

COOPERATIVE MODELING AND DESIGN HISTORY TRACKING

USING DESIGN TRACKING MATRIX

A Thesis

by

JONGHYUN KIM

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Industrial Engineering

COOPERATIVE MODELING AND DESIGN HISTORY TRACKING

USING DESIGN TRACKING MATRIX

A Thesis

by

JONGHYUN KIM

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Amarnath Banerjee

Committee Members, Lewis Ntaimo

 Salih Yurttas

Head of Department, Brett A. Peters

August 2009

Major Subject: Industrial Engineering

 iii

ABSTRACT

Cooperative Modeling and Design History Tracking

Using Design Tracking Matrix. (August 2009)

Jonghyun Kim, B.S., Korea Military Academy

Chair of Advisory Committee: Dr. Amarnath Banerjee

 This thesis suggests a new framework for cooperative modeling which supports

concurrency design protocol with a design history tracking function. The proposed

framework allows designers to work together while eliminating design conflicts and

redundancies, and preventing infeasible designs. This framework provides methods to

track optimal design path and redundant design history in the overall design process.

This cooperative modeling architecture consists of a modeling server and voxel-based

multi-client design tool. Design change among server and multiple clients are executed

using the proposed concurrency design protocol. The design steps are tracked and

analyzed using Design Tracking Graph and Design Tracking Matrix (DTM), which

provide a design data exchange algorithm allowing seamless integration of design

modifications between participating designers. This framework can be used for effective

cooperative modeling, and helps identify and eliminate conflicts and minimize delay.

The proposed algorithm supports effective cooperative design functions. First, it

provides a method to obtain the optimal design path which can be stored in a design

library and utilized in the future design. Second, it helps capture modeling pattern which

 iv

can be used for analyzing designer’s performance. Finally, obtained redundancies can be

used to evaluate designer’s design efficiency.

 v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Amarnath

Banerjee for his kind guidance, encouragement and advice during this research. I wish to

extend my thanks to Dr. Lewis Ntaimo and Dr. Salih Yurttas for serving on my graduate

committee. I am also grateful to the faculty members of the Department of Industrial

Engineering at Texas A&M University. Thanks also to Mr. Hyun Soo Lee for his

suggestion which made this thesis much better.

Finally, I would like to thank my dear wife, Mijae Kim, who kept me focused on

finishing this research and my lovely son, Justin (Gio).

 vi

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS .. vi

LIST OF FIGURES ... viii

LIST OF TABLES .. x

1. INTRODUCTION ... 1

 1.1 Introduction .. 1

 1.2 Thesis Outline .. 2

2. RESEARCH BACKGROUND ... 3

 2.1 Voxel-Based Design ... 3

 2.2 Concurrency Management Protocol .. 4

 2.3 Petri Nets .. 6

 2.4 Design Structure Matrix (DSM) .. 8

3. COOPERATIVE MODELING ENVIRONMENT .. 11

 3.1 Cooperative Modeling Architecture ... 11

 3.2 Cooperative Modeling Protocol .. 12

 3.2.1 m_token SCPNs ... 12

 3.2.2 Revised Optimistic Pilgrim Protocol .. 14

4. ALGORITHM FOR DESIGN HISTORY TRACKING 19

 4.1 Voxel-Based Modeling Procedure ... 19

 4.2 Design Tracking Matrix (DTM) ... 22

 4.3 Optimal Design Path and Final Shape .. 23

 4.3.1 Optimal Design Path .. 23

 4.3.2 Final Shape ... 24

5. ALGORITHM FOR DESIGN ANALYSIS .. 25

 vii

Page

 5.1 Numerical Design Tracking Matrix (NDTM) 25

 5.2 Similarity and Dissimilarity Measure .. 26

 5.3 Participating Portion with Octree Approach .. 31

6. RESEARCH SUMMARY AND CONCLUSION .. 37

 6.1 Research Contribution and Conclusion .. 37

 6.2 Future Scope of Study .. 38

REFERENCES .. 39

APPENDIX A ... 42

VITA ... 47

 viii

LIST OF FIGURES

 Page

 Figure 1 Original 3D Shape of a Cow Model and Its Voxel Representation .. 4

 Figure 2 Garcia, et al.’s Optimistic Pilgrim Finite State Automaton 5

 Figure 3 Ordinary Petri Net Simulation with Two Tokens 7

 Figure 4 Spaghetti Graph of Activities and Base DSM 9

 Figure 5 Cooperative Modeling Architecture .. 11

 Figure 6 m_token SCPN Example ... 14

 Figure 7 Infeasible Voxel Design .. 15

 Figure 8 Feasibility Checking Function .. 18

 Figure 9 Management of Multiple Designers by the Priority Rule 18

 Figure 10 Voxel-Based Design Process and Its Graph 20

 Figure 11 Design Tracking Graph and Its DTM ... 21

 Figure 12 NDTM with Its Attributes ... 26

 Figure 13 Design Comparison between Designer A and B 29

 Figure 14 Multiple Comparison Matrix and Comparison Set 31

 Figure 15 Octree Subdivision Design Structure with NDTMs 33

 Figure 16 Voxel-Based Octree Subdivision Design Structure 34

 Figure 17 Participating Portion Changes with Octree Subdivision Graph 36

 Figure 18 Revised Pilgrim Protocol SCPNs with m_token 42

 Figure 19 Original Pessimistic Pilgrim Protocol with Hpsim Simulation 43

 ix

Page

 Figure 20 Revised Optimistic Pilgrim Protocol with HPsim Simulation 43

 Figure 21 Simplified Model of Two Protocols .. 44

 Figure 22 Total Process Times of Two Protocols ... 45

 x

LIST OF TABLES

 Page

 Table 1 Charateristics of Voxel-Based Design .. 3

 Table 2 Three Relationships in DSM. .. 10

 Table 3 Multi Attributes of Token Used in Revised Optimistic Pilgrim

 Protocol ... 16

 Table 4 Coupled Case Comparison. ... 30

 Table 5 Stochastic Time Delays in Pilgrim Protocol 45

 Table 6 Simulation Results with 100 Replications .. 46

1

1. INTRODUCTION

1.1 Introduction

 A number of cooperative modeling technologies exist in industrial product

design environments providing real-time sharing and modification methods. Some of

their advantages are to shorten overall design time using instantaneous consensus and

coordination among multidisciplinary designers. Also, these software provide

methodologies for designers/engineers to share design resources and evaluate product

design feasibility. From this point of view, Computer Supported Cooperative Work in

