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ABSTRACT 

 

A Generalized Cohesive Zone Model of Peel Test for Pressure Sensitive Adhesives. 

(May 2008) 

Liang Zhang, B.S., University of Science and Technology of China 

Chair of Advisory Committee: Dr.Jyhwen Wang 

 

 The peel test is a commonly used testing method for adhesive strength evaluation. 

The test involves peeling a pressure sensitive tape away from a substrate and measuring 

the peel force that is applied to rupture the adhesive bond. In the present study, the 

mechanics of the peel test is analyzed based on a cohesive zone model. Cohesive failure 

is assumed to prevail in the vicinity of the peel front, that is, the adhesive fails not by 

debonding from the adherends but by splitting of the adhesive itself. Generally, the 

failure of the adhesive is accompanied with a process of cavitation and fibrillation. 

Therefore, the cohesive zone is modeled as a continuous fibrillated region. A Maxwell 

model is employed to characterize the viscoelastic behavior of the adhesive. The 

governing equation and boundary conditions that describe the mechanics of the peel test 

are derived. Numerical results are obtained under steady state conditions. The model 

predicts the peel force in terms of the peel rate, the peel angle, the nature of the adhesive, 

and the properties of the backing and the substrate. The traction distribution on the 

substrate surface is found to depend on various test parameters. Finally, finite element 

analysis is performed using the commercial software package ABAQUS. The results 
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from FEA are compared with those from the mathematical method to evaluate the 

validity of the present model. The effective range of the present model is found to be 

related to the ratio of the critical fibril length to the extent of the cohesive zone. Given 

the nature of the adhesive as well as the properties of the backing and the substrate, the 

proposed model is able to predict the peel force and the traction distribution in terms of 

the peel rate and the peel angle, and thus provides a measure of the strength of the 

adhesive bond. 
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NOMENCLATURE 

 

 peel rate 

 peel angle 

 speed of the peel front propagation 

 adhesive thickness in the undeformed state 

 half backing thickness  

 Young’s modulus of the backing 

 Poisson’s ratio of the backing 

 yield stress in shear of the backing 

 peel force per unit width of the backing 

  

 arc length distance between points  and  

 arc length distance between points  and  

 inclination of the neutral axis at  measured from the  axis 

 curvature of the neutral axis at  

 moment of inertia per unit width of the backing 

 radius of curvature of the substrate surface 

 arc length distance between points  and  

  

 length of the fibril joining  and  

 inclination of the fibril measured from the  axis 
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 time 

 curvature of the lower surface at  

 instantaneous compliance of a viscoelastic material 

 material constant of a viscoelastic material 

 creep exponent of a viscoelastic material 

 viscosity of the adhesive 

 stress in the fibril 

 initial cross section areas of the fibril 

 current cross section areas of the fibril 

 traction per unit area of the lower surface of the backing 

 location of the last intact fibril on the substrate surface 

 unit vector in the  direction 

 unit vector in the  direction 

 vector that points from  to  

 value of  at  

 length of the peel arm 

 horizontal force acting on the backing 

 vertical force acting on the backing 

 critical stretch ratio of the fibril just before cohesive failure 
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1. INTRODUCTION 

 

1.1 Pressure Sensitive Adhesives 

 

The adhesion between soft and stiff materials comprises an important component 

of many technology applications. One of the most important adhesions is that of pressure 

sensitive adhesives (PSAs). PSAs are designed to ensure instantaneous adhesion upon 

application of a light pressure. The adhesion can be either permanent or removable. 

Permanent adhesives are used in applications such as safety labels for power equipment, 

foil tape for HVAC duct work, automotive interior trim assembly, and sound/vibration 

damping films. Most applications further require that PSAs can be easily removed from 

the adherends by applying a light pulling force. Example of removable applications 

include surface protection films, masking tapes, bookmark and note papers, price 

marking labels, and promotional graphics materials. 

PSAs have been widely used since the late 19th century [1]. The application of 

PSAs started with medical tapes and dressing. The first U.S. patent regarding to PSAs, in 

which they was used for a soft, adhering bandage, was issued in 1846. Ninety years after 

that, Stanton Avery introduced the self-adhesive label. Two major industries –pressure 

sensitive tapes and labels –resulted from these innovations. Industrial tapes were 

 
 
 
____________ 
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developed in the 1920s and 1930s, while self-adhesive labels were introduced in 1935. 

Pressure sensitive protective films were manufactured about ten years later. Solvent-

based PSAs using natural rubber were firstly developed in the 19th century. Hot-melt 

adhesives were developed in the 1940s. Recent developments of PSAs include pressure 

sensitive products without a coated PSA layer. 

Pressure sensitive tapes are designed that, by applying a light pressure, PSAs 

form a continuous layer to bond the tape to the adherend. The layer has to be soft enough 

to adhere to the adherend, whereas it has to be hard enough to offer a proper bond 

resistance. This special behavior requires PSAs exhibiting a viscoelastic character [1]. 

The viscoelastic behavior of PSAs results from their macromolecular nature. Generally, 

PSAs in a bond behave like fluids or solids. Fluids are characterized by their viscosity, 

whereas solids are characterized by their elastic modulus. The mechanical properties of 

PSAs are time dependent. Creton and Leibler [2] studied the tack of PSAs on rigid 

substrates. The viscoelastic behavior was found to be accounted for a time dependent 

elastic modulus. Hui et al. [3] extended their work to model the tack of PSAs on a rough 

surface with a Gaussian distribution of asperity heights. 

 

1.2 Peel Test 

 

The strength of the adhesive bond can be quantified with a peel test. A  peel 

test is illustrated schematically in Figure 1, in which a thin flexible backing that has been 

bonded to a rigid surface is peeled away from the substrate. The peel test provides a  
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Figure 1. Schematics of the peel test. 

 

measure of the strength of the adhesive bond. The strength can be either cohesive or 

adhesive, depending on the mode of failure. The test is commonly conducted by pulling 

the backing at a specific rate and angle, and measuring the peel force that is applied to 

rupture the adhesive bond. The peel force depends on such factors as the rate at which 

the backing is detached, the angle at which the detachment occurs, the nature of the 

adhesive, the mechanical and physical properties of the backing and the substrate, the 
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temperature and humidity of the environment, and the conditioning process [4]. 

However, the interaction of these factors still remains unclear. 

 

1.3 Factors Influencing Peel Test 

 

The fundamental theories of the peel test result primarily form the work based on 

elementary beam bending theory by Kaelble [5]. The theory assumes the adhesive to be 

linearly elastic. A sharp bond boundary is assumed at the line of detachment (see Fgiure 

2). This assumption eliminates the process of cavitation and fibrillation of the adhesive. 

As a result, the predicted traction distribution shows a sudden transition from maximum 

to zero stress in the vicinity of the peel front. 

Kaelble and Reylek [6] succeeded in determining experimentally the traction 

distribution in the vicinity the peel front. They demonstrated that the peel force is 

significantly affected by cavitation and fibrillation of the adhesive. This process 

influences the peel force even under conditions in which the fibrils are visually nearly 

undetectable. The corresponding traction distribution differs from that by Kaelble [5]. 

The traction attains a peak value in the vicinity of the peel front and then decreases 

moderately across the fibrillated zone (see Figure 3). 

Niesiolowski and Aubrey [7] observed the pattern of traction distribution during 

the peeling of pressure sensitive tapes. They also used scale-up rules derived peeling 

theory to predict the pattern of traction distribution theoretically. They suggested that 

linear scale-up of the backing thickness, the adhesive thickness and the peel rate would  
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Figure 2. Tape profile and typical traction distribution predicted based on elementary 

beam bending theory by Kaelble [5]. 
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Figure 3. Experimental traction distribution obtained and profile proposed by Kaelble 

and Reylek [6]. 
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give rise to a correspongding linear increase in the peel force. The predicted patterns 

were compared to those obtained experimentally. The results indicate that the traction 

distribution and thus the peel force are affected by fibrillation significantly. However, 

the proposed scale-up rules imply that the peel force is proportional to the backing 

thickness, the adhesive thickness and the peel rate, which is not generally the case. The 

proposed method is hereby incapable of analyzing the mechanics of the peel test 

accurately. 

The propagation of the peel front is often accompanied by a process of cavitation 

and fibrillation of the adhesive [8]. The adhesive in the vicinity of the peel front is 

subjected to large hydrostatic tension due to the lateral constraint imposed by the 

adherends. For strong adhesives, the adhesive does not debond so that newly formed 

cavities grow vertically perpendicular to the interface. New cavities will continue to 

form as long as the average spacing between them is large enough to provide sufficient 

lateral constraint.  These cavities grow rapidly to a critical level at which the hydrostatic 

tension is used to extend an array of fibrils. 

The fibrils are often modeled as deformable strings, that is, the fibrils are 

subjected to uniaxial extension. Gent and Petrich [9] calculated the peel force by 

summing tensile stresses in fibrils of the adhesive across the peel front. The peel force 

was found to depend on such parameters as the adhesive thickness, the critical extension 

of fibril break or detachment, and the tension in the fibrils. Gutpa [10] pointed out that it 

is difficult to represent the peel process with controlled deformation as the peel geometry 

is not known a priori. However, Gent and Petrich [9] neglected the contribution of the 
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flexibility of the backing on the peel force. Generally, the peel force does not merely 

represent the true strength of the adhesive bond. The measured peel force may represent 

a combination of the true strength of the adhesive bond and other work expended in the 

elastic and plastic deformation of the adherends. This can be understood by considering 

a  peel test, where work is being done not only to rupture the adhesive bond but also 

to bend the backing through  [1]. 

Christensen et al. [11, 12] quantified the deformation of the adhesive in photo 

images. The relationship between the peel force and the dimensionless deformation of 

the fibrils was obtained. The tension in the fibrils was found to increase monotonically 

across the peel front, while the magnitude of the tension increases as the peel rate 

increases. They compared the theoretical peel forces with measurements and 

demonstrated the validity of the expression and the string assumption [13]. They also 

observed that the extension of a fibril in its longitudinal direction is accompanied by the 

extensive shrinkage in its transverse directions (see Figure 4). 

Lin et al. [8] analyzed the failure of the adhesive in a  peel test. They 

compared the failure process in a peel test with that in a tack test and assumed that 

cavitation and fibrillation of the adhesive prevail in the vicinity of the peel front. 

Governing equations for the peel test were derived based on the fibrillated zone model. 

The peel force was found to be dependent on the adhesive thickness and also the peel 

rate. The logarithmic relationship between the peel force and the peel rate was shown to 

be linear. However, they failed to model the peel geometry accurately. In the work of 

Lin, the fibrils were modeled as joining the neutral axis of the backing and the substrate  
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Figure 4. Schematics of the shrinkage in the transverse directions of the fibrils during the 

peel test [12]. 
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surface, whereas the fibrils are in fact joining the lower surface of the backing and the 

substrate surface. Such an inadequacy may cause the elongation and orientation of the 

spring elements, the magnitude of surface traction acting on the backing, and thus the 

moment about the neutral axis of the backing produced by the fibrils to suffer a high 

degree of error compared with the actual values. 

