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ABSTRACT 

 

A Hybrid Ensemble Kalman Filter for Nonlinear Dynamics. 

(December 2009) 

Shingo Watanabe, B.E., Waseda University 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

In this thesis, we propose two novel approaches for hybrid Ensemble Kalman 

Filter (EnKF) to overcome limitations of the traditional EnKF. The first approach is to 

swap the ensemble mean for the ensemble mode estimation to improve the covariance 

calculation in EnKF. The second approach is a coarse scale permeability constraint while 

updating in EnKF. Both hybrid EnKF approaches are coupled with the streamline based 

Generalized Travel Time Inversion (GTTI) algorithm for periodic updating of the mean 

of the ensemble and to sequentially update the ensemble in a hybrid fashion.  

Through the development of the hybrid EnKF algorithm, the characteristics of 

the EnKF are also investigated. We found that the limits of the updated values constrain 

the assimilation results significantly and it is important to assess the measurement error 

variance to have a proper balance between preserving the prior information and the 

observation data misfit. Overshooting problems can be mitigated with the streamline 

based covariance localizations and normal score transformation of the parameters to 

support the Gaussian error statistics.  



 iv 

The swapping mean and mode estimation approach can give us a better matching 

of the data as long as the mode solution of the inversion process is satisfactory in terms 

of matching the observation trajectory. 

 The coarse scale permeability constrained hybrid approach gives us better 

parameter estimation in terms of capturing the main trend of the permeability field and 

each ensemble member is driven to the posterior mode solution from the inversion 

process. However the WWCT responses and pressure responses need to be captured 

through the inversion process to generate physically plausible coarse scale permeability 

data to constrain hybrid EnKF updating. 

 Uncertainty quantification methods for EnKF were developed to verify the 

performance of the proposed hybrid EnKF compared to the traditional EnKF. The results 

show better assimilation quality through a sequence of updating and a stable solution is 

demonstrated. 

 The potential of the proposed hybrid approaches are promising through the 

synthetic examples and a field scale application. 
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NOMENCLATURE 

β   Scalar weighting on regularization terms 

DC   Data covariance matrix 

dM
s ,

C   Cross-covariance matrix between data and model parameters 

ΨC   Model covariance matrix 

kobs ,D   Ensemble of the observation data 

obsd   Observation data vector 

cald   Calculated or theoretical observation vector 

ε   Noise in the data 

)(og   Forward model operator 

H   Measurement matrix 

K   Absolute permeability 

rk   Relative permeability 

sm  
 

Vector of static model variables 

dm  
 

Vector of dynamic model variables 

Nd  Number of observation data 

Ne  Number of ensemble members 

φ   Porosity 

gwo ppp ,,  Phase pressure 

ρ   Density 
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ρ   Covariance localizing function 

R   Precision of the coarse-scale data 

S   Sensitivity matrix 

gwo SSS ,,  Phase saturation 

t   Time 

U   Upscaling operator 

τ   Time of flight 

y  Model state vector 

µ   Viscosity 

σ   Standard deviation 

Ψ   Ensemble of model state vector 
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CHAPTER I 

INTRODUCTION 

 

History matching is reconciling reservoir simulation models to the dynamic 

response of the reservoir history data for building reliable reservoir performance models 

and assessing the underlying uncertainties in the geological models. Integration of 

dynamic data generally leads to an inverse problem and requires solution of the flow 

equations several times using iterative procedures. Traditionally, history matching is 

performed manually by applying local and regional changes to reservoir properties. Such 

trial-and error involves considerable subjective judgment and time-consuming work, and 

very often creates artificial discontinuities with loss of geologic realism in the updated 

models.  

Over the past few years, automatic history matching or production data 

integration methods were developed by utilizing inverse theory to minimize an 

appropriately defined misfit function to obtain a history match. If the misfit function is 

solely defined from the observation data at the wells, the solutions will be non-unique 

and potentially unstable. Formally, this class of inverse problem is known as ill-posed, 

and must be regularized by constraining the solution to the independent prior 

information. 

____________ 

 This thesis follows the style and format of the SPE Journal. 
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However, the increase in the development of permanent sensors for monitoring 

pressure, temperature, resistivity, or flow rate has added impetus to the continuous 

model updating method development. Because of the high data frequency, 

simultaneously matching all available data to update a reservoir flow model is 

impractical. Instead, it has become important to incorporate the data as soon as they are 

obtained so that the reservoir model is updated sequentially. Moreover, there has been a 

paradigm shift from history matching a single reservoir model to generating a suite of 

realizations. This provides for a measure of uncertainty in production forecasts and 

assists better management decisions for reservoir development. Both the heavy 

computational burden and the high data sampling frequency require a new kind of 

history-matching method.  

Ensemble Kalman Filter (EnKF) is one such promising technique for generating 

a suite of plausible reservoir models (Evensen 1994). It is a Monte Carlo approach, in 

which a suite of reservoir models or an ensemble of models is used, observation data are 

sequentially assimilated or matched as they become available, and the ensemble of 

models are continuously updated to honor the current data without re-matching previous 

history data. 

The EnKF utilizes the correlation between reservoir responses (e.g. rates, bottom-

hole pressures, gas-oil ratios, and water cuts) and reservoir variables (e.g. porosity and 

permeability) estimated directly from the sample covariance matrix between model 

parameters and model responses. It should be noted that the EnKF is optimal only in 

linear dynamics and Gaussian statistics systems, and is sub-optimal for nonlinear 
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dynamics and non-Gaussian statistics systems. As the sample size grows larger, 

however, it has been shown to asymptotically provide the best linear estimates of the 

states and parameters. 

 

1.1 Background and Literature Review 

 

The EnKF has been applied in field-scale problems for reservoir characterization 

(Naevdal et al. 2003; Gu and Oliver 2004; Zafari and Reynolds 2005; Skjervheim et al. 

2005); however, there are several difficulties that arise during theses applications. The 

set of parameters to be estimated is typically orders of magnitude larger than the 

ensemble size for reservoir history matching problems. A small ensemble however, may 

lead to noisy or inaccurate covariance and cross-covariance estimations and degrade the 

performance of the EnKF over a sequence of updates (Anderson and Anderson 1999; 

Devegowda et al. 2007). It is crucial to accurately estimate the covariance matrices for 

large-scale problems from a finite ensemble size. 

One potential problem in the EnKF is that updating both the model parameters and 

state variables simultaneously may violate their nonlinear relationship (Gu and Oliver 

2006). The model parameter and state variables are related to each other by a nonlinear 

governing equation. The linear updating of the model parameter affects the state 

updating and that results in the material balance error or destroys the physical realism of 

the problem. If the relationship between the state variables and model parameters is 

linear, the model parameters and the state variables can be adjusted simultaneously with 
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consistency. For a nonlinear problem, however, when both state and parameters are 

updated, it may be impossible to update the state variables to be consistent with the 

updated model parameters without re-solving the nonlinear forward equations when the 

changes are large. 

Wen and Chen (2005) proposed an intuitive remedy for this problem. They 

suggested introducing a so-called “conforming step” at each measurement time. This is 

simply rerunning the forward simulation with updated parameters to achieve the 

consistent state variables at the current measurement time. It can be easily inferred that 

their approach doubles the computing time compared to that of the EnKF since there are 

two simulation runs for each simulation process in the forecast and conforming steps. 

They also suggested iterating this conforming step is necessary only when nonlinearity 

of the problem is strong.  

Another way to overcome the nonlinearity in the problem is Ensemble 

Randomized Maximum Likelihood Filter (EnRMLF) or iterative Ensemble Kalman 

Filter proposed by (Gu and Oliver 2006; Li and Reynolds 2007). Similarly as Wen and 

Chen’s remedy, only model parameters are corrected at the update step and one extra 

step is added after the correction of the model parameters to compute the state variables 

at the current measurement time. Their approach adopts the iterative Gauss-Newton 

formula to update the model parameters. After the new model parameters are obtained, 

the system governing equations are re-initialized from time zero to compute the state 

variables for consistency at the current state. The drawback of this method is the 

intensive computational cost from rerunning the forward simulation iteratively. 
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However, they claimed it is not always necessary to apply the extra step. When the 

changes made to the variables in the state vectors are small at a measurement time, the 

general EnKF can be applied. By carefully setting up criteria for choosing whether to 

add the extra step, they found that it outperforms the traditional EnKF. 

In the atmospheric science literature, there is a different way of approaching the 

non linearity of the state estimation problem. Evolution of the ensemble model responses 

can deviate from the true model trajectory of the problem by a sequence of updating. It is 

because of the linear updating and mean and covariance estimation discrepancy in non-

Gaussian system. Fuqing Zhang and Meng Zhang (2009) proposed a hybrid Ensemble 

Kalman filter approach where coupling deterministic four-dimensional variational 

assimilation (4DVAR) with an ensemble Kalman filter (EnKF) produced a superior data 

assimilation approach. The coupled assimilation scheme (E4DVAR) benefits from using 

the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in 

preventing filter divergence.  

It is also widely recognized that integration of data at various scales could further 

reduce uncertainty in our estimates of the reservoir variables (Efendiev et al. 2005; Lee 

et al. 2002). Akella et al. (2008) proposed a novel approach to integrate data at different 

scales using the ensemble Kalman filter (EnKF), such that the finest scale data is 

sequentially estimated, subject to the available data at the coarse scale(s), as additional 

constraints. Their results show that higher precision in the coarse-scale data yielded 

improved estimates. By constraining the high resolution variations in model properties to 

coarse-scale information, the estimates of the unknowns are better resolved by reducing 
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the dimensionality of the underlying problem. Devegowda et al. (2009) proposed 

coupling EnKF with a deterministic inversion algorithm to impose coarse-scale spatial 

saturation distribution of the reservoir to infer saturation distributions using tracer 

responses and showed better estimate of the saturation profiles compared to the 

traditional EnKF.  

 

1.2 Objectives of Study 

 

The primary objective of this study is to develop a hybrid Ensemble Kalman filter 

algorithm to overcome traditional EnKF issues related to nonlinear dynamics, parameter 

overshooting and loss of geologic information in the updated models.  

Our goal is to improve EnKF performance without computationally demanding 

iterative rerunning of forward simulations to achieve the consistency in model parameter 

and state variable updating. Instead, by coupling the inversion algorithm on the mean of 

the ensemble model, we intend to make the responses of the mean follow the observation 

trajectory and attain better mode estimation from the inversion process. For that purpose, 

streamline-derived generalized travel time inversion (GTTI) technique is coupled with 

EnKF to obtain a better estimate of permeability distribution. 

Two approaches for a hybrid Ensemble Kalman filter are proposed: swapping of 

mean and mode estimation during EnKF and a coarse scale permeability constraint 

during EnKF updating. For the swapping of mean and mode estimation approach, we 

simply change the way to estimate the covariance matrix by substituting the ensemble 
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mean with the inversion mode model. For the coarse scale permeability constrained 

updating approach, a flow-based upscaling method is utilized to relate the fine and 

coarse-scale permeability data, and the coarse-scale data constrains a sequential second 

stage EnKF updating. The coarse-scale data is obtained by an iterative inversion of the 

production data starting with the ensemble mean. By imposing upscaled coarse-scale 

permeability data on EnKF updating, each ensemble model updating is constrained 

towards the mode model and we obtain a better assimilation and prevent filter 

divergence simultaneously. In addition, by integrating the different scale of the data, our 

estimates of the permeability captures the large structure of the geological features, and 

consequently it reduces the uncertainty of the main features of the spatial continuity of 

the permeability field. 

Through the hybrid EnKF development, the EnKF characteristics in history 

matching is investigated under various conditions such as non-Gaussian parameter 

distribution and the localization effects of the covariance estimation. Sensitivity of EnKF 

updating with respect to the observation error values is also investigated, and 

overshooting problems in the updated model are examined.  

We also analyze the uncertainty quantification on the updated models by using a 

multi-dimensional scaling method to visualize the model separation in a Euclidean 

space. Moreover, to quantify the performance of the proposed hybrid EnKF compared to 

the plain EnKF, four validation methods employed by Zupanski (2004) are used to 

verify the hybrid EnKF results. 
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The advantages of the proposed hybrid EnKF approach over the general EnKF are 

demonstrated through synthetic problems and a field application problem.  

 

1.3 Thesis Outline 

 

Chapter II contains the mathematical formulations for Ensemble Kalman Filter 

from the state estimation problem to the combined parameter and state estimation 

problem. It discusses the derivation of the Kalman equations thoroughly, and the 

evolution from Kalman filter to Extended Kalman filter and Ensemble Kalman filter is 

explained. Finally, it summarizes the EnKF application in reservoir problems and the 

proposed Hybrid EnKF equations are expressed. 

Chapter III covers the characteristics of EnKF in reservoir problems. Performance 

of the EnKF is investigated in synthetic examples and the Goldsmith San Andres Unit 

field application. Sensitivity of the updating results with EnKF parameters is discussed 

in detail. Moreover, the covariance localization methods, streamline trajectory-based 

localization and streamline sensitivity-based localization, are compared in terms of both 

quality of the history matching and the parameter distributions. In addition to that, 

normal score transformation of the permeability variables circumvents the difficulty for 

non-Gaussian or bi-modal prior model distribution. 

Chapter IV contains the proposed hybrid EnKF research work. Both swapping of 

mean and mode estimation approach and the coarse scale permeability constraint 

approach are applied to the same synthetic case as in Chapter III and their performances 
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are investigated in detail. The validation tests of the coarse scale permeability constraint 

hybrid EnKF are conducted. Finally the same filed case as in Chapter III is tested by the 

hybrid EnKF. 

Chapter V summarizes all conclusions drawn from this study and categorized in 

each perspective of the study. Also, the recommendations and the future study areas are 

suggested. 

Appendix A explains the flow based upscaling algorithm used in the coarse scale 

permeability constraint approach. 

Appendix B explains the algorithm of Multi-dimensional scaling method (MDS) in 

the uncertainty analysis. 
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CHAPTER II 

MATHEMATCAL FORMULATION FOR  

ENSEMBLE KALMAN FILTER 

 

In this chapter, the derivation of the Kalman filter (Evensen 2006) is shown from 

the state estimation problem and extended to both time and space domains from the 

time-independent case to the time-dependent case, and from a scalar case to a 

multivariate case. Furthermore the transition from the linear dynamics to nonlinear 

dynamics for Kaman filter is discussed from the linearized approximation of the 

evolution of the error covariance in the Extended Kalman Filter (EKF) to the Monte 

Carlo approach of the estimation of the covariance calculations in the Ensemble Kalman 

Filter (EnKF). Finally the ensemble Kalman filter formulation is related to the combined 

parameter and state estimation problem in the scope of the reservoir characterization 

problem and a novel approach of a Hybrid EnKF formulation is introduced in two 

different ways: swapping of the mean estimate to a mode solution from the deterministic 

inversion algorithm and a coarse scale permeability constrained EnKF updating. 

 

2.1 Time-independent Case 

 

This section discusses the problem of how to improve a model prediction of a state 

variable at a given time by integrating available measurements at the particular time. 
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We start by deriving the optimal linear and unbiased estimator for the scalar state 

estimation problem. 

 

2.1.1 State Estimation Problem 

 

Suppose the true state truey  (e.g. a pressure at a particular location and time) is 

estimated as follows 

 

f

true

f pyy +=        (2.1) 

ε+= trueobs yd        (2.2) 

 

where fy is a model forecast state and obsd  is a measurement of truey . The term 

fp denotes the forecast error, which is unknown and ε  is the unknown measurement 

error. In order to improve the estimate of truey , the following assumptions are made: 

 

0=fp ,   ( ) f

yy

f Cp =
2

 

0=ε ,    ( ) εεε C=
2

    (2.3) 

0=εfp . 

 

Here the over bar denotes ensemble averaging or expected value. Now, we seek a linear 

estimator for the analyzed state estimate ay  as 

obs

fa

true

a dypyy 21 αα +=+= ,     (2.4) 
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where we define 

 

  ,0=ap  ( ) a

yy

a Cp =
2

.      (2.5) 

 

The definition of the Eq.(2.5) means that we assume that the error ap , in the 

analyzed estimate is unbiased. In the other words, the analyzed estimate becomes an 

unbiased estimate of the true state
true

y , i.e. true

a
yy = . 