Design (CSCWD) has played an important role in product design. In addition, CSCWD

and Concurrent Engineering (CE) tools focus on providing environments which allow

users to work together on a single task [1-3]. Although, these existing frameworks are

good for cooperative modeling, there are some limitations. The existing

frameworks/systems do not support sufficient history tracking ability. In cooperative

modeling, design history tracking is an essential function for checking redundant design,

backtracking, and acquiring desired design in minimal time. However, many Product

Lifecycle Management (PLM) software such as PTC’s Windchil/PDMlink, UGS’s

Teamcenter, IBM’s ENOVIA just provide a simple tracking document change history

functionality. Another limitation is that these products fail to capture each designer’s

modeling pattern for evaluating designer’s performance and utilizing it subsequently. A

designer’s modeling pattern can be used for the next modeling task. If we know a

This thesis follows the style of IEEE Transactions on Automatic Control.

2

designer’s modeling pattern, it can be stored in a design library and utilized in similar

product design. It is difficult to know the preference of each designer, as well as the

differences between designers’ patterns.

 Cooperative modeling with many designers is one of the good methods for

minimizing design time and designing sophisticated products. In this context, the

objective of this research is to propose (i) a cooperative modeling framework based on

voxel-based cooperative modeling, (ii) a method to manage data resources and tracking

history using a proposed Design Tracking Matrix (DTM), and (iii) a method to analyze

the design using a proposed Numerical DTM.

1.2 Thesis Outline

 The remainder of this thesis is as follows. Section 2 introduces the background

related to this research. This section includes design method, concurrency management

protocol, Petri net and design structure matrix. In section 3, the cooperative modeling

environment is presented. This section includes voxel-based cooperative system

architecture and developed concurrency management protocol using Petri net described

in section 2. In section 4, the algorithm for design history tracking is proposed which

includes the method to obtain optimal design path using design tracking matrix. In

section 5, the algorithm for design analysis is discussed and it includes the method to

represent the design tracking matrix in a numerical representation and its utilization. The

conclusion is discussed in section 6, which summarizes this thesis and highlights the

contributions of this thesis.

3

2. RESEARCH BACKGROUND

2.1 Voxel-Based Design

 The collaborative design framework and design tracking algorithm is based on

voxel-based design and representation. The term, voxel is derived from volumetric pixel.

While common image pixel has 2 dimensions (x and y), a voxel has 3 dimensions (x, y,

and z). In general, one voxel is represented as a cube of unit length. However, a voxel

model can have variations such as a voxel model with different dimension sizes or

subdivided voxel model similar to an octree representation [4]. Figure 1 shows an

original cow shape and its voxel representation.

Since voxel model is a simple representation metholodgy in modeling and

design, it has been widely used for approximating complex shapes, capturing shapes

quickly or creating prototypes. Compared to B-rep, CSG and other non-manifold

representations, it has some advantages and disadvantages [5, 6]. Table 1 summarizes

some of the characteristics of voxel-based design.

Table 1: Charateristics of Voxel-Based Design

 Characteristics

Voxel-based design

1. Easy boolean operation

2. Excellent local editing ability

3. Insensitivity to object complexity and topology

4. Useful for feature recognition

4

Figure 1: Original 3D Shape of a Cow Model and Its Voxel Representation

2.2 Concurrency Management Protocol

 The essence of CSCWD technology is to adjust users’ ideas and to execute them

simultaneously without conflicts. A concurrency management protocol is used to control

information that occurs concurrently in the cooperative design stage in order to

guarantee an efficient access to the server and modify shared design. Borghoff and

(a) Original 3D shape

(b) Voxel representation of the cow model

5

Schlichter [7] classified it into two types: pessimistic protocol and optimistic protocol.

While the pessimistic protocol consists of token-passing and locking scheme which

constrains the activities of the user, the optimistic protocol focuses on high efficiency

which allows multiple users to modify different nodes simultaneously. A pilgrim

protocol is an example of pessimistic protocol since it uses the token passing technique

using a finite state automaton model [8-10]. Garcia, et al. have modified the pessimistic

pilgrim protocol to an optimistic pilgrim protocol using a finite state automaton

approach [9]. The optimistic pilgrim protocol allows designers to modify a design model

without ownership. The model is updated at the server level when a designer obtains

ownership. Figure 2 shows the optimistic pilgrim finite state automaton model where

pilgrim is a token in each state.

Figure 2: Garcia, et al.’s Optimistic Pilgrim Finite State Automaton [9]

6

While a token is just a simple variable for representing status in pessimistic

pilgrim protocol, a token in optimistic pilgrim protocol has information for representing

status as well as for describing ownership. The delay time for updating can be minimized

using this property.

