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ABSTRACT 

Iterative Damage Index Method for Structural Health Monitoring. (December 2009) 

Taesun You, B.S., Hanyang University, Seoul, South Korea 

Co-Chairs of Advisory Committee:  Dr. Paolo Gardoni, 
                                                              Dr. Stefan Hurlebaus 

 

Structural Health Monitoring (SHM) is an effective alternative to conventional inspections 

which are time-consuming and subjective.  SHM can detect damage early and reduce 

maintenance cost and thereby help reduce the likelihood of catastrophic structural events to 

infrastructure such as bridges.  After reviewing the Damage Index Method, an Iterative 

Damage Index Method (IDIM) is proposed to improve the accuracy of damage detection.  

These two damage detection techniques are compared numerically and experimentally using 

measurements from two structures, a simply supported beam and a pedestrian bridge.  The 

dynamic properties for the numerical comparison are extracted by modal analysis in 

ABAQUS, while the dynamic characteristics for the experimental comparison are obtained 

with the Wireless Sensor Network and the Time Domain Decomposition.  In both the 

numerical and experimental phases, the accuracy of damage predictions from each method is 

quantified.  Compared to the traditional damage detection algorithm, the proposed IDIM is 

shown to be less arbitrary and more accurate when applied to both structures.  The proposed 

IDIM has the potential to improve SHM. 
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1 INTRODUCTION 

On August 1st, 2007, the I-35W Mississippi River Bridge in Minneapolis collapsed.  The 

failure of the bridge was primarily due to an error in the design of the gusset plates that was 

not detected by conventional inspections (Rosenker, 2008).  This event dramatized the 

importance of the Bureau of Transportation Statistics (2008) report that nearly 26 percent of 

the bridges in the U.S. were found to be substandard.  Traditional inspection procedures for 

bridges generally rely on subjective and irregular visual examination.  As such, there are 

variations in the inspection results even for the same structure because of the differences in 

inspectors’ experience and judgment.  Visual checking is also apt to be a schedule-based 

practice that delivers a discrete inspection process.  Discrete inspection processes can fail to 

detect hidden effects of poor design or maintenance which can be the source of sudden and 

dangerous events such as a bridge collapse.  Between 1989 and 2000, out of 65 bridge 

failures (caused by design, detailing, construction, maintenance, or material problems), 43 

failures were attributed to poor maintenance (Wardhana and Hadipriono, 2003).  As an 

alternative to periodic inspections, structural health monitoring (SHM) is a continuous 

process (Hurlebaus and Gaul, 2006) that can detect damage early, reduce the cost of repair 

and rehabilitation, and help reduce the chance of catastrophic events with the structures. 

1.1 Research Objectives 

The purpose of the work described in this thesis is to develop a less arbitrary and more 

accurate vibration-based damage detection method for SHM.  A modified DIM, referred 
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to as the Iterative Damage Index Method (IDIM), is proposed here.  The proposed IDIM does 

not require applying an arbitrary threshold to indicate damage and it is independent of the 

number of spline points.  Thus, the proposed method promises an improved capability to 

detect damage. 

This thesis refers to the measured points on a structure as recording points.  Interpolation 

between selected recording points is then used to make the modeshapes a smooth line.  In this 

thesis, the points used in interpolating the modeshapes are called spline points.  Note the 

number of spline points is always equal to or greater than the number of recording points. 

1.2 Thesis Structure 

The remaining of this thesis consists of four sections.  The technical background is described 

in the following section.  After a brief review of the algorithms used by the current DIM, the 

proposed IDIM is described.  Then, the accuracy of damage prediction using the DIM and the 

IDIM for a simply supported beam and a pedestrian bridge are compared using numerical 

data and experimental data.  Finally, the last section summarizes the findings of this thesis 

and suggests some future work. 
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2 TECHNICAL BACKGROUND 

In this study, the damage detection method using the modal properties obtained by ambient 

vibration tests is used.  The following literature review interprets the state of the art on the 

data acquisition system of SHM, modal identification techniques, damage detection using 

wireless sensors, and damage detection algorithms. 

2.1 Data Acquisition System for SHM 

SHM implementation often relies on wired data acquisition systems to collect the vibration 

response data on bridges (Peak et al., 2004).  However, wired sensor systems are costly and 

dangerous to install.  Wiring sensors on a bridge requires long cables running to various 

locations.  Also, installation of cable networks risks incomplete connection or separation of 

cables between sensors and a central computer due to strong wind, heavy rain, earthquake, 

etc.  Moreover, connecting the wired sensors requires a substantial amount of labor and time 

1 (Hurlebaus and Gaul, 2006), which means it is difficult to change locations of the wired 

sensors and to add or remove the sensors.  Protecting cables from severe environmental 

conditions also increases the installation cost of the wired sensors.  Finally, costly traffic 

disruptions and public inconvenience result when the wired sensors are installed on in-service 

bridges, since shutting down the bridges is usually required. 

A wireless sensor network (WSN) has three main advantages: (1) lower maintenance 

and installation cost; (2) flexibility in changing locations, adding or removing sensors; and 

(3) faster installation time.  These benefits enable the deployment of denser network systems 

(Whelan et al., 2007).  The wireless sensor network is more flexible, so that more reliable  

 

                                                   
 
1 The installation of the SHM system on the Tsing Ma suspension bridge cost almost $27,000 per sensing 
channel (Farrar, 2001). 
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results can be achieved.  It takes less time not only to install a WSN than traditional sensors 

and cables in infrastructure such as bridges or buildings, but also to test the system because 

individual cables in a wired system must be checked for loss of data.2  These advantages 

enable a WSN to obtain vibration data even for old or damaged bridges where deploying 

traditional sensor networks is not practical due to cost and safety issues (Paek et al., 2004).  

Finally, a wireless sensor system can also be applied to bridges in service without any need to 

close the bridges. 

The interest in wireless sensors has increased since their introduction in the 1990s with 

the growth of Information Technology (IT).  Although the initial purpose of wireless sensors 

was to remove numerous lengths of cables (Lynch et al., 2006a), its worthwhile features soon 

attracted the attention of many researchers studying SHM.  The first low-cost wireless sensor 

for ambient excitation was suggested by Straser and Kiremidjian (1998).  Since then Lynch et 

al. (2001), Lynch (2002), Casciati et al. (2003), Shinozuka (2003), Wang et al. (2005), and 

Kim et al. (2007b) have proposed additional prototypes. 

Following Pei et al. (2006), an ideal wireless sensor is: (1) inexpensive; (2) low in power 

consumption; (3) small (so that its installation does not interfere with the functionality and 

aesthetics of the bridge); (4) easily positioned and maintained; and (5) durable.  Because a 

wireless platform, the MICA 2, developed at University of California, Berkeley and made by 

Crossbow (Lynch and Loh, 2006), offers these features, it is used in this study.  The MICA 2 

was introduced in early 2002 and the reliability of the communication channel was improved 

in 2003 by using a new radio to reduce data loss as well as interference (Lynch and Loh, 

2006).  Since then, the MICA 2 has been adopted and refined by many researchers to  

                                                   
 
2 The conventional SHM system reportedly needs twice as much installation time as a wireless system (Lynch 
and Loh, 2006). 
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measure the dynamic responses of various laboratory structures.  Xu et al. (2004) designed 

and evaluated a wireless network system using the MICA 2 motes.  The wireless network 

system was evaluated by monitoring the dynamic responses from a ceiling structure.  The 

performance of the MICA 2 was verified by Kurata et al. (2005).  They installed a reference 

accelerometer and the MICA 2 on a shaking table, and found that the accelerations measured 

by both systems were in strong agreement. 

Other issues with WSN are the range in communication and the power consumption of 

wireless sensors (Lynch and Loh, 2006).  Wireless sensors without power cables require an 

independent power generator or portable power supplies like a battery.  Moreover, 

communication over a long range entails more power consumption.  A wireless sensor with 

low-power can reduce reliability of the data collection and/or the process of sending the data 

to a central computer. 

2.2 Modal Identification Techniques 

Modal identification (MI) is a method to extract vibration characteristics such as frequencies, 

modeshapes, and damping of a structure.  Since SHM depends on reliable modal properties, 

selecting an MI method is intimately linked with SHM.  Traditionally, forced vibration tests 

(FVTs) have been used to obtain the modal properties for an uncomplicated process.  Arici 

and Mosalam (2000) performed FVTs to determine the modeshapes and damping ratios of 

seven bridges in California.  Four different highway bridges were monitored by Brownjohn et 

al. (2005).  However, because the FVTs need instruments to record excitation sources, an 

ambient vibration tests (AVTs), also called an output-only modal test, have gained 

acceptance in last three decades because it offers two major benefits: simplicity and 

efficiency.  Consequently, many researchers (e.g., Arici and Mosalam, 2005; Omenzetter and 
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Brownjohn, 2006; Arici and Mosalam, 2007; Siringoringo and Fujino, 2007) have performed 

the AVTs for bridge monitoring. 