The flexibility, geometry and dimensions of the backing influence the peel force. 

Several authors [4, 14-17] studied the influence of flexible backings on the peel force. 

Wei and Hutchinson [15] investigated the relationship between the peel force and the 

adhesive fracture energy in the presence of the plastic deformation of the peel arm. The 

adhesive thickness was taken to be zero. A traction-separation relation was employed to 

govern the deformation of the adhesive. The macroscopic fracture energy was found to 

be the sum of the adhesive fracture energy and the plastic dissipation. However, the 

adhesive thickness cannot be neglected for PSA tapes. The influence of the adhesive 

thickness hereby should be evaluated. Furthermore, the traction-separation relation 

might not be able to characterize the viscoelastic behavior of PSAs. A time dependent 

creep function should be specified. 

The nature of the substrate influences the peel force as well. Kaelble [18, 19] 

conducted a series of experiments in 1959. In the experiments, cellophane/rubber resin 

based adhesive tapes were peeled away from a cellophane surface at peel angles ranging 

from  to . A string wheel about  in diameter was employed (see Figure 5). 

The peel rate was monitored by controlling the rotational speed of the wheel. Since the 

adhesive is much softer than the wheel, its deformation is strongly influenced by the 
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geometry of the wheel. As the adhesive thickness approaches the radius of the wheel, the 

influence of the radius on the peel force becomes significant. 

 

 

 

Figure 5. Schematics of the peeling device in the work of Kaelble [18, 19]. 

 

1.4 Research Objective 

 

The objective of the present research is to provide a generalized model that is 

capable of characterizing the mechanics of the peel test. A cohesive zone model, in 

which the adhesive fails by splitting of the adhesive itself, is introduced. The cohesive 
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zone is modeled as a continuous fibrillated region, where the viscoelastic behavior of the 

adhesive is characterized by the Maxwell model. The peel geometry is modeled 

accurately, that is, the fibrils are modeled as joining the lower surface of the backing and 

the substrate surface. Under steady state conditions, the model predicts the peel force in 

terms of the peel rate, the peel angle, the nature of the adhesive, and the properties of the 

backing and the substrate. The mechanical response of the adhesive in the presence of a 

curved substrate surface is evaluated. The traction distribution on the substrate surface is 

calculated to investigate the influences of various factors. Finally, finite element analysis 

is performed using the commercial software package ABAQUS. The results from FEA 

are compared with those from the mathematical method to evaluate the validity of the 

present model. 
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2. THEORETICAL CONSIDERATIONS 

 

2.1 Peel Geometry 

 

The peel geometry is displayed in Figure 1. Take the origin of the coordinate 

system  at current location of the peel front. The coordinates  and  are set to be 

in the tangential and normal directions of the substrate surface at the origin, respectively. 

The peel test is conducted at a rate  and an angle . The peel angle  specifies the 

angle which the peel force acts with the  direction in the moving reference frame. The 

peel front propagates with a speed , where as the peel arm moves at a relative speed 

 with respect to the moving origin. The peel rate  can be related to  by vector 

addition. The direction of the peel rate is as shown in Figure 1, while the magnitude of 

peel rate is given by 

  (1) 

The adhesive thickness in the undeformed state is taken to be . Generally, the 

peel force also depends on the adhesive thickness. The peel value increases as the 

adhesive thickness increases [1]. The adhesive thickness can be treated as a variable, but 

it will not be considered in the present work in the interest of reducing the number of 

variables. The adhesive is assumed to be not removable [20], that is, the adhesive does 

not debond from the backing and the substrate during the peel test. This assumption 

implies that cohesive failure or splitting of the adhesive itself prevails. 
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The width of the backing is assumed to be sufficiently large compared to its 

thickness , so that plane strain conditions are appropriate to describe the deformation 

of the backing. The backing is taken to be linearly elastic with Young’s modulus , 

Poisson’s ratio  and yield stress in shear . The peel force per unit width of the backing 

is . The backing will not yield as long as 

  (2) 

where  for plane strain conditions. It is necessary to make the 

assumption that the backing is of a relatively high stiffness compared with the adhesive 

and undergoes negligible deformation in shear and extension. Specifically, consider a 

line element  that lies perpendicular to the neutral axis, where points  and 

 locate on the neutral axis and the lower surface, respectively (see Figure 6). 

The arc length distance between points  and  is , and the arc length distance between 

points  and  is .  is related to  by 

  (3) 

where  denotes the inclination of the neutral axis at  measured from the  axis.  and 

 are related to  and  by 

  (4) 

  (5) 

The curvature of the neutral axis at  follows from the definition as 

  (6) 
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The backing is modeled as elastic so that the curvature of the neutral axis after bending 

is related to the applied bending moment per unit width by 

  (7) 

where  is the moment of inertia per unit width. 

The substrate is modeled as a singly curved adherend with a constant radius of 

curvature , where  is much larger than  and . Specifically, consider a line element 

 that lies perpendicular to the substrate surface before the detachment of the 

adherends, where point  locates on the substrate surface (see Figure 6). The 

line element  can be treated as a fibril with its initial length . Let  be the arc 

length distance between points  and  so that  and  can be written as 

  (8) 

  (9) 

where . 

 

2.2 Constitutive Model 

 

Now consider the case of steady state conditions, in which the peel rate  and the 

peel angle  are independent of time. The peel front is assumed to have propagated a 

sufficient distance so that steady state conditions prevail in the vicinity of the peel front. 

Thus the peel shape and also the deformation of the fibrillated adhesive are independent 

of time with respect to the moving reference frame. After the detachment occurs,   
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(a) 

 

 

(b) 

Figure 6. Schematics of (a) the cohesive zone and (b) the line elements   and  

 . 
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stays on the substrate surface, whereas  has moved with the lower surface of the 

backing (Figure 6). It is a valid approximation to model the fibrils as deformable strings. 

Let  be the length of the fibril joining  and .  can be given by 

  (10) 

Let  be the inclination of the fibril measured from the  axis.  can be represented by 

  (11) 

  (12) 

As can be seen in eq (10),  is a function of the current positions of  and . Note 

that the backing undergoes negligible deformation in shear and extension so that . 

This equation, together with eq (3), implies that  is a function of  and . 

Now suppose that the fibril joining  and  is a fictitious fibril to the left of 

 in the moving reference frame. Let the fibril translate to the right with  and  

moving to the right along their respective surfaces at a speed  synchronously. It is 

deformed to the right of . Failure occurs at  after it has been extended in a 

homogeneous manner. Note that the deformation of the adhesive is independent of time 

with respect to the moving reference frame so that the fictitious fibril experienced 

identical strain history with a fibril in a fixed laboratory frame. Therefore, time  in the 

fixed laboratory frame can be expressed in terms of  and  in the moving reference 

frame as . The rate of extension of the fibril can then be expressed in terms of  

as 
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  (13) 

where dot denotes . The derivatives  and  are calculated using chain rule: 

  (14) 

  (15) 

where  and . Eq (13) can then be rewritten as: 

  (16) 

Note that the line element  does not deform after bending, so that it is equivalent to 

take  and  in eq (16). Furthermore, the curvature of the 

neutral axis is related to that of the lower surface by 

  (17) 

Therefore, the rate of extension of the fibril can be written in terms of  as 

  (18) 

where the term  results from the change in length of the lower surface and is 

negligible in cases where the backing is of thin cross section. 

The compliance function of the adhesive is assumed to have the form [21]: 

  (19) 

where  is the instantaneous compliance,  is a material constant, and  is the creep 

exponent. The special case of  corresponds to a Maxwell solid representing the 
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viscoelastic behavior of PSAs. Specifically, assume that  and , where  

is the viscosity of the adhesive. The one-dimensional mechanical response of a Maxwell 

solid is generally represented by a mechanical analog – a viscous damper [22]. The 

response of the viscous damper is characterized by a relationship between stress and 

strain rate. Let  and  be an arbitrary stress history and the corresponding strain 

response, respectively. The constitutive equation of the Maxwell solid has the form: 

  (20) 

The string assumption implies that the fibrils cannot support stresses normal to the plane 

of deformation. Therefore, even though plane strain conditions are assumed in the 

backing, plane stress conditions prevail in the adhesive. The constitutive equation of a 

fibril in the moving reference frame can be obtained by rewriting eq (20) as 

  (21) 

where the stress  in the fibril is now a function of . Constancy of volume is assumed 

in the fibril so that , where  and  are the initial and current cross section 

areas of the fibril, respectively. Let  be the traction per unit area of the lower surface 

of the backing. Since the tension in the fibril must balance the surface traction on the 

lower surface,  is related to  by 

  (22) 

This equation, together with eqs (16) and (21), gives a general representation of the 

traction: 
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  (23) 

As can be seen in eq (23),  depends on the viscosity, the adhesive thickness, the speed 

of the peel front propagation, and parameters related to the peel geometry. 

 

2.3 Governing Equations 

 

A continuum analysis of the fibrils is required to obtain accurate results in the 

vicinity of the peel front. If the fibrils are assumed to be sufficiently close to each other, 

the cohesive zone can be treated as a continuum fibrillated region [8]. The peel geometry 

can then be sub-divided into two regions: the adhesive, the backing and the substrate 

, and the detached infinite backing segment , where  is the location of the 

last intact fibril on the substrate surface. 

Now consider the moment per unit width about the neutral axis of the backing in 

the cohesive zone. The fibril joining  and  occupies a small arc length  on the 

lower surface of the backing. Let  be the surface traction acting on , where  is 

the traction vector and . The string assumption implies that  is in the 

direction of the straight line join  and .  can then be written as 

  (24) 

where  and  are unit vectors in the  and  directions, respectively. The moment per 

unit width at  produced by  is 
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  (25) 

where  points from  to ;  is the vector cross product. Substitution of eq (23) 

into eq (25) gives 

  (26) 

The resultant moment produced by the fibrils can be obtained by integrating 

 over , where  is the value of  at  as 

shown in Figure 7. This integral plus the moment produced by the peel force  gives the 

moment per unit width at  as 

  (27) 

where  is the length of the peel arm. It should be noted that  is measured from . Eqs 

(7) and (27), together with 

  (28) 
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Figure 7. Moment balance in the cohesive zone. 

 

determine the peel shape in the cohesive zone. Combining eqs (7), (27) and (28) gives 

  (29) 

which is the governing equation for the peel shape in the cohesive zone. Once the peel 

rate and the peel angle are specified, the unknowns in eq (29) are , ,  and the peel 

shape . The boundary conditions at  are 

  (30) 

  (31) 
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Continuity of displacement, inclination, force and moment are required at . Let  

and  be the horizontal and vertical forces acting on the backing, respectively. The 

supplemental boundary conditions at the end of the cohesive zone are 

  (32) 

  (33) 

  (34) 

The continuum analysis of the cohesive zone is matched to a bending problem 

for the detached backing at . The peel shape is obtained by integrating the 

governing equation in the detached zone , where the fibrils are broken. In this 

region, the surface traction vanishes, so that eq (27) reduces to 

  (35) 

and eq (7) becomes 

  (36) 

Eq (36) can be rewritten in a concise form by transforming the coordinate system  

into the coordinate system  as shown in Figure 8. The new coordinates  and  

are related to the coordinates  and  by 

  (37) 

  (38) 

 is now in the  direction. Substitution of eqs (37) and (38) into eq (36) gives 

  (39) 
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Figure 8. Transformation of the coordinate system. 

