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ABSTRACT

Implementation of B-splines in a

Conventional Finite Element Framework. (May 2009)

Brian Christopher Owens, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John D. Whitcomb

The use of B-spline interpolation functions in the finite element method (FEM)

is not a new subject. B-splines have been utilized in finite elements for many rea-

sons. One reason is the higher continuity of derivatives and smoothness of B-splines.

Another reason is the possibility of reducing the required number of degrees of free-

dom compared to a conventional finite element analysis. Furthermore, if B-splines

are utilized to represent the geometry of a finite element model, interfacing a finite

element analysis program with existing computer aided design programs (which make

extensive use of B-splines) is possible.

While B-splines have been used in finite element analysis due to the aforemen-

tioned goals, it is difficult to find resources that describe the process of implementing

B-splines into an existing finite element framework. Therefore, it is necessary to doc-

ument this methodology. This implementation should conform to the structure of

conventional finite elements and only require exceptions in methodology where abso-

lutely necessary. One goal is to implement B-spline interpolation functions in a finite

element framework such that it appears very similar to conventional finite elements

and is easily understandable by those with a finite element background.

The use of B-spline functions in finite element analysis has been studied for

advantages and disadvantages. Two-dimensional B-spline and standard FEM have

been compared. This comparison has addressed the accuracy as well as the computa-

tional efficiency of B-spline FEM. Results show that for a given number of degrees of
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freedom, B-spline FEM can produce solutions with lower error than standard FEM.

Furthermore, for a given solution time and total analysis time B-spline FEM will

typically produce solutions with lower error than standard FEM. However, due to a

more coupled system of equations and larger elemental stiffness matrix, B-spline FEM

will take longer per degree of freedom for solution and assembly times than standard

FEM. Three-dimensional B-spline FEM has also been validated by the comparison

of a three-dimensional model with plane-strain boundary conditions to an equivalent

two-dimensional model using plane strain conditions.
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CHAPTER I

INTRODUCTION

A. Overview

Throughout history engineers and mathematicians have discretized complex sys-

tems into smaller components to gain a better understanding of the system. Engineers

typically decompose a larger physical region into smaller regions that have a simple

behavior that is easier to understand. After gaining insight on the behavior of these

smaller regions, they may be reassembled to understand the behavior of the overall

system [1]. The finite element method(FEM) has roots in this methodology. The

concept of FEM began in the early 1940’s and finally reached the familiar form used

today in the late 1950’s [2].

The finite element method approximates the solution to partial differential equa-

tions (PDE) over a domain. This domain is discretized into sub-domains known as

“elements”. The boundary of an element is represented by distinct points known as

“nodes”. These nodes are points at which the approximate solution of the PDE is

obtained [2]. Since the creation of the finite element method, it has been applied to

a wide range of problems including structural analysis, fluid flow, and electromag-

netism.

Finite element analysis typically employs Lagrangian or Hermite interpolation

functions. These functions are easy to implement and can provide sufficient accu-

racy. However, they are relatively inefficient and can be expensive computationally.

Furthermore, if a smooth solution with continuity of higher-order derivatives is de-

sired these interpolation functions become even less efficient. For models with many

This thesis follows the style and format of Journal of Applied Mechanics.
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degrees of freedom inefficiencies involved with interpolation functions can drastically

increase the time it takes to solve the system of equations in a finite element analysis.

B-splines are polynomial curves that are defined piecewise over a domain [3].

These curves have the ability to maintain smoothness and continuity of higher-order

derivatives [4] while maintaining efficiency. There are various reasons to motivate the

use of B-spline functions in place of Lagrangian or Hermite interpolation functions.

First, B-splines are commonly used in computer aided design (CAD) to accurately

model complex geometry. Therefore, if B-splines are implemented in the finite element

method interfacing CAD geometry with a finite element analysis is more convenient.

Also, the use of a single B-spline function instead of multiple piecewise Lagrangian

or Hermite functions reduces the overall degrees of freedom in an analysis. This

reduction in degrees of freedom has the potential to reduce the time for a finite

element analysis significantly.

B-spline functions have already been implemented in the finite element method.

Those who undergo the task of implementing B-splines in finite elements typically note

the increased smoothness, accuracy, and computational savings [5, 6, 7] compared to

conventional finite elements. B-spline FEM has many differences with conventional

finite elements, such as the need for special pre-processing and post-processing rou-

tines. However, there are also many similarities between the two methods, such as

the basic formulation of the two methods. If one is not careful, it is easy to make

B-spline finite elements appear confusing and much more different than conventional

finite elements.

This work will focus on implementing B-spline functions within a conventional

finite element framework using a clear and concise methodology. All attempts will be

made to use the existing framework where possible. Therefore, exceptions required

due to the use of B-spline functions will only be created where absolutely necessary.
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The overall goal is to create a method that appears very similar to conventional finite

elements and can be easily understood by those with a finite element background.

Pre-processing tools will also be created to ease the difficulties of mesh generation

associated with B-spline finite elements. Additional post-processing routines to cal-

culate displacement information for B-spline FEM will be presented. Finally, a com-

parison between B-spline and conventional finite element analysis will be completed

with regards to accuracy and computational efficiency.

B. Literature Review

B-Spline curves were created as an improvement over Bézier curves in the 1970’s.

This effort to produce splines that contained local support was led by Riesenfeld [8].

Since B-Splines have local support the shape of a particular segment of the curve can

be altered without affecting the overall curve. This gives one more control over the

shapes produced by B-Spline curves [4]. Cox and de Boor [9] discovered a recursive

formula for the definition of B-Spline basis functions of any order. B-Splines were

extended to non uniform rational B-splines(NURBS) initially by Versprille [10], and

later by Piegel and Tiller [11, 12] in the 1980’s. NURBS associates a weight with

each control point or basis function that allows for greater shape control. Currently,

NURBS curve/surface representation is the standard in computer aided graphics and

design.

B-splines may have been created for the purpose of curve and surface representa-

tion but much work has been done to apply the advantages of B-splines in numerical

methods such as finite elements. Some work has focused on interfacing CAD systems

with finite element analysis by utilizing B-splines within a finite element analysis [13].

The B-spline utilized in the finite element analysis are the same functions used for
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geometry representation in CAD. In this work Kagan et al. have focused on extending

geometric design directly to mechanical analysis. Kagan et al. presents convergence

data for various degrees of B-spline functions.

Non-uniform rational B-splines have also been used to enhance the finite element

method by Huerta et al. [6]. A CAD description of the boundary of a model is used

in the finite element analysis. Conventional interpolation functions are utilized on the

interior and special piecewise polynomial functions are implemented at the NURBS

boundary. The computational efficiency of utilizing NURBS in FEM is noted as well

as the ability to obtain an accurate solution using a coarser mesh and high-order

interpolation.

Inoue et al. have also implemented NURBS within the finite element method to

aid in product shape design [14]. The goal of this work is the integration of finite ele-

ment analysis with computer aided design software. This study involves a shell finite

element that has exactly the same geometry as the NURBS surface for the manu-

factured product. The NURBS finite element method is applied to bending analyses

of plates and shells. NURBS FEM approximated solutions to buckling analysis with

lower error than ordinary FEM. The authors suggest that this may be due to the

precise geometry modeled in NURBS FEM.

Hughes et al. have performed significant work in the implementation of NURBS

in finite elements. Studies of this implementation have focused on refinement and

continuity [15]. In this implementation the NURBS parameters from CAD are used in

the finite element analysis. However, refinement through knot insertion and/or degree

elevation is used to obtain a better finite element solution while still maintaining the

precise geometry created through CAD. It appears for most cases that an increase in

smoothness provided by NURBS increases the accuracy of the solution.

Others offer further improvements on the B-spline finite element method. Kagan
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et al. have developed methods for adaptive refinement of B-spline finite elements [16].

This work presents various refinement methods and also addresses continuity of the

solution approximation. Li and Wang also presented a new 8-node quadrilateral spline

finite element [17]. Simplifications of derivatives, integrals and products of shape

functions are also presented. Results suggest better performance than a standard

8-node isoparametric element.

Splines have also been applied to numerical analysis methods other than finite

elements. Kumar applied splines to a finite difference boundary value problem [18].

Second order convergence of the spline finite difference method is noted as well as

the efficiency of splines in solving the boundary value problem. Kumar also applied

fourth-order splines to a finite difference boundary value problem and noted fourth-

order convergence [19].

Mohammadi et al. also used cubic-splines to solve a system of boundary value

problems [20]. This method is applied to multiple problems and convergence behavior

is studied. The error in the solutions of various fourth-order boundary value problems

analyzed with the cubic-spline method was shown to be lower than other methods

employed for solving the system of boundary value problems.

Kadalbajoo and Aggarwal have used a fitted mesh B-spline method for solving

singularly perturbed boundary value problems [21]. A uniform mesh is created and

in conjunction with the use of their B-spline method a tridiagonal linear system is

achieved. Results show uniform convergence with better results than existing meth-

ods.

Brown et al. focused on the accuracy of B-spline finite element approximation to

a PDE surface [22]. Data transfer between CAD systems is addressed. Both refine-

ment and degree elevation were studied to achieve a better approximation. For their

particular application of surface approximation there was no significant difference
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using periodic or non-periodic B-spline functions.

Caglar et al. compared B-spline approximation with finite element, finite differ-

ence, and finite volume methods for a two-point boundary value problem [23]. Results

show lower maximum error norms for B-spline approximation than all other methods.

The conclusion is made that B-spline functions are better suited to approximate a

smooth solution than the other methods.

There have been various applications of numerical methods using splines. Pull-

man and Schaff performed analysis of a cross-ply laminate with a circular hole using

a 3D spline variational method [24]. Results show good agreement between the spline

variational method and ordinary finite element method. It was determined that the

spline variational method can reduce the number of degrees of freedom by a factor of

3-5 while maintaining interlaminar stress distributions comparable to ordinary finite

elements.

Mizusawa has applied a spline element method to analyze the bending of skew

plates [25]. Accuracy and convergence were compared to other numerical methods.

The spline element method showed good agreement with other numerical methods.

It was also observed that use of high-ordered splines and a mesh grading technique

were effective in improvement of accuracy.

Leung and Au applied spline finite elements to beams and plates. The advantages

of splines including computational efficiency, flexibility in modeling different bound-

ary conditions, and the variation diminishing property splines possess are noted[26].

Good agreement is observed between reference methods including finite strip solu-

tions. When examining the lower number of degrees of freedom the efficiency of

splines is further emphasized.

Kong and Cheung have applied spline finite strip analysis to shear-deformable

plates [27]. This type of analysis was proposed to study thick laminated composite
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plates. The use of cubic B-splines allowed for the flexibility to meet various continu-

ity requirements for classical plate analysis. There is very good agreement between

analytical and existing numerical solutions.

PengCheng et al. utilized a multivariable spline element method to perform

vibration analysis of plates [28]. It was determined that the multivariable spline

element method was very effective in achieving a solution with high accuracy. Good

convergence characteristics are also noted.

Gupta et al. also used cubic B-splines finite elements for shell analysis [29]. The

second-derivative continuity of B-splines is well suited for shell analysis where cubic

Hermite functions are not sufficient. The use of cubic B-splines eliminates stress

discontinuities in results. The overall reduction in degrees of freedom provided by the

use of B-splines is also noted.

