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ABSTRACT

Optimization in Geometric Graphs:

Complexity and Approximation. (December 2009)

Sera Kahruman-Anderoglu, B.S., Bogazici University

Chair of Advisory Committee: Dr. Sergiy I. Butenko

We consider several related problems arising in geometric graphs. In particular,

we investigate the computational complexity and approximability properties of sev-

eral optimization problems in unit ball graphs and develop algorithms to find exact

and approximate solutions. In addition, we establish complexity-based theoretical

justifications for several greedy heuristics.

Unit ball graphs, which are defined in the three dimensional Euclidian space, have

several application areas such as computational geometry, facility location and, par-

ticularly, wireless communication networks. Efficient operation of wireless networks

involves several decision problems that can be reduced to well known optimization

problems in graph theory. For instance, the notion of a “virtual backbone” in a wire-

less network is strongly related to a minimum connected dominating set in its graph

theoretic representation.

Motivated by the vastness of application areas, we study several problems includ-

ing maximum independent set, minimum vertex coloring, minimum clique partition,

max-cut and min-bisection. Although these problems have been widely studied in

the context of unit disk graphs, which are the two dimensional version of unit ball

graphs, there is no established result on the complexity and approximation status

for some of them in unit ball graphs. Furthermore, unit ball graphs can provide a

better representation of real networks since the nodes are deployed in the three di-
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mensional space. We prove complexity results and propose solution procedures for

several problems using geometrical properties of these graphs.

We outline a matching-based branch and bound solution procedure for the max-

imum k-clique problem in unit disk graphs and demonstrate its effectiveness through

computational tests. We propose using minimum bottleneck connected dominating

set problem in order to determine the optimal transmission range of a wireless net-

work that will ensure a certain size of “virtual backbone”. We prove that this problem

is NP-hard in general graphs but solvable in polynomial time in unit disk and unit

ball graphs.

We also demonstrate work on theoretical foundations for simple greedy heuristics.

Particularly, similar to the notion of “best” approximation algorithms with respect to

their approximation ratios, we prove that several simple greedy heuristics are “best”

in the sense that it is NP-hard to recognize the gap between the greedy solution

and the optimal solution. We show results for several well known problems such as

maximum clique, maximum independent set, minimum vertex coloring and discuss

extensions of these results to a more general class of problems.

In addition, we propose a “worst-out” heuristic based on edge contractions for

the max-cut problem and provide analytical and experimental comparisons with a

well known “best-in” approach and its modified versions.
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CHAPTER I

INTRODUCTION

In this dissertation, we study several related problems arising in geometric graphs. In

particular, we investigate the computational complexity and approximability proper-

ties of several optimization problems in unit ball graphs and develop algorithms to

find exact and approximate solutions. In addition, we establish a complexity-based

theoretical justification for some simple construction heuristics.

A unit ball graph (UBG) is the intersection graph of a family of unit radius

balls in the three-dimensional Euclidean space. Touching balls are assumed to be

intersecting as well. This is called the intersection model for UBGs. A UBG can be

viewed as the three-dimensional version of a unit disk graph (UDG) which is defined

as the intersection graph of unit circles in the plane. An alternative way to describe

UBGs is a containment model. Given a set of unit-radius balls in the three-dimensional

Euclidian space, associate a vertex with each unit ball and form an edge between two

vertices if and only if one of the corresponding unit balls contains the center of the

other ball. Another alternative for the description of UBGs is a proximity model,

in which, given the coordinates of a set of points in the three-dimensional Euclidian

space, we form a vertex for each point and an edge between two vertices if and only

if the Euclidian distance in between the corresponding points is less than or equal to

a unit distance.

UDGs have several application areas such as computational geometry and facility

location. Particularly, they have been widely used to model the topology of ad-hoc

wireless communication networks. In this application each node represents a station.

The journal model is Mathematical Programming.



2

It is assumed that nodes have the same transmission radii and have omnidirectional

antennas. Node locations are modeled as Euclidean points and the transmission areas

are modeled as unit circles around these points. Several optimization problems on

UDGs are solved in order to operate these networks effectively [12]. An example is the

frequency assignment problem, which is to assign different frequencies to the nodes

whose transmission ranges intersect. In UDG model, this problem is equivalent to the

graph coloring problem. Another example is the routing problem on these networks,

which involves the virtual backbone. The virtual backbone of a network is a subset D

of nodes such that non-adjacent nodes can communicate with each other through the

nodes in D. The size of a virtual backbone is desired to be as small as possible. This

corresponds to the minimum connected dominating set problem in graph theory.

UDGs have been widely studied by many researchers since they provide a simple

graph theoretic model, especially for wireless networks. Another motivation stated

by Clark et al. [29] is that although many other intersection families were studied

earlier in the literature yielding efficient algorithms, their efficiency was attributed

to being a subclass of perfect graphs, for which efficient algorithms already exist for

arbitrary graphs. However a UDG is not necessarily perfect.

Given a graph without its geometric representation, it is NP-hard to determine

whether it can be represented as a unit disk graph or a unit ball graph [18].

Many NP-hard optimization problems remain NP-hard in UDGs. However,

there exist approximation algorithms with constant approximation ratios. Moreover

many of these problems allow for a polynomial time approximation scheme (PTAS).

Marathe et al. [66] present several constant ratio heuristics for maximum independent

set, maximum clique, minimum vertex cover, chromatic number and several types of

domination problems. The geometric properties are used to determine the approxi-

mation ratios. Clark et al. [29] proved that the maximum clique problem, which is
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one of the most famous NP-hard problems in general graphs, is solvable in polyno-

mial time in UDGs. Jansen et al. [55] present PTAS for maximum bisection problem

in planar graphs and unit disk graphs. Erlebach et al. [75] offer a PTAS for both

maximum independent set and minimum vertex cover problems. Cheng et al. [26]

propose a PTAS for minimum connected dominating set problem. There are several

other papers addressing approximation algorithms [23, 36, 76, 38]. Majority of the

above mentioned PTAS’s use the so-called shifting technique. In this technique, a set

of regularly spaced separators is used to decompose the problem into smaller, easier

solvable subproblems. The solutions of the subproblems are merged to form a solu-

tion to the original problem. This is repeated for several placements of the separator

set. The best solution over these placements is then selected as an approximation of

the optimum.

UDG model is the simplest model used for sensor networks, thus there are over-

simplifications and it is too optimistic as stated in [72]. The authors introduce several

graph models used for sensor networks such as quasi-UDG, UBG in a doubling metric,

and bounded independence graphs (BIG). The UBG, which is defined in the three-

dimensional Euclidian space, serves as a better model in terms of overcoming some

of the UDG-related simplifications.

Furthermore, there is increased interest in applications where ad hoc and sensor

networks may be deployed in three-dimensional space, such as in an ocean, the at-

mosphere or in a building [34]. An example of ocean monitoring is presented in [5],

where the nodes in the network have to be placed at different depths and thus create

a three-dimensional network.

UDGs are a subclass of UBGs since given a unit disk representation of a graph

we can easily find the unit ball representation by assigning the same value for the

third coordinate. Thus, optimization problems that are proven to be NP-Hard in unit
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disk graphs are also NP-hard in unit ball graphs.

The recognition of UBGs is also NP-hard [18]. It is even NP-hard to recognize a

unit disk graph even if it does have a unit ball graph representation. The recognition

of unit ball graphs restricted to the case where balls can only touch one another is

also proven to be NP-hard [50].

There are very few papers addressing optimization problems in UBGs compared

to the vast amount of work done for UDGs. Although many authors state that the

algorithms they present for problems in UDGs can be extended to other intersection

graphs and higher dimensions, the details, such as corresponding performance ratio

and running time, are not provided.

Durocher et al. [34] present routing algorithms for mobile networks when they

are represented as UBGs. Constant-ratio approximation algorithms for the maximum

clique problem in UBGs is presented by Afshani and Chan in [2]. Zhang et al. [85]

offer PTAS for the minimum connected dominating set problem in UBGs and state

that the existing PTAS for the same problem in UDGs can not be directly extended

to UBGs.

In this dissertation, we provide a survey of approximation algorithms for several

problems in unit ball graphs, mostly by extending the techniques used for unit disk

graphs. We also focus on problems such as the maximum k-clique and minimum

bottleneck connected dominating set.

Given a graph G, a subgraph S of G is a k-clique, if the maximum pairwise

distance of the vertices in S is at most k. The pairwise distance is the length of

the shortest path (number of the edges on the shortest path) in between the pair

of vertices. The maximum k-clique problem is to find a k-clique of maximum car-

dinality. Balasundaram et al. [13] proved that the k-clique problem is NP-hard for

general graphs. We are interested in the computational complexity of the maximum
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k-clique problem in unit disk graphs since the maximum clique problem is solvable

in polynomial time in these graphs. Furthermore, clique relaxations such as k-clique

may be more realistic compared to the clique when finding cohesive subgraphs. To

our best knowledge, this problem has not been studied in unit disk graphs before.

Motivated by the wireless network applications, we propose the minimum bottle-

neck connected dominating set problem in order to find an optimal transmission range

when there is a requirement on the size of the “virtual backbone” of the network. The

transmission range of a node is directly related to its energy usage. Designing power-

efficient networks is crucial. Thus, the choice of transmission range is an important

decision problem. In the wireless networks community, there are several researchers

who work on designing power-efficient networks. Some of these researchers address

the optimal transmission range problem. They provide solution strategies with goals

such as providing connectivity in the network. To our best knowledge, the goal of

ensuring a certain size of “virtual backbone” has not been studied before in the

wireless networks community. We focus on unit disk and unit ball graph models of

wireless networks. We observe that this problem has not been studied in the graph

theory literature as well. The bottleneck version of the dominating set problems

studied focuses on vertex-weighted graphs where bottleneck cost is defined in terms

of the vertex weights. Yen [84] introduces the bottleneck dominating set and bot-

tleneck independent dominating set problems where the bottleneck is defined as the

maximum weighted vertex. The author shows that this problem can be solved in

O(nlogn + m) time. On the other hand, the bottleneck independent dominating set

problem is proven to be NP-hard on planar graphs. Kloks et al. [59] present linear

time algorithms for minimum bottleneck dominating set and minimum bottleneck to-

tal dominating set problems. They also state that the minimum bottleneck connected

dominating set problem can be solved in O(mlogn) time. We study the edge-weighted
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version of this problem and prove that it is NP-hard in general graphs.

We also study the theoretical justification for the choice of heuristics. In many

cases, researchers and practitioners rely on variations of greedy heuristics that are very

simple to understand and implement for solving NP-hard problems approximately.

This simplicity and effectiveness of heuristic approaches earned them a considerable

popularity in optimization community. However, there is also fair amount of skepti-

cism towards such approaches due to a lack of theoretical foundations behind them.

We propose complexity-based techniques that can be used to characterize “provably

best” heuristics. When an optimization problem is said to be inapproximable within

a factor of some constant c − ε, it is easy to claim that if an approximation algo-

rithm has a performance guarantee of c, it is the “best” possible. However, for many

problems such as maximum clique, the inapproximability result is stated in terms of

the problem size. Thus, we cannot claim a heuristic to be the “best” with respect to

its approximation ratio. Thus, we need an alternative way to justify the choice of a

certain heuristic. This problem has not been studied in the literature before.

Another research topic in this dissertation is the comparison of several greedy

heuristics for the max-cut problem in general graphs by computational experiments.

In the next section, we give a list of our research objectives and then we summarize

our contributions.

I.1. Objectives

Motivated by the applications in wireless networks, we investigate several optimiza-

tion problems in unit disk and unit ball graphs. The overall goal is to develop and

improve solution procedures for these problems. This research comprises a series of

linked objectives. These are:
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1. Survey optimization problems in unit disk graphs and work on extensions of

the existing algorithms to unit ball graphs;

2. Identify open problems in unit disk and unit ball graphs regarding computa-

tional complexity and approximation status and propose solutions strategies;

3. Develop and implement an exact solution procedure for the maximum k-clique

problem in unit disk graphs;

4. Analyze and develop a centralized approximation algorithm for the minimum

k-bottleneck connected dominating set problem in unit disk and unit ball graphs;

5. Establish complexity-based techniques for analysis of heuristics to provide a

theoretical justification for the choice of construction heuristics;

6. Perform experimental comparison of several heuristics for the max-cut problem

in general graphs.

I.2. Contributions

We analyze the complexity and approximation status of several optimization problems

in UBGs. Furthermore, we identify several interesting open problems related to com-

plexity and approximability of some optimization problems. We study the maximum

k-clique problem in unit disk graphs and propose an efficient exact solution proce-

dure. This problem has not been studied in unit disk graphs before. We also propose

using bottleneck connected dominating set problem in order to determine an optimal

transmission range for the nodes of a wireless network. This is an important decision

problem for which, to our best knowledge, there has not been any research done with

the same design goal. The transmission range of a wireless node is directly related

to the energy usage. Thus, it is important to minimize energy usage while efficiently
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operating the network. Our goal is to find the minimum transmission range such that

we can have a “virtual backbone” of a certain size. We analyze the complexity of this

problem in general graphs and unit disk graphs and also provide a 3-approximation

algorithm for graphs whose edge weights satisfy triangle inequality. We prove that

this problem is NP-hard in general graphs and polynomial-time solvable for unit disk

graphs for any given constant “virtual backbone” size.

Heuristics are widely used to tackle large scale NP-hard problems. They are

usually simple to understand and implement. However, they are criticized for lacking

theoretical justification. For approximation algorithms, the established approxima-

tion ratios and results related to inapproximability give insight about whether an

approximation algorithm is the “best” one. We establish theoretical justifications

for the choice of simple heuristics for several optimization problems that are hard to

approximate within any constant ratio. We use complexity-based techniques to prove

that for many optimization problems it is NP-hard to find a better solution than a

simple greedy heuristic in polynomial time. We believe that this is an important con-

tribution since, to our best knowledge, there is no research published on theoretical

justifications of greedy heuristics in a broad sense.

We study the max-cut problem in general graphs and experimentally compare

the performance of several greedy heuristics. The existing methods mostly rely on

choosing the best candidate at each iteration. We propose a “worst-out” approach

and show that it does not perform better than a well-known “best-in” heuristic ex-

perimentally. We also test the performance of different variations and combinations

of these heuristics. We observe that, although some heuristics have the same approx-

imation ratio in theory, one of them may provide better solutions in practice.

Overall we contribute to the study of geometric graphs by establishing complexity

and approximability results as well as introducing new optimization problems which
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can be very useful in wireless network applications. We also contribute to optimization

methodology by providing complexity-based techniques for analysis of heuristics.

I.3. Organization

Chapter II reviews the basic graph definitions used throughout this dissertation. In

Chapter III, we analyze the complexity and approximation status of several opti-

mization problems in unit ball graphs. We also present the developed approximation

algorithms. The first part of Chapter III presents important geometric properties

of unit disk and unit ball graphs. Some of these properties are extended from the

two-dimensional case. These properties are used in the analysis of approximation

algorithms. Each section of Chapter III focuses on a different optimization problem.

We present the literature review for these problems in unit ball graphs accompanied

by the extensions from unit disk graphs. The considered problems include domination

problems, max-cut, max bisection, min bisection, maximum independent set, mini-

mum vertex coloring and minimum clique partition. We present complexity results

as well as approximation algorithms. We highlight several interesting open problems.

Chapter IV focuses on the maximum k-clique problem. First, we present a review

of related literature. We claim the NP-hardness of the maximum k-clique problem

in unit disk graphs as a conjecture. We present results on computational complexity

of several related problems which can be helpful in the computational complexity

analysis of the maximum k-clique problem in unit disk graphs. We outline a sequential

greedy heuristic for general graphs. Using the fact that the maximum clique problem

is polynomial-time solvable in unit disk graphs, we propose a matching-based branch

and bound method for the exact solution of the maximum k-clique in unit disk graphs.

The details of this exact solution procedure, as well as implementation details are
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discussed in this chapter. Finally, Chapter IV presents computational results on

randomly generated unit disk graphs. Since a k- clique is a clique on the kth power of

the input graph, we use the 1-plex formulation of Balasundaram [10] for comparison

purposes.

Chapter V starts with the motivation for and the definition of the minimum

bottleneck connected dominating set problem. A literature review on transmission

range optimization in wireless networks and bottleneck dominating set problems in

graph theory is presented. The next section of Chapter V presents an analysis of the

computational complexity of the problem. We prove that it is NP-hard in general

graphs, as well as in graphs whose edge weights satisfy triangle inequality. We show

that it is not possible to approximate our problem within a factor of 2 − ε for any

ε > 0 when the input graph edge weights satisfy triangle inequality. We present a

3-approximation algorithm for graphs with triangle inequality. Finally, we show that

this problem is polynomial-time solvable in unit disk graphs.

Chapter VI presents the results on theoretical justification of simple greedy

heuristics. Motivated by the result we get on k-club heuristic, we investigate whether

the simple greedy heuristics for several problems can be proved to be the “best” based

on the complexity of the gap recognition between the greedy solution and the optimal

solution values. We prove that we can not have a polynomial time algorithm provably

always better than a simple greedy heuristic for several problems such as maximum

clique, maximum independent set, minimum vertex color, minimum clique partition

and maximum k-plex. Finally, we discuss if the same procedure can be applied to

a broader class of optimization problems. We consider the node deletion problems

which aim to find a maximum cardinality subgraph that satisfies a given hereditary,

additive (or co-additive), interesting and nontrivial graph property π. This class

includes several well known optimization problems such as maximum planar sub-
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graph, maximum outerplanar subgraph, maximum clique, etc. We conjecture that

for all problems in this category, it is impossible to have a polynomial time algorithm

which always guarantees a better solution than a simple maximal by inclusion greedy

heuristic unless P = NP . We present some arguments that can be used in the proof.

In Chapter VII, we present an edge contraction heuristic for the max-cut problem.

We give a literature review on the existing approximation algorithms and heuristics

for the max-cut problem. We analyze the approximation ratio of the new heuristic.

Next, we present a comparison of several heuristics and their variations based on

computational experiments.

Finally, Chapter VIII is reserved for conclusions and ideas for future work.
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CHAPTER II

PRELIMINARIES

A graph is a pair G = (V, E) of sets such that E ⊆ V × V ; thus the elements of E

are 2-element subsets of V . The elements of V are the vertices (or nodes) of G, the

elements of E are its edges. A graph with a vertex set V is said to be a graph on

V . The vertex set of a graph G is denoted by V (G), and its edge set by E(G). The

number of vertices of a graph G is its order, denoted as |G|.
Two vertices x, y of G are adjacent, incident, or neighbors, if xy is an edge of G.

They are called the endpoints of the edge xy. The degree of a vertex is the number

of edges incident with that vertex. The maximum degree in a graph G is denoted by

∆(G). G is called complete if all of its vertices are pairwise adjacent. A complete

graph on n vertices is denoted by Kn.

A walk in a graph is a sequence of vertices such that from each of its vertices

there is an edge to the next vertex in the sequence. A path is a walk with no repeated

vertices. A cycle is a closed walk with no other repeated vertices than the starting

and ending vertices. The distance dG(x, y) in G of two vertices x, y is the length of

a shortest x-y path in G. The greatest distance between any two vertices in G is the

diameter of G.

A graph is connected if every pair of vertices can be joined by a path. It is said

to be a k-connected graph if there does not exist a set of k−1 vertices whose removal

disconnects the graph. A maximal connected subgraph of G is called a component of

G.

A graph G = (V1, E1) is a subgraph of the graph G = (V, E) if V1 ⊆ V and

E1 ⊆ E. For a subset V ′ ⊆ V , G[V ′] denotes the graph induced by V ′, which is given
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by G[V ′] = (V ′; E ∩ (V × V ′)). A subgraph G′ ⊆ G is called a spanning subgraph of

G if V (G′) = V (G).

A graph that does not contain any cycles is called a forest. It is also called

acyclic. A connected forest is called a tree. The leaves of a tree are the vertices

of degree one. A minimum spanning tree in a graph G is a tree that spans all the

vertices of G and has the minimum total edge weight.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets

U and V such that every edge connects a vertex in U to one in V . It is called a

complete bipartite graph, K|U |,|V |, if there exist an edge joining any vertex in U to any

vertex in V . A bipartite graph can be equivalently described as a graph that does not

contain any odd length cycles. Similarly a k-partite graph is a graph whose vertices

can be divided into k disjoint sets, V1, . . . , Vk, such that every edge connects a vertex

in Vi to one in Vj for some j such that i 6= j.

Contraction of an edge e means deleting that edge and identifying the ends of

e into one node. A minorof a graph G is a graph obtained from G by first deleting

some vertices and edges, and then contracting some further edges. A graph is called

planar if it can be embedded in the plane such that no two edges or vertices cross

one another. It is well known that a graph is planar if and only if it does not contain

K5 or K3,3 as a minor. A graph is called outerplanar if it has an embedding in the

plane such that the vertices lie on a fixed circle and the edges lie inside the disk of the

circle and don’t intersect. For k > 1 a planar embedding is k-outerplanar if removing

the vertices on the outer face results in a (k− 1)-outerplanar embedding. A graph is

k-outerplanar if it has a k-outerplanar embedding.

A tree decomposition is a mapping of a graph into a tree. The treewidth mea-

sures the number of graph vertices mapped onto any tree node in an optimal tree

decomposition.
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The kth power of a graph G is a graph with the same set of vertices as G and an

edge between two vertices if and only if there is a path of length at most k between

them. The complement of a graph G is a graph G on the same vertices such that two

vertices of G are adjacent if and only if they are not adjacent in G.

A comparability graph is an undirected graph that connects pairs of elements

that are related to each other in a partial order. Comparability graphs have also

been called transitively orientable graphs, partially orderable graphs, and containment

graphs. A transitive orientation consists of an assignment of a direction to each

edge of the graph such that the resulting directed graph satisfies a transitive law :

whenever there exist directed edges (x, y) and (y, z), there must exist an edge (x, z).

A co-comparability graph is a graph whose complement is a comparability graph.

An isomorphism of graphs G and H is a bijection f : V (G) → V (H) between

the vertex sets of G and H such that any two vertices u and v of G are adjacent in

G if and only if f(u) and f(v) are adjacent in H. A class of graphs that is closed

under isomorphism is called a graph property. For instance, “containing a triangle”

is a graph property. Thus, if G contains three pairwise adjacent vertices then so does

every graph isomorphic to G.

Given an undirected graph G, a dominating set D is a subset of vertices of G

such that every vertex of G is either in D or has a neighbor in D. A proper coloring

of G is one in which every vertex is colored such that no two vertices of the same

color are adjacent. G is said to be k-colorable if it admits a proper coloring with k

colors. The graph coloring problem is to find a proper coloring with the least number

of colors which is called the chromatic number of the graph.

For a graph G = (V,E), a cut is a partition of the set if vertices V into two

subsets V1 and V2. Any edge (u, v) ∈ E with u ∈ V1 and v ∈ V2 is said to be crossing

the cut and is a cut edge. The size of a cut is the total number of edges crossing the
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cut. In edge weighted graphs, the size of the cut is defined to be sum of weights of

the edges crossing the cut. The max-cut problem is to find a cut with maximum size.

The variation in which each partition set is required to have the same cardinality is

called the max-bisection problem. A partition of vertices of a graph into two equal-

cardinality sets is called a bisection. The min-bisection problem is to find a bisection

with minimum number of edges with endpoints in different partition sets.

An independent set of a graph is a subset of mutually non-adjacent vertices.

The maximum independent set problem is to find an independent set of maximum

cardinality. A vertex cover for an undirected graph G is a subset S of its vertices

such that each edge has at least one endpoint in S. Given an undirected graph G, a

clique is a subset of pairwise-adjacent vertices in G. The maximum clique problem is

to find a clique of largest cardinality in G. The size of a maximum clique is called the

clique number of G and is denoted by ω(G). The minimum clique partition problem

is to partition a given graph G into a minimum number of cliques.

A perfect graph is a graph in which the chromatic number of every induced

subgraph equals the clique number of that subgraph.

Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent

edges (no two edges share a common vertex). A vertex is matched if it is incident to

an edge in the matching. Otherwise the vertex is unmatched. A maximal matching

is a matching M of a graph G with the property that if any edge not in M is added

to M , it is no longer a matching. Given a matching M, an alternating path is a path

in which the edges belong alternatively to the matching and not to the matching.

An augmenting path is an alternating path that starts from and ends on unmatched

vertices. One can prove that a matching is maximum if and only if it does not have

any augmenting path.

Breadth-first search (BFS) and depth-first search (DFS) are frequently used
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traversal techniques for graphs. DFS progresses by expanding the first child node

of the search tree that appears and thus going deeper and deeper until a goal node

is found, or until it hits a node that has no children. Then the search backtracks,

returning to the most recent node it hasn’t finished exploring. BFS visits the vertices

of G uniformly across the breadth of the frontier of its search, visiting all vertices

distance d from the source vertex s before looking for vertices at distance d + 1.

