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ABSTRACT

Algorithms, Protocols and Systems for Remote Observation Using Networked

Robotic Cameras. (May 2008)

Ni Qin,

B.S., Wuhan University; M.C.S., University of Mississippi Medical Center;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Dezhen Song

Emerging advances in robotic cameras, long-range wireless networking, and dis-

tributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic

remote “observatories” that can allow groups of peoples, via the Internet, to observe,

record, and index detailed activity occurred in remote site. Equipped with robotic

pan-tilt actuation mechanisms and a high-zoom lens, the camera can cover a large

region with very high spatial resolution and allows for observation at a distance.

High resolution motion panorama is the most nature data representation. We de-

velop algorithms and protocols for high resolution motion panorama. We discover

and prove the projection invariance and achieve real time image alignment. We

propose a minimum variance based incremental frame alignment algorithm to mini-

mize the accumulation of alignment error in incremental image alignment and ensure

the quality of the panorama video over the long run. We propose a Frame Graph

based panorama documentation algorithm to manage the large scale data involved in

the online panorama video documentation. We propose a on-demand high resolution

panorama video-streaming system that allows on-demand sharing of a high-resolution

motion panorama and efficiently deals with multiple concurrent spatial-temporal user

requests. In conclusion, our research work on high resolution motion panorama have
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significantly improve the efficiency and accuracy of image alignment, panorama video

quality, data organization, and data storage and retrieving in remote observation

using networked robotic cameras.
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CHAPTER I

INTRODUCTION

Networked robotic camera become more and more popular in remote observation ap-

plications such as natural observation, surveillance, and distance learning. Consider

the study of penguins in Antarctica, bears in Alaska, ants in redwood canopies, or

lizards in Peruvian forests. Scientific study of animals in site which requires vigilant

observation of detailed animal behavior over weeks or months. When animals live

in remote and/or inhospitable locations, observation can be an arduous, expensive,

dangerous, and lonely experience for scientists. Furthermore, human intervention

can disturb animal behavior. Another example is the construction of large buildings

and structures such as bridges, which involves a complex and highly precise sequence

of operations. Small errors in alignment, reinforcement, or materials can result in

extremely costly repairs or catastrophic failures. Regular inspection and documen-

tation are well-established aspects of construction practice but may not be feasible

when construction is performed in remote and dangerous environments. When animal

observatories or construction site are far away from network infrastructure, they can

only be accessed via long distance wireless communication with limited bandwidth. A

low cost, low bandwidth, and energy-efficient solution is to use tele-operated robotic

video cameras.

This dissertation follows the style of IEEE Transactions on Automatic Control.
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Remote observation using camera systems have a long history. In 1950s, Gy-

sel and Davis [1] built an early video camera based on remote wildlife observation

system to study rodents. Biologists use remote photography systems to observe nest

predation, feeding behavior, species presence, and population parameters [2–7]. Com-

mercial remote camera systems such as Trialmaster [2] and DeerCam have been de-

veloped since 1986 and have been widely used in wildlife observation. The Internet

enables webcam systems that allow the general public to access remote nature cam-

eras. Thousands of webcams have been installed around the world, for example to

observe elephants [8], tigers [9], bugs [10], birds/squirrels [11] [12], cranes [13], and

swans [14]. Many other examples can be found at [15]. A more extreme remote ob-

servation system is the Virtual Planetary Exploration (VPE) project [16] operated in

NASA in 1992. VPE project generated panorama view of Mars by mosaicing digital

terrain data obtained from NASA’s Viking orbiter satellites. It took about 10 minutes

to generate 360 degree 6000x2000 panorama on Stardent GS2000 computer.

A remote observation system usually contains five main components – video ac-

quisition system, data transmission system, data archiving and retrieve system, and

intellectual data analysis system. Video acquisition system collects the live video

data from the field. To fit the bandwidth constraint and satisfy the responsiveness

requirement for remote observation, the video camera usually transmits a low res-

olution video (i.e. ≤ 640 × 480 pixels) with live frame rate (i.e. > 30 frames per

second). Therefore, it suffers from a limited field of view, which becomes even worse

when camera has zoom ability and operates at high zoom levels. An example is the

Panasonic HCM 280. When set at a 22x zoom, this camera only covers 2.8◦ in its

horizontal field of view, which looses context of the observed animal behavior. Pre-

senting only ≤ 640 × 480 video stream can not provide enough context about the

observed environment. Other video cameras such as wide angle camera [17, 18] and
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polycameras [19] are able to provide large field of view. However they either suffer

from high bandwidth consumption or low resolution. Due to bandwidth constraint

and large volume of video data, efficient data representation and transmission proto-

col are the key factors for data transmission system. A remote observation system

equipped with motion detection system can detect motion and transmit/record video

data containing motion object only, which dramatically reduces the data volume. A

intelligent observation system can do more than detecting moving object and is able

to provide more understanding about the motion objects captured in the video.

Emerging advances in robotic cameras, long-range wireless networking, and dis-

tributed sensors make feasible a new class of hybrid teleoperated/autonomous robotic

remote ”observatories” that can allow groups of peoples, via the internet, to remotely

observe, records, and index detailed activity occurred in remote site. Consider a

high-resolution pan-tilt-zoom camera installed in a deep forest. Connected to the

Internet through a long-range wireless network, the robotic camera allows scientists

and/or the general public to observe nature remotely. Equipped with robotic pan-tilt

actuation mechanisms and a high-zoom lens, the camera can cover a large region with

very high spatial resolution and allows for observation at a distance. For example, a

Panasonic HCM 280A pan-tilt-zoom camera has a 22x motorized optical zoom, a 350◦

pan range, and a 120◦ tilt range. It can reach a spatial resolution of 500 megapixel

per steradian at its highest zoom level. The full coverage of the viewable region is

more than 3 gigapixels if represented as a motion panorama.

In our remote observation system using networked robotic cameras as showing

in figure 1, cameras are installed in remote observatory and connected to the Internet
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Internet 

Panoramic display  

Server 

Wireless sensors 

Remote environment 

Collaborative 
observation 

Fig. 1. Architecture and user interface for remote observation using networked robotic

cameras.

through a long-range wireless network. Any user with Internet connection can access

the system remotely. Users log on to a web host system and send their queries to a

server. The server directly connects to the camera, controls the cameras and collects

the video data. Since the camera cannot provide the concurrent coverage of the entire

viewable region due to its limited field of view and the limited number of pixels in

its CCD sensor, networked robotic camera is frequently steered to different pan/tilt

position to inspect and document activities on site from the command inputs coming

from preset command sets, human inspector commands, and on-site motion detectors.

As illustrated in Figure 2, the system architecture is consisted of three parts

– camera control part, documentation part, and on-demand content delivery part.

Camera is frequently steered to different pan/tilt position to inspect and document

activities on site from the command inputs coming from preset command sets, human

inspector commands, and on-site motion detectors. The programmable preset fea-

tures ensure that the camera periodically patrols and searches for interesting regions.

It includes two type of camera control commands: fixed locations and particular fea-
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Fig. 2. System diagram. The system is consisted of three parts. The top part is camera

control part. Camera motion is determined by a combination of preset points,

human inspector commands, and motion detector inputs. The middle part is

documentation part. The resulting video sequences are aligned and inserted

into the evolving panorama video at real time. The lower part is on-demand

content delivery part. The grid in the figure represents a patch-based high-res-

olution panorama video system that allows multiple users to query different

part of video concurrently. I’s and B’s indicate the I-frame and the B-frame

used in MPEG-2 compression.
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tures. The former are good for a complete coverage of the known and fixed locations

of the observation site whereas the later are good for the known and dynamic points

of interest. Sporadic motions are captured by motion detectors, which also generate

camera control commands. The motion detectors could be real pyroelectric sensors

that are installed in the scene or just a motion detector built on image analysis [20].