Kim et al. used a B-spline finite element method to shape and analyze a torque

converter clutch disk [30]. An algorithm is utilized to reposition ”master nodes” that

define the B-spline curve geometry to fall directly on the surface of the model. A mesh

smoothing technique is also applied to achieve a better finite element solution. This

method was utilized to design the disk with optimum shape, providing a significant

weight reduction.

Zhong and Yuqiu have used spline elements for the analysis of tall buildings

[31]. Tall buildings of arbitrary shape, such as structures with irregular openings and

boundaries, can be analyzed using this method. The order of B-spline functions is

carefully chosen in different dimensions to increase computational efficiency. Results

show good approximations with only a few elements for both static and dynamic

analysis.

Kutluay and Esen used a B-spline finite element method to analyze a thermistor

problem involving electrical conductivity [32]. Cubic B-splines were used in conjunc-
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tion with a Galerkin method. Data is presented for results at a variety of mesh

refinements. The approximated solution of the analysis converges to the known exact

solution.

Aksan has also used quadratic B-splines to approximate the solution of a 1D

non-linear Burgers’ equation [33]. The Burgers’ equation was converted to a set of

non-linear ordinary differential equations. Each equation was then solved by means of

a quadratic B-spline finite element method. The high accuracy of the B-spline FEM

solution approximation was noted. Gardner et al. also approximated the solution

of Burgers’ equation using a cubic B-spline finite element method [34]. Gardner et

al. determined that cubic B-spline FEM produced more accurate results than other

methods.

Patlashenko and Weller employed cubic B-spline collocation methods for analysis

of panels under thermal and mechanical loading [35]. This method was applied to

one and two-dimensional problems. The analysis also studied the non-linear induced

response of panels. Again, the efficiency and possible acceleration of convergence

through the use of B-splines is noted.

C. Scope of Research

This work continues the research begun by Bhavya Aggarwal at Texas A&M

University [36]. Aggarwal laid the ground work for implementing B-spline functions

in the in-house Alpha finite element software. While this work was very important,

there were limitations of its implementation. B-splines were implemented for one

and two-dimensional analysis. However, only uniform B-spline functions were im-

plemented. This restricted finite element meshes to be uniform and control of mesh

refinement was limited. Also, there were no pre-processing tools to set up a B-spline
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finite element analysis and models were quite time-consuming to make. Finally, the

implementation did not integrate well with the existing Alpha software. In many

ways the implementation was a kind of stand alone application that existed within

the Alpha project, but did not make use of existing routines in Alpha.

The current research seeks to improve upon and refine Aggarwal’s work. Chap-

ter II of this thesis presents the formulation of a conventional elastic finite element

method. Chapter III of this thesis will present the theory associated with Lagrangian

and Hermite interpolation and introduce B-spline approximation. The theory and

application of B-splines will be discussed. Furthermore, the formulations required

for implementing B-spline functions in the finite element method for two and three-

dimensional problems will be presented in chapter IV.

The new implementation of B-spline finite elements will reside in the Beta finite

element software (an improved version of Alpha). Through the use of object oriented

programming (OOP) the implementation will be simplified. OOP allows existing

functionality to be inherited for a new implementation. Therefore, the new imple-

mentation of B-splines will be much leaner. New functionality will only be created

where absolutely necessary. The new implementation of B-spline finite elements in

Beta will be also expanded to include non-uniform B-spline functions, allowing the

use of graded meshes in analyses. Furthermore, the method will be extended to the

capability of three-dimensional analysis. Pre-processing utilities will be developed

to expedite the creation of models for B-spline finite element analysis. Additional

post-processing capabilities are also required to produce meaningful data from B-

spline finite element analysis. These additional pre/post-processing routines will be

explained in detail.

After a detailed explanation concerning the implementation of B-splines in the

finite element method, two and three dimensional problems will be analyzed in chap-
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ter V. The results of the two-dimensional B-spline finite element analysis will be

compared to conventional two-dimensional finite element analysis. The two methods

will be compared with respect to accuracy and computational efficiency. The conver-

gence characteristics of the two methods will also be studied. The capability of the

three-dimensional B-Spline finite element method will also be presented as well as a

validation of three-dimensional results. Finally, chapter VI presents conclusions and

recommendations for future work.
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CHAPTER II

FORMULATION OF THE ELASTIC FINITE ELEMENT METHOD

The main processes of a finite element analysis are: pre-processing, analysis, and

post-processing. Pre-processing involves information about the mesh. This includes

the overall geometry of the model, mesh refinement, and assignment of material to

elements. Material data is also defined in this step. Finally, boundary conditions,

including loads, constraints, and multi-point constraints are specified.

Analysis involves the calculation of elemental stiffness matrices and load vectors.

These are obtained by expressing the governing differential equation in the weak

form. The individual element matrices and load vectors are then assembled to create

a global stiffness matrix and load vector for the model. Constraints specified as part

of the boundary conditions may be applied by modification of the stiffness matrix

and load vector. Finally, the systems of equations is solved and nodal displacements

are obtained.

The final step of a finite element analysis involves post-processing. The displace-

ments from the previous step may be used to calculate strains and stresses. These

values are calculated at the quadrature points of an element because these points have

the lowest error from approximations involving the interpolation functions. Quadra-

ture point strains and stresses may be extrapolated to the nodes of an element so

that they may be visualized on the mesh.

The following sections present the development of a three-dimensional elasticity

formulation and a reduction to a two-dimensional elasticity formulation. The main

steps of pre-processing, analysis, and post-processing are also explained.
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A. Three-dimensional Elasticity Formulation

The formulation of an elastic finite element method begins with the equilibrium

equations expressed using index notation

σij,j + fi = 0 (2.1)

The use of index notation simplifies the formulation. Here σij are stresses and fi are

body force components. The term σij,j represents the partial derivative of σij with

respect to xj (
∂σij

∂xj
). These equilibrium equations will be expressed in weak form by

first multiplying by test functions δui and integrating over the domain (Ω). In three

dimensions the domain is a volume, in two dimensions the domain is an area.

∫

Ω

δui (σij,j + fi) dΩ = 0 (2.2)

Integration by parts yields

∫

Γ

(δuiσijnj) dΓ +

∫

Ω

(fiδui − δui,jσij) dΩ = 0 (2.3)

For the three-dimensional case Γ represents the domain of a surface integral. For

the two-dimensional case Γ represents the domain of a line integral. Use of Cauchy’s

stress formula (Eq. (2.4)) results in Eq. (2.5).

Ti = σijnj (2.4)

∫

Ω

(fiδui) dΩ +

∫

Γ

(Tiδui) dΓ−
∫

Ω

(δui,jσij) dΩ = 0 (2.5)

Introduction of kinematic relations (Eq. (2.6)) allows for the weak form to be ex-

pressed as Eq. (2.7).

εij =





ui,j i = j

ui,j + uj,i i 6= j

(2.6)
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∫

Ω

(fiδui) dΩ +

∫

Γ

(Tiδui) dΓ−
∫

Ω

(δεijσij) dΩ = 0 (2.7)

Since the terms δui are independent the weak form equations may be combined

∑
i

[∫

Ω

(fiδui) dΩ +

∫

Γ

(Tiδui) dΓ−
∫

Ω

(δui,jσij) dΩ

]
= 0 (2.8)

Finite element analysis will employ a Galerkin approximation such that

δui =
n∑

m=1

δum
i Nm (2.9)

Here the superscript m denotes the index of nodes for an element, m will range from

one to the number of nodes of an element. Nodal displacements (um
i ) will be collected

in a degree of freedom (DOF) vector qα such that

qα = [u1
1, u

1
2, u

1
3, ..., u

n
1 , u

n
2 , u

n
3 ] (2.10)

The functions δui and δεij may be expressed in terms of the DOF vector (qα).

δui =
∂ui

∂qα

δqα (2.11)

δεij =
∂εij

∂qα

δqα (2.12)

Substitution of Eqs. (2.11) and (2.12) into Eq. (2.7) and canceling the δqα term

yields

∑
α

[∑
i

[∫

Ω

(
fi

∂ui

∂qα

)
dΩ +

∫

Γ

(
Ti

∂ui

∂qα

)
dΓ−

∫

Ω

(
σij

∂εij

∂qα

)
dΩ

]]
= 0 (2.13)

Note that the last integral of Eq. (2.13) may be expressed using Voigt notation as

∫

Ω

(
σk

∂εk

∂qα

)
dΩ (2.14)
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A strain-displacement matrix (Bkα) may be introduced that relates displacements

and strain via the kinematic relations.

Bkα =
∂εk

∂qα

=




∂N1

∂x1
0 0 ∂N2

∂x1
0 0 ∂Nn

∂x1
0 0

0 ∂N1

∂x2
0 0 ∂N2

∂x2
0 0 ∂Nn

∂x2
0

0 0 ∂N1

∂x3
0 0 ∂N2

∂x3
... 0 0 ∂Nn

∂x3

∂N1

∂x2

∂N1

∂x1
0 ∂N2

∂x2

∂N2

∂x1
0 ... ∂Nn

∂x2

∂Nn

∂x1
0

0 ∂N1

∂x3

∂N1

∂x2
0 ∂N2

∂x3

∂N2

∂x2
0 ∂Nn

∂x3

∂Nn

∂x2

∂N1

∂x3
0 ∂N1

∂x1

∂N2

∂x3
0 ∂N2

∂x1

Nn

∂x3
0 ∂Nn

∂x1




(2.15)

εk = Bkαqα (2.16)

Therefore the integral of Eq. (2.14) may be expressed as

∫

Ω

(Bkασk) dΩ =

∫

Ω

(
BT σ

)
dΩ (2.17)

The stress tensor (σk) may be expressed in terms of displacements (qα) by utilizing

kinematic and constitutive relations. The constitutive matrix (Ckl) relates stress and

strain. Note that thermal strains are assumed to be zero for this formulation.

σk = Cklεl = CklBlαqα (2.18)

The constitutive matrix is calculated via material properties. For an orthotropic

material, the constitutive matrix may be calculated as follows, all other elements of

the constitutive matrix are zero. If necessary this matrix can be transformed to reflect
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a rotation of the material coordinate system relative to the global coordinate system.

c11 =
1− ν23ν32

E22E33∆
(2.19)

c22 =
1− ν31ν13

E33E11∆

c33 =
1− ν12ν21

E11E22∆

c12 = c21 =
ν21 + ν31ν23

E22E33∆

c13 = c31 =
ν31 + ν21ν32

E22E33∆

c23 = c32 =
ν32 + ν31ν12

E33E11∆

c44 = G23

c55 = G31

c66 = G12

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν23ν31

E11E22E33

Finally the integral of Eq. (2.14) may be expressed in terms of the strain-displacement

matrix, constitutive matrix, and nodal displacements. The integral
∫
Ω

BT CBdΩ is

termed the stiffness matrix (K).