Inserting the two estimates from Eq. (2.1) and Eq. (2.2) in the Eq. (2.4), we get 

 

)()( 21 εαα +++=+ true

f

true

a

true ypypy     (2.6) 

 

Take the expectation of the above equation, we obtain 

 

truetruetruetrue yyyy )( 2121 αααα +=+= .    (2.7) 

 

Thus, the requirement for 1α  and 2α  is 

 

121 =+ αα , or  21 1 αα −= .      (2.8) 

 

And the linear unbiased estimator for truey  , Eq.(2.4) is rewritten as 

 

)()1( 222

f

obs

f

obs

fa ydydyy −+=+−= ααα .   (2.9) 
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Substituting Eq.(2.1),(2.2) and (2.4) in the above equation gives the analysis error as 

follows, 

 

)(2

ffa ppp −+= εα .      (2.10) 

 

From Eq. (2.5), the error variance becomes  

 

( ) 2

2

2
))(( ffa

yy

a ppCp −+== εα  

          ))(2()(2)(
222

22

2 fffff
ppppp +−+−+= εεαεα    

        )(2 2

22

f

yy

f

yy

f

yy CCCC ++−= εεαα .    (2.11) 

 

The minimum variance is drawn by taking the derivative of Eq. (2.11) as 

 

0)(22 2

2

=++−= f

yy

f

yy

a

yy
CCC

d

dC
εεα

α
.      (2.12) 

 

Solving for 2α  gives 

 

f

yy

f

yy

CC

C

+
=

εε

α 2 .        (2.13) 

 

Thus, the analyzed estimate, Eq. (2.9), is rewritten as 
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)( f
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      = )( f
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f ydKy −+        (2.14) 

 

where )( 2α=K is the Kalman Gain. Further, the error variance of the analyzed estimate 

is calculated from Eq. (2.11) and Eq.(2.13) by plugging in the Kalman Gain  
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2.1.2 Bayesian Formulation of the Kalman Equations 

 

Given a probability density function ( )yf  for the forecast state estimate
fy

, and 

a likelihood function 
( )ydf obs  for the measurement obs

d
, the Bayes’ theorem expresses 

the following, 

 

( ) ( ) ( )yfydfdyf obsobs ∝ .       (2.16) 

 

Therefore, the posterior density function for the estimate of y  given the 

measurement
obs

d , is proportional to the product of the prior density function ( )yf  times 

the likelihood function for the measurement 
obs

d . 
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Similarly in sec.2.1.1, consider the two estimates Eq. (2.1) and Eq. (2.2) of the true state 

true
y . For the case with Gaussian statistics we can define both the prior and the 

likelihood functions as 

 

( ) ( )( ) ( )







−−−∝

− ff

yy

f
yyCyyyf

1

2

1
exp      (2.17) 

 

and 

 

( ) ( )( ) ( )







−−−∝

−

obsobsobs dyCdyydf
1

2

1
exp εε     (2.18) 

 

Thus, the posterior density function can be written as 

 

( ) [ ]







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2

1
exp ,       (2.19) 

 

where 

 

[ ] ( )( ) ( ) ( )( ) ( )obsobs

ff

yy

f
dyCdyyyCyyyJ −−+−−=

−− 11

εε    (2.20) 

 

The least squares solution, ay , of the above equation, which is a minimum for J , is 

equivalent to a maximum of the posterior density function ( )obsdyf . In other words, it is 
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the maximum a posterior estimate in this case. This will always hold as long as all the 

error terms can be described by the Gaussian distribution. 

The minimum value of J  is found from  

 

[ ] ( )( ) ( )( ) 022
11

=−+−=
−−

εεCdyCyy
dy

ydJ
obs

f

yy

f
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Solving for ay gives 
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      (2.22) 

 

This is the same result as in Eq. (2.14) derived from the minimum variance estimate for 

the analyzed state. Thus the minimum variance estimate is also the maximum a 

posteriori estimate in the case of Gaussian priors. 

In summary, the solution for the Kalman filter is based on maximizing the 

posterior probability density function (PDF) of the state estimation in Bayesian 

formulation. And it is equivalent to minimizing the error variances of the posterior state 

estimate with the assumption that the following variables are Gaussian (Maybeck 

(1979), Anderson (1979)). 

• Model errors, 

• Measurement errors, and 
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• The initial state estimate error. 

In addition to the Gaussian assumptions, the model and measurement errors are 

also assumed to be unbiased and uncorrelated in time. And it is worthwhile to note that 

for a linear dynamic model and the estimate of the initial state is Gaussian, both the prior 

and posterior PDFs would be Gaussian because product of prior and likelihood Gaussian 

distribution results in a Gaussian distribution. Both the nonlinear dynamics and violation 

of the Gaussianity of the prior state values can not preserve the Gaussian statistics in the 

posterior PDF. In other words, the mean and covariance are sufficient to describe a 

Gaussian PDF, but for Non-Gaussian PDF, however,  the mean and covariance are 

incomplete description of PDF. In such cases, although all the calculations of the 

Kalman filter can still be applied, the analyzed estimate would be sub-optimal. 

 

2.1.3 Extension to Multivariate Case 

 

Now, we extend the scalar state variable y  to the spatial dimensional state vector 

)(xy with ),,( zyx=x  for a three dimensional space. 

Assume a multidimensional variable (e.g. a pressure field), and a vector of 

measurements obsd , which is related to the true state through the measurement matrix H: 

 

ftf pyy +=  ,        (2.23) 

εHyd += t

obs ,        (2.24) 
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The actual values of the errors fp and ε  are not known. Thus, we make a statistical 

hypothesis with the following assumption. 

 

0p =f ,   ( ) fff

yy

T
Cpp =  

0ε = ,    εε

T
Cεε =      (2.25) 

0εp Tf =  

 

Similar to the derivation of the scalar case, we seek a linear unbiased estimator for 

)(xy t

k  as 

 

)( f

kobsk

f

k

a

k HydKyy −+=        (2.26) 

 

and the error in the analysis is from Eq. (2.23) and Eq.(2.24) given as 
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where the matrix kK  is often called the Kalman gain. This Kalman Gain matrix can be 

derived by minimizing the following error variance, 
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We have used the matrix multiplication property TTT ABAB =)( . And )( k

f tyyC  is a 

symmetric matrix, ( ) )()( k

f

k

f
tt yy

T

yy CC = . 

Since we want to find an optimal kK , we minimize the individual terms along the 

major diagonal of )( k

a tyyC , because these terms represent the estimation error variance 

for the elements of the analysis state vector. We apply the matrix properties as shown 

below 

 

T
T

T

AC
A

ACA

B
A

AB

2
)]([

)]([

=

=

d

traced

d

traced

       (2.29) 

 

From the Eq. (2.28) and (2.29), we get 
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d
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   (2.30) 

 

Now we set the derivative equation (2.30) equal to zero and solve for the optimal 

Kalman gain kK as  

 

1))(()( −+= εεyy

T

yy CHHCHCK t

k

f

k

f

k tt .     (2.31) 

 

Substituting Eq.(2.31) to Eq.(2.28), the posterior error estimate becomes 
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f
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 )()( k

f

k tyyCHKI −=        (2.32) 

 

To summarize, the multivariate Kalman Filter equations are as follows, 

The unbiased linear estimate equation, 

 

)( f

kobsk

f

k

a

k HydKyy −+= ,        

 

with error estimate covariance matrix 

 

( ) )(1)( k

f

yykk

a tt CHKCyy −= ,        

 

where the optimal Kalman Gain Matrix 

 

1))(()( −+= εεCHHCHCK TT

k

f

yyk

f

yyk tt .      

 

2.2 Time-dependent Sequential Model Updating Case 

 

This section deals with time dependant problems where sequential data 

assimilation methods use the analysis scheme to sequentially update the model state. 

Such methods have proven useful for many applications in meteorology and 

oceanography where new observations are sequentially assimilated into the model when 
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they become available. We start with the linear dynamics case where the state variables 

can be predicted in time by linear governing equations. We then extend to the nonlinear 

dynamics by introducing the Extended Kalman Filter (EKF) approach. 

 

2.2.1 Kalman Filter for a Scalar Case with Linear Dynamics 

 

For linear dynamics, the optimal sequential assimilation method is the Kalman 

filter. In the Kalman filter, the first and the second-order statistical moment (mean and 

covariance) are evolved forward in time to predict error statistics for the model forecast. 

The error statistics are applied to calculate a variance minimizing estimate as 

measurements becomes available. 

Assume now that a discrete linear dynamical model for the true state of a scalar 

truey can be expressed as 

 

)()()( 11 −− += kktruektrue tqtGyty       (2.33) 

ayty inittrue +=)( 0         (2.34) 

ε+= trueobs yd          (2.35) 

 

where G  is a linear model operator, q is the model error over one time step and )( ktrue ty  

is the true state at time kt , inity  is an initial state condition with error a . The model error 

is normally not known and a numerical model will therefore evolve according to 

 

)()( 1−= k

a

k

f tGyty         (2.36) 
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init

a yty =)( 0 .         (2.37) 

 

This means, given a best estimate ay , for y  at time 1−kt , a forecast fy is calculated at 

time kt  by using the approximate Eq. (2.36). Now subtract Eq. (2.36) from (2.33) to get 
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k qyyGyy       (2.38) 

 

where we have defined )( ktrue

t

k tyy =  and )( k

ff

k tyy = and )( 11 −− = kk tqq . The error 

covariance matrix for the forecast at time kt  is 
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2

−− += kqqk

a

yy tCtCG . 

 

We have defined the error covariance for the model state as 

 

2
)()(

a

k

t

kk

a

yy yytC −= ,        (2.40) 

 

the model error covariance as 

 

2

11 )( −− = kkqq qtC ,        (2.41) 
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and the initial error covariance as 

 

2

0 )( aCtC aayy == .        (2.42) 

 

It is also assumed that there are no correlations between the error in the state, 

a

k

t

k yy 11 −− − ,the model error 1−kq , and the initial error a .Thus, we have a consistent set of 

dynamical equations for the model evolution Eq. (2.36) and the initial condition 

Eq.(2.37), and the error covariance evolution Eq. (2.39), the model error covariance 

Eq.(2.41) and the initial error covariance Eq.(2.42). At times when there are 

measurements available, an analyzed state estimate can be calculated using Eq. (2.14) 

and Eq. (2.15) as  
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When there are no measurements available, we just set f

k

a

k yy =  and )()( k

f

yyk

a

yy tCtC = , 

and proceed to the next updating. Theses equations define the Kalman filter for a linear 

scalar model, and it is the optimal sequential data assimilation method for the linear 

model given that the priors are all Gaussian and unbiased. 
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2.2.2 Kalman Filter for a Vector Case with Linear Dynamics 

 

Similar to sec 2.1.3, the extension to multiple dimensions of the true state 

)(xtruey can be represented by the state vector ty . It is assumed that the true state 

advances according to a dynamical model. 

 

11 )()( −− += k

t

k

t

k qxGyxy ,       (2.43) 

 

where G is a linear model operator (matrix) and q  is the unknown model error over one 

time step. And a vector of measurement obsd  is defined by 

 

εxHyd += )(t

kobs         (2.44) 

 

where H is a measurement matrix to relate the true state vector to the measurement 

values and ε  is a vector of measurement error. In this case, a numerical model will 

forecast the state vector in time by 

 

)()( 1 xGyxy a

k

f

k −= .        (2.45) 

 

This means, given the best possible estimate for f

k 1−y  at time 1−kt , a forecast is calculated 

at time kt  by using the approximate Eq. (2.45).The forecast error covariance equation is 

derived using a similar procedure as was used for Eq.(2.39) and becomes 
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2
)()(

f

k

t

kk

f
t yyCyy −=  

 )()( 11 −− += kk

a tt qq

T

yy CGGC  .     (2.46) 

 

Thus, the standard Kalman filter consists of the dynamical state forecast Eq. (4.45) and 

forecast error Eq.(2.46) together with the analysis equations which are derived in 

Eq.(2.26), (2.31), and (2.32) in the sec.2.1.3. 

 

2.2.3 Extended Kalman Filter for Nonlinear Dynamics 

 

For nonlinear dynamics, the extended Kalman filter (EKF) may be applied, in 

which an approximate linearized equation is used for the prediction of error statistics. 

In the scalar case, assume now that we have a nonlinear dynamical scalar model 

 

 

11 )( −− += k

t

k

t

k qygy         (2.47) 

 

where )( yg is a nonlinear model operator and q  is again the unknown model error over 

one step. This numerical model will evolve according to the approximate equation as 

 

)( 1

a

k

f

k ygy −= .         (2.48) 

 

Subtracting Eq. (2.48) from Eq. (2.47) gives 
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k qygygyy .      (2.49) 
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Now use the Taylor expansion in the above equation as 
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Substituting Eq. (2.50) in Eq. (2.49), we get 
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By squaring and taking the expected value, the equation for the evolution of the forecast 

error covariance )( k

f

yy tC becomes 
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This equation can be closed by discarding moments of third and higher order, which 

result in an approximate equation for the forecast error covariance as 

 

( ) )()()()( 1

2

1 −− +′≈ kqq
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yyk

f
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Together with the equations for the analyzed state estimate Eq. (2.14) and the analyzed 

error covariance Eq. (2.15) and the dynamical forecast Eq. (2.48) and forecast error Eq. 

(2.53) constitute the extended Kalman filter (EKF) in the case of a scalar state variable 

for nonlinear dynamical model.  

In Matrix form, similar to the scalar case, assume a nonlinear model, but now the 

true state vector at time 
k

t  is calculated from 

 

11 )( −− +=
k

t

k

t

k
qygy         (2.54) 

 

and a forecast is calculated from the approximate equation 

 

)( 1

a

k

f

k −= ygy          (2.55) 

 

where the model is now dependant on both time and space. The error statistics are then 

described by the error covariance matrix )( k

f tyyC  which evolves according to the 

equation with the assumption that the contributions from all the higher order statistical 

moments and higher order derivative of the nonlinear model operator are negligible as  

 

)()()( 1111 −−−− +′′≈ k

T

kk

a

kk

f ttt qqyyyy CGCGC      (2.56) 

 

where )( 1−ktqqC  is the model error covariance matrix, 1−
′
k

G  is the Jacobi matrix or 

tangent linear operator, 
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1

1

)(
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−
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2.3 Ensemble Kalman Filter 

 

Another sequential data assimilation method is the Ensemble Kalman Filter 

(EnKF). The method was originally proposed as a stochastic or Monte Carlo alternative 

to the deterministic Extended Kalman Filter (EKF) by Evensen (1994a). The EnKF was 

designed to resolve the two major problems which arise from the EKF application for 

nonlinear dynamics in large state spaces: the use of an approximation of the error 

covariance evolution and the huge computational requirements associated with the 

memory storage and the calculation of the sensitivity matrix for the forecast error 

covariance matrix. 

The EnKF has gained popularity because of its simple conceptual formulation and 

its relatively easy implementation. It does not require derivation of the sensitivity matrix 

or adjoint equations and integrations backwards in time. In addition to that, especially 

for reservoir problems, it is easily connected to existing commercial reservoir simulators 

because of the independent process of EnKF. 

 

2.3.1 Sampling Representation of Error Statistics 

 

The error covariance matrices for the predicted and the analyzed estimate, f

yyC  and 

a

yyC , are defined in terms of the true state as 
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( )( ) ,
T

yy yyyyC tftff −−=        (2.58) 

( )( ) ,
T

yy yyyyC tataa −−=        (2.59) 

 

where the over line denotes the ensemble averaging. However, the true state is not 

known, and we therefore define the ensemble covariance matrices around the ensemble 

mean y , 

 

( ) ( )( ) ,
T

yy yyyyC
fffffe −−=       (2.60) 

( ) ( )( ) ,
T

yy yyyyC
aaaaae −−=        (2.61) 

 

where the over line denotes an average over the ensemble. Thus, we can infer from Eq. 

(2.60) and Eq.(2.61) that ensemble mean is the best estimate and the spread of the 

ensemble around the mean defines the error in the ensemble mean. 

 

2.3.2 Analysis Scheme 

 

The Kalman filter analysis scheme utilizes the definition of f

yyC  and a

yyC  as given 

by Eq. (2.58) and Eq.(2.59). We will now derive the analysis scheme for EnKF using the 

ensemble covariances as defined by Eq. (2.60) and Eq. (2.61). 

As was shown by Burgers et al.(1998) it is essential that the observations are 

treated as random variables having a distribution with mean equal to the first guess 
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observations and covariance equal to εεC . Thus, we can define an ensemble of 

observations by 

 

jobsj εdd +=          (2.62) 

 

where j ranges from 1 to the total number of ensemble members eN . It is ensured that the 

generated random measurement errors have mean equal to zero. Next we define the 

ensemble covariance matrix of the measurement error as 

 

T

εε εεC =e
.         (2.63) 

 

The analysis step in the EnKF consists of the following updates performed on each of 

the ensemble model state, which is based on the Kalman Equation derived in Eq.(2.26) 

as follows, 
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yy
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   (2.64) 

 

with j denotes ensemble model number. With finite number of the ensemble model, this 

equation will be an approximation. Averaging Eq.(2.64) over the ensemble model, we 

get 
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   (2.65) 
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where obsdd = , therefore the relation between the analyzed and predicted ensemble 

mean state is identical to the relation between the analyzed and predicted one in the 

standard Kalman filter, except for the use of ( ) fe

yyC  and e

εεC  instead of f

yyC  and εεC . 

