
  

 

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR 

DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS 

PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS 

 

 

A Thesis 

by 

ANKIT VERMA  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

May 2009 

 

 

Major Subject: Petroleum Engineering 



  

 

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR 

DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS 

PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS 

 

A Thesis 

by 

ANKIT VERMA  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  David Burnett 
Committee Members, Jerome Schubert 
 Louise Darcy 
Head of Department, Stephen A. Holditch 

 

May 2009 

 

Major Subject: Petroleum Engineering 



 iii 

ABSTRACT 

 

Alternate Power and Energy Storage/Reuse for Drilling Rigs: Reduced Cost and Lower 

Emissions Provide Lower Footprint for Drilling Operations. (May 2009) 

Ankit Verma, B.Tech., National Institute of Technology, Bhopal 

Chair of Advisory Committee: Prof. David Burnett 

 

 Diesel engines operating the rig pose the problems of low efficiency and large 

amount of emissions. In addition the rig power requirements vary a lot with time and 

ongoing operation. Therefore it is in the best interest of operators to research on alternate 

drilling energy sources which can make entire drilling process economic and 

environmentally friendly. One of the major ways to reduce the footprint of drilling 

operations is to provide more efficient power sources for drilling operations. There are 

various sources of alternate energy storage/reuse. A quantitative comparison of physical 

size and economics shows that rigs powered by the electrical grid can provide lower cost 

operations, emit fewer emissions, are quieter, and have a smaller surface footprint than 

conventional diesel powered drilling.  

This thesis describes a study to evaluate the feasibility of adopting technology to 

reduce the size of the power generating equipment on drilling rigs and to provide “peak 

shaving” energy through the new energy generating and energy storage devices such as 

flywheels.  
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An energy audit was conducted on a new generation light weight Huisman LOC 

250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A 

study of emissions while drilling operation was also conducted during the audit.  The 

data was analyzed using MATLAB and compared to a theoretical energy audit. The 

study showed that it is possible to remove peaks of rig power requirement by a flywheel 

kinetic energy recovery and storage (KERS) system and that linking to the electrical grid 

would supply sufficient power to operate the rig normally. Both the link to the grid and 

the KERS system would fit within a standard ISO container. 

A cost benefit analysis of the containerized system to transfer grid power to a rig, 

coupled with the KERS indicated that such a design had the potential to save more than 

$10,000 per week of drilling operations with significantly lower emissions, quieter 

operation, and smaller size well pad. 
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1. INTRODUCTION 

 

1.1 Overview 

 The rig power requirements vary a lot with time and ongoing operation. 

Therefore it is in the best interest of operators to research on alternate drilling energy 

sources which can make the entire drilling process economic and environmentally 

friendly. There are a lot of options available amongst renewable energy resources 

namely wind, solar, fuel cells and energy storage devices. Each of these has advantages 

and drawbacks in terms of economics or rig footprint. Research into alternate power 

systems both economically and practically feasible to modern oil and gas industry can be 

very useful. A system of electrical power grid in combination with an energy storage 

device such as a flywheel/super capacitor unit is one such source which can provide 

substantially cheaper energy as compared to diesel. This energy storage unit can 

supply/reuse the power above and below the base load and allow the rigs to draw the 

base load either from diesel engines or power grid and hence improve the drilling 

efficiency. 

 

1.2 Current Problem 

 The drilling operation is like driving a car and putting its “pedal to the metal” for 

few seconds and releasing it totally again. Drillers seldom pay attention to the power 

consumption data making the entire drilling operation fuel inefficient. It is because either 

 
This thesis follows the style of SPE Drilling and Completion. 
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the rigs are not modern enough to capture each and every data point for all the installed 

actuators while in operation or the data is tight hole meaning it is kept confidential 

during the operation and is destroyed later. There is negligible effort by the industry to 

process the rig data in terms of power and energy consumption and improve drilling 

efficiency based on that actual data. Same is true for emissions data and rig footprint. 

The diesel engines give optimum performance only at a particular value of load. 

Intermittent power consumption of the rig poses problems for the diesel engines to reach 

that optimum load. The simultaneous power consumption of the rig has to be estimated 

and it is certainly not the sum of theoretical power rating of all the installed actuators 

(Huisman, 2005). A land rig’s total power consumption is around 2 MW, all of which 

comes from diesel engines. These are low on fuel efficiency and produce harmful 

emissions because of cycle inefficiency or incomplete combustion (Kumar, Zheng 

2008). Hence there is a growing need for developing an environmentally benign 

alternate power system which is economic and pragmatic. This study focus into various 

alternatives sources of energy storage and come up with a system design based on the 

best possible alternative source of energy storage/reuse available. 

 

1.3 Objective 

 The goal of this project is to determine the feasibility of adopting technology to 

reduce the size of the power generating equipment and to provide “peak loading” energy 

through the use of new energy generating and energy storage devices. 



3 
 

  This project is part of a larger Proposed GPRI/Crisman Study to develop 

theoretically and empirically an energy inventory of the drilling process from a rig 

perspective.  There are a number of current technologies that can be used to partially 

provide power to a rig and reduce fuel consumption and emissions.  These need to be 

evaluated technically and economically to determine the feasibility of application to a 

drilling rig (e.g., diesel additives, types of fuels (gas, dual fuel system, synthetic fuels 

etc, wind energy, solar cells, fuel cells, power management, and gas turbine generators).  

Together with these technologies, new energy storage technology (specifically energy 

storage compatible with drilling operations) will be required. 

Investigation into two peak shaving technologies to be utilized in the drilling rigs 

namely flywheels and super capacitors for lightweight rigs. Super capacitors are 

potential sources of peak energy which can be instantly discharged to remove transients. 

Flywheels offer advantages of reliable operation, instant response, high efficiency, cost 

effectiveness and are environmentally friendly with minimal maintenance requirements 

(Rojas, 2003). After determination of cost involved for electrically operated rigs, work 

will be extended to specification, modeling and layout of electrical systems in the 

drilling rigs. This work involves design of a black box which will serve as a link 

between power grid and the rig and also incorporate the energy storage/reuse 

technology. Attempts will be made to optimize this design in terms of mobility, working 

efficiency and cost. 
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2. CHOICE OF ENERGY STORAGE DEVICE 

 

2.1 Available Options 

 There are quite a number of devices which generate energy. This energy can later 

be stored. Solar panels, wind turbines, fuel cells, storage batteries, super capacitors and 

flywheels are some of the widely used devices. Apart from these there are also 

technologies which are under development phase. The above mentioned devices are 

considered viable for this project as they are used worldwide commercially. Energy is 

stored differently in all of these devices. In a wind turbine mechanical energy of wind is 

converted into electrical energy while in a fuel cell chemical energy is converted into 

electrical energy.  Each of these energy storage devices is evaluated on the basis of 

following factors: 

• Size. 

• Economics. 

• Power generating and storing capability in context of a drilling rig. 

• Problems with installation and transport. 

• Rig footprint. 

 

2.1.1 Solar PV 

 A single solar cell unit produce approximately one watt of power. 

(www.eere.energy.gov). Solar cells have to be connected in series or parallel connection 

to obtain the desired value of power and the discussion of electrical connections of photo 
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voltaic units is beyond the scope of this investigation. By using a solar calculator 

application designed by the U.S Department of Energy one can instantly come up with 

the cost of entire system in a particular area. The following system was designed which 

can provide power to only one of the mud pumps at full load. 

Area    College Station 

Solar Radiance  5.16 kWh/sq m/day 

Average Monthly Usage 50,000 kWh 

System Size   201.22 kW 

Area Required   20122 sq ft. 

Estimated Cost  $1,609,750 (www.findsolar.com) 

Hence, it is economically and practically unrealistic to install such a large unit at 

the rig site. It increases rig footprint. Also it is difficult to transport. One other problem 

is its dependency on the sun which itself is subjected to intermittent availability. Also 

solar cells need a large battery house which again has the constraints of cost and 

mobility. 