∫

Ω

(
BT CBq

)
dΩ = Kq (2.20)

The remaining integrals of Eq. (2.13) contain the term ( ∂ui

∂qα
). This term may also be

expressed as

∂ui

∂qα

=




N1 0 0 N2 0 0 N3 0 0 Nn 0 0

0 N1 0 0 N2 0 0 N3 0 ... 0 Nn 0

0 0 N1 0 0 N2 0 0 N3 0 0 Nn




(2.21)
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Therefore the load vector (Fα) may be expressed as

Fα =

∫

Ω

fi
∂ui

∂qα

dΩ +

∫

Γ

Ti
∂ui

∂qα

dΓ (2.22)

In a finite element formulation the domain of interest is the volume or area of an

element (Ωe), and the load vector may be expressed in terms of interpolation functions

by use of Eq. (2.21).

Fα =




∫
Ωe

f1N1dΩe +
∫

Γe
T1N1dΓe

∫
Ωe

f2N1dΩe +
∫

Γe
T2N1dΓe

∫
Ωe

f3N1dΩe +
∫

Γe
T3N1dΓe

∫
Ωe

f1N2dΩe +
∫

Γe
T1N2dΓe

∫
Ωe

f2N2dΩe +
∫

Γe
T2N2dΓe

∫
Ωe

f3N2dΩe +
∫

Γe
T3N2dΓe

...
∫
Ωe

f1NndΩe +
∫

Γe
T1NndΓe

∫
Ωe

f2NndΩe +
∫

Γe
T2NndΓe

∫
Ωe

f3NndΩe +
∫

Γe
T3NndΓe




(2.23)

This results in a system of equations in which nodal displacements are the unknowns

Kq = F (2.24)

Elements in a finite element analysis can take on complex geometries. Therefore,

elements are typically transformed to a normalized coordinate system (ξi). The do-

main of the normalized element is Ω̄e. This normalized domain ranges from (-1,-1,-1)

to (1,1,1). With this transformation the integrals of Eqs. (2.20) and (2.22) will take

the form

K(e) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

BT CB|J |dΩ̄e (2.25)
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F (e) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

fi
∂ui

∂qα

|J |dΓ̄e +

∫ 1

−1

∫ 1

−1

Ti
∂ui

∂qα

|J |dΓ̄e (2.26)

The term |J | is the determinant of the Jacobian. The Jacobian may be expressed as

Jij =
∂xj

∂ξi

= xk
j

∂Nk

∂ξi

(2.27)

Integrals are calculated numerically using a Gaussian quadrature rule. A mas-

ter element (see Fig. 1) may be defined in the normalized coordinate system, and

interpolation function derivatives may be easily calculated at integration points with

respect to the normalized coordinate system (∂Nm

∂ξi
). Since the strain-displacement

matrix is a function of interpolation function derivatives with respect to a global co-

ordinate system (∂Nm

∂xi
), these normalized derivatives must be transformed by using

the Jacobian.

Fig. 1 Two-dimensional master element in normalized coordinate system

∂Nm

∂xi

=
∂ξj

∂xi

∂Nm

∂ξj

= J−1
ij

∂Nm

∂ξj

(2.28)

Finally, boundary conditions are a critical part of the elasticity formulation.

Essential boundary conditions specify a displacement (ui) and natural boundary con-

ditions specify a traction (Ti).
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B. Two-dimensional Elasticity Formulation

For a plane elasticity formulation many of the equations presented in the three-

dimensional elasticity formulation hold true. The strain-displacement matrix may be

reduced to

Bkα =
∂εk

∂qα

=




∂N1

∂x1
0 ∂N2

∂x1
0 ∂Nn

∂x1
0

0 ∂N1

∂x2
0 ∂N2

∂x2
... 0 ∂Nn

∂x2

∂N1

∂x2

∂N1

∂x1

∂N2

∂x2

∂N2

∂x1

∂Nn

∂x2

∂Nn

∂x1




(2.29)

The constitutive relations for a plane elasticity must assume plane stress (Eq. (2.30))

or plane strain ((Eq. 2.31)) conditions. Again, the constitutive matrix may be cal-

culated via material properties. For plane stress, elements of the constitutive matrix

are shown in Eq. (2.33). For plane strain, elements of the constitutive matrix are

shown in Eq. (2.34).

σ33 = 0, σ13 = 0, σ23 = 0 (2.30)

ε33 = 0, ε13 = 0, ε23 = 0 (2.31)

c11 =
E11

1− ν12ν21

(2.32)

c22 =
E22

1− ν12ν21

c12 = c21 = ν12c22

c66 = G12
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c11 =
1− ν23ν32

E22E33∆
(2.33)

c22 =
1− ν31ν13

E33E11∆

c12 = c21 =
ν21 + ν31ν23

E22E33∆

c66 = G12

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν12ν23ν31

E11E22E33

The resulting load vector for a two-dimensional formulation is also reduced

Fα =




∫
Ωe

f1N1dΩe +
∫

Γe
T1N1dΓe

∫
Ωe

f2N1dΩe +
∫

Γe
T2N1dΓe

∫
Ωe

f1N2dΩe +
∫

Γe
T1N2dΓe

∫
Ωe

f2N2dΩe +
∫

Γe
T2N2dΓe

...
∫
Ωe

f1NndΩe +
∫

Γe
T1NndΓe

∫
Ωe

f2NndΩe +
∫

Γe
T2NndΓe




(2.34)

C. Pre-processing

Pre-processing in a conventional finite element analysis is relatively straight for-

ward. Mesh generation involves the definition of model geometry using large macro-

elements. The number of elements for each dimension of a macro-element may be

specified and the nodes and elements can be constructed to “mesh” that particular

macro-element. This is done for each marco-element used in the model geometry

definition. Afterward, duplicate nodes on macro-element interfaces are removed so

the mesh is completely “tied” together. Note that the mesh refinement need not be

uniform, details of this implementation in a mesh generator are dependent on the

developer.



20

A mesh consists of a listing of nodes and a listing of elements. Each node has

a node number and coordinates associated with it. Each element has an element

number and a connectivity list which contains the nodes which represent an element.

As stated in the formulation, boundary conditions must be applied to a model.

In the case of essential boundary conditions displacements are specified at nodes. In

the case of natural boundary conditions, a traction or distributed load is specified

on the surface (or edge) of an element. This distributed load may then be resolved

into equivalent nodal loads. Equivalent nodal loads for a two-dimensional element are

computed via the second integral of Eq. (2.22). Through this methodology, equivalent

nodal loads may be calculated for a given traction on an the surface of an element.

If a traction is applied to multiple adjacent elements, the nodal forces are summed

for coincident nodes as part of the assembly process (see Fig. 2). A body force (fi)

may be applied to an element by calculating an equivalent nodal load using the first

integral of Eq. (2.22). Again, if elements share nodes the nodal forces are summed

as part of the assembly process. Finally, if a concentrated load is applied to a node

this load is added directly to the corresponding DOF of the load vector.

During pre-processing materials are defined. A constitutive matrix can be cal-

culated from material properties using the relations in the formulation sections. Ma-

terials are also assigned to elements during this step.

D. Analysis

Pre-processing in a finite element defines the geometry of elements in a mesh,

and equivalent nodal loads may be calculated from specified tractions and body forces

using the relationships developed in the elasticity formulation.

The elemental stiffness matrix for each element may be calculated via Eq. (2.25).
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Fig. 2 Distributed force represented by equivalent nodal loads.

The assembly process then combines all elemental stiffness matrices and load vec-

tors into a global stiffness matrix and load vector. The assembly process sums the

components of the elemental stiffness matrices that share degrees of freedom. A

typical implementation of this process is illustrated in Fig. 3.

The implementation begins by calculating a degree of freedom list for an element.

This will be useful for assembly purposes. Integration point data is also determined

at this time. Next, the interpolation functions and interpolation function derivatives

are calculated at the given integration point. The Jacobian may be calculated from

the interpolation function derivatives and nodal coordinates of the element. These

interpolation function derivatives may be transformed to be with respect to the global

coordinate system by using the inverse of the Jacobian. Next, the contribution of a

particular integration point to the integration factor or element volume is calculated.

The contribution to the element volume is calculated by multiplying the contribution
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to the determinant of the Jacobian by the weight of the current integration point.

The contribution to the strain-displacement (Bkα) matrix may be calculated using the

global interpolation function derivatives. Finally, the contribution of an integration

point to the elemental stiffness matrix and load vector may be calculated. Once an

element stiffness matrix and load vector are calculated, they are assembled in the

global stiffness matrix and load vector by means of the degree of freedom list.

Upon assembly of the global stiffness matrix and load vector, constraints may

be specified by altering the resulting system of equations. The analysis proceeds by

solving the system of equations for the unknown displacements. Next, these displace-

ments may be post-processed to obtain stresses or strains.

Fig. 3 Implementation of elemental calculations and assembly
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E. Post-processing

A finite element analysis produces displacement values at the nodes of a mesh.

While displacement values are useful for visualizing deformed shapes of a model,

many times they are not sufficient. Strains and stresses are desirable to give insight

on how a model behaves under certain loading scenarios. Stress and strain values

may be compared to allowable values for the material system, thus giving insight into

degradation and failure. Stress and strain values are calculated after the analysis

through post-processing.

The first step in post-processing for strain and stress is to calculate displacement

derivatives. These derivatives will be calculated at the quadrature points of an ele-

ment since these points have the lowest error due to the approximation introduced by

interpolation functions. Displacement derivatives for a particular quadrature point

(ξ̂k) are calculated via Eq. (2.35).

ui,j(ξ̂k) = um
i Nm,j(ξ̂k) (2.35)

After calculating the displacement derivatives at quadrature points, the strains

at quadrature points may be easily calculated using kinematic relations. Similarly,

the stresses at quadrature points may be calculated using constitutive relations.

The usefulness of quadrature point strains and stresses is limited since these

values cannot be visualized directly on the mesh. For this reason, quadrature point

values must be extrapolated to the nodes of an element. First consider an interpo-

lating polynomial

φi = a + bξi + cηi + dξiηi... = Hiα∆α (2.36)

G(ξi, ηi) =

[
1 ξi ηi ξiηi ...

]
(2.37)

Hi = G(ξi, ηi) (2.38)
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∆ =

[
a b c d ...

]
(2.39)

Let φN represent a nodal value and φQ
i represent the quadrature point values.

The matrix Hiα in Eq. (2.40) is calculated by evaluating G at the local coordinates of

the quadrature points. Eq. (2.40) shows the interpolation of quadrature point values.

The local coordinates of a node are represented by ξN and ηN . Eq. (2.41) shows the

interpolation of a nodal value. By relating Eqs. (2.40) and (2.41), a relation between

quadrature point values and a nodal value is obtained (Eq. (2.42)). This allows for

the extrapolation from quadrature point values to a nodal value. The matrix GH−1

is an extrapolation matrix.

φQ
i = Hiα∆α (2.40)

φN = Gα(ξN , ηN)∆ (2.41)

φN = G(ξN , ηN)H−1φQ
i (2.42)
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CHAPTER III

INTERPOLATION

This chapter will review various methods of interpolation. Specifically, the meth-

ods of Lagrangian and Hermite interpolation and B-spline approximation will be dis-

cussed. The concept and use of each method will be presented. Also, the advantages

and limitations of each method will be discussed.

A. Lagrangian Interpolation

Lagrangian interpolation [37] provides a relatively easy way to interpolate a set

of values with any order function. This set of values will be termed “nodal values”.