The Basic Frequency Domain technique (Peak Picking technique) proposed by Bendat 

and Mikulcik (1980) is one generally applied output-only test for the modal analysis of large 

civil structures.  Another approach is the Ibrahim time domain (ITD) method with a random 

decrement technique (Kim et al., 2005).  However, those methods require a great deal of 

skills and heavy computations.  Brinker et al. (2000b) suggested Frequency domain 

decomposition (FDD) to overcome the challenges of existing output-only approaches.  They 

applied singular value decomposition (SVD) to the output spectral density matrix.  The FDD 

was evaluated in real bridges (Brinker et al., 2000a; Brinker et al., 2001).  To improve the 

quality of identified modal parameters, Rodrigues et al. (2004) applied the random decrement 

technique to the FDD.  They compared the new method with the basic frequency domain 

decomposition and the FDD.  Unfortunately, enormous computation time is necessary to 

apply the SVD process in a frequency domain (Kim et al., 2005).  In order to reduce 

computation time for the SVD process, Kim et al. (2005) developed Time Domain 

Decomposition (TDD) to extract modal characteristics such as modeshapes and frequencies 

using acceleration signals.  In this study, the TDD is used to obtain the modeshapes.  Note 

that the modeshapes are natural properties of a structure and do not be affected by the 

excitation source (McHargue and Richardson, 1993). 

2.3 Damage Detection using Wireless Sensors 

Although many researchers have investigated a wireless monitoring system with various 

types of structures, few studies of damage detection using the wireless monitoring system 

have been reported.  Kurata et al. (2005) applied wireless sensor motes, MICA and the MICA 

2, to risk monitoring on a building.  A method where the irregular change of accelerations 
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was a risk indicator was tested with a two-story structure, but the method was only able to 

identify severe damage conditions like a collapse.  In an effort to improve on those results by 

monitoring damages such as stiffness reduction, the ratio of frequency change was obtained 

with the MICA 2 by Clayton et al. (2005).  They tried a laboratory test with a cantilever beam, 

but the method is not useful for real structures such as bridges because the frequency change 

between an intact structure and a damaged structure is too small to give a clear signal.  As an 

alternative, Lynch et al. (2006b) operated wireless sensor prototypes, proposed by Wang et al. 

(2005), to measure accelerations in a three-story test structure.  Time series analysis proposed 

by Sohn and Farrar (2001) was selected to detect damage, but the method could not localize 

and quantify the damage.  Finally, the approaches proposed in these three studies have not 

been verified through a field test. 

2.4 Damage Identification Algorithms 

A number of studies have sought to improve the accuracy of damage detection using SHM.  

Several researchers (e.g., Lenzen, 2005; Kim and Kawatani, 2007; Mizuno et al., 2008) have 

developed damage identification methods using the analysis of dynamic responses of a 

structure.  However, the damage can be estimated where the dynamic responses are recorded.  

On the other hand, many studies took advantages of the development of instrumentation 

using sensors that facilitates observation of the dynamic characteristics of a structure, such as 

frequencies and modeshapes.  For example, Pandey et al. (1991) proposed to track the 

changes in modeshapes curvature while Pandey and Biswas (1994) used flexibility changes.  

Zhang and Aktan (1995) combined the two methods proposed by Pandey et al. (1991) and 

Pandey and Biswas (1994), and developed a method using the changes in flexibility curvature.  

Shi et al. (2000) introduced the correlation between the measured modeshapes change for the 

undamaged and damaged and the analytical modeshapes change for the undamaged and 
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damaged.  If the correlation is unity, the damage is estimated correctly.  Despite those efforts, 

the methods are not practical in infrastructures such as bridges and buildings.  This is often 

the case because small changes in physical properties do not alter frequencies and 

modeshapes enough to allow the detection.  In other case, it is difficult to obtain as many 

modes as these methods need from these complicated structures.  To overcome the 

limitations, Stubbs and Kim (1996) suggested a Damage Index Method (DIM) using modal 

strain energy to detect damage. 

Several researchers (e.g., Stubbs and Kim, 1996; Stubbs and Park, 1996; Kim and 

Stubbs, 2002; Kim et al., 2003) verified the method’s accuracy with numerical simulation 

models, while others confirmed its usefulness with experimental evaluation techniques (e.g., 

Park et al., 2001; Kim and Stubbs, 2003; Kim et al., 2007a; Choi et al., 2008).  Compared 

with commonly used vibration-based damage detection methods, the DIM is the most 

accurate by far (Alvandi and Cremona, 2006; Humar et al., 2006). 

The DIM relies on calculation of the modal strain energy by measurement of the 

modeshapes of a structure to detect damage.  However, the current DIM has two major 

limitations with regard to this calculation.  First, selection of a fixed threshold to determine 

whether there is enough change in measurable physical properties to indicate damage in a 

structure has been arbitrary.  Second, damage detection with any fixed threshold can be 

affected by the number of spline points selected. 
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3 DAMAGE DETECTION ALGORITHMS 

3.1 Damage Index Method with a Fixed Threshold 

This section reviews the Damage Index Method (DIM) referred by Stubbs and Kim (1996).  

Assuming a structural element can be considered as a Euler-Bernoulli beam (see Figure 1), 

the ith modal strain energy of this undamaged element, iK , can be calculated by 

 ( ) ( )
2

0

L

i iK EI x x dxφ⎡ ⎤′′=
⎣ ⎦∫   (1) 

where L is the length of the element, EI  is the flexural rigidity, and iφ ′′  is the ith modal 

curvature.  If the element can be divided into n segments, the modal strain energy 

contribution from the jth segment to the ith mode, i jk  , is given by  

 ( )
2

 

b

i j j ia
k EI x dxφ⎡ ⎤′′=

⎣ ⎦∫  (2) 

where the jth segment is between x a=  and b.  As such, the fraction of the jth segment’s 

contribution to the total modal strain energy, i jF , can be expressed as 

  
i j

i j
i

k
F

K
=  (3) 

 
Figure 1. Structural element with n segments 

Similarly, for the corresponding damaged element, we have 

x 

1st segment nth segment 5th segment jth segment 

L 

a 

b 
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 ( ) ( )
2

0

Ld d d
i iK EI x x dxφ⎡ ⎤′′=

⎣ ⎦∫  (4) 

 ( ) ( )
2

 

bd d d
i j j ia

k EI x x dxφ⎡ ⎤′′=
⎣ ⎦∫  (5) 

  

d
i jd

i j d
i

k
F

K
=  (6) 

where the superscript ‘d’ denotes ‘damaged’.  Assuming that the fraction of the jth element’s 

contribution to the ith modal strain energy in the undamaged and damaged structure remains 

constant (i.e.,   
d

i j i jF F= ), the ratio of  the jth segment flexural rigidity in the undamaged and 

damaged structure is given by 

 
( ) ( )

( )

( )

( ) ( )

2 2

0
2 2

0

L b d
i iaj

j d b L d dj
i ia

EI x x dx x dxEI
EI x dx EI x x dx

φ φ
β

φ φ

⎡ ⎤ ⎡ ⎤′′ ′′
⎣ ⎦ ⎣ ⎦= =

⎡ ⎤ ⎡ ⎤′′ ′′
⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫
 (7) 

where jβ  is the damage index for the jth segment.  For multiple modes, jβ  is expressed as 

 
( ) ( )

( )

( )

( ) ( )

2 2

0
2 2

1
0

L b d
nm i ia

j b L d di
i ia

EI x x dx x dx

x dx EI x x dx

φ φ
β

φ φ=

⎧ ⎫⎡ ⎤ ⎡ ⎤′′ ′′⎪ ⎪⎣ ⎦ ⎣ ⎦= ⎨ ⎬
⎡ ⎤ ⎡ ⎤′′ ′′⎪ ⎪
⎣ ⎦ ⎣ ⎦⎩ ⎭

∫ ∫
∑

∫ ∫
 (8) 

where nm  is the number of modes.  Accordingly, the normalized damage index, jZ ,  is 

obtained as 

 j
jZ

β

β β
σ
−

=  (9) 

whereβ  and βσ are the mean and the standard deviation of the damage index, respectively.  

For a chosen threshold, thresholdZ , if j thresholdZ Z≥ , it indicates the jth segment is damaged.  In 

this thesis, thresholdZ  is chosen to be 1.0, meaning that the confidence level for damage 
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detection is 84.1 %.  A flowchart shown in Figure 2 depicts the entire procedure of the 

current DIM. 

 

Interpolate the modeshapes with the 
selected Ns

Calculate Damage 
Indicator (Z) using Damage 

Index Method

Zj≥Zthreshold
YES

NO

jth segment is damaged

jth segment is 
undamaged

j=Ns-1
NO

j=j+1

YES

END

1

2

3

4

STEP

Select Zthreshold

Select the number of 
spline points (Ns)

Obtain modeshapes from the undamaged 
structure and damaged structure

5

 
Figure 2. Flow chart of the Damage Index Method 

 

As mentioned in the previous section, there are two crucial restrictions in the use of the 

DIM.  First, the choice of a fixed threshold is arbitrary.  Because the particular fixed 

threshold chosen drives the damage detection results, selection of the threshold is critical in 

the DIM.  If the selected threshold is smaller than the limit at which actual damage occurs, 

damage would be overestimated.  In contrast, damage would be underestimated if the 
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selected threshold is set too high.  As an illustration, in Figure 3, (a) is an appropriate 

threshold, (b) is a smaller threshold, and (c) is a larger threshold.  In spite of this problem 

with use of a fixed threshold to detect damage, various thresholds have been selected.  For 

instance, the threshold was chosen to be 1 by some researchers (e.g., Park et al., 2001; 

Alvandi and Cremona, 2006) while other researchers selected thresholds of 2 (e.g., Stubbs 

and Kim, 1996; Kim and Stubbs, 2002) and 3 (e.g., Kim and Stubbs, 2003; Kim et al., 2007a). 
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(c)

(a)
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Damage

 
Figure 3. Damage detection with (a) appropriate threshold, (b) smaller threshold, and (c) 

larger threshold 
 

Second, the number of spline points selected in the DIM can influence the damage 

detection results.  For example, Figure 4 illustrates the problem by showing two predicted 

damage cases with the same recording points but different spline points.  Although the 

damage in the two cases is identical, the damage detection results by the same fixed threshold 
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are different.  The extent of damage is detected correctly in Figure 4 (a) while the damage is 

overestimated in Figure 4 (b). 

