
CONTROL OF A 3DOF BIROTOR HELICOPTER

USING ROBUST CONTROL METHODS

A Thesis

by

LUIS ARTURO RUIZ BRITO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2009

Major Subject: Aerospace Engineering



CONTROL OF A 3DOF BIROTOR HELICOPTER

USING ROBUST CONTROL METHODS

A Thesis

by

LUIS ARTURO RUIZ BRITO

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Raktim Bhattacharya
Suman Chakravorty

Committee Member, Won-Jong Kim
Head of Department, Dimitris Lagoudas

December 2009

Major Subject: Aerospace Engineering



iii

ABSTRACT

Control of a 3DOF Birotor Helicopter

Using Robust Control Methods. (December 2009)

Luis Arturo Ruiz Brito, B.S., Instituto Politécnico Nacional, Mexico

Co-Chairs of Advisory Committee: Dr. Raktim Bhattacharya
Dr. Suman Chakravorty

The main topic of this thesis is to exhibit how robust control techniques can be

applied to real time systems. Presently, the control techniques used in the industry are

very simple even when applied to complex systems; these techniques are intuitive and

not necessarily systematic. Moreover, the notion of optimality of robustness is absent.

Control design procedures are mostly based on SISO techniques, thus, overlooking

the intrinsic multivariable aspect of the design that a MIMO system requires.

In this thesis a modern control technique is presented to manipulate a 3DOF

birotor helicopter in real time. The objective of this research is to demonstrate the

performance of more efficient control algorithms to control these kinds of systems. The

robust method proposed in this thesis is an H∞ controller which exhibits robustness

to plant model uncertainties, and good disturbance and noise rejection.



iv

To Esther and Luis Arturo Para Esther y Luis Arturo



v

ACKNOWLEDGMENTS

At the outset, I would like to express my heartfelt thanks to my parents, Esther

and Luis Arturo, for all their support and love through the years. Without them, my

hopes about aerospace would be but pipe dreams. In addition to the aforementioned,

thanks to my sisters, Paulina and Claudia, and my brother, Carlos, and the rest of

my family for always being there.

Thanks to Mexico and its people for their support given through CONACYT

foundation.

I would like to express my gratitude to Dr. Raktim Bhattacharya, my advisor,

for his belief in me and for giving me the opportunity to learn and grow, personally

and professionally, by conducting research under his aegis.

Also, a special thanks to Karen Knabe, for all the help given.

I would like to thank Dr. José Alfredo Rosas Flores, someone I greatly admire

and to M.S. Miguel Angel Rodŕıguez Fuentes for always caring for his students.

Thanks also are due to my friends for cheering me up when I needed it the most.

Finally, to the department faculty and staff of Texas A&M University, thanks

for their support, specially to the Sponsor Students Office whose people made my life

easier in this country.



vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II DYNAMICAL MODEL . . . . . . . . . . . . . . . . . . . . . . . 2

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Translational and rotational matrices . . . . . . . . . . . . 3

3. Translational and angular velocities . . . . . . . . . . . . . 6

4. Kinetic and potential energy . . . . . . . . . . . . . . . . . 7

5. Power in . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6. Equations of motion . . . . . . . . . . . . . . . . . . . . . 9

7. Linearized model . . . . . . . . . . . . . . . . . . . . . . . 11

8. Controllability and observability . . . . . . . . . . . . . . . 14

9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

III PROTOTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2. Mechanical design . . . . . . . . . . . . . . . . . . . . . . . 16

3. Electrical design . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IV PARAMETER ESTIMATION . . . . . . . . . . . . . . . . . . . 27

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2. Motor operation . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Center of mass . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Nonlinear least squares estimation . . . . . . . . . . . . . . 31

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

V LQR DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2. Feedback model . . . . . . . . . . . . . . . . . . . . . . . . 39

3. LQR problem . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

VI H∞ CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . 44



vii

CHAPTER Page

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. Scaled state space . . . . . . . . . . . . . . . . . . . . . . . 44

3. Range space and null space . . . . . . . . . . . . . . . . . . 45

4. Norms of systems . . . . . . . . . . . . . . . . . . . . . . . 46

5. Linear matrix inequalities . . . . . . . . . . . . . . . . . . 48

6. Feedback model . . . . . . . . . . . . . . . . . . . . . . . . 51

7. The H∞ problem . . . . . . . . . . . . . . . . . . . . . . . 52

8. Controller loop shape . . . . . . . . . . . . . . . . . . . . . 53

9. H∞ synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 59

10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

VII IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . 65

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2. MIMO frequency response . . . . . . . . . . . . . . . . . . 66

3. Tustin’s method . . . . . . . . . . . . . . . . . . . . . . . . 68

4. Frequency warping . . . . . . . . . . . . . . . . . . . . . . 69

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

VIII CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

APPENDIX C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

APPENDIX D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

APPENDIX E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

APPENDIX F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



viii

LIST OF FIGURES

FIGURE Page

2.1 Euler angles yaw ψ, pitch θ and roll φ. . . . . . . . . . . . . . . . . . 2

2.2 Mechanical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Mechanical model with axis and angles. . . . . . . . . . . . . . . . . 4

2.4 Open loop simulation 1. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Open loop simulation 2. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Typical state space model. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Ducted fan brushless motor. . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Basic brushless motor. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Wireless link diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Bluetooth integrated circuit. . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Magnetic encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Analog output operation. . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Sensor range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 PIC microcontroller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.9 Speed controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 Compact RIO controller. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.11 Li-Po battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.12 Ni-MH battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.13 User interface 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



ix

FIGURE Page

3.14 Flow of data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.15 User interface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.16 Fully assembled plant. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.17 Fully assembled plant. Side view. . . . . . . . . . . . . . . . . . . . . 25

3.18 Fully assembled plant. Back view. . . . . . . . . . . . . . . . . . . . 26

3.19 Fully assembled plant. Front view. . . . . . . . . . . . . . . . . . . . 26

4.1 Speed controller operation. . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Birotor SEC operation. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Motor experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Bytes vs Thrust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Center of mass experiment. . . . . . . . . . . . . . . . . . . . . . . . 30

4.6 Center of mass experiment diagram. . . . . . . . . . . . . . . . . . . 31

4.7 Bytes and pitch angle relation. . . . . . . . . . . . . . . . . . . . . . 32

4.8 l′c location for different values of θ. . . . . . . . . . . . . . . . . . . . 32

4.9 Nonlinear Least Squares Algorithm. . . . . . . . . . . . . . . . . . . 36

4.10 Pitch estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.11 Roll estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 LQR feedback model. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 LQR simulation, yaw ψ. . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 LQR simulation, pitch θ. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 LQR simulation, roll φ. . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 LQR simulation, left thrust. . . . . . . . . . . . . . . . . . . . . . . . 43



x

FIGURE Page

5.6 LQR simulation, right thrust. . . . . . . . . . . . . . . . . . . . . . . 43

6.1 General feedback model. . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Standard H∞ problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Controller K design block. . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 W model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 W command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 W performance 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.7 W performance 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.8 W actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.9 H∞ simulation, errors. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.10 H∞ simulation, positions. . . . . . . . . . . . . . . . . . . . . . . . . 62

6.11 H∞ simulation, roll angle and velocities. . . . . . . . . . . . . . . . . 63

6.12 H∞ simulation, thrust. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 H∞ implementation diagram. . . . . . . . . . . . . . . . . . . . . . . 65

7.2 H∞ controller frequency response. . . . . . . . . . . . . . . . . . . . . 67

7.3 H∞ controller pole-zero map. . . . . . . . . . . . . . . . . . . . . . . 71

7.4 H∞ implemented, ψ yaw. . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5 H∞ implemented, θ pitch . . . . . . . . . . . . . . . . . . . . . . . . 72

7.6 H∞ implemented, φ roll . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.7 H∞ implemented, thrust . . . . . . . . . . . . . . . . . . . . . . . . . 73



1

CHAPTER I

INTRODUCTION

The main topic of this thesis is to exhibit how robust control techniques can be applied

to real time systems. Nowadays, the control techniques used in the industry are very

simple even when applied to complex systems, these techniques are intuitive and not

necessarily systematic. More over, the notion of optimality of robustness is absent.

In this thesis a modern control technique is presented to manipulate a 3DOF

birotor in real time. The objective of this research is to demonstrate the performance

of more efficient control algorithms to control these kind of systems. The required

tasks to achieve this goal, are to develop a mathematical model of the system that

incorporates all its characteristics, to generate an adequate robust control algorithm

that can be used with conventional hardware and show that it works in real time

applications.

The journal model is IEEE Transactions on Automatic Control.



2

CHAPTER II

DYNAMICAL MODEL

1. Introduction

In order to make a good controller for a given system, equations of motion that

describe the dynamics of the system must be formulated, taking in account all the

characteristics that affect the system. This birotor helicopter is a three degree of

freedom (3DOF) system that does not perform translational motion, for this reason,

the dynamics will be focused only on the rotational equations of motion.

There are three angles commonly used in aerodynamics applications which are

called the Euler angles; yaw ψ, pitch θ and roll φ[1]. Fig. 2.1 shows a schematic of these

angles for any aircraft. Yaw is the heading about the vertical axis (body-z), pitch is

known as the rotation about an axis (body-y) perpendicular to the longitudinal plane

of symmetry and roll is the angle about the longitudinal axis (body-x).

Fig. 2.1. Euler angles yaw ψ, pitch θ and roll φ.

Fig. 2.2 shows a computer aided design (CAD) of the mechanical model. The fan

located at the back is used to generate disturbances. The Euler angles are controlled

by the thrust provided by the front rotors, specifically left and right.



3

The pitch motion is controlled by increasing the thrust from the rotors, the roll

and yaw motions are controlled by the difference in the thrust between the rotors.

Fig. 2.2. Mechanical model. A CAD drawing of the actual system displaying the main

aspects of the plant.

In this chapter the equations of motion will be derived. These equations describe

the motion of the system due to changes in the forces applied from the rotors.

2. Translational and rotational matrices

In fig. 2.3 a simple model is shown displaying the axis and direction of the angles

used to derive the equations of motion. Let us denote l2 as the distance from O2 to

O3, l3 as the distance from O3 to Fr or Fl, lc as the distance from O2 to the pitch

center of mass (COM), Fl is the left force, and Fr is the right force.

Let O0 be the origin of the stationary frame and O3 the point where the third

reference frame is located and also the middle point between the two rotors. Let O1

and O2 be the origins of the intermediate links, these are located in the same place as

O0. A vector q = [ξ η]T denotes the generalized coordinates, where ξ = [x y z]T ∈ R3

denotes the translational coordinates with respect to the origin, and η = [ψ θ φ]T ∈ R3



4

describes the orientation given by the Euler angles[2]. The values for ψ, θ and φ

depicted in fig. 2.3 are the zero position. That is, when l3 is aligned with positive

body-x, and l2 is parallel to body-y the system is considered to be in the origin,

[ψ θ φ] = [0 0 0].

Fig. 2.3. Mechanical model with axis and angles. This picture displays the plant, the

coordinate system (x,y,z), and the positive direction of the Euler angles.

The translational and rotational matrices are given by transformation matrices

of the form:

T i→j =

 Ri→j ∈ R3 P i→j ∈ R3×1

0 ∈ R1×3 1

 (2.1)

where:

i index of the reference frame Oi.

j index of the reference frame Oj.

Ri→j ∈ R3 Rotational matrix Oi → Oj.

P i→j ∈ R3×1 Translational matrix Oi → Oj.



5

Given this, the tranformation matrices for this system are:

Roll to pitch1:

Trp =



1 0 0 l2

0 cφ −sφ 0

0 sφ cφ 0

0 0 0 1


(2.2)

Pitch to yaw:

Tpy =



cθ 0 sθ 0

0 1 0 0

−sθ 0 cθ 0

0 0 0 1


(2.3)

Yaw to ground:

Tyg =



cψ −sψ 0 0

sψ cψ 0 0

0 0 1 0

0 0 0 1


(2.4)

Other transformation matrices can be obtained by combinations of eq. 2.2, eq. 2.3

and eq. 2.4.

Tpg = TygTpy Pitch to Ground (2.5)

Trg = TpgTrp Roll to Ground (2.6)

Try = TpyTrp Roll to Yaw (2.7)

TFrg = TrgTFl Left force to Ground (2.8)

TFlg = TrgTFr Rigth force to Ground (2.9)

1ci = cos(i) and si = sin(i).



6

And:

TFl =



1 0 0 0

0 1 0 l3

0 0 1 0

0 0 0 1


Left force to roll (2.10)

TFr =



1 0 0 0

0 1 0 −l3

0 0 1 0

0 0 0 1


Right force to roll (2.11)

The translational matrices are:

Pp = Tpg
[
lc 0 0 1

]T
Pitch COM Position (2.12)

Pr = Tpg
[
l2 0 0 1

]T
Roll COM Position (2.13)

PFl = Trg
[

0 l3 0 1

]T
Left Force Position (2.14)

PFr = Trg
[

0 −l3 0 1

]T
Right Force Position (2.15)

Eq. 2.12 to eq. 2.15 are vectors inR4×1, but only the first 3 outputs corresponding

to ξ = [x y z]T are needed, the fourth element will be neglected.

3. Translational and angular velocities

The velocities or rates are the derivatives of the translational and rotational matrices

with respect of time, for translational movement:

ξ̇ =
dP i→j

dt
(2.16)



7

And for rotation, the angular velocity is:

Ω = Wη̇ =


Wx

Wy

Wz

 ∈ R3 (2.17)

where η̇ = (ψ̇, θ̇, φ̇)T . The values of Wx, Wy and Wz are obtained from:
0 −Wz Wy

Wz 0 −Wx

−Wy Wx 0

 = (Ri→j)−1dRi→j

dt
(2.18)

The translational velocity must be calculated for all the points described in

eq. 2.12 to eq. 2.15. The angular velocities for Rpy (eq. 2.3) and Rry (eq. 2.7) are

evaluated.

4. Kinetic and potential energy

The kinetic and potential energy are considered for the two COM points in the system

(pitch and roll), see eq. 2.12 and eq. 2.13. The kinetic energy is the sum of the trans-

lational kinetic energy and rotational kinetic energy, KE = Ktranslational +Krotational.

KEp =
1

2
(Mpξ̇

T
p ξ̇p + ΩT

p IcΩp) (2.19)

KEr =
1

2
(Mrξ̇

T
r ξ̇r + ΩT

r Ic2Ωr) (2.20)

KE = KEp +KEr (2.21)

The subindexes p and r represent the pitch COM and roll COM respectively.

Mp is the mass of the link that goes from O2 to O3 and Mr is the mass of the link

that goes from Fl to Fr passing through O3. Ic and Ic2 are the inertia tensor matrices

which are calculated at the COM points of pitch and roll.



8

The parallel axis theorem must be used to get the values of the inertias at the

“total” COM of the system, eq. 2.23, m is the COM point mass and R is the distance

from the COM point to the “total” COM.

I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 (2.22)

Idisplaced = Icenter +mR2 (2.23)

The potential energy is the energy that is stored within a system. It exists when

there is a force that tends to pull an object back towards some original position when

the object is displaced. In this case it only depends on the z coordinate affected by

g, the gravity.

PE = MpgPTp
[

0 0 1

]T
+MrgPTr

[
0 0 1

]T
(2.24)

5. Power in

The power administered is generated by the input forces. These forces are always

perpendicular to the surface of the fans, thus, the position of them at any point is

considered. As with eq. 2.12, only the first 3 elements of these vectors are required.

Fleft = Fl

(
Trg
[

0 l3 1 1

]T
− Trg

[
0 l3 0 1

]T)
(2.25)

Fright = Fr

(
Trg
[

0 −l3 1 1

]T
− Trg

[
0 −l3 0 1

]T)
(2.26)

The power that will be provided to the system is:

Pin = Fleftξ̇Fl + Frightξ̇Fr (2.27)



9

6. Equations of motion

Applying Euler-Lagrange formalism, the equations of motion are:

d

dt

dL

dq̇
− dL

dq
+D = F (2.28)

From eq. 2.28, L is the Lagrangian, defined by:

L = KE − PE (2.29)

q̇ are the derivatives with respect of time of q, q̇ = [ẋ ẏ ż ψ̇ θ̇ φ̇]. Since the model

is focused on the rotational equations of motion we can discard the 3 first equations

corresponding to translational movement.

D are the damping forces and F are the input forces applied on the system, d is

the damping factor vector d = [dψ dθ dφ]T and I is the identity in R3. Later it will be

shown how to determine the damping coefficients performing parameter estimation.

D = Id(Ωp + Ωr) (2.30)

F =
dPin
dη̇

(2.31)

Eq. 2.28 can be written as:

EL =
d

dr

dL

dq̇
− dL

dq
+D − F (2.32)

The inertia matrix is defined as:

M(η) =
dEL

dη̈
(2.33)

An auxiliary matrix H is specified as:

H = M(η)η̈ − EL (2.34)



10

Finally, the equations of motion for η̈ = [ψ̈ θ̈ φ̈]T are:

η̈ =


ψ̈

θ̈

φ̈

 = M(η)−1H (2.35)

An open loop simulations were done to verify the equations of motion, as shown in

fig. 2.4 and fig. 2.5, the system oscillates towards an equilibrium position2 as t→∞.

Fig. 2.4. Open loop simulation 1. As t → ∞ the system returns to an equilibrium

position. [ψ0, θ0, φ0] = [0, pi/3, 0]

2Equilibrium position or stationary point, is the condition of a system in which
competing influences are balanced, is an input to a function where the derivative is
zero, that means, the gradient is zero, the function stops increasing or decreasing,
hence the name.



11

Fig. 2.5. Open loop simulation 2. [ψ0, θ0, φ0] = [0, pi/10, 0]

7. Linearized model

The nonlinear model of the system is given by eq. 2.35. Nonlinear models are difficult

to solve and complex for real time applications, simple changes in one part of the

system can produce complex effects in the output, thus, for control purposes linear

models are assumed to model the dynamics of the system to an acceptable extent.

Due to the inherent nonlinearity of real world phenomena, the nonlinear models[3]

might be linearized.

The linearization is done while considering an equilibrium point as the datum.

The performance of this linear model depends on the accuracy of the nonlinear rep-

resentation.



12

Eq. 2.35 can be transformed into an equation of the form ẋ = f(x, u) were x is

the states vector [η η̇]T = [ψ θ φ ψ̇ θ̇ φ̇]T and u is the input vector [Fl Fr]T .