Now, we derive the analyzed error covariance estimate resulting from the analysis 

scheme given above. From Eq. (2.64) and (2.65), we can obtain 

 

)())(( ddKyyHKIyy −+−−=− j

eff

j

eaa

j ,    (2.66) 

 

where we have used the definition of the Kalman Gain as 
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The derivation of the analysis error covariance is below, 
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Note that the derivation is the same as the Kalman filter in Eq. (2.28) in the sec.2.1.3. 

This implies that the EnKF in the limit of an infinite ensemble size will give the exactly 
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the same result as KF and EKF. Finally, it should be noted that the EnKF analysis 

scheme is sub-optimal for non-Gaussian prior PDF for y because it does not fully take 

into account non-Gaussian contributions in the linear updating. Thus, the solution is 

something between a linear Gaussian update and a full Bayesian update for the non 

Gaussian prior PDFs. 

 

2.4 EnKF for History Matching in Reservoir Problem 

 

In the previous sections, we formulate the EnKF in the scope of the state estimation 

problem. But in the reservoir characterization framework, our model parameters (e.g. 

permeability and porosity) are poorly known. We need to estimate the parameters as 

well as state variables (e.g. Pressure and Saturation). This problem falls in the joint 

parameter and state estimation problem or combined parameter and state estimation 

problem. Here we show how we apply the EnKF for the reservoir history matching 

problem in the context of the combined parameter and state estimation problem. 

 

2.4.1 History Matching Terminology for EnKF 

 

Let’s clarify terminology that we use in the reservoir history matching problem 

for EnKF as follows. 

Model Parameters 

These are variables that are uncertain and time independent. These variables are 

also called static model variables. They include rock properties such as porosity φ  and 
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absolute permeability K . For EnKF updating, the estimate of these properties changes as 

data are integrated although the parameters themselves should not be interpreted to be 

changing with time. We denote the static parameters as sm . 

State Variables 

These are variables that are uncertain and time dependent and define the state of 

the system. Because of the time dependence, they are also called dynamic model 

variables. The uncertainty in these variables results from the uncertainty in the model 

parameters and some other uncertain factors such as initial conditions. For reservoir 

problems, state variables could include phase pressures ),,( wgo ppp  and phase 

saturations ( ),, wgo SSS . These variables are the solutions of systems of the governing 

differential (or difference) equations. If the physical model is valid, and the model 

parameters are known, then it is possible to compute the state variables with given initial 

conditions. We denote the dynamic model variables as dm . 

Data  

These are observation data related directly or indirectly (linearly or nonlinearly) to 

the state variables and the model parameters. For reservoir problems, data ranges from 

the well measurement data including surface flow rates (production rate or injection 

rate), Ratio of the rate (Water Cut (WWCT) and Gas Oil Ratio (GOR)) or bottom-hole 

pressure (WBHP) to a spatial observation data such as seismic data. In reality, the 

observation data always have some unknown level of error or noise associated with 

them. We denote the observation data as obsd . 
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Forward Model 

This is the dynamical model which advances the state of the system in time. 

Essentially it is the reservoir simulator which is solving the governing partial differential 

equations in the descretized time and space domain. In this study we use the commercial 

streamline reservoir simulator FrontSim by Schlumberger. We denote the Forward 

model as ),(og which is a nonlinear operator for the model static and dynamic variables. 

If the forward model is perfect, we can relate the true model parameters to the observed 

data as 

 

εmmd += ),( d

true

s

trueobs g       (2.69) 

 

where ε  is the unknown measurement noise. It is assumed to be unbiased and Gaussian, 

ε ~ ),0( DCN  (i.e. [ ] 0=εE , and [ ] D

T Cεε =E  ). DC  is the measurement error covariance 

matrix which is a diagonal matrix if the measurement errors are uncorrelated. 

State Vector 

      State vector consists of model parameters sm , state variables dm  and calculated data 

cald . The calculated data are the derived model responses from the simulation with the 

model parameters and state variables. This can be described as 

 

),( ds

cal g mmd = .       (2.70) 

 

We define the state vector at time k as the augmented vector  
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The calculated data in time k can be related with measurement matrix H as follows, 

 

kkcal Hyd =,         (2.72) 

 

where matrix H is simply define by the null matrix 0 and the identity matrix I as 

 

[ ]Ι0Η = .        (2.73) 

 

This indicates the matrix H extracts the model responses kcal ,d  from the augmented state 

vector ky  by the matrix multiplication. 

 

2.4.2 Ensemble of the State Vector 

 

EnKF uses an ensemble of state vectors instead of a single state vector. The 

statistics (mean and covariance) are then computed from the ensemble; the ensemble of 

state vectors can be represented by the equation below. 
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where the superscript p denotes prior and subscript denotes time k and the index of the 

ensemble member and eN is the ensemble size. Each initial state vector represents an 

initial model of an infinite ensemble of possible states that are consistent with initial 

measurement from core, well logs and seismic. The ensemble of initial models can be 

generated using any of the standard geostatistics techniques like sequential Gaussian 

simulation or indicator simulation. 

 

2.4.3 Forecast Step and Update Step in EnKF 

 

EnKF has two main steps: a forecast step and an update step. In this thesis, the 

forecast step is carried out by a commercial reservoir streamline simulator FrontSim. 

This step can be represented as  
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where the forward model operator )(og represents a numerical solution of the porous 

media fluid flow equation moving forward from time step k-1 to time step k. In the 

sec.2.3.2, we derive the optimal Kalman update equation in matrix from is given by 

Eq.(2.64). We rewrite the Eq. (2.64) by using the ensemble of state vector notation in 

Eq. (2.74) as 
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( )p

kkobsk

p

k

u

k ΗΨDΚΨΨ −+= ,        (2.76) 

 

The superscript u denotes updated and p denotes prior.Here the matrix kΚ  is known as 

the Kalman gain, matrix kobs ,D  represents an ensemble of perturbed observations as it is  

defined by equations as follows 

 

{ }
eNkobskobskobskobs ,,2,,1,,, dddD K=       (2.77) 

 

where 

 

jkobsjkobs εdd += ,,,          (2.78) 

 

and kobs ,d  represents a vector of any type of production data measured at time ‘k’, and 

jε  represent the noise in the observation data for member ‘j’. The Kalman gain matrix 

kΚ  is also rewritten from Eq. (2.67) as follows, 

 

( ) 1

,,

−

ΨΨ += D

TT CΗΗCΗCΚ p

k

p

kk
      (2.79) 

 

where p

k,ΨC  represents an estimate of the state vector covariance matrix at time ‘k’; and 

DC  represents observation error covariance matrix; typically we assume the errors in the 

observation are not correlated, therefore, DC  is simply a diagonal matrix. Since the true 
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state vector is unknown, as we described in sec.2.3.1, we approximate it with the mean 

of the ensemble using Eq. (2.60); the covariance matrix p

k,ΨC  is rewritten as 
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where 
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Since in the Kalman gain equation, this covariance matrix p

ΨC  is always multiplied by 

matrix H, in practice there is not need to compute the whole covariance matrix but only 

a small portion of it. This is described in the following equations below. Inside the 

covariance matrix of the state vector, p

k,ΨC  reveals 
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where sm
C  is the covariance matrix of the static variables, the size of this matrix is 

MM ×  where M  is the number of grid blocks, and matrix d
m

C  is the covariance 
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matrix of the dynamic variables, the size of the matrix is MM × for one dynamic 

variable per one grid block; 
caldC  is the covariance matrix of the calculated data variable, 

the size of the matrix is dd NN ×  where dN  is the number of measurement at a given 

time. Non-diagonal elements in the matrix p

ΨC  such as 
dM s ,

C  and 
dM

d ,
C  are the cross 

covariance matrix between the static variable and the calculated data. Thus, the term 

TpΗCΨ  and TpΗΗCΨ in the Kalman Gain Matrix K is expressed in sub-matrices as 
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If we replace the terms Tp

kΗC ,Ψ and Tp

kΗΗC ,Ψ  into update equation (2.76), then for one 

model state vector ky  we can rewrite the equation as 
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This equation indicates that we don’t need to compute the whole covariance matrix 

elements in p

k,ΨC  to update the state variables for each ensemble member in the update 

step of the EnKF. This significantly reduces the computational burden and the 

implementation becomes relatively easy. And posterior covariance matrix can be 

computed by 
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2.5 Hybrid Ensemble Kalman Filter Formulations 

 

Our proposed algorithm proceeds along the same lines as the conventional EnKF 

with an additional step as discussed below. The procedure is implemented as follows: 

Eq. (2.76) is the basis of the first step in the hybrid EnKF approach proposed here. We 

calculate intermediate posterior state vector u

iy~  as below, 

 

)()(~
,,

1

,,,,

p

jkjobsD

p

k

p

k

p

jk

u

jk HydCHHCHCyy TT −++= −
ΨΨ    (2.87) 

 

Then, the ensemble updated mean is specified by  
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Simultaneously the parameter estimation is carried via inversion for the ensemble 

updated mean model static parameter (e.g. permeability), s

meanm of the state vector u

meany . 

This ensemble mean is then used as a starting model in a deterministic inverse 

formulation to integrate the production history from the beginning (time zero). This is an 

important distinction because unlike the conventional EnKF, the inversion step here 

explicitly ensures that the updated model is consistent with all the previous observations.  

The non-linear inversion is carried out by iterative minimization of an augmented 

misfit function, )(δmF  to find the elements of the update vector δm . The details of the 

inversion procedure can be found elsewhere (Yoon et al. 1999; He et al. 2002; Tarantola 

2005; Cheng et al. 2006; Oyerinde 2007). Specifically, we utilize a generalized travel 

time inversion (GTTI) technique for the inversion of the water-cut responses and a low-

frequency pressure inversion algorithm (Vasco and Karasaki, 2006) to integrate the 

bottom-hole pressure data. Critical to our approach is the efficiency of the inversion 

algorithm. This is facilitated by a strteamline-based analytic computation of the water-

cut sensitivities (Yoon et al. 1999) and a low frequency asymptotic solution of the 

diffusivity equation for the bottom-hole pressure sensitivity calculations (Kim et al., 

2009). The linearized misfit function for the inversion can be written in terms of the 

sensitivity matrix S, as 
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In Eq. (2.89), the first term on the RHS represents the data misfit, the second 

term is the ‘norm’ constraint which minimizes deviations from the prior model and the 

third term is the ‘roughness’ constraint that ensures large-scale continuity in the geologic 

model. The ‘norm’ and ‘roughness’ terms can be weighted appropriately based on our 

prior information and there is some guidelines in the literature to this regard (Parker 

1994). An iterative least squares solver (LSQR) (Golub and Van Loan 1989) is used to 

solve Eq. (2.89) and (2.90) to obtain the updates and the updated solution or the 

posterior mode, modem . Through the inversion process, we also ensure consistency 

between the dynamic state variables (e.g. pressure and phase saturation) and the updated 

model parameters (e.g. permeability). We then construct the state-vector associated with 

the inversion solution as Tdmmy ],,[ modemodemodemode

ds= which replaces the ensemble mean 

in the EnKF formulation. This step ensures that the EnKF trajectory is centered on the 

posterior mode which is a better representation of the true state, particularly for non-

linear model dynamics. 

In this thesis, we propose two approaches for the hybrid EnKF: (1) Swapping of 

mean and mode estimation and (2) Coarse scale permeability constraint as discussed 

below. 

 

2.5.1 Swapping of Mean and Mode Estimation 

 

The Kalman Gain calculation in Eq.(2.79) again is 
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1)( −
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where the covariance matrix estimation is from Eq.(2.80) 
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In our approach, the mean of the state variables (e.g. Permeability, Pressure and 

Saturation) is replaced by the mode values from the inversion results as follows. 

 

modeyy =p          (2.93) 

 

modeHyyH =p         (2.94) 

 

These operations indicate that we assume the true estimation of the state and parameter 

variables are closer to the mode estimation than the ones from the ensemble averaging 

estimation. Especially from the parameter (e.g. permeability) estimation perspective, 

even for a non- Gaussian distribution such as multi modal distributions, the ensemble 

mean estimation tends to be more Gaussian because of the central limit theorem. 

Moreover, for the state (e.g. Pressure and Saturation) estimation perspective, by using 

the mode values from the inversion process, the parameter values and state values are 

consistent in the governing equation of the system while there is no physical consistency 
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between the ensemble mean parameters and the ensemble mean state variables for the 

nonlinear dynamical system. 

 

2.5.2 Coarse Scale Permeability Constraint 

 

This approach involves a coarse-scale constraint on the individual ensemble 

members based on the solution from the inversion. This is designed to drive the 

individual ensemble members towards the posterior mode. Based on the solution from 

the inversion process, we first conduct an upscaling of the model parameters to generate 

a coarse scale permeability ‘data’ as follows, 

 

mode,ln Uyd =kk         (2.95) 

 

Similar to the measurement matrix H in Eq. (2.73), the matrix U is expressed as 

 

[ ]
MNN ds

00uU = .        (2.96) 

 

Note that the upscaling operator u is applied only for the model parameters, 

s

modem . We adopt a flow-based upscaling method for u (See the Appendix A). The 

coarse-scale permeability derived from the inversion are treated as ‘data’ for a second 

assimilation sequence that further updates the ensemble members by minimizing a misfit 

function based on coarse-scale permeability data, 
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The precision of the coarse-scale observations is contained in the covariance 

matrix, R. By choosing large R, the impact of the second stage assimilation can be 

minimized, if needed, to prevent an ensemble collapse. In Eq. (2.97), u

jk ,
~yU is the 

upscaled permeability derived from the fine-scale ensemble members after the first step 

assimilation and application of the flow-based upscaling. Similar to the first assimilation 

step, each covariance term is evaluated as follow, 
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It is worthwhile to note that the covariance calculation is now based not on the 

ensemble mean y  but the posterior mode from inversion, modey . And similar to Eq. 

(2.86), the posterior covariance is calculated as, 
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In our approach, we chose to carry out the inversion on the ensemble mean 

directly in the fine-scale and impose the coarse-scale permeability (as opposed to the 

fine-scale inversion results) on the ensemble members for several reasons. First, we can 

reduce the dimensions of the inverted matrix in the Eq. (2.97) while calculating the 

Kalman gain in the second step assimilation. This could be important, particularly for 

large-scale problems. Second, we capture the large-scale features of the geological 

model contributing the flow dynamics in the underlying problem without over-

constraining the ensemble members. Finally, the fine-scale inversion solution can be 

easily upscaled from the high resolution to the low resolution in the cross covariance 

estimates in Eq. (2.99). As an alternative, one could carry out the inversion in the coarse-

scale directly. However, this will require downscaling of the coarse-scale estimates to 

the fine-scale for application of Eq. (2.99). In our approach, we favored upscaling as 

opposed to downscaling. 
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CHAPTER III 

CHARACTERISTICS OF ENSEMBLE KALMAN FILTER 

 

Prior to the application of the proposed hybrid EnKF approaches, we first need to 

be aware of the characteristics of EnKF performance in general. This chapter aims to 

depict the some of the important key parameters in EnKF which can affect the EnKF 

updating significantly. We demonstrate the sensitivity of the key parameters through a 

synthetic example and a field scale application. 

 

3.1 Application to a Synthetic Case  

 

To generate the reference permeability model and the permeability of the initial 

members in the ensemble, the sequential Gaussian simulation utility of GSLIB
6
 is 

utilized. A total of 99 different permeability realizations were generated; each realization 

uses the same variogram and was conditioned to the permeability at the well position. 

One of the realizations was taken to be the true or the reference permeability model. The 

generated permeability realizations and the reference permeability fields have a non-

Gaussian spatial histogram and this was chosen to highlight some of the difficulties in 

the application of the traditional EnKF. The reference model for this synthetic case is 

shown in the figure 3.1 below. 
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Figure 3.1 Reference model log permeability and its spatial histogram  

 

 

 

Description of the EnKF parameters for this case is listed below. 

