more formal

form. Even though people prefer high-fidelity, beautified output because of its more

professional look [28], it has been shown that users are more creative with the original,

informal strokes, because the sketch feels more flexible and capable of being modified

[27].

Some algorithms have focused on the beautification of entire sketch symbols

and the relationships between them such as symmetry, congruence, collinearity, and

horizontal and vertical alignment [5, 76]. This can be considered a form of global

sketch beautification (see Figure 6). Others have focused on beautifying on a stroke

by stroke basis [6, 12, 41] (i.e., local beautification, as seen in Figure 7). Beautification

of strokes can either be triggered manually by the user or can occur automatically

after the stroke has been drawn. In some cases, strokes can be beautified in real-time

while the user is still drawing the stroke, as seen in Figure 8 [8].

The time of beautification is important to HCI researchers. For example, if re-

sults are shown too soon, it may distract the user. However, if results are delayed,

misrecognitions will not be noticed until later in the sketching process, and recogni-

tion errors could propagate. In this dissertation, algorithms that can recognize and

beautify basic shapes are presented. While the algorithms return beautified shape

interpretations, the time of beautification is left to the application developer who uses

the recognition algorithms. For more information on the advantages and disadvan-

tages of different forms of beautification, please see [77, 78].
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Fig. 6. Example of global beautification, in which locally-beautified symbols are

cleaned up based on properties related to symmetry and congruence [5].

Fig. 7. Example of local beautification performed by PaleoSketch [6] within the LAD-

DER sketch recognition system [7].
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Fig. 8. Example of real-time beautification performed as the user is drawing the stroke

[8].

4. Toolkits

In order to aid application developers, many researchers have created toolkits for

supporting various sketch tasks. To support gestures in sketch-based interfaces, Wob-

brock et al. developed an easy-to-implement algorithm for recognizing user-defined,

sketched gestures [42]. Tools, such as “quill,” can be used to further help develop-

ers as it was able to analyze gesture sets to determine which gestures may easily be

confused with one another [79]. Other toolkits, like Burlap, have supported models

of ambiguity and provided mechanisms for selecting alternative interpretations when

sketches are misrecognized [80, 81]. Still, other toolkits have supported the entire cre-

ation of informal ink-based applications with full recognition and editing capabilities

[82, 83].

5. Multimodal Systems

Finally, because sketch recognition is still far from perfect, many researchers have

looked into combining sketch with other modes on input, like speech, to better recog-

nition. For example, Kullberg created a calendar application that could be edited
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using a combination of gesture recognition and speech [84]. Speech has also been

used in sketch-based mechanical engineering diagrams to aid recognition, as well as

to help specify force and motion parameters [32, 85]. Sketch and speech have further

been utilized in many military course of action applications [86, 87].

C. Recognition

Recognizing an entire sketch is a complex task, because sketches are “ambiguous,”

“dense,” and “replete” [25]. Often a sketch conveys much more than just a single

piece of information. UML diagrams show class objects and the relationships be-

tween them. Mechanical schematics show not only devices and bodies, but the forces

and interactions between them. Because a sketch typically contains multiple objects

and forms of information, it is commonplace to use hierarchical schemes to perform

recognition. A UML diagram gives a snapshot of the inner working of an entire piece

of software. However, this diagram is made up of class objects and interactions, which

are represented as rectangles and arrows. These rectangles and arrows can be broken

down further into a set of lines. And taken to the extreme, lines can be broken down

even further into points. In this dissertation, the term high-level recognition refers

to the process of finding meaningful, domain-specific symbols within a drawn sketch

(e.g., a class object, an anchored body, an OR gate). Low-level or primitive recogni-

tion refers to the process of interpreting an individual stroke, or group of strokes, as

a basic, domain-ignorant shape (e.g., line, ellipse, curve). The differences in labeling

between high-level and low-level recognition can be seen in Figure 9.
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Fig. 9. Example of the distinction in labeling between low-level and high-level rec-

ognizers. Low-level recognizers assign domain-ignorant labels while high-level

recognizers assign domain-specific labels.

D. High-level Recognition

Most sketch recognition systems have employed a framework similar to the one shown

in Figure 10. Drawn strokes are interpreted as one of any supported shape primitive.

These recognized primitives are then given to the high-level recognizer which attempts

to identify domain-specific constructs. In order to support a large variety of sketch

domains, many algorithms have utilized shape grammars to define the symbols of a

given domain [83, 88, 89, 90, 91, 92]. These grammars define symbols in terms of a

set of shapes that meet particular spatial and geometric constraints (e.g., Figure 1).

Calhoun et al.’s system recognized symbols using semantic networks and a dictio-

nary of learned shape definitions [90]. These shape definitions described the symbols

in terms of lines and arcs and the geometric relationships between them. Other lan-

guages, like LADDER, have supported more primitive shapes and were capable of
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Fig. 10. Example sketch recognition framework.
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expressing other details of the sketch like editing and display properties [83]. In some

cases, systems have utilized additional, domain-specific context to help aid recognition

[30, 93, 94, 95, 96]. Constraints can also be defined using statistical models, such as

a Bayesian network, to provide confidence values for a particular symbol interpreta-

tion [97]. Because symbol definitions can be tedious to define, some researchers have

created methods for automatically generating shape grammars from drawn examples

[98, 99, 100].

In addition to shape grammars, other high-level paradigms exist as well. Sharon

and van de Panne used constellation models from computer vision to model the spatial

relationships between the components of a sketched symbol [101]. Sezgin noticed that

people often tend to draw symbols in a particular order [102]. For example, when

drawing stick figures, users tend to start with the head, followed by the torso, and

then the limbs. Therefore, he used Hidden Markov Models (HMMs) to help uncover

the temporal patterns in users’ drawing. These temporal patterns have also been

used by other researchers to create sketch applications that adapt to one particular

user [103]. Temporal and contextual information have also been captured in other

systems using conditional random fields (CRFs) [104].

E. Low-level Recognition

Low-level recognition is the process of assigning a domain-ignorant label to a stroke

or group of strokes. This label represents the name of one of many primitive shapes

which are used as part of the building block vocabulary for high-level shape grammars.

As the number of supported primitive shapes increases, so too does the expressive-

ness of the high-level shape grammar. Thus, it is important to not only have accurate

primitive recognizers, but to also have primitive recognizers that support many differ-
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Fig. 11. Example gesture set from Graffiti. Some of these gestures may not be natural

to the user and must be learned before interacting with the system.

ent shapes. These recognizers may either require training for the end-user to perform,

or require no prior sketch examples at all. Some may be online algorithms that uti-

lize the timing or ordering of sketched points, while others are offline and require

only the x and y pixels of the sketch. The classes of low-level recognizers have tradi-

tionally been broken down into three categories: motion-based, appearance-based, and

geometric-based recognizers.

1. Motion-based Recognition

Motion-based recognizers got their start from algorithms meant to interpret gestures

that represented either editing commands [43] or alphanumeric characters [75, 105,

106, 107], but have also been used as primitive recognizers in some sketch systems.

Because these gesture sets are typically large and may not be initially obvious, there

is often a learning curve associated with new users (see Figure 11). Motion-based

recognizers concern themselves with classifying shapes based on how the individual
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Fig. 12. Motion-based methods focus on how a stroke was drawn in order to perform

recognition. In this example, even though the shapes look the same visually,

they would actually be considered different gestures because they were drawn

with two different motions.

strokes were drawn, and not on what the stroke actually looks like, as seen in Fig-

ure 12. Therefore, these types of algorithms often place constraints on how users

must draw particular shapes in order to be recognized. For example, a user may

naturally draw circles using a clockwise motion, but may be forced to draw circles

in a counter-clockwise direction in order to be recognized. Drawing habits like these

are hard for new users to break. Often times, users are also required to pre-train the

system and must provide numerous example sketches before using the application.

In 1991, Dean Rubine proposed a gesture recognition toolkit, GRANDMA, which

allowed single-stroke gestures to be learned and later recognized through the use of a

linear classifier [43]. He proposed thirteen features that could be used to describe any

single-stroke shape. Such features included the sine and cosine of the starting angle of

the stroke, length and angle of the bounding box diagonal, total and absolute rotation,

and maximum speed. He also provided two techniques for rejecting bad gestures. To

date, Rubine’s recognizer is probably the most widely used motion-based algorithm

in sketch and gesture recognition [19, 79, 82, 84, 97, 108, 109, 110].

Rubine’s work was later extended by Long et al. [111], who determined a new

feature set that consisted of eleven of Rubine’s features along with six of their own.
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Fig. 13. Example of the reference lines generated by the Ledeen recognizer.

This feature set was chosen after multi-dimensional scaling was used to determine

the most relevant features. Like Rubine’s recognizer, a linear classifier was used to

classify single stroke shapes. Other modifications of Rubine’s algorithm include the

changes made in InkKit, in which features related to absolute size were replaced with

ratios instead [112].

The Ledeen recognizer formed a 3x3 grid from the bounding box of a drawn

stroke, or set of strokes [105]. As seen in Figure 13, a 3x3 grid generates four interior

reference lines. The recognizer calculated the number of times the stroke intersected

each reference line, and made note of the starting location of the stroke. It also looked

at the angles between strokes in the case of multi-stroke gestures. Based on this in-

formation, the algorithm performed recognition. The recognizer from the Electronic

Cocktail Napkin system used a similar recognizer, but also included information re-

lated to the aspect ratio of the strokes, as well as, the number and location of corners

[93, 94, 95].

In order to avoid feature selection and discovery in gesture recognition, Choi et

al. used manifold learning to recognize multi-stroke gestures [113]. Kernel Isomap

is utilized, along with a novel dissimilarity metric that accounts for both spatial and

temporal information in a stroke. By using the features extracted through manifold
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learning, the authors were able to show that their approach outperformed the Rubine

recognizer on datasets consisting of alphabetic characters, numbers, and mathemati-

cal symbols.

2. Appearance-based Recognition

Some systems have looked to computer vision to help solve the sketch recognition

problem. These appearance-based algorithms have focused strictly on how a sketched

shape looks, and have used some form of template-matching to compare a candidate

symbol to others in a learned catalog; the timing and ordering of points is completely

ignored.

Hse and Newton performed recognition using Zernike moments [44]. Other al-

gorithms utilized histograms either at the stroke level [114] or the pixel level [115]

to perform recognition. In order to handle variations in scale and orientation, al-

gorithms, such as the congealing algorithm proposed by Learned-Miller, may apply

various affine transformations to symbols before comparing templates [116]. Wob-

brock et al. used a template-matching algorithm that can handle differences in ori-

entation by rotating symbols along their “indicative angle,” the angle between the

centroid of the stroke and its starting point [42]. When performing template match-

ing, many algorithms will use a simple Euclidean distance metric, while others may

use more complex distance metrics like Hausdorff distance [117, 118, 119, 120]. Rather

than perform template matching directly on a particular sketch, Ouyang and Davis

performed template matching on feature images that are generated based on stroke

orientation along set of reference angles [121].

Although these appearance-based systems have the advantage of increased draw-

ing flexibility and extensibility, they also have a notable downfall. The main disadvan-

tage of these appearance-based recognizers has been their inability to handle shapes
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Fig. 14. Appearance-based methods typically use some form of template matching to

perform recognition; however, alternative variations of the same symbol would

require multiple templates.

that can be drawn in an arbitrary number of configurations; thus, they require a

separate template for each variation of a shape. Imagine an arrow that can have

an unlimited number of acceptable paths (straight line, curved, squiggled, etc.), as

seen in Fig. 14. Essentially, the training space for these arbitrary symbols would be

infinite, requiring the user to provide explicit examples of every possible configuration

of the shape. In most domains, this would be boundless and unreasonable.

3. Geometric-based Recognition

Because gesture-based techniques place drawing constraints on users, and because

appearance-based techniques have trouble handling shapes of arbitrary configuration,

a shift to the use of geometric-based recognizers has occurred. To allow for variance

in scale and orientation, these types of recognizers use geometric formulas to describe

basic building block shapes, or primitives (see Fig. 15). An additional benefit of

this approach is that primitive shapes can be automatically beautified, because the

parameters needed to perform beautification are also used for recognition.



25

Fig. 15. Geometric-based methods estimate an ideal shape representation (red) of the

stroke (black) and then compute shape approximation errors to perform recog-

nition. For example, a circle can be estimated by finding an approximate

center (e.g., the center of the bounding box) and an approximate radius (e.g.,

by taking the average distance of each stroke point to the center). Lines can

be estimated by simply connecting the endpoints of the stroke.

a. Corner Finding

One of the important sub-processes of geometric-based techniques is called corner

finding. This has also been referred to as segmentation [122], fragmentation [123],

vertex detection [9, 12, 41], or cusp detection [45]. The goal of corner finding algo-

rithms is to break down a single stroke into a its most basic primitives. For example,

if a user draws a square, then the algorithm’s goal is to return the four, linear sub-

segments. Some algorithms are meant to work solely on polyline strokes, while others

can be used on curvilinear segments (e.g., Figure 16). The corners of strokes provide

important perceptual information when performing geometric-based recognition.

Polyline corner finders are meant to reduce a stroke down into its basic linear sub-

components. One of the first, and most popular, polyline corner finding approaches

is the Douglas-Peucker algorithm [10]. This algorithm was originally intended to

reduce the number of points along a contour in cartography map representations. A

visual example of the algorithm can be seen in Figure 17. One of the downfalls of the

Douglas-Peucker algorithm is that it runs in quadratic time - O(n2) - in the number
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Fig. 16. Example results of corner finding on curvilinear stroke. Results are from

MergeCF [9].
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of points in the stroke. This led to additional modifications by other authors, which

have since improved the algorithm to a O(n log n) running time [124].

ShortStraw is a more recent polyline corner finder that has the extra benefit of

being easy to implement [11]. It starts by first resampling the points of the stroke so

that each point is equidistant to its neighbor. Next, a series of “straws” are computed

within a fixed window size around a candidate corner (Figure 18). Those points with

the shortest straws are considered the ideal corners of the stroke.

One of the most significant discoveries of the ShortStraw paper, was that existing

corner finding approaches did not factor in false positives into their accuracy calcula-

tions. Thus, they were not penalized for oversegmentations (i.e., those that produced

too many corners). To account for this, the authors of ShortStraw developed a new

“all-or-nothing” accuracy measure that penalizes for false positives. Essentially, this

accuracy denotes the percentage of the time that a stroke is segmented correctly with

no missing corners and no additional corners. With this measure they determined

ShortStraw was 74% accurate, an improvement over the 30% accuracy of the next

best corner finder. Since its publication, many researchers have implemented im-

provements to the ShortStraw algorithm, some of which have increased all-or-nothing

accuracy to above 99% [125].

Unlike the Douglas-Peucker and ShortStraw algorithms, some corner finders also

work for curvilinear strokes as well as polyline strokes. Although some have used

sophisticated techniques, such as dynamic programming, to perform segmentation

[123], most have used simple approaches related to curvature and speed calculations.

The curvature of a given point is defined as the change in direction at that point,

where direction is the arctangent angle of the change in y over the change in x.

Equations 2.1 and 2.2 show the formulas typically used for direction and curvature. In

these equations, n represents the index of the current point, k denotes a neighborhood
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(a) The user draws a stroke. (b) The algorithm begins by selecting
the endpoints as corners. One is selected
as an anchor (star), and one is selected
as a floater (circle). Next, an ideal line
is generated between the two points.

(c) The point that is furthest away from
the optimal line is tested as a candi-
date corner. If this point is far enough
away from the optimal line (within some
threshold), then it is added as a corner
and becomes the new floater.

(d) Next, the algorithm repeats steps
(b) and (c). In this case, the candidate
corner is not far enough to be added.

(e) The floater moves to the end of the
stroke and the previous floater becomes
the new anchor. Steps (b) and (c) are
then repeated.

(f) The process continues until the an-
chor reaches the end of the stroke.

Fig. 17. A walkthrough of the Douglas-Peucker algorithm [10].
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Fig. 18. Example of the “straws” computed through the ShortStraw algorithm [11]. In

this example, straws (a), (c), and (e) are shorter and more likely candidates

for corners than the longer straws of (b) and (d).

size around a point (typically 1 or 2), D is a function that computes the path length

between two points, and ϕ is a shift function that ensures that curvature values remain

between π and −π. This shift function keeps the curvature graph continuous.

dn = arctan(
yn+1 − yn
xn+1 − xn

) (2.1)

cn =

n+k−1∑
i=n−k

ϕ(di+1 − di)

D(n− k, n+ k)
(2.2)

Some algorithms have searched for corners simply by finding the points of high-

est curvature [12], but some have also observed that corners can also be found at

the points of lowest speed [41, 126]. These points are typically found using global
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thresholds that are a function of the mean or median values. In some cases, these

thresholds are lowered in order to produce many false positive corners, which is then

followed up with a post-process stage that merges corners that have little effect on

the overall error of the fit [9]. Rather than use global thresholds, Kim and Kim took

an alternative approach and utilized local information, such as local convexity and

local monotonicity, to find corners [122]. However, because of the resampling required

by this approach, oversmoothing can cause some corners to be missed [9].

b. Primitive Recognition

After corner finding has taken place, each sub-segment can then be recognized as a

primitive shape. Sezgin, Stahovich, and Davis described a single-stroke algorithm that

was composed of an approximation stage, a beautification stage, and a recognition

stage [41]. Corners were detected by finding the points of highest curvature, along

with the points of lowest speed. Hybrid fits between these two sets of points were

calculated using an average-based filtering technique. Next, the error of each fit was

determined by using an orthogonal distance squared error. The system was limited to

only a few primitive shapes: lines, curves, ellipses, and complex fits (those composed

of a combination of lines and curves). For complex fits and vertex approximation,

the authors reported an accuracy of 96%.

Yu and Cai presented an alternative single-stroke primitive recognizer [12]. Cor-

ners were detected using only curvature data. The most significant contribution of

Yu and Cai was the introduction of their feature area error metrics (see Figure 19).

The shape set of the Yu and Cai recognizer was expanded to include lines, polylines,

circles, ellipses, arcs, and helixes. For primitive shapes, they achieved near 98% ac-

curacy; however, they admit to not having produced the recognition rates of Sezgin

for complex shapes.
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Fig. 19. Feature area examples of the shapes supported by the Yu and Cai recognizer

[12].

c. Limitations of Geometric-based Approach

The primary benefit of the geometric-based approach is its ability to describe the

symbols of many different domains. Because geometric formulas are used to describe

shapes, problems related to scale and orientation often become non-issues. Further-

more, the geometric-based approach is the least limiting on the user. It normally does

not require special drawing constraints like the gesture-based paradigm, nor does it

require user-specific training. Because of these benefits, it is the primary technique

used within this dissertation. Additional motivation for this approach is given in

Chapter III.

Although basic visual vocabularies are often followed by users when sketching

[127, 128, 129], there are specific types of drawing that are not well-suited for the

geometric-based approach. These problem areas typically arise when dealing with

non-geometrical shapes that are hard to describe, such as curvy shapes and blobs,

handwriting (i.e., text), and shading.