ẋ =

 η̇

f(x, u)

 (2.36)

ẋ is linearized around an equilibrium or trim point, and for any point c in space,

the linearization is:

f(x) ∼= f(c) +∇f |x=c(x− c) (2.37)

where:

f(x) linearized function.

f(c) function evaluated at the equilibrium point c.

∇ ∇ =
[

∂
∂x1
· · · ∂

∂xn

]
.

The equilibrium point [ψ θ φ ψ̇ θ̇ φ̇]T = [0 0 0 0 0 0]T is selected. Also the input

forces are taken in account when calculating the linear model. From eq. 2.35 there

are three equations, setting [ψ θ ψ̇ θ̇ φ̇]T = [0 0 0 0 0]T and solving for φ, Fl and Fr.

φ is taken as an unknown to have a set of three unknowns in three equations and

finally the trim point is the vector [ψ θ φ ψ̇ θ̇ φ̇ Fl Fr]
T .

Once linearized, ẋ can be represented in state space form:

ẋ = Ax + Bu

y = Cx + Du
(2.38)

x is the state vector [ψ θ φ ψ̇ θ̇ φ̇]T . y is the output vector defined by the variables

and/or properties desired from the system. u, the input vector [Fl Fr]
T . A is the

state matrix. The input matrix B. C is called the output matrix. And finally D is

the feedfoward matrix.



13

The state space is a mathematical model of a physical system as a set of input,

output and state variables related by first-order differential equations. The state

variables are the smallest possible subset of system variables that can represent the

entire state of the system at any given time. The interconnection of the state space

is depicted in fig. 2.6.

Fig. 2.6. Typical state space model. The relation between the states, matrices, inputs

and outputs is shown.

Commonly, the state space representation of the equations of motion of a given

system is also named the plant G.

G =

 A B

C D

 (2.39)

The values of the matrices A, B, C and D for the birotor helicopter are depicted from

eq. 2.40 to eq. 2.43.

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −1.3763 0.004 0 −0.0034

0 −0.7548 0 0 −0.2283 0

0 0 0.8084 −0.2941 0 0.002


(2.40)



14

B =



0 0

0 0

0 0

−0.269 0.269

−1.1301 −1.1301

19.8274 −19.8274


(2.41)

C = I6×6 (2.42)

D = 06×2 (2.43)

From here, the rank of the plant G is defined as the order of the system, the

number of states, so rank(G) = nx = 6.

8. Controllability and observability

A important property of a stable controller is that the closed loop transfer function

is asymptotically stable, all the eigenvalues have negative real part, as long as the

following two conditions hold:

1. The plant is controllable.

2. The plant is observable.

A system is said to be controllable if and only if it is possible, to transfer the

system from any state x0 to any other state xt in a finite time 0 ≤ t < ∞. If the

system is linear and time invariant, then the system is controllable if and only if the

controllability matrix (eq. 2.44), is full rank.

Q =

[
B AB · · · Anx−1B

]
(2.44)



15

A system is said to be observable if and only if its state x0, at any time t, can be

determined from knowledge of the input and output over a finite period of time tf ,

that is, u(t) and y(t), where 0 ≤ t ≤ tf . A linear, time invariant system is observable

if and only if the observability matrix (eq. 2.45), is full rank.

N =



C

CA

· · ·

CAnx−1


(2.45)

In both cases, controllability and observability, the corresponding matrices are

full rank, so the controllers to be designed can be stable.

9. Conclusion

In this section, the equations of motion were derived. Also, the state space represen-

tation of the equivalent linear model was obtained. Finally, it was proved that the

linear model is controllable and observable, thus, a stable controller can be designed.

The mathematical model of any system is a crucial step towards control it.



16

CHAPTER III

PROTOTYPE

1. Introduction

The prototype was built based on a existing model but with the advantage of full

360 degrees rotation in the yaw ψ direction. This was accomplished by establishing a

wireless link between the control device and the mechanical plant. Speed and accurary

were considered at the time of making a choice of the components to be impelmented

in the system. The control algorithm has to be executed on a real time device to

show the perfomance of the controller designed1, so the prototype must be able to

execute it efficiently.

2. Mechanical design

The mechanical plant was built mainly with aluminium, with joint elements that

would allow the system to perform in a very acceptable manner compared to the

mathematical model.

Fig. 3.1. Ducted fan brushless motor.

1For more information that the one provided in this section please refer to the
apendix.



17

The actuators selected are ducted fan brushless motors (Fig. 3.1). These motors

are essentially AC synchronous motors with permanent magnet rotors and can main-

tain a load on them more efficiently that brushed motors. The motors are controlled

with a speed controller (SEC, see next section).

Brushless motor rotation relies on the same theory as for AC and DC motors.

That is, two magnetic fields interact, which result in motion.

Fig. 3.2. Basic brushless motor. Movement is produced by changing the polarity in

the poles, north (N) and south (S).

In the case of AC motors, the stator winding sets up one magnetic field while

inducing the second interacting field onto the squirrel cage rotor. With DC motors,

the permanent magnet stator sets up the first magnetic field, and the rotor windings

produce the second field. These two magnetic fields interacting, results in rotation.

In the DC motor, the two fields try to align. However the commutator continually

switches power from winding to winding. Thus, maintaining the two magnetic fields

at a 90 degree relationship. If they did indeed align, motor rotation would not occur.

Compared to DC motors, brushless technology has been termed an “inside out”

design. That is, the permanent magnets are on the rotor, and the stator consists of

windings. The design still consists of two magnetic fields interacting[4]. To begin to

understand how brushless motor operate, refer to fig. 3.2. Power is applied to winding



18

“R” and current flow sets up a ‘north’ pole which the permanent magnet will react to,

and begin movement. This movement will cease when the “south’ pole of the magnet

aligns it.

Typically the motors have conections for power supply and one connection for

control input. This control input is a square wave sending the frequency at which the

motor has to operate. The control of the motor can be implemented almost effortless

with the aid of software and electronics.

3. Electrical design

Since there is not commercial products satisfying all the electrical requieriments of the

system, embeded systems had to be built. The electrical diagrams of these embeded

systems can be found in the apendix.

As mention above, there is a wireless link between the controller and the plant.

A sketch showing the signals affected by the wireless link is depicted in fig. 3.3.

The control signal u and the sensor signal y are broken and transmited via serial

communication in a bidirectional channel.

Fig. 3.3. Wireless link diagram. The signals u and y are broken and transmited wire-

lessly.

The wireless connection was achieved using Bluetooth R© technology, see fig. 3.4.

These kind of products granted the ability to have bidirectional connection between

the control device and the mechanical part using only one accessory on each side.

The sensors operating are absolute encoders, more especific, magnetic encoders,

see fig. 3.5. These enjoy the advantage of transmit the information in a single line as



19

a 10 bit resolution analog output that is linearly proportional to the absolute shaft

position, thus saving space and complexity as shown in fig. 3.6.

Fig. 3.4. Bluetooth integrated circuit. This device is the heart of the communication

between the controller and the plant.

Fig. 3.5. Magnetic encoder.

Fig. 3.7 depicts a circle ilustrating the working range of the sensor. Now, if

the signal from the sensor were to transit from the red area to the blue area in one

control time step, the system has done 1 revolution in the positive direction and one

revolution in the negative direction if it transits from the blue to the red area.

Fig. 3.6. Analog output operation. The operation of the encoder is linear as shown in

this picture, with the aid of software the range can be extended practically

to infinity.



20

Also, being the sensors absolute encoders they must be initialized, that is, the

initial signal read, called the offset, has to be zero or some reference point to make

the system agree with the coordinate system in the mathematical model.

Signalreference = Signalreal − Signaloffset (3.1)

Fig. 3.7. Sensor range. This picture helps to understand how the angle measured from

the sensor can be extended by sensing the transition from 0 to 360 degrees

in one time step.

Microchip R© PIC micontrollers[5], see fig. 3.8, were used to extract the data from

the encoders, and recieve the data from the control device to apply input voltage to

the actuators in the system. Also the PICs communicate with the Bluetooth modules.

Fig. 3.8. PIC microcontroller.

The PIC sends a signal to a speed controller (fig. 3.9), that generates a square

signal to move the motors. This controller has a working period of 20 ms, thus being

the device that specifies the sampling time for real time applications.



21

Fig. 3.9. Speed controller. The working period of the SEC is the base period for real

time applications.

The control device is an emmbeded control National Intruments R© Compact Rio R©

controller model 9014 depicted in fig. 3.10. This device supports real time capabilities

as well as computer based interfaces with acceptable speed. The Compact RIO com-

municates with the plant via serial protocol by means of the Bluetooth connection.

Fig. 3.10. Compact RIO controller.

The birotor uses 3 lithium polymer (LiPo) batteries (fig. 3.11) in which the

lithium-salt electrolyte is not held in an organic solvent as in the lithium-ion (Li-ion)

design, but in a solid polymer composite such as polyethylene oxide or polyacryloni-

trile. The advantages of LiPo over the Li-ion design include lower cost manufacturing

and being more robust to physical damage. Li-poly has a greater life cycle degradation

rate. These batteries are used to turn on the motors.

Since no metal battery cell casing is needed, the battery can be lighter and it can

be specifically shaped to fit the device it will power. Because of the denser packaging



22

without intercell spacing between cylindrical cells and the lack of metal casing, the

energy density of Li-poly batteries is over 20% higher than that of a classic Li-ion

batteries.

Fig. 3.11. Li-Po battery.

The helicopter also uses 2 nickel-metal hydride cell (Ni-MH) batteries (fig. 3.12)

to power up the electronic boards responsible for the wireless connection. Both kind

of batteries guaratee that the current rate delivered at all times will be enough to

keep the helicopter running efficiently.

Fig. 3.12. Ni-MH battery.

4. Interface

The user interface was done keeping in mind that every person can test the de-

vice, with the safety requirements necessary for the good perfomance of the model.

LabView R© software is the main plataform of the interface[6]. It is widely aproved in

robotics applications.



23

A shot of the user interface can be seen in fig. 3.13 and fig. 3.15.

Fig. 3.13. User interface 1. User interface with 3D graph used for close loop simula-

tions.

Fig. 3.14 depicts the flow of data.

Fig. 3.14. Flow of data. The user inputs commands to a PC-interface, the PC commu-

nicates with the real time controller which sends and recieves information

from the plant.

5. Conclusion

The good performance of the mathematical model and controls algorithms depends

tremendously in how good the prototype represents the model. If a mechanical or



24

electrical part of the system does not work properly the control techniques will never

achieve the performance aimed.

Fig. 3.15. User interface 2. User interface used to get data from sensors and open loop

simulations.

Fig. 3.16 to fig. 3.19 show the plant fully assembled.



25

Fig. 3.16. Fully assembled plant. Above one can see the fully assembled plant, even

though there are some issues like loose cables, the system performs in a very

acceptable manner and according to the requirements.

Fig. 3.17. Fully assembled plant. Side view.



26

Fig. 3.18. Fully assembled plant. Back view.

Fig. 3.19. Fully assembled plant. Front view.



27

CHAPTER IV

PARAMETER ESTIMATION

1. Introduction

Once the dynamical model has been developed, some parameters need to be esti-

mated. In this section parameter estimation is done, which determines the “best”

estimates of all poorly known parameters so that the mathematical model provides

an accurate representation of the system’s actual behavior[7].

For the dynamical system, a mathematical model is hypothesized based upon the

experience of the investigator, which is consistent with whatever physical laws known

to govern the systems behavior, the number and nature of the available measurements,

and the degree of accuracy desired. Such mathematical models almost invariably

embody a number of poorly known parameters.

Also the model is verified with some straightfoward experiments.

2. Motor operation

The motors used in the system are ducted fan brushless motors, these motors are

controlled by sending a byte signal from 0 to 255 to a PIC, then the PIC generates a

PWM signal that is sent to a speed controller and this one genetares a square wave

to control the motors.

The speed controller (SEC) operation is depicted in fig. 4.1, the base period of

the SEC is 20 ms, and increments of 1µs are allowed. The fisrt 1ms is required to

turn on the motor. And then by increments of 1µs the SEC increases the PWM,

the maximum number of increments is 1000. The birotor does not require all 1000

increments to make the system functional.



28

A zero is set at 107 and a maximum of 107 + 255 is set, see fig. 4.2. As seen in

fig. 4.1 there are free 18ms which are used to send signal to other SECs in the system,

thus making possible to control up to 8 motors at one time.

Fig. 4.1. Speed controller operation. 1ms is needed to turn on the motor and incre-

ments of 1µs set the output of the PWM signal.

A relation between the bytes sent to the PIC and the thrust generated by the

motor is built up. For this purpose the experiment illustrated in fig. 4.3 was done.

With the aid of a scale by turning off one of the motors and applying force in the

other the relation bytes-thrust is acquired.

Fig. 4.2. Birotor SEC operation. A zero position is set at 1107µs and a maximum of

255 increments are allowed.

The results are interpolated to get a linear function between the values, see

fig. 4.4. This relation is used later to get a transfer function from bytes sent to the

PIC to thrust applied in the system.



29

Fig. 4.3. Motor experiment. One motor is turned off and with the help of a scale the

thrust provided for every byte increment is recorded.

Fig. 4.4. Bytes vs Thrust. The linear relation input - output can be seen on this plot.



30

3. Center of mass

With the aid of CAD software the center of mass is calculated, name it lc and l′c, to

check that this value is correct the experiment in fig. 4.5 was performed. By changing

both values at the motors at the same time and with the same proportion, the pitch

angle θ changes.

Fig. 4.5. Center of mass experiment. By changing the pitch angle θ and using eq. 4.1

the values of the center of mass can be derived.

The equation that relates pitch and force is:

2FL = mg(lc cos(θ)− l′c sin(θ)) (4.1)

As depicted in fig. 4.6, F is the force applied in each motor, L is the length from

origin to the point where forces are applied, m is the total mass of the system, the

gravity is represented by g, lc is the distance perpendicular to the force from O to cm

and l′c is the distance parallel to the force from O to cm. θ is the pitch angle and cm

the center of mass.

A set of values are obtained for different inputs. Then when θ = 0 eq. 4.1

becomes:

2FL = mglc (4.2)

And the value of lc can be obtained.



31

Fig. 4.6. Center of mass experiment diagram. At any given angle
∑

(Torques) = 0.

Then, from eq. 4.1:

l′c =
−2FL

mg
+ lc cos(θ)

sin(θ)
(4.3)

Fig. 4.7 shows a graph of bytes input vs pitch angle θ. Knowing the value of lc

the value of l′c is acquired for some values of θ, then the mean is taken to aproximate

the value of l′c, see fig. 4.8.

Finally the real values of the center of mass and the values got from model are

presented, in meters:

Real Model

lc 0.0340 0.0338

l′c -0.0184 -0.0203

The error is around 2mm, which is good enough.

4. Nonlinear least squares estimation

The damping factors of the system are the variables to be estimated. Due to the

nonlinear nature of the system, nonlinear parameter estimation is needed. The most

widely used successive approximation procedure, nonlinear least squares; otherwise

known as Gaussian least squares differential correction is used.



32

Fig. 4.7. Bytes and pitch angle relation. This graph was obtained from experiments,

the effect of trigonometric functions can be seen.

Fig. 4.8. l′c location for different values of θ.



33

The method to be developed here is an m x n generalization of Newton’s root

solving method for finding x-values satisfying y−f(x) = 0. As with Newton’s method

convergence of the multi-dimensional generalization is guaranteed only under rather

strict requirements on the functions and their first two partial derivatives as well as

on the closeness of the starting estimates.

Assume m observable quantities modelled as:

yj = fj(x1, x2, ..., xn); j = 1, 2, ...,m; m ≥ n (4.4)

where fj are m arbitrary independent functions of the unknown parameters xi.

fj and at least its first partial derivatives are required to be single-valued, con-

tinuous and at least once differentiable. Additionally, suppose that a set of observed

values of the variables yj are available. yj ∈ {y1, y2, ..., yn}.

An estimate x̂ for x that minimizes eq. 4.5 is the goal of the estimation algorithm.

e is the residual errors ỹ − f(x̂) = ∆y. W is a m x m weighting matrix, relative

importance of measurements. The measured values ỹ and the vector of estimated

parameters x̂.

J =
1

2
eTWe (4.5)

The current estimates of the unknown x-values are supposed to be available,

denoted by:

xc = [x1c, x2c, ..., xnc]
T (4.6)

Whatever the unknown objective x-values x̂ are, they are related to their respec-

tive current estimates, xc, by an also unknown set of corrections, ∆x, as:

x̂ = xc + ∆x (4.7)



34

If the components of x are sufficiently small, it may be possible to solve for

approximations to them and thereby update xc with an improved estimate of x from

eq. 4.7. f(x̂) is linearized about xc using a first-order Taylor series expansion as:

f(x̂) = f(xc) +H∆x (4.8)

where:

H =
∂f

∂x

∣∣∣∣
xc

(4.9)

The gradient matrix H is known as a Jacobian matrix. The measurement residual

“after the correction” can now be linearly approximated as:

∆y = ỹ − f(x̂) ≈ ỹ − f(xc)−H∆x = ∆yc −H∆x (4.10)

The residual “before the correction” is:

∆yc = ỹ − f(xc) (4.11)

Recall that the objective is to minimize the weighted sum squares, J . The local

strategy for determining the approximate corrections (“differential corrections”) in x

is to select the particular corrections that lead to the minimum sum of squares of the

linearly predicted residuals Jp:

J =
1

2
∆yTW∆y − f(x̂) ≈ Jp ≡

1

2
(∆yc −H∆x)TW (∆yc −H∆x) (4.12)

The minimization of Jp is equivalent to the minimization of J . If the process

is convergent, then ∆x determined by minimizing would be expected to decrease on

successive iterations until (on the final iteration) the linearization is an extremely

good approximation.



35

Any algorithm for solving the weighted least squares problem directly applies to

solving for ∆x in eq. 4.12. Therefore:

∆x = (HTWH)−1HTW∆yc (4.13)

The complete nonlinear least squares algorithm is summarized in fig. 4.9. An

initial guess xc is required to begin the algorithm. A stopping condition with an

accuracy dependent tolerance for the minimization of J is given by:

δJ ≡ |Ji − Ji−1|
Ji

<
ε

‖W‖
(4.14)

ε is a prescribed small value. If eq. 4.9 is not satisfied, then the update procedure

is iterated with the new estimate as the current estimate until the process converges,

or unsatisfactory convergence progress is evident, a maximum allowed number of

iterations is exceeded, or J increases on successive iterations.

