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ABSTRACT 

 

Self-organizing Criticality among Chinese Cities. (May 2009) 

Shujuan Li, B.S., Beijing Normal University; 

M.S., Peking University 

Chair of Advisory Committee: Dr. Daniel Sui 

 

This dissertation employs the theory of self-organizing criticality (SOC) into the study of 

Chinese cities.  SOC was proposed at the end of the 1980s to explain system complexity 

by combining both self-organizing and critical behaviors.  SOC has been broadly used in 

explaining phenomena in physical and social sciences. However, few attempts have been 

made to connect urban studies with SOC because of the extreme complexity of urban 

phenomena. This study develops a generalized SOC to study Chinese cities at both the 

inter-urban and the intra-urban levels.  

 

At the inter-urban level, this study finds that the rank size distribution of Chinese cities 

has followed Zipf’s law since 1984. In addition, the rank size dynamics of Chinese cities 

experienced a spatiotemporal shift. Before 1996, city rank increases in a few small- and 

middle-sized cities because of favorable economic policies offered by the central 

government. After 1996, a majority of the Chinese cities began to be involved in this 

rank size shuffling. Cities with increasing ranks present clustered distribution, mainly 
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along the south and east coastal areas. Part of the reason is that the market economy 

mechanism has transcended policy factors in determining the city competitiveness.  

 

At the intra-urban level, the study shows that Shenzhen’s urban physical development is 

currently facing physical environmental thresholds, shifting the development strategies 

spatiotemporally from fringe and isolated growth to fringe and infill growth. The 

resulted urban patches show power law relationship both in the area-perimeter 

distributions and the magnitude-frequency distributions.  

 

In summary, this research proves the applicability of the generalized SOC in urban 

studies. At both the inter-urban and the intra-urban levels, the Chinese cities present the 

characteristics of SOC. Given a stable condition of power law, shifts occur in the inside 

dynamics of China’s urban system and Shenzhen city.  

 

This study is one of the few empirical urban studies based on SOC. The study 

contributes to the literature on SOC theory and provides theoretical breakthroughs in 

studying Chinese cities. Finally, this study has potential implications on urban policies 

and urban development strategies. 
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CHAPTER I 

I
TRODUCTIO
 

  

 

1.1 Research Background 

Cities, serving as centers of population, commerce, and culture, are imperative to human 

history. The process of development in many developing countries is largely the process 

of urbanization - with increasing numbers of people migrating to cities.  The first 

predominantly urban century at the global level is coming, and it is projected over half 

of the world population will be in cities by 2010 ( Department of Economic and Social 

Affairs 2004).   The accelerating urbanization trend at the global level has renewed 

interdisciplinary research interests on the economic, social, and environmental impacts 

of rapid urbanization (Johnson 2001; Squires 2002; Carruthers and Ulfarsson 2003). 

Despite the voluminous research on urbanization and cities, the underlying processes 

and their consequences of rapid urbanization and urban development are far from being 

fully understood. 

 

Cities, like many other systems of the world, are complex systems (Portugali 2000).  The  

___________ 
This dissertation follows the style and the format of the Annals of the Association of American 

Geographers. 
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emergent phenomena of cities result from nonlinear interactions among their sub-

systems (Batty 2003). These interactions are self-organizing behaviors of urban systems, 

that are triggered by, but independent of, external causes (Batty 2003).  Self-organization 

is a fundamental property universally found in open and complex systems. To date, self-

organization has been established as a formal theory and has provided a new paradigm to 

all domains of science that study open and complex systems (Portugali 1997).  

Furthermore, self-organization has become a general umbrella concept that includes 

several theoretical approaches, such as chaos, fractal, and dissipative structures 

(Portugali 1997).  These theoretical approaches share common principles, but differ in 

treatment of systems and emphasis on processes and properties (Portugali 1997).  

Several kinds of self-organizing cities have been identified in the current literature, 

namely, dissipative cities, synergetic cities, chaotic cities, fractal cities, cellular automata 

cities, free agents on a cellular space (FACS), and inter-representation networks (IRN) 

cities (Portugali 1997).  

 

The theory of self-organizing criticality (SOC) was proposed by Per Bak and his 

colleagues at the end of the 1980s (Bak et al. 1987). This theory has become a new 

paradigm for studying a variety of phenomena in both physical and social sciences 

(Portugali 1997). Compared to the general theory of self-organization, SOC is more 

specific.  SOC explains system complexity by combining both self-organization and 

critical behavior ( Jensen 1998; Sornette 2004). Criticality refers to the state of a system 

in which all components of the system start to influence each other at a critical point 
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(Sornette 2004).  According to SOC theory, complex systems function in a similar way; 

they coordinate a large number of mutually interacting parts; they exchange energy, 

material and information with the environment they belong to; and they organize their 

internal structures and dynamics until some may ultimately reach a critical state 

(Sornette 2004).  Once in this state, small perturbations could induce chain reactions, 

that may affect any number of parts within the system (Sornette 2004).  The emergence 

of the SOC theory aroused great interest in various disciplines. Since the first SOC paper 

was published, more than 6,000 papers about SOC could be found using Google Scholar 

by 2007.   

 

Several scholars have speculated the great potential of SOC in explaining various 

aspects of cities, such as urban landscape pattern, urban development evolution, and 

urban hierarchical systems (Bolliger et al. 2001; Portugali 2000; Batty and Xie 1999). 

Batty and Xie (1999) prove the existence of SOC in real urban dynamics.  More recently 

studies, conducted by Chen and Zhou (2004 and 2008), mathematically connect SOC 

with urban central place networks and their rank-size distributions. However,  there are 

very few empirical studies on the applicability of SOC in urban studies (Clifford and 

Walter 2003).  

 

The general concept of SOC is not foreign to urban scholars.  Long before the theory of 

SOC was proposed, urban scholars had reported the existence of critical states in urban 

development and their characteristics.  In the 1960s and 1970s, threshold theory was 
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fairly popular in urban studies ( Lean 1969; Malisz 1969; Famelis 1970; Hewings 1975).  

This theory emphasizes the existence of a limitation within which a variable does not 

change under the influence of a gradually increasing factor (Malisz 1969).  Physical, 

technological, and structural limitations are the three main thresholds in urban systems 

(Malisz 1969).  However, threshold theory ceased to have any followers and 

consequently disappeared in the urban literature after its short life span in the late 1960s 

and early 1970s.   

 

In this research, the author proposes to generalize SOC to a broader consideration of 

self-organization and criticality in urban studies. The self-organization process reflects a 

high degree to which patterns, processes, forms, and relationships in urban development 

are (re)structured independently of external factors. The concept of criticality is 

extended from attractor, as proposed in the original SOC theory, to boundary conditions 

or evolutionary milestone as system develop. The generalized SOC considers that a 

complex system self-organizes to a critical stage.  At the critical stage, while the 

complex system presents power law, there are shifts of inside dynamics. The shifts could 

be boundary conditions, phase changes, or evolutionary milestones.  The generalized 

SOC will be used to study (1) the urban hierarchy of China at the inter-urban level, and 

(2) the dynamics of the urban landscape pattern of Shenzhen, China, at the intra-urban 

level.    
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Perhaps nowhere in the world parallels the urbanization process in contemporary China, 

either in the pace or the breath of its geographic distribution (Lin and Wei 2002b).  

Interestingly enough,  contemporary mainstream urban theory inquiries are drawn from 

urban development in Western developed countries and benefit less from Chinese urban 

studies (Lin and Wei 2002b).  For years, empirical research dominated the urban studies 

in China, but few studies sought to relate directly, let alone effectively, to the theoretical 

inquiries in human geography and other social sciences (Lin and Wei 2002b).  The lack 

of theoretical research in urban China studies not only weakened the foundations of 

empirical studies, but also rendered the mainstream theories less potent for developing 

universal  urban development policies (Lin and Wei 2002b).  This study seeks to bridge 

this gap in China urban studies.  

 

1.2 Research Objectives 

The overall objective is to determine the characteristics of generalized SOC in the rapid 

urbanization process in China, both at the inter-urban and intra-urban levels. The urban 

system of China is studied for the former level, and Shenzhen metropolitan area is 

studied for the latter level. The research question is to what extent the dynamics of cities 

at the inter- and intra-urban scales will exhibit the properties of SOC.  

 

Identifying these urban thresholds would not only help us to understand the urban 

dynamics in China, but also enable planners and policy makers to achieve sustainable 
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development.  Specifically, this study aims to address the following three sets of 

questions: 

1. At the inter-urban scale, does the urban system of China show the attributes 

of SOC? When and how did the urban system evolve to and under SOC 

stage? 

2. At the intra-urban level, at what spatial and temporal scales will a city reach a 

critical stage during its development?  How does the city organize itself to the 

critical stage? 

3. If criticalities do exist in China’s urban and city systems, what are the policy 

implications for orienting Chinese cities toward a more sustainable future?  

 

1.3 Significance 

As previously indicated, there is a lack of SOC-based empirical studies on urban 

systems. In addition, China’s urban theories are rarely found and segregated from the 

mainstream urban theoretical literature.  This research employs Chinese cities to 

examine the generalized SOC theory in order to provide theoretical breakthroughs in 

studying Chinese cities. It will improve our understanding of China’s urbanization 

process, especially those critical stages. A better understanding of this critical behavior 

is crucial for developing effective policies in order to satisfy the growing demands of a 

rapidly increasing urban population. At the same time, the research will advance our 
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knowledge of SOC.  To sum up, this study will make its unique contribution to the 

understanding of urban system in the theoretical, methodological and policy aspects: 

 

• With aspect to theory, this research will be one of the few empirical urban studies 

based on SOC. Accordingly, this study will review SOC’s development up to 

date, propose a generalized SOC theory, and expand empirical tests of SOC. To 

urban studies, this study will empirically introduce a new paradigm. It combines 

self-organization and thresholds into understanding and explaining urban 

development. And also, this study will link China’s urban research with the 

mainstream theoretical inquiries.  

• With aspect to method, this research will revisit the rank-size distribution of 

cities with an analysis of Zipf’s law at the inter-urban level, and employ a 

Cellular Automata model—SLEUTH to understand the generalized SOC theory 

in urban development at intra-urban level.   

• With aspect to theory, this research will help governments understand their roles 

in urban development at different scales, not only in the short run but also in the 

long run. This research will help the governments redefine their urban 

development strategies, develop reasonable urban policies, and harness the power 

of local agents for a more sustainable development path towards a new urban 

century in China. 
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1.3 Dissertation Structure 

This dissertation is organized into seven Chapters. Following a brief introduction of the 

research background and objectives in Chapter I, Chapter II synthesizes three sets of 

literature review— studies on Chinese cities, theoretical development in self-organizing 

criticality, and recent methodological development in Cellular Automata modeling. 

Chapter III is an overview of the urban development in china and the introduction of 

Shenzhen including the physical environment, a brief history, the rapid population 

growth and economic development since 1978. Chapter IV describes detailed 

methodology for this study. Chapter V reports self-organizing criticality in the urban 

system of China with Zipf’s law analysis. Chapter VI presents the analysis of criticalities 

in the self-organizing urban development of Shenzhen. Chapter VII summarizes the 

theoretical, methodological and policy implications of this study. 
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CHAPTER II 

LITERATURE REVIEW 

  

 

This research is grounded in three sets of literature: (1) studies on Chinese cities, (2) 

theoretical development of self-organized criticality, and (3) recent methodological 

development in Cellular Automata modeling.    

  

2.1 Study on Chinese Cities 

China’s urban development is complex and unique, which has attracted global interest.  

Extensive literature deals with the Chinese experience of urban development (Fan 1999; 

Song and Zhang 2002; Anderson and Ge 2005).  At the same time, many research 

groups are studying the unique features of China’s urban development. There include the 

China Data Center at University of Michigan (United States), the Urban China Research 

Centre at Cardiff University (United Kingdom), and the Chinese Society for Urban 

Studies (China), to name a few. All these efforts shed light on the understanding of 

China’s urbanization process. 

 

However, studies on urban China do not come quickly and easily. Before 1978, China’s 

urbanization process was slow, and there are few studies in this period.  In Communist 

China, little effort was made in urban studies. The isolation of China from the outside 
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world prevented urban scholars outside of China from doing field work or collecting 

data in China (Lin 2002). However, this did not pose an insurmountable barrier to 

studying China’s changing urban landscape (Cressey 1930, 1934; Spencer 1939; 

Murphey 1954; Chang 1961, 1963, 1970; Chang 1970; Lin 2002).  Instead, urban 

scholars have conducted many studies to examine Chinese cities from outside with a 

historical perspective (Lin 2002). The limited literature elaborated on cities’ function as 

centers of change, and identified economic forces (commercialization and 

industrialization) as the internal forces of urbanization. Some literature further points out 

that China’s urbanization process is distinct from those found in Anglo-America cities 

(Lin 2002). All these papers have potential influence on the future urban studies in China. 

 

After decades of socialist urbanization, especially after the opening policy in 1979,   

geographers were offered ample opportunities to investigate as well as to experience the 

vibrant urban landscape in China. However, scholars have been bewildered by the 

peculiar patterns they observed (Lin 2002). The unique approach China takes in its urban 

growth has enamored Western scholars to understand the atypical Chinese experience 

(Kirkby 1985; Lo 1987; Pannell 1990; Chang 1981; Chan 1992; Lin 2002). In the early 

1980s, there came a remarkable change in China urban studies. At this time, the focus 

shifted away from the conventional approach on urban transition study to the 

investigation of a unique model or framework in order to better explain the patterns of 

Chinese urbanism (Lin 2002). Sit and Cai (1998) summarize five schools of thoughts 

from these efforts.  



 11 

(1) The Anti-Urbanism or De-Urbanization view, popular among U.S. scholars. This 

school of thoughts attributes the slow urbanization process in China from 1949 to 1978 

to an anti-urban ideology (Ma 1976; Cell 1979). According to this idea, all studies on 

China’s urbanization since 1949 should consider the impacts of anti-urban and pro-rural 

polices of Mao.   

 

(2) Industry/Strategy-Oriented Urbanization, proposed by British scholars (Sit and Cai 

1998). This school of thoughts considers the slow urbanization process during 1949 to 

1978 was mainly affected by the industrialization strategy.  When the People’s Republic 

of China was founded in 1949, the industrialization level in China was at such a low 

level that the China Central Government was eager to develop industry, especially heavy 

industry. The government had to lower the consumption level and maximize the capital 

accumulation in order to support industry development. As a result, the development of 

urban infrastructure and rural economy were neglected, which diminished the base for 

further development of cities (Kirkby 1985; Cannon 1990).   

 

(3) Dual System of Urban Centers and Rural – Urban Balance Development, proposed 

by Chang (1976, 1981).  According to this school, dual urban center systems exist in 

China. One is the traditional urban system inherited from the late feudal period. The 

other is similar to those in Western developed countries. Reasons for the slow 

urbanization process can be identified from the interchanges between the two systems. 
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However, the distinction between the systems is vague in China, compared to those 

found in developing countries.  

 

(4) Industrialization and Urban – Biased Approach, proposed by Chan (1994).  Chan 

argues that urbanization in China remains a classical socialist model – ‘under 

urbanization’. The purpose of under urbanization is to put emphasize on heavy industries 

which reduces the multiplier effect, and to adopt the urban – biased policies in order to 

prevent the danger of over-urbanization.   

 

(5) A more comprehensive view is offered by Sit (2002). According to him, the 

urbanization process of China is much more complex than what are described by the 

above schools. To explain its uniqueness, a comprehensive study on the social, political 

and economic systems, as well as the traditional culture of China is essential. 

 

Since 1985, Chinese cities began to change substantially after years of open policy and 

economic reforms (Jankowiak 1998).  At the same time, China began to annually release 

statistical data about cities. This leads to better understandings of the general and actual 

pictures of China’s urban development (Lin 2002). Chan and Xu (1985), Kirkby(1985), 

and Ma and Cui (1987) attempted to explain the conflicting and probably inflated city 

statistics through comparing various Chinese sources. The general conclusions are 

finally reached that the non-agricultural population in China should be used as 
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approximate actual urban population. The other area that intrigues geographers is 

Chinese unique approach to city planning and urban housing development (Ma 1979; 

Kwok 1981; Ma and Hanten 1981; Buck 1984; Ma and Nobel 1986; Lo 1987; Lin 2002). 

In general, urban studies in this period treat urban development as “unique” and cannot 

be compared with those in other countries. These studies follow scientism or positivism 

approaches both based on the premise that land and people can be considered as 

scientific objects for measurement, comparison and correlation (Lin 2002). 

 

Since the early 1990s, a large number of towns emerged as the results of decentralization 

of decision making when the Chinese economy made its transition from planned to 

market-oriented (Lin 2002). The remarkable urban development soon captures the 

interests of China geographers (Lin 1993; Lin and Ma 1994, Ma and Lin 1993). In order 

to demonstrate the prominent features of the urban growth, Ma and his colleagues 

introduce a conceptual framework and coin the label ‘urbanization from below’ (Ma and 

Fan 1994; Ma and Lin 1993). This framework explain the parallel tracks –‘urbanization 

from above’ and ‘urbanization from below’— on which China experience the 

urbanization process since 1949. With the open door policy and the economic reforms 

promulgate in China, the tide of globalization is sweeping China in the meantime (Lin 

2002).  Urban studies of China under the forces of globalization revisit the socialist in 

China.  
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As summarized by Lin (2002), four periods of discourse formation can be identified: (1) 

the 1970s’ notion of cities as the centers of change, (2) the 1980s’ interpretation of 

unique features of the Chinese urbanism, (3) the 1990s’ modeling efforts on town-based 

urbanization as well as regional development in general, and (4) the 2000s’ using 

concepts such as space, place, and trans-nationalism to compose a geographic system for 

the Chinese diaspora.  In summary, the empirical studies of China’s urbanization 

flourished in the last two decades, and topics and methods increase both in quantity and 

quality (Yan 1995).  Yet it is ironic that scholars grieve for the under-theorization of 

Chinese urban studies at the same time. There is a lack of a consistent theoretical 

framework to rationally explain the complex phenomena documented by empirical 

studies (Zhang 2008). 

 

Compared with urban studies in the West, theoretically-informed studies on China’s 

urban system are few and lagging behind. Urban studies of China missed not only the 

developing period of the Chicago school and the central city theory, but also missed the 

booming period of urban theories after the Second World War, after which several 

important theoretical schools (e.g. behavior school, positivist school, and political 

economy) formed successively. Current studies on Chinese cities are at a primitive stage. 

The major efforts are put either on understanding urban problems and phenomena, or 

introducing Western urban theories. Another issue is that theoretical China’s urban 

studies are separated from the mainstream theories of Western urban development. The 

limited theoretical inquiries attempt to explain Chinese urbanization from ideology and 
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the social structure, whereas the state-of-art theoretical focus about Western countries 

are on structure and agency in urban studies (Piao 2005). The separation becomes more 

and more obvious. Many Chinese scholars emphasize on the importance of developing 

an urban theory exclusively for the unique urbanization process in China.  

 

Economic reform and the open-door policy debuted in China in 1978, and have turned 

China into a world economic power.  The urbanization process in China today 

profoundly differs from those in the previous years, and in many ways, similar to that of 

the West (Lin and Wei 2002a).  This allows the theoretical and conceptual frameworks 

developed from Western countries to be applied to Chinese urban studies (Lin and Wei 

2002a; Fan 2005).  Furthermore, the strong dynamics of China’s urban landscape will 

provide fertile ground for mining new knowledge and reconstructing theoretical 

discourses (Lin and Wei 2002a).  

 

2.2 Self-organizing Criticality 

Bak and his colleagues (1987) first introduce the concept of SOC with an attempt to 

explain the widespread appearance of power-law in nature.  The Sandpile model was 

used as a toy SOC theory as the following: 

“Consider the scenario of a child at the beach letting sand trickle down to form a pile. In 

the beginning, the pile is flat, and the individual grains remain close to where they land. 

Their motion can be understood in terms of their physical properties.  As the process 
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continues, the pile becomes steeper, and there will be little sand slides. As time goes on, 

the sand slides become bigger and bigger. Eventually, some of the sand slides may even 

span all or most of the pile. At that point, the system is far out of balance, and its 

behavior can no longer be understood in terms of the behavior of the individual grains. 

The avalanches form a dynamic of their own, which can be understood only from a 

holistic description of the properties of the entire pile rather than from a reductionist 

description of individual grains: the sandpile is a complex system” (Bak 1996, 2).  

At this stage, avalanches of sand slides are in many different sizes. Bak and his 

colleagues argue that there would be a power law distribution in the sandpile (Bak et al. 

1987). 

 

The original temptation of SOC theory is to explain the phenomena of spatial fractals 

and 1/f fluctuations (Jensen 1998).  However, many different views have emerged in 

latter studies. To date, there is neither a consensus definition of SOC, nor a mathematical 

formula (Jensen 1998; Sornette 2004). Most researchers generally agree with the essence 

of SOC which combines two fascinating concepts, self-organization and critical behavior 

(Jensen 1998; Shiner 2000; Sornette 2004). Self-organization generally means the ability 

to develop structures, patterns, and large-scale organizations spontaneously (Jensen 1998; 

Sornette 2004).  Criticality refers to a critical point at which all members of the system 

start to influence each other.  The critical state is scale-invariant, at which a minor event 

starts a chain reaction that can lead to a catastrophe (Sornette 2004).  
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Compared to the theory of self-organization, SOC is more specific.  SOC reveals the 

internal dynamics behind the final statistical size-distribution of self-organized systems 

(Portugali 2000).  The SOC theory, for the first time, explains the processes of 

qualitative change to quantitative change, as well as the quantitative relationships among 

local perturbations and the whole system’s changes.  It demonstrates how complex the 

internal dynamics of a steady state can be (Portugali 1997).  Bak and his colleagues 

asserted that SOC is the essence of temporal and spatial scales veiled in non-linear 

systems. It could even be extended to explain many of phenomena in complex systems 

(Bak et al.1987; Bak et al. 1988; Bak and Chen 1991; Bak 1996).  

 

2.2.1 Tests and Applications of SOC 

Shortly after SOC is proposed, a large number of experiments, computer models, and 

empirical studies have emerged to test SOC behaviors.  Laboratory experiments include 

various sandpile, ricepile, magnetic flux, and water droplets (Bark 1996; Jensen 1998; 

Turcotte 1999).  Many papers claim the appearance of SOC in their experiments 

(Turcotte 1999).  However, there also many experiments do not exhibit power-law 

distributions of avalanches (Jensen 1998; Turcotte 1999). Many results of sandpile 

avalanches experiments present mixed findings (Zhang 1997; Manna and Khakhar 1998; 

Turcotte 1999). In the sandpiles experiments, failure to demonstrate the general results 

of criticality may be attributed to the inertial and dilatational effects (Turcotte 1999; 

Sornette 2004).   
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With the aid of computers, a dazzling multitude of SOC models have been established 

(Trucotte 1999).  Although substantial numbers of computer models are available to 

testify the existence of SOC, almost all of them evolve from three simple cellular-

automata models: the sandpile model, the slider-block model, and the forest-fire model 

(Trucotte 1999).  Most scholars would take the original sandpile model (Bak et al. 1988) 

as the classic example of self-organized critical behavior.  There is, however, much 

debate on authenticity of the slider-block and forest-fire models as the original model for 

SOC (Turcotte 2001). 

