
   

 

i 

 

 

CONTOUR RIPPING AND COMPOSTED DAIRY MANURE FOR EROSION 

CONTROL ON FORT HOOD MILITARY INSTALLATION, TEXAS 

 

 

A Thesis 

by 

LISA J. PRCIN  

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

May 2009 

 

 

Major Subject: Rangeland Ecology and Management 

  



   

 

ii 

CONTOUR RIPPING AND COMPOSTED DAIRY MANURE FOR EROSION 

CONTROL ON FORT HOOD MILITARY INSTALLATION, TEXAS 

 

 

A Thesis 

by 

LISA J. PRCIN 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Fred E. Smeins 

Committee Members, William E. Fox 

 Charles T. Hallmark 

 Dennis W. Hoffman 

Head of Department, Steven G. Whisenant 

 

May 2009 

 

 

Major Subject: Rangeland Ecology and Management 



iii 

 

iii 

ABSTRACT 

Contour Ripping and Composted Dairy Manure for Erosion Control on  

Fort Hood Military Installation, Texas. (May 2009) 

Lisa J. Prcin, B.S., Tarleton State University 

Chair of Advisory Committee: Dr. Fred Smeins 

 

Training activities on the Fort Hood Military Installation have imposed serious 

impacts to its grass-dominated landscape.  Six decades of tracked vehicle impacts have 

caused soil compaction and vegetation reduction which has lead to severe surface 

erosion.  This investigation examined two conservation practices directed at improving 

and creating sustainable training conditions on Fort Hood training lands, contour ripping 

and the application of composted dairy manure.  The application of composted dairy 

manure may increase vegetation, while contour ripping may decrease discharge, both of 

which will lead to a decrease in erosion.  

Three small 0.30 ha watersheds were established on Fort Hood in January 2005.  

Each watershed had 0.46 m berms installed on all four sides with a 0.305 m H-flume and 

was equipped with automated storm sampling equipment.  Soil samples were collected 

prior to any treatments, and twice after compost applications.  Discharge and 

precipitation was collected continuously on each watershed.  Stormwater samples were 

collected during storm events and analyzed for water quality parameters.  Water quality 
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samples, discharge and precipitation records were collected between January 2005 and 

July 2007. 

Three composted dairy manure application rates at 0, 28 and 57 m
3
 ha

-1 
were 

applied on watersheds C0, C1 and C2, respectively; watersheds were evaluated for 

effects on NO3 and soluble reactive phosphates (SRP) concentrations and loadings in 

storm events and on stormwater discharge.  Twenty two months after the initial compost 

application, the two previously composted watersheds (C1 and C2) were treated with 

contour ripping and C2 received a second compost application.  

The compost application caused the spikes in NO3 and SRP concentrations and 

loads immediately after application.  Both NO3 and SRP concentrations decreased as the 

number of days from application increased.  Compost application did not appear to have 

an effect on the discharge from watersheds. 

Contour ripping had a significant effect on stormwater discharge.  Contour 

ripping decreased discharge by 74 and 80% on C1 and C2, respectively when compared 

to the untreated control (C0). 
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INTRODUCTION 

Fort Hood Military Installation opened in 1942, and in the subsequent six 

decades of heavy vehicle maneuver training, the landscape has become severely eroded, 

in part due to military training activity.  The reservation encompasses 87,000 hectares of 

land with over 55,000 hectares dedicated to vehicular maneuver training (Fort Hood 

Public Affairs Office 2007) (Foster et al.).  Fort Hood currently supports two armored 

divisions with more than 12,000 tracked and wheeled vehicles.  Traffic pressures within 

training areas cause substantial vegetation and soil disturbance leading to increased soil 

movement and impairment of surrounding streams and reservoirs within and 

downstream of the training lands.  Fort Hood’s eastern boundary is located directly 

adjacent to Lake Belton which is the primary water supply for more than 250,000 people 

in the surrounding communities.  Sedimentation of Lake Belton from eroding training 

lands has been identified as one of Fort Hood’s primary environmental concerns.  The 

Temple-Belton-Killeen area’s current economic and population growth makes this water 

supply a precious commodity in need of protection. 

Military training is intensive, recurring, and involves many soldiers, armored 

vehicles and ordinances.  Thus, military activities can adversely affect natural resources 

at both short and long-term scales, through removal of vegetation, soil compaction,  

____________ 

This thesis follows the style of Rangeland Ecology and Management.  
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erosion and rutting (Svendsen et al. 2006).  A 1996 Department of Defense (Department 

of Defense (DoD)) policy requires the military to maintain and improve the 

sustainability and native biological diversity of terrestrial and aquatic ecosystems while 

supporting human needs, including military training .  In short, DoD must strive to be 

good stewards of the land while allowing for necessary military mission training.   

In conjunction with the United States Department of Agriculture - Natural 

Resources Conservation Service (Natural Resource Conservation Service (NRCS)), Fort 

Hood has developed many Best Management Practices (BMPs) in an effort to reduce 

erosion from the military installation and subsequent deposition and siltation of 

surrounding lakes and rivers.  Successful BMPs include sediment retention structures to 

trap sediment and contour ripping in conjunction with a system of gully plugs (Military 

Access Structures or MASs) to increase infiltration, slow gully formation and trap 

sediment.  While these BMPs are effective for slowing sediment loss, they are not easily 

sustained.  Each treatment has a life expectancy of operating at optimal capacity, and 

once that lifespan has been reached, their effectiveness decreases and the process must 

begin anew.   

There is a need for sustainable practices that enable the landscape to mend itself 

after training maneuvers.  Revegetation efforts on military training lands must be self-

sustainable after the first or second growing season with no additional inputs.  To 

achieve this goal, erosion must be under control, natural nutrient cycles must be 

reinitiated and selected species must be adapted to the present site conditions (Anderson 

and Ostler 2002).  Healthy ecosystems have the ability to repair themselves after 
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damage.  Once the damage is greater than the ecosystems self-repair threshold, the 

landscape loses that ability and cannot naturally repair the damage (Whisenant 1999).  A 

healthy plant community may be the answer to restore the natural ability to self-repair.  

Land managers are currently developing re-vegetation BMPs with the use of composted 

dairy manure alone and with contour ripping applications.  Additions of composted dairy 

manure may return nutrients and organic matter that have been lost from the soil over 

time, both of which are necessary for a healthy plant community.   

While large scale applications of compost are difficult and costly, there is the 

possibility that when used in conjunction with contour ripping, it may be a more feasible 

option.  The contour rips provide a prepared seedbed in which the addition of compost 

and seed can be applied. Contour ripping may also use to increase infiltration in 

compacted soils (Anderson and Ostler 2002). 

There is an added benefit to the use of composted dairy manure to aid in re-

vegetation and control erosion.  The military installation is located adjacent to the 

Bosque River Watershed, which is listed by Texas Commission on Environmental 

Quality’s (TCEQ 2007) as having impaired water quality due to excessive nutrients.  

High nutrient levels can cause excess growth of algae, in turn causing taste and odor 

problems in drinking water (King et al. 2007).  Export of composted dairy manure from 

the Bosque River Watershed may reduce the nutrients loads within the impaired 

watershed.  
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OBJECTIVES 

Contour ripping and compost application are expensive land treatments.  Much 

of the literature about the effects of ripping has been done in the arid western United 

States.  An evaluation of the effectiveness of contour ripping, specific to Fort Hood’s 

climate and landscape is needed for land managers to make informed decisions.  

Compost application has been investigated as a possible BMP to re-vegetate 

training areas.  Fort Hood has determined two application rates that appear to create the 

best vegetation response.  While these rates appear to help the vegetation community, it 

is necessary to determine if there are possible adverse affects on water quality associated 

either of these two rates.   

This research included two objectives: 1) to quantify the effect of contour ripping 

on stormwater runoff discharge and 2) to quantify the effects of two different composted 

dairy manure application rates on stormwater runoff quality.  The stormwater discharge 

aspect of the study tested the hypothesis that areas with contour ripping would have the 

same stormwater runoff discharge as an area without contour ripping.  The water quality 

aspect of the study tested the hypothesis that there would be no difference in the amount 

of nitrate and soluble reactive phosphate (SRP) in the stormwater runoff from plots 

treated with no compost and with compost at rates of 28 m
3 

ha
-1 

and 57 m
3
 ha

-1
.  These 

two objectives were carried out concurrently on three small bermed and instrumented 

watersheds located on Fort Hood. 
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LITERATURE REVIEW 

Effects of Military Training on the Landscape   

The United States Army oversees more than 4.8 million ha of federally owned 

land, which must be managed sustainably to promote realistic and safe combat training 

(Anderson et al. 2005).  Effects of military training on the landscape are well 

documented (Shaw and Diersing 1990; Trumbull et al. 1994; Milchunas et al. 2000; 

Grantham et al. 2001; Quist et al. 2003; Palazzo et al. 2005; Foster et al. 2006; Svendsen 

et al. 2006; Althoff et al. 2007; Dickson et al. 2008).   

Necessary repetitious training regimes disaggregates and compacts soils (Palazzo 

et al. 2005).  Although vehicles are a more obvious source of compaction, Trumbull et 

al. (1994) found that disturbances caused by military campsites also had lower 

infiltration rates when compared to unused sites indicating compacted soils.  Compacted 

soils result in lower infiltration rates and more runoff during low to moderate intensity 

storm events (Althoff et al. 2007).  Compacted soils also reduce plant root penetration 

and resilience of desired species (Milchunas et al. 2000; Palazzo et al. 2005).   

