CONTROL OF A 3DOF BIROTOR HELICOPTER
USING ROBUST CONTROL METHODS

A Thesis
by
LUIS ARTURO RUIZ BRITO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2009

Major Subject: Aerospace Engineering

CONTROL OF A 3DOF BIROTOR HELICOPTER
USING ROBUST CONTROL METHODS

A Thesis
by
LUIS ARTURO RUIZ BRITO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Raktim Bhattacharya
Suman Chakravorty

Committee Member, Won-Jong Kim

Head of Department, Dimitris Lagoudas

December 2009

Major Subject: Aerospace Engineering

il

ABSTRACT

Control of a 3DOF Birotor Helicopter
Using Robust Control Methods. (December 2009)

Luis Arturo Ruiz Brito, B.S., Instituto Politécnico Nacional, Mexico

Co-Chairs of Advisory Committee: Dr. Raktim Bhattacharya
Dr. Suman Chakravorty

The main topic of this thesis is to exhibit how robust control techniques can be
applied to real time systems. Presently, the control techniques used in the industry are
very simple even when applied to complex systems; these techniques are intuitive and
not necessarily systematic. Moreover, the notion of optimality of robustness is absent.
Control design procedures are mostly based on SISO techniques, thus, overlooking
the intrinsic multivariable aspect of the design that a MIMO system requires.

In this thesis a modern control technique is presented to manipulate a 3DOF
birotor helicopter in real time. The objective of this research is to demonstrate the
performance of more efficient control algorithms to control these kinds of systems. The
robust method proposed in this thesis is an H,, controller which exhibits robustness

to plant model uncertainties, and good disturbance and noise rejection.

To Esther and Luis Arturo Para Esther y Luis Arturo

v

ACKNOWLEDGMENTS

At the outset, I would like to express my heartfelt thanks to my parents, Esther
and Luis Arturo, for all their support and love through the years. Without them, my
hopes about aerospace would be but pipe dreams. In addition to the aforementioned,
thanks to my sisters, Paulina and Claudia, and my brother, Carlos, and the rest of
my family for always being there.

Thanks to Mexico and its people for their support given through CONACYT
foundation.

I would like to express my gratitude to Dr. Raktim Bhattacharya, my advisor,
for his belief in me and for giving me the opportunity to learn and grow, personally
and professionally, by conducting research under his aegis.

Also, a special thanks to Karen Knabe, for all the help given.

I would like to thank Dr. José Alfredo Rosas Flores, someone I greatly admire
and to M.S. Miguel Angel Rodriguez Fuentes for always caring for his students.

Thanks also are due to my friends for cheering me up when I needed it the most.

Finally, to the department faculty and staff of Texas A&M University, thanks
for their support, specially to the Sponsor Students Office whose people made my life

easier in this country.

CHAPTER

I

IT

I1I

IV

VI

TABLE OF CONTENTS

INTRODUCTION oo o

DYNAMICAL MODEL

Introductiono
Translational and rotational matrices
Translational and angular velocities
Kinetic and potential energy
Powerin
Equations of motion L.
Linearized model
Controllability and observability

LN O WD

Conclusion

PROTOTYPE o o

—_

Introduction
Mechanical design oL
Electrical design
Interface

AN

Conclusion

PARAMETER ESTIMATION

Introduction
Motor operation
Center of mass
Nonlinear least squares estimation

U W

Conclusion

LQRDESIGN . . . o oo

Introduction
Feedback model
LQR problem
Conclusion

- W oo

Ho CONTROLLERo oo .

vi

Page

© 00 O W N N

vil

CHAPTER Page
1. Introduction oo 44

2. Scaled state space L. 44

3. Range space and null space 45

4. Norms of systems 46

5. Linear matrix inequalities 48

6. Feedback model oo o1

7. The Hy, problem 52

8. Controller loop shape 53

9. Hy synthesis oL 59

10. Conclusion 64

VII IMPLEMENTATION 65

1. Imtroduction 65

2. MIMO frequency response 66

3. Tustin’s method 68

4. Frequency warpingo 69

5. Conclusion 72

VIII CONCLUSION 74
REFERENCES 75
APPENDIX A 7
APPENDIX B 80
APPENDIX C 86
APPENDIX D 112
APPENDIX E e 134
APPENDIX F 148

FIGURE

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

LIST OF FIGURES

Euler angles yaw ¢, pitch § and roll ¢.
Mechanical model. o oo
Mechanical model with axis and angles.
Open loop simulation 1.
Open loop simulation 2.
Typical state space model.
Ducted fan brushless motor.
Basic brushless motor. L
Wireless link diagram. 00000
Bluetooth integrated circuit.
Magnetic encoder.o
Analog output operation.
SENSOTr TANZE. . . .« v v v e e e e
PIC microcontroller.
Speed controller.o
Compact RIO controller.
Li-Po battery.
Ni-MH battery.

User interface 1.

viil

Page

10

11

18

20

X

FIGURE Page
3.14 Flow of data. 23
3.15 User interface 2.o 24
3.16 Fully assembled plant. 25
3.17 Fully assembled plant. Side view. 25
3.18 Fully assembled plant. Back view. 26
3.19 Fully assembled plant. Front view. 26
4.1 Speed controller operation. L. 28
4.2 Birotor SEC operation. oL 28
4.3 Motor experiment. 29
4.4 Bytes vs Thrust. 29
4.5 Center of mass experiment. 30
4.6 Center of mass experiment diagram. 31
4.7 Bytes and pitch angle relation.o 32
4.8 I/ location for different valuesof 6. 32
4.9 Nonlinear Least Squares Algorithm. 36
4.10 Pitch estimates. 37
4.11 Roll estimates. 38
5.1 LQR feedback model. oo 39
5.2 LQR simulation, yaw ¢b. oo 41
5.3 LQR simulation, pitch 6. 42
5.4 LQR simulation, roll ¢. 42

5.5 LQR simulation, left thrust. 43

FIGURE Page
5.6 LQR simulation, right thrust. 43
6.1 General feedback model. 51
6.2 Standard H,, problem. oL 52
6.3 Controller K design block. 54
6.4 Wmodel. 55
6.5 W command.o o6
6.6 W performance 1. o7
6.7 W performance 2. o o7
6.8 W actuator.o 58
6.9 H simulation, errors. 62
6.10 H, simulation, positions. 62
6.11 H. simulation, roll angle and velocities. 63
6.12 H simulation, thrust. 63
7.1 H,, implementation diagram. 65
7.2 H., controller frequency response. 67
7.3 H., controller pole-zero map. 71
7.4 Ho implemented, ¢ yaw., 72
7.5 H. implemented, pitch 72
7.6 H. implemented, ¢ roll oo 73

7.7 H,, implemented, thrust 73

CHAPTER I

INTRODUCTION

The main topic of this thesis is to exhibit how robust control techniques can be applied
to real time systems. Nowadays, the control techniques used in the industry are very
simple even when applied to complex systems, these techniques are intuitive and not
necessarily systematic. More over, the notion of optimality of robustness is absent.

In this thesis a modern control technique is presented to manipulate a 3DOF
birotor in real time. The objective of this research is to demonstrate the performance
of more efficient control algorithms to control these kind of systems. The required
tasks to achieve this goal, are to develop a mathematical model of the system that
incorporates all its characteristics, to generate an adequate robust control algorithm
that can be used with conventional hardware and show that it works in real time

applications.

The journal model is IEEE Transactions on Automatic Control.

CHAPTER II

DYNAMICAL MODEL

1. Introduction

In order to make a good controller for a given system, equations of motion that
describe the dynamics of the system must be formulated, taking in account all the
characteristics that affect the system. This birotor helicopter is a three degree of
freedom (3DOF) system that does not perform translational motion, for this reason,
the dynamics will be focused only on the rotational equations of motion.

There are three angles commonly used in aerodynamics applications which are
called the Euler angles; yaw 1, pitch § and roll ¢!/, Fig. 2.1 shows a schematic of these
angles for any aircraft. Yaw is the heading about the vertical axis (body-z), pitch is
known as the rotation about an axis (body-y) perpendicular to the longitudinal plane

of symmetry and roll is the angle about the longitudinal axis (body-z).

Roll Yaw

Pitch

Fig. 2.1. Euler angles yaw 1, pitch 8 and roll ¢.

Fig. 2.2 shows a computer aided design (CAD) of the mechanical model. The fan
located at the back is used to generate disturbances. The Euler angles are controlled

by the thrust provided by the front rotors, specifically left and right.

The pitch motion is controlled by increasing the thrust from the rotors, the roll

and yaw motions are controlled by the difference in the thrust between the rotors.

Fig. 2.2. Mechanical model. A CAD drawing of the actual system displaying the main
aspects of the plant.

In this chapter the equations of motion will be derived. These equations describe

the motion of the system due to changes in the forces applied from the rotors.

2. Translational and rotational matrices

In fig. 2.3 a simple model is shown displaying the axis and direction of the angles
used to derive the equations of motion. Let us denote [y as the distance from Oy to
Os, l3 as the distance from Os to F, or Fj, l. as the distance from O, to the pitch
center of mass (COM), Fj is the left force, and F, is the right force.

Let Oy be the origin of the stationary frame and Oz the point where the third
reference frame is located and also the middle point between the two rotors. Let Oy
and O, be the origins of the intermediate links, these are located in the same place as
Op. A vector g = [€ n]T denotes the generalized coordinates, where & = [z y 2|7 € R?

denotes the translational coordinates with respect to the origin, and n = [6 ¢]7 € R?

describes the orientation given by the Euler angles®. The values for ¢, 6 and ¢
depicted in fig. 2.3 are the zero position. That is, when [3 is aligned with positive

body-z, and [y is parallel to body-y the system is considered to be in the origin,
[6 ¢] =000

Fig. 2.3. Mechanical model with axis and angles. This picture displays the plant, the

coordinate system (x,y,z), and the positive direction of the Euler angles.

The translational and rotational matrices are given by transformation matrices

of the form:
o Ri=I e R3 | P e R3X!
T = (2.1)
0e R 1
where:
i index of the reference frame O;.
¥ index of the reference frame O;.

R~ € R® Rotational matrix O; — 0;.

P € R¥*! Translational matrix O; — O;.

Given this, the tranformation matrices for this system are:

Roll to pitch!:

10 0 2
0 ¢y —s4 O
T,=| (22)
0 S¢ Co 0
0 0 0 1
Pitch to yaw:
Co 0 S 0
0 1 0 0
Tpy = (2.3)
—Sp 0 Cy 0
0 0 0 1
Yaw to ground:
Cy —Sy 0 0
Sy Cy 0 0
Ty = (2.4)
0 0 10
0O 0 01

Other transformation matrices can be obtained by combinations of eq. 2.2, eq. 2.3

and eq. 2.4.
7,y = 1,47, Pitch to Ground (2.5)
7,y = Tpy7T,, Roll to Ground (2.6)
7.y = T,,7,, Roll to Yaw (2.7)
Trrg = TpgTr; Left force to Ground (2.8)
Triy = T,y Trr Rigth force to Ground (2.9)

Le; = cos(i) and s; = sin(i).

And:

Tp =

TFT -

0
0

010
0 01

0

1 00

000

The translational matrices are:

Pp :7;79

0 0
0 I3
10
0 1

0
s
0
1

Left force to roll

Right force to roll

T
I. 00 1} Pitch COM Position

T
P, =T, [I, 0 0 1 } Roll COM Position

T
Pri =T,y [0 Il; 01 } Left Force Position

T
Prr =Ty { 0 —I3 0 1 } Right Force Position

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Eq. 2.12 to eq. 2.15 are vectors in R**!, but only the first 3 outputs corresponding

to & = [z y 2]T are needed, the fourth element will be neglected.

3. Translational and angular velocities

The velocities or rates are the derivatives of the translational and rotational matrices

with respect of time, for translational movement:

. dpi

dt

(2.16)

And for rotation, the angular velocity is:

W,
Q=Wn=|w, | eR’ (2.17)
W,

where 7 = (w, 0, gb)T The values of W, W, and W, are obtained from:

0 —-W. W,

AR
W, 0 W, | =R "——

— (2.18)

-w, W, 0
The translational velocity must be calculated for all the points described in
eq. 2.12 to eq. 2.15. The angular velocities for R,, (eq. 2.3) and R,, (eq. 2.7) are

evaluated.

4. Kinetic and potential energy

The kinetic and potential energy are considered for the two COM points in the system
(pitch and roll), see eq. 2.12 and eq. 2.13. The kinetic energy is the sum of the trans-

lational kinetic energy and rotational kinetic energy, K E = Ky ansiational + Krotationai-

1 o
K&=5U@§&+Qﬂﬁw (2.19)
1 o
K&:?7ﬁg+ﬁbm) (2.20)
KE = KE, + KF, (2.21)

The subindexes p and r represent the pitch COM and roll COM respectively.
M, is the mass of the link that goes from O, to O3 and M, is the mass of the link
that goes from F; to F} passing through Os. I. and I are the inertia tensor matrices

which are calculated at the COM points of pitch and roll.

The parallel axis theorem must be used to get the values of the inertias at the
“total” COM of the system, eq. 2.23, m is the COM point mass and R is the distance

from the COM point to the “total” COM.

]mc]gcy I,.
=1 Iy Iy I, (2.22)
]xz Iyz Izz
Idisplaced = Icenter + mR2 (223)

The potential energy is the energy that is stored within a system. It exists when
there is a force that tends to pull an object back towards some original position when
the object is displaced. In this case it only depends on the z coordinate affected by
g, the gravity.

T T
PE:A@ﬂf{O 01} +MMﬂ?P)Ol} (2.24)

5. Power in

The power administered is generated by the input forces. These forces are always
perpendicular to the surface of the fans, thus, the position of them at any point is

considered. As with eq. 2.12, only the first 3 elements of these vectors are required.

T T
Emzﬂ<%{0@'11}—ﬂ401301]) (2.25)

T T
Fright:Fr<7;g|:O —l3 1 1:| _7;“g|:0 —lg 0].:|) (226)

The power that will be provided to the system is:

Pin = F}eftéFl + FrightéFr (227)

6. FEquations of motion

Applying Euler-Lagrange formalism, the equations of motion are:

From eq. 2.28, L is the Lagrangian, defined by:

L=KF—-PE

(2.28)

(2.29)

g are the derivatives with respect of time of ¢, ¢ = [T y 2 V0 gzﬁ] Since the model

is focused on the rotational equations of motion we can discard the 3 first equations

corresponding to translational movement.

D are the damping forces and F' are the input forces applied on the system, d is

the damping factor vector d = [dy, dy dg]" and T is the identity in R3. Later it will be

shown how to determine the damping coefficients performing parameter estimation.

D =Td(Q, + Q)

dP,
p =
dn
Eq. 2.28 can be written as:
d dL dL
FL=———-——+D-F
drdg dg |
The inertia matrix is defined as:
dEL
M(n) = —
(n) i

An auxiliary matrix H is specified as:

H = M(n)ij — EL

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

10

Finally, the equations of motion for 7 = [¢) 6 ¢]” are:

=14 |=Mun"H (2.35)

An open loop simulations were done to verify the equations of motion, as shown in

fig. 2.4 and fig. 2.5, the system oscillates towards an equilibrium position? as ¢ — oco.

Non Linear Simulation - Positions MNon Linear Simulation - Velocities
04 T T T T T T T T T 0.6 T T T T T T T T T
* w'Yaw
- 041 —#'Pich|]
ook /\ ¢ Rall | |
02F g [\ s i e
o o
: ; 7
= o
0.4 4
ok
0.6 i
01 | | 1 | | | 1 | | 0.8 L L L | | | | 1 1
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time time
Mon Linear Simulation - Thrust Mon Linear Simulation - Thrust
1.5 T T T T T T T T T 15 T T T T T T T T T
* Fan1Left Fan 2 Right
1+ E 1F 5
L 05 _ 05k
@ @
2 2
= £
ot 4 0t 1
051 g NAE o
A L L L L L L L L L A I I I L I L | | |
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time sec Time sec

Fig. 2.4. Open loop simulation 1. As t — oo the system returns to an equilibrium
position. [, 0o, ¢o] = [0, pi/3,0]

2Equilibrium position or stationary point, is the condition of a system in which
competing influences are balanced, is an input to a function where the derivative is
zero, that means, the gradient is zero, the function stops increasing or decreasing,
hence the name.

11

Mon Linear Simulation - Positions Non Linear Simulation - Velocities
0.6 T T T T T T T T T
+ v Yaw
s — ' Pitch |
02k /\ /\ """ 9 Roll | |
¥ 7
& ® 020 -
04t 4
061 1
1,9 w—— . TP » \ P— 08 | L 1 1 1 | 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
time time
Mon Linear Simulation - Thrust Mon Linear Simulation - Thrust
05 T T T T T T T T T 05 T T T T T T T T T
045t 4 045F Fan 2 Right | |
04r b 04r 2
035 B 035})
a u
2 03p 12 03f i
= =
025 1 025 4
02 b 021 &
015} B 015} =)
01 | | | | | I 1 | 1 04 | | i | | 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time sec Time sec

Fig. 2.5. Open loop simulation 2. [y, 0o, ¢o] = [0, pi/10, 0]
7. Linearized model

The nonlinear model of the system is given by eq. 2.35. Nonlinear models are difficult
to solve and complex for real time applications, simple changes in one part of the
system can produce complex effects in the output, thus, for control purposes linear
models are assumed to model the dynamics of the system to an acceptable extent.
Due to the inherent nonlinearity of real world phenomena, the nonlinear models!®
might be linearized.

The linearization is done while considering an equilibrium point as the datum.
The performance of this linear model depends on the accuracy of the nonlinear rep-

resentation.

12

Eq. 2.35 can be transformed into an equation of the form & = f(x,u) were x is
the states vector [77 = [0 ¢ ¥ 6 ¢]T and w is the input vector [FI Fr]”.
1
T = (2.36)
f(@,u)

Z is linearized around an equilibrium or trim point, and for any point ¢ in space,

the linearization is:

fl@) = f(e) + Vfla=c(z — ¢) (2.37)

where:

f(z) linearized function.

f(c) function evaluated at the equilibrium point c.

vV V= [8& - ai} .

The equilibrium point [8 ¢ 1) 6§ ¢]7 =1[00 00 0 0]7 is selected. Also the input
forces are taken in account when calculating the linear model. From eq. 2.35 there
are three equations, setting [¢) 6 ny ¢]T =1[000 0 0]7 and solving for ¢, F} and F,.

¢ is taken as an unknown to have a set of three unknowns in three equations and

finally the trim point is the vector [0 ¢ ¢ 0 ¢ F; F,)7.

Once linearized, & can be represented in state space form:

z = Ax + Bu
(2.38)

y = Czx + Du

x is the state vector [¢) 0 ¢ w 9 ¢]T y is the output vector defined by the variables
and/or properties desired from the system. wu, the input vector [F; F,]T. A is the
state matrix. The input matrix B. C'is called the output matrix. And finally D is

the feedfoward matrix.

13

The state space is a mathematical model of a physical system as a set of input,
output and state variables related by first-order differential equations. The state
variables are the smallest possible subset of system variables that can represent the
entire state of the system at any given time. The interconnection of the state space

is depicted in fig. 2.6.

Fig. 2.6. Typical state space model. The relation between the states, matrices, inputs

and outputs is shown.

Commonly, the state space representation of the equations of motion of a given

system is also named the plant G.