3.2 Proposed Iterative Damage Index Method 

The Iterative Damage Index Method (IDIM) proposed in this thesis overcomes these 

limitations by relying on the idea that the ratioZ  for the same recording points remains 

constant when different numbers of spline points are used.  The ratioZ  is given by 

 1

1

=
i

j

na

A
i

ratio np

p
j

Z
Z

Z

=

=

∑

∑
 (10) 

where na  is the number of damage indicators in an actual damage location, Z
iA  is the ith 

damage indicator in an actual damage location, np  is the number of the positive damage 

indicators, and Z
jp  is the jth positive damage indicator.  By plotting of the number of 

recording points and the ratioZ , a fitting function, cu , is formulated by 

 1 exp  r
c

Nu
τ
−⎛ ⎞= − ⎜ ⎟

⎝ ⎠
 (11) 

where Nr is the number of recording points and τ  is a parameter that needs to be 

estimated.  Unfortunately, τ  varies with different damage sizes.  To solve the problem, we 

introduce a new parameter, C, that remains constant over different damage sizes and 
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Figure 4. Damage detection results with (a) Nr recording points and Ns-1 spline points and (b) 
Nr recording points and Ns-2 spline points (Ns-1<Ns-2) 
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is defined as 

 C τ= ×l  (12) 

where l  is the length of damage.  In this thesis, it is assumed that C is unchanged 

corresponding to the change of damage length.  Based on parameter study, the engineering 

practical rule to decide the C is that the effective length of a structure for a specific boundary 

condition can be used as the C.  For example, the effective length for a simply supported 

beam is the same as the total length of a beam, while the effective length of a fixed-free beam 

is half of the total length of a beam (For the detail, see Appendix A and B). 

The IDIM is based on the current DIM.  Figure 5 gives a flowchart for the IDIM.  The 

first four steps of the proposed method are the same as those of the current DIM (see Figures 

2 and 5).  The sum of the positive damage indicators, sumZ , is given by 

 
1

j

np

sum p
j

Z Z
=

= ∑  (13) 

After numbering the positive damage indicators in descending order (i.e. 1pZ = maximum of 

pZ ), the sum of the first k positive damage indicator(s), sumZ ′ , can be calculated by 

 
1

k

sum pi
i

Z Z
=

′ = ∑  (14) 

where k is the iteration number.  Thus, the ratio of the sum of the positive damage indicators 

to the sum of the first k positive damage indicator(s), ratioZ , is expressed as 

 sum
ratio

sum

ZZ
Z
′

=  (15) 

For a structural element with a total length of L, the predicted damage size, pl , is given by 

 
1p

s

L k
N

=
−

l  (16) 
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where Ns is the number of spline points.  Next, the fitting function for the predicted damage 

size, 
pcu , is given by 

 1 exp    where 
p

r
c p

p p

N Cu τ
τ

⎛ ⎞−
= − =⎜ ⎟⎜ ⎟

⎝ ⎠ l
 (17) 

The ratio, α , is given by 

 pc

ratio

u

Z
α =  (18) 

If 1 α ε− ≤ , the iteration will be stopped, where ε  is the tolerance. 

3.3 Determination of the Correlation between Modeshapes 

The Modal Assurance Criteria (MAC) and Total Modal Assurance Criteria (TMAC), 

suggested by Ewins (1985), were used to determine the correlation between two modeshapes.  

These criteria are specified as 

 ( )
( )

( ) ( )

2

,      1, 2,...,

TA B
i i

A B
i i T TA A B B

i i i i

MAC i n
φ φ

φ φ
φ φ φ φ

⎡ ⎤
⎢ ⎥⎣ ⎦= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (19) 

 ( )
1

,
n

A B
i i

i

TMAC MAC φ φ
=

=∏  (20) 

where A
iφ  and B

iφ are the ith modeshape of a structure.  The closer to one the MAC and 

TMAC are, the greater the correlation between two modeshapes is.  Since the two methods 

rely on strain energy, the curvature of modeshapes can be used to determine the 
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Figure 5. Flow chart of the proposed Iterative Damage Index Method 
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correlation between two modeshapes.  Therefore, we apply the Curvature Assurance Criteria 

(CAC) and Total Curvature Assurance Criteria (TCAC) as expressed by 

 ( )
( )

( ) ( )

2

,      1, 2,...,

T
A B

i i
A B

i i T T
A A B B

i i i i

CAC i n
φ φ

φ φ
φ φ φ φ

⎡ ⎤′′ ′′⎢ ⎥⎣ ⎦′′ ′′ = =
⎡ ⎤ ⎡ ⎤′′ ′′ ′′ ′′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21) 

 ( )
1

,
n

A B
i i

i

TCAC CAC φ φ
=

′′ ′′=∏  (22) 

If the CAC and TCAC are close to one, the curvatures of the modeshapes are highly 

correlated.  In this thesis, the MAC, TMAC, CAC, and TCAC are calculated between the 

modeshapes from the undamaged structure and the modeshapes from the damaged structure.  

Because the MAC can be used for structural damage detection (Allemang, 2003), it is 

investigated whether the four criteria are able to indicate the presence of damage prior to the 

damage detection process by the DIM and the IDIM in this thesis.  In this study, if that the 

criteria, expressed as four significant digits, are less than one, the criteria can show the 

existence of damage. 

3.4 Quantification of the Accuracy of Predicted Damage 

To quantify the accuracy of predicted damage, two factors are introduced: e  and ∆.  The e  

refers to the ratio between the actual damage size and the predicted damage size and it can be 

formulated as 

 
ˆ-e s s

s
=  (23) 

where s  is an actual damage size and ŝ  is the predicted damage size.  The ∆ refers to the 

difference between the center of the actual damage and the center of the predicted damage 

and is written as   
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ˆc c

L
−

Δ=  (24) 

where L is the total length of a structure, c is the center of the actual damage, and ĉ is the 

center of the predicted damage.  If the e and ∆ are zero, then the damage is exactly detected.  

Moreover, the smaller the absolute values of both the e and the ∆ are, the more accurate the 

damage detection is.  Note that e and ∆ can be calculated for each damage detection model, 

where the damage detection model is an imaginary structure used for the damage detection.  

The damage detection model is composed of selected Nr and Ns. 

To generalize and compare the accuracy of predicted damage in the DIM and the IDIM, 

the damage detection percentage is calculated.  Assuming there are damage detection models 

composed of various Nr and Ns, the damage detection percentage, γ, is 

 100 (%)c

t

n
n

γ = ×  (25) 

where nt is the number of total damage detection models and nc is the number of correct 

damage predictions (i.e., e  = 0 and ∆ = 0) among nt cases.  In addition, γ also can be 

calculated by applying various e  and ∆ to consider the error of predicted damage.  Because 

various numbers of recording points (Nr) cannot be used in experimental tests, the average of 

the e  and ∆ are calculated for the damage detection models with the only change of Ns.  The 

average of the e  and ∆ will be used to compare how the two methods perform in the 

experimental tests. 
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4 VALIDATION USING NUMERICAL DATA 

In this section, two numerical examples validate the proposed IDIM.  A simply supported 

beam with cross section HSS 2×2×½ and a pedestrian bridge on the Texas A&M Golf Course 

at Texas A&M University, College Station, TX are modeled in ABAQUS (2004). 

4.1 Simply Supported Beam 

The material and geometric properties for the simply supported beam can be found in Table 1.  

For numerical simulation, the simply supported beam is constructed in ABAQUS (2004), 

including 280 beam elements (B313) with an equivalent width of 0.013 m (0.5 in).  From the 

modal analysis, the first three modeshapes are extracted and used in the DIM and IDIM.  The 

first three eigenfrequencies are 11.205, 44.760, and 100.490 Hz.  The numerical modeshapes 

can be obtained with 281 nodes. 

 

Table 1. Properties for a simply supported beam 

Properties Values 

Length, L 3.56 m (140 in) 

Young’s modulus, E 2.0×105 MPa (2.9×104 ksi) 

Second moment of cross-sectional inertia, I 3.11×105 mm4 (0.747 in4) 

Cross section area, A 974.19 mm² (1.51 in²) 

Density, ρ 7.85×103 kg/m³ (0.28 lb/in³) 

 

Fourteen damage cases are studied, as summarized in Table 2, to investigate the effect of 

various sizes, severities, and locations of damage.  Cases 1, 2, and 3 are chosen to simulate 

three different sizes of damage, while Cases 1, 4, 5, 6, and 7 are selected to simulate various 

                                                   
 
3 A 2-node linear beam in space (ABAQUS 2004) 
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damage severities.  Moreover, Cases 8, 9, and 10 investigate the influence of different 

damage locations.  The last four damage cases are decided to simulate multiple locations of 

damage.  Damage is simulated by reducing the modulus of elasticity of the appropriate 

elements. 