The interpolated curve fit will pass exactly through the nodal values. Lagrangian

interpolation can be done using a single curve fit of higher order, or it may be done

using multiple piecewise curve-fits of lower order. The method of using a single curve

fit of higher order will be discussed first.

Lagrangian interpolation works by creating a set of functions used for interpola-

tion. There is a function for every nodal value to be interpolated within a particular

domain. The interpolating polynomial is constructed from a set of nodal values and

basis functions (Ψj(x)) by means of Eq. (3.1). Similarly, if the interpolated derivative

is desired, Eq. (3.2) uses basis function derivatives Ψ′
j(x). The formula for calculating

basis functions is presented in Eq. (3.3). The interpolating polynomial passes through

nodal values because the associated basis function will have a value of one and all

other basis functions will have a value of zero at nodal coordinate ξj (Eq. (3.4)). The

degree of the basis functions is defined as d. If a single curve is to interpolate a set

of n nodal values then basis functions of order d = n − 1 must be used. Degree is
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related to the order k such that k = d + 1.

u(x) =
∑

ujΨj(x) (3.1)

u′(x) =
∑

ujΨ
′
j(x) (3.2)

Ψi(x) =
(x− x1)(x− x2)...(x− xk+1)

(xi − x1))(xi − x2)...(xi − xk+1)
(3.3)

Ψi(ξj) =





1 i = j

0 i 6= j
(3.4)

See Fig. 4 for an example of Lagrangian interpolation. Since seven nodal values are

being interpolated, sextic basis functions (d = 6) must be used to interpolate all nodal

values with one curve. However, use of higher-order functions can create oscillation

in the curve fit. Therefore interpolation between two points may not represent the

behavior of the interpolated value in the domain accurately.

Fig. 4 Lagrangian sextic interpolation of seven nodal values

As stated before, the interpolation may also be done by using lower order basis

functions in a piecewise manner. If a piecewise interpolation method is used the
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domain must be split into segments or elements. To generalize the formulas a local

coordinate system will be imposed on the element that ranges from -1 to 1. The

physical coordinate system may be mapped to a local coordinate system by using Eq.

(3.5). The basis function formulas may be redefined in the local element coordinate

system as presented in Eq. (3.6). Fig. 5 illustrates the normalized coordinate system

of an arbitrary one-dimensional quadratic element (spanning from xi to xi+2). Figs.

6 and 7 display the basis functions for a linear and quadratic element respectively.

ξ =
2x− (xi + xk+i)

xk+i − xi

(3.5)

Ψi(ξ) =
(ξ − ξ1)(ξ − ξ2)...(ξ − ξk+1)

(ξi − ξ1))(ξi − ξ2)...(ξi − ξk+1)
(3.6)

Fig. 5 Nodes and normalized coordinate system of quadratic element (d=2)

An example of piecewise interpolation is presented in Fig. 8. A set of seven nodal

values will be interpolated using piecewise quadratic interpolation. Since there are

three nodes per quadratic element and elements will share nodes at the boundaries,

there will be three elements in this piecewise interpolation. Interpolation between
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Fig. 7 Basis functions of a quadratic element

nodal values does not oscillate as seen in Fig. 4. However, the curve fit between

adjacent elements is not as smooth, and the derivatives will be discontinuous at the

nodes of adjacent elements.

The use of a single higher-order function to curve fit a set of nodal values has
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merit in the fact that the interpolation is smooth and continuity of derivatives at

the nodes is maintained. However, limitations arise in the fact that the curve fit

may not be accurate due to the oscillation caused by the higher-order function (see

Fig. 4). While piecewise interpolation using lower-ordered functions eliminates the

oscillation, smoothness and continuity of derivatives is lost. That is, for a node at

the interface of quadratic elements there is C0 continuity(continuity of the value) but

not C1 continuity(continuity of the first derivative).

Fig. 8 Lagrangian piecewise quadratic interpolation of seven nodal values

B. Hermite Interpolation

Hermite interpolation [37] offers an improvement over Lagrangian interpolation.

C1 continuity can be maintained at the nodes on the interface of elements. However

to construct an interpolating polynomial, nodal derivative values must be known in

addition to nodal values. Eq. (3.7) presents the formula for constructing a polynomial

using Hermite interpolation. Here ui and u′i are the nodal values and nodal derivative

values respectively. The term Ψ0
i (ξ) is the ith basis function corresponding to the

ith nodal value and the term Ψ1
i (ξ) is the ith basis function corresponding to the

ith nodal derivative value. The term he is the length of a one-dimensional Hermite
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element. The basis functions used for a cubic Hermite interpolation are displayed in

Eq. (3.8) Since four parameters are required (nodal value and nodal derivative value

at two nodes) cubic interpolation is applied to a two node element.

u(ξ) =
∑

uiΨ
0
i (ξ) +

∑ he

2
u′iΨ

1
i (ξ) (3.7)

Ψ0
1(ξ) = 1

4
(2− 3ξ + ξ3)

Ψ0
2(ξ) = 1

4
(2 + 3ξ − ξ3)

Ψ1
1(ξ) = 1

4
(1− ξ − ξ2 + ξ3)

Ψ1
2(ξ) = 1

4
(−1− ξ + ξ2 + ξ3)

(3.8)

The basis functions for a cubic Hermite element are displayed in Fig. 9. An example

of interpolation using cubic Hermite elements is presented in Fig. 10. Note that

arbitrary nodal derivative values were used for this particular example. To use Her-

mite interpolation for curve fitting a data set, the derivatives of nodal values must be

known. If Hermite functions are to be used in finite elements the derivatives of nodal

values must also be determined as part of the finite element solution.

The capability of Hermite interpolation functions to maintain C1 continuity

comes at a computational cost. A finite element analysis employing Lagrangian func-

tions will only solve for the values (i.e. displacement) at a node. This value is a

degree of freedom (DOF). Cubic Hermite interpolation requires values and deriva-

tives at each node and therefore requires more DOFs. Even though a cubic Hermite

element has fewer nodes than a quadratic Lagrangian element the increased DOF per

node of a Hermite element typically increases the overall DOFs of a finite element

analysis. Also, for certain applications the excess continuity at nodes is not desirable.

For example , in FEA if two adjacent elements have different material assignments

in general stress is not continuous across the element boundary. Therefore, cubic

Hermite elements are not well suited for this particular situation.
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Fig. 9 Basis functions of a cubic Hermite element

Fig. 10 Cubic Hermite interpolation of four nodal values



32

C. B-spline Approximation

1. Overview

B-splines [4] are piecewise polynomial curves that typically provide a better curve

fit than other interpolation methods. B-splines possess a variation-diminishing prop-

erty which means that as the order of a B-spline function is increased it does not

create oscillation in the entire curve. B-splines also have local support, which means

that a portion of the B-spline curve may be modified without affecting the shape of

the whole curve. Also, B-splines maintain smoothness and continuity of higher-order

derivatives. Again this can be problematic in the case of FEA where continuity across

elements with different material groups is undesirable.

It is important to note that a B-spline curve fit typically does not pass through

the values being interpolated. Therefore, B-spline functions are not interpolatory,

but instead give an approximation of a curve fit. A B-spline curve may be forced to

pass through a certain point by changing some parameters but this forcing action will

reduce the continuity at the point to C0 continuity.

Instead of interpolating at nodal values as with Lagrangian interpolation, B-

splines approximate the value of a function using “control point” values. The control

point values may not have a precise location within the domain (except at the bound-

aries of the domain). Therefore, they are not nodal variables but rather coefficients

that influence the shape of the curve. Eq. (3.9) displays the equation used for con-

structing a B-spline curve. The polynomial u(t) is constructed by means of control

point values (ai) and basis functions (Ni,k(t)) of order k. The basis functions are

evaluated at value (t) located in a knot coordinate system.

u(t) =
∑

aiNi,k(t) (3.9)



33

The basis functions (Ni,k(t)) for a B-spline curve are defined by a recursive formula.

For step basis functions (k = 1) Eq. (3.10) is used. For any other order basis function

Eq. (3.11) is used. Fig. 11 illustrates the recursive dependencies of the B-spline

basis functions. A single cubic B-spline basis function will require the calculation

of nine other lower order B-splines. Note that the basis functions are defined in a

different coordinate system than the typical normalized coordinate system (-1 to 1)

used for Lagrangian and Hermite basis functions. Basis functions are defined in a

knot coordinate system (t). Basis functions will be discussed further in the basis

function section.

Ni,1(t) =





1 ti ≤ t < ti+1

0 otherwise
(3.10)

Ni,k(t) =
(t− ti)Ni,k−1(t)

ti+k−1 − ti
+

(ti+k − t)Ni+1,k−1(t)

ti+k − ti+1

(3.11)

Fig. 11 Recursive dependency of B-spline basis functions

A knot vector (~t) is a vector of increasing real numbers (knot values) that exist

in the knot coordinate system. The knot vector has a very strong influence on the

shape of B-spline curves. Knot vectors can be constructed with various spacing of
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knot values and knot values can be repeated to alter the shape of the curve. More on

knot vectors will be explained in the knot vector section.

For B-spline functions the order (k) is defined to be one more than the degree of

the basis functions. For a linear function k = 2, for a quadratic function k = 3, and

so on. B-spline curves have the property of maintaining Ck−2 continuity in general.

Lagrangian interpolation requires that a set of n values be interpolated by a

function of degree n− 1. B-spline approximation does not have such a strict depen-

dency between number of values/control points and degree. The extra parameter of

the knot vector provides greater flexibility. The relation of knot vector length (l),

number of control points (n), and order (k) is displayed in Eq. (3.12). This relation

subdivides the domain into l − 1 regions or knot intervals.

l = n− k + 2 (3.12)

2. Knot Vector

B-spline curves are defined by a knot vector. This knot vector is a vector of knot

values (real numbers in increasing order). The knot vector subdivides a domain into

sub-regions or knot intervals similar to the division of a domain into elements for

piecewise interpolation. Different types of knot vectors include uniform knot vectors,

non-uniform knot vectors, and open knot vectors. Uniform knot vectors have even

spacing of knot values whereas non-uniform knot vectors do not. Open knot vectors

have k − 1 multiplicity of the first and last knot values.

A periodic knot vector is essentially a uniform, non-open knot vector. An exam-

ple of a periodic knot vector is presented in Eq. (3.13). An example of a non-uniform

knot vector is shown in Eq. (3.14) and an example of a open uniform knot vector
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for a cubic B-spline (k = 4) is shown in Eq. (3.15). Open knot vectors may also be

non-uniform.

~tperiodic = [0, 1, 2, 3, 4, 5, 6] (3.13)

~tnon−uniform = [0, 0.5, 1.2, 3, 3.7, 4.2, 5.5] (3.14)

~topen = [0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6] (3.15)

Repetition of a knot value has the effect of drawing the curve closer to a specific control

point. If a knot value is repeated k−1 times the B-spline curve will pass through the

associated control point. Therefore in the case of an open B-spline (constructed from

an open knot vector) the first and last control points will be interpolated. However

multiplicity of knot values also decreases the continuity at the associated location of

the B-spline curve. If knot values are repeated the function will have continuity of

Cs at the associated knot value, where Eq. (3.16) presents the relationship between

continuity (Cs), order (k) and multiplicity (m) of knot values. Therefore open B-

splines have C0 continuity at the first and last knot values in the knot vector.

s = k −m− 1 (3.16)

3. Basis Functions

Different types of B-spline basis functions are dictated by the different types of

knot vectors. Fig. 12 displays a single periodic basis function for a cubic B-spline.

