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ABSTRACT

Rigidity Analysis for Modeling Protein Motion. (May 2010)

Shawna Lynn Thomas, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Nancy M. Amato

Protein structure and motion plays an essential role in nearly all forms of

life. Understanding both protein folding and protein conformational change can

bring deeper insight to many biochemical processes and even into some devastating

diseases thought to be the result of protein misfolding. Experimental methods are

currently unable to capture detailed, large-scale motions. Traditional computational

approaches (e.g., molecular dynamics and Monte Carlo simulations) are too expensive

to simulate time periods long enough for anything but small peptide fragments.

This research aims to model such molecular movement using a motion frame-

work originally developed for robotic applications called the Probabilistic Roadmap

Method. The Probabilistic Roadmap Method builds a graph, or roadmap, to model

the connectivity of the movable object’s valid motion space. We previously applied

this methodology to study protein folding and obtained promising results for several

small proteins.

Here, we extend our existing protein folding framework to handle larger proteins

and to study a broader range of motion problems. We present a methodology for

incrementally constructing roadmaps until they satisfy a set of evaluation criteria.

We show the generality of this scheme by providing evaluation criteria for two types

of motion problems: protein folding and protein transitions. Incremental Map Gener-

ation eliminates the burden of selecting a sampling density which in practice is highly

sensitive to the protein under study and difficult to select. We also generalize the



iv

roadmap construction process to be biased towards multiple conformations of inter-

est thereby allowing it to model transitions, i.e., motions between multiple known

conformations, instead of just folding to a single known conformation. We provide

evidence that this generalized motion framework models large-scale conformational

change more realistically than competing methods.

We use rigidity theory to increase the efficiency of roadmap construction by in-

troducing a new sampling scheme and new distance metrics. It is only with these

rigidity-based techniques that we were able to detect subtle folding differences be-

tween a set of structurally similar proteins. We also use it to study several problems

related to protein motion including distinguishing secondary structure formation or-

der, modeling hydrogen exchange, and folding core identification. We compare our

results to both experimental data and other computational methods.
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CHAPTER I

INTRODUCTION

Proteins are essential to nearly all forms of life. Every protein is composed of a

string of amino acids. This amino acid sequence, unique to the protein, determines

the protein’s final, stable three dimensional structure. This final structure is a large

determinant of the protein’s function. The protein’s final structure is so crucial that

when a protein misfolds into a different structure, it can ultimately result in a devas-

tating disease. Misfolded proteins have been implicated in a number of such diseases

including Alzheimer’s, Mad Cow, and Creutzfeldt-Jakob [1]. Surprisingly little is

known about how and why a protein misfolds in this way. Thus, understanding how

a protein folds from an unstructured string of amino acids into its final, stable, three

dimensional structure could highlight causes (and potential treatments) of misfolded

proteins.

In addition to folding, other protein motions, ranging from molecular flexibility to

large-scale conformational change, play a critical role in many biochemical processes.

For example, local conformational change often occurs in binding interactions between

proteins and between proteins and ligands, sugars, or other small molecules. While

no consensus has been reached regarding models for protein binding, the importance

of protein flexibility in the process is well established by the ample evidence that the

same protein can exist in multiple conformational states and can bind to structurally

different molecules [2].

Our understanding of molecular movement is still very limited and has not kept

pace with the explosion of knowledge regarding protein structure and function. There

The journal model is IEEE Transactions on Automatic Control.
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are several reasons for this. First, the structural data in repositories like the Protein

Data Bank (PDB) [3] consists of the spatial coordinates of each atom in the protein.

Generally, the experimental methods currently used to collect this data, e.g., X-ray

crystallography [4] and nuclear magnetic resonance (NMR) [5], do not operate at

the time scales necessary to record detailed large-scale protein motions. Second,

traditional simulation methods such as molecular dynamics [6, 7, 8, 9] and Monte

Carlo methods [10, 11] are computationally too expensive to simulate long enough

time periods for anything other than small peptide fragments. Nevertheless, there has

been some recent attention focused on developing methods for modeling and studying

protein flexibility and motion.

One research effort has stemmed from work in robotic motion planning and is the

foundation for the work presented in this dissertation. The motion planning problem

is to find a valid path between some starting placement to an ending placement for

a movable object. While traditionally intended for the field of robotics, solutions to

this problem can be applied to a wide variety of domains such as computer animation

[12, 13], computer-aided design (CAD) [14, 15], and computational biology [16, 17,

18, 19], including protein folding. This is done simply by changing the definitions for

the movable object and path validity.

These motion planning solutions are based on the Probabilistic Roadmap Method

(PRM) [20]. PRMs work by first building a graph, or roadmap, of the motion space.

The roadmap nodes correspond to specific, valid, placements of the movable object,

and an edge is placed between two nodes if a feasible motion is identified to take the

movable object from one placement to the other. The resulting roadmap models the

connectivity of the motion space and can be used to answer questions such as the

existence of a valid path between a starting placement and ending placement.

Previously, we applied this methodology to study protein folding [18, 21, 22,



3

23]. The resulting roadmap contained thousands of energetically feasible pathways

to the protein’s known, stable, three-dimensional structure. We obtained promising

results for several small proteins (60–100 amino acids) and validated our pathways

by comparing secondary structure formation order with known experimental results

[18]. However, our previous work is limited in the size of problems it can efficiently

model and in the types of problems it can study.

A. Research Objective and Contributions

Our research objective is to extend our existing protein folding framework to handle

larger proteins and to study a broader range of problems related to protein motion

such as transition intermediates, allostery, and misfolding. We present techniques

based on rigidity theory that allow us to study larger proteins by more efficiently

characterizing the protein’s energy landscape with fewer, more realistic conforma-

tions. Specifically, we develop a new sampling scheme exploiting rigidity analysis

(Chapter IV, Section B) and describe new rigidity-based distance metrics for iden-

tifying connectable conformations (Chapter IV, Section C). These resulted in the

dramatic reduction of roadmap sizes for a set of 26 proteins studied for stable sec-

ondary structure formation order (Chapter V, Section A.1, [24]). In addition, it is

only with these rigidity-based techniques that we are able to detect the subtle fold-

ing differences of structurally similar proteins G, L, and their mutants (Chapter V,

Section A.2, [24]).

We provide new methods for exploiting multiple known conformations of interest,

such as the endpoints of a known protein transition, during roadmap construction. In

particular, we bias conformation sampling around multiple conformations specified

by the user, instead of only around a single specified conformation. This generalized
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methodology allows us to study other protein motion problems related to transitions

between bound and unbound conformations, folding intermediates, misfolding, and

allosteric interactions. We present results for several different transitions (Chapter III,

Section B, [24]) and provide evidence that the transitions mapped by our approach are

more realistic than those given by the computationally less expensive Morph Server

[25].

We also present an Incremental Map Generation framework (IMG) [26] and pro-

vide metrics for identifying when the roadmap model is sufficient for answering motion

questions for both protein folding problems (Chapter III, Section A.2 and Chapter V,

Section A) and protein transition problems, i.e., motion between specific conforma-

tional states such as in binding interactions, (Chapter III, Section A.2). This allows

the roadmap to be built automatically instead of relying on the user to specify a

sampling density. We use roadmaps for protein G as an example to illustrate how the

stabilization threshold affects roadmap size (Chapter III, Section A.3). We compare

this approach, coupled with rigidity-based sampling and distance metrics, to previ-

ous methods [18, 21, 22, 23] and show that it produces significantly smaller roadmaps

(and higher connectivity) with the same structure formation properties, e.g., sec-

ondary structure formation order distribution, (Chapter V, Section A.1, [24]). The

pathway distributions also agree with experimental data when available for all pro-

teins studied except for chymotrypsin inhibitor 2.

Finally, we use rigidity theory and analysis to study specific problems related to

protein motion, such as secondary structure formation order (Chapter V, Section A),

hydrogen exchange (Chapter V, Section B), and folding core identification (Chap-

ter V, Section C). We compare our simulated exchange rates and ability to identify

the folding core to available experimental data and other computational methods over

a set of 21 different proteins of varying size and structure [27]. Our method is more
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successful in identifying the slowest exchanging (and therefore most stable) residues

than COREX/BEST [28, 29] (Chapter V, Section B.4). It also performes better than

the other computational approaches [30, 31] for folding core identification in terms

of sensitivity and better than all but one class in terms of specificity (Chapter V,

Section C.3, [27]).

B. Outline

The dissertation is outlined as follows. In Chapter II, we provide a background on

proteins and existing techniques, both experimental and computational, for study-

ing their motion. We discuss one of these computational methods, the Probabilistic

Roadmap Method, in detail as it is the basis of this work. We conclude the chapter

with a presentation of rigidity theory and analysis which is applied to many differ-

ent parts of this research. In Chapter III, we present two new extensions to the

original Probabilistic Roadmap Method framework for molecular motion: automatic,

incremental roadmap construction and augmenting the model to study other motions

besides folding (e.g., transitions). Chapter IV uses rigidity analysis to guide more

efficient roadmap construction during both the sampling phase and the connection

phase. We introduce a new sampling method that restricts conformation perturbation

based on rigidity information, and we develop new distance metrics for judging con-

formation similarity with respect to their rigidity composition. Chapter V uses rigid-

ity analysis to analyze the landscape model produced by the roadmap. We present

three applications: distinguishing secondary structure formation order in roadmap

pathways, modeling the relative hydrogen exchange of a residue during an unfolding

experiment, and folding core identification. We conclude with some final remarks in

Chapter VI.
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CHAPTER II

PRELIMINARIES AND RELATED WORK

In this chapter we discuss related work on protein motion, both experimental and

computational. We also discuss probabilistic roadmap methods for protein folding in

detail as this is the foundation for much of this work. Finally, we provide background

on rigidity analysis, a key technique used throughout this work.

A. Proteins

Proteins are essential to nearly all forms of life. These organic molecules are involved

in nearly every process within the cell including catalyzing reactions, maintaining cell

structure, cell signaling, and transporting molecules in and out of the cell. Proteins

are made up of a sequence of amino acids. This sequence determines the protein’s

properties including its three dimensional shape, called the native state. The native

state is important as it largely determines a protein’s function and how it interacts

with other proteins.

In the following we describe the protein’s structure in more detail, energy func-

tions for evaluating a protein conformation (or shape), and the protein’s energy land-

scape.

1. Protein Structure

A protein’s structure may be described at three levels: the primary structure, the

secondary structure, or the tertiary structure [32]. We describe each below.

Primary Structure. A protein is made of a sequence of amino acids. This

amino acid sequence is known as the protein’s primary structure. There are 20 dif-

ferent types of amino acids. An amino acid may be partitioned into two parts, the
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backbone and the side chain, see Fig. 1. The backbone is identical in all amino acids.

It is composed of a central carbon atom (Cα) (which has a hydrogen attached), an

amino group (NH2), and a carboxyl group (COOH). The side chain is attached to

the Cα atom and is unique to the 20 different types of amino acids.

N CCα O

R

H O

H

H H

side chain

amino group carboxyl group

Fig. 1.: Amino acid structure. Every amino acid is composed of a central Cα atom

(with attached H), an amino group and a carboxyl group, forming the backbone.

Different amino acids are distinguished by the side chain, denoted by R.

Amino acids are joined together through a peptide bond between the carboxyl

group of one amino acid and the amino group of the other. This joining releases a

water molecule. The resulting chain has the backbone pattern NH – CαH – CO –

. . . all along its length, see Fig. 2. Linked in this way, amino acids are commonly

referred to as residues.

Secondary Structure. The sequence of amino acids in a protein folds into a
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N CCα

R

H O

H

H

residue

N CCα O

R

H O

C

H H

N Cα

R

H OH

H2O H2O

Fig. 2.: Linking of amino acids to form a protein. Three amino acids are joined by

two peptide bonds and the release of two water molecules.

three dimensional shape, or conformation, called the native state. While native states

between proteins vary widely, they are typically composed of a few repeated build-

ing blocks, called the secondary structure. There are two major types of secondary

structure: α helices and β strands. These structures can be identified by their regular

hydrogen bonding patterns.

The backbone of an α helix resembles a spring or coil, see Fig. 3(a), with the

side chains on the outside. It may be either right-handed or left-handed in terms of

the orientation of the coil. Most α helices exhibit hydrogen bonds between the amino

group of the ith residue and the carboxyl group of the i − 4th residue (i ← i − 4).

Residues in such helices create a 100o turn about the helical axis resulting in 3.6

residues per coil/revolution. Other types of α helices (e.g., 310 helices and π-helices)

vary this pattern (e.g., i ← i − 3 and i ← i − 5).

The β sheet is formed by one or more β strands, see Fig. 3(b). A β strand is

a consecutive set of amino acids with extended backbones. β strands join together

by lateral hydrogen bonds, alternating between the amino group of one strand and
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(a) (b)

Fig. 3.: Examples of secondary structure: (a) an α helix and (b) a two-stranded,

antiparallel β sheet. Both the wireframe (above) and backbone (below) views are

shown. Residues are colored by type.

the carboxyl group of the other. They may either be oriented in the same direction

(i.e., parallel) or in opposite directions (i.e., antiparallel). In antiparallel β sheets, the

sequence of residues connecting two consecutive β strands is referred to as a β turn.

Side chains in a β sheet are aligned with the sheet but alternate in their orientation

(i.e., alternate between strands i and i − 1 and strands i and i + 1).

Tertiary Structure. Elements of secondary structure are linked together by

segments of random coil to form the protein’s tertiary structure, see Fig. 4. The

tertiary structure describes the three dimensional placement of all the atoms in the

protein. Folded proteins adopt a stable shape (or state) known as the native state.
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This native state is uniquely determined by the amino acid sequence, or primary

structure [33]. The tertiary structure is responsible in large part for the protein’s

function and how it interacts with other proteins. For example, enzymes catalyze

reactions by binding to substrates at their active site. The active site is the area of

the protein that interacts and binds to other molecules. This active site must provide

both a good physical fit (e.g., no collisions) and a good chemical fit (e.g., attractively

charged) to the substrate. It is the tertiary structure that brings distant amino acids

along the protein backbone together to form the active site.

(a) (b)

Fig. 4.: Example of tertiary structure of protein G: (a) ball-stick view and (b) ribbons

view. Residues are colored by type.

2. Degrees of Freedom

While a protein folds into a single tertiary structure, it is not a rigid molecule. It can

move and flex in response to changes in its environment such as temperature or the
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presence of other proteins or chemicals.

The atoms in a protein are connected by bonds. The lengths and angles of these

bonds are not fixed, but in practice they vary very little. In many cases, they are

treated as fixed [34]. In the results presented in this work, bond lengths and angles

are considered fixed. However, this is not always an appropriate assumption (see

Chapter III, Section B) and in the future we would like to eliminate this limitation.

The protein’s flexibility is derived from rotations along a subset of the bonds.

Each amino acid has two major rotational degrees of freedom, φ and ψ. The φ

dihedral angle is the rotation about the N – Cα bond, and the ψ dihedral angle is

the rotation about the Cα – C bond. Typically the dihedral angle ω between amino

acids along the C – N bond remains fixed at 180o.

The protein’s degrees of freedom can then be expressed as a set of φ and ψ angles,

one pair for each amino acid. This greatly reduces the protein’s degrees of freedom

from 3X to 2N , where X is the number of atoms in the protein and N is the number

of amino acids.

3. Potential Functions

Proteins are composed of interacting atoms, both with the surrounding solvent and

with each other. These interactions range from very strong (e.g., peptide bonds)

to moderately strong (e.g., hydrogen bonds) to relatively weak (e.g., hydrophobic

interactions). These interactions cause the protein to fold or unfold depending on

environmental conditions (e.g., temperature or the presence of denaturant).

These interactions may be modeled by potential energy functions. Potential en-

ergy functions aim to quantify the forces present in a given protein conformation and

evaluate the likelihood of observing that conformation under the given environmental

conditions. In general, a potential energy function may be expressed as a summation
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of various terms including bond length flexing, bond angle flexing, dihedral angle

flexing, van der Waals interactions, and electrostatic interactions [6].

Potential functions vary in the approximations and assumptions made and con-

sequently in their accuracy and expense. In this work, we use a coarse potential

function introduced in [18]. We use a step function approximation of the van der

Waals potential component and model side chains as spheres with zero degrees of

freedom. All spheres have the same radii. If any two side chain spheres are too

close (i.e., less than 2.4Å during sampling and 1.0Å during connection), a very high

potential is returned. Otherwise, the potential is:

Utot =
∑

constraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc} + Ehp (2.1)

where Kd is 100 kJ/mol, di is the distance between the endpoints of the ith constraint,

and d0 = dc = 2Å as in [6]. The first term represents constraints favoring known

secondary structure through main-chain hydrogen bonds and disulphide bonds. The

second term is the hydrophobic effect. The hydrophobic effect (Ehp) is computed as

follows: if two hydrophobic residues are within 6Å of each other, then the potential

is decreased by 20 kJ/mol.

In previous work, we compared the results of our method using this coarse poten-

tial function and using a detailed all-atoms model [22]. We showed that our method

could detect the subtle folding differences between structurally similar proteins G

and L with either energy function. While the all-atoms energy function had a greater

percentage of folding pathways matching the experimentally determined formation

order, it required two weeks of computation time versus less than 1 day with the

coarse potential.
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4. Energy Landscapes

The energy landscape is the set of all protein conformations and their associated

energies. Fig. 5 gives a simplified 3D visualization of this high-dimensional space,

where the xy-plane represents the parameters defining a protein conformation (e.g.,

the φ and ψ angles for each amino acid in our case) and the z-axis is the potential

energy function. It is theorized that the protein’s native state is at the bottom of

this energy landscape and that the landscape is funnel-shaped to explain the rapid

nature of protein folding [35, 36, 37]. The landscape may contain many local minima

as illustrated here. Protein folding can then be viewed as a ball rolling down this

energy landscape.

Fig. 5.: Visualization of the protein’s energy landscape [38]. The xy-plane corresponds

to the protein’s conformation space, and the z-axis is the potential energy.
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Different proteins will have different energy landscapes. These energy landscapes

characterize the folding process. Thus, to model protein folding, we aim to build a

model of this energy landscape.

B. Protein Motion

As described above, proteins are not static structures. They move and flex with

changes in their environment. There have been both experimental and computational

methods developed to study protein motion. Many of these methods focus specifically

on protein folding. Here we discuss both experimental and computational techniques,

highlighting their strengths and weaknesses.

1. Experimental Methods

There have been several advances in experimental techniques to study protein motion

including circular dichroism, fluorescence experiments, hydrogen exchange and pulse

labeling, NMR spectroscopy, and time-resolved X-ray crystallography.

Circular Dichroism. Circular dichroism (CD spectra) measures the absorp-

tion of polarized light for the entire population of protein conformational states as a

function of thermal stability [39]. There are two main methods [40]: near UV and far

UV. Near UV experiments use wavelengths between 250nm and 350nm to examine

the formed tertiary structure. Far UV uses wavelengths between 190nm and 250nm

to probe the formation of secondary structure. CD experiments had been limited to

10 milliseconds but recently have been extended to 400 microseconds [41].

Fluorescence Experiments. Fluorescence experiments monitor change in flu-

orescence as a function of denaturant. Three primary categories of fluorescence exper-

iments are stopped-flow methods, continuous flow methods, and independent equi-
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librium methods [40]. During stopped-flow experiments, denaturant is added over

a series of timesteps, and fluorescence is measured after each addition. Continuous

flow methods instead monitor fluorescence during a continuous addition of denatu-

rant. Independent equilibrium methods measure the fluorescence intensity in different

denaturant conditions.

Hydrogen Exchange. Hydrogen exchange mass spectrometry and pulse la-

beling experiments can investigate protein folding by identifying which parts of the

structure are most exposed or most protected [42]. From this data, one can infer which

portions of the protein fold first and which are last to form, up to the millisecond

timescale.

NMR Spectroscopy. NMR spectroscopy is another experimental tool well-

suited to study protein dynamics because it can acquire site-specific, detailed infor-

mation on a variety of timescales, ranging from picoseconds [43] to milliseconds [44].

It has been used to study both side-chain motion and backbone motion. See [45] for

a recent review of current techniques.

Time-resolved X-ray Crystallography. Time-resolved Laue X-ray diffrac-

tion has been used to identify intermediate structures along a reaction pathway. This

technique aims to not only study intermediate structures, but to also gather their

rates of transition. The first work on myoglobin [46] and photoactive yellow protein

[47] identified motions on the picosecond to microsecond timescale.

2. Computational Methods

Several computational approaches have been applied to study protein motions and

folding. These include lattice models, molecular dynamics, Monte Carlo methods,

simulated annealing, statistical mechanical models, roadmap-based methods, and

‘morphing’ between known conformational states. We describe them each below.
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Table I summarizes their properties.

Lattice Models. Lattice models [48, 36, 49] represent the protein as a chain

of beads constrained to a rigid lattice. Each bead corresponds to a single amino

acid. They are typically divided into just two types: hydrophobic and polar. These

simplifications allow them to be computationally studied in full detail. While these

models have provided many theoretical insights, they are not used on actual proteins

in practice.

Molecular Dynamics. Molecular dynamics [6, 7, 8, 9] simulates the forces

on all the atoms at each timestep to produce a motion trajectory. It requires the

definition of a detailed and accurate potential function to model the atomic forces.

