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ABSTRACT 

 

Regional Analysis of Seafloor Characteristics at Reef Fish Spawning Aggregation Sites 

in the Caribbean. (December 2009) 

Shinichi Kobara, B.A., Soka University of Japan; 

M.Eng., Soka University of Japan 

Co-Chairs of Advisory Committee:  Dr. William D. Heyman  
          Dr. Anthony M. Filippi 

 

Overfishing of stock and decreasing biodiversity are grave concerns for the U.S. 

and the rest of the world. In the Caribbean, one of the critical science gaps hindering 

effective management is the lack of information on how environmental factors may 

make fish spawning aggregation (FSA) sites optimal for spawning. Understanding and 

applying spatial information of marine species’ reproductive ecology and critical life 

habitat such as the patterns of seafloor characteristics of FSA sites is vital to efficiently 

design marine protected areas (MPAs) to help rebuild regional fish stocks. 

The specific goals of the study were: (1) to map the seafloor at historically 

known grouper and snapper spawning aggregation sites in three different countries, and 

(2) to characterize quantitatively the geomorphology of the sites including horizontal and 

vertical curvature profiles of the reefs, bottom depth at spawning sites, distance between 

spawning sites and shelf-edges/reef promontory tips, and the shortest distance between 

the spawning sites and 100 m water depth. These data were field-collected with a global 

positioning system (GPS) and eco-sounder that provided latitude/longitude and depth. 
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The point data were interpolated to surfaces in GIS to determine slope, curvature, and 

distance from spawning sites and three-dimensional reef structures.  

 This study revealed that all 12 known Nassau grouper spawning aggregation sites 

in Belize and 5 known sites in the Cayman Islands were located at convex-shaped 

seaward extending reefs (reef promontories) jutting into deep water, within 1 km of reef 

promontory tips. However, spawning aggregations did not always occur at the tips of 

reef promontories, though all were found along the shelf edges within 1 km of 

promontory tips. Sixteen sites were multi-species spawning sites. These general 

characteristics were used to predict an undiscovered multi-species spawning aggregation 

in Belize. A successful prediction in Belize, together with the compiled data from 

multiple sites indicate: 1) reef promontories are vital locations for transient reef fish 

spawning aggregations, 2) three-dimensional information and analysis are necessary to 

locate grouper and snapper FSA sites, and 3) this study provides a potential tool for not 

only design for MPAs but also prediction of unknown spawning sites in the Caribbean. 
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____________ 
This dissertation follows the style of Marine Ecology Progress Series. 

 

1. INTRODUCTION: THE IMPORTANCE OF RESEARCH 

 

There is little agreement on how exactly to choose appropriate areas for 

protection in the marine environment (Walters 2000, Allison et al. 2003). Currently 

Marine Protected Areas (MPAs) are being widely considered around the world as a tool 

to protect habitat from destructive fishing practices, allow the recovery of overexploited 

fish populations, and protected species during critical life history stages such as 

spawning (Kelleher & Kenchington 1991, Roberts 1995, Lauck et al. 1998, Agardy 

2000, Roberts 2000, Roberts et al. 2001, Villa et al. 2002, McLeod 2004, Grober-

Dunsmore & Keller 2008). MPAs are defined as areas of the inter-tidal or sub-tidal 

terrain, together with their overlying water and associated flora and fauna, and historical 

and cultural features, which have been reserved by law or other effective means to 

protect part of or the entire enclosed environment (IUCN 1988).  

Caribbean nations have increasingly recognized the natural richness of coral 

reefs which are the richest among marine ecosystems in species, productivity, and 

biomass. Reef systems serve as a storehouse of immense biological diversity and provide 

economic and ecosystem services to millions of people as shoreline protection, areas of 

natural beauty and recreation, sources of food, pharmaceuticals, jobs, and revenue (Jones 

et al. 1999, Wolanski 2001). They are incredibly valuable ecosystems and the focus of 

many marine sanctuaries world-wide (Bryant et al. 1998). 
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Coral reefs worldwide are experiencing a recent period of decline. The collapse 

of many Caribbean coral reefs have been long preceded by dwindling fish stocks and 

increased nutrient and sediment loading from poor land-use practices (Bellwood et al. 

2004).  

 Reef fishes play important roles in the health of coral reefs and associated 

ecosystems. However, overfishing is a major environmental and economic problem 

facing virtually all marine ecosystems (Jackson et al. 2001). If a particular species is 

heavily fished, it is not simply the targeted population that is affected, but the entire 

ecosystem. Typically, overexploitation of a mixed reef fishery first depletes stocks of 

large predators. Having exhausted catches of larger, longer-lived species, fisheries 

increasingly concentrate on catching smaller, shorter-lived grazers, which play their own 

critical role in the marine food web. For example, parrotfish actively maintain coral reef 

health by removing inhibitors to coral growth during their grazing (e.g., seaweed and 

algae, sea urchins, sediment, and dead coral patches). As predatory fish are selectively 

removed, lower trophic-level species like parrotfish are then targeted, further reducing 

reef community abundance, diversity, and resilience. Food sources are limited as 

populations attempt to reestablish themselves and decreases in overall reef health can 

lead to tremendous losses in overall ecological function, including the complete 

disappearance of the coral reef community for food. Then, larger fishes will face 

increasingly limited food sources necessary (Hughes 1994, Pauly et al. 1998). On the 

other hand, a healthy reef community that retains the presence of top-level predators 

does not see lower-tier grazer populations negatively impacted. Mumby et al. (2006) 
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documented that a MPA in the Bahamas has allowed Nassau grouper populations to 

flourish alongside many species of parrotfish. 

Reef fish species have complex life cycles utilizing multiple habitats throughout 

their ontogenetic development (Thresher 1984, Grover 1993, Eggleston 1995, Sadovy & 

Eklund 1999, Grober-Dunsmore & Keller 2008). Groupers have strong, stout bodies and 

large mouths. They are solitary carnivores that live near the bottom. In general, one of 

differences between a grouper and a snapper in reproduction process is that groupers are 

protogynous hermaphrodite; the young are predominantly female but transform into 

males as they grow larger.  

One important step in the reproductive cycle of various reef fish species is their 

periodic aggregation for spawning. Most commercially-important reef fishes such as 

groupers and snappers in the Caribbean travel relatively long distances over days or 

weeks to the aggregation site during a very specific portion of one or two months of the 

year and are considered “transient” spawning species (Johannes 1978, Domeier & Colin 

1997). In contrast, some fish live within a relatively small area during their entire life, 

including spawning, and are considered resident spawning species. The distinction 

between these types is based on the frequency of aggregations, longevity of 

aggregations, and distance traveled to the aggregation (Domeier & Colin 1997). For 

example, Cubera snapper (Lutjanus cyanopterus) and Dog snapper (Lutjanus jocu) 

migrate over large distances to spawn in transient fish spawning aggregations (FSAs) 

(Heyman et al. 2005). Transient FSAs can be reliably located and targeted because of 
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their predictability in time and space, which makes them more vulnerable to 

exploitation.  

Biological aspects of FSAs throughout the Caribbean have been documented 

since the 1970s, including for: The Bahamas (Smith 1972, Colin 1992, 1995, Bolden 

2000), Mexico (Aguilar-Perera & Aguilar-Davila 1996, Aguilar-Perera 2006), Belize 

(Carter 1989, Carter et al. 1994, Carter & Perrine 1994, Heyman et al. 2001, Paz & 

Grimshaw 2001, Sala et al. 2001, Heyman et al. 2005), Honduras (Fine 1990, 1992), 

Cuba (Sadovy & Eklund 1999, Cagide et al. 2001, Claro et al. 2001, Claro & Lindeman 

2003, Paris et al. 2005), the Cayman Islands (Colin et al. 1987, Tucker et al. 1993, 

Whaylen et al. 2004), Jamaica (Colin & Clavijo 1988), Puerto Rico (Colin et al. 1987, 

Colin & Clavijo 1988, Shapiro et al. 1993a, Shapiro et al. 1993b, Sadovy et al. 1994, 

White et al. 2002, Matos-Caraballo et al. 2006), Turks and Caicos Islands (Domeier & 

Colin 1997, Tupper & Rudd 2002) and U.S. Virgin Islands (Colin 1978, 1996, Beets & 

Friedlander 1999, Nemeth 2005, Whiteman et al. 2005). These studies suggest that the 

timing of aggregations is correlated to lunar and diel cycles such that most species 

aggregate after the full moon of various months of the year, and often spawn at or after 

sunset. Unfortunately, direct observation of these events has been limited by the 

infrequency and remoteness of their occurrences.  

Forming a MPA can be difficult, as it can take many years to set regulations and 

the boundaries. No-take MPAs may be designated before all pertinent scientific 

information on essential fish habitat, particularly spawning habitat, is known. Moving 

forward in designating MPAs without a full scientific understanding is necessary, 
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though, given the threat of overexploitation and loss of biodiversity. Yet, such an 

impetus can lead to faulty MPA design and improperly established boundaries and 

regulations. For example, an aggregation of black grouper was discovered less than 100 

m outside a newly-designated MPA in Florida (Eklund et al. 2000). Further 

compounding the error, the MPA was limited to 18-m depth contour, while the black 

grouper FSA was found in waters between 18-28 m deep. As a result, the MPA, which 

had an expressed goal of conserving the black grouper FSA site, offered no protections.  

To avoid such a situation, the critical first step must be for scientists to quickly and 

accurately assess those unique geophysical characteristics that form the basis of FSA 

sites and to situate MPAs around them. 

Knowledge of the relationship between seafloor characteristics and FSAs will be 

not only valuable for coral reef ecosystem conservation and fishery managements, but 

can also be used for modeling the larval connectivity between spawning sites and 

potential settlement sites. Although the most common approach for managers to learn of 

the locations of FSAs is to observe or interview fishermen (Heyman et al. 2004), in some 

areas, FSAs are un-fished and/or unknown. In these cases, researchers must identify 

aggregation sites and times in fishery-independent ways.  

The mechanisms by which transient reef fishes locate the same few FSA sites 

each year, as well as the ecological advantage this aggregating behavior provides is not 

clearly understood (Carter et al. 1994). Theories include ideas that spawning timing and 

locations are selected to enhance the entrainment of larvae into favorable currents, 

thereby facilitating their chances of finding food in patchy environments, avoiding 
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predators, and finding suitable habitat for settlement (Johannes 1978, Lobel 1978, 

Barlow 1981). Though transient reef fishes may recognize optimal spawning locations, 

the analysis of the underlying mechanisms for this choice is beyond the focus of this 

study. This study, however, will serve as a foundation for further studies that evaluate 

these mechanisms and include measurements and models of ocean currents and 

geomorphology in relation to spawning times and locations.  

The overall goals of this study are 1) to characterize the physical characteristics 

of FSAs using currently available quantitative data and literature reviews; 2) to analyze 

the seafloor characteristics at historically known FSA sites; and 3) to develop an 

analytical strategy to predict undiscovered FSA sites using the best available information 

on the environmental features of known FSA sites. 

This dissertation consists of four components: Section 2 summarizes the 

currently-known locations and environmental factors associated with FSA sites based on 

intensive literature review towards a synthesis of key environmental factors at FSAs. 

Section 3 and 4 focus on characterization of FSA sites in the Cayman Islands and Belize. 

Section 5 added characterization of four Puerto Rican sites and two predicted sites in 

Los Roques, Venezuela. With these four countries and territories analysis, the study 

attempts to generalize seafloor characterization of transient FSA sites. 
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1.1 Overview of the Study Contents 

Considering the current accessibility of data, this study focused on the areas 

holding currently active sites and traditionally well-known FSA sites. In this case, the 

Cayman Islands and Belize were the best candidates for data accessibility and for 

analysis of the relationship between seafloor characteristics and grouper and snapper 

FSA sites. They were located in the northwestern Caribbean along the Cayman Trench. 

Some historical sites in these countries no longer serve as spawning aggregations, but 

the purpose of the research was to find out common characteristics of existing and 

historically known FSA sites.  

This study has quantified seafloor characters and multi-species aspect of FSA 

sites in Belize and Caymans, and found an appropriate scale to compare all known FSA 

sites. Then the analysis was extended to historically known sites in Puerto Rico.  

My driving conceptual hypothesis is that objective observations and geospatial 

analysis of seafloor characteristics would elicit general patterns of FSA sites. The results 

would help formulate a fishery-independent method to predict the timing and location of 

potential or previously undiscovered FSA sites. Sadovy (1997) noted Los Roques 

Islands, Venezuela, for the common occurrence of Nassau grouper, but no previous 

documentation for FSA sites. In addition, the area has been protected since 1972. Los 

Roques probably had the highest probability of any other area in southern Caribbean for 

predicting FSA sites. This study therefore attempted to predict potential FSA sites based 

on occurrences of reef promontories that were observed in these three countries. 
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1.2 Problem Summary 

In short, this study broadens and deepens the literature on the reproductive 

patterns for large reef fishes by providing the first detailed comparative seafloor 

characteristics analysis of FSA sites in the Caribbean. The intellectual merits of this 

research lies in its relevance to marine ecosystem-based management, marine reserve 

network design, marine biogeography, and contemporary trends in spawning aggregation 

research and management.  

Geo-spatial information is critically important for resource managers in 

designing networks of no-take marine reserves. Often, due to the paucity of available 

biological data and the costs required to get them, reserves must be designed prior to the 

collection and synthesis all pertinent scientific information on essential fish habitat, 

particularly spawning habitat. This study offers the evaluation of a simple, geomorphic 

proxy for reef fish spawning habitat. Understanding the patterns of seafloor 

characteristics of spawning aggregation sites is of great interest to managers who need a 

means to efficiently design marine protected areas to help rebuild regional fish stocks. 

Ideally, this knowledge will have a broad impact in supporting accurate, efficient 

planning and management of marine protected areas. 
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2. SYNTHESIS OF ENVIRONMENTAL CONDITIONS AT FSA SITES 

 

2.1 Introduction 

Spatial information on the reproductive ecology of marine species is vital to the 

development of effective strategies for marine resource management. In the Gulf of 

Mexico and Caribbean region, one of the critical science gaps is the lack of information 

on the specific timing and geographical locations of reef fish spawning aggregations 

(FSAs), along with the environmental conditions at these sites. A limited understanding 

of the general location of FSA sites further limits their inclusion within marine protected 

areas. Any regional ecosystem-based management approach should include identifying 

and evaluating all FSAs (Sale et al. 2005, Appeldoorn 2008). 

As of August 2005, an estimated 119 species from 22 families of both transient 

and resident spawning coral reef fishes globally have evolved a reproductive strategy 

that results in the aggregation at specific geographical locations to spawn (Cornish 

2005). Reef fishes have chosen their preferred spawning environment through adaptive 

selection; spawning aggregation sites are correlated with optimal environmental 

parameters that confer some genetic and developmental advantages. These might include 

sea surface temperature (SST) range and variability, vertical temperature distribution, 

depths of mixed layer, strength and extent of thermocline, ocean current speed and 

direction, the occurrence of eddies that promote localized recruitment, certain sea states, 

water clarity, benthic habitat, and geomorphology. Conversely, spawning sites may be 

selected primarily to simplify the task of widely spaced males and females locating one 
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another (Zaiser & Moyer 1981, Shapiro et al. 1988). Differentiating FSA sites from 

surrounding areas may be learned by younger or newly recruited inexperienced 

individuals from more experienced adults (Shapiro et al. 1988, Coleman et al. 1996).   

The Society for the Conservation of Reef Fish Aggregations (SCRFA) collates a 

global database on reef fish FSAs based on data collected through published literature 

and fisher interviews in order to document all known aggregations throughout the world. 

Sadovy et al. (2008) has summarized the global status of spawning aggregations based 

on the database and provide an inventory of Nassau grouper FSA sites throughout the 

Caribbean. Data on transient spawners such as seasonality, photo period, lunar cycle, 

and spawning behaviors, have generally been the focus compared with physical 

environment. SCRFA database does offers general locations of known FSA sites, but 

such information often lacks latitude/longitude or depth information, thereby limiting 

detailed environmental and geomorphological information.  

This section therefore has undertaken a literature survey on the detailed 

environmental characteristics of known FSA sites. This study documents the locations of 

known FSA sites in the Gulf of Mexico and the wider Caribbean from the sources of 

information provided in the database. This process results in a geophysical database that 

includes all of the currently-known FSA sites for the transient reef fish species within 

the Gulf of Mexico and the wider Caribbean. 

  The objectives of this section were to synthesize all of the available 

environmental data on FSAs in the wider Caribbean (from scientific journal articles, 
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reports, and gray literature) and to use these data to undertake an analysis of common 

environmental features among FSA sites to answer the following specific questions:  

- Where are the known FSA sites in the Gulf of Mexico and the wider Caribbean? 

-  How many transient spawning aggregations have been found?  

- How many sites are still active? 

- What species aggregate to spawn? Is the distribution of each species different? 

- How variable are the environmental features across a wide range of 

geographically discrete FSA sites and species?  

- What are the key environmental factors (static and dynamic) that contribute to 

the selection FSA sites? 

 

2.2 Materials and Methods 

This study applied clear definitions of both aggregations and spawning following 

Domeier and Colin (1997) and Sadovy et al. (2008) in order to ensure consistency.  

This study used 44 records of direct spawning evidence and 108 records of 

indirect spawning evidence from the SCRFA database (January 2009) for the present 

analysis (Table 2.1). Direct evidence included observations of spawning or the presence 

of hydrated eggs or postovaluatory follicles. Indirect evidence included observation of 

courtship behavior, coloration changes, seasonal increase in Gonadosomatic Index (GSI, 

the ratio of fish gonad weight to body weight) and seasonally high catches of gravid fish.  

The SCRFA database included data on several key environmental factors that 

have been selected to characterize known FSA sites including: geomorphological type, 
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benthic habitat, aggregation type (transient or resident), direct or indirect evidence of 

spawning, current status (active or inactive), management or protection in place, and the 

source of those data (Sadovy et al. 2008). Additional environmental parameters at FSA 

sites have been mentioned in scientific journals articles and gray-literature reports.   

For this analysis, the following set of environmental factors that in part were 

listed in the database and described in the scientific literature was considered 1. Type of 

spawning (transient/resident/unspecified); 2. Spawning depth; 3. Seafloor characteristics 

(bottom depth, promontory/shelf edge/reef flat/reef channel, proximity to deep water); 4. 

Benthic habitat (rubble, sand, rock, coral and seagrass with a detailed description); 5. 

Tidal information; 6. Visibility; 7. Water temperature; and 8. Current flow and direction. 

Data for each category was collected and summarized for each of the 84 known 

FSA sites, and these data where then parsed by species and nation of occurrence. In 

addition, this study used additional data from peer-reviewed papers that are not yet listed 

in the SCRFA database. An analysis and synthesis of data limitations were also 

summarized.  

 

2.3 Results and Discussion 

2.3.1 Known spawning aggregations in the Gulf of Mexico and the wider Caribbean 

The SCRFA dataset, as of January 2009, includes 46 records of transient 

aggregation observations out of 152 records in 12 countries (Table 2.1). Most records 

were from the northwestern Caribbean and the western Atlantic. No information was 

available for the southeastern and southern Caribbean. There might be considered as 
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evidence that historical Nassau grouper FSA sites existed at Guanaja, Honduras (Fine 

1990, 1992), Punta Rusia, Dominican Republic (Sadovy 1997, Sadovy et al. 2008), and 

Antigua and Barbuda (Munro & Blok 2003), but were not included in the SCRFA 

database as of January 2009.  

 

Table 2.1. The number of transient and resident FSAs reported by country and by type of 
evidence available (source: SCRFA database as of January 2009). 

Location 
# of records 

(direct) (indirect) Transient Resident Unspecified

Bermuda 3 - 2 1 - 
U.S. – Florida - 26 4 - 22 
Bahamas 6 3 5 1 3 
Turks & Caicos 3 1 3 - 1 
Netherlands Antilles - 1 1 - - 
U.S. Virgin Islands 2 - 1 - 1 
Puerto Rico 6 2 4 3 1 
Jamaica 1 - - 1 - 
Cuba 3 63 14 - 52 
Cayman Islands 12 4 3 - 13 
Mexico 1 - - - 1 
Belize 7 8 9 - 6 
Total 44 108 46 6 100 

 
 
 
In the SCRFA database, transient species were actually dominant in records. 

There were 100 records classified as unspecified aggregation type in the database. 

However, some species were categorized as transient, whereas the same species was 

unspecified in other records. For example, Nassau grouper is well-known as a transient 

aggregation spawner; however, it was categorized as unspecified in some cases. When 
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these were corrected, 144 out of 152 records can be classified as transient spawning 

aggregations. 

Unfortunately, many sites were no longer active. Moreover, some records shown 

in Table 2.1 shared the same sites, though the species were different, and/or the timing 

of spawning varied somewhat among the species. However, only a few journal articles 

or gray literature report explicitly described multi-species FSA sites. Belize (Heyman & 

Requena 2002, Heyman & Kjerfve 2008), the Cayman Islands (Whaylen et al. 2004, 

2006), Cuba (Claro & Lindeman 2003), Puerto Rico (Nemeth et al. 2007a), U.S. Virgin 

Islands (Nemeth 2005, Kadison et al. 2006, Nemeth et al. 2007b) and Florida (Coleman 

et al. 1996, Koenig et al. 1996, 2000) are currently the only countries and territories 

having detailed observations of multi-species FSA sites.  