Note that the basis function spans over k intervals. This span is the local support

region for that particular basis function. Modification of a control point will not

modify the curve outside of the associated basis function’s local support region.

Fig. 13 displays multiple basis functions for a periodic B-spline. Fig. 14 displays
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the piecewise segments of k basis functions present within a single knot interval. For

periodic basis functions all functions are the same, but they are offset in the knot

coordinate direction. Eq. (3.17) explains this characteristic.
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Fig. 12 A single cubic B-spline periodic basis function

Ni,k(t) = Ni−1,k(t− 1) = Ni+1,k(t + 1) (3.17)

Fig. 15 displays the basis functions for an open B-spline with a uniform knot vector

~t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4].. The first and last basis functions have a value of one

at the first and last knot values respectively. This ensures that the B-spline curve

will interpolate the first and last control points. Fig. 16 displays the basis functions

for an open B-spline with the knot vector ~t = [0, 0, 0, 0, 1, 2.4, 3, 4, 4, 4, 4].

As shown in Fig. 14 there are k basis functions associated with a single knot in-

terval. Therefore, there will also be k control points associated with a single interval.

While one-dimensional piecewise Lagrange interpolation will only share a single node
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Fig. 13 Cubic B-spline uniform periodic basis functions
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Fig. 14 Cubic B-spline basis function pieces in a single knot interval

between adjacent elements, there is much more overlap in shared control points among

knot intervals. This overlap is illustrated in Fig. 17 for a cubic open B-spline with

four knot intervals. Using the relations of Eq. (3.12), it can be determined that
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Fig. 15 Cubic B-spline open uniform basis functions
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Fig. 16 Cubic B-spline open non-uniform basis functions
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there our eight control points associated with this B-spline. The first knot interval

[t0, t1] is associated with control points a0, a1, a2, a3, the second knot interval [t1, t2]

is associated with control point a1, a2, a3, a4, and so on for other knot intervals.

Fig. 17 Association of control points with knot intervals for 1D B-spline

4. Non-recursive Calculation of B-spline Basis Functions

B-spline basis functions may be calculated using a recursive formula. However,

if B-spline functions are to be evaluated many times during an analysis, a recursive

formula is undesirable. Therefore, non-recursive equations were developed for basis

functions of a particular knot interval of an open cubic B-spline with an arbitrary

knot vector (see Eqs. (3.18) to (3.21)). These equations require the knot vector, the

knot interval in which the basis functions are being calculated (the knot interval ”i”

corresponds to the interval [ti, ti+1]), and the knot value t at which the basis functions

are being evaluated.

N1,4(t) =
(ti+1 − t)3

(ti+1 − ti−2)(ti+1 − ti−1)(ti+1 − ti)
(3.18)
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N2,4(t) =
(t− ti−2)(ti+1 − t)2

(ti+1 − ti−2)(ti+1 − ti−1)(ti+1 − ti)

+
(ti+2 − t)(t− ti−1)(ti+1 − t)

(ti+2 − ti−1)(ti+1 − ti−1)(ti+1 − ti)

+
(ti+2 − t)2(t− ti)

(ti+2 − ti)(ti+1 − ti)(ti+2 − ti−1)
(3.19)

N3,4(t) =
(ti+1 − t)(t− ti−1)

2

(ti+2 − ti−1)(ti+1 − ti−1)(ti+1 − ti)

+
(ti+2 − t)(t− ti−1)(t− ti)

(ti+2 − ti−1)(ti+2 − ti)(ti+1 − ti)

+
(t− ti)

2(ti+3 − t)

(ti+3 − ti)(ti+2 − ti)(ti+2 − ti)
(3.20)

N4,4(t) =
(t− ti)

3

(ti+2 − ti)(ti+1 − ti)(ti+3 − ti)
(3.21)

5. Constructing Curves with B-splines

As stated before, B-splines are largely used to construct curves and surfaces

for computer aided design (CAD). When B-splines are used for this purpose control

points serve only to modify the shape of the curve. There is no interest in whether

the control points fall on the curve or the proximity of control points to the curve.

Open B-splines may still be utilized to force C0 continuity between different curves.

Fig. 18 displays a B-spline curve created using a collection of control points.

B-splines may also be used to provide a curve fit of data as with Lagrangian

or Hermite interpolation. For this application the control points are very similar to

nodal values in interpolation. However, values are not interpolated but approximated.

Interpolation will occur at knot values that have k− 1 multiplicity. A curve fit using

B-spline approximation is shown in Fig. 19.

Fig. 20 shows two B-spline curves. The curves are approximating two almost
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Fig. 18 Cubic B-spline used to create an arbitrary curve

identical sets of control points. However, one set of contains point A whereas the

other contains point A’. Notice that the B-spline curves are identical in portions out-

side of the local support regions. The two curves only have differences in a number of

k knot intervals. A change in one point of the set of values would change the shape

of the entire curve for non-piecewise Lagrangian or Hermite interpolation.

Previous examples of constructing curves with B-splines have used a given set

of control points to produce a B-spline curve. However, sometimes a specific curve

geometry is desired and the control points and basis functions must be determined

to produce a B-spline curve that represents the desired geometry. Rogers [4] has

developed an extensive resource for B-splines that addresses this issue.

Consider a set of points (pj) at knot values (tj). These will be the points that the

B-spline curve should be forced to pass through. The B-spline curve will be produced

by control points values (ai) and basis functions (Ni,k(t)) of order k.

pj = aiNi,k(tj) (3.22)
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Fig. 19 Cubic B-spline used to curve fit seven values

A

A’

Fig. 20 Local support of a cubic B-spline curve
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Eqs. (3.22) to (3.24) represent a system of equations which may be solved to determine

the appropriate control point values (ai) for the desired geometry (pj). In general,

the number of control points (n+1) must satisfy the following criteria: k ≤ n+1 ≤ j

where j is the number of points provided for the desired geometry. Using an arbitrary

knot vector and order for the B-spline curve, the basis functions may be evaluated

at the knot values tj. Upon calculation of the basis functions, and given the desired

geometry (pj), the system of equations may be solved (Eq. (3.25)) for the necessary

control point values (ai).

[P ] = [N ][A] (3.23)

P T = [p1, p2, p3, ...pn+1] (3.24)

AT = [a1, a2, a3, ...an+1]

N =




N1,k(t1) ... ... Nn+1,k(t1)

...
. . .

...

...
. . .

...

N1,k(tn+1) ... ... Nn+1,k(tn+1)




[A] = [N ]−1[P ] (3.25)

Other possibilities for constructing a specific geometry include using a least-

squares approach which seeks to minimize the error between the desired geometry

and the geometry produced by B-spline curves. If one is seeking to model an ana-

lytical function with a B-spline curve, then error may be calculated as the difference

between the B-spline and analytical functions. This error would then be minimized by

changing control point values or basis functions until a specified tolerance is reached.



44

D. Interpolation in Higher Dimensions

The concepts of interpolation developed in the previous sections are for one-

dimension. However, generally the ability to interpolate in higher dimensions is

required. There are different ways to interpolate in higher dimensions. Two of

these ways are by using tensor product of one-dimensional interpolation functions

and “serendipity” elements.

For simplicity two-dimensional interpolation will be discussed but the concepts

may be extended to three-dimensional space. Only quadrilateral elements will be

discussed. An important property of multi-dimensional interpolation is that the basis

function associated with a node must have a value of one when evaluated at the

coordinates of the node and all other basis functions must have a value of zero when

evaluated at the coordinates of the node.

First, two-dimensional interpolation by using a tensor product of one-dimensional

basis functions will be discussed. Let ni(ξ) represent a one dimensional basis function.

If the normalized coordinate system has coordinates of (ξ, η) then the two-dimensional

tensor product is expressed in Eq. (3.26). If basis function derivatives are necessary

they may also be calculated via a tensor product (Eqs. (3.27) and (3.28)). Fig. 21

shows an element using a tensor product of quadratic basis functions. The principal

is the same for using a tensor-product of one-dimensional basis functions in three

dimensions.

Nij(ξ, η) = ni(ξ)nj(η) (3.26)
(

∂Nij

∂ξ

)
=

dni

dξ
nj(η) (3.27)

(
∂Nij

∂η

)
= ni(ξ)

dnj

dη
(3.28)

The next two-dimensional interpolation method uses “serendipity elements”.
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Fig. 21 Two-dimensional tensor product of quadratic basis function

These elements contain no interior nodes. For example, the element illustrated in

Fig. 21 would be a serendipity element if the interior node was removed. In fact,

very little accuracy is gained by placing this node at the interior, and it is usually

removed in favor of reducing the number of nodes per element [37]. This reduction

in nodes per element could reduce the overall number of nodes in a finite element

analysis considerably. Construction of the basis functions for serendipity elements is

more involved than that of the tensor product method. However, Becker et al. have

documented the process for a two-dimensional quadrilateral element [37]. Three-

dimensional serendipity elements without interior nodes also exist and are commonly

used due to their reduction in number of nodes per element.
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E. B-spline Approximation in Higher Dimensions

There are two types of elements or domains in B-spline approximation. The first

is a “cluster”. The one-dimensional basis functions for a knot vector will span the

edges of a cluster. A cluster may be thought of as having two coordinate systems:

a global coordinate system (xi) and a knot coordinate system (ti). The choice of

knot vectors will sub-divide the cluster into smaller domains. These sub-domains are

termed “patches”. See Fig. 22 for a cluster that has been subdivided into patches.

Also note the one-dimensional basis functions spanning the entire edge of the cluster.

Fig. 22 B-spline basis functions defined over edge of a cluster with knot intervals

sub-dividing cluster into patches (knot coordinate system)

Although multiple basis functions span the edge of a cluster, a patch will only

be associated with a certain number of basis functions. In one-dimension a single
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knot interval is associated with k basis functions (4 functions for the case of cubic

B-splines). Once the associated one-dimensional basis functions for each dimension

a particular patch are selected a higher dimension B-spline approximation for that

patch may be obtained by means of a tensor product. This tensor product will produce

two-dimensional B-spline basis functions used for approximation in two-dimensions.

Therefore, in two-dimensions a patch will be associated with 16 two-dimensional basis

functions and 16 control points.

It is difficult to give a control point a physical location since it may be shared

among multiple patches. One cannot simply give a control point a coordinate within

the domain of an associated patch since multiple patches could share the same control

point. Therefore, control point coordinates are arbitrary except on a cluster bound-

ary. For clarity, control points should be given a coordinate within or on the edge of

the cluster they are local to. Fig. 23 shows a field of control points resulting from

the tensor product of basis functions spanning the edges of a cluster. Note that the

number of control points along the edge of the cluster are related to the order of the

basis functions and the number of patches or knot intervals on the edge by Eq. (3.12).