 
 
 

Table 2. Damage scenarios for a simply supported beam 

Location Location Damage 
Case 

Damage 
size From To Severity† Damage 

size From To Severity†

Undamaged 0.00 m - - - - - - - 

1 0.13 m 0.76 m 0.89 
m −20 - - - - 

2 0.25 m 0.76 m 1.02 
m −20 - - - - 

3 0.51 m 0.51 m 1.02 
m −20 - - - - 

4 0.13 m 0.76 m 0.89 
m −1 - - - - 

5 0.13 m 0.76 m 0.89 
m −10 - - - - 

6 0.13 m 0.76 m 0.89 
m −40 - - - - 

7 0.13 m 0.76 m 0.89 
m −60 - - - - 

8 0.13 m 0.00 m 0.13 
m −20 - - - - 

9 0.13 m 0.51 m 0.64 
m −20 - - - - 

10 0.13 m 1.65 m 1.78 
m −20 - - - - 

11 0.13 m 0.76 m 0.89 
m −20 0.13 m 2.54 

m 
2.67 
m −20 

12 0.13 m 0.76 m 0.89 
m −20 0.13 m 2.54 

m 
2.67 
m −50 

13 0.13 m 0.76 m 0.89 
m −50 0.13 m 2.54 

m 
2.67 
m −20 

14 0.13 m 0.76 m 0.89 
m −50 0.13 m 2.54 

m 
2.67 
m −50 

†Severity (%)=(Ed−E)/E×100 where E and Ed are the modulus of elasticity for the undamaged and damaged 
element, respectively. 
 



 

 

22

Figure 6 shows the first numerical modeshapes and the curvatures for an undamaged and 

a damaged (Case 1) beam.  There are obvious differences in the curvature seen in Figure 6 

(b) while the two modeshapes seen Figure 6 (a) are similar.  The MAC, TMAC, CAC, and 

TCAC are calculated for the fourteen damage cases and expressed as four significant digits, 

as shown in Table 3.  Note that the MAC and TMAC are calculated using modeshapes while 

the CAC and TCAC are based on the curvature.  The MAC and TMAC are not sensitive 

enough to demonstrate the presence of damage because the MAC and TMAC are equal to 

one in eight out of the fourteen damage cases.  However, the CAC and TCAC can be useful 

to indicate the state of damage as pre-processing of the DIM and the IDIM as the CAC and 

TCAC are equal to one in only one of the fourteen damage cases.  Because the CAC and 

TCAC for the ten damage cases are able to show the presence of damage, the modeshapes 

obtained from the undamaged and the damaged beam can be applied to detect damage by the 

DIM and the IDIM. 

 
 

Table 3. MAC, TMAC, CAC, and TCAC for the simply supported beam 

MAC CAC Damage 
Case 1st mode 2nd 

mode 3rd mode TMAC 1st mode 2nd 
mode 

3rd 
mode 

TCAC

1 1.000 1.000 1.000 1.000 0.998 0.996 0.998 0.992 
2 1.000 1.000 1.000 1.000 0.996 0.994 0.997 0.987 
3 1.000 0.999 0.999 0.998 0.994 0.990 0.995 0.979 
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
5 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.998 
6 1.000 1.000 0.999 0.999 0.987 0.976 0.986 0.950 
7 1.000 0.998 0.997 0.995 0.942 0.904 0.946 0.805 
8 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 
9 1.000 1.000 1.000 1.000 0.999 0.997 0.996 0.992 
10 1.000 1.000 1.000 1.000 0.996 1.000 0.997 0.993 
11 1.000 1.000 1.000 1.000 0.996 0.993 0.997 0.986 
12 1.000 1.000 0.999 0.999 0.967 0.952 0.982 0.904 
13 1.000 0.999 0.999 0.998 0.972 0.950 0.970 0.896 
14 1.000 1.000 0.999 0.999 0.947 0.919 0.955 0.832 
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Figure 6. (a) Numerical modeshapes and (b) Curvature of the modeshapes (solid lines 
indicate the undamaged and dashed lines indicate the damaged) 
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The modeshapes can be obtained more accurately by increasing Nr which promises more 

reliable damage detection.  However, it is necessary to decide on the minimum Nr for correct 

damage detection because one can not use an unlimited Nr.  Table 4 shows the minimum Nr 

to detect damage correctly (i.e., Δ = 0 and e  = 0) for all damage cases.  It is apparent that a 

smaller Nr is needed in the IDIM for most of damage cases.  Therefore, the IDIM is generally 

more economical than the DIM in the simply supported beam. 

The damage detection percentages for the simply supported beam are calculated by 

considering ten thousand damage detection models (i.e., nt = 10,000) with various Nr and Ns.  

Those percentages for only six of the fourteen damage cases are summarized in Tables 5-10 

since the results for the rest of the cases are similar.  Five main implications can be drawn 

from these tables.  First, the IDIM is more accurate than the DIM in the simply supported 

beam because the damage detection percentages of the IDIM are higher in most of the 

damage cases.  Second, comparison of the Tables 5 and 6 shows that the IDIM is more 

efficient in estimating minor damage associated with Table 5.  Third, as shown in Tables 5 

and 7, the more severe damage associated with Table 7 is estimated more accurately by the 

IDIM.  Fourth, the similarity between Tables 5 and 8 imply the location of damage does not 

affect the relative accuracy of damage predictions.  Finally, Tables 9 and 10 show that the 

IDIM is much more accurate than the DIM in identifying the multiple locations of damage. 
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Table 4. The minimum number of recording points (Nr) and the minimum number of spline 

points (Ns) to detect damage accurately (Δ=0 and e =0) 

Minimum Nr (Ns) Damage Case DIM IDIM 
1 59 (113) 21 (29) 
2 13 (29) 12 (15) 
3 9 (15) 12 (15) 
4 64 (85) 17 (29) 
5 64 (113) 17(29) 
6 40 (85) 10 (29) 
7 40 (57) 14 (29) 
8 22 (113) 74 (85) 
9 N/A 12 (29) 

10 58 (85) 5 (29) 
11 78 (99) 29 (50) 
12 N/A 50 99) 
13 N/A 50 (99) 
14 71 (99) 29 (50) 

N/A: Damage can not be detected. 
 
 
 

Table 5. Damage detection percentage Case 1 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.8 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4 0 IDIM 5.3 67.5 79.4 82.9 84.6 86.7 95.5 95.6 95.7 96.4 99.6 
DIM 0.8 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4 0.01 IDIM 5.3 67.5 79.4 82.9 84.6 86.7 95.5 95.6 95.7 96.4 99.6 
DIM 0.8 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4 0.02 IDIM 5.3 67.5 79.4 82.9 84.6 86.7 95.5 95.6 95.7 96.4 99.6 

 
 
 

Table 6. Damage detection percentage Case 2 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1 0 IDIM 5.4 80.5 85.9 87.3 89.4 91.1 99.6 99.9 99.9 100.0 100.0
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1 0.01 IDIM 5.4 80.5 85.9 87.3 89.4 91.1 99.6 99.9 99.9 100.0 100.0
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1 0.02 IDIM 5.4 80.5 85.9 87.3 89.4 91.1 99.6 99.9 99.9 100.0 100.0
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Table 7. Damage detection percentage Case 5 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.2 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8 0 IDIM 1.5 25.7 72.4 83.3 85.3 87.9 95.5 95.6 95.8 96.3 99.6 
DIM 0.2 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8 0.01 IDIM 1.5 25.7 72.4 83.3 85.3 87.9 95.5 95.6 95.8 96.3 99.6 
DIM 0.2 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8 0.02 IDIM 1.5 25.7 72.4 83.3 85.3 87.9 95.5 95.6 95.8 96.3 99.6 

 
 
 

Table 8. Damage detection percentage Case 9 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9 0 IDIM 3.1 53.2 75.9 82.5 83.9 84.4 91.1 91.9 93.8 93.9 95.8 
DIM 0.0 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9 0.01 IDIM 3.1 53.2 75.9 82.5 83.9 84.4 91.1 91.9 93.8 93.9 95.8 
DIM 0.0 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9 0.02 IDIM 3.1 53.2 75.9 82.5 83.9 84.4 91.1 91.9 93.8 93.9 95.8 

 
 
 

Table 9. Damage detection percentage Case 12 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 0.0 1.4 12.3 22.3 67.0 67.0 67.0 67.0 67.0 0 IDIM 8.4 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8 
DIM 0.0 0.0 0.0 1.4 12.3 22.3 67.0 67.0 67.0 67.0 67.0 0.01 IDIM 8.4 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8 
DIM 0.0 0.0 0.0 1.4 12.3 22.3 67.0 67.0 67.0 67.0 67.0 0.02 IDIM 8.4 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8 
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Table 10. Damage detection percentage Case 14 (unit is %) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 9.0 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9 0 IDIM 9.6 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9 
DIM 9.0 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9 0.01 IDIM 9.6 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9 
DIM 9.0 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9 0.02 IDIM 9.6 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9 

 
 
 

4.2 Pedestrian Bridge 

The pedestrian bridge, shown in Figure 7, has a length of 9.04 meters (356 in), consists of 

two arched frames, a deck and bracings and other properties as summarized in Table 11.  For 

numerical validation, this pedestrian bridge is modeled in ABAQUS (2004) (see Figure 8).  A 

total of 2,674 beam elements (B31) are used to model the bridge with eight longitudinal 

beams.  From the modal analysis, the first three bending modeshapes of the fourth 

longitudinal beam are extracted and used in the DIM and IDIM (see Figure 9).  The first three 

bending eigenfrequencies are 16.936, 24.310, and 33.499 Hz. 