A|B
G = (2.39)

C|D

The values of the matrices A, B, C and D for the birotor helicopter are depicted from

eq. 2.40 to eq. 2.43.

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
A= (2.40)
0 0 —1.3763 0.004 0 —0.0034
0 —0.7548 0 0 —0.2283 0
0 0 0.8084 —0.2941 0 0.002

14

0 0
0 0
0 0
B = (2.41)
~0.269 0.269

—-1.1301 —1.1301

19.8274 —19.8274

C =1%6 (2.42)
D =02 (2.43)

From here, the rank of the plant G is defined as the order of the system, the

number of states, so rank(G) = n, = 6.

8. Controllability and observability

A important property of a stable controller is that the closed loop transfer function
is asymptotically stable, all the eigenvalues have negative real part, as long as the

following two conditions hold:

1. The plant is controllable.

2. The plant is observable.

A system is said to be controllable if and only if it is possible, to transfer the
system from any state zy to any other state x; in a finite time 0 < ¢ < oo. If the
system is linear and time invariant, then the system is controllable if and only if the

controllability matrix (eq. 2.44), is full rank.

Qz{BAB---A"lel (2.44)

15

A system is said to be observable if and only if its state xg, at any time ¢, can be
determined from knowledge of the input and output over a finite period of time ¢y,
that is, u(t) and y(t), where 0 < ¢ < ts. A linear, time invariant system is observable

if and only if the observability matrix (eq. 2.45), is full rank.

C

CA
N=|—— (2.45)

| oA

In both cases, controllability and observability, the corresponding matrices are

full rank, so the controllers to be designed can be stable.

9. Conclusion

In this section, the equations of motion were derived. Also, the state space represen-
tation of the equivalent linear model was obtained. Finally, it was proved that the
linear model is controllable and observable, thus, a stable controller can be designed.

The mathematical model of any system is a crucial step towards control it.

16

CHAPTER III

PROTOTYPE

1. Introduction

The prototype was built based on a existing model but with the advantage of full
360 degrees rotation in the yaw 1 direction. This was accomplished by establishing a
wireless link between the control device and the mechanical plant. Speed and accurary
were considered at the time of making a choice of the components to be impelmented
in the system. The control algorithm has to be executed on a real time device to
show the perfomance of the controller designed!, so the prototype must be able to

execute it efficiently.

2. Mechanical design

The mechanical plant was built mainly with aluminium, with joint elements that
would allow the system to perform in a very acceptable manner compared to the

mathematical model.

Fig. 3.1. Ducted fan brushless motor.

'For more information that the one provided in this section please refer to the
apendix.

17

The actuators selected are ducted fan brushless motors (Fig. 3.1). These motors
are essentially AC synchronous motors with permanent magnet rotors and can main-
tain a load on them more efficiently that brushed motors. The motors are controlled
with a speed controller (SEC, see next section).

Brushless motor rotation relies on the same theory as for AC and DC motors.

That is, two magnetic fields interact, which result in motion.

I
Winding S

Y
|
/

\/.
%
/’iﬁ‘.\‘“

I
J
Y

L
% g{;\\ 3
4"\\/
// ¢
a4
(N
%

A

]

/ Rotation
A

{

Fig. 3.2. Basic brushless motor. Movement is produced by changing the polarity in
the poles, north (N) and south (S).

In the case of AC motors, the stator winding sets up one magnetic field while
inducing the second interacting field onto the squirrel cage rotor. With DC motors,
the permanent magnet stator sets up the first magnetic field, and the rotor windings
produce the second field. These two magnetic fields interacting, results in rotation.
In the DC motor, the two fields try to align. However the commutator continually
switches power from winding to winding. Thus, maintaining the two magnetic fields
at a 90 degree relationship. If they did indeed align, motor rotation would not occur.

Compared to DC motors, brushless technology has been termed an “inside out”
design. That is, the permanent magnets are on the rotor, and the stator consists of

[4]

windings. The design still consists of two magnetic fields interacting'®’. To begin to

understand how brushless motor operate, refer to fig. 3.2. Power is applied to winding

18

“R” and current flow sets up a ‘north’ pole which the permanent magnet will react to,
and begin movement. This movement will cease when the “south’ pole of the magnet
aligns it.

Typically the motors have conections for power supply and one connection for
control input. This control input is a square wave sending the frequency at which the
motor has to operate. The control of the motor can be implemented almost effortless

with the aid of software and electronics.

3. Electrical design

Since there is not commercial products satisfying all the electrical requieriments of the
system, embeded systems had to be built. The electrical diagrams of these embeded
systems can be found in the apendix.

As mention above, there is a wireless link between the controller and the plant.

A sketch showing the signals affected by the wireless link is depicted in fig. 3.3.

The control signal v and the sensor signal y are broken and transmited via serial
communication in a bidirectional channel.

e ul L .

rEp e E lmemmmn e F e

Controller 2 Flant
| LINK
1 1

Fig. 3.3. Wireless link diagram. The signals v and y are broken and transmited wire-

lessly.

The wireless connection was achieved using Bluetooth® technology, see fig. 3.4.
These kind of products granted the ability to have bidirectional connection between
the control device and the mechanical part using only one accessory on each side.

The sensors operating are absolute encoders, more especific, magnetic encoders,

see fig. 3.5. These enjoy the advantage of transmit the information in a single line as

19

a 10 bit resolution analog output that is linearly proportional to the absolute shaft

position, thus saving space and complexity as shown in fig. 3.6.

Fig. 3.4. Bluetooth integrated circuit. This device is the heart of the communication

between the controller and the plant.

Fig. 3.5. Magnetic encoder.

Fig. 3.7 depicts a circle ilustrating the working range of the sensor. Now, if
the signal from the sensor were to transit from the red area to the blue area in one
control time step, the system has done 1 revolution in the positive direction and one
revolution in the negative direction if it transits from the blue to the red area.

Vec= 6V

Volts

0 180° 360°
0(

Pasition

180°

Fig. 3.6. Analog output operation. The operation of the encoder is linear as shown in
this picture, with the aid of software the range can be extended practically

to infinity.

20

Also, being the sensors absolute encoders they must be initialized, that is, the
initial signal read, called the offset, has to be zero or some reference point to make

the system agree with the coordinate system in the mathematical model.

Signalyeference = S1gnalieq — Stgnalyysset (3.1)

360°- 0°

270° 920°

180°

Fig. 3.7. Sensor range. This picture helps to understand how the angle measured from
the sensor can be extended by sensing the transition from 0 to 360 degrees

in one time step.

Microchip® PIC micontrollersl® | see fig. 3.8, were used to extract the data from
the encoders, and recieve the data from the control device to apply input voltage to

the actuators in the system. Also the PICs communicate with the Bluetooth modules.

Fig. 3.8. PIC microcontroller.

The PIC sends a signal to a speed controller (fig. 3.9), that generates a square
signal to move the motors. This controller has a working period of 20 ms, thus being

the device that specifies the sampling time for real time applications.

21

Fig. 3.9. Speed controller. The working period of the SEC is the base period for real

time applications.

The control device is an emmbeded control National Intruments® Compact Rio®
controller model 9014 depicted in fig. 3.10. This device supports real time capabilities
as well as computer based interfaces with acceptable speed. The Compact RIO com-

municates with the plant via serial protocol by means of the Bluetooth connection.

Fig. 3.10. Compact RIO controller.

The birotor uses 3 lithium polymer (LiPo) batteries (fig. 3.11) in which the
lithium-salt electrolyte is not held in an organic solvent as in the lithium-ion (Li-ion)
design, but in a solid polymer composite such as polyethylene oxide or polyacryloni-
trile. The advantages of LiPo over the Li-ion design include lower cost manufacturing
and being more robust to physical damage. Li-poly has a greater life cycle degradation
rate. These batteries are used to turn on the motors.

Since no metal battery cell casing is needed, the battery can be lighter and it can

be specifically shaped to fit the device it will power. Because of the denser packaging

22

without intercell spacing between cylindrical cells and the lack of metal casing, the
energy density of Li-poly batteries is over 20% higher than that of a classic Li-ion

batteries.

Fig. 3.11. Li-Po battery.

The helicopter also uses 2 nickel-metal hydride cell (Ni-MH) batteries (fig. 3.12)
to power up the electronic boards responsible for the wireless connection. Both kind
of batteries guaratee that the current rate delivered at all times will be enough to

keep the helicopter running efficiently.

Fig. 3.12. Ni-MH battery.

4. Interface

The user interface was done keeping in mind that every person can test the de-
vice, with the safety requirements necessary for the good perfomance of the model.
LabView® software is the main plataform of the interfacel®. It is widely aproved in

robotics applications.

23

A shot of the user interface can be seen in fig. 3.13 and fig. 3.15.

Paget | Page2 Paged ‘ Page 4 ‘ Page 5 ‘
Yaw Angle _Plot0)] Left Bytes Poto EANG
i Press HOME for help.

05

Roll Angle. rioto AV

Scale / Trim

b 90 [1.02563 -
P 10.56052¢ Elapsed Time (s)
87.3125

Ref Input

So8 Boundary Reached

Fig. 3.13. User interface 1. User interface with 3D graph used for close loop simula-

tions.
Fig. 3.14 depicts the flow of data.

8o

User PC - Interface Controller

Fig. 3.14. Flow of data. The user inputs commands to a PC-interface, the PC commu-
nicates with the real time controller which sends and recieves information

from the plant.

5. Conclusion

The good performance of the mathematical model and controls algorithms depends

tremendously in how good the prototype represents the model. If a mechanical or

24

electrical part of the system does not work properly the control techniques will never

achieve the performance aimed.

[Estabish 2 Biustooth ik with your Wirote prior to execUting this V1. Yaw Angle ploro EAg Vaw Vel Foto EAYG
Requires the Wimate Managed Library Wimatelib Ver 1.5.2 ‘] 2
‘available From http:/www, codeplex, comfwiimot eLib 4-
Yaw Rad N
-0.294524 ‘
Pitch Angle rlot 0 NG Pitch vel Ploto %Y
YawTrim =" = i
0 o .
PitchTrim=" E
0 e Pitch Rad
o 1.05538 . .
RollTrim ==
‘0 i RZ'“;?; RollAngle: Poto % Rl Vel
WiiController# H
i1 '
> Roll Rad
0
. LeftMotor RightMotor
0 0

Fig. 3.15. User interface 2. User interface used to get data from sensors and open loop

simulations.

Fig. 3.16 to fig. 3.19 show the plant fully assembled.

25

o
@
&

Fig. 3.16. Fully assembled plant. Above one can see the fully assembled plant, even
though there are some issues like loose cables, the system performs in a very

acceptable manner and according to the requirements.

Fig. 3.17. Fully assembled plant. Side view.

Fig. 3.18. Fully assembled plant. Back view.

Fig. 3.19. Fully assembled plant. Front view.

26

27

CHAPTER IV

PARAMETER ESTIMATION

1. Introduction

Once the dynamical model has been developed, some parameters need to be esti-
mated. In this section parameter estimation is done, which determines the “best”
estimates of all poorly known parameters so that the mathematical model provides
an accurate representation of the system’s actual behavior!”.

For the dynamical system, a mathematical model is hypothesized based upon the
experience of the investigator, which is consistent with whatever physical laws known
to govern the systems behavior, the number and nature of the available measurements,
and the degree of accuracy desired. Such mathematical models almost invariably
embody a number of poorly known parameters.

Also the model is verified with some straightfoward experiments.

2. Motor operation

The motors used in the system are ducted fan brushless motors, these motors are
controlled by sending a byte signal from 0 to 255 to a PIC, then the PIC generates a
PWM signal that is sent to a speed controller and this one genetares a square wave
to control the motors.

The speed controller (SEC) operation is depicted in fig. 4.1, the base period of
the SEC is 20 ms, and increments of 1us are allowed. The fisrt 1ms is required to
turn on the motor. And then by increments of 1us the SEC increases the PWM,
the maximum number of increments is 1000. The birotor does not require all 1000

increments to make the system functional.

28

A zero is set at 107 and a maximum of 107 + 255 is set, see fig. 4.2. As seen in
fig. 4.1 there are free 18ms which are used to send signal to other SECs in the system,

thus making possible to control up to 8 motors at one time.

Motor Voltage In
1Ims Ims 18ms Time
Required to| Operation Can be used to control more motors
turm on time
motor
20ms

Fig. 4.1. Speed controller operation. 1ms is needed to turn on the motor and incre-

ments of 1us set the output of the PWM signal.

A relation between the bytes sent to the PIC and the thrust generated by the
motor is built up. For this purpose the experiment illustrated in fig. 4.3 was done.
With the aid of a scale by turning off one of the motors and applying force in the

other the relation bytes-thrust is acquired.

Motor Voltage In

1107us | 255us ibine

20ms

Fig. 4.2. Birotor SEC operation. A zero position is set at 1107us and a maximum of

255 increments are allowed.

The results are interpolated to get a linear function between the values, see
fig. 4.4. This relation is used later to get a transfer function from bytes sent to the

PIC to thrust applied in the system.

29

Thrust applied

Front View 2%
// \\
/// \\\
h-_[otl.-‘r (_)II Il a o 3 o
= |]] | o
\ o 0 e o O |
= 5] I i | K L
EE] B

Scale Reading
(grams)

Fig. 4.3. Motor experiment. One motor is turned off and with the help of a scale the

thrust provided for every byte increment is recorded.

Byte vs Thrust
1.2 T T T T T

+ Real
Fitted

Thrust

1 1 1 1
50 100 150 200 250 300
Byte In

Fig. 4.4. Bytes vs Thrust. The linear relation input - output can be seen on this plot.

30

3. Center of mass

With the aid of CAD software the center of mass is calculated, name it /. and [, to
check that this value is correct the experiment in fig. 4.5 was performed. By changing
both values at the motors at the same time and with the same proportion, the pitch
angle 6 changes.

Thrust 7 i L | View
/\\ , ax1s ateral View

[L - = . I \—4.J
% Pitch Angle

Fig. 4.5. Center of mass experiment. By changing the pitch angle § and using eq. 4.1

the values of the center of mass can be derived.

The equation that relates pitch and force is:
2FL = mg(l.cos(f) — I.sin(0)) (4.1)

As depicted in fig. 4.6, I is the force applied in each motor, L is the length from
origin to the point where forces are applied, m is the total mass of the system, the
gravity is represented by g, [. is the distance perpendicular to the force from O to cm
and [, is the distance parallel to the force from O to ¢m. 6 is the pitch angle and e¢m
the center of mass.

A set of values are obtained for different inputs. Then when 6 = 0 eq. 4.1
becomes:

2FL = mgl. (4.2)

And the value of [, can be obtained.

31

Xy plane (

Fig. 4.6. Center of mass experiment diagram. At any given angle > (Torques) = 0.

Then, from eq. 4.1:
—2FL 1] cos(f)

le = sin(6) (43)

Fig. 4.7 shows a graph of bytes input vs pitch angle §. Knowing the value of .
the value of I/ is acquired for some values of 6, then the mean is taken to aproximate
the value of [, see fig. 4.8.

Finally the real values of the center of mass and the values got from model are

presented, in meters:

Real Model
[, 0.0340 0.0338
Il -0.0184 -0.0203

The error is around 2mm, which is good enough.

4. Nonlinear least squares estimation

The damping factors of the system are the variables to be estimated. Due to the
nonlinear nature of the system, nonlinear parameter estimation is needed. The most
widely used successive approximation procedure, nonlinear least squares; otherwise

known as Gaussian least squares differential correction is used.

Pitch

32

Bytes vs Pitch - real
12 T T T T T T T

_04 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160

Byte In

Fig. 4.7. Bytes and pitch angle relation. This graph was obtained from experiments,

the effect of trigonometric functions can be seen.

lc location of center of mass (meters)

-0.012 T T T T T T

-0.014

-0.016

Bytes vs Ic location of center of mass - real

1 1
20 40 60 80 100 120 140
Byte In

Fig. 4.8. I/, location for different values of 6.

33

The method to be developed here is an m x n generalization of Newton’s root
solving method for finding z-values satisfying y— f(x) = 0. As with Newton’s method
convergence of the multi-dimensional generalization is guaranteed only under rather
strict requirements on the functions and their first two partial derivatives as well as
on the closeness of the starting estimates.

Assume m observable quantities modelled as:
yj = fi(z1,22,...,2); j=1,2,....,m; m>n (4.4)
where f; are m arbitrary independent functions of the unknown parameters ;.

f; and at least its first partial derivatives are required to be single-valued, con-
tinuous and at least once differentiable. Additionally, suppose that a set of observed
values of the variables y; are available. y; € {y1,y2, ..., yn}-

An estimate 2 for z that minimizes eq. 4.5 is the goal of the estimation algorithm.
e is the residual errors § — f(2) = Ay. W is a m x m weighting matrix, relative
importance of measurements. The measured values y and the vector of estimated

parameters .

J = ieTWe (4.5)

The current estimates of the unknown z-values are supposed to be available,
denoted by:

Te = [$1ca Tocy eeny xnC]T (46)

Whatever the unknown objective x-values are, they are related to their respec-

tive current estimates, x., by an also unknown set of corrections, Az, as:

T=z.+ Az (4.7)

34

If the components of x are sufficiently small, it may be possible to solve for
approximations to them and thereby update x. with an improved estimate of z from

eq. 4.7. f() is linearized about z. using a first-order Taylor series expansion as:

f(z) = f(x.) + HAx (4.8)
where:
_of
H= Iz B (4.9)

The gradient matrix H is known as a Jacobian matrix. The measurement residual

“after the correction” can now be linearly approximated as:
Ay=9—f(@)~ y— f(z.) — HAz = Ay. — HAx (4.10)
The residual “before the correction” is:

Aye =9 — f(zc) (4.11)

Recall that the objective is to minimize the weighted sum squares, J. The local
strategy for determining the approximate corrections (“differential corrections”) in x
is to select the particular corrections that lead to the minimum sum of squares of the

linearly predicted residuals J,:

1
J = §AyTWAy — f(@) = J, = =(Ay. — HA2)"W(Ay. — HAx) (4.12)

N =

The minimization of J, is equivalent to the minimization of J. If the process
is convergent, then Az determined by minimizing would be expected to decrease on
successive iterations until (on the final iteration) the linearization is an extremely

good approximation.

35

Any algorithm for solving the weighted least squares problem directly applies to

solving for Ax in eq. 4.12. Therefore:
Axr = (HTWH) ' H"W Ay, (4.13)

The complete nonlinear least squares algorithm is summarized in fig. 4.9. An
initial guess x. is required to begin the algorithm. A stopping condition with an

accuracy dependent tolerance for the minimization of J is given by:

_ |Ji—JZ;1| €

oJ <
J; W]

(4.14)

€ is a prescribed small value. If eq. 4.9 is not satisfied, then the update procedure
is iterated with the new estimate as the current estimate until the process converges,
or unsatisfactory convergence progress is evident, a maximum allowed number of
iterations is exceeded, or J increases on successive iterations.

The experiment to collect the measured data for nonlinear least squares consisted
in making the system oscillate around an equilibrium position, several data sets were
gathered for pitch and roll, the damping factor for yaw will be taken as the same for

roll. The function to be estimated is a damped cosine function:
f(z) = A+ Be ! cos(wpt + ®) (4.15)

From eq. 4.15, A is the dc gain, B is the cosine amplitude, ¢ is the damping
ratio, w, is the frequency and ® is the phase angle.
Fig. 4.10 shows one of the plots of the real y values and the estimated function

f(z) for pitch and fig. 4.11 is a plot for roll.