Even though a curve is normally a supported primitive by most low-level rec-

ognizers, it is hard for users to describe high level symbols that are composed of

many different curves. This is because a) curves can be drawn to an infinite number

of degrees, b) control points are hard to define for curves, c) any basic shape can

technically be described in terms of a geometric sequence of curves, and d) it is hard
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to distinguish where one curve starts and another one begins. Most geometric-based

recognizers cannot handle artistic drawings because of this specific limitation. There-

fore, sketches of animals, people, trees, and others containing abstract shapes are not

supported.

Handwritten text is also not typically handled by geometric, sketch recognizers,

because it often is drawn in a specific way that may not always follow the same

convention across all users. Furthermore, some letters and numbers are hard to

describe geometrically. Because of this, most sketch systems handle handwriting

through external means either by using the keyboard [29] or by designating special

areas as “text-only” where the strokes drawn in that area are sent to an outside

handwriting recognizer [130]. Since there exist recognizers that perform well on only

iconic shapes (i.e., sketch recognizers), and since there are recognizers that perform

well on just text (i.e., handwriting recognizers), some researchers have recently begun

to analyze means of distinguishing text strokes versus shape strokes and have shown

promising results [131, 132, 133, 134].

Like complex curves, shading is also not supported by the geometric-based ap-

proach and is better suited for a vision-based approach because of its arbitrariness.

However, a couple of exceptions to this rule do exist. Most recognizers can detect

dense areas of points within a stroke, which can denote things like scribbles or filled-in

regions [135]. Furthermore, shapes like overtraced lines and ellipses can still be recog-

nized because their geometric formulas are still intact. Overtracing mainly becomes

a problem when it occurs within complex shapes or multi-stroke shapes.

4. Hybrid/Combination Techniques

Other algorithms have attempted to utilize the benefits of each type of low-level

recognition paradigm by combining approaches in an ensemble manner. For example,
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Fig. 20. Bounding polygons that are calculated for the Apte and CALI recognizers

[13, 14, 15].

GLADDER attempted to determine which recognizer, either Rubine [43] or Pale-

oSketch [6], should be used to interpret each stroke as it entered the recognition

system [136]. It did this by utilizing a rejection method that first checks the Ma-

halanobis distance to any of the Rubine-defined glyphs. If this distance exceeded a

threshold, then the PaleoSketch recognizer was used instead. The authors found that

they chose the correct recognizer and returned the correct result 80% of the time.

Another hybrid approaches have focused on calculating convex hulls and other

various bounding polygons (Figure 20) and compare their ratios, which are referred to

as shape “filters” [13, 14, 15]. In this sense, these approaches are similar to geometric-

based techniques. However, these algorithms are offline (similar to appearance-based

techniques), and do not utilize the timing and ordering of stroke points. Apte used

these shape filter ratios as features in a decision tree to recognize lines, ellipses,

circles, diamonds, triangles, and rectangles with an accuracy of 97.5%. Multi-stroke

primitives were also supported as long as the strokes used to compose the shape

were drawn consecutively, and within a certain time threshold. The CALI recognizer
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Fig. 21. Gestures supported by the CALI recognizer [14, 15].

extended the work of Apte to include the recognition of the previously supported

shapes and arrows, in addition to a set of uni-stroke gestures, seen in Figure 21

[14, 15]. The CALI recognizer used a fuzzy logic classifier and achieved recognition

rates around 93%. A primary distinction between this approach and the traditional

geometric-based approach is that shapes like diamonds, rectangles, triangles, and

arrows are recognized wholistically, whereas with a geometric-based approach, these

would first be segmented into lines by a corner finder, recognized as individual lines

by a primitive recognizer, and then combined and formed into a specific polygon by

a high-level recognizer.

MARQS (Media Albums Retrieved by Query Sketch) is a system that utilized

a combination of gestural features (e.g., bounding box aspect ratio), visual features

(e.g., pixel density), and geometric-based features (e.g., number of corners, average

curvature) to perform recognition of more artistic symbols [16]. The goal of the
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MARQS system was to allow users to retrieve multimedia albums based on their

input sketch symbols (Figure 22). It required only a single example of each sketch

prior to use, and provided an online learning mechanism that utilized information

related to selected queries to better train the algorithm over time. The system was

able to return the correct result within the first page of options 98% of the time. It

was also shown that the average search rank decreased over time, indicating that the

system performed better as the user interacted with the application.

F. Applications for Sketch-based Interfaces

Many applications have been developed that utilize sketch recognition to provide a

better or more unique user experience. These applications can be broken down into

three categories, based on function: design, engineering and education, and search by

sketch.

1. Sketching in Design

Sketching is a primary input modality during the initial stages of design, because of

its informal nature and support for flexibility and creativeness. Most sketch interface

developers who work in the realm of design focus on creating tools that support

basic computer conveniences (e.g., copy, paste, save) while maintaining the basic

creative affordance of pencil and paper. Some even create algorithms for selecting

the appropriate design tools based on context [137]. Furthermore, researchers have

shown that informal sketching tools support the exploration of a design more so

than traditional authorware tools [24]. Because of the focus on the informal nature of

sketching, some of these applications may or may not utilize actual sketch recognition.
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(a) The user draws a query sketch. (b) The system returns a list of results.
Once the user selects the result they in-
tended, their query sketch is added as a
training sample for the associated media
album.

(c) The media album associated with
the query sketch is returned and dis-
played.

Fig. 22. Screenshots of the MARQS system [16].
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Fig. 23. Example GUI created with the JavaSketchIT application [17].

a. Storyboards

One of the most frequently used tools employed by designers is storyboards. In a

recent survey of designers, Myers et al. discovered that 88% of designers use sto-

ryboards and 97% of those designers began with sketching. SILK is a toolkit that

incorporated recognition and allowed users to sketch basic storyboards and interfaces

[108]. Gestures were also avaiable to allow users to perform operations like delete,

move, copy, group, and cycle. DENIM built off of the concepts from SILK to create

an application that supported the design of websites [138, 139]. Finally, JavaSketchIT

allowed users to sketch out graphical user interface (GUI) components which could

be recognized with the aid of the CALI recognizer [14, 15] to produce an actual Java

GUI, as seen in Figure 23 [17].

b. 3D Modeling

Another principle use of pen-based interfaces in design is 3D modeling. Many re-

searchers have looked into the creation free-form 3D objects generated from 2D

sketches. Some systems have taken 2D strokes and interpreted them as a 3D model
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(a) Bimber et al.’s gesture set used
to create 3D objects [143].

(b) Do’s VR Sketchpad system that recognizes
2D shapes which represent 3D objects in a
VRML scene [144].

(c) Lipson and Shpitalni’s system for recognizing 2D sketches as 3D models
which can then be externalized into physical models using 3D printing [147].

Fig. 24. Examples of different 3D modeling applications that utilize pen-based input.

directly [140, 141, 142], while others have recognized simple 2D gestures that repre-

sented various 3D forms [143, 144, 145]. With Do’s VR Sketchpad, 2D sketches were

recognized and interpreted as objects like chairs, tables, and sofas in order to create

a 3D VRML floor plan [144, 146]. In some cases, the 3D models generated through

sketching can be externalized into physical models using commercial 3D printers [147].

Figure 24 shows some of these systems in work.

2. Sketching in Engineering and Education

Diagrams are prevalent throughout engineering and education domains due to their

ability to convey a lot of information quickly and efficiently. To support the creation
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of these diagrams, computer-aided design (CAD) tools have been developed which

provide a toolbar-based, point-and-click interface. Studies have shown that users

not only perform operations faster with sketch-based interfaces, but that sketch-

based interfaces also promote creativity better than the traditional CAD systems [24].

Therefore, the goal of most of these applications is to provide a top-level interface

that works in conjunction with existing CAD tools.

a. Sketching in Engineering

Many different engineering domains have benefited from sketch recognition technol-

ogy, including electrical engineering [30, 119, 148], software engineering [29, 110, 130,

149, 150, 151, 152], mechanical engineering [18, 31, 32, 153, 154], and even civil en-

gineering [40]. For example, systems like AC-SPARC [148] and Sim-U-Sketch [119]

allowed users to sketch electrical circuit diagrams that could be translated into mod-

els that were usable in external simulators like SPICE and Matlab’s SimuLink. Oth-

ers, performed simulation directly by allowing users to specify the input values for

sketched logic diagrams [155]. Figure 25 shows some examples of electrical engineering

applications that utilize sketch recognition.

Another application of sketch recognition lies in software engineering. The Uni-

fied Modeling Language (UML) is a standardized language for modeling the inter-

actions and design of software components. Many UML models, such as use case,

class, and sequence diagrams are capable of being supported with sketch recognition.

MaramaSketch provided a sketch interface on top of the existing Marama plug-in for

the Eclipse integrated development environment (IDE) [130, 150]. Other software,

such as Tahuti, recognized UML class diagrams and could translate them into Ra-

tionale Rose models, which have the capability to generate Java code automatically

[29]. Figure 26 provides some screenshots of example UML sketch systems.
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(a) The CircuitBoard sys-
tem that performs simu-
lation on sketched circuit
logic diagrams [155].

(b) Kara and Stahovich’s
Sim-U-Sketch system
that connects to Matlab’s
SimuLink software [119].

(c) Gennari et al.’s AC-
SPARC system that allows
users to sketch diagrams
that can be simulated in
SPICE [148].

Fig. 25. Examples of electrical engineering applications that utilize sketch recognition

technology.

(a) The Tahuti system, which translates hand-
sketched UML class diagrams into Rationale Rose
models [29].

(b) Lank et al.’s system for
recognizing various UML
diagrams [149].

Fig. 26. Examples of UML sketch systems.
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Fig. 27. Examples of mechanical sketches being recognized and translated into simu-

lator models through the ASSIST application [18].

Mechanical engineering applications can also apply sketch recognition to interpret

schematic sketches of physical devices [31]. Systems, such as ASSIST (Figure 27), al-

lowed users to draw simple mechanical diagrams that could be brought to life through

simulation [18]. With the extension system, ASSISTANCE, users could also include

speech recognition to help describe the behavior of the sketched devices [32, 154].

b. Sketching in Math & Science

Applications like MathPad2, which used an online gesture-based character recognizer

[107], have allowed users to sketch out mathematical expressions that can be solved,

graphed, or associated with free-form illustrations [34]. AlgoSketch, also known as

MathPaper, attempted to combine sketched mathematical expressions with hand-

drawn flowcharts to allow pen-based algorithm sketching [156, 157, 158]. Matsakis’s

recognizer translated hand-drawn equations into their corresponding MathML or La-

TeX expressions [159]. Other complex mathematical constructs like constraint satis-

faction diagrams [7] and finite state machines [160] have also be supported by many

sketch recognizers. Figure 28 shows some of these examples.

Science fields, such as chemistry and biology, also benefit from sketch recogni-

tion. For example, Ouyang described a system capable of recognizing hand-sketched

chemical structures [36, 161]. In Tenneson’s ChemPad, recognized sketches could be
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(a) The MathPad2 system [34]. (b) Matsakis’s system for translating
hand-sketched math expressions into
their MathML and LaTeX counterparts
[159].

(c) Hammond’s LADDER system recognizing a hand-drawn finite
state machine [160].

Fig. 28. Examples of sketch-based, math applications.
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(a) The ChemPad system [35, 162]. (b) Taele et al.’s hand-sketched, biolog-
ical cell recognition application [39].

Fig. 29. Examples of chemistry and biology applications.

displayed as 3D molecules [35, 162]. And in biology, sketches could be used to describe

concepts like plant and animal cells [39], as seen in Figure 29.

c. Sketching in Language & Fine Arts

In addition to the STEM (science, technology, engineering, and mathematics) areas

of learning, sketch recognition can also be used for language and fine art domains.

For example, it can be used in grammar classes to perform sentence diagramming

[20]. It can also be utilized in computer-assisted language instruction tools that teach

beginners the basics of Chinese and Japanese Kanji [37, 38]. Shahzad et al. created

similar tools to recognize characters from the Urdu language [163].

Fine arts can also be aided with sketch recognition. Forsberg et al. created the

Music Notepad, which allowed hand-sketched sheet music to be composed through the

recognition of single-stroke gestures that represented individual notes (see Figure 30)

[19]. Art programs, which can range from the creation of simple stick figures [164] to

the creation of entire animated sequences [165, 166], have also benefited from sketch

recognition. Davis’s K-Sketch system allowed novice animators, such as teachers,
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Fig. 30. Gesture set used by the Music Notepad system for composing sheet music

[19].

to quickly and easily create informal animations by allowing motion paths to be

specified with pen gestures [166, 167]. Sketch recognition has also been employed

in conjunction with face recognition technology to create an art instruction program

that taught users how to draw the human face [168].

3. Search by Sketch

Finally, sketch recognition has also been used for search by sketch applications. In

most cases, sketches are used as queries to search for previously drawn sketches [16,

169], however, some researchers have begun to look toward using sketches as a means

to search for real-world images as well [170]. Systems like XLibris allowed for free-form

ink annotation while reading [171], and, as mentioned by the authors of MARQS, the

end goal of a smart notebook that would allow users to retrieve class notes based on

either textual or sketch queries would be significant (e.g., Figure 31) [16].
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Fig. 31. Example scenario of a smart notebook where both textual and sketch queries

would be beneficial.



46

CHAPTER III

PALEOSKETCH

A. Introduction

Recall from the previous chapter that multi-domain sketch recognizers follow a frame-

work similar to that in Figure 10. Users make single markings to the screen. The

sampling of 3-tuple points (x, y, time) sampled between pen-down and pen-up events

make up this stroke. The stroke is then interpreted as being one of a set of primitive

shapes by a low-level recognizer. The low-level recognizer then passes these shape

interpretations into a high-level recognizer, which contains a list of shape definitions

that describe the symbols of the domain. These definitions typically include a list of

primitive shapes that compose each symbol, along with a set of spatial and geomet-

ric constraints between each component. The job of the high-level recognizer then

becomes a problem of grouping a set of recognized primitives into a specific shape

definition in order to recognize entire symbols.

PaleoSketch is designed to recognize low-level primitive shapes that are used as

the building block vocabulary in these types of high-level sketch grammars. There

are many different opinions as to what constitutes a “primitive” shape. Because

these primitive shapes are ultimately going to be used in a humanly-descriptive sketch

language, our definition of “primitive” is a shape that is hard to describe (for humans)

in terms of other geometric shapes. For example, it would be difficult for a person

to describe a circle in terms of a set of arcs or curves. However, a person can easily

describe shapes like rectangles as a series of lines.

The primary goals of PaleoSketch include:

1. Accuracy. Because recognition is hierarchical, errors in the low-level system per-



47

colate up into high-level recognizers (e.g., a high-level recognizer cannot combine

four lines into a rectangle if the lines were initially misclassified). Therefore,

the low-level recognizer must be as accurate as possible.

2. Supporting a large number of shapes. The more shapes that are supported by

a low-level recognizer, the more expressive a sketch grammar becomes. For

example, many low-level recognizers do not handle helixes, yet these are used

throughout the mechanical engineering domain to represent springs. Without

recognizing this primitive, previous systems either relied on using a different

symbol to represent springs, which may be unintuitive to end-users, or the

domain was simply not supported.

3. Placing no constraints on how users must draw primitives. Many recognizers,

such as the motion-based recognizers mentioned in Chapter II, place restrictions

on how users must input shapes. For example, a circle may be specified with

a clockwise path, which means any circle drawn with a counter-clockwise path

would not be recognized properly.

4. Domain-ignorance. Low-level recognizers should not include domain-specific

context when performing recognition. This is the job of the high-level recog-

nizer. Recognition of primitive shapes should be the same, regardless of the

domain the user is working in.

5. Multiple interpretations. Recognition is not perfect, even with human recog-

nizers, and low-level recognizers will make mistakes. Therefore, it is important

to return multiple (and valid) interpretations. Preferably, these interpretations

should include confidence values, so that high-level recognition systems can cor-

rect low-level errors with the help of domain context [96], as seen in Figure 32.
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Fig. 32. Example scenario in which higher-level context can disambiguate a lower-level

interpretation. In this example, the high-level recognizer may realize that the

ambiguous stroke is more likely to be a circle (which represents a wheel in

this domain) rather than an ellipse because of context.

6. Beautification. During recognition, PaleoSketch also computes the parameters

necessary to provide local beautification of recognized shapes. When to perform

beautification is dependent upon the individual sketch application, and is not

the focus of this work. We refer readers to previous works for a full discussion

on the advantages and disadvantages of various beautification times [77, 78].

In addition to the natural ambiguity that occurs with sketching, low-level recog-

nition is a difficult problem, because many of the goals stated above are in conflict

with one another. When increasing the number of primitives supported, there occurs

a greater likelihood for recognition confusion, and thus, lower accuracy. Likewise,

many of the drawing constraints placed on users by previous systems exist solely to

improve classification accuracy. Domain context in the lower stages of recognition is

also utilized by some systems so that overall accuracy can increase.
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1. First Version of PaleoSketch

The initial version of the PaleoSketch recognizer used a heuristically-tuned, rule-

based classifier to order and rank shape interpretations [6]. This classifier has the

advantage of making it easier to diagnose misrecognitions, which can be advantageous

for tutoring systems such as [38, 168] that need to describe why a stroke was drawn

incorrectly (i.e., “this stroke is too curvy to be a polyline”). It also “fails gracefully,”

because the rule-based scheme used to perform classification is modeled after the

decisions that would be made by a human recognizer. Thus, most users perceive its

errors as being more acceptable.

However, the major disadvantages of the rule-based classifier are its inability to

produce normalized confidence values [172] and its lack of extensibility. In order to

add new shapes or features to the system, the entire rule-based algorithm has to

be modified. This is one of the reasons why PaleoSketch is now being implemented

using a neural network. The remainder of this dissertation utilizes the neural network

version of PaleoSketch. For those interested in the rule-based version of PaleoSketch,

please see [6].

2. Determining What Primitives to Support

One important question that should be addressed prior to this work is, “what prim-

itives should be supported by a low-level recognizer?” Fortunately, earlier research

into how people draw can give some insight into the shapes most commonly used

by people when drawing or creating diagrams. For example, Hendry performed an

experiment in which he asked users to sketch out how a search engine works [129].

Although he found that all of the sketches were widely different, he noted that there

was a basic shape vocabulary used by most users. Similar observations were made by
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Tversky and Lee, when they asked users to sketch out route maps [128]. Shapes like

ellipses and rectangles were used to denote buildings, while lines and arcs represented

roads and paths. Both of these studies are significant, because they show that, even

in arbitrary domains, people maintain the simplicity of using basic geometric shapes

to describe objects.

Even before these later studies, Peter van Sommers looked into the physical

mechanics of how people draw [127]. When he asked a group of untrained adults

and children to draw specific objects, he noted that, “the vast majority of their

strokes are simple lines, arcs, circles, or dots. Relatively few contours are used - that

is, lines whose shapes is steered and modulated to present shape.” He later went

on to describe a set of geometric primitives that he often saw in drawings. These

included: lines, circles, dots, zig zags (polylines), spirals, coils (helixes), opaque areas

(hatching/filled), polygons, arcs, and ellipses (rotatable). These observations, along

with our own analysis of the shapes that occur in many sketch domains, led us to the

following list of primitives that we aim to support in PaleoSketch:

• Line: a stroke with a relatively constant slope between all sample points.

• Polyline: a stroke consisting of multiple, connected lines.