 
 
 

Table 11. Properties for a pedestrian bridge 

Properties Values 

Length, L 9.04 m ( 356 in) 

Young’s modulus, E 2.0×105 MPa (2.9×104 ksi) 

Density, ρ 10.13×103 kg/m³ (0.29 lb/in³)

Poisson’s ratio, ν 0.3 
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Figure 7. Pedestrian bridge in Texas A&M Golf Course at Texas A&M University, College 

Station, TX 
 
 
 

 
Figure 8. Pedestrian bridge generated in ABAQUS (2004) 

 
 
 

We investigate ten damage cases analogous to those used for the previous numerical 

example.  They are summarized in Table 12.  The MAC, TMAC, CAC, and TCAC are 

calculated for the ten damage cases and expressed as four significant digits, as shown in 

Table 13.  The MAC and TMAC of the ten damage cases are equal to one while the CAC and 

4th longitudinal beam 
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TCAC of those are less than one.  It is certain that the CAC and TCAC are useful to show the 

existence of damage.  Consequently, the modeshapes obtained from the undamaged and the 

damaged bridge can be also utilized for the damage detection process performed by the DIM 

and the IDIM. 

Because the damage scenarios can not be detected accurately (i.e., Δ = 0 and e  = 0) by 

the two methods, Δ = 0.006 and e  = 0.1 are used to determine the minimum Nr  for all 

damage cases (see Table 14).  Smaller Nr is required in the IDIM for all of the damage cases 

to achieve equivalent accuracy even with this less precise standard.  Consequently, the IDIM 

also prove to be more economical than the DIM with the pedestrian bridge.  The damage 

detection percentages for the pedestrian bridge are calculated by considering ten thousand 

damage detection models (i.e., nt = 10,000) with various Nr and Ns.  Those percentages for 

four damage cases among the ten cases are summarized in Tables 15 to 18, again because the 

results for the rest of the cases are not significantly different.  The findings from those tables 

for the bridge are even more compelling than those for the beam.  In particular, the damage 

detection percentages for the IDIM are higher across all damage cases. 
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(a) 

 
(b) 

 
(c) 

Figure 9. The first three bending modeshapes of the pedestrian bridge: (a) 1st bending 
modeshapes, (b) 2nd bending modeshapes, and (c) 3rd bending modeshapes 
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Table 12. Damage scenarios for a pedestrian bridge 

Location Damage Case Damage size From To Severity† 

Undamaged 0.000 m - - - 
1 0.078 m 2.47 m 2.55 m −50 
2 0.156 m 2.47 m 2.63 m −50 
3 0.311 m 2.47 m 2.78 m −50 
4 0.078 m 2.47 m 2.55 m −10 
5 0.078 m 2.47 m 2.55 m −20 
6 0.078 m 2.47 m 2.55 m −70 
7 0.078 m 2.55 m 2.63 m −50 
8 0.078 m 2.70 m 2.78 m −50 
9 0.078 m 3.02 m 3.09 m −50 

10 0.078 m 3.56 m 3.64 m −50 
†Severity (%)=(Ed−E)/E×100 where E and Ed are the modulus of elasticity 
for the undamaged and damaged element, respectively. 

 
 
 

Table 13. MAC, TMAC, CAC, and TCAC for the pedestrian bridge 

MAC CAC Damage 
Case 1st mode 2nd 

mode 3rd mode TMAC 1st mode 2nd 
mode 

3rd 
mode 

TCAC

1 1.000 1.000 1.000 1.000 0.997 0.994 0.998 0.989 
2 1.000 1.000 1.000 1.000 0.995 0.988 0.996 0.979 
3 1.000 1.000 1.000 1.000 0.990 0.985 0.996 0.970 
4 1.000 1.000 1.000 1.000 0.842 0.881 0.933 0.692 
5 1.000 1.000 1.000 1.000 0.964 0.953 0.976 0.897 
6 1.000 1.000 1.000 1.000 0.999 0.999 1.000 0.998 
7 1.000 1.000 1.000 1.000 0.997 0.994 0.998 0.990 
8 1.000 1.000 1.000 1.000 0.996 0.994 0.999 0.988 
9 1.000 1.000 1.000 1.000 0.992 0.995 0.999 0.986 
10 1.000 1.000 1.000 1.000 0.994 0.999 0.996 0.988 
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Table 14. The minimum number of recording points (Nr) and the minimum number of spline 
points (Ns) to detect damage with Δ=0.006 and e =0.1 

Minimum Nr (Ns) Damage Case DIM IDIM 
1 N/A 15 (107) 
2 65 (103) 11 (54) 
3 24 (54) 11 (29) 
4 N/A 31 (108) 
5 N/A 42 (107) 
6 N/A 15 (104) 
7 N/A 11 (106) 
8 N/A 30 (107) 
9 N/A 18 (108) 

10 N/A 8 (103) 
N/A: Damage can not be detected. 

 
 
 

Table 15. Damage detection percentage Case 1 (unit is %) 
e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

DIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 IDIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
DIM 0.0 0.0 0.0 0.0 0.0 0.0 3.4 26.3 52.2 62.2 67.30.01 IDIM 0.0 4.5 7.9 13.0 17.3 21.9 37.5 49.1 59.6 68.7 76.1
DIM 0.0 0.0 0.0 0.0 0.0 0.0 3.4 26.3 52.2 62.2 67.30.02 IDIM 0.0 4.5 7.9 13.0 17.3 21.9 37.5 49.1 59.6 68.7 76.1

 
 
 

Table 16. Damage detection percentage Case 2 (unit is %) 
e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

DIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 IDIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
DIM 0.0 0.0 1.3 11.2 23.6 36.2 64.0 77.0 83.9 85.9 87.00.01 IDIM 0.0 14.3 27.1 39.1 47.6 53.6 70.7 76.2 83.1 90.0 92.4
DIM 0.0 0.0 1.3 11.2 23.6 36.2 64.0 77.0 83.9 85.9 87.00.02 IDIM 0.0 14.3 27.1 39.1 47.6 53.6 70.7 76.2 83.1 90.0 92.4
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Table 17. Damage detection percentage Case 5 (unit is %) 
e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

DIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 IDIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
DIM 0.0 0.0 0.0 0.0 0.0 0.0 2.1 19.2 49.2 61.7 67.20.01 IDIM 0.0 4.0 7.2 11.5 15.5 18.9 36.2 49.7 56.6 63.8 72.3
DIM 0.0 0.0 0.0 0.0 0.0 0.0 2.1 19.2 49.2 61.7 67.20.02 IDIM 0.0 4.0 7.2 11.5 15.5 18.9 36.2 49.7 56.6 63.8 72.3

 
 
 

Table 18. Damage detection percentage Case 8 (unit is %) 
e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 

DIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 IDIM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
DIM 0.0 0.0 0.0 0.0 0.0 0.0 3.9 24.8 48.7 61.3 66.70.01 IDIM 0.0 3.2 5.8 9.0 11.7 14.2 29.8 42.4 52.0 61.5 68.6
DIM 0.0 0.0 0.0 0.0 0.0 0.0 3.9 24.8 48.7 61.3 66.70.02 IDIM 0.0 3.2 5.8 9.0 11.7 14.2 29.8 42.4 52.0 61.5 68.6

 



 

 

34

5 VALIDATION USING EXPERIMENTAL DATA 

The proposed method is validated using experimental data with two real structures: a simply 

supported beam and a pedestrian bridge on the Texas A&M golf course, at College Station, 

TX.  The test data are obtained by a wireless monitoring system.  Because a structure 

gradually deteriorates after its construction, the baseline of the beam and bridge (i.e., 

modeshapes for an undamaged structure) are obtained from the current structure. 

5.1 Simply Supported Beam 

The geometric and material properties used in Section 4.1 are obtained from the simply 

supported beam operated here.  The accelerations of the simply supported beam in a 

laboratory are measured from ten recording points.  The ten recording points are located with 

equal spacing (0.40 meters (15.6 in)) on the beam.  To simulate a mass damage instead of a 

stiffness damage, we add a weight at specific locations: a steel plate with the weight of 0.6 kg 

(1.326 lb or 2.11 % of the total mass of the beam) between 0.787 meters (31 in) and 0.889 

meters (35 in) from the left end of the beam. 

The Wireless Sensor Network (WSN) monitoring system developed by Reyer (2007), is 

used to measure the response.  The MICA 2 mote, operated in the WSN, can measure a 

variety of responses such as strain, acceleration, temperature, and light using sensor boards.  

For this study, an MTS310 sensor board operated with the MICA 2 measures accelerations.  