Each run of this trajectory-based method provides a single, high resolution transition

pathway but is computationally intensive. For example, it is limited to studying

proteins with less than 130 amino acids [50], even when it uses massive computational

resources, such as tens of thousands of PCs in the Folding@Home project [51, 52] or

large supercomputers [53]. Thus, it is computationally infeasible to study global

properties of the folding landscape using them.

Monte Carlo Simulations. Monte Carlo simulations [10, 11] are random

walks on the protein’s energy landscape that favor lower energy transitions. At each

timestep, the next conformational state is chosen from a set of neighboring states

(including the current state) based on the transition probabilities between them.

Such methods can suffer by becoming trapped in local minima. Similar to molecular

dynamics, it provides a high resolution pathway at a large computational cost. There-

fore, it is not practical to apply it to large proteins or to study the folding landscape

though the computation of many pathways.

Statistical Mechanical Models. Statistical mechanical models [54, 55, 56]

compute statistics about the global energy landscape. From these statistics, they
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Table I.: A comparison of protein motion models.

Native

Folding # Paths Path Compute State

Approach Landscape Produced Quality Time Needed

Lattice Model Not used on real proteins

Molecular

Dynamics No 1 Good Long No

Monte Carlo No 1 Good Long No

Simulated

Annealing No 1 Good Long No

Statistical

Mechanical Yes 0 n/a Short Yes

Model

Roadmap-Based Yes Many Approx. Short Yes

Morphing No 1 Approx. Short Yesa

Flexibility Models Yes 0 n/a Short Yes

aThe ‘morph’ between two conformational states requires the three dimen-

sional structures of both states.
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can infer ensemble properties about the protein’s motion. They are not designed

to produce individual pathway trajectories. They typically rely on simple energy

functions heavily biased by the native state. Thus, their accuracy degrades as the

protein moves away from this state. These methods are computationally efficient but

can only provide results for global averages of the energy landscape and the underlying

kinetics. This is undesirable for some proteins where the energy landscape is known

to be partitioned into two or more types of kinetic pathways, such as hen egg-white

Lysozyme [57].

Roadmap-Based Methods. Several computational methods have been pro-

posed based on the Probabilistic Roadmap Method (PRM) [20] originally developed

for robotic motion planning. PRMs model their motion space (e.g., the energy land-

scape for proteins) by building a network, or graph, of valid motions in that space.

This graph is referred to as the roadmap. PRMs first randomly sample valid con-

formations and add them to the roadmap. Then, neighboring conformations are

connected if there exists a feasible transition between them. Often these connections

are weighted to reflect the energetic feasibility of such a transition.

Singh, Latombe and Brutlag first applied PRMs to protein/ligand binding [16].

In subsequent work, our group used a PRM variant [58] on this problem [59]. Our

group was the first to adapt the PRM framework to model protein folding pathways

[18, 21, 22, 23]. Apaydin et al. [17, 60] have also applied PRMs to proteins, however

their work differs from ours in several aspects. First, they model the protein at a

much coarser level considering each secondary structure to be rigid. Second, while

our focus is on studying the transition process, their focus has been to compare the

PRM approach with other computational methods such as Monte Carlo simulation.

In recent work, Cortes and Simeon used a PRM-based approach to model long loops

in proteins [61, 62]. Finally, we adapted the PRM framework to study RNA folding
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kinetics [19].

Database of Macromolecular Movements. Gerstein et. al. have developed

the Database of Macromolecular Movements [63, 25] to classify protein motions. Their

Morph server takes two conformations of interest and produces a ‘morph’ movie be-

tween them. They can produce ‘morph’ movies in just a few minutes on a desktop

PC. Their database currently includes more than 240 distinct protein motions [64].

To create a ‘morph’ between two target conformations, they first perform an

alignment. This allows the comparison of proteins with different sequences. Then, an

iterative ‘sieve-fit’ procedure [65, 66] produces a superposition of the target confor-

mations. A conformational ‘morph’ is created by interpolating the Cα atom positions

between the two superimposed conformations. Each intermediate conformation along

the interpolation is energy minimized. This interpolation method, called adiabatic

mapping, was selected because it has modest computational requirements yet pro-

duces chemically reasonable morphs. Adiabatic mapping methods have problems

with some kinds of large deformations [67]. More recently, they have also added a

different interpolation method based on the Framework Rigidity Optimized Dynam-

ics Algorithm (FRODA) [68] that may be used upon request. FRODA determines

the rigid regions that are mutually present in both target conformations, and then

performs a Monte Carlo simulation while keeping these regions fixed.

Protein Flexibility and Rigidity Models. Several computational approaches

have studied rigidity and flexibility in proteins. One approach infers the protein’s

flexibility/rigidity by comparing different known conformations of the protein [69,

70, 71]. Molecular dynamics has been used to extract flexibility information from

simulated motion [72, 73, 74, 75]. A third approach studies rigidity and flexibility of

a single protein conformation [76, 77, 78, 79, 80]. In particular, many methods have

used a constraint counting technique called the pebble game [81, 82, 83, 84] to better
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simulate motion [85, 86, 87, 30, 88]. We discuss this last class of methods in more

detail later in this chapter in Section D.

C. Probabilistic Roadmap Method Preliminaries

As discussed previously, the Probabilistic Roadmap Method (PRM) [20] has been

highly successful in solving motion problems for objects with many degrees of freedom.

Here we describe the method in more detail.

1. Motion Planning and C-space

The motion planning problem is to find a valid path for a movable object from a

start placement to a goal placement in a given environment. We will refer to object

placements in an environment as conformations. A conformation simply provides

values for all the parameters needed to uniquely specify an object placement (i.e., its

degrees of freedom). For example, a rigid body robot in a three-dimensonal workspace

has 6 degrees of freedom: 3 for the placement of the body along the x-axis, y-axis, and

z-axis and 3 for rotations about each axis. Its conformation is a 6-dimensonal vector:

〈x, y, z,α, β, γ〉. A protein may be modeled with 2 degrees of freedom per amino acid.

Thus a conformation for a protein containing N amino acids has a 2N -dimensional

vector: 〈φ1,ψ1, . . .φN ,ψN〉.

The conformation space (C-space) is the set of all conformations, feasible or not

[89]. The set of feasible conformations is the free C-space (Cfree), and the set of un-

feasible conformations is referred to as the C-space obstacles (Cobst). Motion planning

then becomes a search for a continuous trajectory in Cfree from the start conforma-

tion to the goal conformation. In practice, it is too computationally expensive to

compute Cobst explicitly. Instead, conformations are determined feasible or not based
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on some validity checker, typically collision detection for robotics problems and an

energy calculation for proteins.

The C-space is a useful abstraction so motion planning methods may be applied

to many types of movable object. Its dimension is the same as the number of degrees

of freedom in the movable object. From the examples above, the rigid body robot

in a three-dimensional workspace as a 6 dimensional C-space while the protein has a

2N -dimensional C-space.

2. The PRM Algorithm

PRMs work by first sampling random points in the movable object’s C-space. Only

samples meeting certain feasibility requirements are added as nodes to the roadmap.

Then edges are added between samples in the roadmap if there exists a feasible path

or transition between them that can be determined by some simple local planner. A

local planner is any method that computes a sequence of conformations between two

endpoints. For example, a straight line in C-space is a local planner where conforma-

tions are linearly interpolated between the two endpoints. In practice, only “near-by”

samples are attempted for connection as determined by some distance metric. One

commonly used distance metric is the Euclidean distance in C-space between the two

samples. Roadmap construction is outlined in Algorithm C.1.

Algorithm C.1 consists of the following primitive operations: sampling a point

in C-space, determining the feasibility of points in C-space (e.g., checking collision),

and computing distances in C-space. Let C-space have d dimensions, one for each

degree of freedom of the movable object. Sampling a point in C-space uniformly at

random (line 2) takes O(d) time. Let the time to check a sample’s feasibility take

O(f) time (line 3). This largely depends on the application domain. For example,

when using collision detection as a feasibility requirement, the time to preform this
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Algorithm C.1 The Probabilistic Roadmap Method

Input: A description of a movable object and its environment, the number of samples

n to add to the roadmap, and the number of neighbors k to examine during

sample connection.

Output: A roadmap R modeling the feasible portions of the C-space.

1: for i = 1 . . . n do

2: Let q be a randomly sampled conformation.

3: if q is feasible then

4: Add q to R.

5: end if

6: end for

7: for each conformation r ∈ R do

8: Let Q be the set of k-nearest neighbors to r in R.

9: for each conformation q ∈ Q do

10: if there exists a feasible transition between r and q then

11: Add the edge (r, q) to R.

12: end if

13: end for

14: end for

return R.
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check is a function of the number of triangles describing the geometry of the movable

object and its environment. Computing the distance between two points in C-space

(e.g., Euclidean distance) usually takes time linear in the dimension of C-space, d.

The running time of the algorithm is as follows. Sampling n nodes for the

roadmap (lines 1–6) takes O(ndf) time using these primitive operations. A typical

method for determining the k-nearest neighbors of a sample (line 8) requires com-

puting the distance between it and all the other samples in the roadmap. This brute

force approach takes O(nd) time in each iteration of the for loop in line 7. For each

sample, there are then k local planning attempts (lines 9–10). The cost of a local

planning attempt depends on the local planning method selected and the number of

feasibility checks it needs to accept or reject the edge. For example, a straight line

local planner will interpolate between the two samples at a fixed resolution. In the

worst case, it must check every intermediate conformation along this straight line in

C-space. Assume that the average number of feasibility checks is O(l). Thus, the

expected cost of a local planning attempt is O(lf). The total time taken to connect

a sample to the roadmap is O(nd + klf). Therefore, the time required for the con-

nection phase (lines 7–14) is O(n2d + nklf). The running time of the entire PRM

algorithm becomes O(ndf + n2d + nklf). Typically, k, d, and f are much smaller

than n resulting in a final complexity of O(n2).

The roadmap can be used to answer questions about the planning space, such

as the existence of a feasible path between a start and goal conformation. To answer

this type of query, for example, the start and goal conformations are added to the

roadmap and connected to existing samples using the local planner as before. Then,

a simple graph search can extract a path (i.e., a sequence of nodes and edges in the

roadmap) if the start and goal are connected in the roadmap. A major strength of

PRMs is that they are simple to apply, even for high degrees of freedom problems,
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only requiring the ability to randomly sample points in C-space and test them for

feasibility.

3. Modifications to PRMs for Proteins

The overall strategy follows the general methodology presented above with only a few

modifications to adapt the framework for modeling protein motion.

Protein Model. The protein is modeled as an articulated linkage. Using a

standard modeling assumption for proteins that bond angles and bond lengths are

fixed [34], the only degrees of freedom in our model are the backbone’s φ and ψ

torsional angles. These are modeled as revolute joints taking values [0, 2π).

Conformation Sampling. Due to the high dimensionality of the protein’s C-

space, uniform sampling would take too long to provide sufficiently dense coverage

of the region surrounding the native state. Instead, we bias our sampling around

the native state by iteratively applying small Gaussian perturbations (i.e., random

perturbations following a Gaussian distribution) to existing conformations.

Sample Retention. The traditional collision-free requirement is replaced with

a potential energy calculation. A conformation q is added to the roadmap probabilis-

tically based on its potential energy E(q) as follows:

P (accept q) =































1 if E(q) < Emin

Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

(2.2)

where Emin is the potential energy of the open chain and Emax is 2Emin.

Edge Weighting. Edges in the roadmap are weighted to reflect the transition’s

energetic feasibility. The weight for the edge (q1, q2) is a function of all the interme-

diate conformations along the edge {q1 = c0, c1, c2, . . . , cn−1, cn = q2}. For each pair
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of consecutive conformations ci and ci+1, the probability Pi of transitioning from ci

to ci+1 depends on the difference in their potential energies ∆Ei = E(ci+1) − E(ci):

Pi =















e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0
(2.3)

The edge weight w(q1, q2) is then
∑n−1

i=0 − log(Pi). This weighting scheme allows us

to extract low energy paths in the roadmap using graph algorithms for computing

shortest paths.

Path Extraction. The roadmap contains thousands of folding pathways. For

many applications, shortest paths are extracted as the most energetically feasible.

However, in some instances a more stochastic approach is warranted. One such ap-

proach is Map-based Monte Carlo simulation (MMC) [90]. MMC is similar to tra-

ditional Monte Carlo simulation [10, 11] except that it is a walk on an approximate

landscape model (i.e., the roadmap) instead of on the complete energy landscape.

The likelihood of transitioning between conformations is probabilistically biased by

their Boltzmann transition probabilities. These transition probabilities are based on

the edge weight in the roadmap. Unlike traditional Monte Carlo simulation, it can

be applied to larger structures because it operates on a simplified landscape.

D. Rigidity Analysis

Here, we use a rigidity analysis technique belonging to the third class of approaches

called the pebble game [81, 82, 83, 84, 91] to better simulate motion. The pebble

game has been an effective tool for studying protein flexibility and rigidity [85, 86,

87, 30, 88].
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1. The Pebble Game

The pebble game [81, 82, 83] is a constraint counting algorithm based on Laman’s

theorem [92] which determines the degrees of freedom of a set of distance constraints

between point masses in the plane, along with its rigid and flexible regions. Fig. 6(a)

gives an example set of constraints. In 2D, the pebble game creates a graph where

every vertex represents a point mass from the input set. It assigns each vertex in the

graph two pebbles, representing the two degrees of freedom of a point mass in the

plane, see Fig. 6(b). Then each constraint is iteratively examined to determine if it

is independent or redundant. If two free pebbles can be placed on both endpoints of

the constraint, then the constraint is marked independent and is covered by a pebble

from one of its incident vertices, see Fig. 6(c). Covering a constraint c = (u, v) can

be represented by adding a directed edge e = (u → v) between the vertices and

removing a free pebble from u. Once a constraint is covered by a pebble, it remains

covered through the rest of the game, although which vertex the pebble comes from

may change (i.e., the direction of the edge may change).

Pebbles may be rearranged by moving a free pebble from an incident vertex onto

a covered constraint and moving the covering pebble from the other incident vertex off

(i.e., reversing the direction of the edge e = u → v, removing a free pebble from u, and

adding a free pebble to v). Fig. 7 provides an example of pebble rearrangement when

collecting an additional free pebble on vertex 6. If pebbles cannot be rearranged

to get two free pebbles on both of a constraint’s endpoints, then the constraint is

marked redundant and indicates a rigid region in the graph. After every constraint

is examined, the remaining free pebbles indicate the graph’s degrees of freedom.

The pebble game algorithm is given in Algorithm D.1 and follows the presentation

in [83, 91]. It is parameterized by two variables k, the number of degrees of freedom
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Fig. 6.: 2D pebble game example. (a) The set of constraints to consider. (b) The

pebble game graph initializes each vertex with 2 pebbles. (c) Constraints are added

to the graph if 4 pebbles can be collected on the constraint’s endpoints indicating it is

independent. The constraint between vertex 1 and vertex 2 is independent. A pebble

is removed from vertex 2 and a directed edge (2 → 1) is added. (d) The final graph

after all constraints are considered. Redundant constraints indicate overstressed/rigid

regions of the graph and are marked by dotted lines.
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(b)

Fig. 7.: Pebble rearrangement example. (a) When considering the constraint (3,6),

two free pebbles must be collected on each endpoint. Searching for a free pebble

proceeds as a depth-first-search indicated by the shaded region where the constraint

endpoints (3 and 6) are ignored. A free pebble is found on vertex 5. (b) After

pebble rearrangement. Here, the pebble was removed from vertex 5 and traveled the

depth-first-search path, reversing edges along the way.
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Algorithm D.1 The Pebble Game

Input: A list of points V , a list of constraints C between points in V , the number of

pebbles k per point, and the number of pebbles l required to mark a constraint

as independent.

Output: A graph G that the pebble game has been played on, a list of independent

edges EI , and a list of redundant edges ER.

Uses: Algorithm D.2.

1: Let EI = {∅}.

2: Let ER = {∅}.

3: Let G be the pebble game graph. Add a vertex to G for every v ∈ V . Give each

vertex in G k free pebbles.

4: for each constraint c = (v, w) ∈ C do

5: Collect Pebbles(G, v, k).

6: if Collect Pebbles(G, w, l − k) is successful then

7: Constraint c is independent. Add c to EI .

8: Release blocked pebbles associated with v and w.

9: Cover c in G with a free pebble from w.

10: else

11: Constraint c is redundant. Add c to ER.

12: Release blocked pebbles associated with v and w.

13: end if

14: end for

return G, EI , and ER.
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associated with a vertex, and l, the number of collected free pebbles required to label

a constraint as independent. For a planar graph in 2D as described above, k = 2 and

l = 4. The algorithms Alg. D.2 – D.4 describe the method for collecting pebbles on

a vertex as illustrated in Fig. 7. They are based on a breadth-first-search traversal

of the pebble game graph. Because there are at most O(2n) edges in the graph [83],

each pebble search takes O(n). The entire pebble game consists of l pebble searches

for each edge. Because l << n and there are O(2n) edges in the graph, there are

O(n) pebble searches. The resulting complexity of the entire pebble game algorithm

is therefore O(n2). Proofs of correctness can be found in [83, 91].

The 2D pebble does not generalize to three dimensions for arbitrary constraint

sets, but it can be applied to 3D bond-bending networks [84]. A bond-bending net-

work is a truss structure with constraints between nearest neighbors and next-nearest

neighbors. A protein, with fixed bond lengths and bond angles, forms a bond-bending

network where atoms are modeled as vertices with 3 degrees of freedom and bonds

are modeled as edges. This is called the bar-joint model, see Fig. 8(a). In the 2D peb-

ble game, edges/constraints may be placed in any order, however, in the 3D pebble

game, order matters for correctness. The first constraint must be a nearest neigh-

bor constraint (i.e., a bond length constraint). Then all the associated next-nearest

neighbor constraints (i.e., associated bond angle constraints) must be placed before

placing another nearest neighbor constraint. For proteins, the first constraint must

be a bond length constraint and all the associated bond angle constraints must be

placed before another bond length constraint is placed. The bar-joint model has

been successfully used by several applications to study protein rigidity and flexibility

[85, 86, 87, 30, 88].
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Algorithm D.2 Collect Pebbles

Input: A pebble game graph G = (V, E), a vertex v, and the number of pebbles to

collect n.

Output: True or false. Collected pebbles marked as blocked in G.

Uses: Algorithms D.3 and D.4.

1: for i = 1 . . . n do

2: Let Vseen = {∅} be the set of vertices visited.

3: Let Path be an array of size |V | with all entries initialized to -1.

4: if Find Pebble(G, v, Vseen, Path) is successful then

5: Rearrange Pebbles(G, v, Path).

6: Mark the resulting free pebble as blocked.

7: else

return false.

8: end if

9: end for

return true.
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Algorithm D.3 Find Pebble

Input: A pebble game graph G = (V, E), a vertex v, a set of visited vertices Vseen,

and an array Path of size |V | recording the path to the free pebble.

Output: True or false. Path updated to store path to the free pebble.

1: Add v to Vseen.

2: Path[v] = −1.

3: if v has a free pebble then

return true.

4: end if

5: for each unblocked pebble covering edge e = (v, w) do

6: if w /∈ Vseen then

7: Path[v] = w.

8: if Find Pebble(G, w, Vseen, Path) then

return true.

9: end if

10: end if

11: end for

return false.
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Algorithm D.4 Rearrange Pebbles

Input: A pebble game graph G, a vertex v to rearrange the free pebble to, and an

array Path recording the path to the free pebble found by Free Pebble.

Output: The pebbles in G rearranged such that a free pebble appears on v.

1: Let w = Path[v].

2: if w )= −1 then

3: Rearrange Pebbles(G, w, Path).

4: Uncover the edge (v, w) with a free pebble from v.

5: Cover the edge (w, v) with a free pebble from w.

6: end if

(a) (b)

Fig. 8.: Rigidity models for a sample molecule: (a) bar-joint model and (b) body-bar

model. For the bar-joint model, nearest neighbor constraints (i.e., bond lengths)

are shown with thick lines and next-nearest neighbor constraints (i.e., bond an-

gles) are shown with thin lines. Both models yield the same degrees of freedom

and rigid/flexible regions.
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An alternative model, the body-bar model, represents atoms as rigid bodies with

6 degrees of freedom and the torsional bonds between them as 5 bars/constraints [93],

see Fig. 8(b). This model is conjectured to be equivalent to the 3D bond-bending

network. There exists an exact mapping between the two models, provided that

the body-bar model allows sub-dimensional rigid bodies1[84]. For 3D bond-bending

networks using the body-bar model, the pebble game parameters are k = 6 and l = 7.

Recall that the pebble game takes O(n2) time, where n is the number of vertices in the

pebble game graph. If the pebble game is played on an all-atoms model of the protein,

then n is the number of atoms the protein contains (which is directly proportional to

its length). Thus the playing the pebble game on a protein takes quadratic time with

respect to the protein’s length.

2. Rigid Cluster Decomposition

In addition to labeling constraints as independent or redundant, rigidity analysis

can partition the vertices in the graph into rigid clusters. A rigid cluster is a set of

vertices such that any two vertices in the set are rigid with respect to each other. The

only degrees of freedom in a rigid cluster are rigid body translations and rotations.