F. Summary

B-spline approximation is indeed a satisfactory alternative to the use of La-

grangian or Hermite interpolation functions. Many of the problems of Lagrangian

interpolation, including the oscillation of a non-piecewise curve fit and lack of local

support for non-piecewise polynomials can be resolved by using B-splines. Hermite

interpolation provides an improvement over Lagrangian interpolation with respect to

smoothness and continuity of derivatives. However, use of Hermite interpolation in
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Fig. 23 Field of control points in a two-dimensional cluster

FEM requires solving for nodal values as well as nodal derivatives. Furthermore,

Hermite interpolation may increase continuity unacceptably such as enforcing conti-

nuity of stress across elements with different materials.

Some of these interpolation methods may be better suited for certain applica-

tions than others. The order of the partial differential equation used in FEA will have

certain continuity requirements and limitations. In finite element analysis quadratic

Lagrangian interpolation is a convenient method that yields sufficient accuracy. How-

ever, discontinuities do exist in the derivatives between elements. While this is ben-

eficial in the case of adjacent element with different materials, smoothness could be

desired among adjacent elements of the same material. Use of Hermite interpola-

tion functions in finite element analysis would offer and improvement in the solution

and solution derivatives but at a certain computational expense. Furthermore, cubic

Hermite elements may provide undesirable excessive continuity in certain situations.

B-splines may offer the best performance, a good approximation for the com-

putational cost. The use of open B-splines in clusters will allow for smoothness and
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continuity of derivatives on the interior of a cluster while maintaining C0 continuity

at the cluster boundaries. This way clusters may be associated with different material

groups while maintaining discontinuity of stress across two different materials. The

ability to easily adjust the continuity of B-splines through knot repetition is strong

motivation for the use of B-splines in FEA. With this in mind, B-spline approximation

might offer a better solution due to its flexibility and smoothness.

The use of B-spline approximation in finite element analysis has the possibility

to significantly reduce the number of degrees of freedom in an analysis. Piecewise

Lagrangian interpolation creates a need for a large number of nodes and elements.

However, the use of B-splines allows a domain that was once modeled as many ele-

ments to be modeled as a “super element” or “cluster”. This cluster will contain many

smaller regions (defined by knot intervals) known as “patches” that are analogous to

a conventional element. However, patches share many more degrees of freedom with

other patches in the same cluster than conventional elements. This sharing of many

degrees of freedom among patches can significantly reduce the number of degrees of

freedom in an analysis. The concept of implementing B-splines in a finite element

analysis will be discussed in much more detail in further chapters.
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CHAPTER IV

IMPLEMENTATION OF THE B-SPLINE FINITE ELEMENT METHOD

This chapter will present the implementation of the B-spline finite element method

into an existing finite element framework. Chapter II defined the basic formulation

for an elastic finite element method. Chapter III explained the use of B-spline approx-

imation in higher dimensions. Special considerations required by the implementation

will be explained. Explanation of the implementation will be segmented into pre-

processing, analysis, and post-processing.

A. Pre-processing in the B-spline Finite Element Method

Mesh generation for B-spline finite elements involves the same type of “super-

element” mesh as in conventional finite elements. This mesh is termed the “cluster

mesh” (see Fig. 24). Knot vector data is also specified for each edge of a cluster.

Two additional “meshes” are created based on the cluster mesh and knot vector data.

These meshes are the “control point mesh” and the “patch mesh”. The patch mesh

(see Fig. 25) is analogous to a conventional finite element mesh, however the typical

elements are known as patches. The control point mesh (see Fig. 26) has little in

common with a typical finite element mesh. The control point mesh is basically a

listing of control points associated with a cluster. These control points are the points

at which the solution is obtained for the resulting system of equations in a finite

element analysis. This solution must be extrapolated to the nodes of the patch mesh

during post-processing to obtain displacements.

A knot vector is specified along each edge of a cluster. This knot vector is the

same vector that is used for construction of the B-spline function along a cluster edge.

Knot vectors subdivide the cluster into patches (see Fig. 27). Use of non-uniform knot
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Fig. 24 Example of a two-dimensional cluster mesh

Fig. 25 Example of a two-dimensional patch mesh

Fig. 26 Example of a two-dimensional control point mesh
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vectors will yield non-uniform mesh refinement. A patch mesh is created by meshing

the patches of each cluster. After the meshing of each cluster, duplicate nodes along

cluster boundaries are removed. The patch mesh is very useful in visualization of data

and obtaining information about the a patch geometry during elemental calculations.

Fig. 27 B-spline basis functions defined over two-dimensional cluster and patch do-

mains.

The control point mesh is harder to visualize. Note that control points are

not necessarily associated with a specific physical location even if the control point

falls on the boundary of a cluster. For example in a two-dimensional cluster, if the

control point is on the edge of the cluster one coordinate is fixed and the other
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coordinate is arbitrary. Furthermore, if a control point is on the corner of a cluster,

both coordinates are fixed. While it is true that control points do not always have a

definite physical location, it is convenient to give each control point a unique location

for mesh generation purposes. This way mesh generation utilities may be utilized

to remove duplicate nodes along cluster boundaries so clusters may share control

points on a boundary and the control point mesh can be “tied” together. Therefore,

during generation of the control point mesh, all control points are given a physical

location. A scheme was developed that would ensure the correct control points were

located on cluster boundaries and no control points on the interior of the cluster

would have the same coordinate. A grid of control points is generated for each cluster

and the cluster’s connectivity is a simple listing of control points that are local to that

cluster. Therefore, the control point mesh has the same number of elements as the

cluster mesh. After creating a grid of control points for each cluster and specifying

the connectivity listing, duplicate control points along shared cluster boundaries are

eliminated.

Since open cubic B-splines functions are being used, the functions have C0 con-

tinuity at cluster boundaries. Using relations defined in the chapter III (Eq. (3.12)),

one may determine the number of control points along a dimension of a cluster given

the number of knot intervals or patches along that dimension. For an open cubic

B-spline, the number of control points is 3 greater than the number of knot intervals.

For example, the patch mesh in Fig. 25 has 5 patches along each edge of a cluster.

Therefore, the control point mesh in Fig. 26 has 8 control points along each edge of

a cluster.

In conventional finite elements, material assignments may be made to every el-

ement in a mesh. In B-spline finite elements, material assignments are only made

to clusters. Patches local to a cluster automatically assume the material assignment
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made to the parent cluster.

In conventional finite element methods loads, constraints, and multi-point con-

straints (MPCs) may be applied to a model by specifying the load or constraint value

for a particular node number, coordinate, or plane. The same is true for B-spline

finite elements. However, constraints and loads are applied to the control points.

It is most logical to apply loads or constraints to the boundary of a cluster since

control points have a definite physical location on those boundaries. Therefore, it is

important that control points on the boundary of a cluster be located on the physical

boundary of a cluster.

Distributed loads are slightly more involved for a B-spline finite element analysis.

Overall the methodology is the same as that for conventional finite elements. However,

the interpolation functions being utilized are B-spline basis functions and there is more

overlap in degrees of freedom among patches (see Fig. 28). The equivalent control

point loads are calculated using the same methodology as conventional finite elements

(Eq. (2.23)).

A pre-processing utility has been developed for the B-spline finite element method.

The utility requires input of a cluster mesh, the knot vectors of clusters, and basic

information for distributed forces. The utility outputs the control point mesh, patch

mesh, and equivalent control point loads with the associated control point numbers.

In conventional finite elements the integration regions or elements are related to

nodes by a mesh. However, in B-spline finite elements the patches serve as the inte-

gration regions, and control points must be related to a patch. This poses a dilemma

since patch information is stored in the patch mesh and control point information is

stored in the control point mesh. Therefore, information between two meshes must

be shared.

Furthermore, to evaluate the B-spline basis functions the correct basis functions
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Fig. 28 Equivalent nodal loads of distributed force applied to conventional finite

elements and B-spline FEM patches

must be selected for a particular patch. Once the correct piecewise functions are

chosen for each dimension the tensor product will produce B-spline basis functions

for higher dimensions. Therefore, there must be an association between the patch

mesh and knot intervals.

The control point mesh is created by the pre-processing utility. Therefore, a local

control point numbering with a specific pattern may be specified within the connec-

tivity of control points in a cluster. This pattern allows for particular information to

be extracted. A local numbering is also assumed for patches within a cluster. This

local patch numbering is generated from the number of knot intervals on each edge of

a cluster. Figs. 29 and 30 show the pattern of local numbering for a two-dimensional

patch and control point mesh respectively. Numbering for three-dimensional meshes

is handled in a similar manner.

The particular knot intervals associated with a patch may be extracted by using

knowledge of a local patch number, and the number of knot intervals or patches along
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Fig. 29 Local numbering of patches within a cluster

Fig. 30 Local numbering of control points within a cluster

each edge of a cluster (L1 and L2). This also requires knowledge of which cluster

a patch belongs to. However, association of clusters and patches is easily handled due

to a consistent pattern of patch numbering in the pre-processing utility. Determina-

tion of knot intervals associated with a patch is done via Eqs. (4.1) and (4.2).

t2 interval = floor
( local patch #

L2

)
(4.1)

t1 interval = floor
(
local patch #− L1(t2 interval)

)
(4.2)
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If a local control point numbering within a patch is utilized (see Fig. 30), association

of control points with a patch is fairly straightforward. Eq. (4.3) determines the local

control point numbers associated with a patch. Here nCP1 is the number of control

points in the t1 direction, I1 and I2 are the interval numbers of a patch for the t1 and

t2 directions respectively, and the indices i and j range from 0 to 3 as in the coded

implementation. The number of control points per interval (numCPPerInterval)

must also be known, which is 4 for a cubic B-spline. These local control point numbers

may then be referenced to the connectivity of a cluster in the control point mesh to

obtain global control point numbers associated with a patch.

localCPListα = I1 + j + nCP1(i + I2) (4.3)

α = i + (numCPPerInterval)j

i, j = 0, 1, 2, 3

In a similar manner the knot intervals associated with a three-dimensional patch

may be calculated by Eqs. 4.4 through 4.6. Furthermore, the local numbering of

control points associated with a three-dimensional patch may be calculated using Eq.

(4.7).

interval t3 = floor
( local patch #

L1L2

)
(4.4)

interval t2 = floor
( local patch #− (interval t3)L1L2

L1

)
(4.5)

interval t1 = floor(local patch #− (interval t3)L1L2 − (interval t2)L2) (4.6)

localCPListα = I1 + k + nCP1(j + I2) + (i + I3)(nCP1)(nCP2) (4.7)

α = i + (numCPPerInterval)j + (numCPPerInterval)2k

i, j, k = 0, 1, 2, 3



58

B. Analysis in a B-spline Finite Element Method

Many aspects of analysis in the B-spline finite element method are very similar

if not identical to a conventional finite element method. However, there are some

differences which must be implemented. Through the use of object oriented design,

existing functionality of a finite element framework may be inherited and implemen-

tations necessary for B-splines may be added. This results in an implementation in

the existing framework which is leaner and more manageable than creating a sepa-

rate framework for B-spline FEM. The basic structure of the B-spline FEM analysis

implementation is presented in Fig. 31. Comparisons of Figs. 3 and 31 shows there

is much in common between the B-spline implementation and the conventional finite

element framework. Overall, the conventional framework remained in tact with very

small or no modifications at all. Special pre-processing steps were implemented for

B-spline FEM as well as some very localized functions that dealt with the calculations

of the B-spline basis functions and the use of a knot coordinate system.