 

In the real world, scientists have enumerated many evidences to support SOC theory, 

such as phenomena observed in earthquake, ecosystem, living system, river bank failure, 

forest fire, stock market, war, and electric power blackout (Carreras et al. 2004). Those 

evidences endorse part of SOC, if not all, on power-law distribution and scale 

invariance.  The conclusions about SOC are yet to be definite and certain.  Conclusions 

about those studies are usually characterized by vague terms such as “suggest” (Fonstad 

2003, Batty and Xie 1999), and “seem” (Carreras 2004, Jorgensen 1998). Below is a 

brief review of SOC in different studies.   

 

Ecosystem, from time to time, demonstrates phenomena supported by SOC. For example,  

the power law relationship, a key feature of SOC, exists between the magnitude and 

frequency of species extinctions  (Raup 1986; Keitt and Marquet 1996; Patterson and 

Fowler 1996; Sole et al. 1997), between body sizes and abundances of species 
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(Jørgensen et. al. 1998), between habitat patch areas and frequencies of species (Nikora 

et. al. 1999), between areas and frequencies of forest fires (Song et. al. 2003), and the 

fractal properties of the spatial distribution of low-canopy gaps in rainforests (Sole and 

Manrubia 1995). Mass movements of species exhibit power law distributions (Noever 

1993; Haigh 2000). In riverine systems, Fonstad and Marcus (2003) found that a precise 

power-law relationship exists between the numbers and the magnitudes of bank failures.  

In river meanders and oxbow-cutoffs, researchers revealed the fractal dimensions 

(Stolum 1996; Hooke 2003).  

 

Unlike ecosystem studies, SOC applications in social sciences present vague and 

controversial images (Turcotte 1999).  The interactions of social systems are complex 

enough to allow meaningful quantification of these interactions. The easiest realm of 

study to begin with is perhaps economics amongst other social science disciplines 

(Turcotte 1999). Economics have assumptions about human behavior, and have 

developed systematic data collection, which make economic phenomena easier to 

quantify (Turcotte 1999).  Some researchers propose the similarity between SOC’s 

sandpile model and the dynamic stock market. They observe that the fluctuations of 

stock market show a log-periodic trend before the avalanched stock markets, and 

propose that these can be explained by SOC.  But both the validity and the interpretation 

of these studies remain uncertain (Turcotte 1999).  Another noteworthy application of 

SOC is in warfare.  Due to the vast similarities between the condition before a war and 

that prior to the forest fire, it arouses remarkable interests in comparing SOC in wars 
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with that in forest fires (Turcotte 1999). Interestingly enough, the comparisons reveal 

that the war orders behave just like SOC systems do, which are “independent of the 

efforts made to control and stabilizer interactions between people and countries” 

(Turcotte 1999, 1420).  

 

2.2.2 Characteristics of SOC 

A comprehensive list of necessary and sufficient conditions for SOC to occur is not yet 

to be possible (Jensen 1998). However, sufficient evidences have revealed the following 

three characteristics unanimously found in self-organized critical systems: 

(1) Power law: a power law of spatial and temporal sizes is a fingerprint of SOC 

(Ginzburg and Savitskaya 2002; Yang 2004).  Although not all systems that show 

the power law phenomena are SOC systems, all SOC systems are inherently able to 

produce power law frequency-size statistics (Bowman and Sammis 2003).  The 

appearances of power law distributions are independent of the detailed evolution 

processes and fluctuations of SOC systems (Yang  2004).   

 

(2) Catastrophe: in SOC systems, catastrophes (big events) are the hallmark (Bak and 

Paczuske 1995).  Catastrophes are inevitable in SOC systems. They never reach 

equilibrium, but evolve from one metastable state to the next.  Changes amongst 

different states can alter the system configuration dramatically.   In contrast, 

discarding large events as anomalous is a common practice in statistical study (Bak 
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and Paczuske 1995).  This, however, does not hold true in SOC. Large events are 

often significant enough to destroy the system as a whole (Jensen, 1998).  In fact, 

large events best show the results of the underlying forces within the system, which 

is unnoticeable in equilibrium  (Sornette 2004).   

  

(3) Correlation lengths: change of correlation length is also an important aspect of 

the behavior of models that are associated with SOC (Turcotte 2001; Bowman and 

Sammis 2003).  The increase of the correlation length is an important indicator of the 

starting of the critical stage (Turcotte 2001).  In the seismic studies, correlation 

length has been well-defined, and there has observed the increase of correlation 

length ahead of a major earthquake (Turcotte 2001, 1999; Bowman and Sammis 

2003).  

 

2.2.3 Limitations and Contributions of SOC 

The intent of SOC is to provide a universal and unified explanation for the mechanism of 

power laws in nature (Bak 1996). However, diversified and controversial views emerge, 

especially on the SOC premise. The theoretical understanding of SOC is rather 

fragmented without a comprehensive perspective (Sornette et al. 1995).  There is still no 

mathematic framework for SOC, and the general conditions under which a system will 

exhibit SOC are largely unknown (Sornette et al. 1995).  The majority favorable 

empirical evidences are in the form of 1/f noise, log-linear magnitude –frequency and 
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rank-size distributions.  These kinds of distributions, however, can also be generated by 

other processes (Phillips 1999; Sornette 2004).  Suspicions loom large about the 

significance of SOC may be overblown (Jensen 1998).   

 

However, the above disadvantages do not dilute the academic interests in threshold 

dynamics, which often result strong fluctuation avalanches.  SOC forces researchers to 

recognize the importance of threshold, metastability, and large fluctuations in the 

spatiotemporal behavior of complex systems (Jensen 1998).  It reveals the internal 

dynamics behind the final statistical size-distribution in the systems’ steady periods 

(Portugali 2000).  Bak and his colleagues assert that SOC is the essence of temporal and 

spatial scales hiding in non-linear systems, and could possibly explain all kinds of 

phenomena in complex systems (Bak, Tang, and Wiesenfield 1987; Bak 1996; Bak and 

Chen 1991; Bak et al. 1988).  SOC continues to be a powerful theoretical framework for 

investigating system complexity in a variety of natural and cultural areas (Walther 1999). 

 

2.2.4 SOC in Urban Studies 

The potential of applying SOC in urban studies has already been recognized.  In 1992, 

former U.S. Vice President Al Gore claimed that the global environment changes may 

follow a trajectory as predicted by the SOC theory (Gore 1992).  Batty (1996) hints that 

the theory of SOC could be used to study the evolution of the patterns of urban 

developed areas.  In Our Common Journey, a hypothesis is put forwarded that the rapid 
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urbanization may result in an environmental criticality (Jongh 1999).  Through studying 

SOC characteristics in landscape patterns, Bolliger et al. (2001) propose to use SOC in 

the urban sprawl study.  Clifford and Walter (2003) describe the self-organized systems 

that have generated fractal patterns in Maya city.  Although they do not claim to have 

proven that Maya society is a SOC system, they  suggest it as a hypothesis to be tested in 

future archaeological research (Clifford and Walter 2003). 

 

However, true urban studies on SOC are sparse and limited.  The work of Batty and Xie 

(1999) is the first genuine SOC study in real urban dynamics. They successfully apply 

fractal dimensions of urban density into constructing the growth path of built-up areas  

(Batty and Xie 1999).   The phase portraits revealed that there are several criticalities 

during the growth of Buffalo city, and the city has been at a critical period since the 

1920s (Batty and Xie 1999).  More recently studies, conducted by Chen and Zhou (2004, 

2008), mathematically connect SOC with urban central place networks and their rank-

size distributions. There are also two other SOC studies related to urban systems: urban 

environmental noise and regional power generators (installed capacity) system 

development.  Coensel and Muer (2002) use 1/f-noise to examine the loudness and pitch 

variation of urban environment. They demonstrate that there is a 1/f noise in the 

loudness and pitch fluctuation in natural sounds just as there is in music (Coensel and 

Muer 2002).  More than expected, these specific dynamics are also found in loudness 

and pitch fluctuations in urban soundscapes (Coensel and Muer 2002), which put 

forward the hypothesis that this is resulted from SOC in the complex urban community.  
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Šiugždaite and Norvaišas (2002) propose a methodological framework for employing 

the SOC in the decision-making process on the development of regional power system in 

long term.  

 

2.2.5 The Theory of Threshold  

The general concept of SOC is not foreign to urban scholars.  Before the theory of SOC 

is proposed, urban scholars have reported characteristics of critical states in urban 

development.  Urban scholars observed the constraints of physical environment for 

further urban development in lots of towns and cities. These limitations are not 

insurmountable.  They could be overcome by additional investments (Kozlowski and 

Hughes 1967, 1972; United Nations 1977). When confronting a threshold, the physical 

development usually slow down, be it a city or town. This situation will, confine the 

urban development inside the physical limit for quite a while (i.e. within the range of 

relatively normal costs for accommodating new inhabitants). However, the pressure for 

continuing urban growth will accrue, which leads to much higher costs added to 

overcome the threshold.  As a result, the physical growth of towns and cities does not 

follow a linear process, but rather carry on a series of jumps. Jumps proceed 

consecutively after limitations, which is called thresholds of urban development 

(Kozlowski and Hughes 1972). 

 

Malisz (1963), for the first time exerted the groundbreaking impact on the threshold 

theory. It explains the existence of a confinement within which certain variable ceases to 
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change given the influence of a gradually increased factor (Malisz 1969).  A threshold 

take place once a unit of new development cannot be completed with the same cost of 

previous unit development, and a much higher additional cost needed.  In general, the 

presence of a threshold is marked by the marginal cost of urban development with either 

a sharp increase or a discontinuity. Changes of the marginal cost are subject to a number 

of physical factors, ranging from topography to public manufacture (Lichfield et al. 

1975). The threshold analysis applies the threshold concept to compare various scenarios 

of urban expansion early in the planning process.  It thus helps to determine the choice 

of the most desirable directions for urban physical growth. 

 

The threshold analysis deals with three thresholds for urban development—physical, 

technological, and structural limitations (Malisz 1969). Physical threshold generally 

means those limitations caused by topography, such as steep slopes, large water bodies, 

and wetlands. Technological threshold is determined by limited capacities of 

infrastructures, such as those of roads, gas, electricity, and other services (Simpson 

1977).  Structural constraint becomes noticeable when the existing urban structure starts 

to prevent further development, for example, a new public transport system becomes 

essential with increased population (Simpson 1977).  

 

The theory and analysis on threshold originates in Poland, largely attributes to Malisz 

(1969), and has been broadly used in urban planning since the 1960s ( Lean1969; Malisz 

1969; Famelis 1970; Hewings 1975).  Further efforts come from Kozlowski (1972) and 
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the United Nations (1977), and the theory starts to be employed in Scotland (Kozlowski 

and Hughes 1967, 1972; Scottish Development Department 1973). With all these efforts, 

the threshold theory and analysis has been flushed in urban planning and literature in the 

1960s and 1970s.   

 

Other quantitative methods by all means contribute to the full contribution of threshold 

analysis. This by and large covers and rationalizes the entire planning process. .  

However, the threshold theory and analysis also has many deficiencies, such as how to 

define the threshold (ambiguity both in definition and practice), and whether the costs 

calculated for long-term period are valid.  

 
Unfortunately, there are few followers of the threshold theory after its climax in the late 

1960s and early 1970s.  The theory finally disappeared in the urban literature. Entering 

the 21st century, the threshold theory and analysis can be identified with many hints for 

the theory of SOC. The concept of threshold and the critical state in urban development 

have already been emphasized in the threshold theory and analysis.  

 

2.3 Cellular Automata Modeling 

Cellular Automata (CA) model is a dynamic system with discrete space and time. The 

earliest CA modeling can be traced back to Von Neumann’s Self-replicating Turing 

Machine, done by Stanislas Ulam in the 1940s (Clarke 2006). Later on, CA modeling 

approach has been broadly applied to other fields outside of computing such as 
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geography (Parker et. al. 2003).  

 

The original CA model is quite simple. The basic elements of a CA model include grid 

space, states, neighborhoods, and transition rules. The continued space is divided into 

regular cells (grids), and each state is in one of defined states. During a CA modeling 

process, the state of a cell is determined by the previous states of its neighboring cells 

with one or more certain transition rules. The change of the space is treated as the overall 

consequences of the state conversions of individual cells. The most important step for 

the development of a CA model is to build the suitable transition rule(s) according the 

neighborhood interacting relationships.  

 

After decades of development and broadly application, many basic aspects of the 

original CA model changed and became more sophisticated.  The states of cells can 

change synchronously or asynchronously. Neighborhoods are no longer limited to the 

local cells, and irregular and directional weighted neighborhoods emerge in many 

studies. Recent studies have been using graph networks to replace the traditional 

neighborhoods. Many contemporary CA models are in fact cellular models.  In addition, 

there is also a new trend to develop vector-CA models which break the generic grid 

space. The original CA models have been evolving and modified, almost changed 

thoroughly (Parker et al. 2003). 
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CA modeling presents the potential capability of simulating spatial phenomena due to its 

intrinsic characteristics. CA models are spatial and dynamic in nature, this enable them 

to directly represent spatial processes (White and Engelen 2000).  In addition, CA 

models are highly adaptable. Simply adjusting the transition rules allows the models to 

be applicable for a wide rang of spatial behaviors, situations and processes. What’s more, 

CA models boast enormous computation efficiency (White and Engelen 2000). Up to 

date, the applications of CA models in representing processes with spatial characteristics 

are encouraging. They are universally found in areas such as natural resources 

management, urbanization processes, transportation, and medical application (White and 

Engelen 1993; Torrens and O’Sullivan 2001; Pinto and Antunes 2007). 

 

Cellular automata apply well to the modeling of urban phenomena (Pinto and Antunes 

2007).  The evolution of urban systems is in line with the transition mechanics of 

cellular automata. Urban systems are typically complex systems marked by self-

organizing behaviors. The process of urban growth is in essence a local self-organization 

and aggregate effects (Wolfram 1984; Clarke and Gaydos 1998; Benenson and Torrens 

2004). Cellular automata are self-organizing modeling which repeatedly apply the 

transition rules in the local neighborhood.  The models are instrumental in understanding 

important information of urban theories, for example, the emergence and evolution of 

forms and structures (Webster and Wu 1999a, 1999b; Wu and Webster, 1998). In 

addition, the concept of raster data format derived from GIS and Remote Sensing 

matches precisely with the idea of grid space in the CA models. The development of GIS 
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and remote sensing provide potential data sources and technical support for CA 

modeling in urban land use and land cover study.   

 

Urban scholars have long noticed the capability of CA modeling, and the application of 

CA in urban studies can be traced back to the 1980s.  After Tobler (1979) first proposes 

to employ a cellular approach in geographic modeling, his idea is followed by Couclelis 

(1985, 1988, 1989, and 1995) and later Takeyama (1996).  Batty and Xie develop one of 

the first CA models for urban modeling (1994).  Couclelis (1997) and Takeyama and 

Couclelis (1997) demonstrate cellular automata to be a potential strong input to urban 

process modeling (Clark and Gaydos 1998). CA modeling has became a dominant 

simulation technique widely used in studies of urban sprawl, regional growth, residential 

growth, population dynamics, economic activities, to name a few (Batty and Xie 1994; 

Cecchini 1996; Batty and Xie 1997). At the mean time, many CA programming 

environments and platforms are established, such as DUEM, Kenge, JCASim, and 

SLEUTH (Benenson and Torrens 2004).  

 

Generally speaking, three main categories of urban CA model develop parallel, and each 

focuses on one aspect of modeling purposes. They are, however, not mutually exclusive 

to each other: 

(1) Many scholars (e.g. Couclelis 1985; White and Engelen 1993; Batty 

2005) have been working on the theoretical issues of urban dynamics 
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with CA modeling. Liu and Andersson (2004) place these models in 

the context of physical theory in general, and pay attention to the other 

possible fields these models may imply. They further connect the 

models development to fractal theory, and correlate the models to 

power laws’ generation (Batty 2005).   

(2) There are also many effloets put into simulation urban dynamics in the 

real world with CA models. Batty and Xie (1997), Clarke, Hoppen 

and Gaydos (1997) have been investigating on the applicability of 

using evolutions of CA models to simulate and solve urban problems 

in many cities in world.  

(3) Models on operational tools for planning (Torrens, 2000; Pinto and 

Antunes 2007; Li and Yeh 2000; Yeh and Li 2006).  

 

Although CA models have many advantages and have been extensively used for decades, 

they are still in infancy in urban studies (Benenson and Torrens 2004), many critical 

challenges confronting CA modeling include: calibration and validation, errors and 

uncertainties, limits of top-down processes, meanings of transition rules, and finally, the 

match with urban theories (Benenson and Torrens 2004; Pinto and Antunes 2007). A 

major criticism on urban CA models is the meaning of transition rules. Most of the urban 

CA models are exclusively developed for physical interpretation, rather for social and 

economic processes. The transition rules of current urban CA models are valid only in 
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physical changes. Although there are some urban CA models have social and economic 

mechanisms incorporated, there exists obvious arbitrariness (Webster and Wu 1999a, 

1999b). On the contrary, more pragmatic development of urban CA (Papini and Rabino 

1997) fits transition rules iteratively using genetic algorithms and other learning 

strategies. Thus, fit between two patterns at different points is optimized (Batty 2005).  

 

When applied to real city studies, CA models are subject to many inherent errors and 

uncertainties due to data sources, GIS operations, and limited human knowledge (Yeh 

and Li 2003).  The data source errors of urban CA range from every possible steps in 

building GIS database, including investigation, mapping, and digitization errors. 

Manipulation of the GIS program can also cause uncertainties to the CA model. The 

errors and uncertainties are further aggravated by model uncertainties due to inadequate 

human knowledge, complexity of nature, and limitation of technology. CA models serve 

only an approximation to reality, just like the other models behave.  

 

The limitations of CA models also lead to inadequate model evaluation. Many 

researches use the highly general measure— fractal dimension, to compare the overall 

shapes of simulated cities with those in reality.  Monserud and Leemans (1992) 

introduce the Kappa Index—a cell-by-cell comparison to evaluate CA modeling. 

However, the Kappa Index cannot capture the general similarity or pattern in a global 

picture.  Later, a map comparison theory based on local configuration is developed by 
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Power (1998), using fuzzy set theory. Overall, the ability to model reality surpasses the 

ability to evaluate the results (White and Engelen 1997). 
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CHAPTER III 

STUDY AREA A
D DATA 

  

 

This study tests the generalized SOC in Chinese cities at both inter- and intra-urban 

scales.  At the inter-urban scale, the urban system of the Mainland China is used for 

analysis. At the intra-urban scale, the city of Shenzhen is selected as the case study. 

 

3.1 Urbanization and Urban System of China 

3.1.1 Definitions and Data 

Before discussing the urban system of China, it is necessary to clarify the definitions of 

‘city’. In China, there is yet no precise definition of city (Fan 1999).  A city is an 

administrative unit designated by the central government. Generally speaking, the 

designation criterion is “a function of political-administrative status, economic 

development, total population and nonagricultural population of the settlement, or a 

combination of the above” (Fan 1999, 496).   

 

The designation criterion of cities is neither spatially nor temporally uniform. The 

definition of city in China has been updated three times since 1949.  The first time is in 

1955 when the People’s Republic of China gave the definition. A place was legible to be 

a city when it occupied 100,000 or more permanent residents.  At that time, 166 cities 
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were designated.  The second definition is designated in 1963. The central government 

carried out more stringent criteria on how to define a city in order to reduce the numbers 

of city. Smaller-sized cities with a population of less than 100,000, except provincial 

capitals and other special cities, were degraded into towns. The latest update happens in 

1984. And the definition for cities is eased and quite a few small cities were designated 

(Kojima 1995).  

 

There are several types of urban population data available in China. One is to count the 

total population living within the city boundaries. This type of urban population will 

potentially overestimate the urban population, as many cities include considerable 

amount of agricultural land and population (Chan 1992). The nonagricultural population 

locating in the city proper (shiqu feinongye renkou) is typically regarded as the urban 

population for China’s urban studies (Chan 1992). This type of population only includes 

residents with households officially registered in the city district. This terminology is 

considered to be the official and only reliable estimation of urban population for the 

entire array of cities in China (Fan 1999). 

 

The availability of data is also a serious problem for studies of contemporary urban 

China.  Some quantitative data on Chinese cities are available for the period 1950-1957. 

. However, neither the coverage nor the quality of the data could lead to meaningful 

analyses.  Since 1977, China began to release some statistical data on urban development. 

But these data are far from being systematic and they turned out to be less useful either. 



 35 

The Urban Statistical Year Book has been published each year since 1985 to 

systematically summarize the urban development of the previous year. The Urban 

Statistical Year Books have proved to be informative and valid for studying Chinese 

cities. In this study, non-agricultural population in urban areas in year 1984, 1988, 1992, 

1996, 2000 and 2003 are used to measure the city sizes. In addition, the metropolitan 

population in 1938 and 1953 from the report “Cities of Mainland China: 1953 and 1958” 

by U.S. Department of Commerce, Bureau of the Census are employed for comparison. 

 

3.1.2 Premodern Urbanization History of China 

China has a long history of urbanization which can be traced back to the second and 

third millennia BC. Urbanization in the premodern China enjoyed its rapid growth and 

dissemination during the Tang (618-907 A.D.) and the Song (960-1279) dynasties (Lin 

2007). According to Chao (1986), the percentage of population living in cities has 

already exceeded over 17 percents in the Han Dynasty (206 B.C. –A.D. 220), and 

surpassed 21 percent in the Southern Song Dynasty (1127-1279).  These numbers might 

be somewhat extravagant. Hoverer, even a far more conservative estimation by Mark 

Elvin (1973) concludes the percentage of population living in large cities (more than 

population of 100,000) is around 6-7.5 in the Song Dynasty. China had a quite high 

percentage of population living in cities thousands years ago. Following this trend, urban 

development maintained to grow and flourish spatially well into the late Ming (1368-

1644) and later Qing (1644-1911) Dynasties (Lin 2007).  At the turn of the 19th century, 

China’s metropolises are perhaps the world largest cities. Before the industrial 
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revolution took place in Europe, China had the largest population living in large cities 

than anywhere in the world where still belongs to the premodern conditions (Wheatley 

1971; Rozman 1973).  

 

In the pre-modern era, cities are primarily used for ceremonial functions. They also 

served administrative and military foundations for the Kingdom (Chang 1961; Wheatley 

1971; Wright 1977; Lin 2007). Physically, these early Chinese cities are primarily 

walled for better security and defense considerations.  

 

During the premodern history, the growth of cities and urban population were based on 

the development of agriculture. The immediate rural hinterlands were the sources of 

food for cities. There maintained free and extensive interchanges between cities and 

rural areas. The development of transportation system was also imperative to move food 

to consuming populations in cities. The transportation system facilitated the significant 

expansion of cities and the urban boundaries they occupy.    

 

3.1.3 Modern Urbanization History of China 

3.1.3.1 Treaty Port Cities 

The year 1840 witness the new era of urban development of China came when the 

foreign powers invaded China. Failing in wars, China were forced to open five port 

cities where foreigners from invading countries were granted special privileges. They 
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were permitted to live and do business without subjecting to Chinese laws and 

regulations. Western firms began to seek trading opportunities in China through those 

port cities. These activities not only introduced western ways of doing business but also 

new administration systems, both of which influenced profoundly on the urbanization 

processes and the Chinese urban lives.   

 

The number of treat port cities increased exponentially, and altogether around 100 cities 

were designated as treat port cities.  These port cities soon came to play an important 

role in forming the city hierarchy in China (Murphey 1974). A number of these port 

cities turned out to be China’s large and important cities, such as Shanghai and Dalian. 

In 1910, with a population of above one million, Shanghai became China’s largest city. 