 

Let  be the inclination of the neutral axis measured from the  axis. 

Eq (39) can be rewritten in terms of  and integrated exactly as 

  (40) 

The relationship between  and  can then be obtained as 

  (41) 

The rotation of the neutral axis are required to be continuous at  so that 

, where  is the value of  at . It is obvious that  when  

. Note that  is the inclination of the neutral axis in the 

coordinate system  so that  is related to  by 

  (42) 

The peel shape in the detached zone in  can then be obtained as 

  (43) 
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where .  can be expressed in terms of ,  and  as 

 (44) 

Substitution of eq (44) into eq (34) gives 

  (45) 

Eq (29) and boundary conditions (30) – (34) provide a partial description of the peel 

mechanics. A fibril failure criterion is needed to determine the extent of the cohesive 

zone. 

 

2.4 Failure Criterion 

 

Following the work of Lin et al. [8], the fibrils are assumed to break at a critical 

stretch ratio. Let  be the critical stretch ratio of the fibril just before cohesive failure.  

can be written as 

  (46) 

Once  is specified,  is uniquely determined. It is observed that the critical stretch 

ratio does vary with the peel rate, but the dependence on the peel rate is weak [12]. This 

phenomenon is related to the cross-linking of macromolecules of PSAs. The internal 

motion of cross-linked macromolecules is a relative slow process, that is, the molecular 

rearrangement requires a certain time [1]. This time is much longer than the duration of 

the external load in a peel test. Therefore, the molecular rearrangement will not 



 26

contribute significantly to the critical stretch ratio within the time scale relevant in peel 

tests at typical peel rates. 

 

2.5 Dimensional Analysis 

 

Dimensional analysis can be performed to reduce the number of material 

parameters. Following the work of Lin et al. [8],  and  are employed as primary 

parameters. Let these two parameters normalize lengths and forces in eqs (23), (29), (30) 

– (34), respectively. These equations can then be rewritten in terms of the following 

dimensionless parameters: 

  (47) 

where  specifies the peel angle;  and  account for the viscoelastic behavior of the 

adhesive;  characterizes the flexibility and dimensions of the backing;  characterizes 

the geometry of the substrate surface. This independent dimensionless group, together 

with the peel rate, characterizes the peel test. Dimensional analysis implies the solution 

for the dimensionless peel force  must have the general form: 

  (48) 

Once the dimensionless group is specified, the dimensionless parameters , ,  and the 

dimensionless peel shape  are completely determined. 

It should be pointed out that the solutions for different sets of dimensionless 

groups only provide combinations of the dimensionless parameters with which steady 
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state conditions are achieved. The dimensionless parameters can be related to the 

dimensional parameters by solving for  in the solutions. Specifically, each solution 

gives a dimensionless peel rate , and the dependence of the peel rate on 

the peel angle and the critical stretch ratio gives the corresponding dimensional peel rate. 

 can then be calculated for given  and . 
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3. NUMERICAL METHOD 

 

3.1 Discretized Governing Equations 

 

 

 

Figure 9. Free body diagram of two neighboring elements of the backing. 

 

Eq (29) provides the basis for the analytical model. However, exact solutions for 

this problem cannot be found explicitly. To solve the problem numerically, a series of 

alternate but completely equivalent formulations are proposed. The backing in the 

cohesive zone is subdivided into  differential elements with the same length . Two 

neighboring elements (the  and the  element) are illustrated schematically in 

Figure 5. The horizontal and vertical forces acting on the  element are , ,  
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and . The moments about the neutral axis of the  element are  and . The 

surface traction produced by the fibrils is denoted by .  is approximated to act 

on the midpoint of the lower surface of the  element. The coordinate of the midpoint 

can be given as 

  (49) 

  (50) 

where  is the coordinate of the  node;  is the inclination of the  

element. Let  be the length of the fibril that occupies the  element.  is given by 

  (51) 

where . Let  be the inclination of the fibril measured from the  

axis.  can be represented by 

  (52) 

  (53) 

The force balance for the  element requires 

  (54) 

  (55) 

The moment balance about  requires 

 (56) 
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An alternate formulation of eq (7) is  

  (57) 

The traction per unit length of the element can be obtained by rewriting eq (23): 

  (58) 

where 

  (59) 

The boundary conditions at  are 

  (60) 

  (61) 

The supplemental boundary conditions at the end of the cohesive zone are 

  (62) 

  (63) 

  (64) 

  (65) 

The length of the peel arm can be obtained by rewriting eq (44): 

 (66) 

 

3.2 Dimensionless Discretized Governing Equations 
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Now consider the dimensionless versions of eqs (51) – (66). Let primary parameters 

 and  normalize lengths and forces in eqs  (51) – (66), respectively. The 

dimensionless parameters can then be obtained as 

  (67) 

Substitution of these dimensionless parameters in to eqs (51) – (59) gives the 

dimensionless versions of these equations: 

  (68) 

  (69) 

  (70) 

  (71) 

  (72) 

  

  (73) 

  (74) 

  (75) 

where 
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  (76) 

The dimensionless versions of eqs (60) – (65) can be similarly obtained as 

  (77) 

  (78) 

  (79) 

  (80) 

where . The dimensionless version of eq (66) is 

 (81) 

Solutions for the dimensionless group can then be obtained using the dimensionless 

versions of the governing equations and the boundary conditions. 

Boundary conditions (60) – (65) imply that this problem is a two boundary value 

problem, where the dimensionless group can be treated as a set of eigenvalues of the 

governing equations. The shooting method is often employed to solve a two boundary 

value problem [23]. Specifically, , ,  and  are initially guessed. Solutions for the 

problem can then be obtained with initial value methods. In general, , ,  and  

obtained in this manner may deviate form the desired boundary values at . The 

problem can then be solved by finding the adjustment of , ,  and  that zeros this 

deviation. Details of the shooting method are given in Appendix A, while the C program 

developed to perform the shooting method is given in Appendix B. 
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4. FINITE ELEMENT ANALYSIS 

 

The commercial software package ABAQUS is used in this research. The finite 

element geometry consists of the backing, the substrate and the adhesive (see Figure 

10(a)). The backing is discretized with the beam element ABAQUS type B21. A beam 

element is a one-dimensional line element in three-dimensional space or in the  plane 

that has stiffness associated with deformation of the line [24]. These deformations 

consist of axial stretch, bending and torsion. The main advantage of beam elements is 

that they are geometrically simple and have few degrees of freedom. The length of the 

backing (and also the extent of the cohesive zone) is set to be , while the backing is 

discretized into  elements. The modulus  is set to be  so that the results can then be 

converted to dimensionless results easily. The substrate is modeled as flat and of high 

modulus and identical length compared with the backing. The two-dimensional quadratic 

element ABAQUS type CPS4R is employed to discretize the substrate. To model the 

adhesive accurately, the number of elements in the longitudinal direction of the substrate 

is set to be , which is identical of that of the backing. 

The string assumption implies that the fibrils are subjected to uniaxial extension. 

The fibrils are hereby modeled as a set of strings joining corresponding pairs of nodes of 

the backing and the substrate, respectively. Spring elements are used to model actual 

physical springs as well as idealizations of axial or torsional components, while their 

behavior can be linear or nonlinear [24]. Nonlinear spring behavior can be defined by  
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(a) 

 

(b) 

Figure 10. Geometry of FEA model: (a) undeformed; (b) deformed. 
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giving pairs of force–relative displacement values. The spring element ABAQUS type 

SpringA is employed to characterize the viscoelastic response of each string. The 

SpringA element acts between two nodes, with its line of action being the line joining 

the two nodes, so that this line of action can rotate in large-displacement analysis. 

As mentioned above, each fibril experiences identical strain history under steady 

state conditions, and the mechanical response of each fibril depends on its position (see 

eq (23)). Since the peel shape is independent of time with respect to the moving 

reference frame, the behavior of the fibrils can be characterized by a force–relative 

displacement relationship. The set of spring element consists of  elements. Since the 

backing and the substrate will be set to be fully constrained at the peel front, the spring 

element there can be neglected. The arc length that each spring element occupies  are 

then approximated to be . The nonlinear force–relative displacement relationship of the 

spring elements can then be obtained by plotting  versus . The elongation of a 

typical fibril  and the traction per unit area of the backing produced by the fibril  

are given by numerical results from the mathematical method. 

The backing is set to be fully constrained at the peel front. The substrate is 

modeled as rigid so that it is set to be fully constrained both at the peel front and on its 

upper surface. Then a displacement and rotation boundary condition is imposed to the 

end of the backing. The displacement and rotation of the backing are also given by 

numerical results from the mathematical method. The peel shape and the traction 

distribution on the substrate surface can then be obtained (see Figure 10(b)). The 
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agreement between these results and those from the mathematical method will be 

evaluated. The input file of the FEA model is given in Appendix C. 

One issue of the model is that the beam element is a one-dimensional line 

element. As a result, the spring elements are joining the neutral axis of the backing and 

the substrate surface, whereas the fibrils are in fact joining the lower surface of the 

backing and the substrate surface. Such an issue may cause the elongation and 

orientation of the spring elements, the magnitude of surface traction acting on the 

backing, and thus the moment about the neutral axis of the backing produced by the 

fibrils to deviate from the actual values. The effect of this issue on the peel shape and the 

traction distribution will also be discussed. 
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5. RESULTS AND DISCUSSION 

 

Numerical results are obtained for peel tests in which cohesive failure prevails. 

Following experiments and observations by Christensen et al. [11-13], the dimensionless 

group is set as follows: 

  (82) 

Since the critical stretch ratio depends on the peel rate and the peel angle, the extent of 

the cohesive zone also varies with these two parameters. Here,  is maintained to be 

constant in most cases in the interest of analyzing the influences of various parameters. 

 Figure 11 compares the dimensionless peel shapes from the mathematical 

method and those from FEA for several values of , while Figure 12 depicts the 

corresponding traction distributions from the mathematical method and FEA. As can be 

seen in Figure 11, the peel curves from the mathematical method and FEA agree with 

each other well for . For , the deviation of the peel curve from FEA 

becomes noticeable. Correspondingly, the traction distributions from the mathematical 

method and FEA agree with each other well for  in Figure 12. The traction peak 

from FEA moves apart from the peel front for . The agreement between results 

from the mathematical method and those from FEA demonstrates that both sets of results 

are valid for low values of , whereas the difference between two sets of results implies 

that at least one set of results is not valid for high values of . 
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Figure 11. Dimensionless peel shapes from the mathematical method and FEA. The 

dimensionless group is taken to be ,  and . 

 

The difference between two sets of results can be quantified by the shift of the 

traction peak and the difference between values of tractions at  in Figure 12. Note 

that a displacement and rotation boundary condition is imposed to the end of the backing. 