Inspectors may also want to control the camera directly from time to time. With

the highest priority, the inspector commands can always overrule autonomous com-

mands from preset features and motion detectors. The priority sequence for the three

types of commands is also configurable. Weighted by their priorities, commands are

feeded into a frame selection module. Using the method in [21, 22], the frame selec-

tion module generates a single camera control command based on priority, geometric

relationship between different commands, and previous camera visits.

With high field of view coverage capability offered by robotic cameras, high

resolution panorama is the most nature data presentation. The ”foveal” video images

are aligned and inserted into a coherent panoramic display. Our user interface consists

of two parts: a static background panorama that covers the user query region and a

video segment superimposed on top of the background panorama if there are video

data collected for the queried time duration. With high zoom and large pan/tilt

capabilities, remote observation system equipped with robotic cameras is able to

achieve giga-pixel resolution. Each user may want to observe a different sub region

and time window of the panorama video. On the other hand, users might use low-

power devices such as PDAs or cell phones, which do not have the computation power

to perform expensive image alignment and panorama construction computation. The

server should perform as much computation in generating and delivering panorama

video as possible.

We want to seamlessly merge the live low resolution video frames into a high
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resolution panoramic video as camera patrols in real time. Due to the errors intro-

duced by camera potentiometer readings, merging video frames must be based on

fast image registration under a fraction of a second. For example, an error of 0.5◦

in camera tilt position can cause a 41.67% error in coverage when a Panasonic HCM

280 camera operates at its highest zoom. Furthermore, camera mechanical errors

may deteriorate with the possible influence of temperature, moisture, or other factors

after initial setup. Existing image alignment algorithms take seconds to align a single

image. Therefore a real time automatic image registration must be performed during

the whole video acquisition process.

It is often the case that multiple users including nature scientists and the general

public want to share the panorama video output at the same time. Transmitting the

full-sized ever-changing giga-pixel panorama video to every user is unnecessary and

expensive in bandwidth requirement. Each user may want to observe a different sub

region and time window of the panorama video. For example, an ornithologist is often

interested in bird video data early in the morning when the camera is aimed at the

top of the forest. Therefore, depending on user queries and camera configurations, the

server may transmit different contents to a user such as a pre-stored video segment, a

high-resolution static image with the timestamp closest to the request time window, or

a live video from the camera. A on-demand high resolution panorama video streaming

protocol able to handle multiple concurrent spatial-temporal user requests is desired.

A sustained research effort is required to understand fundamental computational

questions and develop the necessary IT infrastructure required for remote observation

system. We focuses on exploring the fundamental computational questions, building

prototype, and developing systems, protocols and algorithms for remote observation

using networked robotic cameras.
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CHAPTER II

HIGH RESOLUTION MOTION PANORAMA

Tilt 

Pan Tilt 

Pan Frame sequence 
(a) (b) 

Tilt 

Time (c) 

Panorama 

Live frame 
sequence 

Updated Part 
in Panorama 

Panorama 

Fig. 3. A network robotic camera provides an evolving high-resolution panoramic dis-

play of the remote environment. (a) Camera and spherical field of view, (b)

Current video image in context of planar panoramic display, (c) Time sequence

of video images and evolving panoramic display.

In remote observation using networked robotic camera as illustrated in Figure 2,

camera is frequently steered to different pan/tilt position to inspect and document
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activities on site from the command inputs coming from preset command sets, human

inspector commands, and on-site motion detectors.

With high field of view coverage capability offered by robotic cameras, high

resolution panorama is most nature data presentation. The ”foveal” video images

are aligned and inserted into a coherent panoramic display. As in Figure 3, our user

interface consists of two parts: a static background panorama that covers the user

query region and a video segment superimposed on top of the background panorama

if there are video data collected for the queried time duration. At the same time,

the system updates panorama and documents frame sequences. Both video data and

camera pan-tilt-zoom values are transmitted to our system. Frame sequences are

generated by projecting video frames onto a spherical surface for alignment. The

up-to-date part of the evolving panorama is stored in memory for real time display

and image alignment and the historical part of the evolving panorama is stored in

hard disk. We want to seamlessly merge the live low resolution video frames into a

high resolution motion panorama as camera patrols in real time.

Merging video frames into the panoramic video must be based on image regis-

tration. Existing image registration algorithms take seconds to align a single image,

which does not satisfy the system responsiveness requirement. In chapter III, we

explore image re-projection problems in a spherical coordinate system and discover

projection invariant properties on spherical surface and achieve real time image align-

ment to make it feasible to construction live high resolution motion panorama.

With camera frequently steered to different pan/titlt position, image alignment

must be performed incrementally on the incoming video to generate motion panorama.

Alignment errors can gets accumulated and propagated during motion panorama con-

struction and update. In chapter IV, We proposed a minimum variance based incre-

mental frame alignment algorithm that traces image location error variance density
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to optimally estimate the extrinsic projection parameters for a newly arrived camera

frame to ensure the quality of the panorama video over long run.

With a new video frame arrives, it is aligned with an optimal set of neighbor

frames. As time goes by, we could accumulate large amount previous frames in

the system. Keep all these frames in memory is impossible. Dumping everything

to the disk will also slow the computation speed when the frames are needed for

alignment. We need a efficient way to structure and organize the frame data. In

chapter V, we propose a Frame Graph based panorama documentation algorithm

including frame insertion, archiving and adjustment operations to manage the online

panorama documentation.

When it comes to data retrieving, it is often the case that multiple users includ-

ing nature scientists and general public want to share the panorama video output

at the same time. Each user may want to observe a different sub region and time

window of the panorama video. Transmitting the full size ever changing high res-

olution panorama video to every user is unnecessary and expensive in bandwidth

requirement. In chapter VI, we proposed our on-demand high resolution panorama

video-streaming system that allows on-demand sharing of a high-resolution panorama

video and efficiently deal with multiple concurrent spatial-temporal user requests.

A. Related Work

1. Networked Robot System

Our system is designed to allow multiple online users to share access to robotic cam-

eras. In the taxonomy proposed by Chong et al. [23], these are Multiple Operator

Single Robot (MOSR) systems or Multiple Operator Multiple Robot (MOSR) sys-

tems. An Internet-based MOSR system is described by McDonald, Cannon, and their
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colleagues [24, 25]. In their work, several users assist in waste cleanup using Point-

and-Direct (PAD) commands. Users point to cleanup locations in a shared image

and a robot excavates each location in turn. Recent developments in MOSR systems

can be found in [26, 27]. In [27] Goldberg et al. propose the “Spatial Dynamic Vot-

ing” (SDV) interface. SDV collects, displays, and analyzes sets of spatial votes from

multiple online operators at their Internet browsers using a Gaussian point clustering

algorithm developed to guide the motion of a remote human “Tele-Actor”. Existing

work on MOSR and MOMR systems provides strategies to efficiently coordinate the

control of the shared robot. Users are usually forced to share the same feedback from

the robot. However, users may not be interested in the same event at the same time

even when they access the system at the same time. This becomes more obvious

when the shared robot is a robotic camera. Time and space of interests may vary for

different online users.

2. Image Alignment

Panoramic display is a emerging new way of visualizing remote environments [28].

Panoramas can be classified as either cylindrical panoramas or spherical panoramas

according to the number of axes involved in camera motion. A cylindrical panorama

only involves pan motion, [29, 30] and its construction is relatively simple and fast.