 

EnKF parameters 

• 3 producers and 1 injector 

• The number of the ensemble is 99 

• Favorable  mobility Ratio (Oil viscosity =0.3 cp, Water viscosity =0.3 cp) 

• Assimilation WWCT observation Data from 800 days to 3200 days 

(every 100days from 800 days to 2000 days and every 50 days for the rest)  

• WWCT measurement error is 10% 

• After assimilation, run all the ensemble from time 0 to 4000 days 

• Injection Rate 300 RESV/ 3 Production rates 100,150,70 RESV 

• State variables { lnK, P, Sw, WWCT} 

 

The history matching results are shown in the figures 3.2 and 3.3 below. Both 

results show that updated model responses in field cumulative oil production total 

(FOPT) and water cut (WWCT) become closer to the reference one than the initial 

model responses in terms of the reduction in the spread around the true response. 

However, there is still a substantial (-15%~+15%) misfit in WWCT responses. 
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   (a)             (b) 

 

Figure 3.2 Field cumulative oil production responses from the ensemble models; the 

reference model is in red line; (a) is the initial ensemble models, (b) is the EnKF 

updated models. 

 

 

 

 
          P1    P2       P3 

 
          P1    P2       P3 

 

Figure 3.3 Well water cut responses from the ensemble models; the reference model 

is in red line; first row is the initial ensemble models, the second is the EnKF 

updated models. 
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In terms of the permeability fields, Figure 3.4 shows the mean of the ensemble 

permeability field and a comparison between initial mean model and the final updated 

mean model.  

 

 

 
      Reference        Initial     EnKF 

Figure 3.4 Mean of the ensemble permeability fields; reference model in the left, the 

initial mean of the ensemble models in the center, and the mean of the final updated 

ensemble models. 

 

 

 

 
       Reference  No. 1   No. 50   Mean 

 
               No. 1   No. 50              Mean 

Figure 3.5 Spatial histograms of the log permeability values comparison initial 

models and updated models; in the first row and from the left, reference model, the 

ensemble No. 1 model, and the ensemble No.  50, the mean of the ensemble models 

in the second row from the left, the ensemble No. 1 model, and the ensemble No.  

50, the mean of the ensemble models. 
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Since the Kalman updating equation is optimal for Gaussian distribution which 

can be described by mean and covariance, but for non-Gaussian PDF like this case, the 

EnKF updating makes the spatial histogram of permeability Gaussian distribution. Based 

on the results that we obtained from this case, we examine two methods to assist EnKF 

updating. One is Streamline-based covariance localization and the other is Normal Score 

transformation of the parameters. Following are the description of the methods and the 

results applied for the same synthetic problem. 

 

3.2 Streamline based Covariance Localization 

 

In the literature, there are many studies to improve the estimation of the covariance 

calculation from the ensemble model. One of them is called the covariance localization 

which modifies the calculation of the sample covariance by weighting values. Especially 

for small ensemble sizes with noisy and possibly erroneous cross-covariances, 

unrealistic updates and degraded EnKF performance is often observed. (Gu and Oliver 

2006; Arroyo et al. 2006; Devegowda et al. 2007) 

The aim of most covariance localization schemes is to eliminate spurious terms in 

the cross-covariance matrix arising due to sampling errors caused by finite and small 

ensemble sizes and to increase the effective number of ensemble members (Hamill et al. 

2001). Distance based covariance localization schemes (Houtekamer and Mitchell 2001; 

Hamill et al. 2001) are predicated on the assumption that the correlation between model 

grid cells and well data is associated with certain length scales beyond which the 
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correlation can be assumed to be zero. Mathematically, the localized EnKF can be 

expressed with the same notation as Chapter II as  
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where the localizing function ρ  operates on the Kalman gain matrix. The operator ‘◦’ is 

an element-by-element multiplication also called a Schur product. Various valid 

correlation functions are discussed further in Gaspari and Cohn (1996). However the 

assumption that correlation is based on the distances between two points is not always 

valid for the reservoir environment where the build-in heterogeneity dominates the flow 

dynamics. Arroyo et al. (2006) proposed the streamline base localization method in the 

reservoir problem application. The basic idea is that the streamline trajectory from the 

reservoir simulation is utilized to identify the influential zones at the particular time and 

under the well configuration settings. All ensemble model flow geometries are all 

analyzed and stacked up to identify the common influential area. Then the spurious 

values in the covariance calculations can be removed by assigning 0’s and 1’s for the 

Schur product to eliminate the place where there is no streamline passing through. We 

denote this localization method as streamline trajectory localization in this thesis. 

Further, Devegowda et al. (2007) extend the streamline trajectory localization by 

weighting the relative impact of the common influential area by the magnitude of the 

sensitivity values derived from the streamline simulation. Now the calculation of ρ  in 

Eq. (3.1) becomes 
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where S  refers to the sensitivity values formed by summing the sensitivities over all the 

realizations and subscript i and j denotes the number of the grid block and the number of 

observation data respectively. Essentially, Eq. (3.2) implies that relative impact of the 

influential zone is calculated as the sensitivity values normalized by the maximum 

sensitivity of a grid block inside the influential zone with respect to the corresponding 

observation data. The way to calculate the sensitivity is out of scope of this thesis and is 

referred to the several works in the literature (Yoon et al. 1999; He et al. 2002; Cheng et 

al. 2006; Oyerinde 2008). We denote this localization method as streamline sensitivity 

localization in this thesis. Examples of the streamline trajectory localization and 

streamline sensitivity localization are shown in Figures 3.6 and 3.7 below.  

 

 

 

   
  P1             P2             P3 

Figure 3.6 An example for the streamline trajectory localization; the localizing 

function is plotted for each producer, from left P1, P2 and P3. The red color is 1’s 

and blue color is 0’s. 
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Figure 3.7 An example for the streamline sensitivity localization; the localizing 

function is plotted for each producer, from left P1, P2 and P3. 

 

 

 

As you can see in the Figure 3.6, the influential zone for each producer is 

identified in red color and the regions in color blue are not correlated to the WWCT 

observation data. Comparing between the figures 3.6 and 3.7, the streamline trajectory 

localization captures the common influential zone and streamline sensitivity localization 

identify the relative influence inside the common influential zone clearly. 

An experiment was conducted for the same synthetic problem by using the 

streamline trajectory localization method. The history matching results are shown in the 

figures 3.8 and 3.9. The quality of matching FOPT is almost same as the result in figure 

3.2. As for the WWCT matching, the producer No. 1 and No. 2 (P1 and P2) results are 

similar to the results in figure 3.3, but the producer No. 3 (P3) matching is degraded 

compared to the result in figure 3.3. P3 is located in the right corner of the domain. If 

one looks at the updated permeability filed in figure 3.10, the EnKF with localization 

results show that the high permeability zone is created in the diagonal region, same as in 
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the EnKF without localization result. But the updated values are more overshooting 

(around lnK=8) compared to the EnKF without localization, and the low permeability  

 

 

 

  
   (a)      ?(b) 

Figure 3.8 Field cumulative oil production responses from the ensemble models; the 

reference model is in red line; (a) is the initial ensemble models, (b) is the EnKF 

updated models with streamline trajectory localization  
 

 

 

 
          P1    P2       P3 

 
          P1    P2       P3 

 

Figure 3.9 Well water cut responses from the ensemble models; the reference model 

is in red line; first row is the initial ensemble models, the second is the EnKF 

updated models with streamline trajectory localization. 
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barrier in the top center is not captured as well as the EnKF without localization result. 

This results in the communication between P3 and P2 which causes the worse WWCT 

matching in P3.  

 

 

 
  Reference         EnKF   EnKF-ST 

Figure 3.10 Mean of the ensemble permeability fields; reference model in the left, 

the mean of the EnKF final updated ensemble models in the center, and the mean 

of the EnKF updated ensemble models with streamline trajectory localization. 

 

 

 

            
    (a)     (b) 

Figure 3.11 (a)Well configuration of the synthetic problem from an initial model 

and (b)streamline trajectory of the model. 

 

 

 

A reason for the high values of the updated model is that streamline localization 

magnifies the correlation between the parameters and the WWCT in the diagonal 
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influential zone and results in increasing the values over the sequence of the updating. 

Figure 3.11 show the well configuration and the streamline trajectory from an initial 

model. The streamline trajectory shows bundles of streamline are clustered in the 

diagonal region exclusively, and it indicates the change that we make through EnKF is 

only for the region. As is shown in the Figure 3.12, the spatial log permeability 

distribution has bi-modal distribution in EnKF with localization compared to the EnKF 

without localization. It is because the localization restricts EnKF updating to the 

influential zones identified the streamline trajectory through the ensemble model and 

preserves the prior model more compared to the EnKF without localization. However, it 

still makes the spatial distribution more Gaussian compared to the initial model 

distribution (see Figure 3.5). 

 

 
       Reference   No. 1   No. 50   Mean 

 
               No. 1   No. 50              Mean 

Figure 3.12 Spatial histograms of the log permeability values comparison EnKF 

updated models and EnKF updated models with streamline trajectory localization; 

in the first row and from the left, reference model, the ensemble No. 1 model, and 

the ensemble No.  50, the mean of the ensemble models in the second row from the 

left, the ensemble No. 1 model, and the ensemble No.  50, the mean of the ensemble 

models. 
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3.3 Normal Score Transformation of the Parameter 

 

One of the main assumptions in EnKF is that Gaussian error statistics in the 

derived equations. This implies that the prior Gaussian distribution is suitable in the 

updating both the state and parameter estimations. However this requirement is not 

necessarily acceptable for the most of the reservoir characterization problems, because 

the petro physical properties such as porosity and permeability are often characterized in 

a multi-facies and multimodal distribution in a real field environment. Gu. and Oliver 

(2004) shows the benefit to use the normal score transformation on the state variables 

(Saturations), which can be bi-modal distribution near the water front, to prevent the 

non-physical updated values from EnKF. 

In this study we apply the normal score transformation on the parameter variable 

(Permeability) which has a bi modal distribution and update the normal scored values in 

EnKF and back transformed to the physical values after the assimilation step. The 

crucial point for this approach is that we construct the transformation table for the 

permeability values based on the prior model values. In this way, we can preserve the 

prior parameter distribution and geological realism. An example of the normal score 

transformation is demonstrated in Figure 3.13. 
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           No. 1          No. 25        No. 50 

   
         No. 1         No. 25        No. 50 

Figure 3.13 Spatial histograms of the log permeability values comparison initial 

ensemble models and normal scored ensemble models; In the first row and from 

the left, initial permeability spatial histogram of ensemble No. 1,No. 25 and No. 50 

models, in the second row and from left, the normal scored permeability spatial 

histogram of ensemble No. 1, No. 25, and No. 50 models.  

 

 

 

As the Figure 3.13 shows, after the normal score transformation, the spatial permeability 

distribution is all standard normal distribution. So the prior parameter distribution can be 

described by the mean and covariance which is suitable for EnKF updating.  

So we apply the normal score transformation for the permeability values for the 

same synthetic case as in sec.3.1. We change the ensemble size to be 50 and compare the 

result with the EnKF without normal score transformation (Plain EnKF) results below. 

Figures 3.14 and 3.15 show the comparison between Plain EnKF and the EnKF with 

normal score transformation of the permeability (Normal EnKF) in FOPT and WWCT.  

 



 60 

           
        (a) Initial Model     

  
  (b)EnKF     (c)Normal EnKF\ 

Figure 3.14 Field cumulative oil production responses from the ensemble models; 

the reference model is in red line; (a) is the initial ensemble models , (b) is the 

EnKF updated models, (c) is EnKF updated models with the normal score 

transformation of the permeability. 

 

 

 

Both results show the better matching for the Plain EnKF than the Normal EnKF. 

This indicates that the normal score transformation does not produce the better matching 

quality, however if you look at the mean of the updated ensemble permeability field in 

Figure 3.16 and ensemble model spatial permeability histograms in Figure 3.17, normal 

score transformation prevents the overshoot and undershoot problems in the 

permeability values and preserve the prior permeability bi-modal distribution after the 

sequence of the updating as we expected. 
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          P1    P2       P3 

 
          P1    P2       P3 

 
          P1    P2       P3 

 

Figure 3.15 Well water cut responses from the ensemble models; the reference 

model is in red line; first row is the initial ensemble models, the second row is the 

EnKF updated models, and the third row is the EnKF updated models with normal 

score transformation. 

 

 

 
  Reference         EnKF   Normal EnKF 

 

Figure 3.16 Mean of the ensemble permeability fields; reference model in the left, 

the mean of the EnKF final updated ensemble models in the center, and the mean 

of the EnKF final updated ensemble models with normal score transformation. 
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       Reference  No. 1   No. 25   No. 50 

 
       No. 1   No. 25   No. 50 

 
       No. 1   No. 25   No. 50 

Figure 3.17 Spatial histograms of the log permeability values comparison; in the 

first row and from the left, initial permeability spatial histograms of ensemble No. 

1,No. 25 and No. 50 models, in the second row and from left, EnKF updated 

permeability spatial histograms of ensemble No. 1, No. 25, and No. 50 models and 

in the third row and from left, Normal EnKF updated permeability spatial 

histogram of ensemble No. 1, No. 25,and No. 50 models. 

 

3.4 Goldsmith Field Application 

 

In this section, we demonstrate the applicability of the EnKF for a field example, 

the Goldsmith CO2 pilot project study (He at al. 2002; Cheng et al. 2005). We used an 

ensemble size of 50 realizations of porosity and permeability fields conditioned to well 

data and secondary seismic attributes. The pilot area comprises 9 inverted 5-spot patterns 

covering around 320 acres and the average thickness of the formation is 100 ft. 
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Significant water-cut data for 20 years of production prior to the start of the CO2 flood is 

available at 9 production wells and these were used to condition the permeability fields. 

By the location of these wells in the center of the field, it is expected that most of the 

changes to the permeability distribution should be concentrated in this region. Figure 

3.18 is an areal plot of the location of the Goldsmith CO2 pilot study within the extended 

study area showing the location of the producers (in yellow) and the injectors (in blue). 

The simulation model is shown in Figure 3.19 below which has dimensions of 58 by 53 

by 10 in corner point grid system.  

 

 

 
   Figure 3.18 Gold Smith well configuration map 

 

 

 
       Figure 3.19 Gold Smith simulation model  
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50 initial model WWCT responses are shown in the Figure 3.20.  

 

 

 

Figure 3.20 Initial 50 ensemble model WWCT responses; the observation data in 

blue points and the initial ensemble model responses are in grey lines, in the first 

row from the left, P1, P2 and P3, in the second row from left, P4, P5,and P6, and in 

the third row, from left, P7, P8 and P9. 

 

 

 
As you can see the initial model WWCT spread is very large (at largest about 50% 

difference). We need to reduce the uncertainty of the ensemble model and build better 

performance models with reliable forecasts through history matching. Here we found the 

key parameters to adjust for EnKF to get the better results and the characteristics of 

EnKF for the filed application. Initial permeability fields are shown in Figure 3.21. 

Default parameters that we use for this study are listed below. 
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EnKF Parameters 

• 9 producers for WWCT history mach 

• 58×53×10 grids 

• The number of the ensemble is 50 

• Assimilation WWCT observation Data from 0 days to 3840 days 

and prediction runs to 7800 days 

• WWCT measurement error is 10% 

• After assimilation, run all the ensemble from time 0 to 7800 days 

• State variables { lnK, P, Sw, WWCT} 

 

 

 

 
          No. 1       No. 25   No. 50 

 
 

Figure 3.21 Initial ensemble permeability fields; from the left, ensemble No. 1, No. 

25 and No. 50 at the depth of 1080 ft, 2042 ft and 3004 ft from the top. 

 

3.4.1 Sensitivity with Updating Limit Constraint 

 

From this field application study, we found that it is very important to limit the 

updated variables through EnKF. We first let the limit open lnK[-12 12] and conduct 

Plain EnKF. Figure 3.22 is the result of WWCT matching from the Plain EnKF. As you 
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can see that the spread of the WWCT responses are reduced from the initial model 

results in Figure 3.20, but the matching the observation history is worse in the updated 

model responses than the initial model ones.  

 

 

 
 

Figure 3.22 EnKF final 50 updated ensemble model WWCT responses without 

limit value constraints; the observation data in blue points and the ensemble model 

responses are in light blue lines; in the first row from the left, P1, P2 and P3, in the 

second row from left, P4, P5,and P6, and in the third row, from left, P7, P8 and P9. 

 

 

 
From the updated permeability results in Figure 3.23, EnKF updated model has 

severe over and under shooting values reached to the maximum and minimum limit.  
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(a) Initial mean model 

 

 

 

  

 
    (b) Updated mean model 

 

Figure 3.23 The ensemble No. 1 permeability field and spatial distribution 

comparison between (a) the mean of the initial ensemble models and the mean of 

the updated ensemble models. 
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This is totally destroying the geological realism and consequently the matching WWCT 

is also not successful. Based on the prior knowledge of the permeability distribution, we 

can define the minimum and maximum allowable limit values. This is also one of the 

major uncertainties on the reservoir characterization. For this study following, I define 

the maximum and minimum permeability value range as lnK[-4 7] from the prior initial 

model distributions. We conduct the EnKF again with the limit of the updated 

permeability values.  