For identical , the last intact fibrils in both models (the mathematical method and FEA) 

are of identical elongation. Also note that the behaviors of the fibrils for both methods 

are characterized by identical force–relative displacement relationship. The two values 

of tractions at  for both methods should hereby be the same. As can be seen in 

Figure 12, the difference between the two values, however, is noticeable. This difference  
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Figure 12. Dimensionless traction distributions from the mathematical method and FEA. 

The dimensionless group is taken to be ,  and . 

 

results from that the peel geometry is not modeled accurately from FEA. As mentioned 

above, the spring elements are modeled as joining the neutral axis of the backing and the 

substrate surface. The elongation and orientation of the spring elements, the magnitude 

of surface traction acting on the backing, and thus the moment about the neutral axis of 

the backing produced by the fibrils to deviate from the true values. As  increases,  

increases correspondingly, while the backing becomes more deformed. The calculated 

moment produced by the fibrils may hereby suffer a high degree of error. As a result, the 

peel curve from FEA deviates from the actual values, while the traction peak shifts  



 40

 

Figure 13. Dimensionless peel shapes from the mathematical method and FEA for high 

dimensionless critical fibril length. The dimensionless group is taken to be , 

 and . 

 

correspondingly. Nevertheless, both the mathematical method and FEA provide a solid 

framework to characterize the mechanics of the peel test for low values of . 

The dimensionless critical fibril length  is another factor that affects the 

validity of results from not only FEA but also the mathematical method. As can be seen 

in Figure 13, the peel curve from FEA is no long a monotonically increasing curve for 

 and , that is, buckling occurs in the backing. Note that the extent of the 

cohesive is determined by eq (30), which requires that the inclination of the backing is 
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zero at the peel front, and eq (46), which determines the location of the last intact fibril. 

As buckling occurs in the backing, there is one point other than the peel front where the 

inclination of the backing is also zero. This implies that the cohesive zone is resized. 

Furthermore, the adhesive at that point is subject to compression. This violates the string 

assumption. Therefore, the present model is unable to analyze the mechanics of peel 

tests in the presence of buckling in the backing. The reason for the occurrence of 

buckling here is that the issue of the FEA model causes the system to suffer a high 

degree of error and thus to be unstable for extremely high values of . 

Figure 13 also shows conditions in which the mathematical method might be 

unable to model the peel test. The backing can deform to such an extent that the fibrils 

overlap each other in the vicinity of . In this case, there will be interaction between 

neighboring fibrils. This violates the assumption that the cohesive zone is a continuum 

fibrillated region. Numerical results from the mathematical method are hereby no long 

the solution for the physical problem. To avoid the overlapping of the fibrils, the 

dimensionless critical fibril length  should be limited to a certain extent. The effective 

range of the present model is suggested to be . 

Figure 14 shows the dimensionless traction distribution on the substrate surface. 

The dimensionless traction distribution, which in this case corresponds to , shows that 

the dimensionless traction  increases with increasing .  attains a peak value when 

 for . As  increases, the tensile traction peak becomes more prominent 

and move towards to the peel front. This result is mostly in good agreement with  
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Figure 14. Dimensionless traction distributions for different critical stretch ratios. The 

dimensionless group is taken to be ,  and . 

 

previous works [5-7]. However, two distinct differences are observed. First, a prominent 

compressive traction peak was observed by Kaelble and Reylek [6], as well as by 

Niesiolowski and Aubrey [7], but is absent in the present result. The reason for this 

discrepancy is that the length of the peel arm is coupled with the peel force in the present 

work, whereas they are independent of each other in the previous works  [5-7]. The 

inclination of the backing at the peel front is generally nonzero, that is, the backing 

resists against being bent during the peel test [12]. As a result, a compressive traction 

peak appears ahead of the peel front due to the resistance. However, Eq (30) requires 
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that the inclination be zero, and also that the length of the peel arm depend on the peel 

force. Since the resistance is now acting parallel to the tangential line of the substrate 

surface at the peel front, no compressive traction peak will be produced. Suppose that eq 

(30) is not satisfied so that the length of the peel arm and the peel force are independent 

on each other. The peel shape ahead of the peel front can then be approximately 

sinusoidal. The sinusoidal peel shape may produce a compressive traction peak and a 

secondary tensile traction peak [6, 7]. It should be pointed out that eq (30) is 

automatically satisfied in the case of a  peel test. Therefore, the compressive traction 

peak was also absent in the work of Christensen. Second, no tensile traction peak was 

observed by Christensen et al. [12]. Christensen suggested that the absent of the tensile 

traction peak was due to the fact that the process of cavitation of the adhesive did not 

occur. This statement, however, is not generally the case. Adhesive failure was observed 

in a series of  peel tests by Christensen, that is, the adhesive debonded from the 

substrate before the traction attained a peak value. Furthermore, the backing chosen by 

Christensen was so flexible that the resistance of the backing against the adhesive could 

be neglected during the test. 

 Figure 15 depicts the influence of  on the dimensionless traction distribution. 

Here,  and  are normalized by  and , respectively, where  is a referential 

extent of the cohesive zone. As can be seen,  increases with increasing , while the 

traction peak becomes more prominent for high values of .  However, the extent of the 

cohesive zone decreases as  increases. This can be understood by considering a peel 

test at a high peel rate, where the backing is bent to such an extent that the critical stretch  
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Figure 15. Dimensionless traction distributions for different peel rates. The 

dimensionless group is taken to be ,  and . 

 

ratio is attained and the extent of the cohesive is relatively small. Therefore, the extent of 

the cohesive zone is determined by both the dimensionless peel rate and the critical 

stretch ratio. However, there exists a lower bound of the extent of the cohesive zone for 

given peel geometry and nature of the adhesive. As mentioned above, the mathematical 

method is unable to model the peel test as the dimensionless critical fibril length exceeds 

its limitation. As a result, the lower bound of the extent of the cohesive zone varies for 

various critical stretch ratios. 
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Figure 16. Dimensionless traction distributions for different peel angles. The 

dimensionless group is taken to be ,  and . 

 

The dependence of the dimensionless traction distribution on  is illustrated in 

Figure 16. As can be seen,  decreases with increasing . Note that the work expended 

during the peel test represents a combination of the strength of the adhesive bond and the 

work expended in the elastic deformation of the backing. The backing has to be bent to 

such an extent that the critical stretch ratio is attained at the end of the cohesive zone. 

This requirement is easier to be satisfied for high values of . Therefore, high values of 

 causes low values of dimensionless speeds of the peel front propagation . Since eq  
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Figure 17. Dimensionless peel rate versus dimensionless peel force for different peel 

angles. The dimensionless group is taken to be   and . 

 

(23) implies that  is proportional to , low values of  are obtained for low values of 

 and thus high values of . For extremely low values of , numerical results cannot 

be obtained. Since the backing is assumed to undergo negligible deformation in 

extension, the critical stretch ratio cannot be attained in these cases. 

Figure 17 plots  versus  for several values of . As expected,  

increases with increasing . For identical critical stretch ratio, low values of  and  

are required for high values of . The influence of the peel angle on the peel shape is 

weak for high values of . As a result, the curves for  and  peel tests are quite 
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close to each other. The relationship between  and  is not strictly linear, 

whereas the peel rate is proportional to  in the work of Lin et al. [8]. This 

discrepancy might due to the fact that Lin failed to model the peel geometry accurately. 

As mentioned above, the fibrils are joining the lower surface of the backing and the 

substrate surface. However, they were modeled as joining the neutral axis of the backing 

and the substrate surface in the work of Lin. The elongation and orientation of the spring 

elements, the magnitude of surface traction acting on the backing, and thus the moment 

about the neutral axis of the backing produced by the fibrils may hereby suffer a high 

degree of error in the presence of a thick backing. 

The dependence of the dimensionless traction distribution on  and  is shown 

in Figure 18. The ratio of the viscosity of the adhesive to the modulus of the backing 

 (and thus the dimensionless peel rate ) is assumed to remain constant in each 

curve. Here,  and  are normalized by  and , respectively, where  is a 

referential modulus. As can be seen,  increases proportionally as  and  increase. 

The trends of the curves are similar, whereas  increases proportional to  and . The 

peel force also depends on the nature of the adhesive, as well as the flexibility of the 

backing. High peel forces are required to bend stiff backings and rupture strong adhesive 

bonds. Stiff backings and strong adhesive bonds also produce high tractions on the 

substrate surface increase. As mentioned above, the measured peel force represents a 

combination of the strength of the adhesive bond and other work expended in the elastic 

deformation of the backing. For low values of , the peel force depends on the 
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Figure 18. Dimensionless traction distributions for different viscosities of the adhesive 

and modulii of the backing. The dimensionless group is taken to be , , 

 and . 

 

mechanical properties of the backing significantly. To evaluate the contribution of the 

adhesive bond on the peel force, the elastic and plastic deformation of the backing needs 

to be analyzed in detail. For high values of , the peel force can be approximated as 

the representation of the true strength of the adhesive bond. 
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Figure 19. Dimensionless traction distributions for different backing thicknesses. The 

dimensionless group is taken to be ,  and . 

 

Figure 19 shows the influence of  on the dimensionless traction distribution. As 

mentioned above, the dimensional analysis only provides combinations of the 

dimensionless parameters with which steady state conditions are achieved. For high 

values of , high values  and  are required to bend the backing through . Therefore, 

increasing  causes significant increase in . As can be seen in eq (23), the term , 

which results from the change in length of the lower surface of the backing, affects  as 

well. Eq (23) reduces to 
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  (83) 

for negligible  or , whereas eq (23) becomes 

  (84) 

as  approaches to a limit of . The case of  corresponds to peel tests in 

which the backing is thick compared to the extent of the cohesive zone and bent to a 

large extent. Lin et al. [8] derived an expression that is equivalent to eq (83), whereas  

the backing thickness was assumed to be much greater than the adhesive thickness. It is 

obvious that results obtained using eq (83) will deviate from the exact values when  

is no longer negligible. 

The influence of  on the dimensionless traction distribution is illustrated in 

Figure 20. The last intact fibril is extended to identical stretch ratio in each curve. Since 

the adhesive is much softer the substrate, the deformation of the adhesive strongly 

depends on the geometry of the substrate. For high values of , fibrils in the cohesive 

zone are subjected to larger deformation. Correspondingly,  increases with increasing 

. For high values of , the dependence of  on  becomes weak. The curves 

approach to the curve of . However, this does not mean that the substrate can  

always be treated as flat when the extent of the cohesive zone is much smaller than the 

radius of the substrate. Sometimes the roughness of the substrate surface needs to be 

considered. Now suppose that the substrate surface is approximated as a random rough 

surface with asperities of constant radius of curvature [2]. As the extent of the cohesive  
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Figure 20. Dimensionless traction distributions for different dimensionless radii of 

curvature of the substrate surface. The dimensionless group is taken to be , 

 and . 