 

2.1.2 Wind Energy 

 The wind turbine converts wind energy into rotating motion of the blades. The 

turbine is linked with generators through a gear mechanism. The details of the design of 

wind turbine are beyond the scope of this investigation. But to have a practical picture 

following parameters are obtained from a previous “Environmentally Friendly Drilling” 

report. 
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Power Rating  750 kW (approximately the size of one of the generator unit) 

Total weight  116 tones 

Tower height  213 ft 

Rotor Diameter 80 ft 

Cost   $ 781, 940 (Rogers et.al, 2006) 

 

 

 
Figure 1 - Various sizes of wind turbines with their capital cost. (Rogers et.al, 2006) (Courtesy EFD Report). 

  

 

Figure 1 shows the size variation of wind turbines with power. Hence due to 

larger rig footprint, transportation problems and high capital cost of investment with 

intermittent nature of power production this option is ruled out. 
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2.1.3 Fuel Cells 

 Fuel cells convert chemical energy into electrical energy. Electrical current is 

produced by providing gaseous fuels to anode and oxidizing the cathode which are 

porous (Parsons, 2000). Figure 2 shows working of fuel cell. 

 

 

 

Figure 2 - Schematic of fuel cell. (Parsons, 2000) 

(Courtesy Fuel Cell Handbook). 

 

 

 

Fuel cells have the advantages of no emissions and instant loading. They also do 

not produce noise. But it is the economics which is preventing the application of fuel 

cells in this project (Walsh, Wichert, 2008) Current prices range from $3000 to $4000/ 

kW. In addition there is an associated power system and maintenance cost. Although 

entire unit can be accommodated in reasonable size and provides reliable power.  
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2.1.4 Storage Battery 

 Storage battery unit is another viable option in terms of peak shaving. A 

stationary sulfur battery at an office park is set up in Ohio which can provide 100 kW of 

peak shaving for as much as 30 seconds which is considerably less than the rig 

requirements (Tamyurek and Nichols, 2003). Again the economics of the unit and 

battery life are restricting factors. In addition batteries fall more into low energy density 

systems which is not what is required in this project. This is because of the rig 

fluctuations which will cause the battery to partially charge and discharge hundreds of 

times in a day. It can adversely affect the battery life which is nearly 15 years or 2500 

cycles of full charge and discharge with a cost of $164/ kW (Nichols and Eckroad). Even 

after a successful design the battery unit will be a separate entity which will add an extra 

container to the rig and hence additional transportation costs. 

 

2.1.5 Super Capacitors 

 Super capacitors are used for supplying equipment with low power consumption 

   

Figure 3 - Test set up of super capacitor unit. 
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and high current requirement with fast charging and discharging time. The test study of 

Huisman dealt with 10 modules of 43 capacitors 1500 Farad each (Palthe, 2008). 

         Figure 3 shows the test set up for super capacitors conducted by Huisman. The test 

would be conducted on a 30 kW motor with 5 seconds of hoisting for discharging and 

lowering for charging of the ultra capacitor unit. The electrical circuits with converters 

and their regulators, communication systems and detailed design of controllers are 

beyond the scope of this research. Table 1 shows the risks which are associated with this 

experimentation. 

 

Table 1- Possible risks of testing super capacitor unit. (Courtesy Huisman Itrec). 
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 This pilot project is still under testing phase on a small scale of 30 kW and the 

results with cost benefit analysis are awaited. This technology has advantages of no 

noise, less maintenance and high performance. Therefore efforts are being made to 

extend it to drilling rigs. 

 

2.1.6 Flywheels 

 Flywheels are proven technology for power regulation of telecommunication 

equipment and high power industrial equipment support. They offer advantages of 

reliable operation, instant response, high efficiency, cost effectiveness and are 

environmentally friendly with minimal maintenance requirements (Rojas 2003). Modern 

flywheel system rotates with high speed in vacuum with magnetic bearings. Flywheels 

are successfully tested for peak shaving in cranes.  

 

 
  Figure 4 - Flywheel system coupled with crane’s diesel engine. (Courtesy VYOCON). 
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One very promising example shown in Figure 4 was when a diesel generator was 

coupled with a flywheel it reduced the fuel consumption by as much as 38% (Romo et 

al., VYOCON).Flywheels are also a tested technology which can handle load in the 

range of rig’s peak shaving values with virtually no maintenance cost. Also there is no 

limit to the number of charging and discharging cycles. Noise and emissions do not 

occur, not even lead poisoning like in case of storage battery. A look into commercially 

available flywheel units showed that they match the dimensions of ISO container along 

with the rest of the power system and can be easily transported. Hence flywheel unit was 

chosen to be the energy storage device for this project. Figure 5 compares cost of power 

quality for all the storage devices discussed above. Clearly flywheels also prove to be 

most economic. 

 

 
 

 
Figure 5 - Cost comparison of various technologies. (Courtesy: Sandia National Labs). 
 

C
ap

ita
l C

os
t, 

$/
kW

 

Discharge time, sec 



12 
 

3. METHODOLOGY 

 

3.1 Stepwise Procedure 

1. Read various drilling rig manuals and understood the functioning of rig 

components and made a theoretical energy audit by identifying actuators based on 

nameplate specifications. 

2. Visited a rig site in Texas for interviewing the service engineer and driller to 

understand the working and drawbacks of the rig for this new design and gathered 

comprehensive time stamped drilling data. Studied emissions produced while 

drilling operation. 

3. Analyzed and comprehended this data using MATLAB for making an actual 

energy audit of the rig. Interview with flywheel expert at Texas A&M University 

was done to determine the specifications of flywheel unit.  

4. Compared theoretical energy audit with actual audit and designed the optimized 

system followed by a cost benefit analysis to determine the return of investment.  

5. Designed and encapsulated the power system into the size constraint of ISO 

container. 

6. Studied diesel engines performance curves to determine exact load which the 

energy storage unit has to provide for effective peak shaving. 

3.2 Drilling Rig Study 

Land Offshore Containerised (LOC) rigs are casing while drilling rigs which 

offer a number of advantages like faster drilling time, safe and efficient operation, very 
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little or no trip time, offline BOP testing, less energy requirement for drilling operation, 

highly automated control system and fewer crew members (Huisman, 2005) . The study 

was conducted on this rig because it has a sophisticated supervisory control and data 

acquisition (SCADA) system monitoring various drilling parameters.   

 

 

Figure 6 – LOC 250 rig in actual field. 
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A set up of LOC 250 rig in the field is shown in Figure 6. Additionally these are 

ISO containerised rigs which means they are easy to relocate and transport. LOC 250 

(Land and Offshore Containerized Unit, hook load 250 tonnes) contains 17 containers 

while LOC-400 (Land and Offshore Containerized Unit, hook load 400 tonnes) consist 

of 16 containers (Huisman, 2005). These are the two Casing While Drilling (CWD) rigs 

under consideration in this study. Table 2 provides description of various containers of 

LOC 250. A comprehensive energy audit of both of these rigs is done in order to 

determine the overall power and energy these rigs consume and also the values of 

transient power peaks which should be provided by our alternate power system. For this 

purpose time stamped data from one of the LOC-250 rig was obtained and processed. 

LOC-400 is a successor of LOC-250 and it is assumed that the processed values from 

LOC-250 will match closely to that of LOC-400. This is because LOC-400 is an 

improved version of LOC-250 and is still under construction. Hence operational data 

from LOC-400 is unavailable. Nonetheless theoretical energy audit of LOC-400 is done 

in this study. 
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Table 2- Container description for LOC 250. (Courtesy Huisman US Inc.). 



16 
 

3.2.1 Electrical System for LOC-400 

The main power consumers namely mud pump, drawworks and top drive of 

LOC-400 rig are mounted on the main dc bus. There are two or three diesel generators 

with total rated power of 2400 KW, 480 V, 60 Hz, 3000 KVA. Two transformers 

convert this into 690 V, 60 Hz and feed it to the invertors which then convert it into DC 

and supply to the main bus where all major consumers are mounted. Regenerated power 

is dissipated in the brake resistors. The single line diagrams for LOC 400 with bus bars 

and different actuators and is shown in Figure 7. A close look at the boxes connected to 

the main bus shows the two transformer containers which basically forms the alternate 

power system. The details of these containers will be described later.  