The experiment to collect the measured data for nonlinear least squares consisted

in making the system oscillate around an equilibrium position, several data sets were

gathered for pitch and roll, the damping factor for yaw will be taken as the same for

roll. The function to be estimated is a damped cosine function:

f(x) = A+Be−ζt cos(wnt+ Φ) (4.15)

From eq. 4.15, A is the dc gain, B is the cosine amplitude, ζ is the damping

ratio, wn is the frequency and Φ is the phase angle.

Fig. 4.10 shows one of the plots of the real ỹ values and the estimated function

f(x) for pitch and fig. 4.11 is a plot for roll.



36

Fig. 4.9. Nonlinear Least Squares Algorithm. The algorithms is very sequential and

easy to implement. The performance of the algorithm depends heavily on the

initial conditions and the good performance of the plant which administers

the measurements.



37

Fig. 4.10. Pitch estimates. Estimates of parameters and real values. The behavior of

the plant can be reproduced with the estimated parameters of a damped

cosine function as seen in the picture above.

Now, to get the damping factors is known that the equation of motion for angular

movement is:

Iθ̈ + Cθ̇ + Kθ = 0 (4.16)

I is the inertia, C is the damping factor and K is the spring factor.

Eq. 4.16 can be represented as a second order transfer function:

s2 + 2ζwns+ w2
n (4.17)

Then:

wn =

√
K

I
(4.18)

And finally, the dampinbg factor C is derived from:

ζ =
C

2
√

KI
(4.19)



38

Fig. 4.11. Roll estimates.

5. Conclusion

Parameter estimation is the last step before designing controllers, it tunes the math-

ematical model so it matches the real performance of the system as close as possible,

with this any controller designed will give a grade of authenticity to the work done. It

was demostrated that one can certify some aspects of the model very easilly like the

center of mass, and other parameters like damping factor required a more advance

approach to achieve the results aimed.



39

CHAPTER V

LQR DESIGN

1. Introduction

When designing a controller it is desired one that provides the best possible per-

formance with respect to some measurements. It can be a controller that uses the

least amount of control input energy to make the output zero or one that guarantees

stability of the closed loop system, good gain and phase margins, robustness with

respect to unmodeled dynamics, or other desirable properties[8].

The minimization procedure used in Linear Quadratic Regulator (LQR) design

produces controllers that are stable. The controllers obtained are generally good,

even when optimizing for energy is not an objective. Moreover, this procedure is

applicable to MIMO processes for which classical designs are difficult to apply.

In this section the LQR methodology is explained, so the differences between

this method and the H∞ can be compared.

2. Feedback model

The feedback model for the LQR control is shown in fig. 5.1.

Fig. 5.1. LQR feedback model.

r is the reference input, u is the control input, y is the output of the plant, e is

the error and m are the mearurements, thus, the signals available for feedback.



40

The measurement m is substracted from the reference input r, the controller K

tries to make the error e zero, and transmits the control signal u to the plant G.

3. LQR problem

The LQR problem consists in finding a controller K that minimizes eq. 5.1.

JLQR =

∫ ∞
0

y(t)TQy(t) + ρu(t)TRu(t)dt (5.1)

The term
∫∞

0
y(t)TQy(t)dt is the energy of the controlled output and the term∫∞

0
u(t)TRu(t)dt is the energy of the control signal. Even do LQR tries to minimize

both energies, decreasing the energy of the controlled output will require a large

control signal and a small control signal will lead to large controlled outputs. So:

1. If ρ is very large, to decrease JLQR little control signals has to be used, but large

controlled output will be expected.

2. If ρ is very small, to decrease JLQR very small controlled output has to be

obtained, at the expense of a large control signal.

Q and R are symmetric positive definite matrices and ρ is a positive constant.

Usually Q and R are diagonal matrices with the maximum values of the states and

inputs.

The simplest LQR controller is a matrix gain of the form u = −Kx, where K is

a matrix given by:

K = (DTQD + ρR)−1(BTP +D′QC) (5.2)

And P is a positive definite solution to the Algebraic Riccati Equation (ARE),

eq. 5.3.

ATP + PA+ CTQC − (PB + CTQD)(DTQD + ρR)−1(BTP +DTQC) (5.3)



41

The state feedback control results in a closed loop system of the form:

ẋ = (A−BK)x (5.4)

4. Conclusion

A LQR simulation was done, is it depicted from fig. 5.2 to fig. 5.6. It can be seen

that the controller is good, also the H∞ controller is depicted, which will be explained

later.

Fig. 5.2. LQR simulation, yaw ψ.



42

Fig. 5.3. LQR simulation, pitch θ.

Fig. 5.4. LQR simulation, roll φ.



43

Fig. 5.5. LQR simulation, left thrust.

Fig. 5.6. LQR simulation, right thrust.



44

CHAPTER VI

H∞ CONTROLLER

1. Introduction

The H∞ control theory provides a theoretical framework to design a multivariable

feedback controller which meets desired performance criteria along with robustness

objectives. H∞ control has turned out more attractive due their robustnes to plant

model uncertainties and good disturbance and noise rejection.

Primarily, control design procedures were based on SISO techniques. With this,

the intrinsic multivariable aspect of the design was overlooked making incompatibility

of systems a big issue[9]. MIMO systems required a more efficient control method.

2. Scaled state space

The birotor state space plant G calculated previously from the nonlinear equations

of motion has to be scaled before solving the H∞ problem. This is acomplished by

linear transformations given by eq. 6.1 where N is a diagonal matrix which function

is to scale the values of the matrix X.

X = N−1XN (6.1)

.

So for the plant G:

G =

 A B

C D

 =

 N−1
x ANx N−1

x BNu

N−1
y CNx N−1

y DNu

 (6.2)



45

Now, the state space representation of the scaled system is:

ẋ = Ax + Bu

y = Cx + Du
(6.3)

By eq. 6.2:

ẋ = N−1
x ANxx + N−1

x BNuu

y = N−1
y CNxx + N−1

y DNuu
(6.4)

And:

Nxẋ = ANxx + BNuu

Nyy = CNxx + DNuu
(6.5)

Finally, from eq. 6.5 it is obvious that:

x = Nxẋ

u = Nuu

y = Nyy

(6.6)

Eq. 6.2 and eq. 6.6 give the relations between the plant G and G as well as the

states x, inputs u and outputs y to x, u and y respectively. The scaled plant of G is

the one used to calculate the H∞ controller.

The values chosen for the matrices Nx, Nu and Ny are:

Nx = diag( 10/π 10/π 10/π 8π/180 5π/180 5π/180 )

Nu = diag( 1.2 1.2 )

Ny = Nx

(6.7)

3. Range space and null space

The concept of linear mapping means that the transformation A : V → W is linear

if:

A(αv1 + βv2) = αAv1 + βAv2 (6.8)



46

For all v1, v2 ∈ V, and all scalars α and β. V and W are vector spaces with the

same associated fiel F. The space V is called the domian of the mapping and W the

codomian[10].

Associated with any linear map A : V → W is its image or range space R(A).

defined by:

R(A) = {w ∈ W : ∃v ∈ V ⇒ Av = w} (6.9)

This set contains all the elements of W which are the image of some point in V.

The null space or kernel N (A) is defined by:

N (A) = {v ∈ V : Av = 0} (6.10)

In words, N (A) is the set of vectors in V which get mapped by A to the zero

element in W .

The dimensions of the range and null space are linked by the relantionship:

dim(V ) = dim(R(A)) + dim(N (A)) (6.11)

4. Norms of systems

The performance of a system can be measured in terms of the size of certain signals

of interest, as the size of an error signal in tracking problems. The signals considered

map (−∞,∞)→ R.

These signals are assumed to be piecewise continuous. A signal may be zero for

t < 0, it may start at t = 0[11].



47

A norm of a signal u must have the following properties:

i) ‖u| ≥ 0.

ii) ‖u| = 0⇔ u(t) = 0, ∀t.

iii) ‖au‖ = |a|‖u‖, ∀a ∈ R.

iv) ‖u = v‖ ≤ ‖u‖+ ‖v‖.

The 1-norm of u(t) is the integral of its absolute value:

‖u‖1 :=

∫ ∞
−∞
|u(t)|dt (6.12)

The 2-norm of u(t) is related to power and energy in this statement: the instan-

taneous power of a signal u(t) is defined to be u(t)2 and its energy is defined to be

the square of its 2-norm.

‖u‖2 :=

(∫ ∞
−∞

u(t)2dt

) 1
2

(6.13)

The ∞-norm of a signal is the least upper bound of its absolute value:

‖u‖∞ := supt|u(t)| (6.14)

Systems that are linear, time-invariant, causal, and finite-dimensional are con-

sidered. In the time domain an input-output model for such a system has the form

of a convolution equation y = G ∗ u, or the same y(t) =
∫∞
−∞G(t− τ)u(τ)dτ .

Causality means that G(t) = 0 for t < 0. Let Ĝ = G(s) denote the Laplace

transform of G. Then Ĝ is rational with real coefficients. We say that Ĝ is stable

if it is analytic in the closed right half-plane (Re(s) = 0), proper if Ĝ(jw) is finite

(degree of denominator = degree of numerator), strictly proper if Ĝ(jw) = 0 (degree

of denominator > degree of numerator), and biproper if Ĝ and Ĝ−1 are both proper

(degree of denominator = degree of numerator).



48

The 2-norm and the ∞-norm of a system are:

‖Ĝ‖2 :=

(
1

2π

∫ ∞
−∞
|Ĝ(jw)|2dw

) 1
2

(6.15)

‖Ĝ‖∞ := supw|Ĝ(jw)| (6.16)

The ∞-norm of Ĝ equals the distance in the complex plane from the origin to

the farthest point on the Nyquist plot of Ĝ. It also appears as the peak value on

the Bode magnitude plot of Ĝ. An important property of the ∞-norm is that it is

submultiplicative:

‖ĜĤ‖∞ ≤ |Ĝ‖∞|Ĥ‖∞ (6.17)

The 2-norm of Ĝ is finite iff Ĝ is strictly proper and has no poles on the imaginary

axis; the ∞-norm is finite iff Ĝ is proper and has no poles on the imaginary axis.

5. Linear matrix inequalities

The history of linear matrix inequalities (LMI) in the analysis of dynamical systems

goes back more than 100 years. The story begins in about 1890, when Lyapunov

published his seminal work introducing the Lyapunov theory[12]. He showed that the

diferential equation eq. 6.18 is stable, all trajectories converge to zero, if and only if

there exists a positive-definite matrix P such that eq. 6.19 is true.

d

dt
x(t) = Ax(t) (6.18)

ATP + PA < 0 (6.19)

The requirement P > 0, ATP + PA < 0 is called a Lyapunov inequality on

P , which is a special form of a LMI. Lyapunov also showed that this first LMI

could be explicitly solved, selecting Q = QT > 0 and solving the linear equation

ATP + PA = −Q for the matrix P , which is guaranteed to be positive-definite if



49

eq. 6.18 is stable. The first LMI used to analyze stability of a dynamical system was

the Lyapunov inequality eq. 6.19, which can be solved analytically, by solving a set

of linear equations.

A linear matrix inequality has the form:

F (x) , F0 +
m∑
i=1

xiFi > 0 (6.20)

x ∈ Rm is the variable and the symmetric matrices Fi = F T
i ∈ Rnxn, i =

0, · · · ,m, are given. The inequality symbol in eq. 6.20 means that F (x) is positive-

definite, uTF (x)u > 0 for all nonzero vectors u ∈ Rn.

The LMI in eq. 6.20 is a convex1 constraint on x, the set {x|F (x)} > 0 is convex.

Linear inequalities, quadratic inequalities, matrix norm inequalities, and constraints

that arise in control theory, such as Lyapunov and convex quadratic matrix inequali-

ties, can all be cast in the form of an LMI. Multiple LMIs F (1)(x) > 0, · · · , F (p)(x) >

0 can be expressed as the single LMI diag(F (1)(x), · · · , F (p)(x)) > 0.

When the matrices Fi are diagonal, the LMI F (x) > 0 is just a set of linear

inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur

complements. The basic idea is as follows, the LMI in eq. 6.21 where Q(x) = Q(x)T ,

R(x) = R(x)T and S(x) depend affinely on x, is equivalent to eq. 6.22. Q(x) S(x)

S(x)T R(x)

 > 0 (6.21)

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0 (6.22)

Problems in which the variables are matrices are very common, like the Lyapunov

inequality (eq. 6.19). A ∈ Rnxn is given and P = P T is the variable. In this case the

1Let I be a real interval. A function f is said to be convex, if f(λt+ (1− λ)s) ≤
λf(t) + (1− λ)f(s) for all t, s ∈ I and every λ ∈ [0, 1][13].



50

LMI is not written explicitly in the form F (x) > 0, but instead is made clear which

matrices are the variables. The phrase “the LMI ATP + PA < 0 in P” means that

the matrix P is a variable. Leaving LMIs in a condensed form such as eq. 6.19, in

addition to saving notation, may lead to more efficient computation.

As another related example, consider the quadratic matrix inequality ATP +

PA + PBR−1BTP + Q < 0 where A, B, Q = QT , R = RT > 0 are given matrices

of appropriate sizes, and P = P T is the variable. It can be expressed as the linear

matrix inequality:  −ATP − PA−Q PB

BTP R

 > 0 (6.23)

This representation also displays that the quadratic matrix inequality is convex

in P , which is not obvious.

In some problems linear equality constraints on the variables may be found.

P > 0, ATP + PA < 0,Tr(P ) = 1 (6.24)

From eq. 6.24 P ∈ Rk×k is the variable. The equality constraint in eq. 6.24 can

be written as F (x) > 0. Let P1, · · · , Pm be a basis for symmetric k× k matrices with

trace zero (m = (k(k + 1) = 2) − 1) and let P0 be a symmetric k × k matrix with

Tr(P0) = 1. Then take F0 = diag(P0,−ATP0−P0A) and Fi = diag(Pi,−ATPi−PiA)

for i = 1, · · · ,m.

The problem is, given an LMI F (x) > 0, the corresponding LMI Problem (LMIP)

is to find xfeas such that F (xfeas) > 0 or determine that the LMI is infeasible. This

means, find a nonzero G ≥ 0 such that Tr(GFi) = 0 for i = 1, · · · ,m and Tr(GF0 ≤ 0.

This is a convex feasibility problem. So solving the LMI F (x) > 0 means solving the

corresponding LMIP.



51

In the 1980’s H∞ controllers were solved with necessary and sufficient condi-

tions for optimality which were obtained in terms of highly nonlinear coupled matrix

equations, which are not easy to solve. But in 1994 Iwasaki and Skelton[14] found

that necessary and sufficient conditions for the existence of an H∞ controller of some

(unspecified) order are given in terms of three Linear Matrix Inequalities (LMIs).

Positive definite solutions to the LMIs form a convex set. The controller order can

be fixed by imposing an additional rank condition (at the expense of convexity) on

the solutions to the LMIs. Moreover, the set of all H∞ controllers is characterized

explicitly in the state space representation. As mention by Iwasaki and Skelton, the

main advantage of the LMI formulation lies in the computational aspects.

6. Feedback model

Fig. 6.1. General feedback model. For H controllers usually the input to the controller

is the reference and the feedback from sensors. The controller calculates the

errors internally.

A general feedbacl model is shown in fig. 6.1. The disturbance w0 is the vector

of inputs that are not generated by the control system, noise is part of this vector.

The reference input r is a vector that specifies the desired behavior of the outputs,

only the inputs with nonzero desired values are included.



52

w0 and r are external inputs that be combined into a single input:

d =

 r

w0

 (6.25)

d is called the generalized disturbance input. u is the vector of control inputs

to the plant generated by the controller K. The reference output y is the plant P

outputs that are of interest. These outputs may include the errors between plant

states and desired values. Additionally, the control input can be incorporated into y.

The measured output m is the vector of plant outputs that can be directly measured

and therefore available for feedback.

The relation input-output in the plant P can be defined as:
ẋ

y

m

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x

d

u

 (6.26)

7. The H∞ problem

The H∞ problem formulation is shown in fig. 6.2. P represents a linear system plant.

K is a controller, d is the generalized disturbance input composed of reference inputs

and disturbances, e are errors, u is the control signal and y are the measurements.

Fig. 6.2. Standard H∞ problem. The problem formulation is very simple, find a con-

troller K able to estabilize the plant P .



53

Deriving out of small gain theorem, for unstructured perturbations, robust sta-

bility depends on the ∞-norm of the close loop system from the perturbation input

to the perturbation output[15]. Thus the minimization of the ∞-norm can be used as

means of maximizing robustness.

Frequency dependent weighting functions are used to separate the reference in-

puts bandwidths as desired. The same designing plataform allows us to design con-

trollers robustly stable to modelling errors.

In a standard H∞ problem an internally stabilizing controller K must be found

such that close loop transfer function from d to e defined as the lower linear fractional

transformation Tde given by FL(P,K) has ∞-norm ‖FL(P,K)‖∞ < Γ for a given

Γ > 0.

If γ is defined as the∞-norm of Tde, then the objective in H∞ is to satisfy γ < 1.

γ = ‖Tde‖∞ < 1 (6.27)

The close loop performance objetives are formulated as weighted close loop trans-

fer functions which are to be made small through feedback. The weighting functions

scale the input-output transfer functions so the relation between disturbance and

error is suitable and the desired performance objectives are met.

8. Controller loop shape

To design the H∞ controller for the birotor system, a feedback block with weights is

planned as illustrated in fig. 6.3. r, y, u and m were explained in the previous sections,

û is the weighted control signal, m̂ is the measured outputs affected by the noise n,

e1 and e2 are the weigthed tracking error and weighted plant error respectively. G is

the scaled plant and K is the controller.



54

Fig. 6.3. Controller K design block. To synthetize a good controller is necessary to

formulate a close loop performance, weight functions are included to scale

and shape the performance of the input/output transfer functions.

The weighting functions transform and scale physical units into normalized out-

put signals. Wcmd is included in H∞ control problems that require tracking of a

reference command, it shapes the normalized reference command into the expected

reference signal. The performance weighting function, Wprf1, has only diagonal en-

tries which indicate a tracking error on the reference inputs. Wprf2 is also a diagonal

matrix penalizing variables internal to G and not included in the tracking objetive.

The actuation weighting function Wact normalize signals passed through a first-

order filter from the controller ouput to the plant input. A noise weighting function,

Wn, is a diagonal scaling matrix on the noise disturbances affecting the system.