However, cylindrical panoramas cannot provide sufficient vertical field of view for

natural environment observation.

Constructing a spherical panorama is much more complex because more param-

eters needs to be estimated in its nonlinear transformation model. It relies on image

alignment techniques, which attempt to find the best set of transform parameters

for images to compose the panorama. The transformation can be modeled by a pro-

jective projection model [31, 32]. After establishing the parameter model, the image
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alignment problem searches for a optimized solution in parameter space.

Current image alignment techniques can be classified into three categories: direct

method [32–37], frequency domain registration [38,39], and feature-based image reg-

istration [40–49]. The direct method directly compares intensity values of pixels from

the overlapping images and is sensitive to lighting conditions, while feature-based

alignment works on a sparse set of feature points and is less sensitive to lighting

conditions and needs less computation. Frequency domain registration works well for

translation, but has problems with rotation.

Recent research on improving the speed of image alignment focuses on the

feature-based method, which extracts features such as Harris corner point [40,41,43],

Moravec’s interest point [44], SUSAN corner point [47], vanishing point [49], and

Scale Invariant Feature Transform (SIFT) [50]. Torr and Zisserman [41] outline

the feature-based method: First, features are extracted automatically. An initial

set of matches are computed based on proximity and similarity of their intensity

neighborhood. These estimations inputs are then placed into a robust estimation

algorithm such as the Least Median of Squares(LMedS) [42] or Random Sample Con-

sensus(RANSAC) [49] to choose the solution with the largest number of inliers. Nu-

merical minimization techniques such as the Levenberg-Marquardt algorithm are then

applied to refine the estimation result from RANSAC. Since an SIFT feature point is

invariant to projections, the combination of SIFT and RANSAC in [50] has been one

of the most successfully image alignment method.

3. Projection Invariants

The development of projection invariants for PTZ cameras is inspired by invariant

descriptors for 3D object recognition in pattern recognition [51]. For example, Eu-

clidean distance is invariant to shift and rotation. Fourier Descriptor is invariant



13

to affine transformation and can be used to recognize objects from multiple view

points [52]. The purpose of invariant descriptors in pattern recognition is to find

object properties invariant to perspectives, lighting conditions, and lens parameters

for object identification. This differs from our problem because we are looking at the

shape-preserving property instead of an arbitrary object property.

Projection invariants can be used to improve image alignment efficiency. Due to

their shape-preserving property, we know that there are no scaling difference or non-

linear distortions among corresponding projection invariants. Therefore, we do not

need to use sophisticated feature transformations in the image alignment algorithm.

Instead, we can use simple feature transformation such as Zero-Crossing Edge Detec-

tor (ZCED) [53] to reduce computation cost. Furthermore, image alignment can be

reduced to the problem that finds matching projection invariant pairs, which allows

us to speed up the computation. To demonstrate the power of project invariants,

we develop a new image alignment algorithm based on our projection invariants. An

SIFT and RANSAC based algorithm is used for speed comparison in the paper.

4. Panoramic Video Systems

There are many methods to generate a panorama video. A panorama can be generated

using a single fixed camera with a wide-angle lens or parabolic mirrors [17,18,54,55].

However, due to the fact that it can not distribute pixels evenly in the space and

the resolution limitation imposed by CCD sensors, it cannot generate high-quality

video. A panorama video can also be generated by aligning videos from multiple

cameras [56, 57]. Although the design can provide complete coverage with live video

streams, those system require simultaneous transmission of multiple video streams

and the bandwidth requirement is very high. Panorama video can also be built

from registering a pre-recorded sequence of video frames [58–61] captured by a single
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rotating camera. However, only portions of the panorama contain live video data at

any moment. Our system fits into this category as well. Argarwala et al.’s panoramic

video texture (PVT) [61] and Rav-Acha et al.’s dynamosaics [62] are representative

work in this category that constructs pseudo-live panorama video out of a single

video sequence by alternating time-space correspondence. Bartoli et al. [63] develop

motion panoramas that extract moving objects first and then overlay the motion part

on top of a static background panorama. We summarize the existing panoramic video

systems in Table I. In existing systems, a panorama video is always transmitted and

fully reconstructed at the user end because panorama resolution is not a concern.

However, when the resolution of the panorama is very high, on-demand transmission

is necessary. Our development is the first system that tackles this problem.

Table I. A comparison of existing panoramic video systems.

System Camera Bandwidth Video Output
Sample
Systems

Wide angle lens Single
Low Low quality live stream [17,18,54,55]

/ mirrors fixed
Multiple camera Multiple

High Live panoramic video [56,57]
panorama video fixed

Panoramic Single
High

Pseudo-live panorama
[61]video texture pan video by changing video

temporal display

Dynamosaics
Single

High
Pseudo-live panorama

[62]pan video by changing
space-time volume

Motion panorama Single Low
Static panorama background

[58,63]overlaid with live moving
objects trajectory

Our system
PTZ

Low Partial live panorama This paper
cameras

Transmitting a panorama video is non-trivial. For a low resolution panorama

video system, we can encode the whole panorama video and send it to clients. However
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it consumes too much bandwidth when the resolution of the panorama increases.

Furthermore, it cannot deal with random spatiotemporal accesses. Irani et al. [64,65]

propose mosaic-based compression. A static panorama background is first constructed

out of the video sequence and then each video frame is compressed using the static

panorama background as a reference. Furthermore, it detects and indexes the motion

objects and provides content-based video indexing. Although they do not deal with

on-demand transmission, their work inspires our paper. Ng et al. [55] propose to

partition the panorama into six vertical slices spatially and compress each sliced

video sequence separately using MPEG-2. When a user requests for the video of

a part of the panorama video, only sliced video sequences that intersect with the

user’s requested area are transmitted. This method is among the first to consider on-

demand queries. However, its efficiency of encoding decreases as the camera tilt range

increases. Also it repeats the data from previous frame when there is no live coverage;

it is not efficient or a faithful representation of the remote environment. Our work

advances the idea of partitioning panorama into 2-D patches and significantly reduces

computation time and bandwidth by only encoding/transmitting updated patches.
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CHAPTER III

PROJECTION INVARIANT IN REAL-TIME PANORAMA CONSTRUCTION

We know that computation speed of finding corresponding pixels can be greatly im-

proved if we can find a subset of pixels that can maintain fixed relative positions.

Those subset of pixels are referred to as projection invariants because of their shape-

preserving properties. Note the fact that images from a PTZ camera can be treated

with the same optical center and a spherical coordinate system is a natural coor-

dinate system for organizing images with the same optical center. Therefore, we

focus our research on search of projection invariants in spherical coordinate systems.

The shape-preserving property of projection invariants can transfer the image re-

projection process into a rigid body translation and rotation of projection-invariants.

Experiment results from comparison study show that the projection invariant based

image alignment algorithm outperforms the existing best image alignment method by

at least an order of a magnitude.

A. Problem Definition

1. Assumptions

We assume that all images are taken from the same PTZ camera that is installed

on a rigid base. No translational motion for the camera is allowed and mechanical

vibrations are negligible. Since there are only PTZ motions, all images can be treated

with the same optical center. Camera potentiometer readings give an estimation

of camera pan/tilt position. These readings are inherently approximate with error

(i.e. ±1.0◦) and cannot be directly used to assist re-projection, which requires a

much higher angular resolution. For example, to accurately re-project images from
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Panasonic HCM 280 camera requires an angular resolution of < 0.0041◦ at zoom =

21x and a resolution of 640x480.