2.3 Petri Nets

 A Petri net (PN) is one of several mathematical modeling tools. It is possible to

model discrete distributed systems and verify its properties and functionalities. Petri nets

can be used for many production systems as wells as CSCW systems [11]. There are

different types of Petri nets: classical, timed, Stochastic and Colored Petri Nets. Classical

Petri Nets is composed of places, transitions, arcs and markings. Times can be placed on

transitions and places. This is classified into Timed Petri nets [12]. It is possible to

represent time delays and analyze whole systems using it. Stochastic Petri nets (SPNs)

[13-15] are extended timed Petri nets. It focuses on the continuous time functions and

firing rules on transitions and places in order to analyze complex systems performances.

Colored Petri nets (CPNs) [11, 16, 17] are a high level form of Petri nets, in which

markings contain information. Information is represented as several colors. The

functions are defined on transitions and conditions can be defined on arcs and each place

has an associated type. An ordinary PN is defined 4-tuple (P, T, I, O) as follows,

O)I,T,(P, ZPN = (2.1)

7

where,

 P = set of places, {P1,P2, ... , Pn}

 T= set of transitions, {T1,T2, ... , Tm}

 I = set of directed arcs from P to T, I : P × T → N{0,1}

 O = set of directed arcs from T to P, I : P × T → N{0,1}

Places contain any non-negative number of tokens. A transition of a Petri net

may fire whenever there is a token at all its input places. After firing, it consumes these

tokens, and places tokens at all its output places. Figure 3 shows a simple example of

ordinary Petri net simulation.

Figure 3: Ordinary Petri Net Simulation with Two Tokens

8

 In this example, transitions are firing immediately when an input place has a

token. As shown in this example, Petri nets can be used as a graphical tool. It is useful

tool for describing and studying systems which are characterized as being sequential,

parallel, concurrent and distributed. Including the timing and stochastic concepts into

Petri net model (SPNs), complex performances and behaviors of systems can be

simulated and studied. Also, CPNs provide compact models for large systems with a

higher level of abstraction and an improved graphical representation capability.

Generally, Petri nets are in use in a large number of areas such as communication

systems, distributed algorithms, computer algorithms, flexible manufacturing systems,

and many other areas. In this research, Petri Nets are used to verify concurrent

management protocol and develop current protocol.

2.4 Design Structure Matrix (DSM)

 DSM is a project management tool and is widely used in analyzing the planning,

execution, management of complex product development projects [18]. A DSM is

classified into four types: Component DSM, Team DSM, Activity DSM and Parameter-

based DSM [19]. Activity DSM is used to represent the information flow between

complex tasks. There are several methods to analyze DSM: partitioning, tearing and

banding [18]. Activity DSM helps to manage the schedule of production efficiently since

it shows the relations between time ordered activities and interdependency among the

tasks. Upstream information revealed in DSM implies the iteration activities. This is

useful in analyzing and tracking of the entire design process.

section 4.

 In the graphical form of

edge represents the relationship between two activities.

representation, relationships between activities are shown with a mark (O) at the

corresponding location in the matrix, as

an edge between i
th

 to j
th

column i and row j. If i <

feedback.

Figure 4:

 There are three types of activity relationships in DSM: parallel (independent),

sequential (dependent), coupled (i

configurations characterize the order of action between tasks or data exchanges. For

instance, parallel indicates that there are no

(a) Spaghetti graph

analyzing and tracking of the entire design process. This will be discussed in

the graphical form of DSM representation, a node represents an activity and

the relationship between two activities. In the matrix form of DSM

representation, relationships between activities are shown with a mark (O) at the

corresponding location in the matrix, as shown in Figure 4 [18]. For example,

th
 node, the mark is shown at the location corresponding to

< j, then the mark is said feed-forward; if j < i then it is said

: Spaghetti Graph of Activities and Base DSM

There are three types of activity relationships in DSM: parallel (independent),

sequential (dependent), coupled (interdependent) as shown in Table

configurations characterize the order of action between tasks or data exchanges. For

instance, parallel indicates that there are no precedence relations to be execute

(a) Spaghetti graph (b) Base DSM

9

This will be discussed in

, a node represents an activity and an

atrix form of DSM

representation, relationships between activities are shown with a mark (O) at the

For example, if there is

at the location corresponding to

j < i then it is said

There are three types of activity relationships in DSM: parallel (independent),

 2 [18]. These

configurations characterize the order of action between tasks or data exchanges. For

executed prior to

10

two activities A and B. Sequential indicates that activity A has to be preceded by activity

B. Finally, coupled indicates that activity A and B influence each other. These

characteristics can be used to organize several tasks systematically.

Table 2: Three Relationships in DSM

Relationships
Parallel

relationship

Sequential

relationship

Coupled

relationship

Graph

Representation

DSM

Representation

11

3. COOPERATIVE MODELING ENVIRONMENT

3.1 Cooperative Modeling Architecture

 In this section, the cooperative modeling architecture is described. Figure 5

shows a conceptual model of the architecture.

Figure 5: Cooperative Modeling Architecture

 This cooperative modeling architecture consists of one model server and multiple

clients. A model server has a model in the database, which is shared by each client. Each

client has three types of design modules; design menu, shared server model and client

model. The design menu controls activities related to the design process. It contains

design libraries, parameters for feature based design and text exchanging panel. The

panel of the shared server model has a copy of the model from the model server. The

client model is for locally modifying each voxel model before updating the model in the

model server. Even if the model is checked out by another designer, each designer can

12

perform their updates through the client model. Once the model is checked in, the local

updates are incorporated in the model at the model server. The detail mechanism is

described using the revised pilgrim protocol in section 3.2.

3.2 Cooperative Modeling Protocol

3.2.1 m_token SCPNs

 Before describing validation of concurrent management protocol and its

development, the method to analyze this protocol is presented. As mentioned in section

2.3, Petri net is a powerful tool used in communication protocols, distributed algorithms,

and many other areas. Among their application areas, communication protocols handle

concurrent behaviors or problems which can occur in a cooperative work environment.

Petri Net is used to model cooperative modeling protocol in order to validate behaviors.