Compiled from the available scientific journals, reports, and gray literature, we 

mapped (Figure 2.1) and listed all historically-known grouper and snapper aggregation 

sites in the Gulf of Mexico and the wider Caribbean (Table 2.2). 
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Figure 2.1. Historically-known spawning aggregation sites of grouper and snapper with/without direct/indirect evidence since 
1884. These circles represent the general area of the FSA sites, not the exact location. 
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Table 2.2. The 84 general areas of known transient reef fish spawning aggregations in 
the Gulf of Mexico and the wider Caribbean including the western Atlantic Ocean. 
 

Country # Site name Ref. 

Bermuda 3 Challenger and Argus banks 1, 2 

U.S. – Florida 2 Southern Florida Keys& Eastern Gulf of Mexico 1, 3, 4, 5, 6 

the Bahamas 23 Andros Island (5) Ragged Island 1, 7, 8 

  Long Island (3) Cay Sal  

  Exuma Cat Cay/Bimini(2)  

  Berry Island (4) Eleuthera (4)  

  New Providence Acklins  

Turks & Caicos  1 Phillips Reef  1, 2 

Antigua-Barbuda 2 Off Green Island Knolls in the central 9 

Netherlands Antill. 
4 Saba St. Eustatius 9 

 Sint Maarten St. Bahhelemy Channel  

Anguilla 3 Seal Island Scrub Island (2) 9 

U.S.V.I. 2 St. Croix St. Thomas Grammanik Bank 1, 2, 10,  
11, 12,13 

Puerto Rico 3 Mona Island El Seco, Vieques Is. 1, 2, 14, 15,  

  Southwest coast (El Hoyo) 16, 17, 18,19 

Dominican Repub. 1 Punta Rusia  1, 2 

Cuba 21 Bajo Mandinga Cabo San Antonio 1, 2, 20, 21 

  Cabo Cruz Corona de San Carlos  

  Cayo Bretón Punta Hicacos-Cayo Mono  

  Banco de Jagua Cayo Megano de Nicolao  

  Cay Guano Boca de Sagua  

  Cayo Diego Pérez Cayo Lanzanillo  

  Cayo Avalos Cayo Fragoso  

  Punta Francés Cayo Calmán Grande  

  Cayos Los Indios Cayo Paredón  

  Cayo San Felipe Cayo Sabinal  

  Cabo Corrientes   

Cayman Islands 6 GC Sand Caye GC Northeast end 1, 2, 14, 

  Little Cayman East Little Cayman West 22, 23 

  Cayman Brac East Twelve mile bank  

Mexico 2 Mahahual Xahuaxhol 1, 2, 24,  
25, 26  

Belize 10 Rocky Point Sandbore 1, 2, 26, 27 

  Dog Flea Caye Northern Glover's 28, 29, 30,  
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Table 2.2. con’t.    

Country # Site name Ref. 
Belize  Cay Bokel Gladden spit 31, 32 

 Cay Glory Nicholas Caye  

 Halfmoon Caye Rise and Fall Bank  

Honduras 1 Guanaja   1, 2, 33, 34 

#: Number of sites. Reference: 1. (Sadovy 1997); 2. (Sadovy et al. 2008); 3. (Lindeman 
et al. 2000); 4. (Koenig et al. 1996); 5. (Coleman et al. 1996); 6. (Koenig et al. 2000); 7. 
(Smith 1972); 8. (Colin 1992); 9. (Munro & Blok 2003); 10. (Beets & Friedlander 1999); 
11. (Nemeth 2005); 12. (Kadison et al. 2006);13. (Nemeth et al. 2007b); 14. (Colin et al. 
1987); 15. (Colin & Clavijo 1988); 16. (Shapiro et al. 1993b); 17. (Sadovy 1994); 18. 
(White et al. 2002); 19. (Matos-Caraballo et al. 2006); 20. (Claro & Lindeman 2003); 21. 
(Claro et al. 2001); 22. (Tucker et al. 1993); 23. (Whaylen et al. 2004); 24. (Aguilar-
Perera & Aguilar-Davila 1996); 25. (Aguilar-Perera 2006); 26. (Sosa-Cordero et al. 
2002); 27. (Carter & Perrine 1994); 28. (Sala et al. 2001); 29. (Paz & Grimshaw 2001); 
30. (Heyman et al. 2005); 31. (Heyman & Kjerfve 2008); 32. (Graham & Castellanos 
2005); 33 (Fine 1990); 34. (Fine 1992). 
 
 
 

2.3.2 Transient spawning aggregation species and distributions 

The analysis revealed spawning aggregations from three families and 19 species 

from 12 countries and territories throughout the Caribbean, whereas globally, nine 

families and 67 species from 29 countries were identified. These families included 

groupers (Family Serranidae), snappers (Family Lutjanidae), and jacks (Family 

Carangidae) (Table 2.3). 
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Table 2.3. Transient spawning species from around the Caribbean by country, as 
reported in the SCRFA database. The (direct or indirect) evidence for each 
species/country combination is provided. Country names are presented without 
parentheses in cases where direct evidence of spawning is provided, and parenthetically 
when the source is from indirect evidence only. 
 
Genus and species Common name (In)Direct Countries 
Epinephelus 
striatus 

Nassau grouper Direct MX, BZ, CI, UVI, BM, 
(HnD) (CU), (DR), (PR), 
(TCI), (BH),  

E. guttatus Red hind Direct PR, BM, UVI, (NA), (AB), 
(AG) 

E. adscensionis Rock hind Indirect (PR) 
E. itajara Goliath grouper Indirect (FL) 
Mycteroperca 
bonaci 

Black grouper Direct BZ, BH, (CI), (CU), (FL) 

M. venenosa Yellowfin 
grouper* 

Direct TCI, PR, UVI, BZ, (BH), 
(CI), (CU) 

M. tigris Tiger grouper* Direct TCI, PR, UVI, CI, (BH), 
(BZ) 

M. phenax Scamp Indirect (FL) 
M. microlepis Gag Indirect (FL) 
Lutjanus analis Mutton snapper* Direct TCI, CU, BH, BZ, (FL) 
L. jocu Dog snapper* Direct BZ, UVI, (CI), (CU), (FL) 
L. synagris Lane snapper Direct CU, (FL) 
L. cyanopterus Cubera snapper* Direct BZ, UVI, (CU), (FL)  
L. griseus Gray snapper Indirect (CU), (FL) 
L. campechanus Red snapper Indirect (FL) 
L. apodus Schoolmaster Indirect (NA), (FL) 
Caranx ruber Bar jack* Direct CI, BZ 
C. lugubris Black jack Direct CI 
C. latus Horse-eye jack* Direct CI, BZ 
Decapterus 
macarellus 

Mackerel scad Direct CI 

Acronyms for each country are: Mexico (MX), Belize (BZ), the Cayman Islands (CI), 
Cuba (CU), Turks and Caicos Islands (TCI), Puerto Rico (PR), Bermuda (BM), the 
Bahamas (BH), Florida (FL), Honduras (HnD), Dominican Republic (DR), US. Virgin 
Islands (UVI), Netherlands Antilles (NA), Antigua-Barbuda (AB), Anguilla (AG). 
 
*For each notation, the direct evidence from the following sections for each marked 
species in Belize and the Cayman Islands are available.  
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At least 88 general areas of known transient FSAs (including additional four sites 

in Belize (Section 4)) in the Gulf of Mexico, greater Caribbean, and western Atlantic 

Ocean are identified by this analysis. Of these, 50 sites can be considered to be Nassau 

grouper FSA sites, while some are shared with other species. Most of records, (32 out of 

146, or 22%) are for Nassau grouper (E. striatus). Mutton snapper (L. analis),  cubera 

snapper (L. cyanopterus), gray snapper (L. griseus), black grouper (M. bonaci), and 

yellowfin grouper (M. venenosa) follow with more than 10 records of direct/indirect 

evidence in the SCRFA datasets. Geographical distributions of each species spawning 

aggregations seem different (Figure 2.2 through 2.5) because of data availability and the 

different number of observations for different species. 

 

 

 
Figure 2.2. Historically-known spawning aggregation sites of Nassau grouper (E. 
striatus) with/without direct/indirect evidence since 1884 (modified after Sadovy et al. 
2008). 
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Figure 2.3. Historically-known spawning aggregation sites of Red hind (E. guttatus) 
with/without direct/indirect evidence. (Source: SCRFA database). 
 
 
 

 
Figure 2.4. Historically-known spawning aggregation sites of Mutton snapper (L. analis) 
with/without direct/indirect evidence. (Source: SCRFA database). 
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Figure 2.5. Historically-known spawning aggregation sites of Yellowfin grouper (M. 
venenosa) with/without direct/indirect evidence. (Source: SCRFA database). 
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2.4 Currently Available Environmental Features 

There is only limited available information for detailed, quantitative 

characterizations of environmental factors at these FSA sites in the papers that describe 

the locations. The areas for which most information is available are: The Bahamas (3 

records), U.S. Virgin Islands (6), Puerto Rico (8), the Cayman Islands (3), Cuba (2), 

Mexico (2) and Belize (6).  

The most widely distributed and relatively well-studied species is Nassau 

grouper so this analysis is necessarily biased toward that species (Figure 2.2). Site 

information, specifically habitat, geomorphology, and bathymetry vary among FSA 

sites. Preferences for spawning depth, current speed and direction, visibility, water 

temperature, and tidal information may vary between species because the timing of 

spawning varied somewhat among the species. However, without a more complete data 

set, these conclusions remain preliminary. 

Following an extensive literature review, although the key environmental 

features that enable a specific area to function as an active spawning aggregation site are 

yet unclear, likely candidate environmental factors are habitat and/or reef 

geomorphology. Unfortunately, the use of geomorphological knowledge has been very 

limited in the marine conservation and management process (Hopley et al. 2007). In the 

Caribbean region, FSAs often take place at distinctive bathymetric features. According 

to spawning/bottom depth and geomorphologic type, nearly all FSA sites occur near 

shelf edges and drop-offs. In addition, several sites are also reef promontories. Note that, 

however, qualitative descriptions on geomorphology at FSA sites are common, and often 
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scale-dependent. In short, the currently available data suggest that geomorphological 

characteristics of the benthic terrain may determine FSA site suitability more than any 

other single variable. 

The following describes these physical and environmental factors: 

 

2.4.1 Spawning/Bottom depth 

The bottom depths vary among FSA sites from 15 - 50 m (n = 36) (Table 2.4, 

Figure 2.6). Satellite imagery (e.g. Landsat) can show these areas as shelf edges, since 

20 - 30 m is approximately the maximum depth from which bottom-reflected photons 

propagate through the air-sea interface toward a remote sensor (e.g. satellites) in coral 

reef areas (Green et al. 1996, 2000, Stumpf et al. 2003). Such imagery has been 

successfully used to delineate shelf-edge waters in the Cayman Islands (Kobara & 

Heyman 2008) and Belize (Kobara and Heyman, in review). Spawning depth varied 

among sites; however these values were consistently only a few meters above the bottom 

and may not be accurate. It is well known that many species use vertical movement 

during spawning so actual spawning depth may be less than reported in the database. 
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Table 2.4. Spawning and bottom depth at FSA sites as reported in the literature. 
 

Country FSA Site Location 
Spawning depth 

(m) 
Bottom 

depth (m) 
Species 

Bahamas1 

Bimini 12 29-38 1 

Long Islands (eastern side) 12-15 m above the bottom 35-40 1 

Long Islands (south point) 3-6 m above the 
bottom 

20-27 1 

Turks&Caicos2  - 15-20 1 

Florida3 Florida Middle Ground 

80 (50-120 m) - 2 

>60 m - 3 

>25 m (no FSA) - 4 

U.S.V.I.4 St. Thomas - 41-44 5 

Puerto Rico5 El Hoyo 20-30 30 5 

El Seco around the bottom 36-40 6 

Cuba6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bajo Mandinga 15-25 30 7, 8 

Cabo Cruz - 30-40 7, 8, 9 

Cayo Bretón - 20-30 7, 10, 11, 12 

Banco de Jagua - 14-20 1, 7, 11, 12 

Puntalon de Cay Guano - 30-40 1, 7, 11, 12 

Cayo Diego Perez - 20-30 9 

Cayo Avalos - 20-30 7, 8, 13 

Punta Frances - 20-30 1 

Cayos Los Indios - 20-30 9 

Cabo San Felipe - 20-30 7, 9 

Cabo Corrientes - 25-40 1,7,8,10,11,12 

Cabo San Antonio - 25-40 1,7,8,10,11,12 

Corona de San Carlos - 20-30 1, 7-13 

Punta Hicacos-Cayo Mono - 25-40 1, 7, 9, 11 

Cayo Megano de Nicolao - 20-30 1, 7, 9, 11, 12 

Cayo Lanzanillo - 20-30 9 

Cayo Fragoso - 20-30 9 

Cayo Caimán Grande - 20-30 1, 7, 8, 9, 13 

Cayo Paredon - 20-30 1, 8, 9 

Cayo Sabinal - 20-30 7, 8, 9 
    

Cayman  
Islands7 

Little Cayman East 27-35 30 1 

Little Cayman West 19-38 - 1 

Cayman Brac 27-35 - 1 
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Table 2.4. Con’t.    

Country FSA Site Location 
Spawning depth 

(m) 
Bottom 

depth (m) 
Species 

Mexico8 Mahahual - 15-25 1 

Belize9 

Rocky Point 25-45.7 - 1 

Caye Bokel 25.9-39.6 -  

Caye Glory 10-50 30-50 1 

Sandbore 20.7-27.4 approx. 50 1 

Half Moon Caye 30-38 -  

North Glover's 30 25-45 1 

Gladden Spit 1 m above the sea bottom 30-40 1 

Rise and Fall Bank 19.8-23.5 - 1 

Honduras Guanaja 15-30 - 1 

Species 1: E. striatus 2: M. microlepis. 3: M. phenax. 4: E. morio. 5:E. guttatus. 6: M. 
tigris. 7: L. analis 8: L. cyanopterus 9: L. synagris 10:  L. jocu 11: M. venenosa 12: M. 
bonaci 13: L. griseus 
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Figure 2.6. Bottom depth range for Nassau grouper spawning aggregation sites. 
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2.4.2 Reef geomorphology 

As the bottom-depth data indicates, most FSA sites were near shelf edges (29 out 

of 36 sites or 80.6%) or drop-off (23 sites or 63.9%) (Table 2.5, Figure 2.7). Only three 

sites in Mexico, The Bahamas, and Puerto Rico described FSAs that were not located 

close to a drop-off.  However, the definition of “shelf edges” and what were distances 

from shelf-edges or drop-offs was not clear. Promontory sites were found in Turks and 

Caicos, Puerto Rico, Cuba, the Cayman Islands and Belize (13 sites). Here, a 

promontory was defined as a distinct turning point, or bend in the shelf break, following 

Kobara and Heyman (2008). Bathymetry data can provide not only bottom depths, but 

also insight into seafloor characteristics at each FSA site. In addition, bathymetric data 

would reveal vertical bumps or distinctive structures such as pinnacles, which may be 

attractive to fish. Establishing a clear definition of shelf edge and finding an appropriate 

scale will be key factors for comparative analysis. 

 

Table 2.5. Geomorphologic type of transient spawning aggregation sites in the wider 
Caribbean based on SCRFA datasets. 
 

Country FSA Site 
Shelf 
Edge 

Reef 
Promon-

tory 

Adjacent 
to Drop-

off 

On Reef 
Crest 

Near to 
Reef 

Channel 

Bahamas 

Bimini y     
Long islands         
(eastern side) 

y     

Long islands            
(south point) 

  
250 m 
away 

  

Turks & 
Caicos 

 y y y   

U.S.V.I. St. Thomas y  y   

Puerto  El Hoyo y  y   

Rico El Seco  y no   
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Table 2.5.  Con’t.       

Country FSA Site 
Shelf 
Edge 

Reef 
Promont

ory 

Adjacent 
to Drop-

off 

On Reef 
Crest 

Near to 
Reef 

Channel 

Cuba 

Bajo Mandinga y y y   

Cabo Cruz y  y   

Cayo Bretón y  y   

Banco de Jagua y  y   

Cayo Diego Pérez   y   

Cayo Avalos y  y   

Cayos Los Indios y     

Cayo San Felipe y     

Cabo Corrientes y     

Cabo San Antonio y     

Corona de San Carlos y  y   
Punta Hicacos-Cayo 

Mono 
y     

Cayo Megano de 
Nicolao 

y  y   

Cayo Caimán Grande    y  

Cayo Paredón    y y 

Cayo Sabinal     y 

Cayman 
Islands 

Little Cayman southeast y y y   

Little Cayman southwest y y y   

Cayman Brac y y y   

Mexico Mahahual   no   

Belize 

Rocky Point y y y 
1 mile 
away 

 

Caye Bokel y y y 80 m away  

Caye Glory y y y   

Sandbore y y y 
1 mile 
away 

 

Halfmoon Caye y y y 
0.25 mile 

away 
 

North Glover's y y y 1 km away 
outside 
of large 
channel 

Gladden Spit y y y 80 m away  

Rise and Fall Bank y  y 
5 miles 
away 

 

Honduras Guanaja y  y   
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Figure 2.7. Number of records in the dataset that indicate each geomorphologic type of 
transient spawning aggregation sites in the wider Caribbean. There are 36 sites in the 
dataset and each site can have multiple types. 
 
 
 

2.4.3 Benthic habitat 
 

Corals mainly cover almost all available sites (35 out of 40 sites or 87.5%); 

however, sand or rock was also observed (Table 2.6). In Turks and Caicos Islands, U.S. 

Virgin Islands, Puerto Rico, and Mexico, mountain coral (Montastrea sp) assemblages 

dominate coral coverage at FSA sites. Montastrea sp. Is the most abundant reef-building 

coral in the Caribbean, however, so its presence at FSA sites may be conincidental. In 

Cuba and Belize, in addition to coral species, a certain physical reef characteristics (e.g. 

amount of relief, reef slope) were observed and may be necessary for identifying FSA 

sites.  
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Table 2.6. Detailed descriptions of the benthic habitat found at each transient FSA site in 
the Caribbean (from literature cited in Table 2.2). 
 
Country FSA sites Habitat 
Bahamas Bimini a thin sand veneer over limestone base rock with 

abundant soft corals, sponges, and occasional 
colonies of stony coral 

  Long Islands (eastern side) rocky shelf 
  Long Islands (south point) rubble plain extended seaward to the actual rocky 

shelf edge which dropped away vertically to great 
depth 

Turks & 
Caicos 

  shallow reefs consisted of fringing reefs 
dominated by Montastrea annularis and Acropora 
palmata 

U.S.V.I. St. Thomas complexity of scleractinian coral development, 
primarily flat-surface colonies of Montastrea 
annularis 

Puerto Rico El Hoyo high coral cover and diversity 
  El Seco coral, predominantly Montastrea annularis, 

extended over a relatively level area 
Cuba Bajo Mandinga high coral cover  
  Cabo Cruz a rocky-sandy bottom until the drop-off at about 

20-25m depth. 
  Cayo Bretón slope reef, high coral cover 
  Banco de Jagua oceanic bank. Rocky bottom, moderate coral 

cover 
  Puntalon de Cay Guano slope reef, high coral cover 
  Cayo Diego Pérez slope reef, high coral cover 
  Cayo Avalos slope reef, high coral cover 
  Punta Francés slope reef, high coral cover 
  Cayos Los Indios slope reef, high coral cover 
  Cayo San Felipe slope reef, high coral cover 
  Cabo Corrientes sandy, rocky, coral heads 
  Cabo San Antonio slope reef, high coral cover 
  Corona de San Carlos slope reef, sandy, rocky, coral heads 
  Punta Hicacos-Cayo Mono slope reef, sandy, rocky, coral heads 
  Cayo Megano de Nicolao slope reef, high coral cover 
  Boca de Sagua slope reef, moderate coral cover 
  Cayo Lanzanillo slope reef, moderate coral cover 
  Cayo Fragoso slope reef, moderate coral cover 
  Cayo Caimán Grande slope reef, high coral cover 
  Cayo Paredón slope reef, high coral cover 
  Cayo Sabinal slope reef, high coral cover 
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Table 2.6. Con’t.  
Country FSA sites Habitat 
Cayman Little Cayman southeast sandy depression 
 Islands Little Cayman southwest low relief broad ridges with a hard and soft corals 

and sponges 
Mexico Mahahual low relief patchy hard corals interspersed with 

plexaurids and gorgonians. Hard corals present 
are mountain coral Montastrea annularis and leaf 
coral, Agaricia spp., growing between sandy 
areas. 

Belize Rocky Point hard substrate with sparse coral 
  Dog Flea Caye low relief spur and groove reef 
  Caye Bokel high relief spur and groove reef 
  Caye Glory low relief spur and groove reef. The bottom 

consisted primarily of sand with scattered patches 
of hard and soft corals 

  Sandbore low spur and groove formation 
  Halfmoon Caye high relief spur and groove reef 
  North Glover's                      coral ridges together with sand bars, made up a 

spur and groove  
  Gladden Spit sand floor with low profile mound 
Honduras Guanaja sandy plain begins at about 40 m 

 
  

The Biodiversity and Environmental Resource Data System of Belize (BERDS) 

provides a Belize ecosystem map (2004 version), which includes a marine habitat map 

(Mumby & Harborne 1999). Habitat information was derived from the map at known 

grouper and snapper FSA sites in Belize (Figure 2.8).  
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Figure 2.8. Belize ecosystem map (2004 version) after BERDS (http://biological-
diversity.info/Ecosystems.htm). 
 