We assume that the camera intrinsic parameters including lens distortion, skew

factor, and CCD sensor size are pre-calibrated and known. The camera knows its

zoom position (focal length) accurately based on pre-calibration. We also assume

that the camera has a maximum Horizontal Field Of View (HFOV) less than or equal

to 45 degrees.

2. Nomenclature

We use notations in format of {·} to refer to a coordinate system in the paper. We use

left superscriptions to indicate the coordinate system of a point/set. Let us define,

• O as the camera optical center.

• {W} as a 3D fixed Cartesian coordinate system with its origin at camera optical

center point O. We refer to it as world coordinate system. A point in {W} is

denoted as W Q = W [x y z]T .

• {C} as a 3D Cartesian coordinate system with its origin at O, its Z axis overlap-

ping with optical axis, its X−Y plane parallel with CCD sensor plane and its X

axis parallel to the horizontal direction of the image. In the paper we refer to it

as the camera coordinate system. A point in {C} is denoted as CQ = C [x y z]T .

Note that {C} changes as the camera changes its PTZ settings.

• {CA} and {CB} as camera coordinate systems for images A and B, respectively.

• {I} as a 2D image plane for image I. The origin of {I} is the center of the

image. We refer to it as the image coordinate system. A point in I is denoted
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as Iq = [u v 1]T . In the rest of the paper, we use Q notation to indicate a 3D

Cartesian point and q to represent a 2D coordinate.

• {A} and {B} as a 2D image plane for images A and B, respectively. They

follow the same definition of {I} and are used during image alignment analysis.

• Aq = [Au, Av, 1]T as a point in {A} and Bq = [Bu, Bv, 1]T as its corresponding

position in {B}.

• f as camera focal length.

• (pA, tA) and (pB, tB) are the pan and tilt settings for images A and B, respec-

tively.

• functions s(·) and c(·) as sin(·) and cos(·), respectively.

3. Perspective Projection and Re-Projection

Image acquisition in a perspective camera is a process that maps a 3D world onto a 2D

image plane, which can be described by perspective projection model [66]. Therefore,

a point in {W} is converted to a point in {I} by

Iq = I
CK C

W R W Q, (3.1)

where rotation matrix C
W R maps a point from {W} to {C} and is determined by pan

and tilt settings, which are camera extrinsic parameters. Intrinsic camera parameter

matrix I
CK projects the points from {C} to {I}, which is a function of focal length f

and is determined by zoom level according to our assumptions.

According to Equation (3.1), 2D image points in two overlapping images A and
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B can be mapped with each other using a 3× 3 matrix M , [31, 37,66] as,

Aq = A
CA

K CA
CB

R B
CB

K−1 Bq = M Bq, (3.2)

where Aq and Bq are corresponding points in {A} and {B}, respectively, and rotation

matrix CA
CB

R characterizes the relationship between camera coordinate systems {CA}
and {CB} for images A and B, respectively. Since Equation (3.2) just projects pixels

in B to {A}, the process is referred to as the re-projection process and M as the re-

projection matrix [67]. Matrices A
CA

K and B
CB

K are functions of focal lengths, which

are known according to our assumptions. Rotation matrix CA
CB

R is uniquely defined

by camera pan and tilt values. Hence matrix M is a function of camera pan and tilt

settings for images A and B,

Aq = M(pA, tA, pB, tB)Bq. (3.3)

If images A and B share the same focal length, then A
CA

K = B
CB

K = K and Equa-

tion (3.2) can be simplified as,

Aq = K CA
CB

R K−1 Bq = M Bq, (3.4)

where M is just the similarity transformation of the rotation matrix CA
CB

R. Hence

| det(M)| = 1. With the knowledge of the re-projection, we are ready to introduce

projection invariants.

4. Definition of Projection Invariants

The intuition behind projection invariants is the shape-preserving property. In other

words, a projection invariant is a subset of pixels that maintain fixed relative positions

with respect to each other under re-projection. Define AC ⊂ A as a patch of pixels

located at the overlapping region of images A and B. Therefore, it has a corresponding
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position BC ⊂ B in image B.

Definition 1 (Projection Invariant Definition). ∀Aq1,
Aq2 ∈ AC and their correspond-

ing position Bq1,
Bq2 ∈ BC, define ∆Aq = Aq1−Aq2 and ∆Bq = Bq1−Bq2,

AC and BC

are a pair of projection invariants if and only if the follow shape-preserving condition

is satisfied,

|∆Aq| = |∆Bq|, (3.5)

where | · | is L2-norm.

Our objectives are to find/construct projection variants under re-projection in

either planar coordinate systems such as M or its equivalence in other coordinate

systems.

B. Projection Invariants

In this section, we first analyze the relationship between re-projection matrix M and

projection invariants. We find that projection invariants do NOT exist in planar

image coordinate systems. Hence we search nonlinear coordinates to pre-project

images. We then prove that projection invariants exist and can be constructed in

spherical coordinate systems. We now begin with the analysis of the relationship

between re-projection matrix M and projection invariants.

1. Projection Invariants and Re-Projection

Plug Equation (3.2) into Equation (3.5), we get,

|M∆Bq| = |∆Bq|. (3.6)
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The re-projection matrix M can be expanded as M =

26666664 m11 m12 m13

m21 m22 m23

m31 m32 m33

37777775 . We have

the following theorem,

Theorem 1 (Projection Invariant Condition). To meet the shape-preserving condition

in Equation (3.5), if and only if the re-projection matrix M satisfies the following

condition, 2664 m11 m12

m21 m22

3775 = R2×2 and m31 = m32 = 0 (3.7)

over the projection invariant, where R2×2 is a 2× 2 rotation matrix.

Proof. (if): Plug Equation (3.6) into Equation (3.5). Equation (3.5) holds. This is

trivial.

(only if): According to our nomenclature, we know that Aq1 = [Au1,
Av1, 1]T

and Aq2 = [Au2,
Av2, 1]T . Define ∆Au = Au1 − Au2 and ∆Av = Av1 − Av2. Then

∆Aq = [Au, Av, 0]T . Similarly, ∆Bq = [Bu, Bv, 0]T . From Equation (3.2), we know,26666664 Au

Av

0

37777775 =

26666664 m11 m12 m13

m21 m22 m23

m31 m32 m33

37777775
26666664 Bu

Bv

0

37777775
Take a close look at the third row of the equation above, we know that,

m31
Bu + m32

Bv = 0. (3.8)

Since Bu and Bv can take arbitrary values, m31 = m32 = 0 has to be true in order to

satisfy Equation (3.8). Therefore, the left hand side of Equation (3.6) is,

|M∆Bq| =
È

(m11
Bu + m12

Bv)2 + (m21
Bu + m22

Bv)2. (3.9)
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The right hand side of Equation (3.6) is,

|∆Bq| =
√

Bu2 + Bv2. (3.10)

Plug Equations (3.9) and (3.10) into Equation (3.6), we have,

m2
11 + m2

21 = 1; (3.11a)

m2
12 + m2

22 = 1; (3.11b)

m11m12 + m21m22 = 0. (3.11c)

Hence R2×2 is a 2× 2 rotation matrix.

Remark Theorem 1 intuitively tells us that re-projection can be viewed as a rotation

of the projection invariant if the projection invariant exists.

Unfortunately, the condition in Theorem 1 cannot always be satisfied by the re-

projection matrix M . From Equation (3.2), we know that M is determined by camera

parameters. Therefore, there is no guarantee that condition in Theorem 1 would be

satisfied. In fact, it is not difficult to come with counter examples. However, this does

provide the insight for searching for directions that lead to the discovery of projection

invariants.