What’s more, these port cities have substantial long-term impacts on China’s urban 

system. The majority of the large contemporary Chinese cities were at times, the treaty 

port cities.   

 

The development of treat port cities also spatially shifts the distribution of China’s urban 

system. Around two centuries of pre-modern era, China focuses largely on the 

development of its interior. In the late 19th and early 20th centuries, this focus gradually 

shifts to the eastern coast and northeast where the treaty ports cities conglomerate. These 

treaty port cities became more and more in economy connected to the world shipping 

routes and joined in the international market networks.  
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3.1.3.2 Socialism Cities of China 

After the long period of foreign intrusion and years of the civil war, the foundation of the 

People’s Republic of China in 1949 brought the urban development in China to the 

Socialism period. Unlike the western capitalism whose urban development is 

intrinsically driven by economic forces, the socialism urban development in China is 

externally managed by the Central Government with planned economy. The Chinese 

Communist Part mimicked the way of the former Soviet Union to develop the socialist 

system, mainly through revolutionary activities (Zhang 2008). Under the Marxian 

critiques on capitalism, the communist leadership strove to diminish the differences 

between the city and countryside, and between industry and agriculture (Jankowiak 

1998). This process of socialism urbanization in China can be divided into two phases—

the early revolutionary period and the later transitional period.   

 

In the early revolutionary period, production was the main function of cities. From 1949 

to 1957, China experienced a successful economic recovery after the long period of 

foreign intrusion as well as the civil war.  With substantial assistance from the Soviet 

Union, China experienced intensive growth on heavy industries, mainly centered in large 

cities. A large number of labors were attracted from the countryside to the cities. Urban 

population grew rapidly in this period, averaging 7.2% a year.  From 1958, an explosive 

urban population growth was triggered by the Great Leap Forward which motivated the 

great enthusiasm to accelerate industrialization in China. Thousands and millions of 

peasants abandoned their agricultural businesses and came to work for industries in 
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cities. The percentage of urban population quickly increased from 16.2% in 1958 to 

19.7% in 1960, the all-time high in the pre-1980 period. However, in the rural 

countryside, the shortage of labor for food-producing soon loomed large. To make things 

worse, the three year consecutive natural calamities hit the whole country at the same 

time. The combined result was a national wide famine which took away 20 million lives. 

The Great Leap Forward stopped in 1961 with 20 million people as the new city 

residents.  

 

Lessons learned from the Great Leap Forward and its aftermaths have had profound 

impacts on subsequent urbanization policies in China. The urbanization process was 

geared to a 180 degree reversed direction. Contrary to increase the urban population, the 

government sought to send the new urban residents back to their home villages and 

limited migration from rural to urban areas. Since 1961, the urban population 

experienced a downsizing process for three years in a row, with urban population in 

1963 decreased to 17%, a level below that prior to the Great Leap Forward. From 1966, 

the ten-year Cultural Revolution was initiated, and the Shang Shan Xia Xiang (“up to the 

mountains and down to the villages”) movement was launched. Urban youths were sent 

to rural area “to be reeducated by the peasants” (Chan 1992). About 30 to 50 million 

urban youths were migrated out of cities (Xu 1986; Chan 1992). Many urban studies on 

China refer this period as an anti-urbanization process (Ma 1976; Cell 1979; Sit and Cai 

1998). During the ten-year Cultural Revolution, the urbanization process worked 

backward and decreased to a very low level.  
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The low level of urbanization and slow urbanization process in the early revolution 

period were mainly due to the controls of government. Tremendous efforts were made to 

limit the city growth and adjust the spatial distribution of cities. Spatially, great efforts 

were put into shifting urban development from the coast to the less developed interior 

(Yeh and Xu 1990). The national security is a consideration at this time. Investments 

concentrated on the interior cities, such as Xi’an, Lanzhou, Wuhan, and Chongqing, 

because they are less vulnerable to be attacked compared to coastal cities.  

 

The central planned economy is the especial import tool for the control under the central 

government to control urban development(Ebanks and Cheng 1990). With the plan 

economic system, the Chinese government took control of population migration and 

resource allocation. In 1954, the household registration (hukou) system was established 

to limit unauthorized migration from countryside to cities.  This system continues to be 

active till present, and has exerted profound impacts on Chinese urban development.  

After its initiation four years later, the household system was further tightened under a 

migration law in order to prohibit the peasants from entering into cities.  

 

China came to the post-Mao period after he passed away in 1976. From 1978, some of 

the stringent urban policies were eased. The rusticated urban youth and intellectuals 

began to return back to their urban residences. Soon after 1978, China also debuted its 

open door policy and a series of economic reforms were launched. In addition, a 

program to relax the control of rural-to-urban migration was implemented in 1983 
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together with a large number of other reform programs (Ma and Noble 1986). Overall, 

China entered the transitional development period since 1978. 

 

The open policy initiated in 1978 set the target of attracting foreign investments for 

economic development. In 1979, the first four Spatial Economic Zones (SEZs)—

Shenzhen, Zhuhai, Xiamen, and Shantou were established with a suite of favorable 

conditions provided for foreign investors.  The success of SEZs encouraged the opening 

of another 14 coastal cities to be SEZ.  In 1988, three “open economic regions” were set 

up – the Yangtze River Delta Economic Region, the Pearl River Delta Economic 

Region, and the Minnan Delta Economic Region. The favorable economic policy was 

extended from the SEZs to larger areas in China. 

 

At the same time, economic reforms were launched to replace the central planned 

economy with the market economy.  One of the most important economic reforms is the 

transformation of the State Owned Enterprises (SOEs) into independent enterprises or 

privatized entities. This reform offered autonomy to enterprises and enriched the 

previously homogenous state-owned economy (Yeh and Xu 1996). Another important 

reform is to release the stringent migration policies. Many of the benefits exclusively 

enjoyed by urban residents have been reduced or re-structured through various reforms.  

 

Benefited from both the open policy and economic reform, rural areas are also 

urbanizing by themselves.  Other terms are also coined to embrace the phenomenon such 
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as “invisible urbanization”, “urbanization from below” and “deagriculturization” (Shen 

et al. 2002). Agricultural restructuring and rural industrialization have led numerous 

towns to flourish and thrive. Rural development has tremendous impetus for upgrading 

towns into cities and expanding small cities. In response to the growing demand for 

urban development, the Chinese government has relaxed its control over the designation 

of cities since 1984 (Lin 2002).  

 

Overall, the year 1978 is a turning point in China’s urban development. During the past 

three decades, economic reforms towards a more market-oriented economy have 

revibrated urban development in China at all levels. The political economy in China has 

undergone profound transformations, moving away from central planning to more 

market-oriented planning with increasing levels of decentralized local controls (Lin 

1999; Guthrie 2000), and from isolation to active participation in global capital 

accumulation. As a result, Chinese cities experienced major economic and spatial shifts 

away from the socialist patterns (Ma 2002), and the entire society witnessed rapid 

urbanization processes. The number of cities increased from 194 in 1978, to 450 in 1989, 

and to 661 in 2004.  The urbanization level reached 26.7% in 2000 and 37% in 2003. It 

is predicted that the Chinese urbanization level will be over 75% in fifty years.  

 

China’s urban system is a distinct and valuable case for urban study for many reasons. 

Firstly, from socialism planned economy to market economy, China provides a natural 

experiment in the consequences of following top-down, administrative methods versus 
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bottom-up, market methods in directing urban growth (Yeh and Xu 1996). Secondly, 

even though the Chinese cities began to capture some good aspects from the capitalist 

since 1978, the inherited socio-spatial framework from the pre-reform socialism system 

continues to be dominating and shape the current urban development. Thus, China’s 

idiosyncratic post-reform urbanization promises to be a testing field for theoretical 

reevaluation of the post-socialist city transitions (Zhang 2008). Lastly, both the 

remarkably fast pace and the wide breath of geographic distribution make the 

urbanization process in China unparallel in the world (Lin and Wei 2002a). The strong 

dynamics of China’s landscape may provide fertile ground for mining new knowledge 

and reconstructing theoretical discourses (Lin and Wei 2002a).  

 

3.3 Shenzhen City 

Among the booming coastal cities, Shenzhen is one of the most significant cities. 

Shenzhen is one of the first four special economic zones in China. It continues to serve 

as a window of China to show off to the world about its commitment to economic 

reform and overall open-door policy (Ng 2003). The geographic advantage of next to 

Hong Kong made Shenzhen to be selected as one of the SEZs to develop an export-

oriented economy. They are granted the responsibility and opportunity of running the 

local economy instead of having to follow investment decisions from central ministries 

(Ng 2003). This is the first time in the history of the People’s Republic of China to 

devolve central authorities to the local level (Ng 2003). Politically, Shenzhen is directly 
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under the lead of the central government as a sub-provincial city of Guangdong Province. 

Shenzhen enjoys highly autonomous economic development and favorite policies.  

 

Since Shenzhen was established in 1979, it experienced a rapid urbanization process 

from a small border town with a population of several tens of thousand to a metropolitan 

area with several million population during the past three decades. Shenzhen is often 

teased as ‘a city of overnight growth’. Accompanying the growth of population is the 

spatial expansion of developed area.  In 1983, only 20 km2 of land were developed, but 

in 1997 this number increased to 299.47 km2 (Ng 2003).  The direct consequence of 

rapid urban development is the extreme changes of land use and land cover in Shenzhen. 

From Shenzhen, one can mirrors the rapid urbanization process of China.  

 

Shenzhen, locates in southern China between longitude 113o46’ to 114o37’ and latitude 

22o27’ to 22o52’. The Pearl River Delta where Shenzhen is located is one of the most 

developed areas in China (Figure 3-1).  Shenzhen lies right to the north of Hong Kong 

with the east flanking on the Daya Bay and the west flanking on the Peal River Estuary.  

DongGuang and Huizhou lie to its north.  
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Figure 3-1 Pearl River Delta Region, China. Source: Sit and Yang, 1997. 
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Currently, Shenzhen City consists of Shenzhen Special Economic Zone (SSEZ), Bao’an 

District, and Longgang District. SSEZ comprises another four districts (Figure 3-2): (1) 

Luohu, the financial and trading center, (2) Futian, the administrative center where the 

Municipal Government is located, (3) Nanshan, the center for high-tech industries, and 

(4) Yantian, the second largest deepwater container port in China and the 4th largest in 

the world. Bao’an District, is home of Shenzhen Bao’an International Airport. Bao’an 

District contains ten sub-districts—Xin’an, Xixiang, Longhua, Guanlan, Gungming, 

Songgang, Guangming, Shanjing, Fuyong, and Shiyan. The third district, Longgang 

District, also has jurisdictions over ten sub-districts—Buji, Dapeng, Henggang, Kengzi, 

Kuichong, Longgang, Nan’ao, Peingdi, Pinghu, and Pingshan. 

 

 

Figure 3-2 Shenzhen City, China. 
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3.3.1 Physical Environment 

The terrain of Shenzhen is moderately hilly (Table 3-1).  Over 50 percent of the land has 

an elevation over 50 m, amongst which over 31 percent is 80 m above the mean sea level.  

Near 40 percent of land has a slope over 15 percent, and 24 percent of land has a slope 

over 30 percent. There are several mountains with altitude above 500 m, such as Yangtai, 

Qiliang, and Meishajian Mountains. Wutong Mountain is the peak of Shenzhen City 

with a height of 943.7 m.  

 

Table 3-1. Physical conditions of Shenzhen City. 

 

Elevation (m) Slope(%) 

 less than 20 21~50 51~80 > 80 0~5 6~15 16~30 > 30 

ShenZhen 24.15 24.96 19.83 31.05 45.26 16.19 15.73 22.81 

SSEZ 53.26 12.90 6.77 27.07 48.70 12.33 13.28 25.69 

Bao’an 54.43 22.41 12.14 11.02 58.06 17.59 12.02 12.33 

LongGang 5.29 26.44 25.53 42.73 32.80 16.80 20.02 30.38 
 

Spatially, the topography of Shenzhen is high in southeast and low in northwest (Figure 

3-3).  The southeast area is primarily small mountains. The northwest and central parts 

of Shenzhen are covered by hilly land and small mountains, and there are a range of 

alluvial plains between them. The northwest part of Shenzhen is a large area of alluvial 

plain. 
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Figure 3-3 Topography of Shenzhen, China. 

 

The climate in Shenzhen is mild subtropical maritime weather. Summer is very long, and 

generally lasts to six months each year while winter is really short. The annual average 

temperature is around 24 centigrade. The highest temperature in history reached 36.6 

centigrade, and the lowest temperature reached 1.4 centigrade. Sunshine is plenty in 

Shenzhen, and could be as along as 1975 hours per year. Rainfall is also plenty in 

Shenzhen with around 1608mm precipitation annually. There are also existing the 

possibility of typhoons during summer and fall.  

 

3.3.2 History of Shenzhen 

Shenzhen’s history can be traced back to six thousands years ago. In the Xia and Shang 

dynasties, Shenzhen was the habitats of ancient Baiyue tribes. In 1573, Xinan County 
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was established on the territory of today’s Shenzhen and Hong Kong. During the period 

of 1842 to 1898, Britain forced China to separate 1,055.61 km2 land, including Hong 

Kong Island and Kowloon Peninsula from Xinan County. In 1913, Xinan County was 

named as Bao’an County. The detailed history of Shenzhen is beyond the scope of this 

study. The main focus will be on the development of Shenzhen since the People’s 

Republic of China was founded in 1949. 

 

In 1949, Shenzhen belonged to Bao’an County and was inhabited mainly by Hakka 

people. Due to its proximity to HongKang, Bao’an county residents traditionally went to 

Hong Kong to make their livings. During the 1960s and 1970s, Hong Kong’s economy 

began to take off and labors were largely needed. The sharp contrast between Hong 

Kong’s prosperity and China’s poverty further attracted residents in Bao’an County to 

flee to Hong Kong illegally. Statistics show that between 1957 and 1977, 119,274 

residents in Bao’an attempted to flee to Hong Kong, and 60,156 succeeded. In some 

villages, the males were almost totally depleted due to the illegal border-crossing. 

 

Chronic illegal border-crossing results in a severe shortage of capable labor force in the 

Bao’an County to serve the local economy. Moreover, under the planned economy, the 

commodity economy was suppressed; agricultural production was overemphasized; and 

political campaigns overshadowed economic development. In 1978, Bao’an County’s 

total industrial output was as shabby as RMB 31.42 million while its agricultural output 

was over tripled, RMB 95.75 million.  
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In 1978, China central government set up the open and reform policy.  Shenzhen was 

designated as one of the first four Special Economic Zones (SEZs) because of its 

spatially neighboring Hong Kong and emotionally close to many Chinese oversea 

residents. In 1981, an area of 327.5 km2 in Shenzhen was set aside as the Shenzhen 

Special Economic Zone. Shenzhen City was divided into SSEZ and Baoao County.   

These SEZs were granted with high local autonomy rather than following top-down 

decisions from the central ministries, as typical Chinese cities do (Ng 2003). Since the 

foundation of SSEZ, Shenzhen enjoyed exponential growth. Shenzhen played an 

important test field for China’s economic development. A series of administrative, 

enterprise, trade, land and housing reforms took place in Shenzhen first.  By the mid-

1990s, economic enterprises were separated from administrative units, land market was 

introduced, and the major housing source switched from state to market in Shenzhen.  

 

With the expanding of the Open Door Policy and the close competition from other cities, 

SSEZ’s status as China’s window to the world has been threatened (Ng 2003).  To 

contend for its position as a modern mega city, Bao’an County was devided into two 

districts—Bao’an District and Longgang District, and the two districts were incorporated 

into SSEZ as two new districts of the Shenzhen Municipality in 1993 (Ng 2003). Since 

then, Shenzhen stepped forward to develop a world class city.  
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3.3.3 Shenzhen’s Urban Planning and Self-organizing Development 

Shenzhen’s urban development needs to be discussed separately, one on SSEZ and the 

other on area outside of SSEZ, which are Bao’an and Longgang districts. SSEZ’s urban 

development was well planned while urban development in Bao’an and Longgang 

districts followed a bottom-up, spontaneous, and “out-of-order” growth.  

 

Even before SSEZ was founded, its urban development plans had already been 

delineated by the central government. The first draft master plan of the SSEZ was 

produced under the joint efforts of the central government and the Shenzhen government 

(Ng and Tang 2004). The first master plan lists not only all the development targets but 

also designates a linear spatial layout of the SSEZ.  To match the startling rapid urban 

development of SSEZ in the early 1980s, the second draft master plan is provided 

shortly after the first one in 1985. The second master plan also only covers the SSEZ in 

the second master plan, a clustered linear spatial structure layout was proposed for the 

SSEZ’s urban spatial development.  It was until the third master plan in 1996, the area 

outside of SSEZ in Shenzhen was first covered into the plan. A clustered network spatial 

structure was proposed in the third master plan. In addition to these three master plans, 

many other urban development plans and environment protection plans jointly directed 

urban development in the SSEZ.  

 

The urban planning is SSEZ is usually regarded as a typical and successful case of urban 

planning in China. There are many stories about how the Shenzhen government 
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successfully followed the original plans and reserved hot land for long time benefits. 

Many urban scholars and planners sang high praise for urban planning, especially the 

second master plan in Shenzhen.  In the past 20 years, Shenzhen grasped almost every 

development opportunity such as trade, low-valued added industries, high-tech industries, 

entertainment industries, and education. The clustered linear plan provided potential 

flexibility for urban development and gave lots of alternatives which are crucial during 

the rapid urbanization process. Some scholars recommended giving the second master 

plan of Shenzhen a milestone status in China’s urban planning history. 

 

However, urban development outside of the SSEZ in Shenzhen is another story (Figure 

3-4). Towns and villages outside of the SSEZ operated under a different planning system.  

These surrounding areas were competing with the SSEZ through establishing their own 

mini-economic zones. Arable land was converted into factory land. These towns and 

villages, like the SSEZ, also enjoyed rapid development but in a self-organizing and 

disordered manner. Town governments, village committees, and villagers were the 

dominant agencies in urban land use development outside of SSEZ.  
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Figure 3-4 Towns and villages outside of the SSEZ. Source: Shenzhen 
ews, 2006. 

 

The different stories of urban development between the inside and the outside of SSEZ 

have to be attributed to the land ownership in essence.  In China, landownership has two 

types— owned by the state and owned by rural collectives. Land inside SSEZ is owned 

by the state while the majority of the land outside of the SSEZ was owned by rural 

collectives. For state-owned land, city governments have the authorities to grant or lease 

the land, and specify the land uses. For collective land, village collectives own the land, 

and grant the right of land use to the peasants, mainly for agricultural activities. In 

addition, each household legally owns a parcel of land for residential purpose, where the 

parcel size is subject to the family size.  However, village collective or committee is not 

an official administrative unit in China. The committee representatives are selected by 

villagers. Thus village committee stands for the villages’ interests and directs the 

development in a way favorable to that particular village.  
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Although there are fairly stringent rules on how to convert rural land into urban land, 

rural collectives in Shenzhen accelerated this process without following the rules due to 

the high profits. In the early period, town governments and village committees literally 

sold the land to manufactures or enterprises wishing to set up factories in their villages. 

And then using the revenues generated from land sales, town governments and village 

committees develop buildings, and rent them to enterprises.  With large amount of 

investments and enterprises rushing into these areas outside of the SSEZ, the floating 

population increased dramatically.  The tremendous need for residential areas promptly 

encourages the villagers using their residential areas to join in the housing market. In 

addition to building residential buildings higher than what is prohibited, villagers also 

built residences in areas where not originally assigned to them. These types of illegal 

development overwhelmed areas outside of the SSEZ. It turned out to be a huge regret 

for urban planners and the Shenzhen Government for failing to cover these areas in the 

second master plan.   

 

In 1993, the previous Bao’an County was separated into two districts—Bao’an and 

Longgang, and both were incorporated into the SSEZ. The third master plan began to 

cover Bao’an and Longgang districts. However, areas outside of the SSEZ were still 

under the self-organizing development controlled by local village collectives. In 2003, 

the Shenzhen government implemented a city wide activity to convert all the rural 

collective land into state owned land. There is a long way to go to carry out this action, 
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since villagers are reluctant and will inevitably resist giving up the huge benefits 

associated with land 

 

In summary, Shenzhen experienced rapid urbanization process during the past three 

decades under the combination of urban planning and self-organizing development in 

both SSEZ and area outside of SSEZ.  With the rapid urbanization process, the urban 

landscape changed potentially. 

.   

3.3.4 Data for the Study of Shenzhen 

To study the urban landscape change of Shenzhen, the Landsat remote sensing data, 

Master Planning data, and transportation planning data are used.  The remote sensing 

data include TM images in 1988, 1992, 1995, 1999, and ETM images in 2002. The 

Master Plan of Shenzhen 1996-2010, the Regional Transportation Plan 2010 of 

Shenzhen and Shenzhen’s Subways Plan 2020 are also employed for analysis and 

modeling. 

 

The classification of the remote sensing images was conducted by my colleagues at the 

Shenzhen Graduate School of Peking University. The classification accuracy assessment 

report is shown in Table 3-2. The user accuracy is a map-based accuracy, calculated by 

dividing the number of pixels correctly classified as one type of land use or land cover 

with the total number of pixels classified as the type of land use of land cover. The user 

accuracy measures the classification accuracy of one type of land use or land cover. The 
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user accuracy of built-up area which is very important to the dissertation research is over 

80%. The overall accuracy represents the classification accuracy of all types of land use 

or land cover, and it is calculated by dividing the number of pixels correctly classified 

with the total number of pixels. The overall classification accuracy is also over 80%. The 

classification results are valid for this dissertation study 

 

Table 3-2 Classification accuracy assessment report. 
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CHAPTER IV 

RESEARCH METHODOLOGY  

  

 

4.1 Inter-urban Analysis 

4.1.1 Rank-size Distribution and Zipf’s Law 

Zipf’s law describes the negative linear relationship between the logarithm of population 

size and the logarithm of city rank.  It is closely related to the rank size rule and the 

Pareto law (Batty 2003).  Urban systems which conform to Zipf’s law also present the 

Pareto distribution and the rank-size rule (Batten 2001; Chlebus and Ohri 2005).  The 

following equation is often used to examine Zipf’s law empirically (Brakman et al. 

1999): 

                           Ln(Mj)=a - bln(Rj)                                 (1) 

where Rj is the rank of city j, and Mj is the size of city j, usually measured by population.  

Parameters a and b are the intercept and slope of the rank-size curve respectively.  

Nowadays, the term Zipf’s law is generally referred exclusively to cases when b equals 

1, whereas for more general slopes, the term rank-size distribution is used (Reed 2002).  

When 0<b<1, it means a more even distribution of rank sizes than predicted by Zipf’s 

law.  If b>1, the rank-size distribution is much more uneven than it is predicted by Zipf’s 

law (Reed 2002).  However, it is almost impossible to get an exact 1 for the regression 

coefficient b in real world studies (Nitsch 2005).  In fact, Nitsch (2005) found that the 
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combined estimate of the Zipf’s coefficient was significantly larger than 1 in his review 

of the empirical literature of Zipf’s law on cities. In this study, the rank-size distribution 

is a substitute for Zipf’s law. 

 

The meaning of Zipf’s law is important. There are ample evidences that Zipf’s 

distributions of population and other socio-economic activities are related to mature or 

steady systems (Shiode and Batty 2000).  Shiode and Batty (2000), in their study of the 

growth of web pages in different countries, showed that most developed countries with 

mature domains followed Zipf’s law. However, in developing countries which fall 

behind in the web development and Internet technologies, city size relations fail to show 

a Zipf’s law distribution. 