According to Huisman specification manual for LOC-400, it should not be 

difficult for the rig to take power from the utility grid. If there are strong reasons in 

terms of cost savings and efficiency, such a possibility should be thoroughly explored. 
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Figure 7 – Single line diagram of LOC 400 with alternate power system. 

 

Various acutators of LOC 400 

(Beyond the scope of this research and hidden due to confidential 

reasons imposed by the manufacturer). 
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3.2.2 Electrical System for LOC-250  

There are two generators feeding the 480 V main bus which itself feeds the 

hydraulic power unit (HPU) and one generator feeding electrical power unit (EPU). 

Variable frequency drives are mounted in order to attain different speeds. There are no 

invertors feeding the main power consumers rather they are AC motors as opposed to 

LOC-400. The hydraulic power system in LOC-250 is replaced by electrical system in 

LOC-400 which is the reason why it is considered to be a better version of LOC-250. 

Also this is one of the reasons why there is no efficiency loss in LOC-400 when 

converting the regenerative power from hydraulic to mechanical and then electrical 

which is the case with LOC-250. The single line diagram for LOC 250 with bus bars and 

different actuators in place is shown in Figure 8. Some of the actuators installed are not 

shown in the single line diagram because of confidential reasons. However they do not 

pertain to the scope of this project and hence not required by the reader to know. 
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Figure 8 – Single line diagram of LOC 250 with alternate power system 

Various acutators of LOC 250- 

(Beyond the scope of this research and hidden due to confidential 

reasons imposed by the manufacturer). 
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3.3 Energy Audit 

 

3.3.1  Theoretical Energy Audit 

The rig does not operate on its full rating all the time. Rather the power 

consumption is distributed as given by Table 3. Initially a theoretical energy audit for the 

rig was conducted based on the specifications of the rig. This was done by reading 

various nameplate ratings of the drives installed on the rig. For hydraulic system power 

was calculated based on the flow multiplication by pressure ratings in the hydraulic 

diagrams. Hydraulic drives are mainly mounted on LOC 250 rig. 

 

Table 3- Simultaneous power consumption of the rig with operating time. 

(Courtesy Huisman US Inc.). 

 

Table 4 exhibits the theoretical values of rig specifications for various actuators. 

Hence design of this KERS system based on theoretical energy audit will simply result 

in an overly designed system which will be uneconomic and underutilized. Therefore an 

actual energy audit of LOC-250 is required. 

 

 

Share Load of Engines Operating Time 
75% 60% 
50% 30% 
10% 10% 
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Table 4 – Theoretical Energy audit of LOC 250 with various actuator ratings. 

 

 

Main Power Consumers Power in kW No. 

Drawworks  2X400 2 

Mudpump 3X400 3 

Topdrive 1X440 1 

Wire line traction 2X55 2 

Wire line storage 2X25 2 

Total installed Power 2578   

Maximum simultaneous Power Consumption 1600   

   

Secondary Power Consumers     

Shaker 2X3 2 

Degasser 18.5 1 

Agitator 12X5.5 12 

Centrifugal Pumps 3X55 3 

Mud Pump liner wash pump tbd   

BOP control Unit 15 1 

Hydraulic Power Unit 2X110 2 

Compressors 15   

Miscellaneous  tbd   

Total Installed Power 500   

Max Simultaneous Power Consumption 400   

   

Hydraulic Drives 2X110 2 

Rig Up and Emergency Diesel Pump 40 1 



22 
 

3.3.2 Actual Energy Audit 

 To obtain a realistic measure of power consumption an actual audit of the rig is 

required. This can be done by processing real time operational rig data. The process 

starts with gathering the rig data from its SCADA system. This data can be converted to 

comma separated format by the use of Trend Reader software. These comma separated 

files after a little conditioning can be imported to MATLAB. There were as much as 23 

rig parameters obtained from SCADA system. Each of these parameters was as much as 

1.3 million lines long. Excel can process data only a little more than 65000 lines. Hence 

a comprehensive tool with multiple functionalities was required. This is the reason why 

MATLAB was chosen for this research. Table 5 shows various rig parameters. The 

highlighted parameters were those signals which were later combined in MATLAB for 

obtaining relevant results.  
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Table 5 – List of SCADA signal measured on LOC 250 

Title Total Headers Start End Continuous 
Sample 

Time(sec) 

Gas Units 51 06-25-07,00:00:00 06-22-2008,23:59:59 Yes 0.5 

Auxiliary Pressure 51 06-25-07,00:00:00 06-22-2008,23:59:59 Yes 1 

Bit Location 51 06-25-2007 00:00:00 06-22-2008,23:59:50 Yes 10 

Block Position 51 06-25-2007 00:00:00 06-22-2008,23:59:59 Yes 1 

Depth 51 06-25-2007 00:00:00 06-22-2008,23:59:50 Yes 10 

Dexponent 51 05-28-2007 00:00:00 05-25-2008 23:59:50 Yes 10 

Flow Bell Nipple 51 05-28-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

GainLoss 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

HookLoad 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

MudPump1GPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

MudPump1SPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

MudPump1Total strokes 51 04-06-2007 00:00:00 01-06-2008 23:59:58 Yes 2 

MudPump2GPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

MudPump2SPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

MudPump2Total strokes 51 04-6-2007 00:00:00 01-06-2008 23:59:58 Yes 2 

PillTank1Volume 51 06-18-2007 00:00:00 06-15-2008 23:59:50 Yes 10 

PillTank2Volume 51 06-18-2007 00:00:00 06-15-2008 23:59:50 Yes 10 

Pipe Velocity 51 06-25-2007 00:00:00 06-22-2008 23:59:50 Yes 10 

Pit Volume Total 51 06-18-2007 00:00:00 06-15-2008 23:59:58 Yes 2 

Pump Pressure 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

Rate of Penetration 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

ReserveTankVolume 51 06-18-2007 00:00:00 06-15-2008 23:59:50 Yes 10 

RotaryTableRPM 51 06-25-2007 00:00:00 06-22-2008 23:59:50 Yes 10 

RotaryTableTorque 51 06-25-2007 00:00:00 06-22-2008 23:59:50 Yes 10 

ShakerTankVolume 51 06-18-2007 00:00:00 06-15-2008 23:59:50 Yes 10 

SICP 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

SuctionTankVolume 51 06-18-2007 00:00:00 06-15-2008 23:59:50 Yes 10 

TopDriveRPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

TopDriveTorque 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

TotalGPM 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 

TotalStrokes 51 01-6-2008 23:59:00 05-21-2007 00:00:00 Yes 10 

TripTankVolume 51 06-18-2007 00:00:00 06-15-2008 23:59:58 Yes 2 

WeightOnBit 51 06-25-2007 00:00:00 06-22-2008 23:59:59 Yes 0.5 

WireLineDepth 51 11-6-2007  00:00:00 06-15-2008 23:59:58 Yes 2 

WireLineLoad 51 06-25-2007 00:00:00 06-15-2008 23:59:58 Yes 2 

WireLineSpeed 51 06-25-2007 00:00:00 06-22-2008 23:59:58 Yes 2 
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3.3.3  MATLAB Code 

 The following procedure was followed in MATLAB: 

• [date,time,mp1gpmdatadata]=textread['C:\Users\ankit\Desktop\Signal 

combination\MudPump1GPM.txt','%s%s%n']; 

• [date,time,ppdata]=textread['C:\Users\ankit\Desktop\Signal 

combination\PumpPressure.txt','%s%s%n']; 

• %Delete date and time for both of the above 

• plot(mp1gpmdata); 

• plot(ppdata); 

• mppower=mp1gpmdata.*ppdata;%point wise vector multiplication 

• plot(mppower); 

• mpmv=filter(ones(1,2)/2,1,mppower);%Moving Average for 2 seconds 

• plot(mpmv);%Plotting moving average curve 

• z=[1:1330000]%defining a column vector z 

• z=z'; 

• plot(z,mppower,z,mpmv);%plotting original curve VS moving average curve 

• mpdifference=mppower(2:1330000,1)-mpmv(1:1329999,1);%Calculating the 

difference between the two curves with 2 seconds lag 

• plot(mpdifference*.0063);%plotting difference between original signal and 

moving average on KW scale 

• mpdifference1=mpdifference(4e5:6e5)%segmenting a part of 'difference'  