A typical finite element analysis employs the use of two coordinate systems. That

is a global coordinate system and a normalized coordinate system for a particular

element. The B-spline finite element method utilizes both of these coordinate systems

and an additional coordinate system (the knot coordinate system). Fig. 32 displays

the three coordinate systems involved in a B-spline finite element analysis (for a

one-dimensional case). Note that the transformation between normalized and knot

coordinate systems is a simple linear transformation.

A critical difference between B-spline FEM and conventional FEM is the use of

a a sub-parametric formulation. In conventional finite elements, the shape functions
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Fig. 31 Structure of analysis for B-spline FEM Implementation

used to describe element geometry are often the same functions use to approximate the

solution or displacements. This is known as an iso-parametric formulation. However,

in the current implementation B-spline functions are not utilized to describe element

geometry. Quadratic serendipity element shape functions (Si) are used to describe

geometry. These serendipity elements are of lower order than the cubic B-splines

basis functions (Ni) used to approximate the solution.

Through pre-processing the patches have been associated with control points.

Therefore, degree of freedom lists may be generated for a particular patch. Such a

list is crucial for assembly. Pre-processing in B-spline finite elements also associates

knot intervals of a cluster with a patch. The knot intervals are required to use Eqs.

(3.18) through (3.21).

In conventional finite elements basis functions are evaluated at integration points
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Fig. 32 Three coordinate systems of a B-spline finite element analysis (from top to

bottom: normalized, knot, and physical/global coordinate system)

in the normalized coordinate system. However, B-spline basis functions are evaluated

at a knot value. Therefore, the integration point in the normalized coordinate system

must be transformed to the knot coordinate system. This coordinate transformation

from a normalized coordinate (ξ) to a knot coordinate (t) is illustrated in Fig. 33

and implemented using Eq. (4.8). This transformation also requires the knot interval

number (i) and knot vector values (ti), which are available after pre-processing.

Fig. 33 Definition of knot intervals for generic 1D B-spline basis function equations
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t =
ti + ti+1 + ξ(ti+1 − ti)

2
(4.8)

After determining the knot intervals associated with a patch and mapping the

integration point to the knot coordinate system, one-dimensional B-spline basis func-

tions can be evaluated for each edge of a patch. A tensor product forms the basis

function and basis function derivatives (as shown in Eq. (3.22) through (3.24)) used

in the finite element analysis. It is convenient to think of the tensor product basis

functions as a two-dimensional array (Nij). In a coded implementation it is more

efficient to store as a one-dimensional array (Nm). Therefore, the tensor product will

be stored in a one-dimensional array with the order of function values corresponding

to the order of control points in the list associated with a patch. The same type of

storage occurs for a three-dimensional tensor product.

Since a conventional finite element framework assumes basis functions derivatives

with respect to a normalized coordinate system it is advantageous to transform the

B-spline basis function derivatives with respect to the normalized coordinate system.

This step restricts the use of a knot coordinate system to a very localized part of the

implementation. Therefore, it allows for more of the existing finite element framework

to be utilized as well as bridge the gap between the two methods. The transformation

of basis function derivatives is done via Eq. (4.9). This transformation is applied to

the one-dimensional B-spline basis functions before the tensor product.

dnj

dξ
=

dnj

dt

dt

dξ
=

dnj

dt

(
ti+1 − ti

2

)
(4.9)

Calculation of the Jacobian uses the serendipity element shape functions (Si) that

define patch geometry and patch node coordinates from the patch mesh. Therefore,

the process is similar to Eq. (2.27) but the term (Ni) is replaced with (Si). The B-
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spline basis function derivatives must be transformed to be with respect to the global

coordinate system using the inverse Jacobian. This is done in an identical manner as

Eq. (2.28).

Upon calculation of global B-spline basis function derivatives, the strain-displacement

matrix may be calculated. Since the constitutive matrix is unaffected by the B-spline

implementation the stiffness matrix of a patch may also be calculated. The assembly

process for B-spline FEM is the same as in conventional FEM. However, there is much

more overlap between degrees of freedom among patches. See Fig. 34 for an example

of the associated of control points among two-dimensional patches.

Fig. 34 Association of patches and control points for a 2D model

C. Post-processing in a B-spline Finite Element Method

The B-spline finite element method requires a unique post-processing step. B-

spline FEM produces values at control points. These values are not displacements
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since control points do not have a precise physical location. Instead control point

values and B-spline basis functions approximate the displacement field within a clus-

ter. Therefore, the values of the control points associated with a particular patch

must be interpolated at that patch’s nodes to obtain nodal displacements that can

be visualized on the patch mesh. This interpolation is done via Eq. (4.10). Let ū be

the displacement at a patch node, u be the solution at a control point, m is the index

of a patch node, and j is the index of the control point and associated B-spline basis

function.

(ūα)m = (uα)jNj(ξm, ηm, ζm) (4.10)

Post-processing of strains and stresses is almost identical to the conventional

finite element method. However, the global derivatives of B-spline basis functions and

solution values at control points are utilized to calculate displacement derivatives at

quadrature points. Quadrature point strains and stresses are calculated in the same

manner as conventional finite elements. Extrapolation from quadrature points to

nodes is also handled in the same manner described in chapter II.
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CHAPTER V

RESULTS

This chapter will present a comparison of results for a two-dimensional plane

strain elasticity analysis using both B-spline FEM and conventional FEM. A demon-

stration of three-dimensional analysis capability using B-spline FEM will also be

presented.

A. Two-dimensional Analysis of Square Array of Fibers Configuration

This section will discuss the results of a two-dimensional plane strain analysis

using B-spline FEM. Furthermore, results will also be compared to standard FEM.

The particular configuration is a unit cell of a square array of circular fibers. The

configuration of the model will be described including geometry, boundary conditions,

and material properties. An error analysis tool developed to compare two meshes of

a configuration will also be explained. Finally, a convergence study will be conducted

for standard and B-spline FEM.

1. Configuration

The configuration is a unit cell of a square array of circular fibers (see Fig. 35).

The configuration has a fiber volume fraction of 0.636. By exploiting symmetry, this

model may be reduced to a 1/4 unit cell (see Fig. 36). The boundary conditions

are also depicted in Fig. 36. Plane strain conditions are utilized. The specified

displacement ū1 is 0.01µm. The materials utilized in this configuration are an AS-4

carbon fiber and resin. See Table 1 for material properties (here the x3 direction is

aligned with the length of the fiber).
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Fig. 35 Two-dimensional unit cell of a square array of circular fibers

Fig. 36 Quarter unit cell of a square array of circular fibers

Fig. 37 Mapping of reference mesh to comparison mesh
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Table 1 Material system properties

AS-4 Fiber Resin

E11 16.55 GPa 2.96 GPa

E22 16.55 GPa 2.96 GPa

E33 227.53 GPa 2.96 GPa

ν12 0.25 0.38

ν23 0.0145 0.38

ν13 0.0145 0.38

G12 6.89 GPa 1.07 GPa

G23 24.82 GPa 1.07 GPa

G13 24.82 GPa 1.07 GPa

2. Error Analysis Utility

An error analysis utility was developed to compare stress distributions between

two different meshes of a configuration. The utility accepts a mesh and stress distri-

bution for both a reference solution and a solution that is being evaluated against the

reference solution as inputs. For comparisons of B-spline FEM and standard FEM,

the most refined standard FEM solution will serve as the reference solution.

Every node of the reference mesh is mapped to the comparison mesh (see Fig.

37). Every node in the reference mesh will either be on the boundary or interior of

an element in the comparison mesh. The physical coordinates of the nodes of the

comparison mesh element and reference mesh node are known and the normalized

coordinate of the reference mesh node may be calculated. After calculation of the

normalized coordinate of the reference mesh node, a stress value may be interpolated
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for this reference node.

After mapping all the nodes of the reference mesh to the comparison mesh and

interpolating stress values, a point-wise stress comparison may be made for every

node in the reference mesh. These point stress comparisons are used to calculate

maximum and average error along with other statistical data. An error contour is

also created to assist in visualizing which regions of a model contain the most error.

3. Convergence Study

A variety of meshes were created for the configuration described above. Each

B-spline model was composed of 5 clusters (3 for the fiber and 2 for the matrix).

Mesh refinement ranged from very coarse to extremely refined. The coarsest B-spline

model had 194 DOF, the most refined B-spline model had 377914 DOF. The coarsest

standard model had 154 DOF, the most refined standard model had 1108994 DOF.

Here standard model refers to the use of quadratic serendipity elements. The most

refined standard model served as the reference solution. Fig. 38 shows an example of

a mesh used for this model. A B-spline finite element analysis was completed for each

mesh refinement and the corresponding patch mesh was used for a standard finite

element analysis. In this way, the convergence behavior of B-spline FEM could be

compared to standard FEM. Figs. 38 through 40 show example contours for σ11, σ22,

and σ12 for moderate refinement. These contours show nodal stresses that have been

calculated by extrapolation of stresses at integration points.

The error analysis utility was used to compare all mesh refinements for both

B-spline and standard finite elements to the solution of the most refined standard

analysis. An average error for each stress component was calculated by averaging the

point-wise error for all nodes. The error is simply the absolute value of differences

in point-wise stresses. Fig. 41 presents a log-log plot of average error vs. DOF.
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Fig. 38 σ11 contours for two-dimensional B-spline analysis

For the same number of degrees of freedom a lower error is obtained for all stress

components of the B-spline model compared to the standard model. The σ22 and

σ12 stress components have a much lower error for the B-spline solution compared to

the standard solution, with the improvement for σ11 being not as drastic. Also, for

higher DOF there is some oscillation in the average error of σ11 for both methods.

This might be explained by round-off error in highly refined solutions. By examining

the slopes of the lines, it is clear that B-spline FEM has a higher convergence rate

than the standard FEM. For lower degrees of freedom the standard models have a

convergence rate (slopes in Fig. 41) of approximately -1.005. The B-spline models

exhibit a convergence rate of approximately -1.551. Therefore, the B-spline models

converge at a rate approximately 54% faster than the standard models. For higher

degrees of freedom there appears to be some leveling off to a much lower convergence

rate.
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Fig. 39 σ22 contours for two-dimensional B-spline analysis

Fig. 40 σ12 contours for two-dimensional B-spline analysis



70

Fig. 41 Log-log plot of average error vs. DOF for standard FEM and B-spline FEM

Figs. 42 and 43 present semi-log plots of average error vs. solution time and

total analysis time respectively. The solutions were obtained using the MKL Pardiso

direct solver [38]. Results indicate that for a given solution time the B-spline FEM

will produce a lower average error than the standard FEM. Again, there appears to

be some oscillation of average error at high DOF, perhaps due to round-off error. For

a given total analysis time, B-spline FEM will produce lower average error than the

standard FEM for σ22 and σ12. There is a region for σ11 where standard FEM produces

a lower error for a given total analysis time. However, this is due to the oscillations

in average error for very refined solutions. Considering all stress components, the

overall trend is that B-spline FEM produces a lower average error for a given total

analysis time than standard FEM.