 
 
 According to the BERDS ecosystem map, benthic habitat for all sites was open 

water except Rocky point which was located in a coral reef zone. Unfortunately, these 

results contradict the results shown in Table 2.6. Even though the ecosystem map was 

generated using fieldwork, Landsat imagery, historical geology maps, vegetation maps, 

and climatology data (http://biological-diversity.info/Ecosystems.htm), the habitat 

analysis for the FSAs requires an accurate, finer-scale map. 
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2.4.4 Tidal information 

Tides in the Caribbean fluctuate little (40 - 55 cm daily) in comparison to the 

Indo-Pacific Ocean (Kjerfve 1981). Although many reef fishes in the Caribbean respond 

to lunar cycles, tidal influences may be relatively minor in this part of the world, as tidal 

amplitude is very low (e.g. Heyman et al. 2005). Indeed, tidal timing, as a trigger for 

FSA formation and spawning, is far more important in the Indo-western Pacific (Pet et 

al. 2005), where tidal amplitudes may range 1 – 3 m. 

 

2.4.5 Visibility 

Many pelagic fish restrict their distribution to waters with certain turbidity 

characteristics. Unfortunately, visibility data at FSA sites were available only in Puerto 

Rico and Belize (Table 2.7). In Belize, visibility is highly variable among sites and over 

time, ranging from 1.5 - 35 m (Paz & Grimshaw 2001). 

 

2.4.6 Water temperature 

Some fish were highly sensitive to temperature and exhibit a definite temperature 

preference. Finding water of a preferred temperature for a particular species would likely 

increase chances of locating a target fish. However, many descriptions reported by the 

SCRFA database were not clear as to whether water temperatures were referring to 

surface water, within the water column, or at spawning depths. Reported temperature 

ranges were around 25.0 - 27.3°C for Nassau grouper (Table 2.7). Water temperature for 
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red hind (E. guttatus) was available only for Puerto Rico, and was approximately 24 - 

25°C.  

Nassau grouper may have a preferred temperature range for spawning because of 

their individual physiology. The large-scale distributions of Nassau grouper FSA sites 

had different spawning seasonality. Nassau grouper FSAs in Bermuda have occurred 

between May and August, peaking in July (Smith 1971), whereas many sites in the 

Caribbean form after the full moons between December and February (Sadovy & Eklund 

1999). Geographic differences in FSA season were considered to correlate with water 

temperature.  

Tucker et al. (1993) reported that optimal Nassau grouper spawning temperatures 

were likely in the range of 25 - 26°C, utilizing secondary data from literature between 

1966 and 1989. Their conclusion was based on summarized day-length and water 

temperature at several locations in the Caribbean from The Bahamas to Belize. 

Watanabe et al. (1995) examined the effects of temperature on eggs and yolk sac larvae 

of the Nassau grouper under controlled hatchery conditions. Development and survival 

of newly-hatched larvae to first feeding was inversely related to temperatures of 26, 28, 

and 30°C. A temperature of 26°C was deemed optimal for incubating Nassau grouper 

eggs and larvae, although even lower temperatures may provide additional benefits to 

survival rates (Watanabe et al. 1995). 
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Table 2.7. Water temperature and visibility at E. striatus spawning aggregation sites at 
the time of spawning from the sites/cases where these data were collected (sources: 
references in the SCRFA database). 
    

Country FSA sites 
Current speed and 

direction 
Surface Water 

Temperature (°C) 

Horizontal 
or Vertical 

Visibility(m)
Bahamas Long islands 

(eastern side) 
oriented along the shelf 
edge. 

    

Long islands (south 
point) 

  25-25.5 
no bottom 
could be 
seen  

 
Cayo Diego Pérez   

26.7-27.3 at 
depths of 20-30m 

  

Cuba 

Cabo Corrientes 

The currents are strong 
and complex. Anti-
cyclonic circulation 
systems can form in the 
Ensenada de Corrientes. 

    

Cayman 
Islands 
  

Grand Cayman 
northeast 

  26   

Grand Cayman 
southwest 

  26   

Belize 
  
  
  
  
  
  
  
  

Rocky Point North 1.5-2.1 m s-1 26±0.6 15.0-30.0 

Dog Flea Caye N-E 0.5-1.5 m s-1 25.4±0.5 24.4-36.6 

Caye Bokel South 1.3 m s-1     

Caye Glory SSE. NNE long term 25.5-26 15.2-24.4 

Sandbore N to S, 0.5-1 m s-1 25.5-26.0 7 

Halfmoon Caye SW, 0.5-1 m s-1 25.8±0.4 15-20 

North Glover's               35-50 

Gladden Spit SW 0.5 m s-1   18.3-30.5 

Rise and Fall Bank S-SE 2.1-3.1 m s-1 25±0.9 1.5-15 
Honduras 

Guanaja 
NE subsurface, 
deepwater current 
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Ellis et al. (1997) compared the feed utilization and growth of hatchery-reared, 

post-settlement stage Nassau grouper juveniles at temperatures of 22, 25, 28, and 31°C 

under controlled laboratory conditions. Final weights and growth rates were higher at 28 

and 31°C than at 22 or 25°C; thus, a temperature range of 28 - 31°C was recommended 

for culture of early juveniles, although higher temperatures may be feasible (Ellis et al. 

1997). 

Few studies have specifically examined the extent and consequences of thermal 

variability in the field and our knowledge of spatial and temporal variability at FSA sites 

is quite limited. Considering the data availability, this study additionally explored spatial 

and temporal sea surface temperature (SST) derived from AVHRR Pathfinder version 5 

to determin if patterns could be identified for locating currently unknown FSA sites, 

based on the SST characteristics of active Nassau grouper FSA sites in Belize and the 

Cayman.   

In the western Caribbean, while many FSA sites in other countries no longer 

exist or are severely depleted, the Cayman Islands and Belize still have active reef fish 

spawning aggregation (FSA) sites. Little Cayman West, was once depleted, but was 

rediscovered for Nassau grouper reproduction in 2001 (Whaylen et al. 2004). In Belize, 

Gladden Spit, Sandbore and Northern Glovers are three active Nassau grouper FSA sites 

in Belize presently (Sala et al. 2001, Heyman & Requena 2002, Heyman & Kjerfve 

2008). Traditionally, Caye Glory was a major Nassau grouper FSA site until the early 

1980s (Carter 1989). This study examined the long-term trends in sea surface 
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temperature at these three active sites: Gladden Spit, Sandbore and Little Cayman West, 

and a historically major spawning site, Caye Glory as a control site (Figure 2.9). 

 
 
 

 
Figure 2.9. Historically-known and active spawning aggregation sites of Nassau grouper 
in Belize and the Cayman Islands.  
 
 
 
 

Since 1981, NOAA has carried the second generation Advanced Very High 

Resolution Radiometer (AVHRR) suitable for estimating SST. AVHRR Pathfinder SST 

data were obtained from the U.S. National Aeronautics and Space Administration 

(NASA) Jet Propulsion Laboratory Physical Oceanography Distributive Active Archive 
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Center (JPL PODAAC). The data covers the period from January 1985 through July 

2008. They are global gridded 4 km x 4 km data collected twice daily, once during the 

ascending pass (daytime) and once during the descending pass (nighttime) by 5-channel 

AVHRRs aboard NOAA 7, 9, 11, 14, 16 and 17 polar orbiting satellites. The specific 

time of observation for each pixel was complicated because of combinations of different 

satellites, satellites orbits, and data processing. Since the Pathfinder algorithm combines 

multiple observations, the actual time of observation was not precisely given but the 

daytime dataset is considered to have been taken during the afternoon. Since Nassau 

grouper FSAs were most commonly observed before sunset (Sadovy & Eklund 1999), 

this study used daytime SST data. 

The local images covering Belize and the Cayman Islands were retrieved. The 

upper 4 level of quality flags were applied to the daytime pathfinder data set. These data 

ignored uniformity and zenith tests but passed reference and cloud tests (Kilpatrick et al. 

2001). The application of quality flags to reduce error significantly limits the number of 

viable data points. Thus, processing with different level of quality for normally clouded 

areas yielded data for less than 20% of the 8,588 days in the study period. All processes 

above were done through Matlab®. 

The SST data were calculated site-specific values of the temperature mean, 

minimum, maximum, range and standard deviation in each year, across the entire study 

period, the spawning months of December-February, and the spawning periods of 1 day 

before and 7 days after full moon (8 days). It is because Nassau grouper FSAs were 

often observed around or 2-7 days after full moon in Belize and the Cayman Islands 
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(Carter 1989, Colin 1992, Tucker et al. 1993, Carter et al. 1994, Whaylen et al. 2004). 

Missing values due to quality flag were not included in the calculation of summary 

statistics, thus even 24 days (8 days times 3 months) period would include only 1 day of 

data. 

Spatial distribution of SST at Nassau groper FSA sites was explored by 

visualizing the historically known Nassau grouper FSA sites in maps and by calculating 

temperature at the date of spawning time based on literatures. On the same dates of 

spawning at Caye Glory, spatial distribution and other sites of SST were explored. 

Although there were few observations between 1989 through 1992 AVHRR 

Pathfinder SST across entire periods at historically-known sites were 27.9 - 28.4°C, on 

average (Table 2.8). Minimum temperatures during 24 year-periods were 24.6 - 24.9°C 

in the Cayman Islands and 25.0 - 25.3°C in Belize. Maximum temperatures were 31.7 - 

31.9°C in the Cayman Islands and 31.2 - 32.3°C in Belize.  
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Table 2.8. 24 years-history of sea surface temperature at historically-known Nassau 
grouper spawning aggregation sites. 
 

1985-2008 DFC SDB CGL NGL GLS RFB GCE GCW LCW

N 1283 1592 1422 1612 1571 1675 1256 1154 1711 
Average 27.9 27.9 28.2 28.0 28.2 28.4 28.0 28.1 28.1 

Max 31.4 31.2 31.5 31.3 32.3 32.0 31.8 31.7 31.9 
Min 25.0 25.0 25.0 25.1 25.3 25.2 24.6 24.9 24.9 

Std. dev. 1.2 1.1 1.3 1.2 1.2 1.3 1.4 1.3 1.4 
Dog Flea Caye (DFC); Sandbore (SDB); Cay Glory (CGL); Northern Glovers (NGL); 
Gladden Spit (GLS); Rise and Fall Bank (RFB); Grand Cayman East (GCE); Grand 
Cayman West (GCW); Little Cayman West (LCW).  
 

 

The following figures and a table show a time series of AVHRR Pathfinder SST 

at Sandbore, Caye Glory, Gladden Spit and Little Cayman West (Figures 2.10 and 2.11, 

Table 2.9). Sandbore was the lowest mean value and 25 - 75th percentiles among four 

sites. Little Cayman West had higher variability of yearly temperatures. Nassau grouper 

FSA periods from December to February showed the lowest temperature each year; 

however, SSTs at full moon time were usually higher than the lowest temperature of the 

year.    
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Figure 2.10. AVHRR Pathfinder-derived sea surface temperatures (°C) at Caye Glory 
and Sandbore from January 1985 to July 2008 (source: NASA). Yellow-colored boxes 
cover December to February when Nassau grouper spawning is often observed.  
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Figure 2.11. AVHRR Pathfinder-derived sea surface temperatures (°C) at Gladden Spit 
and Little Cayman West from January 1985 to July 2008 (source: NASA). Yellow-
colored boxes cover December to February when Nassau grouper spawning is often 
observed. 
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Table 2.9. Maximum, minimum, mean and standard deviation of sea surface temperature 
(°C) of each year of the 24-years history. 

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

N 10 17 23 23 4 8 5 1 30 32 25 20
Max 26.9 28.5 28.0 28.4 26.6 28.1 27.2 26.7 28.4 28.6 28.7 28.7
Min 25.3 25.7 26.0 26.4 25.7 26.6 26.1 26.7 25.8 26.4 26.3 25.9
Average 26.1 26.8 27.0 27.4 26.2 27.2 26.7 26.7 27.3 27.5 27.3 27.2
Std. dev 0.5 0.7 0.6 0.5 0.4 0.6 0.4 - 0.6 0.4 0.6 0.8
N 5 6 12 8 1 3 2 1 11 10 11 4
Max 26.3 28.5 28.0 28.1 26.6 27.2 26.8 26.7 28.4 28.1 28.1 27.9
Min 25.8 26.2 26.0 26.9 26.6 26.6 26.1 26.7 27.0 27.1 26.3 27.6
Average 26.1 27.0 27.0 27.6 26.6 26.9 26.4 26.7 27.6 27.6 27.1 27.7
Std. dev 0.2 0.8 0.6 0.4 - 0.3 0.5 - 0.5 0.3 0.6 0.1
N 8 24 22 19 2 7 4 4 27 29 16 20
Max 26.6 28.2 29.0 28.9 27.0 28.2 27.5 26.9 28.4 28.9 28.5 28.3
Min 25.5 25.3 25.9 26.2 26.7 26.4 25.3 26.2 25.5 26.0 25.6 25.3
Average 26.3 27.1 27.2 27.5 26.9 27.1 26.6 26.4 27.2 27.5 27.1 26.8
Std. dev 0.4 0.7 0.6 0.7 0.2 0.8 1.0 0.3 0.7 0.7 0.8 0.8
N 2 6 12 7 1 4 1 1 11 11 7 1
Max 26.6 27.8 29.0 28.5 27.0 28.2 27.2 26.4 28.4 28.7 28.5 28.1
Min 26.5 26.0 25.9 26.6 27.0 26.4 27.2 26.4 26.2 26.9 25.6 28.1
Average 26.6 26.9 27.2 27.5 27.0 27.0 27.2 26.4 27.2 27.7 27.0 28.1
Std. dev 0.1 0.6 0.8 0.6 - 0.8 - - 0.7 0.7 1.1 -
N 10 24 25 19 4 7 4 2 25 27 17 22
Max 27.3 28.9 28.6 28.7 27.7 28.7 27.4 27.0 28.7 28.6 28.3 29.2
Min 25.3 26.6 25.7 26.9 26.1 26.6 26.8 26.1 25.8 26.3 26.5 25.8
Average 26.1 27.6 27.3 27.6 26.8 27.7 27.1 26.6 27.6 27.4 27.4 27.1
Std. dev 0.6 0.7 0.7 0.5 0.7 0.7 0.3 0.6 0.8 0.6 0.5 1.0
N 3 6 11 5 1 2 2 0 11 10 5 2
Max 27.3 28.3 28.0 28.1 27.7 27.9 27.3 - 28.6 28.6 28.1 28.9
Min 25.3 26.9 25.7 27.0 27.7 27.8 26.9 - 27.1 27.1 26.8 27.5
Average 26.3 27.5 27.4 27.6 27.7 27.8 27.1 - 27.9 27.9 27.3 28.2
Std. dev 1.0 0.6 0.6 0.4 - 0.1 0.3 - 0.5 0.5 0.5 1.0
N 8 18 20 13 3 4 8 5 23 30 34 28
Max 26.5 28.5 28.5 28.7 26.3 26.9 27.2 27.4 28.1 28.4 29.0 28.8
Min 25.4 26.4 25.4 26.5 26.2 26.2 26.1 26.1 26.1 26.6 25.9 24.9
Average 26.1 27.2 27.0 27.4 26.3 26.7 26.8 26.7 27.1 27.5 27.3 26.9
Std. dev 0.4 0.5 0.9 0.6 0.1 0.4 0.3 0.6 0.5 0.5 0.8 1.0
N 5 7 7 4 1 1 4 2 10 10 12 4
Max 26.5 27.3 28.2 28.4 26.2 26.8 27.2 26.3 28.1 28.0 27.9 27.9
Min 25.8 26.4 26.2 26.9 26.2 26.8 26.9 26.1 26.9 26.6 25.9 25.7
Average 26.2 26.9 27.2 27.6 26.2 26.8 27.0 26.2 27.5 27.3 26.8 26.8
Std. dev 0.3 0.4 0.7 0.7 - - 0.1 0.1 0.4 0.5 0.6 1.2

Dec-
Feb*

Full 
moon

Sandbore

Caye 
Glory

Gladden 
Spit

Little 
Cayman 

West

Dec-
Feb*

Full 
moon

Dec-
Feb*

Full 
moon

Dec-
Feb*

Full 
moon
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Table 2.9 Con’t. 
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean Std. dev

N 21 27 25 28 24 15 15 21 27 18 28 26
Max 27.7 29.3 28.4 27.4 28.0 27.5 28.2 27.5 28.3 28.1 29.1 28.2 28.0 0.7
Min 26.2 26.0 26.3 25.3 25.6 26.2 26.2 26.0 25.6 25.5 26.6 25.9 26.0 0.4
Average 27.0 27.3 27.3 26.3 26.4 26.9 27.1 26.7 26.7 26.9 27.4 27.0 26.9 0.4
Std. dev 0.4 0.8 0.5 0.6 0.6 0.5 0.7 0.4 0.8 0.6 0.6 0.5
N 2 6 6 12 10 3 3 6 6 8 4 7
Max 26.3 28.1 27.5 26.9 27.4 26.9 28.2 27.5 26.8 27.2 27.5 28.0 27.5 0.7
Min 26.3 26.7 26.6 25.7 25.6 26.5 26.4 26.4 25.7 26.2 27.0 26.6 26.4 0.5
Average 26.3 27.3 27.1 26.3 26.5 26.8 27.2 26.9 26.3 26.7 27.3 27.2 26.9 0.5
Std. dev 0.0 0.5 0.4 0.3 0.6 0.3 0.9 0.5 0.4 0.4 0.3 0.5
N 21 29 29 24 23 11 11 17 20 18 25 15
Max 27.9 29.3 28.0 26.9 28.3 27.8 28.5 27.7 27.9 28.1 29.3 27.8 28.1 0.7
Min 25.4 25.3 25.1 25.1 25.7 26.3 26.1 25.4 25.6 25.0 26.5 26.7 25.7 0.5
Average 27.0 27.3 26.8 26.1 26.5 27.1 27.0 26.5 26.5 26.8 27.5 27.2 26.9 0.4
Std. dev 0.5 1.0 0.6 0.4 0.7 0.5 0.8 0.6 0.7 0.8 0.7 0.3
N 4 6 8 10 9 1 4 4 7 10 5 3
Max 27.4 28.4 28.0 26.7 27.5 26.6 28.2 26.8 27.5 28.1 27.8 27.6 27.7 0.7
Min 26.3 27.2 26.3 25.1 26.0 26.6 26.1 26.3 25.7 25.0 27.1 27.2 26.4 0.7
Average 27.0 27.6 26.9 26.0 26.5 26.6 27.1 26.6 26.4 26.4 27.4 27.3 27.0 0.5
Std. dev 0.5 0.5 0.5 0.5 0.5 - 0.9 0.2 0.7 0.9 0.3 0.3
N 20 30 26 27 22 12 17 22 28 21 27 28
Max 28.7 29.8 28.2 27.1 27.5 27.5 28.4 27.5 28.1 28.3 28.9 29.0 28.2 0.7
Min 25.9 26.5 25.8 25.6 25.7 26.0 25.4 25.6 25.9 26.0 26.3 25.9 26.0 0.4
Average 27.1 27.7 27.1 26.2 26.6 26.8 27.1 26.6 26.7 27.1 27.6 27.2 27.1 0.5
Std. dev 0.7 0.8 0.7 0.4 0.4 0.5 0.9 0.5 0.7 0.7 0.7 0.7
N 5 6 7 11 8 1 4 8 6 10 6 9
Max 27.0 28.1 27.8 27.1 27.5 26.5 28.1 27.2 27.9 28.0 28.7 29.0 27.9 0.6
Min 25.9 27.3 25.8 25.6 25.7 26.5 26.7 26.1 26.2 26.2 26.9 26.0 26.5 0.7
Average 26.5 27.7 27.0 26.1 26.6 26.5 27.2 26.6 26.7 26.8 27.6 27.1 27.2 0.6
Std. dev 0.4 0.3 0.7 0.4 0.5 - 0.6 0.4 0.7 0.7 0.6 0.9
N 24 24 34 29 24 14 16 25 27 23 24 21
Max 27.8 29.0 29.3 26.9 28.1 27.5 27.8 27.8 28.2 28.2 28.4 28.1 28.0 0.8
Min 25.4 26.2 26.2 25.4 25.9 25.7 26.4 26.5 25.3 25.7 26.7 26.0 26.0 0.5
Average 26.6 27.2 27.2 26.1 26.8 26.8 27.0 26.9 26.7 27.0 27.5 27.2 26.9 0.4
Std. dev 0.5 0.8 0.6 0.5 0.6 0.5 0.5 0.3 0.9 0.8 0.5 0.5
N 7 7 10 7 13 4 3 7 7 8 5 7
Max 26.9 27.5 27.8 26.8 28.1 27.1 27.8 27.8 27.8 28.0 28.8 27.7 27.5 0.7
Min 26.0 26.5 26.2 25.5 25.9 26.6 26.8 26.5 25.7 26.2 27.5 26.7 26.3 0.5
Average 26.4 26.9 26.9 26.2 27.0 26.8 27.2 26.9 26.4 27.0 28.0 27.2 26.9 0.5
Std. dev 0.3 0.4 0.5 0.5 0.7 0.2 0.6 0.5 0.7 0.7 0.5 0.3

Little 
Cayman 

West

Dec-
Feb*

Full 
moon

Sandbore

Dec-
Feb*

Full 
moon

Caye 
Glory

Dec-
Feb*

Full 
moon

Gladden 
Spit

Dec-
Feb*

Full 
moon
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Mean SST of each year varied from 27.2 to 28.9°C over the 24-yer periods 

(Figure 2.12). Although increasing temperatures were observed in certain periods (e.g., 

2000 - 2003), no increasing temperatures were observed in this entire period. Mean SST 

between December and February in each year fall within the range of 26.0 - 27.6°C. 