Wmdl represents a desired ideal model for the closed-looped system and is often

included in problem formulations with tracking requirements[16]. Inclusion of an ideal

model, Wmdl, for tracking, is often called a model matching problem.

The objective of the closed-loop system is to match the defined model. For good

command tracking response, the closed-loop system might respond like a well-damped

second-order system:

Wmdl =
ω2
n

s2 + 2ζωns+ ω2
n

(6.28)



55

Fig. 6.4. W model.

For yaw (ψ), a damping factor ζ = 1.5 is chosen and ζ = 1.5 for pitch (θ). The

natural frequency ωn, can be extracted from the settling time Ts|=10sec formula:

Ts =
4.6

ζωn
(6.29)

So, finally:

Wmdl =

 Wmdlψ 0

0 Wmdlθ

 (6.30)

Fig. 6.4 shows the bode plot of Wmdl.

A command weighting function, fig. 6.5, Wcmd, is selected as a first order butter-

worth filter which rolls off at high frequencies. Eq. 6.31 shows that Wcmd is a diagonal

matrix penalizing the two observed references and wc1 = 2πfwc1 , fwc1 = 1.

Wcmd =

 wc1

s+wc1
0

0 wc1

s+wc1

 (6.31)



56

Fig. 6.5. W command.

The perfomance weighting function of the tracking error has a roll off frequency

of 1 Hz and then it flats again at 1000 Hz, it is depicted in fig. 6.6.

Wprf1 =

 Wψ 0

0 Wθ

 (6.32)

Wψ =
1

2π1000
s+ 1

1
2π
s+ 1

(6.33)

Wθ =
1

2π1000
s+ 1

1
2π
s+ 1

(6.34)

Each entry of the perfomance weighting function of the non tracking error, Wprf2,

is selected as a low pass filter, with wc2 = 2πfwc2 , fwc2 = 5, see fig. 6.7.

Wprf2i
=

wc2
s+ wc2

(6.35)



57

Fig. 6.6. W performance 1.

Fig. 6.7. W performance 2.



58

Fig. 6.8. W actuator.

Wact normalizes the plant input, fig. 6.8. The cut off frequency chosen is wa =

2π5.

Wacti =
wa

s+ wa
(6.36)

Eq. 6.36 is one entry of a diagonal matrix ∈ Ri, where i denotes the number of

control signals.

Wact = diag([Wact1 · · · Wacti]) (6.37)

The noise weighting function, Wn, is displayed in eq. 6.38 to penalize the positions

ψ, θ and φ. The maximum resolution of the sensors is 10 bits, that means that the

minimum perturbation that can be measured is 360/1024 degrees, based on this the

noise wieghting function is choosen in radians as:

Wn = I3×3 360

1024 ∗ 57.3
(6.38)



59

9. H∞ synthesis

First, a state space realization that define P and K in fig. 6.2 is introduced[10], the

state space dimensions of the plant and controller will be important, A ∈ RnP×nP

and AK ∈ RnK×nK .

P =


A B1 B2

C1 D11 D12

C2 D21 0

 (6.39)

K =

 AK BK

CK DK

 (6.40)

Then, consider the close loop in fig. 6.2 which can be described as:

ΣCL =

 ACL BCL

CCL DCL

 =


A+B2DKC2 B2CK B1 +B2DKD21

BKC2 AK BKD21

C1 +D12DKC2 D12CK D11 +D12DKD21

 (6.41)

With the controller K, the closed-loop states becomes x̂T = [xT ;xTK ] and the

plant matrices and the controller are replaced with the following matrices:


A B B

C D11 D12

C D21 K
T

 =



A 0 B1 0 B2

0 0 0 I 0

C1 0 D11 0 D12

0 I 0 DT
K BT

K

C2 0 D21 CT
K ATK


(6.42)

The H∞ control problem is converted to a problem of solving a LMI.



60

For that, the following set of matrices are defined[14]2:

LB := {X ∈ Rnpxnp : X = XT > 0, B2

D12


⊥

×

 AX +XAT +B1B
T
1 XCT

1 +B1D
T
11

C1X +D11B
T
1 D11D

T
11 − I

×
 B2

D12


⊥T

< 0}
(6.43)

LC := {Y ∈ Rnpxnp : Y = Y T > 0, CT
2

DT
21


⊥

×

 Y A+ ATY + CT
1 C1 Y B1 + CT

1 D11

BT
1 Y +DT

11C1 DT
11D11 − I

×
 CT

2

DT
21


⊥T

< 0}
(6.44)

 X I

I Y

 ≥ 0 (6.45)

Let LB and LC be defined by replacing the plant matrices in the above definitions

with the matrices in eq. 6.39. Note that, in this case, each set is a subset of (nP +

nK)× (nP + nK) real symmetric matrices.

A synthesis of order nK exists for the H∞ problem, if and only if there exist

symmetric matrices X > 0 and Y > 0 satisfying eq. 6.43, eq. 6.44 and eq. 6.45 plus

the additional constraint:

rank

 X I

I Y

 ≤ nP + nK (6.46)

Once X and Y have been found satisfying eq. 6.43, eq. 6.44 and eq. 6.45, then

exists a matrix XCL ∈ RnP×nK satisfying[10]:

XCL =

 X ?

? ?

 (6.47)

2x⊥ is a matrix such that N (x⊥) = R(x) and x⊥x⊥T > 0. N (x) and R(x) denote
the nullspace and the range space of x, respectively.



61

X−1
CL =

 Y ?

? ?

 (6.48)

This matrix XCL can be constructed by findind a matrix X2 ∈ RnP×nK such that

X − Y −1 = X2X
T
2 , then eq. 6.49 has the properties desired above.

XCL =

 X XT
2

X2 I

 (6.49)

Finally, there is a LMI solution to eq. 6.50 for K that provides the state space

realization for a feasible H∞ controller.

HXCL
+QTKTPXCL

+ P T
XCL

KQ < 0 (6.50)

From eq. 6.50:

PXCL
=

[
BTXCL 0 DT

12

]
(6.51)

Q =

[
C DT

21 0

]
(6.52)

HXCL
=


A
T
XCL +XCLA XCLB C

T

B
T
XCL −I DT

11

C D11 −I

 (6.53)

A H∞ controller is found using the techniques explained above, using Matlab

software. The results are shown in fig. 6.9 to fig. 6.12. A stable controller is achieved

with γ = 0.8999.



62

Fig. 6.9. H∞ implemented simulation, errors. In the simulation the controller takes

the birotor from the initial condition ψ0, θ0 to a reference point.

Fig. 6.10. H∞ implemented simulation, positions.



63

Fig. 6.11. H∞ implemented simulation, roll angle and velocities.

Fig. 6.12. H∞ simulation, thrust.



64

10. Conclusion

H∞ algorithms provide a powerful tool in control theory. The multivariable effects of

the mathematical model are not supressed in the process, thus giving a more accurate

response of the system. Robust control algorithms prove to be a well done option for

applications where perturbations and errors are present.



65

CHAPTER VII

IMPLEMENTATION

1. Introduction

Fig. 7.1. H∞ implementation diagram. The implementation diagram is just a subset

of the controller design block. Noises and disturbances are implicit applied

to the system.

Once the H∞ controller is synthetized and the condition γ < 1 is satisfied the

controller can be implemented. As can be seen in fig. 7.1, the implementation dia-

gram is a subset of the controller design block shown in fig. 6.3, thus only the part

compromising the controller and the plant is needed. Also, the references and mea-

surements inputs as well as the controller output must be scaled to be accorded with

the controller. In order to implement the controller for real time applications it must

be discretized, as explained below.

A low pass filter is included in the sensor output to account for the delay in the

system generated due to signal transmission and the wireless link between plant and

controller. This is a first order low pass filter given by:

Ws =
ws

s+ ws
, ws = 2π0.2243 (7.1)



66

The controller is implemented in a National Instruments R© CompactRIO R© real

time controller using LabView R© software. Please refer to the apendix for more infor-

mation.

2. MIMO frequency response

Classical frequency response methods had been powerful design tools widely used by

practicing engineers. There are several reasons for the continued success of these

methods for dealing with single-loop problems and multiloop problems arising from

some (MIMO) systems[17]. The connection between frequency response plots and

data that can be experimentally acquired and trained engineers find these methods

relatively easy to learn. Also, their graphical nature provides an important visual

aid that is greatly enhanced by modern computer graphics and these methods supply

the designer with a rich variety of manipulative and diagnostic aids that enable a

design to be refined in a systematic way. Finally, simple rules for standard controller

configurations and processes can be developed.

The singular value decomposition (SVD) is the tool used to calculate the fre-

quency reponse of a MIMO system. For any m × p complex matrix Q, there exist

m×m and p× p unitary matrices Y and U , and a real matrix Σ, such that:

Q = Y

 Σ 0

0 0

UT (7.2)

In which Σ = diag(σ1, · · · , σr) with σ1 ≤ σ2 ≤ · · · σr > 0 and min(m, p) ≤ r.

When Q is real, Y and U may be chosen orthogonal. Eq. 7.2 is called a SVD of Q.



67

The maximum singular value σ(Q) and the minimum singular value σ(Q) play a

particularly important role in the frequency analysis and are given by the identities:

σ(Q) = max‖u‖=1‖Qu‖ (7.3)

σ(Q) = min‖u‖=1‖Qu‖ (7.4)

u is a column of the unitary matrix U . The vector norm is the Euclidean norm.

Thus σ(Q) and σ(Q) are respectively the maximum gain and the minimum gain of

the matrix Q.

For a MIMO system given by the transfer function G(s), the frequency response

is calculated by eq. 7.5 over all frequencies, −∞ < w < ∞. Fig. 7.2 shows the

frequency reponse of the controller K previously calculated, the frequency at the

maximum gain is 127.6175 rad/sec or which is the same 20.3109 Hz.

Frequency response = σ(G(jw)) (7.5)

Fig. 7.2. H∞ controller frequency response. The frequency reponse of the controller K

can be seen in this plot. The frequency at the maximum gain is also shown.



68

3. Tustin’s method

The technique used to discretize is the Tustin’s method (also called bilinear transfor-

mation), which is used in digital signal processing and discrete-time control theory

to transform continuous-time system representations to discrete-time and vice versa.

The Tustin’s method is a conformal mapping, often used to convert a transfer

function Ha(s) of a linear, time-invariant (LTI) system in the continuous-time domain

to a transfer function Hd(z) of a linear, shift-invariant filter in the discrete-time

domain.

This method maps positions on the jw axis, Re[s] = 0, in the s-plane to the unit

circle, |z| = 1, in the z-plane, is a first-order approximation of the natural logarithm

function that is an exact mapping of the z-plane to the s-plane. When the Laplace

transform is performed on a discrete-time signal (with each element of the discrete-

time sequence attached to a correspondingly delayed unit impulse), the result is the

Z transform of the discrete-time sequence with the substitution of:

z = esT =
esT/2

e−sT/2
≈ 1 + sT/2

1− sT/2
(7.6)

T is the sample time (the reciprocal of the sampling frequency) of the discrete-

time system.

The above bilinear approximation can be solved for s or a similar approximation

for s = (1/T ) ln(z) can be performed. In this case, the sampling time is chosen as

T = 20ms, the working period of the motors.

The transformation preserves stability and maps every point of the frequency

response of the continuous-time system, Ha(jwa), to a corresponding point in the

frequency response of the discrete-time system, Hd(e
jwdT ), although to a somewhat

different frequency, due to frequency warping explained below.



69

This means that for every feature that one sees in the frequency response in the

continous time, there is a corresponding feature, with identical gain and phase shift,

in the frequency response in the digital domain, perhaps, at a somewhat different

frequency.

This is barely noticeable at low frequencies but is quite evident at frequencies

close to the Nyquist frequency of the system.

The inverse of this mapping (and its first-order bilinear approximation) is:

s = 1
T

ln(z) = 2
T

[
z−1
z+1

+ 1
3

(
z−1
z+1

)3
+ 1

5

(
z−1
z+1

)5
+ 1

7

(
z−1
z+1

)7
+ · · ·

]
≈ 2

T
z−1
z+1

≈ 2
T

1−z−1

1+z−1

(7.7)

The bilinear transform essentially uses this first order approximation and substi-

tutes into the continuous-time transfer function Ha(s). That is:

Hd(z) = Ha(s)

∣∣∣∣
s= 2

T
z−1
z+1

= Ha

(
2

T

z − 1

z + 1

)
(7.8)

A continuous-time system is stable if the poles of its transfer function fall in the

left half of the complex s-plane. A discrete-time system is stable if the poles of its

transfer function fall inside the unit circle in the complex z-plane.

The Tustin’s method maps the left half of the complex s-plane to the interior of

the unit circle in the z-plane, thus, conserving stability.

4. Frequency warping

To determine the frequency response of a continuous-time system, the transfer func-

tion Ha(s) is evaluated at s = jw. Likewise, to determine the frequency response of

a discrete-time system, the transfer function Hd(z) is evaluated at z = ejwT which is

on the unit circle.



70

When the actual frequency of w is input to the discrete-time system designed

by use of the Tustin’s method, it is desired to know at what frequency, wa, for the

continuous-time system that this w is mapped to.

Hd(z) = Ha

(
2

T

z − 1

z + 1

)
(7.9)

Hd(e
jωT ) = Ha

(
2
T
ejωT−1
ejωT +1

)
= Ha

(
2
T
· e

jωT/2(ejωT/2−e−jωT/2)
ejωT/2(ejωT/2+e−jωT/2)

)
= Ha

(
j 2
T
· sin(ωT/2)

cos(ωT/2)

)
= Ha

(
j 2
T
· tan

(
ω T

2

))
= Ha (jωa)

(7.10)

Eq. 7.10 clarifies that every point on the unit circle in the z-plane is mapped to

a point on the jw axis on the s-plane. The discrete-continuous frequency mapping is:

ωa =
2

T
tan

(
ω
T

2

)
(7.11)

And the inverse mapping is:

ω =
2

T
arctan

(
ωa
T

2

)
(7.12)

The gain and phase shift that the system has at frequency w in the discrete-time is

the same gain and phase shift that the continuous has at frequency (2/T ) tan(ωT/2).

This means that every visiblefeature in the frequency response in continuous-

time is also visible in discrete-time but at a different frequency. For low frequencies,

that is, when ω � 2/T or ωa � 2/T , ω ≈ ωa, one can see that the entire continuous

frequency range −∞ < ωa < ∞ is mapped onto the fundamental frequency interval

− π
T
< ω < π

T
.

The continuous-time frequency wa = 0 corresponds to the discrete-time frequency

w = 0 and the continuous-time frequency ωa = ±∞ correspond to the discrete-time

frequency ω = ±π/T .



71

There can be seen that there is a nonlinear relationship between wa and w. This

effect of the Tustin’s method is called frequency warping. The continuous-time system

can be designed to compensate for this frequency warping by setting ωa = 2
T

tan
(
ω T

2

)
for every frequency specification that can be manipulated (such as corner or center

frequency). This is called pre-warping design.

The main advantage of the warping phenomenon is the absence of aliasing dis-

tortion of the frequency response characteristic, such as observed with impulse in-

variance. It is necessary, however, to compensate for the frequency warping by pre-

warping the given frequency specifications of the continuous-time system. These pre-

warped specifications may then be used in the Tustin’s method to obtain the desired

discrete-time system. Fig. 7.3 shows the pole-zero map of the discretized controller.

Fig. 7.3. H∞ controller pole-zero map. Being the controller K stable in continous time

the poles of its tranfer function in discrete time rest inside the unit circle in

the complex z-plane. The frequency chosen to discretize was w = 2π5 rad/sec

and the period T = 0.20 sec.



72

5. Conclusion

A simulation is depicted from fig. 7.4 to fig. 7.6. The controller takes the birotor from

ψ0 = 0, θ0 = pi/3 to the zero position.

Fig. 7.4. H∞ implemented, ψ yaw.

Fig. 7.5. H∞ implemented, θ pitch.



73

Fig. 7.6. H∞ implemented, φ roll.

Fig. 7.7. H∞ implemented, thrust. These values are scaled and rounded to be applied

in the plant.



74

CHAPTER VIII

CONCLUSION

In this thesis a real time application of robust control theory is employed succesfully.

It is shown that the H∞ control methods can be used with tools available in the

market.

The growth of tecnological and scientific research have made possible, for tech-

niques like the one presented in this thesis, to be more accesible for real time opera-

tions, increasing the confidence in deploying them.

Robust control techniques are more efficient and have tremendous flexibility al-

lowing its use in a wide range of applications. This thesis presents the results and

a methodical progression to achieve the goals aimed, in this case, the control of a

3DOF birotor helicopter.



75

REFERENCES

[1] P. Berner, Orientation, Rotation, Velocity, and Acceleration and the SRM,

Synthetic Environment Data Representation and Interchange Specification, 2007.

[2] J. Escareño, S. Salazar-Cruz and R. Lozano, “Attitude stabilization of a con-

vertible mini birotor,” in Proc. of the 2006 IEEE International Conference on

Control Applications, Munich, Germany, October 4-6 2006, Institute of Electrical

and Electronic Engineers, pp. 2202–2206.

[3] The Johns Hopkins University, Handout Number 1 about Linearization, De-

partment of Electrical and Computer Engineering, 2006.

[4] J. Mazurkiewicz, How a Brushless Motor Operates, Fort Smith, Arkansas,

Baldor Electric.

[5] Microchip Technology Inc., PIC16F87XA Data Sheet, Chandler, Arizona, Mi-

crochip Technology Inc., 2003.

[6] National Instruments, LabVIEW User Manual, Austin, Texas, National Instru-

ments, 2003.

[7] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems,

Boca Raton, Florida, Chapman and Hall/CRC, 1st edition, 2004.

[8] A. Emami-Naeini, G. F. Franklin and J. D. Powell, Feedback Control of Dynamic

Systems, Upper Saddle River, New Jersey, Prentice Hall, 4th edition, 2002.



76

[9] G. Balas and S. Ganguli, “A TECS Alternative Using Robust Multivariable

Control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit,

Montreal, Canada, August, American Institute of Aeronautics & Astronautics,

pp. 4022–4028.

[10] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory, A Convex

Approach, New York, Springer, 1st edition, 1999.

[11] J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, New York,

Macmillan Publishing Co., 1st edition, 1991.

[12] V. Balakrishnan, S. Boyd, E. Feron and L. E. Ghaoui, Linear Matrix Inequal-

ities in System and Control Theory, Philadelphia, Pennsylvania, Society for

Industrial and Applied Mathematics, 1st edition, 1994.