Constraints within a rigid cluster are rigid while constraints between rigid clusters

are flexible.

With a little bookkeeping added to the pebble game algorithm, rigid cluster de-

composition can be done at the same time. Algorithm D.5 augments the original

pebble game algorithm (Algorithm D.1) to perform incremental rigid cluster decom-

position. It follows the presentation in [91]. The original pebble game algorithm is

1Isolated bodies contain 3 degrees of freedom, bodies with 1 nearest neighbor (e.g.,
dimers) contain 5 degrees of freedom, and bodies with more than 1 nearest neighbor
contain 6 degrees of freedom.
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Algorithm D.5 The Pebble Game with Rigid Cluster Decomposition

Input: A list of points V , a list of constraints C between points in V , the number of

pebbles k per point, and the number of pebbles l required to mark a constraint

as independent.

Output: A graph G that the pebble game has been played on, a list of independent

edges EI , a list of redundant edges ER, and a list of rigid clusters RCD.

Uses: Algorithms D.2 and D.6.

1: Let EI = {∅}.

2: Let ER = {∅}.

3: Let G be the pebble game graph and V be the vertices in it. Give each vertex k

free pebbles.

4: Let RCD be a set of rigid clusters. For each vertex v ∈ V , add a rigid cluster

rcd = {v} to RCD.

5: for each constraint c = (v, w) ∈ C do

6: if there is a rigid cluster rcd ∈ RCD such that v ∈ rcd and w ∈ rcd then

7: Constraint c is redundant. Add c to ER.

8: else

9: Collect Pebbles(G, v, k).

10: Collect Pebbles(G, w, l − k).

11: Constraint c is independent. Add c to EI .

12: Release blocked pebbles associated with v and w.

13: Cover c in G with a free pebble from w.

14: Update Rigid Cluster Decomposition(G, RCD, c).

15: end if

16: end for

return G, EI , ER, and RCD.
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Algorithm D.6 Update Rigid Cluster Decomposition

Input: A partially played pebble game graph G, a list of rigid clusters RCD found

so far in G, and a constraint c = (v, w) just found to be independent.

Output: RCD is updated considering the independent constraint c.

Uses: Algorithm D.7.

1: if there are fewer than l free pebbles on v and w then

2: Let Rv,w = Reachability(v) ∪ Reachability(w).

3: if there is not a vertex u )= v, w ∈ Rv,w with a free pebble in G then

4: Let rcd = {∅} be a new rigid cluster. Add rcd to RCD.

5: for each vertex u ∈ Rv,w do

6: Let rcdu be the rigid cluster containing u in RCD.

7: rcd = rcd ∪ rcdu.

8: Remove rcdu from RCD.

9: end for

10: Let Q = {∅} be a queue.

11: Add to Q all vertices x such that e = (x, y) ∈ G and y ∈ Rv,w.

12: while Q )= {∅} do

13: Q → x.

14: Rx = Reachability(x).

15: if there is not a vertex y )= v, w ∈ Rx with a free pebble in G then

16: for each vertex u ∈ Rx do

17: Let rcdu be the rigid cluster containing u in RCD.

18: rcd = rcd ∪ rcdu.

19: Remove rcdu from RCD.

20: end for
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Algorithm D.6 continued.
21: Add to Q all the vertices a such that e = (a, b) ∈ G and b ∈ Rx

that have not previously been enqueued.

22: end if

23: end while

24: end if

25: end if

Algorithm D.7 Reachability

Input: A graph G and a vertex w.

Output: A set of vertices R that are reachable from w via directed paths from w in

G.

1: Let Q = {w} be a queue.

2: Let R = {∅}.

3: while Q )= {∅} do

4: Q → u.

5: for each covered edge e = (u, v) ∈ G do

6: if v /∈ R then

7: Q ← v.

8: Add v to R.

9: end if

10: end for

11: end while

return R.
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changed in the following way. First, it initializes a set of rigid clusters RCD when the

pebble game graph is initialized (line 4). It adds a rigid cluster for each vertex in the

pebble game graph. As the algorithm progresses, rigid clusters will be merged. Then,

before collecting pebbles for a constraint, it first checks if the endpoints are already

in the same rigid cluster (line 6). If so, the constraint is automatically redundant.

Finally, after an independent constraint is found, the rigid cluster decomposition is

updated (line 14, see Algorithm D.6). The resulting pebble game output rigid cluster

decomposition for the example in Fig. 6(a) is given in Fig 9. Dependent edges are

rejected in constant time and updating the rigid cluster decomposition can be done

in linear time, resulting in an algorithm still requiring only O(n2) time as before [91].

As with the original pebble game, the running time is quadratic with respect to the

protein’s length. Proofs of correctness can be found in [91].

1

7

4 65

32

Fig. 9.: The final pebble game graph and rigid cluster decomposition after all con-

straints are considered for the example in Fig. 6(a).
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Fig. 10 shows an example of how rigid clusters are merged by Alg. D.6. Constraint

(3,6) has just been found independent and added to the graph. The current rigid

cluster decomposition is shown in Fig. 10(a). First the reachability of vertices 3 and

6 are computed (line 2, see Alg. D.7). The reachability of a vertex u is the set of

vertices that are reachable by directed paths from u in the graph. For example,

Fig. 11 shows the reachability of vertex 5 is {2, 3, 6}. Here, the reachability of vertex

3 is {∅} and the reachability of vertex 6 is {3}, thus R3,6 = {3}. Since there is not

a vertex in R3,6 with a free pebble besides the constraint endpoints (line 3), a new

rigid cluster rcd is created (lines 4–9). Here, rcd is initialized to {3, 5} (since vertex 5

was already in the same rigid cluster as vertex 3). The queue is initialized to all the

incoming vertices into R3,6: vertices 2, 5, and 6 (lines 10–11). In the first iteration of

the while loop on line 12, vertex 2 is removed from the queue. Its reachability (R2) is

{3, 6}. Since there is not a vertex with a free pebble besides the constraint endpoints,

the rigid clusters containing these vertices are merged with rcd (lines 15–20). The

resulting rigid cluster decomposition is shown in Fig 10(b). The vertices with edges

into R2 are 2 and 5. These have already been enqueued before so they are not added

to the queue (line 21). This process repeats until the queue is empty. The final rigid

cluster decomposition is given in Fig. 10(c).

3. Dependent Hinge Sets Identification

From the pebble game and rigid cluster decomposition, each constraint is labeled as

rigid (i.e., its endpoints belong to the same rigid cluster) or flexible (i.e., its endpoints

belong to different rigid clusters). Flexible constraints are often referred to as hinges.

However, there are two types of flexible constraints (or hinges): independently flexi-

ble and dependently flexible. Independently flexible constraints can be moved without

requiring the movement (or flexing) of any other constraints aside from rigid body mo-
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Fig. 10.: Example of how rigid clusters are merged in Alg. D.6. (a) Constraint (3,6)

has just been found independent and added to the graph. Shaded regions indicate

the current set of rigid clusters. (b) The rigid cluster containing vertex 6 is merged

into the cluster containing vertices 3 and 5. (c) After updating the rigid cluster

decomposition, vertices 2 and 6 are added to the cluster containing vertices 3 and 5.
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Fig. 11.: The reachability of a vertex is the set of vertices that are reachable by

directed paths from that vertex in the graph. For example, the reachability of vertex

5 is indicated by the shaded region.

tions of the rigid clusters. Dependently flexible constraints form sets called dependent

hinge sets such that all the vertices within a set move in a coordinated fashion.

After the pebble game is played and rigid cluster decomposition is performed

on a graph, Algorithm D.8 identifies the dependent hinge sets present [85]. It first

initializes a hinge set for each vertex in the graph (lines 3–5). Then it examines each

flexible constraint and attempts to add an extra constraint between its endpoints

(lines 8–9). If unsuccessful, the endpoints are in the same dependent hinge set, along

with all the vertices traversed on the failed free pebble search (lines 14–18). Otherwise,

they are not yet in the same set, and the extra constraint is add to the graph (lines

10–12) and remains until all of the flexible constraints are examined (lines 22–24).

Fig. 12(a) shows the initial hinge sets for the input graph from Fig. 6(a). Here,

the rigid constraints are marked with dashed lines since they are not considered by

this algorithm. The first constraint examined is (1,2). Fig. 12(a) shows the pebble

placement after collecting 2 pebbles on vertex 1 and attempting to collect 2 pebbles
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Algorithm D.8 Dependent Hinge Sets Identification

Input: A graph G that the pebble game has been played on, the number of pebbles k

per vertex, and the number of pebbles l required to mark an edge as independent.

Output: A list H of dependent hinge sets.

Uses: Algorithms D.2 and D.7.

1: Let C = ∅ be a set of covered edges.

2: Let H = ∅.

3: for each vertex v ∈ G do

4: Let h = {v} be a new hinge set. Add h to the list of hinge sets H .

5: end for

6: for each flexible edge e = (v, w) ∈ G do

7: if v and w do not already belong to the same hinge set h ∈ H then

8: Collect Pebbles(G, v, k).

9: if Collect Pebbles(G, w, l − k) is successful then

10: v and w are not in the same hinge set.

11: Release blocked pebbles associated with v and w.

12: Cover e in G with a free pebble from w. Add e to C.

13: else

14: Let hv be the hinge set containing v in H .

15: Let hw be the hinge set containing w in H .

16: Let h = hv ∪ hw∪ Reachability(G, w).

17: Remove hv and hw from H . Add h to H .

18: Release blocked pebbles associated with v and w.

19: end if

20: end if

21: end for
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Algorithm D.8 continued.
22: for each edge e ∈ C do

23: Uncover e in G.

24: end for

return H .
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Fig. 12.: Example of how dependent hinge sets are identified in Alg. D.8. Rigid

constraints are indicated with dashed lines since they are ignored by the algorithm. (a)

The initial hinge set decomposition. When considering constraint (1,2), the algorithm

attempts to collect 4 pebbles on the endpoints. (b) Because 4 pebbles are not collected

on the endpoints, vertices 1 and 2 belong to the same hinge set and are merged. (c)

The final dependent hinge set decomposition.
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on vertex 2. Because the pebble search is unsuccessful, vertices 1 and 2 are part of the

same dependent hinge set. The hinge sets containing them are merged in Fig. 12(b).

The algorithm continues until all flexible constraints are considered. Fig 12(c) displays

the final dependent hinge set decomposition.
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CHAPTER III

EXTENSIONS TO THE PRM FRAMEWORK FOR MOLECULAR MOTION∗

The initial application of the probabilistic roadmap method to protein folding demon-

strated that this simple method could be used to study complex problems with many

degrees of freedom [18, 21, 22, 23]. However, it is limited to studying protein folding

instead of other motions such as large-scale transitions between particular confor-

mations, e.g., when studying folding intermediates, allostery (i.e., when binding a

molecule to one area of the protein affects the binding affinity of another, typically

distant, area of the protein), or misfolding. In addition, it required the user to specify

a sampling density a priori which can be problematic. In particular, if the original

sampling density is insufficient, the entire computation must be performed again. In

this chapter, we discuss two extensions to the original PRM methodology to combat

these weaknesses. First, we propose an incremental strategy for roadmap construction

that automates the process to eliminate the requirement of a user-specified sampling

density [26]. Second, we present a generalized methodology for handling multiple

conformations of interest, instead of just the single native state for protein folding

problems [24]. We provide evidence that the transitions mapped by our approach

are more realistic than those provided by the computationally less expensive Morph

Server [25], especially for transitions requiring large conformational changes.

∗Part of the data reported in this chapter is reprinted with the kind permission of
Springer Science+Business Media from “Incremental map generation (IMG)” in Al-
gorithmic Foundation of Robotics VII by D. Xie, M. Morales, R. Pearce, S. Thomas,
J.-M. Lien, and N. M. Amato, 2008, Springer, Berlin. Copyright 2008 by Springer.
[26] Part of the data reported in this chapter is reprinted with permission from “Sim-
ulating protein motions with rigidity analysis” by S. Thomas, X. Tang, L. Tapia, and
N. M. Amato, 2007. J. Comput. Biol., vol. 14, no. 6, pp. 839–855, Copyright 2007
by Mary Ann Liebert, Inc. [24]
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A. Detecting Model Stabilization when Building Roadmaps Incrementally

Roadmap accuracy is related to the sampling density. Previously [18, 21, 22, 23],

sampling density was user specified and difficult to tune. We had no systematic way

of building a roadmap and determining if it was large enough to accurately capture

the main features of the energy landscape. Thus, roadmaps were built much larger

than required. We need a framework for automating roadmap construction such that

the resulting roadmap is large enough to be accurate but small enough to be quick to

construct and query. This requires a mechanism for determining when the roadmap

has approximated the folding landscape (e.g., the area of the energy landscape that

determines folding behavior) accurately enough.

To automate roadmap construction, we interleave sampling and connection to

incrementally build a roadmap [26]. We first generate a sparse set of samples around

each conformation of interest (e.g., the folded state for protein folding, the transition

endpoints for protein transitions). Then we connect ‘nearby’ samples together and

compute edge weights as before. After each round of sampling and connection, we

evaluate the roadmap and determine if it is accurate enough to stop. We continue this

process until the roadmap adequately represents the portion of the protein’s energy

landscape we are trying to model. Fig. 13 shows the Incremental Map Generation

(IMG) framework.

IMG has several important features, including:

• Automatic determination of roadmap size. The most important feature of IMG

is that it provides a mechanism to incrementally construct roadmaps and to

automatically determine when construction should be halted.

• Evaluation criteria. A key requirement for IMG is effective evaluation criteria

that can be efficiently tested during roadmap construction. We propose eval-
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Pass

Fail

Build/Expand
Roadmap Evaluate

Roadmap
Query Roadmap

Fig. 13.: Flow diagram for Incremental Map Generation (IMG).

uation criteria for detecting model stabilization for protein folding landscapes

and protein transitions.

• Compatibility with existing sampling-based planners. IMG is not a new sampling

method; instead, it is a general strategy that can be used with any sampling-

based planner. For example, we can use it with the iterative Gaussian sampling

strategy described in Chapter II, Section C.3 or the new sampling strategy

based on rigidity analysis proposed in Chapter IV, Section B.

Algorithm A.1 describes IMG. This framework is simple and general. It can

be customized for a particular application domain or problem by simply varying the

node generation and connection strategies used and the evaluation criteria.

1. Incremental Roadmap Construction Details

To build the roadmap incrementally, we first divide roadmap construction into “sets”

of size n; the size, or target number of nodes for each set, is specified by the user.

Then, for each iteration, IMG performs the following steps:
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Algorithm A.1 Incremental Map Generation.

Input: An existing roadmap R, a roadmap evaluator E, the size of a node set n.

Output: A roadmap R that meets the criteria indicated by E.

1: repeat

2: Initialization. Set parameters for this iteration.

3: Sampling. Generate the new node set (n nodes) and add them to roadmap R.

4: Connection. Perform connection.

5: until R meets criteria in E

Initialization. In line 2, Algorithm A.1, in order to ensure the independence of

each set, we seed the random number generator. The seed s is a polynomial function

of the base seed of the program (e.g., the time execution starts), the type of node

generation method used, and the number of sets completed by that node generation

method so far. Calculating the seed in a deterministic way based on a (possibly

random) base seed supports reproducibility given the same base seed.

Sampling. In line 3, Algorithm A.1, the sampling strategy selected for that

iteration is applied. Recall that IMG is not a new sampling method, but rather is a

general strategy that can be applied to any sampling-based planner.

Connection. In line 4, Algorithm A.1, the connection strategy chosen by the user

is applied to connect the new set of nodes to the existing roadmap.

2. Roadmap Evaluation

The other key component enabling automatic determination of roadmap size is the

stopping or evaluation criteria. The IMG framework can accept a broad range of stop-

ping or evaluation criteria customized for particular applications or user preferences.
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In [26], several stopping criteria are presented for general robotics motion planning.

Here, we give two examples of application-specific evaluation methods.

Stable Secondary Structure Formation Order. For protein folding, we

want to build a roadmap until the secondary structure formation order along its

pathways stabilizes. We can define ‘formation’ of a piece of secondary structure in

several ways. In these results, we consider a piece of secondary structure ‘formed’

when at least 80% of its contacts (i.e., residue pairs within 7Å of each other in the

native state) are present. Later we will define ‘formation’ based on rigidity analysis

(see Chapter IV, Section A). The pathway’s secondary structure formation order is

then the order at which pieces are ‘formed.’

To determine model stabilization for folding, we first examine every pathway in

the roadmap from an unstructured conformation to the folded state and group them

by their secondary structure formation ordering. As in [18, 21, 22, 23], we consider a

conformation as unstructured when no piece of secondary structure has greater than

30% of its contacts present. We consider the roadmap stable when the percentage of

each group does not vary from the previous roadmap by more than some threshold t.

Max-flow Evaluation. Some applications require many paths between two

conformations. For example, to study how a protein transitions between two spe-

cific conformations of interest, we can examine the probable paths between them in

the roadmap. To determine if the roadmap is sufficient for modeling such protein

transition pathways, we use a different type of evaluation criteria than the one for

protein folding. Here we want to examine the probable paths between the transition

endpoints in the roadmap.

Characterizing the pathways between the transition endpoints in the roadmap

is similar to looking at the flow between a source and a sink in a flow network [94].

A flow network is a directed graph where edges are assigned a capacity, i.e., the
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maximum rate that material can flow along that edge. Flow networks can model

a wide variety of phenomena such as water moving through a set of pipes, current

traveling along an electrical network, or packages shipped by the postal service. The

source produces material (e.g., water, current, or packages) and the sink consumes

the material. The maximum network flow is the greatest rate that material can be

moved from the source to the sink given the underlying directed graph.

Thus, we can interpret the problem of characterizing the probable paths between

transition endpoints in the roadmap as a maximum flow problem where the roadmap

becomes the flow network graph, one transition becomes the source, and the other

transition becomes the sink. If a roadmap edge weight, w(e), reflects the likelihood

that the protein will move from one configuration to the next, then we can define

the edge capacity in our flow network c(e) as 1/w(e). Thus, the maximum network

flow between two conformations approximates the transition rate between them [94].

The evaluator returns success if the max-flow between the two configurations is above

some user specified threshold f .

3. Results

Here we demonstrate how to use the stable secondary structure formation order eval-

uator for protein folding to automatically determine roadmap size. Later, in Sec-

tion B.2 we use the max-flow evaluator to automatically build roadmaps for protein

transition problems.

We built several roadmaps incrementally for protein G. Protein G is a 56 residue

protein consisting of a central α-helix and a 4-stranded β-sheet: β-strands 1 and 2

form the N-terminal hairpin (β1-2) and β-strands 3 and 4 form the C-terminal hairpin

(β3-4). It is known that the C-terminal hairpin forms before the N-terminal hairpin

from hydrogen exchange experiments [95] and Φ-value analysis [96]. We used several
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different increment sizes: 100, 500, and 1000. During map generation, we tracked

when different stability thresholds, t, would stop the construction process. We varied

t between 0.01 and 0.20.

Table II summarizes the results. As the increment size is increased for a given

value of t, the roadmap size also increases. Also, as expected, the roadmap size re-

quired for stable pathway distributions increases as the stability threshold t decreases

and becomes more strict.

Table II.: Sizes of roadmaps for Protein G when built incrementally with varying

increment size and stability thresholds, t.

Increment Size

t 100 500 1000

0.01 900 4500 3000

0.05 600 1000 3000

0.10 300 1000 2000

0.20 300 1000 2000

It may appear from these results that it is desirable to pick the smallest increment

size possible as they yield smaller roadmaps. However, this could lead to premature

stopping of the generation process. Consider the pathway distribution changes in

Figure 14. To simplify the display, we grouped all pathways into two types: those
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which follow experimentally determined order (i.e., β3-4 forms before β1-2) and those

that do not. This artificial clustering of pathways was not used to determine stable

secondary structure formation order distributions. Initially, the pathways do not

match the experimentally determined order. It is not until 400 nodes that these

distributions switch to the correct ordering. Even then, it takes two to three times as

many more nodes for these distributions to stabilize. Building the roadmap with an

increment size of 100 would stop roadmap construction before stabilization is reached

for all vales of t.

Figure 14 also demonstrates the danger of setting the threshold t too low. This

could cause a much larger roadmap to be built than necessary. For example, with

an increment size of 500 and t = 0.01, roadmap construction continues long after

stabilization.

In practice, we found that t = 0.10 strikes a good balance between the two

extremes. It allows the construction process to continue long enough to stabilize, but

not too long to waste resources. We benchmarked this threshold on a set of proteins

for which the secondary structure formation order is experimentally known: protein

G, protein L, and two mutants of protein G. We found that for all four proteins,

t = 0.10 produced secondary structure formation order distributions that matched

with experiment, while smaller values tended to produce distributions contrary to

experimental findings, particularly for protein G and its mutants.

B. Building Landscape Models for other Motions

We would like to study motion problems in addition to protein folding such as transi-

tions between known folding intermediates, transitions between bound and unbound

conformations to a ligand, misfolded proteins, and allostery interactions. For exam-
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Fig. 14.: Pathway distribution profile of protein G as a function of roadmap size.