Mean SST in winter tended to increase since 2000. 

 

 

Figure 2.12. Yearly mean sea surface temperature at four sites. SDB: Sandbore, CGL: 
Cay Glory, GLS: Gladden Spit in Belize, LCW: Little Cayman West.  
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ANOVA and paired t-test for comparing the means of AVHRR Pathfinder SST 

data at four sites suggests that mean SST value at Sandbore is significantly different than 

the other sites’ means (p < 0.05). Conversely, mean SSTs among three sites were not 

significantly different even though Gladden Spit and Little Cayman West are spatially 

separated.    

Mean temperature from December through February over 24 years was 26.9°C in 

Sandbore, Cay Glory, and Little Cayman West, and 27.1°C in Gladden Spit. Maximum 

and minimum temperatures were 28.0/26.0, 28.1/25.7, 28.2/26.0, 28.0/26.0 °C in 

Sandbore, Cay Glory, Gladden Spit, and Little Cayman West, respectively (Figure 2.13). 

The differences between maximum and minimum temperatures were more than 2°C at 

all four sites. Nassau grouper aggregated consistently during the period of lowest 

temperature of the year at all sites. Unfortunately, the number of observations around 

full moon with AVHRR pathfinder-derived SST was sometimes very limited because of 

cloud coverage.  
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Figure 2.13. Mean sea surface temperature between December and February each year. 
SDB: Sandbore, CGL: Cay Glory, GLS: Gladden Spit in Belize, LCW: Little Cayman 
West. 
 
 
 
 In January 2002, when spawning aggregation was observed in the Little Cayman 

West (Whaylen et al. 2004), spawning aggregation at Sandbore was also observed. 

Although surface temperatures in the Gulf of Honduras showed higher than those 

spawning sites, the spatial distribution of SST in the western Caribbean was uniform 

(Figure 2.14). ANOVA test for mean SSTs between December and February returned no 

significant difference among these four sites (p > 0.05).   
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Figure 2.14. AVHRR pathfinder-derived sea surface temperature (°C) on 31 January, 
2002. 
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Changing water temperatures due to the El Niño Southern Oscillation (ENSO) 

could affect larval survivorship and recruitment if temperature acts as a cue for Nassau 

grouper reproduction. However, the ENSO effects on air temperatures and rainfall were 

minimal in the Gulf of Honduras (Thattai et al. 2003), and our results indicate the effects 

on SST were also minimal. 

Mean values for each year indicate that SSTs were around 1°C higher than those 

reported in the literatures (mean of 26.9 ± 0.4°C at Caye Glory, Sandbore and Little 

Cayman West). Shcherbina et al. (2008) show mean vertical stratification of potential 

temperature, which was around 27°C from the surface to 60 m in February 2007 at the 

Northern Glovers FSA site. Average remotely sensed SST for all sites in Belize in 

February 2007 was 27.5°C. In-situ water temperature data collected with a moored Inter 

Ocean S4 electromagnetic current meter at Gladden Spit FSA site in Belize from March 

1998 to November 2003 ranged from 26.2°C in February 2000 to 30.0°C in September 

1998 (Heyman et al. 2005). AVHRR Pathfinder SST had a range of 25.4 - 32.3°C, which 

were observed in February 2003 and September 1998, respectively. In addition, water 

temperature at Gladden Spit at 30 m depth on 7 April 2002 was 27.7°C (Graham & 

Castellanos 2005), whereas AVHRR Pathfinder SST was 28.5°C on 6 April 2002 (not 

available on the same day).  

Considering slight temperature decreases likely exist within a weakly stratified 

vertical profile as depth increase, spawning depth temperatures may be lower than 

reported. For Belize, this would mean that spawning depth temperatures would range 

from 25 - 26.5°C during the Nassau grouper spawning season of December to February. 
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Such temperatures would be similar to optimal temperatures reported in experiments at 

other sites.    

Although SSTs at Nassau grouper FSA sites showed certain ranges, water 

temperature likely plays only an important role physiologically. However, it is unlikely 

that SST data alone will help to locate unknown Nassau grouper FSA sites. 

Clearly, considering climate-change effects on spawning aggregation and 

species-specific temporal spawning patterns, a more detailed time-series spectral 

analysis of AVHRR Pathfinder SST will be required. Since this is beyond the scope of 

this dissertation, but certainly related to marine resource development and management, 

this would be a subject for a post-dissertation research. 

 

2.4.7 Ocean current/eddy 

There are a very few cases of ocean-current studies in relation to transient FSA 

sites in the Caribbean. Examples exist for The Bahamas (Colin 1995), and Belize (Figure 

2.15) (Ezer et al. 2005, Heyman & Kjerfve 2008). 
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Figure 2.15. Observed flow field near the meso-American barrier reefs after Ezer et al. 
(2005). A. mean currents (arrows) and winds (arrows with circles) as composed from 
various observations (based on a larger map from Craig 1966). B. two WOCE drifters at 
15 m depth (launched on April 2000 at the locations indicated by the circles). 
 
 
 

Ezer et al. (2005) showed that when a cyclonic eddy was found near the Meso-

American barrier reefs, the Caribbean current shifts offshore, the cyclonic circulation in 

the Gulf of Honduras intensifies, and a strong southward flow resulted along the reefs 

(Figure 2.15). On the other hand, when an anti-cyclonic eddy was found near the reef, 

the Caribbean current moved onshore, and the flow was predominantly westward across 

the reefs. 

Ocean current data could be used to evaluate the relative merit of two competing 

hypotheses explaining the location and timing of FSAs. The egg predation hypothesis 

(Johannes 1978, Lobel 1978) states that eggs are rapidly transported off the reef into 

deeper, off-shore water where numbers of predators are lower than near-shore areas. 
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Gyres move developing larvae offshore, where predation is low, and then again back 

toward shore following a period of development, before the larvae settle into nearshore 

nursery habitats. Although the measurement of the rate of egg transport at spawning and 

non-spawning sites at times of spawning activity and of no activity is required, there is 

no evidence that egg predation is less at optimal sites (Claydon 2004). The other 

hypothesis posits that FSA sites are synchronized to optimize particular currents that 

disperse eggs and larvae further distances (Barlow 1981). 

Unfortunately, there are no detailed descriptions of local current patterns at the 

necessary resolution data (e.g., less 1 km-scale). Understanding local ocean currents 

around FSA sites remains critical. However, delving into ocean current data requires a 

prior, general understanding of site characteristics. 

 

2.5 Summary 

To date, there are no compiled datasets of biological, geospatial information for 

FSA sites in the Gulf of Mexico and the wider Caribbean. Consequently, only a few 

descriptive statements are currently available. Multivariate analysis requires a more 

appropriate sample size for each factor. The data provided here can be used to quantify 

and map these features. Again, geomorphological characteristics of the benthic terrain 

may be the most suitable variable for FSA sites in comparison to any other single 

variable.  

This study suggests that other ecological patterns and processes, such as 

hydrodynamics, sea water temperature, and proximity to suitable benthic habitats for 
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settlement, are likely to be important. However, whereas temperature at FSA sites varies 

seasonally, and Nassau grouper spawning aggregations cover a wide range of 

temperature, temperature might play a minor role in determining specific spawning 

aggregation sites, but a significant role in the specific timing of spawning. Bermuda has 

spawning at same temperatures but it is the warmest part of the year. In addition, benthic 

habitat analysis would take time for a detailed fine-scale classification due to remoteness 

of FSA occurrences in broad areas in different countries and cost. On the other hand, 

seafloor characteristics data are available for FSA sites in the Mona Island and mainland 

Puerto Rico and can be determined with low-cost method (Heyman et al. 2007).   

Considering the current availability of data and the evidence shown above, this 

study focused on quantifying seafloor characteristics in countries entailing currently 

active sites and traditionally well-known FSA sites and determining an appropriate scale 

at which to compare all known FSA sites. 
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*Reprinted with permission from “Geomorphometric Patterns of Nassau Grouper 
(Epinephelus stratus) Spawning Aggregation Sites in the Cayman Islands” Kobara, S & 
Heyman, WD. 2008. Marine Geodesy 31:231-245, Copyright by Taylor & Francis, Inc. 
 

3. NASSAU GROUPER FSA SITES IN THE CAYMAN ISLANDS 

 

3.1 Introduction 

A wide variety of coral reef fishes migrate to breeding sites to form con-specific 

spawning aggregations. They travel relatively long distances over days or weeks to 

specific sites and aggregate in large numbers to spawn during a very specific portion of 

one or two months of the year, in what are termed transient spawning aggregations 

(Johannes 1978, Domeier & Colin 1997). Transient aggregations can consist of 

thousands to tens of thousands of individual fishes concentrated together as a single unit 

for reproduction (mass spawning) and are believed to be the only known reproductive 

opportunity for the species that use this strategy. These seasonal spawning aggregations 

supported reliable fisheries for centuries (Johannes 1978). However, many exploited 

spawning aggregations have been severely reduced or destroyed due to increased 

numbers of fishermen, improved technology, limited understanding of their ecological 

importance, and inappropriate management practices (Sadovy 1994).  

Nassau grouper was once the most important Caribbean fishery (Craig 1969, 

Smith 1972, Sadovy 1997) and consequently has become one of the region’s most well-

studied species. Nassau grouper are found in the waters of Bermuda, Florida, the 

Caribbean, and the tropical western Atlantic Ocean south to Brazil (Sadovy & Eklund 

1999). 
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Like many commercially important reef fishes, hundreds of thousands of Nassau 

grouper aggregated annually to spawn, attracting harvests of up to two tons of fish per 

day for ten days each year (Craig 1969, Sadovy 1994). Adult Nassau groupers are 

generally a relatively sedentary species but are known to migrate long distances, 100 km 

or more, to reach spawning sites (Colin 1992, Bolden 2000). Unfortunately, Nassau 

grouper populations have declined dramatically in the last 50 years and are now listed by 

the World Conservation Union on the Red List of Endangered Species (IUCN 2007).  

Protecting spawning aggregation sites within Marine Protected Areas (MPAs) is 

an obvious conservation strategy and has proven successful if allowed sufficient time 

and if enforcement is adequate. For example, the Exuma Cays Land and Sea Park in the 

Bahamas has enforced a ban of fishing since 1986. The reserve is distinct from most 

other reserves in being old enough and effective enough to have had a history of 

significant impact on large predators. The biomass of Nassau grouper is seven times 

greater than that observed in other regions of the Bahamas (Mumby et al. 2006). 

Similarly, protection of a red hind spawning aggregation in St. Thomas, U.S. Virgin 

Islands, has also lead to increased abundance, biomass and length frequency distribution 

(Nemeth 2005).  

The Cayman Islands is one of only a few countries that still have active Nassau 

grouper spawning aggregations. Previous studies have documented five historical and 

existing Nassau grouper spawning aggregation sites in the Cayman Islands; three of 

these sites are inactive or commercially extinct (Whaylen et al. 2004).  
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The Cayman Islands Department of Environment (CIDOE) protects all five of 

these sites and prohibits fishing seasonally within all of the designated grouper spawning 

areas. In addition, spear-fishing and fish trapping are prohibited within a one-mile radius 

of designated grouper spawning areas between 1 November and 31 March each year, the 

known breeding season for Nassau grouper (CIDOE 2007). These regulations were 

enacted after the rediscovery of West End, Little Cayman where 2000 Nassau groupers 

were harvested from the site in 2001 (Whaylen et al. 2004, 2006). 

Although the locations of nearly all known spawning aggregation sites were 

discovered first by local fishermen (Johannes et al. 1999, Colin et al. 2003), the current 

worldwide decline in marine fisheries requires alternative ways to locate and conserve 

essential life habitat such as spawning aggregation sites, before over-fishing occurs. All 

traditional and existing Nassau grouper spawning aggregation sites were located in the 

waters near the extreme extension of each of the three Cayman Islands (Figure 3.1). 
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Figure 3.1. Map of the study area, indicating location of five historically known and 
existing spawning aggregation sites. A) Cayman Islands consisting of three islands: 
Grand Cayman, Little Cayman and Cayman Brac. B) Detailed location of spawning on 
Grand Cayman (GCW and GCE). C) Detailed location of spawning on Little Cayman 
(LCW and LCE) and Cayman Brac (CBE). 
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However, we poorly understand whether traditional aggregation sites have 

special characteristics of if Nassau grouper can form aggregations in new areas. 

Traditional spawning aggregation sites in Little Cayman and Cayman Brac were 

described as the sharp projection of the island shelf adjacent to deeper water (Colin et al. 

1987, Tucker et al. 1993, Whaylen et al. 2004, 2006). In other countries, Nassau grouper 

spawning aggregation sites have also been found near the edge of insular platforms and 

close to drop-offs into deep water (Sadovy & Eklund 1999). Nassau grouper 

aggregations are found preferentially along the windward edges and drop-offs of 

Pleistocene reef formations (Rudd & Tupper 2002). Grouper (species) spawning 

aggregations in Palau, however were located at reef channel (Johannes et al. 1999). 

Indeed, it appears that there may be species-specific and/or regional patterns in the 

location of reef fish spawning aggregations. 

A geospatial analysis of all known spawning aggregation sites might lead to a 

generalized understanding of their geography and topography. We are aware of no 

previous such comparative quantitative geomorphometric studies of Nassau grouper 

spawning sites in the Caribbean, and there are currently not enough quantitative data 

available in order to do so. As a first step in a larger regional analysis, this study 

analyzed the geomorphometry of Nassau grouper spawning aggregation sites in the 

Cayman Islands using bathymetric data.  

The first objective of this study was to quantify morphometric factors of all 

known existing or historical Nassau grouper spawning aggregation sites in the Cayman 

Islands. The second objective was to compare and contrast the morphometry of these 
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spawning aggregation sites. Since Nassau grouper's sites were found to share with other 

species in Little Cayman West, Cuba, and Belize, this would impact on other large and 

commercially important spawning aggregation species (Paz & Grimshaw 2001, Heyman 

& Requena 2002, Claro & Lindeman 2003, Whaylen et al. 2004). Thus, we also 

analyzed all currently available data on the spawning aggregations of other species at 

each of these sites. Finally, we determined whether spawning aggregation sites of other 

species have patterns similar to those of Nassau grouper sites. It is hoped that our 

findings lend support to the conservation and management of threatened reef fishes in 

the Cayman Islands and throughout the Caribbean.  

 

3.2 Materials and Methods 

The study areas included all known or historical Nassau grouper spawning 

aggregations in the Cayman Islands. The Cayman Islands have fringing reefs with a 

narrow shelf (at most about 1 km wide) (Colin et al. 1987). All of the Nassau grouper 

spawning aggregations were located at the shelf edges of the fringing reefs of the three 

islands, with one exception. Twelve Mile Bank is a submerged platform located 15.0 km 

west-southwest of Grand Cayman's Northwest Point. Though the northeast corner of 

Twelve Mile Bank was also known as a Nassau grouper spawning aggregation site, we 

did not have bathymetric data, and the available satellite images obscure the shelf edges. 

Migration of adults between Twelve Mile Bank and Grand Cayman is also unlikely 

because these reef-dwelling species would have to cross water at least 1,000 m deep 
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(Tucker et al. 1993). Thus, we only focused on the spawning aggregation sites associated 

with the islands. 

The coordinates of Nassau grouper spawning aggregation sites were obtained 

from the Cayman Islands Department of Environment (CIDOE). The island-associated 

sites are located at the southwest and northeast of Grand Cayman (GCW, GCE), the west 

and east ends of Little Cayman (LCW, LCE), and the east end of Cayman Brac (CBE) 

(Figure 3.1). Bathymetric data around all spawning aggregation sites were collected with 

a Lowrance® LCX-17MT eco-sounder system (Ecochard et al. 2003). The eco-sounder 

system includes a WAAS-capable 12 channel GPS unit and an Airmar® TM260 50/200 

kHz transducer, mounted at the stern of a boat. The field data (latitude, longitude and 

depth) were recorded at 2-3 knots in water deeper than 30 m and 5 - 7 knots in shallow 

water. Sampling transects moving from shallow to deep water were slowest so that the 

eco-sounder captured the bottom depth on steep drop-offs, e. g., nearly vertical from 30 

to 200 m. When it was difficult to detect the depth along steeply sloping reefs, the boat 

was allowed to drift until the eco-sounder detected the bottom. Due to variable sea 

conditions, the intervals between transects crossing shelf edges were not always the 

same but always less than 60 m apart. All data points on each transect line were recorded 

at intervals of 0.5 - 4 m.  

All data were transformed to comma-delimited text files using a simple 

conversion program (slg2txt.exe) that comes with the SonarViewer program downloaded 

from the Lowrance site (http://www.lowrance.com/en/Downloads/Sonar-Log-Viewer-

SLV/). Data were then parsed and loaded into spreadsheets. All invalid depth and 
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position data were removed, and then all individual transect data were combined into a 

single file. Data were collected using proprietary Lowrance Mercator coordinates, so 

they could be transformed to geographical longitude and latitude using the WGS84 

datum, and then imported into ArcGIS 9.2 (Heyman et al. 2007). All data were projected 

in UTM 17 North. Triangulated irregular network (TIN) models were created from the 

mass points using the 3D analyst extension of ArcGIS (Ecochard et al. 2003).  

In order to allow standardized comparisons of the 3-D morphometrics of all 

spawning aggregation sites, the horizontal and vertical aspects of sites were analyzed 

separately to simplify and facilitate analysis. The horizontal shapes and dimensions of 

spawning aggregation sites can be categorized into five reef structures: shelf-edge 

(concave), tip of (convex) reef promontory, shoulder of (convex) reef promontory, shelf-

edge (flat), and reef channel/shallow water area (Figure 3.2).  

 

 

Figure 3.2. Possible reef structures surrounding hypothetical spawning aggregation sites 
which were noted as the center point of each circle: (from left to right) shelf-edge in 
concave shape, tip of reef promontory, shoulder of reef promontory, shelf-edge, and reef 
channel/shallow water areas.   
 

 

The reef structures surrounding spawning aggregation sites were defined in 

relation to their curvature (concave, convex or flat), their proximity to shallow water, 
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proximity to reef channels, proximity to reef promontory tips, and aspect relative to 

prevailing northeasterly trade winds (windward or leeward). 

To standardize shape comparisons for horizontal curves of spawning aggregation 

sites required the selection of a contour that would be comparable for all sites. Since the 

depth of each spawning aggregation site varied slightly, we selected the shelf-edge 

contour at each site for comparison purposes, rather than selecting a specific depth 

contour. First, TIN models were converted into raster, then slopes were calculated using 

the spatial analyst function of ArcGIS. Shelves sloped gently (less than 10 degree grade), 

until they reached the shelf-edges where slopes increased abruptly to 20 - 45 degrees. 

We selected 20 degrees as the dividing slope that delimited the shelf-edge contour line. 

The shelf-edge contour lines were smoothed using a GIS function with 300 m tolerance 

(the polynomial approximation with exponential kernel algorithm). Depending on 

availability of bathymetric data around all islands, the shelf-edge contour was also 

derived using remote sensing data for comparison purposes. Specifically, Landsat ETM+ 

images were used to delineate shelf-edge contour lines based on variations in band 1, the 

blue band, which can be used to detect differences between outer reef and open ocean 

environments (Jensen 2000, Andréfouët et al. 2001, Kobara & Heyman 2006). The 

shortest distances between the spawning aggregation sites and four geomorphometric 

parameters were measured: 1) shelf-edges perpendicular to sites 2) the inflection point of 

shelf-edge lines 3) 200 m depth, 4) reef channels. The best-fit equation for each of the 5 

sites’ horizontal shelf-edge curves was also calculated.  
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The measurement and visible recognition of shelf-edge reef promontories is scale 

dependent. Within a 100 m buffer circle around each spawning aggregation site, all shelf 

edges would be perceived as straight, while a 5 km buffer would show much variation in 

shelf edge structure beyond the scale of individual shelf promontories. A 2 km buffer 

could include lands and a 0.5 km buffer may not properly show the known reef 

promontory of Little Cayman west end. A 1km radius buffer circle around each 

spawning aggregation site was therefore selected as an appropriate scale for the 

comparative analysis of individual promontory shapes in the Cayman Islands. Using a 1 

km buffer, for example, the east end of Little Cayman is easily recognized as 

promontory.  