[13] F. Hansen, Convex Matrix Functions, Copenhagen, Denmark, Institute of Eco-

nomics, University of Copenhagen.

[14] T. Iwasaki and R. E. Skelton, “All controllers for the general h-inf control

problem: Lmi existence conditions and state space formulas,” Automatica, vol.

30, no. 8, pp. 1307–1317, 1994.

[15] J. B. Burl, Linear Optimal Control, H2 and H∞ Methods, Menlo Park, Califor-

nia, Addison-Wesley, 1st edition, 1999.

[16] G. Balas, R. Chiang, A. Packard and M. Safonov, Robust Control Toolbox 3

User’s Guide, Natick, Massachusetts, The MathWorks Inc., 2009.

[17] M. Green and D. J. N. Limebeer, Linear Robust Control, Upper Saddle River,

New Jersey, Prentice Hall, Inc., 1st edition, 1995.



77

APPENDIX A

ELECTRICAL DIAGRAMS

The electrical diagrams were done with PCB123 software.

PIC board on the helicopter.

This board reads the sensors and turns on the motors.



78

Electrical conection onboard the helicopter between sensors and the PIC board.



79

Conection of the bluetooth module with the CompactRIO controller.



80

APPENDIX B

PIC CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty

for the codes, either expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose and noninfringement

of third party rights. The entire risk as to the quality and performance of the codes

is with the user. Should the codes prove defective, the user assume the cost of all

necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,

special, incidental or consequential damages arising out of the use or inability to use

the codes (including but not limited to loss of data or data being rendered inaccurate

or losses sustained by the user or third parties or a failure of the codes to operate

with any other programs), even if such holder or other party has been advised of the

possibility of such damages.



81

PIC 1. Code to read sensors.

Send and recieve data from the Compact RIO controller via wireless bluetooth
communication. This code also sends the information to PIC 2.

#inc lude <16F877A . h>
#dev i ce adc=10 //ADC conver t i on 10 b i t s
#inc lude <s t d l i b . h>
#de f i n e LED PIN C4

#use de lay ( c l o ck =20000000)
#use rs232 ( baud=57600 , xmit=PIN C6 , rcv=PIN C7)
#byte PORTB=0x06 // Def ine PORTB in memory l o c a t i o n
#byte PORTC=0x07 // Def ine PORTC in memory l o c a t i o n
#byte PORTD=0x08 // Def ine PORTD in memory l o c a t i o n
#byte TXREG=0x19 // Def ine TXREG in memory l o c a t i o n
#byte RCREG=0x1A // Def ine RCREG in memory l o c a t i o n

#de f i n e BUFFER SIZE 3
unsigned char PWMX[BUFFER SIZE ] ;
unsigned char c ; // Var iab le to read charac t e r
unsigned long valueY ; // Var iab le to read ADC0
unsigned long valueP ; // Var iab le to read ADC1
unsigned long valueR ; // Var iab le to read ADC2
in t8 next in =0;

#INT RDA // Recieve i n t e r r up t
void RS232C Recieve Interrupt ( ){

c=getc ( ) ; // Read charac t e r
PWMX[ next in++]=c ; // Save charac t e r in bu f f e r
i f ( next in >= BUFFER SIZE){ // I f l a s t cha rac t e r send ADC

se t adc channe l ( 0 ) ; // Set channel 0
de l ay us ( 2 0 ) ; // Wait 20 us
valueY=read adc ( ) ; // Read conver t i on

s e t adc channe l ( 1 ) ; // Set channel 1
de l ay us ( 2 0 ) ; // Wait 20 us
valueP=read adc ( ) ; // Read conver t i on

s e t adc channe l ( 2 ) ; // Set channel 2
de l ay us ( 2 0 ) ; // Wait 20 us
valueR=read adc ( ) ; // Read conver t i on

p r i n t f (”%4 ld%4ld%4ld ” , valueY , valueP , valueR ) ; // Send a l l
next in =0; // Reset bu f f e r p o s i t i o n

}
}

void conf ( ){ // Function that c on f i g u r e s por t s
s e t t r i s a (0xFF ) ; // Port A a l l input
s e tup po r t a (ALL ANALOG) ; // Port A a l l analog
setup adc (ADC CLOCK DIV 32 ) ; // Turn on adc
s e t t r i s c (0 b11000000 ) ; //LED PORT Output

// USART TX & RX
s e t t r i s b (0xFF ) ; // Port B a l l input
s e t t r i s d (0 x00 ) ; // Port D a l l output

e n ab l e i n t e r r up t s (INT RDA) ; // Enable r e c i e v e i n t e r r up t
e n ab l e i n t e r r up t s (GLOBAL) ;

output high (LED) ; // Turn on LED

PWMX[0 ]=0 ; // I n i t i a l i z e v a r i a b l e s
PWMX[1 ]=0 ;



82

PWMX[2 ]=0 ;
valueY=0;
valueP=0;
valueR=0;

}

void main ( ){
i n t a ;
a=1;

conf ( ) ;

whi l e ( a==1){
PORTD=240; //Send value to motors
delay ms ( 2 ) ;
PORTD=PWMX[ 0 ] ;
delay ms ( 2 ) ;

PORTD=245;
delay ms ( 2 ) ;
PORTD=PWMX[ 1 ] ;
delay ms ( 2 ) ;

PORTD=250;
delay ms ( 2 ) ;
PORTD=PWMX[ 2 ] ;
delay ms ( 2 ) ;

}
}



83

PIC 2. Code to move the brushless motors.

#inc lude <16F877A . h>
#inc lude <s t d l i b . h>
#de f i n e LED PIN B0
#de f i n e MOTORB PIN C1 // Motor Back Port
#de f i n e MOTORR PIN C5 // Motor Right Port
#de f i n e MOTORL PIN C6 // Motor Le f t Port

#use de lay ( c l o ck =20000000)
#byte PORTB=0x06 // Def ine PORTB in memory l o c a t i o n
#byte PORTC=0x07 // Def ine PORTC in memory l o c a t i o n
#byte PORTD=0x08 // Def ine PORTD in memory l o c a t i o n

unsigned char CHANN,PWMX;
unsigned char VALUER, VALUEL, VALUEB; // PWM values
void In t e r rup t ( )
{

CHANN=PORTD;

// Store which channel
i f ( (CHANN>=239)&&(CHANN<=241)) // Store Channel

PWMX=1;
e l s e i f ( (CHANN<238)&&(PWMX==1)) // Do PWM

VALUEL=CHANN;
e l s e i f ( (CHANN>=244)&&(CHANN<=246))

PWMX=2;
e l s e i f ( (CHANN<238)&&(PWMX==2))

VALUER=CHANN;
e l s e i f ( (CHANN>=249)&&(CHANN<=251))

PWMX=3;
e l s e i f ( (CHANN<238)&&(PWMX==3))

VALUEB=CHANN;
}

void main ( )
{
unsigned long duty ;
i n t a , i ;

s e t t r i s b (0 x00 ) ; // Port B a l l Output
//LED PORT Output

s e t t r i s c (0 x00 ) ; //PWM2 Output
s e t t r i s d (0xFF ) ; // Port D a l l Input

PWMX=0; // I n i t i a l i z e the se v a r i a b l e s
VALUEL=0;
VALUER=0;
VALUEB=0;

output high (LED) ; // Turn on LED

a=1;
i =1;
duty=4500−1107;
f o r ( i=1 ; i<=250 ; i++ )
{
output high (MOTORL) ;
de l ay us (999+1);
output low (MOTORL) ;
de l ay us (1001−1);

output high (MOTORR) ;



84

de lay us (999+1);
output low (MOTORR) ;
de l ay us (1001−1);

output high (MOTORB) ;
de l ay us (999+1);
output low (MOTORB) ;
de l ay us (1001−1);

de l ay us ( 1300 ) ;
de l ay us (1001−2/2);

de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;
}

whi le ( a==1)
{
output high (MOTORL) ;
de l ay us (1107+VALUEL) ;
output low (MOTORL) ;
de l ay us (893−VALUEL) ;



85

output high (MOTORR) ;
de l ay us (1107+VALUER) ;
output low (MOTORR) ;
de l ay us (893−VALUER) ;

output high (MOTORB) ;
de l ay us (1107+VALUEB) ;
output low (MOTORB) ;
de l ay us (893−VALUEB) ;

de l ay us ( 1300 ) ;
de l ay us (1001−2/2);

de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us ( 3 0 0 ) ;
de l ay us ( 5 0 0 ) ;
I n t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;

de l ay us (501−2/2);
In t e r rup t ( ) ;
}

}



86

APPENDIX C

MATLAB CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty

for the codes, either expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose and noninfringement

of third party rights. The entire risk as to the quality and performance of the codes

is with the user. Should the codes prove defective, the user assume the cost of all

necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,

special, incidental or consequential damages arising out of the use or inability to use

the codes (including but not limited to loss of data or data being rendered inaccurate

or losses sustained by the user or third parties or a failure of the codes to operate

with any other programs), even if such holder or other party has been advised of the

possibility of such damages.



87

Code to calculate densities.

c l e a r a l l ; c l o s e a l l ; c l c ; f i g =1;

%% Aluminium UNION PIECES

Volume=1.785∗0.75ˆ2+2∗0.6ˆ2−0.25ˆ2∗ pi /4∗1.565−0.16ˆ2∗ pi /4∗ . 6 25 ; % Inches
Volume=0.000016387064∗Volume ; % Meters
Mass=0.073; % Kilograms
rhoUnion=Mass/Volume

%% CounterWieght

Volume=0.0755∗0.0477∗0.037−0.008ˆ2∗ pi /4∗0 . 037 ; % Meters
Mass=1.004; % Kilograms
rhoCounter=Mass/Volume

%% ScrewL

Volume=(0.008ˆ2∗ pi /4∗0.140−(0.008−2∗ .0006)ˆ2∗ pi /4∗0 . 140 )/2 ; % Meters
Volume=0.008ˆ2∗ pi /4∗0.140−Volume ; % Meters
Mass=0.04; % Kilograms
rhoScrewL=Mass/Volume

%% Screw

Volume= 0.00000047 ; % Meters
Mass=0.003; % Kilograms
rhoScrew=Mass/Volume

%% Mounting

Volume=0.00001231; % Meters
Mass=0.019; % Kilograms
rhoMounting=Mass/Volume

%% FanPlast i c

Volume=0.00000597; % Meters
Mass=0.005; % Kilograms
rhoFan=Mass/Volume

%% Motor

Volume=0.00001771; % Meters
Mass=0.034; % Kilograms
rhoMotor=Mass/Volume

%% Link

Volume=(11+7/8)∗(0 .75∗0 .75−0 .6∗0 .6) ; % Inches
Volume=0.000016387064∗Volume ; % Meters
Volume=Volume−0.008ˆ2∗ pi /4∗2∗0 .0016∗4 ;
Mass=0.087; % Kilograms
rhoLink=Mass/Volume

%% Battery

Volume=0.00003292; % Meters
Mass=0.105; % Kilograms
rhoBattery=Mass/Volume

%% El e c t r on i c s



88

Volume=0.00005052; % Meters
Mass=0.098; % Kilograms
rhoE l e c t r on i c s=Mass/Volume

%% SpeedCntr

Volume=0.00000517; % Meters
Mass=0.017; % Kilograms
rhoSpeedCntr=Mass/Volume

%% Cables

Volume=0.00003960; % Meters
Mass=0.035; % Kilograms
rhoCables=Mass/Volume



89

Code to calculate COM points and motor gains.

c l e a r a l l ; c l o s e a l l ; c l c ; f i g =1;

%% Motor Gain

Bit In =[0 25 34 48 59 68 80 97 102 109 120 130 144 158 164 178 195 . . .
210 230 2 3 5 ] ;

Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83 91 . . .
97 106 110 ]∗9 . 81/1000 ;

norder =1;
Kgain=p o l y f i t ( BitIn , Thrust , norder ) ; %Get l i n e a r equat ion that r e l a t e s

%Bytes and Thrust
Kvr=Kgain ( 1 ) ; %Gain motor r i g h t
Kvl=Kgain ( 1 ) ; %Gain motor l e f t
Tvr=0.3 ;
Tvl =0.3 ;
Bit0=−Kgain (2)/ Kgain ( 1 ) ; %No thrus t speed

%% Plot f i t t e d curve

% P(1)∗XˆN + P(2)∗Xˆ(N−1) +.. .+ P(N)∗X + P(N+1).
FitByte =0:255; % Byte vec to r
FitThrust=ze ro s ( s i z e ( FitByte ) ) ;
f o r i =0: norder

FitThrust=Kgain ( i +1).∗FitByte . ˆ ( norder−i )+FitThrust ;
end

f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( BitIn , Thrust , ’ r ’ ) ; hold on ;
p l o t ( FitByte , FitThrust ) ; hold o f f ; t i t l e ’ Byte vs Thrust ’ ;
l egend ( ’ Real ’ , ’ Fitted ’ ) ; x l ab e l ’ Byte In ’ ; y l ab e l ’ Thrust ’ ;

%% Bytes to p i t ch

% save ( ’ datapitch ’ , ’ datap i tch . data ’ ) ;
datap i tch=load ( ’ datap i tch . mat ’ ) ; % Load data
data=datap i tch . data ;
xt =[5.2 12 24 38 60 79 98 123 142 160 180 192 215 231 248 269 287 300 . . .

316 336 350 368 387 403 417 436 454 495 5 1 6 ] ; % I n i t i a l t imes
xt=[xt 525 556 5 7 5 ] ;
x f=xt +0.2 ; x f =[ x f 552 572 5 9 0 ] ; % Fina l t imes

[ y1 , tim1 ]= labviewdata ( data , 10 , 0 , f i g , xt ( 1 : 2 6 ) , x f ( 1 : 2 6 ) , 2 ) ; % so r t data
[ y2 , tim2 ]= labviewdata ( data , 10 , 0 , f i g , xt ( 2 7 : end ) , x f ( 2 7 : end ) , 2 ) ;

f o r i=f i g +1: l ength ( xt )+1 % c l o s e f i g u r e s
c l o s e ( f i g u r e ( i ) )

end

p i t ch=ze ro s ( s i z e ( xt ) ) ; % make vec to r s
byte=ze ro s ( s i z e ( xt ) ) ;
f o r i =1:26

p i t ch ( i )=y1 . ( char ( i +64))( end , 2 ) ;
byte ( i )=mean(mean( y1 . ( char ( i + 6 4 ) ) ( : , 7 : 8 ) ) ) ;

end
f o r i =1: l ength ( xt )−26;

p i t ch ( i +26)=y2 . ( char ( i +64))( end , 2 ) ;
byte ( i +26)=mean(mean( y2 . ( char ( i + 6 4 ) ) ( : , 7 : 8 ) ) ) ;

end
p i t ch=pitch −0.0184; % trim app l i ed due to fans with no bytes app l i ed



90

f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( byte , p itch , ’ r ’ ) ; t i t l e ’ Bytes vs Pitch − r ea l ’ ;
x l ab e l ’ Byte In ’ ; y l ab e l ’ Pitch ’ ;

%% Model parameters

Mp=2.02270866; % Link2 mass k i lograms
Mr=0.45695968; % Link3 mass

l c =[−0.11010108 ,0 ,−0.01657261] ’ ; % Link2 cente r o f mass meters
L=0.67098; % Link2 l ength meters
l c 2 =[0.00079903+L,0 , −0 .02671306 ] ’ ; % Link3 cente r o f mass meters

lmodel=(Mp∗ l c+Mr∗ l c 2 )/ (Mp+Mr) ; % Model t o t a l c en t e r o f mass

g=9.81; % Gravity m/ s ˆ2
ThrustModel=(Mp+Mr)∗ g∗ lmodel (1)/2/L ; % Model Thrust at p i t ch zero

%% Real parameters

ByteReal=in t e rp1 ( pitch , byte , 0 ) ; % Real bytes at p i t ch 0
ThrustReal=in t e rp1 ( BitIn , Thrust , ByteReal ) ; % Real th rus t at p i t ch 0

% 2∗F∗L=m∗g ∗( l ∗ cos ( x)− l ’∗ s i n ( x ) ) ; % Torque formula
F=ThrustReal ;
m=Mp+Mr;

l r e a l=ze ro s ( s i z e ( lmodel ) ) ;
l r e a l (1)=2∗F∗L/m/g ;

th rus t=in t e rp1 ( BitIn , Thrust , byte ) ;
l cda =(2.∗ th rus t .∗L./m./ g− l r e a l ( 1 ) . ∗ cos ( p i t ch ) ) . / ( s i n ( p i t ch ) ) ;

p l o t ( byte , lcda , ’ r ’ ) ; t i t l e ’ Bytes vs Z l o c a t i o n o f c en te r o f mass − r ea l ’ ;
x l ab e l ’ Byte In ’ ; y l ab e l ’Z l o c a t i o n o f c en t e r o f mass ( meters ) ’ ;

l r e a l (3)=mean( l cda ) ;

%% Display data

d i sp ( ’ Kgain ’ ) ;
d i sp ( Kgain ) ;

d i sp ( ’ ThrustModel ThrustReal ’ ) ;
d i sp ( [ ThrustModel ThrustReal ] ) ;

d i sp ( ’ lmodel l r e a l ’ ) ;
d i sp ( [ lmodel l r e a l ] ) ;



91

Code to read data from LabView.

f unc t i on data = lvm import ( f i l ename )
%% lvm import
% DATA = LVM IMPORT(FILENAME)
%
% LVM IMPORT re tu rn s the data from a . lvm text f i l e c r ea ted by LabView .
% Int roduc t i on
% DATA = LVM IMPORT(FILENAME) re tu rn s the data from a . lvm text
% f i l e c r ea ted by LabView .
%
% FILENAME The name o f the . lvm f i l e
%
% DATA The data i s returned as a MxN array : M columns , N data
% po in t s .
%
% This code w i l l import the contents o f a text−formatted LabView . lvm f i l e .