36

Model
f(x)
Y
Determine
of
X
Starting Y
Estimate x. Ay, =v—f(x.)
: | Y o M
i=0 Ji= AyI WAy,
= of
X | H = ox l———————— v W
X . E
Y

Ax=(HTWH) 'HTWAy, |+— W

Fig. 4.9. Nonlinear Least Squares Algorithm. The algorithms is very sequential and
easy to implement. The performance of the algorithm depends heavily on the

initial conditions and the good performance of the plant which administers

the measurements.

37

Estimated values for pitch

0.9

Estimated
Real

Pitch o rad

1 1 1 1
5 10 15 20 25 30 35
Time (sec)

0.2 1 1
0

Fig. 4.10. Pitch estimates. Estimates of parameters and real values. The behavior of
the plant can be reproduced with the estimated parameters of a damped

cosine function as seen in the picture above.

Now, to get the damping factors is known that the equation of motion for angular

movement is:

16+ CO+KH=0 (4.16)

I is the inertia, C is the damping factor and K is the spring factor.

Eq. 4.16 can be represented as a second order transfer function:

s% 4 2Cwys + w? (4.17)
Then:
K
wy= /7 (4.18)

And finally, the dampinbg factor C is derived from:

(= —— (4.19)

38

Estimated values for roll

Estimated
Real

Roll ¢ rad

Time (sec)

Fig. 4.11. Roll estimates.
5. Conclusion

Parameter estimation is the last step before designing controllers, it tunes the math-
ematical model so it matches the real performance of the system as close as possible,
with this any controller designed will give a grade of authenticity to the work done. It
was demostrated that one can certify some aspects of the model very easilly like the
center of mass, and other parameters like damping factor required a more advance

approach to achieve the results aimed.

39

CHAPTER V

LQR DESIGN

1. Introduction

When designing a controller it is desired one that provides the best possible per-
formance with respect to some measurements. It can be a controller that uses the
least amount of control input energy to make the output zero or one that guarantees
stability of the closed loop system, good gain and phase margins, robustness with
respect to unmodeled dynamics, or other desirable properties!®.

The minimization procedure used in Linear Quadratic Regulator (LQR) design
produces controllers that are stable. The controllers obtained are generally good,
even when optimizing for energy is not an objective. Moreover, this procedure is
applicable to MIMO processes for which classical designs are difficult to apply.

In this section the LQR methodology is explained, so the differences between

this method and the H,, can be compared.

2. Feedback model

The feedback model for the LQR control is shown in fig. 5.1.

v :e U | “%
I K » G

Fig. 5.1. LQR feedback model.

r is the reference input, u is the control input, y is the output of the plant, e is

the error and m are the mearurements, thus, the signals available for feedback.

40

The measurement m is substracted from the reference input r, the controller K

tries to make the error e zero, and transmits the control signal u to the plant G.

3. LQR problem

The LQR problem consists in finding a controller K that minimizes eq. 5.1.

Jion = / YT Qu(t) + pu(t)T Ru(t)dt (5.1)

The term fooo y(t)TQy(t)dt is the energy of the controlled output and the term
Jo~ u(t)" Ru(t)dt is the energy of the control signal. Even do LQR tries to minimize
both energies, decreasing the energy of the controlled output will require a large

control signal and a small control signal will lead to large controlled outputs. So:

1. If p is very large, to decrease Jrgr little control signals has to be used, but large

controlled output will be expected.

2. If p is very small, to decrease Jrgr very small controlled output has to be

obtained, at the expense of a large control signal.

(@ and R are symmetric positive definite matrices and p is a positive constant.
Usually Q and R are diagonal matrices with the maximum values of the states and
inputs.

The simplest LQR controller is a matrix gain of the form u = —Kx, where K is
a matrix given by:

K = (D"QD + pR)"(B"P + D'QC) (5.2)

And P is a positive definite solution to the Algebraic Riccati Equation (ARE),

eq. 5.3.

ATP+ PA+CTQC — (PB+CTQD)(DTQD + pR) " (B'P+ DTQC) (5.3)

41

The state feedback control results in a closed loop system of the form:

& =(A- BK)x (5.4)

4. Conclusion

A LQR simulation was done, is it depicted from fig. 5.2 to fig. 5.6. It can be seen
that the controller is good, also the H,, controller is depicted, which will be explained
later.

Yaw yr

H-int
——LOR||

0.2

1 1 1 1 1 1 1 1 1
0 2 4 B g 10 12 14 16 18
Time sec

Fig. 5.2. LQR simulation, yaw .

rad

0.025

0.02

0.015

Pitch &

— H-inf
— LaR

1
10 12 14 16 18 20
Time sec

Fig. 5.3. LQR simulation, pitch 6.

H-inf
— LaR

8 10 12 14 16 18
Tirme sec

[}
.
o,

Fig. 5.4. LQR simulation, roll ¢.

42

Thrust

Thrust

Thrust Left

— H-inf
L — LaR

1
0 2 4 5} g 1n 12 14 16 18

20
Time sec
Fig. 5.5. LQR simulation, left thrust.
Thrust Right
0.67 T T T T T T T T T
H-inf

0.66 — |aRf
0.65 B
0.64 J
0.63 B
062 R B
0.61 B
0B F B
059 - B
0.58 B
0 2 4 B g 10 12 14 16 18 20

Tirme sec

Fig. 5.6. LQR simulation, right thrust.

43

44

CHAPTER VI

H,, CONTROLLER

1. Introduction

The H,, control theory provides a theoretical framework to design a multivariable
feedback controller which meets desired performance criteria along with robustness
objectives. H., control has turned out more attractive due their robustnes to plant
model uncertainties and good disturbance and noise rejection.

Primarily, control design procedures were based on SISO techniques. With this,
the intrinsic multivariable aspect of the design was overlooked making incompatibility

of systems a big issuel®”’. MIMO systems required a more efficient control method.

2. Scaled state space

The birotor state space plant GG calculated previously from the nonlinear equations
of motion has to be scaled before solving the H,, problem. This is acomplished by
linear transformations given by eq. 6.1 where N is a diagonal matrix which function

is to scale the values of the matrix X.

X =N"'XN (6.1)
So for the plant G:
_ A|B N;'AN, | N;'BN,
G=|——| = (6.2)
C|D N,'CN, | N;'DN,

Now, the state space representation of the scaled system is:

Bu

S]]
Il
%Il
+

7 = Czt + Du

By eq. 6.2:

SIE
I

N 'AN,T + N;'BN,u
y = N,/'CN,T + N,/'DN,u

And:
N,z = AN, + BN,u

N,y = CN,= + DN,u

Finally, from eq. 6.5 it is obvious that:

r = N,T
u = N,u
Yy = Nyy

45

(6.4)

(6.6)

Eq. 6.2 and eq. 6.6 give the relations between the plant G' and G as well as the

states x, inputs v and outputs y to T, w and y respectively. The scaled plant of G is

the one used to calculate the H., controller.

The values chosen for the matrices N,, N, and N, are:

N, = diag(10/7 10/7 10/7 8r/180 5m/180 57/180)

N, = diag(12 12)
N, = N,

3. Range space and null space

The concept of linear mapping means that the transformation A : V' — W is linear

if:
A(avy + fuy) = aAvy + [Avy

(6.8)

46

For all vy,v, € V, and all scalars a and 3. V and W are vector spaces with the
same associated fiel F. The space V is called the domian of the mapping and W the
codomian!?.

Associated with any linear map A : V' — W is its image or range space R(A).

defined by:
R(A) ={weW :FveV = Av=uw} (6.9)

This set contains all the elements of W which are the image of some point in V.

The null space or kernel N'(A) is defined by:
NA) ={veV : Av =0} (6.10)

In words, N (A) is the set of vectors in V' which get mapped by A to the zero
element in W.

The dimensions of the range and null space are linked by the relantionship:

dim(V) = dim(R(A)) + dim(N(A)) (6.11)

4. Norms of systems

The performance of a system can be measured in terms of the size of certain signals
of interest, as the size of an error signal in tracking problems. The signals considered
map (—o00,00) — R.

These signals are assumed to be piecewise continuous. A signal may be zero for

t < 0, it may start at ¢ = 0*.

47

A norm of a signal u must have the following properties:

i) Jul >0.
i) Ju] =0« u(t)=0, Vt.
i) |lau|| = |all|ul|, Ya € R.
) [l = o < Jlull + o]
The 1-norm of u(t) is the integral of its absolute value:

full = [futo)at (6.12)

The 2-norm of u(t) is related to power and energy in this statement: the instan-
taneous power of a signal u(t) is defined to be u(t)? and its energy is defined to be

the square of its 2-norm.
1

ulls := (/: u(t)th) ’ (6.13)

The oco-norm of a signal is the least upper bound of its absolute value:
[[ufloo = sup, |u(t)| (6.14)

Systems that are linear, time-invariant, causal, and finite-dimensional are con-
sidered. In the time domain an input-output model for such a system has the form
of a convolution equation y = G * u, or the same y(t) = [*_ G(t — 7)u(r)dr.

Causality means that G(f) = 0 for t < 0. Let G = G(s) denote the Laplace
transform of G. Then (is rational with real coefficients. We say that G is stable
if it is analytic in the closed right half-plane (Re(s) = 0), proper if G(jw) is finite
(degree of denominator = degree of numerator), strictly proper if G(jw) = 0 (degree
of denominator > degree of numerator), and biproper if G and G~! are both proper

(degree of denominator = degree of numerator).

48

The 2-norm and the co-norm of a system are:

6= (5 [|é<jw>|2cm)é (6.15)

o0

1Gloe = sup,, |G (jw)] (6.16)

The oo-norm of G equals the distance in the complex plane from the origin to
the farthest point on the Nyquist plot of G. Tt also appears as the peak value on
the Bode magnitude plot of G. An important property of the oo-norm is that it is
submultiplicative:

IGH oo < |Glloo|H | (6.17)

The 2-norm of G is finite iff G is strictly proper and has no poles on the imaginary

axis; the co-norm is finite iff G is proper and has no poles on the imaginary axis.

5. Linear matrix inequalities

The history of linear matrix inequalities (LMI) in the analysis of dynamical systems
goes back more than 100 years. The story begins in about 1890, when Lyapunov
published his seminal work introducing the Lyapunov theory?. He showed that the
diferential equation eq. 6.18 is stable, all trajectories converge to zero, if and only if

there exists a positive-definite matrix P such that eq. 6.19 is true.

d
ax(t) = Ax(t) (6.18)
ATP 4+ PA <O (6.19)

The requirement P > 0, ATP + PA < 0 is called a Lyapunov inequality on
P, which is a special form of a LMI. Lyapunov also showed that this first LMI
could be explicitly solved, selecting @ = QT > 0 and solving the linear equation

ATP + PA = —Q for the matrix P, which is guaranteed to be positive-definite if

49

eq. 6.18 is stable. The first LMI used to analyze stability of a dynamical system was
the Lyapunov inequality eq. 6.19, which can be solved analytically, by solving a set
of linear equations.

A linear matrix inequality has the form:

F(z) £ FO+) a;F; >0 (6.20)

i=1
r € R™ is the variable and the symmetric matrices F; = F € R™" i =
0,---,m, are given. The inequality symbol in eq. 6.20 means that F'(x) is positive-

definite, u? F(z)u > 0 for all nonzero vectors u € R™.

The LMI in eq. 6.20 is a convex! constraint on x, the set {z|F(z)} > 0 is convex.
Linear inequalities, quadratic inequalities, matrix norm inequalities, and constraints
that arise in control theory, such as Lyapunov and convex quadratic matrix inequali-
ties, can all be cast in the form of an LMI. Multiple LMIs F(1)(z) > 0,--- , F(p)(x) >
0 can be expressed as the single LMI diag(F(1)(z),---, F(p)(z)) > 0.

When the matrices F; are diagonal, the LMI F(z) > 0 is just a set of linear
inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur
complements. The basic idea is as follows, the LMI in eq. 6.21 where Q(z) = Q(x)7,

R(z) = R(x)" and S(z) depend affinely on z, is equivalent to eq. 6.22.

Q) St | (6.21)
S(@)" R(z)
R(x) > 0,Q(x) — S(z)R(z)"*S(x)" >0 (6.22)

Problems in which the variables are matrices are very common, like the Lyapunov

inequality (eq. 6.19). A € R™" is given and P = P7T is the variable. In this case the

Let Z be a real interval. A function f is said to be convex, if f(A + (1 — \)s) <
M () + (1 =N f(s) for all ¢, s € Z and every A € [0, 1]113].

50

LMI is not written explicitly in the form F(x) > 0, but instead is made clear which
matrices are the variables. The phrase “the LMI ATP + PA < 0 in P” means that
the matrix P is a variable. Leaving LMIs in a condensed form such as eq. 6.19, in
addition to saving notation, may lead to more efficient computation.

As another related example, consider the quadratic matrix inequality AT P +
PA+ PBR'BTP +Q < 0 where A, B, Q = QT, R = RT > 0 are given matrices
of appropriate sizes, and P = P7 is the variable. It can be expressed as the linear

matrix inequality:

—ATP - PA-Q|PB

>0 (6.23)
BTP R

This representation also displays that the quadratic matrix inequality is convex
in P, which is not obvious.

In some problems linear equality constraints on the variables may be found.
P>0,ATP+PA<0,Tr(P)=1 (6.24)

From eq. 6.24 P € R¥** is the variable. The equality constraint in eq. 6.24 can
be written as F'(z) > 0. Let P, ---, P, be a basis for symmetric k x k matrices with
trace zero (m = (k(k +1) = 2) — 1) and let Py be a symmetric & x k matrix with
Tr(Py) = 1. Then take Fy = diag(Py, —AT Py— PyA) and Fi = diag(P;,, —AT P, — P,A)
fori=1,---,m.

The problem is, given an LMI F(z) > 0, the corresponding LMI Problem (LMIP)
is to find 2/ such that F(27¢**) > 0 or determine that the LMI is infeasible. This
means, find a nonzero G > 0 such that Tr(GF;) =0fori =1,--- ,m and Tr(GF, < 0.
This is a convex feasibility problem. So solving the LMI F'(x) > 0 means solving the

corresponding LMIP.

51

In the 1980’s H,, controllers were solved with necessary and sufficient condi-
tions for optimality which were obtained in terms of highly nonlinear coupled matrix
equations, which are not easy to solve. But in 1994 Iwasaki and Skelton!'¥ found
that necessary and sufficient conditions for the existence of an H., controller of some
(unspecified) order are given in terms of three Linear Matrix Inequalities (LMIs).
Positive definite solutions to the LMIs form a convex set. The controller order can
be fixed by imposing an additional rank condition (at the expense of convexity) on
the solutions to the LMIs. Moreover, the set of all Hy, controllers is characterized
explicitly in the state space representation. As mention by Iwasaki and Skelton, the

main advantage of the LMI formulation lies in the computational aspects.

6. Feedback model

j g
(]
¥ lr&
.

3
7
hg

u

Fig. 6.1. General feedback model. For H controllers usually the input to the controller
is the reference and the feedback from sensors. The controller calculates the

errors internally.

A general feedbacl model is shown in fig. 6.1. The disturbance wy is the vector
of inputs that are not generated by the control system, noise is part of this vector.
The reference input r is a vector that specifies the desired behavior of the outputs,

only the inputs with nonzero desired values are included.

52

wo and r are external inputs that be combined into a single input:

r
d:

(6.25)

Wo

d is called the generalized disturbance input. u is the vector of control inputs
to the plant generated by the controller K. The reference output y is the plant P
outputs that are of interest. These outputs may include the errors between plant
states and desired values. Additionally, the control input can be incorporated into .
The measured output m is the vector of plant outputs that can be directly measured
and therefore available for feedback.

The relation input-output in the plant P can be defined as:

T A B1 Bg T
Y = | C1 | D1 | Do d (6-26)
m Cy | Doy | Doy Uu

7. The H,, problem

The H,, problem formulation is shown in fig. 6.2. P represents a linear system plant.
K is a controller, d is the generalized disturbance input composed of reference inputs

and disturbances, e are errors, u is the control signal and y are the measurements.

e d

“«— -—

e

Fig. 6.2. Standard H., problem. The problem formulation is very simple, find a con-
troller K able to estabilize the plant P.

93

Deriving out of small gain theorem, for unstructured perturbations, robust sta-
bility depends on the co-norm of the close loop system from the perturbation input

(15], Thus the minimization of the co-norm can be used as

to the perturbation output
means of maximizing robustness.

Frequency dependent weighting functions are used to separate the reference in-
puts bandwidths as desired. The same designing plataform allows us to design con-
trollers robustly stable to modelling errors.

In a standard H., problem an internally stabilizing controller K must be found
such that close loop transfer function from d to e defined as the lower linear fractional
transformation 7. given by F(P, K) has co-norm || Fz(P, K)||s < I for a given
I'>0.

If 7y is defined as the oco-norm of 74, then the objective in Hy, is to satisfy v < 1.
7= Tl < 1 (6:27)

The close loop performance objetives are formulated as weighted close loop trans-
fer functions which are to be made small through feedback. The weighting functions
scale the input-output transfer functions so the relation between disturbance and

error is suitable and the desired performance objectives are met.

8. Controller loop shape

To design the H,, controller for the birotor system, a feedback block with weights is
planned as illustrated in fig. 6.3. r, y, u and m were explained in the previous sections,
@ is the weighted control signal, m is the measured outputs affected by the noise n,
e; and ey are the weigthed tracking error and weighted plant error respectively. G is

the scaled plant and K is the controller.

o4

¥

Windi

v
v
=] 5
=
=
fia)

4>e]

u G ¥

act u -
m

Fig. 6.3. Controller K design block. To synthetize a good controller is necessary to

r chmd

3>
v v
7
I v
=
>
‘7
¥
g
]

formulate a close loop performance, weight functions are included to scale

and shape the performance of the input/output transfer functions.

The weighting functions transform and scale physical units into normalized out-
put signals. W, is included in H,, control problems that require tracking of a
reference command, it shapes the normalized reference command into the expected
reference signal. The performance weighting function, W), ¢, has only diagonal en-
tries which indicate a tracking error on the reference inputs. W, 2 is also a diagonal
matrix penalizing variables internal to G and not included in the tracking objetive.

The actuation weighting function W, normalize signals passed through a first-
order filter from the controller ouput to the plant input. A noise weighting function,
W,, is a diagonal scaling matrix on the noise disturbances affecting the system.

Wona represents a desired ideal model for the closed-looped system and is often
included in problem formulations with tracking requirements!'®. Inclusion of an ideal
model, W4, for tracking, is often called a model matching problem.

The objective of the closed-loop system is to match the defined model. For good
command tracking response, the closed-loop system might respond like a well-damped

second-order system:

u)2

= L 2
Wina s2 + 2Cwps + w? (6.28)

95

vy model - Bode Disgram
T

ook

_anl

B0

Magnitude (dB)

a0 k-

-100

s
in
T

Phase (deq)
w
[=)

135+

T 1 T Lial Lo
10 10° 10 10" 10 10°
Fregquency (radizec)

Fig. 6.4. W model.