Currently optimistic pilgrim protocol is complicated to represent using simple Petri nets.

Though Colored Petri net (CPN) [20] is suitable for the representation of multiple

designers’ behaviors, it is not enough to explain whole system and how it works. In

general CPN approach, tokens have only one set of colors and transition firings are

determined by the colors, whereas pilgrim protocol requires multiple conditions to

enable transition firings. In other words, one token has to be classified into multiple sets

of colors in a pilgrim protocol. Also transition firing time varies according to the

multiple conditions of a token. To model pilgrim protocol based on these characteristics,

a stochastic colored Petri net (SCPN) approach is required, and token have to be defined

13

with multiple attributes. This multi attributes stochastic colored Petri net (m_token

SCPN) is defined as follows,

S) C, T, P, , ,(ZPN ΛΣ= (3.1)

where,

 Σ = set of color tokens with multi attributes, {σ1,1,1,1, σ2,1,1,3, …},

 where, σi,j,k,l = i
th

colored token, j
th

 first attribute, k
th

 second attribute,

 l
th

 third attribute

 Λ = set of distributions, {expo(3), 6, unif(2,3),…}

P = set of places, {P1, P2, ..., Pn}

 T = set of transitions, {T1, T2, ..., Tm}

 C = color function, P U T → Σ

 S = stochastic mapping function

]))Type((S(t))[Type(S(t) :T t Σ⊆∧Λ=∈∀

 For example, if the token has four attributes: color(i) {1,2,3}, status(j) {1,2,3},

user’s action (k) {1,2,3} and feasibility (l) {1,2,3}. When the token σ2,1,1,1 goes to T2,

then T2 firing time follows expo(4) and status changed to 2 (j=2) (figure 6).

14

Figure 6: m_token SCPN Example

As shown in the above example, a transition can fire whenever all its attributes

satisfy the required conditions. Some of the attributes may change after the transition

firing. m_token SCPN methodology is useful for modeling designer’s type, behaviors

and their changing status in the system. Also, it is useful for performance analysis and

evaluation of a system based on variety of transition firing times.

3.2.2 Revised Optimistic pilgrim protocol

 The optimistic pilgrim protocol is used as a basic concurrency design protocol.

As discussed in section 2.2, under the optimistic pilgrim protocol, a user obtains

ownership of a model using a token prior to performing any updates on a model residing

in the server. While the owner edits the model, other users can implement their changes

to a client model and the data is stored locally using a token. After the owner returns the

ownership, another user can gain ownership which allows the update of the server model

(a) m_token (b) T2 firing condition and its time

15

with any existing client model updates. However this protocol has some limitations. First,

the optimistic pilgrim protocol focuses only on transmitting the data updates to the

server without determining any inconsistency problems that might arise due to design

constraints and infeasibilities. Disjointed or degenerated voxel are two cases of

infeasible design that can occur. Disjointed voxel is shown in Figure 7(a) where red

colored voxels are separate from the main body which is shown using green colored

voxels. Degeneracy can be defined as adding a voxel at a location already containing a

voxel or removing a voxel from a position that does not contain a voxel. This is

illustrated in Figure 7(b).

Figure 7: Infeasible Voxel Design

 Second, this protocol does not consider designers or client’s type (e.g. dominant

designer, reviewer) which leads to it not providing sufficient opportunity to dominant

designer. If the ownership is given to a dominant designer prior to a reviewer, the design

process can be performed more effectively. To overcome these two limitations, a revised

optimistic pilgrim protocol is proposed with m_token SCPN methodology. In this

protocol, a token has four attributes and those are shown in table 3.

(a) Disjointed voxel (b) Degeneracy of voxel

16

Table 3: Multi Attributes of Token Used in Revised Optimistic Pilgrim Protocol

 Figure 8 shows the procedure of infeasibility control in the system. A designer

has ownership which corresponds to Active Owner (AO) place. If a disjointed voxel is

generated, designer A transitions from AO place to Active Owner with Infeasible Design

(AO-IFD) place, and the designer has to check his/her action: infeasible or feasible. If

the designer judges that it is a feasible action, then designer transitions from AO-IFD to

AO place. Or if the designer judges that it is not feasible action and modifies it correctly,

then the designer transitions from AO-IFD place back to AO place. If degeneracy is

detected, designer state transitions from AO to Active Owner with Degeneracy (AO-D)

place. This results in a warning message to the designer. If the designer wants to correct

it then designer state transitions from AO-D to AO place.

 Figure 9 shows how this protocol manages multiple designers given the priority

rule. In this example, there are one dominant designer (s=‘circle’) and two reviewer

Attributes Declarations

s

 (shape)

type SHAPE = {circle, plus, box}

var s = SHAPE

a

 (action)

type ACTION = {‘request’ , ‘check_out’ , ‘writing’ , ‘correction’}

 var a = ACTION

f (feasibility)
type FEASIBILITY = {‘disjoint’ , ‘degeneracy’ , ‘feasible’}

var f : FEASIBILITY;

t_s

(token status)

type TOKEN STATUS = {‘no_com’, ‘accepted’ , ‘refused’, ‘changed’}

var t_s : TOKEN STATUS;

17

(s=‘plus’ or ‘box’) participating in design process. All the tokens are gathered in P9 and

sorted by its SHAPE type. If token shape is circle, it transitions to Dominant Non-owner

which wins the ownership (D_NOW) place. If the token is plus or box, they transition to

Reviewer Non-owner which wins the ownership (R_NOW) place respectively. There are

two management rule: (i) dominant has priority over reviewer, and (ii) First Comes First

Serve (FCFS). If circle and plus tokens are present in P10 and P11 simultaneously, T19

can fire ahead of T20 when token status (t_s) is equal to ‘changed’. The Inhibitor arc

between P10 and T17/T18 enables this priority procedure. If P9 has a plus or a box, any

token who arrives to P11 or P12 first, has a priority since the resource to firing T17 or

T18 is limited to one (P14). Using this protocol, the model server controls multiple

clients, prevents design conflict, and minimizes waiting time for access ownership. The

whole structure of original/revised pilgrim protocol PNs and the comparison result of

two protocol’s process time are shown in figures 18-22 which are included in Appendix

A.