Off-road military vehicles cause areas devoid of vegetation and create gullies, 

which promote soil movement into the surrounding waterways, causing impairment of 

streams within and downstream of the training sector (Palazzo et al. 2005; Svendsen et 

al. 2006; Althoff et al. 2007).  Military traffic also causes changes in proportions of 

vegetation, bare ground and litter cover (Milchunas et al. 2000).  The composition of the 

plant community is altered by the training traffic.  Replacement of perennials by annuals, 

increased potential of exotic species invasions(Milchunas et al. 2000), and declines in 
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the biomass of native species (Palazzo et al. 2005) are all effects of military training.  All 

of these changes to the landscape and ecosystems result in reducing the quantity and 

quality of lands available for training and wildlife habitat (Althoff et al. 2007).  

While there is an abundance of literature available describing the effects of 

military training, there is little available concerning the re-vegetation and rehabilitation 

specific to military training lands.  These are both necessary to continue long-term 

training and maintain good stewardship of the land.   

Composted Dairy Manure and Runoff Quality 

Erosion of the landscape results in the loss of nutrient-rich topsoil.  Composted 

dairy manure as a soil amendment may have both short and long term benefits.  In the 

short term, application of compost may improve soil surface protection from raindrop 

impact and subsequent disaggregation (Kleinman et al. 2002; McDowell and Sharpley 

2003).  This would be especially true with higher application rates which would create a 

thicker compost layer on the soil surface.   

Compost application on degraded landscapes can have advantageous benefits on 

soil physical and chemical properties.  Compost is an available source of nutrients and 

organic matter.  The addition of compost may increase soil organic matter levels which 

affects porosity, aggregate stability, infiltration and soil fertility.  All are factors which 

affect runoff, erosion potential, and water retention capacities of the soil (Kleinman et al. 

2002; Meyer et al. 2004; Claassen and Carey 2007).These benefits may then result in 

increased vegetation and in turn, decreased storm water runoff.   
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For all the possible benefits compost application may have, for both ecological 

and economical reasons, it is imperative that the proper rate be used.  Too little compost 

applied will have no measurable effects on vegetation and soil physical and chemical 

characteristics, but too much applied is both costly and wasteful of excess nutrients 

which may end up downstream.  The loss of nutrients may occur when compost is 

applied to soil, resulting in environmental pollution.  Loss of nutrients can cause adverse 

implications to the surrounding water supply.  Diffuse loading of phosphorus (P) and 

nitrogen (N) in surface waters have be linked as drivers that cause increases in the 

trophic status of lakes or eutrophication, streams and rivers (Kleinman et al. 20032004).  

Eutrophication has serious impacts on both the aquatic ecology level and on municipal 

resources.  Eutrophication and the subsequent increased algae production reduces 

diversity of flora and fauna, causes changes in the dominant biota, as well as fish kills 

when the algae dies.  Eutrophication of surface waters also increase the cost of water 

treatment for municipalities and decrease the recreation value of fresh waters (Kleinman 

and Sharpley 2003; Burke et al. 2004; Elliott et al. 2005).  More focus is being placed on 

the effects of increased P and N concentrations in streams and lakes (Eghball and Gilley 

1999).  In 1998, the United States Environmental Protection Agency (EPA) identified 

phosphorus as the most wide spread water nutrient that contributed to eutrophication of 

water bodies (Kleinman and Sharpley 2003). 

EPA requires drinking water to be below 10 mg l
-1

 NO3-N, and this number has 

become a reference point for aquatic systems, even those not used for drinking water.  

EPA requires streams which do not discharge directly into lakes to not exceed 100 μg l
-1
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of SRP.  At the state level, TCEQ developed freshwater stream screening levels for 

nutrients.  These screening levels are designed to protect general water quality concerns, 

rather than directed towards a specific threat.  TCEQ requires that freshwater streams not 

exceed thresholds of 2.76 mg l
-1

 and 500 μg l
-1 

of NO3-N and SRP, respectively (King et 

al. 2007).  Nitrate-N is the plant available anionic form of N in soils and is soluble and 

mobile in soils and easily leached during storm event (Miller and Donahue 1995).  SRP 

is the inorganic form that is the most readily plant and algal- available P form and 

therefore used as an environmental indicator (Burke et al. 2004). 

There are three primary factors that control the potential for transport of nitrogen 

and phosphorus in composted dairy manure from the land to which it was applied; 

timing of application, application method and rate (Sharpley 1997).  Studies have found 

that generally the bulk of N and P losses occurred during the first one or two intense 

storms.  As the amount of time between application and surface runoff event increases, 

the concentration of N and P in runoff decreases.  Immediately following broadcasting 

the potential for P loss peaks and then declines over time, as water soluble P applied in 

the manure increasingly interacts with soil and becomes more and more recalcitrant.  

Over time, the applied nitrogen is reduced by the formation of NO3-N and subsequent 

movement through the soil profile and volatilization of NH3.   Phosphorus is conserved 

in the compost-soil mix by sorption processes, thus the decrease in phosphorus available 

for transport with time after application can be a function of soil type and phosphorus 

sorption saturation.  So, the time between application and runoff will have a greater 

influence on phosphorus concentration of runoff from soils with higher rather than lower 
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phosphorus-sorbing soils (Sharpley 1997).   Studies by Mueller et al. (1984) reported 

SRP concentrations declining from 0.94 to 0.26 mg l
-1

 in runoff within two months of 

the growing season from no-till plots that received broadcast application of dairy 

manure.  Another study by Gascho et al. (1998) reported declines of SRP concentrations 

from >5.0 to <1.0 mg l
-1

 from a field receiving mineral fertilizer application in a slightly 

shorter time period.  In a rainfall simulation study utilizing indoor runoff boxes, 

Kleinman and Sharpley (2003) found that treatments with over 50 kg total phosphorus 

(TP) ha
-1

 applied, the number of days between manure application and runoff event was 

negatively related to SRP. 

The method of compost application also plays a role in the potential for nutrient 

loss in subsequent runoff events.  Surface or broadcast application concentrates the 

nutrient source at the top of the soil, where it is most vulnerable to runoff.  Eghball and 

Gilley (1999) conducted a study comparing the runoff concentrations from wheat and 

sorghum fields receiving broadcast compost treatment or compost which had been 

incorporated.  They reported in the wheat fields with no incorporation, the dissolved 

phosphorus and NH4-N were significantly greater during simulated rainfall runs.   

Manure application rate also regulates the concentration of P available to runoff 

water at the soil surface (Kleinman and Sharpley 2003).  Kleinman and Sharpley (2003) 

compared runoff concentrations of indoor runoff boxes with varying rates of compost 

applied.  Application rates were related to runoff P (r
2
 = 0.50-0.98).  As the application 

rates increased, so did the contribution of soluble reactive phosphate.   
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Alternatively, in rainfall simulations conducted on a post forest fire landscape, 

Meyer et al. (2001) found that mean total runoff concentrations of nitrite-N (NO2-N) and 

NO3-N did not increase with increasing application biosolid rates, nor were there 

consistent trends over time within and between biosolids rates in the concentrations of 

NO3-N, NH4-N or Total Kjeldahl N (TKN).  Sediment concentration was also 

significantly reduced in treatments of 40 Mg ha
-1

 and 80 Mg ha
-1

 when compared to 

sediment concentration on the control plots.  Compost application rates did not affect 

mean total runoff (Meyer et al. 2001).  

While there is a multitude of data available about runoff water quality following 

compost or biosolids application, it typically is done on croplands, forestlands or bare 

soil simulations.  There is a lack of literature concerning the applications to rangeland 

settings.  There is a need for further evaluation to determine the proper rate for best 

success in re-vegetating disturbed rangelands without impairing the surrounding water 

supply.   

Contour Ripping and Stormwater Discharge 

Mechanical rangeland treatments may be another possible alternative to alleviate 

the effects of intensive military training on the landscape.  Ripping the landscape along 

contour lines, a practice known as contour ripping, to breakup compacted soils and 

encourage infiltration was a popular management practice on western rangelands 

throughout the early to mid 1900’s.  Between 1934 and 1940, one-million plus acres 

received contour ripping treatments (Branson et al. 1966).  Typically, contour ripping is 
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accomplished with a chisel or shank attached to a bulldozer or tractor, which creates a 

furrow or “rip” in the surface horizon of the soil.   

Soil moisture is a common limiting factor in rangeland ecosystems and any 

practice that increases soil moisture maybe beneficial for re-vegetation and biomass 

production (Gade 2006).  Contour ripping can increase infiltration by creating small 

storage for precipitation and slowing overland runoff by roughening and loosening the 

soil surface (Branson et al. 1966; Griffith et al. 1984; Gade 2006).   

Contour ripping is an ideal management tool in rangelands with dense, fine 

textured soil, such as clays, that have low infiltration rates.  Soils that are heavily 

compacted by livestock or vehicle tracks can also benefit from contour ripping.  

Rangelands with dense sod-bound areas can yield more than twice the amount of runoff 

than rangelands with healthy bunch grass communities, and may also benefit from 

contour ripping treatments.  Rangelands with high percentages of bare soil exposed may 

also benefit from contour ripping treatments to increase infiltration and decrease soil loss 

by overland flow (Gade 2006).   