• mpdifference1=mpdifference1*.0063%converting into KW scale 
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• mpenergy1=filter(ones(1,200001)/1,1,mpdifference1);%adding Nth value to all 

(N-1) values for obtaining energy curve 

• %Entire procedure is repeated for top drive with a conversion factor of 

.00010046 

• plot(mpdifference(1:1309725)+mp2difference(1:1309725)+tddifference);%plotti

ng total difference of power for mud pump1,mud pump2 and top drive which the 

flywheel has to supply(2 sec) 

• plot(z(200001:400001),mpenergy1,z(400001:600001),mpenergy2,z(600001:800

001),mpenergy3);%Plotting overall energy for mud pump1 

• %Remove the offset from above curve 

• plot(z(200001:400001),mp2energy1,z(400001:600001),mp2energy2,z(600001:8

00001),mp2energy3);%Plotting energy for mud pump2        

• %Remove the offset from above curve 

• plot(z(200001:400001),tdenergy1,z(400001:600001),tdenergy2,z(600001:80000

1),tdenergy3);%Plotting cumulative energy for top drive 

• % Remove the offset from above curve  

• plot(mpdifference(1:1309733)+mp2difference(1:1309733)+tddifference);%Plotti

ng total difference of power for mud pump1,mud pump2,top drive for 2 sec 

• plot(z(200001:400001),mpenergy1,'b',z(400001:600001),mpenergy2,'b',z(600001

:800001),mpenergy3,'b',z(200001:400001),mp2energy1,'g',z(400001:600001),mp

2energy2,'g',z(600001:800001),mp2energy3,'g',z(200001:400001),tdenergy1,'y',z
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(400001:600001),tdenergy2,'y',z(600001:800001),tdenergy3,'y');%Comparing 

energy curves for mud pump1,2 and top drive 

• plot(z(4e5:6e5),mp2energy1+mpenergy1+tdenergy1,z(6e5:8e5),mp2energy2+mp

energy2+tdenergy2,z(8e5:10e5),mp2energy3+mpenergy3+tdenergy3); 

• grid %Adding energy curves for mud pump1,2 and top drive 

• %maximum value of cumulative energy curve for 2 sec=550KJ; Including an 

efficiency factor of 0.7 for the entire system E max(flywheel)=785 KJ 

• %maximum value of difference of power curve for 2 sec =100 KW; Including an 

efficiency factor of 0.7 for the entire system P max (flywheel)=143 KW 

• %entire procedure is repeated for window period of 10 seconds 

• %maximum value of cumulative energy curve for 10 sec=20000KJ;Including an 

efficiency factor of 0.7 for the entire system E max (flywheel)=28570 KJ 

• %maximum value of difference of power curve for 10 sec =140 KW; Including 

an efficiency factor of 0.7 for the entire system P max (flywheel)=200 KW 

• %entire procedure is repeated for window period of 20 seconds 

• %maximum value of cumulative energy curve for 20 sec,=86000KJ;Including an 

efficiency factor of 0.7 for the entire system E max (flywheel)=122857 KJ 

• %maximum value of difference of power curve for 20 sec=152 KW; Including 

an efficiency factor of 0.7 for the entire system P max (flywheel)= 217  KW 

• plot(z(200001:400001),mpenergy1,z(400001:600001),mpenergy2,z(600001:800

001),mpenergy3,z(200001:400001),tdenergy1,z(400001:600001),tdenergy2,z(60
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0001:800001),tdenergy3)%Comparing Cumulative Energy Curves for Mud 

Pump and Top Drive for all window lengths 

 

3.3.4 Simplified Description of MATLAB Code 

 An easier description for MATLAB code follows. For various variable names 

refer to Appendix A: 

• Import the text file data in MATLAB by using either import wizard or textread 

command. Say data for Mud Pump is imported. 

• Three vectors namely date, time and data are formed. As MATLAB plots the 

data VS index by default and index can be scaled to sample time we can delete 

the date and time vectors for simplicity. Plot the Mud Pump Flow VS Time�

(Figure 9). 

• Vector mpdata is ready to use. A similar procedure is followed for pump pressure 

data to obtain and plot ppdata vector (Figure 10). 
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Figure 9 – Flow rate of one of the mud pumps and its variations with time. 

Fl
ow

, G
PM

 

Time, sec 

Pump Flow vs. Time 



29  
 

 

 

• Point wise multiplication of pump pressure and mud pump flow will give the 

instantaneous power for the mud pump on time scale (Figure11). 

• A moving average for a window length of 2 seconds is taken and plotted against 

this Mud Pump power curve. This is done because moving average is assumed to 

converge to the average value of a certain dataset and by increasing the window 

length the curve will move closer to base load value (Figure 12).  

• Larger is the time period of moving average, greater will be the difference 

between original and moving average curve, lower will be the base load and 

larger will be the size of the flywheel.  

• Rest of the peaks (difference between moving average and power) are plotted. 

The flywheel design is based on this difference between actual and moving 

average curve (Figure 13). 

• A cumulative difference curve for Mud Pumps and Top Drive is plotted. This is 

the summary of all the peaks that flywheel unit will supply (Figure 14). 

• An energy curve is obtained by adding all the previously consumed power peaks 

for both the mud pumps and top drive. This is done by adding all the n-1 values 

to the nth value of peak and multiplying it by the time to give energy in KJ. This 

is done by using an inbuilt filter in MATLAB and can be found in the code given 

in the previous heading. All energy curves for the given window length are 

added. 
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 Figure 10 – Pump pressure vs. time is and its variations. Negative peak is considered to be a false triggered signal. 
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Figure 11 – Instantaneous power of mud pumps vs. time and its variations. Some of the exceptionally high values are considered to be false 
triggered. 
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Figure 12 – A moving average of window length 2 seconds and actual power curve of the mud pump are plotted vs. time in order to 
determine transient peaks for this window length. 
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Figure 13 – Difference between the actual curve and moving average curve for the mud pump vs. time for the window length of 2 seconds. 
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Figure 14 – Difference between the actual power curves and moving average curve combined for mud pumps and top drive vs. time. 
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• The peaks in this curve represents the minimum amount of energy flywheel unit 

should have for effective peak shaving. These energy curves are drawn for all 

window periods and are attached in the appendix. Hence after these eight steps 

we have the values for E max and P max for the flywheel unit. 

 

  

 
 Figure 15 – Variation of KERS power requirement with window lengths. 
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Hence after a rigorous data processing we come up with the moving maximum power 

and maximum energy values which the flywheel unit has to provide in order to be 

effective for peak shaving. Figure 15 show variations of the value of power which 

increases with the increasing window length.  

• The energy curve for mud pumps and top drive for window period of 2 seconds 

is shown (Figure 16).  

• The energy consumption for both mud pumps and top drive is compared and 

shown in cumulative energy comparison graph. This graph proves that mud 

pumps are the largest energy consumers (Figure 17). This energy comparison is 

also done for all window lengths. 

• Another curve of interest would be top drive power and depth on the same time 

scale which shows stages of drilling where top drive consumed power (Figure 

18). 

• Lastly power comparison with depth for mud pumps and top drive is made. 

These curves summarize the drilling operation. Drilling process started near to 

9600000 second and halted at 12400000 second where there is no power 

consumption by any component. Again power consumption begins at 1400000 

second and goes up to 1800000 second. The amount of power consumed 

individually by these pumps and top drive is also shown (Figure 19). 
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Figure 16- Energy curve for mud pumps and top drive for window length of 2 seconds. 
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Figure 17 – Comparison of actual energy requirement of top drive and mud pumps vs. time and consumption of energy by mud pumps and top   
drive during drilling operation. 
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Figure 18 – Curve for drilling depth and simultaneous top drive power consumption vs. time. 
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   Figure 19 - Power consumption of mud pumps and top drive vs. time and variation with drilling depth. 
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3.3.5  Comparison of Theoretical and Actual Energy Audit 
  

The following Table 6 shows a comparison between actual and theoretical energy 

audits conducted. Hence it is clear from these values that designing a system merely on 

the nameplate rating would have resulted in an overly designed system. Such a system 

would have been bulky and costly. 