18

Figure 8: Feasibility Checking Function

Figure 9: Management of Multiple Designers by Priority Rule

19

4. ALGORITHM FOR DESIGN HISTORY TRACKING

 In many existing CAD software such as CATIA, I-DEAS, and AutoCAD, one of

the major limitations is the limited amount of design history tracking and its

applications. Even though there have been efforts devoted to storage and retrieval of

design information, these are mainly focused on archiving product data and knowledge

management. In this research, the goal is to track design data at every step and use it to

obtain an optimal design path and identify/remove redundancy using a Design Tracking

Matrix (DTM).

4.1 Voxel-Based Modeling Procedure

 The voxel-based modeling procedure and its simple algorithm are first described.

Building or modification of a shape is performed through the addition or removal of

voxels. As shown in the Design Node steps in Figure 10, voxel data is being added (“+”

mark) or removed (“-” mark) to obtain the final shape (7
th

 node). Additions occur in

chronological order of node number while removals occur in reverse order in the graph.

Addition represents feed-forward while removal represents feedback edge between two

nodes (i and j) and they are defined as the transition function (δ) of feed-forward and

feedback as follows,

jijjiFW ji <∀≠=)|,(, φδ (4.1)

ijjiijFB ij <∀≠∩=)|,(, φδ (4.2)

20

 Two conditions must be satisfied for these transition functions:

• Feed-forward function: destination node is not empty

• Feedback function: there is an intersection between i
th

 and j
th

 nodes

Figure 10: Voxel-Based Design Process and Its Graph

 Figure 11(a) describes the design graph in more detail. Each node contains voxel

data which is created by designers and the edge shows the addition or removal of voxel

data between nodes.

Design

Node
0 1 2 3 4 5 6 7

Shape

Design

Tracking

Graph

Voxel

Data
· + (2,1,1)

+ (3,1,1)

+ (1,1,1)

- (3,1,1)

+ (2,1,2)

+ (3,1,1)

+ (3,1,2)

+ (3,2,2)

- (3,1,2)

+ (2,1,3)

- (3,1,1)

- (3,2,2)

+ (3,1,3)

21

Figure 11: Design Tracking Graph and Its DTM

(a) Design tracking graph

(b) Design Tracking Matrix (DTM)

22

4.2 Design Tracking Matrix (DTM)

 Design Tracking Matrix (DTM) is modified from Design Structure Matrix

(DSM). DTM focuses on representing data flows between design steps. The main

difference between the two methods is that partitioning the DSM rows and columns is

unnecessary in DTM. Partitioning is the process of manipulating the matrix in order to

eliminate or reduce the feedback mark in DSM. The partitioning is not needed in DTM,

since the feedback mark represents an important design process as it is. When a design

step is represented in chronological order (ex.1→2→3) the feedback mark shows the

reverse order process such as 3→2 or 3→1. To track the optimal design path, these

processes must be followed through unchanged and in the same time order. A designer

can determine redundant steps and trace optimal design path using the data exchange

captured in DTM.

 Based on this design tracking graph, a DTM can be obtained as shown in Figure

11(b). Marks (O) indicate an edge’s start/end nodes and the margin of matrix shows the

design nodes. The feedback marks appear in the upper diagonal matrix, while feed-

forward marks appear in the lower diagonal. The design data exchange can be captured

using these sets of two marks. The DTM expressions can be represented as follows:

nmijdD ×=][(4.3)

}1,0{};,|{ =>∀= jijidud ijij (4.4)

}1,0{};,|{ =>∀= ijjidld ijij (4.5)

23

where

 m, n = dimensions (number of graph nodes)

 i, j = i
th

 and j
th

 design node

ijud = Upper Diagonal mark (element)

ijld = Lower Diagonal mark (element)

4.3 Optimal Design Path and Final Shape

4.3.1 Optimal Design Path

 Given a DTM, the optimal design path can be obtained. The optimal design path

is the collection of nodes in columns which contain at least one voxel data. It is the same

as the set of final nodes in every column located in the lower diagonal mark. The lower

diagonal represents the addition of voxels and final nodes contain voxel data in every

column. From equation (4.1), if there are no voxels in following nodes, feed-forward

function cannot be activated. Equation (4.6) describes the representation of optimal

design path (OP).

}}1{,,|{)max(,),min(== ijjiji ldddjOP ijji >∀ , (4.6)

where

jid),min(
= the mark located at the min position for all j

th
 design nodes

)max(, jid = the mark located at the max position for all i

th
 design nodes

24

 In Figure 11, the colored nodes indicate the optimal design path. To prove

equation (4.6), we assume that 5
th

 node is an element of the optimal design path.

According to the OP definition, the 5
th

 node has to contain at least one voxel data. In that

case, the transition between 4
th

 node to 6
th

 node cannot occur, since the 5
th

 node is not

empty. This contradicts the transition condition made in the feed-forward transition

function. According to the condition of feedback function there must be an intersection

between following and preceding node to execute it. To satisfy this condition under the

current assumption, one of voxels cannot belong to their nodes : +(3,1,2) at 4
th

 node or -

(3,2,2) at 7
th

 node. This is the second inconsistency. Therefore, optimal design path

formulation is verified.