An approximation algorithm A for a minimization problem Π has an approxi-

mation ratio (or performance guarantee) ρ if Ax ≤ ρ× opt(x) for every instance x of

Π with an optimal value opt(x), where Ax denotes the output of algorithm A for in-

stance x. If the problem is a maximization problem, then we have Ax ≥ opt(x)/ρ for

every instance x. A is a polynomial-time approximation scheme (PTAS) for Π if and

only if for every instance x of Π and for any fixed ε > 0, A runs in time polynomial

in |x| and delivers a solution that is within a factor ε of being optimal. For a PTAS,

the running time can be exponential in 1/ε. Π is called APX-hard if there exists no

PTAS for Π.
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CHAPTER III

APPROXIMATION AND COMPLEXITY IN UBGs

Several optimization problems have been widely studied in unit disk graphs. Although

unit ball graphs, defined in the three-dimensional Euclidian space, serve as a better

model in real-life applications, they have not been studied in detail in the literature.

The key in the analysis of algorithms for unit disk graphs is the establishment of some

geometric properties. Thus, this chapter starts with establishment of some properties

for both unit disk and unit ball graphs. Next, we present a survey for optimization

problems studied in UDGs and outline the extensions for UBGs. We also present

the approximation ratios and running times of these algorithms. The optimization

problems studied include domination problems, minimum vertex cover, maximum

independent set, maximum clique, coloring, max-cut, max bisection, min bisection

and minimum clique partition. A section is reserved for each one of these problems.

We highlight the open problems related to each one of these optimization problems.

Finally, we give a summary of open problems at the end of this chapter.

It is easy to see that any induced subgraph of a unit ball graph is also a unit ball

graph. Furthermore unit disk graphs are a subclass of unit ball graphs since given a

unit disk representation of a graph we can easily find the unit ball representation by

assigning the same value for the third coordinate. Thus, optimization problems that

are proven to be NP-hard in unit disk graphs are also NP-hard in unit ball graphs.

Given a graph without its geometric representation, it is NP-hard to determine

whether it can be represented as a unit disk graph or a unit ball graph [18]. Authors

prove complexity by a reduction from the 3-SAT problem. Furthermore, their proof

also implies that it is NP-hard to recognize a unit disk graph even if it does have a
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unit ball graph representation. The recognition of unit ball graphs restricted to the

case where balls can only touch one another is also proven to be NP-hard in [50].

III.1. Properties of Unit Disk and Unit Ball Graphs

Lemma 1. Let G be a unit ball graph. For any vertex v in G, the neighborhood of

the vertex v contains at most 12 independent vertices.

Proof. This can be proved by a geometric concept called “kissing number”. Kissing

number is the maximum number of non-intersecting spheres that can touch a cen-

tral sphere in N -dimensional space simultaneously. Kissing number for 3-dimensional

space is 12. Thus, 12 serves as an upper bound on the number of independent vertices

in the neighborhood of any vertex in a unit ball graph. The best upper bound would

correspond to a slightly different definition of kissing number, particularly the max-

imum number of non-touching spheres that can touch a unit sphere simultaneously.

Although the drawings for kissing number in 3-dimensional space have gaps, it is not

clear whether we can have all non-touching spheres. Recently Durocher et al. [34]

claim that we can fit at most 11 non-touching spheres and show this by a drawing

of 12 points on the surface of a sphere and showing that some of these points are

adjacent. However, this argument does not seem to be sufficient for a proof.

Lemma 2. Let v be the vertex with the smallest X-coordinate in a unit ball graph G.

Then the size of the maximum independent set in G(N(v)) is at most 8.

Proof. The main idea is similar to the case when G is a unit disk graph, which is

presented by Marathe et al. [66]. The question is to find the maximum number of

non-intersecting unit balls, each of which intersects with the unit ball centered at v.

Let α denote this number and wx denote the X-coordinate of vertex w. It is easy to

see that 5 < α < 12. Restricting the problem to the set N(v)∩{w ∈ V (G) : wx = vx},
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our problem reduces to finding the maximum number of non-intersecting unit disks,

each of which intersects with the unit disk centered at v. This number is proven to

be 5 in [66]. Hence, it corresponds to a lower bound for α.

Now suppose α = 9. We can have at most 5 unit balls whose centers are located at

vx. Then the remaining 4 unit balls can be placed on one side of the unit ball centered

at vx, so that they do not intersect with the previous 5. This is a contradiction with

kissing number being 12. For any unit ball w, we would be able place 5 unit balls

whose centers are located at the same X-coordinate as of w and 4 on one side and 4

on the other side. Then the kissing number would be 13. Thus α < 9, which yields

an upper bound of α ≤ 8.

The following lemma describes a property stated by Clark et al. [29] to prove

polynomial time solution of the maximum clique problem in unit disk graphs.

Lemma 3. Let G be a unit disk graph and u and v be any two adjacent vertices in

G. Let duv be the distance between them. For a vertex w, let Nd[w] denote the set

of all vertices that are at distance at most d from w, including w itself. Denote by

S = {Nduv [u]
⋂

Nduv [v]}. Then G[S] is a bipartite graph.

We refer the reader to Corollary 3.2 of [29] for the details of the proof.

Lemma 4. If G is a unit disk graph, then it does not contain induced subgraphs

isomorphic to K2,3 and K1,6.

Proof. Let G be a unit disk graph. Assume that G contains an induced subgraph

isomorphic to K2,3. Let the two non-adjacent vertices located at points u and v and

the three nonadjacent vertices located at t1, t2 and t3 correspond to the vertices of this

subgraph. Figure 1 depicts the intersection of two unit disks centered at points u and

v, respectively. The three common neighbors have to be located in this intersection.
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Points A and B represent the intersection of the boundaries. The triangles uAv and

uBv are symmetric and since there are three neighbors that are non-adjacent, two of

them have to be located in one of these triangles and also in the intersection area.

Let t1 and t2 be the points representing these vertices. Since dist(u, v) > 2 it is easy

to observe that the angle a < 60o. Then, by the cosine rule dist(t1, t2) < 2 which is

a contradiction since vertices corresponding to these points are non-adjacent. Thus,

G cannot contain an induced subgraph isomorphic to K2,3.

Marathe et al. [66] prove that a vertex can have at most 5 independent neighbors

if the graph is a unit disk graph. Thus, G cannot contain K1,6 as an induced subgraph

either. a ou vAu vB
Fig. 1 Intersection of 2 unit disks centered at points v and u.

Lemma 5. If G is a unit ball graph, then it does not contain induced subgraphs

isomorphic to K1,13, K2,6 and K3,4.

Proof. Let G be a unit ball graph. It is easy to see that G cannot contain K1,13 as

an induced subgraph by Lemma 1.

Let u and v be two non-adjacent vertices in G. Consider the intersection of the

unit balls representing these vertices. Afshani and Chan [2] show that the intersection

area of unit balls of two adjacent vertices can be covered by a special shape called

“rounded diamond”, where vertices whose unit ball centers are located in the same
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rounded diamond form a clique. There are on average 5.106 rounded diamonds cov-

ering this region. Since the intersection area of non-adjacent vertices will be smaller

than that of adjacent vertices, 5.106 serves as an upper bound and thus we can say

that we can fit at most 5 independent vertices here at the intersection. This proves

that G cannot contain K2,6 as an induced subgraph. Now observe that the intersec-

tion area of the unit balls of three non-adjacent vertices will be less than one half of

the intersection of any two of them. Thus it is easy to see that we cannot fit 4 inde-

pendent vertices in this area. This proves that G cannot contain K3,4 as an induced

subgraph.

Lemma 6. Given a unit disk graph, the kth power of the graph is not necessarily a

unit disk graph for any k ≥ 2 if we are not allowed to change the coordinates of the

points in the proximity model of the graph.

Proof. We prove this lemma by a counterexample. Suppose the statement in the

lemma is not true. Now suppose that a set of points is given together with their

coordinates in Euclidian plane as in Figure 2. By specifying a unit distance of “1”,

we obtain the unit disk graph G in Figure 3. Next, we take the kth power of G. We

observe that, with the given coordinates, the vertices corresponding to the points a,

b and c are all pairwise adjacent in Gk for any k ≥ 2. The vertex that corresponds

to the point d is always an isolated vertex. If Gk is a UDG, than it must have a unit

distance. Since vertices corresponding to the points a and c are adjacent in Gk, the

unit distance has to be at least 2. This is a contradiction with the definition of a

UDG since, although the pairwise distance between c and d is always less than 2, the

corresponding vertices can never be adjacent in Gk for any integer k ≥ 2.

The condition in Lemma 6 is a realistic assumption in terms of real-life applica-

tions. For instance, when we consider a wireless network, the locations of the wireless
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Fig. 2 The coordinates of four points in the plane.( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 . 1 )a b c d

Fig. 3 The unit disk graph G with unit distance = 1.

nodes will be fixed for many applications. An interesting question is whether there

exists a unit disk representation for the kth power of a unit disk graph. Although the

coordinates of the network may be fixed for a given application, finding another set

of coordinates that will represent the power of the graph as a unit disk graph may be

helpful in designing and analyzing algorithms to solve optimization problems on these

graphs. For instance, for the example presented in Figure 2, Figure 3 and Figure 4,

we can easily find a UDG representation for any power of the input graph. Consider

moving the point d to (0, 6). Then Gk is a UDG for any integer k ≥ 2 with a unit

distance of 2. The following lemma shows that this is not always true.

Lemma 7. The kth power of a unit disk graph does not necessarily have a unit disk

graph representation for any k > 1.

Proof. Assume that the statement is not true. For k = 2, consider the unit disk graph

G in Figure 5. The points represent the centers of unit disks corresponding to the

vertices of G. The solid lines are edges whose length is exactly the unit distance 1.

The dashed lines are also edges but their length is less than 1. The figure is drawn to
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Fig. 4 kth power of G for any integer k > 0.

scale. It is easy to see that these are the only edges in G since the distance between

any two points that are not connected by either the dashed lines or the solid lines is

greater than the unit distance. Now consider the 2nd power of this graph and observe

that the subgraph induced by vertices a, b, c, d and e forms K2,3. Based on Lemma 4,

G2 is not a unit disk graph.

For an arbitrary k, consider the graph in Figure 6. Similar to the graph in

Figure 5, all solid lines represent edges of length exactly equal to the unit distance

of 1 and the dashed lines correspond to the edges whose length is less than the unit

distance. It is easy to see that in Gk, the subgraph induced by vertices a, b, c, d and

e forms a K2,3. Thus Gk is not a UDG.

ba c
ε+1

f id egh j k
Fig. 5 Depicting a unit disk graph whose 2nd power is not a unit disk graph.

For the rest of this chapter, we assume that the unit distance is 2 for the proximity

model. That means that in the intersection model the unit disks have a radius of 1



24

ba c
2
k

… …d… …e
Fig. 6 Depicting a unit disk graph whose kth power is not a unit disk graph for k > 2.

and in the containment model they have a radius of 2.

(k, l)-slab: A unit ball graph is a (k, l)−slab if the y-coordinates of all the centers of

unit balls are contained in the interval [0, k) and z-coordinates are contained in

the interval [0, l).

Theorem 1. Let G be a unit ball graph which is a (k, l)−slab. G is a co-comparability

graph if k2 + l2 < 3.

Proof. The proof is similar to the case when G is a unit disk graph [67]. Let G be

a unit ball graph with the above property. Consider the complement of G which is

denoted by G. We can assign directions to the edges of G such that the resulting

graph satisfies the transitive law which will prove that G is a comparability graph.

Let v1, v2 and v3 be three vertices (center points of unit balls) in G. Transitive law

requires that if there is an edge from v1 to v2 and an edge from v2 to v3, then there

exists an edge from v1 to v3. Let xi, yi and zi denote the x, y and z coordinates of

point vi for each i. Without loss of generality, we can assume that x1 < x2 < x3. Let

(v1, v2) be an edge of G. Thus (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 > 4. We direct the

edge from v1 to v2. Since (y1 − y2)
2 + (z1 − z2)

2 < 3, we have x1 + 1 < x2. Similarly,

for the edge (v2, v3) we have x2 + 1 < x3. Hence x1 + 2 < x3, which implies that
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(v1, v3) is an edge of G.

Now a survey and extensions of existing algorithms for UBGs are in order.

III.2. Domination Problems

Given an undirected graph G, a dominating set D is a subset of vertices of G such

that every vertex of G is either in D or has a neighbor in D. Minimum dominating set

problem is to find a dominating set of minimum size. With additional restrictions on

set D, we have the following variations: Minimum independent dominating set when

D has to be an independent set, minimum connected dominating set when G[D] is

connected and minimum total dominating set when the vertices in D are also required

to have a neighbor in D.

Marathe et al. [66] investigate efficient heuristics for minimum dominating set,

minimum independent dominating set, minimum connected dominating set, and min-

imum total dominating set in unit disk graphs. Constant performance ratio of 5 is

achieved for the first two problems while the latter two have 10-approximations. Since

a maximal independent set is also a dominating set, the relation between the size of

a maximal independent set and that of a dominating set is the key property used in

the performance analysis of these algorithms. Thus, all of these algorithms in [66]

can be applied on UBGs as well with different performance ratios.

Theorem 2 ([66]). Let G be a unit disk graph. Let D∗ be a minimum dominating

set for G and let D be any maximal independent set for G. Then |D| ≤ 5|D∗|.

It is easy to see that any vertex in D∗ can have at most 5 independent neighbors

in a unit disk graph. Thus, the size of any maximal independent set is bounded by

5|D∗|. Theorem 2 can be easily extended to unit ball graphs as well by Lemma 1.
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Corollary 1. Let G be a unit ball graph. Denote by D∗ and D the minimum domi-

nating set and any maximal independent set of G, respectively. Then |D| ≤ 12|D∗|.

Hence, the algorithms presented by Marathe et al. [66] have the following perfor-

mance ratios when the input graph is a UBG: minimum dominating set and minimum

independent dominating set problems have a performance ratio of 12 while mini-

mum connected dominating set and minimum total dominating set problems have

24−approximations.

The performance guarantee for the minimum connected dominating set approx-

imation in unit disk graphs is improved to 7.6 by the following observation:

Theorem 3 ([83]). For any unit disk graph G, the size of a maximal independent set

is at most 3.8|mcds(G)| + 1.2, where mcds(G) is a minimum connected dominating

set of G.

This theorem is established by using the following properties:

Lemma 8 ([83]). The neighbor area of two adjacent vertices contains at most 8

independent vertices in a unit disk graph.

Lemma 9 ([83]). For any unit disk graph, there exists a minimum weight spanning

tree such that every vertex has degree at most 5.

Performance guarantee for the minimum connected dominating set approxima-

tion of Marathe et al. [66] in unit disk graphs is further improved to 6.91 by Funke

et al. [38] with the following observation:

Theorem 4 ([38]). The size of any independent set in a unit disk graph G is at most

3.453|mcds(G)| + 8.291, where mcds(G) denotes a minimum connected dominating

set in G.



27

Funke et al. [38] achieve this relation by an analysis of the area covered by the

connected dominating set. More specifically, the disks of radius 3 and with the same

centers as the centers of the unit disks forming a dominating set, cover all the unit

disks in the graph. Furthermore, since it is a connected dominating set, there are

overlaps of these larger disks. Next, they determine how many non-overlapping unit

disks can be placed in this area by using the well-known result of Fejes Tóth, which

proves that the densest packing of unit disks in the plane is achieved by a hexagonal

lattice.

Extending the technique used in [38] to unit ball graphs, we observe a tighter

bound on the cardinality of a maximal independent set in terms of the cardinality of

a minimum connected dominating set. In this case, we deal with the volume covered

by the balls with radius 3. Clearly, this volume contains all the unit balls.

Theorem 5. Let G be a unit ball graph. The volume covered by the union of unit balls

in G is at most 54.455|mcds(G)|+58.643, where mcds(G) is the minimum connected

dominating set in G.

Proof. Given a unit ball graph G, let S be the set of balls with radius 3 centered

at the centers of the unit balls from the minimum connecting dominating set of G.

Since the dominating set is connected, there exists an ordering s1, s2, . . . , s|S| of the

balls in S such that the center of si is at distance at most 2 from the center of some

sj with j < i. To bound the volume covered by S, we follow the order of these balls.

At iteration i > 1, the volume increases by less than the volume of a single ball since

there are overlaps. Since the volume of overlap of two balls of radius r and distance

d between their centers is given by 1
12

π(4r + d)(2r − d)2, the volume increase V + at

each iteration i has the following upper bound:

V + ≤ 4

3
πr3 − 1

12
π(4r + d)(2r − d)2,
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where d is the distance between the centers of si and the closest to si ball among

the balls s1, . . . , si−1. Thus, for (r, d) = (3, 2) this equation yields an upper bound:

V + ≤ 54.455. Therefore, the total volume covered by S is at most 54.455(|mcds(G)|−
1) + 113.098 = 54.455|mcds(G)|+ 58.643

It is easy to see that, by using the volume of a single unit ball we obtain the

following relation between a maximal independent set IS and the minimum connected

dominating set mcds in a unit ball graph: |IS| ≤ 13|mcds|+27 . This bound is worse

than the bound in Corollary 1. However, it is obvious that a close packing of the unit

balls will have gaps in between. Thus, we are interested in the actual volume covered

by a unit ball in the densest packing. This had been an open problem for a very

long time. Kepler proposed his famous conjecture in 1611 stating that close packing

(either cubic or hexagonal close packing, both of which have maximum densities of

π√
18
' 74.048%) is the densest possible sphere packing in 3 dimensional Euclidian

space. His conjecture was proved by Thomas C. Hales in 2000, which took 282 pages

and extensive computer calculations [46]. It is reported that this face-centered cubic

packing is produced by placing a ball inside each rhombic dodecahedron in the tiling.

A rhombic dodecahedron (Figure 7) is a convex polyhedron with 12 rhombic faces.

It has 14 vertices and 24 equal-length edges.

Theorem 6. The size of any independent set in a unit ball graph G is at most

11.23|mcds(G)|+ 23.33.

Proof. Given a unit ball graph G, by Theorem 5 the volume of the union of unit

balls in G, (VG), is at most 54.455|mcds(G)| + 58.643. The densest packing of unit

balls is achieved by placing a ball inside each rhombic dodecahedron. Therefore,

the number of rhombic dodecahedrons that can fit in VG is an upper bound on the

size of any independent set in G. It is important to note that, although all the
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Fig. 7 A rhombic dodecahedron.

unit balls forming the independent set lie in VG, the rhombic dodecahedra containing

them may not be completely contained in VG. Thus, we add a correction factor to

the volume of each rhombic dodecahedra. It is easy to see that at most one vertex

of the dodecahedron will be cut off by a ball of radius 3. There are two types of

vertices: one with 3 edges, the other with 4 edges. Thus, the excess volume is less

than (Vrd − Vub)
1
7
, where Vrd is the volume of a rhombic dodecahedron and Vub is the

volume of a unit ball. Therefore the size of any maximal independent set in G is at

most VG

(Vrd−Vub)
6
7

= 11.23|mcds(G)|+ 23.33.

Note that the bound in Theorem 6 is not a tight one. If the rhombic dodecahedra

were regular polyhedra, then the bound would improve to 10.367|mcds(G)| + 21.53.

Still, this theorem shows the best bound established so far.

In a recent paper, Huang et al. [53] present a (10 + ε)−approximation algorithm

to find the minimum-weight connected dominating set problem in unit disk graphs

with vertex weights.

Another type of domination problem is the m-connected k-dominating set prob-

lem (m-k-CDS). In this case, the dominating set is required to be m-connected and

every vertex of the graph not in the dominating set is required to have at least k
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neighbors in the dominating set. Shang et al. [73] present algorithms with perfor-

mance ratios (5 + 5
k
) if k ≤ 5 and 7 if k > 5 for 1-k-CDS problem, and (5 + 25

k
)

if 2 ≤ k ≤ 5 and 11 if k > 5 for 2-k-CDS problem. Thai et al. [76] present an

approximation algorithm for the general m-k-CDS problem. The main idea used in

these approximation frameworks is to construct a dominating set by adding maximal

independent sets k times and meanwhile adding further nodes at each iteration to

ensure m-connectivity. If k ≥ m, the approximation ratio is (8.609 + k)(2k − 1),

otherwise we have (8.609 + m)(2k − 1). These algorithms all work for UBGs as well.

Based on Lemma 1, the algorithms by Shang et al. [73] have ratios (12 + 12
k
) for

k ≤ 12 and 14 if k > 12 for 1-k-CDS problem and (12 + 25
k
) if 2 ≤ k ≤, and 11 if

k > 5 for 2-k-CDS problem on UBGs. Similarly, the algorithm of Thai et al. [76] in

UBGs has a performance ratio of (16.4849 + max(k, m))(2k − 1).

In a recent paper, Zhang et al. [85] propose a PTAS for the minimum connected

dominating set in UBGs. They first state that the PTAS for the same problem in

UDGs presented by Cheng et al. [26] cannot be extended to UBGs. Furthermore,

when their method is applied on a UDG, the running time is improved. Next we

sketch their algorithm, which is based on shifting and partitioning.

Let Q denote the minimal 3-dimensional cube containing all the unit balls with

an edge length of q. Form Q′ = {(x, y, z)| − m ≤ x ≤ mp,−m ≤ y ≤ mp,−m ≤
z ≤ mp}, where m = d300ρ/εe for a given ε < 1 and a constant approximation

ratio ρ for minimum connected dominating set problem on UBG. Divide Q′ into

(p+1)×(p+1)×(p+1) grid such that each cell is an m×m×m cube. Let P (0) denote

this partition. By shifting P (0) by a units in all three coordinates, another partition

P (a) is obtained for a = 0, 1, 2, . . . , m−1. Further, for each cell of the grid a boundary

region and a central region is determined. Given the geometrical representation,

algorithm starts by running a ρ-approximation algorithm for the minimum connected
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dominating set. Suppose the solution of this approximation is the set D0. Next, the

partition P (a∗) with the minimum number of boundary region vertices in the set D0

is chosen. For each cell e of P (a∗), consider the subgraph Ge induced by the central

region vertices of the cell e. The next step is to compute a minimum subset De of

vertices in the central region of e such that for each component H of Ge, G[De] has

a connected component dominating H. The algorithm outputs the union of all sets

De for each cell e in P (a∗) together with the union of the boundary region vertices of

P (a∗) in D0. The running time of this algorithm is nO(1/ε3).

III.3. Chromatic Number

Recall that a proper coloring of a graph is one in which every vertex is colored such

that no two vertices of the same color are adjacent. A graph is said to be k-colorable

if it admits a proper coloring with k colors. The graph coloring problem is to find a

proper coloring with the least number of colors, which is called the chromatic number

of the graph.

Clark et al. [29] proved the NP-hardness of the graph coloring problem in unit

disk graphs. They show that deciding whether a unit disk graph with given repre-

sentation can be colored with three colors is NP-complete by using a reduction from

3-colorability of planar graphs with maximum degree 3. A direct implication of this

result is that we cannot have an approximation algorithm for the coloring problem

in unit disk graphs with a performance ratio smaller than 4/3 [36], unless P=NP.

Based on this, we cannot expect to have an approximation scheme with a smaller

performance ratio for the same problem in unit ball graphs as well.

Theorem 7. Let G = (V, E) be a unit ball graph. There exists an O(|V | + |E|)
algorithm for the graph coloring problem on G which has a performance ratio of at
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most 8.

Proof. This is an extension to the 3-approximation algorithm for coloring in unit disk

graphs [66].

Let deg(v) denote the degree of a vertex v and δ(G) denote the minimum vertex

degree in a graph G. Define σ(G) = {max δ(H)| H is a subgraph of G}. Szek-

eres and Wilf [74] proved that every graph G can be colored using σ(G) + 1 colors.

Hochbaum [51] describes a way of finding such a coloring and evaluating σ(G) in

O(|V |+ |E|):

Step 0: Set σ = 0.

Step 1: If G has no vertices left then stop; otherwise choose a vertex v of smallest

degree.

Step 2: Set σ = max{σ, deg(v)}. Remove v and edges incident to v from G and

return to Step 1.

Let vi denote the vertex removed from G in the ith iteration. Then vi has at

most σ neighbors among vi+1, vi+n, . . . , vi+n. Color vertices starting from vn to v1 by

assigning the smallest integer that has not been assigned to its neighbors. Thus we

have a (σ(G) + 1)-coloring.

Now let G be a unit ball graph and H∗ be the subgraph with δ(H∗) = σ(G). Let

v∗ be the vertex in H∗ with the left most X-coordinate in the unit ball representation.