Stopping points for incremental map generation are shown for various increment

sizes and stability thresholds, t. Note that pathways are grouped into two types for

the plot: those which follow experimentally determined order (i.e., β3-4 forms before

β1-2) and those that do not. However, stable secondary structure formation order

evaluation is not determined on theses two groupings but on the full orderings found

in the roadmap pathways.

ple, calmodulin undergoes two large-scale conformational changes when binding to

Ca2+ thereby regulating many cellular processes [97, 98, 99]. Changing conforma-

tions allows it to bind to over 100 different proteins [98, 100]. Several devastating

diseases such as scrapie in sheep and goats, bovine spongiform encephalopathy (Mad

Cow disease), and Creutzfeldt-Jakob disease in humans are caused by misfolded pro-

teins called prions [101, 102]. The prion protein has a significantly different structure
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in the diseased state than in the normal state [101, 103, 104]. Insight into how these

proteins misfold could help develop better treatments.

We extend our PRM framework to study specific large-scale conformational

changes by iteratively sampling around each target conformation and connecting sam-

ples together as described earlier in Chapter II, Section C.3. Thus our roadmaps con-

tain the target conformations, as well as transitions between them, and approximate

the energy landscape encompassing the transition under study.

1. Roadmap Construction with Multiple Conformation Biases

To map specific large-scale transitions, we interleave sampling and connection to in-

crementally build a roadmap as in Section A. The only difference here is we sample

around each target conformation during each round of roadmap construction. Then

we connect samples together and compute edge weights as before. We continue until

the roadmap adequately represents the protein’s energy landscape near the target

conformations and between them. We use the maximum flow evaluation described

earlier in Section A.2. From this roadmap, we can extract multiple low energy tran-

sition pathways between target conformations and characterize the energy barriers

between them. Algorithm B.1 describes the process.

One challenge in using multiple conformations of the same protein is that the

bond lengths and bond angles typically assumed to be fixed may vary between the

conformations. There are several contributors to this. First, structures determined

from experimental data, such as those deposited in the Protein Data Bank (PDB)

[3], may contain noise or experimental error. This is especially true of low resolution

structures. Second, bond length and bond angle stretching may legitimately occur

during a transition.

In the results presented in this work, we maintain our fixed bond length and
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Algorithm B.1 Roadmap Construction with Multiple Conformation Biases.

Input: A set of target conformations T , the size of a node set n, and a flow threshold

f .

Output: A roadmap R that maps the transitions between conformations in T .

1: repeat

2: Set parameters for this iteration.

3: for each conformation t ∈ T do

4: Iteratively apply small Gaussian perturbations to existing samples biased

by t and add them to R.

5: end for

6: Connect newly generated samples to each other and to existing samples in R.

Update R accordingly.

7: until The maximum flow between all pairs (ti, tj) ∈ T is at least f .

return R.

bond angle assumption. To reconcile the varying lengths and angles, we average them

from the input structures and use these new values for our protein model. However,

when applying these averaged values back to the original input structures, some atom

collisions may occur. We resolve these by applying an energy minimization to the

structure. In the results presented here, we use the energy minimization function

from the EEF1 all-atoms potential function [105]. We allow the energy minimizer to

alter side chain placement and backbone torsional angles, but it must keep the bond

lengths and bond angles fixed. In the future, we intend to interpolate these values

from the input structures for each residue based on the relationship between its φ

and ψ angles and the φ and ψ angles of the input structures.
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2. Results

Calmodulin is a 148-residue signaling protein that binds to Ca2+ to regulate several

processes in the cell [97, 98, 99]. It is composed of 4 EF-hands joined by a flexible

central α helix [106, 107]. Each calmodulin domain binds 1 calcium ion in each EF-

hand pair [108], with the two domains acting independently [109]. When binding to

Ca2+, it undergoes two large-scale conformational changes: (1) the central α helix

linking the C-terminal and N-terminal domains unravels to bring the protein from a

dumbbell conformation to a more globular conformation [110] (Fig. 15(a–b)) and (2)

the α helices in each domain reorganize [111] (Fig. 15(c–d)).

(a) (b) (c) (d)

Fig. 15.: Conformational changes of calmodulin: (a) calcium-free state (1CFD) to (b)

bound state (1CLL) and of the N-terminal domain: (c) calcium-free to (d) bound.

We built a roadmap biased towards both target states. Fig. 16 indicates the

distribution of samples in the roadmap, colored by rigidity/flexibility from rigidity

analysis. The most energetically feasible transition in the roadmap between the bound

and unbound states is also plotted in red. Calmodulin traverses one large energy
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barrier (Fig. 16(b)) to transit from the unbound state to the bound state without

traveling far in terms of RMSD. Notice that the transition pathway is fairly ‘rough’

or ‘jagged’. This demonstrates an opportunity for path refinement/smoothing by

adding additional samples near the extracted transition pathway. However, some

‘roughness’ may be a function of the reaction coordinate (RMSD) used to view the

pathway.
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Fig. 16.: The potential vs. RMSD distribution of samples for calmodulin, N-terminal

domain. Rigidity is indicated by color from most rigid (black) to most flexible (light

gray). The most energetically feasible transition in the roadmap between the bound

and unbound states is displayed as a solid red line.

Figs. 17 and 18 compare pathway profiles of the most energetically feasible

transition between the two states in our roadmap and ‘morphs’ of various resolution
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obtained from the Database of Macromolecular Movements (Morph server) [63, 25].

Recall, that the ’morphs’ are generated using an interpolation method called adiabatic

mapping [67] that was chosen as a computationally efficient method which produces

chemically realistic ‘morphs.’ We examined pathway profiles for energy, contacts

present (i.e., when two residues are within 7Å of each other in the target state),

degrees of freedom computed by rigidity analysis, and RMSD distance to the target

states. Note that since the Morph server alters the original target conformations, their

profile endpoints do not always align with our pathways. One striking observation

is the regularity of the concavities for the ‘morphs’ corresponding to the various

resolution levels across all the profiles except for the RMSD profiles in which the

RMSD to the target states seems to change monotonically with the path step. These

regularities in the ‘morphs’ would not be expected in actual transition pathways,

e.g., one would not expect a monotonic increase in RMSD from 1CFD to 1CLL. In

contrast, our roadmap pathways profiles are more plausible — they exhibit trends,

but also have reasonable fluctuations. Indeed, this type of behavior has also been

observed by other researchers, e.g., in [112], Monte Carlo simulations indicate a wide

range of transition pathways and event durations.

Figs. 17(a) and 18(e) show the contacts present and degrees of freedom computed

by rigidity analysis along the pathway. Note that the protein does not completely

unfold, but maintains a large number of contacts and loses few degrees of freedom.

Generally, the actual degrees of freedom is inversely proportional to the number of

contacts present. It is interesting to note, however, that we see a slight break in this

relationship on the second half of the pathway where the peaks in degrees of freedom

do not match up with the peaks in number of contacts. Regions of the protein become

stressed when the number of contacts increases without a corresponding decrease in

degrees of freedom.
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Fig. 17.: Pathway profiles for the calmodulin N-terminal domain comparing our

method to ‘morphs’ of various resolution: (a) contacts present, (b) coarse potential

energy, (c–d) all-atoms potential energy.
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Fig. 18.: Pathway profiles for the calmodulin N-terminal domain comparing our

method to ‘morphs’ of various resolution, continued: (e) degrees of freedom com-

puted by rigidity analysis, and (f) RMSD to both target states. For RMSD, only the

30 frame ‘morph’ shown because all resolutions are nearly identical.
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We investigated several other protein transitions in a similar way, see Table III.

We measure the percentage of degrees of freedom gained as the difference between

the maximum degrees of freedom along the pathway and the minimum degrees of

freedom of the starting/ending conformations, as a percentage of the total degrees of

freedom possible (2*length). Most transitions do not involve a complete unfolding of

the protein. In fact, several have percentage of degrees of freedom gain less than 10%.

We also captured different types of transitions including smooth transitions without

any significant energy barriers (i.e., 1PRV, 1BMR, and 1FOX) and those with multiple

energy barriers (i.e., 2VGH and 1CMF). Finally, we measured the RMSD difference

between the two target conformations and the maximum RMSD along the transition

pathway to each target. Some transitions (e.g., 1PRV) remain near both targets and

some transitions (e.g., 1PRF) travel significantly far from both targets. Interestingly,

this measure is not an indicator of the amount of unfolding involved. For example,

the transition pathway for 1FOX contains a large RMSD to the targets but has very

little unfolding (i.e., only gains 3.9% degrees of freedom).

We also compared ‘morphs’ of various resolutions to our transition pathways

when possible. (The Morph server was not able to produce some higher resolution

‘morphs’ for transitions 1BMR–1FH3 and 1PRV–1PRU.) Across all transitions, we

observed the same concavity pattern phenomenon for the ‘morph’ transitions as seen

in calmodulin (Figs. 17 and 18) for energy, contacts, and degrees of freedom. Here

also, the RMSD to the target states essentially changed monotonically with the path

step. Again, our pathways did not exhibit these unrealistic regularities.
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Table III.: Pathway results for transitions studied. Most do not involve large unfolding of the protein.

% Degrees RMSD Max. Max.

of Freedom # between RMSD RMSD

Transition IDs Length Structure Gained Barriers Targets to Target 1 to Target 2

2VGH 1VGH 55 1α + 4β 21.8 2 3.97 6.41 8.36

1PRV 1PRU 56 3α 5.4 0 2.93 2.93 3.19

1BMR 1FH3 67 1α + 3β 32.8 0 6.87 14.57 15.72

1CFD 1CLL 72 4α + 2β 18.1 1 5.83 9.06 9.64

1CMF 1CMG 73 5α → 4α 24.7 2 7.68 13.91 15.54

1FOX 2FOW 76 3α + 2β 3.9 0 7.32 17.22 15.48

1PFH 1HDN 85 3α + 4β 43.5 1 2.51 25.84 26.06
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CHAPTER IV

RIGIDITY FOR LANDSCAPE MODELING∗

The original probabilistic roadmap method for protein folding [18, 21, 22, 23] can

construct approximate landscape models for a variety of proteins. These models

were validated by comparing the secondary structure formation order of the folding

pathways in the roadmap to experimental data [18]. However, this original method

is limited in the size of problems it can efficiently model. For example, modeling

landscapes for proteins with 60–100 amino acids requires many samples (e.g., 10,000)

and takes several hours on a desktop machine with a coarse energy function and up

to two weeks with an all-atoms energy function [23].

Here we present several techniques based on rigidity analysis to extend the size

of problems we can study. We first describe how to express a protein conformation as

a graph, which we call the rigidity model, where nodes represent points on the protein

and edges represent constraints between them. We can analyze this rigidity model

using standard techniques to identify which portions of the conformation are the least

constrained (e.g., flexible) and which portions are over-constrained (e.g., rigid). We

then discuss how to use this labeling to improve both sampling and connection in

the original roadmap method. We show later in Chapter V, Section 1 that these

improvements significantly reduce the roadmap size required to effectively model the

energy landscape. This in turn will allow us to study larger problems than previously.

∗Part of the data reported in this chapter is reprinted with permission from “Sim-
ulating protein motions with rigidity analysis” by S. Thomas, X. Tang, L. Tapia, and
N. M. Amato, 2007. J. Comput. Biol., vol. 14, no. 6, pp. 839–855, Copyright 2007
by Mary Ann Liebert, Inc. [24]
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A. Protein Rigidity Model

In order to perform rigidity analysis on a protein conformation, we must first express

the conformation as a graph where nodes correspond to points in space and edges

correspond to distance constraints between them. We call this graph representation

of the protein conformation the rigidity model. To determine which portions of the

conformation are rigid and flexible, we can simply perform rigidity analysis directly

on the corresponding rigidity model. In this work, we use the “pebble game” [81, 82,

83, 84], a constraint counting algorithm, to perform the rigidity analysis. We follow

the implementation of the pebble game outlined in [91].

Recall from Chapter II, Section D that there are two types of rigidity models

for which the pebble game applies: the bar-joint model and the body-bar model, see

Fig. 8. These models are conjectured to be equivalent [84]. While the bar-joint model

is closer to the all-atoms representation of the protein (e.g., nodes in the rigidity

model directly correspond to atoms in the protein and edges are present for each

bond length and bond angle, see Fig. 8(a)), we instead employ the body-bar model

for the analysis. The body-bar model allows us to represent groups of atoms as single

bodies (i.e., nodes in the graph) instead of representing each atom explicitly. Thus,

we can adjust the granularity of our rigidity analysis by changing the number of atoms

that each body represents.

Fig. 19 shows an example protein conformation containing 6 amino acids: F-A-N-

G-S-T. This protein fragment is one of the β-turns in the native state of a protein L, B1

domain mutant (PDB: 1KH0) [113]. Hydrogen bonds are indicated with thick black

lines and hydrophobic interactions with thick dashed lines. Fig. 20(b–d) presents three

possible body-bar rigidity models for this protein fragment with varying granularity.

In each body-bar rigidity model, atom groups for each body are circled. Fig. 20(a)
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shows the all-atoms bar-joint rigidity model for reference, conjectured to be equivalent

to the all-atoms body-bar rigidity model in Fig. 20(b).

This scheme allows us to match the granularity of our rigidity model to the

granularity of our protein model (from Chapter II, Section C). Below we explore two

different granularity levels: the single-body, Cα model and the two-body, φ-ψ model.

1. Single-body, Cα Model

The coarsest level of granularity occurs when we consider each residue in the protein

as a rigid body. In this rigidity model, we represent each residue as a rigid body

centered at the Cα atom. Thus, the rigidity model simply becomes a sequence of

Cα rigid bodies with constraints representing peptide/backbone bonds, disulphide

bonds, hydrogen bonds, and hydrophobic interactions. Fig. 21(a) shows the resulting

body-bar rigidity model for the protein fragment in Fig. 19. We model each peptide

bond with 4 bars. For the open chain conformation, this yields 6+2N total degrees of

freedom, where N is the length of the protein, corresponding to the 6 trivial rotational

and translational degrees of freedom of the entire protein and the φ and ψ torsional

degrees of freedom for each residue.

To mimic the relative strengths between peptide bonds, disulphide bonds, hy-

drogen bonds, and hydrophobic interactions, we model them with different numbers

of bars. The weakest constraint, hydrophobic interactions, are modeled with 1 bar.

Hydrogen bonds, in between peptide bonds and hydrophobic interactions in terms of

strength, are modeled with 2 bars. Disulphide bonds are modeled similarly to peptide

bonds with 4 bars.

Fig. 21(b) shows the rigidity analysis results of the rigidity model in Fig. 21(a).

Rigidity analysis partitions the constraints into three categories: rigid (in red), inde-

pendently flexible (in blue), and dependently flexible sets (in purple). In this example,
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Fig. 19.: Example turn protein fragment (FANGST) where hydrogen bonds are in-

dicated with dashed lines and hydrophobic interactions with dotted lines. In the

wireframe view, atoms are colored by amino acid type.
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Fig. 20.: Rigidity model examples of varying granularity for the protein fragment

in Fig 19. (a) The all-atoms bar-joint model. (b) The all-atoms body-bar model.

(c) A coarser body-bar model where side chain atoms are grouped together. (d)

The coarsest body-bar model where each residue is grouped together. In each body-

bar rigidity model, bodies may contain 1 or more atoms and are indicated with

circles. Relative strength is reflected in the number of bars placed to represent the

bond/interaction. Note that in the all-atoms body-bar model, peptide double bonds,

as typically occurs between C and O atoms, have one additional constraint than the

other peptide bonds resulting in 6 bars instead of 5.
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Fig. 21.: Single-body, Cα model example of the turn segment F-A-N-G-S-T in Fig. 19.

(a) The resulting single-body, Cα model where hydrogen bonds are indicated with

double dark grey lines and hydrophobic interactions with single light grey lines. (b)

Pebble game output and rigidity analysis results. Each body has 6 pebbles which are

either free (unfilled) or constrained to a bar (filled). The turn segment resulted in

a single dependently flexible set (purple constraints, dotted box). Rigid clusters are

indicated with dashed circles.
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there is a single dependently flexible set indicated by the dotted box.

Fig. 22 shows a helical example resulting in a single rigid cluster. This protein

fragment is part of the central α-helix in the native state of a protein L, B1 domain

mutant (PDB: 1KH0) [113]. It contains 8 amino acids: E-V-L-A-Y-A-D-T. Hydrogen

bonds are indicated with thick black lines and hydrophobic interactions with thick

dashed lines. Fig. 23(a) shows the corresponding single-body, Cα rigidity model,

and Fig. 23(b) shows the resulting pebble game output and rigidity analysis. Again,

rigidity analysis partitions the constraints into three categories: rigid (in red), inde-

pendently flexible (in blue), and dependently flexible sets (in purple). In this example,

there is a single rigid cluster indicated by the dashed box. One of the constraints was

found to be redundant during the analysis (red dashed line).

2. Two-body, φ-ψ Model

We can also model each residue with 2 rigid bodies to distinguish between the 2

torsional degrees of freedom in each residue. Fig. 24(a) shows the resulting body-

bar rigidity model for the protein fragment in Fig. 19. Intuitively, the first body for

each residue represents the first half of the residue backbone, and the second body

represents the second half of the residue including the side chain. We model each

peptide bond with 5 bars. For the open chain conformation, this yields 6 + 2N total

degrees of freedom, where N is the length of the protein, corresponding to the 6 trivial

rotational and translational degrees of freedom of the entire protein and the φ and ψ

torsional degrees of freedom for each residue.

As with the single-body, Cα model, we mimic the relative strengths between the

different types of bonds by varying the numbers of bars. Here disulphide bonds have

5 bars, hydrogen bonds have 2 bars, and hydrophobic interactions have 1 bar. For

disulphide bonds, the bars are placed between the second bodies in the residue because
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Fig. 22.: Example helical protein fragement (E-V-L-A-Y-A-D-T) where hydrogen

bonds are indicated with dashed lines and hydrophobic interactions with dotted lines.

In the wireframe view, atoms are colored by amino acid type.
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Fig. 23.: Single-body, Cα model example of the helical segment in Fig. 22. (a) The

resulting single-body, Cα model where hydrogen bonds are indicated with double

dark grey lines and hydrophobic interactions with single light grey lines. (b) Pebble

game output and rigidity analysis results. Each body has 6 pebbles which are either

free (unfilled) or constrained to a bar (filled). The helical segment resulted in a single

rigid cluster (red constraints, dashed box). One constraint was found to be redundant

(red dashed line).
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Fig. 24.: Two-body, φ-ψ model example of the turn fragment (FANGST) in Fig. 19.

(a) The resulting rigidity model where hydrogen bonds are indicated with double

dark grey lines and hydrophobic interactions with single light grey lines. (b) Pebble

game output and rigidity analysis results. Each body has 6 pebbles which are either

free (unfilled) or constrained to a bar (filled). The turn segment resulted in a single

dependently flexible set (purple constraints, dotted box).
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these interactions occur between the side chains. For hydrogen bonds, the donor

residue (i.e., where the bond occurs at the N atom) is constrained at the first body

and the acceptor residue (i.e., where the bond occurs at the O atom) is constrained

at the second body. This is illustrated in Fig. 24(a) where the donor/acceptor residue

for the first hydrogen bond is phenylalanine (F)/serine(S) and the donor/acceptor

residue for the second hydrogen bond is glycine(G)/phenylalanine (F). Finally, recall

that we measure hydrophobic interactions by the distance between the Cα atoms.

Thus, we place these bars between the second bodies in the residue.

Figs. 24(b) and 25(b) show the rigidity analysis results of the rigidity model in

Figs. 24(a) and 25(a), partitioning the constraints into three categories: rigid (in red),

independently flexible (in blue), and dependently flexible sets (in purple). The turn

segment (b) resulted in a single dependently flexible set indicated by the dotted box.

The helical segment (d) resulted in two rigidity clusters indicated in dashed circles,

one independently flexible constraint (in blue), and one redundant constraint (red

dashed line).

3. Optimizing the Rigidity Analysis

As discussed in Section D, the pebble game, when applied to proteins, first considers

all the backbone related constraints before any others (such as hydrogen bonds and

hydrophobic interactions). Because all of our conformations have an intact backbone

(i.e., we do not allow the peptide bonds along the backbone to break during unfold-

ing), we can optimize the pebble game computation by pre-computing the portion

relating to the backbone constraints. Typically, more than half of the constraints for

a given conformation are backbone constraints. Thus, this simple optimization can

result in a considerable savings, trading the time to play the pebble game on the

backbone constraints for the time to copy the results from a pre-computed version.
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Fig. 25.: Two-body, φ-ψ model example of the helical fragment (EVLAYADT) in

Fig. 22. (a) The resulting rigidity model where hydrogen bonds are indicated with

double dark grey lines and hydrophobic interactions with single light grey lines. (b)

Pebble game output and rigidity analysis results. Each body has 6 pebbles which are

either free (unfilled) or constrained to a bar (filled). The helical segment resulted in

two rigidity clusters (dashed circles), one independently flexible constraint (in blue),

and one redundant constraint (red dashed line).
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We demonstrate below in Section A.4 that the optimized version runs over 50% faster

for some proteins.