• Circle: a stroke that has a total direction close to 2π, a relatively constant

radius between the center point and each stroke point, and whose major and

minor axes are close in size.

• Ellipse: a stroke with similar properties of a circle, but whose major and minor

axes are not similar.

• Arc: a segment of an incomplete circle.
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• Curve: a stroke whose points can be fit smoothly up to a fifth degree Bézier

curve.

• Spiral: a stroke that is composed of a series of circles with continuously de-

scending (or ascending) radii but a constant center.

• Helix: a stroke that is composed a series of circles with similar radii but with

moving centers. We also assume that helixes are drawn linearly (i.e., the center

moves in a single, constant direction along a straight line).

• Complex: a single stroke that is composed of a combination of multiple primi-

tives mentioned above.

A visual depiction of each of these shapes can be seen in Figure 33. Please note

that the polyline primitive is a catch-all for not only zig zags, but also for rectangles,

diamonds, triangles and other polygons. When encountered with a polyline, the low-

level recognizer will break the shape down into its corresponding line components and

pass each one of them into the high-level recognizer. Similarly, when a complex shape

is found, its sub-shapes are sent into the high-level recognizer.

3. Symbol Description Experiment

To further motivate our choice of primitives, a symbol description study was per-

formed in order to determine what primitive shapes were typically used to describe

symbols in an unfamiliar domain, as well as, the vocabulary used to describe geomet-

ric constraints [160]. The study was composed of 35 users, ranging in age from 18

to 71, with varying professional backgrounds (professors, students, dancers, teachers,

business people, etc.). The users were asked to describe, both verbally and textually,

symbols from a domain that is unfamiliar to most: military course of action symbols.
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Fig. 33. Primitives supported by PaleoSketch.

The users were also asked to draw examples of these symbols based on the textual

descriptions given by other users.

Through this study, we found that our primitive set was used in 85% of the shape

vocabulary used to describe the symbols in this domain. This 85% includes polyline

primitives that were typically described by their more formal definitions, such as

rectangles, triangles, and “boxes” (also used to describe rectangles). Although these

shapes are not explicit primitive shapes supported by our recognizer, they can still

be described as being a polyline meeting particular high-level geometric constraints.

The remaining 15% of the shape vocabulary consisted of descriptions such as “dot”

or “point” (8% of total vocabulary), “shape” (3% of total vocabulary), “this” (2.5%

of total vocabulary), “rounded rectangle,” “segment,” “figure,” “text,” etc.
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B. Data Set

In our study, we collected two sets of data. The first set of data consisted of 900

shapes collected from 10 users. Each user drew 10 examples of each primitive shape,

along with 10 examples of a complex shape. We asked users to draw a complex shape

consisting of one line and one arc, an example that some recognizers have difficulty in

interpreting [12]. All users were told to draw primitives in any way that was natural

to them. No recognition or beautification took place during data collection. This first

data set was used for training.

We then collected a second data set of the same size, with the same number of

users, and used this set for testing. By collecting data in this manner, we can present

the average recognition results across 10 new users to a system that has been trained

offline (i.e., new users do not have to train the recognizer before using it).

Before running the test set through our recognizer, we first wanted to test it

against current sketch systems in order to determine baseline recognition results of

existing algorithms. The first recognizer, CALI, computes a set of bounding polygons

(triangle, quadrilateral, and convex hull), and uses the ratios between the areas and

perimeters of the polygons as features in a fuzzy-logic classifier. It recognizes primi-

tives such as lines, ellipses, rectangles, and triangles [14, 15]. Because the recognizer

is non-trainable, we could only test it on the shapes it supports.

The second recognizer we tested is the trainable, appearance-based HHReco rec-

ognizer, which utilizes Zernike moments as features in a support vector machine

(SVM) [44].

The third, Rubine, is arguably the most widely used sketch recognizer in pen-

based applications [43]. This is a trainable, motion-based recognizer that is highly

accurate when shapes are drawn in the same manner across all users.
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Table I. Accuracy results of existing recognizers on our collected set of primitive data.

CALI HHReco Rubine Sezgin $1

Arc 0.97 0.96 0.51 - 0.98

Circle 0.97 0.89 0.37 0.83 0.97

Complex - 0.79 0.19 0.99 0.93

Curve 0.61 0.77 0.47 - 0.85

Ellipse 1.0 0.44 0.61 0.56 0.95

Helix - 0.92 0.75 - 0.96

Line 1.0 0.98 0.74 0.99 0.69

Polyline - 0.67 0.44 0.92 0.56

Spiral - 0.99 0.80 - 1.0

Average 91.0% 82.3% 54.22% 85.8% 87.7%

Next, we tested on a non-trainable, modified version of the geometric recognizer

created by Sezgin et al. [41]. Since the Sezgin recognizer does not distinguish be-

tween ellipses and circles, we count circles as being correct if it returns an ellipse

interpretation. Also, because the Sezgin recognizer does not handle spirals, helixes,

or individual arcs and curves, we have omitted those shapes from testing.

The final recognizer is the trainable, vision-based $1 recognizer created by Wob-

brock et al. [42]. This recognizer is essentially a 1-nearest neighbor, template match-

ing algorithm that performs additional steps that attempt to scale and rotate strokes

according to their “indicative angle.” Table I shows the initial results of these recog-

nizers on our data set.

According to LaLomia’s study of handwriting recognition results in a “Wizard of

Oz” study, an error rate of 5-10% was considered “very poor”, with only a 3% error

rate being considered “acceptable” by users [173]. If one assumes that users expect

sketch recognition results to be on par with handwriting recognition results, then all

of the recognizers we have initially tested would be considered “very poor.” The best

performing recognizer was the CALI recognizer. Although its accuracy exceeded 90%,
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Fig. 34. An example of a drawn stroke that has a “tail.”

it only supported five of the primitive shapes that we wish to recognize. Similarly,

the Sezgin recognizer only supports a small subset of our primitive shapes. The

appearance-based $1 recognizer was the second best recognizer, but performed poorly

on shapes that have arbitrary variations like lines, polylines, and curves. Likewise, the

appearance-based HHReco recognizer performed poorly on high-variability shapes.

Furthermore, the HHReco recognizer had trouble distinguishing circles and ellipses

because these shapes are scaled down into similar templates. Finally, the widely-

used, trainable Rubine recognizer performed the worst on our naturally-drawn sketch

primitives. This is because the Rubine algorithm is gesture-based and relies on every

stroke of the same shape being drawn with the exact same motion. These initial

results provide extra motivation that further work is required.

C. The First Part of PaleoSketch: Pre-recognition

Before performing recognition of a stroke, it goes through a pre-recognition stage.

During this stage, the stroke is “cleaned,” and an initial set of statistics and graphs

are computed. We begin pre-recognition by first removing consecutive, duplicate

points from the stroke. These points can occur in systems with a high sampling rate.

If two consecutive points either have the same x and y values, or if they have the

same time value, then the second point is removed.
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Fig. 35. Example stroke along with its corresponding speed graph (top right), direc-

tion graph (bottom left), and curvature graph (bottom right).

“Tails” at the endpoints of strokes can be significant problems for recognition

(Figure 34). To allow for easier recognition, tails are removed before calculating the

features of the stroke. To determine if a tail is present, we analyze the first and

last 20% of the stroke and find the point within each section that has the highest

curvature. If that curvature is higher than a threshold (0.5), then we break the stroke

at that point and remove the tail. We do not perform tail removal on strokes with too

few points (5) or with too small a stroke length (70.0). These thresholds have been

determined empirically through multiple interations of the PaleoSketch recognizer.

After the stroke is cleaned, a series of graphs are computed for the stroke, in-

cluding a direction graph, speed graph, and curvature graph (Figure 35). The graphs

are computed using methods from [12, 41]. The direction graph measures the arctan-

gent angle of the change in y over the change in x (i.e., the first derivative) between
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Fig. 36. Two similar polylines, drawn to different rotations, but with similar direction

graphs.

consecutive points in the stroke. As seen in Figure 36, this graph is invariant to

rotation. Because this angle will loop back to zero after the stroke makes a com-

plete 2π revolution, we add (or subtract) 2π for each additional revolution from the

direction value in order to make the graph continuous. The curvature graph is the

second derivative of the arctangent angle over time, and the speed graph measures

the change in distance between consecutive points over time.

Corner finding is one of the most important sub-processes in primitive recogni-

tion. In fact, an entire sub-field of sketch recognition has been devoted to the creation

of accurate segmenters. The corner finder used by the initial version of PaleoSketch

was a simplistic algorithm that attempted to produce the best polyline interpretation

of a stroke [6], but was later shown to generate false positive corners [174]. The corner

finder now used by PaleoSketch achieves 98% “all-or-nothing” accuracy, which penal-

izes for false positive corners, by combining the segmentation interpretations of five

different corner finders [174, 175], including: the original PaleoSketch corner finder
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[6], the Douglas-Peucker corner finder [10], the Sezgin corner finder [41], the Kim &

Kim corner finder [122], and the ShortStraw corner finder [11].

In addition to corners and the various graphs of Figure 35, additional information

such as the stroke’s bounding box and total stroke length are also computed. By

“stroke length”, we refer to the sum of the distances between each pair of consecutive

points. After all graphs and other information has been computed, we then calculate

the features that will be used for classification.

D. Features

In addition to specifying our own set of geometric features, we also want to analyze

the usefulness of existing feature sets. We will compare our feature set to the those of

existing sketch recognizers. Unlike our initial experiments in Section B, which utilized

the built-in classifiers for each of the recognizers, we will use the same classifier for

each set of features to determine which sets are most effective for recognizing the

primitives we aim to support. The feature sets we experimented on included:

• The CALI features that are based on ratios between sets of bounding polygons

(24 total) [14, 15].

• The Zernike moment features of the HHReco recognizer (23 total features for

order 8 Zernike moments) [44].

• The motion-based features of Rubine (13 total) [43].

• The extended Rubine features proposed by Long (22 total) [111].
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1. New Geometric Features

Most of our geometric-based features are calculated using the errors between strokes

and their ideal (beautified) shape interpretations. In addition, we also include fea-

tures that are derived from the direction and curvature graphs computed during

pre-recognition. First, we will describe a general set of features that are useful for

recognizing multiple primitive shapes. Then, we will describe shape-specific features

that aid in the recognition of individual primitives. These geometric features are novel

because, at their core, they are based on the geometrical description of the individual

shapes. This is different than many other feature sets that focus either on the motion

of the stroke or provide a set of generalized features that are meant to describe any

arbitrary shape.

a. General Features

The first set of general features are related to the length of the stroke, and the stroke’s

major axis, which is the line formed between the two furthest points of the stroke.

These features include:

1. Total stroke length.

2. The distance between a stroke’s endpoints divided by the total stroke length.

3. Major axis length.

4. Major axis angle.

The next set of features are computed with the aid of the stroke’s bounding

box. These features are meant to uncover the distances between each corner of the

bounding box and the stroke itself. For example, each corner of a sketched rectangle’s
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Fig. 37. Sketched primitives and their corresponding bounding boxes. Notice that all

four corners of the rectangle’s bounding box are near the drawn stroke, while

none are close for the ellipse, and only two are near for the line.

bounding box should be close to the actual stroke, whereas with a line, only two

corners of the bounding box will be near the actual stroke, and with a circle, no

bounding box corners should be near the stroke. An example of this can be seen in

Figure 37. The following features are all normalized by the average width and height

of the bounding box in order to make them scale-independent:

5. The distance between the furthest bounding box corner and the stroke.

6. The distance between the nearest bounding box corner and the stroke.

7. The average distance between the four corners of the bounding box and the

stroke.

8. The standard deviation of the four corner distances.

The final set of general features are computed using the direction and curvature

graphs. The broad significance of these graphs is that they indicate “smooth” strokes,

such as those representing arcs and ellipses, and “jagged” strokes, like polylines. They

can also be used to determine the total rotation of a stroke [43]. These features

include:
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9. The number of revolutions that a stroke makes (total rotation divided by 2π).

10. The average curvature of the stroke.

11. The maximum curvature value found in the stroke.

12. The ratio between the maximum curvature value and the average curvature

value.

13. The slope of the line formed by the endpoints of the direction graph.

14. The least squares error between the direction graph and the best fit (least

squares) line of the direction graph.

15. The percentage of the time that the values of the direction graph are consecu-

tively increasing, or decreasing, depending on the slope of the graph.

16. The normalized distance between direction extremes (NDDE).

17. The direction change ratio (DCR).

The last two features of this set require further explanation. The first is normal-

ized distance between direction extremes (NDDE). To calculate this feature, we first

take the point with the highest direction value and the point with the lowest direction

value and compute the stroke length between these two points. In the event that two

or more points both have the same direction value (and that value is a maximum

or minimum), we use the point that occurs first in the stroke. This length is then

divided by the length of the entire stroke, essentially giving us the percentage of the

stroke that occurs between the two direction extremes.

For curved shapes, such as arcs, the highest and lowest directional values will

typically be near the endpoints of the stroke, and thus, yield high NDDE values.
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Polylines, on the other hand, normally have one or more spikes in their direction

graphs. These spikes often cause the point of highest or lowest directional value to

no longer be near the endpoints of the stroke. Therefore, polylines typically will have

NDDE values that are lower than curved strokes (see Figure 38 for example).

The second feature also aids in determining polylines from curved strokes. We

call this direction change ratio (DCR). Like NDDE, DCR is also meant to gauge

whether or not spikes are present in the direction graph. This value is computed as

the maximum change in direction divided by the average change in direction. As seen

in Figure 38, the polyline has a large downward spike in its direction graph, whereas

the arc has relatively little change between consecutive direction values. Therefore,

polylines will typically have higher DCR values than curved strokes.

b. Line Features

Lines are defined as being a set of points that maintain a consistent slope between

endpoints. For lines, we first fit a least-squares line to the stroke points. This least-

squares line is used solely for computing line features; it is not used for beautification.

To beautify a line, we simply connect the endpoints of the stroke. We maintain the

endpoints, rather than using a best fit line, because they are significant in sketching,

particularly in diagramming domains where lines are meant to act as connectors.

This endpoint-significance theme continues in the beautification of the other low-

level shapes as well. The line-based features that we compute are normalized by the

stroke’s length and include:

18. The least squares error between the best fit line and the actual stroke points

[41].

19. The feature area error between the best fit line and the stroke points [12].



63

Fig. 38. Direction graphs for a polyline (left) and arc (right). The points of highest

and lowest direction value are circled (middle). NDDE is calculated as the

length of the stroke between direction extremes (bolded in blue), divided by

the entire stroke length. DCR (bottom) is the maximum change in direction

(bolded in red) divided by the average change in direction across the stroke.

In this example, the polyline has a lower NDDE value because its minimum

direction value is in the middle of the stroke, whereas the arc has its direction

extremes closer to the endpoints. Furthermore, the polyline has a large spike

in its direction graph, causing it to have a much higher DCR value than the

arc, which maintains a fairly smooth continuity throughout.
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c. Ellipse Features

Our ellipse recognition can account for both rotated and overtraced versions of ellipses.

To estimate an ideal ellipse, we first need to calculate an a major axis, minor axis,

and center point. The major axis should have already been calculated in previous

steps, and the center point can be found by simply averaging the x and y values of the

stroke points. The minor axis is calculated by finding the perpendicular bisector of

the major axis at the center point; this line is extended and clipped where it meets the

stroke points, which may be at interpolated values. Once these values are computed,

we then have the information needed to generate a beautified ellipse. Rotated ellipses

can be beautified by rotating around the center point, based on the angle of the major

axis. The only feature we compute for ellipses is:

20. The feature area error between the ideal ellipse and the stroke points [12],

normalized by the area of the ideal ellipse, which can be computed using the

lengths of the major and minor axes.

d. Circle Features

Circles are simply special cases of ellipses in which the lengths of the major and minor

axes are close to identical. To compute a beautified circle, we simply need a center

point and a radius. We use the same center point that we calculated for an ellipse,

and estimate the radius as the average distance between each stroke point and the

center point. We then calculate:

21. The feature area error of the circle [12], normalized by the area of the ideal

circle (πr2).

22. The ratio between the minor axis length and major axis length.
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Fig. 39. Estimating the center of an arc. 1) Connect the endpoints of the stroke. 2)

Take the perpendicular bisector of 1. 3) Connect the endpoints of the stroke

to the point where 2 intersects the stroke. 4) Take the perpendicular bisectors

of the two lines from 3 and find their intersection.

e. Arc Features

With our recognizer, we consider arcs to be segments of circles; therefore, in order

to determine the best fit arc, we need to determine the best fit circle that the arc

is a part of. To do this, we need to calculate the ideal center point of the arc using

a series of perpendicular bisectors (see Figure 39). First, we connect the endpoints

of the stroke and find the perpendicular bisector at the midpoint of that line. We

determine where that bisector intersects the stroke (through interpolation between

stroke points) and then connect two more lines from that point to the endpoints.

We take two more bisectors at the midpoints of those two lines and find where they

intersect each other. That intersection point is the center of our arc.

We then calculate the ideal radius of the arc by taking the average distance

between the stroke points and the center point. A beautified arc is constructed from

the ideal center, radius, and angles between the center point and endpoints. As with
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lines, we want to make sure that endpoint consistency is maintained. Our arc features

include:

23. The radius of the ideal arc.

24. The feature area error of the ideal arc to its center point [12], normalized by

the area of the arc (πr2 * the number of revolutions of the stroke, which should

be between 0.0 and 1.0).

25. The ratio between the areas of the bounding box of the ideal arc and the bound-

ing box of the actual stroke.

f. Curve Features

We could allow for any degree curve; however, we need to limit this degree not only to

keep recognition to a practical running time, but also because many shapes can easily

be represented by some arbitrary n-degree curve. For our system, we estimate using

fourth and fifth degree curves, choosing the degree that best fits the stroke points

best.

To generate an ideal curve, we use the Bézier curve formula. In order to use

this formula, we must first calculate d+1 control points, where d is the degree of the

Bézier curve. Currently, we use a näıve approach to approximate these points.

First, we find the parametric value of each stroke point. We determine a point’s

parametric value by dividing the length of the stroke up to that point by the length

of the entire stroke. Once these values are computed, we take the endpoints (whose

parametric values are 0 and 1), as well as d-1 other points which are spread evenly

across the stroke. For example, for a fourth degree curve, we would take the endpoints,

along with the points whose parametric values were close to 0.25, 0.5, and 0.75. This
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will ensure that the points that occur 1/4, 1/2, and 3/4 of the distance along the stroke

are located in the same position in the drawn stroke as they are in the beautified curve.

We then estimate the control points by solving a system of equations using these

selected points and their parametric values. Once we have the estimated control

points, we can generate the ideal curve according to the Bézier curve formula, where

n is the degree of the curve and Pi is the set of computed control points:

B(t) =
n∑

i=0

 n

i

Pi(1− t)n−iti (3.1)

From this ideal curve, we can compute the following:

26. The least squares error between the ideal curve and the actual stroke, normalized

by stroke length

g. Polyline Features

Polylines are simply a series of connected lines drawn within a single stroke. The

ideal polyline interpretation is produced by the corner finder. Therefore, all that is

left to do is compute errors related to the produced segmentation. The features of

polylines that we compute are:

27. The number of lines produced by the corner finder.

28. The sum of the feature area errors of each line segment [12], normalized by

stroke length.