Contour ripping can increase biomass production through the disturbance of 

native sod and shift the botanical composition to more productive species.  The increase 

in infiltration, creation of more open spaces for productive species and reduced 

competition from unwanted vegetation also encourages further establishment of desired 

vegetation, provided the desired species were present in sufficient quantities pre-

treatment to make use of this advantage (Griffith et al. 1984; Miyamoto et al. 2004; 

Gade 2006).   
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STUDY AREA 

Fort Hood (87,953 ha) is located in Central Texas and encompasses parts of 

western Bell and eastern Coryell counties (Fig. 1).  It is located 80 km southwest of 

Waco, TX and 96 km north of Austin, TX.    Elevation ranges from 180 to 375 m above 

sea level with 90% of the installation below 260 m (Anderson et al. 2005).  The primary 

heavy vehicle training areas are located in Coryell County, which consists of an 

undulating dissected limestone plain underlain by softer limestone and marly clay on the 

rolling hills and plateaus and hard limestone on the higher ridges.  Soils are generally 

described as shallow to moderately deep, clayey and underlain by limestone bedrock. 

Slopes are between 2% to 5% with some exceeding 45% along flood plain bluffs and 

side slopes of mesa hills (McCaleb 1985). The three experimental watersheds are located 

in close proximity to each other on a Cho clay loam soil. 

Fort Hood’s climate is characterized by hot summers and mild winters (Fig. 2).  

In the winter, the average temperature is 9.4°C with an average daily minimum 

temperature of 2.2°C.  During the summer, the average temperature is 28.3°C, with an 

average daily maximum of 35.5°C in July.  Precipitation is somewhat uniformly 

distributed throughout the year, with slight peaks in the spring and fall and droughty 

conditions in mid- to late summer.  Of the annual total of 86.4 cm of precipitation, 55% 

usually falls between April and September (McCaleb 1985), however, great seasonal and 

annual variation in amount and distribution occurs. 
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Figure 1  Fort Hood Military Reservation is located in Coryell and Bell counties, 

approximately 96 km north of Austin, Texas.  Most of the primary training areas 

discharge into the adjacent Belton Lake reservoir.  Research was conducted within 

Training Area (TA) 44. 

Belton Lake 
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Fort Hood lies within the Lampasas Cut Plain eco-region and is typically 

composed of oak woodlands with a grassland understory.  Woody vegetation consists of 

Ashe juniper (Juniper ashei J. Buchholz), live oak (Quercus virginiana P. Miller var. 

fusiformis (J.K. Small) C. Sargent) and Texas oak (Quercus buckleyi Nixon & Dorr).  

The climax grass community consists of little bluestem (Schizachyrium scoparuim 

(Michz.) Nash) and yellow Indian grass (Sorghastrum nutans (L.) Nash) (Gould 1975).  

All nomenclature follows Vascular Plants of Texas by Jones et al (Jones et al. 1997). 

Due to the continual disturbance caused by military training, much of the area is 

dominated by lower successional plants, including many annual species.  In addition, the 

Figure 2  Historical monthly average temperature (°C) and monthly average 

precipitation recorded by NOAA at Gatesville (ID 4 SSE) weather station from 

1968 – 2006. 
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exotic King Ranch bluestem (Bothriochloa ischaemum (L.) songarica (Fisch. & Mey.)) 

is wide spread and dominates large areas.  Areas of intense training have a high 

percentage of bare soil along with many ruts and large depressions covering the soil 

surface.   

Fort Hood has a free range grazing system and study areas were lightly to 

moderately grazed during some of the study period.  While prescribed burning is used as 

a management tool by Fort Hood land managers, the study area had not been treated in 

recent years.  The study area was also closed to military training during the study period 

as a part of a rotational training area “rest” program. 
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EFFECTS OF COMPOST APPLICATION AND CONTOUR RIPPING ON 

STORMWATER RUNOFF QUALITY AND DISCHARGE 

This research investigated two hypothesis, 1) watersheds that have been contour 

ripped will have similar amounts of discharge as a control watershed with no contour 

ripping, and 2) watersheds with two different application rates of composted dairy 

manure will have no significant differences in water quality, specifically, NO3 and SRP 

load and concentration.  These two objectives were carried out concurrently on three 

small bermed and instrumented watersheds located on Fort Hood.  Research watersheds 

were designed and maintained by personnel from Blackland Research and Extension 

Center –Texas AgriLife Research (Althoff et al.) in Temple, TX. 

MATERIALS AND METHODS 

Experimental and Treatment Design 

Three experimental watersheds (45 m X 67 m) were established in TA 44 to 

investigate the effects of contour ripping with stormwater discharge and compost 

application rate on stormwater quality (Fig. 3).  Due to equipment constraints, this was a 

non replicated study.  Watersheds were located approximately 6.5 km north of Copperas 

Cove in Coryell County.  All watersheds were within 150 m of each other and were 

located on Cho clay loam, which are Loamy, carbonatic, thermic, shallow Petrocalcic 

Calciustolls formed in calcareous, loamy sediment with a 1-3% slope.  The Cho series 
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consists of very shallow and shallow well drained loamy soils found on uplands 

(McCaleb 1985).   

In January 2005, all vegetation was shredded and left on the ground, and 0.46 m 

high earthen berms were installed on all four sides of each plot (Fig. 4A).  A 0.305 m H-

flume was installed at the drainage point of each watershed to provide a fixed 

monitoring point for accurate flow measurements (Fig. 4B).  

Watersheds were equipped with an ISCO 4230 Bubble Flow Meter (Teledyne 

Isco Inc, Lincoln, NE) to measure and record level and flow at one-minute intervals.  An 

ISCO 3700 Automated Sampler was used to collect runoff samples during storm events.  

A Texas Electronics TX-25 tipping bucket rain gauge (Texas Electronics, Dallas, TX) 

was used to measure precipitation to one-hundredth of an inch.  Power was supplied with 

a 10 watt solar panel and a marine deep cycle battery.  Sampling and monitoring stations 

were visited and maintained every 10-14 days to ensure proper functioning of all 

equipment.   

In January 2005, two different rates of compost were randomly applied to two of 

the micro-watersheds (C1 and C2), while the third remained an untreated control (C0) 

(Figs. 3 and 4C – D).  Compost was broadcasted at rate of 28 m
3
 ha

-1
 on C1 and 57 m

3
 

ha
-1 

on C2.  These rates applied 74 and 151 kg of nitrogen, and 43 and 86 kg of 

phosphorus to C1 and C2, respectively (Table 1).  Nutrient application rates were based 

an analysis of  nutrient content of composted dairy manure from within the Bosque 

River watershed determined by Texas AgriLife Extension Soil, Water and Forage 

Testing Laboratory in College Station, Texas.  
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Figure 3  Research watersheds were located in Training Area (TA) 44.  Three watersheds 

(45 m x 67 m) were bermed and implemented to measure stormwater discharge and 

quality.  Watershed C0 received no treatment while C1 and C2 received compost 

applications and contour ripping. 

C0 
C2 C1 

TA 44 
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Table 1  Application rates of composted dairy manure for each treatment per hectare and 

per plot with corresponding application rates of nitrogen and phosphorus. 

Compost was applied with a custom-built High Roller compost spreader (Texas 

High Roller, Bryan, TX), designed specifically for use on the Fort Hood terrain, pulled 

by a John Deere 4430 tractor.  The spreader has a capacity of 11.5 m
3
 and was calibrated 

every 4 to 5 loads to ensure accurate application rate.  Calibration was done by 

determining the amount of compost delivered when making one pass over a one square-

meter tarp.  A minimum of three passes were made, then averaged and extrapolated to 

the desired amount per hectare. 

After compost application, a native seed mix developed by BREC/ NRCS (Table 

2) was applied with a Herd Sure-Feed broadcast seeder (Herd Seeder Company Inc, 

Logansport, IN) mounted on the back of an ATV.  The seed mix included eleven native 

grass and forb species and was applied at 7.85 kg ha
-1

. 

In November 2006, the two previously composted watersheds, C1 and C2, 

received contour ripping treatments.  Watershed C2, originally treated with rate of 57 m
3
 

ha
-1

, received an additional 28 m
3
 ha

-1
 of compost.  Compost was applied in the same 

manner used for the original application. 

  

Treatment 

ID Rate N P Rate N P

--m
3
·ha

-1
-- --m

3
--

C1 0 0 0 0 0 0

C1 28 243 142 8 74 43

C2 57 497 285 17 151 86

Per Hectare Per Watershed

----- kg·ha
-1 

----- ------- kg -------



 

 

2
0
 

2
0
 

 

Figure 4  Establishment of experimental watersheds took place in December 2004 to January 2005.  A) Watersheds were 

mowed and 0.46 m high berms were built, B) One-foot H-flumes were installed along with sampling equipment on each 

watershed, C) Composted dairy manure was applied to two watersheds (C1 and C2) at different application rates, D) 

View of watershed sampling points. 

(A) 

(C) 

(B) 

(D) 
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Table 2  Composition of native species in BREC/NRCS seed mix. 

Contour ripping of C1 and C2 was done following NRCS specifications set in the 

NRCS Field Office Technical Guide for Coryell County (NRCS 2008) by an NRCS 

selected contractor.  Contour ripping treatment consisted of fracturing compacted soil 

layers on 3 m intervals with a bulldozer with a single ripping shank attached directly 

behind the tracks of the bulldozer (Fig. 5A, 5B).  The shank was approximately 8 cm 

wide and ripped the soil to an average depth of 38 cm.  The watersheds were ripped 

parallel to surveyed contour lines.  