By Lemma 2, the subgraph induced by the vertices in N(H∗) has an independent set

of size at most 8. Thus in any valid coloring of this induced subgraph, no more than

8 vertices can belong to the same color class. Therefore any valid coloring of the

subgraph induced by N(H∗) ∪ {v∗} must have at least |N(H∗)|/8 + 1 colors. So,

χ(G) ≥ |N(H∗)|/8 + 1
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and by construction:

|N(H∗)| ≥ σ(G).

Hence we have:

χ(G) ≥ σ(G)/8 + 1.

By the above algorithm outlined by Hochbaum [51], we can find a (σ(G) + 1)-

coloring of G. Thus the performance guarantee of this algorithm in unit ball graphs

is 8.

Lemma 10. Any triangle-free unit ball graph can be colored using 9 colors.

Proof. This is an extension to Lemma 4.1 in [66]. Every triangle-free unit ball graph

has a vertex with degree at most 8. Let G be a triangle-free unit ball graph. Since

G is triangle-free, the neighborhood of each vertex in G is an independent set. Thus,

from Lemma 2, there exists a vertex whose degree is at most 8. Consider a simple

algorithm which removes a vertex with degree at most 8 at each iteration. Let vi

denote the vertex removed at ith iteration. Thus, we have an ordering of vertices

{v1, v2, . . . , vn}. We can color all the vertices starting from vn to v1 with at most 9

colors. Consider the coloring of vi. Since it has at most 8 neighbors in {vi+1, . . . , vn},
we can use the 9th color that is not used by any of its neighbors. This is true for any

i.

III.4. Max-cut

Let G(V, E) denote a graph. A cut is a partition of the vertices V into two subsets

V1 and V2. Any edge (u, v) ∈ E with u ∈ V1 and v ∈ V2 is said to be crossing the

cut and is a cut edge. The size of a cut is the total number of edges crossing the

cut. In edge-weighted graphs, the size of the cut is defined to be sum of weights of
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the edges crossing the cut. The max-cut problem is to find a cut of maximum size.

The variation, in which each partition set is required to have the same cardinality, is

called the max-bisection problem.

In a recent paper, Diaz et al. [32] prove that both the max-cut and the max-

bisection problems are NP-hard on unit disk graphs. They use the fact that max-cut

problem is NP-hard on graphs with bounded degree for ∆ ≥ 3. They show that max-

cut on a graph with bounded degree 4 can be reduced to the max-cut problem on

a unit disk graph in polynomial time. The complexity proof of max-bisection easily

follows by a reduction from max-cut in unit disk graphs. More specifically, finding

the max-cut in G is equivalent to finding a max-bisection in G′, which is formed by

two copies of G. Hunt el al. [54] investigate PTAS’s for various problems in unit disk

graphs. They state that there is a PTAS for max-cut problem in λ-precision unit

disk graphs (λ-precision implies that centers of unit disks are at least distance λ away

from each other).

Jansen et al. [55] present a PTAS for max-bisection in unit disk graphs. By

imposing grids on the plane, the graph is divided into subgraphs. If the subgraph

is dense, then PTAS for dense instances of max-bisection is used as proposed by

Arora et al. [9]. Otherwise, the solution is obtained by enumeration. Authors also

use shifting to obtain different subgraphs. The solution for each subgraph S, all

maximum (ns − p, p) partitions, where ns is the number of vertices in S, are used to

obtain an overall solution for the input graph via dynamic programming. We observe

that this technique can also be used for unit ball graphs with some adjustments.

Theorem 8. Max-bisection and max-cut problems both admit PTAS in unit ball

graphs.

Now we give a sketch of the algorithm of Jansen et al. [55] with the necessary
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adjustments.

Obtaining subgraphs: The first step is to impose a 3-dimensional grid. Each cell

of this grid is a cube with side length 2. The h-th yz-plane is at x = 2h,

−∞ < h < ∞. Furthermore, the h-th yz-strip is the strip between the h-th

and (h + 1)-st yz planes. The xz-planes and xz-strips, xy-planes and xy-strips

are indexed similarly. Each strip is open on one side and closed on the other

side. Thus, each unit ball is centered in exactly one strip.

For a fixed integer k, the subgraph Hi,j,l of the input graph G, −∞ < i, j, l < ∞,

is the subgraph induced by the centers of unit balls that lie in the intersection

of the yz-strips i, i + 1, . . . , i + k, the xz-strips j, j + 1, . . . , j + k and the xy-

strips l, l + 1, . . . , l + k. The number of vertices of Hi,j,l is denoted by ni,j,l. We

observe that the size of a maximum independent set on Hi,j,l is bounded by

6(k + 2)3/π. The unit balls in Hi,j,l are contained in a cube with side length

2(k + 1) + 2 = 2(k + 2). Dividing the volume of this cube by the volume of a

unit ball, we can fit at most 6(k + 2)3/π non-adjacent unit balls in this region.

Lemma 4 of Jansen et al. [55] also holds for subgraph Hi,j,l. The lemma states

that there is a positive constant c such that if ni,j,l > c log(n), then the subgraph

Hi,j,l is dense. This is proved by showing that there exist at least ni,j,lπ/6(k +

2)3 maximal independent sets in Hi,j,l. If each maximal independent set is

considered as a vertex, since they are all maximal, we have a complete graph.

Thus, the number of edges in Hi,j,l is Ω((ni,j,l)
2). Thus, Corollary 4 of the same

paper [55] also holds. This corollary states that if ni,j,l > c log(n), then the size

of a max-bisection of Hi,j,l is Ω((ni,j,l)
2). This directly shows that the max-cut

size of Hi,j,l is also Ω((ni,j,l)
2).

Solution for each subgraph: For each i, j, l, we compute all maximum (ni,j,l−p, p)
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partitions of Hi,j,l. If Hi,j,l is dense, a solution with an additive error of 2ε(ni,j,l)
2

is obtained by solving a polynomial integer program, which is presented by

Jansen et al. [55] and Arora et al. [9]. Otherwise, an optimal solution is com-

puted by enumeration.

Combining solutions to get an overall solution: The graph Gr,s,t for each r, s

and t, 0 ≤ r, s, t ≤ k, is defined as the union of all subgraphs Hi,j,l, where

i(modk + 1) = r, j(modk + 1) = s and l(modk + 1) = t. All maximum (nr,s,t −
p, p)-partitions of Gr,s,t are obtained by merging solutions of each subgraph Hi,j,l

of Gr,s,t. First, the subgraphs are ordered in increasing order of the sum i+j+ l.

All partitions of consecutive pairs are computed first by using solutions of each

subgraph, then the same is done for quadruples by using the solutions of pairs.

In this fashion, all maximum partitions are computed for Gr,s,t.

Output: For max-bisection, we pick the largest bisection of Gr,s,t, 0 ≤ r, s, t ≤ k,

and for max-cut we pick the largest partition.

Lemma 11. The performance ratio of the above algorithm is (1 − 1
k+1

)3(1 − 2ε) for

a fixed integer k, and a given ε < 1.

Proof. The proof is inline with the two-dimensional case [55]. Suppose we deal with

max-cut problem. Let C∗ be a max-cut of G. Observe that any graph Gr,s,t misses

some edges that are present in G. Particularly, those are the edges that have endpoints

in different subgraphs Hi,j,l of Gr,s,t. For any edge e of C∗, there is at most one r,

0 ≤ r ≤ k, such that e cuts a yz-plane whose index modulo k + 1 is r for fixed

s and t. The same holds for any fixed pair of (r, s, t). Thus, there exist a graph

Gr,s,t, 0 ≤ r, s, t ≤ k, such that a max-cut of Gr,s,t has at least (1 − 1
k+1

)3|C∗| edges.

Furthermore, since the dense subgraph solutions have an additive error of 2ε(ni,j,l)
2
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and each such subgraph has a max-cut of Ω((ni,j,l)
2), the solution obtained for each

Gr,s,t is a (1 − 2ε)-approximation of the optimal solution. Therefore, for the input

graph G, we obtain a performance ratio of (1− 1
k+1

)3(1− 2ε).

III.5. Min-bisection

A partition of vertices of a graph G into two equal-cardinality sets is called a bisection.

The min-bisection problem is to find a bisection with minimum number of edges with

endpoints in different partition sets. The computational complexity of this problem

is unknown for unit disk graphs and unit ball graphs.

Theorem 9 ([33]). If min-bisection is NP-complete for planar graphs with maximum

vertex degree 4, then it is NP-complete even when restricted to unit disk graphs.

However, complexity of min-bisection for planar graphs, and planar graphs with

bounded degree has not yet been proven.

Minimum weighted bisection problem: Given a vertex-weighted graph G, par-

tition the vertices of G into two sets such that the total weight of each set is

equal and the number of the edges in between these partitions is minimized.

Partition problem: Given a multi set S of integers, is there a way to partition S

into two subsets S1 and S2 such that the sum of the numbers in S1 equals the

sum of the numbers in S2?

Partition problem is a well-known NP-complete problem.

Theorem 10. Minimum weighted bisection is NP-hard in unit disk graphs.

Proof. We apply a reduction from the partition problem. Given a multi set S =

{a1, a2, . . . , ak} of integers, we form a graph G in the following way: assign a vertex
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for each element ai of S such that the weight of the vertex is ai. Place each vertex on

the plane so that their distances are always greater than 1. Thus we have a weighted

unit disk graph G which does not have any edges.

S has a partition (S1, S2) with equal sums if and only if G has a bisection of size

0. So, if we were able to find the minimum weighted bisection on G in polynomial

time, then we would conclude we can answer the partition problem in polynomial time

too. Since the partition problem is NP-complete, the minimum weighted bisection in

unit disk graphs is NP-hard.

The computational complexity and approximation status of min-bisection prob-

lem in unit disk and unit ball graphs are open problems.

III.6. Maximum Independent Set Problem

An independent set of a graph G is a subset of mutually non-adjacent vertices. The

maximum independent set problem is to find an independent set of maximum cardi-

nality.

Clark et al. [29] prove NP-hardness of the maximum independent set problem

on unit disk graphs. Cerioli et al. [23] show that it is NP-hard even for penny graphs

(non-overlapping unit disk graphs).

Theorem 11 ([51]). It takes only O(nlogn + m) steps to find in any weighted graph

G with n vertices, m edges and no (p + 1)-claw a stable set whose weight is at least

1/p times the weight of an optimal stable set.

A unit ball graph is a 12−claw free graph by Lemma 1. Thus, by Theorem 11

there is an 11-approximation algorithm for maximum independent set problem on

unit ball graphs.
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Marathe et al. [66] give a 3-approximation algorithm for unit disk graphs. This

can be easily extended to an 8-approximation algorithm for unit ball graphs:

Theorem 12. There exists an 8-approximation algorithm for finding the maximum

independent set in a unit ball graph.

Proof. Let G be a unit ball graph. By Lemma 2, there exists a vertex v in G, whose

neighborhood contains an independent set of size 8. If the geometrical representation

is given, finding such a vertex is easy. If this information is not available, then such a

vertex can be found in polynomial time by checking the neighborhood of every vertex.

Each time such a vertex is found, it is added to the independent set and removed

from the graph together with its neighbors. The next search is done on the remaining

graph. This way we obtain an independent set S. Observe that by construction each

vertex in V (G)− S is a neighbor to at least one vertex in S. Furthermore, each time

a vertex is added to S, we know its neighborhood in the remaining graph forms an

independent set of size at most 8. Thus, it is easy to see that maximum independent

set size can be at most 8|S|.

Matsui [67] presents an approximation algorithm for the maximum independent

set in unit disk graphs. The author considers unit disk graphs defined on a slab

that has a width of k (meaning that the y-coordinate of the point set is contained in

[0, k)). It is showed that if k <
√

3, the problem can be solved in polynomial time

(O(n2)) since the graph becomes a co-comparability graph and the problem reduces

to a longest path problem. For a fixed width k, by using similar ideas, a polynomial

time algorithm is achieved with a running time of O(n4dk/
√

3e). This is extended to

a (1− 1/r)−approximation algorithm for the maximum independent set problem on

general unit disk graphs with a running time of O(rn4d(r−1)/
√

3e).
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Halldórsson [47] uses local improvement search techniques to obtain an NC algo-

rithm with an approximation ratio of k
2
+ε for the maximum independent set problem

restricted to (k+1)−claw free graphs for any k ≥ 4. Since a unit ball graph is 12−claw

free, this NC algorithm has a performance ratio of 5.5 + ε.

When the unit disk representation of a graph is given, polynomial time approxi-

mation schemes exist for the maximum independent set problem in unit disk graphs

mostly using a technique called shifting. Such an algorithm is presented by Hunt et

al. [54] and we observe that it can be easily extended to unit ball graphs. A sketch of

the algorithm for unit disk graphs is presented by Erlebach and Fiala [36]. Now we

give the extended version of this sketch for unit ball graphs with some adjustments.

Let B be a set of unit balls and I∗ denote an optimal independent set. To

overcome the scale difference with Erlebach and Fiala’s algorithm [36], we scale the

graph by multiplying each center with 1
2
. We assume that scaled centers of the unit

balls do not have integral coordinates. Next we consider the 3−dimensional grid

which is composed of xy, yz and xz planes at all integer coordinates. An integer

p > 0 is fixed. Let Bi,j,k denote the subset of unit balls obtained by removing all balls

that intersect any of the following planes for some integer t: x = i + pt, y = j + pt,

z = k + pt. Now we consider the cubes obtained by removal of the above planes. It is

easy to see that each unit ball in Bi,j,k is completely contained in a cube. Thus we can

find the maximum independent set of Bi,j,k by combining the maximum independent

sets of all cubes. Since in a cube we can have an independent set of size at most

O(p3), maximum independent set for each cube can be computed in time |B|O(p3) by

enumeration. Repeating this for all subsets such that 0 ≤ i, j, k ≤ p − 1, we output

the largest solution Ip. Observe that the number of the repetitions is p3.

Now we show that |Ip| ≥ (1− 3
p
)|I∗|. Observe that a unit ball in B can intersect

at most one xz−plane , at most one yz− plane and at most one xy− plane. Thus
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for a given subset Bi,j,k, at most |I∗|/p balls intersect xy− plane (yz− plane, xz−
plane). Hence |Ip| ≥ (1− 3

p
)|I∗|.

So, in order to have a (1−ε)−algorithm, we can choose p = d3/εe. The algorithm

has a running time of |B|O(p3).

III.7. Minimum Vertex Cover

A vertex cover for an undirected graph G is a subset S of its vertices such that each

edge has at least one endpoint in S. The minimum vertex cover problem is to find a

vertex cover of minimum cardinality.

Theorem 13 ([51, 66]). Let G be a weighted graph with n vertices and m edges; let

k be an integer greater than one. If it takes s steps to color the vertices in G in k

colors, then it takes only s+O(nm log n) steps to find a stable set whose weight is at

least 2/k times the weight of an optimal stable set and to find a cover whose weight

is at most 2− 2/k times the weight of an optimal vertex cover.

Lemma 12 ([66, 14]). Let r1 and r2 denote the local ratios of two heuristics for

the vertex cover problem. If G1 denotes the graph obtained after applying the first

heuristic to a graph G, then the performance of the algorithm which applies the two

heuristics in succession is at most max{r1(G), r2(G1)}.

Theorem 14. There exists an 16
9
−approximate algorithm for the minimum vertex

cover problem in unit ball graphs.

Proof. This is an extension to a 1.5-approximation algorithm for Vertex Cover in unit

disk graphs [66].

Let G be a unit ball graph. First remove the vertices that form a triangle and

include them in the vertex cover, till the graph becomes triangle-free. The remaining
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graph is 9-colorable by Lemma 10. Thus, by Theorem 13 there exists an algorithm

that finds a vertex cover on the remaining graph, which is at most 16/9 times the

weight of the optimal. The local ratio of the first part, where vertices forming triangles

are removed, is 3/2, since we pick all 3 vertices, where 2 vertices of any triangle have

to belong to the optimal vertex cover. Hence, by Lemma 12, the performance is at

most max{3/2, 16/9} = 16/9.

The minimum vertex cover problem has a PTAS when the input graph is a unit

disk graph [54]. We observe that by using the method presented for the PTAS for the

maximum independent set problem in the previous section, we can obtain a PTAS

for the minimum vertex cover problem in unit ball graphs. The only difference is

that for the minimum vertex cover problem instead of removing the unit balls that

intersect with the xy−, yz− and xz− planes, we count them twice for any given

plane. More specifically, when we consider the subgraphs for which the optimal

solution is computed for the maximum independent set problem, they are composed

of the unit balls that completely lie in a given cube (corresponding a subgraph).

For the minimum vertex cover problem, we consider all the unit balls that lie either

partially or completely. Again, for each subgraph the optimal solution can be found

in polynomial time since the minimum vertex cover V C(G) of a graph G is given by

V C(G) = V (G) − IS(G), where V (G) and IS(G) denote the vertices of G and the

vertices of G in a maximum independent set of G, respectively.

Let V ∗ denote an optimal vertex cover of a unit ball graph G. Let V p denote the

output of the algorithm for a given p. Similar to the observation that we had for the

previous section, we observe that a unit ball in G can intersect at most one xz−plane,

at most one yz− plane and at most one xy− plane. Thus for a given subset Bi,j,k, at

most |V ∗|/p balls intersect xy− plane (yz− plane, xz− plane) meaning that at most
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|V ∗|/p balls are counted twice for xy− plane (yz− plane, xz− plane). Therefore,

|V p| ≤ (1 + 3
p
)|V ∗|. Choosing p = d3/εe, we have a (1− ε)−algorithm.

III.8. Maximum Clique Problem

Given an undirected graph G, a clique is a subset of pairwise adjacent vertices in G.

The maximum clique problem is to find a clique of the largest cardinality in G. The

size of a maximum clique is called the clique number of G and is denoted by ω(G)).

Most NP-complete problems in general graphs preserve their hardness in unit

disk graphs. At first glance, it is surprising to see that one of the most famous NP-

hard problems on general graphs, the maximum clique problem, can be solved in

polynomial time when restricted to unit disk graphs [29]. Given any pair of adjacent

vertices, we observe that the intersection of the neighborhoods within the distance

in between members of the pair, forms a special induced subgraph. Actually, the

complement of this subgraph is a bipartite graph, in which the maximum independent

set problem can be solved in polynomial time. Thus, the maximum clique on this

subgraph can be determined in polynomial time. Moreover, there exists a pair of

adjacent vertices that contains all the vertices of the maximum clique. This leads to

a polynomial time algorithm for the whole graph by finding the maximum clique on

subgraphs of every adjacent pair of vertices and picking the largest one.

The complexity for the unit ball graphs is not yet known. Afshani and Hatami [3]

prove the NP-hardness of this problem in higher dimensions.

Theorem 15 ([3]). For every ε > 0 there exists d = Θ(logn), such that there is no

polynomial time (95
94
− ε,

√
4
3
− ε)- approximation for the maximum clique problem in

dimension d, unless P=NP.

The authors apply a reduction from the maximum independent set problem in



44

3-regular graphs. By using eigenvalues of the Laplacian of the complement of the

3−regular graph, a representation of the vertices in Euclidian space Rn is obtained

such that adjacent vertices are at a specified distance. The distance between non-

adjacent vertices is also specified, and it is greater than that of the adjacent ones’.

Next they use dimension reduction techniques and show that there exists a dimension

d = O(λ−2logn) such that the vertices can be mapped into Rd in polynomial time

and the distances between vertices change by a factor at most 1 + λ/2.

So, Theorem 15 does not specifically answer the question of complexity in di-

mension 3.

Afshani and Chan [2] introduce approximation algorithms for the maximum

clique problem in unit ball graphs. The main idea in these algorithms is to cover

the intersection of the neighborhoods of adjacent vertices with a small number of

shapes of diameter at most one. If this number is k, then the complement of the sub-

graph induced by the vertices in this intersection forms a k−partite graph. Taking

any pair of regions, maximum clique on the subgraph induced by the vertices in those

regions can be found in polynomial time. Repeating this for every possible pair and

choosing the best, we have an approximation for the maximum clique. The authors

achieve their best ratio of 2.553 by using a shape which they name as “rounded dia-

mond”. They show that they can cover the intersection area by 5.106 such rounded

diamonds on average. The running time of this algorithm is O(n3Tmatch(n)), where

Tmatch(n) is the running time of matching algorithm for n vertices. They also show

that a 5.106− approximation is achieved with a running time of O(n log n) without

using matching.

The computational complexity and the existence of a PTAS for the maximum

clique problem in unit ball graphs are interesting open problems.
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III.9. Minimum Clique Partition

The minimum clique partition problem is to partition a given graph G into a minimum

number of cliques. This problem is proven to be NP-complete for unit disk graphs

by Cerioli et al. [23]. The authors also present a 3-approximation algorithm with a

running time of O(n + m), where m denotes the number of edges in the complement

of the given graph. As stated earlier, a unit disk graph is called a k-strip or k-slab if

the y-coordinates of all the centers of unit disks is contained in the interval [0, k). The

authors state that when k ≤ √
3, the graph becomes a co-comparability graph and the

minimum clique partition can be found by coloring its complement in time O(n+m).

Given a general unit disk graph, it is partitioned into
√

3-strips and the problem is

solved optimally for each strip. The union of all the solutions is an approximation

for the input graph. In order to show the approximation ratio of 3, they use the fact

that any vertex in a clique belongs to at most 3 strips. The authors also show that

for non-overlapping unit disk graphs, an approximation ratio of 3/2 can be achieved

in O(n log n) time.

Theorem 16. There exists a 20-approximation algorithm for minimum clique parti-

tion in unit ball graphs.

Proof. Let G be a unit ball graph. Consider the following algorithm.

Step 1: Decompose G into (
√

2, 1)− slabs.

Step 2: For each slab, find an exact clique partition on the subgraph induced by

the vertices of G who are located in the given slab.

Step 3: Output the union of solutions from Step 2.

The above algorithm is an extension to the one presented by Cerioli et al. [23] for unit

disk graphs. By Theorem 1, each subgraph in Step 2 is a co-comparability graph. For
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each subgraph, a minimum clique partition can be found by coloring the complement.

Thus, Step 2 of the algorithm can be performed in time O(n + m), where m denotes

the number of edges of the complement of G.

The approximation ratio can be proven by a geometrical argument that the

vertices of a clique can be contained in a region distributed along at most 20 (
√

2, 1)-

slabs as shown in Figure 8.

2

1

v
2

1

Fig. 8 The cliques that cover vertex v can be contained in a region spanned by the

above 20 (
√

2, 1)−slabs.

Whether there exists a PTAS for minimum clique partition problem in both unit

disk and unit ball graphs is an interesting open problem.

III.10. Open Problems

Next we give a list of open problems regarding optimization problems in unit disk and

unit ball graphs. Although unit disk graphs have been studied for a long time, the

complexity and approximation status of several well-known optimization problems

are still open problems, including the following problems:
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1. The computational complexity and approximation status of min-bisection prob-

lem in unit disk and unit ball graphs.

2. The computational complexity and existence of a PTAS for the maximum clique

problem in unit ball graphs.

3. Existence of a PTAS for minimum clique partition problem on both unit disk

and unit ball graphs.

III.11. Conclusion

In this chapter, we presented a survey of complexity and approximation algorithms

for several optimization problems restricted to unit ball graphs. Unit disk graphs,

which are the two-dimensional version of the unit ball graphs, have been studied in

the literature for many years. Yet, complexity and approximation status of several

optimization problems, such as minimum bisection and minimum clique partition, are

still open problems in unit disk graphs. We worked on the extension of the existing

approximation algorithms for unit disk graphs to three-dimensional space and the

analysis of computational complexity since UBGs provide a more realistic represen-

tation of wireless networks. We observe that several approximation algorithms for

unit disk graphs can be easily extended to unit ball graphs and we provide the cor-

responding performance guarantees. We highlight several interesting open problems,

such as the computational complexity of the well-known maximum clique problem

restricted to unit ball graphs. This problem is polynomially solvable in unit disk

graphs. Furthermore, we propose and prove some properties of unit disk and unit

ball graphs which can be used in analyzing algorithms.
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CHAPTER IV

THE MAXIMUM K-CLIQUE PROBLEM IN UDGs

The maximum clique problem is a very well-known optimization problem. It is most

famous in the social network context, where one is interested in finding a cohesive sub-

group. Due to the criticisms for its overly restrictive nature, several clique relaxations

have been introduced. These include diameter relaxations (k-club), degree-based re-

laxations (k-plex) and distance relaxations (k-clique). In this work, we are interested

in the maximum k-clique problem when the graph is restricted to be a unit disk graph.