%% open the data f i l e
f i d=fopen ( f i l ename ) ;
i f f i d ˜= −1, %then f i l e e x i s t s

f c l o s e ( f i d ) ;
e l s e

f i l ename=s t r c a t ( f i l ename , ’ . lvm ’ ) ;
f i d=fopen ( f i l ename ) ;
i f f i d ˜= −1, %then f i l e e x i s t s

f c l o s e ( f i d ) ;
e l s e

e r r o r ( [ ’ F i l e not found in cur rent d i r e c t o r y ! ( ’ pwd ’ ) ’ ] ) ;
end

end
f i d=fopen ( f i l ename ) ; % open the va l i da t ed f i l e
f p r i n t f ( 1 , ’\ nImporting %s :\n\n ’ , f i l ename ) ;

%% read the f i l e
l i n e i n=f g e t l ( f i d ) ; % proce s s the f i l e header
% f i r s t , i s i t r e a l l y a LVM f i l e ?
i f ˜ strcmp ( s s c an f ( l i n e i n , ’% s ’ ) , ’ LabVIEWMeasurement ’ )

t ry
data . Segment1 . data = dlmread ( f i l ename , ’\ t ’ ) ;
f p r i n t f ( 1 , ’ This f i l e appears to be an LVM f i l e with no header .\n ’ ) ;
f p r i n t f ( 1 , ’ Data was copied , but no other in fo rmat ion i s a v a i l a b l e .\n ’ ) ;
r e turn
catch

e r r o r ( ’ This does not appear to be a text−format LVM f i l e . ’ ) ;
end

end

%% proce s s f i l e header
whi l e 1

l i n e i n=f g e t l ( f i d ) ; % get a l i n e from the f i l e
% ex i t when we reach the end o f the header
i f strcmp ( s s c an f ( l i n e i n , ’% s ’ ) , ’∗∗∗ End of Header ∗∗∗ ’ )

break
end

end

%% proce s s segment
whi l e 1

l i n e i n=f g e t l ( f i d ) ; % get a l i n e from the f i l e
% ex i t when we reach the end o f the header
i f strcmp ( s s c an f ( l i n e i n , ’% s ’ ) , ’∗∗∗ End of Header ∗∗∗ ’ )

break



92

end
end % end read ing segment header loop

% a f t e r header i s the row o f column l a b e l s
l i n e i n=f g e t l ( f i d ) ; % Read column l a b e l
data = ce l l 2mat ( t ext scan ( f id , ’% f ’ ) ) ; % Read data

%% f i n i s h
f p r i n t f ( 1 , . . .
’ Import complete . F i l e has %s X−Columns and %d data Segments .\n ’ , ’ 1 ’ , 1 ) ;

f c l o s e ( f i d ) ; % c l o s e the f i l e
r e turn



93

Code to do parameter estimation.

c l e a r a l l ; c l o s e a l l ; c l c ; f i g =1;

%% I n i t i a l c ond i t i on s

A=0; % steady s t a t e constant
B=1; % co s i n e magnitude
z=0; % damping f a c t o r
phi=0; % phase ang le

We=1/100; % weight ing matrix , r e l a t i v e importance o f each measure
eps=1e−7; % to l e r an c e

imax=20; % max number o f i t e r a t i o n s

%% Read LabView data f o r p i t ch

data=lvm import ( ’ pichdamp . lvm ’ ) ; % import data

xt=[47 95 136 .2 208 237 282 355 394 .5 503 580 6 2 3 ] ; % s e l e c t i n i t i a l t imes
x f =[83 125 165 222 270 330 390 435 532 615 6 6 0 ] ; % s e l e c t f i n a l t imes

f i g 2=f i g ; smoothsnl=0; n s i gna l =10;
[ ypitch , t impitch , f i g ]= labviewdata ( data , 1 0 , smoothsnl , f i g , xt , xf , 2 ) ; % so r t

f o r i=f i g 2 : f i g % c l o s e f i g u r e s
c l o s e ( f i g u r e ( i ) )

end
f i g=f i g 2 ;

%% Estimate parameters f o r p i t ch

xcp i t ch=ze ro s ( l ength ( xt ) , 5 ) ;
f o r i =1: l ength ( xt )

s e l c=char ( i +64); % s e l e c t s e t o f data to es t imate parameters

p i t ch=ypitch . ( s e l c ) ( : , 2 ) ; p i t ch=decimate ( pitch , 1 0 ) ; % s e l e c t data
y t i l=p i t ch ; % measured data

t=t impitch . ( s e l c )− t impitch . ( s e l c ) ( 1 ) ; t=decimate ( t , 1 0 ) ; % s e l e c t time

% s e l e c t i n i t i a l f r equency
i f ( s e l c==’A’ ) | | ( s e l c==’B ’ ) | | ( s e l c==’C ’ ) | | ( s e l c==’D ’ ) | | . . .

( s e l c==’J ’ ) | | ( s e l c==’K’ )
f =0.15; % A B C D J K

e l s e i f ( s e l c==’E ’ ) | | ( s e l c==’F ’ )
f =0.2 ; % E F

e l s e i f ( s e l c==’G’ ) | | ( s e l c==’H’ ) | | ( s e l c==’I ’ )
f =0.25; % G H I

end

xcp i t ch ( i , : )= e s t s t a t e s (A,B, f , z , phi , y t i l , t ,We, eps , imax , 0 , 0 ) ;

end
xcp i t ch

%% Read LabView data f o r r o l l

data=lvm import ( ’ rol ldamp . lvm ’ ) ; % import data

xt =[94.3 188 .5 203 .8 225 266 .4 290 .2 325 .7 3 3 7 ] ;



94

xf =[110 200 215 240 280 310 335 3 5 4 ] ;

f i g 2=f i g ; smoothsnl=0; n s i gna l =10;
[ y r o l l , t imro l l , f i g ]= labviewdata ( data , 1 0 , smoothsnl , f i g , xt , xf , 3 ) ; % so r t

f o r i=f i g 2 : f i g % c l o s e f i g u r e s
c l o s e ( f i g u r e ( i ) )

end
f i g=f i g 2 ;

%% Estimate parameters f o r r o l l

x c r o l l=ze ro s ( l ength ( xt ) , 5 ) ;
f o r i =1: l ength ( xt )

s e l c=char ( i +64); % s e l e c t s e t o f data to es t imate parameters

r o l l=y r o l l . ( s e l c ) ( : , 2 ) ; r o l l=decimate ( r o l l , 1 0 ) ; % s e l e c t data
y t i l=r o l l ; % measured data

t=t im r o l l . ( s e l c )− t im r o l l . ( s e l c ) ( 1 ) ; t=decimate ( t , 1 0 ) ; % s e l e c t time

% s e l e c t i n i t i a l f r equency
i f ( s e l c==’A’ ) | | ( s e l c==’B ’ ) | | ( s e l c==’C ’ ) | | ( s e l c==’D’ )

f =0.15; % A B C D
e l s e i f ( s e l c==’E ’ ) | | ( s e l c==’F ’ ) | | ( s e l c==’G’ ) | | ( s e l c==’H’ )

f =0.2 ; % E F G H
end

x c r o l l ( i , : )= e s t s t a t e s (A,B, f , z , phi , y t i l , t ,We, eps , imax , 0 , 0 ) ;

end
x c r o l l

%% Calcu la te damping c o e f f i c i e n t s

I r =0.01541260; % I n e r t i a in r o l l
Ip =0.35432307; % I n e r t i a in p i t ch

% f o r p i t ch
wpitch=mean( xcp i t ch ( : , 3 ) ) ; % Natural f requency
kpi tch=wpitch ˆ2∗ Ip ; % Spring constant

zp i t ch=mean( xcp i t ch ( : , 4 ) ) ; % Damping r a t i o
format long ; dampP=zp i t ch ∗2∗ s q r t ( kp i tch ∗ Ip ) % Damping
wpitch
zp i t ch
format shor t

% f o r r o l l
w ro l l=mean( x c r o l l ( : , 3 ) ) ;
k r o l l=wro l l ˆ2∗ I r ;

z r o l l=mean( x c r o l l ( : , 4 ) ) ;
format long ; dampR=z r o l l ∗2∗ s q r t ( k r o l l ∗ I r )
format shor t



95

Function est states.

f unc t i on xc=e s t s t a t e s (A,B, f , z , phi , y t i l , t ,We, eps , imax , f i g , verbose )

%
%EST STATES es t imate s the s t a t e s o f the damped co s i n e func t i on by
% non l in ea r l e a s t squares ; o the rw i se known as Gaussian l e a s t squares
% d i f f e r e n t i a l c o r r e c t i o n .
% EST STATES(A,B,F , Z , PHI ,YTIL ,T,WE,EPS,IMAX)
%
% XC = est imated s t a t e s (A B w, ( 2∗ pi ∗ f ) z phi )
% A = steady s t a t e constant
% B = cos i n e magnitude
% F = angular v e l o c i t y
% Z = damping f a c t o r
% PHI = phase ang le
% YTIL = measured data , column vecto r
% T = time , row vec to r
% WE = weight ing matrix , r e l a t i v e importance o f each measure
% EPS = to l e r an c e
% IMAX = max number o f i t e r a t i o n s
% FIG = 0 − no plot , >0 − p lo t number f o r answer
% VERBOSE = 1 − show i t e r a t i o n progres s , 0 − don ’ t show
%
% The damped co s i n e func t i on i s : fx=A+B.∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi )
%
% Sintax example :
% xc=e s t s t a t e s ( 0 , 1 , 0 . 1 5 , 0 , 0 , y t i l , t ,1/100∗ eye (2 ) , 1 e−4 ,15 ,1)
%
% Estimation a lgor i thm
%
% Model
% f (x )
% |
% |
% V
% Determine
% df /dx
% |
% i=0 |
% i n i t i a l xc |
% |
% V
% delyc=y t i l−f ( x )
% |−−−−−−−−−−−> J i=delyc ’∗W∗ de lyc
% | H=df /dx |
% | | xc
% i=i+1 | |
% | |
% | V
% no | de lx=inv (H’∗W∗H)∗H’∗W∗ de lyc
% | |
% yes max |
% STOP <−−−− i t e r a t i o n s ? V yes
% ˆ delJ<eps /norm(W)? −−−−> STOP
% | |
% | no |
% | V
% |−−−−−−−−−−−−−− xc=xc+delx

%% I n i t i a l c ond i t i on s

w=2∗pi ∗ f ; % angular v e l o c i t y



96

i =0; % i t e r a t i o n number

%% Get p a r t i a l d e r i v a t i v e s
%
% syms A B phi t w z
% fx=A+B.∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ;
%
% x=[A B w z phi ] ’ ; % vec to r o f e s t imate s
%
% H=jacob ian ( fx , x ’ )
% H=[1 , exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) , −B.∗ exp(−z .∗ t ) . ∗ s i n (w.∗ t+phi ) . ∗ t , . . .
% −B.∗ t .∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ] ;
% H=[1 , exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) , −B.∗ exp(−z .∗ t ) . ∗ s i n (w.∗ t+phi ) . ∗ t , . . .
% −B.∗ t .∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) , −B.∗ exp(−z .∗ t ) . ∗ s i n (w.∗ t+phi ) ] ;
%

%% Estimation o f Parameters

J=ze ro s ( imax+1 ,1) ; J (1)=1000; % i n i t i a l i z e
e s t=ze ro s ( imax , 6 ) ;
de lJ =1000;

whi l e ( i<imax)&&(delJ>(eps /norm(We) ) )

% I t e r a t i o n number
i=i +1;

% State e s t imate s
e s t ( i , : )= [ i A B w z phi ] ; % save e s t imate s
xc=e s t ( i , 2 : end ) ; % update es t imate vec to r x
i f verbose==1

di sp ( ’ I t e r a t i o n A B w z phi ’ ) ;
d i sp ( e s t ( 1 : i , : ) ) ; % d i sp l ay est imated

end

% Step 1
fx=A+B.∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ; % func t i on to es t imate
de lyc=y t i l−fx ’ ; % r e s i d u a l measurements
J ( i+1)=delyc ’∗We∗ de lyc ; % opt imiza t i on func t i on

H1=1∗ones ( s i z e ( t ) ) ; % df /dx1
H2=exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ; % df /dx2
H3=−B.∗ exp(−z .∗ t ) . ∗ s i n (w.∗ t+phi ) . ∗ t ;
H4=−B.∗ t .∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ;
H5=−B.∗ exp(−z .∗ t ) . ∗ s i n (w.∗ t+phi ) ;
H=[H1 ’ H2 ’ H3 ’ H4 ’ H5 ’ ] ; % H, jacob ian matrix df /dx

% Step 2
de lx=inv (H’∗We∗H)∗H’∗We∗ de lyc ; % c o r r e c t i o n s

% Step 3
de lJ=abs ( J ( i+1)−J ( i ) )/ J ( i +1); % minimizat ion t o l e r an c e

% Step 4
i f delJ>(eps /norm(We) ) % update es t imate vec to r x

xc=xc+delx ’ ;
A=xc ( 1 ) ;
B=xc ( 2 ) ;
w=xc ( 3 ) ;
z=xc ( 4 ) ;
phi=xc ( 5 ) ;

end

end



97

%% Plot answer

i f f i g >0
fx=A+B.∗ exp(−z .∗ t ) . ∗ cos (w.∗ t+phi ) ; % eva luate f ( x ) at est imated va lue s
f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( t , fx , ’ r ’ , t , y t i l , ’ b ’ ) ;
x l ab e l ’Time ( sec ) ’ ; y l ab e l ’ Pitch \ theta rad ’ ;
l egend ( ’ Estimated ’ , ’ Real ’ ) ; t i t l e ’ Estimated va lue s f o r pitch ’ ;

end



98

Code to design filters.

c l o s e a l l ; c l e a r a l l ; c l c ; f i g =1;

lowpass=load ( ’ lowpass . mat ’ ) ;
data=lowpass . lowpass ;
smoothsnl=0;
xt=0;
x f =0;
[ y lqr , t imlqr , f i g ]= labviewdata ( data , 7 , smoothsnl , f i g , xt , xf , 0 ) ;
y l q r .A( 1 : 2 , : ) = [ ] ;
t im lqr .A( 1 : 2 ) = [ ] ;

%% Real time parameters

x0=y lq r .A( 1 , 5 ) ;
T=t imlqr .A;
u=y lq r .A( : , 5 ) ;

%% F i l t e r s f requency

f =0.0714∗2;
w=2∗pi ∗ f ;

%% 1 s t order Low F i l t e r

format long
l p f 1 s t=t f ( [w] , [ 1 , w] )
format shor t
l p f=t f ( { [w ] , 0 ; 0 , [w] } , { [ 1 , w] , 1 ; 1 , [ 1 , w ] } ) ;

[ y , tim]= ls im ( l p f 1 s t , u ,T, x0 ) ; % Open loop s imu la t i on
f i g u r e ( f i g ) ; f i g=f i g +1; p l o t (T, u ) ;
hold on ; p l o t ( tim , y , ’ r ’ ) ; hold o f f ; x l ab e l ’Time sec ’ ; y l ab e l ’Output ’ ;
l egend ( ’ input ’ , ’ f i l t e r ’ ) ; t i t l e ’ F i r s t Order Low Pass F i l t e r ’ ;

%% 2nd order Low F i l t e r

z=1/ sq r t ( 2 ) ;
format long
lp f 2nd=t f ( [wˆ2 ] , [ 1 , 2∗ z∗w,wˆ2 ] )
format shor t

% Simulat ion

[ y , tim]= ls im ( lp f 2nd , u ,T, x0 ) ; % Open loop s imu la t i on
f i g u r e ( f i g ) ; f i g=f i g +1; p l o t (T, u ) ;
hold on ; p l o t ( tim , y , ’ r ’ ) ; hold o f f ; x l ab e l ’Time sec ’ ; y l ab e l ’Output ’ ;
l egend ( ’ input ’ , ’ f i l t e r ’ ) ; t i t l e ’ Second Order Low Pass F i l t e r ’ ;



99

Code to calculate equations of motion.

c l e a r a l l ; c l o s e a l l ; c l c
d i g i t s ( 5 ) ;

%% Drawing

% Fb
%
% | | TOP VIEW
% | |
% | | z ( out the s c r e en )
% | | O −−−−>y
% | | |
% | | | Coordinate System
% Orig in −−> |O| V
% | | x
% | |
% | |
% | |
% | |
% | |
% | |
% Fr | | Fl
% | |
% | | | | | |
% | | | |
% | | | |

%% Def ine v a r i a b l e s

g l oba l pddl tdd l phiddl t r imeqs
syms p t phi pd td phid pdd tdd phidd % eu l e r ang l e s
syms Fr Fl % Inputs

n=[p ; t ; phi ] ; % eu l e r ang l e s vector , ps i , theta and phi
nd=[pd ; td ; phid ] ; % eu l e r v e l o c i t i e s vec to r
ndd=[pdd ; tdd ; phidd ] ; % eu l e r a c e l e r a t i o n s vec to r

q=[n ; nd ] ; % s t a t e vec to r
qd=[nd ; ndd ] ; % v e l o c i t i e s vec to r

f o r c e s =[Fl ; Fr ] ; % Forces

% Formula to c a l c u l a t e d e r i v a t i v e with r e sp e c t o f time
% dF/dt=transpose ( s imp l i f y ( dot ( jacob ian ( funct ion , v a r i a b l e s ) ’ ,
% [ va r i ab l e s do t #equat ions ] ) ) ) ;

%% Motor Gain (From exper imenta l r e s u l t s )

Bit In =[0 25 34 48 59 68 80 97 102 109 120 130 144 158 . . .
164 178 195 210 230 2 3 5 ] ;

Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83 . . .
91 97 106 110 ]∗9 . 81/1000 ;

norder =1;
Kgain=p o l y f i t ( BitIn , Thrust , norder ) ; % Get l i n e a r equat ion that r e l a t e s

% Bytes and Thrust
Kvr=Kgain ( 1 ) ; % Gain motor r i g h t
Kvl=Kgain ( 1 ) ; % Gain motor l e f t
Tvr=0.3 ;
Tvl =0.3 ;
Bit0=−Kgain (2)/ Kgain ( 1 ) ; % No thrus t speed



100

%% System Parameters

Mp=2.02270866; % Link2 mass k i lograms
Mr=0.45695968; % Link3 mass

l c =[−0.11010108 ,0 ,−0.01657261] ’ ; % Link2 cente r o f mass meters
l 3 =0.27475; % Link3 l ength meters
l 2 =0.67098; % Link2 l ength meters
l c 2 =[0.00079903+ l2 ,0 , −0 .02671306 ] ’ ; % Link3 cente r o f mass meters

dmpY=0.002037386086782; % Yaw damping c o e f f i c i e n t Ns/m
dmpP=0.067766320378873; % Pitch damping c o e f f i c i e n t
dmpR=0.002037386086782; % Rol l damping c o e f f i c i e n t
g=9.8 ; % Gravity m/ s ˆ2

%% In e r t i a Tensor matrix (From So l i d Works drawings )

% Link2 i n e r t i a
I c =[0.13031678 0.00000000 0 . 0 0 0 0 0 0 0 0 ; . . .