In order to further facilitate horizontal comparisons between the five sites, all of 

the horizontal shelf-edge contour lines were extracted, rotated at the inflection point, and 

plotted using the same orientation. The inflection angle for each promontory was defined 

as the angle made by two radial lines drawn from the inflection point to the intersection 

of a 1 km circle with the shelf edge (Figure 3.3).  

The bottom depth and slope were calculated from the bathymetric data described 

above. All the vertical profiles of the spawning aggregation sites were derived using the 

profile functions in ArcGIS 3D Analyst. Transects were drawn perpendicular to the shelf 

edge from a point located 300 m inshore from the aggregation, through the spawning 

aggregation site, to the deepest water the eco-sounder could read (Figure 3.3). All 

vertical profile data were plotted at the same scale on a single set of axes for 

comparative purposes. 
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Figure 3.3. The east end of Little Cayman. Contour lines are 10 m intervals. Circle is a 
1km radius buffer around the inflection point of the shelf-edge. The inflection angle was 
defined as the angle made by 2 radial lines drawn from the center of the circle to the 
intersection of the buffer with the shelf-edge. The solid line passing through the 
spawning aggregation site was used for vertical profile analysis. The dotted line was 
used to calculate the shortest distance between the spawning aggregation site and the 
reef channel. 
 
 

 



64 
 

 

 
3.3 Results and Discussion 

All of the five Nassau grouper spawning aggregation sites were located on 

convex reef, near shelf edges and within 1 km of the inflection points of reef 

promontories.  All sites were located within 50 m (mean of 19.0 ± 21.3 m) of the steep 

shelf-edge contour line and within 545 m (mean 318 ± 172 m) of reef promontory 

inflection points (Table 3.1, Figure 3.4). All sites were found in 25-45 m water depth 

(mean 35.0 ± 7.9 m) and adjacent to deep water (Table 3.1). Spawning aggregation sites 

were all more than 1 km away from the nearest reef channel (mean 2.1 ± 1.2 km). Based 

on generalized climatology, three sites were oriented windward and two leeward. Given 

the scale of Nassau grouper movement from above the plateau to beyond the shelf-edge 

at spawning time and migration length (Whaylen et al. 2004), the proximity of spawning 

sites to shelf edges and reef promontories observed here is considered to be reasonable.   
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Table 3.1. Summary of geomorphic parameters at Nassau grouper spawning aggregation (FSA) sites in the Cayman Islands. 
Distances from spawning aggregation sites to A) shelf edges, B) inflection points and C) reef channels (m). 
 

 Island Site Shape Orientation

Inflection 
angle 

(degrees) 
Shelf edge 
depth (m) 

To shelf-edge 
(m) 

To inflection 
point (m) 

To reef 
channel (km) 

Grand Cayman 
GCW convex leeward 111 40 0 415 1.3 

GCE convex windward 75 45 30 545 2 

Little Cayman 
LCW convex leeward 79 30 0 290 3.8 

LCE convex windward 96 25 15 250 1.2 

Cayman Brac CBE convex windward 95 35 50 90 - 

      
Mean ± 

S.D. 91.2 ± 13.0 35.0 ± 7.9 19.0 ± 21.3 318.0 ± 172.0 2.1 ± 1.2 
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Figure 3.4. Extended island shelf around Nassau grouper spawning aggregation sites in 
the Cayman Islands in oblique 3D view, showing the shelf break, and having no vertical 
exaggeration. All 1 km radius circles that are centered on known spawning aggregation 
sites include reef promontories. A) Grand Cayman West (GCW) B) Grand Cayman East 
(GCE) C) Little Cayman West (LCW), D) Little Cayman East (LCE) and E) Cayman 
Brac East (CBE). 
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3.4 Detailed Geomorphometric Analysis 

Since the known spawning aggregations show geomorphometric similarities, an 

attempt was made to generalize their characteristics. This generalized model could 

theoretically be used as part of a fishery-independent method to predict a previously 

unknown, potential spawning aggregation sites.  

First, the horizontal and vertical curvature of the reef structure at spawning 

aggregation sites was analyzed in detail. Horizontal, shelf-edge contour lines at all 

spawning aggregation sites were convex and therefore could be approximated with 

quadratic curves (Figure 3.5).  

 

 

Figure 3.5. Horizontal curves of shelf-edge contour lines (20 degree slope) around 
spawning aggregation sites in the Cayman Islands. The inflection point for each curve 
has been shifted to coordinates 0,0. Thus the orientation of all sites has been shifted for 
comparison purposes but the scale for all curves has not been altered.  
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The mean curve was approximated with the equation y = - 0.0012 x2 - 0.0555 x 

(r2 = 0.70).  The sites at LCW, GCE, and CBE had relatively sharp curves; while LCE 

and GCW had more gentle curves. Horizontal inflection angles of shelf-edge 

promontories were 75 - 115 degrees (Table 3.1). 

Vertical profiles through all spawning aggregation sites were plotted on a single 

set of axes for comparative purposes. All sites were located at the seaward edge of gently 

sloping (5 degrees or less) reef flats in 25 - 45 m water depth (Figure 3.6).  

 

 
Figure 3.6. Vertical profiles of reef structures that are perpendicular to the reef and pass 
through Nassau grouper spawning aggregation sites, starting in shallow water, 300 m 
inshore from the spawning site and ending at the seaward limit of data availability.   
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All sites were adjacent to shelf-edges with slopes steeper than 45 degrees and 

walls that plummeted to a minimum of 100 m depth (Figure 3.6). The reef at GCW and 

GCE dropped steeply from the shelf-edge to about 200 m where the slope became 

gentler. Both LCE and CBE had steep drop-offs with an interrupting ledge at 

approximately 100 m at both sites.  

The orientation of sites with respect to prevailing winds did not seem to be a 

factor governing site selection for Nassau grouper. Offshore larval dispersal is 

hypothesized as an evolutionary response to minimize egg predation from reef-associated 

fishes and invertebrates (Johannes 1978) or to maximize dispersal (Barlow 1981). Colin 

et al. (1987) suggest that if the selection of spawning location is based on offshore 

dispersal of eggs and larvae, the up-current east end of each island would be the least 

advantageous place to spawn. Additionally, both up-current and down-current migration 

to spawning aggregations for Nassau grouper were also reported (Colin 1992). Although 

careful analyses of ocean currents and dispersal patterns need to be conducted, for the 

Cayman Islands at least, Nassau grouper sites are not preferentially located in windward 

or leeward areas.  

 

3.5 Relationship to Other Species Spawning Aggregations 

Although this study does not generalize the geomorphology of Nassau grouper 

spawning aggregation sites, convex-shaped seaward-extending reefs on shelf-edges 

turned out noteworthy places. Four of the five Nassau grouper spawning aggregation 

sites served as the spawning areas for other species as well (Table 3.2). The west end of 
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Little Cayman (LCW) is a well-documented multi-species spawning aggregation site, 

including aggregations of several groupers, snappers, and jacks (Table 3.2) (Whaylen et 

al. 2004). Tiger grouper (Mycteroperca tigris) spawning aggregations were reported at 

LCE, GCE, CBE, and LCW (Table 3.2). Mutton snapper (Lutjanus analis) spawning 

aggregations were observed at GCE and CBE (Table 3.2). Though the season of 

spawning aggregations for each species is different, the sites were the same. Further 

work will be needed to evaluate the presence/absence of other species’ spawning 

aggregations at all five sites. 

In addition to historically known Nassau grouper or multi-species spawning 

aggregation sites, spawning aggregation of Horse eye jack (Caranx latus) was observed 

at CBW by fishermen (Table 3.2, Phil Bush, pers. comm.). An apparent spawning 

aggregation of other large (but unidentified) grouper species was also observed by 

fishermen at CBW (Table 3.2, Phil Bush, pers. comm.). Off South channel, southeast end 

of Grand Cayman (GCSE) an aggregation of large Cubera snapper (Lutjanus 

cyanopterus) was observed at the shelf-edge and may have been a spawning aggregation 

but this requires confirmation (Table 3.2. Phil Bush, pers. comm.). 

The geography and topography of the reported spawning aggregation sites CBW 

and GSCE were explored with satellite imagery since in situ bathymetric data was 

unavailable for those areas. Shelf-edges were derived from Landsat ETM+ imagery, and 

used as a proxy for the location of shelf-edges. CBW and GCSE were located at convex-

shaped reefs with inflection angles of 95 and 108 degrees, respectively. Consistent with 

other areas and using regional, low-resolution bathymetric maps, it appears that CBW 



71 
 

 

and GCSE include spawning aggregations that occur at shelf edges and reef 

promontories, consistent with the other sites.  There might be similar geomorphological 

places in other areas of the Cayman Islands, but as of 2008, no additional spawning 

aggregations have been reported. Though the ecological reasons that species aggregate at 

specific locations are unclear, we hypothesize that spawning aggregations of additional 

grouper, snapper, and jack species will be documented to occur at the five known Nassau 

grouper spawning aggregation sites, as well as the two similarly-shaped reef 

promontories where aggregations have been reported but not confirmed.  The exact 

locations of these two sites is deliberately not being reported, in accordance with 

recommendations from the Society of Reef Fish Spawning Aggregations (SCRFA) who 

suggest that such sites should not be revealed until protection and management is 

forthcoming. 
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Table 3.2. Evidence of multi-species spawning aggregations in the Cayman Islands 
where F = reported by fishermen; 3 = 3x increase in abundance over non-aggregating 
time; R = Spike in landings with high CPUE and high proportion of catch with ripe 
gonads; S = observed to spawn, V = spawning recorded on video. 
 

Site Species Reference F 3 R S V 
GC, Sand Caye, 
(GCW)   

Epinephelus striatus Phil Bush, 
pers. comm. 

F   R     

GC Northeast end 
(GCE)  
 Coxswains Point  

Epinephelus striatus      Phil Bush,  F   R     
Mycteroperca tigris   pers. comm. F   R     
Lutjanus analis   F 3 R     

 South point Lutjanus cyanopterus     3       
GC Southeast end 
(GCSE) 

Lutjanus cyanopterus Phil Bush, 
pers. comm. 

F 
 

 
  

LC East End  
(LCE) 

Epinephelus striatus  Phil Bush, 
pers. comm. 

F   R     

Mycteroperca tigris Whaylen et al. 
2004 

F 3 R     

Little Cayman 
 West End (LCW) 

Epinephelus striatus  Whaylen et al.  F     3 R   S V 
Myteroperca bonaci  2004 F 3       
M. tigris    F 3   S   
M. venenosa                     F 3       
Lutjanus jocu      3       
L. analis   F 3       
Caranx latus     3   S   
C. ruber     3   S   
C. lugubris     3   S   
C. bartholomaei     3   S   
Decapterus 
macarellus 

  
  3   S   

Canthidermis 
sufflamen  

  
  3       

Ocyurus chrysurus Phil Bush,    3       
Haemulon album  pers. comm.   3       
Caranx crysos     3       
Kyphosus incisor     3   S   

Cayman Brac 
 East End (CBE) 

Epinephelus striatus      Phil Bush,  F         
Mycteroperca tigris     pers. comm. F         
Lutjanus analis   F         

Cayman Brac 
 West End (CBW) 

Epinephelus striatus Phil Bush,  F         
Caranx latus  pers. comm.   3       
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3.6 Geomorphology of Other Nassau Grouper Spawning Aggregation 

Sites in the Caribbean 

Although there is no quantitative comparison among spawning aggregation sites 

in the Caribbean, some historically known sites have been described in the literature. In 

Honduras, water depths surrounding a spawning aggregation site fall off sharply to one 

thousand feet or more (Fine 1990). In Cuba, Banco de Jagua is located at the easternmost 

drop-off of the southwest shelf with an upper platform at a depth of 14 - 20 m (Claro & 

Lindeman 2003). Dominican Republic, Puerto Rico, and Turks and Caicos Islands have 

reported Nassau grouper spawning aggregation sites but geomorphologic information is 

unspecified. Olsen and LaPlace (1978) described a Nassau grouper spawning aggregation 

site in the Virgin Islands, along the insular shelve edge in 100 fathoms of water south of 

St. Thomas. Smith (1972) reported a Nassau grouper spawning aggregation site near Cat 

Caye in the Bahamas in 29-38 m water depth, adjacent to a drop-off. Of all of the studies 

that report Nassau grouper spawning aggregation sites, only Colin (1992) and Aguilar-

Perera (1996) show bathymetric profiles of the aggregation sites. One, south point Long 

Caye, Bahamas, was described as “inner shelf” and is located 250 m from the drop-off 

(Colin 1992). Another site nearby was located along a gentle slope of the shelf break. In 

Mexico, the sites are located within 200 m from the drop-off (Aguilar-Perera & Aguilar-

Davila 1996). Further bathymetric analysis is required for comparison. As stated in the 

introduction to this paper and as illustrated here, the definition of reef promontories is 

highly scale dependent. Without accurate bathymetric maps and quantitative 
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morphometric analyses as provided herein, the definition of a reef promontory is 

relatively meaningless. 

Belize has at least seven known Nassau grouper spawning aggregation sites: 

Rocky Point, Dog Flea Caye, Caye Glory, Sandbore, North Glovers, Gladden Spit, 

Nicholas Caye, and Rise and Fall Bank (Craig 1969, Carter 1989, Carter et al. 1994, 

Carter & Perrine 1994, Paz & Grimshaw 2001, Sala et al. 2001, Heyman & Requena 

2002). Though satellite imagery shows reef promontories at these sites, there are no 

published bathymetric maps for the areas, aside from Gladden Spit. The Nassau grouper 

spawning aggregation at Gladden Spit occurred at a location with largely similar 

geomorphometrics to the sites described herein. It is also served as multi-species 

spawning aggregations site for groupers, snappers and jacks (Craig 1969, Heyman & 

Requena 2002, Heyman et al. 2005). The Nassau grouper spawning aggregation site at 

North Glover’s Reef occurred outside a large channel through the reef crest in 25-45 m 

depth at the shelf edge on the northeastern portion of the atoll (Sala et al. 2001). The 

spawning aggregation site at Caye Glory occurred approximately 200 m eastward of the 

exposed reef crest at the seaward edge of a low-relief coral shelf that drops away steeply 

to abyssal depths (Carter et al. 1994). Though the curvature of these shelves were largely  

not described and generalities may be premature from the existing data, it does appear 

that Nassau grouper spawning aggregation sites associated with islands and oceanic 

atolls were all near shelf-edges.  

 The geomorphometric patterns among Nassau grouper spawning aggregation 

sites throughout the Caribbean are difficult to assess given the paucity of qualitative 
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descriptions and near total lack of quantitative morphometric data for most sites. This 

paper shows the first quantitative description of Nassau grouper spawning aggregation 

sites and can serve as a model by which other sites can be compared when sufficient data 

become available.    

 

3.7 Geomorphology and Essential Life Habitat 

 We observed that Nassau grouper spawning aggregation sites in the Cayman 

Islands occurred near 1) shelf-edge drop-offs into deep water, 2) reef promontories, and 

3) in 25 - 45 m water depth. We did not find that sites were preferentially windward or 

associated with reef channels. These five reef promontories also served as spawning 

aggregation sites for other species. Two additional reef promontories in the Cayman 

Islands have not reported Nassau grouper spawning aggregations, though other species’ 

aggregations have been reported but not confirmed. It appears from our study that, reef 

promontories are essential life habitat for many reef fish species that form spawning 

aggregation. 

The dynamics of spawning aggregations of most reef fish species are poorly 

understood. Since these aggregations occur only during restricted times of the year and 

of the lunar cycle and in remote, often rough areas, they have probably not all been 

located. However, in order to minimize the impacts of unsustainable fishing on spawning 

aggregations, it is essential to know when and where spawning aggregations form. The 

knowledge of local fishermen has traditionally been the best source of information for 

this purpose. In addition, this paper suggests a method, independent of fishermen, by 
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which potentially-undiscovered spawning aggregation locations could be predicted based 

on geomorphologic features, and this could in turn be used to initiate conservation and 

management efforts prior to exploitation. 
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4. SEA BOTTOM GEOMORPHOLOGY OF FSA SITES IN BELIZE 

 

4.1 Introduction 

A spawning aggregation is a large grouping of fishes gathered for the purpose of 

reproduction. Nassau grouper (Epinephelus striatus) is the most well-studied aggregating 

species in the Caribbean. Nassau grouper, like many other grouper and snapper species, 

concentrate their total annual reproductive output by migrating relatively long distances 

to spawn in specific places during only restricted times. These (and other species that use 

the same strategy) are defined as transient spawners (as opposed to resident spawners 

that migrate only short distances and spawn nearly every day) (1997).  

Reef fish spawning aggregations (FSAs) are highly vulnerable to overfishing 

since they re-occur at the same sites and times each year. Once discovered by fishers, 

they are rapidly extirpated and so there are currently very few active Nassau grouper 

FSA sites in the Caribbean (Sadovy et al. 2008), though Belize still retains several.  If 

new sites could be discovered, prior to their exploitation, it may assist in their 

conservation and management. 

Paz and Grimshaw (2001) identified traditional Nassau grouper spawning 

aggregation sites through historical records and interviews with local fishermen and 

suggested the following 8 sites for monitoring: Rocky Point, Dog Flea Caye, Caye 

Bokel, Sandbore, Halfmoon Caye, Caye Glory, Gladden Spit, and Nicholas Caye (Figure 

4.1). In addition, Sala et al. (2001) described a FSA site in northern Glover’s Reef Atoll. 

Local fishermen also have recognized Mauger Caye and Soldier Caye in Turneffe Islands 
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Atoll, and Rise and Fall Bank as historical grouper and/or snapper aggregation sites. 

Recognizing their value and vulnerability, the Government of Belize acted swiftly and 

comprehensively to monitor and protect most known FSA sites in Belize (Heyman & 

Kjerfve 2008).  

The Cayman Islands is another one of only a few countries that still have active 

Nassau grouper FSA sites. The west end Little Cayman is a documented multi-species 

FSA site (Whaylen et al. 2004). Kobara and Heyman (2008) analyzed the bathymetry of 

all five historically known Nassau grouper FSA sites in the Cayman Islands and found 

that all were located at shelf edges of convex-shaped reefs within 1 km of reef 

promontory tips. 

Satellite image analysis reveals a similar pattern in Belize in which FSA sites 

appear to occur near underwater reef promontories (Heyman & Requena 2002). Though 

it is often asserted that FSAs are found on shelf edges, reef promontories, or reef 

channels in the literature, these observations are often subjective and scale dependent 

(Claydon 2004). With the exceptions of Halfmoon Caye and Gladden Spit (Heyman et 

al. 2007, Heyman & Kjerfve 2008) there are no quantitative geomorphometric seafloor 

characterizations around FSA sites in Belize and no comparison among them. One of 

objectives in this study is to quantify the sea bottom geomorphology of all known Nassau 

grouper FSA sites in Belize. 

Traditional Nassau grouper spawning sites have been shown to serve as multi-

species FSA sites in the Cayman Islands (Whaylen et al. 2004, Kobara & Heyman 2008), 

Cuba (Claro & Lindeman 2003) and Belize (Heyman & Kjerfve 2008). Grouper and 



79 
 

 

snapper FSAs occur throughout Belize and they often overlap the FSA sites of Nassau 

grouper. These sites are generally well known by local fishermen (Thompson 1944, 

Craig 1969, Heyman & Requena 2002) and are critical habitats for conservation and 

management. This paper also endeavors to evaluate the ubiquity of the multi-species 

phenomenon in Belize, particularly in reference to the geomorphology of the sites. 

However, much of the data that has been collected occur in only unpublished reports and 

grey literature. This paper takes a comprehensive yet conservative analysis of the 

existing data and new field observations to provide an evaluation of the multi-species 

aspects of known transient FSA sites in Belize. Correspondingly, this study evaluates the 

geomorphometric characteristics of known multi-species FSA sites in other areas.  

Consequently, we hypothesized that reef promontories that are visible within a 1 

km circle, serve as multi-species spawning aggregation sites.  Remote-sensing based 

shelf edges and bathymetric map information were helpful to identify approximate reef 

shapes (Kobara & Heyman 2006). Based on the remotely sensed imagery, we chose two 

reef promontories as potential FSA sites and monitored reef fishes at the sites to evaluate 

the occurrences of aggregations. The overall goals of this study are to evaluate the 

relationship between seafloor characteristics and the occurrences of fish spawning 

aggregations, and to develop an analytical framework for a fishery-independent way to 

locate unknown FSA sites.    
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4.2 Materials and Methods 

The study area includes all twelve historically known grouper and/or snapper 

spawning aggregation sites in Belize and two predicted sites (Figure 4.1). The 

coordinates of FSA sites were recorded using a handheld GPS from a boat following 

divers on SCUBA. The divers were members of the Belize Spawning Aggregations 

Working Committee who were conducting underwater visual surveys of FSA sites 

following a standard protocol (Heyman et al. 2004).  