Recall that a unit disk graph is a typical graph model used to describe wireless net-

works. In order to avoid the interference between different wireless nodes when they

broadcast at the same time, it is important to assign different frequencies to the nodes

whose transmission ranges intersect. Thus, the clique number gives the least number

of frequencies needed. Fortunately, the clique number of a unit disk graph can be

computed in polynomial time [29]. However, since the unit disk graph model is only a

rough approximation of the wireless network topology, clique relaxations may provide

a better estimate of the number of frequencies needed.

Given a graph G, a subset of vertices S of G is a k-clique if the distance between

any two vertices from S in G is at most k. The maximum k-clique problem is to find

a k-clique of maximum cardinality. It is important to note that in the literature this

notation has also been used for a clique of cardinality k. The definition we used is a

common definition in social networks. Moreover, in some papers it is referred to as

distance-k clique.

Balasundaram et al. [13] proved that for any fixed positive integer k the maxi-

mum k-clique problem is NP-hard in general graphs. The proof is done by a reduction
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from the maximum clique problem. Since the maximum clique problem is polyno-

mially solvable in unit disk graphs, we cannot use the same argument to show the

complexity of maximum k-clique in unit disk graphs. Another important remark is

that the authors of [13] state that this problem is hard to solve not only because it

is a generalization of the maximum clique problem, but because it is hard in its own

respect. Thus, although the maximum clique problem is polynomial-time solvable for

unit disk graphs, the maximum k-clique problem for k > 1 may not be so.

IV.1. Literature Review

Although the concept of k-clique has been introduced in social network analysis lit-

erature as early as in 1950s, there are very few publications related to this problem.

Balasundaram et al. [13] propose using k-cliques and k-clubs as an alternative ap-

proach to finding clusters in biological networks. The authors also present the first

computational complexity results. For general graphs and for graphs with bounded

diameter, the maximum k-clique problem is NP-hard. Wu et al. [80] investigate the

minimum edge density of a 2-clique in a directed graph.

A related optimization problem is the minimum k-clique partition. Edachery

et al. [35] demonstrate implementation of several clustering algorithms based on k-

cliques.

There is no work done in the literature when the graph is restricted to be a unit

disk graph.

IV.2. Computational Complexity

The maximum k-clique problem in a graph G is equivalent to the maximum clique

problem in Gk. By Lemma 7 of Chapter III, Gk is not necessarily a unit disk graph.



50

There are some strong indications that this problem is NP-hard in unit disk graphs.

We claim this as a conjecture and give complexity results for some geometric graphs

which may be helpful in verifying our conjecture.

For ε ∈ [0, 1], a unit ε-quasi-disk is a connected compact set Q of the plane such

that there exists a point P such that D(P, 1 − ε) ⊆ Q ⊆ D(P, 1), where D(C, r)

denotes the disk of radius r centered at C [24]. Figure 9 illustrates this concept.

ε−1

1

Fig. 9 A unit ε-quasi-disk.

Ceroi [24] proved that the maximum clique problem on the class of intersection

graphs of unit ε-quasi-disks is NP-hard for any ε > 0. The proof is done by a reduction

from the maximum independent set problem on cubic graphs.

Lemma 13. Given a unit disk graph G, Gk is an intersection graph of unit ε-quasi-

disks with ε = k−1
k

.

Proof. Recall that the intersection model, the containment model and the proximity

model are all equivalent with some scaling modifications on the unit distance. It

is easier to prove this lemma by considering the containment model. Given a unit

disk graph G with unit distance 1 for the containment model, it is easy to see that

for a given vertex v any neighbor of v in Gk is at most distance k from v in G,

thus all the neighbors of v in Gk are contained in a disk of radius k. Furthermore,



51

there may exist vertices that are not adjacent to v but are at distance less than

k, as in Figure 10. Thus, the actual neighborhood region is a subset of vertices

covered by the disk of radius k. Let O denote the point that corresponds to vertex

v. Since G is a unit disk graph, all vertices that are at most distance 1 from v are

contained in the neighborhood region. Let Q denote the set of points, such that

each point, if added as a new vertex to G, would be a neighbor of v in Gk. Then,

we have D(O, 1) ⊆ Q ⊆ D(O, k). When we scale all the coordinates of the points

by multiplying by 1
k
, we get D(O, 1 − ε) ⊆ Q ⊆ D(O, 1) with ε = k−1

k
, where for

convenience we use the same notations as before for transformed O and Q. Now, we

need to show that Q is a connected compact set. It is compact since it is closed and

is a subset of a compact set D(O, k). Now, assume that Q is not connected. Let u be

a vertex in a compact set Q2 and let the vertex v belong to the compact set Q1 such

that Q1

⋃
Q2 = Q and Q1

⋂
Q2 = ®. Let T denote the shortest path from v to u in

G (see Figure 11). Then there exist vertices t1 ∈ Q1 and t2 ∈ Q2 in T such that they

are adjacent in G. As shown in Figure 12, consider the disk D(t1, dist(t1, t2)). Since

t2 is contained in Q, any vertex that lies on this disk also belongs to Q as it has a

shortest path to v of length less than k, since dist(v, t1) < dist(v, t2) ≤ k. Therefore,

we have Q1

⋃
Q2

⋃
D(t1, dist(t1, t2)) ⊆ Q. Observe that not having any vertices of G

in this disk does not violate any property. Thus, Q is connected.( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 . 1 )a b c d
Fig. 10 kth power of G for any integer k > 0.
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P a t h T vw u Q 2Q 1
Fig. 11 Q1

⋃
Q2 = Q contains the k-distance neighborhood of vertex v in G for

k > 0.

Q 2t 1 t 2D ( t 1 , d i s t ( t 1 , t 2 ) )
Q 1

Fig. 12 Q is a connected compact set.
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By Lemma 13, the power graphs of unit disk graphs form a subclass of intersection

graphs of unit ε-quasi-disks, on which the maximum clique problem is NP-hard.

String graphs are intersection graphs of curves in the plane. Each vertex corre-

sponds to a curve and two vertices are joined by an edge if the corresponding curves

intersect. Intersection graphs of ellipses are defined in a similar fashion. An inter-

val graph is the intersection graph of a multiset of intervals on the real line. It has

one vertex for each interval in the set, and an edge between every pair of vertices

corresponding to intervals that intersect. Multiple interval graphs are a natural gen-

eralization of interval graphs, where each vertex may have more than one interval

associated with it. A circle graph is a graph whose vertices can be associated with

chords of a circle such that two vertices are adjacent if and only if the corresponding

chords in the circle intersect. A graph is chordal if each of its cycles of four or more

nodes has a chord, which is an edge joining two nodes that are not adjacent in the

cycle. An equivalent definition is that any chordless cycles have at most three nodes.

The maximum clique problem is polynomial-time solvable in interval graphs,

chordal graphs and circle graphs. It is proved in [22] that the maximum clique

problem is NP-hard in t-interval graphs for t ≥ 3 by a reduction from the maximum

2-DNF satisfiability problem. Let ρ denote the ratio of the larger over the smaller

radius of an ellipse. Ambuhl and Wagner [8] prove that the maximum clique problem

is APX-hard in intersection graphs of ellipses for any 1 < ρ < ∞. This means

that there is a constant c such that there is no approximation algorithm with ratio

better than c. Thus, there is no PTAS. The proof is done by a reduction from the

MAX5OCC2SAT problem (given a boolean formula in conjunctive normal form with

at most two literals per clause and at most for five occurrences of every variable, find

an assignment of truth values to the variables that satisfies the maximum number of

clauses). Observe that for ρ = 1, we have unit disk graphs for which the maximum
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clique problem is polynomial-time solvable. Thus, even a small change in ρ makes

a huge complexity difference. The same is true for ρ = ∞, in which case the graph

becomes an interval graph.

Kratochvil and Kubena [60] show that the maximum clique problem on the

intersection graph of convex sets in the plane is NP-hard. The reduction for this

proof is done from the maximum clique problem on co-planar graphs by showing that

for every planar graph, one can assign convex sets in the plane to its vertices in such

a way that two of the sets are disjoint if and only if the corresponding vertices are

adjacent. Although it is easy to see that the kth power of a unit disk graph is not

necessarily an intersection graph of convex sets, this result is important in terms of

providing a general idea on more general intersection graphs.

IV.3. A Greedy Heuristic

In this section, we propose a greedy heuristic for the maximum k-clique problem,

which will be used to get an initial solution for the exact solution procedure we are

about to develop. An initial heuristic is helpful in decreasing the problem size. The

outline of this heuristic is presented in Figure 13. The main idea is to start with

a maximum degree vertex and add maximum number of vertices to the solution set

at each iteration to obtain a k-clique. We present a demonstration of this heuristics

in Figure 14. In this example, we find a 4-clique. First, we pick the vertex with

maximum degree and its neighbors. We color the vertices that can be a candidate in

terms of including their neighbors in the future as green. Red color indicates that the

vertex is in the solution but not a candidate for improvement. Blue color indicates

that the vertex is not a part of the current solution. At each step, we compare the

number of blue neighbors of each green vertex and pick the largest one. Finally, the
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set of colored vertices corresponds to a 4-clique.

Input: A unit disk graph G with the coordinates of the points; k > 2
Output: A k-clique C in G

Find a vertex in G of maximum degree, vmax

C = {vmax}
⋃

N(vmax)

for all w ∈ N(vmax) do
label w as candidate

end for

for i = 1 : k − 2 do
Pick a candidate vertex w ∈ C with the maximum degree in G[V (G) \C]
C = C

⋃
NG[V (G)\C](w)

Remove w from the candidate list
Label all vertices in NG[V (G)\C](w) as candidate

end for

Return C

Fig. 13 Greedy heuristic for the maximum k-clique problem.

IV.4. An Exact Solution Procedure

Let G be a UDG with unit distance d. We define the graph Gk on the same set of

vertices of G by introducing an edge in between two vertices whenever their distance

is less than or equal to kd. Thus, by definition Gk is a UDG. Furthermore, we observe

that Gk is a subgraph of Gk.

Since Gk is a unit disk graph, the maximum clique problem can be solved in

polynomial time using matching. As proven by Clark et al. [29], the intersection area

of the neighbors of a pair (u, v) of adjacent vertices within a distance at most d(u, v)

to both u and v form a special graph, where d(u, v) denotes the pairwise Euclidian
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( a ) ( b )
( c ) ( d )

Fig. 14 Demonstration of the proposed greedy heuristic for the maximum k-clique

problem for k=4 (a) Input graph G (b) Initial step: Finding the maximum degree

vertex (c) Step 1: Improving the solution by adding the blue neighbors of the vertex

with maximum number of blue neighbors (d) Step 2: Last step to get a 4-clique.
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distance between u and v. This graph is a co-bipartite graph. The maximum clique

problem in a graph is equivalent to the maximum independent set problem in the

complement graph. On bipartite graphs, the maximum independent set problem can

be solved in polynomial time. Clark et al. [29] also prove that there exists a pair

of adjacent vertices for which the corresponding area contains the maximum clique.

Thus, computing the maximum clique for each pair and picking the largest one gives

an optimal solution.

The main idea of our algorithm is to solve the maximum clique problem in

Gk, and do branching on some variables if the found solution is not feasible for

the power graph. This is done for all pairs of adjacent vertices in Gk. Although

Gk is not necessarily a unit disk graph, it is easy to see that there exists a pair

of adjacent vertices for which the intersection region mentioned above contains the

optimal solution. This is true since Gk is a subgraph of Gk with the same set of

vertices but some missing edges.

Let G be a UDG and k be a given number. Let C∗ denote the optimal solution

and C0 be the initial solution obtained by the greedy heuristic introduced in the

previous section. Figure 15 gives a sketch of the algorithm. The first step is to form

the graphs Gk and Gk and label the edges that belong to Gk but not to Gk as fake.

After we obtain an initial solution C0, we can reduce the size of the problem by

eliminating the vertices whose degree in Gk is less than |C0 − 1|, since such a vertex

cannot be a part of a better than current solution.

The next step is the main step of the algorithm, where we iterate through all

adjacent pairs to compute the maximum clique in Gk. It is important to note that this

step can be improved by considering only adjacent pairs of vertices in Gk for which

the distance in between is greater than k− 1. Of course, in order to do that, we need

to make sure that the diameter of each connected component of the input graph G is
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Input: A unit disk graph G with the coordinates of the points, k
Output: A maximum k-clique in G

Form graphs Gk and Gk

Label E(Gk) \ E(Gk) as fake

Obtain C0, Set C∗ ← C0

for v ∈ Gk do
if degGk(v) < |C0 − 1|

delete v from both Gk and Gk

end for

for each pair of adjacent vertices (u, v) of Gk do
S ← {w ∈ V (G) : d(w, u) ≤ d(u, v) and d(w, v) ≤ d(u, v)}
for w ∈ S do

if degGk[S](w) < |C∗ − 1|
delete w from S

end for
if |S| > |C∗|

Solve maximum clique in Gk[S] using matching
while ∃ a fake edge in the solution
Branch on endpoints of the fake edge
Update C∗

end if

end for

Return C∗

Fig. 15 Matching-based branch and bound algorithm for the maximum k-clique prob-

lem in UDG.
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strictly greater than k − 1. In fact, if the diameter of a connected component is less

than or equal to k, that connected component already forms a k-clique, and there is

no need for further computations.

In the main step, for each pair of adjacent vertices we form the subset of vertices

S = {w ∈ V (G) : d(w, u) ≤ d(u, v) and d(w, v) ≤ d(u, v)}. Since Gk is a UDG, the

graph induced in Gk by the set S, Gk[S], is a co-bipartite graph. Before solving the

problem on this set, we check the degrees of vertices on the induced graph Gk[S] and

eliminate the ones that cannot take part in a solution better than the current best.

If the size of the set S after vertex deletions is less than the current best, there is no

need to solve the problem for this set and we continue with the next pair. Otherwise,

we can identify the vertices that are neighbors to all the remaining vertices in Gk[S].

These vertices will be a part of the solution obtained from this set. We can solve the

maximum clique problem for the remaining vertices in Gk[S]. This is done by forming

the complement of the graph Gk[S] and finding the maximum independent set in the

complement by using matching. We will discuss the matching algorithm and how we

obtain a maximum independent set in the implementation section. Now that we have

the maximum clique in Gk[S], we first check if the solution is better than the current

best. Clearly, this solution is an upper bound for the maximum clique on Gk[S]. So,

if it is not better than the current best, there is no need for further analysis and we

move to the next pair. Otherwise, we check if this is a feasible solution for Gk[S] by

checking the existence of fake edges in the solution. If there exists a fake edge, this

means that the endpoints of that edge are not adjacent on Gk[S] and thus cannot be

a part of the same clique. Thus, we create two branches for this problem by deleting

an endpoint for each branch. We repeat the same procedure for each branch and thus

have a branch-and-bound (B&B) tree. For each node, we fathom whenever we get

a feasible solution for Gk[S] or whenever we observe that it cannot give a solution
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better than the current best. Thus, fathoming for the B&B tree for each pair of

vertices is done with respect to both the global best and also the incumbent of the

current B&B tree. Whenever we get a better solution, we update C∗. In the end, C∗

corresponds to the maximum clique in Gk[S], thus it is the maximum k-clique in G.

IV.4.1. Implementation

The algorithm is implemented in C++ using CPLEX callable library. The CPLEX

defaults, such as cut generations, presolve and node heuristics, are all turned off. The

branch and bound (B&B ) framework of CPLEX requires an MIP formulation. The

traditional B&B solves the LP relaxation of each node and updates the incumbent

whenever it finds an integral solution better than the current incumbent. If an integral

solution is found, the node is fathomed. Similarly, if the objective value of the LP

relaxation is not better than the current best, the node is fathomed since the integral

solution that it yields cannot be better than the LP relaxation. The branching is done

on a variable which does not have an integral value. However, our problem has several

different characteristics. First of all, we do not want to use k-clique formulation.

Instead, we want to solve matching at each node, post-process the solution to obtain

a maximum clique and decide on the feasibility by the presence of fake edges. Also,

we want to branch on endpoints of fake edges. These are all possible by the flexibility

provided by CPLEX callbacks.

In our initial implementation, we used the incumbent callback and the branch

callback. CPLEX calls incumbent callback whenever it finds an integral solution

better than the current best of the B&B tree. It enables the user to accept or reject

the solution based on other user-defined factors. We used incumbent callback for

checking for the presence of fake edges. The branch callback enables the user to

create custom branches. We used this callback to create branches on endpoints of
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fake edges. If there are not any fake edges or the solution is not promising for further

analysis, the branch callback knows this by a flag from the incumbent callback and

fathoms the node. If there are fake edges, it finds the vertex with the maximum

number of fake edges and branches on that vertex and one of its fake neighbors.

Let G′ = Gk[S] and `(v) denote the set of edges for which the vertex v is an

endpoint. The MIP formulation we used is the following:

max
∑

e∈E(G′)

xe +
∑

v∈V (G′)

xv (4.1)

subject to:

∑

e∈`(v)

xe ≤ 1 ∀v ∈ V (G′) (4.2)

xv ∈ {0, 1} ∀v ∈ V (G′), xe ∈ {0, 1} ∀e ∈ E(G′) (4.3)

All decision variables are binary. xe = 1 if e is in the maximum matching and 0 if

not. Without the decision variables corresponding to the vertices, this is a maximum

matching formulation. In fact, there are not any constraints involving the variables xv

except for the binary restriction. Since this is a maximization problem, the optimal

solution for all xv’s will be 1. The reason that these variables are introduced is to keep

track of the deleted variables in set S for any node during the B&B process. This is

helpful in post-processing the matching solution to obtain a maximum clique on the

complement graph. The maximum matching is polynomial-time solvable. There are

several algorithms studied in the literature for maximum matching in bipartite graphs.

Another characteristic related to matching in bipartite graphs is that the polytope

defined by the constraint matrix in the above formulation omitting the variables

corresponding to vertices is totally unimodular. This means that the vertices of this

polytope are all integral points and therefore an integral solution is guaranteed when
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the LP relaxation is solved. We observe that introducing the xv variables does not

violate the totally unimodular property. Basically, including these variables in the

formulation introduces an identity matrix to the constraint matrix. Let P be a totally

unimodular matrix and I be an identity matrix. Then the matrix




P 0

0 I




is also a totally unimodular matrix. Thus, by using the above formulation we can

get an integral solution at each node of our B&B tree. This enables us not to worry

about integrality constraints and focus on feasibility check by the presence of fake

edges.

As this formulation involves many variables, we observed that the built-in sim-

plex algorithm of CPLEX performs many iterations. Since there exist several effi-

cient algorithms for maximum matching in bipartite graphs, we decided to include

a matching algorithm in our implementation and avoid the above formulation. This

implementation is possible by using the solve callback. Thus, our final implementa-

tion uses incumbent, branch and solve callbacks. The solve callback enables the user

to identify a solution strategy, such as which CPLEX solver to use at a particular

node. The solution obtained must be in CPLEX format. Thus, whichever algorithm

we use, we need to make sure that CPLEX has some information about the solu-

tion status. Since our initial experiments showed improved performance on the latter

implementation, we used it for further computational tests. However, in order for

CPLEX to be able to create a B&B tree and perform branching, an MIP formulation

is still needed. Therefore, we use the following formulation:
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max
∑

v∈V (G′)

xv (4.4)

subject to:

xv ∈ {0, 1} ∀v ∈ V (G′) (4.5)

It is easy to see that an optimal solution for this formulation sets all variables

to 1. The branching involves introducing an upper bound of 0 to the variables cor-

responding to the vertices that are the endpoints of a fake edge. At each node of

the tree, we solve the above formulation with the corresponding bound changes using

CPLEX LP solver. We give the solution to CPLEX since we know that the optimal

solution sets all the variables to their upper bounds. Thus, CPLEX does not do any

iterations and only confirms the optimality. Next, we solve the matching problem.

Let S ′ = {w ∈ S : x∗w = 1}, where x∗w denotes the optimal value of the vertex w for

the above formulation at the current node. The matching algorithm is run on the

induced subgraph G′[S ′]. We use an algorithm based on augmenting paths. Given a

matching M, an alternating path is a path in which the edges belong alternatively to

the matching and not to the matching. An augmenting path is an alternating path

that starts from and ends on unmatched vertices. One can prove that a matching

is maximum if and only if it does not have any augmenting path. Let A′ and B′

denote the set of vertices corresponding to the partitions of G′[S ′]. Since a vertex

in A′ can only be matched with a vertex in B′, it is sufficient to search through the

unmatched vertices of A′ to find an augmenting path. Figure 16 demonstrates how

the solution is improved by augmenting paths. In (a), we find an augmenting path

for a given matching M and by augmenting we increase the size of the matching in

(b). The algorithm we used is outlined in Figure 17. We use breadth first search

(BFS) for finding an augmenting path. As each path can be found in O(|E|) time,
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the running time of this algorithm is O(|V ||E|). We chose this implementation for

its simplicity. Hopcroft-Karp algorithm for the same problem has a better running

time of O(
√
|V ||E|). Thus, the computational results may further improve by using

Hopcroft-Karp algorithm.

M

(a)

M’

(b)

Fig. 16 Matching by augmenting paths. (a) Matching M , red edges are in the

matching and red vertices are matched vertices. There’s an augmenting path. (b)

Matching M ′ obtained by augmenting M . Now all vertices are matched.

Input: A bipartite graph G with partition sets A and B
Output: A maximum matching on G

M = {}
for ∀w ∈ A do

if w is unmatched
Find an unmatched vertex t ∈ B by BFS at vertex w

if ∃ such t

Augment the path from w to t and update M

end if
end if

end for

Return M

Fig. 17 Matching by augmenting paths on bipartite graphs.

Now that we have the maximum matching on G′[S ′], we can find the maximum
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independent set on G′[S ′] (the maximum clique in Gk[S
′]). First we include all the

unmatched vertices in the solution. It is clear that these vertices are all independent,

since otherwise we would have an augmenting path and the matching we had would

not be a maximum matching. For the matched vertices, we check their neighborhood

and include them in the solution set if they do not have any neighbors in the current

solution. In the end, we are guaranteed to have the maximum independent set.

For comparison purposes, we also implemented 1-plex formulation introduced

in [10] in order to find the maximum clique of Gk. A subset of vertices S is said to

be a k-plex if the following condition holds:

degG[S](v) = |N(v)
⋂

S| ≥ |S| − k ∀v ∈ S.

We chose this formulation because of its compactness compared to other formu-

lations.

For a graph G(V, E), let di = |V \N [i]|, where N [i] denotes the set of neighbors

of vertex i, including i itself. The binary variable xi = 1 if i belongs to the maximum

clique.

w(G) = max
∑
i∈V

xi (4.6)

subject to:

∑

j∈V \N [i]

xj ≤ di(1− xi) ∀i ∈ V, (4.7)

xi ∈ {0, 1}∀i ∈ V. (4.8)
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Table 1 Test instances for the maximum 2-clique problem.

input no. of edges density no. of fake edges in G2 initial soln optimal soln
r100-1 4523 0.914 96 47 71
r100-2 4831 0.976 47 35 88
r100-3 4782 0.966 76 38 82
r100-4 4840 0.978 44 34 89
r100-5 4794 0.968 80 40 85
r100-6 1721 0.348 352 29 29
r100-7 2065 0.417 388 24 24
r100-8 2082 0.421 400 25 25
r100-9 2135 0.431 379 28 28

r100-10 2096 0.423 394 27 27
r200-1 18232 0.916 300 73 135
r200-2 18994 0.954 239 72 153
r200-3 19281 0.969 226 70 161
r200-4 19399 0.975 169 81 174
r200-5 19387 0.974 135 64 164
r200-6 7015 0.353 1182 41 41
r200-7 8249 0.415 771 49 50
r200-8 8713 0.438 828 53 55
r200-9 9032 0.454 807 60 62

r200-10 9487 0.477 770 55 56
r200-11 12754 0.641 1299 76 81
r200-12 14541 0.731 727 86 91
r200-13 15513 0.780 664 91 101
r200-14 15756 0.792 574 98 105
r200-15 15693 0.789 582 97 107
r500-1 116637 0.935 913 199 360
r500-2 119430 0.957 710 203 377
r500-3 121710 0.976 481 182 409
r500-4 122370 0.981 401 227 426
r500-5 121778 0.976 628 215 411
r500-6 49143 0.394 6158 124 124
r500-7 55019 0.441 2097 114 115
r500-8 59808 0.479 2662 118 120
r500-9 60373 0.484 3401 128 129

r500-10 58664 0.470 3249 125 125
r1000-1 79293 0.159 32724 96 96
r1000-2 112080 0.224 6260 106 106
r1000-3 123853 0.248 10936 113 116
r1000-4 129114 0.258 7799 119 119
r1000-5 129124 0.259 7674 113 114
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IV.5. Computational Results

Both algorithms are implemented using C++ and CPLEX 11.0. The 1-plex formula-

tion is solved by CPLEX with default settings. For both algorithms, an initial solution

obtained by the greedy heuristic is used. Random test instances are generated and

run on a Pentium 4 computer with 3.20 GHz CPU. We ran these algorithms for the

maximum 2-clique problem. Table 1 displays the test instances. The optimal solution

and the initial solution are also displayed on this table. rx − y denotes the yth test

instance with x vertices. We created graphs with different edge densities. Densest

cases have an edge density around 0.9 and sparsest cases - around 0.2.