4.3.2 Final Shape

 By choosing all the elements in the optimal design path, the final shape of a

model can be constructed using the voxel value at every location. It can be stated as

}1,,,|),,{(),,(=∈∀∈∀∈∀= pKkJjIikjikjiS p
 (4.7)

where

),,(KJI =









 voxela oflength unit

axis Z)Y,X(,inmodeldesignoflengthTotal

pkji),,(= particular voxel

otherwise

shapefinalinexistvoxelif

0

1
p





=

25

5. ALGORITHM FOR DESIGN ANALYSIS

5.1 Numerical Design Tracking Matrix (NDTM)

 In the DTM, the mark (O) provides a single binary attribute which signifies the

existence or absence of relationship between two design nodes. A Numerical DTM

(NDTM) uses a number instead of a mark to represent multiple attributes, such as

redundancy and degree of usage. Redundancy can be characterized as the removed voxel

data which is not contained in the final shape but is present in the shared server model

during the design process. Degree of usage (DU) is the ratio of the existent voxel data to

all of the generated voxel data related to the particular design node. Redundancy is

represented in the upper diagonal matrix while degree of usage is shown in the lower

diagonal matrix. They can be obtained by

k

kk
k

n

rn
U

−
= (5.1)

 ∑
+=

=
m

1ki

ki,k udr (5.2)

where

 kU = degree of usage at k
th

node

 kn = number of whole voxel data which are generated at k
th

 node

 kr = number of redundancies at k
th

node

26

 Figure 12(b) shows the NDTM with degree of usage and redundancy which is

derived from the design tracking graph (Figure 12(a)). Degree of usage at 4
th

 design

node (4U) is equal to 1/3 since three voxels are generated and two of them are removed

later. In this example, number of redundancies at 4
th

 design node is equal to 2.

Figure 12: NDTM with Its Attributes

5.2 Similarity and Dissimilarity Measure

 In the past, many cooperative activity models have focused on the efficiency and

concurrency of the work and provide an environment to organize multidisciplinary

user’s performance well [1-3]. They neglect to study the characteristics of participants or

their design pattern. An algorithm is presented to identify similarity or dissimilarity

(a) Design tracking graph (b) NDTM with degree of usage and redundancy

27

among designers’ modeling patterns. To identify similarity or dissimilarity among

designers’ modeling patterns, it is necessary to understand the condition of comparison

and property of degree of usage.

• Condition: Compare design differences that occur sequentially

• Property of DUs: Preceding NDTM has higher value of DUs than following

NDTMs’

 First, the comparison is limited to contiguous two design cases since the

proposed design method is processed in a sequential manner: Owner designer updates

his/her design to model server, followed by the modifications to the design at the model

server by the next designer. This implies that the following NDTM is generated from the

previous NDTM. So these two NDTMs will be compared. Second, it is possible that the

NDTM being used by the second designer contains modifications to eliminate

redundancies from the previous design modifications. In such a case, the modified

NDTM will have a smaller DU as compared to the previous NDTM.

 Given a NDTM, the difference between design A and B (
ABD) is formulated as,

k

m

lk

kBkAk

AB
w

)w|UU(|

D

∑
=

⋅−

= 10 ≤≤ ABD (5.3)

28

where

 l = first node to compare

 m = final node to compare

 k = k
th

design node

 wk = number of generated voxel at k
th

design node

 When
ABD value is close to zero, there is little difference between the two

designs.
ABD = 1 indicates a totally different design. As a result of comparison between

design A and B, three main relationships (similar to the parallel, sequential and coupled

relationships mentioned in section 2.4) can be developed. In a NDTM, relationships are

classified as parallel, sequential and coupled similar to the independent, dependent and

interdependent relationships in DSM. Figure 13(b) shows an example of difference

between two designs. Parallel and sequential relationships are shown in 2
nd

 and 3
rd

design node while a coupled relationship is shown in multiple node comparison (4
th

 to

6
th

). Table 4 shows the coupled case comparison between two designs. The compared

part (cup’s grip) is designed by designer A, and modified by designer B later as shown in

Figure 13(a).

29

(a) Design change from designer A to Designer B

(b) Three similarity relationships between two designers

Figure 13: Design Comparison between Designer A and B

30

Table 4: Coupled Case Comparison

 Also, this similarity/dissimilarity comparison can be applied to three more

designers. Based on the DTM, comparison matrix can be obtained like as figure 14(a). It

is not necessary to track all the design iterations to compare the three designers since

design tracking matrix contains whole design changes from start to the point of

comparison time. As shown in figure 14(b), 1
st

design iteration which is designed by A is

not necessary to compare designer A and B (DAB).

k UAk UBk |UAk-UBk | Wk |UAk-UBk|·Wk

4 1/3 1/3 0 3 0

5 0 0 0 1 0

6 1/2 0 1/2 2 1

7 2/3 1/3 1/3 3 1

 DAB 0.222

31

(a) Comparison matrix obtained from 5 iteration NDTM

(b) Comparison set

Figure 14: Multiple Comparison Matrix and Comparison Set

5.3 Participating Portion with Octree Approach

 An octree subdivision method is required to represent the voxel-based design

model in detail. Octree subdivision is the process of dividing an initial voxel into octant

and subdividing it into sub-octants [21]. In our model architecture, each designer picks

up the necessary voxel and subdivides it repeatedly until the desired model is obtained.

Under this design process, each designer contributes to the final shape of the design

model partially. However, it is difficult to estimate the number of voxels or designs

generated by each designer accurately, since the design process becomes complicated

32

through the subdivision method. In order to obtain each designer’s contribution to the

whole design, it is necessary to distinguish the steps of each design and participants.

 At the first octree design level (level 0), one NDTM is generated for all the

designers’ work. After that, they choose one voxel and start the iterative process of

breaking it down for the detail representation. In this design step, multiple NDTMs are

generated and the octree design level is one. Every subdivided voxel has its own NDTM

in every octree level until the final shape of design model is acquired. Figure 15 shows

this octree subdivision design structure with NDTMs.