An ADXL202JE, a two axis accelerometer, is installed on the sensor board.  Because the 

ADXL202JE measures a voltage not acceleration, the conversion is necessary.  For one axis, 

the voltage for −g and the voltage for +g can be obtained from one position and the opposite 

position of the former.  The acceleration is converted with the voltages for ±g.  The range of 

accelerations measured by the ADXL202JE is ±2g.  The MIB510 base station collects data 

from each wireless mote and transmits it to a computer.  As shown in Figure 10, the first 
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three modeshapes from the measured accelerations are extracted by the Time Domain 

Decomposition (TDD) method, proposed by Kim et al. (2005).  For the limited number of 

MICA 2 motes, three measuring sets (Set I, II, and III) and one reference point are used (see 

Figure 11).  The modeshapes obtained from the three sets are recalculated to match the 

reference point of each set.  Note that the impact points in the three sets are identical.  Figure 

12 (a) shows a test set-up for the Set I with five MICA 2 motes, the base station, and a lap-

top computer. 

The obtained modeshapes are then validated by the CAC and TCAC because it is found 

that the CAC and TCAC are useful to indicate the presence of damage in numerical 

validation (Section 4).  Table 19 shows the two correlation values between (a) analytical 

modeshapes for the undamaged beam and experimental modeshapes for the undamaged 

beam; (b) experimental modeshapes for the undamaged beam and experimental modeshapes 

for the beam with the added mass; (c) analytical modeshapes for the beam with the added 

mass and experimental modeshapes for the beam with the added mass; and (d) analytical 

modeshapes for the undamaged beam and experimental modeshapes for the beam with the 

added mass. 

The low CAC and TCAC in (a) and (c) occurs because the boundary condition for the 

tests cannot be correctly simulated.  However, the CAC and TCAC of (b) are similar to those 

of (d), less than one, and enough to demonstrate the existence of damage.  Consequently, it 

can be concluded that the modeshapes experimentally obtained in the simply supported beam 

can be applied for the damage detection process. 
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Figure 10. The first three modeshapes for the simply supported beam (solid lines indicate the 

undamaged and dashed lines indicate the damaged) 
 
 
 

 
Figure 11. Three measuring sets and a reference point for the simply supported beam 
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Figure 12. (a) Test set-up for a simply supported beam for including MICA 2 motes, base 
station, and lap-top computer, (b) MICA 2 mote, and (c) base station 

 
 
 
 

Table 19. CAC, and TCAC between two modeshapes 

CAC  
1st mode 2nd mode 3rd mode 

TCAC 

(a) 0.967 0.397 0.417 0.160 
(b) 1.000 0.997 1.000 0.996 
(c) 0.970 0.423 0.413 0.169 
(d) 1.000 1.000 1.000 0.999 

(a) Analytical modeshapes for the undamaged beam and experimental modeshapes for the undamaged beam 
(b) Experimental modeshapes for the undamaged beam and experimental modeshapes for the beam with the 
added mass 
(c) Analytical modeshapes for the beam with the added mass and experimental modeshapes for the beam with the 
added mass 
(d) Analytical modeshapes for the undamaged beam and analytical modeshapes for the beam with the added 
mass 

MICA 2 mote

Base station

(a) 

(b) (c) 
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The average of the e and ∆ are summarized in Table 20 and two representative damage 

detection results are illustrated in Figures 13 and 14.  From Table 20, we find that the 

averages of ∆ (the accuracy of pinpointing the location of damage) for the current DIM are 

slightly smaller than those of the proposed IDIM, but the differences of the averages are less 

than 0.008 (only 0.8 % of the length of the beam), which is negligible.  However, the 

averages of the e  for the proposed IDIM are around −3 while those of the current DIM are 

around −5.  That means that predicted damage size is six times larger than the actual damage 

size according to DIM but only 4 times larger according to the IDIM.  Therefore, the 

proposed IDIM provides a less extreme over prediction of damage size. 

 
 
 

 
Table 20. Average of e  and ∆ for a simply supported beam 

Range of Ns 
 

10–100 101–200 201–300 301–400 401–500 501–1000 

DIM 0.037 0.037 0.037 0.037 0.037 0.037 
Average of ∆ 

IDIM 0.042 0.045 0.045 0.045 0.045 0.045 

DIM −4.88 −4.89 −4.89 −4.89 −4.89 −4.89 
Average of e  

IDIM −2.99 −2.54 −2.48 −2.46 −2.45 −2.43 
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(b) 

Figure 13. Damage prediction with 29 spline points in a simply supported beam using (a) the 
current DIM and (b) the proposed IDIM (solid lines indicate actual damage and dashed lines 

indicate predicted damage) 
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(b) 

Figure 14. Damage prediction with 141 spline points in a simply supported beam using (a) 
the current DIM and (b) the proposed IDIM (solid lines indicate actual damage and dashed 

lines indicate predicted damage) 
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5.2 Pedestrian Bridge 

The geometric and material properties used  in Section 4.2 are obtained from the pedestrian 

bridge operated here.  The accelerations of the pedestrian bridge are measured from nine 

recording points.  One point is located on the center of the 4th longitudinal beam of the bridge 

and eight other points are equally spaced (1.29 meters (50.79 in) apart) on the 4th longitudinal 

beam of the bridge.  To simulate a mass damage instead of a stiffness damage, three concrete 

blocks (81.66 kg = 180 lbs or 2.46 % of the total mass of the bridge) are added between 2.778 

meters and 3.277 meters from one end of the bridge.  The concrete blocks are located on the 

flat wood deck, as shown in Figure 15.  The first three modeshapes are obtained by the TDD, 

as shown in Figure 16.  Because of the limited number of sensors, two measuring sets (Set A 

and B) and one reference point are also operated (see Figure 17).  The modeshapes are also 

validated by the CAC and TCAC.  Table 21 shows the two correlations values.  The CAC 

and TCAC are far from one in (a) and (c).  However, the CAC and TCAC of (b) are similar 

to those of (d), less than one, and enough to point out that there is damage.  Consequently, it 

can be concluded that the modeshapes experimentally obtained in the pedestrian bridge can 

be used for the damage detection process. 

The average of the e  and ∆ for the pedestrian bridge are summarized in Table 22 and 

two representative damage prediction results are illustrated in Figures 18 and 19.  From Table 

22, we find that the averages of ∆ for the current DIM are slightly smaller than those of the 

proposed IDIM, but the differences of the averages are less than 0.017 (only 1.7 % of the 

bridge length), again negligible.  However, the averages of e  for the proposed IDIM are 

about −0.5 with only one being around −1, while those of the current DIM are all about −2. 

The Error value of −2 means that predicted damage size is three times larger than the actual 

damage size according to the DIM but only one to two times larger according to the IDIM.  
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Again, this pedestrian bridge case shows that the proposed IDIM can predict damage size 

more accurately. 

 
 
 

Table 21. MAC, TMAC, CAC, and TCAC between two modeshapes 

CAC  
1st mode 2nd mode 3rd mode 

TCAC 

(a) 0.614 0.456 0.577 0.162 
(b) 0.770 1.000 0.971 0.748 
(c) 0.655 0.433 0.541 0.154 
(d) 0.819 0.997 1.000 0.816 

(a) Analytical modeshapes for the undamaged beam and experimental modeshapes for the undamaged beam 
(b) Experimental modeshapes for the undamaged beam and experimental modeshapes for the beam with the 
added mass 
(c) Analytical modeshapes for the beam with the added mass and experimental modeshapes for the beam with the 
added mass 
(d) Analytical modeshapes for the undamaged beam and analytical modeshapes for the beam with the added 
mass 
 
 
 

Table 22. Average of e  and ∆ for a pedestrian bridge 

Range of Ns 
 

10–100 101–200 201–300 301–400 401–500 501–1000 

DIM -0.001 -0.002 -0.002 -0.002 -0.002 -0.002 
Average of ∆ 

IDIM 0.012 0.015 0.015 0.015 0.015 0.015 

DIM −2.27 −2.25 −2.25 −2.25 −2.25 −2.25 
Average of e  

IDIM −0.92 −0.50 −0.47 −0.46 −0.45 −0.44 
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Figure 15. Added concrete blocks on the pedestrian bridge 
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Figure 16. The first three modeshapes for the pedestrian bridge (solid lines indicate the 
undamaged and dashed lines indicate the damaged) 
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Figure 17. Two measuring sets and one reference point for the pedestrian bridge 
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(b) 

Figure 18. Damage prediction with 29 spline points in a pedestrian bridge using (a) the 
current DIM and (b) the proposed IDIM (solid lines indicate actual damage and dashed lines 

indicate predicted damage) 
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(b) 

Figure 19. Damage prediction with 141 spline points in a pedestrian bridge using (a) the 
current DIM and (b) the proposed IDIM (solid lines indicate actual damage and dashed lines 

indicate predicted damage) 
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6 CONCLUSIONS 

The proposed Iterative Damage Index Method (IDIM) has both theoretical and performance 

advantages over the current DIM.  It is a less arbitrary and more accurate vibration-based 

damage detection technique than the current DIM.  Also, the proposed IDIM does not depend 

on a threshold, as required in the current DIM.  Finally, the proposed IDIM is not affected by 

the number of spline points selected. 

Simulation and experimental comparisons demonstrate the superior performance of 

IDIM.  After correlations between modeshapes using the Curvature Assurance Criteria 

(CAC) and Total Curvature Assurance Criteria (TCAC) reveal the extent of damage prior to 

the damage detection process by the two methods, two parameters, e  and ∆, are used to 

quantify the accuracy of predicted damage.  Two example cases are studied to compare the 

DIM and the proposed IDIM: a simply supported beam and a pedestrian bridge at the Texas 

A&M golf course. 