29. The sum of the least squares errors of each line segment [41], normalized by

stroke length.

30. The percentage of the sub-strokes that pass a line test (as defined in [6]).
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h. Spiral & Helix Features

Spirals and helixes are similar, because they can both be thought of as a sequence of

circles. For spirals, we have a sequence of circles that have continuously decreasing

(or increasing) radii but a constant center. With helixes, we have a sequence of

circles with a constant radius but moving center. Unlike our other shapes where we

generate a beautified version and compare its error to the original stroke, we found

that a similar approach did not work as well with spirals and helixes, because users

inherently draw these shapes with relatively more error than other primitives. In

other words, it is much easier for users to draw a perfect line or circle than it is

for them to draw a perfect spiral or helix. However, we can still use the geometric

description of these shapes, being sequences of circles, to help recognition.

To recognize these shapes, we first break the stroke up at every 2π interval in

the direction graph. Essentially, each one of these sub-strokes can be thought of as,

and fit to, individual circles. For spirals, all sub-strokes should have a similar center

point, but the radius of each sub-stroke should get continuously larger (or smaller).

The ideal center of the spiral is taken to be the center of the bounding box for the

entire stroke. An average radius is calculated as it was for circles. The features used

to help distinguish spirals and helixes include:

31. The sum of the distances between the centers of each consecutive sub-stroke,

normalized by the average radius times the number of revolutions that the stroke

makes. This helps determine if the center is moving (helix), or is stationary

(spiral).

32. The percentage of the time that the radii of consecutive sub-strokes are ascend-

ing (or descending). For spirals, radii should continuously increase or decrease,

but this trend is typically not consistent with helixes.
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33. The ratio between the average radius and the average width/height of the

bounding box of the stroke. This feature is used to help distinguish spirals

from other overtraced shapes (like circles). For overtraced circles, the bounding

box radius will be close to the average radius, whereas with spirals the average

radius will typically be smaller because each consecutive sub-stroke should get

closer and closer to the center point of the spiral.

34. The distance between the sub-stroke center that is furthest away from the ideal

center, normalized by the average radius. Again, this helps determine if the

center is moving or stationary.

To beautify a spiral, we generate an Archimedes spiral that starts at the center

point and has the polar equation, r = aθ. In this equation the radius, r, changes as

θ changes. The a value represents the “tightness” of the spiral. We set this value to

be the bounding box radius divided by the total rotation of the stroke.

To generate the spiral, we continuously increment (or decrement) the θ value until

the radius value reaches the bounding box radius. We decide whether to increment or

decrement θ based on whether the spiral was drawn clockwise or counter-clockwise,

which can be determined by looking at the slope of the direction graph. In order to

preserve the outer-most endpoint of the spiral, we can shift the θ value by the angle

formed by the endpoint and the starting center point. Once we find the r value that

corresponds to the current θ, we simply substitute the value into the polar equation

for a circle to generate x and y coordinates.

Creating a beautified helix is more complex than a spiral, since we want to

maintain both of the endpoints of the stroke. Essentially, we want to use the polar

equation of a circle like we did for spirals; but, instead of iteratively changing the

radius, we want to change the position of the center point and maintain a constant
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radius. This constant radius is computed as the average distance between the stroke

points and the major axis of the stroke (as done for ellipses). The starting and ending

center points can be calculated by finding the points on the major axis that are a

length equal to the radius away from the endpoints of the stroke. Once these two

points are specified, we parametrically find the center point for the current iteration.

The parametric value used is the absolute θ value, divided by the total rotation of

the stroke. We continue to increase or decrease θ until its absolute value becomes

greater than the total direction. At this point, the beautified helix will be generated.

E. Classifier

For classification, we use a multi-layer perceptron (MLP). MLPs are feed-forward,

artificial neural networks that contain at least three layers of neurons (or nodes): an

input layer, one or more hidden layers, and an output layer. Every node in a layer

has a weighted connection to each node in the next layer. Supervised learning is

used to train these connection weights. Activation functions are used at each node

to determine the likelihood of that node “firing” or not.

We chose to use MLPs for a couple of reasons: they can produce non-linear

decision surfaces, they are robust to noisy features, and they are adaptable [176]. Due

to MLPs robustness, we avoid (to some degree) the need to perform dimensionality

reduction of larger feature sets, as was done in a previous version of this work [172].

MLPs are also capable of producing normalized confidence values, which are beneficial

to many high-level recognizers that can correct low-level errors using domain context

[96]. Furthermore, MLPs can be universal approximators when given a sufficient

number of hidden units [177].

In our implementation, we utilized the WEKA toolkit to produce our MLPs
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[178]. The number of input nodes for each network is equivalent to the number of

features, and the number of output nodes represents the number of primitive classes

that we are supporting (9). We chose to have a single hidden layer consisting of 43

nodes, the sum of the number of input and output nodes for the largest feature set we

tested (the PaleoSketch features). We chose to use the same static number of nodes

for each feature set so that our comparison could be more fair, and the accuracy

differences could be blamed less on the topology of the network.

WEKA’s MLP implementation uses sigmoid activation functions at each node,

and weights are learned through backpropagation. We specified a learning rate of 0.3,

with a momentum value of 0.2, and performed 500 training epochs for each network.

Feature values are also normalized before entering each network.

F. Handling Complex Shapes

When generating complex fits, we want to bias toward a complex interpretation that

contains the fewest number of primitive shapes, while maintaining a low fit error.

In the previous, decision tree version of PaleoSketch, we would start by breaking a

stroke up into two sub-strokes at the point of highest curvature [6]. Each of these

strokes is then recursively sent back into the recognizer until we get all non-polyline

primitives. However, we cannot use such a simple approach with our neural network

version of PaleoSketch, because we now have confidences associated with recognized

shapes. Furthermore, the neural network only detects whether or not a complex shape

is found; it does not know what sub-shapes compose the complex fit.

As with the original version, we generate a complex fit by first segmenting the

stroke into two sub-strokes at the point of highest curvature. Next, we classify each

sub-stroke using our MLP; complex and polyline interpretations are removed. If
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the interpretation of a sub-stroke has a confidence lower than 50%, then it, too, is

broken at its point of highest curvature. The recursive process continues until all

sub-interpretations have a confidence greater than 50%.

Next, we perform an additional step in which each consecutive pair of sub-strokes

are combined and re-classified to see if they can be merged. Again, if the confidence

of the shape is greater than 50% and the interpretation itself is not complex, then

the sub-strokes are merged. This step is used primarily to remove sub-stroke tails

that may occur. Typically, when tails occur, they often are at the spot of highest

curvature and are separated from the stroke during the first complex break. In order

to absorb the tail, it must be merged with the first sub-stroke of the second half of

the break.

1. Confidence Modification

Initially, we assigned the confidence of a complex interpretation to be the value gener-

ated by the MLP. For the complex shapes we trained on (one line, one arc), the MLP

performed quite well and gave accurate confidence values. However, when encoun-

tered with a complex combination that the neural network had not seen before (e.g.,

one line, one circle), the confidence became low. Therefore, we cannot trust the con-

fidence given by the initial MLP results for the complex fit, because it is impossible

to train the network with every possible complex combination.

In the event that the complex interpretation is not ranked first among interpre-

tations, we perform the following steps to determine a more appropriate confidence.

First, we average the confidences of all of the sub-interpretations of the complex fit.

At this point, we are guaranteed that the complex interpretation has a confidence

that is greater than 50%.

More than likely, however, a complex interpretation has a confidence above 90%,
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because most confident MLP interpretations are typically around 98-99%. This means

that in most cases, a complex interpretation may now be incorrectly more confident

than the original, best interpretation. For example, a shape that has a slight tail on

it may produce a complex interpretation consisting of that shape plus one additional

line. This may technically be the better fit for the stroke, but it is not necessarily

what the user intended.

We want to maintain the simplest shape interpretation possible. Therefore, if

we chose the confidence of the complex interpretation to be the average confidence

of its sub-interpretations, then we augment this confidence by subtracting 25% for

every additional sub-shape in the complex interpretation. If the best interpretation

is a polyline then we compare the difference between the number of complex shapes

and the number of lines in the polyline interpretation to determine what percentage

should be subtracted from the complex confidence.

Using this approach, we are essentially assuming that if the network encounters

a complex combination of shapes that it has not previously seen (e.g., a line followed

by a circle), then the initial confidence of the best shape interpretation should be

lower than 75%, which is typically the case. As we will see in the next section, this

modification significantly boosted recognition of complex fits. The following scenarios

illustrate how confidence modification works:

1. Suppose the user draws a line, followed by a circle, in the same stroke. The

MLP returns the following results: “Curve” (54%), “Polyline” (21%), “Com-

plex” (8%), etc. Since the complex interpretation is not the best one, we perform

confidence modification. The stroke is broken at its point of highest curvature

into sub-stroke A and sub-stroke B. Sub-stroke A is recognized as a line with

99% confidence, while sub-stroke B is recognized as a circle with 97% confidence.
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The new confidence of the complex interpretation becomes 98% (the average).

However, the complex interpretation contains two shapes while the best inter-

pretation (curve) is only a single shape. Therefore, we subtract a 25% penalty

from the complex confidence, giving it 73%. The final results are: “Complex”

(73%), “Curve” (54%), “Polyline” (21%), etc. Note that these confidences can

be re-normalized to ensure that they sum to 1.

2. Suppose the user draws an arc to the screen. The MLP returns the following

results: “Arc” (92%), “Polyline” (3%), “Complex” (2%), etc. The recognizer

breaks the stroke into two sub-strokes at the point of highest curvature. Sub-

stroke A is recognized as an arc with 99% confidence, while sub-stroke B is

recognized as a line with 45% confidence. Because sub-stroke B is below the

50% threshold, the recognizer breaks sub-stroke B at its point of highest cur-

vature into sub-strokes C and D. Both of these strokes are recognized as lines

with 97% and 98% confidence, respectively. The final complex interpretation

is “Complex (Arc, Line, Line),” with a confidence of 98%. At this point, the

complex interpretation would incorrectly be ranked above the correct arc inter-

pretation. However, because the complex interpretation contains two additional

sub-shapes, 50% is subtracted from its confidence. The final results would be:

“Arc” (92%), “Complex” (48%), “Polyline” (3%), etc.

G. Experiment & Results

In our experiment, each feature set was tested against our dataset using the same

N -43-9 MLP, where N is the number of features in the set. We also combined the

features of CALI, HHReco, and Long into one common set and tested it as well

(Combined). We then added the PaleoSketch features to this set to create the All



75

Table II. Accuracy results of the different feature sets using a multi-layer perceptron

classifier. The first five columns represent the accuracies of the five individual

feature sets. Combined refers to the combined feature set of CALI, HHReco,

and Long. All refers to the combination of the Combined feature set, plus

the Paleo features. Modified uses the same feature set as All, but also utilizes

the complex confidence modification algorithm.

CALI HHReco Rubine Long Paleo Combined All Modified

Arc 0.99 0.95 0.48 0.65 0.99 0.89 0.95 0.95

Circle 0.93 0.71 0.76 0.74 0.90 0.94 0.95 0.95

Complex 0.80 0.81 0.47 0.38 0.84 0.73 0.90 0.97

Curve 0.91 0.83 0.69 0.78 0.94 0.98 0.97 0.95

Ellipse 0.99 0.46 0.77 0.94 0.99 1.0 1.0 1.0

Helix 0.97 0.93 0.90 0.95 1.0 0.97 0.99 0.99

Line 1.0 0.99 0.95 0.94 1.0 1.0 1.0 1.0

Polyline 0.85 0.54 0.52 0.62 0.97 0.75 0.96 0.99

Spiral 1.0 0.98 0.94 1.0 1.0 1.0 1.0 1.0

Average 93.8% 80.0% 72.0% 77.8% 95.9% 91.8% 96.9% 97.8%

feature set. Note that the Rubine features are a subset of the Long features, and thus

included by default. We tested the Combined feature set using a 69-78-9 MLP, and

the All feature set using a 103-112-9 MLP.

The number of hidden nodes was increased for these sets due to them having

significantly more features than the individual feature sets. These sets are also com-

pared against a version of the recognizer that uses the best feature set, All, along

with the complex confidence modification algorithm (Modified). The accuracy results

of each feature set is shown in Table II.

Overall, the individual feature set that achieved the best accuracy was the Pa-

leoSketch feature set, followed by the CALI feature set. The difference between the

accuracy of the PaleoSketch feature set and the CALI feature set is slightly statis-
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Fig. 40. Examples of correctly classified shapes. This is just a subset of the 900

sketched shapes used for testing.

tically significant (t = 2.0244, p = 0.9569). The best accuracy (97.8%1) came from

combining all of the feature sets together and using the complex confidence modifica-

tion scheme. This optimal version of PaleoSketch executed recognition in real-time,

averaging 166 milliseconds per primitive. Examples of correctly classified shapes can

be seen in Figure 40.

There are a couple of interesting observations from our findings. The first deals

with the shapes that certain feature sets performed poorly on. For example, the CALI

feature set had the most trouble with classifying shapes of arbitrary configuration,

such as polylines, curves, and complex shapes. The makes sense because CALI relies

solely on information related to the shape and sizes of bounding polygons and convex

1The difference between these results and the results of the original version of
PaleoSketch (98.6%) [6] are not statistically significant (t = 1.2339, p = 0.7826)
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hulls and was not necessarily designed to work with these types of shapes. Likewise,

the appearance-based, HHReco features also had problems with these shapes as well.

The HHReco feature set also had problems distinguishing circles and ellipses. This

is due to the affine transformations that most appearance-based methods perform in

order to scale shapes to a common template. The motion-based Long and Rubine

feature sets performed well on shapes like lines, helixes, and spirals due to their

rotation-related features, but performed poorly on all other shapes.

We can also see from these results that the choice of classifier makes a difference.

Both the CALI and Rubine features performed better when used in the MLP classifier,

while the HHReco features performed worse (recall the original classification rates in

Table I). Another important observation is that the complex confidence modification

algorithm significantly boosted the accuracy results of complex shapes.

1. Accuracy of Complex Fits

As mentioned previously, the results of Table II simply show whether or not a com-

plex shape was recognized as such. It does not necessarily guarantee that the sub-

interpretations of the complex fit are correct. We chose to have users draw complex

examples consisting of one line and one arc, a notoriously hard example [12]. For

our recognizer, a “one line, one arc” interpretation was correctly returned 94% of the

time.

As with the original version of PaleoSketch, the primary culprit of mis-interpreted

complex fits was shapes whose arc portion was drawn more elliptical than circular.

This caused a “one line, one curve” interpretation to be returned instead of “one line,

one arc”, as seen in Figure 41.
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Fig. 41. Examples of complex shapes drawn with elliptical arcs, thus causing the

recognizer to return a “one line, one curve” interpretation rather than “one

line, one arc” (the users’ intentions).

H. Discussion

Figure 42 shows the confusion matrix for our experiments, while Figure 43 shows

many of the mis-classifications that we encountered with our testing. Arcs drawn

more elliptical than circular were often classified as curves (all of these were drawn by

the same user). Some circles were confused with their superclass, ellipse. Complex

shapes that had too smooth of a transition were recognized as curves. Curves with

tails that were unsuccessfully removed during pre-recognition were broken up into

complex shapes. There was also a single instance of a helix that was classified as a

spiral, likely because its radii continuously decreased (in addition to its center point

moving). And finally, there was a polyline whose corners were not well-defined, and

thus, was broken up into a complex combination of lines and a curve.

1. Complex Fits

Successful integration of the original version of PaleoSketch allowed for initial testing

of complex shapes that go beyond simple line/arc combinations (Figure 44). With
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Fig. 42. Confusion matrix for our experiments using the optimal version of Pale-

oSketch. Dark areas indicate high confusion, while white areas indicate little

or no confusion.
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(a) Arcs mis-recognized as
curves.

(b) Circles mis-recognized
as ellipses.

(c) Complex shapes mis-
recognized as curves.

(d) Curves mis-recognized
as complex shapes (be-
cause of tail).

(e) Helix mis-recognized as
a spiral.

(f) Polyline mis-recognized
as complex shape.

Fig. 43. Examples of mis-classifications in the PaleoSketch system.
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Fig. 44. Examples of higher degree complex fits achieved through the integration of

PaleoSketch into LADDER.
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the original version of PaleoSketch, high degree complex shapes were still recog-

nizable. To ensure that similar results are possible with the new version of Pale-

oSketch, we performed brief testing in which more complicated complex shapes were

sketched and recognized using the MLP that was trained solely on “one line, one arc”

complexes. With the help of the complex confidence modification algorithm, many

complex shapes can still be recognized, as seen in Figure 45. In Chapter V of this

dissertation, we will present additional results for complex interpretations.

2. Using PaleoSketch in a Real-world Setting

PaleoSketch has been integrated into the high-level sketching language, LADDER

[83]. This integration has allowed us to utilize PaleoSketch in real-world sketch ap-

plications (e.g., Figure 46). The next chapter covers the use of PaleoSketch in a large

sketch domain: military course of action diagrams. In addition to the applications

provided by LADDER, the PaleoSketch recognizer has been used in projects that

improve corner finding [9], promote learning in children [20], teach people how to

draw [168], recognize sketched Urdu characters [163], combine multiple approaches to

improve recognition [136], recognize biology cell diagrams [39], and teach users how

to draw Mandarin symbols [179].

3. Limitations of PaleoSketch

PaleoSketch is designed to work in conjunction with high-level sketch grammars that

describe more complex symbols within a domain. It is meant solely to recognize

simple geometric shapes, as it has been shown by previous research that users tend

to draw object using small, basic shape vocabularies [127, 128, 129].

However, some domains may contain shapes and symbols that are hard to de-

scribe geometrically [16, 136]. Domains containing blobs, shading, and other 3-D
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Fig. 45. Examples of complex fits recognized using the MLP version of PaleoSketch

that was trained only on “one line, one arc” samples.
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Fig. 46. Example LADDER domains (top: military course of action, middle: plane-

tary physics simulation [20], bottom: football play diagram) using the Pale-

oSketch primitive recognizer.
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free-form drawing are not likely to be appropriate for a geometric-based recognizer

like PaleoSketch. Handwriting is also hard to describe geometrically and should be

recognized using specialized algorithms. Many researchers are currently working on

groupers that can segment text strokes from shapes strokes, so that they can be given

to the appropriate recognizers [131, 132, 133, 134].

As mentioned before, our goal is to produce sketch recognizers that place little

to no constraints on a user’s drawing style. Currently, we have made the assumption

that all primitive shapes are drawn with a single stroke. As we will see in Chapter V,

this assumption does not always hold. Later, we will present a multi-stroke version

of PaleoSketch and discuss the challenges with recognizing these types of primitives.