For yaw (¢), a damping factor (= 1.5 is chosen and { = 1.5 for pitch (). The

natural frequency w,, can be extracted from the settling time T|—_1gse. formula:

4.6
T, =

 Cwn

(6.29)

So, finally:
Wi 0
Wt = " (6.30)
0 Wi
Fig. 6.4 shows the bode plot of W,,4.
A command weighting function, fig. 6.5, W4, is selected as a first order butter-

worth filter which rolls off at high frequencies. Eq. 6.31 shows that W4 is a diagonal

matrix penalizing the two observed references and w.; = 27 fy.,, fu., = 1.

W _ Sjl’ufﬂlcl O
cmd — (6 3 1)
0 Wel

S+wel

o6

vy command - Bode Diagram

Magnitude (dB)

Phasze (deg)

Fregquency (radizec)

Fig. 6.5. W command.

The perfomance weighting function of the tracking error has a roll off frequency

of 1 Hz and then it flats again at 1000 Hz, it is depicted in fig. 6.6.

Wy 0
Worp1 = (6.32)
0 Wy
1
5710065 T 1
Wy, = 2rio00® T * (6.33)

1
5-5 + 1
1

2#10008 + 1

W, =
o %s—i—l

(6.34)
Each entry of the perfomance weighting function of the non tracking error, W, ¢2,
is selected as a low pass filter, with we. = 27 fu,, fu., = D, see fig. 6.7.

We2

S+ Weo

Wi, = (6.35)

Magnitude (dB)

Phaze (deq)

Magnitude (dB)

Phaze (deg)

=]
=1

Lo
=1

S
=

in
=1

o
=R~}

W perfomance 1 - Bode Diagram

-1

10° 10" 10° 10
Freguency (radfzec)

Fig. 6.6. W performance 1.

W perfomance 2 - Bode Diagram

Freguency (radisec)

Fig. 6.7. W performance 2.

o7

o8

vy actuator - Bode Diagram

Magnitude (dB)
o .
[=)

s L

Phasze (deg)

an b . L L . M
10 10" 107 107

Fregquency (radizec)

Fig. 6.8. W actuator.

Wt normalizes the plant input, fig. 6.8. The cut off frequency chosen is w, =

27h.
Wq

Wacti =
S + wy

(6.36)

Eq. 6.36 is one entry of a diagonal matrix € R?, where 7 denotes the number of

control signals.

Wact = diag([Wactl e Wacti]) (637)

The noise weighting function, W, is displayed in eq. 6.38 to penalize the positions
¥, 0§ and ¢. The maximum resolution of the sensors is 10 bits, that means that the
minimum perturbation that can be measured is 360/1024 degrees, based on this the

noise wieghting function is choosen in radians as:

360

Wn — I3><3
1024 % 57.3

(6.38)

99

9. H. synthesis

First, a state space realization that define P and K in fig. 6.2 is introduced!'!, the
state space dimensions of the plant and controller will be important, A € R"P*"P

and Ax € R'EX"K,

A| B, Bs
P = Cy | D1 Do (6-39)
CQ D21 0
AK BK
K= (6.40)
Ck | Di

Then, consider the close loop in fig. 6.2 which can be described as:

A+ ByDgCy ByCx | By + BaDg Doy
Acr | Bew
Yor = = BrCy Ak By Dy (6.41)
Cer | Der
Cr+ D12DgCy D1oCk | D11+ D1a D Dol
With the controller K, the closed-loop states becomes 37 = [27;2%] and the

plant matrices and the controller are replaced with the following matrices:

A 0| B | 0 By

A B B 0 0ol 0| I O
6 Dll ng = Cl 0 D11 0 D12 (642)
C 521 FT 0O I 0 DIT(BIT(

Cy 0|Dy | CT AT

The H., control problem is converted to a problem of solving a LMI.

60

For that, the following set of matrices are defined!"4/2:

Lp:={XeRmw™ X =XT>0,

1 1T
B AX + XAT + B,BY XCT + B, DY, By (6.43)
X X <0}
D12 C’lX + DllB? DHDﬂ — I D12

Lo ={Y eRmw™ Y =YT >0,

1 1T
cT YA+ ATY +CTC, YB, +CTDy o (6.44)
X X <0}
DY, BTY + DT,y DLDy — 1 DY,
X I
>0 (6.45)
I'Y

Let Lp and L¢ be defined by replacing the plant matrices in the above definitions
with the matrices in eq. 6.39. Note that, in this case, each set is a subset of (np +
nk) X (np + ng) real symmetric matrices.

A synthesis of order nx exists for the H,, problem, if and only if there exist
symmetric matrices X > 0 and Y > 0 satisfying eq. 6.43, eq. 6.44 and eq. 6.45 plus

the additional constraint:

X 1
rank <np+ng (6.46)
'Y

Once X and Y have been found satisfying eq. 6.43, eq. 6.44 and eq. 6.45, then
exists a matrix Xop € R XK satisfying!'%:
X 7

Xcop = (6.47)
? 7

2zt is a matrix such that N'(z+) = R(x) and ztz*? > 0. N(z) and R(z) denote
the nullspace and the range space of x, respectively.

61

Xoi = ' (6.48)
? 7

This matrix Xy, can be constructed by findind a matrix X, € R"?*"¥ such that
X —Y~ ! = X,XT], then eq. 6.49 has the properties desired above.
X X7

Xop = (6.49)
X, I

Finally, there is a LMI solution to eq. 6.50 for K that provides the state space

realization for a feasible H,, controller.

Hx., + Q"K' Px,, + P{. KQ <0 (6.50)
From eq. 6.50:

PXCL = |: ETXCL 0 QITQ :| (651)
o-[c on o] o5

—T — - =T

A Xep+XcA XoB C

Hxe, = B Xcr -1 DY, (6.53)

C Dy I

A H., controller is found using the techniques explained above, using Matlab
software. The results are shown in fig. 6.9 to fig. 6.12. A stable controller is achieved
with v = 0.8999.

62

0z T T T T T T T T T
Yaw Error
Pitch Errar H

Time sec

Fig. 6.9. H,, implemented simulation, errors. In the simulation the controller takes

the birotor from the initial condition vy, 8y to a reference point.

0.4 T T T T T T T T T

Vaw
Pitch |

03 1 1 1 1 1 1 1 1 1
0

Time sec

Fig. 6.10. H,, implemented simulation, positions.

0.025 T T T T T T T T T
Roll
002y Yaw rate]
Pitch rate
Rall rate

0.015 H

0025 1 1 1 1 1 1 1 1 1
0

Time sec

Fig. 6.11. H,, implemented simulation, roll angle and velocities.

062 T T T T T T T T T
Force Left
Faorce Right

Thrust Newtons

05
a

Tirme sec

Fig. 6.12. H,, simulation, thrust.

64

10. Conclusion

H., algorithms provide a powerful tool in control theory. The multivariable effects of
the mathematical model are not supressed in the process, thus giving a more accurate
response of the system. Robust control algorithms prove to be a well done option for

applications where perturbations and errors are present.

65

CHAPTER VII

IMPLEMENTATION

1. Introduction

=
‘J A
m

W Ny

Fig. 7.1. H, implementation diagram. The implementation diagram is just a subset

&

of the controller design block. Noises and disturbances are implicit applied

to the system.

Once the H,, controller is synthetized and the condition v < 1 is satisfied the
controller can be implemented. As can be seen in fig. 7.1, the implementation dia-
gram is a subset of the controller design block shown in fig. 6.3, thus only the part
compromising the controller and the plant is needed. Also, the references and mea-
surements inputs as well as the controller output must be scaled to be accorded with
the controller. In order to implement the controller for real time applications it must
be discretized, as explained below.

A low pass filter is included in the sensor output to account for the delay in the
system generated due to signal transmission and the wireless link between plant and

controller. This is a first order low pass filter given by:

W, = —— w, = 270.2243 (7.1)

S+ W

66

The controller is implemented in a National Instruments® CompactRIO® real
time controller using LabView® software. Please refer to the apendix for more infor-

mation.

2. MIMO frequency response

Classical frequency response methods had been powerful design tools widely used by
practicing engineers. There are several reasons for the continued success of these
methods for dealing with single-loop problems and multiloop problems arising from
some (MIMO) systems!!”). The connection between frequency response plots and
data that can be experimentally acquired and trained engineers find these methods
relatively easy to learn. Also, their graphical nature provides an important visual
aid that is greatly enhanced by modern computer graphics and these methods supply
the designer with a rich variety of manipulative and diagnostic aids that enable a
design to be refined in a systematic way. Finally, simple rules for standard controller
configurations and processes can be developed.

The singular value decomposition (SVD) is the tool used to calculate the fre-
quency reponse of a MIMO system. For any m X p complex matrix @), there exist

m X m and p X p unitary matrices Y and U, and a real matrix 3, such that:

X 0
Q=Y ur (7.2)
0 0
In which ¥ = diag(oy,--+ ,0,) with 07 < 09 < ---0, > 0 and min(m,p) < r.

When @ is real, Y and U may be chosen orthogonal. Eq. 7.2 is called a SVD of Q.

67

The maximum singular value (@) and the minimum singular value ¢(Q) play a

particularly important role in the frequency analysis and are given by the identities:
0(Q) = max|y)=1[|Qull (7.3)

0(Q) = minjy = [|Qu] (7.4)

u is a column of the unitary matrix U. The vector norm is the Euclidean norm.
Thus 7(Q) and o(Q) are respectively the maximum gain and the minimum gain of
the matrix Q.

For a MIMO system given by the transfer function G(s), the frequency response
is calculated by eq. 7.5 over all frequencies, —oo < w < oo. Fig. 7.2 shows the
frequency reponse of the controller K previously calculated, the frequency at the

maximum gain is 127.6175 rad/sec or which is the same 20.3109 Hz.

Frequency response = 7(G(jw)) (7.5)

Caontraller K Singular Walue plot

2R E

Gain (dB)

30 F

35+

40t

45t

Al I I I I
1o 10 10° 100 10 10
Fregquency (rad/s)

Fig. 7.2. H, controller frequency response. The frequency reponse of the controller K

can be seen in this plot. The frequency at the maximum gain is also shown.

68

3. Tustin’s method

The technique used to discretize is the Tustin’s method (also called bilinear transfor-
mation), which is used in digital signal processing and discrete-time control theory
to transform continuous-time system representations to discrete-time and vice versa.

The Tustin’s method is a conformal mapping, often used to convert a transfer
function H,(s) of a linear, time-invariant (LTT) system in the continuous-time domain
to a transfer function H,(z) of a linear, shift-invariant filter in the discrete-time
domain.

This method maps positions on the jw axis, Re[s] = 0, in the s-plane to the unit
circle, |z| = 1, in the z-plane, is a first-order approximation of the natural logarithm
function that is an exact mapping of the z-plane to the s-plane. When the Laplace
transform is performed on a discrete-time signal (with each element of the discrete-
time sequence attached to a correspondingly delayed unit impulse), the result is the

7 transform of the discrete-time sequence with the substitution of:

g T2 148T)2
Zz =€ = ~
e=sT/i2 1 —sT)/2

(7.6)

T is the sample time (the reciprocal of the sampling frequency) of the discrete-
time system.

The above bilinear approximation can be solved for s or a similar approximation
for s = (1/7)In(z) can be performed. In this case, the sampling time is chosen as
T = 20ms, the working period of the motors.

The transformation preserves stability and maps every point of the frequency
response of the continuous-time system, H,(jw,), to a corresponding point in the
frequency response of the discrete-time system, Hy(e?*¢T) although to a somewhat

different frequency, due to frequency warping explained below.

69

This means that for every feature that one sees in the frequency response in the
continous time, there is a corresponding feature, with identical gain and phase shift,
in the frequency response in the digital domain, perhaps, at a somewhat different
frequency.

This is barely noticeable at low frequencies but is quite evident at frequencies
close to the Nyquist frequency of the system.

The inverse of this mapping (and its first-order bilinear approximation) is:

z— 2—1)\3 2—1\° 2—1\7
s o= k() = 2| iED) HLE) HIED -
~ 221 ~ 21-—271 '
™~ T4l T T 1421

The bilinear transform essentially uses this first order approximation and substi-

tutes into the continuous-time transfer function H,(s). That is:

22—1
—H,|Z :
z—1 (TZ+].) <78)

2
T z+1

s

A continuous-time system is stable if the poles of its transfer function fall in the
left half of the complex s-plane. A discrete-time system is stable if the poles of its
transfer function fall inside the unit circle in the complex z-plane.

The Tustin’s method maps the left half of the complex s-plane to the interior of

the unit circle in the z-plane, thus, conserving stability.

4. Frequency warping

To determine the frequency response of a continuous-time system, the transfer func-
tion H,(s) is evaluated at s = jw. Likewise, to determine the frequency response of
a discrete-time system, the transfer function Hy(z) is evaluated at z = /%7 which is

on the unit circle.

70

When the actual frequency of w is input to the discrete-time system designed
by use of the Tustin’s method, it is desired to know at what frequency, w,, for the

continuous-time system that this w is mapped to.

Hy(z) = H, (2 - 1) (7.9)

Tz +1
" B 9 eiwT_q - 9 eij/2(eij/2_e—ij/2)
Hy(e*") = H, (fejwul) = H, (T R e
_ 2 sin(wT/2) _ -2 T 7.10
- Ha (jf) cos(wT/Q)) - Ha (]T - tan (wg)) ()

= H, (jwa)
Eq. 7.10 clarifies that every point on the unit circle in the z-plane is mapped to

a point on the jw axis on the s-plane. The discrete-continuous frequency mapping is:

2 T
Wa = 5 tan <w§) (7.11)

And the inverse mapping is:

2 T
W= arctan (M“E) (7.12)

The gain and phase shift that the system has at frequency w in the discrete-time is
the same gain and phase shift that the continuous has at frequency (2/7") tan(wT'/2).

This means that every visiblefeature in the frequency response in continuous-
time is also visible in discrete-time but at a different frequency. For low frequencies,
that is, when w < 2/T or w, < 2/T, w ~ w,, one can see that the entire continuous
frequency range —oo < w, < oo is mapped onto the fundamental frequency interval
—F<w< %

The continuous-time frequency w, = 0 corresponds to the discrete-time frequency
w = 0 and the continuous-time frequency w, = 400 correspond to the discrete-time

frequency w = 47 /T.

71

There can be seen that there is a nonlinear relationship between w, and w. This
effect of the Tustin’s method is called frequency warping. The continuous-time system
can be designed to compensate for this frequency warping by setting w, = %tan (w%)
for every frequency specification that can be manipulated (such as corner or center
frequency). This is called pre-warping design.

The main advantage of the warping phenomenon is the absence of aliasing dis-
tortion of the frequency response characteristic, such as observed with impulse in-
variance. It is necessary, however, to compensate for the frequency warping by pre-
warping the given frequency specifications of the continuous-time system. These pre-

warped specifications may then be used in the Tustin’s method to obtain the desired

discrete-time system. Fig. 7.3 shows the pole-zero map of the discretized controller.

Controller K Paole-Zera Map

. |
04 .

02 E B

Imaginary Axis

(o]

. T
%
%
#
x
*
x
%
=

02k : i
04F]
Ok - R

a8k : -

-1 1 I T TV UOUTTRY TSR | 1
-1 -0 -0 -0.4 -0.2 u] 0.z 0.4 0g 0.s 1

Real Axis

Fig. 7.3. H, controller pole-zero map. Being the controller K stable in continous time
the poles of its tranfer function in discrete time rest inside the unit circle in
the complex z-plane. The frequency chosen to discretize was w = 275 rad/sec
and the period T = 0.20 sec.

5. Conclusion

72

A simulation is depicted from fig. 7.4 to fig. 7.6. The controller takes the birotor from

1o =0, 0y = pi/3 to the zero position.

yr Vaw radians

g Pitch radians

a1k

02k

03F

04t

04

ask

05

0.4r

03r

0zr

01r

| 1 1 1 1 1 1
10 20 30 40 a0 G0 70
Time sac

Fig. 7.4. H, implemented, ¢ yaw.

— B Pitch

0ar

| 1 1 1 1 1 1
10 20 30 40 50 B0 70
Time sec

Fig. 7.5. H,, implemented, 6 pitch.

¢ Roll radians

Thrust

Fig. 7.7. H, implemented, thrust.

in the plant.

0.5

0.4

0.3

0.2

0.1

0.1

-0.2

-0.3

-0.4

045

ne

0.6

0.4

0.2

73

10 20 30 40 50 G0 70
Time sec
Fig. 7.6. H,, implemented, ¢ roll.
Left
— Right |
10 20 30 40 50 G0 70
Time sec

These values are scaled and rounded to be applied

74

CHAPTER VIII

CONCLUSION
In this thesis a real time application of robust control theory is employed succesfully.
It is shown that the H,, control methods can be used with tools available in the
market.

The growth of tecnological and scientific research have made possible, for tech-
niques like the one presented in this thesis, to be more accesible for real time opera-
tions, increasing the confidence in deploying them.

Robust control techniques are more efficient and have tremendous flexibility al-
lowing its use in a wide range of applications. This thesis presents the results and

a methodical progression to achieve the goals aimed, in this case, the control of a

3DOF birotor helicopter.

1]

(6]

[7]

8]

5

REFERENCES

P. Berner, Orientation, Rotation, Velocity, and Acceleration and the SRM,

Synthetic Environment Data Representation and Interchange Specification, 2007.

J. Escareno, S. Salazar-Cruz and R. Lozano, “Attitude stabilization of a con-
vertible mini birotor,” in Proc. of the 2006 IEEE International Conference on
Control Applications, Munich, Germany, October 4-6 2006, Institute of Electrical

and Electronic Engineers, pp. 2202-2206.

The Johns Hopkins University, Handout Number 1 about Linearization, De-

partment of Electrical and Computer Engineering, 2006.

J. Mazurkiewicz, How a Brushless Motor Operates, Fort Smith, Arkansas,

Baldor Electric.

Microchip Technology Inc., PIC16F87XA Data Sheet, Chandler, Arizona, Mi-

crochip Technology Inc., 2003.

National Instruments, LabVIEW User Manual, Austin, Texas, National Instru-

ments, 2003.

J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems,
Boca Raton, Florida, Chapman and Hall/CRC, 1% edition, 2004.

A. Emami-Naeini, G. F. Franklin and J. D. Powell, Feedback Control of Dynamic

Systems, Upper Saddle River, New Jersey, Prentice Hall, 4™ edition, 2002.

9]

[11]

[12]

76

G. Balas and S. Ganguli, “A TECS Alternative Using Robust Multivariable
Control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit,

Montreal, Canada, August, American Institute of Aeronautics & Astronautics,

pp. 4022-4028.

G. E. Dullerud and F. Paganini, A Course in Robust Control Theory, A Convex

Approach, New York, Springer, 15 edition, 1999.

J. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, New York,

Macmillan Publishing Co., 15* edition, 1991.

V. Balakrishnan, S. Boyd, E. Feron and L. E. Ghaoui, Linear Matrix Inequal-
ities in System and Control Theory, Philadelphia, Pennsylvania, Society for

Industrial and Applied Mathematics, 15 edition, 1994.

F. Hansen, Convex Matrix Functions, Copenhagen, Denmark, Institute of Eco-

nomics, University of Copenhagen.

T. Iwasaki and R. E. Skelton, “All controllers for the general h-inf control
problem: Lmi existence conditions and state space formulas,” Automatica, vol.

30, no. 8, pp. 13071317, 1994.