 

For urban system, an ideal Zipf’s distribution accompanies a well-balanced urban 

hierarchy in which resources, wealth, and activities tend to be spatially dispersed and 

well-balanced among regions.   On one hand, rank-size distribution of cities may suggest, 

but by no means to prove, that an urban system is spatially integrated and a variety of 

forces have affected the development of the system. On the other hand, an urban system 

characterized by high urban primacy may suggest that the system has been shaped by 

only a few strong and easily identifiable forces. It is possible that a nation’s urbanization 

history may show a gradual trend of city-size evolution from high primacy to a matured 

hierarchy of cities having a variety of sizes.  
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There have been many attempts to explain this observed regularity of Zipf’s law. These 

studies can generally be divided into two categories – economic models and stochastic 

models.   The economic models were built on delicately-balanced transport costs, 

positive externalities, negative externalities and productivity differences (Gabaix 1999a).  

However, it is doubted that different economic structures would produce the same 

delicate balance of forces (Gabaix 1999a).  Stochastic models seek to explain Zipf’s law 

based on some simple probabilistic assumptions on the formation and growth of cities.  

Stochastic models indeed generate the shape of the Zipf’s distribution, but only when an 

unrealistic dynamics of individual city is given, and these models may be uninformative 

about the underlying mechanism (Overman and Ioannides 2001).  Neither the economic 

models nor the stochastic models turned out to be thoroughly successful (Overman and 

Ioannides 2001).  A convincing theoretical microeconomic foundation for the existence 

of Zipf’s law is still lacking (Brakman et al. 1999). 

 

However, Zipf’s law does not hold true everywhere (Li 2002).  Many studies have been 

conducted to check the existence of Zipf’s law in different countries (Rosen and Resnick 

1980; Soo 2005).  As to what kind of urban system conforms to Zipf’s law, the current 

literature presents confusing and controversial evidences.  Batten (2001) stated that 

Zipf’s law works best in large countries with almost self-sufficient economies such as 

the United States and the former Soviet Union.  It also works well in “large countries 

with long urban traditions – like China and India” (Batten 2001, 97).  In contrast, Marsili 

and Zhang (1998, 2741) contended that “countries which have a unique social structure, 
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such as the former Union of Soviet Socialist Republics or China, do not follow Zipf’s 

law” .  Whereas for other developed countries, Zipf’s law can still be considered as a 

reasonable explanation of the city rank size distribution (Marsili and Zhang 1998).   In 

the above studies, China and the former Soviet Union were presented as contradictory 

examples. This study will examine whether or not China’s urban system conforms to 

Zipf’s law. 

 

Although many studies have been conducted to test and explain Zipf’s law in city size 

distribution, intra-distribution dynamics have received relatively little attention. 

Empirical studies tend to focus more on the overall shape of the city size distribution.  In 

fact, different urban systems will show different intra-distribution dynamics (Overman 

and Ioannides 2001).  For example, French and Japanese urban systems are 

characterized by parallel growth.  Cities in both countries have a tendency to grow at the 

same rate, maintaining their relative rankings in the overall city size distribution and 

consequently showing little intra-distribution mobility.  In contrast, American urban 

system is characterized by the entry of new cities and a high degree of intro-distribution 

mobility (Overman and Ioannides 2001).  

 

In this study, Zipf’s law is applied to both the entire national and cities of different sizes. 

In addition, intra-distribution dynamics of city sizes and ranks are analyzed in order to 

better understand Zipf’s law in China’s urban system.  
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4.2 Intra-urban Analysis 

In the intra-urban study, CA modeling turns out to be an ideal choice because the ability 

to simulate self-organizing activities is the most important concern. CA models and 

related techniques have been extensively used to investigate complex systems and self-

organization behaviors theoretically by Langton (1990), Kauffman (1988, 1990, and 

1993) and many others (e.g., Forrest 1991). CA modeling method has provided deep 

insights into the behavior of the whole classes of complex systems. Cellular techniques 

dramatically shortened the distance between highly specific models (on actual cities) and 

models developed to investigate fundamental theoretical issues. They may enable richer 

and more useful applied models, co-evolving with a deeper understanding of city 

systems (White 1997).  

 

SLEUTH model is chosen for this study amongst the family of well-developed urban CA 

models.  SLEUTH, a self-modifying CA program, is originally developed by Clarke in 

1992, and perhaps has become the most broadly used CA program in urban studies 

(Clarke et al. 1997, 2007; Pinto and Antunes 2007). There is a list of reasons to use 

SLEUTH model in this study.  

 

First, the variables used to simulate urban growth by SLEUTH model are also important 

factors which shape urban development of the study area.  The SLEUTH model takes the 

physical environment into consideration by incorporating physical thresholds for urban 
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development in the model. Transportation and existing urban spatial extent are also 

incorporated into transition rules in the model. The exclusion layer of the SLEUTH 

model provides the platform to include the urban and environmental planning processes, 

which Shenzhen government has been putting great efforts into. The exclusion layer thus 

allows the top-down impacts on urban and environment planning to be included in 

simulation.  

 

A critical improvement of the SLEUTH model is the incorporation of self-modification 

function. This function can modify the model’s behavior over time, and update transition 

rules at different stages of urban growth (Clarke et al. 2007; Pinto and Antunes 2007). 

As the result, the self-modification function enables the SLEUTH model to make urban 

simulation in a manner of linear normal growth. This improves the model realistic and 

makes the growth prediction more reasonable (Yang and Lo 2003).  

 

In addition, the SLEUTH model has many improvements on model calibration and 

validation. For model calibration, the model incorporates some rigid statistical measures 

including the overall population, location and clusters’ shape to characterize the 

historical fit. Using historical land use and land cover data, it is possible to verify the 

model fitness thorough past to present calibration. With these improvements, the 

SLEUTH model surpassed many game-type of models which are seldom associated with 

rigid validity (Yang 2000). 
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Lastly, SLEUTH model has higher flexibility and can be applied to different regions 

with different datasets, compared with large amount of existing urban CA models,. If 

only concentrating on model calibration, validation and scenario design, researchers can 

save tremendous amount of time and efforts on model design and programming (Yang 

2000). By far, the model has been extensively used to simulate urban dynamics in the 

United States and other countries (Candau 2002; Silva and Clarke 2002; Jantz et al. 2004; 

Yang and Lo 2003; Oguz 2003).  This allows the simulation of urban growth in different 

places more comparable, which is especially imperative for knowledge production. 

Clarke and his colleagues are currently searching for the “DNA” of urban growth using 

the SLEUTH model in different cities (Silva 2001; Clarke 2007).  

 
For the intra-urban study, SLEUTH model will be employed to simulate the self-

organizing urban landscape dynamics. And then, thresholds of physical environment, 

phase shifts in urban growth process and the power laws of urban landscape will be 

explored using statistical analysis of classified data and simulated urban growth.  

 

4.2.1 SLEUTH Model Introduction 

SLEUTH is a Cellular Automaton-based urban growth model originally developed by 

Keith Clarke. It is a C program module running in the UNIX environment. The program 

uses the standard Gnu C Complier (GCC) and may be executed in parallel. The 

SLEUTH model and associated patches can be downloaded from the SLEUTH website 

(http://www.ncgia.ucsb.edu/projects/gig/) for free. This model aims to create a high 
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resolution simulation tool to model urban growth (Benenson and torrns 2004). Besides 

simulating future urban dynamics, SLEUTH is capable of ‘backcasting’ urban extent 

(Clarke et al. 2007).  

 

The SLEUTH model comprises two tightly coupled models – the urban growth model 

and the Deltatron land use model. The urban growth model is the major component of 

SLEUTH and is used to simulate urban/non-urban dynamics. The Deltatron land use 

model is an optional add-in. It simulates land use dynamics driven by the simulated 

urban dynamics according to the results provided by the urban growth model. In the 

following text, a working definition for SLEUTH is the urban growth model of SLEUTH. 

 

Figure 4-1 shows the general simulation process of the SLEUTH model.  After model 

calibration, a set of coefficient values are generated. With these coefficient values, the 

Urban Growth Model and/or the Deltron model are initiated to simulate urban and land 

use/land cover dynamics. After the first round of growth rules are applied, urban growth 

rate is calculated. If the urban growth rate falls out of the range of certain thresholds, the 

self-modification rule is activated to modify the coefficient values. Then, a new set of 

coefficient values is applied to the second round urban growth and land use/land cover 

dynamics. If the urban growth rate is within certain thresholds, the set of coefficient 

values will be fixed and used for the rest simulations. The following text will describe in 

details about the input data, the coefficients, the simulated urban growth types, the self-

modification mechanism and the calibration and fit statistics. 
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Figure 4-1 The general simulation process of SLEUTH model. Source: Candau, 2002. 

 

Each character in “SLEUTH” represents a type of data required by the SLEUTH model 

– Slope, Land Use, Exclusion, Urban, Transportation and Hillshade. All the input data 

must be in an 8-bits Grayscale GIF image format with the same projection, the same 

spatial extent and resolution.  

• Slope layer represents the slope distribution in percent slope. Each pixel has a 

value in the range from 0 to 100. If the percent slope is larger than 100, it will be 

given the value of 100. 

• Land use layers are optional input for the Urban Growth Model. Each pixel value 

falling in the range of 0 to 255 which stands for a unique land use class.   

• Exclusion layer is originally designed to represent constraints on urban growth. It 

includes areas which are impossible for urban development, such as water bodies 
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and national parks. In the exclusion layer, areas excluded are given a value of 

100 or greater. However, in the SLEUTH model values larger than 100 will be 

read as 100. Locations suitable for urban development are given a value of zero. 

The exclusion layer has been proved to be a very useful layer to in simulating 

urban growth under different scenarios (Yang and Lo 2003; Clarke 2007). 

• Urban layers are the binary dataset (urban/nonurban) of previous urban 

development. They are used to initialize and calibrate the SLEUTH model. At 

least four layers (i.e. urban distribution in four different times) are needed.  

• Transportation layers, also called road layers, could be binary data to show 

road/non-road or relative values. Relative values represent a weighted 

importance of roads on urban development. One road layer is used to initialize 

SLEUTH model and at least one more road layer is needed. 

• Hillshade layer is an optional but highly recommended layer. It provides a 

background for urban growth presentation. For example, in the outputs the 

simulated urban growth will be shown in the hillshade background. 

 

Overall, the most flexible data layer is the exclusion layer.  Many studies used this layer 

to represent different scenarios for urban development.  Similarly, the transportation 

layer can also be used to simulate future urban growth in different future transportation 

systems. 
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This study will take advantage of both flexible data layers for urban development 

simulation. Master plans will be used to generate exclusion data. Different types of 

planned areas will be given different weighting factors. In addition, three scenarios will 

be built according to different degrees at which the master plans are put into force.  

Planned transportation system will also be added into the transportation data layer to 

simulate urban growth. Therefore, by adding a “planned” system, government’s impacts 

on urban development could be simulated.  

 

SLEUTH can simulate four types of urban land-use change: spontaneous growth, new 

spreading center growth, edge growth and road-influenced growth. The urban physical 

development is the sum of the four types of growth. These four growth types are applied 

sequentially during each growth cycle, or year. “Spontaneous growth simulates the 

occurrence of a new urban settlement on the landscape without necessary relation to 

preexisting infrastructure. (ew spreading center growth controls the likelihood that one 

of the newly established spontaneous growth settlements will become a center for 

continued growth. Edge growth models outward growth from the city edge as well as 

urban in filling growth. Road-influenced growth generates spreading centers next to 

routes of transportation and simulates the tendency for new growth to follow lines of 

transportation” (Jantz et al. 2004, 254). 

 

Five growth coefficients, falling in the range of 0 to 100, control the above four types of 

urban growth. They are derived from a linear regression goodness-of-fit scores (r2) of the 
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simulated and the actual land cover changes. “The dispersion coefficient controls the 

number of times a pixel will be randomly selected for possible urbanization during 

spontaneous growth. The breed coefficient determines the probability of a pixel 

urbanized by spontaneous growth becoming a new spreading center. The spread 

coefficient determines the probability that any pixel that is part of a spreading center (a 

cluster of pixels of three or more in a nine cell neighborhood) will generate an additional 

urban pixel in its neighborhood. The slope coefficient affects all growth rules in the 

same way. When a location is being tested for suitability of urbanization, the slope at 

that location is considered. Instead of enforcing a simple linear relationship between the 

percent of slope and urban development, the slope coefficient acts as a multiplier. If the 

slope coefficient is high, increasingly steeper slopes are more likely to fail the slope test. 

As the slope coefficient gets closer to zero, an increase in local slope has less affect on 

the likelihood of urbanization. During road-influenced growth the maximum search 

distance from a road pixel is proportionally to the image dimensions which are 

determined by the road gravity coefficient” (Candau 2002, 30). 

 

During the urban growth computation, self-modification is invoked if the model’s 

growth rate is different from the critical number (Figure 4-2).  The self-modifying rules 

are important to ensure reasonable urban growth results.  Three constants, 

CRITICAL_HIGH, CRITICAL_LOW, and CRITICAL_SLOPE are used to control the 

self-modification process. After a growth cycle which starts with setting up the 

coefficients and the complement of each growth type, the urban growth rate is calculated 
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and compared with CRITICAL_HIGH and CRITICAL_LOW.  If the urban growth rate is 

higher than the value of CRITICAL_HIGH, the coefficients will be increased for the next 

growth cycle.  In this way, a ‘boom’ state is initiated, and a period of accelerating urban 

growth is launched. If the urban growth rate is lower than the value of CRITICAL_HIGH, 

the coefficients will be decreased. As a result, a ‘bust’ state is initiated, and a period of 

decreasing urban growth is launched (Candau 2002). Currently, there is no criterion on 

the establishment of the CRITICAL_HIGH and CRITICAL_LOW values.  

 

 

 

 

 

 

 

 

 

 

 

Self-modifying rules are important to present a reasonable simulation. Without the self-

modification growth rules, a linear or exponential urban growth will be produced.  The 

Figure 4-2 The self-modifying rules of SLEUTH. Source: Clarke et al., 1997. 
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self-modification is essentially simulating the typical S-curved urban growth (Candau 

2002).  Under self-modifying rules, the coefficients increase quickly and result in a rapid 

urban growth during the beginning of urban growth simulation. In the early period of 

urban development, undeveloped cells available for urbanization are abundant, and the 

growth rate has the high possibility to exceed the CRITICAL_HIGH value.  In later 

urbanization process, the cells available for urbanization become limited. Then the 

coefficients begin to decrease and fall below the CRITICAL_LOW value. Urban 

development begins to slow down (Candau 2002). 

 

Calibration is the most important part of the SLEUTH model. It derives the above five 

urban growth coefficients that can effectively simulate urban dynamics for the data time 

period. The SLEUTH model employs a brute-force Monte Carlo method to achieve the 

goals of calibration. With a range of values for each coefficient set up by the user, the 

SLEUTH model will iterate with every possible combination of coefficients. For each 

combination, a set of least square regression measures will be calculated based on 

comparing the simulated growth with the actual growth. The number of Monte Carlo 

iterations to be specified is a very important parameter determining the computation time 

and the simulation error level at large.  
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Table 4-1 Fit statistics calculated by SLEUTH. Source: Jantz et al., 2005.
 a

 

 

 
 

The current version of the model computes a dozen or so statistical scores for 

characterizing the historical fit in the phase of model calibration such as the number of 

urban pixels, Lee and Sallee metric, urban cluster edge pixels and the number and size of 

urban clusters. Table 4-1 presents part of the meanings of these statistical measures. 

Each fit statistics measures some aspects of the SLEUTH’s performance. These statistics 
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are calculated internally by the model.  The results are exported to a log file and can be 

manipulated by the user to evaluate the performance of different coefficients sets. The 

coefficient combinations with the best overall statistical scores are selected and the final 

values for these coefficients are determined accordingly.   

 

Because of the large computational requirements for this approach, calibration was 

recommended to be executed in three phases—coarse, medium and fine—according to 

different purposes. For the coarse calibration, the input images are resampled to 4*4 

times of the original resolution, and “the maximum parameter value range (1 ~ 100) is 

used, and the increment used by SLEUTH to step through the range is set to 25” (Jantz 

et al. 2004, 258). For each coefficient, 0, 25, 50,75 and 100 will be tested and four 

Monte Carlo iterations are used. After a coarse calibration, all the possible combinations 

with the 13 statistical measures are produced in the control_stats.log file. Based on these 

statistical measures, the user can narrow down the parameters’ value range, and the 

increment size can generally be reduced to 5 to 10 after the fine calibration.  Also in this 

process a lager number of Monte Carlo iterations will be used. For final calibration, the 

range of possible coefficient values is further narrowed down based on the statistical 

measures produced by the fine calibration. “Ideally, the ranges will be narrowed so that 

increments of 1-3 may be used while still only using about 5-6 values per coefficient and 

a large number of Monte Carlo iterations are used” (Jantz et al. 2004, 258). 
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Another important issue about calibration is how to select the best-fit values for those 

coefficients at each calibration step. Previously, there was no agreement on which 

performance measure or set of performance measures is the best. Clarke et al. (1997) 

primarily employed four statistical measures: population, edges, clusters and Lee and 

Sallee. Three statistical measures (compare, population and Lee and Sallee) were 

selected by Jantz et al. (2004) in their application of SLEUTH to the Washington-

Baltimore metropolitan area. While in another study of Atlanta, a weighted sum of all 

the metrics were employed (Yang and Lo 2003). In simulating urban development in 

Porto and Lisbon, Silva and Clarke (2002) only used the Lee and Sallee metrics to 

measure of model performance. Recently, Dietzel and Clarke recommended an Optimal 

Calibration method to combine seven current measures based on a study of the complete 

set of possible coefficients.  

 

The model generates both numeric and graphic outputs. Numeric statistical data such as 

the total number of new urban pixels generated from different types of urban growths, 

the average urban pixel column and row values, and the average slope of urbanized cells 

are exported in the avg.log file. The coefficient values applied to the simulation in each 

year and each run are listed in the coeff.log file. The graphic outputs include annual 

urban growth probability maps, a map of urban probabilities for the stop date, annual 

urban growth type maps for certain Monte Carlo run, annual urban and land use change 

map for the final Monte Carlo iteration. 
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4.2.2 Simulation of Urban Development in Shenzhen 

Because the SLEUTH is a C program running under UNIX, the Cygwin, a Linux-like 

environment software for Windows were download from the website of Cygwin and 

used for this study. The complete SLEUTH 3.0 code with p01 patch, libraries for Linux 

or Cygwin were download from the Gigaloplis website. The model calibration and 

execution were performed under the Cygwin environment. 

 

4.2.2.1 Input Historical Data 

Using ArcGIS, all the input data were georeferenced and classified. All the input data 

were clipped to the same map extent for Bao’an, Longgang and SSEZ respectively. 

Using ACDSee, all the data were converted into an 8-bits grayscale GIF format with a 

30-meter resolution.  Table 4-2 shows detailed information of input data.  

 

Since this study only focuses on urban growth model, land use data are not included.  

Hillshade data are used to provide the spatial context of urban extent, and they will be 

incorporated into the output images. Because the output images will be used for further 

analysis, the hillshade data set up a background for this study. 
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Table 4-2 The input historic data of SLEUTH model. 

 

4.2.2.2 Calibration 

As described above, the calibration process consists of three steps – coarse calibration, 

fine calibration, and final calibration. The best-fit values of the coefficients might be 

excluded during the coarse and fine calibration steps. To avoid this possibility, the 

author maintains the input data in a 30-meter resolution instead of resampling data into 

different resolutions for the three different calibration steps. This decision increases the 

validity of results. However, it potentially increases the time of calibration.  

 

The CRITICAL_HIGH and CRITICAL_LOW are set up as the default values. The 

CRITICAL_SLOPE is at 15 percent degree for SSEZ, and 30 percent degree for area 

Layers Year Description 

Urban Area Map 1988,1992,1995,1999 0, non-urban area; 

1, urban area. 

Road Data 1988,1992,1995,1999 100, major roads; 

0, non-road. 

Slope Layer N/A 0-100 percent slope; 

Area with slop larger than 100 
percent; degree is coded into 100. 

Excluded Layer N/A 0, available for building; 

90, excluded major water bodies  

100, background. 

HillShade N/A 0, background 

Land use data N/A N/A 
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outside of SSEZ based on the Urban Planning Standards and Guidelines of Shenzhen 

(Shenzhen Government 1997). 

 

During the calibration process, the SLEUTH model generates eleven best-fit values for 

each set of coefficients’ combinations. The Optimal SLEUTH Metric (OSM) is used as 

goodness-of-fit measure and calculated for each set of coefficients’ combinations. OSM 

is built up using the following formula: 

OSM= COMPARE * POPULATIO( * EDGES * CLUSTERS * SLOPE * X-mean * Y-mean 

The top ten coefficients combinations with highest OSM value are used to narrow down 

the range of coefficients for calibration in the next step. 

 

In the coarse calibration, the MONTE_CARLO_ITERATION was set as 4 (Table 4-3). 

For all the five coefficients, the _START value was set as 0, the _STOP value was set as 

100, and the _STEP value was set as 20. As a result, there are 7776 sets of coefficients 

combinations.  

 

Table 4-3 The parameter settings of coarse calibration. 

 

Coarse Calibration Diffusion Breed Spread Slope Resist Road Gravity 

Start 0 0 0 0 0 

Step 20 20 20 20 20 

Stop 100 100 100 100 100 

Possible units 6 6 6 6 6 

Possible Combinations 7776 
Monte Carlo Iterations 4 
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From the ten sets of parameters with highest OSM values (see the Appendix), the ranges 

of the five coefficients are narrowed down for the fine calibration for Bao’an, LongGang 

and SSEZ respectively (Table 4-4). With the narrowed coefficients ranges, the _step 

value is reduced for each coefficient, and the number of Monte Carlo iterations increased 

to 7. 

 

Table 4-4 The parameter settings of fine calibration. 

 

Fine Calibration Diffusion Breed Spread 

Slope 

 Resist 

Road  

Gravity 

Start 80 60 80 80 60 
Step 4 10 4 4 10 
Stop 100 100 100 100 100 
Possible units 6 5 6 6 5 
Possible Combinations 5400 

Bao’an 

 

Monte Carlo Iterations 7 
Start 20 20 90 60 0 
Step 10 10 5 5 10 
Stop 100 100 100 80 100 
Possible units 9 9 3 5 11 
Possible Combinations 13365 

Longgang 

Monte Carlo Iterations 7 
Start 0 0 90 90 0 
Step 10 10 5 5 10 
Stop 80 80 100 100 60 
Possible units 9 9 3 3 7 
Possible Combinations 5103 

SSEZ 

Monte Carlo Iterations 7 
 

 

In the fine calibration process, the top ten OSM values improved slightly for Bao’an, 

Longgang and SSEZ (see the Appendix). As the result, data ranges of the five 
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coefficients narrowed down, and the _step values are reduced to 1~5. The number of 

Monte Carlo iterations is increased to 9 for the final calibration (Table 4-5).   

 

Table 4-5 The parameter settings of final calibration. 