 Before figuring out each designer’s contributions towards the whole design, in a

NDTM, the designers' participating portions (e.g. if there are n designers – P1, P2, …, Pn)

are expressed as

∑

∑

=

=

−

−

=
j

0k

kk

i

j

0k

kk

i

rn

)rn(

P
 , i = 1,…,n-1 (5.4)

∑
−

=

−=
1n

1i

in P1P (5.5)

where

 i = i
th

 designer

 j = final design node

 ∑
=

−
j

k

kk rn
0

= number of the existent voxels in a task

i

j

0k

kk)rn(∑
=

−
= number of the existent voxels which are generated by designer i

33

 In Figure 15, there are five voxels generated by designer A, B and C respectively

at the first octree design level (level 0). In this example, the participating portions are

5

3
=AP

, 5

1
PB =

and

5

1
PC =

.

Figure 15: Octree Subdivision Design Structure with NDTMs

34

Figure 16: Voxel-Based Octree Subdivision Design Structure

Voxel-based octree subdivision design structure can be represented as shown in figure

16. In this thesis, each NDTM is defined as a task at each octree level. During the octree

subdivision design process, if a particular participating portion in t
th

 task at the l
th

 level is

changed, it can be obtained by,

 ,...2,1landm,,2,1s

)rn(

P

P

)1l(

j

0k

kk

m

1s

)s,1l(,i

)t,l(,i ==

−

=

−

=

=

+

∑

∑
K

 (5.6)

n,,2,1tPP
n

1t

)t,1(,i)1,0(,i K== ∑
=

 (5.7)

35

where

 i = i
th

 designer

 l = octree design level

 t = task number which assigned to octree design level l

 s = task number in octree design level i+1 at task t

=)t,l(,iP particular portion in t
th

task at l
th

level for designer i

 Figure 17 shows the participating portion changes with octree subdivision graph.

In this graph, the nodes represent the tasks at each octree design level and the edge

indicates the subdivision of particular voxel. The edge number represents the portions

about how many sub-voxels are assigned to the following octree design level. The right

end value of this graph shows the participating portions.

 While equation (5.7) is the formula to obtain the designer’s contributions toward

the whole design, equation (5.6) gives the value for the representation of merging same

nodes. For example, yellowed node A (figure 17(a)) is the first task at the octree design

level-1 and its PA,(1,1) is equal to 2/9. This is the same as the right end value where two

nodes and edges are merged into one as shown in Figure 17(b). Through the merging of

same nodes and edges, the graph is simplified and finally PA and PB are computed.

36

Figure 17: Participating Portion Changes with Octree Subdivision Graph

(a)

(b)

37

6. RESEARCH SUMMARY AND CONCLUSION

6.1 Research Contribution and Conclusion

 The proposed voxel-based cooperative design architecture supports effective

cooperative design functions. First of all, it provides an effective cooperative design

environment using revised optimistic pilgrim protocol. This protocol enables minimizing

delay time for updating design works, preventing possible design inconsistency, and

managing multidisciplinary designers effectively. Second, it provides a method to obtain

the optimal design path using DTM. By the process of eliminating unnecessary design

steps, a complicated design process can be simplified and standardized design path can

be obtained for a product design. Standardized design paths can be stored in a design

library and utilized in similar product design scenarios in the future. Third, it helps

capture modeling pattern such as adding preference or deleting preference, whole to

small part or small to whole part. Modeling pattern represents each designer’s

specialized approach associated with product design and it can be used for analyzing

designer’s performance and utilized in future modeling work. Similarity/dissimilarity

measure enables finding the differences between each designer’s modeling patterns.

Finally, the overall redundancies obtained from NDTM can be used to evaluate

designer’s design efficiency. Those functions are not provided in existing cooperative

CAD systems. As opposed to existing CAD systems which focus on simple history

changes, the proposed algorithm provides an efficient method to track, access and

manage history.

38

6.2 Future Scope of Study

 In this research, only voxel based representation is considered. However many

CAD software use B-rep representations or their own native representation methods.

These representations can also be captured by design tracking graph and DTM. In this

case, the content of design tracking graph and DTM will be determined by the operators

and parameters used in the CAD system. Ultimately, it will be possible to develop a

system which will predict and provide feasible design alternatives based on the tracked

database. This system will allow easy and fast product design.

39

REFERENCES

[1] M. L. Maher and J. H. Rutherford, "A Model for Synchronous Collaborative

Design Using CAD and Database Management," Research in Engineering

Design, vol. 9, pp. 95-88, 1997.

[2] R. Bidarra, E. V. D. Berg, and W. F. Bronsvoort, "A collaborative feature

modeling system," Journal of Computing and Information Science in

Engineering, vol. 2, pp. 192-198, 2002.

[3] W. D. Li, J. Y. H. Fuh, and Y. S. Wong, "An Internet-enabled integrated system

for co-design and concurrent engineering," Computers in Industry, vol. 55, pp.

87-103, 2004.

[4] J. J. Shah and M. Mantyla, Parametric and Feature-Based CAD/CAM: Concepts,

Techniques, and Applications. New York: Wiley, 1995.

[5] V. Chandru, M. Manivannan, and S. Manohar, "Minkowski operator and feature

of voxel models," in ASME Design Engineering Technical Conferences, Las

Vegas, 1999, pp. 1-11.

[6] V. Chandru and S. Manohar, "Volume modeling for emerging manufacturing

technologies," Sadhana, vol. 22, pp. 199-216, 1997.

[7] U. M. Borghoff and J. H. Schlichter, Computer-Supported Cooperative Work

Introduction to Distributed Applications. New York: Springer, 2000.