Bathymetric data around all FSA sites were collected with a Lowrance® LCX-

27C eco-sounder system (Ecochard et al. 2003, Heyman et al. 2007) in March through 

May 2008. The eco-sounder system includes a WAAS-capable 12 channel GPS unit and 

an Airmar® TM260 50/200 kHz transducer, mounted at the stern of a 8 m Mexican-style 

open skiff. The field data (latitude, longitude and depth) were recorded while moving at 

2-3 knots in water deeper than 30 m and at 5 - 7 knots in shallower water. Sampling 

transects moving from shallow to deep water were slowest so that the eco-sounder 

captured the bottom depth on steep drop-offs, e.g. some areas are nearly vertical between 

30 and 200 m. When it was difficult to detect the depth along steeply sloping reefs, the 

boat was allowed to drift until the eco-sounder detected the bottom anew. Due to variable 

sea conditions, the intervals between transects crossing shelf edges were not always the 

same but were always less than 50 m apart. All data points on each transect line were 

recorded at intervals of 0.5 - 4 m.  
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Figure 4.1. Historically-known 12 fish spawning aggregation sites (circle with fish mark) 
and 2 predicted sites in Belize (solid color circle). Coral reef area data are derived from 
the Belize ecosystem map (Meerman & Sabido 2001). 
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All data were transformed to comma-delimited text files using a simple 

conversion program (slg2txt.exe) that comes with the SonarViewer program downloaded 

from the Lowrance site (http://www.lowrance.com/en/Donwloads/Sonar-Log-Viewer-

SLV/). Data were then parsed and loaded into spreadsheets. All invalid depth and 

position data were removed, and then all individual transect data were combined into a 

single file. Data were collected using proprietary Lowrance Mercator coordinates so they 

had to be transformed to geographical longitude and latitude using the WGS84 datum, 

and then imported into ArcGIS 9.3 (Heyman et al. 2007). All data were projected in 

UTM 16 North. Triangulated irregular network (TIN) models were created from the mass 

points using the 3D analyst extension of ArcGIS (Ecochard et al. 2003). 

In order to standardize, simplify, and facilitate comparisons of the 3-D 

morphometrics of all FSA sites, the horizontal and vertical aspects of sites were analyzed 

separately. The reef structure surrounding FSA sites were defined in relation to their 

depth; curvature (concave, convex or flat); aspect (orientation) relative to prevailing 

northeasterly trade winds (windward or leeward), and proximity to shelf edges, deep 

water, reef channels, and reef promontory tips. 

To standardize shape comparisons of horizontal curves among FSA sites required 

the selection of a contour that would be comparable for all sites. Since the depth of each 

FSA site varied, we selected the shelf-edge contour at each site for comparison purposes, 

rather than selecting a specific depth contour. First, TIN models were converted into 

raster, then slopes were calculated using the spatial analyst function of ArcGIS. Shelves 

sloped gently (less than 10 degree grade), until they reached the shelf-edges where slopes 
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increased abruptly to 20 - 45 degrees. We selected 20 degrees as the dividing slope that 

delimitated the shelf-edge contour line. The shelf-edge contour lines were smoothed 

using a GIS function with 300 m tolerance (the polynomial approximation with 

exponential kernel algorithm). The shortest distances between the FSA sites and four 

geomorphometric parameters were measured: 1) shelf-edges perpendicular to sites 2) the 

turning point of shelf-edge lines 3) 100 m depth, and 4) reef channels.  

The measurement and visible recognition of shelf-edge reef promontories is scale 

dependent. Within a 100 m buffer circle around each FSA site, most shelf edges would 

be perceived as straight. A 5 km buffer, however, would show too much variation in 

shelf edge structure beyond the scale of individual shelf promontories. A 2 km buffer 

could include land in some cases, and a 0.5 km buffer does not properly show the known 

Gladden Spit reef promontory. In addition, we calculated the sinuosity of shelf edge 

contour lines within a 1 km buffer circle surrounding each FSA site using ArcGIS. 

Sinuosity (curviness) is a measure of deviation between the length of a path between two 

points and the length of the shortest possible path. Sinuosity (S) is calculated as follows: 

S = Lt/Lsf, whereby Lt is the total length of the line and Lsf is the distance between the 

start and finish locations. Brice (1964) used the sinuosity index to separate straight from 

sinuous and meandering channels. If SI is less than 1.05, the channel is straight, if SI is 

between 1.05 - 1.5 it is sinuous and if SI is higher than 1.5 the pattern is meandering. We 

applied this categorization for the recognition of convex shapes of reef structures. In 

Gladden Spit, different scale between 0.5 - 5 km radius circle of FSA site show different 

SI. Gladden spit shelf edge requires at least 1 km radius circle considered in sinuous. A 1 
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km radius buffer circle around each FSA site was thus selected empirically as a scale for 

the comparative analysis of individual promontory shapes in Belize and a previous study 

in the Cayman Islands (Kobara & Heyman 2008).  

The bottom depth and slope were calculated from the bathymetric data described 

above. All the vertical profiles of the FSA sites were derived using the profile functions 

in ArcGIS 3D Analyst. Transects were drawn perpendicular to the shelf edge from a 

point located 100 m inshore from the shelf edges, through the FSA site, to the deepest 

water the eco-sounder could read. All vertical profile data were plotted at the same scale 

on a single set of axes for comparative purposes. 

Spawning occurrence was established by observations of gamete release 

(Domeier & Colin 1997). Additionally, indirect evidence for the occurrence of FSAs 

include observations of a threefold increase in the number of fish over non-reproductive 

times, observation of courtship behavior, and courtship coloration changes (Domeier & 

Colin 1997, Samoilys 1997). During underwater visual surveys, divers using underwater 

slates recorded the number of fishes and their courtship and spawning behaviors. The 

numbers of dives varied between locations.   
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We examined critically the best available direct and indirect evidence for the 

occurrence of FSAs. We removed any records that could not be corroborated by at least 

two independent sources of information, in order to be as conservative as possible in our 

reporting. Peak spawning season and moon phase for each species were summarized 

from literature reports, primarily from Belize and were thus not specific to each site.   

Shelf-edge lines derived from remotely-sensed images were used to identify 

potential FSA sites based on the approximate shape of reef promontories and shelf edges 

(Heyman & Requena 2002, Kobara & Heyman 2006). There are several reef 

promontories occurring at different scales. FSA sites in Turneffe Atoll are located at the 

north end, the east-facing reefs, and the south end of extended reefs (Figure 4.1). A 

similar pattern occurred in Lighthouse Reef Atoll, however, the south end has not been 

fished. We considered the south end, South Point as a potential FSA site. In addition, 

around Long Caye, Glover’s Reef Atoll, a reef extends southeast, which is similar in 

shape to Halfmoon Caye, Lighthouse Reef Atoll. This area (Long Caye) was also 

predicted and monitored as a potential spawning aggregation site (Figure 4.1). 
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4.3 Geospatial Characteristics of FSA Sites in Belize 

All of the 12 known Nassau grouper FSA sites were located on convex reefs, near 

shelf edges and within 1 km of the tips of reef promontories. All sites were located 

within 95 m (mean of 32 ± 29 m) of the steep shelf-edge contour line and within 550 m 

(mean 185 ± 170 m) of reef promontory turning points (Table 4.1, Figure 4.2). All sites 

were found in 20-80 m water depth (mean 42 ± 21 m) and located within 250 m (mean 

80 ± 64 m) of the nearest 100 m depth contour lines (Table 4.1, Figure 4.3). FSA sites 

were all more than 1 km away from the nearest reef channel except Nicholas Caye (640 

m from channel). FSAs occurred within all types of reefs - seven on Atoll reefs, four on 

Barrier reefs, and one on a bank reef. 

Sinuosity has been used to describe the relative curviness of shelf edge contours 

in this study. Most sites have highly curved reefs (Figure 4.2), and their sinuosity values 

are correspondingly high (mean 1.35 ± 0.34, Table 4.1). Only Sandbore has low 

sinuosity (1.05, Table 4.1) indicating only very limited shelf edge curve. Interestingly, 

however, the promontory shape is clearer at both smaller and larger scales.  There is a 

small promontory (or bump), with a radius of approximately 300 m. The broad curving 

shelf edge of the northeast portion of the Lighthouse Reef Atoll has its inflection point 

just at the bump. The obtuse promontory shape is more clearly visible using a 2 or 3 km 

buffer circle (Figure 4.2).  
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Table 4.1. Summary for the geomorphometric parameters of reef fish spawning 
aggregation (FSA) sites in Belize. 
 
     Depth (m) Distance to (m)  
*Site Shape FSA 

bottom 
Shelf 
edge 

Shelf 
edge 

Horizontal 
inflection 

point  

Nearest 
reef 

channel 

100 m 
Depth 

contour 

Sinuosity 

RP convex 80 48 28 245 - 7 1.11 
MG convex 41 70 93 550 - 128 1.40 
DF convex 23 39 87 140 - 122 1.27 
SC convex 26 30 5 167 - 65 1.55 
CB convex 83 29 31 31 - 9 1.39 
SB convex 50 53 5 40 - 50 1.05 
HC convex 30 35 15 245 - 85 1.96 
NG convex 60 47 45 45 2000 55 1.49 
GL convex 45 33 30 40 1400 35 2.22 
CG convex 33 35 5 5 - 50 1.17 
GS convex 31 38 40 270 - 90 1.16 
NC convex 25 22 7 160 640 98 1.08 
RF convex 20 26 30 465 - 250 1.26 

  Mean 42 39 32 154  80 1.36 
  SD 21 13 29 136   64 0.35 
 
*Site location abbreviations are as follows: RP: Rocky point. MG: Mauger Caye. DF: 
Dog flea Caye. SC: Soldier Caye. CB: Caye Bokel. SB: Sandbore. HC: Halfmoon Caye. 
NG: Northern Glover. GL: Glover’s Long Caye. CG: Caye Glory, Emily. GS: Gladden 
Spit. NC: Nicholas Caye. RF: Rise and Fall Bank. 
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Figure 4.2. Transient reef fish spawning aggregation sites in Belize. For each site, the 
upper figure shows the horizontal shelf edge line within a 1 km buffer circle around the 
spawning aggregation site. The lower figure shows the three-dimensional 
geomorphology of each FSA site. Except the Mauger Caye in three-dimension, the up 
indicates the north. For the SP site, the 40 m and 100 m depth contour lines are provided 
since no additional data are presently available. 
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Figure 4.2. Con’t. 
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Figure 4.2. Con’t. 
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Vertical profiles through all FSA sites were plotted on a single set of axes for 

comparative purposes. All FSA sites were located around the seaward shelf-edges with 

slopes steeper than 45 degrees. All sites were adjacent to water exceeding 100 m depth 

(Figure 4.3). Except Rise and Fall Bank and Nicholas Caye, all reefs dropped steeply 

from the shelf-edge to at least 150 or 200 m. Rise and Fall Bank, and Nicholas Caye 

dropped steeply, but to around 80 or 100 m where the slope became gentler (around 8 - 

12 and, 15 - 18 degrees, respectively). The shallower sloping shelves extended a distance 

of 1,000 m from bottom edge to a depth of 250 m. In addition, Rise and Fall Bank and 

Nicholas Caye sites had 5 - 10 m vertical bumps near to the shelf edge (Figure 4.3).  
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Figure 4.3. Vertical profiles of reef structures that are perpendicular to the reef and pass 
through spawning aggregation sites, starting in shallow water, 100 m inshore from the 
shelf edges and ending at the seaward limit of data availability. The profiles of two 
predicted sites are in thicker solid line.
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4.4 Multi-Species Aspects of FSA Sites in Belize 

Four of the 12 sites were confirmed multi-species FSAs using direct evidence of 

spawning (Table 4.2). Multiple indirect indicators of spawning behaviors for at least two 

species were observed at 10 of the 12 sites. 

 Black grouper (Mycteroperca bonaci) and Tiger grouper (M. tigris) were 

observed to share the sites with Nassau grouper at all of the 10 known sites. Gladden Spit 

harbors aggregations of at least 17 species from nine families, including serranids, 

lutjanids, carangids, ostraciids and carangids (Heyman and Kjerfve 2008) and served as a 

conceptual model for other sites. Caye Bokel, Halfmoon Caye and South Point also 

support FSAs for serranids, lutjanids, carangids and ostraciids species (Table 4.2). 

 

4.5 Two Aspects of the Predicted Sites 

One of the two predicted sites, South Point was confirmed as a multi-species 

FSAs using direct evidence of spawning (Table 4.2). Tiger grouper, Black grouper, Bar 

jack (Caranx ruber) and Trunkfish (Lactophrys trigonus) were observed to spawn at 

South Point, confirming the presence of transient FSAs.  
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Bar jack had a group spawning of 25 - 30 individuals at 6:10 pm on 29 May, 

2002. Trunkfish exhibited haremic spawning of 75 individuals at 5:55 pm on 21 March 

2003. Tiger grouper were observed to spawn repeatedly on 5 and 6 April 2002 when 300 

- 400 individuals, aggregated in haremic groups of 5 - 10 females surrounding individual 

male-guarded territories, spawned in repeated haremic spawning rushes. Black grouper 

were observed in relatively large groups, 200 - 250 individuals on 4 and 6 February 2002 

at South Point and exhibited courtship behavior and color changes.  

Multiple indirect indicators (gravid individuals, color changes associated with 

spawning, and courtship behaviors) of Black grouper and Nassau grouper were observed 

at Glover’s Long Caye during visual observations on 9 January 2002. Subsequent to our 

prediction and field observations, conversations with local fishers revealed that Glover’s 

Long Caye was known prior by local fishers as an aggregation site for Horse-eye jack 

(Caranx latus) and Mutton snapper in April and May. 

The aggregations at the two predicted sites were located on convex reefs, near 

shelf edges and within 1 km of the tips of reef promontories. Both sites were located 

within 33 m of shelf-edges with slopes steeper than 45 degrees, between 25 - 35 m water 

depths at the shelf edge, proximal to deep walls exceeding 120 m (Figure 4.3).  
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Table 4.2. Evidence of multi-species aggregations in Belize where LD: lunar day; S: spawning observed; F: reported by 
fishermen; R: ripe gonads found in > 70% of catch during high CPUE landings events; 3: 3x increase in abundance over non-
aggregating time; G: gravid individuals observed underwater; Δ: color changes associated with spawning observed 
underwater; C: courtship behaviors observed underwater; V: spawning recorded on video; X: extirpated or very sharp decline. 
Source: visual survey data from the Spawning Aggregations Working Committee in Belize. The numbers indicate the 
additional information from literature. 1. Paz and Grimshaw 2001. 2. Graham and Castellanos 2005. 3. Sala et al. 2001. 4. 
Carter 1989. 5. Carter and Perrine 1994. 6. Starr et al. 2007. 
 
    General patterns in Belize Evidence for FSA 
FSA sites Species Peak Season Moon phase S F R 3 G Δ C V X 

Rocky Point Epinephelus striatus            Jan-Mar  LD 14-24  F R 3 G Δ C  X 
 Mycteroperca bonaci           Jan-Mar LD 19-28  F  3  Δ C   
 M. tigris Mar LD 16-24  F  3      
 Lutjanus jocu Jan-May LD 12-21    3   C   
Mauger Caye Epinephelus striatus  Dec-Mar LD 14-24   F R 3 G         
Dog Flea Caye Epinephelus striatus  Dec-Mar LD 14-24   F   3 G Δ C     
 Mycteroperca bonaci Jan-Mar LD 19-28     G Δ C   
 M. tigris Jan-Feb LD 16-24     G Δ C   
Soldier Caye Epinephelus striatus1 Dec-Mar LD 14-24   F       Δ       
 Mycteroperca bonaci Jan-Mar LD 19-28    3 G Δ C   
 M. tigris Jan-Feb LD 16-24    3 G Δ C   
 Caranx latus Jan-Aug LD 14-23    3  Δ C   
Caye Bokel Mycteroperca bonaci  Jan LD 19-28    F   3 G Δ C     
 M. venenosa Jan-Feb LD 19-28  F  3 G Δ    
 M. tigris Jan-Feb LD 16-24  F  3  Δ C   
 Lutjanus jocu Jan-May LD 12-21 S F R 3   C   
 L. cyanopterus Aug LD 12-22 S F R 3 G Δ C   
 L. analis Mar-Jun LD 12-21  F  3   C   
 Ocyurus chrysurus    F R 3   C   
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Table 4.2. Con’t.    
    General patterns in Belize Evidence for FSA 
FSA sites Species Peak Season Moon phase S F R 3 G Δ C V X 

Caye Bokel  Trachinotus falcatus2      Jan-Mar LD 14-24 S F  3  Δ C   
(cont.) Caranx latus2 Jan-Aug LD 14-23    3  Δ C   
 Lactophrys trigonus Jan LD 14-24    3  Δ C   
Sandbore    Epinephelus striatus1  Dec-Feb LD 14-24  S F R 3 G Δ C V   
 Mycteroperca bonaci Jan-Apr LD 19-28 S F R 3 G Δ C V  
 M. venenosa Jan-Apr LD 19-28  F R 3 G Δ C   
 M. tigris Feb-Apr LD 14-24  F R 3 G Δ C   
Halfmoon Caye Epinephelus striatus Dec-Feb LD 14-24   F     G Δ C   X 
 Mycteroperca bonaci Jan-Jun LD 19-28 S F R 3 G Δ C   
 Mycteroperca tigris Feb-Mar LD 16-24 S F  3 G Δ C V  
 M.venenosa Jan-Apr LD 19-28     G Δ    
 Lutjanus jocu Jan-June LD 12-21    3   C   
 Caranx latus Feb-Jun LD 14-23 S   3  Δ C   
 Caranx ruber Jan-Jun LD 12-22 S   3   C   
 Trachinotus falcatus      Feb-Apr LD 15-21 S   3  Δ C   
 Lactophrys trigonus Oct LD 15-25 S   3  Δ C   
 Lactophrys triqueter Dec-Feb LD 16-19      3   Δ C     
 Canthidermis sufflamen Feb-Jul LD 15-20    3 G  C   
South Point Mycteroperca bonaci Jan-Mar  LD 19-28 S   R 3 G Δ C V   
 M. tigris Jan-Apr LD 16-24 S  R 3 G Δ C V  
 Lutjanus jocu May-Jun LD 12-21    3   C   
 Ocyurus chrysurus Apr     3  Δ    
 Caranx latus Mar-Jun LD 14-23      3 G Δ C   
 C. bartholomaei Jan-Jun LD 15-24    3  Δ C   
 C. ruber Feb-Jun LD 12-22 S   3   C   
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Table 4.2. Con’t.             
    General patterns in Belize Evidence for FSA 
FSA sites Species Peak Season Moon phase S F R 3 G Δ C V X 

South Point Lactophyrus trigonus Jan-Apr LD 15-22 S   3  Δ C   
(con’t.) Trachinotus falcatus      Feb-Jun LD 15-22    3  Δ C   
 L. triqueter Jan-Apr LD 17-22    3  Δ C   
 Canthidermis sufflamen Apr-Jul LD 22-23    3   C   
North Glover's Epinephelus striatus3   Dec-Mar LD 14-24 S F R 3 G Δ C V X 
 Mycteroperca bonaci3 Dec-Feb LD 19-28 S F R 3 G Δ C   
 M. tigris3 Jan-Feb LD 16-24    3 G Δ C   
 M. venenosa3,6 Jan-Feb LD 19-28 S   3 G Δ C   
Long Caye Epinephelus striatus Dec-Mar LD 14-24          G Δ C     
 Mycteroperca bonaci Dec-Feb LD 19-28    3 G Δ C   
Caye Glory Epinephelus striatus 4 Dec-Mar LD 14-24 S F R 3   Δ C   X 
 Mycteroperca bonaci Jan LD 19-28  F R 3 G Δ C   
 M. venenosa Jan LD 19-28  F R 3 G Δ C   
 Lutjanus jocu5 Jan LD 12-21  F  3 G  C   
 Calamus bajonado Jan LD 14-28  F R 3      
 Calamus calamus Jan LD 14-28  F R 3  Δ    
 Lactophrys triqueter Jan LD 14-28    3  Δ C   
 Lactophrys trigonus Jan LD 14-28      3   Δ C     
 Haemulon album    Jan LD 14-28  F R 3      
Nicholas Caye Epinephelus striatus Dec-Mar LD 14-24   F   3 G Δ C     
 Mycteroperca bonaci  LD 19-28    3 G Δ C   
 M. tigris  LD 16-24    3 G Δ C   
 M. venenosa  LD 19-28    3 G Δ C   
Rise&FallBank Epinephelus striatus   LD 14-24   F R           X 
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4.6 Discussion 

This study provides a comparative geomorphometric analysis of 12 transient 

FSAs in Belize and concludes that they all occur at geomorphologically similar and 

somewhat predictable locations. Secondarily, the study has synthesized evidence that 11 

Nassau grouper FSA sites in Belize harbor transient multi-species FSAs. Finally, based 

on the geomorphological search image, two previously unknown transient FSA sites 

were predicted; one was verified as a multi-species FSA site with direct evidence of 

spawning and the other appears to be a multi-species FSA site, with indirect evidence for 

two species.  As is the case in the Cayman Islands (Kobara & Heyman 2008) all FSA 

sites in Belize occurred along shelf edges, within a 1 km buffer circle, centered on the 

nearest reef promontory tip. Tectonic events, oceanic processes, climate, erosion, and 

reef growth have all dictated the formation and appearance of extant reefs. Reef fishes 

have evolved strategies of reproduction in times and places that maximize the likelihood 

of survival.  It appears that there is a convergent choice of shelf-edge, reef promontory 

tips for the spawning location of many large, commercially important reef fishes. This 

convergence may be used as the framework for a fishery-independent method to predict 

undiscovered spawning locations. 