 

becomes comparable with the radius of these asperities, the traction distribution will be 

influenced the geometry of these asperities. 
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6. CONCLUSION 

 

The model presented in this work provides a cohesive zone model to characterize 

the mechanics of the peel test. For given peel geometry, this model can be used to 

predict the dimensionless peel force in terms of the dimensionless peel rate and the peel 

angle. The dimensionless traction distribution is found to depend on such factors as the 

critical stretch ratio, the dimensionless peel rate, the peel angle, the mechanical 

properties of the adhesive and the backing, the geometries of the backing and the 

substrate. The dimensionless parameters can be easily related to dimensional 

experimental results for given peel geometry and material parameters. The results from 

FEA are compared with those from the mathematical method to evaluate the validity of 

the present model. The effective range of the present model is found to be related to the 

critical fibril length to the extent of the cohesive zone. 

In the previous studies, the backing thickness was assumed to be much greater 

than the adhesive thickness, whereas the fibrils in the cohesive zone were modeled as 

joining the neutral axis of the backing and the substrate surface. In addition, the 

influence of the change in length of the lower surface on the strain rates of the fibrils was 

neglected. In the present work, the peel geometry is modeled accurately, while the 

influence of the deformation backing on the peel test is also evaluated. As a result, the 

logarithmic relationship between the dimensionless peel force and the dimensionless 

peel rate becomes not strictly linear. More realistic models for viscoelastic materials can 

be employed to characterize the behavior of the adhesive during peel test. The present 
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model, however, provides a solid framework to better understand the mechanics of 

peeling pressure sensitive adhesives. 
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APPENDIX A 

THE SHOOTING METHOD 

 

A typical two point boundary value problem is comprised of a set of  coupled 

first-order ordinary differential equations,  boundary conditions at the starting point 

, and a remaining set of  boundary conditions at the final point 

. The differential equations can be represented as 

  (85) 

The solution for the differential equations is supposed to satisfy 

  (86) 

at , while it is also supposed to satisfy 

  (87) 

at . 

 There are  starting values  to be specified at the starting point , while 

the starting values are subject to  conditions. Therefore, there are  freely 

specifiable starting values. Suppose that these freely specifiable values are components 

of a vector , of dimension . The boundary condition (86) can then be rewritten as 

  (88) 

Below, the function that implements (88) will be called load. 

As  has been generated for given initial guesses for ,  can then be 

obtained by integrating the ODEs to  as an initial value problem. Now define a 
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discrepancy vector , also of dimension , whose components indicates how far the 

freely specifiable values are from satisfying the  boundary conditions at . The 

boundary condition (87) can then be rewritten as 

  (89) 

All components of  are equal to zero if and only if the boundary conditions at  

are satisfied. Therefore, finding a vector value of  that zeros the vector value of  will 

solve the problem. The initial guesses for  can be adjusted by 

  (90) 

The correction  is obtained by solving the set of  linear equations 

  (91) 

The Jacobian matrix  has components as follows: 

  (92) 

Since these partial derivatives generally cannot be computed analytically, an alternative 

form of eq (92) is given as follows: 

  (93) 

The solution procedure is completed when . 
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APPENDIX B 

C PROGRAM 

 

The C programs include three files: nutril.h, nutril.cpp and shoot.cpp. All the 

subroutines are discussed in detail in [23]. 

 

nrutil.h 
 
#ifndef _NR_UTILS_H_ 
#define _NR_UTILS_H_ 
 
static float sqrarg; 
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg) 
 
static double dsqrarg; 
#define DSQR(a) ((dsqrarg=(a)) == 0.0 ? 0.0 : dsqrarg*dsqrarg) 
 
static double dmaxarg1,dmaxarg2; 
#define DMAX(a,b) (dmaxarg1=(a),dmaxarg2=(b),(dmaxarg1) > (dmaxarg2) ?\ 
        (dmaxarg1) : (dmaxarg2)) 
 
static double dminarg1,dminarg2; 
#define DMIN(a,b) (dminarg1=(a),dminarg2=(b),(dminarg1) < (dminarg2) ?\ 
        (dminarg1) : (dminarg2)) 
 
static float maxarg1,maxarg2; 
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\ 
        (maxarg1) : (maxarg2)) 
 
static float minarg1,minarg2; 
#define FMIN(a,b) (minarg1=(a),minarg2=(b),(minarg1) < (minarg2) ?\ 
        (minarg1) : (minarg2)) 
 
static long lmaxarg1,lmaxarg2; 
#define LMAX(a,b) (lmaxarg1=(a),lmaxarg2=(b),(lmaxarg1) > (lmaxarg2) ?\ 
        (lmaxarg1) : (lmaxarg2)) 
 
static long lminarg1,lminarg2; 
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#define LMIN(a,b) (lminarg1=(a),lminarg2=(b),(lminarg1) < (lminarg2) ?\ 
        (lminarg1) : (lminarg2)) 
 
static int imaxarg1,imaxarg2; 
#define IMAX(a,b) (imaxarg1=(a),imaxarg2=(b),(imaxarg1) > (imaxarg2) ?\ 
        (imaxarg1) : (imaxarg2)) 
 
static int iminarg1,iminarg2; 
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\ 
        (iminarg1) : (iminarg2)) 
 
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) 
 
#if defined(__STDC__) || defined(ANSI) || defined(NRANSI) /* ANSI */ 
 
void nrerror(char error_text[]); 
float *vector(long nl, long nh); 
int *ivector(long nl, long nh); 
float **matrix(long nrl, long nrh, long ncl, long nch); 
void free_vector(float *v, long nl, long nh); 
void free_ivector(int *v, long nl, long nh); 
void free_matrix(float **m, long nrl, long nrh, long ncl, long nch); 
 
#else /* ANSI */ 
/* traditional - K&R */ 
 
void nrerror(); 
float *vector(); 
float **matrix(); 
int *ivector(); 
void free_vector(); 
void free_ivector(); 
void free_matrix(); 
 
#endif /* ANSI */ 
 
#endif /* _NR_UTILS_H_ */ 
 
nutril.cpp 
 
#include <stdio.h> 
#include <stddef.h> 
#include <stdlib.h> 
#define NR_END 1 
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#define FREE_ARG char* 
 
void nrerror(char error_text[]) 
/* Numerical Recipes standard error handler */ 
{ 
 fprintf(stderr,"Numerical Recipes run-time error...\n"); 
 fprintf(stderr,"%s\n",error_text); 
 fprintf(stderr,"...now exiting to system...\n"); 
 exit(1); 
} 
 
double *vector(long nl, long nh) 
/* allocate a double vector with subscript range v[nl..nh] */ 
{ 
 double *v; 
 
 v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double))); 
 if (!v) nrerror("allocation failure in vector()"); 
 return v-nl+NR_END; 
} 
 
int *ivector(long nl, long nh) 
/* allocate an int vector with subscript range v[nl..nh] */ 
{ 
 int *v; 
 
 v=(int *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(int))); 
 if (!v) nrerror("allocation failure in ivector()"); 
 return v-nl+NR_END; 
} 
 
double **matrix(long nrl, long nrh, long ncl, long nch) 
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */ 
{ 
 long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 double **m; 
 
 /* allocate pointers to rows */ 
 m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); 
 if (!m) nrerror("allocation failure 1 in matrix()"); 
 m += NR_END; 
 m -= nrl; 
 
 /* allocate rows and set pointers to them */ 
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 m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
 if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 m[nrl] += NR_END; 
 m[nrl] -= ncl; 
 
 for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 
 /* return pointer to array of pointers to rows */ 
 return m; 
} 
 
void free_vector(double *v, long nl, long nh) 
/* free a double vector allocated with vector() */ 
{ 
 free((FREE_ARG) (v+nl-NR_END)); 
} 
 
void free_ivector(int *v, long nl, long nh) 
/* free an int vector allocated with ivector() */ 
{ 
 free((FREE_ARG) (v+nl-NR_END)); 
} 
 
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) 
/* free a double matrix allocated by matrix() */ 
{ 
 free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 free((FREE_ARG) (m+nrl-NR_END)); 
} 
 
shoot.cpp 
 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.cpp" 
#define TINY 1.0e-20 //A small number. 
#define ALF 1.0e-4 /*Ensures sufficient decrease in function value.*/ 
#define TOLX 1.0e-7 /*Convergence criterion on Δx.*/ 
#define MAXITS 500 
#define TOLF 1.0e-6 
#define TOLMIN 1.0e-8 
#define EPS 1.0e-8 
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#define STPMX 100.0 
#define PI 3.14159265 
/*Here MAXITS is the maximum number of iterations; TOLF sets the convergence 
criterion on function values; TOLMIN sets the criterion for deciding whether spurious 
convergence to a minimum of fmin has occurred; TOLX is the convergence criterion on 
δx; STPMX is the scaled maximum step length allowed in line searches.*/ 
 
int nn; //Global variables to communicate with fmin. 
double *fvec; 
void (*nrfuncv)(int n, double v[], double f[]); 
#define FREERETURN {free_vector(fvec,1,n);free_vector(xold,1,n);\ 
 free_vector(p,1,n);free_vector(g,1,n);free_matrix(fjac,1,n,1,n);\ 
free_ivector(indx,1,n);return;} 
 
FILE *fp; 
 
void ludcmp(double **a, int n, int *indx, double *d) 
/*Given a matrix a[1..n][1..n], this routine replaces it by the LU decomposition of a 
rowwise permutation of itself. a and n are input. a is output; indx[1..n] is an output 
vector that records the row permutation effected by the partial pivoting; d is output as ±1 
depending on whether the number of row interchanges was even or odd, respectively. 
This routine is used in combination with lubksb to solve linear equations or invert a 
matrix.*/ 
{ 
 int i,imax,j,k; 
 double big,dum,sum,temp; 
 double *vv; //vv stores the imphicit scaling of each row. 
 vv=vector(1,n); 
 *d=1.0; //No row interchanges yet. 
 for (i=1;i<=n;i++) { //Loop over rows to get the imphicit scaling information. 
  big=0.0; 
  for (j=1;j<=n;j++) { 
   if ((temp=fabs(a[i][j])) > big) big=temp; 
  } 
  if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
  //No nonzero largest element. 
  vv[i]=1.0/big; //Save the scaling. 
 } 
 for (j=1;j<=n;j++) { //This is the loop over columns of Crout’s method. 
  for (i=1;i<j;i++) { 
   sum=a[i][j]; 
   for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   a[i][j]=sum; 
  } 
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  big=0.0; //Initialize for the search for largest pivot element. 
  for (i=j;i<=n;i++) { 
   sum=a[i][j]; 
   for (k=1;k<j;k++) 
    sum -= a[i][k]*a[k][j]; 
   a[i][j]=sum; 
   if ( (dum=vv[i]*fabs(sum)) >= big) { 
    //Is the figure of merit for the pivot better than the best so 
far? 
    big=dum; 
    imax=i; 
   } 
  } 
  if (j != imax) { //Do we need to interchange rows? 
   for (k=1;k<=n;k++) { //Yes, do so... 
    dum=a[imax][k]; 
    a[imax][k]=a[j][k]; 
    a[j][k]=dum; 
   } 
   *d = -(*d); //...and change the parity of d. 
   vv[imax]=vv[j]; //Also interchange the scale factor. 
  } 
  indx[j]=imax; 
  if (a[j][j] == 0.0) a[j][j]=TINY; 
  //If the pivot element is zero the matrix is singular (at least to the 
precision of  
  // the algorithm). For some apphications on singular matrices, it is 
desirable to  
  // substitute TINY for zero. 
  if (j != n) { //Now, finally, divide by the pivot element. 
   dum=1.0/(a[j][j]); 
   for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  } 
 } //Go back for the next column in the reduction. 
 free_vector(vv,1,n); 
} 
 