 
 

Final Calibration Diffusion Breed Spread 

Slope 

 Resist 

Road  

Gravity 

Start 92 90 96 92 60 
Step 2 2 1 1 5 
Stop 100 100 100 96 100 
Possible units 5 5 5 5 9 
Possible Combinations 5625 

Bao’an 

 

Monte Carlo Iterations 9 
Start 20 60 95 60 40 
Step 2 5 1 1 5 
Stop 30 100 100 65 100 
Possible units 6 9 6 6 13 
Possible Combinations 25272 

Longgang 

Monte Carlo Iterations 9 
Start 50 0 90 95 20 
Step 5 5 2 1 5 
Stop 80 40 100 100 60 
Possible units 7 9 6 6 9 
Possible Combinations 20412 

SSEZ 

Monte Carlo Iterations 9 
 

4.2.2.3 Derive Forecasting Coefficients 

Table 4-6 presents the deriving forecasting coefficients. To calculate these coefficients, 

the set of coefficients with the highest OSM value from final the calibration is used for 

Bao’an, Longgang and SSEZ (see the Appendix).  The derived foresting coefficients 

(Table 4-7) are initializing coefficient values that best simulate historical growth for the 

three areas.  For Bao’an District, all the five coefficients are high, which implies a rapid 
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urban growth rate and indicates that the urban growth is highly influenced by road 

construction and limited by slopes. In Longgang District, Slope Resistance is relatively 

low but Road Gravity reaches 100. This means road, but not slope, is an important factor 

in shaping urban growth.  In SSEZ, the Road Gravity is much lower compared with 

Longgang District.  In SSEZ, urban planning has played very important role in urban 

development. As a result, urban growth does not spontaneously follow the road 

development. In contract, Bao’an and LongGang are often teased as road cities without 

enforced regulations and lack of urban planning.  

 

Table 4-6 The parameter settings for deriving forecasting coefficients. 

 

Derive Forecasting Coefficients Diffusion Breed Spread 

Slope 

 Resist 

Road  

Gravity 

Start 100 100 100 95 100 
Step 1 1 1 1 1 
Stop 100 100 100 95 100 
Possible units 1 1 1 1 1 
Possible Combinations 1 

Bao’an 

Monte Carlo Iterations 100 
Start 20 80 98 60 100 
Step 1 1 1 1 1 
Stop 20 80 98 60 100 
Possible units 1 1 1 1 1 
Possible Combinations 1 

Longgang 

Monte Carlo Iterations 100 
Start 80 10 90 100 35 
Step 1 1 1 1 1 
Stop 80 10 90 100 35 
Possible units 1 1 1 1 1 
Possible Combinations 1 

SSEZ 

Monte Carlo Iterations 100 
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Table 4-7 The derived forecasting coefficients. 

 

 Diffusion Breed Spread Slope Resist 

Road 

Gravity 

SSEZ 88.37 11.05 99.42 78.7327 37.1271 
Bao’an 100 100 100 85.4485 100 
Longgang 22.09 88.37 100 53.6785 100 

 

4.2.2.4 Model Prediction 

Roads layers of year 2010 and 2020 are produced by overlaying the 1999 roads with the 

improved roadways and new roadways, according to the Regional Transportation Plan 

2010 of Shenzhen and Shenzhen’s Subways Plan 2020. 

 

Three scenarios are developed in the model prediction. For all the scenarios, Urban Area 

Map 1999, Road Data 1999, 2010, and 2020 and Slope Data are used. Because city 

railways exert an important impact on urban development and are more efficient in 

transportation than other roads. City railways are given a value of 2 while other roads are 

given a value of 1 in Road data 2010 and 2020. The only difference between the three 

scenarios is the excluded layer, presented in Table 4-8. The available area for 

development is set as 0, excluded major water bodies as 90, and background as 100. The 

value for protected environment area is quite different in three scenarios. In scenarios 1, 

it is assumed that there is no effective environment protection, and the protected 

environment area is set up as 0. In scenario 2, environment protection is assumed to be 

moderately managed, and the protected environment area is given a value of 50. In 
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scenario 3, environment protection plans are considered to be strictly put into force, and 

the protected environment area is given a value of 90. 

 

Table 4-8 The input layers for model prediction. 

 

After the five parameters are derived from the calibration process, 100 Monte Carlo 

iterations are applied for each scenario in SSEZ, Bao’an District, and Longgang District 

Layers Year Description 

Urban Area Map 1999 0, non-urban area; 

1, urban area. 

Road Data 1999, 2010,2020 2, city railways 

1, major roads; 

0, non-road. 

Slope Layer N/A 0-100 percent slope; 

Area with slop larger than 100 
percent; degree is coded into 100. 

Scenario 1 

Excluded Layer 

N/A 0, available for building; 

0, protected environment area 

90, excluded major water bodies  

100, background. 

Scenario 2 

Excluded Layer 

N/A 0, available for building; 

50, protected environment area 

90, excluded major water bodies  

100, background. 

Scenario 2 

Excluded Layer 

N/A 0, available for building; 

90, protected environment area 

90, excluded major water bodies  

100, background. 
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with the prediction stat year in 2000. The predicted results will be used for criticality 

analysis. 

 

4.2.3 Criticalities Measurement 

In the analysis of the physical thresholds in urban development, the physical 

environment characters including slope, elevation, water body, and protected 

environmental area will be overlaid with the simulated urban growth to identify the 

thresholds for future urban development, and urban development under different 

physical thresholds. 

 

To analyze the urban development process, this study will detect the phase change of 

urban growth.  The urban growth types are divided into three types—fringe growth, 

isolated growth and infill growth (Figure 4-3).  Isolated growth means the newly 

developed area locates away from the existing urban area, which is often referred as 

‘frog-leap’ growth.  The new development skips surrounding available land and leaps far 

away in isolated land with low price. Fringe growth is an outward growth of the existing 

urban area. It often borders the existing development and takes advantage of the existing 

infrastructure. Infill growth occurs in undeveloped area surrounded by developed area. 

The three urban growth types will be analyzed at both the temporal and spatial 

dimensions.  
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Figure 4-3 Urban growth types. 

 

Under the thresholds of physical environment and different urban growth types, the 

formed urban landscape is analyzed with power law. In analyzing the formed urban 

landscape, patch, a basic and important concept of landscape ecology, will be employed.  

Patch is defined as a relatively homogeneous area which differs from its surroundings 

(Forman 1995).  The power law of urban landscape is detected from both the magnitude-

frequency and area-perimeter relationships of urban patches. 

 

The magnitude-frequency distribution of urban patches can be quantified by the 

following equation: 

Isolated 

Growth 

Fringe 

Growth 

Infill 

Growth 

Infill 

Growth 
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LogM(A) =αlogA+S 

where M (A) is the number of urban patches with a size A, and α is the slope of the line 

defining the relationship.  

 

The area-perimeter distribution of urban patches can be quantified by the following 

equation: 

LogA =αlogP(A) +S 

where P (A) is the perimeter of the patch with a size A, and α is the slope of the line 

defining the relationship.  If a linear α trend fits the perimeter data well over a large 

range of event size, then the system is considered to be composed by different size of 

urban patches with similar shape.   

 

Perimeter-Area Fractal Dimension (PAFRAC) is measure by dividing 2 with the log-log 

regression coefficient of patch area against patch perimeter. The PAFRAC equation can 

be described by the following equation (Leitao 2006): 

 

 

 



 85 

aij =     area of patch ij. 

pij =    perimeter of patch ij. 

ni =     number of patches in the landscape of patch type i. 

1 ≤ PAFRAC ≤ 2 

 

According to FRAGSTAT, a PAFARC value greater than 1 means the two dimensional 

landscape mosaic is away from a Euclidean geometry, and the patch shapes of the 

landscape are more complex. Generally, a landscape with the PAFRAC value 

approaching 1 are in simple shapes, while a landscape with the PAFRAC value 

approaching 2 is in highly complex shapes. It is important to note that a meaningful 

PAFRAC is based on an acceptable linear log-log relationship between perimeter and 

area of patches. Overall, the PAFARC index is favorable as it can measure the 

complexity of patches across different patch sizes (Leitao 2006). 
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CHAPTER V 

I
TER-URBA
 SELF-ORGA
IZI
G CRITICALITY 

 

 

China’s urbanization process can be divided into three periods (Figure 5-1).  The first 

period is from 1949 when the People’s Republic of China was founded to the early 

1960s. During this period urbanization rate (the percentage of urban population over 

total population of China) increased quickly from 10.64 in 1949 to 19.29 in 1961.  

During the second period from the early 1960s to the end of 1970s, the urbanization 

process almost stopped, and there was no increase but a slight decrease of urbanization 

rate from 19.29 in 1961 to 17.91 in 1978.  From 1978, China entered into the rapid 

urbanization period. The urbanization rate reached 29.04 in 1995 and 41.76 in 2006. 

 

At the same time, the number of cities in China increased potentially (Figure 5-1). In 

1949, there were 132 cities, and this number had been quite stable in the 1960s and 

1970s. By 1978, the total number of cities only increased to 193. However, the total 

number of cities in China increased quickly during the 1980s and the 1990s, and there 

were 668 cities in China by 1997. The rapid increase of the total number of cities has to 

be contributed by the open door policy and economic reforms since 1978 in China.  

From Figure 5-1, we can see that the rapid increase of the number of cities come to stop 

from 1996. In fact, there was a little decrease of the total number of cities from 1998, 

and there were only 656 cities in 2006.  
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Figure 5-1 The urbanization rate and the number of cities during the past six decades. 

 

However, the increases of urban population and the number of cities were not at the 

same step (Figure 5-2).  During the period from 1960 to the 1970s, the increase rate of 

urban population was slightly higher than that of the number of cities.  However, from 

the early 1980s, the increase rate of the number of cities exceeded that of urban 

population substantially.  From the end of 1990s, the increase rate of urban population 

began to surpass that of the number of cities again. The possible reason could be that lots 

of towns were promoted into cities at the start of rapid urbanization process. However, 

after a large number of towns were promoted into towns, they could attract much more 

urban population without the need of more new cities. It is kind of the phase change 

from quantitative increase of urban population to qualitative change from town to city. 

After the qualitative change, the state will be kept for a while. The period from the early 

1980s to 1996 could be the phase change period.  
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Figure 5-2 The increasing rates of the urban population and the number of cities. 

 

5.1 City Rank-size Distribution 

In 1938, there were 108 cities with reasonably reliable data available.  Among the 108 

cites, 62 cities had a population grater than 0.1 million. The rank-size scatter plot of 

Chinese cities shows three curve sections in 1938 (Figure 5-3).  If a linear log-log rank 

size relationship is considered as a smooth profile, the rank size distribution of the few 

relative large cities in 1938 shows no smooth profile. In contrast, the relative medium 

and small cities above certain size developed a relatively smooth profile.  

 

In 1953, a population census was conducted, and data on city population became 

available. By 1953, there were 149 cities. Out of there 1949 cities, 26 cities were with a 

population over half million, 27 cities were in a population size between 0.2 and 0.5 

million, 45 cities were in a population size between 0.1 and 0.2 million, and 51 cities 

were smaller than 0.1 million.  
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The graph for 1953 shows similar distribution to the 1938 pattern (Figure 5-3). Although 

there exists a trend toward a relatively more normal or rank-sized distribution of cities, 

the 1953 graph still indicates the lack of integrated spatial urban system. Compared with 

the few large cities in 1938, the rank size distribution of those large cities in 1953 is 

relatively smooth. But, a smooth profile of relative large cities has not been formed yet 

by 1953. Cities with population size between 0.1 million and 0.6 million developed a 

smooth profile.  

 

In both 1938 and 1953, relative large cities are few and smaller than Zip’f law predicted 

while relative small cities are bigger than Zipf’s law predicted. After thousands of years 

of feudalism urbanization, cities in China were developed under an extremely unstable 

social environment with both domestic wars and foreign invasion during the first half 

centenary of the 20th. The instability of social environment might be the direct cause of 

the lagging development of large cities. As argued by Chen, Chinese citizens ran away 

from large cities and looked for safety in the countryside during the national instability 

and wartime.  

 

The few large cities are relative similar in size in 1938 and 1953. It appears to indicate 

the presence of several sets of regional urban systems. This conforms to some extent 

with Skinner’s depiction of the 1843 network and Pannell’s depiction of the 1937, 1949, 

and 1953 network (Skinner 1978; Pannell 1981).  
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Figure 5-3 Rank-size distribution of Chinese cities in 1938 and 1953. 

 

Over all, the rank size distributions of Chinese cities in 1938 and 1953 are still away 

from Zipf’s law distribution and indicate the lack of a well integrated national network.  

The relatively large cities are the major reasons.  A well integrated urban network has 

not been formed by 1953 in China. This is in tune with previous studies. Studies by 

Skinner (1978) and Pannell (1981) indicated the complete national network of China’s 

urban system was formed in late 1950s or1960s.  

 

While the city data is lack for the late 1950s, 1960s, and 1970s, it is almost impossible to 

study the rank size distribution of Chinese cities during these periods. This study 
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continues to check the urban hierarchy of China from 1980s with Zipf’s formula and 

quantitative methods. 

 

Figure 5-4 shows the rank-size natural log-log plots of Chinese cities in 1984, 1988, 

1992, 1996, 2000 and 2003.  From this figure we can see that the development of 

relatively large cities and relatively small cities was quite uneven during the period from 

1984 to 2003, and the growth of relatively small cities was faster than the remaining 

cities.  The phenomenon is in consistent with China’s urban development strategy.  The 

urban development strategy in China has long been controlling the size of large cities 

and developing small cities (Zhao and Zhang 1995).  During the 1950s, the central 

government put great efforts into building industrial cities.  By the end of the 1950s, 

Mao proposed to ‘limit the growth of big cities and promote small cities’ several times 

(Zhao and Zhang 1995).  In 1980, the central government adjusted this policy and sought 

to ‘limit the growth of big cities, moderately develop middle cities, and promote the 

development of small cities’.  Although there were some wording changes, the general 

urban strategy of the central government has maintained a more or less similar policy 

since the 1950s.   
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Figure 5-4 Rank-size distribution of Chinese cities between 1984 and 2002. 
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In addition, Figure 5-4 also indicates that there are good linear relationships with city 

sizes above certain sizes in each year. This result is not surprising and in consistent with 

previous studies. Early studies of China’s urban hierarchy have demonstrated that the 

city size distribution of Chinese cities could be described with Zipf’s law. 

 

As mentioned before, this linear relationship may suggest that the urban system is 

spatially integrated and that a variety of forces have affected the development of the 

system. In 1984, an integrated urban system has already been formed in China. The 

urban development was not just concentrated in some certain regions. However, as the 

limitation of the available data, it is impossible to judge when and how the urban system 

experienced from regional development to integrated growth. 

 

Under the certain thresholds, there is a tail for each rank-size distribution. This is in 

consistent with previous findings (Reed 2001).  In fact, many distributions follow power 

law only in certain range in urban systems (Newman 2005).  A distribution pattern as 

predicted by the Zipf’s law is often found only when very small cities are excluded from 

the sample (Newman 2005).  If the size of the city drops below a certain level, there is 

hardly any negative correlation between size and rank for this group of small cities 

(Brakman et al. 1999).  And this certain level is neither constant through time nor the 

same for every country (Newman 2005).  A possible rationale for the existing of the 

thresholds is that very small cities are indistinguishable from rural areas and can be 

omitted from the data (Brakman et al. 1999).  For the Chinese urban system, the 
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existence of these tails to some extent is the result of administrative adjustment.  As 

cities are designated by the central government basically based on population size, many 

small settlements were administratively set up as cities for regional balance and local 

economic development.  For instance, in 1993, the central government lowered the bar 

of qualifications for a town to be classified as a city in Western China to promote the 

development of China’s West. As the results, quite a few new cities were designated in 

Western China. No matter in term of urban population or the basic infrastructure, these 

new cities were much more underdeveloped compared with other cities in China. 

 

5.2 Zipf’s Law in the Urban System of China 

To model the upper tails of city rank-size distributions, we need to determine the 

threshold for city size.  Many studies have been done to determine the city size 

thresholds for rank size distribution of urban systems (Newman 2005).  Cheshire (1999) 

proposed three possible solutions – a fixed number of cities, a fixed size threshold, or a 

given proportion of a country’s cities.  In this study, the author chooses a fixed size 

threshold—100,000.  The numbers of cities included to model city size distribution are 

shown in Table 5-1.   

 

The linear regression results are presented in Figure 5-5.  Several interesting findings 

can be identified.  First, in all the six graphs, the largest 10 cities are obviously below the 

regression lines.  That means the sizes of largest 10 cities are smaller than the predicted 
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sizes by the general linear trend of rank size distribution.  Secondly, given the fact that 

the R2 values are higher than 0.96 for all the regression results, it appears that the linear 

model describes the Chinese city size distribution very well.  Last, all the estimated 

coefficients locate within the range from 0.8 to 1.0.  So, city size distribution in China 

conforms to Zipf’s law in general.  This result is in line with the findings of previous 

urban hierarchy studies of China.  

 

Table 5-1 Regression results on Zipf’s distribution of Chinese cities. 

 

Year Slope Coefficient R2 Number of cities 

1984 0.8803 0.9797 221 

1988 0.841 0.9903 307 

1992 0.8163 0.9909 367 

1996 0.7942 0.9901 496 

2000 0.8092 0.987 519 

2003 0.9001 0.9701 457 
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1992 Rank-Size Distribution Regression
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2000 Reank-Size Distribution Regression
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Figure 5-5 Rank-size distribution regression of cities. 

 

Zipf’s law is an important indicator of SOC in urban system (Bak 1996).  Studies by 

Chen and Zhou (2004, 2008) have mathematically proved the connection between Zipf’s 

law and SOC.  Chen and Zhou (2004, 2008) consider hierarchy as a parallel concept to 

‘space’ and ‘time’ in geography, and propose that  Zipf’s law, like fractal and 1/f noise 

as the ‘snap’ and the ‘fingerprint’ of SOC in space and time (Bak 1996), should be 
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considered as a signature of SOC in the self-organized process of urban hierarchies. In 

their word, “if we think of the urbanization process as a phase transition from a rural to 

an urban settlement system, rank-size distribution (Zipf’s law) is actually the 

‘fingerprint’ of spatial complexity in the self-organized critical state of urban systems” 

(Chen and Zhou 2008, 357).  

 

In fact, previous urban hierarchy studies have already hinted the connection of Zipf’s 

law with SOC. Urban researchers have already long been attempting to explain this 

observed regularity of Zipf’s law with economic models and stochastic models. 

Although neither economic models nor stochastic models have been wholly successful 

(Overman and Ioannides 2001), there are a general agreement that rank-size distribution 

appears in an urban system with huge area, large population, long history of city 

development. Large area and huge population means the urban system as complex 

system with large number of interacted sub-urban systems. The long history of city 

development is the process of urban network development form local to regional, to the 

whole network connection. The early established complete urban system indicates the 

state of SOC of the urban system with all cities related to each other. At the state of SOC, 

Zipf’s distribution will be formulated in urban system. 

 

In China’s case, the urban system was composed by several regional systems before 

the1950s, and evolved to a national network later. Historically, the large and rugged 

terrain with little transportation development made the regional urban systems spatially 
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discrete (Skinner 1977). With the increasing investment in transportation system, 

especially in road, rail and air transport, there developed strong spatial linkages among 

the regional urban systems, and a well-connected national urban network system formed.  

The studies by Pannell (1981) and Skinner (1978) indicated the complete national 

network of China’s urban system was formed in the late 1950s and 1960s. This 

dissertation study also concludes the formation of Zipf’s law distribution formed after 

1953 and before 1984 in China’s urban system. If Zipf’s law is considered as a signature 

of SOC in the self-organized process of urban hierarchies, China’s urban system has 

reached the stage of SOC in the 1980s. The urban rank-size distribution has followed the 

Zipf’s law during the study period from 1984 to 2003. 

 

There are also some fluctuations of Zipf’s coefficient. During the period between 1984 

and 1996, the estimated coefficient decreased, which means Chinese cities became more 

evenly distributed.  From 1996, there shows a relatively quick increase of estimated 

coefficient. Chinese cities become more unevenly distributed. But, all the estimated 

coefficients are located within the range from 0.8 to 1.0.  

 

In fact, previous studies have already noted that the slope coefficient of Zipf’s law 

changes with time in many countries (Fonseca 1989).  According to Brakman et al. 

(1999), the temporal distribution of the Zipf’s coefficient will be in n–shape with a peak 

value of 1 or more, which is supported by American cities (Figure 5-6). Parr (1985) 

considered that the position occupied by an individual nation in the sequence of the n-
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shaped coefficients is related to its overall level of development, and perhaps to its age.  

For China’s case, it is impossible to locate the short 20 years’ curve in the sequence of 

the n-shaped curve.   

 

 

 

As for the decrease of Zipf’s coefficient of the US urban system from the 1880s, Gabaix 

(1999b) suggests that one possible explanation is that more small cities flourished, and 

that the small cities have a lower local Zipf’s coefficient (Ioannides and Overman 2003).  

The Zipf’s coefficient of US cities decreased from 0.983 to 0.737 in 120 years (Batty 

2003). This explanation seems could also be applied to China’s case. The period with 

decreasing Zipf’s coefficient from 1984 to 1996 is also the time when large number of 

towns was promoted into cities in China. These small new cities with relatively short 

history of urban development are definitely not well connected to the existing complete 

national urban network. To some extent, these new small cities bias the state of SOC of 

Figure 5-6 Zipf’s coefficient change over time of Chinese and U.S. urban systems. 
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the urban system which explains the existing of the long tail in the city rank-size 

distribution and the need of a threshold for Zipf’s law in urban system. 

 

The important contribution of SOC is that it reveals the internal dynamics behind the 

final statistical size-distribution of self-organizing systems in their steady periods 

(Portugali 2000). While the above part has analyzed Zipf’s law in China’s urban system 

as the final statistical size-distribution of SOC, the following explores the internal 

dynamics of China’s urban system. 

 

5.3 Zipf’s Law in Different Sized-tiers of Cities 

According to urban population size, China divides its cities into four tiers – extra-large 

cities with urban population over 1 million, large cities with population between 0.5 and 

1 million, medium cities with population between 0.2 and 0.5 million, and small cities 

with population below 0.2 million (China State Statistical Bureau 1985).  In this study, 

cities with population below 0.1 million are grouped as extra-small cities. From Table 5-

2, we can see that the numbers of large and extra-large cities have been kept increasing, 

while the number of small cities has been increased rapidly during the period from 1984 

to 1996, and then began to decrease a little from 1996. The number of medium-sized 

cities increased potentially from 1984 to 2000, but began to decrease since 2000. 
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Table 5-2. The size distribution of Chinese cities. 

 

umber of cities 1984 1988 1992 1996 2000 2003 

Total 295 434 517 666 663 660 

Extra-large cities (> 1 Million) 20 28 32 35 39 47 

Large cities (0.5~1.0 Million) 30 30 32 45 56 71 

Medium cities (0.2~0.5 Million) 78 108 132 185 194 151 

Small cities (0.1~0.2 Million) 93 141 171 231 229 188 

Extra-small cities (< 0.1 Million) 74 127 150 170 145 203 

 

The rank-size analysis indicates that Zipf’s law also presents in different size-tiers of 

cities. The Ln-Ln regression of each size-tier of cities gets the value of R2 above 0.95 

(Table 5-3). There exists significant relationship between sizes and ranks of cities. The 

Zipf’s coefficient varies from 0.62 to 1.3. Since the Zipf’s law analysis of the national 

urban system of China doesn’t have extra-small cities included, the Zipf’s law analysis 

of different sized-tiers of cities doesn’t include extra-small cities either. 

 

Table 5-3 Zipf’s coefficient and R
2
 values of each sized-tier of cities in China. 