 

4.6.1 Bottom depth range and spawning rushes 

Using the observation of species-specific spawning areas in a multi-species FSA, 

each species may have slightly different location preferences within a transient, multi-

species FSA site (Heyman & Kjerfve 2008). The recorded bottom depth of Nassau 
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grouper FSA sites in this study ranged between 20 and 80 m. However, the recorded 

FSA depth at some sites was deeper than the recorded shelf edge depth, and also deeper 

than Nassau grouper aggregations in other locations. Since these position data are 

gathered with a GPS from a moving boat, and the shelf slope is so steep, it is possible 

that some of these depths are deeper than the aggregation actually occurred. Nonetheless, 

these data are consistent with the hypothesis that Nassau grouper, and other transient 

spawners reported here may require depths of at least 20 m for their aggregations to 

allow for vertical spawning rush movement (Domeier & Colin 1997). Nassau grouper 

have been observed to swim toward the outer shelf edges and beyond during breeding 

(Colin 1992, Tucker et al. 1993, Carter et al. 1994, Sadovy & Eklund 1999, Whaylen et 

al. 2004, Heyman & Kjerfve 2008).  

Nassau grouper spawning involves ascent of small sub-groups into the water 

column, with release of sperm and eggs and a rapid return of the fragmented sub-group 

to the substrate (Sadovy & Eklund 1999). Dog snapper (Lutjanus jocu) aggregate above 

the shelf in a tight, spherical school between the surface and 40 m depth at Gladden Spit. 

They spawn at the end of cylinder-shaped schools that form at the bottom in 25 - 30 m 

depth and extend perpendicularly to the shelf edge at a 45 angle towards the surface. 

Spawning occurs in large groups generally between the surface and 15 m depth (Heyman 

et al. 2005, Heyman & Kjerfve 2008). Black grouper swam rapidly towards the surface, 

spiraling around each other accelerating into a spawning rush, and pair spawned 25 - 30 

m below the surface, and then return to the reef individually (Heyman & Kjerfve 2008). 

Indeed, Cubera snapper (L. cyanopterus) create a vertical upwelling to facilitate the 
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upward transport and dispersion of gametes (Heyman et al. 2005). These behaviors 

indicate that the species that form group/mass FSAs may select sites with certain 

minimum depths in order to accommodate spawning rushes and facilitate gamete 

dispersion. 

 

4.6.2 Vertical profiles 

In addition to the reef promontory and shelf edges, vertical profiles of FSA sites 

also show general geomorphometric patterns. Vertical shapes of reef morphology at FSA 

sites were all steep walls (Figure 4.3). Depths determined with single-beam sonar are 

generally shallower than the actual depths (as determined using multi-beam side scan 

sonar) in areas of sea bottom that descend at steep angles (Kobara, unpublished data). 

Thus, the distances from FSA sites to deep water reported here are probably longer than 

actual distances. 

Nassau grouper perform inter-monthly vertical migrations, alternating between 

the 25 m spawning aggregation site during full moon spawning time, and nearby deep 

water (70 - 90 m) for the remainder of each of the three consecutive spawning months in 

Northern Glovers Reef (Starr et al. 2007). All FSA sites herein were adjacent to water of 

at least 80 m depth (Figure 4.3). Starr et al. (2007) offer three hypotheses for this 

repeated synchronous migration suggesting that the fish are 1) spawning in deep water, 

2) recovering from energy loss associated with spawning and 3) seeking refuge from 

predators between spawning times. Our results do not support or refute any of these 

hypotheses about the reasons for the vertical migration. However, the similarities in 
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geomorphologic characteristics of FSA sites described herein would facilitate the 

described vertical migration behavior, and thus play a role in FSA site selection for 

Nassau grouper.     

 

4.6.3 Multi-species aspects of FSA sites 

Based on only peer reviewed literature and direct observations of spawning, we 

provide evidence that Gladden Spit, Caye Bokel, Sandbore, Halfmoon Caye, Northern 

Glovers and a predicted site, South Point (a total of 6 out of 14 sites) are multi-species 

FSA sites. In addition, we provide a wealth of direct and indirect evidence that the 

remaining 6 out of 14 sites also harbor multi-species aggregations (Table 4.2). Though 

the data are not sufficiently conclusive to state unequivocally that all sites are multi-

species FSA sites, the data are sufficient to offer the hypothesis that in Belize, multi-

species FSAs occur in deeper than 20 m water depth, near to shelf edges, convex reef 

promontories, and adjacent to deep water.  

The finding is consistent with observations from the Cayman Islands, where 4 out 

of 5 known Nassau grouper FSA sites harbored multi-species FSAs (Kobara & Heyman 

2008). Nassau grouper FSA sites in the Cayman Islands share the sites with FSAs of 

other groupers (e.g. Tiger grouper) and snappers (e.g. Mutton snapper). For example, the 

west end of Little Cayman is a well-documented multi-species FSA site that includes 

aggregations of several species of serranids, lutjanids, and carangids. All four multi-

species FSA sites in the Cayman Islands share the same geomorphologic characteristics 

as those described herein for Belize (Kobara & Heyman 2008). 
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4.6.4 Fishery-independent way to locate potential FSA sites 

It is well documented that scientists are far more likely to find out about FSAs 

sites from fishers, then from any other source of information (Johannes 1998, Colin et al. 

2003). As far as we are aware, South Point, Lighthouse Reef Atoll was the first transient 

multi-species FSA site discovered by fishery-independent predictions based on 

geomorphology. Indeed, the exact location was predicted based solely on observations of 

a Landsat image - an area that appeared to be a reef promontory jutting out over a steep 

shelf. Further study provided herein illustrates that the site is indeed geomorphologically 

similar to other FSA sites in Belize occurring near the shelf edge of a windward-facing 

reef promontory, more than 20 m deep, adjacent to a steep wall and proximal to deep 

water (Figure 4.3).  

 

4.6.5 Geospatial scale 

For this study, the scale is a primary factor for comparison and prediction. The E. 

striatus FSA site at northern Glover’s reef has been considered to occur at a reef channel 

(Claydon 2004), but that conclusion is misleading and scale dependent. Sala et al. (2001) 

describe “the spawning site, which is located approximately 1 km off the reef crest and 

outside a large channel through the reef crest, is located at 25 - 45 m depth, at the 

northeastern portion of the atoll… Grouper counts on the shelf edge were carried out 

using contiguous 75 x 20 m belt transects, which covered the shelf area within the 

spawning site between 30 and 50 m in depth”. Our measurements and observations 
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indicate that the FSA site is 45 m from the reef promontory and 2 km from the reef 

channel.   

Nicholas Caye and Sandbore imply the importance of reef promontory shape 

within a 1 km buffer circle. With consideration of this scale, South Point and Long Caye 

are logical selections. These reef promontory sites may also attract multiple species for 

spawning because of their distinctive facilitation of the dispersal of eggs and larvae.  

Although this study shows that the primary FSA sites in Belize are reef 

promontories, the reasons that fish aggregate at these sites remain unclear. Spawning 

sites may be selected primarily to simplify the task of widely spaced males and females 

locating one another (Zaiser & Moyer 1981, Shapiro et al. 1988). Group spawning 

species particularly serranids, lutjanids, and carangids may therefore choose these 

geomorphologically distinctive locations. The sites differentiated by the fish from 

surrounding areas may be learned by younger individuals from more experienced adults 

(Shapiro et al. 1988).  

Alternately, reef promontories might confer some convergent genetic advantage 

for larval transport. Several authors have suggested that reef fishes spawn at sites 

exposed to strong currents to ensure the maximum dispersal of larvae and reduce benthic 

predation (Johannes 1978, Colin et al. 1987). Heyman and Kjerfve (2008), for example 

report that Gladden Spit had twice the current speed and three times the directional 

variability of currents compared to an adjacent, non-promontory site. We believe that 

promontory sites do enhance dispersal but that sites with slightly different morphology 

and/or at different scales may confer different oceanographic regimes to which various 
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suites of species may adapt. The relationships between ocean currents, reef 

geomorphology, FSA site selection and larval transport are poorly understood yet 

deserving of additional research. 

But there seems to be a more complex relationship between the selection of 

FSAs, site fidelity, and local currents.  There are transient FSAs in the wider Caribbean 

that occur at sites that cannot be defined as promontories within a 1 km buffer circle. The 

mutton snapper L. analis aggregation at Riley’s Humps in the Florida Cayes, for example 

is a non-promontory spawning aggregation site (Lindeman et al. 2000), as is the multi-

species FSA site at Grammanik Bank  in St. Thomas (Nemeth 2005, Nemeth et al. 

2007b). Regional differences and scale differences need to be carefully evaluated before 

regional generalities about transient multi-species FSA sites can be deduced.   

 

4.7 Conclusion 

Our data provide the most extensive record to date of the geomorphology of 

grouper and snapper multi-species FSAs. Before this study, it was suggested that Nassau 

grouper FSA sites occur both at reef promontories and at other sites that were not 

promontories but these descriptive observations did not include a defining scale. Our 

study used a standard 1 km buffer around reef promontories and demonstrated that 14 

multi-species FSAs occur near the shelf edge at convex-shaped reef structures jutting out 

over steep walls into deep water. Understanding geomorphology of FSAs might provide 

a fishery-independent way to locate potential FSA sites in other locations. 
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5. IMPORTANCE OF 3D INFORMATION OF FSA SITES 

 

5.1 Introduction 

 Fisheries oceanography has emerged as a science illustrating deterministic 

relationships between various oceanographic variables and the distribution and 

abundance of fishes. For example, many offshore fishermen are well aware of the 

relationships between water temperature and the location of big game fish. In tropical 

regions, commercially-important large fishes such as groupers and snappers in the 

Caribbean have site fidelity in reproductive activities.  

The most well-studied, transient spawning species in the Caribbean, Nassau 

grouper (Epinephelus striatus), spawn at convex-shaped reefs within 1 km of reef 

promontory tips in waters deeper than 20 m, and less than 100 m from shelf edges at all 

historically known sites in the Cayman Islands (Section 3) and Belize (Section 4). 

Nassau grouper often share the sites with other spawning grouper species such as Black 

grouper (Mycteroperca bonaci), Tiger grouper (M. tigris), snappers and jacks (Whaylen 

et al. 2004, Whaylen et al. 2006, Heyman & Kjerfve 2008, Kobara & Heyman 2008). 

Although at some sites Nassau grouper spawning was not observed because some Nassau 

grouper FSAs have either moved away from or been extirpated from their original reef 

promontory locations, these sites serve as multi-species aggregations, and thus still 

harbor FSAs of several other species (Heyman et al. 2004, Graham & Castellanos 2005, 

Heyman & Kjerfve 2008). Further, a previously unknown site in Belize, South Point, 
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Lighthouse Reef Atoll was predicted a priori as a spawning site based on its shape, 

observed in Landsat satellite imagery (Kobara and Heyman in review).      

The association between seafloor characteristics and the location of transient reef 

fish spawning aggregation sites are beginning to unfold and this study presents two key 

questions as follows: 1) Can seafloor characteristic that are similar to the reef 

promontories described for Belize and the Cayman Islands be found in other areas, such 

as Puerto Rico? and 2) Can previously-unknown transient reef fish spawning aggregation 

sites in the Caribbean be predicted using satellite imagery?  

A few known spawning sites of transient reef fishes exist in Puerto Rico. Red 

hind (E. guttatus) and tiger grouper (M. tigris) are the most commonly observed species 

at El Hoyo and Vieques Island, Puerto Rico, respectively (Colin & Clavijo 1988, Shapiro 

et al. 1988, Shapiro et al. 1993a, Shapiro et al. 1993b, Colin 1996, White et al. 2002, 

Matos-Caraballo et al. 2006). Spawning aggregations of Yellowfin grouper (M. 

venenosa) and high abundances of Red hind, Rock hind (E. adscensionis), Tiger grouper, 

Black grouper, and Yellowmouth grouper (M. interstitialis) were observed at a site in 

Mona Island (Nemeth et al. 2007a). Nassau grouper spawning aggregations in Mona 

Island and the South coast were mentioned in literature; however they disappeared in 

1970 and 80s and only the approximate spawning areas were obtained from fishers 

(Sadovy & Eklund 1999).  

Considering all currently available data, this study examines seafloor 

characteristics of a yellowfin grouper FSA site in the Mona Island, which is a highly 

possible multi-species spawning aggregation site, and historically-known three red hind 
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spawning sites along southwest coast of the main island of Puerto Rico: El Hoyo, Abrir 

la Sierra and Bajo de Sico (Ojeda et al. 2007). As shown in Section 2, Red hind FSAs are 

often reported in the north eastern Caribbean. Seafloor characteristics analysis of this 

study provides additional information and fills a gap of studies in Red hind FSAs.     

Because of their ecological importance, all FSAs should be identified and 

evaluated as part of any regional ecosystem-based management approach (Sale et al. 

2005, Appeldoorn 2008, Crowder & Norse 2008). There are no spawning observations 

reported from the southern Caribbean. A mutton snapper (Lutjanus analis) aggregation 

and Nassau grouper fishing have been reported for Los Roques (Cervigón 1993), though 

no spawning event was recorded.  

Successful prediction of a FSA site in Belize (Section 4) suggests that reef 

promontories are likely sites for grouper and snapper spawning aggregations. 

Boomhower et al. (in review) identified seven reef promontories in Los Roques, 

Venezuela as candidate FSA sites based on their shape as given in Landsat satellite 

imagery (Kobara & Heyman 2006). Additionally, interviews with 30 experienced 

fishermen were also conducted. All respondents were asked to identify sites and times 

during which they reliably caught higher amounts of reef fishes than on an average day 

of fishing.  
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Based on the locations of reef promontories as well as preliminary interviews 

with local fishermen, two sites were chosen for monitoring, Cayo Sal and Gresqui. 

Aggregations of Schoolmaster snapper (L. apodus) were observed at Cayo Sal, but no 

spawning of this or other species. Bathymetric mapping at the site revealed that in spite 

of 2D similarities, seafloor characteristics at Cayo Sal are different from those in Belize 

and the Cayman Islands.  

The objective of this study is to inquire if seafloor characteristics observed in the 

Cayman Islands and Belize can be applied to other areas in the Caribbean, especially the 

known sites in Puerto Rico. This study summarized the seafloor characteristics of all 

known transient grouper and snapper FSA sites in the wider Caribbean, along with the 

results of previous sections, and two predicted sites in Los Roques. From the results of 

predicted FSA sites in Belize and Los Roques, Venezuela, this study attempts to suggest 

a potential fishermen-independent way to predict FSA site in the Caribbean. It is hoped 

that this summary of seafloor characteristics of grouper-snapper FSA sites is used for 

effective management and conservations.   
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5.2 Materials and Methods 

 Multi-beam bathymetry data of the U.S. Caribbean Islands, collected and 

provided by NOAA, were used for the geospatial analysis of known FSA sites in Puerto 

Rico. The only published account for Red hind spawning aggregation sites in Puerto 

Rico was El Hoyo (Colin et al. 1987, Shapiro et al. 1993b, Sadovy et al. 1994). 

Approximate coordinates of the site are 17°52.5’N, 67°2.9’W (Shapiro et al. 1993a). 

Additionally, Abrir la Sierra and Baco de Sico are considered as Red hind FSA sites 

(Ojeda et al. 2007). Yet no field monitoring data has been collected with which to 

evaluate the present status of those aggregations. The coordinates of FSA sites in these 

areas and of the yellowfin grouper FSA site at Mona Island were provided by Schärer 

(see a description in Aguilar-Perera et al. 2006). In total, there were three Red hind FSA 

sites along the southwest edge of the main island of Puerto Rico and one yellowfin FSA 

site off Mona Islands (Figure 5.1). 

Bathymetric data around projected FSA sites in Los Roques were collected with a 

Lowrance LCX-17M eco-sounder system (Ecochard et al. 2003, Heyman et al. 2007) in 

January 2007. The seafloor characteristics of the known and mapped FSA sites in Belize 

and the Cayman Islands were compared with those in Puerto Rico and Los Roques.     
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Figure 5.1. Study area: (A) two known spawning aggregation sites in Puerto Rico: Mona 
Islands South end and El Hoyo, southwest coast of the main island; (B) two predicted 
FSA sites in Los Roques National Park Archipelago, Venezuela. 
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 To standardize shape comparisons of horizontal curves among FSA sites required 

the selection of a contour that would be comparable for all sites. Since the depths of each 

FSA site were different, this study selected the derived shelf-edge contour line at each 

site for comparison purposes, rather than selecting a specific depth contour. This study 

selected 20 degrees as the dividing slope that delimitated the shelf-edge contour line. The 

shelf-edge contour lines were smoothed using a polynomial approximation with an 

exponential kernel algorithm function in GIS, with 300 m tolerance. The shortest 

distances between the FSA sites and four geomorphometric parameters were measured: 

1) shelf-edges perpendicular to sites; 2) horizontal turning-point of shelf-edge lines; 3) 

100 m depth; and 4) reef channels (Kobara & Heyman 2008).  

The measurement and visible recognition of shelf-edge reef promontories is scale 

dependent. Previous studies in Belize (Kobara and Heyman in review) and the Cayman 

Islands (Kobara & Heyman 2008) used a 1 km radius buffer circle around each FSA site 

and the same scale for the comparative analysis of individual promontory shapes in 

Puerto Rico and Los Roques. All shelf-edge maps were shown in 1:10,000 map scales. 

The bottom depth and slope were calculated from the bathymetric data described above. 

All the vertical profiles of the FSA sites were derived using the profile functions in 

ArcGIS 3D Analyst. All vertical profile data were plotted at the same scale on a single 

set of axes for comparative purposes. 
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5.3 Results 

 Two other Red hind FSA sites, Abrir la Sierra and Bajo de Sico, were located on 

flat reef crest areas (0-5 degree slope) where there is no reef promontory nor steep wall 

proximal to deep water (Figure 5.2). The bottom depths at FSA site in Abrir la Sierra and 

Bajo de Sico were 36 m and 14 m, respectively. 

 

 
Figure 5.2. Red hind spawning aggregation sites in A) Abrir la Sierra; B) Bajo de Sico; 
and C) El Hoyo, within a 1-km buffer circle around known Red hind spawning 
aggregation site. Dotted line represents contour lines of 30-, 40- and 50-m depth. In El 
Hoyo, 100- and 200-m depth contour lines were added to illustrate the proximity to deep 
water. 
 
 

On the other hand, the red hind FSA site at El Hoyo and the yellowfin grouper 

FSA site at Mona Island were located on convex reefs, near shelf edges and within 1 km 

of the tips of reef promontories (Figures 5.2 and 5.3). Both sites were found within 29 - 

52 m of the steep shelf-edge contour line and within 240 m of reef promontory turning 

points (Table 5.1). Both spawning spots were located in 20-23 m water depth. The 

sinuosity of shelf-edge line within a 1 km buffer circle at both sites was lower (1.06, 

1.10) than that in the Cayman Islands (1.31 - 1.74) but similar to sinuosity values at FSA 

sites in Belize (1.05 - 2.22). 
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Table 5.1. Summary for the seafloor characteristics of FSA sites in Puerto Rico, Belize 
and the Cayman Islands. Inf. Pts.: Reef promontory tips. 100-m depth.: the shortest 
distance to the 100 m depth contour line. Sinuosity is curviness of shelf-edge line within 
a 1 km circle of the tip of the reef promontory. 
 
    Depth (m) Distance to (m)   

Location Shape FSA 
Shelf 
edge 

Shelf 
edge 

Inf. 
Pts Channel 

100 m 
Depth Sinuosity 

Mona Island  
South end convex 23 32 29 240 - - 1.06 
El Hoyo convex 20 25 52 180 - 105 1.10 
Bajo de Sico - 36 - >1 km  - > 1 km - 
Abrir la Sierra - 14 - >1 km  - > 1 km - 
Cayo Sal (LR) convex - 21 - - - - 1.08* 
Gresqui (LR) convex - 9 - - - - 1.06* 
Rocky Point convex 80 48 28 245 - 7 1.11 
Mauger Caye convex 41 70 93 550 - 128 1.40 
Dog Flea Caye convex 23 39 87 140 - 122 1.27 
Soldier Caye convex 26 30 5 167 - 65 1.55 
Caye Bokel convex 83 29 31 31 - 9 1.39 
Sandbore convex 50 53 5 40 - 50 1.05 
Halfmoon Caye convex 30 35 15 245 - 85 1.96 
Northern 
Glovers 

convex 60 47 45 45 2000 55 1.49 

Long Caye convex 45 33 30 40 1400 35 2.22 
Caye Glory convex 33 35 5 5 - 50 1.17 
Gladden Spit convex 31 38 40 270 - 90 1.16 
Nicholas Caye convex 25 22 7 160 640 98 1.08 
Rise & Fall 
Bank 

convex 20 26 30 465 - 250 1.26 

GC West convex 33 40 0 415 1300 73 1.31 
GC East convex 35 45 30 545 2000 108 1.71 
LC West convex 34 30 0 290 3800 64 1.74 
LC East convex 20 25 15 250 1200 66 1.42 
CBrac East convex 32 35 50 90 - 107 1.44 

Mean**  36.1 34.9 30 221 1763 82.5 1.36 
Std. dev.**  18.2 12.8 26 167 1015 53.2 0.32 
 
* Based on available length of shelf-edge line. 
** Excludes Bajo de Sico and Abrir la Sierra. 
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Two reef promontories on the southern barrier reef of Los Roques were predicted 

FSA sites - Cayo Sal and Gresqui. Cayo Sal has a steep slope (20 - 30 degrees) extending 

from approximately 10 m depth to about 40 m, then gently extending to about 45 m 

(Figure 5.3 and 5.4). Gresqui has a less steep slope, with its shelf edge in only 5 m water 

depth. The benthic habitat is dominated by soft corals giving way to a flat sand bottom at 

about 45 m. Shelf-edge depths were less than 10 m for Gresqui and 20 m for Cayo Sal. 