4. Rigidity Model Comparison

We first compare the computational performance of the two rigidity models. We

studied a set of 18 proteins ranging in length from 56 to 372 residues and of varying

secondary structure makeup. Table IV gives the set of proteins studied. Unless

otherwise stated, all results employ the backbone optimization for the pebble game.

These results were run on a single 2.5GHz processor in the Brazos Cluster at Texas

A&M University. The Brazos Cluster contains 126 computing nodes: 96 with 16

GBytes RAM each, and 30 with 32 GBytes RAM each. Each node is a Dell PowerEdge

1950 with two quad-core 2.5 GHz Intel Xeon processors.

For each protein, we randomly generate a set of 1000 samples, from folded to

unfolded. To get a similar distribution for each protein, we partition the energy

landscape based on contacts present, just as for iterative Gaussian sampling described

in Chapter II, Section C.3. Fig. 26 shows that the relationship between protein

length and average contacts present is linear across the entire sample set. Fig. 26 also

indicates the relationship between protein length and average constraints (rigidity

model bars) present for each model is also linear.

Fig. 27 presents the running time to perform rigidity analysis on 1000 randomly

sampled conformations for proteins ranging in length from 56 to 372 residues. Com-

puting rigidity analysis for the single-body, Cα rigidity model is faster than the two-

body, φ − ψ rigidity model. The running time is dependent on the number of con-

straints the pebble game has to evaluate, and the two-body, φ-ψ model has 2 to 2.5

times as many constraints as the single-body, Cα model. Both models are fit to a

quadratic function of the form ax2 + bx + c, where x is the average number of con-
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Table IV.: Proteins studied in the rigidity model performance comparison. The aver-

age number of rigidity model bars present in a conformation from the 1000 randomly

generated input samples is given for both rigidity models.

PDB Avg. Constraints Present

ID Length # α # β Cα Model φ-ψ Model

1BDD 60 3 0 280.1 640.1

351C 82 5 0 402.4 894.4

2CRS 60 0 6 280.7 641.7

2AIT 74 0 6 352.8 797.2

1PGA 56 1 4 277.4 613.4

2PTL 62 1 4 304.9 676.9

1ALU 124 5 0 603.4 1347.5

1A6M 151 10 0 749.7 1655.7

1GXE 130 0 7 604.6 1384.6

1MFN 184 0 15 874.8 1978.8

2AFG 129 4 10 638.8 1412.8

2RN2 155 5 5 793.0 1723.0

1AII 322 19 0 1807.2 3739.2

1JK0 334 22 0 1933.3 3937.3

1FNH 269 0 23 1343.0 2957.0

2JQY 280 0 17 1317.8 2997.8

1A8P 257 12 11 1292.6 2834.6

1QLP 372 12 14 1912.5 4144.5
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straints present. This provided the best fit of the data (i.e., the smallest variance of

the residuals).

Fig. 28 shows the individual models separately. They also indicate the type of

protein for each data point: all α (triangles), all β (inverted triangles), or mixed

secondary structure (diamonds). The running time performance is not dependent on

secondary structure makeup.

The rigidity analysis computation consists of four steps: detecting which con-

straints are present (e.g., hydrogen bonds, hydrophobic interactions), the pebble

game, rigid cluster decomposition, and dependent hinge set identification. Fig. 29

displays the running time breakdown of the 1000 rigidity analysis computations for

each protein. As the average number of constraints present increases, the time be-

comes dominated by the pebble game portion of the computation. For the smaller

proteins, constraint detection consumes a moderate portion of the running time. The

time spent in constraint identification is independent of the rigidity model. However,

because the single-body, Cα model uses a smaller graph to play the pebble game on

(i.e., only 1 vertex per residue instead of 2), the constraint identification consumes a

larger percentage of the running time.

Finally, we look at the impact of the backbone optimization. Fig. 30(a) com-

pares the rigidity analysis running time of the optimized and non-oprimized versions.

For some proteins, the optimized version runs over 50% faster. As the number of

remaining constraints increases (i.e., those not associated with the backbone and not

pre-computed), the performance gain drops. Fig. 30(b) shows that the average num-

ber of non-backbone constraints increases with protein length. (Note that it is the

same for both models since both models represent hydrogen bonds and hydrophobic

interactions with the same number of constraints.) Thus, as the protein gets larger,

not only does the number of remaining constraints increase, but the size of the under-
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Fig. 28.: Running time to perform rigidity analysis on 1000 proteins ranging in length

from 56 to 372 residues for each model individually. (a) Single-body Cα model only.

(b) Two-body φ-ψ model only.
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(a)

(b)

Fig. 29.: Running time breakdown of the 1000 rigidity analysis computations on

proteins ranging in length from 56 to 372 residues for the (a) single-body, Cα rigidity

model and the (b) two-body, φ− ψ rigidity model.
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with protein length. Note that it is the same for both models since both represent

hydrogen bonds and hydrophobic interactions with the same number of constraints.
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lying graph on which the pebble game is played also increases. Both of these factors

cause the performance gain to drop seen in (a).

B. Rigidity-Biased Sampling

The roadmap produced by our technique is an approximation of the protein’s energy

landscape. Roadmap quality is measured both by how realistic (as compared to ex-

perimental data) are the pathways it contains and by how many samples are required

to achieve the desired level of accuracy. The latter is important because it determines

how much computation is required and thus what size molecules can be analyzed.

Only a relatively small portion of the conformation space ‘near’ the target con-

formation(s) for study is of interest in modeling motions. This implies that we should

not use uniform sampling of conformation space — it would require very dense sam-

pling to adequately cover the region near the target conformation(s) and is therefore

infeasible for all but very small molecules.

In previous work [18, 21, 22, 23], we obtained a denser distribution of samples

near the target conformation through an iterative sampling process where we apply

small perturbations to existing conformations, beginning with the target conforma-

tion. The perturbations were generated according to a Gaussian distribution centered

around the existing conformation. This approach works fairly well, but still requires

many samples (e.g., 10,000) for relatively small proteins (e.g., 60–100 residues). To

apply our method to larger proteins, we need strategies to generate ‘better’ samples.

The conformations sampled should be more physically realistic and moreover, since

we are interested in modeling motion, they should represent ‘stepping stones’ for

conformational transitions.

To better model how a protein transitions from one conformation to another, we
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follow the same iterative sampling strategy as before but use rigidity analysis to guide

how a conformation is perturbed. To perturb a given conformation, we first use rigid-

ity analysis to determine which constraints are independently flexible, dependently

flexible, and rigid, see Figs. 21(b), 23(b), 24(b), and 25(b). Independently flexible

constraints can be perturbed without affecting the rest of the bodies in the system.

Dependently flexible constraints form a set of constraints such that perturbing any

one of these results in a corresponding perturbation in the rest of the set.

Recall that peptide constraint sets reflect the backbone torsional φ and ψ degrees

of freedom in the protein model. For the single-body, Cα rigidity model, a peptide

constraint set (i.e., the 4 bars between each body in Fig. 21(a)) represents both φ and

ψ torsional angles associated with that residue. For the two-body, φ-ψ rigidity model,

a peptide constraint set (i.e., the 5 bars between each body in Fig. 24(a)) represents

either the φ or ψ torsional angle associated with that residue. Thus, we perturb each

torsional degrees of freedom in the conformation based on the rigidity/flexibility of

the corresponding peptide constraint set as follows. If the peptide constraint set is

independently flexible, we perturb the corresponding torsional angle(s) with a high

probability, Pflex. If the peptide constraint set is rigid, we perturb the corresponding

torsional angle(s) with a low probability, Prigid. Perturbing rigid degrees of freedom

improves the coverage of the space. For each set of dependently flexible peptide

constraint sets, we randomly select d torsional angles to perturb with the probability

Pflex and perturb the remaining torsional angles with the probability Prigid, where d

is the internal degrees of freedom to the set. This reflects the d true flexible degrees

of freedom in the dependently flexible set. Note that because we cannot distinguish

between the φ and ψ torsional angles in the single-body, Cα rigidity model, we perturb

them both if the peptide bond constraint set selected for perturbation. Algorithm B.1

presents the overall sampling approach.
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Algorithm B.1 Rigidity-biased sampling algorithm.

Input: A protein conformation c, probabilities Prigid and Pflex, and an angle δ.

Output: A protein conformation c′.

Require: Let RAND() return a uniformly distributed random number between 0

and 1 and GAUSS(x) return a Gaussian distributed random number centered at

x.

1: Let Bpeptide be the set of peptide bonds present in c.

2: Compute the bonds present in c. Let Bdisulphide be the set of disulphide bonds,

Bhydrogen be the set of hydrogen bonds, and Bhydrophobic be the set of hydrophobic

interactions.

3: Construct a rigidity model r from Bpeptide, Bdisulphide, Bhydrogen, and Bhydrophobic.

4: Perform rigidity analysis on r. Let R be resulting set of rigid peptide constraints,

I be the resulting set of independently flexible peptide constraints, and D be the

resulting set of dependently flexible peptide constraint sets.

5: for each b ∈ Bpeptide do

6: if (b ∈ I and RAND() ≤ Pflex) or (b ∈ R and RAND() ≤ Prigid) then

7: Set c′(b) = c(b)+GAUSS(δ).

8: end if

9: end for
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Algorithm B.1 continued.
10: for each d ∈ D do

11: Let dof be the actual degrees of freedom present in the dependent set d.

12: Let S a set of randomly selected peptide bonds from d. |S| = dof .

13: for each b ∈ {Bpeptide ∩ d} do

14: if (b ∈ S and RAND() ≤ Pflex) or (b )∈ S and RAND() ≤ Prigid) then

15: Set c′(b) = c(b)+GAUSS(δ).

16: end if

17: end for

18: end for

return c′.
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1. Sampling Study

One goal of the rigidity-based sampling algorithm is to restrict how conformations are

perturbed in such a way as to find similar low-energy conformations to the source con-

formation. For various values of Prigid and Pflex, we perturb a set of 100 randomly gen-

erated input conformations, including the native state. We examine all pairs of prob-

abilities from the set {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} such that Prigid ≤ Pflex and Pflex > 0.

Perturbation angles are selected from the following set: {1.0o, 2.0o, 5.0o, 10.0o, 20.0o}.

These parameters are typically used during iterative sampling in previous work [18,

21, 22, 23]. We study the 6 proteins in Table V and measure the following statistics:

Aavg — Average number of attempts to generate a conformation with energy below

the node generation maximum threshold, Emax.

∆Eavg — Average energy difference between the input conformation and the per-

turbed conformation.

∆Cavg — Average difference in the number of contacts between the input conforma-

tion and the perturbed conformation.

∆dEucl
avg — Average Euclidean distance in φ−ψ space between the input conformation

and the perturbed conformation.

∆dRMSD
avg — Average RMSD distance between the input conformation and the per-

turbed conformation. RMSD is measured over the backbone atoms.

Fig. 31 displays the correlation between Aavg and the time required to generate a

valid sample. Results are partitioned based on the number of native contacts present

in the parent conformation: unfolded parents have < 25% present, partially folded

parents have ≥ 25% and < 75% present, and folded parents have ≥ 75% present.
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Table V.: Proteins used in rigidity-based sampling study.

Secondary

Protein PDB Length Structure Makeup

All α Proteins

Protein A, B domain (Protein A) 1BDD 60 3α

Apo-Myoglobin (ApoMb) 1A6M 151 10α

All β Proteins

Cardiotoxin analogue III (CTXIII) 2CRS 60 6β

Mouse fibronectin (Fibronectin) 1MFN 184 15β

Mixex α and β Proteins

B1 domain of protein G (Protein G) 1PGA 56 1α + 4β

Ribonuclease H (RNase H) 2RN2 155 5α + 5β

(Note that no “unfolded” parents were generated in the input set for ApoMb.) Each

data point represents the average value for a pair of input probabilities (Pflex, Prigid)

for each type of parent conformation.

As expected, there is a direct relationship between the time spent and the num-

ber of attempts made, and this relationship holds regardless of the type of parent

conformation or the input probabilities. For all of the proteins except protein A, un-

folded conformations typically require fewer attempts to generate a valid sample, and

the number of attempts increases with the “foldedness” of the protein. This can be

attributed to the overall shape of the energy landscape. At the bottom of the energy
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Fig. 31.: Correlation of the average number of attempts, Aavg , and the average time

required to generate a valid sample for rigidity-based sampling. Results are parti-

tioned based on the number of native contacts present in the parent conformation:

unfolded parents have < 25% present, partially folded parents have ≥ 25% and < 75%

present, and folded parents have ≥ 75% present. Note that no “unfolded” parents

were generated in the input set for ApoMb.
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landscape near the native state, the energy landscape is much more “narrow” and

the protein is more tightly packed. Here, even small perturbations in the torsional

angles can result in collisions and high energies. Thus, it requires more perturbation

attempts to generate a valid sample. At the top of the energy landscape, the protein

is loosely packed and can better tolerate these perturbations, therefore needing fewer

attempts. It is interesting that for Fibronectin the “foldedness” of the parent confor-

mation has less of an effect on the attempts required. This could suggest an energy

landscape with a more uniform “width” than the traditional funnel shape.

Figs. 32–37 compare the different statistics for each sampling method and protein.

In general, iterative sampling requires fewer attempts (and is faster, e.g., Fig. 31) than

rigidity-based sampling for the smaller proteins (protein A, CTXIII, and protein G),

but this advantage disappears as the proteins increase in size. Also, as the perturbing

probabilities Pflex and Prigid increase, there is a corresponding increase in ∆Cavg ,

∆dEucl
avg , and ∆dRMSD

avg . Rigidity-based sampling preserves the overall shape of the

protein better than iterative Gaussian sampling as demonstrated by smaller ∆dRMSD
avg

values.

We also look at rigidity-based sampling in the context of iteratively sampling

the energy landscape starting from a target state, such as the native state for pro-

tein folding problems. Recall from Chapter II, Section C.3 that sampling is biased

around a target state by iteratively applying small Gaussian perturbations to existing

conformations. In order to obtain an even distribution of samples in the bottom of

the energy landscape funnel, in the middle, and in the top, the energy landscape is

partitioned into b bins [18, 21, 22, 23]. Then, as sampling progresses, conformations

are placed into the different bins. After sampling completes, n/b conformations from

each bin are inserted into the roadmap, where n is the total number of conformations

requested. Not every bin is always filled with at least n/b conformations resulting in
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Fig. 32.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for protein A. (a) Average number of attempts, Aavg . (b) Average number

of contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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Fig. 33.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for CTXIII. (a) Average number of attempts, Aavg. (b) Average number of

contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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Fig. 34.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for protein G. (a) Average number of attempts, Aavg . (b) Average number

of contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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Fig. 35.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for ApoMb. (a) Average number of attempts, Aavg. (b) Average number

of contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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Fig. 36.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for Fibronectin. (a) Average number of attempts, Aavg. (b) Average number

of contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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Fig. 37.: Comparison of iterative Gaussian sampling and rigidity-based sampling

statistics for RNase H. (a) Average number of attempts, Aavg . (b) Average number

of contacts lost, ∆Cavg. (c) Average Euclidean distance, ∆dEucl
avg . (d) Average RMSD

distance, ∆dRMSD
avg .
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a less than even distribution of conformations in the roadmap.

Here we compare the ability of iterative Gaussian sampling and rigidity-based

sampling to fill all the bins while generating a set of conformations. As in [18, 21,

22, 23], we use equal-sized bins that are based on the contacts present. Each bin

represents 10% of the total possible contacts (i.e., [0%, 10%), [10%, 20%), . . .). For

each of the proteins in Table V, we generate 1000 samples, either from iterative

Gaussian sampling or rigidity-based sampling. We measure the time required to

generate the set of samples as well as the number of nodes “missing” from each bin

in order to obtain an even distribution with n/b nodes in each bin.

Figs. 38 and 39 display the results. While iterative Gaussian sampling is faster

at attempting to fill the bins than rigidity-based sampling for these proteins, it is not

as successful in filling all of the bins. Except for protein A and RNase H, there is

at least one combination of Pflex and Prigid that have fewer “missing” samples in the

distribution. (For protein A and RNase H, they are similar.) We also observe that

lower values of Pflex and Prigid tend to run faster but produce more “missing” samples.

(Note that high values of Pflex and Prigid do not always produce even distributions,

e.g., protein G, CTXIII, Fibronectin, and RNase H). The values of Pflex = 0.8 and

Prigid = 0.2 provide a good trade-off between running time and distribution uniformity

for many of the proteins.

C. Rigidity-Based Distance Metric

As samples become farther apart, it is increasingly important which pairs of samples

are attempted for connection for two reasons: (1) larger distances mean longer com-

putation times for determining connection feasibility and (2) larger distances mean

that it is more likely connections will encounter larger energy barriers since they will
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Fig. 38.: Comparison of running time and the number of nodes “missing” from the

targeted distribution for iterative Gaussian sampling and rigidity-based sampling on

protein A, CTXIII, and protein G.
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Fig. 39.: Comparison of running time and the number of nodes “missing” from the

targeted distribution for iterative Gaussian sampling and rigidity-based sampling on

ApoMb, Fibronectin, and RNase H.
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traverse larger amounts of the energy landscape. We present a new distance metric

for identifying ‘nearby’ samples based on rigidity analysis. We can then use this dis-

tance metric for identifying which samples to connect during roadmap construction

instead of the Euclidean distance in φ-ψ space as done previously.

We first define a new concept, a rigidity map. A rigidity map, r, is similar to a

contact map. Rigid body pairs (i, j) from the rigidity model are marked if they have

the same rigidity relationship. We mark the residue pairs as follows:

r(i, j) =































2 if i and j are in the same rigid cluster

1 if i and j are in the same dependent hinge set

0 otherwise

(4.1)

Fig. 40 shows the rigidity map of (a) the native state for protein G for both (b)

the single-body, Cα rigidity model and (c) the two-body φ-ψ rigidity model. Rigid

clusters (i.e., score of 2) are colored black and dependent hinge sets (i.e., score of 1)

are colored green.

Rigidity maps provide a convenient way to define two rigidity distance metrics,

drig(q1, q2) and dclust(q1, q2), between two conformations q1 and q2 where n is the

number of rigid bodies in the model, rq1
is the rigidity map for conformation q1, and

rq2
is the rigidity map for conformation q2. The first distance metric looks at the

entire rigidity map:

drig(q1, q2) =

(

1

n(n − 1)/2

)





∑

0≤i<j≤n

δrig(rq1
(i, j) − rq2

(i, j))



 (4.2)

where

δrig(x) =















0 if x = 0

1 otherwise
(4.3)

The second distance metric filters out the dependent hinge set information and only
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(a)

(b) (c)

Fig. 40.: Rigidity maps for the native state of protein G (PDB: 1PGA). (a) The

native state of protein G. (b) The rigidity map resulting from the single-body, Cα

rigidity model. (c) The rigidity map resulting from the two-body, φ-ψ rigidity model.

For both rigidity maps, rigid clusters are colored black and dependent hinge sets are

colored green.
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considers the rigid cluster results:

dclust(q1, q2) =

(

1

n(n − 1)/2

)





∑

0≤i<j≤n

δclust(rq1
(i, j) − rq2

(i, j))



 (4.4)

where

δclust(x) =















1 if ||x|| = 2

0 otherwise
(4.5)

1. Rigidity Maps of Proteins G, L, and their Mutants

Proteins G, L, mutants of protein G, NuG1 and NuG2 [114], and mutants of protein

L, L1 – L4 and S1 – S2 [113], are a unique set of proteins. They are known to fold

differently despite having similar structure, see Fig. 41. All proteins are composed of

a central α-helix and a 4-stranded β-sheet: β-strands 1 and 2 form the N-terminal

hairpin (β1-2) and β-strands 3 and 4 form the C-terminal hairpin (β3-4). The mutants

of proteins G and L were computationally designed to switch the folding behavior of

the two β-hairpin turns by altering the relative stabilities of the hairpins [114, 113].

Tables VI and VII indicate the substitutions made.

Our rigidity analysis can help to explain the stability shift in NuG, NuG2, L1

– L4, and S1 – S2. For example, consider their native state rigidity maps shown in

Fig. 42. In all proteins, the majority of the central α-helix is inside the same rigid

cluster. We also see increased rigidity in β1-2 from protein G to NuG1 and NuG2 due

to mutating the β-turn from type I to more stable types II’ and I’ [114]. In all the

protein L mutants, there is increased rigidity in both β-hairpins. In these mutants,

mutating β3-4 from a non-canonical β-turn type to more stable types (I, II, I’, and

II’) [113] not only increases the rigidity of the local turn, but also helps stabilize the

entire structure.
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Protein G Protein L Mutant NuG1 Mutant NuG2

Mutant L1 Mutant L2 Mutant L3 Mutant L4

Mutant S1 Mutant S2

Fig. 41.: Native state ribbons diagrams of proteins G, L, and their mutants NuG1,

NuG2, L1 – L4, and S1 – S2. Mutated residues are shown in wireframe.

Table VI.: Sequences of protein G mutants [114]. Residues 1–5 and 17–57 are identical

to wildtype. Turn types I’ and II’ are more favorable over type I’ in β-strands.