 
  1984 1988 1992 1996 2000 2003 

Zipf’s coefficient 0.6838 0.6542 0.6336 0.6211 0.6433 0.631 Extra-large 

Cities R
2 0.9839 0.9908 0.9881 0.9895 0.9896 0.9912 

        

Zipf’s coefficient 0.8051 1.0086 0.8956 0.8382 0.7943 0.6617 Large Cities 

R
2 0.9573 0.9811 0.9825 0.9766 0.9785 0.991 

        

Zipf’s coefficient 0.9013 0.8562 0.8878 0.7807 0.7788 1.1121 Medium Cities 

R
2 0.9872 0.9948 0.9902 0.9981 0.9904 0.9974 

        

Zipf’s coefficient 1.3035 1.1088 1.1008 1.154 1.1768 1.2439 Small Cities 

R
2 0.9907 0.9912 0.988 0.9944 0.9962 0.9925 
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Small Cities have higher Zipf’s coefficients while the extra-large cities have the lowest 

Zipf’s coefficients (Figure 5-7). In each respective year, the Zipf’s coefficient of small 

cities is larger than 1 while that of extra-large cities has always been between 0.6 and 

0.7, and the Zipf’s coefficients of large cities and medium cities are between the zipf’s 

coefficients of extra-large cities and those of the small cities. The Zipf’s coefficients’ 

difference reveals the different distribution of cities in terms of size. The low Zipf’s 

coefficients of extra-large cities mean that the extra-large cities are relatively similar in 

size while small cities are more unevenly distributed in size as their Zipf’s coefficients 

are higher.  

 

The Zipf’s coefficient’s dynamics of China’s urban system seem more rely on small and 

medium-sized cities. The overall Zipf’s coefficient trends of small and medium-sized 

cities are both decreasing first and then increasing, which is similar to the dynamics of 

the Zipf’s coefficients’ of China’s urban system. The reason is because there are large 

numbers of small and medium sized cities but few extra-large and large cities. The 

Zipf’s coefficient of large cities decreases overtime. The Zipf’s coefficient of extra-large 

cities is relatively stable overtime.  
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Figure 5-7 The dynamics of Zipf’s coefficients of different size tiers of cities. 

 

While many urban scholars suggests that small cities have a lower local Zipf’s 

coefficient in their Western urban systems studies (Gabaix 1999b; Ioannides and 

Overman 2003),  this study of  China’s urban system finds that small cities have a higher 

Zipf’s coefficient. There are differences on the definition of small cities. But, China’s 

case prove that the smaller the cities, the higher the Zipf’s coefficient in general. Do 

there exist fundamental differences between China’s urban system structure and the 

structure of Western urban systems?  It will be interesting research for the future. 

 

The break-down of Zipf’s coefficients among different sized-tiers of cities may indicate 

the relative maturity of different sized-tiers of cities.  In fact, there is widespread 

evidence that Zipf’s distributions of population and other socio-economic activities are 

in related with mature or steady systems (Shiode and Batty 2000). However, there is still 

no common accepted explanation on the relation between the maturity of a system and 

the Zipf’s distribution. 
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It is quite imaginable that those extra-large and large cities are generally with long 

history of urban development and well connected while small cities are mainly 

composed by new cities recently promoted from towns. Among the 47 extra-large cities 

in 2003, 44 cities can be traced back to at least 1938. Thirty three out of the 71 large 

cities in 2003 can also be traced back to at least 1938. During early years’ development, 

these long-history cities were the local urban centers attracting around population. With 

urban development, these cities became bigger and attracted population from larger 

surrounding areas. With this positive feedback, these long-history cities turned out to be 

current extra-large and large cities. 

 

The small city data proved that the small cities of China were mainly composed by new 

cities. Among the 391 small cities in 2003, 340 cities were set up in 20 years. The 

promotion of new cities mainly took place during the period from 1984 to 1996 (Figure 

5-8). The newly promoted cities were dominated by small cities and a few medium cities.  

The large amount of new small cities were set up based on towns, and these small cities 

are mainly served as regional centers and might not be well connected to the urban 

system network. 
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Figure 5-8 The numbers of newly promoted cities during each period. 

 

After being promoted into cities, those small new cities still need a period to really 

merge into the well-collected urban system network (Table 5-4). This can be judged 

from the evolution of population sizes of these cities. For Example, of the 71 new 

promoted cities with population size smaller than 0.1 million in 1988, 40 percent were 

still tiny cities with population smaller than 0.1 million, 54 percent made slight growth 

with population bigger than 0.1 million and smaller than 0.2 million, and only seven 

percent grew into medium cities in 2003.  Of the 54 new promoted cities with population 

size smaller than 0.2 million but bigger than 0.1 million, two cities even experienced 

population loss, 54 percent were still in a population size smaller than 0.2 million, 44 

percent grew into medium cities, and only one city became a large city in 2003. From 

these data, we can see that these new promoted cities still need long time to grow and 

merge into the existing well connected urban system network. The reality is that only 

part of the new cities which really get connected to the urban system network.  
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Table 5-4 The development of cities promoted during 1984-1988 by 2003. 

 
 < 0.1 Million 0.1~0.2 Million 0.2~0.5 Million 0.5~1.0 Million 

< 0.1 Million 39.44 53.52 7.04 0.00 

0.1~0.2 Million 3.70 50.00 44.44 1.85 

0.2~0.5 Million 0.00 7.69 76.92 15.38 

 

While it is difficult to tell the direct relationship between the city maturity and Zipf’s 

coefficient, the study here indicates that large cities with long history, supposed to be 

relative mature, have a rank-size distribution with smaller Zipf’s coefficient. While small 

cities, relatively newly promoted, have a rank-size distribution with larger Zipf’s 

coefficient. 

 

At the same time, the results also justify the necessary to set up a threshold and exclude 

certain amount of small cities for Zipf’s law analysis. While using Zipf’s law in urban 

system, a very important precondition is what a city is.  While governments can 

designate a place as a city, weather and when the designated city can be connected to the 

urban system are still uncertain.  

 

5.3.1 City Size Dynamics in Different Sized-tiers 

After the quality change from towns to cities, the new promoted cities will be able to 

accommodate more urban populations, and there will quantitative urban population 

increase in the future.  
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While the numbers are relatively small and the contribution to the dynamics of Zipf’s 

coefficients is limited, the attractiveness to new urban population of extra-large and large 

cities are as competitive as the small and medium cities as the whole. During the period 

1984 to 1996, small and medium cities experienced relatively larger population growth 

(Figure 5-9). However, from 1996, population increase only happened in the tiers of 

extra-large and large cities while the tiers of small and medium cities experience 

potential population loss. 

 

However, Figure 5-9 may not reflect the true growth of cities. The population increase of 

extra-large and large cities as a group is contributed by the population growth of existing 

extra-large and large cities and also the upgrade of medium and small cities into large 

and extra-large cities. The population increase of small cities as a group is contributed by 

the population growth of existing small cities and also the promotion of towns to small 

cities. 
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Figure 5-9 Population growth of cities in different sized-tiers during each period. 
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From Figure 5-10, we can see that the new promoted cities were the major sources of 

urban population growth during the period from 1984 to 1996. As discussed before, 

these new promoted cities were dominant by small cities. Once included in small cities, 

the contribution of extra-small and small cities, in terms of attracting urban population, 

is much lesser than that of large and extra-large cities. During the period from 2000 to 

2003, those extra-small and small cities even experienced potential urban population 

loss. 

 

In contrast, large and extra-large cities have continually been the major sources of urban 

population growth. Especially during the period from 2000 to 2003, almost all the urban 

population growth happened in large and extra-large cities. One important thing need to 

be mentioned here is the floating population. With the economic reforms and relief of 

previous stringent migration policies, large amount of previous agricultural labors were 

released from agricultural activities, and turned into floating population in urban areas, 

especially large cities. The major floating population works in cities, but is still 

registered as residents and develops homes in their home towns. The floating population 

was not counted as urban population at all. The actual urban population in large cities in 

China is underestimated in, which is agreed by most urban scholars.   
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Figure 5-10 The distribution of new urban population in different sized-tiers of cities during each 

period. 

 

5.3.2 City Rank Dynamics in Different Sized-tiers 

To analyze and explain city rank dynamics, understanding of the relationship between 

city rank and population size is necessary. During the rapid urbanization process, almost 

all Chinese cities experienced the increase of urban population. While urban population 

increased more rapidly in some cities and relatively less rapidly in other cities, the rank 

dynamics show the relative urban population growth more directly. However, one thing 

needs to be remembered is that the same urban population increase will cause larger rank 

increase of small cities while less rank increase of large cities.  
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Extra-small and small cities are much more dynamic than extra-large and large cities on 

rank (Figure 5-11). During the periods from 1984 to 2003, the average absolute rank 

change is around 40 to 100 for extra-small cities, and 25 to 80 for small cities in each 

period. In contrast, the average absolute rank change is only 0 to 3 for extra-large cities, 

and 2 to 12 for large cities. At the same time, we can also see the medium-sized cities 

are becoming more dynamic.   
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Figure 5-11 Average absolute rank change of cities in different sized-tiers during each period. 
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Figure 5-12 Maximum rank change of cities in different sized-tiers during each period. 
 

In terms of maximum rank increase and rank decrease, the possible rank increase or 

decrease of small cities are much higher than that of large cities (Figure 5-12). The 

extra-large and large cities are all very stable with the maximum rank increase less than 
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11 and 33 respectively, and maximum rank decrease less than 8 and 23 respectively. In 

contrast, the maximum rank increase of extra-small and small cities reaches as high as 

386 and 239 respectively. The maximum rank decrease of extra-small and small is as 

large as 156 and 338 respectively.  

 

The stability of extra-large and large cities in rank might be contributed by institutional 

factors. Overall, those extra-large and large cities are generally with high administrative 

levels while those small cities are generally with low administrative levels.  

 

Cities in China are designated by the central government.  The central government has 

long been considered as the major factor shaping the urban system of China.  The impact 

of the central government on China’s urban system is in various aspects, but the 

administrative level is definitely one of the most constant and has long-term effect ones.  

In China, cities are divided into multiple administrative units with different economic 

decision-making power, which in turn affects the outcome of their speed and level of 

development.  In general, cities can be classified into five administrative tiers in China. 

The first tier is municipalities reporting directly to the central government, which include 

Beijing, Shanghai, Tianjin, and Chongqing.  These four cities, known as “Zhi Xia Shi” 

in Chinese, are at the top of the administrative hierarchy among Chinese cities.  The 

second tier includes 15 semi-provincial level cities and 9 of them are capitals of 

provinces.  They are cities with independent planning authorities, often possessing 
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provincial level power in economic administration.  The third tier is the remaining 18 

provincial capital cities.  The fourth tier is prefectural level (regional) cities.  Their 

development is directly subordinate to the provincial government.  Compared with 

prefectural cities, capitals of provinces are the locations of the provincial governments, 

so they have a relatively higher administrative power.  The last group is county-level 

cities.  Over all, the 37 cities at first three tires are with relatively high administrative 

powers.  

 

By the end of 2003, there are 47 extra-large cities (cities with population over 1 million).  

Among those 47 extra-large cities, 31 of them are with relatively high administrative 

levels.  From the rank changes of cities with high administrative levels, we can tell that 

their ranks were quite stable, except Shenzhen, Haikou, Xiameng, Yinchuan and Ningbo 

with obvious rank increase (Figure 5-13). Shenzhen and Xiameng are the first four 

Special Economic Zones designated in 1979.  Haikou and Ningbo are relatively newly 

upgraded cities.  The administrative upgrading of cities seems activate the further growth 

of these cities. Compared with the dynamics of those medium and small cities with low 

administrative levels, rank changes among those large cities are rather minor.   

 

While some cities were upgraded after the urban population growing into certain level, 

some cities were upgraded and then experience rapid population growth. It is difficult to 

tell which the cause is and which the result is between the administrative upgrade and 

the urban growth. One thing for sure is the institutional factors have positive impact on 
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the urban development of large and extra-large cities in China. In contrast, the rapid 

urban development of small cities has been termed as “bottom-up” growth with common 

agreement by many scholars. 
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Figure 5-13 Rank change of cities in high administrative levels from 1984 to 2003. 

 

In summary, small Cities have relatively higher Zipf’s coefficients while large cities 

have the lower Zipf’s coefficient. In China, small cities are generally new cities and 

large cities are relatively mature.  The result further provides positive support for the 

conclusion that the Zipf’s coefficient may indicate the relative maturity of cities to some 

extent. Overall, small cities have more impact on the Zipf’s coefficient of the urban 

systems than large cities because of the large number of small cities. However, large 
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cities accommodate more new urban population than small cities do, especially in the 

past decade. Large cities are stable, and generally with higher administrative level. 

 

The relation between Zipf’s coefficients of different sized-tiers of cities with those of the 

urban system will lead to the discussion of developing large or small cities. In fact, to 

develop large or small cities has long been a debate in China’s urban development. 

While previous studies have mainly concerned on economic efficiency and environment 

protect, SOC theory here may provide a different vision. SOC is a balance between order 

and disorder. While China has long been emphasized the development of small cities, 

the direct results are the long tail of city rank size distribution and under development of 

large cities. This will influence the energy and entropy interaction among cities in urban 

system. In the long run, larger catastrophe may happen to the urban system.  In fact, the 

burst of floating population to large cities since 1990s have already caused large number 

of serious problems. 

 

5.4 City Rank Dynamics 

The city rank dynamics show quite interesting pattern from 1984. First, large cities were 

still quite stable in rank sequences. Almost all the top 100 large cities showed little rank 

dynamics. Second, the rank dynamics patterns before 1996 (Figure 5-14) are quite 

different from those after 1996 (Figure 5-15). During the periods from 1984 to 1988, 

1988 to 1992, and 1992 to 1996, there were a few relatively medium-sized cities with 
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rank increase but large number of relatively small cities with rank decrease. The overall 

pattern is with rank increasing, a city’s rank decreasing more. For the periods from 1996 

to 2000 and 2000 to 2003, there were lots of small cities with rank increasing while there 

were quite a lot of middle-sized cities with rank decrease. The plots of rank dynamics of 

cities reveal quite different urban growth pattern before and after 1996.  
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Figure 5-14 City rank dynamics during the periods from 1984 to 1996. 
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Figure 5-15 City rank dynamics during the periods from 1996 to 2003. 

 
 

As there are a large number of cities, the author mapped the distribution of cities with 

rank decline and distribution of cities with rank increase separately to show the spatial 

distribution of rank dynamics (Figures 5-16 & 5-17).   

 

Before 1996, cities with rank decline are spatially distributed all over the country and the 

distribution of cities with rank increase is relatively random.  During the period between 

1984 and 1988, there are 51 cities with rank increase, and broadly distributed in east 

area.  During the period between 1988 and 1992, the 65 cities with rank increase show 

relatively clustered distribution mainly in Guangdong and Shandong provinces. 

Guangdong Province has been the earliest area with economic reform and open policies. 
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Three out of the first four special economic zones designated in 1980 locate in 

Guangdong.  In 1984, Qingdao and Yantai in Shandong Province along with other 12 

costal cities were opened to overseas investment.  During the period between 1992 and 

1996, Guangdong and Shandong provinces are still the major areas with city rank 

increase, but we also can tell that many cities along Yangtze River also experienced 

rapid rank increase.  Yangtze River Delta was set up as an open economic zone as early 

as in 1985.  In 1990, more cities in the Yangtze River valley were opened to overseas 

investment.  A chain of open cities along the Yangtze River was formed.  

 

From 1996, a large number of cities were involved in rank increase and rank decrease.  

Both the cities with rank decrease and cities with rank increase show clustered 

distribution.  During the period between 1996 and 2000, cities with rank increases 

clustered in the provinces of Jiangsu, Zhejiang, and Hubei while Shandong and 

Guangdong witnessed major decrease of city ranks.  During the period between 2000 

and 2003, increase of city rank mainly took place at southeastern costal area while cities 

in the Northeast China, Hubei and Jiangsu provinces experienced quite rank decrease. 

Since 1992, a large number of border cities and all the capital cities of inland provinces 

have been opened by the central government of China.  In fact, the open policies have 

been broadened throughout the country and are not special anymore.  Overall, the 

favorate economic policies affected the spatial distribution of city development before 

1996. 
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Figure 5-16 Spatial distribution of cities with rank decrease and increase in during the periods of 

1984-1988, 1988-1992 and 1992-1996. 
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Figure 5-17 Spatial distribution of cities with rank decrease and increase in during the periods of 

1996-2000 and 2000-2003. 
 

From above analysis, we can see that the central government played an important role in 

spatial dynamic of city ranks during the period between 1984 and 1992.  Although not 

all open cities showed rapid rank increase, the limited number of cities with rank 

increase mainly located in areas with favorite economic policies by the central 

government.  With the economic reforms broadened through the country, those 

economic policies are not special anymore.  From 1996, large number of cities 

experienced rank increase.  Both cities with rank increase and rand decrease show 
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clustered distribution.  For the dynamic of the urban system during the period between 

1996 and 2003, the agglomeration of economies might be the major factor. 

  

5.5 Results and Discussion 

Zipf’s law, as an important indicator of SOC in urban system, depicts the urban 

hierarchy of China very well since 1984, but not in 1938 and 1953. Although Zipf’s law 

only can not prove the existence of SOC, it indicates the possibility of SOC in the urban 

system. In China’s case, the well connected urban network has been developed since the 

late 1950s and 1960s. 

 

The fail of Zipf’s law in China’s urban system in 1938 and 1953 seems mainly be caused 

by large cities. While the rank size distributions of relatively small cities were in a linear 

profile in 1938 and 1953, those of large cities were not. Cities during this period were in 

regional networks. The lack of large cities serve as the national economic centers 

resulted in the missing of a well connected urban network before 1953. 

 

Since 1984, not only all the cities with a population over 100,000 but also cities in 

different size groups follow Zipf’s law. Small cities have relatively higher Zipf’s 

coefficients while large cities have lower Zipf’s coefficients. As small cities are 

generally newly promoted from towns and large cities are relatively mature, the Zipf’s 

coefficient may indicate the relative maturity of cities to some extent. The maturity of 
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cities also indicates the development of urban system. If an urban system is dominated 

by large number of small new cities which generally serve as the regional economic 

centers, a well connected urban system has not been set up. This is the case of China’s 

urban system in 1938 and 1953. From 1984, a well-connected urban system has been 

formed in China, but this is based on the exclusion of those extra-small new cities.  

 

Overall, small cities have more impact on the Zipf’s coefficient of the aggregate urban 

systems than large cities because the number of small cities is large. Since Zipf’s law is 

based on the best fit regression of rank and size of cities in the urban system, the number 

is an important factor. The few large cities have relatively less impact on the overall 

regression direction. As the results, the small cities have larger impact on the dynamics 

of Zipf’s law.  

 

However, large cities as a group accommodate more new urban population than small 

cities do, especially in the past decade. Large cities are stable, and generally with higher 

administrative level. Although the number of large cities is few, they are the critical 

factors of a national well-connected urban system.  

 

Under the stable Zipf’s law, the cities in China show quite different rank dynamics. 

Overall, big cities and cities with high administrative power (usually large cities) are 

relatively stable in rank dynamics. The rank dynamics are mainly caused by small and 

medium-sized cities. Before 1996, cities were relatively stable in rank, fewer cities were 
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involved into rank dynamics, and there were a few small and medium-sized cities with 

rank increase while relatively large numbers of small cities with rank decrease. Spatially, 

cities with rank decline are distributed all over the country and the distribution of cities 

with rank increase is relatively random which can be explained by favorite policies by 

the central government.  From 1996, large numbers of cities were involved into rank 

dynamics, and there were lots of small cities with rank increasing while there were quite 

amounts of medium-sized cities with rank decrease. Spatially, both the cities with rank 

decrease and cities with rank increase show clustered distribution. The agglomeration of 

economies might be the reason.  
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CHAPTER VI 

I
TRA-URBA
 SELF-ORGA
IZI
G CRITICALITY 

  

 

6.1 Rapid Urban Development in Shenzhen 

During the past three decades, Shenzhen experienced rapid urban development. In this 

part of study, the urban development is defined as the development of built-up area. 

Urban development in Shenzhen started almost from scratch with built-up area less than 

1 km2 in 1978, and reached 474.73 km2 in 2002 (Figure 6-1).  During the first ten years 

from 1978 to 1988, the development of built-up area was relatively slow, and mainly 

took place in SSEZ.  From 1988, the urban development began to accelerate, which was 

mainly contributed by the rapid urbanization in Bao’an and Longgang.  The built-up area 

in Bao’an increased from 24.58 km2 in 1988 to 221.14 km2 in 2002, and the built-up area 

in Longgang in creased from 22.23 km2 in 1988 to 139.95 km2 in 2002. By Contrast, the 

development of Built-up area in SSEZ slowed down, and there was only 15.45 km2 new 

built-up area during the period from 1995 to 2002 in SSEZ. 
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Figure 6-1 Rapid urban growth in Shenzhen. 

 

The prediction results show different urban growth trends in Bao’an and Longgang 

districts and SSEZ while they will continue rapid urban development in the future 

(Figure 6-2).  Bao’an and Longgang districts are going to be the centers of rapid urban 

development. Bao’an area will undergo a rapid urbanization process with an almost 

linear growth speed. Urban development in Longgang area will slow down from 2010. 

The developed area will reach over two times of the developed urban area in both 

Bao’an and Longgang districts no matter in which scenario. Relatively, the urban 

development in SSEZ will slow down. And, there will be almost no new urban 

development by 2020. 

 

There presents quite similar urban growth in different scenarios in SSEZ, Bao’an and 

Longgang (Figure 6-2).  In Bao’an and Longgang, the total numbers of urban cells in 

Scenario 1 are a little larger than those in Scenario 2. In contrast, the total number of 
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urban cells does not show obvious difference in different scenarios in SSEZ. The major 

reason is that there is much less protected environmental area in SSEZ than in Bao’an 

and Longgang districts. As the results, the differences of scenarios on the management 

of the protected environmental area show less effect in SSEZ than in Bao’an and 

Longgang disticts. Overall, the difference of protected environmental area management 

can affect the urban development in magnitude greatly. 
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Figure 6-2 Urban growth under different scenarios. 

 

 
 
Spatially, rapid urban sprawl will shift to area outside of SSEZ. New urban development 

in the future will concentrate on west seashore area and north area in Bao’an District, the 

north central area of Shenzhen, and northeast area of Longgang District in all the three 

scenarios.  Urban development in the east area of Shenzhen will still be separated, and 

relatively slow.  There will be relatively little urban development in SSEZ in the future. 
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There is no obvious spatial difference of urban development among the results of the 

different scenarios (Figures 6-3, 6-4, and 6-5). The current urban development has 

already set up the urban skeleton of Shenzhen. Generally, new urban development in the 

future will be conducted around the current developed urban area in Shenzhen.  

 

 

Figure 6-3 Urban development by 2020 in Shenzhen with Scenario 1. 
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Figure 6-4 Urban development by 2020 in Shenzhen with Scenario 2. 

 

 

 

Figure 6-5 Urban development by 2020 in Shenzhen with Scenario 3. 

 



 129 

In summary, Shenzhen will still be undergoing rapid urban development in the future. 

The rapid urban development will be spatially shifted outside of SSEZ. There is little 

urban development difference among the results of three different environmental plans, 

no matter in terms of the total area or the spatial distribution.  The different 

environmental protection plans can play little roles in future urban development in 

Shenzhen.  

 

Since there is little difference among the urban development results of the three 

scenarios, the simulated urban development in the future from Scenario 1 is used for the 

left analysis. 