 

 

 
 

Figure 3.24 EnKF final 50 updated ensemble model WWCT responses with limit 

value constraints; the observation data in blue points and the ensemble model 

responses are in light blue lines; in the first row from the left, P1, P2 and P3, in the 

second row from left, P4, P5,and P6, and in the third row, from left, P7, P8 and P9. 

Vertical line shows the last assimilation time step.  
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The figure 3.24 shows the WWCT matching results and it shows significant 

improvement from the results in figure 3.20 in terms of the matching to the observation 

data trend. But we still see discrepancy between the simulation responses and the 

observation data especially for the water break through time in P1, P3 and P7, P8 and 

prediction part in the P1, P2 and P5 and non-monotonic behavior in WWCT P6. Updated 

ensemble permeability fields are shown in Figure 3.25. Compared to the initial ensemble 

model permeability fields in Figure 3.21, we can see the overshoot and undershoot 

problems in the updated models. the high permeability and low permeability region, 

respectively. As we can expect, the spatial model distribution becomes more Gaussian 

after the sequence of the updating shown in Figure 3.26. 

 

 
  No. 1        No. 25          No. 50 

 
 

Figure 3.25 Updated ensemble permeability fields; from the left ensemble No. 1, 

No. 25 and No. 50 at the depth of 1080 ft, 2042 ft and 3004 ft from the top. 
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 No. 1             No. 25       No. 50 

 
 No. 1             No. 25       No. 50 

Figure 3.26 Spatial histograms of the log permeability values comparison between 

initial ensemble models and EnKF updated models; in the first row and from the 

left, the initial ensemble No. 1, No. 25 and No. 50 models, in the second row from 

the left, the updated ensemble No. 1, No. 25 and No. 50 models. 
 

 

3.4.2 Sensitivity with the Measurement Error Variance 

 

Another thing that we want to test for this study is that how the measurement error 

variance affects the EnKF updating because we do not know the true error variance in a 

real field case. So We try changing the measurement error values from 0.1 to 0.05 and 

rerunning the EnKF with limit of the updated permeability values. By reducing the 

observation error, the spread of the WWCT responses from the updated model is 

reduced very much shown in Figure 3.27, but the quality of the matching is degraded 

compare to the previous results. This indicates that the ensemble model collapsed to 

each other due to the loss of the variance of the data and if you look at the updated 

permeability profile in Figure 3.28,  and  its  distribution,  the  updated  model  has  severe  
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Figure 3.27 EnKF final 50 updated ensemble model WWCT responses with limit 

value constraints for measurement error variance =5 %; the observation data in 

blue points and the ensemble model responses are in light blue lines, in the first row 

from the left, P1, P2 and P3, in the second row from left, P4, P5, and P6, and in the 

third row, from left, P7, P8 and P9. Vertical line shows the last assimilation time 

step.  

 

 

 

over and undershooting values and totally destroyed the prior model information. 

Based on these results, it is necessary to take account for the relative impact of the 

observation data to the prior information to preserve the built in geological realism and 

overestimate the observation data. 
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Figure 3.28 The ensemble No. 1 permeability field and spatial distribution 

 

 

3.4.3 Comparison with Localization Methods 

 

We want to investigate the effect of the covariance localization on EnKF for this 

case and compare the results from streamline trajectory localization and from sensitivity 

localization. We denote the streamline trajectory localization results as EnKF-ST and 

Sensitivity Localization ones as EnKF-SS. Figure 3.29 shows both EnKF-ST and EnKF-

SS preserve the prior permeability distribution better than without localization. 

Precisely, EnKF-SS results prevent the overshooting and undershooting better than the 

EnKF-ST (See the Figure 3.30). And Streamline sensitivity localization result shows the 

change from the prior model is minimal and matching WWCT is improved from the 

initial models.  

 



 

 

7
3

 
  (a) EnKF-ST         (b) EnKF-SS 

Figure 3.29 EnKF final 50 updated ensemble model WWCT responses comparisons between (a) ENKF with streamline 

trajectory localization and (b) EnKF with streamline sensitivity localization; the observation data in blue points and the 

ensemble model responses are in light blue lines, in the first row from the left, P1, P2 and P3, in the second row from 

left, P4, P5,and P6, and in the third row, from left, P7, P8 and P9. Vertical line shows the last assimilation time step.  
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      Initial     EnKF-ST     EnKF-SS 

Figure 3.30 The ensemble No. 1 permeability field and spatial histogram 

comparison between the initial ensemble model, the updated ensemble model from 

EnKF-ST and the updated ensemble model from EnKF-SS.  

 

3.4.4 Normal Score Transformation with Localization Methods 

 

On top of the localization, we can use normal score transformation of the 

permeability values to see if the combination of two provides the better estimation. We 

denote the EnKF with streamline trajectory localization and normal score transformation 

as NST-EnKF, and the EnKF with streamline sensitivity localization and normal score 

transformation as NSS-EnKF in the following result figures. Figure 3.31 shows the 

comparison of history matching results between NST-EnKF and NSS-EnKF. Over all 

the matching quality between two are similar except for P3 and P9. As Figures 3.32 and 
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3.33 show, normal score transformation can assist preserving the prior permeability 

distribution better and with localization, the change from the initial model is localized 

and minimal. Precisely with streamline sensitivity localization, the change from the 

initial model is more localized near the well locations and smaller than one with 

streamline trajectory localization. 

 

 

  
(a) NST-EnKF               (b) NSS-EnKF 

 

Figure 3.31 EnKF final 50 updated ensemble model WWCT responses comparisons 

between (a) normal scored ENKF with streamline trajectory localization and (b) 

normal scored EnKF with streamline sensitivity localization; the observation data 

in blue points and the ensemble model responses are in light blue lines, in the first 

row from the left, P1, P2 and P3, in the second row from left, P4, P5,and P6, and in 

the third row, from left, P7, P8 and P9. Vertical line show the last assimilation time 

step.  
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Figure 3.32 The ensemble No. 1 permeability field and spatial histogram and 

changes from the initial model No. 1; from the left the initial ensemble model No1, 

the updated ensemble model No. 1 from NST-EnKF and the change that we make 

from NST-EnKF updating from the initial model No. 1. 

 

 

 
Figure 3.33 The ensemble No. 1 permeability field and spatial histogram and 

changes from the initial model No. 1; from the left the initial ensemble model No1, 

the updated ensemble model No. 1 from NST-EnKF and the change that we make 

from NST-EnKF updating from the initial model No. 1. 

 

NNSSTT--EEnnKKFF IInniittiiaall DDiiffffeerreennccee 

IInniittiiaall NNSSSS--EEnnKKFF DDiiffffeerreennccee 
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3.5 Summary of Chapter III 

 

We demonstrate the characteristics of the EnKF in many sensitivity comparison 

works. These are the findings to mentions. 

 

• Limit of the updating values should be considered to constrain the parameter 

estimation solutions 

• Measurement Error variance should be assigned properly to maintain the relative 

contribution of the data to the prior model information to prevent the 

overconfident on the data and ensemble model collapse after the assimilation. 

• Streamline based localization can assist the updating in terms of  mitigating 

overshoot and undershoot problems and maintain the model change small and 

localized in the influential zone of the flow dynamics 

• Normal Score transformation can assist preserving the prior non-Gaussian model 

parameter distribution through the updating. 

 

In the following chapter, I will approach for these issues by introducing hybrid EnKF 

approaches. 
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CHAPTER IV 

A HYBRID ENSEMBLE KALMAN FILTER APPLICATION
*
 

 

In this chapter, we develop two hybrid Ensemble Kalman Filter algorithms; 

swapping of mean and mode estimation and coarse scale permeability constrained EnKF 

updating. In the former approach, we calculate the covariance based on a solution from 

the inversion process. The latter is a sequential approach where updating step in EnKF is 

divided into 2 steps. First, the ordinary EnKF updating is applied. We then use the mean 

of the updated model in the inversion algorithm as the initial model and integrate the all 

history of the observation data from the beginning to the most current time. Then based 

on the results from the inversion process, we upscale the model and generate the coarse 

scale permeability data. By using this generated permeability data, we can conduct the 

second step updating in EnKF to impose the inversion results on the previous EnKF 

updating results. The requirement of this approach is the good quality of the efficient 

inversion algorithm and controlling the constraining. We adapt the efficient streamline 

based Generalized Travel Time Inversion (GTTI) for the WWCT data and low 

                                                
*
 Part of this chapter is reprinted with permission from “A Hybrid Ensemble Kalman 

Filter With Coarse Scale Constraint for Nonlinear Dynamics” by Watanabe S., Datta-

Gupta, A., Efendiev, E., Devegowda, D. Paper SPE-124826-MS presented at the SPE 

Annual Technical Conference and Exhibition, New Orleans, Louisiana, 4-7 October. 

Copyright 2009 by Society of Petroleum Engineers. 

 



 

 

79 

frequency pressure inversion for the WBHP inversion process and demonstrate the 

advantages of this method through some synthetic examples and a field application. 

 

4.1 Swapping Mean and Mode Estimation Hybrid Approach 

 

As I described in Chapter II sec 2.5.1, the aim for the swapping mean and mode 

estimation is that we calculate the cross covariance between the model parameters and 

the model responses based on the mode solution from the inversion process. It is crucial 

to get a closer solution from the inversion process than the mean of the ensemble model 

in terms of the parameter solutions (i.e. permeability field). So first we try the same 

synthetic case as the previous Chapter III, but make the reference case as the average of 

the initial ensemble model shown in Figure 4.1 ,because the inversion algorithm search 

the solution from the ensemble mean model. We expect the inversion algorithm, GTTI, 

captures the true permeability fields by this assumption. We refer to the simple EnKF 

without hybrid approaches as Plain EnKF and Swapping mean and mode hybrid EnKF 

as Hybrid-SMM-EnKF in this section. 

 

 

      
Figure 4.1 Reference model log permeability and its spatial histogram  
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EnKF parameters for this case are listed below. 

EnKF Parameters 

• 3 producers and 1 injector 

• The number of the ensemble is 99 

• Assimilation WWCT observation Data from 800 days to 3200 days 

(every 100days from 800 days to 2000 days and every 50 days for the rest)  

• No covariance localization 

• After assimilation, run all the ensemble from time 0 to 4000 days 

• Injection Rate 300 RESV/ 3 Production rates 100,150,70 RESV 

• State variables { lnK, P, Sw, WWCT} 

 

History matching results are shown in Figures 4.2 and 4.3.  

 

 

  
(a) Initial model       (b) Plain EnKF 

  
  (c) Hybrid-SMM-EnKF     (d) Mean model 

Figure 4.2 Field cumulative oil production responses from the ensemble models; the 

reference model is in red line, Plain EnKF ensemble model responses in light blue, 

and Hybrid-SMM ones in light green; (a) is the initial ensemble models, (b) is Plain 

EnKF updated models, and (c) is Hybrid-SMM-EnKF updated models and (d) is 

the comparison between the mean of Plain EnKF updated ensemble models and the 

mean of Hybrid-SMM- EnKF updated ensemble models.  
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          P1    P2       P3 

 
          P1    P2       P3 

 
          P1    P2       P3 

 
          P1    P2       P3 

 

Figure 4.3 Well water cut responses from the ensemble models; the reference model 

is in red line; the first row is the initial ensemble models, the second row is Plain 

EnKF updated ensemble models, and the third row is Hybrid-SMM-EnKF-updated 

ensemble models, the forth row is the comparison between the mean of the updated 

ensemble models from Plain EnKF and Hybrid-SMM-EnKF.  
 

 

 

Both Plain EnKF and Hybrid-SMM-EnKF assimilate the observation data, and 

spread of the uncertainty in WWCT is reduced from the initial model responses. To be 

precisely, the Hybrid-SMM-EnKF matching is not as good as the plain EnKF (see the 
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well P2 in Figure 4.3). The mean of the permeability profile results in figure 4.4 show 

that the Hybrid-SMM-EnKF captures the high permeability trend in the diagonal line 

better than Plain EnKF one. And if you look at the prediction from the mean of the final 

model responses, Hybrid-SMM-EnKF result is better than Plain EnKF one, which 

implies that the mean estimate was improved by hybrid approach, but the individual 

model responses did not improve from the better mean estimate. However, the 

permeability profile results in Figure 4.4 show that Plain EnKF updating suffers from the 

overshooting in the place where parameters are not resolved by the WWCT observation 

data in terms of the flow geometry. This indicates the necessity of the covariance 

localization to eliminate the spurious values in the covariance matrix. 

 

  
                (a) Reference Model        (b) Initial Mean 

  
             (c) Hybrid-SMM EnKF          (d) Plain EnKF 

Figure 4.4 Mean of the ensemble permeability fields comparison; (a) reference 

model, (b) the initial mean of the ensemble models, and (c) the mean of the final 

updated ensemble models from Hybrid-SMM EnKF, (c) the mean of the final 

updated ensemble models from Plain EnKF. 
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4.1.1 Sensitivity with Initial Model Biasness 

 

Because we can see the biasness in the initial model responses in WWCT from the 

true model responses in the first row of Figure 4.3, we change the true model to have a 

bi-modal distribution same as sec.3.1 in Chapter III shown in Figure 4.5 and conduct the 

Hybrid-SMM-EnKF updating with the same parameter as sec.3.1 in Chapter III. We 

couple EnKF with the inversion process every 400 days from 2000 days (4 times) 

inversion.  

 

 

 
Figure 4.5 Reference model log permeability 

 

 

 

The history matching results are shown in Figures 4.6 and 4.7. By coupling the 

inversion, the matching result for the ensemble mean is improved (see Figure 4.6 (d) and 

last row of Figure 4.7). As for the updated permeability field comparison, Figure 4.8 

shows both Plain EnKF and Hybrid-SMM-EnKF capture the main permeability 

underlying continuity from the initial mean estimation. 
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(a) Initial model       (b) Plain EnKF 

        
       (c) Hybrid-SMM-EnKF      (d) Mean model 

 

Figure 4.6 Field cumulative oil production responses from the ensemble models; the 

reference model is in red line, Plain EnKF ensemble model responses in light blue, 

and Hybrid-SMM ones in light green; (a) is the initial ensemble models, (b) is Plain 

EnKF updated models, and (c) is Hybrid-SMM EnKF and (d) is the comparison 

between the mean of Plain EnKF updated ensemble models and the mean of 

Hybrid EnKF updated ensemble models.  

 

 

 
In summary for swapping mean and mode estimate hybrid approach, we 

acknowledge that Hybrid EnKF results depend on the inversion results. We need to 

develop criteria to judge if a mode solution from the inversion process can be replaced 

by the ensemble mean model in terms of preserving observation trajectory to achieve 

better estimation for the cross covariance calculation. And it is noticeable that the better 

estimation of the mean of the ensemble models doesn’t always result in the improvement 
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on the each ensemble model matching quality. This leads us to the next hybrid approach 

where we constrain each ensemble model updating toward the better mode estimation by 

sequential coarse scale permeability data updating.  

 

 

 
          P1    P2       P3 

 
          P1    P2       P3 

 
          P1    P2       P3 

 
          P1    P2       P3 

Figure 4.7 Well water cut responses from the ensemble models; the reference model 

is in red line; the first row is the initial ensemble models, the second row is Plain 

EnKF updated ensemble models, and the third row is Hybrid-SMM EnKF-updated 

ensemble models, the forth row is the comparison between the mean of the updated 

ensemble models from Plain EnKF and Hybrid-SMM-EnKF.  
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       (a) Reference Model    (b) Initial Mean 

 
       (c) Hybrid-SMM EnKF      (d) Plain EnKF 

 

Figure 4.8 Mean of the ensemble permeability fields comparison; (a) reference 

model, (b) the initial mean of the ensemble models in the center, and (c) the mean of 

the final updated ensemble models from Hybrid-SMM EnKF, (d) the mean of the 

final updated ensemble models from Plain EnKF. 

 

 

4.2 Hybrid EnKF with Coarse Scale Permeability Constraint 

 

Motivation for this approach is that we know that we can get better parameter 

estimation from inversion process if the data misfit function or objective function is 

minimized successfully. And if we can impose that solution on the EnKF updating such 

that the each model parameter updating is constrained toward the mode solution, we can 

achieve the better data matching and uncertainty around the mode estimation from the 
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ensemble model simultaneously. However, we need to investigate the characteristics of 

this approach with associated key parameters and identify the strength and weakness of 

the approach. In this section we test the sensitivity of this approach with respect to the 

following parameters: 

1. Upscaling factor 

2. Coarse permeability data error variance 

We create a 5 spot synthetic case with parameters listed below. 