J. B. Burl, Linear Optimal Control, H, and H,, Methods, Menlo Park, Califor-

nia, Addison-Wesley, 15* edition, 1999.

G. Balas, R. Chiang, A. Packard and M. Safonov, Robust Control Toolbox 3
User’s Guide, Natick, Massachusetts, The MathWorks Inc., 2009.

M. Green and D. J. N. Limebeer, Linear Robust Control, Upper Saddle River,

New Jersey, Prentice Hall, Inc., 1% edition, 1995.

APPENDIX A

ELECTRICAL DIAGRAMS

The electrical diagrams were done with PCB123 software.
PIC board on the helicopter.

This board reads the sensors and turns on the motors.

7

AT e
LWi78L0S E\;:ﬂaEF?_Dlp_aw
R14.7k [0O0
c20.1p ag
= S>>
OSCHELKOUT J—“ﬁ
; RESfCEYANT O : 1 20fHE |
. —28 paTPCD RETAVVRHANE [2— [} :
Sensari — REEFEC REO/RDYANS [5—— T
M 3 T
4 2L Fed RO7/PSPT 22
26 FEsPGM EDEPSPE
e A . e '
7 BOANT - EoECES [Blgtooth RN-45
i b o —— i
RASIANAISS RE1/PSP]
R T R S
2 : 4 5 2 I3 4
. A2 IAN DVREF- RCHRADT
Senscr2 L] ATIAN T REBMH/CK, [22
M e ReA/SDIS0A
13 oo RESiSEREEL (9 —
bde e 1 LR=rPP ReuTIOSTCORE: e — y
be——— e : RCITIOSDTICK (Ha— Reraal
T — i : ; :
i m——
| o
T
PIC1BES]7_DIP_40 I
gl]
o1 Led
R3ATH |08 :
>]
osc2mLkouT He
; - Ml
RE/CSTANT
40-Favpon - RE 1 MRTANS - [3—
—a3 FREPGT - Ce Co - REGIRDMANS - [B—0 . ..
—i8 Fas : -
2L Faa RD7ESET (33
3 PG ROE/PSPE
25 RE2 ROS/PEPS
3 : : EO4/PSPa:
e -
Roshn G EASANAISS RD1/ESET (£
— & RaaTocK RODO/PEPO T T
EAIANINVREE+ 4
—— S RN 2VREF- - ECTRX/DT (58— Cy
— Falian . RCETXICK - [£3 |
4 : : RCA/SONSDA. 22— W otorBack
SC1SCLKIN RC3/SCRAECL: 83—
g ReoiccPt (HE— 1
HCLR=RR RC1/T10SICER2
i . RCOTIOSOITICK - (HH— .
.| @@ . . X
wa

D= —i

i X2 20mHz

Electrical conection onboard the helicopter between sensors and the PIC board.

Speed Controller 1 Bluetooth1
: ! Power In ! : ! : Power In |
MotarRight Power Opt . ElQ:;_lEV— . 3 B 5l_1-2v
1 ; o] Pt o E Sensor Yaw T Sensor 1 |
[" Mg] -~ gl :
............... : ; —p & 4
Al p 3 el
. . . | . . AP
2 i 2 =
. i =]
f : f s p Sensor Pitch i
. Speed Controller 2 ’ . . M1 &1
; : : ; 2z ; &
.................... Poweklemss sl st sy s s s] e Rl REde anbensomid B
Z } tJ: 3 . il ; ; 117
! i : i i 7]
M otorleft Fower Opt E B3 102w i Sensor Roll 3,
1 1 PN | T . 1 3 5
] 2| ;] - T
1 5] 3]
[L] T
.................... 3 AT SR TN SRR SRR mdwen menlen st swween swnciall
. M otarRight/Left
. 3 . 3 ; 1
E Speed Controller 3 f _|_ 2[|
: ! Power In ! : ! : ! WotarBack |
¢ B memee sella nes DJ: i : i 1
MotarBack Power Opt ; B4 ﬁ;_lzu 3 : 3
- L PWM | i I I : :
[s Pl T | |
; ; 1 ;
i 3 3 i

Conection of the bluetooth module with the CompactRIO controller.

Fowerln

:
=
[E—
4|
e ——
&
i —
e —
e - B
r=

. Serial Port. . .

Bluetooth2

|

v DC Gt

1
2
3
3

—

Digifal Optept L. Digital Inplt 1. L

Ethermnet:

[H

79

80

APPENDIX B

PIC CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty
for the codes, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose and noninfringement
of third party rights. The entire risk as to the quality and performance of the codes
is with the user. Should the codes prove defective, the user assume the cost of all
necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use
the codes (including but not limited to loss of data or data being rendered inaccurate
or losses sustained by the user or third parties or a failure of the codes to operate
with any other programs), even if such holder or other party has been advised of the

possibility of such damages.

PIC 1. Code to read sensors.

81

Send and recieve data from the Compact RIO controller via wireless bluetooth
communication. This code also sends the information to PIC 2.

#include <16F877A.h>
#device adc=10 //ADC convertion 10 bits
#include <stdlib.h>
#define LED PIN_C4

#use delay (clock=20000000)

#use rs232(baud=57600, xmit=PIN_C6,
#byte PORTB=0x06 //Define PORTB in memory location
#byte PORTC=0x07 //Define PORTC in memory location
#byte PORTD=0x08 //Define PORID in memory location
#byte TXREG=0x19 //Define TXREG in memory location
#byte RCREG=0x1A //Define RCREG in memory location

#define BUFFER.SIZE 3

unsigned char
unsigned char
unsigned long
unsigned long
unsigned long

PWMX[BUFFER SIZE | ;

c¢; // Variable to read
valueY; // Variable to
valueP; // Variable to
valueR; // Variable to

int8 nextin=0;

#INT RDA // Recieve interrupt
void RS232C_Recieve_Interrupt (){
c=getc (); // Read character

PWMX[nextin++|=c;

rcv=PIN_C7)

character
read ADCO
read ADC1
read ADC2

// Save character in buffer

if (nextin >= BUFFERSIZE){ // If last character send ADC
nel (0); // Set channel 0

}

set_adc_chan
delay_us (20)

valueY=read_adc ();

set_adc_channel (1);

delay_us (20)

valueP=read_adc ();

set_adc_chan
delay_us (20)

i // Wait 20 us

i // Wait 20 us

// Read convertion
// Set channel 1

// Read convertion

nel (2); // Set channel 2

i // Wait 20 us

valueR=read_adc (); // Read convertion

printf(”%41d%41d%41d” ,valueY ,valueP ,valueR); // Send all
nextin=0; // Reset buffer position

void conf(){ // Function that configures ports
set_tris_a (0xFF); // Port A all input
setup_port_a (ALL.ANALOG); //
setup_adc (ADC_CLOCK_DIV_32);

set_tris_c (0b11000000);

set_tris_b (OxFF);

// Port B

set_tris_d (0x00); // Port D

enable_interrupts (INT_RDA);
enable_interrupts (GLOBAL);

output_high (LED);

Port A all analog
// Turn on adc

//LED PORT Output

// USART TX & RX
all input
all output

// Enable recieve

// Turn on LED

; // Initialize wvariables

interrupt

PWMX[2]=0;
valueY =0;
valueP =0;
valueR =0;

}

void main(){

int a;

a=1;
conf ();

while (a==1){
PORTD=240; //Send value to
delay_ms (2);
PORTD=PWMX[0] ;
delay_ms (2);

PORTD=245;
delay_ms (2);
PORTD=PWMX [1] ;
delay_ms (2);

PORTD=250;
delay_ms (2);

PORTD=PWMX| 2] ;
delay_ms (2);

motors

82

PIC 2. Code to move the brushless motors.

#include <16F877A . h>

#include <stdlib.h>

#define LED PIN_BO

#define MOTORB PIN_C1 // Motor Back Port
#define MOTORR PIN_C5 // Motor Right Port
#define MOTORL PIN_C6 // Motor Left Port

#use delay (clock=20000000)

#byte PORTB=0x06 //Define PORTB in memory location
#byte PORTC=0x07 //Define PORTC in memory location
#byte PORTD=0x08 //Define PORTD in memory location

unsigned char CHANN,PWMX;

unsigned char VALUER, VALUEL, VALUEB; // PWM values
void Interrupt ()

{
CHANN=PORTD;

// Store which channel

if ((CHANN>=239)&&(CHANN<=241)) // Store Channel
PWMX=1;

else if ((CHANN<238)&&PWMX==1)) // Do PWM
VALUEL=CHANN;;

else if ((CHANN>=244)&& (CHANN<=246))
PWMX=2;

else if ((CHANN<238)&& PWMX==2))
VALUER=CHANN;

else if ((CHANN>=249)&& (CHANN<=251))
PWMX=3;

else if ((CHANN<238)&& PWMX==3))
VALUEB=CHANN;

}

void main ()

unsigned long duty;
int a, i;
set_tris_b (0x00); // Port B all Output
//LED PORT Output
set_tris_c (0x00); //PWM2 Output
set_tris_d (0xFF); // Port D all Input

PWMX=0; // Initialize these variables
VALUEL=0;
VALUER=0;
VALUEB=0;

output_high (LED); // Turn on LED

a=1;

i=1;
duty=4500—1107;
for(i=1 ; i<=250 ; i++)
output_high (MOTORL) ;
delay_-us (999+1);
output_low (MOTORL) ;
delay_us (1001 —1);

output_high (MOTORR) ;

83

delay_us (999+1);
output_low (MOTIORR) ;
delay_us (1001 —1);

output_high (MOTORB);
delay_us (999+1);
output_-low (MOTORB) ;
delay_us (1001 —1);

delay_us (1300);
delay_us (1001 —2/2);

delay_us (500);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_us (300);
delay_us (500);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (300);
delay_us (500);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (300);
delay_us (500);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();

while (a==1)

{

output_high (MOTORL) ;
delay_us (1107+VALUEL) ;
output_-low (MOTORL) ;
delay_us (893—VALUEL);

84

output_high (MOTORR);
delay_us(1107+VALUER);
output_low (MOTORR) ;
delay_us (893 —VALUER);

output_high (MOTORB);
delay_us (1107+VALUEB) ;
output_low (MOTORB) ;
delay_us (893 —VALUEB);

delay_us (1300);
delay_-us (1001 —-2/2);

delay_us (500);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (300);
delay_us (500);
Interrupt ();
delay_us (501 —2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_-us (300);
delay_us (500);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_-us (300);
delay_us (500);
Interrupt ();
delay_us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();
delay_-us (501 —-2/2);
Interrupt ();

85

86

APPENDIX C

MATLAB CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty
for the codes, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose and noninfringement
of third party rights. The entire risk as to the quality and performance of the codes
is with the user. Should the codes prove defective, the user assume the cost of all
necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use
the codes (including but not limited to loss of data or data being rendered inaccurate
or losses sustained by the user or third parties or a failure of the codes to operate
with any other programs), even if such holder or other party has been advised of the

possibility of such damages.

87

Code to calculate densities.

clear all; close all; clc; fig=1;
%% Aluminium UNION PIECES

Volume=1.785%0.75"24+2%0.6"2—-0.25" 2% pi /4%1.565—0.16"2xpi /4%.625; % Inches
Volume=0.000016387064*Volume; % Meters

Mass=0.073; % Kilograms

rhoUnion=Mass/Volume

%% CounterWieght

Volume=0.0755%0.0477%0.037—0.008"2%pi /4%0.037; % Meters
Mass=1.004; % Kilograms
rhoCounter=Mass/Volume

%% ScrewL

Volume=(0.008"2%pi/4%0.140—(0.008 —2%.0006) "2xpi /4%0.140)/2; % Meters
Volume=0.008"2%pi/4%0.140 — Volume; % Meters

Mass=0.04; % Kilograms

rhoScrewL=Mass/Volume

%% Screw

Volume= 0.00000047; % Meters
Mass=0.003; % Kilograms
rhoScrew=Mass/Volume

%% Mounting

Volume=0.00001231; % Meters
Mass=0.019; % Kilograms
rhoMounting=Mass/Volume

%% FanPlastic

Volume=0.00000597; % Meters
Mass=0.005; % Kilograms
rhoFan=Mass/Volume

%% Motor

Volume=0.00001771; % Meters
Mass=0.034; % Kilograms
rhoMotor=Mass/Volume

%% Link

Volume=(114+7/8)*(0.75%x0.75—-0.6%0.6); % Inches
Volume=0.000016387064*Volume; % Meters
Volume=Volume —0.008" 2% pi /4%2x0.0016*4;
Mass=0.087; % Kilograms

rhoLink=Mass/Volume

%% Battery
Volume=0.00003292; % Meters
Mass=0.105; % Kilograms
rhoBattery=Mass/Volume

%% Electronics

Volume=0.00005052; % Meters
Mass=0.098; % Kilograms
rhoElectronics=Mass/Volume

%% SpeedCntr
Volume=0.00000517; % Meters
Mass=0.017; % Kilograms
rhoSpeedCntr=Mass/Volume
%% Cables
Volume=0.00003960; % Meters

Mass=0.035; % Kilograms
rhoCables=Mass/Volume

88

Code to calculate COM points and motor gains.

clear all; close all; clc; fig=1;

%% Motor Gain

BitIn=[0 25 34 48 59 68 80 97 102 109 120 130 144 158 164 178 195

210 230 235];
Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83 91 ..
97 106 110]%9.81/1000;

norder=1;
Kgain=polyfit (BitIn , Thrust ,norder); %Get linear equation that
%Bytes and Thrust

Kvr=Kgain (1); %Gain motor right
Kvl=Kgain (1); %Gain motor left
Tvr=0.3;

Tvl=0.3;

Bit0=—Kgain(2)/Kgain (1); %No thrust speed
%% Plot fitted curve

% P(1)+X"N + P(2)+X" (N=1) +...+ P(N)*X + P(N+1).
FitByte=0:255; % Byte vector
FitThrust=zeros(size (FitByte));
for i=0:norder

FitThrust=Kgain(i+1).*FitByte." (norder—i)+FitThrust;
end

figure (fig); fig=fig+1;

plot (BitIn , Thrust,’r’); hold on;

plot (FitByte ,FitThrust); hold off; title ’Byte vs Thrust ’;
legend ('Real’,’Fitted ’); xlabel ’Byte In’; ylabel ’'Thrust’;

%% Bytes to pitch
% save (’datapitch’,’ datapitch.data’);

datapitch=load (’datapitch.mat’); % Load data
data=datapitch.data;

relates

xt=[5.2 12 24 38 60 79 98 123 142 160 180 192 215 231 248 269 287 300
316 336 350 368 387 403 417 436 454 495 516]; % Initial times

xt=[xt 525 556 575];
xf=xt+40.2; xf=[xf 552 572 590]; % Final times

[yl,timl]=labviewdata (data,10,0,fig ,xt(1:26),xf(1:26),2);
[v2,tim2]=labviewdata(data,10,0,fig ,xt(27:end),xf(27:end) ,2);

for i=fig+1l:length(xt)+1 % close figures
close (figure(i))
end

pitch=zeros (size (xt)); % make vectors
byte=zeros (size (xt));
for 1=1:26
pitch(i)=yl.(char(i+64))(end,2);
byte (i)=mean(mean(yl.(char(i+64))(:,7:8)));
end
for i=1l:length (xt)—26;
pitch (i426)=y2.(char(i+64))(end,2);
byte (i+26)=mean(mean(y2.(char(i+64))(:,7:8)));
end
pitch=pitch —0.0184; % trim applied due to fans with no bytes

% sort data

applied

89

90

figure (fig); fig=fig+1;
plot (byte,pitch ,’r’); title ’Bytes vs Pitch — real ’;
xlabel ’'Byte In’; ylabel ’Pitch’;

%% Model parameters

Mp=2.02270866; % Link2 mass kilograms

Mr=0.45695968; % Link3 mass

lc=[-0.11010108,0,—0.01657261]’; % Link2 center of mass meters
L=0.67098; % Link2 length meters
1¢2=[0.00079903+L,0,—-0.02671306]’; % Link3 center of mass meters

Imodel=Mp=*lc+Mrx1c2)/(Mp+Mr); % Model total center of mass

g=9.81; % Gravity m/s "2
ThrustModel=(Mp+Mr)*g+lmodel (1) /2/L; % Model Thrust at pitch zero

%% Real parameters

ByteReal=interpl (pitch ,byte,0); % Real bytes at pitch 0
ThrustReal=interpl (BitIn , Thrust ,ByteReal); % Real thrust at pitch 0

% 2+%FxL=mgx*(l*xcos(x)—1’*«sin(x)); % Torque formula
F=ThrustReal;
m=Mp+Mr;

Ireal=zeros (size (lmodel));
Ireal (1)=2%F«L/m/g;

thrust=interpl (BitIn , Thrust, byte);
leda=(2.xthrust.*L./m./g—lreal (1).*cos(pitch))./(sin(pitch));

plot (byte,lcda,’r’); title ’Bytes vs Z location of center of mass — real ’;

)

xlabel 'Byte In’; ylabel ’Z location of center of mass (meters)’;
Ireal (3)=mean(lcda);
%% Display data

disp (’Kgain ’);
disp (Kgain);

disp (’ThrustModel ThrustReal ’);
disp ([ThrustModel ThrustReal]);

disp (> 1lmodel lreal 7);
disp ([lmodel lreal]);

91

Code to read data from LabView.

function data = lvm_import(filename)

%% lvm_import

% DATA = LVM.IMPORT (FILENAME)

%

% LVM_IMPORT returns the data from a .lvmm text file created by LabView.
% Introduction

% DATA = LVMIMPORT (FILENAME) returns the data from a .lvm text

% file created by LabView.

%

% FILENAME The name of the .lvm file

%

% DATA The data is returned as a MxN array: M columns, N data
% points.

%

% This code will import the contents of a text—formatted LabView .lvm file.