The CAC and TCAC between modeshapes from numerical models are enough to show 

the presence of damage and the modeshapes can be applied for the damage detection process 

by the two methods.  From simulation results with numerical models, five major findings 

emerge.  First, the proposed IDIM is more economical than the DIM.  Second, the proposed 

method is more accurate across various damage cases.  Third, the proposed method is more 

efficient in identifying low magnitude damage, which is rarely detected in practice.  Fourth, 

the size of more severe damage is detected more correctly while the location of damage does 

not influence the accuracy of damage detection.  Finally, the IDIM is more accurate than the 

DIM in estimating the multiple locations of damage. 

The modeshapes extracted from the two real structures by the TDD are utilized to 

calculate the two kinds of criteria: CAC and TCAC. The similarity between numerical and 
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experimental results proves that the modeshapes obtained from the experimental tests can be 

applied for the damage detection process by the two methods.  Experimental tests with a 

simply supported beam and a pedestrian bridge show that the proposed IDIM is more 

accurate than the current DIM and that the proposed method can be applied successfully for 

Structural Health Monitoring. 

For the future work, the proposed method should be further evaluated on complicated 

structures such as long-span bridges, offshore structures, and high-rise buildings. Moreover, 

it can be necessary to conduct experimental tests with an adequate number of measuring 

instruments for the verification of the findings of improved accuracy of damage prediction by 

the proposed method. 
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APPENDIX A 

To determine C is very significant in the Iterative Damage Index Method.  Table A.1 shows 

the calculated C for different lengths of simply supported beams and various sizes of damage.  

From the table, it is found that the most of C are the same as the lengths of simply supported 

beams.  The simply supported beam with the length of 3.56 m (140 in) is used here.  To 

calculate the damage detection percentage (γ), two kinds of C are used: the average of three C 

for three different sizes of damage (L/14, L/10, and L/7), 153 and the length of the simply 

supported beam, 140.  Those percentages (γ) for Cases 1, 2, 5, and 9 used in Section 4.1 are 

shown in Tables A.2 to A.5.  From those tables, it is concluded that the length (L) can be 

used as C in the Iterative Damage Index Method. 

 
 
 

Table A.1. C for different lengths of simply supported beams and various sizes of damage 

Damage size Length (L) L/56 L/40 L/28 L/14 L/10 L/7 
3.56 m (140 in) 129.83 144.59 147.25 144.60 149.80 172.40 
7.11 m (280 in) 294.85 288.26 289.60 289.40 310.80 344.80 
1.78 m (70 in) 65.06 69.60 72.28 72.25 77.84 86.30 

 
 
 

Table A. 2. Damage detection percentage Case 1 with (a) C=154 and (b) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.8 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4 0 IDIM 6.5 63.7 75.2 78.2 82.0 83.2 91.7 91.8 93.8 96.4 97.8 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.8 15.3 51.6 69.1 77.5 80.4 86.5 92.0 94.4 94.6 96.4 0 IDIM 5.3 67.5 79.4 82.9 84.6 86.7 95.5 95.6 95.7 96.4 99.6 

Table A. 3. Damage detection percentage Case 2 with (a) C=154 and (b) C=L=140 (unit is %) 
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(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1 0 IDIM 5.0 76.5 85.8 87.3 89.9 92.9 97.8 98.0 99.9 100.0 100.0 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 11.1 81.5 92.1 93.6 95.6 95.7 97.8 97.9 97.9 98.0 98.1 0 IDIM 5.4 80.5 85.9 87.3 89.4 91.1 99.6 99.9 99.9 100.0 100.0 

 
 
 

Table A. 4. Damage detection percentage Case 5 with (a) C=154 and (b) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.2 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8 0 IDIM 1.6 25.5 68.7 80.1 82.3 84.1 91.7 91.8 93.8 96.3 97.8 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.2 12.1 48.2 65.3 74.3 77.7 83.7 89.4 91.7 92.0 93.8 0 IDIM 1.5 25.7 72.4 83.3 85.3 87.9 95.5 95.6 95.8 96.3 99.6 

 
 
 

Table A. 5 Damage detection percentage Case 9  with (a) C=154 and (b) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9 0 IDIM 3.7 55.2 72.3 78.5 82.7 84.2 92.9 93.8 95.8 96.1 96.3 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 21.2 60.0 73.2 80.2 82.7 87.2 88.9 92.6 92.9 94.9 0 IDIM 3.1 53.2 75.9 82.5 83.9 84.4 91.1 91.9 93.8 93.9 95.8 
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APPENDIX B 

Selection of C is very significant in the Iterative Damage Index Method.  In Appendix A, it is 

found that the length of a simply supported beam can be used as C in the Iterative Damage 

Index Method.  Three beams with the length of 3.56 m (140 in) and different boundary 

conditions are used here (see Figure B.1).  Table B.1 shows the calculated C for different 

boundary conditions and various sizes of damage.  To calculate the damage detection 

percentage (γ), two kinds of C are used: each C for a specific size of damage (L/28) and the 

effective length (Leff.) of each beam.  Those percentages (γ) for Cases 1, 2, 5, and 9 used in 

Section 4.1 are shown in Tables B.2 to B.13.  From those tables, it is concluded that the 

effective length (Leff.) can be used as C in the Iterative Damage Index Method.  Note that the 

effective length (Leff.) of a simply supported beam is equal to the length (L) of the beam. 

 
 
 

 

Figure B.1. Three boundary conditions and Leff.: (a) Fixed-free, (b) Fixed-pinned, and (c) 

Fixed-fixed 

Table B.1. C for different lengths of simply supported beams and various sizes of damage 

Boundary condition Damage size 

(a) 

(c) 

Leff.=2L 

(b) 

Leff.=0.7L 

Leff.=0.5L 
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L/28 L/14 L/10 
Fixed-free 334.05 301.10 185.50 

Fixed-pinned 159.60 160.70 136.92 
Fixed-fixed 177.25 182.10 174.16 

 
 
 

Table B. 2. Damage detection percentage with damage size of L/40 and fixed-free boundary 

condition, and three different C: (a) C= Leff.=280, (b) C=334, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.6 5.8 9.3 15.1 22.5 28.8 42.8 61.7 64.3 65.6 67.6 0 IDIM 1.4 13.8 27.2 37.9 47.8 56.3 88.9 94.0 94.4 95.0 96.5 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.6 5.8 9.3 15.1 22.5 28.8 42.8 61.7 64.3 65.6 67.6 0 
IDIM 1.1 11.9 25.8 37.0 47.1 53.3 77.3 82.1 85.2 89.1 92.6 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.6 5.8 9.3 15.1 22.5 28.8 42.8 61.7 64.3 65.6 67.6 0 IDIM 1.1 12.1 25.3 36.2 46.0 52.6 77.1 82.1 85.2 89.1 92.6 
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Table B. 3. Damage detection percentage with damage size of L/28 and fixed-free boundary 

condition, and three different C: (a) C= Leff.=280, (b) C=334, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 34.2 40.3 44.1 45.3 50.5 57.5 59.9 60.1 61.8 0 IDIM 0.9 7.7 26.0 57.5 72.2 75.1 95.5 95.6 95.7 97.7 99.4 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 34.2 40.3 44.1 45.3 50.5 57.5 59.9 60.1 61.8 0 
IDIM 0.1 1.7 16.6 38.6 46.9 51.7 83.4 87.6 89.9 93.9 95.7 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 34.2 40.3 44.1 45.3 50.5 57.5 59.9 60.1 61.8 0 IDIM 0.2 1.2 15.4 43.7 53.1 55.3 83.4 87.6 89.9 93.9 95.7 

 
 
 

Table B. 4. Damage detection percentage with damage size of L/14 and fixed-free boundary 

condition, and three different C: (a) C= Leff.=280, (b) C=334, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 30.9 33.7 36.1 36.3 44.9 45.2 47.0 47.3 47.3 0 IDIM 1.5 28.6 35.8 38.0 38.6 40.4 98.7 98.9 99.6 99.9 99.9 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 30.9 33.7 36.1 36.3 44.9 45.2 47.0 47.3 47.3 0 
IDIM 0.9 15.5 21.7 24.3 26.2 32.8 95.7 95.9 97.6 97.9 97.9 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.1 22.9 30.9 33.7 36.1 36.3 44.9 45.2 47.0 47.3 47.3 0 IDIM 1.1 18.0 25.4 27.2 30.5 34.0 95.7 95.9 97.6 97.9 97.9 
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Table B. 5. Damage detection percentage with damage size of L/10 and fixed-free boundary 

condition, and three different C: (a) C= Leff.=280, (b) C=334, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.6 74.8 75.0 75.2 75.5 79.0 79.2 81.2 81.2 81.2 81.2 0 IDIM 7.2 76.4 79.2 82.5 82.9 84.4 98.9 99.1 100.0 100.0 100.0

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.6 74.8 75.0 75.2 75.5 79.0 79.2 81.2 81.2 81.2 81.2 0 
IDIM 3.3 58.9 63.1 67.9 70.6 75.5 95.7 97.9 99.9 100.0 100.0

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.6 74.8 75.0 75.2 75.5 79.0 79.2 81.2 81.2 81.2 81.2 0 IDIM 4.6 62.0 67.2 70.7 71.9 75.7 95.7 97.9 99.9 100.0 100.0

 
 
 