Sampling and Analysis 

Prior to any treatments, soil samples were collected from the watersheds.  Each 

sample was a composite of six random subsamples per watershed.  Samples were 

collected from two different soil depths, 0 to 5 cm and 5 to 15 cm.  All samples were air-

dried and sent to Texas AgriLife Extension Soil, Water and Forage Testing Laboratory 

Scientific Name Common Name Cultivar

Percentage 

of Mix

Bouteloua curtipendula sideoats grama Haskell 25%

Buchloe dactyloides buffalo grass Texoka 25%

Andropogon gerardii big bluestem Earl 10%

Panicum virgatum Switchgrass Alamo 10%

Schizachyrium scoparium little bluestem Native 10%

Sorghastrum nutans yellow Indiangrass Lometa 10%

Sporobolus compositus tall dropseed Native 5%

Desmanthus illinoensis Illinois bundle-flower Sabine 2%

Simsia calva awnless bush-sunflower Plateau 2%

Chamaecrista fasciculata partridge-pea Lark 1%

Leptochloa dubia green sprangletop Van Horn 1 lb/acre



 

 

 

2
2
 

2
2
 

 

 

(A) 

(C) 

(B) 

(D) 

Figure 5  Application of contour ripping treatments. A, Bulldozer used in contour ripping. B, Close-up of ripping shank 

used in contour ripping. C, View of watershed after contour ripping treatment. D, Close-up of furrow created by contour 

ripping treatment. 
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in College Station, Texas for analysis.  Additional soil samples were collected 15 and 22 

months post compost application using the same methods as previous samples. Samples 

were analyzed for pH, conductivity, nitrate-N, phosphorus, potassium, calcium, 

magnesium, sulfur and sodium content.  Samples collected in December 2004 were also 

analyzed for organic matter content. 

Stormwater discharge and precipitation records for all three watersheds began 26 

January 2005, prior to the any storm events.  Water quality samples and measurements 

were not collected for C1 and C2 until compost and seed treatments had been applied. 

Watershed C1 received a compost application on 26 January 2005.  Five successive 

rainfall events occurred within eleven days following application.  C2 watershed was 

treated three weeks later, on 13 February 2005 because of prolonged period of rainfall.  

Storm events began ten days after compost treatment on C2.  Stormwater discharge, 

precipitation and water quality data were collected until July 2007.   

The study period was divided into two periods for the stormwater discharge 

aspect.  Precipitation and discharge data collected from January 2005 through October 

2006 is categorized as the calibration or pre-rip period.  Storm events monitored from 

November 2006 through July 2007 were categorized as the treatment or post-rip period.  

Surface stormwater discharge was measured by the total volume of stormwater 

that passed through the H-flume in a storm event from time of the first rise in level until 

the flow returned to zero.  Since the parameter of interest was total discharge and percent 

runoff, all measured flow was used in determinations.  C1 and C2 had periods of 

interrupted precipitation data, however C0, had complete records, so precipitation data 
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from C0 was used in runoff percent calculations.  Precipitation was assumed to be 

homogenous across all watersheds.  Discharge was defined as the total volume through 

the monitoring point for each event and is reported as millimeters of discharge.  Percent 

runoff was calculated by dividing total discharge by total precipitation for each event. 

In periods of extended precipitation (two or more consecutive days with runoff 

producing precipitation), precipitation and discharge volumes were summed and 

reported as one event.  After soil had reached its full water holding capacity, antecedent 

soil moisture conditions controlled discharge rather than the amount of precipitation on 

that calendar day. 

Storm event sampling for water quality analysis occurred when the water level in 

H-Flume reached 32 mm, the depth necessary to submerge the sample intake line.  Only 

flows above this level were used in determination of nutrient loads and event mean 

concentration.  The automated sampling equipment collected one discrete, time-based 

sample every 30 minutes after the level threshold had been surpassed and continued until 

the level returned to below the threshold.  A total of 24 individual samples were possible 

for each event from each watershed. 

For most storm events, three samples were analyzed from each watershed.  

Samples were collected at the beginning of the event, near the peak and half way down 

the descending limb of the hydrograph.  The runoff hydrograph, from individual storms, 

was divided into sections representing the time interval during which the sample was 

collected (Fig. 6).   
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A B C 

Water Level in Flume 

Precipitation 

At times, this wasn’t possible and some events had greater or less than three 

samples collected and analyzed.  Samples were taken to the Water Sciences Laboratory 

at Blackland Research & Extension Center and analyzed for NO3
-
 (NO3) and PO4

3-
 

(SRP) content with Standard Method 4110 C, single-column ion chromatography with 

direct conductivity detection (Eaton et al. 2005). 

Use of watersheds created an edge-of-field scenario.  Nutrient transport from 

these watersheds was a function of precipitation.  The transport of most water quality 

constituents is typically described in terms of loading and event concentration.  Loads 

are a function of constituent concentrations and storm water volume (Toor et al. 2008).  

Figure 6  Example of a storm hydrograph depicted in FlowLink software (Teledyne Isco, Inc.) 

showing stormwater level (depth) in flume and precipitation.  Samples collected are represented 

with numbered triangles and samples analyzed are circled.  Measured concentration of each 

sample is associated with the flow volume for its associated time interval. 
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This sampling strategy was adapted from the rise-fall low frequency sampling strategy 

utilized by Toor et al (2008).  To calculate storm load, sample concentrations were then 

multiplied by the runoff volumes for each representative time interval to determine the 

mass of NO3 and SRP.  To estimate mean event concentration, measured sample 

concentrations were multiplied by the associated flow volume, summed and then divided 

by the total flow volume for the event, 

   [1] 

where EMC is event mean concentration, C is the concentration of specified sample and 

Q is discharge for the associated time interval.  Concentration was reported in 

milligrams per liter.  

Statistical Analysis 

Since there was only one replicate of each treatment and the data were not 

normally distributed, non-parametric tests were used for statistical comparisons.  For the 

stormwater discharge study, differences within a watershed over pre- and post- rip 

periods were first investigated with the Friedman test, and then further analyzed with the 

Mann-Whitney test.  Treatment comparisons within the pre- or post- rip periods were 

made with the Wilcoxon Signed Ranks test.  Precipitation differences between the two 

periods were investigated with the Kruskal Wallis test. 

The stormwater quality study was divided into individual years and also 

compared as an entire study period (January 2005 to July 2007).  Differences in NO3 and 
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SRP concentrations and loads between treatments within an individual year were 

determined with the Wilcoxon Signed Ranks test.   

All results were considered significant at p < 0.05.  The Mann-Whitney and 

Wilcoxon Signed Ranks tests do not make assumptions about homogeneity of variances 

or normal distributions.  They are slightly less powerful than a t-test or one-way 

ANOVA, and therefore less likely to find a significant result when there is no difference 

(Dytham 2003). 

Collected soil samples were not replicated, so only general descriptive statistical 

comparisons between treatments and over time were made.   

All statistical analysis were made with SPSS statistical software package (SPSS 

Inc. 2006). 

RESULTS 

Soils 

Detailed soils analysis for the three sample dates are presented in Table 3.  Soils 

analyses were done to determine the impact of compost applications on soil chemical 

characteristics.  Specifically, nitrate-N and phosphorus were used to determine if 

compost application caused an increase in soil nutrient levels.   
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Table 3  Analysis of soil samples collected from C0, C1 and C2 watersheds in December 2004, March 2006 and November 2007.  Soil samples 

were collected from at soil depths, 0 to 5 cm and 5 to 15 cm.  Soil samples were analyzed by the Texas AgriLife Extension Soil, Water and 

Forage Testing Laboratory in College Station, Texas. 

 

Date Watershed Depth pH Conductivity Nitrate-N Phosphorus Potassium Calcium Magnesium Sulfur Sodium
Organic 

Matter

--umho cm
-1

-- --ppm-- --ppm-- --ppm-- --ppm-- --ppm-- --ppm-- --ppm-- %

C0 0 - 5 cm 8.2 217 11 5 294 18,587 184 26 198 5.87

C0 5 - 15 cm 8.2 212 2 2 199 31,312 171 32 250 4.07

C1 0 - 5 cm 8.2 237 11 2 192 32,739 158 28 236 5.68

C1 5 - 15 cm 8.5 104 3 1 172 38,736 156 28 248 3.75

C2 0 - 5 cm 8.0 258 25 4 192 32,404 157 32 229 5.73

C2 5 - 15 cm 8.7 92 4 1 116 41,569 139 27 218 3.88

C0 0 - 5 cm 8.1 259 4 11 350 14,669 174 21 189 NA†

C0 5 - 15 cm 8.1 155 3 6 278 16,594 153 18 173 NA

C1 0 - 5 cm 8.2 148 3 17 256 18,969 179 21 178 NA

C1 5 - 15 cm 8.3 218 3 8 187 18,925 122 18 176 NA

C2 0 - 5 cm 8.0 150 3 31 301 24,156 213 28 191 NA

C2 5 - 15 cm 8.3 142 3 12 219 24,473 160 26 193 NA

C0 0 - 5 cm 8.2 177 3 10 305 13,278 155 20 88 NA

C0 5 - 15 cm 8.3 201 1 9 253 15,118 143 21 128 NA

C1 0 - 5 cm 8.1 239 1 25 253 13,858 167 19 110 NA

C1 5 - 15 cm 8.3 160 1 10 187 17,485 139 22 96 NA

C2 0 - 5 cm 8.1 212 2 20 232 15,973 173 23 85 NA

C2 5 - 15 cm 8.5 155 1 10 134 18,204 117 21 120 NA

† Organic matter was not analyzed in samples collected in March and November 2006

December 2004 -- Pretreatment

March 2006 (15 months post initial compost application)

November 2006 (22 months post initial compost application)
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In December 2004, prior to any treatments, soil samples from C0 and C1 

watersheds both had 11 ppm of NO3-N in the 0 to 5 cm depth, while C2 had 25 ppm 

NO3-N, two times the amount of N than C0 and C1 watersheds (Figs. 7A and 7B).   