EnKF Parameters 

• 50×50×1 synthetic model. 

• 1025 realization generated by sgsim 

• Oil water 2 phase incompressible model  

• Adverse Mobility Ratio (Oil viscosity =10 cp, Water viscosity =1 cp) 

• 5 spot pattern well configuration(I1,P1~P4) 

• Assimilation Step( 1200-3000 days by 200days) 9 step 

• Coarse scale permeability constraint assimilation step(1200, 1800, 2400,3000)  

• Prediction to 4000 days 

• State variables { lnK, P, Sw, WWCT} for the 1st assimilation step 

• State variables { lnK, P, Sw, LnK} for the 2 nd assimilation step 

 

The reference model (No. 1015) from the generated initial models is shown in Figure 

4.9.  

 
 

Figure 4.9 Reference model log permeability field 
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  (a) Initial model      (b) Plain EnKF 

 

Figure 4.10 Well water cut responses comparison from the ensemble models; the 

reference model is in red line, ensemble model responses in light green lines and the 

response from the mean ensemble model in blue line, (a) Initial ensemble models, 

(b) Plain EnKF updated models, in the top row from left, P1 and P2 and the bottom 

row from left, P3 and P4. 

 

Based on the reference model, run the forward simulation and generate the WWCT 

observation data. First, we conduct Plain EnKF for this case and the results are shown in 

Figure 4.10. we can see a better matching quality after Plain EnKF. 

 

4.2.1 Effect of the Upscaling Factor 

 

The first key parameter that needs to be investigated is upscaling factor which 

defines the coarse scale dimensions for our approach. We adapt flow based upscaling 

method to generate the coarse permeability data. For this case, the upscaling is done 

uniformly. For example, if we assign upscaling factor equal to 2, in this case, upscaled 

model dimensions become 25 by 25 from 50 by 50 uniformly. The size of the grid block 
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is upscaled by 2 in both x and y direction. We conduct Hybrid EnKF for this case by 

changing upscale factors with the fixed other parameters. 

 

 

  
  (a) Plain EnKF     (b) Hybrid EnKF upscaling factor=2 

  
(c) Hybrid EnKF upscaling factor=5 (d) Hybrid EnKF upscaling factor= 10 

 

Figure 4.11 Well water cut responses comparison from the ensemble models; the 

reference model is in red line, ensemble model responses in light green lines and the 

response from the updated mean ensemble model in blue line; (a) Plain EnKF 

updated models, (b) Hybrid EnKF updated models with upscaling factor=2, (b) 

Hybrid EnKF updated models with upscaling factor=5, and (c) Hybrid EnKF 

updated models with upscaling factor=10, in the top row from left, P1 and P2 and 

the bottom row from left, P3 and P4. 
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Figure 4.11 shows the comparison results in matching WWCT data. It shows the 

upscaling factor 5 (10 by 10 from 50 by 50) provides the best matching in the updated 

model responses. 

Coarse scale permeability data validity is checked by conducting simulation for 

the upscaled permeability field to see the discrepancy in water cut response between fine 

scale model and coarse scale models. Figure 4.12 shows the WWCT responses from the 

upscaled permeability fields by changing the upscaling factor value. 

 

 

 
 

Figure 4.12 Well water cut responses comparison from the upscaled permeability 

models; the reference model is in red line, the upscaled model with upscaling 

factor=2 in blue, the upscaled model with upscaling factor=5 in light blue, the 

upscaled model with upscaling factor=10 in light green, in the top row from left, P1 

and P2 and the bottom row from left, P3, P4. 

 

 

 

From Figure 4.12, we need to acknowledge that the upscaling scheme introduce 

the other source of the uncertainty and discrepancy between the fine scale model and 

coarse scale model. The more the upscaling factor becomes, the more discrepancy can be 
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seen in the model responses. And the more upscaling factor becomes, the less number of 

the coarse permeability data are generated. This results in the less reduction of the spread 

or uncertainty of the updated model responses because of the less constraining of the 

coarse scale permeability data. 

 

4.2.2 Effect of the Coarse Scale Data Error Variance 

 

We can assign the uncertainty of the coarse scale permeability data by the variance 

of the data. We conduct the sensitivity of the assimilation by changing the values. The 

upscaling factor is fixed to be 5 and assign the coarse permeability error standard 

deviation as lnK=1 and lnK=4.  

 

 

  

 (a) Error Std lnK=1    (b) Error Std lnK=4 

 

Figure 4.13 Well water cut responses comparison from the ensemble models; the 

reference model is in red line, ensemble model responses in light green lines and the 

response from the updated mean ensemble model in blue line; (a) Updated models 

with error std lnK=1, (b) Updated models with error std lnK=4. 



 

 

92 

As Figure 4.13 shows, the more variance of the data is assigned, the final updated 

model responses are less assimilated in terms of the spread around the observation data. 

This indicates that the less data error variance causes the ensemble collapse of the 

updated models and we need to assign the appropriate data variance to reduce the 

uncertainty and prevent the ensemble collapse. 

 

4.3 Another Synthetic Case  

 

We apply Hybrid EnKF for another synthetic case. This case is set up from the 

same synthetic case as in sec.3.1 in Chapter III, but we change the fluid properties such 

as oil and water viscosity to be adverse mobility ratio to make the water breakthrough 

faster. 50 ensemble initial models are selected arbitrary and every initial model spatial 

permeability histogram has bi-modal distribution. For this case, we integrate not only 

WWCT data but also WBHP data. We expect the different kinds of observation improve 

the parameter estimation and provide the better history matching results. From the work 

in Chapter III, we apply normal score transformation of the permeability values to 

preserve the initial bi-modal distribution of the spatial permeability histogram. The 

default EnKF parameters are listed below.

 
 
EnKF Parameters 

 

       • 3 producers and 1 injector 

       • The number of the ensemble is 50 

       • Adverse mobility Ratio (Oil viscosity =1.5 cp, Water viscosity =0.3 cp) 
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• Assimilation 3 WWCT observation Data and 4 WBHP data from 1200 days to 

3000 days by every 200days  

• Measurements error 1 % of the maximum values WWCT 0.01 and WBHP 50 psi  

• No covariance localization 

• Up scaling factor=2 

• Normal score transformation of the permeability values 

• After assimilation, run all the ensemble from time 0 to 4000 days 

• Injection Rate 300 RESV/ 3 Production rates 100,150,70 RESV 

• State variables { lnK, P, Sw, WWCT} for the 1 st assimilation step 

• State variables { lnK, P, Sw, LnK} for the 2 nd assimilation step 

• Coarse scale permeability constraint assimilation for 3 times (1800, 2400, 3000) 

 

Initial model responses are shown in Figure 4.14. It shows that there is quite large 

uncertainty in the initial model responses especially for WWCT. And it is important to 

mention that the mean model prediction in WWCT is far from the reference model 

response due to both nonlinearity of the problem and the non-Gaussian prior model 

distribution. 

 

 

  
  (a) WWCT      (b) WBHP  

 

Figure 4.14 Initial 50 ensemble model WWCT and WBHP responses; the reference 

model is in red line, ensemble model responses in light green lines and the response 

from the initial mean ensemble model in blue line, in the top row from the left, P1, 

P2, and P3 in the bottom row. 
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4.3.1 Test of the Validity of the Approach 

 

In order to prove the validity of the hybrid approach, the reference model is used 

to generate the coarse scale permeability by the flow based upscaling method. Therefore 

there is no inversion process for this case. We expect that the coarse scale permeability 

data from the reference model constrain each ensemble model updating in EnKF toward 

the reference model permeability field. Figures 4.15 and 4.16 show WWCT and WBHP 

matching comparison between Plain EnKF and Hybrid EnKF. WWCT results support 

that the reference coarse scale permeability data successfully constrain each ensemble 

model updating in EnKF and updated model responses match the reference model one 

very well. And importantly, the prediction from the mean ensemble model also follows 

the true model trajectory and within the ensemble model responses. As you can see in 

the permeability profile and distribution results in Figure 4.17 and 4.18, the hybrid 

results capture the main trend of the permeability fields (low and high regions) quite 

well and the mean of the ensemble model also capture the underlying geological features 

and the spatial histogram, which indicates the all ensemble model has driven toward the 

reference model by imposing the coarse permeability data. That promises the benefit of 

our hybrid approach as long as we can generate the plausible coarse scale permeability 

data. 
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 (a) Plain EnKF    (b) Hybrid EnKF 

 

Figure 4.15 Well water cut responses comparison from the ensemble models; the 

reference model is in red line, ensemble model responses in light green lines and the 

response from the updated mean ensemble model in blue line; (a) Plain EnKF 

updated models, (b) Hybrid EnKF updated models with reference coarse scale 

permeability data, in the top row from the left, P1, P2, and P3.in the bottom row.  

 

 

 

  
 (a) Plain EnKF    (b) Hybrid EnKF 

 

Figure 4.16 Well bottom-hole pressure responses comparison from the ensemble 

models; the reference model is in red line, ensemble model responses in light green 

lines and the response from the updated mean ensemble model in blue line; (a) 

Plain EnKF updated models, (b) Hybrid EnKF updated models with reference 

coarse scale permeability data, in the top row from the left, I1 and P1, and P2 and 

P3 in the bottom row. 
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Figure 4.17 The ensemble permeability fields comparison; in the first row from left, the 

reference model, initial model No. 1and No. 25, the initial mean model, and in the second 

row from left, Plain EnKF updated model No. 1and No. 25, the updated mean model, and 

in the third row from left, Hybrid EnKF updated model No. 1and No. 25, updated mean 

model. 

 

 

 

 
Figure 4.18 The ensemble spatial permeability histogram comparison; in the first row from 

left, the reference model, initial model No. 1and No. 25, the initial mean model, and in the 

second row from left, Plain EnKF updated model No. 1and No. 25, the updated mean 

model, and in the third row from left, Hybrid EnKF updated model No. 1and No. 25, the 

updated mean model. 
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No.1 No.25 Mean 

No.1 No.25 Mean 

Reference 

Model 
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4.3.2 Inversion Coupling Hybrid EnKF 

 

Now we couple the inversion process with hybrid EnKF by coarse scale 

permeability constraint. We use the same synthetic case as in sec.4.3.1 to see if the 

inversion process can capture the true permeability field and successfully constrain 

EnKF updating toward the better mode estimation. Parameters we use for this case are 

listed below.  

 

Hybrid EnKF Parameters 

• Assimilation 3 WWCT observation Data and 4 WBHP data from 1200 days to 

3000 days by every 200days  

• Measurements error 1 % of the maximum values WWCT 0.01 and WBHP 50 psi  

• Assign Coarse scale data error lnk=1 

• No covariance localization 

• Up scaling factor=2 

• GTTI inversion for WWCT data 

• Normal score transformation of the permeability values 

• After assimilation, run all the ensemble from time 0 to 4000 days 

• State variables { lnK, P, Sw, WWCT,WBHP} for the 1 st assimilation step 

• State variables { lnK, P, Sw, LnK} for the 2 nd assimilation step 

• Coarse scale permeability constraint assimilation for 3 times (1800, 2400, 3000) 

 

Figures 4.19 and 4.20 show the history matching results. It shows that Hybrid 

EnKF outperform Plain EnKF in terms of the spread of the responses around the true 

model response trajectory although there some models show a deviated WWCT 

responses in P1. It is clear that all ensemble model responses are constrained to the mode 

solution from the inversion and the final mean prediction of WWCT follows the true  
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 (a) Plain EnKF     (b) Hybrid EnKF 

 

Figure 4.19 Well water cut responses comparison from the ensemble models; the 

reference model is in red line, ensemble model responses in light green lines and the 

response from the updated mean ensemble model in blue line; (a) Plain EnKF 

updated models, (b) Hybrid EnKF updated models, in the top row from the left, P1, 

P2, and P3 in the bottom row. 

 

 

 

  
 (a) Plain EnKF     (b) Hybrid EnKF 

 

Figure 4.20 Well bottom-hole pressure responses comparison from the ensemble 

updated models; the reference model is in red line, ensemble model responses in 

light green lines and the response from the updated mean ensemble model in blue 

line; (a) Plain EnKF updated models, (b) Hybrid EnKF updated models, in the top 

row from the left, I1, P1, and P2, P3 in the bottom row. 
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model response trajectory. But the WBHP matching results does not show a significant 

improvement.The inversion process worked successfully and its results are shown in 

Figure 4.21 below. Final model matches the observation data much better than the initial 

model for the inversion process. Figure 4.22 shows the relative objective function 

behavior through iteration in the GTTI inversion process. It is monotonically decreasing 

by 80% in amplitude misfit at the last iteration. Both results support the successful 

inversion results. 
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Figure 4.21 Well water cut inversion matching results at 2400 days; the reference 

model response is in blue point, initial model response in light green triangles and 

the final updated model response in pink square, (a) P1, (b) P2, and (c) P3 

respectively. 
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Figure 4.22 Relative objective function of the GTTI inversion process; the GTTI 

misfit is in blue line, and the amplitude misfit is in pink line. 

 

 

4.4 Another Nine Spot Synthetic Case 

 

To demonstrate the advantage of Hybrid EnKF approach, we set up a synthetic 

case where Plain EnKF does not work satisfactorily. Evansen(2004) shows that for a 

linear model in the case without model errors, the EnKF solution at all times is a 

combination of the initial ensemble members. Although our model is nonlinear, the 

updated model has a same trend of the permeability features from the experimental 

studies shown in Chapter III. The reference permeability model has a long range, high-

permeability continuity in the east-west direction as shown in Figure 4.23. A total of 50 

initial ensemble members were generated using sequential Gaussian simulation 

(Deutsche and Journel 1992). To illustrate the difficulties in the conventional EnKF, the 

initial ensemble members were deliberately chosen to have a north-south orientation of 

the long range continuity as seen in Figure 4.23. This example is not far removed from 
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the actual field situations because we seldom have a good prior knowledge of the 

permeability covariance and its orientation. Our objective is to assess the performance of 

the conventional and hybrid EnKF formulation in reproducing the large scale features of 

the reference model. Additionally, the log-permeability histogram was chosen to be 

bimodal. These model characteristics were chosen to illustrate some of the difficulties 

associated with the EnKF especially in non-Gaussian settings with inaccurate prior 

model statistics. For the EnKF application, we first apply a normal score transformation 

on the model parameters (permeability) and update the normal scored values using the 

EnKF and back transform to the physical space after the assimilation step. By doing that, 

we can also preserve the prior model distribution and prevent the overshooting and under 

shooting through updating. 

 

 

     
(a) Reference Model     (b) Initial model No. 1  (c) Initial mean model 

 

 
 

Figure 4.23 Permeability fields; from left (a) reference model, (b) initial model No. 

1 and (c) initial mean model  
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EnKF parameters for this nine spot synthetic case are listed below. 

 

EnKF Parameters 

• 50×50×1 Synthetic Case 

• 2 Phase oil and water 

• 8 producers and 1 injector nine spot  

• Depletion well rates control( 8 Producers: Equal RSEV 30 rB/day  Injector: 

RSEV  230 rb/day) 

• Adverse mobility ratio (Oil Viscosity=1.5 cp, Water Viscosity=0.5 cp) 

• The number of the ensemble is 50 

• Normal Scare transformation for permeability 

• No Localization 

• Measurements error 1 % of the maximum values WWCT 0.01 and WBHP 50 psi  

• Coarse scale data error lnk=1 

• Assimilation 1 WWCT/ 4 WBHP observation Data from 200 days to 3000 days 

by 200 days for 15 times 

• Coarse scale permeability constraints assimilation for 3 times (1400,2200,3000) 

• After assimilation, run all the ensemble from time 0 to 4000 days 

 

Initial model WWCT and WBHP responses are shown in Figure 4.24. As we can expect, 

the initial model responses are significantly different from the reference model, 

especially in wells P2, P4, P5, P7 because the direction of the permeability continuity is 

quite different from the reference model and consequently the water front movements 

have different behavior. This results in large discrepancies in the WWCT data. However, 

the pressure responses have less discrepancy compared to the reference model because 

the bottomhole pressure behavior is mostly sensitive to the permeability distribution near 

the well locations. What we can expect from this initial model construction is that if 

EnKF updating is biased to the prior models, the updated models from EnKF is far from 

the reference model in terms of the high permeability continuity distribution. 
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  (a) WWCT      (b) WBHP  

 

Figure 4.24 Initial 50 ensemble model WWCT and WBHP responses; the reference 

model is in red line, ensemble model responses in light green lines and the response 

from the initial mean ensemble model in blue line, (a) WWCT responses in the first 

row from the left, P1, P2, and P3, in the second row P4, P5, and P6, and in the third 

row from left P7 and P8, (b) WBHP responses in the first row from the left, I1, P1, 

and P2, in the second row P3, P4, and P5, and in the third row from left P6, P7, and 

P8. 