0 .00000000 0.12982028 0 . 0 0 5 5 9 6 9 3 ; . . .
0 .00000000 0.00559693 0 . 0 0175924 ] ;

I c=Ic ( [ 3 1 2 ] , [ 3 1 2 ] ) ;
I c=Ic+Mp∗(sum( l c .∗ l c )∗ eye (3)− l c ∗ l c ’ ) ;

% Link3 i n e r t i a
Ic2 =[0.00015069 0.00000000 0 . 0 0 0 0 0 0 0 0 ; . . .

0 .00000000 0.01358558 0 . 0 0 0 0 0 4 6 8 ; . . .
0 .00000000 0.00000468 0 . 0 1364239 ] ;

I c2=Ic2 ( [ 3 1 2 ] , [ 3 1 2 ] ) ;
I c2=Ic2+Mr∗(sum( l c 2 .∗ l c 2 )∗ eye (3)− l c 2 ∗ l c2 ’ ) ;

%% Transformation matr i ce s

% Rol l to Pitch
Tpr=[1 0 0 l 2 ; 0 cos ( phi ) −s i n ( phi ) 0 ; 0 s i n ( phi ) cos ( phi ) 0 ; 0 0 0 1 ] ;
% Pitch to Yaw
Typ=[ cos ( t ) 0 s i n ( t ) 0 ; 0 1 0 0;− s i n ( t ) 0 cos ( t ) 0 ; 0 0 0 1 ] ;
% Yaw to Ground
Tgy=[ cos (p) −s i n (p) 0 0 ; s i n (p) cos (p) 0 0 ;0 0 1 0 ;0 0 0 1 ] ;

Tgp=Tgy∗Typ ; % Pitch to Ground
Tgr=Tgp∗Tpr ; % Rol l to Ground

Tyr=Typ∗Tpr ; % Rol l to Yaw

TFr=[1 0 0 0 ;0 1 0 −l 3 ; 0 0 1 0 ;0 0 0 1 ] ; % Right Force to Rol l
TFl=[1 0 0 0 ;0 1 0 l 3 ; 0 0 1 0 ;0 0 0 1 ] ; % Le f t Force to Rol l

TFgr=Tgr∗TFr ; % Right Force to Ground
TFgl=Tgr∗TFl ; % Le f t Force to Ground

%% Rotat iona l and t r a n s l a t i o n a l matr i ce s Po s i t i on s

PpH=Tgp∗ [ l c ; 1 ] ; %Pitch COM Pos i t i on
PrH=Tgp∗ [ l c 2 ; 1 ] ; %Rol l COM Pos i t i on
Pp=PpH( 1 : 3 ) ;
Pr=PrH ( 1 : 3 ) ;

PFrH=Tgr∗ [0;− l 3 ; 0 ; 1 ] ; %Right Force Pos i t i on
PFlH=Tgr ∗ [ 0 ; l 3 ; 0 ; 1 ] ; %Le f t Force Pos i t i on
PFr=PFrH ( 1 : 3 ) ;
PFl=PFlH ( 1 : 3 ) ;



101

%% Ve l o c i t i e s Rates

Vp=( jacob ian (Pp , n ) )∗nd ; %Pitch COM Veloc i ty
Vr=( jacob ian (Pr , n ) )∗nd ; %Rol l COM Veloc i ty
VFr=( jacob ian (PFr , n ) )∗nd ; %Right Force Ve loc i ty
VFl=( jacob ian (PFl , n ) )∗nd ; %Le f t Force Ve loc i ty

%% Angular V e l o c i t i e s

OmegapH=transpose (Typ ) ∗ [ 0 ; td ; pd ; 1 ] ;
Omegap=OmegapH ( 1 : 3 ) ; %Pitch Angular Ve loc i ty

OmegarH=transpose (Tyr ) ∗ [ 0 ; td ; pd ; 1 ] ;
Omegar=OmegarH(1 : 3 )+ [ phid ; 0 ; 0 ] ; %Rol l Angular Ve loc i ty

%% Kinet i c Energy

% KE = 1/2 ∗ mass ∗ v e l o c i t y ˆ 2 + 1/2 ∗ i n e r t i a ∗ angular v e l o c i t y ˆ 2
KEp=0.5∗Mp∗ t ranspose (Vp)∗Vp+0.5∗ t ranspose (Omegap)∗ I c ∗Omegap ; %Pitch KE
KEr=0.5∗Mr∗ t ranspose (Vr)∗Vr+0.5∗ t ranspose (Omegar)∗ I c2 ∗Omegar ; %Rol l KE
KE=KEp+KEr ;

%% Poten t i a l Energy

% PE = mass ∗ g rav i ty ∗ po s i t i o n in z (0 , 0 , 1 )
PE=Mp∗g∗ t ranspose (Pp ) ∗ [ 0 ; 0 ; 1 ]+Mr∗g∗ t ranspose (Pr ) ∗ [ 0 ; 0 ; 1 ] ;

%% Forces

Fle ftH=Fl ∗(Tgr ∗ [ 0 ; l 3 ;1 ;1 ] −Tgr ∗ [ 0 ; l 3 ; 0 ; 1 ] ) ;
F l e f t=FleftH ( 1 : 3 ) ;
FrightH=Fr ∗(Tgr∗ [0;− l 3 ;1 ;1 ] −Tgr∗ [0;− l 3 ; 0 ; 1 ] ) ;
Fr ight=FrightH ( 1 : 3 ) ;

%% Power In

% Pin = f o r c e ∗ v e l o c i t y
Pin=vpa ( s imp l i f y ( t ranspose ( F l e f t )∗VFl+transpose ( Fr ight )∗VFr ) ) ;

%% Eqs1 by Euler−Lagrange (EL)

% d/dt dL/dqd − dL/dq + D = F
% L = Lagrangian = KE−PE
% F = ext e rna l f o r c e s
% D = damping f o r c e s

% d e r i v a t i v e s with r e sp e c t o f v e l o c i t y , then with time
Term11=vpa ( s imp l i f y ( j acob ian ( d i f f (KE, pd ) , q )∗qd ) ) ;
Term21=vpa ( s imp l i f y ( j acob ian ( d i f f (KE, td ) , q )∗qd ) ) ;
Term31=vpa ( s imp l i f y ( j acob ian ( d i f f (KE, phid ) , q )∗qd ) ) ;

% d e r i v a t i v e s with r e sp e c t o f p o s i t i o n
Term12=vpa ( s imp l i f y ( d i f f (KE, p ) ) ) ;
Term22=vpa ( s imp l i f y ( d i f f (KE, t ) ) ) ;
Term32=vpa ( s imp l i f y ( d i f f (KE, phi ) ) ) ;

U1=vpa ( d i f f (PE, p ) ) ;
U2=vpa ( d i f f (PE, t ) ) ;
U3=vpa ( d i f f (PE, phi ) ) ;

% ex t e rna l f o r c e s = dPin/dqd
Q1=vpa ( d i f f ( Pin , pd ) ) ;
Q2=vpa ( d i f f ( Pin , td ) ) ;
Q3=vpa ( d i f f ( Pin , phid ) ) ;



102

% damping f o r c e s
D1=dmpY∗ [ 1 , 0 , 0 ] ∗ (Omegap+Omegar ) ;
D2=dmpP∗ [ 0 , 1 , 0 ] ∗ (Omegap+Omegar ) ;
D3=dmpR∗ [ 0 , 0 , 1 ] ∗ (Omegap+Omegar ) ;

%% Equations by Euler−Lagrange (EL)

% EL= d/dt dL/dqd − dL/dq − F + D
Eqn1=s imp l i f y (Term11−Term12+U1−Q1+D1 ) ;
Eqn2=s imp l i f y (Term21−Term22+U2−Q2+D2 ) ;
Eqn3=s imp l i f y (Term31−Term32+U3−Q3+D3 ) ;

%% In e r t i a Matrix

% M(q) = dEL/dqdd
In=jacob ian ( [ Eqn1 , Eqn2 , Eqn3 ] , ndd ) ;

%%
H1=s imp l i f y ( j acob ian ( [ Eqn1 ] , ndd)∗ndd−Eqn1 ) ;
H2=s imp l i f y ( j acob ian ( [ Eqn2 ] , ndd)∗ndd−Eqn2 ) ;
H3=s imp l i f y ( j acob ian ( [ Eqn3 ] , ndd)∗ndd−Eqn3 ) ;

t r imeqs=[H1 ,H2 ,H3 ] ;
save ( ’ Trimmat ’ , ’ tr imeqs ’ ) ;

%% State Equations , Equation o f motion

Fx=inv ( In ) ∗ [H1 ;H2 ;H3 ] ;

pddl=Fx ( 1 ) ; % Finding eqs f o r pdd tdd and phidd
tdd l=Fx ( 2 ) ; % Finding eqs f o r pdd tdd and phidd
phiddl=Fx ( 3 ) ; % Finding eqs f o r pdd tdd and phidd

save ( ’ Eqsmtn ’ , ’ pddl ’ , ’ tddl ’ , ’ phiddl ’ ) ;

%% Trim cond i t i on

xtrim =[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;
tr imy=trimp ( xtrim ) % Calcu la te tr im at (p , t , phi , pd , td , phid )

%% State space r ep r e s en t a t i on

[A,B,C,D]= linmod ( ’ Gyromdl ’ , trimy ( 1 : 6 ) , trimy ( 7 : 8 ) ) ; % Linear system ,
% Gyromodel i s the model in symulink , i t c a l l s the func t i on gyroeqs to
% make the l i n e a r i z a t i o n
s y s l i n e a r=s s (A,B,C,D) ;
save ( ’ SSmatrx ’ , ’A’ , ’B’ , ’C’ , ’D’ ) ;

%% Di s c r e t e r ep r e s en t a t i on

% s y s d i s c r e t e=c2d ( s y s l i n e a r , 0 . 0 2 , ’ zoh ’ ) ;
s y s d i s c r e t e=c2d ( s y s l i n e a r , 0 . 0 2 ) ;
[Ad,Bd ,Cd,Dd,Ed ,Td]=dssdata ( s y s d i s c r e t e ) ;
save ( ’ SSmatrxd ’ , ’Ad’ , ’Bd ’ , ’Cd ’ , ’Dd’ , ’ Ed ’ , ’Td ’ ) ;

%% Tranfer func t i on V

% T/V=(Kvl/Tvl )/ ( s+1/Tvl ) ; % Trans fe r func t i on Bytes −−> Thrust



103

Function trimp.m.

f unc t i on trimv=trimp (x )

%
%TRIMP Finds the trim point o f gyrocopter ’ s dynamics .
% TRIMV = TRIMP(X)
%
% X = sta t e s , minimum a 2 column vector , conta in ing the va lue s o f
% ps i and theta at the de s i r ed trim point .
% TRIMV = output vector , a 8 column vecto r conta in ing the 8 s t a t e s
% [ ps i , theta , phi , psid , thetad , phid , Fl , Fr ] .
%
% Sintax example :
% trimv=trimp ( [ p i ; 0 ] ) ;

g l oba l t r imeqs
syms p t phi pd td phid %eu l e r ang l e s
syms Fr Fl %Inputs

p=x ( 1 ) ;
t=x ( 2 ) ;
pd=0;
td=0;
phid=0;

[ Fltrim , Frtrim , phitr im ]= so l v e ( subs ( tr imeqs ( 1 ) ) , . . .
subs ( tr imeqs ( 2 ) ) , . . .
subs ( tr imeqs ( 3 ) ) ) ; % Trim cond i t i on s

trimv=[p ; t ; z e r o s ( 4 , 1 ) ; abs ( [ double ( Fltr im ( 1 ) ) ; double ( Frtrim ( 1 ) ) ] ) ] ;

Function gyroeqs.m.

f unc t i on qdd=gyroeqs (q )
g l oba l pddl tdd l phiddl

% VARIABLES

p=q ( 1 ) ;
t=q ( 2 ) ;
phi=q ( 3 ) ;
pd=q ( 4 ) ;
td=q ( 5 ) ;
phid=q ( 6 ) ;
Fl=q ( 7 ) ;
Fr=q ( 8 ) ;

% EQS OF MOTION

qdd=ze ro s ( 3 , 1 ) ;
qdd(1)= subs ( pddl ) ;
qdd(2)= subs ( tdd l ) ;
qdd(3)= subs ( phiddl ) ;



104

File gyromdl.mdl.



105

Code to design and simulate the H∞ controller.

c l e a r a l l ; c l o s e a l l ; c l c ; f i g =1;

%% Def ine v a r i a b l e s

g l oba l pddl tdd l phiddl t r imeqs
syms p t phi pd td phid %eu l e r ang l e s
syms Fr Fl %Inputs

%% Motor Gain (From exper imenta l r e s u l t s )

Bit In =[0 25 34 48 59 68 80 97 102 109 120 130 144 158 . . .
164 178 195 210 230 2 3 5 ] ;

Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83 . . .
91 97 106 110 ]∗9 . 81/1000 ;

norder =1;
Kgain=p o l y f i t ( BitIn , Thrust , norder ) ; % Get l i n e a r equat ion that r e l a t e s

% Bytes and Thrust
Kvr=Kgain ( 1 ) ; % Gain motor r i g h t
Kvl=Kgain ( 1 ) ; % Gain motor l e f t
Tvr=0.01;
Tvl =0.01;
Bit0=−Kgain (2)/ Kgain ( 1 ) ; % No thrus t speed

%% Load Var iab l e s

phiddl=load ( ’ Eqsmtn . mat ’ ) ;
pddl=phiddl . pddl ;
tdd l=phiddl . tdd l ;
ph iddl=phiddl . phiddl ;

t r imeqs=load ( ’ Trimmat . mat ’ ) ;
t r imeqs=tr imeqs . t r imeqs ;

%% Trim cond i t i on

xtrim =[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ’ ;
tr imy=trimp ( xtrim ) ; % Calcu la te tr im at (p , t , phi , pd , td , phid )

%% State space r ep r e s en t a t i on

s y s l i n e a r=load ( ’ SSmatrx . mat ’ ) ;
A=s y s l i n e a r .A;
B=s y s l i n e a r .B;
C=s y s l i n e a r .C;
D=s y s l i n e a r .D;

Nx=eye ( 6 ) ;
Ny=eye ( 6 ) ;
Nu=eye ( 2 ) ;

%% Sca l e system

xmax=[ p i /10 ; p i /10 ; p i /10 ;8∗ pi /180;5∗ pi /180;5∗ pi / 1 8 0 ] ;
Nx=diag (xmax ) ;
umax = [ 1 . 2 ; 1 . 2 ] ;
Nu=diag (umax ) ;
ymax=xmax ;
Ny=diag (ymax ) ;

A=inv (Nx)∗A∗Nx; B=inv (Nx)∗B∗Nu;



106

C=inv (Ny)∗C∗Nx; D=inv (Ny)∗D∗Nu;

%% Plant G

% Plant G i s equal to the s t a t e space g iven by :
% xd = Ax + Bu
% y = Cx + Du
G=ss (A,B,C,D) ;

%% Wieghts

s=zpk ( ’ s ’ ) ;

% W command , Butterworth f i l t e r − High frequency r o l l o f f
fwc=1;
wc=2∗pi ∗ fwc ;
Wcmd=wc/( s+wc)∗ eye ( 2 ) ;

% W performance 1 , t r a ck ing ob j e t i v e
% f1 =5; f 2 =1000;
f 1 =1; f 2 =1000;
Wp=2∗(1/2/ p i / f 2 ∗ s +1)/(1/2/ p i / f1 ∗ s +1);
Wt=2∗(1/2/ p i / f 2 ∗ s +1)/(1/2/ p i / f1 ∗ s +1);
Wperf1=[Wp 0 ;0 Wt ] ;
% f i g u r e ( f i g ) ; f i g=f i g +1; bode (Wp)

% W performance 2 , not in the t ra ck ing ob j e t i v e
fwr=5;
wr=2∗pi ∗ fwr ;
Wperf2=wr/( s+wr)∗ eye ( 4 ) ;

% W actuator
f a =5;
wa=2∗pi ∗ f a ;
Wact=[wa/( s+wa) 0 ;0 wa/( s+wa ) ] ;

% W no i s e s more than 0.3515625 (360/1024) f o r p o s i t i o n s & v e l o c i t i e s
Wn=inv (Ny( 1 : 3 , 1 : 3 ) ) ∗ diag ( [ 3 60 360 360 ] ) /1024/57 . 3 ;

% W model , d e s i r ed model to match
t s =10; % Se t t i ng time o f 10 seconds
x i =1.5 ; wn=4.6/ t s / x i ; % Damping r a t i o and frequency
Wmodely=wnˆ2/( s ˆ2+2∗ x i ∗wn∗ s+wnˆ2 ) ; % Second order system
t s =10;
x i =1.5 ; wn=4.6/ t s / x i ;
Wmodelp=wnˆ2/( s ˆ2+2∗ x i ∗wn∗ s+wnˆ2 ) ;
Wmodel=[Wmodely 0 ;0 Wmodelp ] ;

%% Close Loop diagram

%
% | |
% Yaw r e f −−−> | | −−−> Yaw e r r o r
% Pitch r e f −−−> | Plant | −−−> Pitch e r r o r
% no i s e −−−> | | −−−> Yaw r e a l | t r a ck ing
% | G | −−−> Pitch r e a l |
% | | −−−> Rol l | not
% | | −−−> Yaw ve l o c i t y | t r a ck ing
% | | −−−> Pitch v e l o c i t y |
% | | −−−> Rol l v e l o c i t y |
% | | −−−> Bytes Le f t
% | | −−−> Bytes Right
% | |
% ncon | Thrust l e f t |−−> | | −−−| Yaw r e f ˆ | nmeas



107

% | Thrust r i g h t | | | | Pitch r e f ˆ |
% | | Yaw senso r |
% | | Pitch senso r |
% | | Rol l s en so r |
% | |
% | |
% | | | |
% |−− | Cont r o l l e r K | <−|
% | |

%% Signa l s

% Inputs , e x t e rna l

p r e f=i c s i g n a l ( 1 ) ; % Yaw ( p s i )
t r e f=i c s i g n a l ( 1 ) ; % Pitch ( theta )

n=i c s i g n a l ( 3 ) ; % Noises

% Inputs , i n t e rna l , from K to G

Tl=i c s i g n a l ( 1 ) ; % Thrust motor l e f t
Tr=i c s i g n a l ( 1 ) ; % Thrust motor r i g t h