This trend did not continue in the deeper sampling depth; all three watersheds ranged 

from 2 to 4 ppm NO3-N in the 5 – 15 cm soil depth.  Available phosphorus (P) at both 0 

– 5 cm and 5 – 15 cm depths were very similar in all three watersheds, ranging from 2 to 

5 ppm P in the 0 to 5 depth and 1 to 2 ppm P in the 5 to 15 cm depth for all three 

watersheds (Figs. 7C and 7D).   

A second composite soil sample was collected from each watershed 15 months 

after the original compost applications in March 2006.  Nitrate-N levels decreased in all 

watersheds at both sampling depths from December 2004.  Measurements ranged from 3 

to 4 ppm NO3-N for samples collected in the 0 to 5 cm depth and all three watersheds 

had 3 ppm NO3-N in the 5 to 15 cm sampling depths (Fig. 7A and 7B).   

Alternatively, available P was elevated when compared to the pre compost 

application samples collected in December 2004.  Although available P content in C0 

watershed was only slightly elevated when compared to early samples in the 0 – 5 cm 

depth, C1 and C2 had much higher available P levels. Available P in C1 increased from 

2 ppm P in December 2004 to 17 ppm P in March 2006.  Available P level in C2 

increased from 4 ppm P in December 2004 to 31 ppm P in March 2006 (Fig. 7C).   
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This same trend was also expressed in the samples collected at 5 to 15 cm 

sampling depth, but with a lower magnitude of difference, with C1 increasing from 1 

ppm P to 8 ppm P, while C2 increased from 1 ppm P to 12 ppm P (Fig. 7D).  

Final soil samples were collected in November 2006, prior to contour ripping and 

the additional application of compost.  Nitrate-N levels in all watersheds remained 

similar to the March 2006 measurements, and ranged from 1 to 3 ppm NO3-N for 

samples at both sampling depths (Figs. 7A and 7B). Available P in C0 remained similar 

to those taken in March 2006 at 10 and 9 ppm P in the 0 – 5 cm and 5 – 15 cm soil 

depths, respectively.  Available P in C1 watershed increased from earlier sample dates to 

25 ppm P in the 0 – 5 cm sampling depth and slightly increased in the 5 – 15 soil depth 

to 10 ppm P.  Samples collected from C2 watershed decreased in available P from 31 

ppm P in March 2006 to 20 ppm P in November 2006 in the 0 – 5 cm depth and also had 

a slight decrease in the 5 – 15 depth to 10 ppm P (Fig. 7D).   
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Figure 7  Analysis of A – B) nitrate-N and C – D) phosphorus levels in soil samples taken at two 

different sampling depths, A, C) 0 to 5 cm and B, D) 5 to 15 cm.  Samples collected in December 2004, 

March 2006 and November 2006.  
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Stormwater Discharge 

The precipitation pattern was very different between the pre- and post- rip 

periods.  Total precipitation for the 22 month pre-rip period was 589.53 mm; while the 9 

month post-rip period had 703.03 mm of precipitation (Tables 4 and 5).  The 

precipitation between the two periods was significantly different (p < 0.048) as 

determined by Kruskal Wallis test.  This precipitation difference essentially precludes 

any comparisons of treatments across the pre- and post-rip periods.  Mean discharge 

from C0 watershed was 31.11 mm higher in the post-rip period than it was in the pre-rip 

period (p < 0.008), while the mean discharge from C1 and C2 was not significantly 

different between the two periods (Table 5).   

There were 16 storm events during the pre rip period (January 2005 – October 

2006) with a storm event precipitation mean of 36.85 mm in the 22 month period (Table 

5).  During the pre-rip period, discharge was not significantly different between any of 

the watersheds.  Mean discharge was 14.38 mm, 17.11 mm and 18.01 mm for C0, C1 

and C2, respectively (Table 5).  In each storm event, for any given amount of 

precipitation, the three watersheds produced similar amounts of discharge (Fig. 8A).  

Discharge and runoff were not significantly different between the three watersheds 

during the pre-rip period (Table 5).   
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Table 4  Storm event precipitation, discharge and runoff from C0, C1 and C2 watersheds used to 

investigate the effects of contour ripping on stormwater runoff. 

†
 Precipitation from C0 micro-watershed used to calculate runoff. 

C0 C0 C1 C2 C0 C1 C2

Date Precipitation

28-Jan-05 25.91 13.19 11.70 12.99 50.91 45.16 50.14

31-Jan-05 25.91 11.64 18.54 20.56 44.92 71.56 79.35

6-Feb-05 5.33 3.23 2.81 3.48 60.60 52.72 65.29

23-Feb-05 49.53 34.65 37.87 38.39 69.96 76.46 77.51

27-Feb-05 17.53 12.98 20.27 16.48 74.04 115.63 94.01

2-Mar-05 17.78 12.87 13.94 12.31 72.38 78.40 69.24

21-Mar-05 44.45 30.65 29.22 26.74 68.95 65.74 60.16

26-Mar-05 12.19 3.76 2.40 2.03 30.84 19.69 16.65

10-Apr-05 16.00 2.82 0.19 0.99 17.63 1.19 6.19

28-May-05 32.00 1.34 0.14 3.22 4.19 0.44 10.06

3-Jun-05 12.19 0.16 0.00 0.32 1.31 0.00 2.63

8-Aug-05 121.66 44.34 48.61 67.39 36.45 39.96 55.39

19-Mar-06 40.13 1.61 2.97 6.30 4.01 7.40 15.70

28-Mar-06 89.92 40.58 58.64 54.36 45.13 65.21 60.45

6-May-06 51.31 15.02 23.17 21.41 29.27 45.16 41.73

25-Oct-06 27.69 1.28 3.21 1.25 4.62 11.59 4.51

Pre-Rip  Mean 36.85 14.38 17.11 18.01 38.45 43.52 44.31

Pre-Rip  Total 589.53 230.12 273.68 288.22 --- --- ---

12-Mar-07 76.71 11.27 20.78 20.50 14.69 27.09 26.72

27-Mar-07 56.60 21.88 18.82 19.19 38.66 33.25 33.90

30-Mar-07 135.38 99.36 68.28 88.89 73.39 50.44 65.66

1-May-07 43.94 23.09 7.86 5.00 52.55 17.89 11.38

2-May-07 21.34 15.25 4.25 5.99 71.46 19.92 28.07

21-May-07 42.67 19.54 6.27 5.77 45.79 14.69 13.52

24-May-07 98.55 85.34 50.76 37.46 86.60 51.51 38.01

26-Jun-07 116.59 101.84 62.04 49.84 87.35 53.21 42.75

3-Jul-07 60.45 89.06 33.21 35.83 147.33 54.94 59.27

13-Jul-07 25.65 20.22 10.61 7.00 78.83 41.36 27.29

29-Jul-07 25.15 13.52 4.87 2.63 53.76 19.36 10.46

Post-Rip Mean 63.91 45.49 26.16 25.28 68.22 34.88 32.46

Post-Rip Total 703.03 500.37 287.75 278.10 --- --- ---

*** Post-Rip ***

Discharge Runoff†

-- mm -- ----------------- mm ----------------- ----------- % ------------

*** Pre-Rip ***
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Table 5  Pre-rip and post-rip period sums and event means (standard error) of precipitation, 

discharge and runoff of stormwater runoff events to evaluate the effect of contour ripping. 

The post-rip period (November 2006 – July 2007) had eleven storm events in 

nine months; mean storm event precipitation was 63.91 mm.  In the post-rip period, 

discharge and runoff from C1 and C2 were significantly different when compared to the 

control (C0) (Table 5).  The watershed that was contour ripped only (C1) had a storm 

event mean discharge of 19.33 mm less than the control plot (p < 0.006).  The watershed 

that received an additional composted dairy manure application in conjunction with 

contour ripping (C2) had an average of 20.21 mm of discharge less than the control 

watershed during the post-rip period (p < 0.008) in a storm event.  There was no 

significant difference in discharge of the two ripped watersheds (p < 0.374).   