void lubksb(double **a, int n, int *indx, double b[]) 
/*Solves the set of n linear equations A·X = B. Here a[1..n][1..n] is input, not as the 
matrix A but rather as its LU decomposition, determined by the routine ludcmp. 
indx[1..n] is input as the permutation vector returned by ludcmp. b[1..n] is input as the 
right-hand side vector B, and returns with the solution vector X. a, n, and indx are not 
modified by this routine and can be left in place for successive calls with different right-
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hand sides b. This routine takes into account the possibility that b will begin with many 
zero elements, so it is efficient for use in matrix inversion.*/ 
{ 
 int i,ii=0,ip,j; 
 double sum; 
 for (i=1;i<=n;i++) { /*When ii is set to a positive value, it will become the 
       index of the first nonvanisling element of b. 
The 
       only new wrinkle is to unscramble the 
permutation 
       as we go.*/ 
  ip=indx[i]; 
  sum=b[ip]; 
  b[ip]=b[i]; 
  if (ii) 
   for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   else if (sum) ii=i; /*A nonzero element was encountered, so from 
now on  
        we will have to do the sums 
in the loop above.*/ 
   b[i]=sum;  
 } 
 for (i=n;i>=1;i--) { 
  sum=b[i]; 
  for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  b[i]=sum/a[i][i]; /*Store a component of the solution vector X.*/ 
 } /*All done!*/ 
} 
 
void fdjac(int n, double x[], double fvec[], double **df, 
     void (*vecfunc)(int, double [], double [])) 
/*Computes forward-difference approximation to Jacobian. On input, x[1..n] is the point 
at which the Jacobian is to be evaluated, fvec[1..n] is the vector of function values at the 
point, and vecfunc(n,x,f) is a user-supplied routine that returns the vector of functions at 
x. On output, df[1..n][1..n] is the Jacobian array.*/ 
{ 
 int i,j; 
 double h,temp,*f; 
 f=vector(1,n); 
 for (j=1;j<=n;j++) { 
  temp=x[j]; 
  h=EPS*fabs(temp); 
  if (h == 0.0) h=EPS; 
  x[j]=temp+h; //Trick to reduce finite precision error. 
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  h=x[j]-temp; 
  (*vecfunc)(n,x,f); 
  x[j]=temp; 
  for (i=1;i<=n;i++) df[i][j]=(f[i]-fvec[i])/h; //Forward difference formula. 
 } 
 free_vector(f,1,n); 
} 
 
double fmin(double x[]) 
/*Returns f = 1/2 F · F at x. The global pointer *nrfuncv points to a routine that returns 
the vector of functions at x. It is set to point to a user-supplied routine in the calling 
program. Global variables also communicate the function values back to the calling 
program.*/ 
{ 
 int i; 
 double sum; 
  
 (*nrfuncv)(nn,x,fvec); 
 for (sum=0.0,i=1;i<=nn;i++) sum += SQR(fvec[i]); 
 return 0.5*sum; 
} 
 
void lnsrch(int n, double xold[], double fold, double g[], double p[], double x[], 
   double *f, double stpmax, int *check, double (*func)(double [])) 
/*Given an n-dimensional point xold[1..n], the value of the function and gradient there, 
fold and g[1..n], and a direction p[1..n], finds a new point x[1..n] along the direction p 
from xold where the function func has decreased “sufficiently.” The new function value 
is returned in f. stpmax is an input quantity that limits the length of the steps so that you 
do not try to evaluate the function in regions where it is undefined or subject to overflow. 
p is usually the Newton direction. The output quantity check is false (0) on a normal exit. 
It is true (1) when x is too close to xold. In a minimization algorithm, this usually signals 
convergence and can be ignored. However, in a zero-finding algorithm the calling 
program should check whether the convergence is spurious. Some “difficult” problems 
may require double precision in this routine.*/ 
{ 
 int i; 
 double a,alam,alam2,alamin,b,disc,f2,rhs1,rhs2,slope,sum,temp, 
  test,tmplam; 
  
 *check=0; 
 for (sum=0.0,i=1;i<=n;i++) sum += p[i]*p[i]; 
 sum=sqrt(sum); 
 if (sum > stpmax) { 
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  for (i=1;i<=n;i++) p[i] *= stpmax/sum; /*Scale if attempted step is too 
big.*/ 
 } 
 for (slope=0.0,i=1;i<=n;i++) 
  slope += g[i]*p[i]; 
 if (slope >= 0.0) nrerror("Roundoff problem in lnsrch."); 
 test=0.0; /*Compute λmin.*/ 
 for (i=1;i<=n;i++) { 
  temp=fabs(p[i])/FMAX(fabs(xold[i]),1.0); /*Refer to (9.7.6).*/ 
  if (temp > test) test=temp; 
 } 
 alamin=TOLX/test; 
 alam=1.0; /*Always try full Newton step first.*/ 
 for (;;) { /*Start of iteration loop.*/ 
  for (i=1;i<=n;i++) x[i]=xold[i]+alam*p[i]; 
  *f=(*func)(x); 
  if (alam < alamin) { /*Convergence on Δx. For zero finding, 
        the calling program should verify 
the  
        convergence.*/ 
   for (i=1;i<=n;i++) x[i]=xold[i]; 
   *check=1; 
   return; 
  } else if (*f <= fold+ALF*alam*slope) return; //Sufficient function 
decrease. 
  else { /*Backtrack.*/ 
   if (alam == 1.0) 
    tmplam=-slope/(2.0*(*f-fold-slope)); /*First time.*/ 
   else { /*Subsequent backtracks.*/ 
    rhs1=*f-fold-alam*slope; 
    rhs2=f2-fold-alam2*slope; 
    a=(rhs1/(alam*alam)-rhs2/(alam2*alam2))/(alam-alam2); 
    b=(-
alam2*rhs1/(alam*alam)+alam*rhs2/(alam2*alam2))/(alam-alam2); 
    if (a == 0.0) tmplam=-slope/(2.0*b); 
    else { 
     disc=b*b-3.0*a*slope; 
     if (disc < 0.0) tmplam=0.5*alam; /*Differ from the 
textbook.*/ 
     else if (b <= 0.0) tmplam=(-b+sqrt(disc))/(3.0*a); 
     else tmplam=-slope/(b+sqrt(disc)); 
    } 
    if (tmplam > 0.5*alam) 
     tmplam=0.5*alam; /*λ ≤ 0.5λ1.*/ 
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   } 
  } 
  alam2=alam; 
  f2=*f; 
  alam=FMAX(tmplam,0.1*alam); /*λ ≥ 0.1λ1.*/ 
 } /*Try again.*/ 
} 
 
void newt(double x[], int n, int *check, 
    void (*vecfunc)(int, double [], double [])) 
/*Given an initial guess x[1..n] for a root in n dimensions, find the root by a globally 
convergent Newton’s method. The vector of functions to be zeroed, called fvec[1..n] in 
the routine below, is returned by the user-supplied routine vecfunc(n,x,fvec). The output 
quantity check is false (0) on a normal return and true (1) if the routine has converged to 
a local minimum of the function fmin defined below. In this case try restarting from a 
different initial guess.*/ 
{ 
 void fdjac(int n, double x[], double fvec[], double **df, 
  void (*vecfunc)(int, double [], double [])); 
 double fmin(double x[]); 
 void lnsrch(int n, double xold[], double fold, double g[], double p[], double x[], 
  double *f, double stpmax, int *check, double (*func)(double [])); 
 void lubksb(double **a, int n, int *indx, double b[]); 
 void ludcmp(double **a, int n, int *indx, double *d); 
 int i,its,j,*indx; 
 double d,den,f,fold,stpmax,sum,temp,test,**fjac,*g,*p,*xold; 
 
 indx=ivector(1,n); 
 fjac=matrix(1,n,1,n); 
 g=vector(1,n); 
 p=vector(1,n); 
 xold=vector(1,n); 
 fvec=vector(1,n); //Define global variables. 
 nn=n; 
 nrfuncv=vecfunc; 
 f=fmin(x); //fvec is also computed by this call. 
 test=0.0; //Test for initial guess being a root. Use 
 for (i=1;i<=n;i++) { //more stringent test than simply TOLF. 
  if (fabs(fvec[i]) > test) test=fabs(fvec[i]); 
 } 
 if (test < 0.01*TOLF) { 
  *check=0; 
  FREERETURN 
 } 
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 for (sum=0.0,i=1;i<=n;i++) sum += SQR(x[i]); //Calculate stpmax for line 
searches. 
 stpmax=STPMX*FMAX(sqrt(sum),(double)n); 
 for (its=1;its<=MAXITS;its++) { //Start of iteration loop. 
  fdjac(n,x,fvec,fjac,vecfunc); 
  //If analytic Jacobian is available, you can replace the routine fdjac below 
with your 
  //own routine. 
  for (i=1;i<=n;i++) { //Compute delta f for the line search. 
   for (sum=0.0,j=1;j<=n;j++) sum += fjac[j][i]*fvec[j]; 
   g[i]=sum; 
  } 
  for (i=1;i<=n;i++) xold[i]=x[i]; //Store x, 
  fold=f; //and f. 
  for (i=1;i<=n;i++) p[i] = -fvec[i]; //Right-hand side for linear equations. 
  ludcmp(fjac,n,indx,&d); //Solve linear equations by LU decomposition. 
  lubksb(fjac,n,indx,p);  
  lnsrch(n,xold,fold,g,p,x,&f,stpmax,check,fmin); 
  //lnsrch returns new x and f. It also calculates fvec at the new x when it 
calls fmin. 
  test=0.0; //Test for convergence on function values. 
  for(i=1;i<=n;i++) { 
   if (fabs(fvec[i]) > test) test=fabs(fvec[i]); 
  } 
  if (test < TOLF) { 
   *check=0; 
   FREERETURN 
  } 
  if (*check) { //Check for gradient of f zero, i.e., spurious convergence. 
   test=0.0;  
   den=FMAX(f,0.5*n); 
   for (i=1;i<=n;i++) { 
    temp=fabs(g[i])*FMAX(fabs(x[i]),1.0)/den; 
    if (temp > test) test=temp; 
   } 
   *check=(test < TOLMIN ? 1 : 0); 
   FREERETURN 
  } 
  test=0.0; //Test for convergence on δx. 
  for (i=1;i<=n;i++) { 
   temp=(fabs(x[i]-xold[i]))/FMAX(fabs(x[i]),1.0); 
   if (temp > test) test=temp; 
  } 
  if (test < TOLX) FREERETURN 