Table B. 6. Damage detection percentage with damage size of L/40 and fixed-pinned boundary 

condition, and three different C: (a) C= Leff.=98, (b) C=160, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.5 48.3 63.1 69.8 80.0 88.7 92.4 93.9 95.8 0 IDIM 0.9 14.5 31.9 62.9 77.5 83.3 89.4 89.7 91.6 93.7 95.7 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.5 48.3 63.1 69.8 80.0 88.7 92.4 93.9 95.8 0 
IDIM 1.0 19.0 37.5 64.7 75.4 78.4 89.7 89.9 90.1 93.7 95.6 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.5 48.3 63.1 69.8 80.0 88.7 92.4 93.9 95.8 0 IDIM 0.2 4.3 16.1 51.1 72.8 79.1 92.7 95.2 95.5 95.6 95.7 
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Table B. 7. Damage detection percentage with damage size of L/28 and fixed-pinned boundary 

condition, and three different C: (a) C= Leff.=98, (b) C=160, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.7 30.8 59.3 73.8 79.4 81.2 87.3 93.6 95.8 95.9 95.9 0 IDIM 1.3 18.1 68.4 80.4 84.1 87.2 95.2 95.3 97.3 99.4 99.4 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.7 30.8 59.3 73.8 79.4 81.2 87.3 93.6 95.8 95.9 95.9 0 
IDIM 1.7 21.8 67.4 76.0 80.0 82.8 93.6 93.7 95.6 97.8 97.8 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.7 30.8 59.3 73.8 79.4 81.2 87.3 93.6 95.8 95.9 95.9 0 IDIM 0.4 6.2 58.4 78.2 84.1 87.1 94.9 95.5 95.7 96.1 99.3 

 
 
 

Table B. 8. Damage detection percentage with damage size of L/14 and fixed-pinned boundary 

condition, and three different C: (a) C= Leff.=98, (b) C=160, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.3 86.9 93.0 95.2 95.7 95.8 95.9 96.0 97.9 98.0 98.0 0 IDIM 9.5 80.9 86.2 89.2 92.8 93.3 97.9 97.9 97.9 98.0 98.0 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.3 86.9 93.0 95.2 95.7 95.8 95.9 96.0 97.9 98.0 98.0 0 
IDIM 9.5 74.5 86.9 89.4 92.7 93.1 97.8 97.9 97.9 97.9 97.9 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.3 86.9 93.0 95.2 95.7 95.8 95.9 96.0 97.9 98.0 98.0 0 IDIM 9.7 77.6 86.2 88.1 90.1 92.6 99.8 99.9 99.9 99.9 99.9 
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Table B. 9. Damage detection percentage with damage size of L/10 and fixed-pinned boundary 

condition, and three different C: (a) C= Leff.=98, (b) C=160, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 17.0 93.6 93.8 94.0 96.1 97.8 97.9 100.0 100.0 100.0 100.00 IDIM 1.7 85.8 88.6 92.3 94.1 95.1 99.9 99.9 99.9 100.0 100.0

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 17.0 93.6 93.8 94.0 96.1 97.8 97.9 100.0 100.0 100.0 100.00 
IDIM 1.4 80.4 86.2 86.7 90.2 91.5 97.9 97.9 97.9 99.9 100.0

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 17.0 93.6 93.8 94.0 96.1 97.8 97.9 100.0 100.0 100.0 100.00 IDIM 2.4 90.9 91.9 93.2 93.9 95.1 99.8 100.0 100.0 100.0 100.0

 
 
 

Table B. 10. Damage detection percentage with damage size of L/40 and fixed-fixed boundary 

condition, and three different C: (a) C= Leff.=70, (b) C=177, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.7 48.9 63.7 70.2 80.1 89.2 92.9 94.2 95.8 0 IDIM 0.4 8.0 21.7 52.8 74.8 82.7 89.3 89.7 91.1 93.8 95.8 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.7 48.9 63.7 70.2 80.1 89.2 92.9 94.2 95.8 0 
IDIM 0.6 12.3 28.4 51.9 65.3 70.7 88.9 89.8 91.6 95.8 97.8 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 21.7 48.9 63.7 70.2 80.1 89.2 92.9 94.2 95.8 0 IDIM 0.0 0.0 5.2 27.6 45.6 57.2 77.9 84.8 94.5 95.4 95.7 
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Table B. 11. Damage detection percentage with damage size of L/28 and fixed-fixed boundary 

condition, and three different C: (a) C= Leff.=70, (b) C=177, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 4.3 33.1 61.5 74.8 80.0 81.5 87.5 94.2 95.8 95.9 95.9 0 IDIM 0.7 10.0 52.5 76.4 83.6 88.1 92.0 93.9 95.8 97.8 97.8 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 4.3 33.1 61.5 74.8 80.0 81.5 87.5 94.2 95.8 95.9 95.9 0 
IDIM 1.1 12.2 56.3 74.9 78.8 80.6 93.7 93.9 97.7 99.8 99.9 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 4.3 33.1 61.5 74.8 80.0 81.5 87.5 94.2 95.8 95.9 95.9 0 IDIM 0.0 0.6 33.9 55.0 67.6 75.2 85.4 92.8 95.6 96.5 97.8 

 
 
 

Table B. 12. Damage detection percentage with damage size of L/14 and fixed-fixed boundary 

condition, and three different C: (a) C= Leff.=70, (b) C=177, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.4 87.6 93.3 95.3 95.7 95.7 95.9 95.9 95.9 96.0 98.0 0 IDIM 6.9 74.1 86.7 88.6 92.0 92.1 97.9 97.9 99.9 100.0 100.0

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.4 87.6 93.3 95.3 95.7 95.7 95.9 95.9 95.9 96.0 98.0 0 
IDIM 6.2 70.3 88.1 91.8 94.0 95.8 99.9 100.0 100.0 100.0 100.0

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 12.4 87.6 93.3 95.3 95.7 95.7 95.9 95.9 95.9 96.0 98.0 0 IDIM 6.4 74.0 88.7 94.2 97.3 97.5 97.9 97.9 97.9 97.9 97.9 
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Table B. 13. Damage detection percentage with damage size of L/10 and fixed-fixed boundary 

condition, and three different C: (a) C= Leff.=70, (b) C=177, and (c) C=L=140 (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 16.0 93.6 93.8 93.9 93.9 93.9 93.9 94.3 100.0 100.0 100.00 IDIM 10.6 86.1 87.5 91.5 92.1 96.2 99.9 99.9 99.9 100.0 100.0

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 16.0 93.6 93.8 93.9 93.9 93.9 93.9 94.3 100.0 100.0 100.00 
IDIM 9.3 81.7 88.0 88.7 93.2 95.9 99.9 99.9 99.9 99.9 100.0

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 16.0 93.6 93.8 93.9 93.9 93.9 93.9 94.3 100.0 100.0 100.00 IDIM 10.7 90.7 93.5 93.8 93.8 93.9 97.0 97.1 99.8 100.0 100.0
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APPENDIX C 

As mentioned in Section 4.1, the Iterative Damage Index Method is more accurate than the 

Damage Index Method in identifying the multiple locations of damage.  Cases 12 and 14 

used in Section 4.1 have two locations of damage, where the left location of damage is called 

‘left damage’ and the right location of damage is referred as ‘right damage’ here.  The Case 

12 has different severities of damage while the severities of damage are same in the Case 14.  

Tables C. 1 to 2 show the damage detection percentages (γ) for the two damage cases.  From 

those tables, it is certain that the damage detection percentage to detect the multiple damage 

is calculated by combining the damage detection percentage to estimate the left damage and 

the damage detection percentage to identify the right damage.  Note that the damage 

detection percentage to detect either the left damage or the right damage detection is higher 

than the damage detection percentage to identify the multiple damage. 
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Table C. 1. Damage detection percentage Case 12 to detect (a) multiple damage, (b) left damage, 

and (c) right damage (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 0.0 1.4 12.3 22.3 67.0 67.0 67.0 67.0 67.0 0 IDIM 8.4 61.4 71.2 75.9 78.5 81.6 89.6 90.2 93.7 95.7 95.8 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 0.0 0.0 0.0 1.4 12.3 22.3 67.0 67.0 67.0 67.0 67.0 0 IDIM 9.2 64.6 72.3 76.5 78.9 82.0 89.8 90.5 95.8 95.9 95.9 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 3.7 33.0 62.5 75.2 80.0 81.1 87.3 92.0 93.0 93.1 93.1 0 IDIM 9.6 65.8 76.3 79.4 81.3 83.8 91.8 92.6 95.8 97.7 97.8 

 
 
 

Table C. 2. Damage detection percentage Case 14 to detect (a) multiple damage, (b) left damage, 

and (c) right damage (unit is %) 

(a) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 9.0 63.8 78.3 81.3 82.4 83.7 92.5 95.6 95.8 95.9 95.9 0 IDIM 9.6 64.9 74.8 78.8 81.8 84.5 93.6 93.8 95.4 97.8 97.9 

(b) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 9.0 63.8 78.3 81.4 82.5 83.7 92.7 95.6 95.8 95.9 95.9 0 IDIM 9.8 65.3 75.3 80.1 83.6 85.1 94.2 95.9 97.5 99.9 99.9 

(c) 

e  ∆  0 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 
DIM 9.3 66.3 79.0 81.5 82.6 83.8 92.8 95.7 97.7 97.9 97.9 0 IDIM 9.8 65.3 74.9 78.9 81.9 84.6 93.7 93.8 95.5 97.9 97.9 
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