While the two contour ripped watersheds continued to have approximately the 

same amount of discharge for any given amount of precipitation, the untreated control 

nearly always had higher discharge amounts (Fig. 8B)   

 

 

 

Total Total Total

Pre Rip

Precipitation (mm) 36.85

Discharge (mm) 230.12 14.38 (3.74) 273.68 17.11 (4.59) 288.22 18.01 (5.01)

Runoff (%)† ---‡ 38.45 (6.63) --- 43.52 (8.61) --- 44.31 (7.66)

Post Rip

Precipitation (mm) 63.91

Discharge (mm) 500.37 45.49 (11.69) 287.75 26.16 (7.20) 278.10 25.28 (7.97)

Runoff (%)† --- 68.22 (10.36) --- 34.88 (4.79) --- 32.46 (5.50)

----------------------------- 589.53 (7.69) -------------------------

----------------------------- 703.03 (11.65) -------------------------

C0 C1 C2

Mean Mean Mean

† Runoff percent calculated with C0 precipitation 

‡ Period sum for runoff (%) is not applicable 
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Figure 8  Storm event precipitation to predict discharge in A) pre-rip and, B) post-rip periods. 
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Stormwater Quality 

The first year immediately following compost application (2005), C0 (control) 

watershed had lower NO3 and SRP loads than both compost treatments (Table 6).  C0 

had a mean NO3 load of 0.02 kg in 2005 and no measurable loss of SRP, while C1 (28 

m
3
 ha

-1
 application) had a mean load of 0.32 kg NO3, on average, 0.29 kg more than the 

control (p < 0.017) and a mean SRP load of 0.13 kg (p < 0.007).  Watershed C2 (57 m
3
 

ha
-1

 application) had a mean load of 0.37 kg NO3, on average 0.35 kg more than the 

mean load of the Control (p < 0.028) and 0.05 kg NO3 more than the mean load of C1 (p 

< 0.028).  C2 had a mean SRP loss of 0.18 kg, with a mean difference of 0.18 and 0.05 

kg SRP from C0 (p < 0.008) and C1 (p < 0.027), respectively (Table 6). 

There were 15 storm events in 2005.  C0 had an annual (total) load of 0.33 NO3 

kg yr
-1 

while C1 and C2 had an annual load of 2.84 and 3.72 NO3 kg yr
-1

, respectively in 

2005 (Table 6 and 7).  C0 had no detectable SRP loss during 2005; however C1 and C2 

had annual loads of 1.14 and 1.75 kg yr
-1 

of SRP, respectively (Tables 6 and 7).   

The study year 2006 was a drought year, with only six storm events.  One year 

post initial application, there were no significant differences between treatments in NO3 

load and concentration and SRP load and concentration.  The mean NO3 concentration 

ranged from 0.13 to 0.44 mg l
-1

 for all watersheds (Table 6), while SRP mean 

concentrations ranged from 0.00 to 1.68 mg l
-1

 (Table 6), all much lower than they had 

been in 2005.  Mean storm event loads also decreased substantially for both NO3 and 

SRP from 2005.  
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Table 6  Watershed total and mean (standard error) of NO3 and SRP Load and mean (standard error) of NO3 and SRP Concentration 

in 2005, 2006, 2007 and total study period. 

 

 

Total Total Total

2005 0.33 0.02 (0.01) 2.84 0.32 (0.18) 3.72 0.37 (0.23) 1.07 (0.14) 11.10 (6.47) 8.61 (5.46)

2006 0.12 0.02 (0.02) 0.05 0.01 (0.01) 0.00 0.00 (0.00) 0.44 (0.16) 0.13 (0.06) 0.24 (0.15)

2007 0.16 0.01 (0.01) 0.11 0.01 (0.01) 0.09 0.01 (0.00) 0.21 (0.10) 0.15 (0.13) 0.13 (0.08)

2005 - 2007 0.61 0.02 (0.00) 3.00 0.11 (0.06) 3.81 0.14 (0.09) 0.60 (0.10) 3.80 (2.31) 3.18 (2.04)

2005 0.00 0.00 (0.00) 1.14 0.13 (0.03) 1.75 0.18 (0.05) 0.00 (0.00) 3.85 (1.06) 4.08 (0.93)

2006 0.00 0.00 (0.00) 0.15 0.04 (0.02) 0.22 0.04 (0.04) 0.00 (0.00) 0.76 (0.13) 1.68 (0.18)

2007 0.00 0.00 (0.00) 0.34 0.02 (0.01) 0.13 0.01 (0.01) 0.00 (0.00) 0.66 (0.17) 0.21 (0.08)

2005 - 2007 0.00 0.00 (0.00) 1.63 0.06 (0.01) 2.10 0.08 (0.02) 0.00 (0.00) 1.74 (0.46) 1.86 (0.47)

Mean Mean

C0 C1 C2 C0 C1 C2

--------------------------------------- kg ------------------------------------- ---------------------------- mg l
-1

 --------------------------

NO3

SRP

Load Concentration

Mean Mean Mean Mean
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C0 had an annual load of 0.12 kg of NO3, while C1 and C2 had annual loads of 

0.05 and 0.00 kg NO3, respectively (Tables 6 and 7).  There was no measurable SRP loss 

from C0 during 2006.  C1 and C2 had annual loads of 0.15 kg and 0.22 kg of SRP, 

respectively (Table 6).  SRP concentration differences between the two compost treated 

plots and the control where just out of the range of significance (p < 0.068).   

In November 2006, C1 and C2 both received a contour ripping treatment and C2 

had an additional 28 m
3
 ha

-1
 of compost applied.  There were no storm events following 

treatments until January 2007.  There were 18 storm events in 2007, with most of the 

events occurring in the spring. In 2007, C1 had an annual load of 0.16 kg of NO3 and no 

measurable loss of SRP.  C1 had an annual load of 0.11 kg of NO3 and 0.34 kg SRP, 

while C2 had 0.09 kg of NO3 and 0.13 kg of SRP in annual load (Table 6).   

In 2007, two years post initial application, there continued to be no significant 

differences in the mean NO3 loads and concentrations between the three watersheds.  

NO3 mean loads from the watersheds ranged from 0.01 to 0.09 kg (Table 6).  Mean 

event concentrations were equal to or less than 0.21 mg l
-1

 of NO3 for all three 

watersheds.  C0 continued to have no measurable loss of SRP.  C1 had a mean SRP load 

of 0.02 kg and was statistically different from the mean SRP load of C0 (p < 0.008).  C2 

had a mean load of 0.01 kg and was also significantly different from C0 (p < 0.008).  

The difference between C1 and C2 was just out of the significance range for mean SRP 

loads (p < 0.056).   
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Event Date C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2

1/27/2005 36.37 27.64 NC† 0.04 1.70 NC 0.00 0.31 NC 1.20 61.67 NC 0.00 11.36 NC

1/30/2005 2.77 NE‡ NC 0.00 NE NC 0.00 NE NC 1.08 NE NC 0.00 NE NC

1/31/2005 3.26 8.15 NC 0.00 0.11 NC 0.00 0.04 NC 0.87 13.22 NC 0.00 5.31 NC

2/1/2005 5.58 20.14 NC 0.00 0.14 NC 0.00 0.10 NC 0.87 7.00 NC 0.00 4.82 NC

2/6/2005 5.26 NE NC 0.01 NE NC 0.00 NE NC 2.00 NE NC 0.00 NE NC

2/23/2005 31.75 32.21 42.15 0.03 0.21 2.40 0.00 0.09 0.49 0.89 6.49 56.94 0.00 2.77 11.54

2/24/2005 64.29 63.68 64.71 0.07 0.42 0.59 0.00 0.12 0.33 1.07 6.52 9.12 0.00 1.92 5.17

2/26/2005 24.80 43.17 42.12 0.00 0.00 0.27 0.00 0.14 0.23 0.00 0.00 6.40 0.00 3.30 5.49

3/2/2005 32.56 35.45 35.15 0.03 0.11 0.23 0.00 0.10 0.15 0.83 3.24 6.52 0.00 2.94 4.20

3/21/2005 91.08 86.07 80.48 0.10 0.15 0.17 0.00 0.14 0.20 1.12 1.76 2.07 0.00 1.58 2.51

3/26/2005 6.30 NE 2.60 0.01 NE 0.00 0.00 NE 0.01 1.14 NE 1.20 0.00 NE 3.66

4/10/2005 7.96 NE 2.62 0.01 NE 0.00 0.00 NE 0.01 1.87 NE 1.73 0.00 NE 2.63

5/28/2005 3.75 NE 9.71 0.00 NE 0.01 0.00 NE 0.02 1.22 NE 0.91 0.00 NE 2.27

6/3/2005 0.19 NE 0.27 0.00 NE 0.00 0.00 NE 0.00 1.70 NE 0.93 0.00 NE 1.86

8/9/2005 133.68 146.80 205.60 0.03 0.00 0.05 0.00 0.10 0.31 0.22 0.00 0.23 0.00 0.67 1.49

Annual Load 449.60 463.31 485.41 0.33 2.84 3.72 0.00 1.14 1.75 --- --- --- --- --- ---

Annual Mean 29.97 51.48 48.54 0.02 0.32 0.37 0.00 0.13 0.18 1.07 11.10 8.61 0.00 3.85 4.08

3/19/2006 4.33 8.56 18.66 0.00 0.00 0.00 0.00 0.01 0.00 0.81 0.06 0.72 0.00 0.88 1.75

3/28/2006 121.41 177.07 164.31 0.09 0.03 0.00 0.00 0.09 0.19 0.12 0.18 0.00 0.00 0.50 1.15