 

Table 6 - Comparison of actual and theoretical energy audit 

Actuator (Hp) (Hp) 

  Theoretical Values Actual Values 

Top Drive 103 57 

Mud Pump1   215 

Mud Pump2   213 

Total Power for Mud Pumps 490 428 
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4. SYSTEM DESIGN BASED ON DATA PROCESSING 
 
 

This section will illustrate the important components of alternate power system 

and their corresponding description. All of design mentioned here is based on the rig 

specification and data processing results. 

 

4.1 Black Box Description 

Initially the power system under design is assumed to be a black box. Following 

important points are considered before designing any component: 

• Efficient  Operation 

Design should be such that all kind of losses should be minimized. This includes 

T&D losses and all transformer losses. 

• Reliable 

The possibility of total equipment breakdown should be negligible. Two 

transformers with a back up diesel generator add to the redundancy. Even if all 

the three fails the emergency rig up power can be used which itself can be 

operated from an energy storage device like flywheel or a super capacitor unit. 

• Cost Effective 

In order for the system to be lucrative to operators, initial cost incurred should be 

minimal. With fluctuating gas prices, drilling with electricity can be economical.   

The goal will be to make this design much cheaper as compared to diesel fed rig. 

• Safe Operation 
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Risk of shocks or accidents should be minimized. Huisman standards will be 

incorporated. Some of these measures include: 

1. Equipment provided for protection of persons at work near electrical 

installations. 

2. Equipment ability to bear electrical stresses and shocks. 

3. Bus bar protection. 

4. Protection from excess/short circuit current. 

5. Cut off and isolation. 

6. Working conditions, lighting, competent personal. 

7. Protection against indirect contact. 

8. Adequate earthing requirements. 

• Mobile 

A mobile unit can reduce great deal of operator reluctance for transportation and 

set up. The switchbox dimensions will be decided so as to fit it in a 20 ft or 40 ft 

ISO standard container. 

• Remote Operation 

The existing SCADA system on LOC 400 will be used to operate the transformer 

unit remotely and to monitor various predefined parameters. 

 
A black box design is illustrated in Figure 19 considering all of the above factors.  

This diagram shows constituent components of the black box. A brief description of the 

black box design is also given following the diagram. 
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The switchbox above contains many inbuilt blocks. One such block is dedicated 

transformer switchgear with feeder cables. Such a transformer station can be connected 

to a service voltage of 11 KV by a feeder cable which is another specially designed 

component. This 2 mile long feeder cable will be on a storage winch. The winch will 

have a close circuit coolant circulation in order to avoid overheating of the mounted 

cable while in operation. Another block would be the flywheel unit. Size, rating and 

specification of the flywheel unit are determined on the basis of rig data processing. 

There is one more data acquisition block which will monitor all the parameters while the 

unit is functional. Such a SCADA system is already in place in these rigs. After 

 
Figure 20 – Black box design for alternate power system. 
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appropriate size determination all of these blocks will be placed in a 20 ft or 40 ft closed 

ISO container which has the inherent advantage of easy transportation with no special 

freight regulations. The overall system also contains emergency back up diesel generator 

unit in case the electrical design fails or power trips. A detailed design with dimensions 

will be shown later. 

 

4.2 Component Description 

 

4.2.1 Power Line Cable 

Assuming an overall derating factor of 0.6 for ground (including air and ground 

temperatures, grouping of cables, depth of burial, overall derating factors for ground and 

air) ( McAllister 1987)  and calculating the transformer primary winding current for 3.3 

MVA loading. The equation governing the primary current is given by: 

 

I p = 3300000/ (�3 X 11000) = 173.4 Amps…………………………..Equation 1 

where I p is the primary winding current.  

Cable equivalent current for 25 ‘C = 173.4/0.6= 289.01 Amps………Equation 2 

 

This value corresponds to a 3 core cable with cross sectional area of 95 mm2 and 

outer core diameter of 12 mm in standard tables in the cable handbook (Fink and Beaty 

1987).Thus the overall diameter of the cable would be 36 mm (Figure 13). This cable 

might be oil cooled from within. Environmental regulations governing laying this high 
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voltage cable will be discussed later. Other details are-cable coding BS6622 95/100 

mm2, 37 wires for 600 V, PVC insulation, current rating of 3 core cable 11 KV XLPE 

insulation (McAllister 1987). Figure 20 shows a cross section of the power cable with 

the dimensions. 

 

 

 

 

4.2.2 Storage Winch 

Storage winch in this system is used for holding as much as 3000 meters long 

power cable which can be used as an alternative to connect the rig to the power grid 

 
Figure 21 – Cross section of power cable with 3 inner cores and insulation. 
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instead of constructing power lines to drill site. This winch has to be accommodated into 

2.2 meter height and width dimension of ISO container. The winch’s main design 

parameters are wire diameter 36 mm, drum wire storage 3042 m, number of safety  

windings 3, number of layers 16, drum diameter in groove 640 mm, length of the drum 

2200 mm, ratio of wire/ drum diameter 17.78, pitch of the drum 37.44 mm. 

 

4.2.3 Transformer and Switchgear 

3 Phase, distribution type,11 KV/480 V,60 Hz, Class F,DZ. 2 transformers will 

be needed to replace either of the diesel engines. Incoming and bus bar section circuit 

breakers should be 3/4 pole for low voltage based on air break. For high voltage they 

should be either SF6 or vacuum based. Earthing bars should be high grade copper located 

at front or rear enclosure, screen clamping type. Standard lightning arrestor and cabinet 

cooling system is also recommended (Alstom T&D Protection and Control 1995). Main 

bus bar is 400 amps, high grade copper (Westinghouse Electric Cooperation 1964). 

Control and indicators include power factor meter, voltmeter, ammeter, frequency meter, 

synchronising devices and varmeter. Fuses are in series with contactor with rating of 

1.5~2 times normal load current. Standards for safety vary from designer to designer and 

the manufacturer. Detailed design is left up to the electrical design and installation 

company and superior quality equipment or equipment with industry wide standard 

usage is recommended. 
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4.2.4 SCADA System 

Same as currently installed to measure all the drilling parameters. In addition a 

feature of measuring power and current usage and transient could be included for 

obtaining additional data sets. 

 

4.2.5 KERS System 

A high speed generator is coupled to the flywheel so as to attain maximum 

energy storage density. Magnetic bearing provides frictionless motion of the shaft. The 

entire unit is mounted in a vacuum enclosure to provide enhanced service life. Further a 

fully controlled inverter and a variable speed motor is connected which controls the 

charging and discharging of the unit. This arrangement is shown in Figure 21. A 

monitoring system is mounted on this for controlled operation (Kirby 2004). Flywheel in 

the current system is designed for recycling energy. It discharges energy when the load 

exceeds the prescribed limit. A commercially available flywheel system is considered to 

fit in the described system. Its ratings are- rated power 140 kW, duration 15 seconds, 

useable energy storage 2244 kW-sec max., flywheel rotational speed 36 to 24 KRPM, 

input voltage 420 - 600 VDC, recharge rate factory adjustable (per application) 12 

minutes, typical stand by losses 2000 Watts, voltage discharge 400–500 VDC 

(adjustable per application), voltage regulation +/- 1%, DC ripple less than 2%, 

operating temperature -20 °C to 40 °C, humidity 95% non-condensing, altitude 1500 m 

max (without derating), audible noise 66 dBA at 1m, height 1981 mm, width 1219 mm, 

depth 610 mm, weight 872 kg (www.chloridepower.com). Table 6 summarize the results 
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from data processing and explore the possibility of this flywheel unit for being 

successfully implemented in the overall system. Other modern high speed flywheel units 

can also be incorporated considering size constraint of 20 ft ISO container and safety 

regulations. This investigation is primarily concerned with proving that flywheel unit 

can be successfully implemented for peak shaving in drilling rigs. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 22 – KERS system positioning and operation 
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Table 7 – Data processing results and flywheel size determination 

 

Thus from Table 6 it is clear that a flywheel unit with the specifications 

mentioned can be successfully implemented for peak shaving up to 10 seconds. A 

comprehensive ISO container with all the components installed is shown in Figure 22. 