%% open the data file
fid=fopen (filename);

if fid "= —1, %then file exists
fclose (fid);

else
filename=strcat (filename ,’.lvim’);
fid=fopen (filename);
if fid "= —1, %then file exists

fclose (fid);

else

error ([’ File not found in current directory! (> pwd ’)’]);
end
end
fid=fopen (filename); % open the validated file
fprintf(1,’\nImporting %s:\n\n’, filename);

%% read the file
linein=fgetl (fid); % process the file header
% first , is it really a LVM file?
if “strecmp(sscanf(linein,’%s’),’LabVIEWMeasurement ’)
try
data.Segmentl.data = dlmread (filename ,’\t’);
fprintf(1,’This file appears to be an LVM file with no header.\n’);
fprintf(1,’Data was copied, but no other information is available.\n’);
return
catch
error (’This does not appear to be a text—format LVM file.’);
end
end

%% process file header
while 1
linein=fgetl (fid); % get a line from the file
% exit when we reach the end of the header
if strecmp(sscanf(linein,’%s’), **x+*End_of_Headerxxx")
break
end
end

%% process segment
while 1
linein=fgetl (fid); % get a line from the file
% exit when we reach the end of the header
if strcmp(sscanf(linein,”%s’), %+ End_of_Headerxx’)
break

end
end % end reading segment header loop

% after header is the row of column labels
linein=fgetl (fid); % Read column label
data = cell2mat (textscan (fid ,’%f’)); % Read data

%% finish
fprintf (1,...
’Import complete.
fclose (fid); % close the file

return

File has %s X—Columns and %d data Segments.\n’,’1’,1);

92

93

Code to do parameter estimation.

clear all; close all; clc; fig=1;

%% Initial conditions

A=0; % steady state constant

B=1; % cosine magnitude

z=0; % damping factor

phi=0; % phase angle

We=1/100; % weighting matrix, relative importance of each measure
eps=le—T7; % tolerance

imax=20; % max number of iterations

%% Read LabView data for pitch
data=lvm_import (’pichdamp.lvm ’); % import data

xt=[47 95 136.2 208 237 282 355 394.5 503 580 623]; % select initial times
xf=[83 125 165 222 270 330 390 435 532 615 660]; % select final times

fig2=fig; smoothsnl=0; nsignal=10;
[ypitch ,timpitch , fig]=labviewdata(data,10,smoothsnl, fig ,xt,xf,2); % sort

for i=fig2:fig % close figures
close (figure(i))

end

fig=fig2;

%% Estimate parameters for pitch

xcpitch=zeros (length (xt),5);
for i=1l:length (xt)

sele=char(i+4+64); % select set of data to estimate parameters

pitch=ypitch.(selc)(:,2); pitch=decimate(pitch,10); % select data
ytil=pitch; % measured data

t=timpitch.(selc)—timpitch.(selc)(1); t=decimate(t,10); % select time

% select initial frequency
if (sele=="A")||(selc=="B")||(selc=="C")|]|(selc==D’)|]...
(sele=="J") || (selc=="K")
£f=0.15; % ABCD J K
elseif (selc=="E’)||(selc=="F")
£f=0.2; % E F
elseif (sele=="G’)||(selc=="H")||(selc=="1")
£=0.25; % G H I
end

xcpitch (i,:)=est_states (A,B,f,z,phi,ytil ,t,We,eps,imax,0,0);

end
xcpitch

%% Read LabView data for roll
data=lvm_import ('rolldamp .lvim ’); % import data

xt=[94.3 188.5 203.8 225 266.4 290.2 325.7 337];

xf=[110 200 215 240 280 310 335 354];

fig2=fig; smoothsnl=0; nsignal=10;
[yroll ,timroll , fig]=labviewdata(data,10,smoothsnl, fig ,xt,xf,3); % sort

for i=fig2:fig % close figures
close (figure(i))

end

fig=fig2;

%% Estimate parameters for roll

xcroll=zeros (length (xt),5);
for i=1:length (xt)

selc=char(i+64); % select set of data to estimate parameters

roll=yroll.(selc)(:,2); roll=decimate(roll ,10); % select data
ytil=roll; % measured data

t=timroll.(selc)—timroll.(selc)(1); t=decimate(t,10); % select time

% select initial frequency

if (selc=="A")||(selc==B’)||(sele=="C")||(selc=="D")
f=0.15; % A B CD

elseif (selc=="E’)||(selc=="F’)||(selc=="G")||(sele=="H")
f=0.2; % EF GH

end

xcroll (i,:)=est_states (A,B,f,z,phi, ytil ,t,We, eps,imax,0,0);

end
xcroll

%% Calculate damping coefficients

Ir=0.01541260; % Inertia in roll
Ip=0.35432307; % Inertia in pitch

% for pitch
wpitch=mean(xcpitch (:,3)); % Natural frequency
kpitch=wpitch "2xIp; % Spring constant

zpitch=mean(xcpitch (:,4)); % Damping ratio
format long; dampP=zpitchx2xsqrt (kpitch*Ip) % Damping
wpitch

zpitch

format short

% for roll
wroll=mean(xcroll (:,3));
kroll=wroll "2x1Ir;

zroll=mean(xcroll (:,4));
format long; dampR=zroll*2xsqrt(kroll*Ir)
format short

94

Function est_states.

function xc=est_states (A,B,f,z,phi,ytil ,t,We,eps,imax, fig ,6verbose)

%

JEST_ STATES estimates the states of the damped cosine function by

% nonlinear least squares; otherwise known as Gaussian least squares

% differential correction.

% EST_STATES (A, B, F,Z,PHI, YTIL, T,WE, EPS, IMAX)

%

% XC estimated states (A B w,(2xpixf) z phi)

% A = steady state constant

% B = cosine magnitude

% F = angular velocity

% Z = damping factor

% PHI = phase angle

% YTIL = measured data, column vector

% T = time, row vector

% WE = weighting matrix, relative importance of each measure

% EPS = tolerance

% IMAX = max number of iterations

% FIG = 0 — no plot, >0 — plot number for answer

% VERBOSE = 1 — show iteration progress, 0 — don’t show

%

% The damped cosine function is: fx=A4B.xexp(—z.*t).*cos(w.*t+phi)

%

% Sintax example:

% xc=est_states (0,1,0.15,0,0,ytil ,;t,1/100*xeye(2),le—4,15,1)

%

% Estimation algorithm

%

% Model

% f(x)

%o \

% |

% A%

% Determine

% df/dx

% \

% i=0 |

% initial xc |

% \

% A%

% delyc=ytil —f (x)

% | > Ji=delyc '«sWxdelyc

% | H=df/dx |

% | | xc

% =i+l |

% |
|
|

\
\
% \Y%
% no delx=inv (H*WxH)*H *Wx delyc
% | \
% yes max |
% STOP < iterations? Vv yes
% " delJ<eps/norm (W)?
% | \
% | no |
% | \%
% | xc=xc+delx

> STOP

%% Initial conditions

w=2xpixf; % angular velocity

95

i=0; % iteration number

%% Get partial derivatives

%

% syms A B phi t w z

% fx=A+B.xexp(—z.*t).xcos(w.*xt+phi);

%

% x=[A B w z phi]’; % vector of estimates

%

% H=jacobian (fx ,x)

% H=[1, exp(—z.*t).xcos(w.xt+phi), —B.xexp(—z.xt).*sin(w.xt+phi).*xt,

% —B.xt.xexp(—z.*%t).xcos(w.xt+phi)];

% H=[1, exp(—z.*t).xcos(w.xt+phi), —B.xexp(—z.xt).*sin(w.xt+phi).*xt,

% —B.xt.kxexp(—z.%t).*cos(w.xt+phi), —B.*xexp(—z.%t).*sin(w.*t+phi)];
%

%% Estimation of Parameters

J=zeros (imax+1,1); J(1)=1000; % initialize
est=zeros (imax,6);

delJ =1000;

while (i<imax)&&(delJ>(eps/norm(We)))

% Iteration number
i=i+41;

% State estimates
est(i,:)=[1i ABw z phi]; % save estimates

xc=est (i,2:end); % update estimate vector x

if verbose==1
disp (’Iteration A B w z phi”);
disp(est (1:i,:)); % display estimated

end

% Step 1

fx=A+B.xexp(—z.*t).*xcos(w.xt+phi); % function to estimate
delyc=ytil —fx ’; % residual measurements

J(i+1)=delyc ' «Wexdelyc; % optimization function
Hl=1xones(size(t)); % df/dx1
H2=exp(—z.xt).* cos(w.xt+phi); % df/dx2

H3=B.xexp(—z.*t).*sin (w.x t+phi).*t;
H4=B.xt.xexp(—z.*t).xcos(w.*t+phi);
H5=B.xexp(—z.*t).*sin (w.x t+phi);

H=[H1’ H2’ H3’ H4’ H5’]; % H, jacobian matrix df/dx

% Step 2
delx=inv (H’*WesH) «H’«Wexdelyc; % corrections

% Step 3
delJ=abs (J(i+1)—J(i))/J(i+1); % minimization tolerance

% Step 4

if delJ>(eps/norm(We)) % update estimate vector x
xc=xc+delx ’;
A=xc (1);
B=xc (2);
w=xc (3);
z=xc (4);
phi=xc (5);

end

end

%% Plot answer

if fig>0
fx=A+B.xexp(—z.*xt).*cos(w.xt+phi); % evaluate f(x) at estimated values
figure (fig); fig=fig+1;
plot (t,fx,’r’,t,ytil ,’b’);
xlabel ’'Time (sec)’; ylabel ’'Pitch \theta rad’;
legend (’Estimated ’, "Real ’); title ’Estimated values for pitch ’;
end

97

Code to design filters.

close all; clear all; clc; fig=1;

lowpass=load (’lowpass.mat’);

data=lowpass.lowpass;

smoothsnl=0;

xt=0;

xf=0;

[ylgr ,timlqr, fig]=labviewdata(data,7,smoothsnl, fig ,xt,xf,0);
ylar . A(1:2,:)=[];

timlgr . A(1:2)=[];

%% Real time parameters

x0=ylqr .A(1,5);
T=timlqr .A;
u=ylqr.A(:,5);

%% Filters frequency

f=0.0714x%2;
w=2xpix*f;

%% 1st order Low Filter

format long

Ipf_1st=tf([w], [1, w])

format short

Ipf=tf ({[w] 050 ,[w]},{[1, wl,151,[1, w]});

[y,tim]=1sim (1pf_1st ,u,T,x0); % Open loop simulation

figure(fig); fig=fig+1; plot(T,u);

hold on; plot(tim,y,’r’); hold off; xlabel ’Time sec’; ylabel ’Output’;
legend (’input ’,’ filter ’); title ’First Order Low Pass Filter ’;

%% 2nd order Low Filter

z=1/sqrt (2);
format long
Ipf_2nd=tf ([w"2],[1,2%zxw,w"2])
format short

% Simulation

[y,tim]=1sim (1pf_2nd ,u,T,x0); % Open loop simulation

figure (fig); fig=fig+1; plot(T,u);

hold on; plot(tim,y,’r’); hold off; xlabel ’Time sec’; ylabel ’Output’;
legend (’input ’,’ filter ’); title ’Second Order Low Pass Filter ’;

98

Code to calculate equations of motion.

clear all; close all; clc
digits (5);

%% Drawing

% Fb
% ____
% [| TOP VIEW
% \
% \
% \
% \
% \
% Origin —> |
%o \
% \
% \
|
\
\
\
\

z(out the screen)
>y

(
@)
|
| Coordinate System
\Y%
X

%
%
%
%
% Fr
% -
% | |
% | | oommmmmmeoooio |
% | |

%% Define variables
global pddl tddl phiddl trimeqs

syms p t phi pd td phid pdd tdd phidd % euler angles
syms Fr Fl1 % Inputs

n=[p;t;phi]; % euler angles vector, psi, theta and phi
nd=[pd;td;phid]; % euler velocities vector

ndd=[pdd;tdd; phidd]; % euler acelerations vector

q=[n;nd]; % state vector

qd=[nd;ndd]; % velocities vector

forces=[Fl;Fr]; % Forces

% Formula to calculate derivative with respect of time
% dF/dt=transpose(simplify (dot(jacobian (function ,variables)’,
% [variablesdot #equations])));

%% Motor Gain (From experimental results)

BitIn=[0 25 34 48 59 68 80 97 102 109 120 130 144 158
164 178 195 210 230 235];

Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83
91 97 106 110]%9.81/1000;

norder=1;
Kgain=polyfit (BitIn , Thrust,norder); % Get linear equation that relates
% Bytes and Thrust

Kvr=Kgain (1); % Gain motor right
Kvl=Kgain (1); % Gain motor left
Tvr=0.3;
Tvl=0.3;

Bit0=—Kgain (2)/Kgain(1); % No thrust speed

99

%% System Parameters

Mp=2.02270866; % Link2 mass kilograms

Mr=0.45695968; % Link3 mass
lc=[-0.11010108,0,—0.01657261]’; % Link2 center
13=0.27475; % Link3 length meters

12=0.67098; % Link2 length meters

1¢2=[0.00079903+12 ,0,—-0.02671306]’; % Link3 center of mass

dmpY=0.002037386086782; % Yaw damping coefficient Ns/m

dmpP=0.067766320378873; % Pitch damping coefficient
dmpR=0.002037386086782; % Roll damping coefficient
g=9.8; % Gravity m/s"2

%% Inertia Tensor matrix (From Solid Works drawings)

% Link2 inertia

I¢=[0.13031678 0.00000000 0.00000000;...
0.00000000 0.12982028 0.00559693;...
0.00000000 0.00559693 0.00175924];

Te=Ic([3 1 2],[3 1 2]);

Te=Ic+Mp*(sum(lc.xlc)xeye(3)—1lcxlc);

% Link3 inertia

1¢2=[0.00015069 0.00000000 0.00000000;...
0.00000000 0.01358558 0.00000468;...
0.00000000 0.00000468 0.01364239];

Ic2=Ic2([3 1 2],[3 1 2]);

Ic2=Ic24+Mr*(sum(1lc2.x1c2)xeye(3)—1c2x*lc2 ’);

%% Transformation matrices

% Roll to Pitch

Tpr=[1 0 0 12;0 cos(phi) —sin(phi) 0;0 sin(phi) cos(phi) 0;0 0 0 1];

% Pitch to Yaw

Typ=[cos(t) 0 sin(t) 0;0 1 0 0;—sin(t) 0 cos(t) 0;0 0 0 1];

% Yaw to Ground

Tgy=[cos(p) —sin(p) 0 0;sin(p) cos(p) 0 0;0 0 1 0;0 0 0 1];

Tgp=Tgy+Typ; % Pitch to Ground

Tegr=Tgp*Tpr; % Roll to Ground

Tyr=Typ*Tpr; % Roll to Yaw

TFr=[1 0 0 0;0 1 0 —-13;0 0 1 0;0 0 0 1]; % Right Force to Roll
TF1=[1 0 0 0;0 1 0 13;0 0 1 0;0 0 0 1]; % Left Force to Roll

TFgr=Tgr+TFr; % Right Force to Ground
TFgl=Tgr«TFIl; % Left Force to Ground

%% Rotational and translational matrices Positions

PpH=Tgp=*[lc;1]; %Pitch COM Position
PrH=Tgp=[1lc2;1]; %Roll COM Position
Pp=PpH(1:3);

Pr=PrH (1:3);

PFrH=Tgr=[0; —13;0;1]; %Right Force Position
PFIH=Tgr*[0;13;0;1]; %Left Force Position

PFr=PFrH(1:3);
PFI=PFIH (1:3);

100

101

%% Velocities Rates

Vp=(jacobian (Pp,n))*nd; %Pitch COM Velocity
Vr=(jacobian (Pr,n))*nd; %Roll COM Velocity
VFr=(jacobian (PFr,n))x*nd; %Right Force Velocity
VFl=(jacobian (PFl,n))*nd; %Left Force Velocity

%% Angular Velocities

OmegapH=transpose (Typ)*[0;td;pd;1];
Omegap=OmegapH (1:3); %Pitch Angular Velocity

OmegarH=transpose (Tyr)*[0;td;pd;1];
Omegar=OmegarH (1:3)+[phid ;0;0]; %Roll Angular Velocity

%% Kinetic Energy

% KE = 1/2 % mass * velocity ~ 2 + 1/2 % inertia x angular velocity ~ 2
KEp=0.5«Mp*transpose (Vp)*«Vp+0.5xtranspose (Omegap)* Ic*Omegap; %Pitch KE
KEr=0.5«Mrxtranspose (Vr)*Vr40.5%x transpose (Omegar)* [c2+Omegar; %Roll KE
KE=KEp+KEr ;

%% Potential Energy

% PE = mass * gravity * position in z(0,0,1)
PE=Mp#g*transpose (Pp)*[0;0;1]+Mrxgxtranspose (Pr)*[0;0;1];

%% Forces

Fleft H=F1%(Tgr*[0;13;1;1] —Tgr*[0;13;0;1]);
Fleft=FleftH (1:3);

Fright H=Fr«(Tgr=[0; —13;1;1] — Tgr=[0;—13;0;1]);
Fright=FrightH (1:3);

%% Power In

% Pin = force * velocity
Pin=vpa(simplify (transpose (Fleft)« VFl+transpose (Fright)+*VFr));

%% Eqsl by Euler—Lagrange (EL)

% d/dt dL/dqd — dL/dq + D = F
% L = Lagrangian = KE-PE

% F = external forces

% D = damping forces

% derivatives with respect of velocity , then with time
Termll=vpa(simplify (jacobian (diff (KE,pd),q)*qd));
Term2l=vpa(simplify (jacobian (diff (KE,td),q)*qd));
Term31l=vpa(simplify (jacobian (diff (KE, phid),q)*qd));

% derivatives with respect of position
Terml2=vpa(simplify (diff (KE,p)));
Term22=vpa(simplify (diff (KE,t)));
Term32=vpa(simplify (diff (KE, phi)));

Ul=vpa(diff (PE,p));

U2=vpa(diff (PE,t));

Us=vpa(diff (PE, phi));

% external forces = dPin/dqd

Ql=vpa(diff (Pin,pd))

Q2=vpa(diff (Pin,td))
d

Q3=vpa(diff (Pin,phid));

102

% damping forces

Dl=dmpY*[1,0,0]*(Omegap+Omegar) ;
D2=dmpP [0 ,1,0] * (Omegap+Omegar) ;
D3=dmpR*[0,0 ,1]*(Omegap+Omegar) ;

%% Equations by Euler—Lagrange (EL)

% EL= d/dt dL/dqd — dL/dq — F + D
Eqnl=simplify (Term11-Term124U1-Q1+D1);
Eqn2=simplify (Term21—Term22+U2-Q24D2);
Eqn3=simplify (Term31—Term324+U3-Q3+D3);
%% Inertia Matrix

% M(q) = dEL/dqdd

In=jacobian ([Eqnl,Eqn2,Eqn3] ,ndd);

%%

Hl=simplify (jacobian ([Egnl],ndd)*ndd—Eqnl);
H2=simplify (jacobian ([Eqn2],ndd)*ndd—Eqn2);
H3=simplify (jacobian ([Eqn3],ndd)*ndd—Eqn3);

trimeqs=[H1,H2,H3];

save (’Trimmat’, ’trimeqs ’);

%% State Equations, Equation of motion

Fx=inv (In)*[H1;H2;H3];

pddl=Fx(1); % Finding eqs for pdd tdd and phidd
tddl=Fx(2); % Finding eqs for pdd tdd and phidd
phiddl=Fx(3); % Finding eqs for pdd tdd and phidd
save (’Egsmtn’,’pddl’,’tddl’,’ ’ phiddl ’);

%% Trim condition

xtrim=[0,0,0,0,0,0,0,0]";
trimy=trimp (xtrim) % Calculate trim at (p,t,phi,pd,td,phid)

%% State space representation

[A,B,C,D]=linmod (’Gyromdl’ , trimy (1:6) ,trimy (7:8)); % Linear system,

% Gyromodel is the model in symulink, it calls the function gyroegs to
% make the linearization

syslinear=ss (A,B,C,D);

save (’SSmatrx’,’A’ ,’B’,’C’ ,’D’);

%% Discrete representation

% sysdiscrete=c2d(syslinear ,0.02,’zoh’);
sysdiscrete=c2d (syslinear ,0.02);
[Ad,Bd,Cd,Dd,Ed, Td]=dssdata(sysdiscrete);

save (’SSmatrxd’,’Ad’,’Bd’,’Cd’,’Dd’,’Ed’,’Td’);
%% Tranfer function V

% T/V=(Kvl/Tvl)/(s4+1/Tvl); % Transfer function Bytes —> Thrust

function trimv=trimp (x)

Function trimp.m.

%

%IRIMP Finds the trim point of gyrocopter’s dynamics.

% TRIMV = TRIMP (X)

%

% X = states , minimum a 2 column vector, containing the values of
% psi and theta at the desired trim point.