4/29/2006 NE NE 9.70 NE NE 0.00 NE NE 0.02 NE NE 0.00 NE NE 2.08

5/6/2006 43.13 69.09 NE 0.03 0.02 NE 0.00 0.04 NE 0.78 0.28 NE 0.00 0.61 NE

10/10/2006 0.34 NE 2.70 0.00 NE 0.00 0.00 NE 0.01 0.44 NE 0.48 0.00 NE 2.03

10/25/2006 3.72 9.11 3.51 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 1.05 1.41

Annual Load 172.93 263.83 198.88 0.12 0.05 0.00 0.00 0.15 0.22 --- --- --- --- --- ---

Annual Mean 34.59 65.96 39.78 0.02 0.01 0.00 0.00 0.04 0.04 0.44 0.13 0.24 0.00 0.76 1.68

† No compost applied

‡ No event or insufficient discharge to collect sample

** 2005 **

** 2006 **

Discharge NO3 Load SRP Load NO3 Concentration SRP Concentration

-------m
3
------- ------------------- kg --------------------- -----------------------mg L

-1
----------------------

Table 7  Storm event discharge, NO3 and SRP load and concentration from C0, C1 and C2 in 2005, 2006 and 2007. 
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Event Date C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2

3/11/2007 33.20 59.00 61.10 0.03 0.01 0.05 0.00 0.08 0.06 0.82 0.25 0.89 0.00 1.35 1.05

3/26/2007 56.72 54.12 47.89 0.00 0.10 0.03 0.00 0.00 0.00 0.06 1.81 0.60 0.00 0.00 0.00

3/29/2007 108.40 67.20 90.80 0.01 0.00 0.00 0.00 0.00 0.05 0.07 0.00 0.01 0.00 0.41 0.53

3/30/2007 182.99 132.42 173.80 0.01 0.00 0.00 0.00 0.04 0.02 0.04 0.00 0.00 0.00 0.36 0.14

5/1/2007 68.71 19.79 13.51 0.01 0.00 0.00 0.00 0.01 0.00 0.12 0.00 0.00 0.00 0.64 0.16

5/2/2007 39.20 7.67 10.20 0.01 0.00 0.00 0.00 0.01 0.00 0.29 0.00 0.00 0.00 0.71 0.15

5/9/2007 7.30 NE NE 0.00 NE NE 0.00 NE NE 0.27 NE NE 0.00 NE NE

5/22/2007 58.42 16.54 15.75 0.09 0.00 0.00 0.00 0.01 0.00 1.55 0.00 0.00 0.00 0.88 0.14

5/24/2007 74.17 45.93 27.27 0.00 0.00 0.00 0.00 0.12 0.00 0.01 0.00 0.00 0.00 2.54 0.00

5/25/2007 57.10 66.10 44.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.24 0.00

6/26/2007 67.80 34.79 17.41 0.00 0.00 0.00 0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.75 0.25

6/27/2007 35.94 15.10 11.66 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.50 0.13

6/28/2007 19.08 86.37 62.65 0.00 NA NA 0.00 NA NA 0.00 NA NA 0.00 NA NA

6/30/2007 63.59 51.49 41.51 NA 0.00 0.01 NA 0.01 0.00 NA 0.00 0.19 NA 0.29 0.00

7/3/2007 78.00 72.38 67.81 0.00 0.00 NA 0.00 0.02 NA 0.00 0.00 NA 0.00 0.31 NA

7/5/2007 4.19 3.43 2.09 NA 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA 0.26 0.22

7/7/2007 11.66 NE NE 0.00 NE NE 0.00 NE NE 0.00 NE NE 0.00 NE NE

7/8/2007 3.68 NE NE 0.00 NE NE 0.00 NE NE 0.00 NE NE 0.00 NE NE

Annual Load 970.15 732.33 687.45 0.16 0.11 0.09 0.00 0.34 0.13 --- --- --- --- --- ---

Annual Mean 53.90 48.82 45.83 0.01 0.01 0.01 0.00 0.02 0.01 0.21 0.15 0.13 0.00 0.66 0.21

† No compost applied

‡ No event or insufficient discharge to collect sample

-----------------------mg L
-1

----------------------

** 2007 **

Discharge NO3 Load SRP Load NO3 Concentration SRP Concentration

-------m
3
------- ------------------- kg ---------------------

Table 7  Continued. 
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The differences that existed among treatments when analyzed by individual years 

were lessened or obscured when analyzing the results as a whole for the entire study 

period (2005 – 2007) (Table 6).  The only significant difference in NO3 concentration 

was between C1 and C2; C1 had a mean event concentration of 3.80 mg l
-1, 

while C2 

was 3.18 mg l
-1

 (p < 0.025 for the entire study period (Table 6).  There were no 

significant differences in NO3 loads among any of the watersheds.  SRP loss from the 

control was significantly different in both C1 (p < 0.000) and C2 (p < 0.001).  SRP loss 

was not significantly different between the two treated watersheds.  This trend continued 

in the SRP mean concentration, C1 and C2 were not different (p < 0.357), but both 

differed from C0 (p < 0.000 and p < 0.000) (Table 6).   

There were 43 storm events monitored during the entire study period.  Total load 

for the entire study period (2005 – 2007) for C0 (control) was 0.65 kg of NO3 and no 

measurable SRP loss (Tables 6 and 7).  C1 had a total load of 3.01 kg of NO3 and 1.67 

kg of SRP and C2 had a total load of 3.81 kg and 2.15 kg of NO3 and SRP, respectively.   

The greatest differences in water quality were seen immediately after compost 

application in 2005 (Figs. 9 – 12).  The first storm event came one day after compost 

application on C1.  There were eight storm events from 27 January 2005 to 26 February 

2005, the first month after application.  During this time, the total load was 2.58 kg NO3 

and 0.80 kg of SRP for C1 (Table 7).  Eighty-six percent of the total NO3 load and 48% 

of the total SRP load from C1 for the entire study period was removed in the first eight 

events.  
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Figure 9  NO3 storm event loss (kg) for A) C0, control, B) C1, 28 m

3
 ha

-1
 and C) C2, 57 m

3
 ha-

1
over 

number of days after compost application.  C0 and C1 begin on 26 January 2005 and C2 begins on 

13 February 2005. 
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Figure 10  SRP  storm event loss (kg) for A) C0, control, B) C1, 28 m
3
 ha

-1
 and C) C2, 57 m

3
 ha-

1
over 

number of days after compost application.  C0 and C1 begin on 26 January 2005 and C2 begins on 13 

February 2005. 
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Figure 11  NO3  storm event concentration (mg l
-1

) for A) C0, control, B) C1, 28 m
3
 ha

-1
 and C) C2, 57 

m
3
 ha-

1
over number of days after compost application.  C0 and C1 begin on 26 January 2005 and C2 

begins on 13 February 2005.  
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Figure 12  SRP  storm event concentration (mg l
-1

) for A) C0, control, B) C1, 28 m
3
 ha

-1
 and C) C2, 

57 m
3
 ha

-1
over number of days after compost application.  C0 and C1 begin on 26 January 2005 

and C2 begins on 13 February 2005. 
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Although storm events started almost immediately after application on C1, the 

first storm event on C2 after compost application was ten days from date of application. 

Three storm events occurred between date of application and 26 February 2005.  In the 

first two weeks, C2 had a total load of 3.26 kg of NO3 and 1.05 kg of SRP or 86% and 

50% of total NO3 and SRP loss for the entire study period, respectively.  Within the first 

month after compost application on C2, 3.66 kg of NO3 and 1.40 kg of SRP had been 

removed, or 96% and 67% of the total load for the study period (Table 7).  NO3 and SRP 

storm loads decreased as the number of days post initial application increased (Figs. 9 

and 10).   

This is very similar to what studies conducted on cropland found. Concentrations 

of NO3 and SRP are inversely related to the number of days after compost application 

(Figs. 11 and 12). In C1, NO3 and SRP concentration dropped from 61.67 to 1.76 mg l
-1

 

and 11.36 to 1.58 mg l
-1

, respectively, within two months and decreased to below 1.0 mg 

l
-1

 NO3 and 0.67 mg l
-1

 after eight months (Figs. 11 and 12).  In C2, NO3 and SRP 

concentrations decreased from 56.94 mg l
-1

 to 0.91 mg l
-1

 and 11.54 mg l
-1

 to 2.63 mg l
-1

, 

respectively, two months post application. 

The highest concentrations of NO3 and SRP from both treated plots occurred in 

the first storm events after compost application. C2 had a lower initial NO3 

concentration (56.94 mg 
-1

) than C2 (61.67 mg l
-1

), because there was a longer lag time 

between application and the first storm event (Table 6). 
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DISCUSSION   

Soils 

The initial high NO3-N concentration in the soil sample from C2 is not related to 

the compost application treatments.  It may, however, be explained by the presence of 

cattle and other wildlife in the area.  Since the samples from each watershed was a 

composite of six random samples, a portion of the sample from C2 in December 2004 

may have been collected where a cow or other wildlife had recently urinated and thus 

had a higher NO3-N concentration. It is not possible to prove or disprove this theory, and 

is only offered as a possible explanation.  The spike in NO3-N was only seen in the 

upper 0 – 5 cm of the soil profile, and was similar to NO3-N concentrations in C0 and C1 

in subsequent sampling dates.  Nitrate-N concentrations decreased in all watersheds at 

both sampling depths after the December 2004 samples.  It does not appear that compost 

addition at rates of 28 and 57 mg ha
-1

 had an effect on soil NO3-N concentrations.    