This is the concept phase design with basic details which shows feeder cables, 

transformer units and their cooling fans, switchgear, storage winch, winch cooling 

mechanism, AC unit, lighting unit. Intricate design of bus bars, circuit breaker and 

isolators, motor control centre cubicles and fuses are beyond the scope of investigation 

and are left up to the electrical design company. 

Window 
Length 
(sec) 

Maximum 
Energy 

(KJ) 

KWh Maximum 
Power 
(KW) 

Flywheel 
height 
(cm) 

Flywheel 
weight 
(Kg) 

Cost 
($/KW) 

No. of 
Flywheels 

Speed 
(Krpm) 

2 785 .2 143 198 872 300 1 24-36 
10 28570 8 200 198 8720 300 10 24-36 
20 122857 34 217 198 Not 

Feasible 
300 Not 

feasible 
24-36 
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Figure 23 -  Detailed design of alternate power system inside ISO container 

 

Conceptual Design of Alternate Power System 
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5. CONCLUSION 

 

5.1 Results 

 It is the operator who pays for diesel and its transportation.  Hence electricity as 

an alternate energy source with peak shaving technology is lucrative in terms of return of 

investment and operational cost. In addition it is emission free and environmentally 

friendly technology. Table 8 exhibits a cost benefit analysis of grid drilling with peak 

shaving with conventional diesel drilling. Table 9 estimates various emissions during 

construction, transportation and usage of drilling equipment (Hendriks and Janzic, 

2005). It also indicates that such emissions are much higher in case of conventional rigs 

as compared to the rig under consideration here. This system can eliminate the emissions 

during drilling and hence can play a crucial role in environmental protection. 

 
Table 8- Cost benefit analysis of KERS system

Sr. 
No. 

Parameter Diesel Operation Electric Operation 

1 Consumption 3400 L/day or 870 Gal/day 
and 11920 Gal overall 
(Huisman 2006) 

 366769KWh@ 7cents/KWh 
 and @ 80% of  diesel fuel 
equivalent  
 

2 Cost $28600@ $2.4/Gal for 20 
Days 

 $26674 for 20 Days 

3 Emissions Noisy operation Noise free operation (no moving 
parts like a generator) 

4 Pollution and 
Environment 

Emissions and pollutants  
(CO2,CO,NOx,SOx) due to 
transport and drilling 

Environmentally friendly 
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 LOC-
250  

Share (%)  Standard(low)  Share (%)  Standard(High)  Share (%)  

Weight (t/well) 475  600  1000  
Transport         
CO2  t/well  4  8  5  7  8  7  
Nox  Kg/well  41  7  52  6  87  6  
CO  Kg/well  8  5  10  4  17  4  
PM  Kg/well  1  11  2  9  3  9  
SO2  Kg/well  5  65  7  65  11  65  
Drilling         
CO2  t/well 42 88 67 90 106 90 
Nox  Kg/well 551 93 868 94 1374 94 
CO Kg/well 140 79 220 83 349 82 
PM Kg/well 12 89 19 91 29 91 
SO2  Kg/well 0 0 0 0 0 0 
Construction         
CO2  t/well 2 4 2 3 4 3 
Nox  Kg/well 2 0 2 0 4 0 
CO Kg/well 29 16 36 14 60 14 
PM Kg/well 0 0 0 0 0 0 
SO2  Kg/well 3 35 4 35 6 35 
Total    Relative to 

Standard(High) 
 Relative to 

Standard(High) 
  

Standard(High) 
CO2  t/well 48 41 74 63 118 100 
Nox  Kg/well 594 41 922 63 1465 100 
CO Kg/well 176 41 266 63 426 100 
PM Kg/well 13 41 20 63 32 100 
SO2  Kg/well 8 48 10 60 17 100 

Table 9 – Emissions data from construction, transport and usage of drilling equipment 
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Figure 23 – Cost and savings curve for KERS system with diesel and electricity price variation 

  

 

The cost benefit analysis in graphical format is shown in Figure 23. It is assumed 

that the prices of diesel and electricity will increase with time. The rate of increase might 

be different. The blue line is the trend of total cost per well with increasing diesel prices 

in $/Gallon. The brown trend line is the cost per well when KERS system described in 

this research is used. The green trend is savings while using KERS system at a particular 

diesel price per gallon. It is seen that when diesel prices were around a 1$/gallon use of 

the KERS system was not economic. Slowly increasing the diesel prices increases 

savings with alternate energy system as shown by the green trend line. Here it is 
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assumed that the fuel consumption of a particular rig, LOC-250 in this case, will be more 

or less the same for an average well with average depth of 8000ft.   

 

5.2 Inferences 

Hence we come up with following conclusions from this research project: 

• The power consumption of casing while drilling rigs, LOC-250 and LOC-400 is 

much lesser than conventional rigs. 

• It is possible to connect these rigs to electrical grid. It is also possible to install a 

KERS system which can successfully provide peak shaving and reduce the 

transient power peaks. 

• Such an alternate power system can be made mobile with no special freight 

requirements. 

• LOC 400 being an electrically driven system can be easily connected to a power 

grid within 2 miles of radius. 

• It is possible to eliminate all the drilling emissions with this KERS system 

operating with electrical grid. 

• Savings after installing this system increase linearly with increasing cost of 

diesel. 

• The rig with both alternate power system and conventional diesel engines 

consumes lesser diesel as compared to the same rig with standalone diesel 

engines. This is true for an average well duration of 20 days and average well 

depth of 8000 ft. 
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5.3 Future Work 

Following investigation can also be conducted in future: 

• Analysis of the regenerative power by LOC-400 and losses. 

• Detailed design of switchgear and their single line diagrams with rating of fuses 

and circuit breakers. 

• Replacement of flywheel by super capacitor units and redo the peak shaving 

design once super capacitors are successfully tested. 

• Cost quotation and return of investment of switchgear components, flywheel 

unit, installation and maintenance.  

• Design of cooling system for storage winch. 

• Study of Environmental regulations in order to lay out high voltage cable on 

ground. 

• Simulation of the circuit design. 

• Safety guidelines for operation of KERS based rig power system.  

• Interviews with utility companies regarding surcharges and special regulations 

which vary with state. 

• Calculation of power factor of the rig. 

• Lab testing of KERS coupled diesel engines to estimate exact fuel savings. 
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NOMENCLATURE 

 

AC  Alternating Current 

Amps  Amperes 

�C  Degree Centigrade 

Cm  Centi Meters 

CO2    Carbon dioxide 

DC  Direct Current 

dBA  Decibels 

ft  Feet 

gpm  Gallons Per Minute 

Hz  Hertz 

ISO  International Organization of Standards 

KERS  Kinetic Energy Recovery and Storage 

kG  Kilo Grams  

kJ  Kilo Joules 

kRPM  Kilo Rotations Per Minute 

kV  Kilo Volts 

kW  Kilo Watts 

kWh  Kilo Watt Hour 

l  Litres 

LOC 250 Land Offshore Containerized (with hook load of 250 Tonnes) 
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MATLAB Mathematics Laboratory  

mm  Milli Meter 

MVA  Mega Electron Volt 

NOx  Family of Nitrogen Oxides 

SCADA Supervisory Control And Data Acquisition System 

SF6  Sulphur Hexa Fluoride 

SOx  Family of Sulphur Oxides 

V  Volts 

XLPE  Cross Linked Polyethylene 

 

  

 

 

 

 

 

 

 

 

 

 

 



  
 

 

59�

REFERENCES 
 
 
Brobeck, W.M. and Associates. Conceptual Design of a Flywheel Energy Storage 
System. Sandia Laboratories, Contract No.DE-AC04-76DP00789, United States 
Department of Energy, Washington DC (Nov 1979). 
 
Commercial flywheel unit ratings, Chloride Power website. 2008: 
www.chloridepower.com. (Accessed on Jul 2008). 
 
EG&G Services, Parsons Inc. Fuel Cell Handbook, Fifth Edition, Science Applications 
International Corporation, Contract No. DE-AM26-99FT40575, United States 
Department of Energy, Washington DC. (Oct 2000). 
 