I. Chapter Summary

In this chapter, we presented PaleoSketch, our algorithm for recognizing hand-sketched

primitive shapes. Through our experiments, we have shown that the accuracy in-

crease between PaleoSketch and the next best approach proved to be statistically

significant. Our method maintains a high accuracy while supporting more primitives

than previous algorithms. In addition, we have presented a technique for interpreting

complex shapes, those composed of multiple primitives within the same stroke. Pale-

oSketch has been integrated into high-level recognition systems, and has been used in

projects within the domains of engineering, education, sports, language studies, art,

and science.
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CHAPTER IV

MILITARY COURSE OF ACTION

A. Introduction

Course of action diagrams (COAs) depict battle plans by showing the appropriate

actions of military units. Traditional COAs are sketched on maps using colored

markers or pencils. In most cases, transparent overlays are sketched on instead of

the actual map in order to show different scenarios. As COAs became computerized,

developers moved away from a sketching interface and replaced it with an easier-to-

implement toolbar-based interface. According to military personnel, a major problem

with this interface is “the awkwardness of mice and menus for what is more naturally

done by sketching” [180].

However, recognizing the sketched symbols of the COA domain can be a daunt-

ing task, because there exist thousands of unique symbols. These symbols can be

broken up into different categories. Unit symbols are used to denote military troops

or vehicles. Typically, friendly units are drawn as (blue) rectangles, while hostile

units are drawn as (red) diamonds. Modifiers are used to specify the unit size (e.g.,

company, brigade, platoon), as well as the unit type (e.g., armor, reconnaissance, in-

fantry). Size modifiers are drawn outside of the unit symbol, while type modifiers are

typically drawn inside the unit symbol. Other symbols include action arrows, obsta-

cles, areas of interest, decision points, boundary and phase lines, and headquarters.

Figure 47 shows a screenshot of a COA system that uses our low-level recognizer [21].

Because of the hierarchical nature of the COA domain, it lends itself well to

multi-tiered sketch recognizers, as seen in Figure 48. This hierarchical approach has

been used before to recognize COAs [87]. However, there were still many symbols in
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Fig. 47. Screenshot of a military course of action recognition system that utilizes our

PaleoSketch primitive recognizer [21].

the COA domain that could not be handled because various primitive shapes were

unsupported.

In this chapter, our existing primitive list is expanded to include shapes like

waves, gulls (double arcs), lemniscates (infinity signs), and filled-in dots which are

needed to fully describe many of the symbols in the COA domain. Additional features

are proposed which aid in the recognition of these new primitives, and a multi-layer

perceptron is used to perform classification.

B. Previous Work in COA Systems

Other researchers have looked into creating more efficient course of action systems.

For example, QuickSet allows for COAs to be drawn using a sketch-based interface

[181, 86]. Due to the arbitrariness and difficulty in recognizing some symbols, speech
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Fig. 48. Example of how COA symbols can be described hierarchically using a sketch

grammar.
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is also utilized to help disambiguate sketched shapes. The system only supports 21

total COA symbols and uses a gesture-based recognizer that constrains the manner

in which users must sketch.

The nuSketch Battlespace (nSB) system also allows for sketch-based input [180].

However, sketched glyphs are only used for spatial reasoning purposes. Users must

still select the appropriate military unit that the glyph represents by using a toolbar.

Despite this, the developers of nSB found that military personnel could create COAs

three to five times faster than by hand. This is likely due to the layers utilized by the

authors to handle the hierarchical nature of COA symbols.

Stolt employed a hierarchical framework for recognizing COA diagrams [87]. In

this work, he employed the LADDER [83] sketch grammar to perform recognition.

His approach was capable of recognizing 327 distinct symbols. However, the only

symbols supported were those composed of lines, ellipses, single points, polylines,

or scribbles. Those consisting of the newer primitives we aim to recognize were not

handled.

C. Methodology

The single-stroke primitives we aim to support for the COA domain include line,

arc, ellipse, polyline, rectangle, diamond, polygon, arrow, dot (filled-in), wave, gull

(double arc), lemniscate (infinity), and the symbol for nuclear/biological/chemical

(NBC). Examples of each of these primitives can be seen in Figure 49.

In some hierarchical sketch systems, shapes like rectangles, diamonds, polygons,

and arrows are typically handled by the high-level recognizer. When drawn in a single

stroke, it is redundant for the primitive recognizer to break the stroke down into a set

of lines, pass those lines to a high-level recognizer, only to have it recombine the lines
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Fig. 49. Example of each of the sketched COA primitives.

back into the original shape. Furthermore, rectangles and diamonds are perceptually

important shapes for humans, so the corners are drawn less exact than they are for

other polygons. Therefore, we have added these “mid-level” primitive shapes in order

to avoid redundant computation. However, to clarify, multi-stroke versions of these

primitives (e.g., a rectangle drawn with four individual lines) can still be defined using

high-level shape grammars, like LADDER [83].

1. Features

The features of the COA primitive recognizer include many of the same features from

the previous chapter, including the CALI features [14, 15], Zernike moments [44],

and the expanded Rubine features [111]. A subset of the geometric-based features

proposed in the previous chapter are also included. The features related to primitives

that are not included in the domain, such as helix, spiral, and curve were removed. In

addition to these, features that help to describe the newer primitives in the domain

are also included. The only primitive shape that does not require additional features

to be sufficiently recognized is the lemniscate (infinity sign).
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a. Rectangle & Diamond Features

Rectangles and diamonds are primarily used in the COA domain for representing

friendly and hostile units, respectively. For an ideal rectangle interpretation, we

use a stroke’s bounding box. To determine how well the interpretation matches the

original stroke, we utilize a feature area error metric [12]. To find the feature area for

a rectangle, each stroke point is first assigned to one of the four sides of the bounding

box, whichever side is closest. We then sum the feature areas errors of each of the

four sides to their corresponding lines.

In addition to feature area, we also compute the ratio between the total stroke

length and the perimeter of the bounding box, as well as the ratio between the lengths

of the stroke’s major axis (distance between the two furthest points on the stroke)

and the diagonal of the bounding box. In an ideal case, both of these ratios should

be close to 1.0. To account for diamonds, we simply rotate the stroke 45 degrees and

re-compute the same features on the rotated stroke.

b. Arrow Features

Arrows are used throughout the COA domain to represent various attack or movement

paths, and are even used to distinguish mortar units. After performing corner finding

on a single stroke arrow, we should have at least four segments, as seen in Figure 50.

The last two segments make up the arrow head (shown as A and B in Figure 50),

the third to last makes up the overtraced part of the arrow head (C), and remaining

segments ({D}) at the beginning of the stroke make up the arrow’s path (non-linear

paths are allowed). By “segment,” we are referring to the red lines produced in

Figure 50. After performing corner finding we compute the following features:

• The total number of segments produced from corner finding.
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Fig. 50. Example corner finding results on a single-stroke arrow. A and B represent

the sub-segments that make up the arrow head, C represents the sub-seg-

ment that makes up the overtraced part of the head, and {D} represents the

remaining sub-segments that make up the path of the arrow.

• The size ratio between segments A and B, because the segments that make up

the arrow head should be similar in size.

• The distance between the first point of segment A and the first point of segment

C (normalized by stroke length). This verifies that the two points that make

up the tip of the arrow are near.

• The number of times the sub-segments of {D} intersect the line formed between

the first point of segment B and the last point of segment A.

c. Dot Features

Filled-in dots are used within the domain to denote artillery units. They are also

used as platoon modifiers. For filled-in dots we compute the stroke’s density, which

is defined as the total stroke length divided by the area of the stroke’s bounding

box. We also compute the ratio between the stroke’s width and height in order to

determine if it is close to circular. Another feature that is beneficial to recognizing
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Fig. 51. Example results produced by the alternative segmenter on a sketched wave.

dots is total rotation. However, we do not add this feature, because it has already

been calculated in the existing set of features (Rubine).

d. Wave Features

Waves denote amphibious units. To calculate features, we first compute an alternative

segmentation that finds points along the stroke where the direction of the stroke

changes from positive to negative (or vice versa), as seen in Figure 51. This essentially

finds the “peaks” and “valleys” that occur along the stroke. Once this segmentation

has been produced, we can calculate the following features:

• The total number of segments produced by the alternative segmenter.

• The ratio between the length of the shortest segment and the length of the

largest segment. In an ideal case, all segments should be the same size.

• The percentage of the time that the x value of the first point of each consecutive

segment is increasing (if drawn left to right) or decreasing (if drawn from right

to left).
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Fig. 52. Example results produced by the alternative segmenter on a sketched gull.

e. Gull Features

Gulls designate airborne units, and like waves, we utilize the results of the alternative

segmentation produced in Figure 52. Ideally, the results of this segmentation should

produce four segments. From the segmentation, we compute:

• The ratio between the shortest segment and the sum of the lengths of all seg-

ments.

• The angle between the second and third segments. If there are not enough

segments, then this angle is defaulted to zero, which may be the case in non-

gull shapes.

• The average slope of the last two segments, which should cancel out and be

close to zero.

• The percentage of the time that the first segment has a positive slope, the

second a negative, the third a positive, and the fourth a negative. This feature

helps prevent upside-down gulls from being recognized as gulls.
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Fig. 53. Example results produced by the alternative segmenter on sketched NBC

symbols.

f. NBC Features

NBC stands for “nuclear, biological, chemical”, and its symbol is drawn as a filled-

in dot that has an extended tail. To recognize these symbols, we use the same

segmentation that we did with waves and gulls, as seen in Figure 53. Ideally, the

longest of the end segments (either the first or last) will represent the tail, while the

remaining segments make up the filled-in dot portion of the symbol. The features we

use to help recognize NBC symbols include:

• The length ratio between the shortest of the first and last segment, and the

longest of the first and last segment. Ideally, this ratio should be large because

the tail portion of the symbol should be much longer than the dot portion.

• The density of the sub-stroke that makes up the dot portion of the symbol.

• The number of revolutions (total rotation) of the sub-stroke that makes up the

dot portion of the symbol.
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2. Classifier

For classification, we used a multi-layer perceptron. As with the MLP in the previous

chapter, we utilized the WEKA toolkit [178] and used the exact same parameters. The

number of input nodes was equivalent to the number of features we computed (125),

and the number of output nodes represented the number of primitive classes that

we supported for this domain (13). The single hidden layer consisted of 138 nodes,

again, because this value equaled the sum of the number of input and output nodes.

The MLP used a sigmoid activation function at each node, and weights were learned

through backpropagation. We specified a learning rate of 0.3, with a momentum

value of 0.2, and performed 500 training epochs. Feature values were also normalized

before entering the network.

3. Data

For our experiments, we collected two independent sets of COA data. When collecting

the first set of data (A), we asked 10 users to draw two examples of each of the COA

symbols shown in Figure 54. This specific subset of COA shapes were chosen in order

to collect as much data for each individual primitive as possible, without burdening

the user. Because we are concerned with only recognizing shapes and symbols, strokes

used to represent text were ignored. The problem of clustering text strokes and shapes

strokes is an ongoing area of research in sketch recognition [131, 133]. The second

set of data (B) was collected from a single user. The goal of this data set was to test

the robustness of the system with a large number of COA symbols. This user drew

between 10 and 20 examples of 379 unique symbols in the domain. Table III shows

the number of each primitive collected in each data set.
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Fig. 54. Subset of COA symbols used for data collection (data set A).
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D. Results

We performed three experiments in total. The first two involved performing 10-fold

cross validation on each of the data sets. In the third experiment, we used data set A

for training and data set B for testing. This shows the results of a classifier trained

with only a subset of COA symbols, but tested using a more expansive set of symbols

drawn by a user that provided no training data himself.

Table III shows the results of each of the three experiments on a primitive-by-

primitive basis. Data set A, which contained data from 10 different users had a

total weighted accuracy of 98.5%. The data containing a larger number of COA

symbols, but drawn by a single user, had a total weighted accuracy of 99.8%. In our

third experiment where data set A was used for training, and set B for testing, we

achieved a weighted accuracy of 99.4%. Overall, recognition took approximately 11

milliseconds1 per primitive, even with the computation of all 125 features.

E. Discussion

One point that we should make about the data collected in set B is that it contains

a larger majority of lines than that of set A. The reason for this is because set B

contains “anticipated” unit symbols, which are drawn using dashed boundaries. Lines

are arguably the easiest primitive to recognize, but they are also the most common.

One may argue that we achieve high accuracy rates on data set B simply because

it contains a large number of lines. However, we would like to point out that if we

ignore lines altogether, data set B still achieves over 99% weighted accuracy on the

remaining primitives during cross-validation.

1The reason for the speed-up versus the results in the previous chapter are due to
the recursive process of complex shape interpretation not being used.
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Table III. Number of occurrences of each primitive shape in our data sets as well as

the accuracy of 10-fold cross-validation on each set. The final column shows

the accuracy results when we train with dataset A and test with dataset B.

“Total” accuracy represents the flat average of all shape accuracies, while

“weighted” average shows the average accuracy of each shape weighted by

its number of occurrences. *Dataset B consisted of more lines because it

included “anticipated” unit symbols, which are drawn as dashed rectangles

or diamonds.

Primitive Number (A) Accuracy (A) Number (B) Accuracy (B) Accuracy (A/B)

Line 837 0.996 32075* 0.999 0.999

Arc 20 1.0 30 1.0 1.0

Ellipse 374 0.987 2266 0.994 0.996

Polyline 376 0.979 1036 0.986 0.973

Rectangle 181 0.989 1419 0.996 0.937

Diamond 202 0.990 667 1.0 0.993

Polygon 61 0.934 265 0.986 0.830

Arrow 82 0.939 98 1.0 0.949

Dot 62 0.984 325 0.972 0.946

Wave 19 0.947 158 1.0 0.981

Gull 41 0.976 67 0.970 0.896

Infinity 20 0.900 11 0.818 0.727

NBC 61 1.0 42 1.0 1.0

Total/Avg. 2336 97.1% 38459 97.9% 94.1%

Weighted 98.5% 99.8% 99.4%
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The major limitation of the existing work is that primitive shapes must be drawn

using a single stroke. Although multi-stroke primitives, such as 4-line rectangles or

3-line arrows, can still be defined and recognized through a high-level shape grammar,

recognition still suffers from the existence of continuation and touch-up strokes [182].

Furthermore, recognizing multi-stroke primitives at the low-level will relieve some

of the complexity from the higher-level recognition system. The biggest obstacle

to achieving this is the development of adequate clustering algorithms for detecting

groups of strokes that make up a single primitive that remain domain-ignorant. The

next chapter of this dissertation discusses our first attempt at solving this problem.

F. Chapter Summary

We have presented a method for recognizing a large number of primitive shapes that

can be used to describe sketched symbols in the military course of action domain.

Many of these primitive shapes, such as rectangles, diamonds, waves, and infinity signs

may also be present in additional sketch domains. Our approach involves combining

the features of existing recognizers with those developed to help recognize the newer

shapes of the domain. A multi-layer perceptron was used to perform classification,

and results indicate recognition rates that exceed 98.5% on a data set gathered from

10 different users. The system has further been tested on data representing 379 unique

COA symbols collected from a single user, with weighted accuracy rates above 99%.
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CHAPTER V

MULTI-STROKE PRIMITIVES

A. Introduction

Thus far, we have assumed that all primitive shapes will be drawn with a single stroke.

Although this assumption typically holds true in most cases, there are instances in

which a user may choose to draw a primitive shape with more than one stroke. We

call these additional strokes continuation strokes (Figure 55).

The reason continuation strokes are problematic is because high-level recognizers

assume that every primitive has meaning. For example, if a user draws a line to the

screen and decides later in the sketching process to make it longer, then the low-level

recognizer will find and return two individual lines to the high-level recognizer. At

this point, the high-level recognizer will attempt to find shape definitions that consist

of two lines rather than one.

As another example, imagine that a user draws a rectangle to the screen, but does

not fully close the space between the endpoints (as seen in Figure 55). Mistakenly, the

user then attempts to “help” the recognizer by adding an additional stroke to close

Fig. 55. Examples of continuation strokes.
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the gap. We call these touch-up strokes. Most likely, the primitive recognizer will still

be able to classify the first stroke as a rectangle, but will classify the second stroke

as a line. Now, the high-level recognizer has an additional line that it is incorrectly

attempting to place into a shape definition.

The ultimate goal of our work is to place no constraints on how users must draw

primitive shapes; this includes the single-stroke assumption. We believe it is the job

of the low-level recognizer to handle multi-stroke primitive recognition, because it

is the part of the multi-tiered sketch process that has knowledge of basic shapes.

The high-level recognizer only has knowledge of spatial and geometric relationships

between recognized primitives.

The biggest obstacle to achieving multi-stroke primitive recognition at the low-

level stage of recognition is developing adequate grouping algorithms for detecting

strokes that make up a single primitive, while remaining domain-ignorant. By itself,

grouping strokes is an exponentially hard problem because every stroke must be

compared with every other stroke on the screen. Some researchers have looked into

ways of speeding up the process, but it still remains a O(n2) problem [183].

One way that existing researchers have attempted to solve the multi-stroke prob-

lem is by placing constraints on how users draw shapes with multiple strokes. For

example, some algorithms use temporal constraints, or timeouts, to denote shape

completion [13, 14]. With these systems, users must either draw an entire shape

within a specified time, or make continuation strokes within a given time frame to be

recognized. Other systems utilize simple button clicks to designate when a shape is

finished and ready to be recognized [90]. Another constraint used by some systems

is to disallow stroke interspersing [184]. That is, if the user draws shape A and then

draws shape B, she is not allowed to make additional changes to shape A. Shape A

must be fully completed before the user can continue drawing any other shape. In
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Fig. 56. Examples of continuation strokes in a hand-sketched circuit diagram.

domains like circuit diagrams, lines (wires) are often extended after other shapes have

already been drawn (Figure 56). Finally, some algorithms compare the slopes and

spatial distances between strokes, but only work for shapes composed of lines. For

example, the Tahuti recognizer only supports multi-stroke rectangles and arrows [29].

The goal of this chapter is to explore a potential means for recognizing multi-stroke

primitives, linear and curvilinear, without requiring these special constraints.

B. Implementation

In order for the low-level recognizer to classify multi-stroke primitives, it must have

more communication with high-level recognizers which have access to every stroke on

the screen. Traditionally, primitive recognizers are treated as black boxes where an

individual stroke comes in and a recognized primitive goes out. In order to recognize

multi-stroke primitives, the low-level recognizer must also have access to every stroke

on the screen.
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Fig. 57. Example graph built from a set of six strokes representing two primitive

shapes.

In the current implementation of our multi-stroke algorithm, we require that the

high-level recognizer gives a set of strokes as input to the low-level recognizer. These

can be all of the strokes on the screen, or just a subset of strokes if the high-level

recognizer employs its own form of stroke grouping [183]. The low-level algorithm

returns, as output, an optimal set of recognized primitives. The low-level recognizer

maintains a hash table history, keyed to the unique ID of each stroke, to avoid re-

dundant recognition of individual strokes. Once all strokes have been classified using

PaleoSketch, they are sent to the multi-stroke algorithm. Strokes that are classified

as complex shapes are not considered for multi-stroke combination. The multi-stroke

algorithm has five parts: graph building, graph searching, stroke combination, false

positive removal, and arrow detection.

1. Graph Building

The first step of our multi-stroke algorithm involves constructing a graph of spatially

close strokes (Figure 57). We are make the assumption that candidate strokes for

multi-stroke primitives will likely have endpoints that are near one another. In our

graph, nodes represent the endpoints of strokes and edges represent endpoints that

are spatially near or lie on the same stroke. To determine if the endpoints of two
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different strokes are near, the following conditions must be met:

1. The Euclidean distance between the endpoints, divided by the average stroke

length of the two strokes, must be within some threshold (we used 0.11). An-

other way to think about this is that the gap between the two strokes must

be less than 10% of the average stroke length of the two strokes. A similar

metric was used in the original version of PaleoSketch to determine if a stroke

represented a closed shape [6].