Protein Sequence (6–16) β Turn Type

WT ILNGKTLKGET I

NuG1 FIVIGDRVVVV II’

NuG2 VIVLNGTTFTY I’
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Table VII.: Sequences of protein L mutants [113]. In the sequences, a ‘.’ indicates

the same residue as in the wildtype, and a ‘-’ indicates a deletion. Residues 1–25

and 35–48 are identical to wildtype. Two-residue turn types (I, II, I’, and II’) are

more favorable over the wildtype 4-residue turn. Residues in the helix (26–34) were

mutated in addition to the second β-hairpin turn to create good packing between the

new turns and the helix.

Protein Sequence (26–34) Sequence (49–60) β Turn Type

WT FEKATSEAY VDVADKG--YTL none

L1 A...I...L IEKVVSDNKYIF I

L2 K...L..VL IDKRVTNGVIIL I’

L3 Y...R...L IDKRYTPGALIL II

L4 ....L..VL IDKRQDGNVLVL II’

S1 ....V...L IDR--TDT--RF I

S2 ....V...L IDR--DGY--LF II’
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Fig. 42.: Rigidity maps of proteins G, L, and their mutants NuG1, NuG2, L1 – L4,

and S1 – S2 using the φ − ψ model. Rigid clusters are colored black and dependent

hinge sets are colored green. α-helices and β-sheets are indicated with solid triangles

and hollow inverted triangles for reference.
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CHAPTER V

RIGIDITY FOR LANDSCAPE MODEL ANALYSIS∗

Rigidity analysis can be used to extract data from our approximate landscape models,

or roadmaps, in addition to aiding in their construction as demonstrated in Chap-

ter IV. In this chapter, we explore several different applications of rigidity analysis

to extract and analyze landscape properties. We first describe how to use rigidity

analysis to identify the secondary structure formation order distribution of folding

pathways in the roadmap. With this technique we are able to detect the subtle fold-

ing differences of structurally similar proteins G, L, and their mutants that we were

unable to detect before with our previous definition of secondary structure formation.

We then develop a new method for simulating relative hydrogen exchange rates of

a set of input pathways using rigidity analysis. We compare our results to exper-

imental data when available. Finally, we use the relative hydrogen exchange rates

from our rigidity analysis to detect folding core membership (i.e., the subset of the

protein’s structure to form first during folding and break last during denaturation).

We compare our results to other computational methods and to experiment when

available.

A. Identifying Structure Formation Order

The first application we study is using rigidity analysis to determine the secondary

structure formation order distribution of the folding pathways in the roadmap. Recall

from Chapter II, Section C.3, we can extract folding pathways from the roadmap by

∗Part of the data reported in this chapter is reprinted with permission from “Sim-
ulating protein motions with rigidity analysis” by S. Thomas, X. Tang, L. Tapia, and
N. M. Amato, 2007. J. Comput. Biol., vol. 14, no. 6, pp. 839–855, Copyright 2007
by Mary Ann Liebert, Inc. [24]
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finding the most energetically feasible (i.e., shortest) pathway from every unstructured

conformation to the native, folded conformation. Here we use the same definition of

unstructured as used in Chapter III, Section A.2. We then can analyze each pathway

to determine its secondary structure formation order. This results in a distribution

of secondary structure formation orders with which we can compare to experimental

data.

Previously, we labeled a piece of secondary structure as ‘formed’ when x% of

its native contacts (i.e., residue pairs within 7Å of each other in the native state)

are present, with x typically set to 80%. We can also use rigidity analysis to define

when a piece of secondary structure is ‘formed’. Rigidity analysis provides more

structural information than simply counting native contacts. In addition, it allows

us to define ‘formation’ for pieces of secondary structure that do not contain internal

native contacts but may have native contacts to other residues in the structure (e.g.,

β-strands).

For a given conformation c and a set of residues s corresponding to a piece of

secondary structure, we label s as ‘formed’ in c if the rigidity distance of s between

c and the native, folded state is less than a threshold d. As before, each pathway’s

secondary structure formation order is the order at which pieces are ‘formed’.

For example, consider protein G in the two different conformations in Fig. 43(b,c),

and let d = 0.6. Protein G has 5 pieces of secondary structure: β-strand 1 (residues

2–8, shown in red), β-strand 2 (residues 13–19, shown in orange), α-helix 1 (residues

23–36, shown in yellow), β-strand 3 (residues 42–46, shown in green), and β-strand 4

(residues 51–55, shown in blue). Fig. 43(d–f) shows the corresponding rigidity maps

of β-strand 1 using the φ − ψ rigidity model. (Note that β-strand 1 contains bodies

[2,16) in the φ−ψ rigidity model.) The rigidity distance, rdist(cnative, c1), of β-strand 1

between cnative and c1 is 0.857. Thus, β-strand 1 in c1 would not be labeled as ‘formed’.
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Conversely, the rigidity distance, rdist(cnative, c2), of β-strand 1 between cnative and c2

is 0.505. In this case, β-strand 1 in c2 would be labeled as ‘formed’.

1. Results

We study how the rigidity-based definition of secondary structure formation order

compares to experimental data for the proteins in Table VIII. For each protein, we

build two roadmaps, one using iterative Gaussian sampling [18, 21, 22, 23] and one

using iterative rigidity-based sampling (see Chapter IV, Section B). The roadmaps

are built incrementally using sets of 2000 nodes and stopped when the secondary

structure formation order distribution of the roadmap’s pathways stabilizes (within

10%), as discussed in Chapter III, Section A. We selected these values because they

performed well on several “benchmark” proteins where we knew the experimentally

determined secondary structure formation order to validate against. We found that

smaller sets of nodes for incremental generation, such as 100, prematurely stabilized

their secondary structure formation order to incorrect or unstable distributions. We

selected 10% as a stabilization threshold because this allows a little bit of fluctuation

in the pathway distributions while still requiring some amount of stability. Smaller

values, such as 1% or 5%, would sometimes never stabilize due to the noisiness of the

map generation process. For the iterative Gaussian sampling roadmaps, secondary

structure pieces are considered ‘formed’ when 80% of the native contacts are present,

as described in Chapter II, Section C.3. For the iterative rigidity-based sampling

roadmaps, secondary structure pieces are considered ‘formed’ when the rigidity dis-

tance is ≤ 0.8, as described above. This value requires the pieces to exhibit very

similar rigidity properties without requiring them to be identical. Larger values for

the rigidity distance typically required the complete structure to be present.
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Fig. 43.: Example of the rigidity-based secondary structure formation definition for

the first β-strand (shown in red) in protein G. (a) Native, folded conformation of

protein G, cnative. (b) Protein G in a mostly unfolded conformation, c1. (c) Protein

G in a partially folded conformation, c2. (d–f) Rigidity maps using the φ−ψ rigidity

model of the first β-strand in cnative, c1, and c2, respectively.



109

Table VIII.: Proteins studied for secondary structure formation order based on rigid-

ity analysis.

Secondary

Protein PDB Length Structure

Crambin, Ser22/Ile25 form 1AB1 46 2α + 2β

Crambin, Pro22/Leu25 form 1CCM 46 2α + 2β

Desulfovibrio vulgaris Miyazaki F rubredoxin 1RDV 52 2α + 3β

(RdDvMF)

Murine epidermal growth factor (mEGF) 1EGF 53 3β

Albumin-binding GA module 1PRB 53 4α

Clostridium pasteurianum rubredoxin (RdCp) 1SMU 54 3α + 3β

Clostridium acidurici ferredoxin (FdCa) 1FCA 55 2α + 4β

Heparin-binding domain of vascular 1VGH 55 1α + 4β

endothelial growth factor (VEGF)

B1 domain of protein G (Protein G) 1GB1 56 1α + 4β

α-Spectrin SH3 domain (α-Spectrin) 1SHG 57 1α+5β

Bovine pancreatic trypsin inhibitor (BPTI) 1BPI 58 2α + 2β

Trypsin inhibitor 4PTI 58 2α + 2β

Fyn src SH3 domain (fSH3) 1NYF 58 5β

Human complement control factor H (hCCPh) 1HCC 59 7β

Protein A, B domain (Protein A) 1BDD 60 3α

Tick anticoagulant peptide (TAP) 1TCP 60 2α + 2β

Saccharomyces cerevisiae ADR1 2ADR 60 2α + 2β

DNA-binding domain
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Table VIII Continued

Secondary

Protein PDB Length Structure

B1 domain of protein L (Protein L) 2PTL 62 1α + 4β

Chymotrypsin inhibitor 2 mutant (CI2 mutant) 1COA 64 1α + 5β

Chymotrypsin inhibitor 2 (CI2) 2CI2 65 2α + 5β

Escherichia coli cold shock protein (eCSPA) 1MJC 69 7β

α-amylase inhibior Hoe-467A (Hoe) 1HOE 74 7β

Ubiquitin 1UBQ 76 1α + 5β

Activation domain of human 1O6X 81 2α + 3β

procarboxypeptidase A2 (ADA2h)

Activation domain of porcine 1PBA 81 4α + 3β

procarboxypeptidase B (ADBp)

Bovine acyl-coenzyme A binding protein (bACBP) 2ABD 86 5α

Table IX summarizes the results. Connectivity is the average number of neigh-

bors a sample has in the roadmap. In all cases, the rigidity-based roadmaps pro-

duce equivalent folding pathways as the previous method with smaller, more effi-

cient roadmaps, i.e., average change in the number of samples needed is -79.01%.

Rigidity-based roadmaps also increase connectivity, i.e., average change in connectiv-

ity is 175.67%. Because both techniques attempt the same number of connections,

increased connectivity indicates that the rigidity-based roadmaps identified better,
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more easily connectible, sample pairs as connection candidates.

Table IX.: Rigidity-based sampling and rigidity-based secondary structure formation

order results for the proteins in Table VIII. N is the number of nodes, E is the num-

ber of edges. In all cases, rigidity-based sampling significantly reduces the required

roadmap size (N + E) to produce equivalent pathways. It also increased roadmap

connectivity (E/N).

Gaussian Sampling Rigidity Sampling

PDB N E N + E E/N N E N + E E/N

1AB1 24206 386974 411180 15.99 6000 158286 164286 26.38

1CCM 43646 728964 772610 16.70 10000 456080 466080 45.61

1RDV 33691 457392 491083 13.58 4000 166702 170702 41.68

1EGF 27356 391146 418502 14.30 4000 164902 168902 41.23

1PRB 44551 696708 741259 15.64 4000 126562 130562 31.64

1SMU 35501 557416 592917 15.70 4000 158852 162852 39.71

1FCA 38216 489840 528056 12.82 4000 162526 166526 40.63

1VGH 38216 631936 670152 16.54 4000 157454 161454 39.36

1GB1 34236 912908 947144 26.66 4000 160552 164552 40.14

1SHG 24696 270232 294928 10.94 18000 654884 672884 36.38

1BPI 28426 399418 427844 14.05 4000 112010 116010 28.00

4PTI 39121 389468 428589 9.96 4000 160100 164100 40.03

1NYF 23921 262376 286297 10.97 6000 249450 255450 41.58

1HCC 33691 453628 487319 13.46 28000 1079904 1107904 38.57
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Table IX Continued

Gaussian Sampling Rigidity Sampling

PDB N E N + E E/N N E N + E E/N

1BDD 58486 888298 946784 15.19 6000 195950 201950 32.66

1TCP 32786 354262 387048 10.81 4000 163692 167692 40.92

2ADR 42723 701942 744665 16.43 8000 339498 347498 42.44

2PTL 23921 281334 305255 11.76 4000 159728 163728 39.93

1COA 27746 403438 431184 14.54 4000 160838 164838 40.21

2CI2 27746 389670 417416 14.04 8000 228706 236706 28.59

1MJC 23481 226942 250423 9.66 4000 153140 157140 38.29

1HOE 30626 184012 214638 6.01 4000 103668 107668 25.92

1UBQ 25206 236216 261422 9.37 4000 154192 158192 38.55

1O6X 40931 342138 383069 8.36 4000 133544 137544 33.39

1PBA 26476 203974 230450 7.70 8000 282960 290960 35.37

2ABD 27956 681796 709752 24.39 18000 953900 971900 52.99

Average 32983 458555 491538 13.68 6923 269157 276080 33.70

Average Percent Change -79.01 -41.30 -43.83 175.67

Fig. 44 provides a graphical view of the data in Table IX. It compares the two

methods in terms of (a) number of samples needed, (b) total size of the resulting

roadmap (i.e., the number of samples and edges), and (c) roadmap connectivity.

Each data point corresponds to a different protein/row in Table IX. For example,
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protein 1AB1 appears at point (24206, 6000) in part (a) of the figure, indicating

that it required 24,206 samples when using our previous sampling strategy and only

6,000 samples when using the new rigidity based strategy. From these plots, we see

that rigidity-based sampling both reduces roadmap size (a, b) and increases roadmap

connectivity (c). Both of these properties are highly desirable when constructing

roadmaps. They allow our method to extend to larger proteins than before.

Fig. 45 shows the performance of both methods as a function of protein length

for the same statistics: (a) number of samples needed, (b) total roadmap size, and

(c) roadmap connectivity. There are two data points for each protein, one for each

method. For instance, protein 1AB1, which has 46 residues, appears as a blue circle at

(46, 24206) for the previous sampling method and as a red cross at (46, 6000) for the

new rigidity-based sampling method. Note that in some cases more than one protein

has the same length (e.g., 1AB1 and 1CCM both are 46 amino acids long). These

plots indicate that the performance gains in Fig. 44 are not dependent on protein

length. Thus, with rigidity analysis, we can study much larger proteins than before.

Table X compares the secondary structure formation order of the rigidity roadmaps

to experimental data when available. Experimental results come from various meth-

ods including continuous labeling hydrogen exchange [42], pulse labeling hydrogen ex-

change [42], saturation transfer hydrogen exchange[115, 116], Φ-value analysis [117,

118], and Ψ-value analysis [119]. For most proteins, there is good agreement be-

tween experimental data and the secondary structure formation order found in our

roadmaps. The one exception is wild-type chymotrypsin inhibitor 2 (2CI2). Here,

experimental data suggests that α-helix 2 forms early during folding while our results

indicate the opposite.
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Fig. 44.: Comparison of rigidity-based sampling to previous work for several proteins.

Rigidity-based sampling gives improved performance in terms of both (a, b) reduced

roadmap size and (c) increased roadmap connectivity.
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Fig. 45.: Comparison of sampling methods as a function of protein length. Perfor-

mance gains are not dependent on protein length.
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Table X.: Comparison of secondary structure formation orders for proteins in Ta-

ble VIII using rigidity-based sampling and the rigidity-based secondary structure for-

mation definition with known experimental results. Brackets indicate no clear order.

Only formation orders greater than 1% are shown.

PDB Experimental Order Rigidity Order %

1PRB α2, α4, α3a [120] α2, α1, α4, α3 99.4

1SMU [α3,β1,β2,β3], [α1,α2] [121] β3, α3, α2, α1, β2, β1 99.9

1GB1 [α,β1,β3,β4], β2 [122] α, β3-4, β1-2 99.4

[α,β4], [β1,β2,β3] [123]

1SHG [α,β2,β4,β5], β3b [124, 125] β5, α, β4, β3, β2, β1 98.6

1BPI [α2,β1,β2]c [126] α2, β2, β1, α1 99.3

[β1,β2], [α2]c [127, 128]

1NYF [β3,β4], β2, [β1,β5] [129, 130] β4, β3, β2, β5, β1 99.2

1BDD [α2,α3], α1 [131] α2, α1, α3 99.9

[α1,α2,α3] [131]

α2, [α1,α3] [132, 133]

2PTL [α,β1,β2,β4], β3 [134] β1-2, α, β3-4 100.0

[α,β1], [β2,β3,β4] [135]

2CI2 [α2,β2,β3], [α1,β4]d [136] β5, β4, β3, β2, α1, β1, α2 98.5

[α2], [α1,β1,β2,β3,β4,β5] [137]

[α2,β2,β3], [α1,β1,β4,β5] [138, 139]

1MJC [β3,β4], [β1,β2,β5]e [140] β2, β4, β3, β7, β6, β5, β1 97.2

β6, β4, β3, β2, β7, β5, β1 1.1

1UBQ [α,β1,β2,β3], [β4,β5] [141] β4, α, β2, β1, β5, β3 99.9
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Table X Continued

PDB Experimental Order Rigidity Order %

[α,β1,β2,β3,β4], [β5] [142]

[α,β1,β2], [β3,β4,β5] [143, 144]

1O6X [α2,β2], [α1,β1,β3] [145] α1, α2, β3, β2, β1 100.0

2ABD [α1,α4,α5], [α2,α3] [146] α4, α5, α2, α3, α1 95.9

α5, α2, α4, α3, α1 1.3

aα1 was not measured by experiment.
bβ1 was not measured by experiment.
cα1 was not measured by experiment.
dβ1 and β5 were not measured by experiment.
eβ6 and β7 were not measured by experiment.

2. Case Study of Proteins G, L, and their Mutants

As discussed in Chapter IV, Section C.1, proteins G, L, and their mutants (NuG1,

NuG2, L1–L4, and S1–S2) present a good test case for our technique because they are

known to fold differently despite having similar structure, see Fig. 41. Recall that all

proteins are composed of a central α-helix and a 4-stranded β-sheet: β-strands 1 and 2

form the N-terminal hairpin (β1-2) and β-strands 3 and 4 form the C-terminal hairpin

(β3-4). The mutants of proteins G and L were computationally designed to switch

the folding behavior of the two β-hairpin turns by altering the relative stabilities of

the hairpins [114, 113]. Hydrogen exchange experiments, both continuous labeling

and pulse labeling, for proteins G and L indicate that β1-2 forms first in protein L,

and β3-4 forms first in protein G [95]. This is consistent with Φ-value analysis on G
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[96] and L [147]. In [114], protein G is mutated in the first β-hairpin turn to increase

the relative stability of β1-2 over β3-4 (see Table VI for the specific mutations). Φ-

value analysis indicates that the hairpin formation order for both NuG1 and NuG2 is

switched from the wild type. In [113], the second β-hairpin turn is replaced with more

stable two-residue turns (and the central α-helix is mutated to accommodate the new

turn conformation) to increase the relative stability of β3-4 over β1-2 (see Table VII

for the specific mutations). Φ-value analysis indicates that the hairpin formation

order is switched from wild type for mutant L2. Refolding kinetics suggests that the

hairpin formation order may be also switched for the other mutants (L1, L3, L4, S1,

and S2).

Our previous sampling strategy [22] was able to capture the folding differences

between proteins G and L, but not between protein G and its mutants or between

protein L and its mutants. Our new rigidity-based sampling and analysis is able to

also capture the correct folding behavior of the mutants, see Table XI.

Table XI.: Comparison of secondary structure formation orders for proteins G, L,

and their mutants with known experimental results. Brackets indicate no clear order.

In all cases, our technique predicted the secondary structure formation order seen in

experiment. Only formation orders greater than 1% are shown.

Protein Experimental Order Rigidity Order %

G [α,β1,β3,β4], β2 [122] α, β3-4, β1-2 99.4

[α,β4], [β1,β2,β3] [123]

L [α,β1,β2,β4], β3 [134] β1-2, α, β3-4 100.0
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Table XI Continued

Protein Experimental Order Rigidity Order %

[α,β1], [β2,β3,β4] [135]

NuG1 β1-2, β3-4 [114] α, β1-2, β3-4 97.6

β1-2, α, β3-4 1.6

NuG2 β1-2, β3-4 [114] α, β1-2, β3-4 96.6

β1-2, α, β3-4 1.1

β3-4, β1-2, α 1.1

L1 β3-4 may be formed earlya [113] α, β2-α, β3-4, β1-2, β1-α, β1-4 100.0

L2 β3-4 may be formed earlya [113] α,β3-4, β2-α, β1-2, β1-4, β1-α 83.3

α, β2-α, β3-4, β1-2, β1-4, β1-α 9.0

β3-4, α, β2-α, β1-2, β1-4, β1-α 7.7

L3 β3-4 may be formed earlya [113] α, β3-4, β2-α, β1-2, β1-4, β1-α 96.5

α, β2-α, β3-4, β1-2, β1-4, β1-α 3.5

L4 β3-4, β1-2 [113] α, β2-α, β3-4, β1-2, β1-4, β1-α 93.4

β2-α, α, β3-4, β1-2, β1-4, β1-α 6.6

S1 β3-4 may be formed earlya [113] α, β3-4, β1-2, β2-α, β1-4, β1-α 100.0

S2 β3-4 may be formed earlya [113] α, β3-4, β2-α, β1-2, β1-α, β1-4 70.8

α, β2-α, β3-4, β1-2, β1-α, β1-4 29.2

aRefolding kinetics experiments [113] indicate that the mutant folds faster than
wild-type and on the same order of magnitude as mutant L4 suggesting that the
folding behavior is similar to mutant L4. No other experiments were performed by
the authors to confirm this hypothesis.
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B. Relative Hydrogen Exchange

Hydrogen exchange investigates protein folding by identifying which parts of the

structure are most exposed or most protected [42]. From this data one can infer

which portions of the protein fold first and which are last to form, up to the millisec-

ond timescale. Since hydrogen exchange identifies specific proton exchanges during

folding, it has become a prominent experimental technique when studying folding

intermediates [148]. Here we use rigidity analysis and our approximate landscape

models (i.e., roadmaps) to compute relative hydrogen exchange rates. The goal is to

validate against experimental data and to provide information for residues that were

unable to be measured experimentally.