 

6.2 Physical Threshold in Urban Development 

6.2.1 Physical Environment 

Land physically feasible for urban development is limited in Shenzhen. According to the 

Urban Planning Standards and Guidelines of Shenzhen (Shenzhen Government 1997), 

area for building activities should be lower than 50m in SSEZ and 80m outside of SSEZ 

in terms of elevation, and the slope should not surpass 30 percent degree. These criteria 

might be changed in future urban development under the pressure of land source need or 

the development of technology.  In this study, these criteria are treated as the physical 

environmental thresholds. And in fact, these physical environmental thresholds limited 

and are limiting the urban development spatially in Shenzhen. So, areas satisfying the 
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criteria are considered to be suitable for urban physical development in this study. As a 

result, there is only 63.60% of land suitable for urban development in Shenzhen. Bao’an 

has a relatively higher percentage of land suitable for urban development, near 80, while 

near half of the land in Longgang is not suitable for urban development. Over 40% of the 

land in SSEZ is not feasible for urban development either (Figure 6-6).   

 

In addition, there are also many large water bodies existing in the study area, and those 

are definitely not suitable for urban development. To extract those large water bodies, 

the author had the water areas in 1988, 1992, 1995, 1999, and 2002 overlaid together, 

and those water bodies existing in all the five years were extracted and a 3*3 majority 

filter was applied to the extracted water bodies to smooth those results. As a result, those 

water bodies as a whole comprise of another 2.85% of land that is physically not suitable 

for urban development. Most of the blocked areas by water bodies distribute in SSEZ 

and Bao’an District (Table 6-1). 

 

Table 6-1 The distribution of land on physical environment. 

 
 DEM Blocked (%) Water Blocked (%) Left (%) 

SSEZ 40.49093 4.317851 55.19122 

Bao’an 20.60483 4.71682 74.67836 

Longgang 47.9211 0.582482 51.49642 

Shenzhen 36.4021 2.849631 60.74827 
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Figure 6-6 The distribution of areas physically not feasible for urban development. 

 

The existing urban development demonstrates that the physical environment shaped the 

evolvement of urban development in Shenzhen.  During each of the five study years, 

over 90 percent of developed area located on those areas physically feasible for 

development in SSEZ, Bao’an and Longgang. After over 20 years of rapid urban 

development and the recent large pressure of land shortage, those physical thresholds 

haven’t been overcome yet.  

 

However, one phenomena need to be noticed is that the percentage of developed area 

distributed on the land feasible for urban development decreases in each area during the 

period from 1988 to 2002 (Table 6-2).  The decreasing trend indicates that more and 

more newly developed areas located in area physically not suitable for urban 
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development. Although the amount of developed area on the land physically not feasible 

for urban development is small, the decreasing trend indicates the existing of the 

physical thresholds, and the possibility to be overcome in future urban development in 

Shenzhen. 

 

Table 6-2. The percentages of developed area distributed on the land feasible for urban development. 

 
 1988 1992 1995 1999 2002 

SSEZ 98.17 96.83 95.71 95.53 94.65 

BaoAn 99.03 97.65 96.70 96.45 95.10 

LongGang 96.55 93.95 93.50 93.75 90.36 

 

6.2.2 Environment Protection 

In addition to the thresholds of the physical environment for urban development, many 

areas are set up for environment protection from the urban development by the city 

government. First Class Protected Water Source Area and Protected Agricultural Land 

(Figure 6-7) were the only two types of protected environmental area with laws and 

regulations by 2003.  In this study, only these two types of protected environmental 

areas are included for analysis. 
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Figure 6-7 The distribution of areas physically not feasible for urban development and protected 

environmental areas. 

 

The total area of the First Class Protected Water Source Area and Protected Agricultural 

Land is 305.40 km2. Some parts of First Class Protected Water Source Area and 

Protected Agricultural Land have overlaps with area not suitable for urban development.  

The new added area protected from urban development is 196.76 km2, 10.26% of the 

area of Shenzhen. The added protected area primarily distributes in Bao’an and 

LongGang districts (Table 6-3).  As a result, there is only 52.6 percent of land left for 

urban development in SSEZ, 59.50 percent left in Bao’an, and 41.86% percent in 

Longgang. Overall, Shenzhen has only 50.49% land feasible for urban development.  
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Table 6-3 The distribution of land under physical prevention and environment protection. 

 

 

Total 

Area 

(km
2
) 

Physically 

Blocked 

Area (km
2
) 

Protected 

Environmental 

Area (km
2
) 

Environment 

Protection Added 

Area (km
2
) 

Left 

(%) 

SSEZ 384.84 172.44 26.74 9.93 52.61 

BaoAn 704.29 178.34 136.72 106.93 59.50 

LongGang 829.26 402.22 141.95 79.94 41.86 

Shenzhen 1918.39 753.00 305.40 196.79 50.49 

 

During the rapid urbanization process, the physical environment and environment 

protection have resulted in the shortage of land resource in Shenzhen. The simulation 

results reveal that the shortage of land resource for urban development will become more 

serious in the future urban development. With the area physically infeasible for urban 

development excluded, there is limited land feasible for urban development. By 2020, 

there will be only 7.92 % of land feasible for urban development left in SSEZ, 19.89% in 

Bao’an and 22.87% in Longgang (Figure 6-8). 

 

Unlike Bao’an and Longgang districts which will continue the high-speed urban growth, 

urban development in SSEZ will slow down.  In SSEZ, there will be almost no new 

urban development from 2015 since no more land left physically feasible for urban 

development. The physical threshold in urban development is expected to come in SSEZ.  

Alarmingly, Bao’an and Longgang are also approaching the physical threshold given the 

limited land available. 
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Figure 6-8 The percentages of developed feasible area in different years. 

 

6.3 Phase Change of Urban Growth 

While physical environment limits the amount of areas for urban development, urban 

development adjusts the growth types over time. The phase transitions of urban growth 

types hold true no matter in the self-organizing ‘disordered’ urban development of 

Bao’an and Longgang or in the relatively highly managed urban development in SSEZ. 

 

6.3.1 Temporal Dynamics of Urban Growth Types 

Urban growth is divided into three types—fringe growth, isolated growth and infill 

growth.  Isolated growth is the new developed area located away from existing urban 

area, which often referred as ‘frog-leap’ growth. Fringe growth is the outward growth of 

existing urban area. It often borders the existing development and takes advantage of the 
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infrastructure established. Infill growth happens in the undeveloped area surrounded by 

urban area.  

 

The dynamics of urban growth and ever shifting development types over time in SSEZ, 

Bao’an, and Longgang are not surprising (Figure 6-9).  Overall, fringe growth is the 

major type of urban growth in these three areas. In the early years of development, 

isolated growth is the second major type. It is reasonable since there is ample land 

available and there are not many developed areas to begin with. However, with the rapid 

urbanization, the shortage of land resource looms large. Developers begin to consider 

developing in the vacant spaces in urban areas. As a result, infill growth gradually takes 

over to be the major type of growth in later phase of urban development. 

 

The dynamics of urban growth types, however, are quite different between SSEZ and 

Baoan and Longgang districts. Both in Bao’an and Longgang districts, fringe growth 

peaks around 80%, and are quite stable overtime. The minor types of urban growth are 

isolated growth and infill growth. The relative dominance of isolated growth is replaced 

by infill growth around 2000 both in Bao’an and Longgang districts. In contrast, the 

percentage of fringe growth shows a decreasing trend before 2005 while increases later. 

While fringe growth is the major urban growth type in SSEZ, it is not as dominant as it 

is in Baoan and Longgang districts. Infill growth also plays a very important role in 

urban development in SSEZ. Figure 6-9 shows that infill growth replaced isolated 

growth and becomes the second major urban growth in SSEZ from the period of 1992 to 
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1995, and the percentage of infill growth keeps increasing gradually. During the period 

of 2000 to 2005, infill growth reaches its peak, and it contributes almost the same 

percentage of urban growth as fringe growth does. However, the percentage of infill 

growth decreases while the percentage of fringe growth increases since 2005.  By 2020, 

infill growth still contributes over 30 percent of urban growth in SSEZ. 

 

Overall, in terms of urban growth types, urban growth dynamics in SSEZ and outside of 

SSEZ are quite different. The major difference is caused by infill growth. However, it is 

not surprising but quite reasonable. In SSEZ, urban development since the beginning is 

highly planned. While urban growth in SSEZ was pushed outwards, Shenzhen 

government put great efforts on the management of urban growth. Extravagant land use 

was prohibited and land developers were forced to develop land efficiently with lots of 

infill development. At the same time, many areas were reserved by Shenzhen 

government for later development. A good example is the development of Shenzhen 

Axis—the administrative center with large area of recreational areas in the CBD of 

Shenzhen in the 21st century. In other words, the high percentage of infill growth in 

SSEZ also confirmed the urban growth in SSEZ is highly planned and managed. 
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Figure 6-9 Dynamics of urban growth types in different areas. 
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6.3.2 Urbanization Rate and Urban Growth Types 

In essence, the temporal changes of urban growth forms are directly caused by the 

increasing urbanization rate (the percentage of developed area).  In another aspect, the 

above temporal dynamics of urban growth types can be interpreted as the dynamics of 

urban growth types over urbanization rate. 

 

With more and more land is developed, the urbanization rate increases in every corner in 

Shenzhen. During the early years of urban development, the urbanization rate was very 

low, and there was plenty of land for urban development. When sprawl continues, there 

are quite a bit of frog leap growth of urban areas. However, with increasing of 

urbanization rate, large area of open space for frog leap growth is decreasing, but infill 

growth takes place in area with high urbanization rate. In both Bao’an and Longgang 

districts, the shift from isolated growth to infill growth occurred when the urbanization 

rate reach near 30%.  In SSEZ, shifting of urban growth types is triggered by 

urbanization rate as well. As shown in Figure 6-10, the percentage of fringe growth 

decreases first and then begins to increase when the urbanization rate reaches around 

70%. Contrary to this trend, the percentage of infill growth increases first and then 

decreases when the same urbanization rate is reached.  
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Figure 6-10 The temporal distributions of the percentages of different urban growth types over 

urbanization rate. 
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The phase transitions of urban growth types could also be identified spatially. Spatially, 

urbanization rate is the percentage of pixels in a 500m neighborhood that are developed. 

For each study period, the urbanization rate map is generated for the beginning year. The 

urban growth type data of each period is then overlaid with the urbanization rate map of 

the beginning year of each period. And then, the spatial dynamics of urban growth types 

over urbanization rate are analyzed. 

 

Spatially, the dynamics of urban growth types in SSEZ, Bao’an and Longgang are 

surprisingly similar. Here, the spatial dynamics of urban growth types of Longgang 

during the period from 1988 to 1992 is used as an example for Bao’an and Longgang 

(Figure 6-11). Generally, area with low urbanization rate is denominated with fringe 

growth. There is some part of isolated growth in areas with low urbanization rate. With 

the increase of urbanization rate, the percentage of fringe urban growth decreases while 

the percentage of infill growth increases quickly. In area with high urbanization rate, 

infill growth becomes the dominant urban growth type.  
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Figure 6-11 The spatial distribution of the percentages of different urban growth types over 

urbanization rate. 
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of urbanization rate where major urban growth type changes resulted in quite large 

increase of the percentage of infill growth in SSEZ throughout the study period.  

 

In summary, throughout the urban growth stages, there are transitions of urban growth 

types. During the early years of urban development in Shenzhen, isolated urban growth 

is an important urban growth type. With the evolution of urban development, the part of 

urban growth contributed by isolated urban growth is replaced by infill urban growth 

gradually.   

 

Urban development management could modify the pattern of urban growth types over 

time. In Bao’an and Longgang districts, urban development is highly self-organizing and 

disordered. Urban development in both areas is mainly in form of fringe growth 

although there are also certain amount of isolated growth and infill growth. In SSEZ, 

urban development is relatively highly managed and planned. Urban development in 

SSEZ is dominantly under the joint efforts of fringe growth and infill growth.  

 

Spatially, urban development strategies are similar in SSEZ, Bao’an, and Longgang.  In 

area with low urbanization rate, fringe growth is the dominant urban growth type, but 

there is also certain amount of isolated urban growth. With the increasing of 

urbanization rate, infill growth contributes more percentage of new urban growth and 

becomes the dominant urban growth type gradually.  The point where infill urban 

growth replaces fringe urban growth and become the dominant urban growth type is 
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similar in Bao’an and Longgang, at around 70-80%, and a little different from SSEZ 

around 60-70%. 

 

Based on above analysis, we can see that slight spatial difference of local development 

strategies could result in quite different urban growth type pattern over time between 

Bao’an, Longgagn and SSEZ. For urban management and planning, more localized 

strategies might be more able to achieve large scale objectives. 

  

6.4 Criticalities of Urban Landscape 

6.4.1 Power Law in Urban Landscape 

The urban landscape of Shenzhen is studied based on the comparison of the real urban 

development, the simulated urban development and the planned urban development. The 

real urban development data are the classified remote sensing images before 2002. The 

simulated urban development data are the simulated urban development results from the 

SLEUTH model from 2003. The combination of the real and simulated urban 

development mosaics the evolution of urban development in Shenzhen from the past to 

the future. Based on the combination, the developed urban patches are defined as the 

clusters of real or simulated urban area. The planned urban patches are the clusters of 

planned urban area by 2010 extracted from the 1996-2010 Shenzhen Master Plan. 
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In terms of area-perimeter distribution, the planned urban patches in all the three areas 

(SSEZ, Bao’an and Longgang) are more compacted than the developed urban patches. 

As the limit of space, Figure 6-12 lists the area-perimeter distributions of the planned 

urban patches and the developed urban patches in 2011 in each area. On the three area-

perimeter scatter plots, the points of the planned urban patched are distributed above the 

points of the developed urban patches. The planned urban patches have smaller 

perimeters than those similar sized developed urban patches.  

 

Compared with those developed urban patches in 2011, the planned urban patches are 

less in number and more even in area and perimeter. There are few extremely large or 

small planned urban patches. The developed urban patches are more dispersed in term of 

shape. There are lots of small developed patches and also some extremely large patches. 

 

The Ln-Ln area-perimeter distribution of developed urban patches is linear in all the 

three areas in each study year. All the linear regressions of developed urban patches have 

a R2 larger than 0.9. The Ln-Ln area-perimeter distribution of planned urban patches also 

to some extent shows linear relationship respectively in SSEZ, Bao’an and Longgang. 

However, the linear regressions of planned urban patches have the R2 values less than 

0.9. 
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Figure 6-12 The area-perimeter distributions of urban patches and planned urban patches. 
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Figure 6-13 The magnitude- frequency distributions of urban patches and planned urban patches. 
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The magnitude-frequency distributions of developed urban patches are quite different 

from those of the planned urban patches. In Figure 6-13, the Ln-Ln magnitude-frequency 

distributions of the developed urban patches in 1988, 1999, 2011, and 2020 and the 

planned urban patches are shown together for SSEZ, Bao’an and Longgang respectively. 

The Ln-Ln magnitude-frequency distributions of the developed urban patches show 

linear relationships while those of planned urban patches are in curved lines and far 

away from linear relationships.  

 

The power law is one of the major characteristics of self-organizing systems. It is also 

one of the criteria for judging the traditional self-organizing criticality in many 

landscape ecology studies. Here, both the area-perimeter and magnitude-frequency  

distributions of the developed urban patches show power law both in highly self-

organizing disordered urban development  areas – Bao’an and Longgang districts and 

the relatively highly planned urban development area—SSEZ.  At the micro level, urban 

development is dominantly conducted by self-organizing behavior. The institutional 

factors, for example urban planning exerts limited impact but not ultimate controls over 

the self-organizing behaviors. This might explain the power law distributions at the 

landscape component level in SSEZ.  

 

6.4.2 Landscape Pattern 

Perimeter-Area Fractal Dimension (PAFRAC) measures landscape complexity on 

different scales. The PAFRAC is based on the assumption of linear log-log  perimeter-



 149 

area relationship of different sized patches.  In the above analysis, the area-perimeter 

distributions of developed urban patches show log-log linear relationship in all the three 

areas. So, PAFRAC can be applied into measuring landscape complexity in Shenzhen. 

 

In all the three areas—SSEZ, Bao’an, and Longgang, the PAFRAC value increases first 

and decreases with the increasing urbanization rate (Figure 6-14) which means urban 

landscapes in these area become complex first and then simpler later. The PAFEAC 

value reaches the peak when the urbanization rate increases to around 40% in Bao’an 

and Longgan districts, and around 65% in SSEZ.  The peak values of PADEAC in both 

Bao’an and Longgang districts are similar, but higher than that in SSEZ.  
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Figure 6-14 The distribution of PAFRAC over urbanization rate. 
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6.5 Conclusions and Discussion 

With the help of SLEUTH model, this study is able to check the urban land development 

from the beginning to the stage of almost fully developed. The general conclusions are 

as the following. 

1. Physical environment is the threshold for the physical urban development in 

Shenzhen. With the rapid urbanization process, the shortage of land resource is 

foreseeable. The urban development in SSEZ has already slowed down and the 

new urban development center has shifted to the outside of SSEZ. In fact, in the 

newly announced Urban Development Strategy of Shenzhen 2020, the shore area 

of Baoan District is set up as the new CBD of Shenzhen in the future. The 

purpose of shifting urban center is to release the land needs pressure for urban 

development in SSEZ. However, the hilly terrain determines the feasible land 

resource for urban development is also limited outside of SSEZ. With current 

urban development speed, Baoa’an and Longgang will be out of feasible land 

resource soon. 

2. While the shortage of land resource is foreseeable, the urban development adjusts 

the growth types during the process of rapid urbanization. There are phase 

changes of growth types during the urban development process both in Bao’an 

and Longgang districts SSEZ. In SSEZ with relatively high level of urban 

planning and management, while fringe growth is still the major urban growth 

type during early years of urban development, the percentage of new urban area 

developed in the type of infill growth increases gradually and becomes the 
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second major urban growth type. During later period of urban development, there 

is little amount of new urban development, and this little amount of urban 

development is mainly in the type of fringe growth.  For Bao’an and Longgang 

districts with little effective urban planning and management, fringe growth has 

been the dominant urban growth type throughout the complete urbanization 

process. But there is a shift of the second major urban growth type from isolated 

growth to infill growth in both Bao’an District and Longgang District. The phase 

changes of urban growth types are different in SSEZ from those in Bao’an and 

Longgang districts. 

3. As the results of limited land resource and the adjustment of urban growth types, 

the urban landscape presents critical pattern in both SSEZ and the two districts 

outside of SSEZ. Both the distribution of area-perimeter and that of magnitude-

frequency of the developed urban patches show power law relationships.  And, 

the critical patterns of the developed urban patches are quite different from those 

of planned, which furthermore proves that urban development in Shenzhen is 

highly self-organized in both Bao’an and Longgang districts and SSEZ.  

4. Under the backdrop of critical patterns of urban patches is the shift of urban 

landscape complexity. The power law distribution of area-perimeter of urban 

patches guarantees the application of PAFRAC which actually is a fractal 

dimension index. The PAFRAC index indicates that the complexity of urban 

landscape increases first and then decreases in both SSEZ and Bao’an and 
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Longgang districts. Overall, the urban landscape of Bao’an and Longgang 

districts is more complex than that of SSEZ.  

 

From this case study at intra-urban level, the evolution of urban landscape pattern in 

Shenzhen presents characteristics of self-organizing criticality. The physical 

environment is the vital threshold for the continuing rapid urbanization in Shenzhen. 

Shenzhen’s urban development will inevitably enter into the redevelopment of urban 

area from the current spatial sprawl with the threshold of the physical environment. 

Under the pressure of the physical environmental threshold, the urban development 

adjusts the growing strategy. Consequently, there present the phase changes of urban 

growth types in SSEZ and Bao’an and Longgang districts. As a result, the formed urban 

landscape pattern shows power law distribution.   

 

Urban development is self-organizing in both SSEZ and the area outside of SSEZ. The 

urban development in SSEZ started with well enforced urban planning and management 

by the city and up level governments. The governments’ planning and management did 

influence the local urban development. The phase changes of urban growth types and the 

complexity of urban landscape in SSEZ are different from those in Bao’an and 

Longgang districts where urban development is dominated by self-organizing behaviors 

with little effective urban planning and management.  However, the urban development 

is eventually executed by multi agencies and local residents with their judgment under 

the direction of city and up level governments’ planning and management.  At the end, 
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the urban development in SSEZ like those in Bao’an and Longgang districts inevitably 

faces the physical environmental threshold, and shows the phase changes of urban 

growth. Finally, the resulted urban landscape in SSEZ comes to the same end of SOC 

like those of Bao’an and Longgang do. 
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CHAPTER VII 

SUMMARY A
D CO
CLUSIO
 

  

 

7.1 Summary 

SOC theory proposed by Bak and his colleagues (1987) provides a new paradigm for 

studying a variety of phenomena in both physical and social sciences (Portugali 1997). 

By combining both self-organization and critical behavior, SOC explains system 

complexity and the widespread appearance of power-law in nature (Portugali 1997). The 

advantages of SOC theory are obvious. SOC theory, for the first time, explains the 

processes of qualitative change to quantitative change, as well as the quantitative 

relationships among local perturbations and system changes as a whole. It reveals the 

internal dynamics behind the final statistical size-distribution in the systems’ steady 

periods. It demonstrates how complex the internal dynamics of a steady state can be 

(Portugali 1997).  As the result, it forces researchers to recognize the importance of 

threshold, metastability, and large fluctuations in the spatiotemporal behavior of 

complex systems. 

 

However, to apply SOC in real world studies is difficult. A system’s self-organization 

activity currently is almost impossible to be measured except in some limited physical 

phenomena. The original concept of criticality as attractor is too abstract to be applied in 

real physical and social systems. Although a large number of studies have proved the 
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theory of SOC based on 1/f noise, log-linear magnitude–frequency and rank-size 

distributions, suspicions remain on the significance of SOC. The general conditions 

under which a system will exhibit SOC are largely unknown (Sornette et al. 1995). The 

lack of a mathematic framework turns out to be the ‘criticality’ in the application of 

SOC.  

 

In urban studies, it is even difficult to link urban system with SOC.. The evolution of an 

urban system could not be analogous to a  simple sandpile formation. The development 

of any urban system is under the joint efforts of governments, local agencies and even 

global economy. It is by no means possible to find a completely self-organizing urban 

system or city system. 

 

This dissertation combines SOC with threshold theory and generalizes SOC to a broader 

consideration of self-organization and criticality in urban studies.  The self-organization 

process reflects a high degree to which patterns, processes, forms, and relationships in 

urban development are (re)structured independently of external factors. The concept of 

criticality is extended from attractor, as proposed in the original SOC theory, to 

boundary conditions or evolutionary milestone as the system develops. The generalized 

SOC considers that a complex system self-organizes to a critical stage.  At the critical 

stage, while the complex system presents power law, the internal dynamics are evolving 

to a boundary condition or a phase change. There is an evolutionary milestone in the 

subsystems. The generalized SOC is applied into exploring urban development which is 
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largely absent in current SOC studies. In this dissertation, the generalized SOC provides 

a theoretical frame to study (1) the urban hierarchy of China at the inter-urban level, and 

(2) the dynamics of the urban landscape pattern of Shenzhen, China, at the intra-urban 

level.    