2. Spherical Wrapping

Theorem 1 reveals the fact that the deformation of the projected image in the re-

projection process cannot be sensitive to camera parameters if projection invariants

exist. The re-projection M defined by Equation (3.2) projects one planar image into

another planar image space. It is not surprising that the amount of the deformation

of the projected image is very sensitive to the relative positions of those two planes,

which is determined by camera parameters.
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Our immediate thinking is to try a different coordinate system. If we wrap

the image around a spherical surface, then the re-projection between two spherical

coordinate systems should introduce less deformation.
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Fig. 4. An illustration of spherical wrapping and coordinate systems: q in image coor-

dinate system, q̃ on the local spherical coordinate system, and CQ is the same

point as q̃ but in the camera coordinate system.

The chosen sphere is centered at the camera optical center and has focal length

f as its radius. Recall that I is the image captured by the camera. As illustrated

in Figure 4, the projection generates a wrapped image Ĩ based on a local spherical

coordinate system {Ĩ}. Recall that Iq = (u, v, 1)T is a point in I. Define q̃ = (p, t)T

as the corresponding point in Ĩ, where (p, t) is the angular coordinate of the point.
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The spherical wrapping that projects q to q̃ is,

p = arctan(
u

f
), (3.12a)

t = − arctan(
v√

u2 + f 2
). (3.12b)

Each point in Ĩ is defined using local pan and tilt spherical coordinates with units in

radians. Spherical coordinate system {Ĩ} usually consists of three elements including

radius, pan, and tilt. Although images taken at different zoom levels have different

radius, it is not difficult to scale them into the same spherical surface because {Ĩ}
is represented in angular coordinates instead of pixel coordinates. Therefore, we can

treat f as the same and yield a 2D representation. Also, q̃ = (0, 0)T overlaps with

q = (0, 0, 1)T . Note that {Ĩ} has its origin centered at each image and is different

from the global spherical coordinate defined by real camera pan and tilt settings. In

fact, the p and t in q̃ only depend on its corresponding pixel coordinates in I. We

use ∼ above I to indicate that Ĩ is image I’s spherical wrapping. We will use this

convention in the rest of the paper. The spherical wrapping can be conducted without

the knowledge of camera pan and tilt settings. This is an important feature that will

be reiterated later.

3. Spherical Re-Projection (SRP)

Now the new re-projection can be performed between two local spherical coordinate

systems, which is referred to as Spherical Re-Projection (SRP) to distinguish it from

the planar re-projection in the rest of the paper.

Define Q = CQ = [x, y, z]T as q̃ in {C} as illustrated in Figure 4. Recall that

cos(θ) and sin(θ) are denoted as c(θ) and s(θ), respectively. The relationship between
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{Ĩ} and {C} can be described by function P and its inverse P−1,

q̃ =

2664 p

t

3775 =

2664 arctan(x/z)

− arctan(y/
√

x2 + z2)

3775 = P (Q), (3.13)

Q =

26666664 x

y

z

37777775 =

26666664 f · c(t)s(p)

−f · s(t)
f · c(t)c(p)

37777775 = P−1(q̃). (3.14)

Let Ã and B̃ be the resulting image from the spherical wrapping for image A and

image B, respectively. Without loss of generality, we select image Ã as the reference

image. We shift image B̃ around Ã. To align the two images, we need to re-project

B̃ into Ã’s space,

Aq̃ = P (CA
CB

R BQ) = P (CA
CB

R P−1(B q̃))

= F (CA
CB

R,B q̃).

(3.15)

where F is the SRP function, Aq̃ = (Ap,A t)T and B q̃ = (Bp,B t)T are positions of the

corresponding point in wrapped image Ã and B̃, respectively.

We are interested in comparing the re-projection on the spherical surface with the

original planar re-projection. The testing image is a square image with a resolution

of 640×640. It is projected to another camera configuration that shares 30◦ tilt value

and has 30◦ pan difference. Figure 5 suggests that the deformation on the spherical

surface is significantly less than that in the original planar image space. Since the

absolute distortion is an increasing function of image size, we conjecture that if we

sample a very small square region on the spherical surface then the deformation for

each square should be negligible after the spherical wrapping. If so, it possesses the

property of a projection invariant.
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Fig. 5. Comparison of image deformation caused by the re-projection operation (a) in

the original planar image space and (b) on the spherical surface. Note that the

unit in (a) is pixel and the unit in (b) is radian.

4. Projection Invariants for SRP

Before we prove the conjecture, let us define a squared-shaped cell in image Ã as,

AC = {(Ap,A t)|Ap ∈ [Apo ± pc],
A t ∈ [Ato ± tc]}, (3.16)

where Aq̃o = (Apo,
Ato) is the cell center coordinate, and (pc, tc) is the maximum cell

span in pan and tilt directions. We define BC as AC’s projection in image B̃ with its

center at B q̃o = (Bpo,
Bto).

We need to adapt the Projection Invariant Condition in Theorem 1, which is

constructed on planar re-projection, to the nonlinear SRP function F . Define ∆B q̃ =

B q̃ − B q̃o and ∆Aq̃ = Aq̃ − Aq̃o. Equation (3.5) now becomes,

|∆Aq̃| = |∆B q̃|. (3.17)

We have the following corollary,

Corollary 1 (SRP Projection Invariant Condition). AC and BC are a pair of pro-
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jection invariants, if and only if the following condition is satisfied,

∆Aq̃ ≈ R2×2∆
B q̃, (3.18)

where the 2× 2 rotation matrix R2×2 is not a function of ∆Aq̃ or ∆B q̃.

The proof of Corollary 1 is trivial. We can treat R2×2 as the linearized approx-

imation of F at center point of the cell because each cell is small and the linearized

approximation is accurate enough. Then it follows the proof of Theorem 1. Note that

we use ‘≈’ in Equation (3.18) instead of ‘=’. This is acceptable because an image is a

discretized representation of the real environment and any distortion that is less than

half a pixel is negligible. In other words, Equation (3.18) tells us that the linearized

nonlinear function F over the cell can be approximated by a same rotation matrix

over the entire cell if the cell is projection invariant.

Now we are ready to prove the conjecture about SRP projection invariants.

Theorem 2. If the corresponding spherical cells AC and BC are small, pc ≤ 5◦ and tc ≤
5◦, and the camera has a vertical field of view ≤ 34◦, then AC and BC are projection

invariant under SRP.

Proof. Recall that functions s(·) and c(·) as sin(·) and cos(·), respectively. From

vector calculus, we know that

∇Q =

26666664 dx

dy

dz

37777775 =

26666664 fc(t)c(p) −fs(t)s(p) c(t)s(p)

0 −fc(t) −s(t)

−fc(t)s(p) −fs(t)c(p) c(t)c(p)

37777775
26666664 dp

dt

df

37777775 . (3.19)

Define [∆x, ∆y, ∆z]T as the small displacement in {C} and [∆p, ∆t, ∆f ]T as the

corresponding change in {Ĩ}. Since pc ≤ 5◦ and tc ≤ 5◦, ∆p < pc/2 = 2.5◦ and
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∆t < tc/2 = 2.5◦. Hence we have26666664 ∆x

∆y

∆z

37777775 = f

26666664 c(t)c(p) −s(t)s(p) r13

0 −c(t) −r23

−c(t)s(p) −s(t)c(p) r33

37777775
26666664 ∆p

∆t

∆f

37777775 , (3.20)

where r13 = c(t)c(p)/f , r23 = s(t)/f , r33 = c(t)c(p)/f corresponds to the last column

of the Jacobian matrix in Equation (3.19). Since we have {Ĩ} as part of a sphere,

radius f remains constant. Therefore ∆f = 0. To move the negative sign out of

the second row of the matrix in Equation (3.20), we introduce coefficient matrix

H =

26666664 f 0 0

0 −f 0

0 0 f

37777775. Then Equation (3.20) can be rewritten as,26666664 ∆x

∆y

∆z

37777775 = H

26666664 c(t)c(p) −s(t)s(p) r13

0 c(t) r23

−c(t)s(p) −s(t)c(p) r33

37777775
26666664 ∆p

∆t

0

37777775 , (3.21)

Recall that t are the tilt positions with respect to the image center inside an image.