71

Fig. 42 Semi-log plot of average error vs. solution time for standard and B-spline

analysis

Fig. 43 Semi-log plot of average error vs. total time for standard and B-spline anal-

ysis
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A B-spline analysis will typically involve less degrees of freedom than a standard

analysis with comparable mesh refinement. However, this reduction in degrees of

freedom does not necessarily mean a lower solution time. Since many degrees of

freedom are shared between patches, the resulting system of equations is more coupled

than a standard analysis and solution time will be longer (see Fig. 44). Furthermore,

an element stiffness is much larger for a B-spline patch. For example, a standard

two-dimensional analysis using quadratic serendipity elements will have a 16 x 16

element stiffness matrix, but the B-spline analysis using cubic B-splines will have a

32 x 32 stiffness matrix. Therefore, calculation of the element stiffness matrix and

assembly takes longer (see Fig. 45). The trends of assembly time vs. DOF shown

in Fig. 45 are approximately linear and show that for a given number of DOF the

B-spline FEM will take over fourteen times longer to assemble than standard FEM.

Also, if displacements are required a post-processing step must calculate displacement

at patch mesh nodes from control point values. This additional post-processing step

will increase the overall analysis time.

Figs. 46 and 47 show a breakdown of analysis time for B-spline FEM and stan-

dard FEM respectively. Allocation is a minimal part of run-time for each method.

Post-processing includes calculation of stress for both methods and calculation of

displacements for B-spline FEM. For standard FEM, post-processing of stress is a

relatively minimal part of analysis, and writing stress values to output files is a very

significant part of the run-time. In B-spline FEM post-processing of stress is still rel-

atively minimal and post-processing of displacements takes a quarter of the run-time.

If one is only interested in stress values, the displacement post-processing step may

be omitted to reduce run-time. Output of post-processing data is still significant for

B-spline FEM. For standard FEM assembly of the load vector and stiffness matrix

is minimal compared to the time spent solving the system of equations. However,
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Fig. 44 Plot of solution time vs. DOF

Fig. 45 Plot of stiffness matrix assembly time vs. DOF
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for B-spline FEM assembly requires a greater portion of run-time than the solver.

Attempts to optimize the calculation of the element stiffness matrix and assembly

might assist in reducing analysis time significantly.

Another advantage of using B-splines in FEM is the increased continuity of a

solution. Cubic B-splines will maintain continuity of strains and stresses between

patches within a cluster. For a standard FEM analysis using quadratic serendipity

elements, nodal stresses and strains are not continuous between elements of the same

material. Therefore, stresses must be averaged at nodes to smooth the solution for

visualization. Figs. 48 and 49 show un-smoothed stress contours for B-spline and

standard quadratic analysis respectively. Notice the increased smoothness of the B-

spline contour. Furthermore, each cluster is associated with a single material, and

clusters have C0 continuity at boundaries. Therefore, there is no risk of improperly

maintaining continuity of stress across the interface of two materials.

B. Two-dimensional Analysis of an L-shaped Cross-section

A second configuration was studied to observe the performance of B-spline FEM

and standard FEM in the presence of a singularity in the stress distribution of a model.

This particular configuration was an L-shaped cross-section. This configuration will

be described in detail, and results of a convergence study will be presented.

1. Configuration

The configuration for the L-shaped cross-section is shown in Fig. 50. The top

of the beam has been constrained in both the x1 and x2 direction. A downward

displacement load in the x2 direction has been specified. Plane strain conditions

were also imposed. Material properties of AISI 1005 steel have been specified for
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Fig. 46 Subdivision of analysis time for B-spline FEM(81920 patches, 170042 DOF)

Fig. 47 Subdivision of analysis time for standard FEM(81920 elements, 493507 DOF)
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Fig. 48 B-spline FEM un-smoothed

σ11 contour

Fig. 49 Standard FEM un-smoothed

σ11 contour

Fig. 50 L-Shaped cross-section
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the configuration. This isotropic material has a Young’s Modulus (E) of 200 GPa, a

Poisson’s ratio (ν) of 0.29, and a shear modulus (G) of 80 GPa.

2. Convergence Study

A variety of mesh refinements were constructed for the convergence study. For

the B-spline models mesh refinement ranged from 990 DOF to 203154 DOF. For the

standard models mesh refinement ranged from 2010 DOF to 661962 DOF. Again,

the standard model uses quadratic serendipity elements. The most refined standard

model serves as a reference solution to which other refinements are compared. Fig.

51 shows a typical mesh refinement for this configuration. The mesh is graded around

the area at which a singularity in the stress distribution is expected. Figs. 52 through

54 show stress contours for the reference solution.

Fig. 51 Typical mesh refinement for L-Shaped cross-section
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Fig. 52 σ11 contours for L-shaped cross-section

The stress at a particular point was extracted for the various mesh refinements

of the standard and B-spline models. The existing error analysis tool was modified

to extract stresses at coordinates. In the event that multiple elements shared the

same coordinate, the stress values were averaged since the model was composed of

one material. The singularity was located at coordinate (10.0,10.0). Two points

were sampled for stress, coordinate (9.9,9.9) and coordinate (9.0,9.0). An error was

calculated by taking the absolute value of the difference between a stress value of a

particular mesh and the reference mesh.

Fig. 55 shows the convergence of σ11 for coordinate (9.9,9.9). This coordinate is

very close to the singularity. The convergence for both methods is not very smooth

at low and highly refined meshes. There is however a region at moderate refinements

where the convergence behavior is smoother for both B-spline and standard models.

In this region the B-spline model has a slightly higher convergence rate. Also, at
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Fig. 53 σ22 contours for L-shaped cross-section

Fig. 54 σ12 contours for L-shaped cross-section
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higher mesh refinements the error of the B-spline model increases rapidly. This may

be due to the B-spline model actually predicting a more accurate solution than the

reference solution from which error is calculated. Convergence behavior of σ22 is very

similar to σ11 and is not being shown. Convergence behavior of σ12 is not very smooth

at all, and it is difficult to draw conclusions on convergence rates for either method.

However, despite the oscillation of convergence behavior the B-spline model appears

to consistently have a lower error than the standard model for a given number of

degrees of freedom.

In an attempt to observe smoother convergence behavior a coordinate further

from the singularity was examined. The coordinate of (9.0,9.0) should still be close

enough to capture stress behavior around the singularity. Fig. 56 shows convergence

of σ11 and σ12 for B-spline and standard models. The convergence of σ22 is very similar

to σ11 and is not being shown. With regards to σ11 the B-spline model has a higher

convergence rate than the standard model. Also, the B-spline model achieves lower

errors at much lower degrees of freedom than the standard model. With regards

to σ12 the B-spline also has a higher convergence rate than the standard model.

Interestingly, the standard model predicts lower values of error initially. However at

higher degrees of freedom the B-spline model predicts much lower error. It should be

noted that the error for both stress components of the B-spline model shown in Fig.

56 reach a minimum and sharply increase. This is most likely due to the B-spline

actually giving a better prediction of stress than the reference solution from which

error is calculated.
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Fig. 55 Convergence of σ11 for coordinate (9.9,9.9)

Fig. 56 Convergence of σ11 and σ12 for coordinate (9.0,9.0)



82

C. Demonstration of Three-dimensional B-spline Finite Element Method Capability

A three-dimensional model was created to demonstrate the three-dimensional

capability of the B-spline finite element method. The overall configuration is the same

as the two-dimensional square array of circular fibers unit cell, but with an extrusion

in the x3 direction. In addition to the boundary conditions of the two-dimensional

model, plane strain conditions have been imposed so there is no variation of stress with

respect to thickness (x3). Non-uniform meshing was utilized with greater refinement

at the fiber-matrix interface. Note that only one element was used through the

thickness since results were not expected to vary through the thickness.

Since there is no variation through the thickness of the configuration, these results

may be compared to the two-dimensional results. The in-plane σ11 distribution of Fig.

57 may be compared to the stress contours of Fig. 38. Similarly, the in-plane σ22 and

σ12 stress distributions of Figs. 58 and 59 may be compared to the two-dimensional

contours in Figs. 39 and 40 respectively. Fig. 60 shows the σ33 contour for the

three-dimensional model.

Comparison of the two-dimensional and three-dimensional results serves to val-

idate the three-dimensional results. Since a non-uniform mesh was utilized, there is

also a validation of the use of non-uniform mesh refinement in three-dimensions.
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Fig. 57 σ11 contours from three-dimensional B-spline analysis

Fig. 58 σ22 contours from three-dimensional B-spline analysis
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Fig. 59 σ12 contours from three-dimensional B-spline analysis

Fig. 60 σ33 contours from three-dimensional B-spline analysis
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

B-spline functions were successfully implemented in a conventional finite element

framework. This implementation made use of object oriented programming (OOP).

The use of OOP allowed for a lean implementation that used existing parts of the

framework that did not vary because of the use of B-splines. This new implementation

is easily managed and can take advantage of future upgrades and optimizations in

the core framework.

Furthermore, the pre-processor significantly expedites the development of models

using B-spline FEM. Use of the pre-processor and analysis input file requires no

specific knowledge of B-spline theory. Therefore, even those without any kind of

background in B-splines may utilize B-spline FEM.

Results showed that B-spline FEM has the ability to achieve much lower average

error with respect to a reference solution at much lower DOF than a standard FEM

analysis employing quadratic serendipity elements. Also, results suggest that it is

possible to achieve lower average error at lower solution and total analysis times than

standard FEM. Therefore, B-splines can provide an increased efficiency with respect

to error.

B-splines do provide a reduction in the number of DOF for finite element analysis.

However, for a given number of DOF B-spline FEM will have longer solution times

and total analysis times than for standard FEM. Results show that solution times

for B-spline FEM may take longer than a standard analysis with more DOF due to

the increased coupling among equations of a B-spline analysis. Furthermore, for a

two-dimensional analysis the size of the elemental stiffness matrix for B-spline FEM

is four times larger than that of standard FEM using quadratic serendipity elements.
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Therefore, assembly for B-spline FEM will take longer than standard FEM (over

fourteen times longer for a given number of DOF). Preliminary studies of the three-

dimensional B-spline FEM show an even greater assembly time compared to two-

dimensional B-spline FEM.

Future work can involve resolving some of the inefficiencies of B-spline FEM. This

may include optimization of assembly since this is a major limitation with respect to

analysis time for B-spline FEM. Furthermore, B-splines may be well suited to allow

for parallelization of assembly. Since the mesh is divided into clusters, each cluster

may be assembled by a separate processor. Then each cluster stiffness matrix and

load vector may be assembled into the global stiffness matrix and load vector. Such

a method would avoid the possibility of memory access problems during assembly.

Other future work could include describing the cluster and patch geometries

using B-splines. This kind of implementation would be iso-parametric. If B-splines

were utilized for describing geometry, this could allow an interface between CAD

models used for design and FEM models used for analysis. Precise geometry could

be analyzed instead of a less accurate approximation of geometry.

Finally, the coded implementation has been written in a way that it is general

with respect to the order of the B-spline functions utilized. Therefore, quadratic

B-splines or even higher ordered B-splines may be implemented within the same

framework. However, implementation of other order B-spline functions would also

require modification of mesh generators and pre-processing utilities.
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