2. The Euclidean distance between the endpoints, divided by the average width

(or height, whichever is largest) of the bounding boxes of the two strokes, must

be within some threshold (we used 0.15).

In both of these distance metrics, we divide by measures of stroke size. We do

this so that larger strokes are allowed to have larger gaps between themselves, while

smaller strokes should have smaller gaps. However, if the distance between the two

endpoints is smaller than 10 pixels, then the endpoints are automatically considered

near. In these cases, we use this static pixel threshold, rather than the tests based on

stroke size, to allow for small strokes to be considered connected as well. In particular,

we found multiple instances of small strokes being present at the beginning of much

larger strokes. This typically occurs by accident when the user to about to begin

sketching. With this static threshold, however, these errant strokes can be absorbed

into the larger strokes.
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Fig. 58. We use a searching algorithm to find the strongly connected components of

the graph. These correspond to the strokes that are likely candidates to be

merged.

2. Graph Searching

Once our graph has been generated, we search it for strongly connected components

(Figure 58). Strongly connected components are the maximal, strongly connected

subgraphs within a graph. By “strongly connected,” we mean that from every node

in the graph there exists some path to every other node in the graph. Typically,

these strongly connected subgraphs will indicate candidate strokes that need to be

combined into multi-stroke primitives.

To search for strongly connected components, we utilize Tarjan’s algorithm [185].

Tarjan’s algorithm is a depth-first search algorithm and runs in linear time in the

number of edges present in the graph. Once all possible sub-graph combinations have

been discovered, we rank the combinations from those containing the most nodes to

those containing the least nodes.

At this point, we have a list of multiple stroke combinations. Each combination

in the list likely has overlapping strokes with the other combinations in the list. The

example in Figure 58 shows only the top-two connected components that would be

1Thresholds determined empirically with an original set of author-drawn data.
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Fig. 59. Multi-stroke recognition flowchart.

present in the list of combinations. All possible sub-graphs of these two components

will also be present in the list. This is why the list is first ranked based on the number

of nodes.

Next, we greedily iterate through the list of combinations. The strokes of each

combination are merged together using the algorithm in the next step (“Stroke Com-

bination”). This merged stroke is then classified using PaleoSketch. The stroke is

then sent to the “False Positive Removal” stage, which determines if the stroke should

remained combined or not. If the stroke passes this stage, we have successfully rec-

ognized a multi-stroke primitive. All remaining combinations in the list that contain

any of the nodes that were used for this primitive are removed. If the stroke fails

the “False Positive Removal” stage, then the combination fails and the algorithm

continues with the next combination in the list. Figure 59 shows a flowchart of this

process.
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Fig. 60. Example of two lines that are merged by simply connecting the endpoints.

In this case, the direction graph contains a discontinuity even though lines

typically have a smooth direction graph.

3. Stroke Combination

Initially, stroke combination seems like a trivial problem, but some consideration must

be taken before merging strokes together. First, we must ensure that the strokes are

in a logical order. This order may not necessarily be the order in which they were

drawn. For example, imagine a user draws a rectangle with four lines. The first line

drawn is the left side of the rectangle (L), followed by the bottom (B), then the top

(T ), and finally the right side (R). In this case, it is not logical to order them based on

time (LBTR), because we would make an incorrect connection between the endpoints

of the top and bottom strokes. Instead, we would want a logical combination, such

as LBRT or LTRB.

Another issue we must consider when combining strokes is that connecting the

endpoints directly may not be the best option when merging two strokes together.

Algorithms such as PaleoSketch rely heavily on the consistency of direction and cur-

vature graphs. If we simply connect the endpoints of two strokes that slightly overlap,

then we will have a discontinuity in the merged stroke’s direction graph (Figure 60).
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Therefore, if we are connecting the last endpoint of stroke A with the first end-

point of stroke B, we start by searching for the two points (within the last 10% of

stroke A and first 10% of stroke B) that are closest to one another. We then con-

nect the strokes at these two points, clipping the trailing/leading portions of the two

strokes at the ends. If the strokes overlap, then this clipped portion will coincide with

the overlapping sections. If the two strokes have a gap between them, then the two

points that are closest to each other would naturally be the endpoints. In this case,

it is safe to simply connect them.

4. False Positive Removal

Once a stroke has been generated from the combination of other strokes, we want

to determine if the resulting classification of that stroke is better than the result

of simply leaving the strokes unmerged. Essentially, these are rules of when not to

combine strokes together. Recall that we not only have the interpretation of the

merged stroke, but we also have the original shape interpretations of the strokes that

were combined.

We have established the following principles that specify conditions in which a set

of strokes should not be merged. These principles have been determined empirically

through the observation of merging problems with an original set of author-drawn

data.

1. Avoid complexity when possible. For example, if the result of merging two shapes

together is a complex shape, then merging should not be performed. Obviously,

combining two shapes, only to divide them later in the recognition process, is

counter-intuitive and unnecessary.

2. Shapes should maintain constant (curvi)linearity. If the result of merging is
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a linear shape (e.g., line, polyline, polygon), then all of the strokes that were

merged should have originally been linear as well. For example, two arcs should

not form a polyline. Furthermore, when combining shapes into a polyline, the

degree of that polyline should equal the sum of the degrees of the sub-shapes

(e.g. four lines should not be combined into a “Polyline (5)” or a “Polyline (3)”).

Likewise, if the result of merging is a curvilinear shape (e.g., arc, ellipse, wave),

then at least one of the original shapes should have also have been curvilinear.

For example, three lines should not be merged into an arc.

3. Touch-up strokes should have a minimal effect on existing recognized shapes.

Touch-up strokes occur when users are “cleaning up” existing recognized, com-

pleted shapes. Because of this, they should not change the recognition of the

previously recognized stroke. For example, if the previously recognized shape

is a closed shape (e.g. rectangle, ellipse), then merging an additional stroke

with this shape should not change the recognition result. If it does, then we

should not merge. Touch-up strokes are also often small compared to the origi-

nal shape. Thus, we also prohibit merging if the stroke alters an original closed

shape’s bounding box by more than 10%.

4. Continuation strokes should maintain consistency. Continuation strokes occur

when a user attempts to make an existing shape longer. When merging two

lines into one line, it makes sense that the path should be continuous. When

extending the shaft of a previously recognized arrow, the result of the merge

should remain an arrow. Shapes like waves should also maintain a consistent

path. To check this, we verify that the new wave’s height does not exceed 50%

of the original wave’s height.

5. Impose confidence constraints on shapes when needed. In some cases, particular
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(a) (b) (c) (d)

Fig. 61. Examples of the different ways that users draw arrows: with one stroke (a),

with three strokes (b), or two different variations of two strokes (c,d).

shapes may lend themselves to being the frequently defaulted-to option when

existing shapes are errantly merged. In the case of our initial set of author-

drawn data, this tended to be complex shapes and arrows. Because complex

shapes are avoided (principle 1), we only had to worry about arrows. From

our observation, most true positive arrows will have a high confidence, while

defaulted-to arrows have a low confidence. By requiring multi-stroke arrows to

have a confidence of at least 75%, we were able to continue to recognize true

positive arrows while reducing the number of false positive merges.

5. Arrow Detection

Arrows are typically drawn in one of four ways, as seen in Figure 61. Some users

draw the shaft and the head all in a single stroke (Figure 61(a)). This case is handled

by the single-stroke primitive recognizer and occurred 65.4% of the time in our data

set. Other users will draw the shaft in one stroke and each of the two heads with

two additional strokes (Figure 61(b)). In this case, the endpoints of all three strokes

should be near and can be handled by the existing multi-stroke algorithm. This case

occurred in only 3.7% of the arrows drawn in our data set. However, there are two

cases that cannot be handled by the existing multi-stroke algorithm, because the
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endpoints of the strokes that need to be combined will not be near. To support these

cases, we have developed a set of rules to search for these specific types of arrows.

1. The first case involves the user drawing a shaft in one stroke, and the arrow

head in a second stroke (Figure 61(c)). This occurred 20.6% of the time in our

data set. In this case, the head will likely be drawn as a two-lined polyline.

Therefore, as we loop through the strokes we are processing, if we encounter a

“Polyline (2)” interpretation, we perform the following. First, we find the the

segmentation point of the polyline. This is the tip of the arrow head. Next,

we loop through the remaining non-closed strokes and determine if any of their

endpoints are near the tip of the arrow head (using a similar distance check to

that in “Graph Building”). If we find a candidate, then we combine the strokes

together and classify using PaleoSketch. If the interpretation returned is an ar-

row with greater than 50% confidence, then we return the arrow interpretation.

2. The second case occurs when the user draws the shaft and one half of the

arrow head in a single stroke, and the second half of the arrow head with a

single line (Figure 61(d)). This happened 10.3% of the time in our data set.

Remember that the shaft does not necessarily have to be a simple line. If

we encounter a “Polyline (2)” or a complex interpretation containing one line

and one non-closed shape, we do the following. First, we loop through the

remaining line-only strokes and perform a distance check between its endpoints

and the segmentation point of the polyline or complex. If they are near, we

combine them and re-classify. Again, if an arrow interpretation is returned

with greater than 50% confidence, then we keep the strokes merged and return

the interpretation.
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C. Experiment

We asked 10 users to draw 2 examples of each of the symbols and small-scale dia-

grams shown in Figure 62. These samples come from various sketch domains includ-

ing military course of action, circuit diagrams, chemistry, physics, and mechanical

engineering. We chose to have users draw these symbols rather than ask them to ar-

tificially draw examples of multi-stroke primitives. This not only allows us to test our

accuracy, but to determine how frequently multi-stroke primitives occur in naturally

sketched data.

The symbols in this study are composed of a number of primitives from the

previous two chapters. Specifically, the primitives involved in this study are: lines,

arcs, curves, ellipses, diamonds, rectangles, polylines, polygons, arrows, dots, waves,

helixes, spirals, infinity signs, and complexes.

At no point in the study were users asked to explicitly state what the intention

was of each of their drawn strokes. In order to determine the correctness of our

recognizer, we use the interpretation of the shape as it would be defined in a high-

level grammar’s shape definition.

To test our algorithm, we performed 10-fold cross validation over the entire set

of data. With this, one user’s data is saved for testing while the remaining nine are

used for training. This is done for all users and the results are averaged. When

training our MLP version of PaleoSketch, we trained only on single strokes (i.e., we

did not train on labeled multi-stroke primitives). We computed accuracies for both

single-stroke and multi-stroke primitives. In order for a multi-stroke primitive to be

classified as correct, it must have been properly merged as well as recognized, with

no extra or missing strokes in the interpretation.
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Fig. 62. Symbols from multiple domain that were used for data collection.
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D. Results

Table IV shows the percentage of the time that we encountered multi-stroke primitives

in our data set. In all, multi-stroke primitives made up only 9% of all of the primitives

in the data set. The most commonly drawn primitives using multiple strokes were

polygons (39.3%), arrows (35.2%), diamonds (30%), and rectangles (18.8%). All other

primitives were drawn with multiple stroke less than 10% of the time. Interestingly,

our results coincide with those of van Sommers when he explained that the more sides

there are in a figure, the less threading (drawing multiple lines within a single stroke)

there is per corner [127].

1. Single-stroke

Table V contains the accuracies of both single-stroke and multi-stroke primitives. In

total, we achieved 96% recognition of all primitives in the data set. With single-

stroke primitives, our weighted accuracy was 96.6%. This is slightly more than a full

percentage point lower than the results in Chapter III. However, much of this error

is due to some specific shapes.

For example, single-stroke spirals performed poorly with only 78.9% recognition.

In Chapter III, we had a perfect 100% recognition of spirals. We believe the primary

reason for this decrease is the lack of spiral training data in the set of symbols we

collected. In total, there were only 20 spirals drawn, which is less than 1% of the

entire data.

Another troublesome primitive was the dot (88.6%). In this instance, most of

the incorrect dots were all drawn by a single user. Unlike other users who drew dots

as small, filled-in circles, this user simply made quick, small strokes to the screen to

designate dots. In most cases, these were classified as lines (Figure 63). In some
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Table IV. Number of each type of sketched primitive present in the collected data.

Complex and polyline shapes cannot be drawn with multiple strokes.

Total Single-stroke Multi-stroke % Multi-stroke

Arc 105 101 4 3.8%

Arrow 216 140 76 35.2%

Complex 120 120 - -

Curve 78 78 0 0%

Diamond 60 42 18 30.0%

Dot 219 202 17 7.8%

Ellipse 478 462 16 3.3%

Helix 84 82 2 2.4%

Infinity 59 59 0 0%

Line 485 475 10 2.1%

Polygon 117 71 46 39.3%

Polyline 214 214 - -

Rectangle 149 121 28 18.8%

Spiral 20 19 1 5.0%

Wave 67 62 5 7.5%

Overall 2471 2248 223 9.0%
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Table V. Accuracy results after 10-fold cross-validation. “Average” represents flat

averages, while “weighted averages” represent averages that are weighted by

the number of occurrences of each shape type.

Single-stroke Multi-stroke Weighted Avg.

Arc 0.980 0.0 0.943

Arrow 0.979 0.934 0.963

Complex 0.908 - 0.908

Curve 0.962 - 0.962

Diamond 0.976 0.944 0.967

Dot 0.886 1.0 0.895

Ellipse 0.987 0.688 0.977

Helix 0.963 1.0 0.964

Infinity 1.0 - 1.0

Line 0.992 0.900 0.990

Polygon 0.930 0.913 0.923

Polyline 0.958 - 0.958

Rectangle 0.983 0.929 0.973

Spiral 0.789 0.0 0.750

Wave 1.0 1.0 1.0

Average 95.5% 75.5% 94.5%

Weighted Avg. 96.6% 89.7% 96.0%
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Fig. 63. Examples showing the way that most users drew dots (left) versus the single

user that drew them with small strokes (right).

systems, any small markings relative to the screen size are automatically classified as

dots [160]. If we were to make a similar assumption, then these dots could easily be

classified correctly.

Other shapes that had lower single-stroke accuracies were complex shapes (90.8%)

and polygons (93%). The biggest problem for polygons was distinguishing non-

rectangular quadrilaterals from rectangles. There was also much confusion between

polygons and complexes. Issues with complex shapes will be discussed in more detail

in a later section.

2. Multi-stroke

Overall, we achieved 89.7% weighted accuracy for multi-stroke primitives. This means

that the primitive was both combined and recognized correctly. Examples of correctly

classified multi-stroke primitives can be seen in Figure 64. Primitives that did not

combine, but should have, are considered false negatives. Primitives that were not

meant to be combined, but were, are considered false positives.
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Fig. 64. Examples of correctly merged and classified multi-stroke primitives (original

sketch and combined primitive).
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Most of the errors we encountered were due to strokes not being merged correctly,

rather than being mis-classified (false negatives). One limitation of our multi-stroke

approach is that it relies heavily on single-stroke interpretations being correct. For

example, some strokes that should have merged to form a multi-stroke primitive were

incorrectly classified as a complex shape. Because we disallow complex shapes from

being merged, the strokes were never combined.

Another reason some strokes were not combined is because the distance between

their endpoints was too great. Examples of this can be seen in Figure 65. In these

examples, the endpoint of the larger stroke is closer to the midpoint of the smaller

stroke than it is to its endpoint. Therefore, the distance between the endpoints was

not within the thresholds that we specified in multi-stroke algorithm, which were

based on the size of the strokes to combine.

Additional issues that we encountered were examples of users attempting to

correct poor sampling or users performing overtracing. Figure 66 shows an example

of a user who, while drawing an ellipse, encountered a lag during sampling. This

resulted in many points being lost, which the user then attempted to supplement

with an additional stroke. Likewise, in Figure 67, one user attempted to clean up

some of his shapes by adding additional, overtraced strokes. In both of these cases,

strokes were never merged because the endpoints were too far apart.

When computing accuracy, we did not account for false positive merges. How-

ever, in all 2,471 primitives that we tested, we only encountered 6 false positive

combinations. Furthermore, most of these false positives consequently caused false

negatives to occur.

For example, in Figure 68 one user drew both of his NAND gates using 3 lines and

an arc, rather than one line and an arc. Since the shape definition of a NAND gate

would only consist of one line and one arc, we consider anything containing more
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Fig. 65. Examples of multi-stroke primitives that were unsuccessfully merged due to

endpoint distances being too great.
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Fig. 66. Example of a user attempting to correct an error in sampling (top ellipse).

Fig. 67. Examples of multi-stroke overtracing performed by one user.
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Fig. 68. Example of a NAND gate drawn by one particular user. This resulted in

both a false positive and a false negative combination.

components to be incorrect. In this case, these extra lines were merged with the

vertical line to produce a three-line polyline. This was both a false positive because

the lines were merged with the vertical line, as well as a false negative because they

were not merged with the arc.

As another example, see Figure 69. In this example, a false positive (and nega-

tive) was generated due to the greedy nature of our algorithm. The user drew both

vertical lines first, followed by two strokes to make up the bottom ellipse. The first

stroke that makes up the ellipse was incorrectly merged as a polyline with the two

vertical strokes. This, consequently, kept it from correctly merging with the second

half of the ellipse, which caused a false negative.

In some few cases, the algorithm did correctly merge the strokes, but they were

mis-classified. Figure 70 shows an example of two strokes that were correctly merged,

but then mis-classified as a rectangle instead of a polygon.

3. Complex Shapes

As with our experiments in Chapter III, we also wanted to determine how well our

algorithm performed on complex interpretations. Unlike our previous data set that
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Fig. 69. Example of a false positive generated due to the greedy nature of the algo-

rithm.

Fig. 70. Example of multi-stroke primitives that was merged correctly, but classified

wrong.



125

95% 58% 40% 35% 25%

25% 23% 20% 20% 10%

Fig. 71. Examples of the complex shapes encountered in the data set, along with the

percentage of the time that each was drawn in a single-stroke rather than

multiple strokes.

only contained a complex shape of one line and one arc, this data set contained

many more complex combinations. Figure 71 shows the multi-primitive shapes from

our data set that were drawn using a single stroke. Underneath each shape is the

percentage of the time that it was drawn in a single stroke, rather than multiple

strokes.

Complex shapes made up less than 5% of all of the primitive shapes in the

data set. This means there were more instances of multi-stroke primitives than there

were of single-stroke complex primitives. The MLP correctly classified instances of

complex shapes 90.8% of the time. We returned the correct interpretation for complex

shapes 78% of the time. More specifically, the correct interpretation was returned

88.8% of the time if the complex shape consisted of only two sub-shapes (73.4% of
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all complex shapes). However, if the interpretation contained three sub-shapes the

accuracy was only 50% (26.6% of all complex shapes). We did not encounter any

complex interpretations that contained more than 3 shapes.