Electrical Transmission and Distribution Reference Book, eighth edition, 1964. East 
Pittsburg, PA: Central Station Engineers of the Westinghouse Electric Cooperation. 
 
Electricity prices, Electricity Bid website. 2008: www.electricitybid.com. (Accessed on 
Jan 2008). 
 
Fink D.G., Beaty, H.W. 1987. Standard Handbook for Electrical Engineers, NY: 
McGraw Hill Book Company Inc. 
 
Flywheel applications, Beacon Power website. 2008: www.beaconpower.com. 
(Accessed on Aug 2008). 
 
Hendriks, K., Janzic, R. 2005. Environmental impact of standard oil drilling installations 
versus LOC 250. Ecofys Report for Huisman US, Ref: A04-10050. 
 
Huisman Special Lifting Equipment B.V.  2005. LOC250 Casing Drilling Manual 
Version 1.0. Schiedam, Netherlands: Huisman. 
 
Huisman Special Lifting Equipment B.V. 2007. Technical Specification LOC400: 
Husiman Itrec. 
 
Huisman Special Lifting Equipment B.V. 2006 ,User Manual for  Containerized 
Drilling Unit, System Description, Specifications, Operation and Maintenance Volume 
1,  A04-45000, Schiedam, Netherlands: Huisman. 
 
Kirby, Brendon, PE. 2004. Frequency Regulations Basics and Trends. Power System 
Research Program Oak Ridge National Laboratory, Oak Ridge, Contract No.DE-AC05-
00OR22725, US D.O.E, Washington DC. (Jul. 2004). 
 
McAllister, D. 1987. Electrical Cables Handbook. BICC Power Cables Ltd, London, 



  
 

 

60�

UK: Granada Publishing Ltd. 
 
Nichols, D.K, Eckroad, S., 2003. Utility Scale Application of Sodium Sulfur Battery. 
Battcon, www.battcon.com/PapersFinal2003/NicholsPaperFINAL2003.pdf. 
Downloaded January 2009. 
 
Protective Relay Application Guide, third edition, 1995. Stafford UK: Alstom T&D 
Protection and Control Ltd. 
 
Rogers, J.D., 2006, Report on Assessment of Technologies for Environmental Friendly 
Drilling Project: Land Based Operations, draft 3, version 2, Houston Advance Research 
Center. 
 
Rojas, A. 2004. Flywheel Energy Matrix Systems – Today’s Technology, Tomorrow’s 
Energy Storage Solution. Conference Proc., IEEE Power Engineering Society General 
Meeting, Denver, CO. 
 
Romo, L., Solis,O., Matthews,J., Qin, D. 2007, Fuel Saving Flywheel Technology for 
Rubber Tired Gantry Cranes in World Ports: Reducing Fuel Consumption through 
Flywheel Energy Storage System, Final Report, VYOCON ENERGY, CA (2007). 
 
Ruddell, Alan. 2003. Storage Technology Report ST6: 
Flywheel.Deliverable_5_030617_CCLRC-RAL, CCLRC-Rutherford Appleton 
Laboratory, Didcot, UK. 
 
Solar calculator, FindSolar website. 2009: www.findsolar.com. (Accessed on Mar 2009). 

Solar cells, US Department of Energy website. 2009: www.eere.energy.gov. (Accessed 
on Feb 2009). 
 
Tamyurek, B., Nichols, D.K., Demirci, O. 2003. Sodium Sulfur Battery Applications. 
Conf Proc., IEEE Power Engineering Society General Meeting, Volume 4, OH. 
 
Walsh, B., Wichert, R., 2008. Fuel Cell Technology. www.wbdg.org. (Accessed on May 
2008). 



  
 

 

61�

 

 

 

 

 

 

 

 

 

APPENDIX A 

VARIABLE DESCRIPTION FOR MATLAB CODE AND 

SCREENSHOTS 
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mp1gpmdata   Flow rate in GPM for mud pump 1 

mppower   Power for mud pump 1(pump pressure X flow rate) 

mpmv    Moving average of power for window length 2 Sec 

mpmv2   Moving average of power for window length 10 Sec 

mpmv3   Moving average of power for window length 20 Sec 

mpdifference   Difference between mp1 power and 1st moving avg. 

mpdifference2   Difference between mp1 power and 2nd moving avg. 

mpdifference3   Difference between mp1 power and 3rd moving avg. 

mpenergy1   Energy curve for 1st portion of first difference 

mpenergy2   Energy curve for 2nd portion of first difference 

mpenergy3   Energy curve for 3rd portion of first difference 

mpenergy21   Energy curve for 1st portion of second difference 

mpenergy22   Energy curve for 2nd portion of second difference 

mpenergy23   Energy curve for 3rd portion of second difference 

mpenergy31   Energy curve for 1st portion of third difference 

mpenergy32   Energy curve for 2nd portion of third difference 

mpenergy33   Energy curve for 3rd portion of third difference 

mp2gpmdata   Flow rate in GPM for mud pump 1 

mp2power   Power for mp1 (pump pressure X flow rate) 

mp2mv   Moving average of mp2 power for window length 2 Sec 

mp2mv2   Moving average of power for window length 10 Sec 

mp2mv3   Moving average of power for window length 20 Sec 
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mp2difference   Difference between mp2 power and 1st moving avg. 

mp2difference2  Difference between mp2 power and 2nd moving avg. 

mp2difference3  Difference between mp2 power and 3rd moving avg. 

mp2energy1   Energy curve for 1st portion of first difference 

mp2energy2   Energy curve for 2nd portion of first difference 

mp2energy3   Energy curve for 3rd portion of first difference 

mp2energy21   Energy curve for 1st portion of second difference 

mp2energy22   Energy curve for 2nd portion of second difference 

mp2energy23   Energy curve for 3rd portion of second difference 

mp2energy31   Energy curve for 1st portion of third difference 

mp2energy32   Energy curve for 2nd portion of third difference 

mp2energy33   Energy curve for 3rd portion of third difference 

Ppdata    Pump pressure data 

rttdata    Rotary table torque data 

rtrpmdata   Rotary table RPM data 

rtpower   Rotary table power data 

tdtdata    Top drive torque data 

tdrpmdata   Top drive RPM data 

tdpower    Rotary table power data 

tdmv    Moving average of tdpower for Window Length 2 Sec 

tdmv2    Moving average of tdpower for Window Length 10 Sec 

tdmv3    Moving average of tdpower for Window Length 20 Sec 
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tddifference   Difference between td power and 1st moving avg. 

tddifference2   Difference between td power and 2nd moving avg. 

tddifference3   Difference between td power and 3rd moving avg. 

tdenergy1   Energy curve for 1st portion of first difference 

tdenergy2   Energy curve for 2nd portion of first difference 

tdenergy3   Energy curve for 3rd portion of first difference 

tdenergy21   Energy curve for 1st portion of second difference 

tdenergy22   Energy curve for 2nd portion of second difference 

tdenergy23   Energy curve for 3rd portion of second difference 

tdenergy31   Energy curve for 1st portion of third difference 

tdenergy32   Energy curve for 2nd portion of third difference 

tdenergy33   Energy curve for 3rd portion of third difference 

z    a 1330000 X 1 vector (used for multiple plots) 
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APPENDIX B 

CONVERSION FACTORS 
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Unit conversion so that Y axis is in terms of power in kW. 

For mud pumps: 

1 gallon (US) =.00378 m3 

1 bar=105 N/m2 

Therefore GPM x Pump Pressure (bar) = .00378 m3 /60x 105 N/m2 = .0063 kW

 ……………..Equation A1 

 

For top drive and rotary table: 

Power= Torque (N-m) x RPM/60 =2 x 3.14/60 =.1046 Watts/1000=1.0046 x 10-4 kW

 …………….Equation A2 

 

An efficiency factor of 0.7 is also multiplied by the amount of maximum power and 

maximum energy estimated to be supplied from KERS system on the basis of data 

processing. 

 

Unit Conversion so that X axis is in terms of time in seconds. 

For mud pumps each division on X axis represents 2 seconds which is the sampling 

frequency from Table A-3. 