The results are displayed in Tables 2 and 3. We observe that the 1-plex for-

mulation outperforms our algorithm on dense instances. On the other hand, sparser

instances favor the k-clique algorithm. For the 1-plex formulation we report the solu-

tion time (in seconds), number of B&B nodes and also the simplex iterations. Since

the k-clique algorithm calls CPLEX for each pair that can lead to a better solution,

we report the number of such calls as well as the maximum number of B&B nodes

over all CPLEX calls, which gives an idea about memory usage. The CPLEX default

settings are powerful in terms of reducing the B&B tree space by using several heuris-

tics and cut generation. On the other hand, the structure of our k-clique algorithm

does not allow us to do further processing at a single node. As a natural outcome,

we search more nodes. But the results for instances r500 − 6, . . . , r500 − 10 show

that this is not always true. For the 1-plex formulation, CPLEX does many simplex

iterations for these instances and in 4 out of 5 instances it has a larger B&B tree

compared to the other algorithm. The average density of these instances is 0.45. The

average solution time for the 1-plex formulation is 1921 seconds whereas it only takes

52 seconds on average for the k-clique algorithm.
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Table 2 Comparison of 1-plex formulation and the k-clique algorithm. The solution

time is in seconds.

1-plex formulation k-clique algorithm
instance sol. time B&B

nodes
simplex
iter.

sol. time max
B&B
nodes

CPLEX
calls

r100-1 0.109 0 72 0.484 23 14
r100-2 0.094 0 13 0.031 0 0
r100-3 0.109 0 28 0.203 11 2
r100-4 0.078 0 13 0.125 0 1
r100-5 0.156 0 28 0.046 0 0
r100-6 0.546 0 410 0.016 0 0
r100-7 1.359 0 1524 0.047 0 0
r100-8 0.906 0 1114 0.031 0 0
r100-9 0.547 0 657 0.031 0 0

r100-10 0.547 0 654 0.031 0 0
r200-1 0.343 0 308 6.797 75 241
r200-2 0.141 0 168 3 7 97
r200-3 0.125 0 145 2.547 135 65
r200-4 0.109 0 50 1.157 3 3
r200-5 0.11 0 81 1.703 35 33
r200-6 58.249 53 15292 0.453 0 5
r200-7 32.281 14 7899 0.468 43 5
r200-8 14.906 5 3954 0.39 9 3
r200-9 4.406 0 2049 0.39 27 5

r200-10 15.953 0 4778 1.125 9 19
r200-11 1.484 0 762 2.156 323 5
r200-12 0.969 0 756 5.984 49 120
r200-13 0.609 0 618 4.657 41 110
r200-14 0.5 0 482 4.734 15 112
r200-15 0.719 0 744 5.562 67 205
r500-1 1.141 0 674 188.966 421 1655
r500-2 0.64 0 714 177.779 641 1865
r500-3 0.344 0 356 102.17 41 799
r500-4 0.312 0 354 70.031 3323 429
r500-5 0.281 0 385 102.045 3175 965
r500-6 3086.9 64 53000 37.656 1023 356
r500-7 2109.69 475 121426 35.452 247 467
r500-8 1497.96 554 124515 98.218 157 2050
r500-9 1288.05 475 113188 49.187 41 428

r500-10 1622.36 475 209336 40.609 63 448
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Table 3 Performance of 1-plex formulation on random UDGs with 1000 vertices. The

solution time is in seconds.

instance k-clique alg. sol. time time limit best soln soln gap (%)
r1000-1 6.218 3978.46 96 80.45
r1000-2 66.593 3181.98 106 78.81
r1000-3 112.092 2952.22 113 76.81
r1000-4 120.811 2838.83 119 75.54
r1000-5 182.935 2872.34 113 76.76

For larger instances, we focus on sparser cases. In fact, if we consider wireless

network applications, it is more likely to have sparser instances since denser instances

will yield more signal interference and also require more energy. When we run our

algorithms for graphs with 1000 vertices with an edge density around 0.2, we observe

that 1-plex formulation fails to give the optimal solution in a reasonable time. So we

introduce time limits for CPLEX. On the other hand, we can easily get the optimal

solution by the k-clique algorithm. Table 3 displays the solution time for the k-clique

algorithm to find the optimal solution as well as the results that 1-plex formulation

achieves within the time limit set. On the average, our algorithm finds the optimal

solution in 98 seconds whereas on an average of 3164 seconds, the 1-plex formulation

only shows that the solution it provides has a gap which is more than 75%.

During our implementation of the k-clique algorithm, we also observed that

whenever we do a preprocessing on the set S by deleting the vertices with a small

degree on the graph induced by set S, the performance of the algorithm improves

significantly. As displayed in Table 4, both the number of CPLEX calls and the

running time decrease. Figure 18 shows the improvement in the running time. The

curve labeled “with” shows the data obtained by doing the preprocessing. The x-axis

corresponds to the test instances in the order presented in Table 4.
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Table 4 Comparison of the k-clique algorithm with and without preprocessing set S.

The solution time is in seconds.

without preprocessing with preprocessing
instance sol. time B&B

nodes
CPLEX
calls

sol. time B&B
nodes

CPLEX
calls

r100-1 1.75 15 182 0.484 23 14
r100-2 0.266 7 20 0.031 0 0
r100-3 0.828 69 90 0.203 11 2
r100-4 0.281 5 22 0.125 0 1
r100-5 0.359 79 28 0.046 0 0
r100-6 0.156 3 9 0.016 0 0
r100-7 0.641 63 59 0.047 0 0
r100-8 0.391 11 38 0.031 0 0
r100-9 0.188 3 14 0.031 0 0

r100-10 0.266 3 20 0.031 0 0
r200-1 15.234 85 862 6.797 75 241
r200-2 7.953 29 569 3 7 97
r200-3 6.032 139 439 2.547 135 65
r200-4 2.61 13 174 1.157 3 3
r200-5 5.015 61 395 1.703 35 33
r200-6 2.562 15 252 0.453 0 5
r200-7 1.422 9 142 0.468 43 5
r200-8 1.234 13 121 0.39 9 3
r200-9 1.031 45 88 0.39 27 5

r200-10 4.969 9 439 1.125 9 19
r200-11 8.86 33 1 514 2.156 323 5
r200-12 17.672 39 891 5.984 49 120
r200-13 16.219 41 886 4.657 41 110
r200-14 12.89 11 769 4.734 15 112
r200-15 15.845 117 885 5.562 67 205
r500-1 334.762 335 4793 188.966 421 1655
r500-2 305.621 1719 4810 177.779 641 1865
r500-3 164.03 25 3249 102.17 41 799
r500-4 122.749 3323 2446 70.031 3323 429
r500-5 185.247 2641 3172 102.045 3175 965
r500-6 94.718 1025 2091 37.656 1023 356
r500-7 192.185 247 4257 35.452 247 467
r500-8 399.057 117 6905 98.218 157 2050
r500-9 308.153 9 4732 49.187 41 428

r500-10 163.248 131 4100 40.609 63 448
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Fig. 18 The effect of preprocessing the set S (deleting vertices of small degree) on

running time of the k-clique algorithm.

IV.6. Conclusion

In this chapter, we studied the maximum k-clique problem in unit disk graphs. We

conjecture that this problem is NP-hard. To support this conjecture, we presented

some complexity results of the clique problem in geometric graphs that are closely

related to the k-clique problem in unit disk graphs. We propose an exact solution pro-

cedure, which is a matching-based branch and bound method. We report the results

of computational experiments on randomly generated test instances. For comparison

purposes, we also solved this problem with CPLEX defaults by using the 1-plex for-

mulation on the kth power of the input graph. The test results show the effectiveness

of our algorithm, especially for the sparser instances.

As a future work, we would like to prove the computational complexity. We are

also interested in designing efficient approximation schemes. Analyzing this problem

in unit ball graphs is another task for future work. We believe that with some
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modifications to our exact solution procedure, we can also obtain a solution procedure

for the maximum k-club problem.
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CHAPTER V

THE MINIMUM K-BCDS PROBLEM IN UDGs

Typically, a wireless network is modeled as a unit-disk (unit-ball) graph, in which

vertices are given by points on the plane (in 3-dimensional Euclidean space), and

two vertices are connected by an edge if and only if the corresponding pair of points

has at most one-unit distance between them. Here the unit of distance represents

the transmission range of a wireless node, which is assumed to be the same for each

node. There are several variations of these popular geometric graphs that are used to

model wireless network topology, such as double-disk graphs, quasi-unit disk graphs,

unit ball graphs in a doubling metric and bounded independence graphs. However,

one common feature of the traditional models is the assumption that the range of

communication or its estimate is given in advance and is used as an input. Since for

some types of wireless networks, such as sensor networks, energy considerations are

extremely critical, this assumption becomes especially important.

In a wireless network, each node typically has transmission and reception pro-

cessing capabilities. The transmission of a signal between two nodes requires power

for the following [63]:

• The source node needs power to prepare the signal.

• Power is needed to support the link between two nodes. Let u and v be wireless

nodes with Euclidian distance du,v in between. The power needed is proportional

to dβ
u,v, where β is a real constant between 2 and 5 dependent on the transmission

environment. This is also called a path loss.

• The receiving node needs some power to receive, store and then process that
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signal.

Path loss is the step that requires the most power among others. Suppose we

have three nodes a, b and c such that da,b = db,c = 1 and da,c = 2. If we consider the

path loss formula, we observe that the transmission between nodes a and c can be

more power efficient if an indirect path a-b-c is chosen instead of a direct transmission

path a-c. Thus, determining the transmission range that minimizes the energy used

is an important decision problem.

The network topology, which is crucial in designing routing protocols, is com-

pletely defined by the transmission range. Therefore, the choice of the transmission

range has to be approached with utmost care. Several papers investigate this problem

with the goal of ensuring connectivity. Ideally, one would want to tie the choice of

transmission range to a specific routing protocol that will be used for communication

within the network. One of the most popular approaches in designing routing pro-

tocols is connected to the concept of virtual backbone, which is a (small) subset of

nodes that are used as a core for communication within the network. In particular,

connected dominating sets are often used to describe a virtual backbone in ad hoc

wireless networks.

We propose to use the bottleneck connected dominating set problem as a viable

approach to selecting the transmission range of a wireless node in a network.

Given a complete graph G = (V, E) with positive edge weights (costs, distances)

ce, e ∈ E, the bottleneck subgraph G(e) of G corresponding to the edge e is defined

as follows:

G(e) = (V,E(e)), where E(e) = {e′ ∈ E : ce′ ≤ ce}.

Then the cost of the bottleneck subgraph G(e) is defined as the cost of the maximum

weight edge in E(e), i.e., cost(G(e)) = ce. Given a subset of vertices S in G, its
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bottleneck connected domination cost, cost(S), is defined as the minimum cost of a

bottleneck subgraph G(e) of G such that S forms a connected dominating set in G(e).

The k-bottleneck connected dominating set (k-BCDS) problem is to find a subset of

k vertices with minimum bottleneck connected domination cost in G. A restricted

version of k-BCDS problem, in which the edge weights are required to satisfy the

triangle inequality, will be denoted by k-BCDS(∆).

V.1. Literature Review

The problem of designing an energy-efficient wireless network has been studied by

many researchers. Most of the papers in this research area focus on the packet radio

network model of wireless networks. The main difference from the unit disk model

is that transmissions of messages interfere at a node if at least two of its neighbors

transmit a message at the same time. The analysis of different designs are mostly

tested by simulation experiments.

Deng et al. [30] consider the radio transmission range as a static system parameter

determined a priori, i.e., during system design, and used throughout the lifetime of

a wireless ad hoc network. Assuming uniformly distributed network nodes, they

show that the optimum transmission range is influenced more by node density than

the network coverage area. The path-loss exponent is also an important parameter

in determining the optimal range. The authors observe that when the path-loss

exponent is four, the optimal transmission ranges are almost identical over different

node densities in their experiments. When the exponent is two, they observe that the

optimal transmission range decreases as the node density increases.

Wu et al. [82] focus on the connected dominating set to optimize energy con-

sumption via transmission range reduction. The main motivation for their approach
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is that in general, nodes in the CDS consume more energy to handle various bypass

traffic than nodes outside the set. Thus, to prolong the life span of each node and,

hence, the network, nodes should be alternated, when possible, to form a CDS. The

objective of this research is to devise a selection scheme (for dominating hosts) so that

the overall energy consumption is balanced in the network, and at the same time, a

relatively small connected dominating set is generated. The authors use a simple

localized CDS algorithm which is based on the so called marking process in which a

node is included in the CDS if two of its neighbors are not directly connected. This

method is proposed by Wu and Li [81]. After this marking process some rules are

applied to remove a vertex from the CDS, thus decreasing the size of the CDS. In

[82] the authors consider some extended rules for reducing the CDS size by removing

certain nodes. The authors assume that initially the network is connected under the

uniform transmission range. Each node dynamically reduces its transmission range

when possible based on neighbor distance information and the neighbor set of each

neighbor or just the forwarding neighbor, which is the closest neighbor. Next, they

update the CDS based on the above technique by using node elimination rules. They

run simulation experiments and compare the effect of different node elimination rules

on the CDS size and the energy consumption of the network.

Rodoplu and Meng [69] propose a local optimization scheme that finds the min-

imum energy links and dynamically updates them. They consider a directed graph,

and the goal is guaranteeing strong connectivity and minimum energy consumption

in the network. A directed graph is strongly connected if there exists a path between

any pair of vertices in the graph. They dynamically compute a sparse and strongly

connected graph of communication links between all the nodes by using only local

information, and the existing links will be only between nodes that are close enough

to be neighbors. Their scheme is both applicable for stationary and mobile networks.



77

The efficiency of their scheme is supported by simulation experiments.

Li and Halpern [62] propose an improvement to the method proposed by Rodoplu

and Meng [69] by relaxing the assumption in the former one, which states that the

transmission region is a circular region.

Sanchez et al. [71] present an algorithm to calculate the minimum transmission

range of the transceivers that is required to achieve, with some probability, full net-

work connectivity. They identify the critical link for which the removal will partition

the graph. Given two network nodes a and b, the authors describe a and b as direct

neighbors if there is no other node c that is closer to a than b is and vice versa. They

find the critical range by considering the direct neighbor graph. For each loop of

this graph, they remove the maximum weight link. Then the maximum weight of the

remaining edges corresponds to the critical range. Although the authors do not state

this explicitly, this problem is a minimum bottleneck spanning tree problem.

The k-BCDS problem that we propose optimizes the transmission range by en-

suring a predetermined connected dominating set of size k. To our best knowledge,

this problem has not been studied before in the context of wireless networks. We as-

sume that transmission ranges of all nodes are the same and a unit disk graph model

is used.

In the context of graph theory, there are several bottleneck problems studied,

such as minimum bottleneck spanning tree, bottleneck traveling salesman problem,

etc. The bottleneck version of the dominating set problems that was studied previ-

ously focuses on vertex weighted graphs, where bottleneck cost is defined in terms

of the vertex weights. Yen [84] introduces the bottleneck dominating set and bot-

tleneck independent dominating set problems, where the bottleneck is defined as the

maximum weighted vertex. Thus, the goal is finding a dominating set in which the

maximum weight of any vertex in the dominating set is minimized. The author shows
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that this problem can be solved in O(n log n+m) time. On the other hand, the bottle-

neck independent dominating set problem is proven to be NP-hard on planar graphs.

Kloks et al. [59] present linear-time algorithms for minimum bottleneck dominating

set and minimum bottleneck total dominating set problems. They provide polyno-

mial algorithms for the minimum bottleneck independent dominating set problem

restricted to chordal graphs, split graphs, permutation graphs and graphs of bounded

treewidth. They also state that the minimum bottleneck connected dominating set

problem can be solved in O(m log n) time.

In our problem, we define the bottleneck cost in terms of the edge weights. To

our best knowledge, there are no published results on the edge-weighted bottleneck

dominating set problems.

V.2. Complexity and Approximation

We show that the approximation of the k-BCDS(∆) problem with a factor 2 − ε is

NP-hard. This also shows that the k-BCDS problem is NP-hard on general graphs.

Proposition 1. It is NP-hard to approximate the k-BCDS(∆) problem within a factor

2− ε for any ε > 0.

Proof. The reduction is from the minimum connected dominating set problem in

general graphs. Given a graph G, we form a new edge-weighted complete graph G′

such that V (G) = V (G′) and the weight of an edge e, we, is 1 if e ∈ E(G) and 2

otherwise. Clearly, the edge weights of G′ satisfy the triangle inequality. Now suppose

that we have a 2− ε approximation algorithm, A, for the k-BCDS(∆) problem. If we

apply this algorithm to G′, we have the following possibilities. Case 1: A(G′) = 2.

This means that the bottleneck cost of 2 is optimal, since if it was not then the

optimal objective value would be 1, so A(G′) = 2 would be impossible. This leads us
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to the conclusion that the cardinality of a minimum CDS in G is strictly greater than

k. Case 2: A(G′) = 1. This means the optimal solution for minimum k-BCDS(∆) in

G is 1. Thus there exists a CDS in G of size less than or equal to k.

Considering these two cases, the minimum connected dominating set problem can

be solved in polynomial time for any graph G by applying the algorithm A. Thus,

it is NP-hard to approximate the k-BCDS(∆) problem within a factor 2 − ε for any

ε > 0, unless P = NP .

Proposition 2. There exists a 3-approximation algorithm for the k-BCDS(∆) prob-

lem.

In order to prove this proposition, we present an approximation algorithm and

show that its performance ratio is at most 3. The proposed algorithm is similar to the

technique developed by Hochbaum and Shmoys for bottleneck problems [52] and is

outlined in Figure 19. The first step of the algorithm is to sort the edge weights. Next,

we solve the minimum bottleneck spanning tree problem in order to find the minimum

edge weight that guarantees connectivity in the graph. This is a lower bound for the

k-BCDS. We can further improve this bound in Step 2, by the following argument:

Lemma 14. Let ce∗ be the optimal bottleneck cost for the k-BCDS(∆) on a graph G

and let the edge (u, v) have the largest cost, c(u, v), in G. Then we have:

ce∗ ≥ c(u, v)/(k + 1).

Proof. Since in the optimal solution we will have a CDS of size k, the shortest path

between any pair of vertices can have at most k internal vertices in the corresponding

bottleneck graph G(e∗). Since edge weights in G satisfy the triangle inequality, we

have:

c(a, b) ≤ c(P ∗
a,b) ≤ (k + 1)ce∗∀(a, b) ∈ E(G),
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Input: G = (V,E) with edge weights satisfying the triangle inequality; k
Output: A k-BCDS in G

0. Sort all edges in E in nondecreasing order of their costs:

ce1 ≤ ce2 ≤ · · · ≤ cem , m =
(|V |

2

)
.

1. Compute a minimum bottleneck spanning tree T of G with cost(T ) = cẽ;

2. If cẽ < cem/(k + 1) then set cẽ = cem/(k + 1);

3. Let ei be the edge weight such that cei − cẽ is nonnegative and minimal;

4. Set Ĝ = G(ei);

5. Compute a maximal independent set I of Ĝ2 as follows
I = {v} where v is an arbitrary vertex in Ĝ
while I is not maximal

Choose a feasible vertex w in Ĝ such that ∃u ∈ I: dĜ(u,w) = 3
I = I

⋃{w}
end while

6. If |I| > k
i = i + 1;
go to step 4;

end if

7. Return I.

Fig. 19 The 3-approximation algorithm for k-BCDS(∆).

where c(a, b) is the cost of the edge (a, b) and c(P ∗
a,b) is the total cost of the shortest

path from the vertex a to the vertex b on the bottleneck graph G(e∗). Therefore we

have:

ce∗ ≥ c(u, v)/(k + 1).

In Step 4 of our approximation algorithm, we form the bottleneck graph corre-

sponding to the edge ei, Ĝ = G(ei). We compute a maximal independent set I on Ĝ2

by starting from an arbitrary vertex. We expand the set I by including a vertex such
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that it is in the 3-hop neighborhood of some vertex of I in Ĝ and not a neighbor of

any vertex of I in Ĝ2. We stop when it is not possible to expand I, i.e., I is a maximal

independent set in Ĝ2. If |I| ≤ k, we can claim that I is a connected dominating

set of size less than or equal to k on the bottleneck graph G(e′), where ce′ = 3cei
.

Otherwise, we pick the next edge weight in G and continue our search.

Proposition 3. For any given instance of the k-BCDS(∆) problem we have

cost(I) ≤ 3cost(D∗),

where D∗ denotes an optimal solution of k-BCDS(∆) problem for this instance.

Proof. By the construction of the set I, it is easy to see that each time we add a

vertex to set I, it is at most at distance 3cei
to some vertex in I. Thus, the output

set I is of size ≤ k and is a connected dominating set in G(e′), where ce′ = 3cei
. It is

easy to see that cost(D∗) ≤ cost(I) since I is a feasible solution and D∗ is an optimal

solution. Furthermore, if cei
≤ cost(I)/3, then the corresponding bottleneck graph

G(ei) has a maximal independent set of cardinality greater than k. This indicates

that the corresponding bottleneck graph cannot have a connected dominating set of

size ≤ k. Thus, we have:

cost(D∗) ≤ cost(I),

cost(D∗) ≥ cost(I)/3.

Minimum bottleneck spanning tree: The 3-approximation algorithm for the

k-BCDS(∆) problem requires the computation of a minimum bottleneck spanning

tree. A spanning tree T of G is a minimum-bottleneck spanning tree if there is no
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spanning tree T of G with a cheaper bottleneck edge.

Lemma 15. Given a graph G, any minimum spanning tree of G is also a minimum

bottleneck spanning tree.

Proof. Given a graph G, let T denote the minimum spanning tree in G. Assume that

there exists a spanning tree T ′ which has a cheaper bottleneck edge. Let the edge

(a, b) denote the bottleneck edge of T . Consider the trees Ta and Tb obtained from T

by the removal of the edge (a, b). Since T ′ is also a spanning tree of G, there exists

an edge in T ′ that connects Ta and Tb. Furthermore, the cost of this edge is less than

or equal to the bottleneck cost of T ′ and hence it is less than c(a, b). Hence, there

exists a spanning tree with cost less than the cost of T . This is a contradiction with

T being the minimum spanning tree. Thus, every minimum spanning tree is also a

minimum bottleneck spanning tree.

Based on Lemma 15, we can use a minimum spanning tree algorithm such as

Prim’s algorithm or Kruskal’s algorithm to find the minimum bottleneck spanning

tree.

Search procedure: Given a graph G, it is easy to see that as we increase the

bottleneck cost, the size of a minimum connected dominating set is non-increasing.

Our goal is to find the minimum bottleneck cost at which we have a connected dom-

inating set of size k. Thus, instead of incrementing the bottleneck cost one by one

in the order of edge costs, we can use a better search technique such as the binary

search method.
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V.2.1. Complexity in UDGs and UBGs

Theorem 17. The minimum k-BCDS can be solved in polynomial time in unit disk

and unit ball graphs for any fixed k > 0.

Proof. Let G be a unit disk or a unit ball graph and k a given constant. The edge

costs are the pairwise distances between vertices. It is easy to see that the edge

costs satisfy the triangle inequality. Thus, the following steps can give us the optimal

solution:

• Use the 3-approximation algorithm to determine the range [e′, 3e′] efficiently.

• Apply a search procedure in the interval [e′, 3e′] by using the PTAS for the

minimum connected dominating set problem [85] in UBGs by setting:

ε = 1/(k + 1).

Let Se be the connected dominating set found by the PTAS for the bottleneck

graph corresponding to cost e, and let Oe be the minimum connected dominating set

for the same problem. It is easy to see that:

|Se| > k ⇔ |Oe| > k,

|Se| ≤ k ⇔ |Oe| ≤ k.

Since ε = 1/(k + 1) and |Oe| ≥ |Se|/(1 + ε), whenever |Se| > k (which means

|Se| ≥ k + 1) we have:

|Oe| ≥ |Se|/(1 + ε) = |Se|k + 1

k + 2
,

|Oe| ≥ (k + 1)2

k + 2
= k +

1

k + 2
.