% TRIMV = output vector, a 8 column vector containing the 8 states
% [psi,theta ,phi,psid,thetad ,phid,Fl1,Fr].

%

% Sintax example:

% trimv=trimp ([pi;0]);

global trimegs

syms p t phi pd td phid %euler angles

syms Fr Fl %Inputs

p=x(1);
t=x(2);
pd=0;
td =0;
phid=0;

[Fltrim , Frtrim , phitrim]=solve (subs(trimeqs (

trimv=[p;t;zeros(4,1);abs([double(Fltrim (1)

function gdd=gyroeqs(q)
global pddl tddl phiddl

% VARIABLES

p=q(1);
t=q(2);

% EQS OF MOTION

qdd=zeros (3,1);
qdd(1)=subs (pddl);
qdd(2)=subs (tddl);
qdd (3)=subs(phiddl);

1
subs (trimeqs (2
subs (trimeqs (3

)

))7
))7
)));

;d

)

% Trim conditions
ouble (Frtrim (1))])];

Function gyroegqs.m.

103

File gyromdl.mdl.

) MATLAB
; Function
- MATLABE Fen
Inputl
Input2

[Emn | 5 1

Integrator

| —

1

5

Integratori

)

Outs

¥

i E
-

Outs

()

Outd

¥

104

105

Code to design and simulate the H,, controller.

clear all; close all; clc; fig=1;
%% Define variables

global pddl tddl phiddl trimeqs
syms p t phi pd td phid %euler angles
syms Fr Fl %Inputs

%% Motor Gain (From experimental results)

BitIn=[0 25 34 48 59 68 80 97 102 109 120 130 144 158
164 178 195 210 230 235];

Thrust=[0 7 12 18 24 29 34 40 45 50 55 60 64 71 77 83
91 97 106 110]%9.81/1000;

norder=1;
Kgain=polyfit (BitIn , Thrust,norder); % Get linear equation that relates
% Bytes and Thrust

Kvr=Kgain (1); % Gain motor right
Kvl=Kgain (1); % Gain motor left
Tvr=0.01;
Tvl=0.01;

Bit0=—Kgain (2)/Kgain(1); % No thrust speed
%% Load Variables

phiddl=load (’Egsmtn.mat ’);
pddl=phiddl . pddl:
tddl=phiddl. tddl;
phiddl=phiddl. phiddl ;

trimegqs=load (’Trimmat.mat ’);
trimeqs=trimeqs.trimeqs;

%% Trim condition

xtrim=[0,0,0,0,0,0,0,0]";
trimy=trimp (xtrim); % Calculate trim at (p,t,phi,pd,td,phid)

%% State space representation

syslinear=load (’SSmatrx.mat’);
A=syslinear .A;
B=syslinear .B;
C=syslinear .C;
D=syslinear .D;

Nx=eye (6);
Ny=eye (6);
Nu=eye (2);

%% Scale system

xmax=[pi/10;pi/10;pi/10;8*pi/180;5+xpi/180;5*pi/180];
Nx=diag (xmax);

umax=[1.2;1.2];

Nu=diag (umax);

ymax=xmax ;

Ny=diag (ymax);

A=inv (Nx)*AxNx; B=inv (Nx)*BxNu;

C=inv (Ny)*Cx*Nx; D=inv (Ny)*D*Nu;
%% Plant G

% Plant G is equal to the state space given by:
% xd = Ax + Bu
% y = Cx + Du
G=ss (A,B,C,D);

%% Wieghts
s=apk (75)

% W command, Butterworth filter — High frequency roll off
fwe=1;

wc=2*pixfwc;

Wemd=we / (s+we) xeye (2);

% W performance 1, tracking objetive
% f1=5; £2=1000;

f1=1; £2=1000;
Wp=2x(1/2/pi/f2xs+1)/(1/2/pi/fl*xs+1);
Wt=2x(1/2/pi/f2*s+1)/(1/2/pi/flxs+1);
Wperfl=Wp 0;0 Wt];

% figure(fig); fig=fig+1; bode(Wp)

% W performance 2, not in the tracking objetive
fwr=5;
wr=2*pixfwr;

Wperf2=wr /(s+wr)*xeye (4);

% W actuator

fa=>5;

wa=2*pixfa;

Wact=[wa/(s+wa) 0;0 wa/(s+wa)];

% W noises more than 0.3515625 (360/1024) for positions & velocities
Wi=inv (Ny (1:3,1:3))* diag ([360 360 360])/1024/57.3;

% W model, desired model to match

ts=10; % Setting time of 10 seconds
xi=1.5; wn=4.6/ts/xi; % Damping ratio and frequency
Wmodely=wn"2/(s"2+2xxixwnxs+wn"2); % Second order system

ts=10;

xi=1.5; wn=4.6/ts/xi;

Wmodelp=wn"2 /(s 2+2*xi*wnxs+wn"2);

Wmodel=[Wmodely 0;0 Wmodelp];

%% Close Loop diagram

% L _______
% | |
% Yaw ref ——> | | —> Yaw error
% Pitch ref ——> | Plant | ——> Pitch error
% noise —> | | —> Yaw real | tracking
% | G | ——> Pitch real |
% | | ——> Roll | not
% | | ——> Yaw velocity | tracking
% | | ——> Pitch velocity |
% | | ——> Roll velocity |
% | | ——> Bytes Left
% | | ——> Bytes Right
% | |
| |

% ncon | Thrust left |——> ———| Yaw ref” | nmeas

106

% | Thrust right | | ____________ Pitch
7% |
% |
% |
% |
% |
% |
% ==
% P |

%% Signals

% Inputs, external
pref=icsignal (1); % Yaw (psi)
tref=icsignal (1); % Pitch (theta)

n=icsignal (3); % Noises

% Inputs, internal, from K to G

|
Yaw sensor |
|
|

Tl=icsignal (1); % Thrust motor left
Tr=icsignal (1); % Thrust motor rigth

% Outputs, external

perror=icsignal (1);
terror=icsignal (1);
preal=icsignal (1);
treal=icsignal (1);
phir=icsignal (1);
pdr=icsignal (1);
tdr=icsignal (1);
phidr=icsignal (1);
Bl=icsignal (1);
Br=icsignal (1);

% Outputs, internal
prefl=icsignal (1);
trefl=icsignal (1);
pgk=icsignal (1);
tgk=icsignal (1);
phigk=icsignal (1);

%% System M

Me=iconnect ;

% Yaw error

% Pitch error

% Yaw real

% Pitch real

% Roll real

% Yaw velocity real
% Pitch velocity real
% Roll velocity real
% Bytes motor left

% Bytes motor rigth

from G to K

% Wemd * Yaw ref
% Wemd * Pitch ref
% Yaw sensor

% Pitch sensor

% Roll sensor

% Define external inputs without K

M. Input=[pref;tref ;...

n;...

T1;Tr];

% references
% noises
% inputs to G

% Define external outputs without K

ref”

Pitch sensor
Roll sensor

M. Output=[perror;terror ;... % tracking errors
preal;treal ;... % real values
phir ;pdr; tdr;phidr ;... % not tracking error
Bl;Br;... % input to plant
prefl;trefl ;... % references after weighting

pgk; tgk; phigk]; % pgk; tgk; phigk;pdgk;tdgk;phidgks

107

108

Ax=[perror;terror ;...
preal;treal ;...
phir ;pdr; tdr;phidr ;...
B1;Br;...
prefl;trefl ;...
pgk; tgk;phigk];

Bx=[Wperfl * (Wmodel«*Wemd+ [pref; tref]-G(1:2 ,:)«[Tl;Tr]);...
G(1:2,:)%[T1;Tr];...
Wperf2xG(3:6 ,:)«[Tl;Tr];...
Wact*[T1;Tr];. ..
Wemds* [pref; tref];...
Wosn+G(1:3 ,:)* [T1;Tr]];

M. Equation{l}=equate (Ax,Bx);

Tsys=M. system ;
Tsys=minreal (Tsys);

%% H—inf Block Diagram

% .
% not tracking | | |
% error <— | Wperf2 | <— | & | <———— |
% e2 | oo | | -Velocities_ | |
%o L |
% tracking | | | |
% error <— | Wperfl | <— "7 <——— | & | — & |
% el | oo | A | _Pitch_| pitch |
% | |
% | \
% | |
% | | \ \
% |——————— > | Wmodel | } |
% | Rt | |
% | |

\

\

% | T
% ref —> | Wand | —|—> |
% [— | ref” |
% \ \
% m'[——> | ‘
% | [-—> | Wact | —> Bytes |
% |

\

\

%% Hinf Controller Synthesis

ncon=2; % Number of control signals
nmeas=5; % Number of signals into the controller

[K,CL,GAM, INFO]=hinfsyn (Tsys ,nmeas ,ncon, 'GMIN’ ;0 , ’"GMAX’ , inf , 'METHOD’ , ’lmi ’);
[Ka,Kb,Kc,Kd]=ssdata (K);
if mean(eig (K)<0)==1
disp (’K stable 7);
else
disp (’K not stable ’);
end

disp (’GAM Close Loop’); disp (GAM);

%% Singular value, maximum frequency

figure (fig);
h_norm_inf(K,’ Controller K’,0.02,2%pix*5,fig)
fig=fig+2;

%% Reference Input Parameters

T=0:0.1:100; % Simulation time
z=zeros (1);

p0=z; t0=z; % Initial conditions

phiO=z; pd0=z; td0=z; phid0=z;

fr10=z; fr20=z;

x0=[p0,t0, phi0 ,pd0, td0,phid0, fr10 ,fr20 ,zeros(1l,size(CL.a,1) —8)];

pr=—pi/10; tr=pi/8; % Reference inputs
xr=[pr,tr];
xr=(inv (Nx(1:2,1:2))xxr’)’; % Scale references

ul=xr(1l)xones(size(T));
u2=xr (2)xones(size (T));
noise=zeros(size(n,1),length(T));

u=[ul;u2;noise]; % Input vector
%% Close loop simulation
ly,tim]=1sim (CL,u’,T,x0);

y(:,1:2)=(Ny(1:2,1:2)xy(:,1:2))";
figure (fig); fig=fig+1;

plot (tim,y (:,1),’b’ ;tim,y(:,2),’r’);
legend (’Yaw Error’,’Pitch Error ’);
xlabel (’Time sec ’); ylabel(’rad’);

y(:,3:8)=(Nyxy (:,3:8)7)";

figure (fig); fig=fig+1;

plot (tim,y (:,3), b’ ,tim,y(:,4),’r’);
legend (’Yaw’, ’Pitch ’);

xlabel (’Time sec ’); ylabel(’rad’);

figure(fig); fig=fig+1;

plot (tim ,y (:,5), b’ tim,y (:,6), r,tim,y(:,7), g’ tim,y(:,8), k’);
legend (’Roll ’, ’Yaw rate’,’ Pitch rate’,’Roll rate’);

xlabel (’Time sec ’);

y(:,9:10)=(Nuxy (:,9:10)) ’;

figure (fig); fig=fig+1;

plot (tim,y(:,9),’b’ ,tim,y(:,10),’r");

legend (’Force Left’,’Force Right’);

xlabel (’Time sec’); ylabel(’Thrust Newtons’);

%% Display data

format long

disp (’trimy ’); disp (trimy (7:8));
disp (’Kgain ') ; disp (Kgain);

disp ("Wand frequency ’); disp (wc);
format short

%% Unscale Plant

A=Nx*Axinv (Nx); B=Nx*Bxinv (Nu);
C=Ny*Cxinv (Nx); D=Nys*Dxinv (Nu);

109

format long

disp (’Nx’); disp (diag
disp (’Ny’); disp (diag
disp (’Nu’); disp (diag
disp (’Nx"(—1)’);disp
disp ("Ny"(—1)");disp
disp (’Nu”(—1)’);disp
format short

)7
)7
)7
diag
diag
diag

Nx ;
Ny) ’);
Nu ;
inv (Nx)
inv (Ny)
inv (Nu)

)
3

)
)
)

e e e T e e

)7)
)")
)7)

)

%% Save Matrices

save matA.lvm A —ASCII —TABS;
save matB.lvm B —ASCII —-TABS;
save matC.lvm C —ASCII —TABS;
save matD.lvm D —ASCII —TABS;
save matKa.lvmm Ka —ASCII —TABS;
save matKb.lvin Kb —ASCII —TABS;
save matKc.lvm Kc¢ —ASCII —TABS;
save matKd.lvin Kd —ASCII —TABS;

110

111

Function h_norm_inf.

function h_norm=h_norm_inf(sys,sysname,Ts,Wc, fig)

%

J%HNORM_INF computes the h—inf norm of SYS.

% HNORM=H NORM.INF (SYS,SYSNAME) computes the h—inf norm of SYS. Plots
% the MIMO frequency reponse and computes the Nyquist frequency wc of
% SYS at 0 dB.

%

% SYS = system

% SYSNAME = system name

% HNORM = h—inf norm of the system

%

% Sintax example:

% h_norm=h_norm_inf(sys, ’sysname’);

[sv,w]=sigma(sys); % Gains and frequencies

svl=max(sv,[] ,1); % Maximum gains

h_norm=max(svl); % H-inf norm
% modulus=(max(eig (sys)))

semilogx (w,20x1og10(svl)); % Plot singular values
title ([sysname,’ Singular Value plot ’]);
xlabel ’'Frequency (rad/s)’; ylabel ’Gain (dB)’;

wsvd=interpl (20xlogl0(svl),w,0); % Nyquist frequency, at 0 dB

if isnan(wsvd)==1 % Plot below 0 dB
[wsvd, wsvdind]=max(svl);
disp (’Bode plot below 0 dB.’);
disp ([sysname,’ wc at max gain ’]); disp (w(wsvdind));
disp ([sysname,’ frequency at max gain ’]); disp (w(wsvdind)/2/pi);
hold on; semilogx (w,20%1logl0 (wsvd));
semilogx (w(wsvdind),20*logl0(svl)); hold off;
else
disp ([sysname,’ wc’]); disp (wsvd);
disp ([sysname,’ Nyquist frequency ’|); disp(wsvd/2/pi);
hold on; semilogx(w,0); semilogx (wsvd,20%logl0(svl)); hold off;
end

if nargin > 2
figure (fig+1);
sysd=c2d (sys ,Ts, prewarp’ ,Wc);
pzmap (sysd);
title ([sysname,’ Pole—Zero Map’]);
end

112

APPENDIX D

LABVIEW CODES

The codes shown are provided to users “as is”, without warranty. There is no warranty
for the codes, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose and noninfringement
of third party rights. The entire risk as to the quality and performance of the codes
is with the user. Should the codes prove defective, the user assume the cost of all
necessary servicing, repair or correction.

In no event the author will be liable to anyone for damages, including any general,
special, incidental or consequential damages arising out of the use or inability to use
the codes (including but not limited to loss of data or data being rendered inaccurate
or losses sustained by the user or third parties or a failure of the codes to operate
with any other programs), even if such holder or other party has been advised of the

possibility of such damages.

113

Code to read data from Matlab.

..... B PRI

duaa] {aa]
=T Buydwes Jue|4
SWEN 3t pUE e 3] ___"uu&
u o
................... i |
3B A

sfped) Aduanbaay Duyoiely
SWEN 271 PUE QIE] 3[11 ___UHE

Init
Ref

us
iz, [I00]
— dt
R

Main code in CompactRIO for H.

determiniskic loop

M[Error
R

Zeriall

I!n'.i‘%/}\-

non-determiniskic loop |

114

wiaitd

us

b2, B0
» dt
R

WError v
R

reset stop variable
! z W start simulation|,

l ﬁ R stap - network],,

InitRef.vi

1000000000000 000000000000000000.0

Configure Serial port (baud rate,
data bits, parity, stop bits and flow control).

Initialize Yariables

; $adata - network - T4 ?!|
e)

|Flush Receive Buffer (Mo Ij0) =

Enable Termination Char

—

T)

i

timeout {10sec)

[% AsRLL:INSTR |

O0O00000000000000000000000000007€0

115

Seriall.vi

Ooooo0o0oon

? @ data-RT|,,

WISA resource name ouk 2 VISA resource name ouk

errar out

.E

errar ouk 2

(=

NewByte2Tx.vi

YISA resource name

Brray of TNtz VISA resource name ouk

etror ouk

p@

Error in (no errar)

NewRx2Byte.vi

WISA resource name ouk

WISA resource name "m
VISH 1
I
md t.m
iz =3
errar in (no errar)

Bytes Recieved

¥ ta [i][1z=]
[i]
L I3

[e]
FERE
o it

116

117

Waitl.vi

pouad

A1,
z

ponisad

e
2
penised

.._x._. - somgau - eyep B m.._

e
2
penized

Z pollag

Byte2Angle.vi

[jump is when vou go From 0 ko 1023 o visceversa in the control knob]

—1

MNurneric

[T

Position2Velocity.vi

32 bit, quadrature counker

P

Yelocity

FOEL |

118

119

V1

Ref33

Bl |y - spamgau - Emﬁ_’ﬁ M o1

_ hmmmmm.a—

_ hmmmmo.a_ | of

SE8192360531'E

9EB192960881 'S

SGE8192360531'E

HoRAgaL - n_Bm_-M

ueg|nog

SE2TI2SE0C2T'E

120

H-infInput.vi

Contraller Input

Feddback

Yaw

——FDEL |

Pitch

Plant Out (i]| lITII
[DELM— Ro
[os—H i)
—I_‘r'aw Rate
L ———WiEL]
Pitch Rate

FDEBL |

Roll Rake

FOEL |

[]
Y
oooooo

Thrust2Byte.vi

TrimIncrem

[Coeid Bute Left

KFackor

TrustTrim
[DBLM

Evte Rigth

Controller Ouk
I[nm b

Biyte Back,

121

Main code for H,, user interface.

wii_helpl

wii_help

Mo Error YRS
Raoll Rad
—
Pointer | || wiirf2 D::i?n
Cntrl
Pointer
H Fumk — foeL]
‘aw Fad Yaw Rad
Digital | L_[¥oB] Hr g
i Rall Rad
Pitch Rad s

WiiContrallara

¥astop - network|,,
3D Picture —

:
FOBL
ualgitial

FDBL]

3D Picture Conkrol 2

& SceneGraphDispla

Stop?
Tab Contral
& TabConkral j

1TO00000000000000o0o0o0o0cCn

[Timne C]
Tab Control 13 Painter ime Delay3|

O el | Raabi w £ I K |
|+ Page 3 "I—“Tab Control| L
Bkop? z

IO OO O O O O O O B B e ERE [ZBaglean

& TabContral

FitchIritia
T T TOOooOoOooooooooooon
zl [Tirne Crelaye

RallInitial E +Page 1 ¥|—{|Tab Control
L——[#OBL] —

| : g start simulation .

reset stop watisble

errar aut

""sttop—network”
ENsNsNsNsNsNsNsNsNsNsNsNsNs s NN NsRsNs;

Init0.vi

122

Tab Control

error ouk

new reference

O0O00O0o00o0o0o0o0o0o0o0oo0oooooooonno

Rumble2.vi

reference out

error out

reference ouk 2

B % b wimote Bf4)
SetRumble
reference L on

[[} N B

E a == Bool (strict)
) Vane = I">
Wiimatestate §

=

reference 2 |

B

DenxnWiiCntrl.vi

reference out

error ouk

3+ wimate Rl =4 wimote ;!; a b wiimote [
SetLEDs SetRumble Disconnect
Al ledl 1 an
5 ledz
led3

led4

reference out 2

error out 2

new reference

wWilController#

error 10

reference out

‘Wiimokestate
EE]

Init.vi

(o o O i m w w Y w w

30 Pickure Control 2

reference 2

Yalug

Pointer]
Faof [~
Input | M

SceneGraphDisp Refnum

B b SceneGraphDisp (strict) _P!
Setup Camera
Zamera Position
Target
Up Dirgckion

fi N M i w W i w i W e A w i W s s W= s e s

(o o O i m w w Y w w

o o s s s

Ldata - mebwork - RT

Read trim conditions

ime Dela: YawInitial

]

a $#data - network - RT ;

Pikchilnitial
HBnEL]

RallIritial
' BDEL]

[0 o w0 O w w w w w w w w w B Ww w Ww A w Aw Ww w i W W

123

TrimOut
Tri

124

CnxnWiiCntrl.vi
reference in reference out
errar IO errar ouk
b Wimate LN wimate & & b wimate Rl B = Wimate -
SetReportType Conneck SetLEDs WiimoteSkate M
IIRF\CCB| v|—' type v led1 wiirmoteState
v conkinuous v ledZ Sio|
wilController# ' :833
=T » ledd
-
::f o
wt O
wt O
PointerReflnput.vi

Painter

(Los—

Ref Input

FDEL]

TrimFast.vi

Pitch Trim Y Trim
[, |

Trirnouk
1023 pry il e
?
m H
Roll Trim

=

125

Drawsim.vi
[False vl
fingles in Radians| 7000} 1 In this coordinate
syskem:
Angles/Poinker "
~
imitReached |
e |
_______ = D Picture Contral
2 in out :
the screen Grene, Mew Object
m@
m@
%
.00jo.00fo.00) ||o.0ofs .00 fo.00]

Hide panel of Drawsim.vi

| True 't

[The: First time rur, this WT will create all of the parts For the scene.