Recall that the camera has a maximum vertical field of view of 34◦. To ensure that

the existence of an overlapping region between the two images, the tilt overlap has

to be larger than the tilt range of a cell tc, the maximum value of t is 34/2− tc = 12◦

for tc = 5◦. Since cos(12◦) = 0.995, therefore, 0.995 ≤ c(t) ≤ 1. If the camera

has a resolution of 640 × 480, then pixel cell width is around 5
34

480 = 68 pixels for

pc = tc = 5◦. If we approximate c(t) ≈ 1, the maximum distortion (1− 0.995)× 68 is

less than half a pixel. If tc < 5◦, then the pixel cell width is also decreased. It is not

difficult to show that (1− cos(34/2− tc))
tc
34

480 < 0.5 for 0 < tc < 5◦ because it is an

increasing function of tc for 0 < tc < 5◦. Since the distortion is very small, instead
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we drop c(t) in the first column,26666664 ∆x

∆y

∆z

37777775 ≈ H

26666664 c(p) s(p)s(−t) r13

0 c(−t) r23

−s(p) c(p)s(−t) r33

37777775
26666664 ∆p

∆t

0

37777775 , (3.22)

Since ∆f = 0, we know that [r13, r23, r33]
T can take arbitrary values without affecting

the equality in Equation (3.22). Let us choose r13 = s(p)c(−t), r23 = −s(−t), and

r33 = c(p)c(−t). Then we have,26666664 c(p) s(p)s(−t) s(p)c(−t)

0 c(−t) −s(−t)

−s(p) c(p)s(−t) c(p)c(−t)

37777775 = RY (p)RX(−t), (3.23)

where RY and RX are rotation matrices along Y axis and X axis, respectively. Define

∆Q = [∆x, ∆y, ∆Z]T and ∆q̃ = [∆p, ∆t, 0]T , Now Equation (3.22) is,

∆Q ≈ HRY (p)RX(−t)∆q̃ (3.24)

Hence, we have

∆AQ ≈ HRY (Apo)RX(−Ato)

2664 ∆Aq̃

0

3775 , (3.25)

and,

∆BQ ≈ HRY (Bpo)RX(−Bto)

2664 ∆B q̃

0

3775 . (3.26)
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Since ∆AQ = A
BR∆BQ, we get,2664 ∆Aq̃

0

3775 ≈ RX(Ato)RY (−Apo)H
−1

· CA
CB

RHRY (Bpo)RX(−Bto)

2664 ∆B q̃

0

3775 .

(3.27)

Since H and H−1 are diagonal matrices, we have H−1CA
CB

RH = CA
CB

R. Equation (3.27)

becomes, 2664 ∆Aq̃

0

3775 ≈ R∆

2664 ∆B q̃

0

3775 , (3.28)

where

R∆ = RX(Ato)RY (−Apo)
CA
CB

RRY (Bpo)RX(−Bto), (3.29)

is a rotation matrix because the multiplication of rotation matrices yields a rotation

matrix. On the other hand, the last row has to satisfy 0 = 0 no matter what value

∆B q̃ takes. This means R∆ has to be in the following format,

R∆ =

2664 R2×2 02×1

01×2 1

3775 .

Hence it satisfies Corollary 1 and AC and BC are projection invariant under SRP.

Remark Theorem 2 also tells us how to construct projection invariants under SRP

and applicable cameras. Most PTZ cameras have vertical field of views less than 34◦.

When operated at high zooms, camera vertical field of views are even smaller. For

example, a Panasonic HCM 280 camera has a 2.8◦ vertical field of view at zoom=21x.

Even for a camera that has a vertical field of view larger than 34◦, we can still

construct projection invariants by sample cells that are within the 34◦ range.

Theorem 2 suggests that each cell can be treated as a rigid object in SRP, which
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can lead to a significant computation savings. The next question is how to compute

the rotation matrix R2×2, which can be characterized by a single rotation angle θ.

We have the following lemma,

Corollary 2. Recall that (pA, tA) and (pB, tB) are the pan and tilt settings for images

A and B, respectively. Rotation angle θ of rotation matrix R2×2 can be approximated

by,

θ ≈ arccos
�
c(Apo)c(

Bpo)c(pB − pA) + s(Apo)s(
Bpo) ∗ α

+ s(pB − pA)s(Apo)c(
Bpo)c(tA)

− s(pB − pA)c(Apo)s(
Bpo)c(tB)

�
.

(3.30)

where α is a function of (pA, tA) and (pB, tB) only and can be pre-computed.

α = c(tA)c(tB)c(pB − pA) + s(tA)s(tB). (3.31)

(α is the dot product of Z axes of {CA} and {CB} in world coordinate system.)

Proof. Let us use the following vectors,

•

2664 ∆Aq̃

0

3775 = [1/f, 0, 0]T ,

•

2664 ∆B q̃

0

3775 = [1/f, 0, 0]T ,

• CAX0A = HRY (Apo)RX(−Ato)

2664 ∆Aq̃

0

3775 , and

• CBX0B = HRY (Bpo)RX(−Bto)

2664 ∆B q̃

0

3775.
It is clear that CAX0A and CBX0B are unit vectors. By defining W X0A and W X0B as
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their corresponding coordinate in {W}, we know that

c(θ) =< W X0A, W X0B >, (3.32)

from the definition of vector inner product. From coordinate transform relationship,

we know,

W X0A = W
CA

R CAX0A

= RY (pA)RX(tA)HRY (Apo)RX(−Ato)[1/f, 0, 0]T

=

26666664 c(pA)c(Apo)− s(pA)c(tA)s(Apo)

s(tA)s(Apo)

−s(pA)c(Apo)− c(pA)c(tA)s(Apo)

37777775 .

Similarly, we can compute W X0B. Inserting them into Equation (3.32), we get Equa-

tion (3.30).

Remark It is worth mentioning that if two images share similar pan positions (i.e.

|pA − pB| ≤ 5◦), then Equation (3.30) becomes

θ ≈ arccos
�
c(Apo)c(

Bpo) + s(Apo)s(
Bpo)c(tB − tA)

�
. (3.33)

Recall that a standard camera has a maximum vertical field view of 34◦. To guarantee

the overlap between the two frames, the maximum value of tB− tA has to be less than

17◦. Therefore, cos(17◦) = 0.956 ≤ c(tB−tA) ≤ 1 and c(tB−tA) can be approximated

by 1. Hence, we have,

θ ≈ Bpo − Apo,

for this special case, which can further speed up the computation.

At the first glance, Equation (3.30) in Corollary 1 is very complex. It tells us

that θ depends on Apo,
Bpo, pB − pA, tA, and tB. Since we choose the position for
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AC, we knew its center position Apo in Ã. According to Equation (3.15), BC’s center

position Bpo is uniquely defined by Apo, pB − pA, tA, and tB. Since Apo is usually

known in image Ã, θ uniquely depends on pB − pA, tA, and tB.