Thus, we terminate the search at the smallest edge cost in [e′, 3e′] for which



84

Se ≤ k. The running time of each step is O(n(k+1)3) since the PTAS runs in O(n(k+1)3)

time and it is the most time-consuming step. We need to run the PTAS at most for n2

times. Therefore, although this is not a practical solution procedure, for a constant

k the running time is polynomial.

V.3. Conclusion

In this chapter, we studied the bottleneck connected dominating set problem. Mo-

tivated by the wireless network applications, we propose this problem as a viable

approach to determine an optimal transmission range for a network. We presented

the work done in the literature in terms of optimizing the transmission range with

respect to several other factors such as connectivity. We observed that the previous

approaches did not focus on the problem when a predetermined size of a “virtual

backbone” is sought. A “virtual backbone” corresponds to a connected dominating

set in a graph-theoretic representation of the network. The minimum k-BCDS prob-

lem seeks a minimum edge weight in the graph such that the corresponding bottleneck

graph has a connected dominating set of size k. We also observed that this problem

has not been studied in the graph theory literature. The vertex weighted version

is known to be polynomial-time solvable. We proved that this problem is NP-hard

even when it is restricted to graphs whose edge weights satisfy the triangle inequality.

Furthermore, we also showed that it is not approximable within a factor of 2 − ε

even for graphs whose edge weights satisfy the triangle inequality. We proposed a

3-approximation algorithm for graphs that satisfy the triangle inequality. Finally, we

proved that this problem is solvable in O(n2+(k+1)3) when the input graph is a unit

disk or a unit ball graph. Our future goal is to find more efficient solution procedures

for unit ball graphs.
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CHAPTER VI

HEURISTIC JUSTIFICATION

VI.1. Introduction

Due to the inherent computational complexity of most combinatorial optimization

problems, one cannot hope to solve very large-scale instances to optimality and (meta)

heuristics are usually applied in practice. In many cases, researchers and practition-

ers rely on variations of greedy heuristics that are very simple to understand and

implement. This simplicity and effectiveness of heuristic approaches earned them a

considerable popularity in optimization community. On the other hand, there is a fair

amount of skepticism towards such approaches due to a lack of theoretical foundations

behind them. Indeed, in most cases there is no provable approximation ratio for the

performance of heuristics, meaning that the computed solution may potentially be

arbitrarily far away from the optimum. Then a reasonable question to ask is, what

is the reason a particular simple heuristic is chosen as the solution approach for a

given problem? Is this heuristic really the “best” choice? For some problems that

allow constant-ratio approximation algorithms, but are hard to approximate within a

given constant factor, questions of this type have been answered as follows. Assume

that we know that a problem P is hard to approximate within a factor better than

c, where c is a given constant. Then any polynomial-time algorithm A that approx-

imates P within the factor of c can be claimed to be the “best” in the sense that

no other polynomial-time algorithm can be provably better than A, unless P = NP .

However, there are many problems associated with the hardness of approximation

results claiming that these problems are hard to approximate within any constant
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factor. In this case, we cannot claim that a certain heuristic is the “best” based

on an approximation ratio. We propose an approach to justify the usage of certain

greedy heuristics in such cases, which extends the common definition of the “best

approximation algorithm” to the problems for which a constant-ratio approximation

algorithm is unlikely to be found. Namely, given a problem P and a heuristic algo-

rithm A for this problem, we can claim that this heuristic is the “best” for the given

problem if finding a solution better than that output by A (whenever one exists) is

NP -hard. To prove such a result it suffices to show that it is NP -hard to recognize

whether there is a gap between the optimal objective function value and the value of

the solution output by A. Our research is motivated by the following result.

Let ω̄k(G) denotes the k-club number of G. Clearly, for l < k we have

ω̄l(G) ≤ ω̄k(G).

For a simple undirected graph and a given positive integer k, a k-club is a subset

of vertices that induces a subgraph of diameter at most k, and the k-club number

ω̄k(G) is the cardinality of a largest k-club in G. Note that for l = 1 an l-club is a

clique and ω̄1(G) ≡ ω(G), where ω(G) is the clique number of G. In this case, for

k ≥ 2, we have an obvious inequality:

ω(G) ≤ ∆(G) + 1 ≤ ω̄k(G),

in which, similarly to the famous Sandwich Theorem, a polynomially-computable

value is sandwiched between two values that are NP -hard to compute. We have

proved the following statement:

Proposition 4. Let positive integers k and l, l < k be given. The problem of checking

whether ω̄l(G) = ω̄k(G) is NP -hard.
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Using this proposition, we obtain the following corollary.

Corollary 2. Let k be a fixed integer, k ≥ 2. Unless P = NP , there cannot be a

polynomial time algorithm that finds a k-club of size greater than ∆(G) + 1 whenever

such a k-club exists in the graph.

Corollary 2 can be used as a reasonable theoretical justification of using a sim-

ple heuristic (based on finding a maximum-degree vertex) for the maximum k-club

problem with fixed k ≥ 2. It may also be viewed as an additional evidence of the

problem’s practical intractability. On the other hand, this should not prevent the

practitioners from designing more sophisticated approaches for the maximum k-club

problem, since the above result describes just the worst-case behavior of the heuris-

tics. Simple greedy heuristics are often used to solve large-scale instances of NP -hard

problems in practice, and similar complexity results for other problems would be a

good way to explain the choice of the approach from theoretical perspective.

In the remainder of this chapter, we present the proof of Proposition 4 and

show how we obtain Corollary 2. Similar results will be presented for the maximum

clique, maximum independent set, maximum k-plex and minimum vertex coloring

problems. We also investigate the more general node deletion problems (maximum

induced subgraph with some property P ) with respect to provably best heuristics.

VI.2. The Maximum k-Club Problem

Proof of Proposition 4: Assume that there is a polynomial time algorithm Akl(G)

that, given a graph G , correctly answers the question “Is ω̄l(G) = ω̄k(G)?” with

either “yes” or “no”. Next we analyze the two possible cases.

(i) The answer given by Akl(G) is “no”. Then we run the following polynomial-

time algorithm to compute ω̄k(G):
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0. G′ = G, i = 1;

1. while the answer of Akl(G) is “no” repeat

G′ = G′ ∪ Ci, where Ci is the clique on i vertices;

i = i + 1.

2. return i.

Note that starting from i = ω̄l(G) each next iteration of this algorithm will

increase ω̄l(G
′) by 1 without changing ω̄k(G

′) = ω̄k(G). The algorithm will

terminate when i = ω̄l(G
′) = ω̄k(G

′) = ω̄k(G).

(ii) The answer given by Akl(G) is “yes”. Again, we want to design a polynomial

time algorithm for computing ω̄k(G). Since k is a constant, we can check if

ω̄k(G) < k by examining all subsets of size < k in O(nk) time. Thus, we are

interested only in the case where ω̄k(G) ≥ k. Denote by Bh
s the (h, s)-broom

graph, which consists of a path of h vertices and s more vertices connected to

one of the endpoints of this path. As an example, Figure 20 shows the broom

graph B3
4 . Obviously, the diameter of Bk

s is equal to k if k ≥ 1, therefore, for

any l < k, Bk
s is a k-club, but not an l-club. We can use the broom graphs to

compute ω̄k(G) as follows.

0. G′ = G, i = 1;

1. while the answer of Akl(G) is “yes” repeat

G′ = G′ ∪Bk
i ;
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Fig. 20 A sample broom graph B3

4 .

i = i + 1.

2. return i + k − 1.

Hence, we have shown that if Akl(G) was a polynomial-time algorithm, then we would

be able to compute ω̄k(G) in polynomial time. The result follows from NP -hardness

of computing ω̄k(G) for any fixed k. 2

Next we discuss the implications of the above complexity result for the case

when l = 1 and k ≥ 2. Note that ω(G) ≤ ∆(G) + 1 ≤ ω̄k(G) and we can easily check

whether ω(G) = ∆(G) + 1 by checking, for each maximum degree vertex in G, if its

neighbors form a clique. Hence, it is NP -hard to check whether ω̄k(G) = ∆(G) + 1.

This implies that, unless P = NP , one cannot design a polynomial-time heuristic

for the maximum k-club problem, which is provably better than the trivial approach

consisting in picking a maximum degree vertex and all its neighbors as the output

k-club. Indeed, existence of a polynomial-time algorithm that finds a k-club of size

greater than ∆(G) + 1 whenever ω̄k(G) > ∆(G) + 1 would imply that one can check

in polynomial time whether ω̄k(G) = ∆(G) + 1. Thus, we obtain Corollary 2.

Assume that one needs to solve the maximum k-club problem in G for some

fixed large k. If one is given a polynomially computable parameter vl,k(G) such that
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ω̄l(G) ≤ vl,k(G) ≤ ω̄k(G), it seems natural to expect a higher value of vl,k(G) to

correspond to a higher the value of l. However, since for l ≥ 2 we have

ω(G) ≤ ∆(G) + 1 ≤ ω̄l(G) ≤ vl,k(G) ≤ ω̄k(G),

Corollary 2 implies that we cannot expect that vl,k will dominate ∆(G)+1, no matter

how high the value of l < k is.

In a special case when k = 2l, we can use vl,k(G) = ∆(Gl) + 1, where Gl is the

lth power of graph G, which is defined on the same set of vertices as G with edges

connecting all pairs of vertices that are distance at most p from each other. It is easy

to see that ω̄l ≤ ∆(Gl) + 1 ≤ ω̄2l and ω̄l = ∆(Gl) + 1 if and only if the neighbors

of one of the vertices of degree ∆(Gl) + 1 in Gl form a clique in Gl (which can be

easily checked). Therefore, checking if ∆(Gl) + 1 = ω̄2l is NP -hard. Note that for

two positive integers p and r, such that p > r > 1, we have ∆(G) ≤ ∆(Gr) ≤ ∆(Gp)

and

ω(G) ≤ ∆(G) + 1 ≤ ω̄r(G) ≤ ∆(Gr) + 1 ≤ ∆(Gp) + 1 ≤ ω̄2p(G).

Since ∆(Gr) < ∆(Gp) implies ω̄r(G) < ω̄2p(G), the problem of checking whether

ω̄r(G) = ω̄2p(G) remains NP -hard even if restricted to graphs with ∆(Gr) = ∆(Gp).

VI.3. Maximum Independent Set and Maximum Clique Problems

It is not possible to approximate the maximum independent set problem within a

factor of ∆ε for some ε > 0 [6]. Similarly, the maximum clique problem is not approx-

imable within a factor of n1−ε [49]. In an interesting related paper [21], Busygin and

Pasechnik have shown that it is NP -hard to check whether χ̄(G)− α(G) = 0, where

χ̄(G) denotes the cardinality of a minimum clique partitioning in G and α(G) is the in-

dependence number of G. This is in contrast to the fact that checking whether a graph
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G is perfect (i.e., for every subset S of vertices we have χ̄(G[S]) = α(G[S])) is polyno-

mial [28]. The Busygin-Pasechnik result implies that any polynomially-computable

parameter that lies between α(G) and χ̄(G) will provide the “best” upper bound

for the independence number in the sense that no other polynomially computable

bound can be provably better for all graphs where this bound can be improved. In

particular, the Lovász theta is one such polynomially computable bound [42].

Since a maximum independent set in a graph G corresponds to the maximum

clique problem in G and a minimum clique partitioning in G corresponds to a mini-

mum vertex coloring in (G), the above complexity result also applies to the maximum

clique and minimum vertex coloring problems. This result is in terms of a provably

“best”upper bound for the maximum clique and maximum independent set prob-

lems. Now, we outline a sequential greedy heuristic for the maximum clique problem

and prove that we cannot have an approximation algorithm provably better than our

greedy heuristic, unless P = NP .

The greedy heuristic outlined in Figure 21 first picks a maximum degree vertex

and includes it in the current clique C. The remaining steps are repeated till the

maximality is achieved. The set S denotes the set of possible candidates for inclusion

in the clique. Each vertex in S is a neighbor for all the vertices in the current clique C.

Among these candidates, we choose the vertex with maximum degree on the induced

graph G[S] and include it in the solution. We repeat this procedure until the set S is

empty. When S is empty, we attain maximality since there does not exist any vertex

that can be included in the solution.

Proposition 5. Let G be an undirected graph and Cg(G) be a maximal clique obtained

by the greedy heuristic in Figure 21 and ω(G) denote the cardinality of a maximum

clique in G. It is NP-hard to decide if ω(G)− |Cg(G)| > 0 unless P = NP .
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Input: An undirected graph G
Output: A maximal clique, C in G

Find the vertex in G with maximum degree, vmax

C = {vmax}
Repeat {

S = {w ∈ V : w ∈ N(u)∀u ∈ C}
for ∀v ∈ S do

score(v) = degG[S](v)
end for
Let wmax be the vertex with maximum score, C = C

⋃{wmax}
} until S = ∅
Return C

Fig. 21 Greedy heuristic for the maximum clique problem.

Proof. Suppose that we have a polynomial time algorithm ACg(G) that, given a graph

G , correctly answers the question “Is ω(G) − |Cg(G)| > 0?” with either “yes” or

“no”. Now let’s analyze the case when the output of this algorithm is “no”. Let Gi

denote the graph obtained from G by adding i vertices that form a clique and are

connected to all the vertices in Cg(G). Then we run the following polynomial-time

algorithm to compute ω(G):

0. G′ = G, i = 1;

1. while the answer of ACg(G
′) is “no” repeat

G′ = Gi;

i = i + 1.

2. return i− 1 + Cg(G).
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Note that each iteration of this algorithm will increase Cg(G
′) by 1 without changing

ω(G) = ω(G′). The algorithm will terminate when i−1+Cg(G) = Cg(G
′) = ω(G′) =

ω(G). By construction of the graph Gi, if vmax is a maximum degree vertex in G, it

also has the maximum degree in Gi. The same holds for the subsequent construction of

the greedy solution. Each time we include a vertex v in the greedy solution whenever

it has the largest degree in the induced graph G[S], where S is the set of the common

neighbors of the vertices in the current clique. It is easy to see that if v has the

largest degree in G[S], then v also has the largest degree in Gi[Si], where Si is the set

of common neighbors in the current clique in Gi and we have Si = S
⋃

Gi \G. Thus,

the existence of such an algorithm would enable us to compute the clique number in

polynomial time.

Proposition 5 implies that one cannot find a polynomial-time approximation

algorithm that always gives a solution better than the greedy heuristics outlined in

Figure 21 whenever a better solution exists. Since the same greedy heuristic provides

a maximal independent set when applied on the complement graph, this result also

holds for maximum independent set problem.

VI.4. Minimum Vertex Coloring and Minimum Clique Partitioning

The chromatic number of a graph G is denoted by χ(G). The well known greedy

algorithm for vertex coloring considers the vertices in a specific order v1, . . . , vn and

assigns to vi the smallest available color not used by the neighbors of vi among

v1, . . . , vi−1, adding a new color if needed. The quality of the resulting coloring

depends on the chosen ordering. If the vertices are ordered with respect to their

degrees (maximum degree first), the greedy method outputs ∆+1 colors in the worst

case.
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Brook’s Theorem: χ(G) ≤ ∆(G) for a connected, simple graph G, unless G is

a complete graph or an odd cycle.

Since we can determine whether a graph is a complete graph or an odd cycle

in polynomial time, we can easily check if χ(G) ≤ ∆(G) + 1. Thus, the greedy

coloring that orders the vertices with respect to degrees cannot be claimed a provably

“best” heuristic. Now let us consider ordering with respect to a breadth first search

(BFS) tree. We consider connected graphs. It is easy to see that, if the graph is not

connected we can run the same procedure for each connected component of the input

graph. Suppose G is the input graph. We can assume that G is neither complete nor

an odd cycle. Therefore, there exists a vertex v in G with degree less than ∆(G).

We make a breadth first search of G starting at vertex v and label the vertices with

respect to the order of their appearance in the search tree. Now that we have an

ordering v1, . . . , vn, we start coloring the nodes in the backward order. It is easy to

see that for any vertex vi, there exist at most ∆(G)−1 neighbors already colored. For

internal nodes, this is true since they need to have at least one neighbor that has not

been colored yet, which is encountered in the search tree before the current one. For

the vertex v, this is true since it is not a maximum degree vertex. Thus, we need at

most ∆(G) colors for the whole graph. Now we analyze the theoretical performance

of this heuristic based on BFS.

Proposition 6. Given a connected graph G which is neither complete nor an odd

cycle, it is NP-hard to decide whether χ(G) < ∆(G).

Proof. This proposition is easy to prove based on the following results. Maifray and

Preissmann [65] proved that the 3-colorability is NP-complete even restricted to the

class of triangle-free graphs with maximum degree four. They also state a theorem
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derived from the results of Garey and Johnson by using the transformations given

in Theorems 4.2 and 4.1 in [39]. This theorem states that the 3-colorability is NP-

complete even when restricted to planar graphs with maximum degree four. Although

not mentioned explicitly in any of these papers, they directly imply that it is NP-

complete to decide whether χ(G) < ∆(G) since this is the case even for a planar graph

with maximum degree four or a triangle-free graph with maximum degree four.

Thus, Proposition 6 implies that the greedy coloring based on the order men-

tioned above, which uses a breadth first search, is a provably “best” heuristic in the

sense that it is impossible to have an approximation scheme which always guarantees

a better solution whenever it exists, unless P = NP .

Since the minimum clique partition problem is equivalent to the minimum vertex

coloring in the complement graph, this result also applies to the minimum clique

partition problem.

VI.5. The Maximum k-Plex Problem

Given a graph G and an integer k > 0, a subset of vertices S is said to be a k-plex if

the following condition holds:

degG[S](v) ≥ |S| − k ∀v ∈ S.

A k-plex is maximal if it is not strictly contained in any other k-plex. The

cardinality of the maximum k-plex is denoted by ωk(G). Balasundaram et al. proved

the NP-hardness of the maximum k-plex problem for any fixed positive integer k.

Similar to the k-club problem, for l < k we have

ωl(G) ≤ ωk(G).
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Proposition 7. Let positive integers k and l, l < k be given. The problem of checking

whether ωl(G) = ωk(G) is NP -hard..

Proof. It is easy to prove Proposition 7 by using a similar scheme as in the proof

of Proposition 4 for the k-club problem. Assume that there is a polynomial time

algorithm Akl(G) that, given a graph G , correctly answers the question “Is ωl(G) =

ωk(G)?” with either “yes” or “no”. If the answer is “no”, we can compute the value of

ωk(G) in polynomial time by repeatedly running Akl(G) until we get a ”yes” answer.

Similar to the k-club case, at the ith iteration the input graph for Akl consists of the

original graph and a separate clique of size i. Starting from i = ωl(G), the ωl(G
′)

increases by one at each iteration while ωk(G
′) does not change. Upon termination

we have i = ωk(G). In case the answer is “yes”, we do the following:

0. G′ = G, i = 0;

1. while the answer of Akl(G) is “yes” repeat

G′ = G′ ∪ Ck+2
i ;

i = i + 1.

2. return i + k.

The graph Ck+2
i is constructed as follows. First we form a cycle consisting of k + 2

vertices. Clearly this is a k-plex but not an l-plex. Then we add a clique of size i

such that every vertex in the clique is connected to all k + 2 vertices in the cycle.

Thus Ck+2
i is a k-plex of size i + k + 2 but not an l-plex. Thus, upon termination we

observe that ωk(G) = ωl(G) = i + k. The proof is completed by the fact that it is

NP-hard to compute ωk(G) for any fixed positive integer k.
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Now we investigate the performance of a greedy heuristic. It is easy to see that

any maximal clique can be extended to a maximal k-plex. Now consider the following

simple greedy heuristic outlined in Figure 22. We first find a maximal clique by the

greedy heuristic described earlier. Next we order the remaining vertices in decreasing

order with respect to their degrees. Following this order, we include a vertex in the

solution if its inclusion does not violate the k-plex property. Since we search through

all the vertices in the graph, the output is a maximal k-plex.

Input: An undirected graph G and an integer k > 0
Output: A maximal k-plex, Ck in G

Find a maximal clique C by using the greedy heuristic in Figure 21

S = V (G) \ C

Order the vertices in S, v1, ..., v|S|, with respect to their degrees in G

Ck = C

for v = v1 : v|S| do
if C

⋃{v} is a k-plex then
Ck = Ck

⋃{v}
end for

Return Ck

Fig. 22 Greedy heuristic for the maximum k-plex problem.

Proposition 8. Let G be an undirected graph and Ck(G) be a maximal k-plex obtained

by the greedy heuristic in Figure 22. It is NP-hard to decide if ωk(G) − |Ck(G)| > 0

unless P = NP .

Proof. Similar to the proof of Proposition 5, suppose we have a polynomial time

algorithm A(G) that correctly answers the question “Is ωk(G)− |Ck(G)| > 0?” with
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either “yes” or “no”. If the answer is “no”, at the ith iteration we form a clique

of size i and connect all the vertices in this clique to all the vertices of Ck(G) and

thus obtain the graph Gi. Since the inclusion of these vertices in the graph preserves

the degree orders that are used in the greedy heuristics for the maximal clique and

maximal k−plex, the output of the heuristic at the ith step is |Ck(Gi)| = |Ck(G)|+ i.

Also, observe that ωk(G) = ωk(Gi). We terminate when the answer of A(G) is

“yes”, at which point we are able to identify ωk(G) = ωk(Gi) = |Ck(G)| + i. Thus,

by the NP-hardness of the maximum k-plex problem, we conclude that deciding if

ωk(G)− |Ck(G)| > 0 is NP-hard.

VI.6. Node Deletion Problem

So far we have shown that the greedy heuristics for the maximum clique, maximum

independent set, minimum vertex color, minimum clique partition, maximum k-plex

and maximum k-club problems are provably “best” in terms of showing the NP-

hardness of whether there exists a gap between the heuristic output and the optimal

solution. In all these, we used similar arguments except for the minimum vertex

coloring, maximum k-club and the minimum clique partition problems. Thus, we

expect to have similar results for a broader class of problems that includes all of them

except for the vertex color, clique partition and k-club problems.

If π is a graph property, the general node deletion problem can be stated as

follows: Find a minimum number of nodes, whose deletion results in a subgraph

satisfying property π. We focus on nontrivial, additive (or co-additive), hereditary and

interesting graph properties. A graph property is nontrivial if it is true for infinitely

many graphs and false for infinitely many graphs. An alternative description for a

nontrivial property is that it is true for a single node and is not satisfied by all the
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graphs in a given input domain. A graph property is hereditary on induced subgraphs

if for any graph G with property π, all vertex-induced subgraphs of G also satisfy

property π. A graph property is additive, if it is closed under disjoint unions. It is co-

additive, if its complement is additive. Some examples of such hereditary properties

are planar, outerplanar, bipartite, acyclic, degree constrained, clique (co-additive)

and independent set [61]. A property is called interesting (in a given input domain) if

there are arbitrarily large graphs satisfying π. Observe that neither minimum vertex

color nor minimum clique partition problems are related to these graph properties.

For the k-club problem, it is easy to see that it is not hereditary on induced subgraphs

since deleting a vertex may increase the diameter.

Theorem 18 (Yannakakis [61]). The node-deletion problem for nontrivial, interesting

graph properties that are hereditary on induced subgraphs is NP-complete.

Yannakakis proves the above theorem by a reduction from the vertex cover prob-

lem. It is also stated that any ε-approximate algorithm for node deletion problems

can be used as an ε-approximate algorithm for the vertex cover problem. From now

on we focus on the complement of the node deletion problem. The maximum subgraph

with property π problem is to find a maximum cardinality subgraph S in G such that

S satisfies property π. Let So be the optimal solution for this problem and Do be

the optimal solution for the node deletion version for the same property π. Then,

we have: So

⋃
Do = V (G). Thus the maximum subgraph with property π problem

is also NP-hard. Observe that with the additional restriction of being “additive” or

“co-additive”, this problem is still NP-hard.

Conjecture 1. Let µπ(G) denote the size of the largest subset of vertices in G

satisfying the property π and let µg
π(G) denote the size of a maximal by inclusion

subset of vertices satisfying the property π that is computed using a simple greedy
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heuristic which considers a certain ordering of vertices. Then recognizing whether

µπ(G) > µg
π(G) is NP-hard.

Suppose that we have a maximal by inclusion greedy which considers the vertices

in a certain order, i.e with respect to their degrees. Similar to the proofs of maximum

clique and maximum k-plex problems, we would like to construct a graph Gi with

some additional vertices such that µg
π(Gi) = µg

π(G) + i and µπ(G) = µπ(Gi) and also

Gi does not alter the order of vertices for the greedy in G. The order is important

to guarantee that the heuristic solution for Gi is the union of the heuristic solution

for G and the set Gi \G. The existence of such a graph Gi guarantees that if we had

an algorithm A(G) that answers if µπ(G) > µg
π(G) in polynomial time, we could run

that algorithm repeatedly till we obtain µπ(G) = µπ(Gi) = µg
π(Gi). Thus, we would

be able to compute µπ(G) in polynomial time which contradicts with the fact that it

is NP-hard. Therefore, we need to prove that we can always construct such a graph

Gi for this class of problems.