There are two main types of hydrogen exchange experiments: continuous label-

ing and pulse labeling. In continuous labeling experiments, proteins are exposed to

Deuterium (D2O) during folding. This causes exposed hydrogens to swap with D2O.

In pulse labeling, folding is induced and brought to an equilibrium point. After this,

the proteins are exposed to D2O for a short pulse. This allows identification of the

exposed hydrogens at that equilibrium point because they have been swapped with

D2O.

Hydrogen exchange analysis can then proceed either locally or globally. In local

analysis, the protein is broken up into short subsections, and these subsections are

studied for D2O exposure. Global analysis gives an overall view of how the protein

behaved in the D2O environment. Both the local and global results are analyzed with

tools such as Mass Spectrometry [42] or NMR [149].

We have developed two new techniques to extract relative hydrogen exchange

rates from our approximate landscape models. Our methods can compute relative

exchange rates from any input pathway. We use MMC (described in Chapter II, Sec-
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tion C.3) to extract multiple pathways, analyze each one individually for its relative

exchange rates, and then average the results over all input pathways.

1. From Residue Flexibility

Our first method is based on the idea that at a given conformation (or path-step),

flexible residues are more likely to experience hydrogen exchange while rigid residues

are less likely to exchange. We can label every residue at every path-step along an

input pathway as rigid, independently flexible (i.e., can move without requiring move-

ment of other residues), or dependently flexible (i.e., can only move in a coordinated

motion with other residues) using rigidity analysis [81, 84]. Using these labels, we

then assign each residue at every path-step a score based on its rigidity classification:

0 for independently flexible, 0.5 for dependently flexible, and 1 for rigid. For a residue

i, we define its rigidity score, RS(p, i), for a particular pathway p, as the average of

its rigidity scores at each path-step:

RS(p, i) =
1

|p|

∑

c∈p































0 if residue i at conformation c is independently flexible

0.5 if residue i at conformation c is dependently flexible

1 if residue i at conformation c is rigid

(5.1)

To compare the rigidity scores to experimental data, we define the relative ex-

change rate exrs(p, i) for residue i along a pathway p, as

exrs(p, i) = 1 −
RS(p, i) − RSmin(p)

RSmax(p) − RSmin(p)
(5.2)

where RSmin(p) is the smallest RS(p, i) obtained over p for all residues i and RSmax(p)

is the largest. Thus, residues with large rigidity scores (i.e., most rigid along the

pathway) will have low relative exchange rates, and residues with small rigidity scores

(i.e., most flexible along the pathway) will have high exchange rates.
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MMC provides a set of stochastic pathways whose rigidity scores can be averaged

for an overall view of the rigid formation during the folding process. For a set of MMC

pathways P , we define the average relative exchange rate, EXrs(i), for residue i as

the average of the relative exchange rates, exrs(p, i), for all pathways p ∈ P :

EXrs(i) =
1

|P |

∑

p∈P

exrs(p, i) (5.3)

Fig. 46(a) shows the rigidity analysis along an example pathway for protein G

(a 56 residue protein with a central α-helix flanked by two β-hairpin turns), and

Fig. 47 and Fig. 48(a) shows the corresponding relative exchange rates. The second

β-hairpin is experimentally known to form before the first β-hairpin [95, 96]. This

behavior is reflected in both the rigidity scores and the relative exchange rates: β-

hairpin 2 remains more rigid longer than β-hairpin 1 along the pathway in Fig. 46(a),

and its corresponding relative exchange rates Fig. 47 are lower.

2. From Rigid Cluster Decomposition

Previous experimental [95] and simulation [30, 31] techniques have helped clarify the

folding core definition, a related application to hydrogen exchange. Their work sug-

gests that the slowest exchanging residues also include those involved in the formation

of tertiary structure, as identified by long-range contacts, rather than simply those

involved in secondary structure formation. Inspired by this, we define another score

called the cluster score based on rigid cluster decomposition. Rigidity analysis can

group rigid residues together in rigid clusters. Inside a rigid cluster, all the residue

positions are fixed with respect to each other. Two rigid clusters may, however, move

relative to each other. This partitioning is called the rigid cluster decomposition.

First, we identify subsequences of rigid residues that are more than 1 residue

long. For all subsequence pairs identified, if they contain tertiary contacts between
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(a)

(b)

Fig. 46.: Example unfolding pathway for protein G. In all plots, α-helices (filled

triangles) and β-sheets (empty triangles) are indicated along the bottom for reference.

(a) Rigidity analysis results for every path-step from folded (bottom) to unfolded

(top). At each path-step, residues are labeled rigid (red), dependently flexible (green),

or independently flexible (not colored). (b) Contact subsequence presence at every

path-step from folded (bottom) to unfolded (top). At each path-step, residues are

colored black if they have a cluster score of 1.
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Fig. 47.: Corresponding relative exchange rates from the rigidity scores (red) and the

cluster scores (green) for the example unfolding pathway for protein G. Normalized

experimental data shown below for reference. In all plots, α-helices (filled triangles)

and β-sheets (empty triangles) are indicated along the bottom for reference.
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(a) (b)

Fig. 48.: Protein coloring based on relative exchange rates for the example unfolding

pathway for protein G. Residues are shaded by relative exchange rate from fastest

(blue) to slowest (red) based on (a) rigidity scores and (b) cluster scores.



126

them, we label them as contact subsequences. We then give all residues at that path-

step belonging to a rigid cluster present in one of the contact subsequences a score

of 1 and all other residues a score of 0. For a residue i, we define its cluster score,

CS(p, i), for a pathway p as the average of its cluster scores at each path-step:

CS(p, i) =
1

|p|

∑

c∈p































1 if residue i at conformation c ∈ a rigid cluster from a

contact subsequence

0 otherwise

(5.4)

As in the definition of the relative exchange rate from the rigidity score, we can define

a relative exchange rate excs(p, i) from the cluster score for a pathway p as

excs(p, i) = 1 −
CS(p, i) − CSmin(p)

CSmax(p) − CSmin(p)
(5.5)

where CSmin(p) is the smallest CS(p, i) obtained over p for all residues i and CSmax(p)

is the largest. With this definition, residues with large cluster scores will have low

relative exchange rate cluster scores (likely to be in the core), and residues with small

cluster scores will have high relative exchange rate cluster scores (unlikely to be in

the core).

With the set of stochastic pathways provided by MMC, we can average cluster

scores for an overall view across all pathways. For a set of MMC pathways, we define

the average relative exchange rate, EXcs(i), for residue i as the average of the relative

exchange rates, excs(p, i), for all pathways p ∈ P :

EXcs(i) =
1

|P |

∑

p∈P

excs(p, i) (5.6)

Fig. 46(b) shows the cluster score along the same example pathway for protein

G, and Fig. 47 and Fig. 48(b) shows the corresponding relative exchange rates from

cluster scores. Again, β-hairpin 2 has a much lower relative exchange rate than
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β-hairpin 1.

3. Related Computational Methods

A related computational approach to relative hydrogen exchange is the COREX/BEST

algorithm [28, 29]. It is a statistical thermodynamic approach to studying the pro-

tein’s equilibrium folding pathway. It partitions a protein conformation into a se-

quence of “folding units”, typically 6–8 residues long. Each folding unit may be com-

pletely folded/native-like or unfolded/non-native-like. It then enumerates all such

protein conformations and computes their relative free energy. With this relative free

energy, they can assign probabilities that individual residues will be folded or unfolded

for any degree of folding along the equilibrium folding pathway. These probabilities

are used to calculate residue stabilities and can be related to hydrogen exchange

protection factors.

4. Results

We studied several different proteins of varying size and structure, see Table XII.

Fig. 49 compares the simulated exchange rates, using both rigidity scores and cluster

scores, to available experimental data (see references in Table XII). The plots also

label which residues for which experiment was unable to obtain exchange rates. For

the normalized experimental rate data, unmeasured residues are indicated with empty

bars at -0.2. While experiment is more limited to the residues it can study, our

simulation can study all residues with known atom coordinates. Note that OMTKY3

and Protein A, RNase T1, and Barnase in Fig. 49 do not have values for simulated

rates from cluster scores. This is because the native state for these proteins is not

sufficiently rigid to obtain a cluster score of 1 for any residue. Of the 21 proteins

studied, 4 fell into this category.
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Table XII.: Proteins studied for relative hydrogen exchange and folding core identi-

fication. The % of a protein measured experimentally has an average of 46.34 and a

standard deviation of 22.44. Experiments measuring less than one standard deviation

below the average are indicated in boldface.

Sec. Experimental Data

Protein PDB Len. Struct. (% Measured)

Ovomucoid third domain 1IY5 54 1α + 4β [150] (22.22%)

(OMTKY3)

B1 domain of protein G 1PGA 56 1α + 4β [122] (46.43%),

(Protein G) [123] (91.07%)

Chicken src SH3 domain 1SRM 56 1α + 3β [151] (42.86%)

(cSH3)

Bovine pancreatic trypsin 1BPI 58 2α + 2β [127] (75.86%),

inhibitor (BPTI) [126] (15.52%),

[128] (13.79%)

Protein A, B domain 1BDD 60 3α [131] (46.67%, 33.33%)

(Protein A)

Cardiotoxin analogue III 2CRS 60 6β [152] (50.00%)

(CTXIII)

B1 domain of protein L 2PTL 62 1α + 4β [134] (53.23%),

(Protein L) [135] (85.48%)

Chymotrypsin inhibitor 2 2CI2 65 2α + 5β [138], (47.69%),

(CI2) [139] (41.54%)

Tendamistat 2AIT 74 7β [153] (54.05%),
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Table XII Continued

Sec. Experimental Data

Protein PDB Len. Struct. (% Measured)

[154] (67.57%)

Ubiquitin 1UBI 76 3α + 5β [141] (53.95%)

Pseudomonas aeruginosa 351C 82 5α [155] (40.24%)

cytochrome c551 (Pa cyt c551)

Ribonuclease T1 (RNase T1) 1BU4 104 1α + 7β [156] (23.08%),

[157] (34.62%)

Barnase 1A2P 108 4α + 6β [158] (23.15%),

[159] (35.19%)

Saccharomyces cerevisiae 2YCC 108 5α [160] (83.33%),

iso-1-cytochrome c (y-cyt c) [161] (80.56%)

α-Lactalbumin 1HML 123 9α + 3β [162] (36.59%)

Ribonuclease A (RNase A) 1RBX 124 4α + 7β [163] (21.77%),

[164] (37.10%)

CheY 3CHY 128 5α + 5β [165] (28.91%)

Equine lysozyme (Lysozyme) 2EQL 129 8α + 5β [166] (51.94%),

[167] (51.94%)

Human acidic fibroblast 2AFG 129 4α + 10β [168] (72.09%)

growth factor-1 (hFGF-1)

Apo-Myoglobin (ApoMb) 1A6M 151 10α [169] (25.17%),

[170] (25.17%)

Ribonuclease H (RNase H) 2RN2 155 5α + 5β [171] (90.32%),
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Table XII Continued

Sec. Experimental Data

Protein PDB Len. Struct. (% Measured)

[172] (19.35%)
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Fig. 49.: Comparison of simulated exchange rates from rigidity scores (red) and clus-

ter scores (green) to experimental data (open/filled squares and circles). α-helices

(filled triangles) and β-sheets (empty triangles) are indicated along the bottom for

reference. When available, the normalized experimental data is plotted below the

simulated exchange rates plot. Unmeasured residues are indicated with empty bars

at -0.2. Astricks in the experimental data plots indicate that the authors reported

these residues as “fast exchanging” or “slow exchanging” instead of providing a rate.



132

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50

R
el

at
iv

e 
Ex

ch
an

ge
 R

at
e

Residue

Protein G (1PGA)

EXRSEXCS
Alpha Helix
Beta Sheet

Folding Core from Pulse Labeling Hydrogen EX [Kuszewski94]
Pulse Labeling Hydrogen EX [Kuszewski94] Not Reported

Folding Core from Continuous Labeling Hydrogen EX [Orban95]
Continuous Labeling Hydrogen EX [Orban95] Not Reported

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  10  20  30  40  50

N
or

m
al

iz
ed

 R
at

e

Residue

Pulse Labeling Hydrogen Exchange Rates [Kuszewski94]

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  10  20  30  40  50

N
or

m
al

iz
ed

 R
at

e

Residue

Continuous Labeling Hydrogen Exchange Rates [Orban95]

Fig. 49 Continued
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The rigidity score exchange rates are more sensitive than the cluster score ex-

change rates to changes in rigidity. This is due to the nature of the scores: a rigidity

score may be one of 3 values (i.e., 0, 0.5, or 1) while a cluster score is limited to 2 (i.e.,

0 or 1). However, both simulated exchange rate curves show similar overall shapes

with peaks and valleys aligned over many of the residues. In addition, there is good

correlation between experimental rates and simulated exchange rates. For example.

the peaks and valleys of OMTKY3 and Tendamistat simulated rates match the peaks

and valleys of the experimental data.

While there is some correspondence between simulated exchange rate and sec-

ondary structure membership, there is not a direct mapping. First, not every sec-

ondary structure element has a low simulated exchange rate, e.g., β3 in OMTKY3,

α1 in BPTI, α2 in Protein A, β1 and β2 in CTXIII, and β6 in Tendamistat. Sec-

ondly, low simulated exchange rates are not limited to secondary structure elements.

Residues 26–28 in OMTKY3, 25–28 in BPTI, 39 in Protein A, 47–50 in protein G,

and 49–51 in Tendamistat all have low simulated exchange rates but are not part

of an α-helix or β-sheet. Finally, simulated exchange rates are not always constant

across a secondary structure element, but may vary as in β1 from protein G and β3

from Tendamistat.

Fig. 50 provides a visual comparison of simulated exchange rates to available ex-

perimental data on the 3D structure. Note that the gray residues in the experimental

data are not necessarily outside the folding core but may not have been measured. A

strength of our simulation is that we can compute relative exchange rates for every

residue in the structure while experiments are limited to which residues they can

accurately probe.

There is a strong correlation between residues labeled as part of the folding

core by experimental data and the slowest exchange residues from simulation (red).
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Fig. 50.: Visual comparison of simulated exchange rates to experimental data.

Residues identified in the folding core are shaded red. For experimental data, grey

residues were either not identified as the folding core or not measured. For simu-

lated exchange rate data, residues are shaded by exchange rate from fastest/blue to

slowest/red.
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These slowest exchanging residues tend to cluster together into one group on the 3D

structure which is not apparent by looking at their placement along the sequence

alone. Conversely, the fastest exchanging residues (blue) tend to fall on the outer

surface of the 3D structure. Recall that residue placement on the 3D structure (i.e.,

buried or exposed) is not part of either simulated exchange rate model, yet we see a

correlation between tertiary placement and simulated exchange rate as is also observed

in experimental data. Thus, rigidity analysis, either through the rigidity score or the

cluster score, can approximate the likelihood of exchange without an explicit solvent

model.

Table XIII reports the average relative exchange rate differences between the

overall protein and the experimentally defined folding core (i.e., slowest exchanging

residues) for both rigidity scores and cluster scores. For both scores, there is a dra-

matic decrease in simulated exchange rate when looking at the folding core versus

the entire protein. On average, there is a 36.7% drop in EXRS and a 43.3% drop in

EXCS.

Table XIII.: Comparison of average relative exchange rate for both EXRS and EXCS

between the entire protein and the experimentally defined folding core (i.e., the slowest

exchanging residues). Protein name abbreviations are given in Table XII.

Average EXRS Average EXCS

Exp. Folding % Folding %

Protein Data All Core Diff. All Core Diff.

OMTKY3 [150] 0.3448 0.0295 -91.4% n/a n/a n/a

Protein G [122] 0.1641 0.0625 -61.9% 0.4250 0.3904 -8.1%
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Table XIII Continued

Average EXRS Average EXCS

Exp. Folding % Folding %

Protein Data All Core Diff. All Core Diff.

[123] 0.1641 0.0286 -82.6% 0.4250 0.1843 -56.6%

cSH3 [151] 0.3793 0.2867 -24.4% 0.7332 0.5782 -21.1%

BPTI [127] 0.3082 0.1112 -63.9% 0.4912 0.0173 -96.5%

[126] 0.3082 0.1229 -60.1% 0.4912 0.0742 -84.9%

[128] 0.3082 0.1421 -53.9% 0.4912 0.0926 -81.1%

Protein A [131] 0.4876 0.3594 -26.3% n/a n/a n/a

[131] 0.4876 0.4603 -5.6% n/a n/a n/a

CTXIII [152] 0.4654 0.4562 -2.0% 0.6106 0.3424 -43.9%

Protein L [134] 0.3626 0.2288 -36.9% 0.6609 0.5394 -18.4%

[135] 0.3626 0.1003 -72.3% 0.6609 0.7269 10.0%

CI2 [138] 0.3782 0.3412 -9.8% 0.3967 0.1960 -50.6%

[139] 0.3782 0.3408 -9.9% 0.3967 0.1918 -51.7%

Tendamistat [153] 0.3079 0.1531 -50.3% 0.4878 0.2267 -53.5%

[154] 0.3079 0.1746 -43.3% 0.4878 0.2739 -43.8%

Ubiquitin [141] 0.4199 0.3237 -22.9% 0.8403 0.6750 -19.7%

Pa cyt c551 [155] 0.3282 0.0185 -94.4% 0.2475 0.0000 -100.0%

RNase T1 [156] 0.3900 0.5308 36.1% n/a n/a n/a

[157] 0.3900 0.5266 35.0% n/a n/a n/a

Barnase [158] 0.4793 0.4675 -2.5% n/a n/a n/a

[159] 0.4793 0.5121 6.8% n/a n/a n/a

y-cyt c [160] 0.3717 0.2966 -20.2% 0.7178 0.5714 -20.4%
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Table XIII Continued

Average EXRS Average EXCS

Exp. Folding % Folding %

Protein Data All Core Diff. All Core Diff.

[161] 0.3717 0.2457 -33.9% 0.7178 0.5000 -30.3%

α-Lactalbumin [162] 0.4435 0.2857 -35.6% 0.8253 0.9091 10.2%

RNase A [163] 0.3945 0.2926 -25.8% 0.6784 0.3976 -41.4%

[164] 0.3945 0.3142 -20.4% 0.6784 0.4162 -38.6%

CheY [165] 0.2433 0.1345 -44.7% 0.7128 0.5794 -18.7%

Lysozyme [166] 0.4950 0.2099 -57.6% 0.8333 0.3437 -58.8%

[167] 0.4950 0.3472 -29.9% 0.8333 0.6053 -27.4%

hFGF-1 [168] 0.4366 0.4155 -4.8% 0.8661 0.8322 -3.9%

ApoMb [169] 0.2124 0.0511 -75.9% 0.3983 0.0000 -100.0%

[170] 0.2124 0.0598 -71.8% 0.3983 0.0089 -97.8%

RNase H [171] 0.3049 0.1572 -48.4% 0.5307 0.2905 -45.3%

[172] 0.3049 0.0635 -79.2% 0.5307 0.4207 -20.7%

Average 0.3623 0.2472 -36.7% 0.5917 0.3709 -43.3%

Except for the central α-helix in protein G, the fastest and slowest exchanging

residues match between the simulated exchange rates from rigidity scores and from

cluster scores. In protein G, the high rigidity scores indicate that this central helix

forms rigid structure early and maintains it for a large part of the folding process.
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However, recall from Chapter V, Section B.2 that in order to have a high cluster

score, the helix must form and maintain contacts to other parts of the structure

outside its subsequence. Thus, the cluster score for the helix is low in these two

proteins yielding higher simulated exchange rates. The rigidity score model may

be more generally applicable by recognizing that exchange rates in some proteins

may be more influenced by local rigidity/flexibility than by specific tertiary contact

placement.

Finally, we also compared the ability of our method and COREX/BEST to iden-

tify the top 5 most stable residues in a protein. A protein’s most stable residues

are important; their stabilities can be used to determine the stability of the entire

protein at equilibrium [173]. For each protein from Table XII with experimental data

performed at equilibrium, we compared the number of residues accurately predicted

in the top 5 most stable from our method and COREX/BEST. All COREX/BEST

results were obtained with their webserver http://www.best.utmb.edu/BEST using

a full enumeration with a folding unit size of 6 residues and the default values for

temperature and overall protein stability [174].

Table XIV summarizes the results. For each set of experimental data, we com-

pared the number of matches in the top 5 most stable residues. However, some data

sets had multiple stable residues with the same rate. For these data sets, the set size

was increased from 5 to include such residues. Residues for which no experimental

data was provided were ignored. On average, all methods predicted a third of the

residues correctly with the cluster score performing slightly better. When counting

the number of “winning” predictors for each data set, the rigidity score performs the

best. Note that for two proteins, RNase T1 and Barnase, the cluster score was un-

able to produce results because the native state for these proteins is not sufficiently

rigid to obtain a cluster score of 1 for any residue. Also, COREX/BEST was the
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only method to completely mispredict all of the most stable residues for two proteins,

α-Lactalbumin and Lysozyme.