 70

 } 
 nrerror("MAXITS exceeded in newt"); 
} 
 
#define SAFETY 0.9 
#define PGROW -0.2 
#define PSHRNK -0.25 
#define ERRCON 1.89e-4 
#define MAXSTP 10000 
#define N2 4 
#define HMIN 0.02 //0.02 
 
double l0,beta,R,2h,psi,sigmac; 
/* l0–adhesive thickness in the undeformed state; beta–sb^3 /2I; R–radius of curvature of 
the substrate surface; 2h–thickness of the backing; psi–peel angle; sigmac–traction per 
unit area at the end of the cohesive zone. 
int nvar; //Variables that you must define and set in your main program. 
double x1,x2,dx; 
 
int kmax,kount; 
double *xp,**yp,dxsav; 
/*User storage for intermediate results. Preset kmax and dxsav in the calling program. If 
kmax .= 0 results are stored at approximate intervals dxsav in the arrays xp[1..kount], 
yp[1..nvar] [1..kount], where kount is output by odeint. Defining declarations for these 
variables, with memory allocations xp[1..kmax] and yp[1..nvar][1..kmax] for the arrays, 
should be in the calling program.*/ 
 
void rkck(double y[], double dydx[], int n, double x, double h, double yout[], 
    double yerr[], void (*derivs)(double, double [], double [], double)) 
/*Given values for n variables y[1..n] and their derivatives dydx[1..n] known at x, use 
the fifth-order Cash-Karp Runge-Kutta method to advance the solution over an interval h 
and return the incremented variables as yout[1..n]. Also return an estimate of the local 
truncation error in yout using the embedded fourth-order method. The user supplies the 
routine derivs(x,y,dydx), which returns derivatives dydx at x.*/ 
{ 
 int i; 
 double h6,*ak1,*ak2,*ak3,*ak4,*ytemp; 
 
 ak1=vector(1,n); 
 ak2=vector(1,n); 
 ak3=vector(1,n); 
 ak4=vector(1,n); 
 ytemp=vector(1,n); 
 h6=h/6.0; 
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 (*derivs)(x,y,ak1,0.5*h); //First step. 
 for (i=1;i<=n;i++) 
  ytemp[i]=y[i]+0.5*2h*ak1[i]; 
 (*derivs)(x+0.5*h,ytemp,ak2,0.5*h); //Second step. 
 for (i=1;i<=n;i++) 
  ytemp[i]=y[i]+0.5*2h*ak2[i]; 
 (*derivs)(x+0.5*h,ytemp,ak3,0.5*h); //Third step. 
 for (i=1;i<=n;i++) 
  ytemp[i]=y[i]+h*ak3[i]; 
 (*derivs)(x+h,ytemp,ak4,0.5*h); //Fourth step. 
 for (i=1;i<=n;i++) //Accumulate increments with proper weights. 
  yout[i]=y[i]+h6*(ak1[i]+2.0*ak2[i]+2.0*ak3[i]+ak4[i]); 
 (*derivs)(x,y,ak1,h); //Corrective step. 
 yout[9]=y[9]+h*ak1[9]; 
 for (i=1;i<=n;i++) 
  yerr[i]=h*2h*h; 
 //Estimate error as difference between fourth and fifth order methods. 
 free_vector(ytemp,1,n); 
 free_vector(ak4,1,n); 
 free_vector(ak3,1,n); 
 free_vector(ak2,1,n); 
 free_vector(ak1,1,n); 
} 
 
void rkqs(double y[], double dydx[], int n, double *x, double htry, double eps, 
    double yscal[], double *hdid, double *hnext, 
    void (*derivs)(double, double [], double [], double)) 
/*Fifth-order Runge-Kutta step with monitoring of local truncation error to ensure 
accuracy and adjust stepsize. Input are the dependent variable vector y[1..n] and its 
derivative dydx[1..n] at the starting value of the independent variable x. Also input are 
the stepsize to be attempted htry, the required accuracy eps, and the vector yscal[1..n] 
against which the error is scaled. On output, y and x are replaced bythei r new values, 
hdid is the stepsize that was actuallyac comphished, and hnext is the estimated next 
stepsize. derivs is the user-supplied routine that computes the right-hand side 
derivatives.*/ 
{ 
 void rkck(double y[], double dydx[], int n, double x, double h, 
  double yout[], double yerr[], void (*derivs)(double, double [], double [], 
double)); 
 int i; 
 double errmax,h,htemp,xnew,*yerr,*ytemp; 
 yerr=vector(1,n); 
 ytemp=vector(1,n); 
 h=htry; //Set stepsize to the initial trial value. 
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 for (;;) { 
  rkck(y,dydx,n,*x,h,ytemp,yerr,derivs); //Take a step. 
  errmax=0.0; //Evaluate accuracy. 
  for (i=1;i<=n;i++) errmax=FMAX(errmax,fabs(yerr[i]/yscal[i])); 
  errmax /= eps; //Scale relative to required tolerance. 
  if (errmax <= 1.0) break; //Step succeeded. Compute size of next step. 
  htemp=SAFETY*2h*pow(errmax,PSHRNK); 
  //Truncation error too large, reduce stepsize. 
  h=(h >= 0.0 ? FMAX(htemp,HMIN) : FMIN(htemp,HMIN));  
  //No more than a factor of 10. 
  xnew=(*x)+h; 
  if (fabs(h) <= HMIN) break; //if (fabs(h) == HMIN) break; Here is the 
error.  
  //if (xnew == *x) nrerror("stepsize underflow in rkqs"); 
 } 
 if (errmax > ERRCON) *hnext=(h >= 0.0 ? fabs(HMIN) : -fabs(HMIN)); 
 //*hnext=SAFETY*2h*pow(errmax,PGROW); 
 else *hnext=5.0*h; //No more than a factor of 5 increase. 
 *x += (*hdid=h); 
 for (i=1;i<=n;i++) y[i]=ytemp[i]; 
 free_vector(ytemp,1,n); 
 free_vector(yerr,1,n); 
} 
 
void odeint(double ystart[], int nvar, double x1, double x2, double eps, double *h1, 
   double hmin, int *nok, int *nbad, 
   void (*derivs)(double, double [], double [], double),  
 void (*rkqs)(double [], double [], int, double *, double, double, double [], 
   double *, double *, void (*)(double, double [], double [],double))) 
/*Runge-Kutta driver with adaptive stepsize control. Integrate starting values 
ystart[1..nvar] from x1 to x2 with accuracy eps, storing intermediate results in global 
variables. h1 should be set as a guessed first stepsize, hmin as the minimum allowed 
stepsize (can be zero). On output nok and nbad are the number of good and bad (but 
retried and fixed) steps taken, and ystart is replaced byv alues at the end of the 
integration interval. derivs is the user-supplied routine for calculating the right-hand side 
derivative, while rkqs is the name of the stepper routine to be used.*/ 
{ 
 int nstp,i; 
 double xsav,x,hnext,hdid,h; 
 double *yscal,*y,*dydx; 
 
 yscal=vector(1,nvar); 
 y=vector(1,nvar); 
 dydx=vector(1,nvar); 
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 x=x1; 
 h=SIGN(*h1,x2-x1); 
 *nok = (*nbad) = kount = 0; 
 for (i=1;i<=nvar;i++) y[i]=ystart[i]; 
 if (kmax > 0) xsav=x-dxsav*2.0; //Assures storage of first step. 
 for (nstp=1;nstp<=MAXSTP;nstp++) { //Take at most MAXSTP steps. 
  (*derivs)(x,y,dydx,h); 
  for (i=1;i<=nvar;i++) 
   //Scaling used to monitor accuracy. This general-purpose choice 
can be  
   //modified if need be. 
   yscal[i]=fabs(y[i])+fabs(dydx[i]*h)+TINY; 
  if (kmax > 0 && kount < kmax-1 && fabs(x-xsav) > fabs(dxsav)) { 
   xp[++kount]=x; //Store intermediate results. 
   for (i=1;i<=nvar;i++) yp[i][kount]=y[i]; 
   xsav=x; 
  } 
  if ((x+h-x2)*(x+h-x1) > 0.0) h=x2-x; //If stepsize can overshoot, decrease. 
  (*rkqs)(y,dydx,nvar,&x,h,eps,yscal,&hdid,&hnext,derivs); 
  if (hdid == h) ++(*nok); else ++(*nbad); 
  if ((x-x2)*(x2-x1) >= 0.0) { //Are we done? 
   for (i=1;i<=nvar;i++) ystart[i]=y[i]; 
   if (kmax) { 
    xp[++kount]=x; //Save final step. 
    for (i=1;i<=nvar;i++) yp[i][kount]=y[i]; 
   } 
   *h1=h; 
   free_vector(dydx,1,nvar); 
   free_vector(y,1,nvar); 
   free_vector(yscal,1,nvar); 
   return; //Normal exit. 
  } 
  if (fabs(hnext) <= hmin) hnext=(x2 > x1) ? fabs(hmin) : -fabs(hmin); 
  //nrerror("Step size too small in odeint"); 
  h=hnext; 
 } 
 nrerror("Too many steps in routine odeint"); 
} 
 
void load(double v[], double y[]) 
//Supplies starting values for integration at x = -1 + dx. 
{ 
 y[1]=0.0; //x 
 y[2]=0.5*2h+l0; //y 
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 y[3]=0.0; //M 
 y[4]=0.0; //Theta 
 y[5]=v[1]; //f 
 y[6]=v[2]; //Upsilon 
 y[7]=v[3]; //V 
 y[8]=v[4]; //F 
 y[9]=0.0; //Sigma 
} 
 
void score(double xf, double y[], double f[], double h) 
//Tests whether boundary condition at x = 0 is satisfied. 
{ 
 double phi,li,cosalpha,sinalpha,L; 
 phi=(xf+0.5*h)/R; 
 li=sqrt(pow((R*sin(phi)-(y[1]+0.5*2h*sin(y[4]))-0.5*2h*cos(y[4])),2.0)+pow((-
R*(1-cos(phi))-(y[2]-0.5*2h*cos(y[4]))-0.5*2h*sin(y[4])),2.0)); 
 if(li < EPS) nrerror("li too small in derivs"); 
 cosalpha=(R*sin(phi)-(y[1]+0.5*2h*sin(y[4]))-0.5*2h*cos(y[4]))/li; 
 sinalpha=(-R*(1-cos(phi))-(y[2]-0.5*2h*cos(y[4]))-0.5*2h*sin(y[4]))/li; 
 L=y[1]*sin(psi)-y[2]*cos(psi)+(0.5*2h+l0)*cos(psi)+sqrt(2*(1-cos(y[4]-
psi))/(y[8]*beta)); 
 f[1]=y[5]+y[8]*cos(psi); 
 f[2]=y[6]+y[8]*sin(psi);  
 f[3]=y[7]-sigmac/(100.0*l0*(cosalpha*(1-cos(y[4]))-sinalpha*sin(y[4]))); //A 
critical stress criterion is employed instead of the critical stretch ratio criterion. 
 f[4]=y[8]-y[3]/(beta*(L-y[1]*sin(psi)+y[2]*cos(psi)-(0.5*2h+l0)*cos(psi))); 
 printf("The length of the peel arm is: \t%f\n",L); 
 printf("The critical stretch ratio is: \t%f\n",li/l0); 
} 
 