 

 

4.4.1 Comparison of Plain EnKF and Hybrid EnKF 

 

We conduct Plain EnKF and Hybrid EnKF for this case and compare the matching 

results shown in Figures 4.25 and 4.26 below. As it shows in the WWCT data matching 

results, Hybrid EnKF shows the better matching to the observation data than Plain EnKF 

ones especially for the wells (P2) located in the x-axis high permeability zone of the 

reference model and P4 located in low permeability zone of the reference model.  
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  (a) Plain EnKF   (b) Hybrid EnKF 

 

Figure 4.25 Ensemble updated model WBHP matching results comparison between 

(a) Plain EnKF (b) Hybrid EnKF; the reference model is in red line, ensemble 

model responses in light green lines and the response from the updated mean 

ensemble model in blue line, in the first row from the left, I1, and P1, P2, in the 

second row P3, P4, and P5, and in the third row from left P6, P7 and P8. 

 

 

 

  
  (a) Plain EnKF    (b) Hybrid EnKF 

 

Figure 4.26 Ensemble updated model WWCT matching results comparison 

between (a) Plain EnKF and (b) Hybrid EnKF; the reference model is in red line, 

ensemble model responses in light green lines and the response from the mean 

updated ensemble model in blue line, in the first row from the left, P1, P2, and P3, 

in the second row P4, P5, and P6, and P7, P8 in the third row from left. 
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If you look at the permeability field results in Figure 4.27, Plain EnKF updated model 

suffers overshooting and undershooting values. It seems that overshooting comes from 

the small size of the ensemble member and from the small observation variance 

assignment (1%). For Hybrid EnKF updated model, overshooting and undershooting 

problems was mitigated and they capture the east-west high permeability continuity 

better than Plain EnKF ones. However, there is the low permeability area clustered near 

the well P5 which degraded the WBHP matching severely. This problem stems from the 

inversion results which show the same low permeability area near the well P5. The 

crucial cause for this artifact is that we conduct the inversion only on WWCT data by  

 

 

 
Figure 4.27 Permeability fields comparisons between the initial models, Plain EnKF 

updated models and Hybrid EnKF updated models; in the first row from left 

reference model, initial model No. 1, and No. 25, the initial mean model, in the 

second row, Plain EnKF updated model No. 1, No. 25, and the updated mean 

ensemble model, in the third row, from left Inversion mode model, Hybrid EnKF 

updated model No. 1, No. 25, and the updated mean ensemble model. 
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GTTI algorithm which produces the low permeability barrier near the well to delay the 

water break through effectively. And in the context of Hybrid EnKF approach, we need 

the simultaneous inversion with WWCT and WBHP data to resort this problem. For the 

permeability distribution in Figure 4.28, Hybrid EnKF results preserve the initial spatial 

histogram better than Plain EnKF, and the ensemble mean model also has bi-modal 

distribution more clearly for Hybrid EnKF than Plain EnKF. 

 

 

 
 

Figure 4.28 Permeability spatial histogram comparisons between the initial models, 

Plain EnKF updated models and Hybrid EnKF updated models; in the first row 

from left reference model, initial model No. 1, and No. 25, the initial mean model, in 

the second row, Plain EnKF updated model No. 1, No. 25, and the updated mean 

ensemble model, in the third row, from left inversion solution model, Hybrid EnKF 

updated model No. 1, No. 25, and the updated mean ensemble model. 
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4.4.2 Hybrid EnKF with Streamline Trajectory Localization 

 

We know that streamline trajectory localization prevents overshoot and 

undershoot problems and preserve the prior model distribution from Chapter III 

experimental studies. Thus, we test the effect of the covariance localization on top of the 

coarse scale permeability hybrid approach in this section. As for history matching results 

shown in Figures 4.29 and 4.30, Hybrid EnKF with localization results are degraded 

matching both in WWCT and WBHP. Also, Plain EnKF could prevent the overshooting 

and undershooting problems considerably shown in Figure 4.31. As we discuss in 

Chapter III, streamline trajectory localization preserve the prior model spatial 

distribution by identifying the influential zone intersected by streamlines. So the most of 

the streamline are traced in the initial north-south high permeability region, the model 

updating are restricted with in that region. Consequently the east-west high permeability 

regions are not captured by that localization. And the inversion result also is deteriorated 

from that cause. Figure 4.32 shows the spatial permeability histogram of the models.  

 

  
          (a) Plain EnKF-ST            (b) Hybrid EnKF-ST 

Figure 4.29 Ensemble updated model WBHP matching results comparison between 

(a) Plain EnKF with streamline trajectory localization and (b) Hybrid EnKF with 

streamline trajectory localization; the reference model is in red line, ensemble 

model responses in light green lines and the response from the updated mean 

ensemble model in blue line, in the first row from the left, I1, and P1, P2, in the 

second row P3, P4, and P5, and in the third row from left P6, P7 and P8. 
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          (a) Plain EnKF-ST            (b) Hybrid EnKF-ST 

Figure 4.30 Ensemble updated model WWCT matching results comparison between (a) 

Plain EnKF with streamline trajectory localization and (b) Hybrid EnKF with streamline 

trajectory localization; the reference model is in red line, ensemble model responses in light 

green lines and the response from the updated mean ensemble model in blue line, in the 

first row from the left, P1, P2, and P3, in the second row P4, P5, and P6, and in the third 

row from left P7 and P8. 

 

 

 
Figure 4.31 Permeability fields comparisons between the initial models, Plain EnKF-ST 

updated models and Hybrid EnKF-ST updated models; in the first row from left reference 

model, initial model No. 1, and No. 25, the initial mean model, in the second row, Plain 

EnKF-ST updated model No. 1, No. 25, and the updated mean ensemble model, in the third 

row, from left inversion solution model, Hybrid EnKF-ST updated model No. 1, and No. 

25, the updated mean ensemble model. 
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Figure 4.32 Permeability spatial histogram comparisons between the initial models, 

Plain EnKF-ST updated models and Hybrid EnKF-ST updated models; in the first 

row from left reference model, initial model No. 1, and No. 25, the initial mean 

model, in the second row, Plain EnKF-ST updated model No. 1, No. 25, and the 

updated mean ensemble model, in the third row, from left inversion solution model, 

Hybrid EnKF-ST updated model No. 1, No. 25, and the updated mean ensemble 

model. 

 

 

 
A noticeable thing is that the histogram of the mean updated model shows a clear 

bimodal distribution which indicates the updated ensemble models are driven toward a 

mode model. In other words, the distribution of the ensemble mean model is similar to 

each individual model distribution. 

 

4.4.3 WWCT and WBHP Simultaneous Inversion 

 

Based on the previous results, we found the necessity to improve the inversion 

results to achieve the advantage of the hybrid EnKF approach over Plain EnKF. We 
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carried out a simultaneous inversion of the WWCT and WBHP data starting with the 

ensemble mean at three different assimilation times as discussed before. For WBHP 

inversion algorithm, we adapt the low frequency pressure inversion (Vasco and Karasaki 

2006). The detail of the algorithm is referred to the paper and is out of the scope of this 

study. We used streamline-based covariance localization for the conventional EnKF as 

described in Arroyo et al. (2008). In this approach, the streamline trajectories are used to 

demarcate regions within the reservoir which will have an influence from the production 

response and to mitigate spurious correlations through localization. For the hybrid 

EnKF, no covariance localization was applied. In the results that follow, we denote the 

hybrid EnKF results as Hybrid EnKF, while the conventional EnKF results as Plain 

EnKF for no covariance localization and Plain EnKF-ST for streamline-based 

covariance localization respectively. The WWCT and WBHP history matching results 

are shown in Figure 4.33 and Figure 4.34 respectively. Hybrid EnKF shows a better 

matching of the observation data than the conventional EnKF, especially for the well P2 

and P4 which are located in the high and low permeability zones of the reference model 

respectively. The updated permeability field comparisons are shown in Figure 4.35 and 

clearly indicate improved resolution of the permeability field with the hybrid 

formulation. 
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          (a) Plain EnKF             (b) Hybrid EnKF 

 

Figure 4.33 Ensemble updated model WWCT matching results comparison 

between (a) Plain EnKF and (b) Hybrid EnKF; the reference model is in red line, 

ensemble model responses in light green lines and the response from the updated 

mean ensemble model in blue line, in the first row from the left, P1, P2, and P3, in 

the second row P4, P5, and P6, and in the third row from left P7, P8. 

 

 

 

  
          (a) Plain EnKF             (b) Hybrid EnKF 

 

Figure 4.34 Ensemble updated model WBHP matching results comparison between 

(a) Plain EnKF and (b) Hybrid EnKF; the reference model is in red line, ensemble 

model responses in light green lines and the response from the updated mean 

ensemble model in blue line, in the first row from the left, I1, and P1, P2, in the 

second row P3, P4, and P5, and in the third row from left P6, P7 and P8. 
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Figure 4.35 Permeability fields comparisons between the initial models, Plain EnKF 

updated models and Hybrid EnKF updated models; in the first row from left 

reference model, initial model No. 1, and No. 25, the initial mean model, in the 

second row, Plain EnKF updated model No. 1, No. 25, and the updated mean 

ensemble model, in the third row, from left inversion solution model, Hybrid EnKF 

updated model No. 1, and No. 25, the updated mean ensemble model. 

 

 

 
Specifically, for Hybrid EnKF, overshooting and undershooting problems are mitigated 

and the updated models capture the high permeability continuity in the east-west 

direction much better compared to the conventional EnKF. The results also indicate that 

for the hybrid approach, there is no need for separate covariance localization as it is 

already embedded in the inversion solution and the coarse-scale constraints. In terms of 

the spatial histogram of permeability, Figure 4.36 shows that the bimodal permeability 

distribution is preserved both in the individual ensemble models and also the mean of the 

ensemble models for Hybrid EnKF. This is because the non-linear inversion is able to 
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capture the high contrast in the permeability field and all the ensemble models are 

constrained to this solution.  

 

 

 
 

Figure 4.36 Permeability spatial histogram comparisons between the initial models, 

Plain EnKF updated models and Hybrid EnKF updated models; in the first row 

from left reference model, initial model No. 1, and No. 25, the initial mean model, in 

the second row, Plain EnKF updated model No. 1, No. 25, and the updated mean 

ensemble model, in the third row, from left inversion solution model, Hybrid EnKF 

updated model No. 1, and No. 25, the updated mean ensemble model. 

 

 

4.5 Uncertainty Quantification Methods for Hybrid EnKF  

 

The previous discussion illustrated the benefits of the hybrid EnKF formulation in 

terms of reproducing the large-scale features of the reference model. We now extend the 

discussion to uncertainty quantifications in the posterior model estimates and compare 
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the results in sec 4.4.3 from the hybrid approach with the conventional EnKF 

formulation.  

 

4.5.1 Water Front Movement 

 

The orientation of the permeability continuity can easily be inferred from the 

direction of the movement of the water front at different times as shown in Figures 4.37 

and 4.38.  

 

Figure 4.37 Water saturation map at 2500 days comparisons between the initial 

models, Plain EnKF updated models and Hybrid EnKF updated models; in the 

first row from left reference model, initial model No. 1, and No. 25, the initial mean 

model, in the second row, Plain EnKF updated model No. 1, No. 25, and the 

updated mean ensemble model, in the third row, from left inversion solution model, 

Hybrid EnKF updated model No. 1, and No. 25,the updated mean ensemble model. 
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The results clearly show the preferential water displacement in the east-west direction 

for Hybrid EnKF which is consistent with the reference model water front movement. 

The conventional EnKF, on the other hand, is unable to capture the water front 

movement in the reference model because of insufficient prior knowledge of the 

permeability orientation. 

 

 
 

Figure 4.38 Water saturation map at 4000 days comparisons between the initial 

models, Plain EnKF updated models and Hybrid EnKF updated models; in the 

first row from left reference model, initial model No. 1, and No. 25, the initial mean 

model, in the second row, Plain EnKF updated model No. 1, No. 25, and the 

updated mean ensemble model, in the third row, from left inversion solution model, 

Hybrid EnKF updated model No. 1, and No. 25, the updated mean ensemble model. 
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4.5.2 Multi-dimensional Scaling of the Swept Volume Changes 

 

An uncertainty analysis can be conducted using the multi-dimensional scaling 

(MDS) to visualize the updated ensemble members and their separation. Scheidt and 

Caers (2007) proposed taking into account the dynamic responses of the models for 

ranking an ensemble of models. They used fast streamline simulators for flow 

simulations and then selected members based on the dissimilarities in the response using 

the kernel principal component analysis (KPCA) and the k-mean clustering methods. We 

adopt a similar approach here except that the dissimilarities are based on the evolution of 

the reservoir swept volume with time computed using various thresholding of the 

streamline time-of-flight. Thus, the dynamics of the flow field is not characterized using 

a single composite quantity such as ultimate swept volume or recovery but by examining 

how the swept volume or recovery evolves as a function of time. Also, the dynamic 

response for the model is approximated only by tracing of streamlines and computing the 

time of flight without making full flow simulations. These streamline trajectories are 

generated using the fluid-flux information from a finite-difference simulator. The 

evolution of swept pore volumes for various time-of-flight threshold values is considered 

as the dissimilarity measure shown in Eq. (4.1) 
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and the connectivity distance between the swept volume changes of two individual 

realization i and j is defined by 
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As in Scheidt and Caers (2007), we conduct a principal component analysis with the 

connectivity matrix 221 ijδ−=D  after centering and take the first few principal 

components to visualize the model separation in two dimensional or three dimensional 

Euclidean spaces. The algorithm of MDS is described more in detail in the APENDIX B. 

Figure 4.39 shows the model separations using the first two and three principal 

components.  

 

(a) 2 dimensions plot    (b)3 dimensions plot 

Figure 4.39 Multi-dimensional scaling of the initial ensemble models and updated 

ensemble models from Plain EnKF and Hybrid-Corse EnKF; (a) 2 dimensions plot, 

(b) 3 dimensions plot. 
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These separations are shown with respect to the ensemble members themselves and also 

the true model. Clearly, the ensemble members from the hybrid approach are clustered 

closer to the reference model in terms of their flow response. Also, there is sufficient 

separation between the ensemble members in the hybrid approach, indicating that there 

is no evidence of ensemble collapse. 

 

4.5.3 Quantitative Comparison and Validation of Hybrid EnKF 

 

Zupanski (2004) employed four validation measures to examine the performance 

of the EnKF. In this section, we apply the measures described in that paper to compare 

the hybrid EnKF with the conventional EnKF implementation. The first and most 

commonly used validation measure is the root mean square error (RMS) which can be 

computed as deviations from the reference model given by, 
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Figure. 4.40 shows the results for the conventional and hybrid EnKF approaches at 

different times during the assimilation. The RMS error shows that the conventional 

EnKF exhibits divergent behavior with increasing RMS error. This is mitigated through 

localization and the RMS error now monotonically decreases through the assimilation. 

However, the hybrid EnKF shows a large reduction in the RMS error, especially at 

assimilation step 7 (1400 days) and 11 (2200 days) when we incorporate the inversion 
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results and impose the coarse scale permeability constraints. Also, at the end of the 

assimilation, the hybrid EnKF RMS error is smaller than that of the conventional EnKF 

with localization.  

Another common measure of performance is the error covariance estimate from 

the ensemble. The posterior error covariance estimate can be obtained from the EnKF 

after updating at each assimilation step by, 
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The diagonal elements of this matrix indicate the deviations of the individual grid block 

permeabilities from the mean. A plot of the square-root of the diagonal elements of the 

covariance matrix is shown on a 50x50 grid in Figure. 4.41. The reduction in the 

deviations from the mean is considerable at 2000 days for the hybrid formulation and 

continues till the end of the assimilation period. This behavior reinforces the results from 

the RMS error shown in Figure. 4.40. 

The χ2 validation diagnostics evaluates the correctness of the innovation 

(observation minus forecast) covariance matrix that employs a predefined observation 

error covariance and forecast error covariance in EnKF. The χ2 is defined in the 

observation space, normalized by the number of observation, Nobs.  
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Figure 4.40 RMSE comparisons; Plain EnKF is Plain EnKF without localization, 

Plain EnKF SL is the plain EnKF with localization and Hybrid EnKF is Hybrid 

EnKF without localization.  