The majority of mis-interpreted complex shapes came from the most commonly

drawn complex shape: the line, arc, line shape seen in Figure 73. In this case, the

stroke was undersegmented. By undersegmented, we mean that the interpretation

returned too few shapes. For example, most line, arc, line combinations were returned

as line, curve interpretations. This is because the complex interpreter accepts any sub-

shape that has a confidence of at least 50% (as described in Chapter III). In this case,

the curve had a high enough confidence that it did not require further segmentation.

In fact, most of these curves had confidences above 98%. Undersegmented complex

shapes made up 83.3% of the total error.

The remaining error came in the form of oversegmented complex interpretations,

and a few cases of complex overtracing. Most oversegmentations were a result of how

the user drew the shape. Either there was a large tail on the stroke, or the user

purposefully added additional shapes to the stroke, as seen in Figure 74 when the

user added additional lines to the tops of his helixes.

Occasionally we also encountered examples of overtracing, also seen in Figure 75.

These examples came from the same user that drew multi-stroke, overtraced shapes.

In this case, the additional stroke kept the shape from being properly interpreted.

Because of the rarity of overtraced shapes in our data set, we leave this as a problem

for future work.
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Fig. 72. Examples of correctly interpreted complex shapes (original strokes and rec-

ognized shapes).
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Fig. 73. Example of a complex undersegmentation.

Fig. 74. Example of complex oversegmentation. Additional lines at the tops of the

helixes led to oversegmentations.
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Fig. 75. Overtraced lines within complex shapes kept them from being properly in-

terpreted (left).

E. Discussion

In this chapter, we have introduced an algorithm for recognizing multi-stroke prim-

itives that, unlike previous approaches, places no drawing constraints on the users.

Although the algorithm achieved successful results, there is still much room for im-

provement.

1. Comparison to Other Methods

Comparing our algorithm to other multi-stroke recognizers is difficult because of the

constraints used by many of these approaches. Most have been tested solely on

isolated primitive shapes and rely on special button presses [44, 90] or unspecified

timeouts [14] to group the strokes that belong to a single primitive. These types

of approaches completely disallow stroke interspersing. Furthermore, many of these

recognizers do not support the full range of primitives that we have supported through

PaleoSketch.
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Fig. 76. Examples of curved arrows and rectangles with overlapping sides that Tahuti

has trouble recognizing.

The most comparable recognizer to what we have done is the Tahuti recognizer

[29]. Unlike the aforementioned recognizers, Tahuti does allow for stroke interspers-

ing, up to a certain number of strokes. However, one notable downside of the Tahuti

recognizer is that it relies on a combination of endpoint distances and slope continu-

ation to perform stroke grouping. Our recognizer relies solely on endpoint distances.

Because of the added constraint of slope continuation, the Tahuti recognizer only

handles multi-stroke rectangles and linear arrows. It does not handle any form of

multi-stroke, curvilinear shapes, such as multi-stroke ellipses. We tested our arrow

and rectangle data using the Tahuti recognizer and found that it achieved 53.2% ac-

curacy on arrows and only 33.6% accuracy on rectangles, even though our recognizer

achieved over 96% on both of these shapes. The primary reason for this is because

Tahuti does not support arrows with curved shafts or rectangles that have overlapping

sides (Figure 76).

Some may also argue that multi-stroke primitives can be handled by higher-level

recognition systems, such as LADDER [160]. For example, a rectangle composed

of four strokes can be described as four lines that have perpendicular angles and

congruent sides. A multi-stroke line is simply two lines that have near endpoints and
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a similar slope. Although this is true, the possible combinations of shapes that can

form multi-stroke primitives would soon become unmanageable. A multi-stroke circle

could be formed from two arcs, or from an arc and a line, or from two arcs and a

line, or from three arcs, or from a curve and line, etc. The possibilities are endless,

and each would require a specific shape definition in the high-level system. This is

the primary reason why we believe multi-stroke primitive recognition should be the

task of the low-level recognizer.

2. Multiple Interpretations

One of the downfalls of our approach is that many aspects of the algorithm are greedy.

For instance, when determining if strokes should be combined, the algorithm looks

solely at the best primitive interpretation of individual strokes rather than considering

the confidences of every possible primitive. Furthermore, the algorithm is greedy when

it comes to the order in which to combine strokes (recall the problems in Figure 69).

One possible improvement to the algorithm would be for it to consider and rank

multiple, multi-stroke interpretations. Each possible combination of strokes could

be considered, and confidences could be used to determine the best interpretation

possible.

This would be a difficult task, however, because of speed requirements. With our

multi-stroke algorithm, it took, on average, 372 milliseconds to classify each primitive.

This is almost two and half times slower than our single-stroke recognizer. Adding the

additional complexity of searching through all possible multi-stroke interpretations

for a given set of strokes would further slow down recognition.
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3. Improving Complex Interpretations

We have seen that complex interpretation accuracy drops with a larger number of

complex combinations. There is a delicate balance between creating complex inter-

pretations that are not undersegmented or oversegmented. We attempted, to some

degree, to experiment with the threshold for determining if a sub-interpretation should

continue to be segmented further. Anything between 50% and 90% seemed to make

little difference. When the threshold was raised to above 90%, many existing, cor-

rect complex interpretations started to become oversegmented. One way to possibly

improve complex interpretations would be to train on the sub-shapes within complex

interpretations. This would allow us to raise the our threshold without producing

oversegmentations, because sub-shapes would now become more confident. Multiple

complex interpretations would also be beneficial, but we would also need to consider

the performance decrease with this added complexity.

4. Improving Grouping

Finally, another area of our algorithm that could be improved is grouping. Currently,

we use a simple spatial distance between endpoints to determine if strokes should be

grouped. Although this assumption works for over 93% of the cases2, it still is not valid

for some examples (e.g., overtraced shapes). Using a combination of temporal, plus

spatial, information for clustering may improve the overall accuracy of our approach.

One must be careful, though, not to rely solely on temporal information, as this may

constrain the manner in which a user must draw. For overtraced shapes, comparing

the overlap of bounding boxes may also be a possible indicator for combination.

2This was determined by testing multi-stroke accuracy when we assumed perfect
single-stroke accuracy.
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5. Additional Improvements

One thing to remember about our experiments is that we tested on a full set of

primitives that represented many different domains. In a real world application, it is

unneccesary to have every primitive turned on for every domain. Specific primitive

shapes should be capable of being turned on and off. In most cases, we would expect

that real world accuracies could actually be better than our tested accuracies because

fewer primitives would need to be turned on for each domain.

Another thing to keep in mind it that we performed our experiments using cross-

fold validation, based on user. This means that each testing user provided no training

data to the neural network. As we saw in some examples, like the user who drew dots

with small marks, user-specific styles still exist and may cause problems with recog-

nition. One benefit of our MLP classifier, however, is that it is adaptable and could

be made to learn over time by modifying its weights based on the correct/incorrect

classification of user-specific examples. A similar approach was used in our MARQS

system and proved to be beneficial over time [16].

F. Chapter Summary

In this chapter, we introduced a recognition algorithm that achieves close to 90%

weighted accuracy on multi-stroke primitives. The algorithm is capable of recogniz-

ing these primitives without requiring special drawing constraints, such as timeouts,

button presses, or prohibiting interspersing. Although the approach produces accept-

able results, much improvement can still be made. Areas of possible improvement

include returning multiple interpretations, improving complex fits, and discovering

better methods of stroke clustering.
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CHAPTER VI

SOUSA

A. Introduction

Although existing domain-specific datasets are readily available, most sketch recog-

nition researchers are forced to collect new data for their particular domain. Creat-

ing tools to collect and label sketched data can take time, and, if every researcher

creates their own toolset, much time is wasted that could be better suited toward

advanced research. Therefore, we have designed and built a general-purpose sketch

collection and verification tool that allows researchers to design custom user stud-

ies through an online applet residing on our group’s web page. By hosting such a

tool through our site, we hope to provide researchers with a quick and easy way

of collecting data while serving a secondary purpose of creating a universal reposi-

tory of sketch data that can be made readily available to other sketch recognition

researchers. The tool is called SOUSA (sketch-based online user study applets), and

has gone through many revisions to date. It can be accessed through our group’s

webpage at http://srlweb.cs.tamu.edu/srlng/sousa/. To date, SOUSA hosts

over 150 data collection studies, representing over 18,000 sketched data files.

B. Previous Efforts

Researchers in the sketch and visual fields of computer science have been working to-

ward large, standardized datasets that can be used in many domains. A standardized

dataset has benefits including the lack of data collection for researchers and uniform

comparison results between systems.

One large corpus of sketch recognition data is the ETCHA Sketches data referred
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to in [186]. This dataset contains hand-sketched drawings of family trees, circuit di-

agrams, floor plans, and geometric objects. Two image processing datasets include

Caltech’s 256 Google and Picsearch collection [187] and the CBCL StreetScenes image

database [188]. The Caltech dataset contains over 30,000 object images in 256 cate-

gories, each category ranging in size. The CBCL StreetScenes database has labeled

components of images taken on streets, such as cars, people, and roads.

Unfortunately, an abundance of general data is not always applicable to spe-

cialized domains. Creating a sketch recognition system to recognize sketched Kanji

symbols, for example, forces the developer to perform their own data collection and

labeling as no standardized Kanji dataset exists. The two main ways to collect this

necessary data are by gathering and labeling real-world data or by having users inter-

act with a specialized program that handles the data collection and labeling process.

Labeling real-world data has been an issue in visual processing. For static images,

labeling programs have attempted to make the labeling process fun and entertaining

in order to have the public label large datasets for the researchers [189, 190, 191, 192].

Sketch recognition labeling programs have not yet embraced these techniques, but the

labeling program in [193] attempts to make labeling quick and efficient.

C. The SOUSA System

SOUSA was originally implemented as a set of Java applets and provided no secu-

rity for ensuring that the original creators of studies were the only ones allowed to

perform parameter modification [194]. Furthermore, the original system provided no

mechanism to allow researchers to search for the data of others.

The newest version of SOUSA utilizes a MySQL database and Python server with

Javascript client software to resolve many of the issues found in the initial version
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Fig. 77. Screenshot of the home page for the current version of SOUSA.

[195]. Javascript was chosen over the existing Java applets because it allowed for a

faster sampling rate (from 80 points/second to 120 points/second). Data is collected

and saved in an easy-to-parse XML format.

Once a user signs up on our server, they are presented with a home screen

(Figure 77) where they can browse and search for existing sketch data, create and

manage their own data collection study, and perform collection studies for other users.

SOUSA allows users to create and perform two different forms of user studies.

Collections studies allow researchers to ask users to draw specific shapes or symbols

from a domain. These inquiries can be presented with or without accompanying

images. Verification studies can be created after data collection and allows researchers

to get classification opinions of numerous “human recognizers.” This can be helpful

to determine ambiguous examples, and also allows alternative interpretations to be

attached to sketched samples.
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Fig. 78. Screenshot of the SOUSA form for creating a collection study.
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1. Collection Studies

When creating a collection study, users are presented with the form shown in Fig-

ure 78. Researchers can control aspects of the study including who can perform

the study and who can download the data from the study. They can also create a

questionnaire in order to gain information about the users who perform the studies

(e.g., age, sex, occupation, input device). When specifying the shapes and symbols

to collect, users simply provide a description, number of times each symbol is to be

drawn, and can even specify the maximum amount of strokes that are allowable.

This is mainly beneficial to researchers that are interested in gesture recognition, or

single-stroke primitive recognition. In addition, researchers also have the option of

uploading an image that can be shown in the event that the user is not sure how to

draw a particular symbol. This allows researchers to collect data from users, even if

they are not experts in the domain.

Once the form has been filled out by the researcher, a unique hyperlink is gen-

erated that the researcher can use to point to the generated study. When users visit

the link, they can perform the study, as seen in Figure 79. Users can also perform the

study by browsing a list of publicly available studies on our website, as long as the

researcher did not designate the study to be private. When performing a study, users

can see their progress and have the capabilities to navigate back and forth between

sketches. They are also allowed to clear the screen or undo individual strokes when

drawing. They even have the ability to suspend and resume the study at a later time.

2. Verification Studies

Verification studies allow researchers to get the opinion of “human recognizers” on the

sketched data they have collected in previous studies. This not only allows researchers
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Fig. 79. Screenshot of the SOUSA data collection applet.
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Fig. 80. Screenshot of the form used to create a verification study.
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Fig. 81. Screenshot of a verification study.

to quickly find incorrectly drawn samples, but also allows them to identify ambiguous

cases, which could be helpful during the training phase of recognition. When creating

a verification study, researchers are shown the form seen in Figure 80.

When performing a verification study, users have the option of attaching multiple

labels to drawn shape, as seen in Figure 81. If the creator of the study chooses, a

“none of these” option may also be present.

D. Evaluation

The primary beneficiaries of our system are sketch recognition researchers. To eval-

uate our system, 10 students from a sketch recognition class, as well as 11 students

from a computer-human interaction class, used our the initial version of the SOUSA

system to collect data and evaluate perceptual thresholds with verification studies

[194]. Data was collected for various domains including Kanji, a physics simulator,

and memory games, just to name a few. Verification studies were also created by

some students to help determine perceptual thresholds for sketched strokes, such as
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whether two lines are parallel, touching, intersecting, near, far, etc. Our system has

also been used by various researchers from our group to collect data for a number of

projects.

We asked users to give us comments and feedback afterward to help evaluate the

usefulness of our system. Overall, students and researchers felt the system was very

helpful and quick and easy to use. According to one user, “after you use it once and

get it working, it is very easy and quick to create new user studies to get data for

different sketching domains.” The most time consuming part of creating studies for

most users was creating the images to be shown for each shape.

One suggestion for the system was the ability to ask questions of the user after

a study in addition to before the study in a pre-questionnaire/post-questionnaire

form. Users also noted occasional lags and delays during peak times when performing

studies. Most of these lag delays were due to other resource-intensive processes being

run on the web server, unbeknownst to us at the time. As of today, most of the

lag problems have been remedied. Many other issues, such as those related to the

security of the system, have been resolved with the newer versions of SOUSA [195].

E. Future Work

SOUSA is an ongoing project being maintained by members of the Sketch Recognition

Lab. While the existing system is stable, feedback from users has identified a number

of issues that we hope to resolve in future versions, including:

• The ability to “close” a study, and disallow further collection, without having

to delete it completely.

• The ability to maintain dataset revisions. For example, if a paper is published

with a set of data, but additional data is added after publication, we want to
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allow users to download specific revisions so they can compare algorithms on

the exact same samples.

• The ability to allow data collection to take place offline, while not connected to

the Internet.

• The ability to upload previously collected data, or data collected through some

other tool.

• The ability of performing verification on data that was not collected through

SOUSA.

• The ability to perform studies on a mobile platform.

• The ability for researchers to include SOUSA in their existing software. We are

already working on an API that will hopefully allow this.

F. Chapter Summary

SOUSA is a sketch-based, online user study application developed to aid in the cre-

ation of a universal, standardized set of sketch data. The goal of SOUSA is to make

sketch-based data collection more efficient and practical for researchers, allowing them

to focus on higher-level tasks. The primary benefits of SOUSA include:

• The ability to create and manage collection studies.

• The ability to create and manage verification studies.

• The ability to dynamically upload images that are associated with symbols to

be collected.

• Secure user accounts.
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• Public and private access options for studies and data.

• The ability to browse and search for specific sketch data.

• The ability to download previously collected data.

• The ability to suspend and resume studies.

• The ability to clear and undo strokes.

• The ability to ask questions of users before they perform a study.
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CHAPTER VII

OFFICE ACTIVITY RECOGNITION

A. Preface

This chapter discusses a project that is independent of sketch recognition, but shows

that many of the issues related to free-sketch recognition [45] apply to other domains

as well. One of the primary goals of our low-level sketch methods in previous chapters

is to allow users to interact freely with our system. Users should not be forced to

learn how to use a system before interacting with it; the system should be natural

and intuitive from the beginning. This means that the system needs to be smart

enough to handle the variations that occur across multiple users.

In this chapter, we introduce a project that centers around activity recognition

in an office setting. The goal is to understand if we can determine the objects that

a user interacts with, simply by monitoring his or her hand posture. One of the key

findings of this work directly relates to the concepts learned through our work in

sketch recognition; if we allow users to interact with objects naturally, some users

will do things differently from other users. In this specific work, we have found that

individual participants will use similar hand postures each time he interacts with an

object. However, those hand postures may be significantly different than that of a

previous user.

B. Introduction

As the future of computing heads toward ubiquity, wearable computing, coupled with

context-aware applications, will become more prevalent. Context-aware applications

are those which adapt one’s computing environment based on “where you are, who
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Fig. 82. Framework indicating where hand posture fits into the overall scheme of

context-aware computing.

you are with, and what resources are nearby” [196]. According to Dey and Abowd,

the most important types of context are location, identity, activity, and time [197].

Of these forms of context, activity is one of the hardest to capture and is used less

frequently by many context-aware applications [198]. However, we believe activity-

based context can play a significant role in applications, particularly those involving

wearable and pervasive computers.

As a simple example, imagine a scenario in which a user is at her place of employ-

ment and engaged in conversation over her office telephone. Someone else, meanwhile,

attempts to call the user on her mobile phone. If the mobile phone has access to the

user’s activity context (e.g., the user is currently on her office telephone), then the

mobile phone could respond by informing the caller that the user is currently engaged

in another conversation on her office phone. Another example could be a coffee ma-

chine that can determine when to start a new brew based on the number of times a

user has picked up his mug to take a drink. These scenarios are just a few possibilities

that show the potential benefit of knowing activity-related context.
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The goal of activity recognition is to aid context-aware applications by providing

information to help explain what a user is currently doing (i.e., what activity the

user is engaged in). An issue activity recognition researchers face, however, is how

to define what an activity is and how to determine when it is taking place. One

answer may lie in Activity Theory [199, 200]. According to this theory, activities have

objectives and are accomplished via tools and objects. Therefore, one can assume

that if we can determine the object that a user is interacting with, then we may be

able to imply something regarding the activity that the user is currently engaged

in. Some frameworks have been created to model activities in this manner, but were

implemented in virtual environments in which interaction with objects is assumed to

be given by some form of sensor values [201, 202]. When applying such frameworks

to a real-world domain, we still face the issue of determining when an appropriate

interaction is taking place. In order to achieve full contextual-awareness, one must

address the category of contextual sensing as it is the lowest, most basic part of

context-aware applications [203].

It can be argued a person’s hands are his primary means of interacting with

tangible objects. They also can serve as a secondary source of communication through

gesturing. Because of this, we focus our attention solely on haptic input experienced

via the hands. Figure 82 gives an idea of where hand posture can be beneficial in the

overall scheme of context-aware computing. By “hand posture” we refer to the static

positioning and orientation of the fingers and palm. This differs from dynamic “hand

gestures” which refer not only to posture of the hand, but also the orientation of the

hand in three-dimensional Euclidean space.

The two most common approaches to tracking haptic activity and interaction in

a real world setting are through cameras or wearable sensors. Vision-based techniques

require cameras that are either placed within a room [204], or that are wearable [205].
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Fig. 83. The 22-sensor CyberGlove II by Immersion Corporation [22].

Stationary cameras placed in a room have the advantage of being less obtrusive to

the user, but also makes the context-capturing system static to that one location.

Wearable cameras allow for context-capturing systems to become mobile, but still

have the problem which most vision-based approaches experience when dealing with

the interaction of objects: occlusions (which typically occur because of the object

itself).