Plant available phosphorus was low in the December 2004 samples, ranging from 

1 to 5 ppm P.  This is somewhat expected since the plant available phosphorus supply is 

typically low in soils and the phosphates that are in the soil are not readily available for 

plant use.  Also, in alkaline soils, low-solubility calcium triphosphate is formed and 

soluble phosphate ions also adsorb on solid calcium carbonate surfaces (Miller and 

Donahue 1995).  The soils found in the study watersheds are high in calcium carbonate.  

Both watersheds that received compost application had higher available P than the 

untreated watershed, particularly in the samples collected at 0 – 5 cm depth.  This 

suggests that compost application increased the amount of available P in the soil.  
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Although P concentrations in subsequent sample dates were higher than the initial 

samples, they were still relatively low. 

Stormwater Discharge 

The three watersheds all behaved very similar hydrologically during the pre-rip 

period, even though two of the watersheds received varying rates of compost 

application.  During that period, there was no discernable trend in discharge amounts; 

there was not one watershed that consistently had higher or lower discharge amounts 

prior to contour ripping and there was no significant difference in discharge and runoff 

between watersheds. 

This changed after the contour ripping treatments were applied.  With the 

exception of the first event after (three months post ripping), the untreated C0 watershed 

consistently had higher amounts of discharge during a storm during storm events.  The 

two ripped watersheds continued to behave similarly.  In 55% of storm events, C2 

watershed (contour ripping and additional compost application) had the lowest mean 

discharge among all three watersheds.  The watershed that received contour ripping 

without an additional compost application, C1, had the lowest amount of discharge in 

36% of the storm events.  The two contour ripped watersheds consistently had less 

discharge than the control watershed; however, as the time between storm events became 

shorter, the discharge gap between C0 and the two ripped plots grew wider.  The ability 

to decrease discharge by contour ripping seemed to increase during extended rainy 

periods.   
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In the post rip period, C1 and C2 had 74% and 80% less discharge than the 

control watershed, respectively.  While this is a significant decrease from the control 

plot, these results are probably magnified by the small scale of the watersheds.  Previous 

work conducted on Fort Hood measured the effectiveness of contour ripping in 

conjunction with the installation of gully plugs (check dams) in the vast network of 

gullies within the Shoal Creek watershed (approximately 2000 ha).  Discharge was 

measured at the outflow point of Shoal creek.  Twenty-nine pre-implementation and 31 

post implementation storm events were monitored over a 10 year period.  Mean runoff 

from the watershed was reduced by 61% in the post period when compared to the pre 

period.  Since the contour ripping was implemented at the same time as the gully plugs, 

it is not possible to determine the effects from the individual treatments (Wolfe et al. 

2008).  When making comparisons between that study and the work presented here, it is 

important to acknowledge that contour ripping alone did not cause the 61% reduction in 

discharge alone.  The large watershed study emphasizes the importance of recognizing 

the role that spatial scale plays in this edge of field runoff study.  These small scale 

watersheds had reductions in discharge of 74 and 80% with contour ripping alone.  

Although it is a significant reduction, in large watersheds these values will not be 

achieved with contour ripping alone, because of other landscape processes at work. 
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Stormwater Quality 

Since NO3 is the form of N that is most readily leached from the soil, leaching 

losses are increased as the amount of percolating water is increased in the soil or when 

there is little or no growing cover crop to absorb the nitrates.  In cropping systems, NO3 

losses from soils with an actively growing crop are typically only a few kg a year, with 

the exception being the recent addition of large amounts of fertilizers (Miller and 

Donahue 1995).  Stormwater quality samples illustrated this trend.  With the exception 

of the first two storm events from C1 and the first storm event from C2, all NO3 

concentrations were low and below EPA’s requirement of NO3 concentration less than 

10 mg l
-1

.  Forty four percent and 60% of the storm events in 2005 from C1 and C2 were 

below TCEQ’s more stringent standard of 2.76 mg l
-1

.  All subsequent storm events in 

2006 an 2007 were well below both EPA and TCEQ’s standard.  Unlike SRP 

concentrations, the control watershed, C0, had small losses of NO3 throughout the study 

period, but all concentrations were much lower than any of the regulatory standards.  

This demonstrates that there was a background NO3 loss even without compost 

application.  While the addition of compost did effect the NO3 concentrations and 

loading, the effect only lasted for one year after treatment.  There was no difference in 

NO3 concentration during 2006 and 2007. 

The behavior of inorganic P in soils can be described by adsorption – desorption 

reactions.  Additions of inorganic P initially sorb weakly or strongly to variable charge 

surfaces associated with calcium in calcareous soils.  After initial adsorption, P can 

become less labile, possibly through diffusive penetration (adsorption) of adsorped 
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phosphate ions into soil components.  This adsorption makes the P less available to 

plants, but it is not permanently unavailable to plants (Evans and Johnston 2004).  

Although C1 did not receive an additional compost application in November 2006, the 

SRP concentration was significantly different from both C0 and C2.  This suggests that 

the contour ripping and subsequent disaggregation caused some of the previously 

“fixed” phosphorus to become more labile and available for loss in the form of SRP. 

Both of the compost application rates caused SRP concentrations to exceed both 

EPA and TCEQ’s standards in most storm events.  The SRP concentration in C1 and C2 

exceeds both agencies’ standards for all storm events in 2005.  In 2006, C1 and C2 

continued to exceed the limits of the EPA guidelines for SRP in all storm events.  Even 

with TCEQ’s more lenient limits, C2 always exceeded the SRP limits, as did C1 with the 

exception of one event that was below the limit.   

In 2007, 53% of events that produced enough discharge for sampling on C1 were 

below TCEQ’s standard for SRP; however EPA’s guidelines were exceeded in all but 

one event. SRP concentrations from C2 watershed were below TCEQ’s guidelines 77% 

of the storm events, of those events; four had no measurable SRP concentration and were 

below EPA standards.   

Even though some of the storm events exceeded TCEQ and EPA guidelines, 

comparison of these edge-of-field studies must be made with the understanding that the 

regulatory requirements were developed for instream flows.  Therefore, direct 

comparisons cannot be made.  The nutrient concentrations from these 0.30 ha 

watersheds are magnified by the small spatial scale.  In larger watersheds, these values 
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would be lessened by natural landscape processes that are not found in the small 

homogenous plots.   

It does, however, demonstrate that once compost is applied, both NO3 and SRP 

concentrations will spike if followed immediately by storm events.  After the first few 

storm events, NO3 concentrations decrease to baseline (control) levels.  SRP remains 

slightly elevated three years after initial application, particularly if the soil is subjected to 

disturbance.   
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CONCLUSIONS 

One of Fort Hood’s environmental objectives is to reduce the erosion from 

training lands.  In effort to accomplish that goal, Fort Hood is evaluating two methods, 

compost application to increase vegetation and contour ripping to decrease discharge; 

and in turn decrease erosion.   

This study evaluated the effects of two compost application rates on stormwater 

discharge and quality.  Changes in vegetation cover and composition in relation to 

application rates was not analyzed in this paper, so it is not possible to make statements 

about that relationship.  However, there was no significant difference in discharge 

among all watersheds after the initial compost application.  This suggests that, at least in 

the short-term, neither one of the compost application rates evaluated affected the 

vegetation in the watersheds enough to alter discharge.   

Loss of nutrients after compost application is a concern for land managers.  The 

compost application did cause the stormwater quality from the two treated watersheds to 

be significantly different from the control for all measured parameters immediately after 

application. Although C2 watershed received double the rate that was applied to C1, the 

differences in NO3 and SRP were not linear.  Both watersheds had high NO3 and SRP 

loads during the first year post application with extremely high loads and concentrations 

in the first month after application.  While C2 did have higher concentrations and loads, 

they were not double those losses exhibited by C1.  This is possibly influenced by the 
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differences in the timing of compost application in relation to the first storm event 

between C1 and C2.  There was not a similar spike in NO3 and SRP loads and 

concentrations on C2 after the second compost application in November 2006 since the 

first measurable storm event did not occur until four months post application.  This 

emphasizes the influence of compost application in relation to storm events and the non-

linearity of water quality results between the two application rates.  Both C1 and C2 had 

elevated SPR concentrations after the contour ripping treatments were applied.  This also 

suggests that the “fixed” P may become labile after disturbance in areas previously 

treated with compost.  This may be a concern because of the inevitable disturbances 

caused by military training.   

Contour ripping reduced discharge 74 and 80% on C1 and C2, respectively, 

when compared to the control watershed.  Any practice that reduces the stormwater 

overland flow and subsequent discharge will reduce erosion, since water mediated 

erosion is mediated by overland flow.  It is possible that the initial compost and seed 

applications played a role in the reduction of discharge at this point in the study.  Native 

grass species can sometimes take up to two years to become established after planting.  

The grasses may have established enough to thrive during the third growing season to 

have an effect on discharge.  A vegetation inventory was conducted by Texas Water 

Resources Institute (TWRI) throughout the study period.  Further analysis of that dataset 

may help determine if the seed and compost application increased or underwent a change 

in vegetation composition and thus influenced the discharge in the post-rip period.   
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While compost application may possibly affect vegetation and subsequently 

erosion, the effects are not immediate.  Alternatively, contour ripping immediately 

reduces discharge and appears to be the more logical choice when designing 

conservation practices to reduce erosion on Fort Hood.    
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