The hereditary property is the key in being able to design a maximal by inclusion

greedy. For a given nontrivial, hereditary and interesting property π, suppose that

the optimal solution for the maximum subgraph with property π problem is π(G) and

the greedy maximal by inclusion solution is πg(G). Without loss of generality, we can

assume that π(G) 6= V (G) since in this case we can easily verify optimality because we

would have πg(G) = V (G) = π(G). Thus, if the answer of A(G) is ”no”, there exists

at least one vertex v in G such that the set π(G)
⋃{v} does not have the property π.

Therefore, it is possible to create some graph Gi such that the additional i vertices

do not alter the optimal solution but we have to make sure that it also satisfies the

condition on the heuristic solution.

Lemma 16 (Yannnakakis [61]). Let π be any graph property that is hereditary, non-
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trivial and interesting. Then either all cliques or all independent sets of nodes satisfy

π.

Proof. This proof is by Yannakakis [61]. He uses Lemma 16 to prove the NP-hardness

of node deletion problems in [61]. For all m,n there is a number r(m,n) (Ramsey

number), such that every graph with no fewer than r(m,n) nodes contains either a

clique of m nodes, Km, or an independent set of n nodes, Kn. Suppose that the

statement in the lemma is not true. Thus there are m,n such that Km and Kn does

not satisfy π. Since π is a nontrivial property there is a graph satisfying π, with more

than r(m,n) nodes. Since π is hereditary on induced subgraphs, either Km or Kn

has to satisfy π.

As pointed out by Yannakakis, we can always define a complementary property

π as follows: A graph G satisfies π if and only if its complement G satisfies π. It is

easy to see that π is also hereditary, nontrivial and interesting whenever π is. Now we

can assume that all independent sets of nodes satisfy π and π is additive; otherwise

we consider the equivalent problem for π. Next we consider the following graph Gi,w:

V (Gi,w) = V (G)
⋃

V (Ii)

E(Gi,w) = E(G)
⋃
{(uv) : u ∈ Ii, v ∈ N[V (G)](w) \ πg(G),∀u,∀v}

where Ii denotes an independent set of size i and w is a vertex in πg(G). We

connect each vertex of Ii to each vertex of N[V (G)](w) \ πg(G).

Lemma 17. Let G be a graph such that it satisfies a nontrivial, hereditary, additive

and interesting property π. If all independent sets of nodes satisfy π, then G
⋃

I also

satisfy π where I is an independent set.

Proof. Since all independent sets satisfy property π, by the additive rule G
⋃

I also

satisfies property π since G
⋃

I is a disjoint union.
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Now consider the following algorithm displayed in Figure 23: If the answer of

A(G) is “no”, we create graphs G′ = Gi,w for each w ∈ πg(G). Before incrementing

i, we run the algorithm A(G′) for each w ∈ πg(G). If none of the answers is “yes”,

we increment and repeat the same procedure.

Input: An undirected graph G and an interesting, nontrivial, additive
(or co-additive) and hereditary property π
Output: Maximum subgraph with property π

Compute πg(G)

G′ = G, i = 0

while the answer of A(G′) is “no” repeat
i = i + 1
for each w ∈ πg(G) do

G′ = Gi,w

if A(G′) is “yes”
Return πg(G) + i

end for

end while

Fig. 23 General solution scheme for node deletion problems based on heuristics.

Conjecture 2. For the algorithm displayed in Figure 23, there exists a vertex w ∈
πg(G) such that µg

π(Gi,w) = µg
π(G) + i, µπ(G) = µπ(Gi,w) and the heuristic order of

the vertices in πg(G) is preserved.

Based on Lemma 17, the property µg
π(Gi,w) = µg

π(G) + i is satisfied by all the

graphs Gi,w. Furthermore, by construction, the degrees of the vertices in πg(G) do not

change while the degrees of the vertices in G\πg(G) increase by one at each iteration.

Thus, if we order the vertices starting with minimum degree first, the order of the

original vertices does not change. It is easy to see that the order of the added vertices
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does not alter the greedy solution. If they are in the beginning, they can be only

extended to πg(G) + Ii. If they come afterwards, the output will be still πg(G) + Ii.

Thus, we need to prove that µπ(G) = µπ(Gi,w) for some vertex w ∈ πg(G). Observe

that if there exists a vertex w ∈ πg(G) such that it is not adjacent to any vertices in

πg(G)
⋂

π(G), then we have the desired property.

Conjecture 3. There exists a vertex w ∈ πg(G) such that N(w)
⋂

πg(G)
⋂

π(G) = ∅.

The proof of Conjecture 3, thus Conjecture 2, will imply the proof of Conjecture

1 in the special case where π or π is additive and satisfied by all independent sets.

When proven, Conjecture 1 can be used as a theoretical justification for the

choice of greedy heuristics for several optimization problems such as maximum pla-

nar induced subgraph, maximum outerplanar induced subgraph, maximum bipartite

induced subgraph, maximum clique, maximum k-plex and maximum independent set

problems.

VI.7. Conclusion

In this chapter, we focused on the theoretical performance of greedy heuristics for

several problems. Simple greedy heuristics are often used to solve large-scale instances

of NP-hard problems in practice. They are mostly easy to understand and implement.

However, there is a fair amount of skepticism towards such approaches due to a lack

of theoretical foundations behind them. Many greedy heuristics even do not have

a provable approximation ratio. Thus, a reasonable question is “why do we choose

a certain greedy heuristic for our solution procedure”. Inapproximability results for

several optimization problems are well-known. When an optimization problem is said

to be not approximable within a factor of some constant c − ε, it is easy to claim



104

that if an approximation algorithm has a performance guarantee of c, it is the “best”

possible. However, for many problems such as maximum clique, the inapproximability

result is in terms of the problem size. Thus, we can not claim a heuristic to be the

“best” with respect to its approximation ratio. Motivated by this problem, we propose

a method for the theoretical justification for the choice of heuristics.

We considered several optimization problems such as maximum k-club, maximum

k-clique, maximum clique, maximum independent set, maximum k-plex, minimum

vertex coloring and minimum clique partitioning. For each one of these problems,

we showed that a simple greedy heuristic is proven to be the “best” in the sense

that it is NP-hard to decide whether there is a gap in between the heuristic solution

and the optimal solution. The existence of a polynomial time algorithm that always

guarantees a solution better than the simple heuristic would mean that we can check

the greedy heuristic-optimal gap in polynomial time.

We also worked on extensions of our results for a more general class of graph

problems. The maximum subgraph with property π problem is finding a subgraph of

maximum cardinality that satisfies some given property π. We focused on proper-

ties that are hereditary on induced subgraphs, nontrivial and interesting. For such

properties, the maximum subgraph with property π problem is NP-hard. We conjec-

tured that any maximal by inclusion greedy heuristic based on some order of vertices

is “best” in the sense that it is not possible to have a polynomial time approxi-

mation algorithm which always gives a better solution. This class includes several

optimization problems some of which are maximum planar induced subgraph, max-

imum bipartite induced subgraph, maximum clique, maximum outerplanar induced

subgraph and maximum degree-constrained subgraph problems. We presented some

arguments that can be used in proving this conjecture.

Our results may also be viewed as an additional evidence of these problems’
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practical intractability. On the other hand, this should not prevent the practitioners

from designing more sophisticated approaches for these problems, since the above

result describes just the worst-case behavior of the heuristics.
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CHAPTER VII

GREEDY CONSTRUCTION HEURISTICS FOR THE MAX-CUT

PROBLEM*

VII.1. Introduction

Given an undirected graph G = (V,E) with the set of vertices V = {1, 2, 3, . . . , n}
and the set of edges E with weights wij ≥ 0 for each (i, j) ∈ E, the max-cut problem

is to find a partition of vertices into two disjoint subsets S1 and S2 such that the

sum of weights of the edges with endpoints in different subsets is maximized. Each

partition of vertices into two subsets S1 and S2 with S1 ∩ S2 = ∅ and S1 ∪ S2 = V is

called a cut, and the total weight of edges with endpoints in different subsets is called

the weight of the cut or the cut value and is denoted by cut(S1, S2):

cut(S1, S2) =
∑

i∈S1,j∈S2

wij.

The max-cut problem finds applications in statistical physics and circuit layout de-

sign [16]. Other applications include social networks, where the max-cut value is

generally a measure of robustness of the network [17, 4], and classification [25].

Like many other graph theory problems, max-cut is very easy to state but hard

to solve. It is a well known NP-hard problem [57]. The max-cut problem can be

∗Reprinted with permission from “On greedy construction heuristics for the MAX-
CUT problem” by S. Kahruman, E. Kolotoglu, S. Butenko and I. V. Hicks, 2007.
International Journal of Computational Science and Engineering, Volume Number 3,
211-218, Copyright c© 2007 Inderscience Enterprises Ltd.
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formulated as the following mixed integer linear program:

max
n∑

i,j=1
i<j

wijyij, (7.1)

subject to:

yij − xi − xj ≤ 0, i, j = 1, 2, . . . , n, i < j; (7.1a)

yij + xi + xj ≤ 2, i, j = 1, 2, . . . , n, i < j; (7.1b)

xi ∈ {0, 1}, i = 1, 2, . . . , n. (7.1c)

In the above, an optimal solution (x∗, y∗) corresponds to an optimal max-cut partition

of V into two subsets S1 = {i : x∗i = 0} and S2 = {i : x∗i = 1}. A detailed polyhedral

study of the problem is given in [31]. Note that the mixed integer formulation that

we propose above has the same number of integer variables as the number of vertices

in the graph, while the known integer programming formulations, including that

proposed in [31], have a quadratic number of integer variables with respect to the

number of vertices. However, the above formulation also has a quadratic number of

non-integer variables in addition to the integer variables. We will also mention the

following nonconvex quadratic formulation [11]. The optimal objective function value

of max-cut problem is given by

max
x∈[0,1]n

xT W (e− x), (7.2)

where W = [wij]
n
i,j=1 is the matrix of edge weights (with zero diagonal), and e =

[1, 1, . . . , 1]T is the unit vector of length n. Similar quadratic formulations with binary

variables are typically used to obtain semidefinite programming relaxations for the

max-cut problem and derive approximation algorithms and heuristics based on such

relaxations [20, 19, 41, 64].
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The known polynomially solvable cases include planar graphs [44], graphs with-

out K5 minors [15], and weakly bipartite graphs with nonnegative weights [43]. max-

cut on dense graphs [78] and metric max-cut have polynomial time randomized ap-

proximation schemes [79]. However, metric max-cut is not known to be NP-hard. The

general version of max-cut problem is also known to be APX-complete [68], mean-

ing that unless P=NP, it does not allow a polynomial time approximation scheme

(PTAS) [77]. Thus, approximation algorithms or heuristics are used for finding ac-

ceptable solutions in polynomial time.

In this paper, we compare the performance of several greedy construction heuris-

tics for the max-cut problem. In particular, we present and study a new “worst-out”

construction approach for the max-cut problem, the edge contraction heuristic. We

show that the proposed algorithm has the approximation ratio of at least 1/3. We

also present an experimental comparison of solutions obtained using the edge con-

traction heuristic, the classical “best-in” 1
2
-approximation algorithm of Sahni and

Gonzales [70], and modifications for both.

The remainder of this paper is organized as follows. Section VII.2 briefly sur-

veys the known construction algorithms for max-cut problem. The edge contraction

heuristic is proposed and analyzed in Section VII.3. Some modified versions of the

Sahni-Gonzalez algorithm are presented in Section VII.4. Section VII.5 presents the

results of experimental comparison of several greedy construction heuristics for the

problem of interest in terms of the solution quality. Finally, some concluding remarks

are given in Section VII.6.
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VII.2. Construction Algorithms and Approximation Ratios

Most heuristic approaches to the max-cut problem consist of a construction algo-

rithm, which builds a feasible solution from scratch, and a local search procedure

that attempts to iteratively improve the current solution until a local maximum with

respect to a given neighborhood is reached. In this paper we deal only with construc-

tion algorithms. More specifically, we are interested in simple greedy construction

approaches and their variations. There are two major types of greedy construction

algorithms for discrete optimization problems on graphs: “best in” and “worst out”.

A best-in algorithm typically starts with an empty graph (or a very small subgraph

of the input graph), while various subgraphs of the original graph (which may be a

vertex or an edge, depending on the problem) are considered to be candidates for

inclusion in the constructed feasible solution. Then the algorithm successively adds a

candidate, which provides the “best” contribution to the objective function value, and

removes the candidates that become ineligible for inclusion from the list of candidates.

The procedure is repeated until a feasible solution is constructed (for minimization

problem) or the candidate list is empty. Alternatively, a worst-out algorithm usually

starts with the input graph and on each step removes the part of the graph (such as a

vertex or an edge), which, if included in the solution, would provide a “worst” contri-

bution to the objective function value compared to all other candidates for removal.

The algorithm stops when the remaining graph constitutes a feasible solution (for

maximization problem) or any additional step would make otherwise feasible graph

infeasible. Note that this description of best-in and worst-out algorithms aims to

provide a general idea behind such algorithms and does not intend to be restrictive,

as numerous variations of the outlined greedy approaches can still be called best-in or

worst-out algorithms. This paper was partially motivated by observation that, while
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there are several well-known best-in algorithms for max-cut problem, no results on

worst-out approaches have been published to the best of our knowledge. In particular,

we are interested in comparing the the proposed worst-out and the known best-in al-

gorithms in terms of their approximation ratios and quality of the solutions obtained

in numerical experiments. Next we define the concept of approximation ratio for a

max-cut algorithm and mention some of the known algorithms for max-cut and their

approximation ratios.

Let WA(G) be the cut size generated by an approximation algorithm A for max-

cut problem on a graph G. The approximation ratio of the algorithm A is defined as

the largest RA for which

WA(G)/W ∗(G) ≥ RA for any graph G,

where W ∗(G) is the optimal cut value of G. Note that W ∗(G) ≤ W (G), where

W (G) =
∑
i<j

wij is the sum of all edge weights of the graph. Thus, any R such that

WA(G)/W (G) ≥ R for any G provides a lower bound on RA. Since finding a better

than W (G) upper bound on the size of maximum cut may be nontrivial, this bound

is frequently used to estimate an algorithm’s approximation ratio.

In 1976, Sahni and Gonzalez [70] presented an algorithm that constructs an

approximate solution to max-cut with the approximation ratio of 1/2. The time

complexity of this algorithm is O(|V | + |E|). Their algorithm starts by placing one

vertex to each partition, and the remaining |V |− 2 vertices are examined one by one.

A vertex j is assigned to a partition if the total weight of the edges in between vertex

j and the vertices in that partition is minimal. This algorithm, which is perhaps

the first known approximation algorithm for max-cut, is still quite popular due to its

simplicity and reasonably good quality of solution it guarantees. Recently, Festa et

al. [37] implemented and tested a greedy randomized adaptive search procedure, a
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variable neighborhood search and a path-relinking intensification heuristic for max-

cut. In the construction phase, at each iteration, an element is randomly selected

from a restricted candidate list, whose elements are ranked according to the main

idea that Sahni and Gonzalez used.

Haglin and Venkatesan [45] proposed an algorithm that guarantees an approxi-

mation ratio of at least of 1/2 + 1
2|V | starting with a matching of size |E|/|V |. Their

algorithm runs in O((|E| log |E| + |V | log |V |)/p + log p log |V |) parallel time using

1 <= p <= |E|+ |V | processors. They also showed that it is NP-Complete to decide

if a given graph has a maximum cut with at least a fraction 1/2 + ε of the sum

of weights of its edges, where ε is a positive constant. Cho et al. [27] proposed an

improved approximation algorithm running in O(|E| + |V |) sequential time yielding

a node-balanced maximum cut with size at least W (G)(1/2 + 1/2|V |). Although

the approximation ratio is the same as Haglin and Venkatesan’s, their algorithms is

better in terms of time complexity. They initialize the partitions to be empty and

find a matching M of size |E|/|V | to be included in the final cut. Then, they assign

the vertices to partitions considering a vertex pair at a time such that the cut value

in between the partitions is maximized. Kajitani et al. [56] modified the Haglin and

Venkatesan’s approach by using a matching with |E|/(|V |−1) edges in G, which they

computed in O(|E|+ |V |) time. This allowed them to obtain an approximation ratio

of 1/2 + 1
2(|V |−1)

which is a slight (but not asymptotic) improvement.

The most remarkable approximation results for max-cut problem are associated

with using semidefinite programming relaxations of max-cut formulations. In their

breakthrough paper [41], Goemans and Williamson used semidefinite programming

to develop an algorithm for max-cut that always delivers solutions of expected value

at least 0.87856 times the optimal value. Feige et al. [58] improved the last step of

the Goemans-Williamson algorithm to obtain an approximation ratio of at least 0.921
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for graphs of maximum degree three. Liu et al. [64] proposed a tighter semidefinite

relaxation of max-cut. For cubic graphs, i.e., graphs in which the degree of all vertices

is three, Halperin et al. [48] presented an improved semidefinite programming based

approximation algorithm, which has an approximation ratio of 0.9326. Semidefinite

programming approaches yield algorithms with the best known approximation ratios,

however, the time and space requirements limit their applicability in practice.

In 2002, Alperin and Nowak presented a smoothing heuristic based on Lagrangian

relaxation [7]. The heuristic is based on a parametric optimization problem defined

as a convex combination between a Lagrangian relaxation and the original problem.

Starting from the Lagrangian relaxation, a path following method is applied to obtain

good solutions while gradually transforming the relaxed problem into the original

problem formulated with an exact penalty function.

Although researchers found improvements, especially by making use of semidefi-

nite programming, since the publication of the very basic 0.5-approximation algorithm

of Sahni and Gonzalez, there has not been much progress in developing algorithms

with a constant approximation ratio that would be fast, simple and effective in prac-

tice. This is especially important for the cases where one needs to solve max-cut as a

subroutine many times. It should also be noted that as long as total weight W (G) of

all edges in the graph is used instead of the optimal cut value in derivation of the ap-

proximation ratio result, we cannot prove that the approximation ratio is better than

1/2 for any algorithm. This is because there exist graphs on which the max-cut value

is very close to W (G)/2. At the same time, finding a tighter upper bound for the

max-cut value is not trivial. In fact, this bound is sharp in some sense, since a bipar-

tite graph has a max-cut value which is exactly W (G). The need for improved simple

algorithms which would outperform the algorithm proposed by Sahni and Gonzalez

in terms of solution quality in practical applications is another motivation to consider
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several alternative greedy approaches which we present and analyze in the following

two sections.

VII.3. The Edge Contraction Heuristic

Let e = (x, y) be an edge of a graph G = (V,E). Contracting an edge e means forming

a new vertex v = vxy out of e, which becomes adjacent to all the former neighbors

of x and y. The edge contraction heuristic takes the graph G = (V, E) as an input.

If the graph is not complete, add all missing edges with weight zero to the original

graph. The minimum weighted edge of G is contracted and the graph is updated.

Each time an edge e is contracted, the number of the vertices in the graph decreases

by one. This procedure is done repeatedly until the number of vertices remaining in

the graph becomes two. This heuristic is a worst-out greedy method. The motivation

for this method comes from the fact that at each iteration, contracting the minimum

weighted edge corresponds to removing this edge from the final solution by assigning

the adjacent vertices to the same partition.

In the algorithm, whenever an edge e, whose endpoints are the vertices x and y,

is contracted, we form the edges adjacent to the new vertex v = vxy. Let i be a vertex

distinct from x and y. Then the weight of the new edge between the vertices vxy and

i is obtained by adding the weights of the edges (x, i) and (y, i): wvi = wxi + wyi. At

each step, each vertex v has a contraction list which contains all the vertices adjacent

to edges that were contracted in previous steps of the algorithm to form vertex v.

When the algorithm stops, we have two vertices whose contraction lists give us the

output cut partition. The steps of the algorithm are summarized in Figure 24. It is

easy to see that the time complexity of this algorithm is O(|V |3).
Note that if we use |V | − k steps instead of |V | − 2 steps in the main for-loop of
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Input: A complete graph G(V, E) with edge weights wij , ∀i, j ∈ V, i 6=
j
Output: A cut S1, S2 : S1 ∪ S2 = V, S1 ∩ S2 = ∅ and the cut value
cut(S1, S2)

for j = 1 : |V | do
ContractionList(j) = {j}

end

for j = 1 : |V | − 2 do
Find a minimum weight edge (x, y) in G

v = contract(x, y)
V = V ∪ {v} \ {x, y}
for i ∈ V \ {v} do

wvi = wxi + wyi

end
ContractionList(v) = ContractionList(x)∪ContractionList(y)

end

Denote by x and y the only 2 vertices in V

S1 = ContractionList(x)
S2 = ContractionList(y)
cut(S1, S2) = wxy

Return cut(S1, S2)

Fig. 24 The Edge Contraction Heuristic.

this algorithm, then we obtain a heuristic for the maximum k-cut problem, which is

to partition all vertices into k disjoint sets so that the some of the weights of all edges

with endpoints in different parts is maximized. The ContractionList(i) set of each

remaining vertex i would correspond to the partitions, while the objective function

value would be the sum of weights of all remaining edges.

The following lemma will be used to prove an approximation ratio result for the

contraction algorithm for the max-cut problem.
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Lemma 18. Let Wk denote the total weight of the first k edges contracted by the edge

contraction heuristic and let W be the total weight of all edges in the graph. Then for

any 1 ≤ k ≤ n− 2

Wk ≤ 2kW

(n− 1)(n− k + 1)

where n is the number of vertices in the input graph.

Proof. The proof is based on the fact that the weight of a contracted edge is no

greater than the average edge weight in the current graph at each iteration. This

is true since the procedure always contracts an edge of the smallest weight. So, the

weight of the first contracted edge satisfies

W1 ≤ W(
n
2

) =
2W

n(n− 1)
.

We will use induction on k. We have already shown that the lemma is valid for k = 1.

Assume it is correct for all integer k ≤ κ. We need to derive the inequality in lemma

for k = κ + 1. Expressing the upper bound on Wκ+1 through Wκ and W , and using

the induction assumption for Wκ, we obtain:

Wκ+1 ≤ Wκ +
W −Wκ(

n−κ
2

) =
(n− κ)(n− κ− 1)− 2

(n− κ)(n− κ− 1)
Wκ +

2W

(n− κ)(n− κ− 1)

≤ 2W

(n− κ)(n− κ− 1)

(
((n− κ)(n− κ− 1)− 2)κ

(n− 1)(n− κ + 1)
+ 1

)

=
2(κ + 1)W (n− κ + 1)(n− κ− 1)

(n− κ)(n− κ− 1)(n− 1)(n− κ + 1)

=
2(κ + 1)W

(n− 1)(n− κ).

Thus,

Wκ+1 ≤ 2(κ + 1)W

(n− 1)(n− κ)
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and by induction the lemma is correct. 2

Theorem 19. Denote by Wc the value of the cut obtained using the edge contraction

heuristic and by W ∗ the weight of an optimal cut. Then

Wc ≥ 1

3

(
1 +

2

n− 1

)
W

and, in particular,

Wc >
1

3
W ∗.

Here, as before, W denotes the total weight of all edges in the graph.

Proof. The proof follows from Lemma 18. Indeed, Wc = W −Wn−2, thus from the

lemma

Wc ≥ W − 2(n− 2)W

(n− 1)(n− (n− 2) + 1)
=

1

3

(
1 +

2

n− 1

)
W,

and since W ≥ W ∗, we obtain Wc > 1
3
W ∗. 2

VII.4. Modifications to the Edge Contraction Heuristic and Sahni-Gonzalez

Algorithm

In this section, we discuss four algorithms which are obtained by modifying the edge

contraction heuristic and the Sahni-Gonzalez algorithm. The algorithms SG1, SG2

and SG3 are variations of Sahni-Gonzalez algorithm where the order to consider the

vertices depends on a score function.

The compromise heuristic: This heuristic is a combination of the edge contraction

heuristic and the Sahni-Gonzalez algorithm. We first apply the edge contraction

heuristic until the weight of the minimum weighted edge on updated graph

becomes greater than or equal to the average edge weight of the input graph.

The intuition behind this idea is that if the edge weights in a graph are much
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smaller than the average edge weight, then it is more likely that the endpoints

of these type of edges will be in the same partition of the max-cut. We will

call them “light edges” and the edges that are not light will be called “heavy”.