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Outputs , e x t e rna l

pe r ro r=i c s i g n a l ( 1 ) ; % Yaw e r r o r
t e r r o r=i c s i g n a l ( 1 ) ; % Pitch e r r o r
p r ea l=i c s i g n a l ( 1 ) ; % Yaw r e a l
t r e a l=i c s i g n a l ( 1 ) ; % Pitch r e a l
ph i r=i c s i g n a l ( 1 ) ; % Rol l r e a l
pdr=i c s i g n a l ( 1 ) ; % Yaw v e l o c i t y r e a l
tdr=i c s i g n a l ( 1 ) ; % Pitch v e l o c i t y r e a l

phidr=i c s i g n a l ( 1 ) ; % Rol l v e l o c i t y r e a l
Bl=i c s i g n a l ( 1 ) ; % Bytes motor l e f t
Br=i c s i g n a l ( 1 ) ; % Bytes motor r i g t h

% Outputs , i n t e r n a l from G to K

pre f 1=i c s i g n a l ( 1 ) ; % Wcmd ∗ Yaw r e f
t r e f 1=i c s i g n a l ( 1 ) ; % Wcmd ∗ Pitch r e f

pgk=i c s i g n a l ( 1 ) ; % Yaw senso r
tgk=i c s i g n a l ( 1 ) ; % Pitch senso r

phigk=i c s i g n a l ( 1 ) ; % Rol l s en so r

%% System M

M=iconnec t ;

% Def ine ex t e rna l inputs without K
M. Input=[ p r e f ; t r e f ; . . . % r e f e r e n c e s

n ; . . . % no i s e s
Tl ; Tr ] ; % inputs to G

% Def ine ex t e rna l outputs without K
M. Output=[ pe r ro r ; t e r r o r ; . . . % t rack ing e r r o r s

p r ea l ; t r e a l ; . . . % r e a l va lue s
ph i r ; pdr ; tdr ; phidr ; . . . % not t ra ck ing e r r o r
Bl ; Br ; . . . % input to p lant
p r e f 1 ; t r e f 1 ; . . . % r e f e r e n c e s a f t e r we ight ing
pgk ; tgk ; phigk ] ; % pgk ; tgk ; phigk ; pdgk ; tdgk ; phidgks



108

Ax=[ pe r ro r ; t e r r o r ; . . .
p r ea l ; t r e a l ; . . .
ph i r ; pdr ; tdr ; phidr ; . . .
Bl ; Br ; . . .
p r e f 1 ; t r e f 1 ; . . .
pgk ; tgk ; phigk ] ;

Bx=[Wperf1 ∗(Wmodel∗Wcmd∗ [ p r e f ; t r e f ]−G( 1 : 2 , : ) ∗ [ Tl ; Tr ] ) ; . . .
G( 1 : 2 , : ) ∗ [ Tl ; Tr ] ; . . .
Wperf2∗G( 3 : 6 , : ) ∗ [ Tl ; Tr ] ; . . .
Wact∗ [ Tl ; Tr ] ; . . .
Wcmd∗ [ p r e f ; t r e f ] ; . . .
Wn∗n+G( 1 : 3 , : ) ∗ [ Tl ; Tr ] ] ;

M. Equation{1}=equate (Ax,Bx ) ;

Tsys=M. system ;
Tsys=minrea l ( Tsys ) ;

%% H−i n f Block Diagram

%
% not t rack ing | | | Rol l |
% er r o r <−− | Wperf2 | <−− | & | <−−−−−−−−|
% e2 | | | V e l o c i t i e s | |
% |
% track ing | | | Yaw | yaw |
% er r o r <−− | Wperf1 | <−− ”−” <−−−−−−− | & | −−> & |
% e1 | | A | Pi t ch | p i t ch |
% | |
% | A |
% | |
% | | | |
% |−−−−−−−−−> | Wmodel | |−−−−−−−−−−−−−−−−|
% | | | |
% | |
% | | | |
% r e f −−> | Wcmd | −−|−−> | | Forces | | Pos i t i on s & |
% | | r e f ˆ | K | −−|−−−−−−−−−−−−> | Plant | −−−−−−−−−−−−−|
% | | | | | Ve l o c i t i e s y |
% m̂ |−−> | | | | | |
% | |−−> | Wact | −−> Bytes |
% | | | u |
% | |
% | | | | | |
% n −−> | Wn | −−> ”+” <−−−−−−−−−−−−−−−−−−| Pos i t i on s |−−−−−−−−−−−−−−−−|
% | | | |

%% Hinf Con t r o l l e r Synthe s i s

ncon=2; % Number o f c on t r o l s i g n a l s
nmeas=5; % Number o f s i g n a l s i n to the c o n t r o l l e r

[K,CL,GAM,INFO]= hin f syn (Tsys , nmeas , ncon , ’GMIN’ , 0 , ’GMAX’ , in f , ’METHOD’ , ’ lmi ’ ) ;
[Ka ,Kb,Kc ,Kd]= ssdata (K) ;
i f mean( e i g (K)<0)==1

di sp ( ’K stab l e ’ ) ;
e l s e

d i sp ( ’K not s tab l e ’ ) ;
end
d i sp ( ’GAM Close Loop ’ ) ; d i sp (GAM) ;

%% Singu la r value , maximum frequency



109

f i g u r e ( f i g ) ;
h norm inf (K, ’ Con t r o l l e r K’ , 0 . 0 2 , 2∗ pi ∗5 , f i g )
f i g=f i g +2;

%% Reference Input Parameters

T=0 : 0 . 1 : 1 00 ; % Simulat ion time
z=ze ro s ( 1 ) ;

p0=z ; t0=z ; % I n i t i a l c ond i t i on s
phi0=z ; pd0=z ; td0=z ; phid0=z ;
f r 1 0=z ; f r 2 0=z ;
x0=[p0 , t0 , phi0 , pd0 , td0 , phid0 , f r10 , f r20 , z e r o s (1 , s i z e (CL. a , 1 ) −8 ) ] ;

pr=−pi /10 ; t r=pi /8 ; % Reference inputs
xr=[pr , t r ] ;
xr=( inv (Nx( 1 : 2 , 1 : 2 ) ) ∗ xr ’ ) ’ ; % Sca l e r e f e r e n c e s

u1=xr (1)∗ ones ( s i z e (T) ) ;
u2=xr (2)∗ ones ( s i z e (T) ) ;

no i s e=ze ro s ( s i z e (n , 1 ) , l ength (T) ) ;

u=[u1 ; u2 ; no i s e ] ; % Input vec to r

%% Close loop s imu la t i on

[ y , tim]= ls im (CL, u ’ ,T, x0 ) ;

y ( : , 1 : 2 )=(Ny( 1 : 2 , 1 : 2 ) ∗ y ( : , 1 : 2 ) ’ ) ’ ;
f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( tim , y ( : , 1 ) , ’ b ’ , tim , y ( : , 2 ) , ’ r ’ ) ;
l egend ( ’Yaw Error ’ , ’ Pitch Error ’ ) ;
x l ab e l ( ’ Time sec ’ ) ; y l ab e l ( ’ rad ’ ) ;

y ( : , 3 : 8 )=(Ny∗y ( : , 3 : 8 ) ’ ) ’ ;
f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( tim , y ( : , 3 ) , ’ b ’ , tim , y ( : , 4 ) , ’ r ’ ) ;
l egend ( ’Yaw’ , ’ Pitch ’ ) ;
x l ab e l ( ’ Time sec ’ ) ; y l ab e l ( ’ rad ’ ) ;

f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( tim , y ( : , 5 ) , ’ b ’ , tim , y ( : , 6 ) , ’ r ’ , tim , y ( : , 7 ) , ’ g ’ , tim , y ( : , 8 ) , ’ k ’ ) ;
l egend ( ’ Roll ’ , ’Yaw rate ’ , ’ Pitch rate ’ , ’ Ro l l rate ’ ) ;
x l ab e l ( ’ Time sec ’ ) ;

y ( : , 9 : 1 0 )=(Nu∗y ( : , 9 : 1 0 ) ’ ) ’ ;
f i g u r e ( f i g ) ; f i g=f i g +1;
p l o t ( tim , y ( : , 9 ) , ’ b ’ , tim , y ( : , 1 0 ) , ’ r ’ ) ;
l egend ( ’ Force Left ’ , ’ Force Right ’ ) ;
x l ab e l ( ’ Time sec ’ ) ; y l ab e l ( ’ Thrust Newtons ’ ) ;

%% Display data

format long
d i sp ( ’ trimy ’ ) ; d i sp ( trimy ( 7 : 8 ) ) ;
d i sp ( ’ Kgain ’ ) ; d i sp ( Kgain ) ;
d i sp ( ’Wcmd frequency ’ ) ; d i sp (wc ) ;
format shor t

%% Unscale Plant

A=Nx∗A∗ inv (Nx ) ; B=Nx∗B∗ inv (Nu) ;
C=Ny∗C∗ inv (Nx ) ; D=Ny∗D∗ inv (Nu) ;



110

format long
d i sp ( ’Nx ’ ) ; d i sp ( diag (Nx ) ’ ) ;
d i sp ( ’Ny ’ ) ; d i sp ( diag (Ny ) ’ ) ;
d i sp ( ’Nu ’ ) ; d i sp ( diag (Nu) ’ ) ;
d i sp ( ’Nxˆ( −1) ’ ) ; d i sp ( diag ( inv (Nx ) ) ’ ) ;
d i sp ( ’Nyˆ( −1) ’ ) ; d i sp ( diag ( inv (Ny ) ) ’ ) ;
d i sp ( ’Nuˆ( −1) ’ ) ; d i sp ( diag ( inv (Nu ) ) ’ ) ;
format shor t

%% Save Matr ices

save matA . lvm A −ASCII −TABS;
save matB . lvm B −ASCII −TABS;
save matC . lvm C −ASCII −TABS;
save matD . lvm D −ASCII −TABS;
save matKa . lvm Ka −ASCII −TABS;
save matKb . lvm Kb −ASCII −TABS;
save matKc . lvm Kc −ASCII −TABS;
save matKd . lvm Kd −ASCII −TABS;



111

Function h norm inf.

f unc t i on h norm=h norm inf ( sys , sysname , Ts ,Wc, f i g )

%
%H NORM INF computes the h−i n f norm of SYS .
% HNORM=H NORM INF(SYS ,SYSNAME) computes the h−i n f norm o f SYS . P lot s
% the MIMO frequency reponse and computes the Nyquist f requency wc o f
% SYS at 0 dB .
%
% SYS = system
% SYSNAME = system name
% HNORM = h−i n f norm o f the system
%
% Sintax example :
% h norm=h norm inf ( sys , ’ sysname ’ ) ;

[ sv ,w]=sigma ( sys ) ; % Gains and f r e qu en c i e s
sv1=max( sv , [ ] , 1 ) ; % Maximum ga ins

h norm=max( sv1 ) ; % H−i n f norm

% modulus=(max( e i g ( sys ) ) )

semi logx (w,20∗ l og10 ( sv1 ) ) ; % Plot s i n gu l a r va lue s
t i t l e ( [ sysname , ’ S ingu la r Value plot ’ ] ) ;
x l ab e l ’ Frequency ( rad/ s ) ’ ; y l ab e l ’Gain (dB ) ’ ;

wsvd=in t e rp1 (20∗ l og10 ( sv1 ) ,w, 0 ) ; % Nyquist frequency , at 0 dB

i f i snan (wsvd)==1 % Plot below 0 dB
[ wsvd , wsvdind ]=max( sv1 ) ;
d i sp ( ’ Bode p l o t below 0 dB . ’ ) ;
d i sp ( [ sysname , ’ wc at max gain ’ ] ) ; d i sp (w( wsvdind ) ) ;
d i sp ( [ sysname , ’ f r equency at max gain ’ ] ) ; d i sp (w( wsvdind )/2/ p i ) ;
hold on ; semi logx (w,20∗ l og10 (wsvd ) ) ;
semi logx (w( wsvdind ) ,20∗ l og10 ( sv1 ) ) ; hold o f f ;

e l s e
d i sp ( [ sysname , ’ wc ’ ] ) ; d i sp (wsvd ) ;
d i sp ( [ sysname , ’ Nyquist frequency ’ ] ) ; d i sp (wsvd/2/ p i ) ;
hold on ; semi logx (w, 0 ) ; semi logx (wsvd ,20∗ l og10 ( sv1 ) ) ; hold o f f ;

end

i f narg in > 2
f i g u r e ( f i g +1);
sysd=c2d ( sys , Ts , ’ prewarp ’ ,Wc) ;
pzmap( sysd ) ;
t i t l e ( [ sysname , ’ Pole−Zero Map ’ ] ) ;

end



112

APPENDIX D

LABVIEW CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty

for the codes, either expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose and noninfringement

of third party rights. The entire risk as to the quality and performance of the codes

is with the user. Should the codes prove defective, the user assume the cost of all

necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,

special, incidental or consequential damages arising out of the use or inability to use

the codes (including but not limited to loss of data or data being rendered inaccurate

or losses sustained by the user or third parties or a failure of the codes to operate

with any other programs), even if such holder or other party has been advised of the

possibility of such damages.



113

Code to read data from Matlab.



114

Main code in CompactRIO for H∞.



115

InitRef.vi



116

Serial1.vi

NewByte2Tx.vi

NewRx2Byte.vi



117

Wait1.vi



118

Byte2Angle.vi

Position2Velocity.vi



119

Ref33.vi



120

H-infInput.vi

y-t.vi

Thrust2Byte.vi



121

Main code for H∞ user interface.



122

Init0.vi

Rumble2.vi

DcnxnWiiCntrl.vi



123

Init.vi



124

CnxnWiiCntrl.vi

PointerRefInput.vi

TrimFast.vi



125

Drawsim.vi

Hide panel of Drawsim.vi



126

To generate the 3D graphs the models were done in SolidWorks and exported as

VRML models.

DrawVRML.vi

Draw11.vi



127

Wiiref2.vi



128

GetWiiMoteData.vi

IRRef.vi



129

ScaleTrim.vi



130

SavedData.vi

Main code in CompactRIO for Open Loop.

Rumble.vi



131

ReadData.vi

Main code for Open Loop user interface.

WiiRef4.vi



132

OpenLoop.vi



133

Init.vi



134

APPENDIX E

MANUAL

THE BIROTOR HELICOPTER IS NOT A TOY.

Before using the birotor helicopter be sure to read this instructions. Even if

children are allowed to use it (exposition, scientific fairs, etc.), they never be left

alone with the helicopter. Ignoring the instructions in this manual can result in a

serious injury.

The helicopter can be stoped at any moment, by turning off the ON

switch. If something happens, grab the helicopter and turn it off.

ON/OFF switch location.



135

1. Be sure that the batteries are fully charged.

Before tunrning on the helicopter make sure the batteries are fully charged. One

charger is needed for the Li-Po batteries and one for the Ni-MH batteries. If

the batteries are not fully charged, the performance of the helicopter will not be

good, and there is risk of an accident. Explosions can also occur if the battery

is short-circuited or if the cell or pack is punctured.

Li-Po battery charger.

Ni-MH battery charger.

2. Carrefully connect all the devices, power supply and batteries, DO NOT TURN

ON YET.

Make sure everything is connected: serial cables, batteries, PC, CompactRIO

and electronic boards.

3. Turn on the CompactRIO controller and the bluetooth board attached to it.

Turn on the CompactRIO, so the PC can recognize it.



136

4. Make the connection between the PC and the Wii controller.

If the Wii controller is not connected before running the VIs, an error message

will be displayed and the VIs will not run, you may need to use a blutooth

dongle, or a blutooth device on the host PC.

-> Right click on the bluetooth icon -> Start the Bluetooth Device

-> Right click on the bluetooth icon -> Bluetooth Setup Wizard



137

-> I know the service. . . -> Next -> Human Interface Device -> Next



138

-> Nintendo RVL-CNT-01 -> Next -> Skip



139

-> Finish

After these steps the next application must be used:



140

-> Close



141

5. Make the connection between the PC and CompactRIO.

The PC needs to know that the CompactRIO is connected to it.

-> Start -> Measurement & Automation

-> Remote Systems -> NI-cRIO9014



142

6. Open LabView and VIs.

Open the project VI and chose all the VIs needed for a simulation based on the

next chart:

Open Loop Close Loop

OpenLoop.vi Hinfinity.vi

WiiPC.vi WiiPCref.vi

-> Start -> National Instrument LabVIEW 8.6



143

-> File -> Open Project. . .



144

-> AggieCopter10bits -> OK



145

7. Change any parameter you need on VIs.

Change any parameter needed for the simulation (name of saved files, trim

conditions, etc.).

8. Turn on helicopter.

9. CHECK NOTHING GOES WRONG.

Turn the helicopter off and anything else if something weird happens.

10. Run the VI on the CompactRIO (controller).

11. CHECK NOTHING GOES WRONG.

The sensors are absolute encoders, thus, they need to be initialized before start-

ing the program. This is the reason why the VIs on the CompactRIO have to

be run first.

12. Run the VI on the PC (user interface).

13. CHECK NOTHING GOES WRONG.

Once you run the VI on the PC make sure everything is OK. Then the helicopter

is ready to use.



146

14. Open Loop Controls



147

15. Close Loop Controls

16. When finish, turn off everything and disconnect everything. NEVER LEAVE

THE BATTERIES CONNECTED TO THE HELICOPTER.



148

APPENDIX F

NOMENCLATURE

3DOF 3 degrees of freedom

ARE Algebraic Ricatti Equation

CAD Computer Aided Design

COM Center of Gravity

diag(x) matrix whose diagonal elements are the inputs of vector x

eye(x) identity matrix of size x

LiPo Lithium Polymer

LMI Linear Matrix Inequalities

LQR Linear Quadratic Regulator

MIMO Multi Input, Multi Output

Ni-MH nickel-metal hydride cell

PIC Programmable

PWM Pulse Width Modulator

SEC Speed Electronic Controller

SISO Single Input, Single Output

SVD Singular Value Decomposition

Tr(x) Trace of matrix x



149

VITA

Luis Arturo Ruiz Brito received his Bachelor of Science degree in Mechatronics

Engineering from Instituto Politécnico Nacional at Mexico City in 2005. His research

interests include control alghoritms and real time applications. Mr. Ruiz may be

reached at Texas A&M University, Department of Aerospace Engineering, H.R. Bright

Building, Rm. 603, Ross Street - TAMU 3141 College Station TX 77843-3141. His

email is britonet@neo.tamu.edu.