 

 

 

 
 

Figure 4.41 Error covariance estimation evolutions; Plain EnKF SL is the plain 

EnKF with localization and Hybrid EnKF is Hybrid EnKF without localization. 
 

1000 days 2000 days 3000 days 
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A characteristic of χ
2
 is that for Gaussian distribution of innovations and linear 

observation operator H, χ
2
 should be equal to 1 if the assimilation is optimal. However, 

for nonlinear models and a statistically small sample, one can expect only values of χ
2 

to 

be close to 1 and not necessarily equal to 1. Figure 4.42 shows that the hybrid EnKF 

assimilation quality is better than that of the conventional EnKF and χ
2
 for the hybrid 

EnKF is relatively stable around the value of 1.5. 

 

 

 
 

Figure 4.42 χ
2
 validation test comparison; the conventional EnKF without 

streamline trajectory localization, the conventional EnKF with streamline 

trajectory localization, and the hybrid EnKF 
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Another approach for the statistical verification of an ensemble-based data 

assimilation algorithm is the probability density function (PDF) of the innovations. By 

taking the square root of χ
2
 is defined in Eq. (4.5), we have: 

 

( ) ][
1 2/1 p

obs

p

obsN
Innov ΗΨDCΗΗC D

T −+=
−

Ψ     (4.6) 

 

For a linear dynamic system and observation operators, the PDF of the innovations is 

expected to be normally distributed with mean 0 and variance 1. However because of the 

nonlinearity of our problem and the relatively small ensemble size, only an approximate 

normal distribution can be expected. Figure 4.43 shows that the hybrid EnKF innovation 

PDF is closer to a standard normal distribution compared to the conventional EnKF with 

localization.  

 

 

 

  (a) PlainEnKF-ST        (b) Hybrid EnKF 

 

Figure 4.43 Innovation distribution comparison; (a) Plain EnKF with streamline 

trajectory localization, (b) Hybrid EnKF without localization 
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4.6 Gold Smith Field Application 

 

We now demonstrate the applicability of the proposed hybrid EnKF for the same 

field scale example as Chapter III sec.3.4. Here is the list of the parameter for this study. 

EnKF Parameters 

• 9 producers for WWCT history mach 

• 58×53×10 grids 

• The number of the ensemble is 50 

• Assimilation WWCT observation Data from 0 days to 3840 days for 11 times 

• WWCT measurement error is 10% 

• After assimilation, run all the ensemble from time 0 to 7800 days 

• State variables { lnK, P, Sw, WWCT}for 1 st assimilation step 

• State variables { lnK, P, Sw, lnK}       for 2 nd assimilation step 

• Normal Scare transformation for permeability 

• No Localization for Hybrid EnKF 

• Upscaling from 58 x 53 x 10 to 14 x 13x 5 

• Coarse scale data error std lnk=1 

• Coarse scale permeability constraint assimilation for 3 times. 

 

The 50 initial model WWCT responses are shown in Figure 4.44. Because of the 

multimodal nature of the histograms, we use the normal score transforms of the 

permeability as a part of the EnKF state vector instead of the grid block permeability. A 

total of 11 assimilation steps over a period of 3840 days are used to integrate WWCT 

data and calibrate the underlying permeability fields. The measurement error is assumed 

to be 10% of the WWCT values. We used streamline-based covariance localization for 

the conventional EnKF and no covariance localization is applied for the hybrid EnKF. 
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Figure 4.44 Initial 50 ensemble model WWCT responses; the observation data in 

red points and the initial ensemble model responses are in grey lines; in the first 

row from the left, P1, P2 and P3, in the second row from left, P4, P5,and P6, and in 

the third row, from left, P7, P8 and P9. 
 

For the hybrid EnKF approach, the simulation grid is upscaled from 58x53x10 to a 

14x13x5 coarse-scale model by flow based upscaling method. The standard deviation of 

the logarithm of the coarse-scale permeability is set to be 1. The coarse-scale constraint 

derived from the non-linear inversion is applied at 2400, 3030 and 3840 days for the 

hybrid EnKF. The history matching results are shown in Figure 4.45. The hybrid EnKF 

clearly outperforms the conventional EnKF in terms of the quality of the match to the 

WWCT data.  
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  (a) Plain-ST EnKF   (b) Hybrid EnKF 

 

Figure 4.45 EnKF final 50 updated ensemble model WWCT responses comparisons 

between (a) Plain ENKF with localization and (b) Hybrid EnKF; the observation 

data in red points and the ensemble model responses in light green lines and the 

response from the updated mean ensemble model in blue line, in the first row from 

the left, P1, P2 and P3, in the second row from left, P4, P5,and P6, and in the third 

row, from left, P7, P8 and P9. Vertical line shows the last assimilation time step.  
 

Updated permeability field comparisons are shown in Figure 4.46. Although 

streamline-based covariance localization minimizes spurious correlations and thus, 

reduces overshoots in the updated permeability field for the conventional EnKF, we still 

do see some areas of localized patches of low and high permeabilities. The hybrid EnKF 

not only results in a better match to the data but also preserves geologic continuity in the 

updated models. 
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         (a) Plain EnKF-ST      (b) Hybrid EnKF 

Figure 4.46 Updated ensemble permeability fields comparison of (a) Plain EnKF 

with localization, from the left, ensemble No. 1, No. 25 and (b) Hybrid EnKF, from 

the left, ensemble No. 1, No. 25 at the depth of 1080 ft, 2042 ft and 3004 ft from the 

top. 

 

4.7 Summary of Chapter IV 

 

Hybrid EnKF applications are presented, and its results are investigated. The 

quality of the performance in various synthetic case is examined and uncertainty 

quantification analysis is conducted by several validation methods. The summary of this 

study is as follows. 

 

• Swapping mean and mode estimation hybrid approach can improve the hybrid 

EnKF estimation. 

 

No.1 No.25 No.1 No.25 
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• The upscaling factor and the coarse scale data error variance are sensitive to 

coarse scale permeability constraint. It needs to be adjusted based on the 

problem. 

 

• Inversion results are crucial to achieve the benefit of the Hybrid EnKF approach, 

especially WWCT and WBHP simultaneous inversion is necessary to generate 

the plausible coarse permeability data to impose on the EnKF updating. 

 

• The need for localization is significantly reduced using the hybrid approach. 

• Swept volume changes can capture the spatial model responses appropriately. 

The multidimensional scaling method can be applied to visualize the variability 

of the updated ensemble model in space 

 

• A synthetic example is used to shows the advantages of the Hybrid EnKF where 

the initial ensemble members do not span the solution. Whereas the conventional 

EnKF is unable to reproduce the spatial continuity based on the production data, 

the hybrid EnKF performs much better in terms of reproducing the permeability 

distribution. 

 

• Four validation tests were conducted for examining the performance of the 

Hybrid EnKF. The results show the parameter was resolved better than the Plain 

EnKF in terms of rms error and error covariance estimation. Also, the 2χ  

validation test and innovation PDF statistics show the model performance is 

more stable for the Hybrid EnKF. 

 

• The practical feasibility of the hybrid EnKF is illustrated by using a field 

example from the Goldsmith field in West Texas. Compared to the conventional 

EnKF, the hybrid EnKF not only results in a better match to the data but also 

preserves geologic continuity in the updated models.  
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CHAPTER V 

CONCLUDING REMARKS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

A hybrid Ensemble Kalman Filter (EnKF) formulation and its applications for 

reservoir characterization are proposed, and its performance in history matching is 

investigated. The applicability of the approach is demonstrated through synthetic 

examples and a field scale model. Based on the results from this study, the following 

conclusions can be made. 

 

Characteristics of EnKF 

 

• Limiting the updating values constrains the parameter estimation solutions in an ill-

posed inverse problem. 

 

• Values above 10 % of measurement error variance maintain the relative contribution 

of the data to the prior model information to avoid the overconfidence on the data 

and prevent ensemble model collapse after the assimilation. 
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• Streamline-based localization assists updating model parameters in terms of 

mitigating overshoot and undershoot problems and maintains minimal model change 

and localizes it in the influential zone of the flow dynamics. 

 

• Normal Score transformation assists preserving the prior non-Gaussian model 

parameter distribution through the updating. 

 

Characteristics of Hybrid EnKF 

 

• We have proposed a hybrid EnKF that couples the conventional EnKF with non-

linear inversion to account for non-linearity in the multiphase history matching 

problems and also the non-Gaussian property distributions in the geologic models. 

Specifically, we update the ensemble mean in a conventional EnKF through a non-

linear inversion at selected time intervals and replace the ensemble mean with the 

‘posterior mode’ from the inversion. This explicitly recognizes the fact that for non-

Gaussian distributions, the posterior mode is a better representation of the central 

tendency compared to the ensemble mean. 

 

• Our approach ensures that the ensemble members in the conventional EnKF follow 

the trajectory of the non-linear inversion within a specified degree of tolerance. This 

is accomplished by imposing the inversion results on each ensemble member via a 

coarse-scale constraint using a sequential second stage updating in the conventional 
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EnKF and a flow-based upscaling. This not only allows us to account for non-

linearity in the model updates but also prevents filter divergence arising from the use 

of limited ensemble size. 

 

• The upscaling factor and the coarse scale data error variance is sensitive to our 

approach and needs to be adjusted based on the problem specification 

 

• We have illustrated the advantages of the Hybrid EnKF using a synthetic example 

where the initial ensemble members do not span the solution. Whereas the 

conventional EnKF is unable to reproduce the spatial continuity based on the 

production data, the hybrid EnKF performs much better in terms of reproducing the 

permeability distribution and also the underlying saturation front movements. 

Visualization of the ensemble members using multidimensional scaling and the first 

few principal components also shows that the hybrid approach is better able to 

reproduce flow field of the reference model. 

 

• Inversion results is crucial to achieve the benefit of the Hybrid EnKF approach, 

especially WWCT and WBHP simultaneous inversion is necessary to generate the 

plausible coarse permeability data to impose on the EnKF updating. 

 

• The need for localization is significantly reduced using the hybrid approach. 
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• Because the hybrid EnKF requires non-linear inversion only on the ensemble mean, 

it is well-suited for large-scale field applications compared to other forms of iterative 

EnKF that require non-linear inversion for each ensemble member. We have 

illustrated the practical feasibility of the hybrid EnKF using a field example from the 

Goldsmith field in West Texas. Compared to the conventional EnKF, the hybrid 

EnKF not only results in a better match to the data but also preserves geologic 

continuity in the updated models.  

 

Uncertainty quantification 

 

• The multidimensional scaling method visualizes the variability of the updated 

ensemble model in a space by using swept volume changes as the spatial model 

response.  

 

• Four validation tests were conducted for examining the performance of EnKF. These 

tests quantify the performance of the sequential model updating and detect the 

transition of the updating behavior. 

 

• We have presented a variety of diagnostics to compare the performance of the 

conventional and the hybrid EnKF. In all of the cases, the hybrid EnKF shows 

improved performance compared to the conventional EnKF. 
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5.2 Recommendations 

 

For EnKF work flow 

 

• Initial model selection sensitivity for the quality of the EnKF updating needs to be 

addressed. 

 

• Sensitivity of the assimilation quality needs to be clarified with respect to the 

frequency of the assimilation step and the combination of the different type of the 

observation data. 

 

• Parallel processing for EnKF facilitates the speed of processing and reduces the total 

computation in the entire work scheme. 

 

• A criteria to define the observation error needs to be developed especially for field 

applications where the reservoir development activity is frequently changing. 

 

• Implementation of the algorithm needs to be optimized in terms of the calculating 

Kalman Gain matrix such as direct solver for the inverting matrix calculation 
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• Localization technique needs to be tested in terms of different quantity of dynamic 

responses such as pressure responses in addition to the WWCT responses to localize 

the state and parameter variables effectively in a more rigorous way. 

 

• For non-Gaussian parameters prior distributions, we need to come up with a way to 

decompose it into combination of Gaussian distributions and apply EnKF for the 

individual Gaussian distribution. 

 

• Fundamentals of the combined parameter and state estimation problem need to be 

investigated in terms of the material valance error of both parameter and state 

updating in the reservoir problem. 

 

For Hybrid EnKF work flow 

 

• Inversion scheme is possible to be conducted in the coarse scale model rather than in 

the fine scale model to save computation time. However, this will require 

reparameterization techniques such as Discrete Cosine Transformation (DCT) to 

reduce the number of parameters for reducing the ill-poseness of the inverse problem 

 

• Inversion algorithm can be converted from the deterministic formulation to the 

Bayesian formulation such as iterative Gauss-Newton method to be consistent with 

the Kalman filter equation.  
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• For a field application, in coarse scale permeability constraint approach, the 

upscaling method needs to be more general in terms of the geometry of the 

discretized domain such as corner point geometry. 

 

• The combination of the proposed hybrid approach and streamline based localization 

needs to be investigated. For example, instead of using the influential zone from the 

every ensemble model by the streamline trajectory, we can use the ensemble mode 

model from the inversion to define the influential zone to localize the cross 

covariance estimation. 
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APPENDIX A  

SINGLE PHASE UPSCALING 

 

We will briefly describe single-phase flow upscaling procedure used in the coarse 

scale permeability constraint hybrid EnKF. This type of upscaling is discussed by many 

authors (Durlofsky et al. 1996; Efendiev et al. 2000). The main idea of this approach is 

to upscale the absolute permeability field k  on the fine scale-grid (see Figure A.1), and 

then solve the original system on the coarse-grid with upscaled permeability field. 

Below, we will discuss briefly the upscaling of absolute permeability used in our 

simulations.  

 

 

 

 

Figure A. 1 —Fine scale cells and coarse scale cell.  

(a) Fine scale cells (b) Coarse scale cell 



 

 

139 

Consider the fine-scale permeability that is defined in the domain with underlying 

fine grid as shown in Figure A.1. On the same graph we illustrate a coarse-scale partition 

of the domain. To calculate the upscaled permeability field at the coarse-level, we use 

the solutions of local pressure equations. The main idea of the calculation of the coarse-

scale permeability is that it delivers the same average fluxes as that of the underlying 

fine-scale problem locally. For each coarse domain D, we solve the local problems  

  

            ( ( ) ) 0
j

div k x φ∇ = ,                                                                                             (A.1) 

 

with some coarse-scale boundary conditions. Here ( )k x  denotes the fine-scale 

permeability field. We will use the boundary conditions which are given by 1
j

φ =  and 

0
j

φ =  on the opposite sides along the direction 
j

e  and no flow boundary conditions on 

all other sides. For these boundary conditions, the coarse-scale permeability tensor is 

given by  

  

            ( )dxexxk
D

eexk
D

ljlj ∫ ∇= ),()(
||

1
),)(( * φ                                                          (A.2) 

 

where 
j

φ  is the solution of Eq. A.1 with prescribed boundary conditions. Various 

boundary conditions can have some influence on the accuracy of the calculations, 

including periodic, Dirichlet and etc. 
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APPENDIX B 

MULTI-DIMENSIONAL SCALING (MDS)  

OF THE SWEPT VOLUME CHANGES 

 

An uncertainty analysis can be conducted by using Multi-Dimensional Scaling. 

We apply the swept volume differences through time as a dissimilarity measurement and 

visualize the each model responses as a point in the space to see the variability of the 

updated ensemble model. Define the swept volume change by threshold time of flight 

values of the streamline simulation for the updated ensemble model, 

 

( ) ( )2121 )( ττττ =−==−=∆ tSPVtSPVtSPV ,   (B.1) 

 

and the connectivity distance between the swept volume changes of two individual 

realization i  and j  is defined by 

 

[ ]













∆−∆= ∑

=

2

1

)()(
N

t

jiij tSPVtSPVδ      (B.2) 

 

where N is the total number of time step that we want to compute the swept volume 

changes. Then construct a matrix containing connectivity distances D , 

 

2

2

1
ijδ−=D         (B.3) 
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We center the above matrix D  by 

 

JDJC =          (B.4) 

 

with  11IJ T

eN

1
−=  where 

eN×= 1]1.....11111[1  where I is the identity matrix of 

dimension eN  which is the ensemble size. Eigenvalue decomposition of C yields  

 

VC = Λ TV ,         (B.5) 

 

where V  is the matrix of eigenvectors and Λ  is the diagonal matrix of eigenvalues. One 

can construct a vector X  in any dimension from a minimum of one dimension up to a 

maximum of eN  dimension which meets 

 

VXXC == T Λ 2/1VΛXV =⇒T  .     (B.6) 

 

If we work with q  largest eigenvalues, we can construct a lower dimensional subspace 

of a geometric space E with 

 

2/1

qqq ΛVX =         (B.7) 

 

qV  is the matrix containing the eigenvectors that belong to the q  largest eigenvalues in 

the diagonal matrix qΛ . 
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