Pointer . vl

=
=
I =

Pivot-1.wtl

. Pivvok2- 1wl =

Find objects
in scene

Link1

126

To generate the 3D graphs the models were done in SolidWorks and exported as

VRML models.

Read File

Path to Pointer f

Path bo Linkz

Path to Linkl

Path to Pivak2 F

Path bo Pivot

errar ouk
Tac

reference 3
o

L
;‘!'"} SceneCbject ?! . L pecee ;’! == SceneChject ?!

—|* index
— index

— index

— index

DrawVRML.vi

reference out

Assign Parent/Child
error out 2

Get Object Mame Object
h % Scenecbiect 5|, JPointer & = SceneObiject §f
Obiject.Get Object o d Marne

d Mame

Ohbiject.Get Object o

g w SceneCbject g

g'"} SceneCbject B a =% SceneChject %

Object.Get Object"»g b Name

Object. Add Objeck

' Object Y

5 w SceneChbject _P!

L _P! ws SceneCbject Ej IPivoth‘i :‘;‘E = SceneCbject 5

Ohbiject.Get Object o d Tame

L 2o

Ohject, Add Object

v Object Y

Scene. Mew Object

error out

5‘ w SceneCbject _P!

;5!'"} SceneCbject _P! Piviok _P! == SceneChject %

. ey [e
Object.Get Objact WH ' Tarie

Object. Add Objeck

Drawll.vi

' Object Y

e [T EHz
b dt [0
iz, EO

s

Wisualizakion

reference 4
o]

™ =% Dighlum (strict) &
Walue

reference 5

T =% Dighium (strict)

Walue "

=]

reference

i = Dighlum (strict) §

[E=0=

Walue

]

reference 2

B =E Arr (strick) §
Walue ¥

=]

% =& Boal (strict) §

Yalue *

BErrar
S

127

V1

Wiiref2

“[xL - yponizau - e3ep g [L

ez g

[=n3egs HT-

*uomeus 1im3s B A)

= L
anduy o
g a
[1adi
Jaui0g
meg
prans
WET
PEHI9Y | 5
=
=
= 3 =
(1a6{— o « ié
Peu g [| g e
@L 2] 1P 1
PEY ME) [ZER T

e300

p s

no dadia

=

a1EISAI0W

=
INGL

‘wiimoteState

GetWiiMoteData.vi

Requires the Wimaote Managed Library WiimoteLib Yer 1.5,
available from http: e, codeplex, comWimoteL it

Lell

Error in

=
=
-

ButtonState M IRSensars »—I
Mode Y

jm T =& WimateState %

Midpoink Y N (|1

128

R,

IRRef.vi

Mid
[DBLH—

0.5

hange Direction

Y Mid
[DBLE

Painker
FDEL]

error out
=
|} =2 ButtonState

2 [2

B ¥ B
Diawn ¥ W
Home ¥ Home
Left ¥ = ‘wiimoteIR
Mins W - Wittats
Cne ¥ 1
Flus ¥ +
Right [=
Two ¥ 2

p W -

Flerror aut

129

ScaleTrim.vi

130

SavedData.vi
File: Marne
Array |Wril:e T Measurement File |

@ Elapsed Time {s)

@]

Main code in CompactRIO for Open Loop.

deterministic [oop

1000000000 o0o0ooo:n

reset stop variable

us

iz, [I00 |

MError
i

b dt
- g — 54
Init

Ref M Zeriall C@

é|; #45top - network "

OOoooo0o0oo0o0ooooo0n

ik i
ala stop - RT 4

non-deterministic loop

us
b3z, 50 MErcr
— dt =
R

Rumble.vi

reference out

B+ Wimate 3
SetRumnble
on

131

ReadData.vi

[Fozition
(HImImani| { 2
-\.L. o M elocit P
=t h‘_ a-
Fozition
[1mnini| - 2

|9 data - R @

o " T e 4 ¥ data - network - RT ,.|
=t O " _ "
= O — 1 e a el it -

Em —‘ (HINIRANI] |" POSEilion
@ ‘i-:, " elacik
2 Ldata - nebwork - T ,': =2 g ::ﬁ_ {IFS
::: o o nla@ data - TH|,
::" =]
=t O

Main code for Open Loop user interface.

I'_l Mo Error "'t

wiiCantrollers [rg— | |’ [| """""""" |t ¥ start simulation _,!|
M oo [
n =y |+ #45top - network _,!|

| M oeen -
Fen wii

Dicnxn
LoCP o Cntrl

Fumble| 7

errar out

i
-::D,.,

WiiRef4.vi

Ref

255 Fis2]
ey

132

OpenLoop.vi

4._.¢ - {A0MTE - Emﬁ_#_

=a

g

?}_. TI0AI2lmaTaJUa51 1280041530830 AWICEEEIE | SEU RS pUe ﬂ_._mE:un_o._."uuu_

NEET
- smieys ﬂ_ﬂ
LS b d gLeal
'l Jawoy L0kl
£ Jno Joda 135

[S1%)

i AR I = m.um._uﬁ mAn N

1123

|l v =[x
1

Z Jna Joda

SIEIS0MIA,

[50482 pUe JEHTSI0300) U3 J0J Snjed, puag]

m.__u_u_mn_n_ SI05UAS m}m_um,n__

HOIR(MMIS 34235

oL

133

V1

Init

£ 3o Joda

NOWNL

o 0 e e e s s B e w

s e e 1 e e e e s e

CENED]

SUDIJPUGT W) PEa

u 1 - aomzau - e3P

N0 JoLE

o e w w w w w w w w W w w w w

o O w1 e B s B

134

APPENDIX E

MANUAL

THE BIROTOR HELICOPTER IS NOT A TOY.

Before using the birotor helicopter be sure to read this instructions. Even if
children are allowed to use it (exposition, scientific fairs, etc.), they never be left
alone with the helicopter. Ignoring the instructions in this manual can result in a
serious injury.

The helicopter can be stoped at any moment, by turning off the ON

switch. If something happens, grab the helicopter and turn it off.

ON/OFF
Switch

ON/OFF switch location.

135

1. Be sure that the batteries are fully charged.

Before tunrning on the helicopter make sure the batteries are fully charged. One
charger is needed for the Li-Po batteries and one for the Ni-MH batteries. If
the batteries are not fully charged, the performance of the helicopter will not be
good, and there is risk of an accident. Explosions can also occur if the battery

is short-circuited or if the cell or pack is punctured.

Li-Po battery charger.

Ni-MH battery charger.

2. Carrefully connect all the devices, power supply and batteries, DO NOT TURN

ON YET.

Make sure everything is connected: serial cables, batteries, PC, CompactRIO

and electronic boards.

3. Turn on the CompactRIO controller and the bluetooth board attached to it.

Turn on the CompactRIO, so the PC can recognize it.

136

4. Make the connection between the PC and the Wii controller.

If the Wii controller is not connected before running the VIs, an error message
will be displayed and the VIs will not run, you may need to use a blutooth

dongle, or a blutooth device on the host PC.

-> Right click on the bluetooth icon -> Start the Bluetooth Device

Advanced Configuration

Start the Bluetookh Device

Advanced Configuration

Guick Connect

137

-> I know the service... -> Next -> Human Interface Device -> Next

2; Bluetooth Setup ['5__<|
oy ' Welcome to the Bluetooth Setu
b
b\ Wizard
\ .,/’ — This \wizard will help you set up pour Bluetooth environment.
\'_“ 1 *w'hat would you like to do?
F 2 | knaw the service | want to use and | want to find &

Eluetooth device that provides that service,

T — 1 wart to find a specific Bluetooth device and configure
by thiz computer will use its services.

. ——
(3 | want to configure the Bluetaoth services that this camputer
e - will provide to remate devices.

| want to change the name and/or device type that this
cormputer displags to ather Blustooth devices.

< Back MHext >][Cancel

2, Bluetooth Service Selection

Services provided by remote devices
The zervices listed below may be provided by nearby Bluetooth devices.
Select a service from the list to see a description of that service.
Click Newt ta search for devices that offer the selected service.

Click a service to select it.

.-f: PIM Synchronization b
{] Headset
%) Audio Gateway

ard or other interf,

|3 tmage Push Client
(Z Bluetooth Camera

el

< Back ” Mest >][Caticel

-> Nintendo RVL-CNT-01 -> Next -> Skip

Bluetooth Device Selection

Select a device
Remote devices must be in Dizcoverable mode for this computer to find them.
For assistance in making a remate device discoverable, refer to the remote
device's documentation.

Cancel Search l Show mice, keyboards and joysticks b

Searching for Bluetooth devices in the neighborhood, please wait...

% < Back][Mext > J[Cancel

Bluetooth Security Setup

Bluetooth Pairing
Paired devices exchange a secret key each time they connect. This key is unigue
for each pair of devices; it is used to verify idertity and to encrypt the data that the
devices exchange.

To pair with the selected device you must know that device’s

securty code.

If the selected device does not require & secunty code, or to pair
with the device later, click Skip.
Pair Mow

Enter the security cade and then click Pair Maw.

Bluetooth security code: |

[< Back][Skip][Cancel]

138

139

-> Finish

2% Bluetooth Setup Wizard Completion Page

Completing Bluetooth Setup
Wizard

To complete this connechion, click Finish.

< Back IL Finish J[Cancel

After these steps the next application must be used:

WiimoteTest
Application
WiimokeTest

Multiple Wiimote Tester

-> Close

140

wimate 1

‘Wiirnote

*wiimote docel IR Classic Contraler Balance Board
fx=11. 041FEEET, IR1 DA Left Jopstick TL TR
=1, 2=0.28} IF2 B Total
IFi3 E ﬁ Right Joystick BL BR
IRd4 [] Pounds
Hunchuk, IR1Ram - e
Accel Values IR 2R aw [[] Home TriggerF!
IR 2R aw iy e
IR4Raw E gp
Jopstick Values own
Om1 k3 [] Left
Flie iRz CJIR4 [] Right
[z Battery E ;:;‘
ll.','.'.!.'.!.'.!.'.!.'.!.'.!.'.!.'.!.'.!.'..] BE.E7 |[] LTrigger
[] RTriager
COutputs
L1 LeDT Guitar
[LED2 |:| Greet Joystick Values
] LED3 [] Red
D LED4 I:l YE"DW Whal‘ﬂl‘l‘l_l,J
[] Blue
[Fumble [Drange
I:‘ 3
-+
[] StrumUp

[StrumD own |

5. Make the connection between the PC and CompactRIO.

The PC needs to know that the CompactRIO is connected to it.

-> Start -> Measurement & Automation

Internet
¢ Internet Explorer

(O | E-mail
I& Microsoft Office Cutlook

Mational Instruments
e LabvIEw 8.6

j My Documents
i b My Recent Documenkts

_9 My Pictures

:} My Music

g.! My Computer

g My Metwork Places

E’ Control Panel

@ Set Program Access and
Defaults

@ Printers and Faxes

@ Help and Support
).) Search

ﬁRun...

&ll Programs p

-> Remote Systems -> NI-cR109014

¥ NI-cRI09014-0139EECT - Measurement & Automation Explorer

File Edit Yiew Tools Help

= Q My System

VBB Data Meighborhood
ﬁ‘ Devices and Interfaces
g Historical Data
-4 Scales
G Softwars

= @ Remate Systems

£ &) Devices and Interfaces

(Sj Software

,G' Rrefresh L Apply ‘,‘? Hide Help ‘
F -~
Identiization P Settings =
A
Model: cRI0-9014 Obtain an 1P address automatically LabVIEW Real- =
Serial Mumber: 0133EECT Usethe tollowing IP address: Time Target
MAC Address: D0:80:2611:41:3¢ TR e Configuration
Suggest Values.. To Default
Nanie: Complete the following
steps to configure your
remote system for use
System State: Attempting to Connect 1P Address: 169.254.125.17 vith the LabVIEW Real-
Time Module. For a
" " Subret Mask: 255.265.0.0 more completa
omment Gl 0000 explanation of these
AR Bk steps, refer to the
LzbVIEW Real-Time
DMS Server. 192.168.0.6 Tk Dot atie
Tutorial.
Password-protect Hesets Halt systern if TCRAP fails 1. Bootinto LabVIEW
Real-Time
=
B2 Network Settings | 2 Help | [System Settings | etwork
).:' Atkempting to Conneck, ..

141

6. Open LabView and VIs.

142

Open the project VI and chose all the VIs needed for a simulation based on the

next chart:

Open Loop

Close Loop

OpenLoop.vi | Hinfinity.vi

WiiPC.vi

WiiPCref.vi

-> Start -> National Instrument LabVIEW 8.6

' Internet ..-} My Documents
{ Internet Explorer :

5 T a My Recent Documents »#
E-mail
M Fb Office Cutlook
icrosol ice Cutlool -9 Mg BiEElipes

Measurement & Aukomation =
g My Network Places

Q
4
=

MATLAE RZ0070
E’ Control Panel
Motepad Set Program Access and
@ Defaulks
S ;. iobe Reader 9 j:ﬂ Printers and Faxes

w HToE 9) Help and Support
,') Search

&ll Programs D {7 Run...

|§| '-:'h uk Dawn

‘4 start

143

-> File -> Open Project. ..

5 =M Cperate Tools Help
Tew Y1 Chrl+M

Cpen. .. Chrl+0

Mew Project

Licensed For Professional Wersion

Recent Projects » Mew To LabYIEW?
Recent Files 3
Getting Skarted with LabWIEW
Exit Chrl+3
R P Lab¥IE'W Fundamentals
B Real-Time Project Guide to LabWIEW Documentation
=7 Mare...
LabwIEW Help
Upgrading Lab¥IEW?
Open

s Automatic Block Diagram Clean Up
@ kel 0biks\AggieCopter 10bits, lvproj

[&l C...bviewIPGs\AogieCopter10bits, bpro Quick Drop

gil, C:\,...opter10bits! Aqaiecopter33Matlab, i Properties of Mulkiple Objects
gg. C:h. L dalst AggieCopter 1 Dbiks\HinFrity vi List oF Al Mew Featuras
gil, Cih. o vhutorialstLabviewIPGsiReadData, vi T i
Eﬂ L dalstaggieCopter 1 ObiksyOpenLoop, vi I
3 Browse. ..
Training Courses
Targets LabYIEW Zone

PRI

|FPGA Project

Examples

Q\ Find Examples. ..

144

-> AggieCopter10bits -> OK

Select the Project to Open

Laak in: |@AggieCopter1Dbits V| 3 e B

My Recent
Documents

by Documents

by Eomputer
g File narne: |AggieE0ptel‘I Obits b | [oK]
My Metwork | Files of type: | Projects [lvproj] v | [Cancel]

File Edit Elew Project Qperate Tools Window ﬂelp

[aeer « ErTE

Items | Files |

= |T_gg, Project: AggleCopterlDblts Ivpraj

s, wiPCref i
. qﬁ? Dependencies
: ﬁ Build Specifications
=t ‘ MI-cRIOS9014-0139EECT (169,254,125,17)
H: & <hassis (cRI0-9103)
l"l Eg wariables - network - RT (separate).viib
g}, Hinfrity i
@ OpenLoop.vi
%—:‘" Dependencies
+& Build Specifications

10.

11.

12.

13.

145

Change any parameter you need on VlIs.

Change any parameter needed for the simulation (name of saved files, trim

conditions, etc.).

. Turn on helicopter.

. CHECK NOTHING GOES WRONG.

Turn the helicopter off and anything else if something weird happens.
Run the VI on the CompactRIO (controller).

CHECK NOTHING GOES WRONG.

The sensors are absolute encoders, thus, they need to be initialized before start-
ing the program. This is the reason why the VIs on the CompactRIO have to

be run first.
Run the VI on the PC (user interface).

CHECK NOTHING GOES WRONG.

Once you run the VI on the PC make sure everything is OK. Then the helicopter

is ready to use.

146

14. Open Loop Controls

©
1]
Force =1 "1=3 Force
Decrement 4 — Increment
s - —)
Stop

O I o—
N/A .

147

15. Close Loop Controls

Press and hold
to move the helicopter.

Point to the
sensor bar

Disturbances

Trim
Scale
Move
Set
Help

16. When finish, turn off everything and disconnect everything. NEVER LEAVE
THE BATTERIES CONNECTED TO THE HELICOPTER.

3DOF
ARE
CAD
COM
diag(x)
eye(x)
LiPo
LMI
LQR
MIMO
Ni-MH
PIC
PWM
SEC
SISO
SVD
Tr(x)

APPENDIX F

NOMENCLATURE

3 degrees of freedom
Algebraic Ricatti Equation
Computer Aided Design
Center of Gravity

matrix whose diagonal elements are the inputs of vector x
identity matrix of size x
Lithium Polymer

Linear Matrix Inequalities
Linear Quadratic Regulator
Multi Input, Multi Output
nickel-metal hydride cell
Programmable

Pulse Width Modulator
Speed Electronic Controller
Single Input, Single Output
Singular Value Decomposition

Trace of matrix x

148

149

VITA

Luis Arturo Ruiz Brito received his Bachelor of Science degree in Mechatronics
Engineering from Instituto Politécnico Nacional at Mexico City in 2005. His research
interests include control alghoritms and real time applications. Mr. Ruiz may be
reached at Texas A&M University, Department of Aerospace Engineering, H.R. Bright
Building, Rm. 603, Ross Street - TAMU 3141 College Station TX 77843-3141. His

email is britonet@neo.tamu.edu.