Cayman Islands FSA sites (n=5) and Belize sites (n=14) were found in 22 - 70 m water 

depth at the shelf edges and located within 250 m of the nearest 100 m depth contours. 

Note that two dimensional did not provide a complete structure of sites. While three-

dimensional structures show the convex-shaped reefs for both sites, the derived 

horizontal shelf-edge line did not clearly observe in Gresqui (Figure 5.3).   

Vertical profiles through Abrir la Sierra, El Hoyo and Mona Island, and through 

the tip of reef promontories at both Cayo Sal and Gresqui, Los Roques are shown on a 

single set of axes along with two cases of FSA sites in Belize for comparative purposes 

(Figure 5.4). Bajo de Sico was located a long distance from even the 30-m depth contour 

and thus not included in the figure. 

Four representative sites in Belize were located at the extension of reefs jutting 

into deep water (Figure 5.3). Both three-dimensional views and vertical profiles at El 

Hoyo were similar to those observed at two sites in Belize, which were highly curved 

reef structures adjacent to water exceeding 100 m depth. On the other hand, the Mona 

Island site dropped steeply from the shelf-edge to 50 m where the slope became gentler. 
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Figure 5.3. Seafloor characteristics of FSA sites in Belize (upper four sites), Puerto Rico 
(two sites in the middle), and predicted FSA sites in Los Roques, Venezuela (two sites at 
the bottom). For each site, the upper figure shows the horizontal shelf-edge line within a 
1-km buffer circle around the spawning aggregation site. The lower figure shows the 
three-dimensional geomorphology of each FSA site.  
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Belize also has yellowfin grouper FSA sites. One of them is near Nicholas Caye 

(Kobara and Heyman in review). Nicholas Caye was also known as a Nassau grouper 

spawning site. Both predicted sites in Los Roques have shallower shelf edges than any of 

the four known FSA sites in Belize. Although the vertical profile for Cayo Sal was 

plotted nearly the same as Caye Bokel from the shelf edge to 50 m depth, the slope of 

Cayo Sal’s reef became gentler after reaching to 50 m depth, while Caye Bokel became 

much steeper. All vertical profiles of Gresqui were shallow.  
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Figure 5.4. Vertical profiles of reef structures that are perpendicular to the reef and pass 
through FSA sites, starting in shallow water, 100 m inshore from the shelf edges, and 
ending at the seaward limit of data availability.  
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5.4 Discussion 

Seafloor characteristics of Los Roques sites and Puerto Rico sites except El Hoyo 

were different from the cases of Caymans and Belize. All groupers sites were not 

necessary the same seafloor characteristics, though multi-species sites were reef 

promontories.   

 
5.4.1 Red hind FSA sites 

 The Red hind FSA site at El Hoyo was convex-shaped reef structures jutting out 

over steep walls (Figure 5.2, Table 5.1), and similar curviness can be found at other FSA 

sites in Belize (Kobara and Heyman in review). Two other Red hind FSA sites, Abrir la 

Sierra and Bajo de Sico, were located on shallow reefs that were neither reef 

promontories nor shelf-edges. This result is consistent with other studies that indicate the 

Red hind FSA sites were not always located at reef promontories, e.g., the U.S.V.I. 

(Nemeth et al. 2007b). This suggests that other ecological patterns and processes such as 

sea water temperature, proximity to suitable benthic habitats for settlement, and 

hydrodynamics can be more important for this species. With respect to the potential for 

predicting FSA sites using a fishermen-independent method, Red hind FSA sites should 

be considered different from other grouper species.  

Reef fish may have primary and secondary FSA site-selection strategies 

(Samoilys 1997, Russell 2001). During the spawning season, most fish aggregate at one 

primary site on a reef; however, some fish visit other secondary sites where smaller 

groups are spawning. Although detailed bathymetric data were not provided, historically-

known Nassau grouper FSA sites in Quintana Roo, Mexico and the U.S.V.I. Grammanik 
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Bank were considered non-reef promontory sites (Aguilar-Perera & Aguilar-Davila 

1996, Nemeth 2005, Aguilar-Perera 2006, Nemeth et al. 2007b). Specific seafloor 

characteristics such as reef promontory sites are highly predictable and may facilitate 

marine protected area establishment (Russell 2001), whereas non-reef promontory sites 

such as Abrir la Sierra and U.S.V.I. Grammanik Bank may have similar advantage for 

transport eggs and larvae, but are more variable in environmental factors. 

 

5.4.2 Vertical profile 

The Mona Island multi-species grouper FSA site entails a convex-shaped reef 

structures jutting out over steep walls. Different than the multi-species FSA sites in 

Belize and the Cayman Islands, the Mona Island FSA site was not adjacent to deep water 

and does not appear to have FSAs of snappers.  

All snapper spawning aggregation sites in Belize were 20 - 30 m depth, proximal 

to deeper water and were highly curved reef promontories such as Caye Bokel and 

Halfmoon Caye (Figure 5.2). Nassau grouper has also observed staying deep water 

around 70-90 m for three months after spawning (Sala et al. 2007). No large group 

spawners such as Nassau grouper, Dog snapper and Cubera snappers have FSA sites in 

less than 10 m depth. The Mutton snapper aggregation at West Caicos (Domeier and 

Colin 1997) occurred on a reef near a drop-off into deep water. Even though reef 

promontories were not apparent in Florida spawning aggregation sites, Mutton snapper 

sites drop quickly from 35 m to well over 50 m (Burton et al. 2005). The Cubera snapper 
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and Dog snapper FSA sites in St. Thomas, U.S. Virgin Islands (Kadison et al. 2006) also 

occurred on a reef near a drop-off into deep water.  

Considering the impressively large and dense spawning school (e.g., Heyman et 

al. 2005) with vertical spawning rush behaviors of these group spawning species, I 

hypothesize that group spawning or spawning rush requires a certain depth around shelf 

edges (around 20 m or more). Large and dense spawning may maximize eggs dispersal 

and locations at the shelf edge proximal to deep water may fulfill those criteria. 

 

5.4.3 Predicted sites in Los Roques, Venezuela 

The Mona Island seafloor characteristics were similar to that of Cayo Sal East, 

Los Roques: general horizontal curve of reef promontory, around 50 - 60 m bottom depth 

beyond shelf edges and no deep water adjacent to shelf edges (Figure 5.2 and 5.3). In the 

previous study in the archipelago, one researcher observed direct evidence of spawning 

in the gonads of female red hind collected at several sites in January and February 

(Álvarez 2004).  

According to fishermen, however, groupers were not common in both predicted 

sites in Los Roques (Boomhower et al. in review). Boomhower et al. (in review) 

observed higher abundance of mutton snapper (L. analis), schoolmaster (L. apodus), and 

cubera snapper (L. cyanopterus) at Cayo Sal, and mutton snapper at Gresqui. However, 

spawning events were not observed during seven months of underwater visual 

observation monitoring from February - August 2007.  
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The predicted sites, Cayo Sal and Gresqui in Los Roques are similar in shape to 

the Mona Island south end site and thus might be the site for small grouper aggregations 

if they exist, but are unlikely to have large group spawners’ FSAs. If this predictive 

model is correct, the Mona Island south end would harbor haremic aggregations (single 

males with a harem of females) but probably not large group spawning aggregations. 

After plotting the depth contours, the predictions at the Los Roques sites was revised. 

Given the shallow shelf edge and lack of deep water nearby, we would not expect to see 

group spawning aggregations of large fishes that spawn high in the water column like 

most of the larger groupers and snappers.  

 

5.4.4 Reef promontory and multi-species 

Generalization of seafloor characteristics patterns throughout the wider Caribbean 

are difficult given the paucity of quantitative bathymetric data at known FSA sites in 

Cuba, the northeastern Caribbean, and the western Atlantic. However, qualitative site 

descriptions in published studies indicate that transient FSAs of large-bodied, long-lived 

grouper and snapper species occur on the seaward extensions near the shelf edge near 

drop-offs or on the reef slope (Randall & Randall 1963, Smith 1972, Munro et al. 1973, 

Colin 1992, Shapiro et al. 1993a, Sadovy 1994, Sadovy et al. 1994, Samoilys & Squire 

1994, Sala et al. 2003). New data presented in this dissertation, from three additional 

countries (Belize, the Cayman Islands, and Puerto Rico) are largely consistent with this 

trend. Reef promontories are underwater landmarks that are definitely worth monitoring. 

The differences in sinuosity because a deviation in the flow path so that in low index the 
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overall stream power is usually low. All sites have a sinuosity of more than 1.05 so that 

the flow around reefs can be considered at least to influence on FSAs. Local ocean 

currents might be advantageous for the transport of larvae released from reef 

promontories, but the specific reasons remain unclear. Even though the further analysis 

required, reef promontory sites are highly attractive for multi-species FSAs in Belize, the 

Cayman Islands and Puerto Rico (Table 5.2). Even though we could not find spawning 

event in Los Roques, reef promontories show high abundance of species. 

 It still remains unclear if only reef promontories serve as multi-species FSA sites. 

Currently there is no other species data at non-reef promontory sites, except for Red 

hind. Further, all FSA sites in Belize and the Cayman Islands were at promontories 

proximal to deep water whereas multi-species grouper FSA site at Mona Island, Puerto 

Rico were relatively shallow and occurred at the bottom of a steep slope. As discussed 

above, group spawners such as Nassau grouper, Dog snapper and Cubera snapper may 

select reef promontories, proximal to deep water whereas other species may select other 

types of locations.  
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Table 5.2. The number of FSA sites in Belize, the Cayman Islands and Puerto Rico. Red hind FSAs in Belize are common over 
the country, though there is no published scientific studies of Red hind FSAs.  
 

Species Common name 
Number of FSA sites 

Total 
Reef 

promontory 
sites 

Multi-
species 

sites Cayman Belize Puerto Rico 

Epinephelus striatus Nassau grouper 5 12 1* 17 17 14 
E. guttatus Red hind - - 4 4 1 - 
Mycteroperca tigris Tiger grouper 4 9 1 14 14 14 
M. venenosa Yellowfin grouper 1 7 1 9 9 9 
M. bonaci Black grouper 0 11 - 11 11 11 
Lutjanus analis Mutton snapper 3 2 - 5 5 5 
L. jocu Dog snapper 1 6 - 7 7 7 
Caranx latus Horse-eye jack 1 5 - 6 6 6 
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5.4.5 A potential fishermen-independent method of predicting FSA sites 

 This study suggests that reef promontories with/without deep water proximity are 

likely locations to look for grouper-snapper FSA sites in the Caribbean. Landsat imagery 

itself will not provide enough data to predict a spawning site since it does not provide 

sufficient depth contour information. A potential method to predict, locate, map and 

characterize transient multi-species grouper-snapper FSA sites as follows: 

1. Locate reef promontories from freely available aerial photos and satellite imagery 

(e.g. Landsat, Quickbird, or IKONOS). 

2. This study suggests that FSA sites might be found within a 1 km circle surrounding 

reef promontory tips. 

3. Collect bathymetric data of the site and build a 3-D bathymetric map of the site. 

4. Extract a shelf-edge contour line based on the 20 degree slope boundary. 

5. Monitor fish along the shelf-edge line. The timing and seasonality of monitoring 

will be different for each species.  

 

Bathymetric data can be derived in-situ as described herein. In some cases, 

however, depending on data availability, bathymetric data can be derived from multi- or 

hyper-spectral satellite imagery with the non-linear inversion model (Su et al. 2008) or 

an empirical field-based model with derivative reflectance spectra and an artificial neural 

network (Filippi 2007), among other methods. Further, airborne bathymetric LiDAR 

systems have been developed to map shallow coastal waters. Although the maximum 

penetration of LiDAR systems is dependent upon water clarity, SHOALS (Scanning 



123 

 

Hydrographic Operational Airborne LiDAR Survey) detects the bottom in up to 40-m 

depth (Lillycrop & Banic 1993, Irish & Lillycrop 1999), and LADS (Laser Airborne 

Depth Sounder) up to 60-m depth (Stumpf et al. 2003).  

The ability to predict the location of SPAGs on may cut two ways. Accurate 

habitat maps are critically important for resource managers to make informed decisions 

about the protection and use of coastal areas. However, the ability to predict a FSA site 

might dangerously expose it to commercial fishermen who may destroy the site before it 

can be protected. I do not deny this possibility as all things have two-sides. Publishing 

this seafloor characteristics of FSA sites in scientific journals and presenting in 

conferences, however, should not accelerate the possibility since many publications have 

already provided the times and locations of most of the FSA sites evaluated in this study, 

and many of those are already in protected status. 

The key to science-driven management is cooperation with government agencies, 

NGOs, and local fishermen. This study has the support of Friends of Nature in Belize 

and the Honduras Coral Reef Fund (HCRF). Personnel from these (and other 

organizations including the Fisheries Department of Belize) will participate in field data 

collection and be presented with the final results in digital, graphic, and written forms. 

These organizations will be able to use the data directly for management. Three-

dimensional visualizations of FSA sites can facilitate broad understanding of these 

places and their importance. In Belize for example, broad recognition of geomorphologic 

affinities among FSA sites lead to closure of 11 such sites (Belize 2003). Collaboration 

with the Department of Environment in the Cayman Islands in May 2007, in mapping 
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and visualizing FSA sites has increased understanding of spawning site geomorphology 

and reinvigorated protection efforts there (P. Bush, pers. comm.).  

 

5.5 Conclusion 

This dissertation has shown that transient grouper-snapper (and jack) FSA sites 

were found at fourteen sites in Belize (Kobara and Heyman in review), five sites in the 

Cayman Islands (Kobara & Heyman 2008) and one site at the  Puerto Rico shelf were all 

reef promontories, more than 20 m depth, at the shelf edge of steep walls. Red hind 

FSAs, however, were not necessary found at promontories, or proximal to deep water. 

Reef promontories proximal to deep water should be considered as high likelihood areas 

for multi-species FSA sites and thus as essential life habitats for conservation and 

management purposes. Given the current rapid decline in commercial fish catches, and 

the high expense of long-term biological analyses, promontories might serve as 

geomorphological proxy for the location of critical life habitat for grouper and snapper – 

or at a minimum, a good place to start to look.  
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6. EXECUTIVE SUMMARY 

 

This dissertation was designed to map and characterize the seafloor at historically 

known grouper and snapper spawning aggregation sites within the west Caribbean. 

Understanding and applying spatial and temporal information of marine species’ 

reproductive ecology and critical life habitat is vital to the development of effective 

strategies for marine resource management.  

Large, commercially-important coral reef fishes such as Nassau grouper 

(Epinephelus striatus) are known to spawn at specific places during restricted times. 

Traditional Nassau grouper spawning sites have been shown to serve as multi-species 

FSA sites in some cases. Many sites have been extirpated from overfishing and/or have 

shown dramatic declines.  

Biological factors such as spawning behavior, timing, and male/female ratio, etc. 

have been major research topics in spawning aggregations, while there are no 

comparisons of environmental conditions at FSA sites (Section I). Further, no study 

explores key environmental factors that may make some sites optimal for spawning and 

some sites unsuitable in the Caribbean. The lack of information on the specific 

geographical locations of FSAs and the environmental factors prevent the development 

of functional fishery management strategies.  

This study attempted to map of all known FSAs based on a review of scientific 

journals and fieldwork data (Section II) and synthesize these data into a generic 

conceptual model of environmental characteristics of transient multi-species FSAs. The 
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first objective of this dissertation was to synthesize environmental conditions at 

historically-known FSA sites. This objective was addressed via a literature review and 

analysis of remote sensing data (sea surface temperature (SST)) at FSA sites. This study 

quantified the environmental features of FSA sites and incorporated information to 

develop a spatial analytical model.   

Unfortunately, the key environmental features that make a specific area function 

as an active spawning aggregation remain unclear, even after an extensive analysis of 

literature. However, existing studies suggest that geomorphologic characteristics of the 

benthic terrain may determine site suitability more than any other single variable.  

The second set of objectives was therefore to characterize the seafloor 

characteristics of all known transient FSA sites including currently active sites in the 

Cayman Islands, Belize and Puerto Rico; and to explore simultaneously the multi-

species aspects of known FSA sites, - a characteristic that enhances the ecological 

importance of some FSA sites. 

In the Cayman Islands (Section III), analysis of the data revealed that the five 

known Nassau grouper spawning aggregation sites are located at convex-shaped reefs 

within 1 km of reef promontory tips. Further, all sites are found at 25 - 45 m depth, and 

less than 50 m from shelf edges. However, spawning aggregations were not always 

occurred at tips of reef promontories but found along shelf edges within 1 km of 

promontory tips. Finally, they have been documented as multi-species spawning 

aggregations sites. 
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In Belize (Section IV), all Nassau grouper FSA sites occurred at shelf edges near 

the tips of reef promontories that jut into deep water. Moreover, these sites are shared 

with other groupers and snapper spawning aggregations. Before this study, there has 

been debate about the most common geomorphology of transient species FSA sites. This 

study demonstrated that all known transient FSA sites in the Cayman Islands (5) and 

Belize (14) occur at convex-shaped reef structures jutting into deep water. This study 

therefore generated the well-supported hypothesis that reef promontories are prime 

spawning habitat for transient spawning species of reef fishes.  

As far as we are aware, South Point, Lighthouse Reef Atoll, Belize was the first 

transient multi-species FSA site discovered based on shape of shelf edges. Indeed, the 

exact location was predicted based solely on observations of a Landsat image, enabling 

the identification of an area that appeared to be a reef promontory jutting out over a 

steep shelf. 

Although it was expected to observe similar seafloor characteristics at known 

FSA sites in Puerto Rico, Red hind (E. guttatus) FSA sites were different. While one 

Red hind FSA sites in Puerto Rico (El Hoyo) was located reef promontory, two other 

Red hind FSA sites along mainland coast of Puerto Rico (Abrir la Sierra and Bajo de 

Sico), and the well-documented site at Grammanik Bank off St. Thomas, U.S.V.I. are 

not located at reef promontories (Section V). With respect to the potential for predicting 

spawning aggregation sites using a fishermen-independent technique, Red hind should 

be considered different from other grouper species.  
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On the other hand, the Mona Island multi-species grouper FSA site in Puerto 

Rico occurs at a reef promontory, but not adjacent to deep water. The bottom depth of 

the reef slope (steep wall) at the site was less than 100 m, far less than observed at any in 

the Belize and the Cayman Islands.  

An additional objective of this dissertation was to evaluate the potential of a 

fishery-independent method to predict the location of FSA sites based on discovery reef 

promontories through observation of satellite imagery. The technique was tested in Los 

Roques, Venezuela, where no spawning aggregations had been previously documented. 

A site (Cayo Sal) was predicted with this technique but no spawning events were 

observed at the predicted location during seven months of underwater visual observation 

monitoring. However, possible indirect evidence of spawning aggregations was 

identified for mutton snapper (Lutjanus analis), schoolmaster snapper (L. apodus), and 

cubera snapper (L. cyanopterus).  

Although the reasons why the locations and specific seafloor characteristics were 

so attractive remained unclear, it appeared from this study that, reef promontories are 

essential life habitats for many reef fish species that form transient aggregations. 

Transient spawning, commercially-important, group-spawning reef fishes primarily 

select FSA sites in depths deeper than 20 m at the shelf edge and near the tips of reef 

promontories that jut into deep water. All multi-species FSA sites were also reef 

promontories. This also indicates that three dimensional seafloor characteristics are 

necessary to locate FSA sites. 
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6.1 Conclusion 

Spatial and temporal information on the reproductive ecology of marine species 

is vital to the development of effective strategies for marine resource management and 

development. No studies were conducted specifically to compare transient reef fish 

spawning aggregation sites in order to understand key environmental features that may 

make a specific area function as an active spawning aggregation. This study gave insight 

to the relationship between seafloor characteristics and Nassau grouper FSA sites in the 

western Caribbean. Since Nassau grouper FSA sites are shared by other species at the 

same or different periods of the year, understanding geospatial characteristics of 

spawning sites would simultaneously elicit spawning habitat information for other 

species. In this regard, the results of this study are vital for marine conservation 

managers, particularly allowing for informed decisions on the appropriate size and 

location of no-take MPAs. In addition, given the current rapid decline of commercial 

fish catches, and the limited resources for their conservation and management, there may 

not be sufficient resources to afford long-term biological analysis for the limited number 

of species that form spawning aggregations in the Caribbean. Underlying three 

dimensional seafloor characteristics might therefore be used as a geomorphological 

proxy for the location of (or at least prediction of) spawning areas (critical life habitat) 

for groupers and snappers.  
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