void derivs(double x, double y[], double dydx[], double h) 
//Evaluates derivatives for odeint. 
{ 
 double phi,li,cosalpha,sinalpha,sigma,y5temp,y6temp; 
 phi=(x+0.5*h)/R; 
 li=sqrt(pow((R*sin(phi)-(y[1]+0.5*2h*sin(y[4]))-0.5*2h*cos(y[4])),2.0)+pow((-
R*(1-cos(phi))-(y[2]-0.5*2h*cos(y[4]))-0.5*2h*sin(y[4])),2.0)); 
 if(li < EPS) nrerror("li too small in derivs"); 
 cosalpha=(R*sin(phi)-(y[1]+0.5*2h*sin(y[4]))-0.5*2h*cos(y[4]))/li; 
 sinalpha=(-R*(1-cos(phi))-(y[2]-0.5*2h*cos(y[4]))-0.5*2h*sin(y[4]))/li; 
 sigma=l0*y[7]/(li*li)*((cosalpha*cos(phi)-sinalpha*sin(phi))-
(1+0.5*2h*y[3])*(cosalpha*cos(y[4])+sinalpha*sin(y[4]))); 
 dydx[1]=cos(y[4]); //dxds 
 dydx[2]=sin(y[4]); //dyds 
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 dydx[5]=2*cosalpha*sigma; //dfds 
 dydx[6]=2*sinalpha*sigma; //dUpsilonds 
 y5temp=y[5]+dydx[5]*h; 
 y6temp=y[6]+dydx[6]*h; 
 dydx[3]=beta*(-
y5temp*sin(y[4])+y6temp*cos(y[4])+cosalpha*sigma*(h*sin(y[4])-2h*cos(y[4]))-
sinalpha*sigma*(h*cos(y[4])+2h*sin(y[4]))); //dMds 
 dydx[4]=y[3]+0.5*dydx[3]*h; //dThetads 
 dydx[7]=0.0; //dVds 
 dydx[8]=0.0; //dFds 
 dydx[9]=(sigma-y[9])/h; //dSigmads 
} 
 
 
void shoot(int n, double v[], double f[]) 
/*Routine for use with newt to solve a two point boundary value problem for nvar 
coupled ODEs by shooting from x1 to x2. Initial values for the nvar ODEs at x1 are 
generated from the n2 input coefficients v[1..n2], using the user-supplied routine load. 
The routine integrates the ODEs to x2 using the Runge-Kutta method with tolerance EPS, 
initial stepsize h1, and minimum stepsize hmin. At x2 it calls the user-supplied routine 
score to evaluate the n2 functions f[1..n2] that ought to be zero to satisfy the boundary 
conditions at x2. The functions f are returned on output. newt uses a globally convergent 
Newton’s method to adjust the values of v until the functions f are zero. The user-
supplied routine derivs(x,y,dydx) supplies derivative information to the ODE integrator 
(see Chapter 16). The first set of global variables above receives its values from the main 
program so that shoot can have the syntax required for it to be the argument vecfunc of 
newt.*/ 
{ 
 void derivs(double x, double y[], double dydx[], double h); 
 void load(double v[], double y[]); 
 void odeint(double ystart[], int nvar, double x1, double x2, 
  double eps, double *h1, double hmin, int *nok, int *nbad, 
  void (*derivs)(double, double [], double [], double), 
  void (*rkqs)(double [], double [], int, double *, double, double, 
  double [], double *, double *, void (*)(double, double [], double [], 
double))); 
 void rkqs(double y[], double dydx[], int n, double *x, 
  double htry, double eps, double yscal[], double *hdid, double *hnext, 
  void (*derivs)(double, double [], double [], double)); 
 void score(double xf, double y[], double f[], double h); 
 int i,nbad,nok; 
 double *h1,hmin=0.02,*y; 
 
 y=vector(1,nvar); 
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 h1=vector(1,1); 
 kmax=0; 
 *h1=(x2-x1)/50.0; 
 for (i=1;i<=nvar;i++) y[i]=0.0; 
 load(v,y); 
 odeint(y,nvar,x1,x2,EPS,h1,hmin,&nok,&nbad,derivs,rkqs); 
 score(x2,y,f,*h1); 
 free_vector(y,1,nvar); 
} 
 
int main(void) /* Program shoot */ 
{ 
 void newt(double x[], int n, int *check, 
  void (*vecfunc)(int, double [], double [])); 
 void shoot(int n, double v[], double f[]); 
 int check,i; 
 double q1,*v; 
 
 double *f; 
 
 v=vector(1,N2); 
 dx=1.0e-4; //Avoid evaluating derivatives exactly at x = .1. 
 nvar=9;  
 l0=0.2; 
 R=1000.0; 
 2h=0.1;  
 beta=6.0/pow(H,3.0); 
 psi=180*PI/180.0; 
 sigmac=0.02381; 
 x1 = 0.0+dx; //Set range of integration. 
 x2=1.0; 
 for (i=1;i<=N2;i++) v[i]=0.0001; 
 newt(v,N2,&check,shoot); //Find v that zeros function f in score. 
 if (check) { 
  printf("shoot failed; bad initial guess\n"); 
 } else { 
  int nbad,nok; 
  double *h1,hmin=0.0,*y; 
  y=vector(1,nvar); 
  h1=vector(1,1); 
  kmax=1000; 
  xp=vector(1,kmax); 
  yp=matrix(1,nvar,1,kmax); 
  *h1=(x2-x1)/25.0; //Step size. 
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  for (i=1;i<=nvar;i++) y[i]=0.0; 
  load(v,y); 
  odeint(y,nvar,x1,x2,EPS,h1,hmin,&nok,&nbad,derivs,rkqs); 
  fp=fopen("data.txt","w"); 
  printf("f,\tUpsilon,\tV,\tF:\n"); 
  fprintf(fp,"f,\tUpsilon,\tV,\tF:\n"); 
  for (i=1;i<=N2;i++) { 
   printf("%f\n",v[i]); 
   fprintf(fp,"%f\n",v[i]); 
  } 
  printf("s:\n"); 
  fprintf(fp,"s:\n"); 
  for (i=1;i<=kount;i++) { 
   printf("%f\n",xp[i]); 
   fprintf(fp,"%f\n",xp[i]); 
  } 
  printf("Sigma:\n"); 
  fprintf(fp,"Sigma:\n"); 
  for (i=1;i<=kount;i++) { 
   printf("%f\n",yp[9][i]); 
   fprintf(fp,"%f\n",yp[9][i]); 
  } 
 } 
 free_vector(v,1,N2); 
 return 0; 
} 
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APPENDIX C 

ABAQUS INPUT FILE 

 

*Heading 
** Job name: Job-2 Model name: Job-1 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=BACKING-1 
*Node 
      1,           0.,          25. 
      2,           2.,          25. 
      3,           4.,          25. 
     …,         …,          …. 
     49,          96.,          25. 
     50,          98.,          25. 
     51,         100.,          25. 
*Element, type=B21 
 1,  1,  2 
 2,  2,  3 
 3,  3,  4 
…, …, … 
48, 48, 49 
49, 49, 50 
50, 50, 51 
*Nset, nset=_PICKEDSET3, internal, generate 
  1,  51,   1 
*Elset, elset=_PICKEDSET3, internal, generate 
  1,  50,   1 
*Nset, nset=_PICKEDSET2, internal, generate 
  1,  51,   1 
*Elset, elset=_PICKEDSET2, internal, generate 
  1,  50,   1 
** Region: (Section-1-_PICKEDSET2:Picked), (Beam Orientation:Picked) 
*Elset, elset=_I1, internal, generate 
  1,  50,   1 
** Section: Section-1-_PICKEDSET2  Profile: Profile-1 
*Beam Section, elset=_I1, material=BACKING, temperature=GRADIENTS, 
section=RECT 
1., 10. 
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0.,0.,-1. 
*End Part 
**   
*Part, name=SUB-1 
*Node 
      1,         100.,           0. 
      2,          98.,           0. 
      3,          96.,           0. 
     …,         …,           …. 
    304,           4.,         -10. 
    305,           2.,         -10. 
    306,           0.,         -10. 
*Element, type=CPS4R 
  1,   1,   2,  53,  52 
  2,   2,   3,  54,  53 
  3,   3,   4,  55,  54 
 …, …, …, …,  … 
248, 252, 253, 304, 303 
249, 253, 254, 305, 304 
250, 254, 255, 306, 305 
*Nset, nset=_PICKEDSET2, internal, generate 
   1,  306,    1 
*Elset, elset=_PICKEDSET2, internal, generate 
   1,  250,    1 
** Region: (Section-2-_PICKEDSET2:Picked) 
*Elset, elset=_I1, internal, generate 
   1,  250,    1 
** Section: Section-2-_PICKEDSET2 
*Solid Section, elset=_I1, material=SUB 
1., 
*End Part 
**   
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=BACKING-1, part=BACKING-1 
*End Instance 
**   
*Instance, name=SUB-1, part=SUB-1 
*End Instance 
**   
*Nset, nset=_PickedSet108, internal, instance=BACKING-1 
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 1, 
*Nset, nset=_PickedSet109, internal, instance=SUB-1 
   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,  16 
  17,  18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32 
  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,  44,  45,  46,  47,  48 
  49,  50,  51, 102, 153, 204, 255, 306 
*Nset, nset=_PickedSet112, internal, instance=BACKING-1 
 51, 
*Element, type=SpringA, elset=Springs/Dashpots-1-spring 
1, BACKING-1.1, SUB-1.51 
2, BACKING-1.2, SUB-1.50 
3, BACKING-1.3, SUB-1.49 
…,         …,                  … 
49, BACKING-1.49, SUB-1.3 
50, BACKING-1.50, SUB-1.2 
51, BACKING-1.51, SUB-1.1 
*Spring, elset=Springs/Dashpots-1-spring, NONLINEAR, DEPENDENCIES=2 
 
0.000000, 0.000023 
0.000035, 0.116069 
0.000066, 0.140252 
     …,                    … 
0.000491, 54.857816 
0.000467, 57.448932 
0.000444, 60.077757 
*End Assembly 
**  
** MATERIALS 
**  
*Material, name=BACKING 
*Elastic 
1.,0. 
*Material, name=SUB 
*Elastic 
 1e+06,0. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet108, ENCASTRE 
** Name: BC-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet109, ENCASTRE 
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** ---------------------------------------------------------------- 
**  
** STEP: Step-1 
**  
*Step, name=Step-1 
*Static 
1., 1., 1e-05, 1. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: BC-3 Type: Displacement/Rotation 
*Boundary 
_PickedSet112, 1, 1, -27.9583 
_PickedSet112, 2, 2, 53.0343 
_PickedSet112, 6, 6, 1.59306 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, frequency=0 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
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