 

At the inter-urban level, Zipf’s law, one of the four typical power laws, is applied to 

check the evolution of China’s urban system from 1984 to 2002. The results show that 

Zipf’s law is applicable not only at the national level, but also at different size tiers of 

Chinese cities. To better understand Zipf’s law in urban system as the fingerprint of SOC, 

intra-distribution dynamics of Chinese city rank size are also analyzed. Under the stable 

Zipf’s law, the cities in China show quite different rank dynamics. Overall, big cities and 

cities with high administrative power (usually large cities) are relatively stable in rank 

dynamics. The rank dynamics are mainly influenced by small and medium-sized cities. 

Before 1996, cities were relatively stable in rank. There were a few small- and median-

sized cities increased their ranks while a large number of small cities decreased  in 

ranking. Spatially, cities, not matter declining or increasing in ranks, were distributed all 

randomly over the country.  From 1996, a large number of cities were involved in rank 

dynamics. Since this year, there were a lot of small cities have their ranks increased and 

meanwhile a large amount of middle-sized cities have their ranks decreased. Spatially, 

both increasing and decreasing city groups show clustered distribution. The year 1996 is 

a turning point for cities’ rank-size development. 
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At the intra-urban level, SLEUTH model is employed to simulate the self-organizing 

urban landscape dynamics of Shenzhen. Then thresholds of physical environment, phase 

shifts of urban growth process, the power laws of urban landscape composition and 

spatial shape are explored with statistical analysis using both the classified data and the 

simulated urban growth. The results show that physical environment is the threshold for 

the physical urban development in Shenzhen. With the rapid urbanization process, the 

shortage of land resource is foreseeable. Therefore, urban growth types changed from 

fringe and isolated growth to fringe and infill growth spatiotemporally in SSEZ, Bao’an 

and Longgang districts. As a result of limited land resource and the adjustment of urban 

growth types, the urban land use presents power law in SSEZ and the two districts 

outside of SSEZ. Both the distribution of area-perimeter and the distribution of 

magnitude-frequency of urban patches show power law relationship. The PAFRAC 

index, which is inversely related with the slope coefficient of the area-perimeter 

distribution, indicates that the complexity of urban landscape shapes increases first and 

then decreases in SSEZ and outside of SSEZ.  

 

7.2 Conclusion 

This dissertation research approves the applicability of the generalized SOC in urban 

studies. At both the inter-urban and the intra-urban levels, there are shifts in the internal 

dynamics of cities under the stable stage of power law distributions. The shift could be a 

turning point, or a phase change process. The urban system of China presents Zipf’s law 
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(power law) in city rank-size distributions since 1984. The internal dynamics of China’s 

urban system revealed that year 1996 is a turning point. This case study of Shenzhen 

shows the power law distributions of urban patches in term of area-perimeter and 

magnitude-frequency relationships. The urban patch growth spatiotemporally shifts from 

fringe and isolated growth to fringe and infill growth.   

 

Compared with the abstract attractor which is considered as ‘criticality’ in the traditional 

SOC theory, the turning point and the phase transitions are more meaningful and rational 

‘criticalities’ in social science, especially in urban studies.  

 

Three points need to be emphasized. Firstly, a complete self-organizing urban 

development is difficult to find, especially in China. The concept of self-organization in 

this dissertation research reflects a high degree to which patterns, processes, forms, and 

relationships in urban development are (re)structured independently of external factors. 

External factors influence the urban development in a relatively indirect manner instead 

of direct manipulation.  

 

Secondly, the analysis of China’s urban system development is based on the assumption 

that the population data could rationally measure the city sizes. Although the non-

agricultural urban population index is commonly used in China’s urban studies, there are 

many potential problems of the non-agricultural urban population in China. The huge 

floating population in cities, especially large cities, is not included in the statistic of non-
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agricultural urban population. This explains why large cities in China are synthetically 

over predicted by Zipf’s law.  

 

Lastly, there is a basic assumption on the underline that the SLEUTH model can be used 

to simulate the urban landscape dynamics in Shenzhen. To predict the exact urban 

development in the future is impossible. Many unpredictable factors many change urban 

development dramatically.  Urban models include the SLEUTH model, can only 

simulate urban development, and provide an abstract description of future urban 

development.  

 

This dissertation research advances the knowledge on the SOC theory. It also has 

potential contributions to urban studies. In summary, this study makes its unique 

contribution to the understanding of urban complexity in the theoretical, methodological 

and policy aspects and the urbanization of China. The three aspects are addressed 

specifically as follows: 

 

• On the theoretical aspect, this research turns out to be one of the few empirical 

urban studies based on the theory of SOC. This study proposes a generalized 

SOC theory based on up-to-date literature review. The generalized SOC theory 

enhances the applicability of SOC in social science and urban studies. The 

generalized ‘criticality’ is rational and easy to understand in urban studies. In 

addition, this study empirically introduces a new paradigm to identify criticalities 
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of internal dynamics of complex system. Using Chinese cities as the study 

subject potentially expands the domain of urban theoretical inquires. Finally, this 

study bridges China’s urban research with the mainstream theoretical inquiries.  

 

• On the mythological aspect, this research employs a Cellular Automata model—

SLEUTH to understand the generalized SOC theory in urban development at 

intra-urban level.  As mentioned in the literature review, an important limitation 

of CA modeling in urban studies is lack of matching with urban theories.  This 

research takes the advantage of the intrinsic self-organizing ability of CA into 

simulation self-organizing urban development on landscape; therefore it connects 

the model with the theory. 

 

• On the policy aspect, this research helps governments to understand their roles in 

urban development at different scales, not only temporarily but also in the long 

term. While China has been trying to control urban development for a long time, 

the urban system analysis indicates the limitations of previous urban 

development strategies. Shenzhen also proves the importance of planning at the 

local level.  This research will help the governments to redefine their urban 

development strategies, to establish reasonable urban policies and to harness the 

power of the local agents in order to place China on a more sustainable 

development path towards the new century. 
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• This research improves the understanding of China’s urbanization, especially the 

understanding of various criticalities in the urban development. With the rapid 

urbanization process, China is facing many serious problems including shortage 

of land resource, large amount of migrants and environmental pollution. While 

substantial efforts have been made to manage urban growth at a macro-level, the 

efficiency remains limited. The low efficiency is caused by our limited 

understanding of China’s current urbanization process. Although institutional 

factors used to be and still are important factors influencing urban development 

in China, urbanization in contemporary China follows more of a bottom-up 

process than subject to the traditional top-down institutional direction. To direct 

urban development, the top-down instruction needs to be planned and executed 

from the bottom local level.  To better understand the urban development 

criticalities, it is crucial to develop effective policies to meet the challenges of 

rapid increasing urban population. 

 

7.3 Remaining Issues and Future Research 

This research is not perfect. Due to the objectives of this research, the limited efforts in 

Ph.D. study, and the availability of data, many aspects can be improved. Future research 

will first address the following two issues. 
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The first issue is the lack of clarity in the mechanism of city rank-size dynamics. While 

Zipf’s law as a power law is used to examine SOC, the mechanism generating the Zipf’s 

law in urban system is still a mystery. The current research only spatially and temporally 

analyzes the individual city’s rank-size dynamics. Future research will explore the 

possibility to simulate the Zipf’s law from individual city’s dynamics. Batty et al. have 

already used a CA model to simulate rank-size dynamics of an ideal urban system. One 

of the logical methods for future research will use a CA-based agent model.  Each city 

will be regarded as an agent with fixed location, but they can exchange population with 

one another. Using a CA-based agent model, social economic factors can be included 

into simulating individual city’s population growth. In addition, the aggregated results of 

individual city’s dynamics will help explain Zipf’s law and enhance the understanding of 

SOC in urban system. 

 

The other issue is the limitation of the CA model at the intra-urban scale. Although CA 

modeling is relatively well developed for simulating self-organizing bottom-up activities, 

the rationale of modeling is abstract and lacks the base of reality behaviors. The next 

step is to use agent-based modeling to study the urban land-use dynamics of Shenzhen. 

The study will be based on the perspectives of local agencies’ developing behaviors. 

With agent-based modeling, the developing behaviors and the interactions of agencies 

can be represented, simulated, and analyzed. With the simulated results of individual 

agency’s developing activities, the aggregated spatial allocation of Shenzhen urban 

development will be analyzed. To that end, the local agencies’ behaviors can be directly 
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related to the urban development results. Therefore, critical relationship between local 

agencies’ behaviors and urban development will present more “reality” and become easy 

to understand. Policy guidelines and implications for urban development generated 

based on this research will be more on target and effective.  
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APPE
DIX 

 

The parameters of the top ten OSM values during each stage of SLEUTH model 

calibration of each area. 

 

1 Coarse Calibration 

Table 1 The parameters of the top ten OSM values with coarse calibration in Bao’an District. 

BA1 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.77628 0.96947 0.99453 0.99537 0.90377 0.92238 0.94953 100 100 100 100 100 0.589701 

2 0.7743 0.96912 0.99574 0.9963 0.876 0.93336 0.94106 100 100 100 100 80 0.572787 

3 0.68488 0.96723 0.99282 0.99984 0.99697 0.90993 0.95433 80 100 80 80 100 0.56929 

4 0.72313 0.97334 0.9959 0.99998 0.92513 0.90755 0.95319 100 60 100 80 60 0.560972 

5 0.77731 0.96836 0.99434 0.99737 0.85258 0.93084 0.94613 100 100 100 100 60 0.56051 

6 0.73595 0.97143 0.99544 0.99915 0.90136 0.90826 0.95221 100 80 100 100 60 0.554302 

7 0.67092 0.97652 0.99751 0.99943 0.97413 0.90503 0.95742 60 60 100 80 40 0.55132 

8 0.69528 0.97471 0.99735 0.99807 0.92249 0.91209 0.95539 60 80 100 80 80 0.54228 

9 0.69447 0.97454 0.99524 0.99997 0.93127 0.90694 0.95017 60 80 100 80 40 0.540535 

10 0.65098 0.96847 0.99296 0.99977 0.99141 0.90641 0.9597 80 80 80 80 80 0.539758 

 

 

Table 2 The parameters of the top ten OSM values with coarse calibration in Longgang District. 

LG1 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.63206 0.92992 0.99746 0.99978 0.99914 0.99416 0.98816 20 60 100 60 40 0.575326 

2 0.63288 0.93229 0.99796 0.99518 0.998 0.99511 0.98495 20 60 100 60 60 0.573196 

3 0.62968 0.93261 0.99916 0.9999 0.9971 0.99479 0.98387 20 60 100 60 1 0.572558 

4 0.61869 0.93396 0.99999 0.99217 0.99905 0.99641 0.99005 20 20 100 60 100 0.565022 

5 0.61598 0.9344 0.99998 0.99929 0.99861 0.9972 0.98124 20 20 100 60 40 0.561999 

6 0.7659 0.91129 0.98496 0.82646 0.99939 0.9934 0.97754 100 100 100 60 1 0.551395 

7 0.62478 0.92912 0.99762 0.99943 0.96449 0.9941 0.98355 20 100 100 80 80 0.545809 

8 0.62136 0.92984 0.99743 0.99555 0.96437 0.99501 0.98692 20 100 100 80 40 0.543313 

9 0.61914 0.93066 0.99715 0.9931 0.9669 0.99496 0.98602 20 80 100 80 80 0.54126 

10 0.62855 0.93382 0.99987 0.93759 0.99793 0.99596 0.98714 20 40 100 60 100 0.539859 
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Table 3 The parameters of the top ten OSM values with coarse calibration in SSEZ. 

SSEZ1 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.93987 0.98171 0.99953 0.99678 0.94707 0.70348 0.96042 60 40 100 100 40 0.588222 

2 0.90724 0.98555 0.99892 0.9741 0.95784 0.72431 0.96923 1 1 100 100 60 0.585032 

3 0.95021 0.9802 0.99637 0.98662 0.9575 0.68868 0.95877 40 80 100 100 40 0.578863 

4 0.93916 0.98131 0.99884 0.9709 0.95381 0.70494 0.96208 60 40 100 100 60 0.578151 

5 0.94516 0.98072 0.99621 0.98048 0.95372 0.6988 0.95592 80 40 100 100 1 0.576813 

6 0.95242 0.97916 0.99107 0.97633 0.9593 0.69231 0.9607 40 100 100 100 1 0.575739 

7 0.90766 0.98523 0.99752 0.96689 0.92933 0.736 0.97403 20 1 100 100 40 0.574619 

8 0.92546 0.98228 0.99765 0.99972 0.93397 0.70434 0.96332 40 40 100 100 1 0.57456 

9 0.90696 0.9849 0.99601 0.97791 0.95468 0.72312 0.95621 1 1 100 100 1 0.574334 

10 0.86336 0.9821 0.97909 0.99558 0.99909 0.70664 0.98006 60 1 80 100 80 0.571876 

 

 

 

 

2 Fine Calibration 

 
Table 4 The parameters of the top ten OSM values with fine calibration in Bao’an District. 

BA2 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.77867 0.96909 0.99476 0.9974 0.99844 0.9242 0.94735 100 100 100 96 70 0.654491 

2 0.78223 0.96893 0.99542 0.99638 0.99996 0.92121 0.9448 100 100 100 96 100 0.654243 

3 0.78229 0.96848 0.99506 0.99411 0.99947 0.92098 0.94738 100 100 100 96 90 0.653561 

4 0.77733 0.96852 0.99521 0.99249 0.99989 0.92347 0.94959 100 100 100 96 60 0.652028 

5 0.77098 0.96876 0.99459 0.9978 0.99951 0.92463 0.95179 92 100 96 92 90 0.651993 

6 0.7634 0.96968 0.99459 0.99443 0.99951 0.93811 0.94847 96 90 100 96 100 0.651124 

7 0.78253 0.96853 0.99491 0.99432 0.98461 0.92806 0.9484 100 100 100 92 60 0.649764 

8 0.76856 0.96926 0.99507 0.99617 0.99999 0.92528 0.94932 92 100 100 96 80 0.648614 

9 0.78295 0.96899 0.99479 0.99502 0.98401 0.92723 0.94637 96 100 96 92 100 0.648432 

10 0.76935 0.96901 0.9946 0.99952 0.99992 0.92011 0.95068 92 100 100 96 90 0.648234 

 

 

 

 

 

 

 

 

 

 

 



 180 

Table 5 The parameters of the top ten OSM values with fine calibration in Longgang District. 

LG2 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.64082 0.92883 0.99794 0.99058 0.99804 0.99449 0.98496 20 80 95 60 80 0.575219 

2 0.64048 0.92766 0.99652 0.99123 0.99763 0.99574 0.98289 20 100 95 60 50 0.573027 

3 0.62922 0.93192 0.99938 0.99527 0.99669 0.99583 0.98433 20 60 100 60 1 0.569821 

4 0.62922 0.93192 0.99938 0.99527 0.99669 0.99583 0.98433 20 60 100 60 10 0.569821 

5 0.63867 0.93082 0.99927 0.98044 0.99584 0.99497 0.98641 20 70 100 60 80 0.56925 

6 0.61875 0.93472 0.99999 0.99997 0.99842 0.99585 0.98805 20 20 100 60 100 0.568153 

7 0.62093 0.93203 0.99915 0.99885 0.99659 0.99674 0.98836 20 50 95 60 20 0.567044 

8 0.62634 0.93131 0.99909 0.99782 0.99273 0.99359 0.98773 20 60 100 65 60 0.566549 

9 0.62818 0.93225 0.99869 0.99122 0.9936 0.99685 0.98602 20 50 100 60 40 0.566167 

10 0.63062 0.93023 0.99897 0.99107 0.99614 0.994 0.98316 20 70 95 60 40 0.565387 

 
 
 
 

Table 6 The parameters of the top ten OSM values with fine calibration in SSEZ. 

SSEZ2 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.93919 0.98096 0.99879 0.99522 0.96648 0.69836 0.96278 60 40 100 100 60 0.59511 

2 0.93943 0.98109 0.99978 1 0.96034 0.69391 0.95745 60 40 100 100 40 0.587925 

3 0.89748 0.98268 0.99305 0.98039 0.97369 0.7205 0.97523 50 1 90 100 40 0.587447 

4 0.90573 0.98104 0.99827 0.9836 0.97093 0.70864 0.9761 80 10 90 100 60 0.585949 

5 0.92306 0.97856 0.99858 0.98457 0.99094 0.68911 0.96558 50 50 90 100 20 0.585559 

6 0.92508 0.98284 0.99957 0.97561 0.97438 0.70128 0.965 70 20 95 100 60 0.584654 

7 0.90922 0.98072 0.99642 0.9856 0.97964 0.70005 0.97348 40 30 90 100 20 0.584628 

8 0.91216 0.98054 0.99552 0.99381 0.97294 0.69635 0.97221 70 20 90 100 1 0.582859 

9 0.91216 0.98054 0.99552 0.99381 0.97294 0.69635 0.97221 70 20 90 100 10 0.582859 

10 0.91914 0.9841 0.99701 0.99119 0.93792 0.71771 0.9676 70 10 100 100 1 0.582221 
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3 Final Calibration 

 
Table 7 The parameters of the top ten OSM values with final calibration in Bao’an District. 

BA3 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.78324 0.96903 0.99551 0.99628 0.99917 0.92694 0.95137 100 100 100 95 100 0.663284 

2 0.78508 0.96844 0.99523 0.99428 0.99995 0.92596 0.94901 100 100 100 94 90 0.661089 

3 0.77981 0.96857 0.99515 0.99668 0.99879 0.92976 0.95007 98 100 97 94 75 0.660944 

4 0.77723 0.96904 0.99548 0.9973 0.9982 0.93438 0.94721 94 98 97 93 100 0.660598 

5 0.78001 0.96899 0.99541 0.99765 0.99993 0.92867 0.94747 98 100 98 96 85 0.660383 

6 0.77728 0.96843 0.99402 0.9985 0.99999 0.93133 0.9489 98 100 98 95 80 0.66025 

7 0.78394 0.9685 0.99469 0.99504 0.99952 0.92796 0.94712 98 100 99 94 95 0.660141 

8 0.78007 0.96845 0.9941 0.99736 0.99879 0.93334 0.94542 98 98 99 95 100 0.660133 

9 0.78511 0.96838 0.99473 0.99741 0.99536 0.92759 0.94769 98 100 98 93 100 0.660021 

10 0.77789 0.9686 0.99463 0.99623 0.99717 0.93291 0.95016 96 100 98 93 80 0.659917 

 

 

 

 

Table 8 The parameters of the top ten OSM values with final calibration in Longgang District. 

LG3 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.6427 0.92954 0.99843 0.99973 0.99897 0.99344 0.98483 20 80 98 60 100 0.582817 

2 0.64832 0.92867 0.99738 0.99678 0.99372 0.99483 0.98393 20 100 100 62 85 0.582221 

3 0.64276 0.92925 0.9969 0.99995 0.99865 0.99451 0.98443 20 85 100 61 85 0.582128 

4 0.64203 0.92875 0.99765 0.99791 0.99726 0.99351 0.98835 20 90 95 60 70 0.58132 

5 0.64593 0.92858 0.9976 0.99903 0.9922 0.99488 0.98492 20 100 99 63 75 0.58118 

6 0.64209 0.93002 0.99699 0.99832 0.99479 0.99598 0.98542 22 75 99 62 100 0.580299 

7 0.64397 0.929 0.99807 0.99966 0.99203 0.99434 0.98434 20 95 96 62 80 0.579561 

8 0.64575 0.9294 0.9983 0.99175 0.99571 0.99403 0.98469 24 80 97 61 100 0.579112 

9 0.63613 0.93141 0.99825 0.99975 0.99679 0.99566 0.98579 20 70 98 61 60 0.578518 

10 0.637 0.93113 0.99859 0.99897 0.99573 0.99372 0.98727 22 65 98 60 65 0.578004 
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Table 9 The parameters of the top ten OSM values with final calibration in SSEZ. 

SSEZ3 Compare Pop Edges Cluster Slope Xmean Ymean Diff Brd Sprd Slp RG OSM 

1 0.90639 0.98164 0.99771 0.99262 0.98496 0.71189 0.97305 80 10 90 100 35 0.601203 

2 0.8983 0.98287 0.99733 0.99944 0.96401 0.71841 0.98079 75 1 90 100 30 0.597782 

3 0.92424 0.9789 0.99928 0.99889 0.98516 0.68867 0.96856 75 30 90 99 30 0.593434 

4 0.92098 0.98236 0.99875 0.99998 0.96257 0.70386 0.96896 80 15 94 100 30 0.593189 

5 0.91471 0.98464 0.99874 0.99826 0.94447 0.72188 0.96856 75 5 96 100 60 0.592975 

6 0.91965 0.9838 0.99925 0.99773 0.9604 0.7106 0.9624 80 10 96 100 30 0.592447 

7 0.93249 0.98201 0.99964 0.99988 0.95479 0.70212 0.96442 80 25 96 100 35 0.591748 

8 0.91556 0.98328 0.99726 0.9862 0.97139 0.712 0.96603 80 10 94 100 45 0.591564 

9 0.91502 0.98446 0.99991 0.99924 0.94345 0.71569 0.9732 75 5 96 100 50 0.591433 

10 0.91004 0.98445 0.99762 0.99801 0.95276 0.72072 0.96438 80 1 94 100 60 0.59068 

 
 
 
 
4 Derive Forecasting Coefficients 

 
Table 10 The parameters of the top ten OSM values with the step of deriving forecasting coefficients in 

Bao’an District. 
 

BA Year Diffusion Breed Spread 
Slope 

Resist 

Road 

Gravity 

1989 100 100 100 94.5603 100 
1990 100 100 100 94.0495 100 
1991 100 100 100 93.4451 100 
1992 100 100 100 92.7106 100 
1993 100 100 100 91.8682 100 
1994 100 100 100 90.9053 100 
1995 100 100 100 89.7691 100 
1996 100 100 100 88.4887 100 
1997 100 100 100 87.0527 100 
1998 100 100 100 85.4485 100 
1999 100 100 100 83.6273 100 
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Table 11 The parameters of the top ten OSM values with the step of deriving forecasting coefficients in 
Longgang District. 

 

LGYear Diffusion Breed Spread 
Slope 

Resist 

Road 

Gravity 

1989 20.2 80.8 98.98 59.6696 100 
1990 20.4 81.61 99.97 59.2824 100 
1991 20.61 82.42 100 58.8504 100 
1992 20.81 83.25 100 58.3366 100 
1993 21.02 84.08 100 57.7623 100 
1994 21.23 84.92 100 57.125 100 
1995 21.44 85.77 100 56.3688 100 
1996 21.66 86.63 100 55.5436 100 
1997 21.87 87.49 100 54.6478 100 
1998 22.09 88.37 100 53.6785 100 
1999 22.31 89.25 100 52.6123 100 

 
 
 
 

 
Table 12 The parameters of the top ten OSM values with the step of deriving forecasting coefficients in 

SSEZ. 
 

SSEZ Year Diffusion Breed Spread Slope 

Resist 

Road 

Gravity 

1989 80.8 10.1 90.9 98.4701 35.15 
1990 81.61 10.2 91.81 96.8208 35.32 
1991 82.42 10.3 92.73 95.0438 35.4989 
1992 83.25 10.41 93.65 93.0901 35.69 
1993 84.08 10.51 94.59 91.0116 35.9 
1994 84.92 10.62 95.54 88.8114 36.12 
1995 85.77 10.72 96.49 86.4633 36.3519 
1996 86.63 10.83 97.46 83.9993 36.6001 
1997 87.49 10.94 98.43 81.4209 36.8588 
1998 88.37 11.05 99.42 78.7327 37.1271 
1999 89.25 11.16 100 75.9049 37.4098 
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