40

[8] H. Guyennet, J.-C. Lapayre, and M. Trehel, "The pilgrim: A new consistency

protocol for distributed shared memory," in Proceedings of the ICA3PP’97

International Conference, Melbourne, Australia, 1997, pp. 253-264.

[9] E. Garcia, J.-C. Lapayre, and G. David, "Pilgrim Performance over a New CAlif

Communication Layer," in Proceedings of 7th Parallel and Distributed Systems

International Conference (ICPADS’00), Iwate, Japan, 2000, pp. 203-210.

[10] E. Garcia, H. Guyennet, J. Henriet, and J.-C. Lapayre, "Towards an Optimistic

Management of Concurrency: A Probabilistic Study of the Pilgrim Protocol," in

Computer Supported Cooperative Work in Design II: 9th International

Conference, Coventry, UK, 2005, pp. 51-60.

[11] L. M. Kristensen and L. Petrucci, "An Approach to Distributed State Space

Exploration for Coloured Petri Nets," in 25th Int. Conf. Application and Theory

of Petri Nets (ICATPN'2004), Bologna, Italy, 2004, pp. 474-483.

[12] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper Saddle

River, NJ: Prentice Hall PTR, 1981.

[13] S. U. Guan and S. S. Lim, "Modeling Adapatable Multimedia and Self-

Modifying Protocol Execution," Future Generation Computer Systems, vol.

720(1), pp. 123-143, 2004.

[14] S. M. Koriem, T. E. Dabbous, and W. S. El-Kilani, "A new Petri Net Modeling

Technique for the performance Analysis of Discrete Event Dynamic Systems,"

Journal of Systems and Software, vol. 72, pp. 335-348, 2004.

41

[15] G. L. Park, "Performance Evaluation of a List Scheduling Algorithm in

Distributed Memory Multiprocessor Systems," Future Generation Computer

Systems, vol. 20(2), pp. 249-256, 2004.

[16] K. Jensen, "Colored Petri Nets and the Invariant Method," Theorical Computer

Science, vol. 14, pp. 317-336, 1981.

[17] K. Jensen, "An Introduction to the Practical Use of Coloured Petri Nets,"

Lectures on Petri Nets II: Applications LNCS, vol. 1492, pp. 237-292, 1998.

[18] A. Yassine, "An Introduction to Modeling and Analyzing Complex Product

Development Processes Using the Design Structure Matrix (DSM) Method," in

Quaderni di Management (Italian Management Review), 2004.

[19] T. R. Browning, "Applying the Design Structure Matrix to System

Decomposition and Integration Problems: A Review and New Directions," IEEE

Transactions on Engineering Management, vol. 48, pp. 292-306, 2001.

[20] K. Jensen, L. M. Kristensen, and L. Wells, "Coloured Petri Nets and CPN Tools

for Modeling and Validation of Concurrent System," Int J Software Technology

Transfer, pp. 213-254, 2007.

[21] Y.-J. Tseng and Y.-R. Sue, "Machining of Free-Form Solids Using an Octree

Volume Decomposition Approach," International Journal of Production

Research, vol. 37, pp. 49-72, 1999.

42

A
P

P
E

N
D

IX
 A

R
E

V
IS

E
D

 O
P

T
IM

IS
T

IC
 P

IL
G

R
IM

 P
R

O
T

O
C

O
L

F
ig

u
re

 1
8

:
R

ev
is

ed
 P

il
g

ri
m

 P
ro

to
co

l
S

C
P

N
s

w
it

h
 m

_
to

k
en

43

Figure 19: Original Pessimistic Pilgrim Protocol with Hpsim Simulation

Figure 20: Revised Optimistic Pilgrim Protocol with HPsim Simulation

44

Figure 21: Simplified Model of Two Protocols

Simulation assumptions to compare the process times of two protocols are as follows,

(i) All transitions fire immediately except T1, T4 and T6

(ii) All updating times are zero in server model

(iii) All correction times for infeasible designs are zero

(iv) All time delays use the data in table 5

(v) Any token which consumes time delay in T6 has different delay time in

T4 (T4’ = T6 –T4)

(vi) Total process time is sum of whole token’s delay time until final token

arrives in P5

(vii) The time unit is minutes

45

Table 5: Stochastic Time Delays in Pilgrim Protocol

Figure 22: Total Process Times of Two Protocols

 Original ‘pilgrim’ Revised ‘pilgrim’

Type ‘circle’ ‘plus’ ‘box’ ‘circle’ ‘plus’ ‘box’

Request

Arrivals
T1 exp(5) exp(3) exp(4) exp(5) exp(3) exp(4)

Client

Model

Writing

T6 · · · U(2,4) U(5,7) U(4,6)

Server

Model

Writing

T4 N(10,4) N(12,3) N(8,2)

T4 N(10,4) N(12,3) N(8,2)

T4'
N(10,4) -

U(2,4)

N(12,3) -

U(5,7)

N(8,2) -

U(4,6)

46

Table 6: Simulation Results with 100 Replications

Protocol Average time Min Time Max time

Original ‘pilgrim’ 25.203 12.787 50.610

Revised ‘pilgrim’ 19.616 6.8305 45.728

47

VITA

Jonghyun Kim was born in Taegu, South Korea. He received his Bachelor’s

degree in architecture engineering in 2004 from Korea Military Academy in Seoul. He

was commissioned as a second lieutenant in 2004 and serves in the Army as a military

officer up to now. He joined the industrial engineering graduate program at Texas A&M

University in September 2007 and graduated with his M.S in August 2009. He is married

to Mijae Kim and has a son, Gio Kim. His permanent address is: 2014-212,

Daemyeoung-dong, Namgu, Taegu, South Korea. His email is: lop3538@gmail.com.