After all light edges are contracted, we apply the Sahni-Gonzalez algorithm on

the updated graph.

SG1: This is a best-in algorithm, which is a modification of the Sahni-Gonzalez

approach. Its steps are summarized in Figure 25. Here w(i, Sj) denotes the

total weight of the edges in between vertex i and the vertices in the partition

Vj, j = 1, 2. At each iteration, the SG1 algorithm considers all the remaining

vertices and picks the one which will contribute the most to the current cut

value at that iteration.

SG2: The SG2 algorithm is very similar to SG1. The differences are in the definition

of the score function and in the choice of the next vertex to be included in one

of the partitions:

• score(i) = min{w(i, S1), w(i, S2)}

• Choose the vertex i∗ with the minimum score.

This algorithm can be thought of as a best-in algorithm for the minimum 2 set

partitioning problem, which is to partition all vertices into two disjoint subsets

so that the sum of weights of edges with both endpoints in the same partition

is minimized. Obviously, this problem is equivalent to the max-cut problem.

Indeed, at each step a vertex that is the best in terms of contributing to the

goal of minimizing the current partitions weight is chosen.

SG3: This algorithm is also very similar to SG1, the only difference being the score
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Input: A complete graph G(V, E) with edge weights wij , ∀i, j ∈ V, i 6=
j
Output: A cut S1, S2 : S1 ∪ S2 = V, S1 ∩ S2 = ∅ and the cut value
cut(S1, S2)

0. V ′ = V

Pick the maximum weighted edge (x, y)
cut(S1, S2) = wxy

V ′ = V ′ \ {x, y}
S1 = {x}, S2 = {y}

1. for j = 1 : n− 2 do
for i ∈ V ′ do

score(i) = max{w(i, S1), w(i, S2)}
end
Choose the vertex i∗ with the maximum score
If w(i∗, S1) > w(i∗, S2) then S2 ← S2

⋃{i∗}
else S1 ← S1

⋃{i∗}
cut(S1, S2) = cut(S1, S2) + score(i∗)

end
Return cut(S1, S2)

Fig. 25 The SG1 Algorithm.

function. In this case the score of each remaining vertex is calculated as follows:

score(i) = |w(i, S1)− w(i, S2)|

In fact, SG3 can be viewed as a clever combination of SG1 and SG2. For all

the vertices, it takes into account the contribution to the minimization of the

current partition weight and at the same time the contribution to the current

cut value in that iteration by simply looking at the absolute difference.

In the next section, we present the results of the numerical experiments.
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VII.5. Numerical Results

This section presents the results of the numerical experiments to compare the perfor-

mances of the algorithms introduced in Sections 3 and 4, and also the basic Sahni-

Gonzalez [70] algorithm. We tested these algorithms on several randomly generated

graphs and some TSP instances from TSPLIB. These graphs are all weighted and

complete. In addition, some instances were taken from Resende et al. [37] (G1, G2,

G15, G17 and G53 are all 0, 1 weighted). The size of the TSP instances are already

specified in their names and for an instance named rxx, yy, xx denotes the number of

the vertices and yy denotes the maximum weight of edges. G1, G2, G15 and G17 are

of size 800 while G53 is of size 1000. We first compare the results for Sahni-Gonzalez

algorithm and the edge contraction heuristic in Table 5. In this table, WSG and WC

represent the value of the cut obtained using the Sahni-Gonzalez and the contraction

algorithm, respectively, while W stands for the sum of weights of all edges in the

graph.

From Table 5, the Sahni-Gonzalez algorithm outperforms the edge contraction

heuristic by giving better approximation in general. In particular, on three instances

(r25, 30; r45, 50; and r150, 3) the ratio WC/W is less than 1/2, which is the approxi-

mation ratio of the Sahni-Gonzalez algorithm. Thus, the approximation ratio of the

edge contraction heuristic is less than that of the Sahni-Gonzalez algorithm. The 1/3

bound derived in Theorem 19 may be tight, but has not been proven so. However, on

5 out of 9 TSP instances, regarded as “dense” instances, the edge contraction heuris-

tic does better than the Sahni-Gonzalez algorithm. This observation enhances our

motivation for the compromise heuristic. The Sahni-Gonzalez algorithm is also better

than the edge contraction heuristic in terms of running time. The time complexity

of the edge contraction heuristic is O(|V |3). Since we are considering the complete



120

Table 5 Comparative results of the algorithm of Sahni and Gonzalez [70] and the

edge contraction heuristic.

Instance Sahni-Gonzalez Edge Contraction
Name W WSG WSG/W WC WC/W

Burma14 355 193 0.543662 254 0.715493
gr17 37346 23354 0.625341 24986 0.669041
bayg29 66313 36939 0.55704 35058 0.528675
bays29 370530 214339 0.578466 226102 0.610212
dantzig42 59574 30508 0.512103 36023 0.604677
att48 3.74E+06 2.49E+06 0.665833 2.25E+06 0.602836
hk48 1.15E+06 712355 0.617408 732706 0.635046
berlin52 762783 453174 0.594106 445739 0.584359
brazil58 3.52E+06 1.92E+06 0.543782 1.83E+06 0.519003
r15, 30 2679 1504 0.561404 1504 0.561404
r20, 30 8723 4675 0.535939 4522 0.5184
r25, 30 6115 3384 0.553393 3038 0.496811
r25, 40 12161 6603 0.542965 6186 0.508675
r30, 40 15202 8153 0.536311 8073 0.531049
r35, 40 18926 10293 0.543855 10122 0.53482
r45, 50 44705 23708 0.530321 21840 0.488536
r55, 40 29487 16306 0.552989 15827 0.536745
r55, 50 36889 20375 0.552333 20041 0.543278
r63, 75 72801 39604 0.544004 39163 0.537946
r75, 130 177855 96491 0.542526 92445 0.519777
r80, 10 15737 8492 0.53962 7873 0.50028595
r82, 130 214256 115466 0.538916 108347 0.505689
r82, 20 33461 17973 0.537133 16868 0.504109
r100, 50 122178 65834 0.538837 61851 0.506237
r150, 3 16863 9041 0.536144 8426 0.499674
r150, 4 22064 11785 0.534128 11066 0.501541
r250, 100 1.57E+06 813292 0.519272 796739 0.508703
r500, 101 6.35E+06 3.27E+06 0.514598 3.23E+06 0.508212
G1 19176 10949 0.570974 9794 0.510743
G2 19176 11050 0.576241 9955 0.519139
G15 4661 2865 0.614675 2645 0.567475
G17 4667 2883 0.617742 2656 0.569102
G53 5914 3642 0.615827 3352 0.566791



121

Table 6 Comparative results of the ratios of the cut value to the graph’s total edge

weight achieved by SG, C, CSG, SG1, SG2 and SG3.

Name SG C CSG SG1 SG2 SG3
burma14 0.543662 0.715493 0.695775 0.721127 0.715493 0.721127
gr17 0.625341 0.669041 0.555669 0.669041 0.669041 0.669041
bayg29 0.55704 0.528675 0.539306 0.559242 0.569632 0.564173
bays29 0.578466 0.610212 0.57330 0.642666 0.617070 0.642666
dantzig42 0.512103 0.604677 0.509659 0.677024 0.677024 0.677024
att48 0.665833 0.602836 0.672023 0.674483 0.674661 0.674661
hk48 0.617408 0.635046 0.614240 0.668855 0.668855 0.668855
berlin52 0.594106 0.584359 0.572952 0.616434 0.614527 0.617117
brazil58 0.543782 0.519003 0.543635 0.546723 0.556287 0.563592
r15,3 0 0.561404 0.561404 0.567376 0.565136 0.578201 0.583053
r20, 30 0.535939 0.518400 0.529634 0.544079 0.548321 0.550384
r25, 30 0.553393 0.496811 0.575470 0.573508 0.569583 0.573181
r25, 40 0.542965 0.508675 0.532522 0.555464 0.553326 0.554889
r30, 40 0.536311 0.531049 0.543810 0.552296 0.548349 0.552033
r35, 40 0.543855 0.534820 0.528796 0.551358 0.550988 0.557117
r45, 50 0.530321 0.488536 0.523722 0.542624 0.541461 0.541640
r55, 40 0.552989 0.536745 0.541832 0.556856 0.548377 0.563401
r55, 50 0.552333 0.543278 0.539863 0.558107 0.548619 0.559869
r63, 75 0.544004 0.537946 0.538770 0.552932 0.548797 0.555308
r75, 130 0.542526 0.519777 0.539872 0.548160 0.541705 0.555149
r80, 10 0.539620 0.500286 0.534981 0.549215 0.543750 0.554299
r82, 130 0.538916 0.505689 0.529096 0.539850 0.543285 0.549833
r82, 20 0.537133 0.504109 0.533815 0.542004 0.545710 0.548549
r100, 50 0.538837 0.506237 0.526781 0.539606 0.539639 0.542299
r150, 3 0.536144 0.499674 0.530688 0.538813 0.541481 0.544565
r150, 4 0.534128 0.501541 0.522117 0.538751 0.537255 0.540790
G1 0.570974 0.510743 0.531237 0.584220 0.580622 0.591834
G2 0.576241 0.519139 0.522685 0.586045 0.578796 0.594180
G15 0.614675 0.567475 0.541729 0.628835 0.597726 0.642137
G17 0.617742 0.569102 0.537819 0.628455 0.599529 0.638097
G53 0.615827 0.566791 0.542273 0.629523 0.599087 0.638147
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graphs, the time complexity of Sahni-Gonzalez algorithm is O(|V |2).
Next, we present the results obtained by the edge contraction heuristic (C), the

Sahni-Gonzalez algorithm (SG), the compromise heuristic (CSG) and the modified

versions, SG1, SG2 and SG3 of SG in Table 6. Here the results are presented as the

ratios of the cut value of the solution obtained using a given algorithm to the total

edge weight W . We see that the compromise heuristic (CSG) does not perform better

than the contraction and Sahni-Gonzalez algorithms. But the results we obtained

from the algorithms SG1, SG2 and SG3 are more encouraging. Among these SG3 is

the best overall. As it was explained in the previous section, SG3 chooses the “best”

candidate at each iteration by considering the absolute contribution in terms of both

the increase in the cut value and the increase in the partition weight. Figure 26

illustrates the results graphically for the SG, C and SG3 algorithms. It clearly

shows that SG3 outperforms the contraction and Sahni-Gonzalez algorithms in all

considered instances.

Our experimental analysis shows that SG3 is the best choice although it has the

same worst-case approximation ratio of 1/2 as the original Sahni-Gonzalez algorithm.

It is important to note that experimental analysis has a crucial role especially in

comparison of construction algorithms for max-cut since theoretically it is not possible

to obtain an approximation ratio greater than 1/2 as long as the total edge weight is

used instead of the optimal cut value in the approximation ratio derivation.

VII.6. Conclusion

In this chapter, a greedy worst-out construction heuristic for the max-cut problem

called the edge contraction heuristic was introduced. We have shown that it has an

approximation ratio of at least 1/3 and a time complexity of O(|V |3). To the best of
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Fig. 26 Comparison of results for SG, C, and SG3 algorithms. The instances are

numbered in the order they are presented in Tables 5 and 6.

our knowledge, this is the first time a worst-out greedy approach has been applied to

approximate the max-cut problem. We also proposed several best-in 1
2
-approximation

algorithms for the same problem that are modifications of a well-known heuristic

introduced by Sahni and Gonzalez [70]. We carried out some numerical experiments to

compare the performance of these heuristics. Our experiments showed that the edge

contraction heuristic is outperformed by Sahni and Gonzalez approach. Moreover,

we observed that its approximation ratio is worse than that of the Sahni-Gonzalez

algorithm. We also observed that the modified versions of Sahni-Gonzalez heuristics,

where a score function is used to determine the best candidate at each iteration,

outperform the Sahni-Gonzalez heuristic. Based on our experiments, we concluded
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that this approach is outperformed by best-in algorithms, while the results obtained

from modified versions of the Sahni-Gonzalez approach are quite encouraging. Recall

that these results are for construction algorithms only and can be further improved

by applying improvement heuristics, such as local search and advanced metaheuristic

strategies [1, 40].
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

This dissertation focuses on several related optimization problems that arise in geo-

metric graphs. In particular, we investigate the computational complexity and ap-

proximability properties of several optimization problems in unit disk and unit ball

graphs, and develop algorithms to find exact and approximate solutions. Furthermore,

we establish complexity-based theoretical justification for several greedy heuristics.

As outlined in Chapter I, this research comprises a series of linked objectives:

1. Survey optimization problems in unit disk graphs and work on extensions of

the existing algorithms to unit ball graphs;

2. Identify open problems in unit disk and unit ball graphs regarding computa-

tional complexity and approximation status and propose solutions;

3. Develop and implement an exact solution procedure for the maximum k-clique

problem in unit disk graphs;

4. Analyze and develop a centralized approximation algorithm for the minimum

k-bottleneck connected dominating set problem in unit disk and unit ball graphs;

5. Establish complexity-based techniques for analysis of heuristics to provide a

theoretical justification for the choice of construction heuristics;

6. Perform experimental comparison of several heuristics for the max-cut problem

in general graphs.

Motivated by the wireless network applications, our initial goal was to identify

the complexity and approximability of several optimization problems in unit disk
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and unit ball graphs. In order to efficiently operate wireless networks, several op-

timization problems are employed. For instance, in order to prevent interference

of transmission signals we need to assign different frequencies to the nodes whose

transmission ranges intersect. This corresponds to a minimum vertex coloring prob-

lem in a graph theoretic representation of the network. The unit disk graph model

is a simple graph theoretic model for wireless networks. This model assumes that

wireless nodes are placed on the plane and each node has a unit transmission range

that is omnidirectional. Two wireless nodes can communicate if they are within each

other’s transmission region. The unit disk model has been widely studied in the liter-

ature. Many NP-hard problems preserve their computational complexity even when

restricted to unit disk graphs. However, the structure of these graphs enable effi-

cient approximation algorithms. Although a three-dimensional representation seems

to be more realistic for these networks, e.g., in ocean monitoring, there is not much

research published in this area. Thus, our initial goal was to do a literature review

on optimization problems in unit disk graphs and investigate if they are applicable

when the graph is three dimensional, i.e., a unit ball graph. Chapter III is devoted

to this analysis. In this chapter, we determined important geometrical properties for

both unit disk and unit ball graphs. These properties are important in establishing

complexity and approximability results for several optimization problems. Next, we

presented extensions of several approximation algorithms for unit disk graphs to unit

ball graphs. We observed that in most cases, the extension is straightforward. We

outlined the steps of several approximation algorithms for UBGs and provided the

corresponding performance guarantees. We considered domination, minimum vertex

coloring, maximum independent set, max-cut, max-bisection, min-bisection, vertex

cover, maximum clique and minimum clique partition problems. Although the unit

disk graph models have been studied for many years, complexity or approximation
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status of several optimization problems such as min-bisection and minimum clique

partition are still open problems in unit disk graphs. Chapter III also presents a list

of interesting open problems identified during the literature survey. These are:

1. The computational complexity and approximation status of min-bisection prob-

lem in unit disk and unit ball graphs;

2. The computational complexity and the existence of a PTAS for the maximum

clique problem in unit ball graphs;

3. Existence of a PTAS for minimum clique partition problem on both unit disk

and unit ball graphs.

We proved that, when the input graph is vertex weighted, then the minimum

bisection problem is NP-hard in unit disk graphs. However the unweighted version

is not proven yet. Furthermore, to our best knowledge, there are not any known

approximation algorithms for this problem in unit disk graphs. The maximum clique

problem is solvable in polynomial time in unit disk graphs [29]. Although there is a

proof of NP-hardness by Afshani and Hatami [3] for some higher dimension for the

same problem, the complexity in unit ball graphs is unknown. On the approximation

side, the best known approximation ratio is 2.553. The minimum clique partition

problem is NP-hard in unit disk and unit ball graphs. There is a 3-approximation al-

gorithm for unit disk graphs, which can be extended to a 20-approximation algorithm

for unit ball graphs. Thus, it is an interesting research question whether it is possible

to further improve these ratios, ideally whether it is possible to have a PTAS or not.

We believe that all these problems listed above are interesting research problems that

will contribute to the field of graph theory and applications. These problems pose

interesting future research directions.
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During our literature survey presented in Chapter III, we identified that the

maximum k-clique problem has not been studied in the context of unit disk graphs.

This problem is interesting also because a related famous problem, the maximum

clique, is solvable in polynomial time in unit disk graphs. Thus, one of our research

goals was to analyze this problem and propose efficient solution procedures. This

research objective is addressed in Chapter IV. Even though it has not been established

formally, we have strong indications that this problem is NP-hard in unit disk graphs.

In particular, we presented complexity results of clique problems in other geometric

graphs that may be helpful in the complexity analysis. We presented a maximal by

inclusion greedy heuristic for general graphs. Using the idea behind the polynomial

algorithm for the maximum clique problem, we developed a matching-based branch

and bound algorithm for the exact solution in unit disk graphs. The main idea is that

a k-clique corresponds to a clique on the kth power of the input graph. The kth power

of a unit disk graph is not necessarily a unit disk graph but it is a subgraph of another

unit disk graph whose unit distance is defined as k times the original unit distance.

In a unit disk graph, the maximum clique is contained in a special subgraph of the

intersection of two adjacent vertices. This special subgraph is a co-bipartite graph.

Thus, using matching in the complement of each subgraph, we can find the maximum

clique. For the maximum k-clique, we can employ the same technique in a branch

and bound scheme. Contrary to the traditional branch and bound algorithms which

rely on the linear relaxations, our method relies on the existence of additional edges,

which are named as “fake”, that makes the problem solvable by using a matching

algorithm on the complement. Our branching strategy is determined by the existence

of “fake” edges in the solution compared to the traditional integrality constraints.

We presented the details of our algorithm and implementation. Furthermore, we

demonstrated the effectiveness of our algorithm through computational experiments.
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For comparison purposes, we used the 1-plex formulation on the kth power of the

input graph and solved our test instances using the default CPLEX solver. In very

dense instances, where edge density is around 0.9, 1-plex formulation outperformed

our algorithm. However in sparser instances we observed that our method is much

more efficient. In fact, if we consider wireless network applications, it is more likely

to have sparser instances since denser instances will yield more signal interference

and also require more energy. When we ran our algorithms for graphs with 1000

vertices with an edge density around 0.2, we observed that 1-plex formulation failed

to give the optimal solution in a reasonable time. So we introduced time limits for

CPLEX. On the other hand, we can easily get the optimal solution by our matching

based branch and bound algorithm. On the average, our algorithm found the optimal

solution in 98 seconds whereas on an average of 3164 seconds, the 1-plex formulation

only showed that the solution output had a gap which was more than 75%. As a

future work, our first goal is to prove the computational complexity of this problem

in unit disk and unit ball graphs. We believe that further improvement of our solution

procedure is possible. In addition, we would like to design approximation algorithms

for both unit disk and unit ball graphs, as well as an exact solution procedure for

unit ball graphs. Note that the current approach cannot be extended to unit ball

graphs since they lack the crucial property. But, using geometrical information can

provide effective solution procedures for unit ball graphs as well. We believe that

by some modifications our approach can be used to solve the maximum k-club in

unit disk graphs as well. We propose the analysis of computational complexity and

approximability of clique relaxations such as k-plex and k-club as a future research

goal.

In Chapter V, we investigated the minimum connected bottleneck connected

dominating set problem in unit ball graphs. We proposed this problem as a viable
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approach to find the optimal transmission range of a wireless network with respect

to a certain size of “virtual backbone”, which is a (small) subset of nodes that are

used as a core for communication within the network. In traditional models it is

assumed that the range of communication or its estimate is given in advance and is

used as an input. In reality, the choice of the transmission range is an important

decision variable that effects all the operations of the network. The energy usage

of a wireless node is directly related to its transmission range. Thus, we want to

minimize energy usage by minimizing the transmission range. At the same time, we

want to make sure that we have a certain size of virtual backbone. We presented

a literature review on transmission range determination. Most of the techniques

do not focus on a unit disk graph model. We found out that the goal of ensuring a

certain size of “virtual backbone” has not been studied before. Since virtual backbone

corresponds to a connected dominating set in a graph representation, we proposed

using minimum k-BCDS problem, which is the minimum bottleneck cost problem

that yields a connected dominating set of size k. We observed that the bottleneck

dominating set problems studied in graph theory focus on vertex weighted cases

and are generally solvable in polynomial time. We proved that the minimum k-

BCDS problem is NP-hard and not approximable within a factor of 2− ε, even when

restricted to graphs whose edge weights satisfy triangle inequality. We proposed a

3-approximation algorithm for this special case and further proved that by iteratively

running a PTAS algorithm with ε = 1/(k+1) we can solve this problem in polynomial

time in unit disk and unit ball graphs. The algorithm requires at most O(n2) steps

where each step takes O(n2+(k+1)3) time. Our future goal is to find more efficient

solution procedures for this problem in unit disk and unit ball graphs.

In Chapter VI, we represented our results on theoretical justifications of simple

greedy heuristics. Our motivation for this research was the lack of theoretical foun-
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dations behind simple greedy heuristics in spite of the fact that they are widely used

in solving large scale NP-hard problems. Especially for optimization problems for

which it is NP-hard to approximate within a factor of nε, e.g. maximum clique, the

approximation ratio of the heuristic can not be used as a claim for being the best.

Moreover many simple heuristics also lack an approximation ratio. Thus, our goal is

to establish complexity based techniques that will help to characterize the choice of

simple greedy heuristics. An analogue of this problem is well known for best approx-

imation algorithms. For instance, the k-center problem is not approximable within a

factor of 2 − ε for any ε > 0 and any approximation algorithm with a performance

ratio of 2 is considered to be the “best” possible. We first proved that the gap be-

tween k-club and l-club numbers is NP-hard to recognize for any k > l. Using this,

we proved that it is not possible to have a polynomial time approximation algorithm

that will always guarantee a solution of size ∆ + 1, where ∆ is the maximum ver-

tex degree. Motivated by this result, we investigated the maximum independent set,

maximum clique, maximum k-plex, minimum vertex color and minimum clique par-

tition problems. For the minimum vertex coloring problem, we outlined a heuristic

that always outputs a ∆-coloring whenever there exists a vertex in the input graph

which has a degree less than ∆. Based on the fact that 3-colorability of graphs with

maximum degree 4 is NP-complete, we concluded that the gap recognition problem

between the chromatic number and ∆ is NP-hard and thus the ∆-coloring heuristic

that we outlined is “provably best”. Since minimum clique partition is equivalent

to minimum vertex coloring on the complement of the input graph, this result also

applies to it. For the maximum independent set (maximum clique) and the max-

imum k-plex problems, we proved that a simple maximal by inclusion heuristic is

the “best” by showing that it is NP-hard to recognize the gap between the heuristic

solution and the optimal solution values. Thus, existence of any polynomial-time
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algorithm which always guarantees a better solution than the heuristic (whenever a

better solution exists) is impossible, unless P = NP . Finally, we conjectured that

the same technique can be applied to a broader class of graph problems that also in-

cludes maximum clique, maximum k-plex and maximum independent set problems.

The maximum subgraph with property π problem is finding a subgraph of maximum

cardinality that satisfies some given property π. We focused on properties that are

hereditary on induced subgraphs, additive or co-additive, nontrivial and interesting.

For such properties, the maximum subgraph with property π problem is NP-hard. We

presented some arguments that can be used in proving that any maximal by inclusion

greedy heuristic based on some order of vertices is the “best” in the sense that it is

not possible to have a polynomial time approximation algorithm which always gives

a better solution. This class includes several optimization problems including max-

imum planar subgraph, maximum bipartite subgraph, maximum clique, maximum

outerplanar subgraph and maximum degree-constrained subgraph problems. The re-

sults that we obtained can also be viewed as an additional evidence of these problems’

practical intractability. On the other hand, this should not prevent the practitioners

from designing more sophisticated approaches for these problems, since the above

result describes just the worst-case behavior of the heuristics. Our immediate future

goal is to prove our conjecture.

Finally, Chapter VII demonstrates our research findings on the construction

heuristics for the max-cut problem. We proposed a “worst-out” approach based

on contracting edges of minimum weight iteratively. We have shown that it has

an approximation ratio of at least 1/3 and a time complexity of O(|V |3). To the

best of our knowledge, this is the first time a worst-out greedy approach has been

applied to approximate the max-cut problem. We also proposed several “best-in”

1
2
-approximation algorithms for the same problem that are modifications of a well
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known heuristic introduced by Sahni and Gonzalez [70]. Based on our experiments,

we concluded that the “worst-out” approach is outperformed by best-in algorithms,

while the results obtained from modified versions of the Sahni-Gonzalez approach are

quite encouraging.
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