Therefore, the position and the orientation of BC in image B̃ is uniquely de-

fined by pB − pA, tA, and tB, which define the spatial relationship between the two

intersecting images. The shape of BC remains a square with the same side length as

that of AC in image Ã. This desirable shape-preserving property has many poten-

tial applications such as image alignment, panorama generation, real-time tracking

of moving objects, and/or video encoding, where pixel correspondence dominates the

computation. Since image alignment is a fundamental problem in computer vision,

below we use it as a sample application to introduce how projection invariants can

be used to accelerate the computation significantly for PTZ cameras.

C. Projection Invariant-based Image Alignment

1. Problem Description

A planar image aliment problem is to align two images by estimating M that mini-

mizes the pixel/feature differences in the overlapping part of the two images. Among

existing error metrics for pixel/feature differences, Sum of Squared Differences (SSD)

is one of the most popular metrics, [36,66],

SSD =
X

i∈A∩B

�
FeatureB(Bqi))− FeatureA(Aqi)

�2
,

where set A∩B is the overlapping pixel set between image A and image B, Aqi and Bqi

are the ith overlapping pixel from image A and image B, respectively, and FeatureA()

and FeatureB() are feature values for images A and B, respectively. Feature values can

take different forms. Feature values can be pixel intensity values if direct methods



34

are used. Feature values can also be probability measure if posterior probability

distribution is used to represent feature. On the other hand, the error measure is not

necessarily limited to SSD. The analysis can be easily adapted to other non-negative

difference metrics.

According to Equation (3.3), M can be determined by camera pan and tilt set-

tings. When we align image B with respect to A, the pan and tilt settings (pA, tA)

for image A are usually known as reference. Therefore, M can be determined by two

unknown variables (pB, tB),

Aq = M(pB, tB)Bq. (3.34)

Therefore, the image alignment problem for PTZ cameras is to solve the following

optimization problem,

arg min
(pB ,tB)

X
i∈A∩B

�
FeatureB(M(pB, tB)Bqi))− FeatureA(Aqi)

�2
. (3.35)

There are two unavoidable problems if we solve the optimization problem in

Equation (3.35) by directly evaluating candidate (pB, tB) pairs. The first problem is

the speed. Define m = |A∩B| as the number of feature pixels in A∩B and let k be the

number of candidate (pB, tB) pairs, it can easily take O(km) re-projection operations.

Since the re-projection computation involves extensive floating point computation, the

dominating factor km is usually very large for high resolution images. The second

problem, which is more of a concern, is the alignment accuracy. Since M is very

sensitive to (pB, tB), a minor error in (pB, tB) would significantly change the shape of

the feature pixel set {FeatureB(M(pB, tB)Bqi) : i ∈ A∩B}, which leads to inaccurate

alignment.

Among all of the recently proposed methods, one of the most effective way to

address this accuracy problem is to introduce a feature transformation that is not
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sensitive to affine transformation. The re-projection process is an affine transforma-

tion. As one of the most popular feature transformation methods, Lowe’s SIFT [68]

is designed to be scaling and rotation invariant and fits the requirement. Combining

SIFT with RANSAC [49] to choose the solution with the largest number of inliers,

Brown and Lowe [50] have well-addressed the accuracy problem in image alignment.

However, computing SIFT is expensive in time, because SIFT feature points have to

be evaluated at different scaling levels and orientations. The long computation time

limits its usage in time-critical applications.

Projection invariants can be used to improve image alignment efficiency. Due

to their shape-preserving property, we know that there are no scaling difference or

nonlinear distortions among corresponding projection invariants. Therefore, we do

not need to use sophisticated feature transformations in the image alignment algo-

rithm. Instead, we can use simple feature transformation such as Zero-Crossing Edge

Detector (ZCED) [53] to reduce computation cost. Furthermore, image alignment

can be reduced to the problem that finds matching projection invariant pairs, which

allows us to speed up the computation. Building on the intuition, we can design a

Projection Invariant-based Image Alignment Algorithm (PIIAA).

2. Projection Invariant-based Image Alignment Algorithm

As illustrated in Figure 6, our algorithm is based on a set of small square-shaped cells

evenly scattered in the overlapping region. Defined in Equation (3.16), each cell is

a projection invariant that satisfies the condition specified by Theorem 2. Define kc

as the number of cells, which is between 25 and 36 in most cases. Define ACj ⊂ Ã,

1 ≤ j ≤ kc as the jth cell. From potentiometer reading and its error range, we know
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BCj 
ε(ACj ) 

A~

B~

oj
Ap~

Fig. 6. An illustration of projection invariant-based image alignment algorithm. Image

Ã and image B̃’s barrel-like shape is due to spherical wrapping.

that the matching region of BCj ⊂ B̃ will be found within region ε(ACj) ⊂ Ã, which

is the gray region in Figure 6,

ε(ACj) = {(p, t) ∈ Ã|p ∈ [Apoj ± (pc + .5pmax)]

t ∈ [Atoj ± (tc + .5tmax)]},
(3.36)

where (Apoj,
Atoj) = Aq̃oj is the center point of ACj, (pc, tc) defines cell size, and

(pmax, tmax) is the potentiometer error range. For example, for the images captured

from a Canon VCC3 camera that has a 45◦ horizontal field of view, an image size of

640× 480-pixels, and ±1.5◦ potentiometer error, ε(ACj) is ±20 pixels shifting range

in Ã. Based on Corollary 2, we also know that the inverse rotation by −θ around cell

center Bqoj defines the orientation of BCj,

BCj = Rc(−θ)ACj.
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Therefore, we transfer the optimization problem in Equation (3.35) to

min
(pB ,tB)

kcX
j=1

�
FeatureB(Rc(−θ)ACj)− FeatureA(ACj)

�2
, (3.37)

subject to,

BCj ⊂ ε(ACj). (3.38)

Since BCj is considered as a solid square with only rotation and shifting, computing

the solution becomes less costly. Each candidate solution will determine orientation

and location of kc cells.

Since the relative positions between cells are rigid and known, the search for

a solution is to simultaneously shift all kc rotated cells in Ã and find the optimal

solution with the pre-computed BCj’s. Because kc is a relatively small number (i.e.

25 ∼ 36) and each cell is very small (i.e. 10×10 pixels), the computation is very fast.

Define (δp, δt) as BCj shifting variable such that δp ∈ [±0.5pmax] and δt ∈ [±0.5tmax]

to satisfy Equation (3.38). Because of the image resolution limit, there are only a

constant number of (δp, δt) pairs.

Another benefit is that feature detection and spherical wrapping do not need to be

computed for the entire image. Only pixels in the selected cells and their neighboring

search regions need to be computed. Define n as the number of total pixels in images

A and B. We summary the analysis above as the Projection Invariant-based Image

Alignment Algorithm below.
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Algorithm 1: Projection Invariant-based Image Alignment Algorithm

input : Image A, Image B, Image A’s pan and tilt setting (pA, tA)

output: Image B’s pan and tilt setting (pB, tB)

Computing lookup table for spherical wrapping Ã and B̃; O(1)

Select evenly scattered ACj, j = 1, ..., kc in the overlapping region; O(1)

for each j, 0 ≤ j ≤ kc, do

Compute BCj using initial readings from potentiometer; O(1)

Compute FeatureB(BCj) using ZCED; O(1)

Compute FeatureA(ε(ACj)) using ZCED; O(1)

for each (δp, δt), do

for each j, 0 ≤ j ≤ kc, do

Compute cell orientation θ; O(1)

Rotate FeatureB(BCj) by −θ; O(1)

Compute SSD for the cell j; O(1)

Report the sum of SSD across all cells; O(1)

Report (δp, δt) with the minimum SSD; O(1)

Add (δp, δt) to initial potentiometer reading to get (pB, tB); O(1)

Since the property projection invariant of allows to avoid complex feature extractions,

plus the fact that we can further limit the ZCED to the minimum number pixels, the

PIIAA is actual a constant time algorithm if we do not consider image I/O time.