Because our interests lay more with interaction and less with writing vision-based

algorithms to handle occlusions, we decided to use glove-based sensor input provided

by Immersion’s 22-sensor CyberGlove II (Figure 83). The primary goal of our work

is to determine if hand posture can be used as a cue to help determine the objects

a user interacts with, thus providing some form of activity-related context. To give

some real-world practicality to our problem, we chose to perform our experiments in

an office domain, a setting we believe could benefit from context-aware applications.

A secondary goal of our work is to determine the variability of hand postures

between different users who interact with the same objects or are asked to perform

the same gestures. In other words, when users are allowed to interact with objects
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or perform gestures as they would naturally, will they use similar or dissimilar hand

postures? This motivation of creating systems which allow natural interaction rather

than forcing the user to learn specified behaviors is shared with our previous work in

sketch recognition [45].

C. Related Work in Activity Recognition

The term activity recognition does not solely include the recognition of activity

through objects, as defined by Activity Theory, but also includes the recognition

of activities a user performs with his own body. These ambulatory activities typ-

ically include standing, walking, running, sitting, ascending/descending stairs, and

other common body-related movements. Previous works have attempted to recog-

nize movement-related activities using vision-based approaches [206] or wearable ac-

celerometers [207, 208, 209, 210, 211]. Some approaches include other inputs like

ambient light, barometric pressure, humidity, and temperature [212]. Minnen et al.

used accelerometers and audio in order to capture “interesting” behavior in a journal,

which could then be used to help treat people with behavioral syndromes like autism

[213]. Ward et al. also used a combination of accelerometers and sound in order to

determine activity in a workshop setting [214]. Our work shares a similar view of

activity recognition through tools and objects, but uses hand posture, rather than

sound and motion, in order to determine interaction.

Other works have also shared a common motivation of activity recognition through

objects; however, their approaches have been different from ours. In particular, ob-

jects are tagged with radio-frequency identification (RFID) sensors [215, 216]. The

user then wears a glove with a built-in RFID tag reader which enables the system

to determine the objects being interacted with. While this approach is not prone to
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much error, it constrains the user to only interacting with the tagged objects in his

environment.

Some works have shared a similar domain as ours (i.e., an office setting). Ayers

and Shah presented a vision-based system that required prior knowledge about the

layout of the room [217]. This system was mainly used for security purposes, in order

to determine if unauthorized peoples were performing unauthorized activities. Oliver

et al. proposed a system that included audio, video, and computer interaction input

[218]. However, their work focused primarily on providing an environmental context

(e.g., determining if a conversation is taking place or a presentation is being given),

rather than determining the objects a user is interacting with. Finally, the PARCTab

system introduced palm-sized computers that could be used to create a ubiquitous

computing environment in an office setting [219].

The idea of using hand posture to recognize types of grasps has been proposed in

previous works using both vision-based optical markers [220] and glove-based input

[221]. While these works are similar to what we have done, we should make the

distinction that our goal is to recognize objects rather than grasp types. Many times

objects are interacted with using similar grasp types. Our goal is to determine if hand

posture can yield a fine enough resolution to determine the object a user is currently

interacting with, even if that object is grasped with the same grasp type as another

object in the domain.

D. Experiment

For our experiments, we utilized a single, right-handed, wireless, 22-sensor Cyber-

Glove II device developed by Immersion Corporation [22]. The glove provides three

flexion sensors per finger, four abduction (finger spread) sensors, a palm-arch sensor,
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and sensors that measure wrist flexion and abduction. Although the glove allows for

faster sampling rates (up to 90 readings per second), we sampled the glove at a lower

rate (10 readings per second) in order to reduce the amount of data we collected.

A total of 8 users (7 male, 1 female) participated in our data collection study.

All of the users were graduate students, and about half had previous experience

interacting with the CyberGlove, mainly for sign language recognition tasks. We

asked users to interact with objects that may be typically found around the desk in

an office. Table VI lists the 12 types of interactions we collected. Each user performed

each interaction 5 different times, during which the user’s hand posture was capture

through the CyberGlove. For each interaction, we averaged the values of each sensor

to create an input vector for our classifiers.

1. Classifiers

For our tests, we experimented with a number of different classifiers. Because we are

focused primarily on determining how much information hand postures provide, as

well as determining whether or not this information is common across all users, we

decided to test simple classifiers that could yield decent baseline results. In particular,

we experimented with a basic weighted linear classifier [43] and a k-nearest neighbor

(KNN) classifier with varying neighborhood sizes [222]. We used a basic Euclidean

distance metric for our KNN classifiers.

We also attempted to use a quadratic classifier, but due to the high level of noise

in the glove data and the high correlation between individual sensors, we experienced

many singularities in the covariance matrix. Even after performing ridge regression

[222, 223], the covariance matrices of the individual interaction classes were still badly

scaled. Because of these numerical instabilities, we achieved poor results using the

quadratic classifier and thus omitted the results from this chapter.
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Table VI. The types of interactions we collected for our experiment. From left to

right, top to bottom: drinking from a cup, dialing a telephone, picking

up earphones, typing on a keyboard, using a mouse, drinking from a mug,

opening a drawer, reading a piece of paper, writing with a pen, stapling

papers, answering the telephone, and waving.
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2. Feature Spaces

In addition to experimenting with different classifiers, we also tried a number of

different feature spaces. We chose to look into other feature spaces because of the high

degree of noise and correlation we expected between the 22 sensors of the CyberGlove.

The first space we tested was the raw sensor values as a 22-dimensional feature vector.

The next two spaces are projections based on Principal Components Analysis

(PCA) [222, 224, 225, 226] and Linear (Fisher’s) Discriminant Analysis (LDA) [222,

227]. Both of these two techniques have typically been used to perform dimensionality

reduction. PCA attempts to project the data in the direction of maximum variance,

while LDA attempts to project data in the direction that maximizes separability

between classes. Although some principal components are typically removed during

PCA for dimensionality reduction purposes, we maintained all 22 components when

performing our tests in order to ensure no information was lost due to the projection.

Likewise, with LDA, we only removed eigenvectors which had imaginary eigenvalues.

E. Results

We performed a set of tests to determine how well hand postures could be used for

recognition on both a user-independent and user-dependent system. User-independent

systems are those which are trained using the data from a variety of different users,

in the hopes that enough training will yield a system that will generalize well to new

users. These systems do not require training data from new users, and work “right

out of the box.” User-dependent systems are trained using only the data of the end-

user. Because these systems are trained specifically for one user, they tend to be

more accurate but may not work well for secondary users. For each type of system,

we experimented with different combinations of classifiers and feature spaces.
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Fig. 84. Average accuracy results of a user-independent system with varying neigh-

borhood sizes (k) in the KNN classifier. Results for the linear classifiers are

shown as lines since they are constant and do not require a varying neighbor-

hood.

1. User-Independent System

To determine the accuracy of a user-independent system, we performed leave-one-out

cross-validation across all 8 of our users. With this form of validation, the data from 7

users are used for training while the data from the remaining user is used for testing;

this is done for each individual user and then averaged. This form of testing mimics

a system which is trained offline and then used by a brand new user. Figure 84 shows

the results for the user-independent system.

The user-independent system achieved its highest average accuracy, 76.7%, using

the linear classifier and LDA-projected feature space. The minimum accuracy for one

user was 66.7%, while the maximum accuracy for another user was 91.7% using this

classifier/feature space combination. The system’s lowest average accuracy, 51.7%,
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Fig. 85. Accuracy results of a user-dependent system with varying number of training

samples per interaction type.

came from the same linear classifier using the raw feature space. However, the fact

that we achieved over 90% for a single user using a user-independent system gives

some optimism that with enough training data (more than what we tested with), a

user-independent system could potentially be achievable.

2. User-Dependent System

To simulate the effect of a user-dependent system, we trained the classifier using only

data from a given test user. We tried different combinations of training and testing

with an increasing amount of training examples, as explained below. Figure 85 shows

the average results of a user-dependent system (across all users) with various numbers

of training examples per interaction class.

In the first user-dependent test, a single, random example of each interaction

was used for training while the remaining examples were used for testing. In the next
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experiment, two samples of each interaction were randomly selected to use for training

and three remaining samples were used to test. The results of each experiment were

averaged across 100 folds. In this test, we fixed k=1 for the KNN classifier since

some tests would inherently fail due to the lack of sufficient training examples (i.e.,

our first test only requires the user to give a single training sample, in which case a

neighborhood size of two would not make sense). Also, results were not computable

for a linear classifier given a single example per class, because the classifier requires

at minimum two training samples in order to calculate covariance between features.

Obviously, as more examples are used for training, the accuracy of the system

improves for all classifier/feature space combinations. We see in Figure 85 that for

this type of system, the 1-NN classifier outperformed the linear classifier. However,

we also notice that the linear classifier starts out poorly (because of the lack of

sufficient training data), but rapidly increases in accuracy as more training samples

become available. Thus, it is possible that as more training samples are provided, the

accuracy of the linear classifier could surpass that of the KNN classifier. If this is the

case, then an interactive learning scheme used to combine the two types of classifiers

could be used to improve accuracy over time [16].

Overall, the highest accuracy for the user-dependent system came from the 1-NN

classifier using PCA feature space. We can see that given a single training sample,

the accuracy of the user dependent system using this combination (88.2%) is already

higher than the average accuracy of the best user-independent system. As the number

of training examples increases to four, the same classifier/feature space combination

reached a maximum average accuracy of 96.9%. The fact that the PCA feature

space ultimately outperformed the other feature spaces for both the 1-NN and linear

classifier indicates that there is a lot of information in the variance of the data for

individual users.
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F. Discussion

Overall, it can be concluded that when users are allowed to interact with objects in

a natural, unconstrained manner, a user-dependent system will likely be more suit-

able for recognition rather than a previously trained user-independent system, unless

sufficient training data is available. The reason for such a poorly performing user-

independent system was due to a high degree of variation in the way users interacted

with the same objects. This was also the likely reason that the linear classifier per-

formed so poorly on the raw feature space of the user-independent system (because

interaction classes were not linearly separable). For example, when asked to staple

papers, some users would pick the stapler up to use it (thus interacting with it using

a circular, or “C”-style, grip) while other users would staple papers by leaving the

stapler on the surface and pressing down on it using an open palm. Another example

was the act of dialing, which some users performed by using a pointing posture while

others used an open palm (like typing on the number pad of a keyboard). Figure 86

shows some examples of these interaction variations.

Figures 87 and 88 show the confusion matrices of a 1-NN classifier using the

raw feature space for both types of systems (user-independent and user-dependent).

While these are not necessarily the optimal classifier/feature space combinations for

these types of systems, this classifier/feature space combination shows us the simplest

template matching approach to give some insight into the overlap and confusion

between interaction types.

A confusion (or matching) matrix is used in machine learning to show predicted

versus actual classifications [228]. The ideal confusion matrix would be entirely white

with the diagonal being completely black. This indicates perfect classification (i.e.,

actions are only classified as themselves). Dark areas that occur off of the diagonal
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Fig. 86. Examples of variations in interaction with the same objects.
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Fig. 87. Confusion matrix for the 1-NN/raw feature space, user-independent system.

Dark areas indicate high confusion, while white areas indicate little or no

confusion. Note that the values along the diagonal are lightest for dialing,

typing, and stapling. This indicates that these actions contain the most vari-

ance across different users.

indicate that an interaction has been incorrectly classified as another interaction

(i.e., an interaction is “confused” with another by the classifier). When looking at

the confusion matrix for the user-independent system, it is easy to see the examples

of interactions that had a high degree of variation across multiple users. Figure 87

shows the confusion matrix for the user-independent system. Dark areas indicate

high confusion with lighter areas indicating little confusion.

According to this confusion matrix, the three actions that contained the most

variance across all users were dialing the telephone, typing on the keyboard, and

stapling papers together. This corresponds to the observations we made in Figure 86.
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Fig. 88. Confusion matrix for the 1-NN/raw feature space, user-dependent system.

Dark areas indicate high confusion, while white areas indicate little or no

confusion.
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We can also see that there was a lot of confusion between dialing the telephone and

typing on a keyboard. We believe most of this confusion can be attributed to the

users who dialed the telephone with an open palm, the posture typically used when

typing. Other areas of high confusion included: stapling and drinking from a cup

(when both were interacted with using a circular grip), picking up earphones and

picking up a piece of paper (both of which use pinching postures), and opening a

drawer and using a stapler (both of which can be done with a circular grip).

The confusion matrix for the user-dependent system gives us idea of the inter-

actions that varied most across an individual user (see Figure 88). Obviously, this

matrix contains much less confusion overall that the user-independent system; how-

ever, there are still some areas of confusion. Most notably, is the confusion that still

occurs between typing on the keyboard and dialing the telephone. As with the user-

independent system, there is still some confusion between interactions that can occur

with objects held with a circular grip: cup and stapler, mug and stapler, drawer

and telephone, and drawer and mug. There was also a small amount of confusion

between picking up earphones and waving. We believe this was due to a single user

who waved by bending the four non-thumb fingers towards the palm, rather than

waving the hand with all fingers extended. Because of this type of wave, there were

occasional examples of confusion with the pinching associated with holding a piece

of paper.

One potential way that we could improve the user-independent system is by

performing multi-modal training. With this form of training, we would identify the

different variations of how users interact with the same object. We can then train

our system by having these different variations be separate training sets that are all

mapped to the same label. For example, we would have one set of training examples

where users point to dial the phone and another set where users dial using an open
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palm. Although these would be classified as separate instances, they would both

ultimately map to the same action, dialing.

G. Future Work

In this work we have seen that hand posture can be used as a cue in performing

object-based activity recognition. However, we have also seen that some objects are

interacted with using similar postures, even in a user-dependent system. For future

work, we hope to combine hand posture with other forms of input that measure hand

movement. These inputs could come in the form of accelerometers or 3-D position

trackers. We believe that this extra information could be used to disambiguate inter-

actions like using a stapler and drinking from a cup, both of which could potentially

use a similar posture but would likely have different movements associated with them.

This would then make our approach to activity recognition be based on hand gestures

rather than hand postures.

The other obvious area for future work deals with segmentation and noise detec-

tion. In our experiments, data was recorded on an isolated interaction basis. For this

approach to be beneficial to a real-world system, we would need to develop ways of

designating when an interaction starts and stops. We also need to be able to detect

instances when no interaction is taking place at all. The issue of segmenting hand

postures and gestures is still an ongoing research effort [229, 230].

In addition to these issues, we also plan to try our experiments with more so-

phisticated classifiers. We have showed that reasonable results can be given with a

simple 1-nearest neighbor or linear algorithm. In the near future we hope to imple-

ment and test other algorithms like neural networks, support vector machines, and

hidden Markov models (HMMs). Using these more advanced classifiers will likely
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lead to higher accuracy, and may also provide an extra advantage of providing auto-

matic segmentation. For example, Iba et al. were able to successfully recognize and

segment hand gestures used to control mobile robots by introducing a “wait state”

into their HMM [231]. It would also be beneficial to analyze additional dimensionality

reduction techniques, such as kernel PCA/LDA (which are non-linear projections), as

the CyberGlove contains many sensors that produce extra noise during hand posture

recognition [232].

H. Chapter Summary

In this chapter, we have shown that hand posture can be used as a cue to perform

object-based activity recognition, which can provide important context to context-

aware applications. Furthermore, we have determined that when users are allowed to

interact with objects as they would naturally, a user-dependent system is preferable

over a user-independent system because of the high variation between users interacting

with the same objects. We have shown that such a user-dependent system is capable

of producing up to 96.9% accuracy using a simple linear classifier along with a PCA

projection of the the raw sensor values from the CyberGlove II. For future work,

hand posture could be combined with movement in order to yield higher recognition

results. Segmentation and noise detection strategies also need to be investigated so

that this approach can be used in a real-time, context-capturing system.
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CHAPTER VIII

CONCLUSION

In this dissertation, we have looked into methods and algorithms for improving hand-

sketched, primitive shape recognition. Our techniques have shown to not only be

more accurate, but also to provide minimal constraint on how users must draw.

This is a significant step in the advancement of free-sketch recognition [45]. By

improving low-level recognition, we allow for the development of additional sketch-

based applications that can have a broad impact on fields like engineering, education,

science, mathematics, arts, and even music. In fact, our PaleoSketch recognizer has

already been used in projects that improve corner finding [9], promote learning in

children [20], teach people how to draw [168], recognize sketched Urdu characters

[163], combine multiple approaches to improve recognition [136], recognize biology

cell diagrams [39], and teach users how to draw Mandarin symbols [179]. Specifically,

the main contributions of this work include:

• Showing that our geometric features provide a statistically significant difference

over existing feature sets in recognizing low-level primitive shapes.

• Developing a primitive recognizer, PaleoSketch, that is capable of classifying

more primitive shapes than existing recognizers. It does this without sacrificing

accuracy or placing drawing constraints on the user. Our recognizer achieved

close to 98% accuracy on single-stroke primitives, a result that finally reaches

an “acceptable” level of recognition accuracy in pen-based interfaces [173].

• Presenting an initial technique for interpreting complex shapes, those composed

of multiple primitives. This technique was shown to be quite accurate for shapes

composed of two shapes, however, work may still be required in recognizing
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complex shapes consisting of more than two shapes. The primary problem with

interpreting complex fits of more than two shapes is undersegmentation (i.e.,

returning too few shapes). This could potentially be remedied with research into

providing multiple complex interpretations, or by training on the sub-shapes of

complex fits found in the training data.

• Showing that our low-level recognizer is capable of handling the shapes of one

of the largest sketch domains in existence: military course of action diagrams.

Our recognizer achieved accuracies above 98% on a primitive set consisting of 13

different primitive shapes, making up over 375 unique symbols in the domain.

• Learning more about the manner in which users draw primitive shapes. For

example, we have learned that users are more likely to draw multi-stroke prim-

itives (9% of the time) than they are to draw complex shapes (less than 5% of

the time). Furthermore, we have seen that the more sides a shape has, the more

likely the user is to draw it with multiple strokes. This observation coincides

with those of previous researchers [127].

• Presenting one of the first multi-stroke primitive recognizers that provides both

clustering and classification capabilities, without requiring the constraints that

most systems place on users, such as button presses, temporal timeouts, or

stroke interspersing prohibition. Overall, we achieved almost 90% recognition

of multi-stroke primitives. Improved clustering techniques, as well as multiple

interpretations, could provide additional aid in recognizing multi-stroke primi-

tives.

• Proposing and implementing a web-based system, SOUSA, for collecting and

sharing sketched data. SOUSA allows researchers to not only quickly collect



166

sketch data, but also allows for data set sharing. This will allow researchers to

easily compare algorithms on a common set of sketch examples, which will help

advance the field of sketch recognition.

• Showing that the human-computer interaction principles of our work in sketch

recognition translate into other research domains, such as office activity recog-

nition. In this project, we showed how we can recognize the real-world objects

that a user interacts with, simply by monitoring hand posture. One of the key

findings of this work is that individual participants would use similar hand pos-

tures with interacting with the same object; however, these postures tended to

be user-specific. These results indicate that every user is different, but recog-

nition systems should be smart enough to handle this and should allow for

unconstrained interaction.
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