Table XIV.: Comparison between rigidity scores (RS), cluster scores (CS), and

COREX/BEST of their ability to predict the most stable residues. The set size

is the number of most stable (slowest exchanging) residues examined. It was chosen

to be 5 unless the data set had multiple residues with the same rate in which it was

increased to include such residues. The best predictor for each data set is displayed

in boldface. Protein name abbreviations are given in Table XII.

Experimental Set % Top Predicted

Protein Data Size RS CS COREX/BEST [174]

Protein G [123] 9 22 11 33

cSH3 [151] 5 20 20 40

Protein L [135] 7 29 29 14

CI2 [138] 5 60 40 40

[139] 9 56 44 22

Tendamistat [153] 7 57 57 29

[154] 7 29 29 29

Ubiquitin [141] 5 40 40 40

Pa cyt c551 [155] 14 55 55 70

RNase T1 [157] 5 20 n/a 20

Barnase [159] 5 20 n/a 40

y-cyt c [160] 14 50 43 36
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Table XIV Continued

Experimental Set % Top Predicted

Protein Data Size RS CS COREX/BEST [174]

[161] 11 55 55 18

α-Lactalbumin [162] 6 33 33 0

RNase A [164] 5 20 20 20

CheY [165] 5 20 60 20

Lysozyme [167] 14 7 7 0

ApoMb [169] 26 65 77 85

Average 37 39 32

# of ‘Wins’ 12 8 9

C. Folding Core Identification

The protein folding core is the subset of the protein’s structure that is the first to form

during folding and the last to break during denaturation [175]. Although the idea

may seem simple, both experimental and simulation techniques to capture folding

core membership have found it challenging and have often been unsuccessful. Folding

core identification is critical in tasks such as protein design where the fabrication of

proteins with predictable structure is paramount [175].

Various experimental methods have been used to identify the folding core with

hydrogen exchange being one of the most common. The folding core is typically iden-
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tified by slowly exchanging/highly protected regions [175, 176]. Although methods

such as hydrogen exchange have taken center stage in identifying folding intermedi-

ates and describing the folding core, these methods cannot be easily applied to all

proteins. Hydrogen exchange often uses high-resolution NMR, so it requires a prior

assignment of the spectrum for the studied protein. Also, information about the hy-

drogen exchange in local segments is dictated by the number of allowable cleavage

points [40].

We present a new computational method for predicting folding core membership

based on relative hydrogen exchange rates extracted from our approximate landscape

models (see Chapter V, Section B). In contrast to previous simulation methods

for identifying the folding core [30, 31], we do not keep the protein structure fixed

during the denaturation simulation and we do not restrict the folding identification

to residues involved in secondary structure. We compare our predictions to those

determined experimentally and to other computational approaches [30, 31]. Our

results show good correlation to experiment and also indicate that our technique may

be useful in suggesting other components of rigid structure for further study that

have not yet been identified by experiment as part of the core.

1. Related Computational Methods

Several simulation methods have also been used to identify the folding core.

Solvent Accessible Surface Area. Solvent accessible surface area (SASA)

[177] has been a popular method to characterize residues in proteins. It is typically

computed by rolling a sphere/probe over the surface of a protein conformation [178].

It has been conjectured that SASA would be a good indicator of hydrogen exchange

rates because residues near the surface (i.e., with high SASA values) should have a

higher rate of exchange because they are more exposed to D2O than residues buried
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deep inside the protein (i.e., with low SASA values). However, statistical studies of

experimental hydrogen exchange rates show poor correlation to SASA [179]. This is

due to the inability of SASA to distinguish between deeply buried residues and those

just below the surface.

Floppy Inclusions and Rigid Substructure Topography. Floppy Inclu-

sions and Rigid Substructure Topography (FIRST) [30] uses a full atomic description

to identify rigid clusters of residues for a fixed protein conformation. They simulate

denaturation by iteratively breaking the weakest hydrogen bond and recomputing the

resulting rigid residue clusters. They do not, however, change atom placements in

response to bond breaking. They then identify the folding core as the set of mutually

rigid residues (i.e., in the same rigid cluster) belonging to at least two different sec-

ondary structure elements that remain rigid longest in the denaturation simulation.

Gaussian Network Models. Gaussian Network Model (GNM) [31] represents

residues as beads connected by elastic springs representing chain connectivity and in-

termolecular bonding. These are subject to Gaussian fluctuations. GNM simulations

provide slow mode minima and fast mode peaks which are used to identify folding

cores. These fluctuations and modes of motion are limited to the immediate vicinity

of the native state.

While FIRST and GNM have been able to predict the folding core with higher

probability than random selection, they have struggled in identifying some folding

cores. For example, α-lactalbumin [162] and T4 lysozyme [169] were mispredicted

by FIRST [30]. Another drawback of these methods is that they keep the structure

of the protein fixed throughout the denaturation simulation and thus are unable to

study the effect on the conformation due to bond-breaking.
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2. From Relative Hydrogen Exchange Rates

Folding core membership can be inferred from relative exchange rates, whether they

are calculated from residue rigidity or from rigid cluster decomposition. Commonly,

given a set of relative exchange rates from a set of residues, there exists some threshold

t that defines the residues that are most stable (i.e., the folding core). This threshold

definition is frequently applied to experimental exchange rates in order to define the

folding core [95].

There are many ways to define a threshold t. For experimental data, this is at the

discretion of the authors and varies widely in the literature. Instead, we determine

the threshold automatically based on the distribution of the data. To determine t,

we need to partition the data into two sets: in core and out of core. One method for

partitioning data is k-means clustering [180] where the input data is divided into k

clusters of minimal variance. This unsupervised learning technique has gained popu-

larity because it requires no user intervention and is simple to apply. We could directly

apply k-means clustering with k = 2 to determine t. However, the experimental data

typically has many large gaps and/or outliers that could lead to inappropriate group-

ings. For example, consider the experimental rates for Tendamistat in Fig. 51(a).

There are several residues at each terminus that have rates significantly higher than

the rest. With k = 2, the value of t computed from the clustering (dashed line) is

too large and would label over 90% of the protein as in the folding core. However,

with larger values of k (Fig. 51(b,c)), the percentage of the protein identified by the

minimum threshold is much more reasonable. The difficulty then is in automatically

determining k.

To determine an appropriate value for k, we examine the percentage of the vari-

ance explained, (
∑k

i=1 σ
2
i )/σ

2 where σ2
i is the variance of the ith cluster and σ2 is
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Fig. 51.: Minimal variance thresholds (dashed lines) to cluster EXRS for Tendamistat

using (a) k = 2, (b) 3, and (c) 4 clusters.
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the variance of the original data set, for each k. We select the k that maximizes the

second derivative of this function. This is commonly known as the elbow criterion

[181, 182]. Intuitively, this criterion selects the k such that adding additional clusters

does not add sufficient information. Fig. 52 gives an example using Tendamistat: it

shows the percentage of variance explained as a function of k and the inset plots the

second derivative. In both plots, the elbow is indicated with a black circle.
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Fig. 52.: Example of the elbow criterion for selecting an appropriate number of clus-

ters k. The “elbow” (black circle) is defined at the point where the second derivative

of the percentage variance explained (inset) is maximal. In this example, the “elbow”

occurs at k = 3 for EXRS and at k = 6 for EXCS.

Note that unlike the folding core definition in [30], ours does not require the core
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to be restricted to residues in secondary structure components. This is useful for

proteins like Bacillus amyloliquefaciens ribonuclease (Barnase), cardiotoxin analogue

III (CTX III), and human α-lactalbumin (α-LA), where the folding core also involves

loops [95].

3. Results

We studied the same set of proteins as for the relative hydrogen exchange rate study,

see Table XII. Because a folding core threshold in terms of experimental data is

not universally agreed upon, we calculate an appropriate threshold instead. We use

the same elbow partitioning scheme to label the residues as in or out of the folding

core when data is provided. If numerical data is not provided for the experiment,

we use the labeling scheme suggested by the authors. Fig. 49 shows the normalized

experimental data below the simulated exchange rates plot. Unmeasured residues are

indicated with empty bars at -0.2.

We examine the ability of our method to identify the folding core. We also com-

pare our method to 4 other computational techniques: slow mode minimas (GNM-G),

fast mode peaks (GNM-H) [31], and FIRST [30] with two different hydrophobic tether

definitions: H3 (the default and most restrictive) and H1 (the least restrictive). We

used data provided by the iGNM webserver at http://ignm.ccbb.pitt.edu/ and

identified the folding core from slow modes and fast modes as described in [31]. For

FIRST, we added missing hydrogens using the WHATIF [183] webserver at

http://swift.cmbi.ru.nl/servers/html/prepdock.html and computed folding cores

using the FIRST 6.2 binary provided at http://flexweb.asu.edu/software/first/

as described in [30]. Note that some results may differ to those previously reported;

disussions with the authors of GNM and FIRST suggest this could be due to webserver

and default setting changes [184].
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For each set of experimental data, we compare the sensitivity and specificity of

the different folding core identification techniques. We measure sensitivity as the ratio

of the number of residues accurately labeled as in the folding core by simulation to

the number of residues labeled as in the folding core by experimental data:

sensitivity(p) =
|FCS(p) ∩ FCE(p)|

|FCE(p)|
(5.7)

where FCE(p) is the set of residues labeled as in the folding core by experiment and

FCS(p) is the set of residues labeled as in the folding core by simulation for the

protein p. We measure specificity as the ratio of the number of residues accurately

labeled as out of the folding core by simulation to the number of residues labeled as

out of the folding core by experimental data:

specificity(p) =
|NFCS(p) ∩ NFCE(p)|

|NFCE(p)|
(5.8)

where NFCE(p) is the set of residues labeled as out of the folding core by experiment

and NFCS(p) is the set of residues labeled as out of the folding core by simulation

for the protein p. We only examine residues that were measured by experimental

data which could be as little as 14% of the protein (even though simulations can label

all residues with known structure). In Fig. 50, the folding core residues identified by

simulation in red.

Figs. 53 and 54 compare the sensitivities and specificities of the various methods

for each set of experimental data. Due in part to the large noise present in the experi-

mental data (e.g., reported experimental rates for protein G do not agree, see Fig. 47),

missing measurements (i.e., on average less than half of the protein is measured and

several data sets measure less than 25%), and labeling convention inconsistencies be-

tween data sets, all computational methods exhibit large variances in sensitivity and

specificity. For reference, perfect sensitivity and specificity lies at coordinates (0,1)
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and random guessing performance is indicated by the diagonal black line. It is in-

teresting to note that while all the methods perform worse than random guessing on

some of the data, the other methods have more points below the random guessing

line (23.53%, 37.50%, 48.00%, and 38.24% for GNM-G, GNM-H, and FIRST-H3, and

FIRST-H1) compared to our methods (14.71% and 18.52% for EXRS and EXCS).
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Fig. 53.: Folding core identification sensitivity and specificity by EXRS (triangles)

and EXCS (inverted triangles) compared to GNM-G slow modes [31] (stars) and

GNM-H fast modes [31] (X’s).
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Fig. 54.: Folding core identification sensitivity and specificity by EXRS (triangles)

and EXCS (inverted triangles) compared to FIRST-H3 (+’s) [30] and FIRST-H1

(circles) [30].

Table XV summarizes the overall statistics for each method. The error is cal-

culated as the normalized distance from perfect sensitivity and specificity. The best

performing method in each category is indicated in boldface. Recall that FIRST and

EXCS require at least two mutually rigid subsequences to declare a folding core. For

the 21 proteins studied, FIRST-H3 and EXCS did not identify a folding core for 7

and 4 proteins, respectively. These proteins were excluded from the data reported in



169

Table XV.: Summary of folding core identification performance. Error is the normal-

ized distance to perfect sensitivity, specificity on Figs. 53 and 54. The best perfor-

mance in each category is in boldface.

Sensitivity Specificity Error % in

Method Avg. Std. Avg. Std. Avg. Std. Core

O
v
er

A
ll

D
a
ta

S
et

s

EXRS 0.545 0.345 0.671 0.279 0.482 0.160 29.8

EXCS 0.538 0.283 0.682 0.261 0.461 0.150 29.8

GNM-G 0.432 0.217 0.715 0.161 0.474 0.129 28.5

GNM-H 0.302 0.263 0.846 0.132 0.525 0.173 15.4

FIRST-H3 0.501 0.310 0.543 0.293 0.551 0.142 38.6

FIRST-H1 0.518 0.277 0.573 0.313 0.521 0.153 40.7

O
v
er

5
M

o
st

C
o
m

p
le

te
D

a
ta

S
et

s EXRS 0.631 0.241 0.627 0.279 0.420 0.124 43.5

EXCS 0.524 0.202 0.750 0.063 0.392 0.104 34.5

GNM-G 0.189 0.155 0.815 0.105 0.591 0.118 21.1

GNM-H 0.223 0.246 0.927 0.050 0.554 0.171 15.3

FIRST-H3 0.628 0.122 0.612 0.025 0.384 0.046 30.0

FIRST-H1 0.572 0.084 0.709 0.145 0.373 0.087 39.0

O
v
er

5
L
ea

st
C

o
m

p
le

te
D

a
ta

S
et

s EXRS 0.753 0.262 0.610 0.427 0.402 0.260 32.1

EXCS 0.733 0.163 0.276 0.428 0.592 0.215 42.5

GNM-G 0.524 0.233 0.830 0.199 0.398 0.184 24.4

GNM-H 0.547 0.282 0.812 0.218 0.394 0.213 16.2

FIRST-H3 0.681 0.406 0.392 0.534 0.615 0.278 53.1

FIRST-H1 0.386 0.191 0.625 0.401 0.560 0.247 28.8
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the table.

Both our methods perform better than FIRST and GNM-based methods in sen-

sitivity, between GNM and FIRST in specificity, and better than FIRST and similar

to GNM-G in error. Table XV also shows how the size of the labeled folding core

correlates to sensitivity and specificity. Methods that “under-guess” will tend to

have lower sensitivities and higher specificities (i.e., towards the lower-left quadrant

of Figs. 53 and 54), and methods that “over-guess” will tend to have higher sensitivi-

ties and lower specificities (i.e., towards the upper-right quadrant). GNM-H predicts

the smallest folding cores (at 15.4%) and also has the lowest (highest) sensitivity

(specificity). GNM-H is overly conservative in its identification of the folding core

and thus greatly sacrifices sensitivity by labeling the largest portions of the protein

as outside the core. FIRST with the largest folding cores (at 38.6% and 40.7%), has

moderate sensitivity and the lowest specificity.

We believe the low sensitivities and specificities for all methods are caused largely

by varying experimental conditions and missing experimental data. On average, less

than half of the protein was measured experimentally with many below 25%. This

imposes a bias to the labeling given as in many cases these missing measurements are

caused by residues exchanging outside the experiment’s scope. We found that by con-

sidering only experiments with greater than 80% measured (the five most complete)

significantly reduced the standard deviation for all methods across all metrics indi-

cating greater confidence in the predicted labeling (see Table XV). This bias is also

apparent when looking at where experimentally-labeled folding core residues lie on

the 3D structure (see Fig. 50). Consider OMTKY3 containing an 11-residue α-helix

and 3 β-strands, each 3 residues long. Experimental data indicates that portions of

the α-helix and β-strands 1 and 2 are part of the folding core. Notice that for the

two β-strands, it does not label the central residue as part of the folding core but
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does label the two neighboring resides as folding core residues. It is unlikely that the

folding core is made up of isolated residues as the labeling would indicate. Conversely,

our simulation labels the entire two β-strands and the connecting turn as part of the

folding core. Similar trends may be seen for many of the proteins. In general, our

technique does not label isolated residues but instead labels collections of residues

nearby on the 3D structure. This agrees with the expectation that the folding core

consists of residues that neighbor each other on the tertiary structure (but may or

may not be distant in sequence).
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this dissertation, we have built upon the existing protein folding framework to

extend its applicability to larger proteins and to a wider range of motions. We

presented a methodology for incrementally building roadmaps until they satisfy a set

of evaluation criteria specifically directed at the motion to be modeled, either folding

to a known, native state or transitions between given structures. We generalized the

protein folding framework to be biased towards multiple conformations of interest

instead of only towards a single conformation (e.g., the native state). This broadens

the motions the framework can model from folding to general transitions between

multiple conformations. This work also relies heavily on rigidity theory to more

efficiently sample the energy landscape, characterize similar conformations in terms

of their rigidity composition, and study properties of the energy landscape including

hydrogen exchange and folding core identification.

Incremental Map Generation (IMG) relieves the user of the burden of specifying

a sampling density (or roadmap size). Selecting this parameter has been problematic

since it is highly sensitive to protein size, the ruggedness of the energy landscape,

and the the types of motions to be captured. IMG instead builds the roadmap until

it meets the set of user-specified evaluation criteria. These evaluation criteria are

more straightforward for the user to set because they can be customized for the

particular problem at hand. We demonstrated two such criteria for two different

problems: secondary structure formation order stabilization for protein folding and

max-flow thresholds for protein transitions (Chapter III, Section A.2). We described

and evaluated two versions of secondary structure formation order stabilization, one

which based formation on native contacts present (Chapter III, Section A.2) and one
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which based formation on rigidity analysis (Chapter V, Section A). We used roadmaps

for protein G as an example to illustrate how the increment size and the stabilization

threshold affects roadmap size (Chapter III, Section A.3). We also confirmed the

effectiveness of this approach by comparing it previous methods [18, 21, 22, 23] over

a set of 26 proteins. IMG, coupled with rigidity-based sampling and distance metrics,

produced significantly smaller roadmaps (and higher connectivity) with the same

secondary structure formation order distribution as before (Chapter V, Section A.1).

The pathway distributions also agreed with experimental data when available for all

proteins except 1 (wild-type chyotrypsin inhibitor 2).

Generalizing our protein folding framework to handle multiple conformations of

interest expands the types of protein motion we can model. Instead of being limited

to protein folding, we can study other problems relating to transitions between bound

and unbound conformations, folding intermediates, misfolding, and allosteric inter-

actions. We described this generalized methodology (Chapter III, Section B) and

presented results for several different transitions, some involving simple secondary

structure rearrangement and some requiring more large-scale conformational change

as in the case of calmodulin which entails the unraveling of the central α helix. We

provided evidence that the transitions mapped by our approach are more realistic

than those given by the computationally less expensive Morph Server [25], especially

for transitions requiring large conformational changes. In future research, we would

like to remove our fixed bond length and bond angle assumption. Instead of modeling

these small degrees of freedom explicitly as many simulations do, we intend to interpo-

late these values from the input structures for each residue based on the relationship

between its φ and ψ angles and the φ and ψ angles of the input structures.

Rigidity theory has been an invaluable tool in this work. We developed two sim-

plified rigidity models, the single-body, Cα model and the two-body, φ-ψ model, for
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representing protein conformations (Chapter IV, Sections A.1-2). We also described

an uncomplicated optimization to the rigidity analysis computation based on the as-

sumption that all motions to be modeled do not involve the severing of any backbone

peptide bonds (Chapter IV, Section A.3). Our comparison of the two models on a set

of 18 proteins of varying secondary structure makeup and size show that the single-

body, Cα model is faster, largely due to the smaller model size and fewer constraints

present (Chapter IV, Section A.4). Our results also show the impact of the backbone

optimization, sometimes producing a savings of over 50%. In the future, we plan

to expand the comparison the two rigidity models presented here from an empirical

treatment to a theoretical study by defining the conditions where these models differ

with respect to the rigid and flexible regions they report.

We used our rigidity models during roadmap construction to more efficiently

model the energy landscape, both through rigidity-based sampling (Chapter IV, Sec-

tion B) and new rigidity-based distance metrics (Chapter IV, Section C). This effi-

ciency was seen in the dramatic reduction of roadmap sizes for the set of 26 proteins

studied for stable secondary structure formation order (Chapter V, Section A.1). The

increased roadmap connectivity also speaks to the ability of the rigidity-based distance

metrics to identify connectable conformations. It was only with these rigidity-based

techniques that we were able to detect the subtle folding differences of structurally

similar proteins G, L, and their mutants (Chapter V, Section A.2).

Finally, we used rigidity theory to study two new protein folding properties:

relative hydrogen exchange (Chapter V, Section B) and folding core identification

(Chapter V, Section C). We compared our simulated exchange rates and ability

to identify the folding core to available experimental data and other computational

methods over a set of 21 different proteins of varying size and structure. Our method

was more successful in identifying the slowest exchanging (and therefore most stable)
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residues than COREX/BEST [28, 29] (Chapter V, Section B.4). It also performed

better than the other computational approaches [30, 31] for folding core identification

in terms of sensitivity and better than all but one class in terms of specificity (Chap-

ter V, Section C.3). We believe the real use of our technique will be to aid researchers

by providing an indication of fast and slowly exchanging residues to target for protein

design for proteins that have not yet been studied experimentally.

In the future, we would like to explore other applications of motion planning

methods and rigidity analysis to modeling protein motion. We believe these tech-

niques can be used to study other properties of protein motion such as identifying

folding intermediates, explaining possible mechanisms for allosteric interactions, and

providing a model of the energy landscape separating misfolded proteins from their

functional, native state. In addition, we want our methods to be used as a tool by

other researchers for modeling properties of protein folding and motion where exper-

imental data is not available or difficult to obtain.
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