For top drive each division on X axis represents 2 seconds which is the sampling 

frequency from Table A-3. 
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APPENDIX C 

RESULTS DATA 
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Commercial 
Electricity  

Rates,�/KWh 

Diesel Rates in 
$/Gal 

Total Diesel cost for a 
20 Day well,$ 

Total Electricity 
cost for 20 day 

well,$ 
Savings/Well,$ 

4 1 11920 14670.76 -2750.76 
4.25 1.25 14900 15587.6825 -687.6825 
4.5 1.5 17880 16504.605 1375.395 

4.75 1.75 20860 17421.5275 3438.4725 
5 2 23840 18338.45 5501.55 

5.25 2.25 26820 19255.3725 7564.6275 
5.5 2.5 29800 20172.295 9627.705 

5.75 2.75 32780 21089.2175 11690.7825 
6 3 35760 22006.14 13753.86 

6.25 3.25 38740 22923.0625 15816.9375 
6.5 3.5 41720 23839.985 17880.015 

6.75 3.75 44700 24756.9075 19943.0925 
7 4 47680 25673.83 22006.17 

7.25 4.25 50660 26590.7525 24069.2475 
7.5 4.5 53640 27507.675 26132.325 

7.75 4.75 56620 28424.5975 28195.4025 
8 5 59600 29341.52 30258.48 

8.25 5.25 62580 30258.4425 32321.5575 
8.5 5.5 65560 31175.365 34384.635 

8.75 5.75 68540 32092.2875 36447.7125 
9 6 71520 33009.21 38510.79 

9.25 6.25 74500 33926.1325 40573.8675 
9.5 6.5 77480 34843.055 42636.945 

9.75 6.75 80460 35759.9775 44700.0225 
10 7 83440 36676.9 46763.1 

10.25 7.25 86420 37593.8225 48826.1775 
10.5 7.5 89400 38510.745 50889.255 

10.75 7.75 92380 39427.6675 52952.3325 
11 8 95360 40344.59 55015.41 

11.25 8.25 98340 41261.5125 57078.4875 
11.5 8.5 101320 42178.435 59141.565 

11.75 8.75 104300 43095.3575 61204.6425 
12 9 107280 44012.28 63267.72 

12.25 9.25 110260 44929.2025 65330.7975 
12.75 9.75 116220 46763.0475 69456.9525 

13 10 119200 47679.97 71520.03 
13.25 10.25 122180 48596.8925 73583.1075 
13.5 10.5 125160 49513.815 75646.185 
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Commercial 
Electricity  

Rates,�/KWh 

Diesel Rates in 
$/Gal 

Total Diesel cost for a 
20 Day well,$ 

Total Electricity 
cost for 20 day 

well,$ 
Savings/Well,$ 

13.75 10.75 128140 50430.7375 77709.2625 
14 11 131120 51347.66 79772.34 

14.25 11.25 134100 52264.5825 81835.4175 
14.5 11.5 137080 53181.505 83898.495 

14.75 11.75 140060 54098.4275 85961.5725 
15 12 143040 55015.35 88024.65 

15.25 12.25 146020 55932.2725 90087.7275 
15.5 12.5 149000 56849.195 92150.805 

15.75 12.75 151980 57766.1175 94213.8825 
16 13 154960 58683.04 96276.96 

16.25 13.25 157940 59599.9625 98340.0375 
16.5 13.5 160920 60516.885 100403.115 

16.75 13.75 163900 61433.8075 102466.1925 
17 14 166880 62350.73 104529.27 

17.25 14.25 169860 63267.6525 106592.3475 
17.5 14.5 172840 64184.575 108655.425 

17.75 14.75 175820 65101.4975 110718.5025 
18 15 178800 66018.42 112781.58 

18.25 15.25 181780 66935.3425 114844.6575 
18.5 15.5 184760 67852.265 116907.735 

18.75 15.75 187740 68769.1875 118970.8125 
19 16 190720 69686.11 121033.89 

19.25 16.25 193700 70603.0325 123096.9675 
19.5 16.5 196680 71519.955 125160.045 

19.75 16.75 199660 72436.8775 127223.1225 
20 17 202640 73353.8 129286.2 

20.25 17.25 205620 74270.7225 131349.2775 
20.5 17.5 208600 75187.645 133412.355 

20.75 17.75 211580 76104.5675 135475.4325 
21 18 214560 77021.49 137538.51 

21.25 18.25 217540 77938.4125 139601.5875 
21.5 18.5 220520 78855.335 141664.665 

21.75 18.75 223500 79772.2575 143727.7425 
22.25 19.25 229460 81606.1025 147853.8975 
22.5 19.5 232440 82523.025 149916.975 

22.75 19.75 235420 83439.9475 151980.0525 
23 20 238400 84356.87 154043.13 

23.25 20.25 241380 85273.7925 156106.2075 
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Commercial 
Electricity  

Rates,�/KWh 

Diesel Rates in 
$/Gal 

Total Diesel cost for a 
20 Day well,$ 

Total Electricity 
cost for 20 day 

well,$ 
Savings/Well,$ 

23.5 20.5 244360 86190.715 158169.285 
23.75 20.75 247340 87107.6375 160232.3625 

24 21 250320 88024.56 162295.44 
24.25 21.25 253300 88941.4825 164358.5175 
24.5 21.5 256280 89858.405 166421.595 

24.75 21.75 259260 90775.3275 168484.6725 
25 22 262240 91692.25 170547.75 
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APPENDIX D 

OTHER IMPORTANT MATLAB PLOTS 
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     Figure A1 - Mud Pump 1 flow rate 
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   Figure A2 - Mud Pump 1 instantaneous power (blue) and moving average (green) of window length of 10 seconds 
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Mud Pump 1 Moving Average Power Curve for 10 sec vs. Time 



  
 

 

76�

 

  
 Figure A3 - Mud Pump 1 instantaneous power (blue) and moving average (green) of window length 20 seconds 
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Mud Pump 1 Moving Average Power Curve for 20 sec vs. Time 
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 Figure A4 - Mud Pump 2 instantaneous power (blue) and moving average (green) of window length 10 seconds. 
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Mud Pump 2 Moving Average Power Curve for 10 sec vs. Time 
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Figure A5 - Mud Pump 2 instantaneous power (blue) and moving average (green) of window length of 20 seconds 
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Mud Pump 2 Moving Average Power Curve for 20 sec vs. Time 
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Figure A6 - Top Drive torque variations in N-m with time 
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      Figure A7 - Top drive RPM with time 
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     Figure A8 – Top Drive instantaneous power (blue) 
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   Figure A9 - Top Drive instantaneous power (blue) and moving average (green) of window length 2 seconds 
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83�

 

     Figure A10 - Top drive instantaneous power (blue) and moving average (green) of window length 10 seconds 
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Top Drive Moving Average Power Curve for 10 sec vs. Time 
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  Figure A11 – Top Drive instantaneous power (blue) and moving average (green) of window length 20 seconds 
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Top Drive Moving Average Power Curve for 20 sec vs. Time 
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Figure A12 - Difference between instantaneous power and moving average curve for mud pumps and top drive , 2sec 
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 Figure A13 - Difference between instantaneous power and moving average curve for mud pumps and top drive, 10 sec 
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  Figure A14 - Difference between instantaneous power and moving average curve for mud pumps and top drive , 20sec 
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  Figure A15 - Overall Energy curve for window length of 2sec (KERS system should be able to provide) 
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  Figure A16 - Overall Energy curve for window length of 10sec (KERS system should be able to provide) 
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     Figure A17 - Overall Energy curve for window length of 20sec (KERS system should be able to provide) 
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  Figure A18 - Energy comparison curve for mud pumps and top drive for a window length of 2 seconds 
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  Figure A19 - Energy comparison curve for mud pumps and top drive for a window length of 10 seconds 

 

Time, sec 

                       Energy Peaks for 20 sec vs. Time 

Time, sec 

                       Energy Comparison curve for 2 sec vs. Time 
E

ne
rg

y,
 k

J 
                       Energy Comparison curve for 10 sec vs. Time 

Time, sec 



  
 

 

93�

  

 

Figure A20 - Energy comparison curve for mud pumps and top drive for a window length of 20 seconds 
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