This is very desirable in dealing with high resolution images.

D. Experiments and Results

We have implemented the algorithm and tested in a series of experiments. The com-

puter we used for testing is a 3.2Ghz Desktop PC with 2GB RAM and a 120GB hard
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disk. The C++ based source code is complied in Microsoft Visual Studio 2003.net

under Windows XP Professional Edition.

We first compare the speed of our algorithm with the fastest method that is cur-

rently available [50]. It is a combination of SIFT and RANSAC with k-d tree support.

We have used open source SIFT code1 and k-d tree code2 and implemented RANSAC

according to [67]. Since this algorithm is used to construct panorama from aligning

multiple image frames, it is referred to as Panorama Recognition Algorithm (PRA)

in [50]. To ensure a fair comparison, we only compare image alignment time. Addi-

tional components in panorama construction such as image I/O, bundle adjustment,

and blending/rendering are not counted in the time comparison.

We first investigate how well each algorithm scales up when image resolution

increases. Images used in the test are taken by a Panasonic SD 360 camera with a

maximum resolution of 2816 × 2112. Table II shows how much time each algorithm

takes under different image resolutions. The input is a pair of overlapping images.

The two algorithms are fed with the same input pair during the experiment. Both

PRA and PIIAA are initialized with the same initial conditions (i.e. using the same

inaccurate pan and tile potentiometer readings as their initial solutions). At each res-

olution level, we use 10 independent image pairs taken in the Texas A&M University

campus. With each image pair as a trial, the time in the table is an average of 10 tri-

als. Since the variance from trial to trial is small, it is not presented here. The factor

column in the table indicates the speed improvement of PIIAA over PRA. It is clear

that PIIAA is significantly faster than PRA for PTZ cameras. It is also desirable to

see that factors get bigger as image resolution increases. Projection invariants clearly

1http://vision.ucla.edu/∼vedaldi/code/siftpp/siftpp.html
2http://ilab.usc.edu/toolkit/home.shtml
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speed up the computation.

Table II. A comparison of algorithm speed versus image resolution.

Resolution PRA Time (milisec.) PIIAA Time (milisec.) Factor

176× 132 230.8 12.5 18.5x

352× 264 1209.3 43.7 27.7x

704× 528 5359.4 82.8 64.7x

1408× 1056 24401.5 215.6 113.2x

2816× 2112 113196.9 731.4 154.8x
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CHAPTER IV

MINIMUM VARIANCE BASED INCREMENTAL FRAME ALIGNMENT

With camera frequently steered to different pan/tilt position, image alignment must

be performed incrementally on the incoming video frames to generate panorama video.

We define evolving panorama as a sequence of all video sequence inserted in temporal

order. The incremental frame alignment is the sequential registration of large num-

ber of video frames into the panorama video during the panorama construction and

update. When a new frame arrived, we compute its optimal position by aligning with

a set of existing neighbor frames. We need to identify a subset of past frames that

provide an optimal tradeoff between quality of the panorama and computation time.

If we assume the alignment error is a random vector with zero mean, the magnitude

of error variance determines the quality of alignment. We study how error variance

gets accumulated and propagated in the incremental alignment process and propose

a minimum variance based incremental frame alignment algorithm able to ensure the

quality of the panorama video over long run. For k images, our algorithm runs in

time O(k log k). Experiments show that our algorithm can reduce calibration error

by 81% if compare with a method that simply selects frames with large overlapping

regions.

A. Problem Description

1. Inputs and Assumptions

Definition of Frame Sequence: When the camera is moving, images are blurred and

must be discarded. Once the camera has stopped, we define a frame sequence as a
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sequence of camera frames from some fixed pan-tilt-zoom setting,

F = {C(tbegin, tend), p, t, z, X, υ}, (4.1)

where C stands for the frame content data set, tbegin and tend are the beginning

time and ending time of the frame sequence respectively, (p, t, z) are the approximate

pan, tilt, and zoom values obtained from the camera, X is a set of unknown image

alignment parameters, and υ is a scalar that indicates how well the frame sequence

is aligned with respect to its neighbors as discussed below.

Since the camera does not move for the duration of a frame sequence, we compute

the alignment parameters using the first image of each frame sequence and use the

same alignment parameters to transform the last image of the sequence to update the

panorama. Below, we refer to the “frame” as the first image from a frame sequence.

Definition of an Evolving Panorama: The evolving panorama at time t includes

all previous frame sequences,

P (t) = {F |tbegin < t}

inserted in temporal order.

Each panorama has a reference frame. The positional parameters X of other

frame sequences are computed with respected to the reference frame. The reference

frame is also the first frame of the panorama. Starting with reference frame, the

panorama is initialized by commanding the camera to visit a sequence of preset co-

ordinates that cover the field of view as we will show in Section 1. Actually, the

panorama generation and maintenance need the same incremental frame alignment

algorithm that will be introduced in Section 2.

Known Camera Intrinsic Parameters: Constructing the panorama requires pro-

jection and positional parameters. The projection parameters include image resolu-
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tion, camera focus length, and CCD sensor size, all of which are known and fixed. We

use these to project all images onto a fixed spherical surface. The set of positional

parameters X from Equation 4.1 are unknown and must be computed.

Approximate Camera Pan, Tilt, Zoom Position: The tele-operator periodically

sends a motion command to the camera, specified as a desired pan, tilt, and zoom

(p, t, z) target. After the camera motors servo toward this target, they stop and the

camera sends back an estimate of its resulting pan, tilt, and zoom position. As noted

above, these estimates are inherently approximate. We use the approximate position

for an initial estimate of how many pixels overlap between a pair of frames. Once the

alignment parameter X is computed by the algorithm, we use it to refine the number

of overlapped pixels.

Random Pair-wise Alignment Error: When computing the relative offset between

two frames, the matching problem is a nonlinear minimization problem. Introduced

by numerical methods for nonlinear optimization like Gaussian-Newton method, Sim-

ulated Annealing, or Genetic Algorithms, the error between true optimal and actual

solution depends on initial point and truncation error. A good algorithm chooses its

initial point randomly, which defines the alignment error to be a random vector. We

assume the alignment error random vector has zero mean and variance σ2, which usu-

ally is a function of truncation error and image characteristics and will be discussed

in Section 1.

Errors in Pair-wise Alignment: We assume that the Average Matching Error

(AME) A of each pixel (or feature point if using feature-based matching) can be

approximated by a quadratic function in the vicinity of its optimal matching location.

For the ith pixel in a new frame with its location Xi, this is described by,

A(Xi) = a‖Xi −X∗
i ‖2

2 + b, (4.2)
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where X∗
i is optimal alignment location, a is a scaling factor, and b is the residual

caused by noise. We assume that a and b are the same across all matching pixels.

2. Incremental Frame Alignment Problem

The incremental Frame Alignment problem is: given a set of n existing frame se-

quences, find X for a newly arrived frame sequence.

We solve it in two steps. The first step is to identify a subset of past frame

sequences and decompose the alignment problem into multiple pair-wise alignment

problems and give each an appropriate weight. In the second step, the pair-wise

alignment problems are solved by applying standard image mosaicing methods. We

use the direct matching method throughout the rest of the paper.

We focus on step one: identify a subset of past frames sequences that provide an

optimal tradeoff between quality of the panorama and computation time.

B. Algorithms

We’ve assumed that error of X is a random vector with zero mean. Therefore, the

magnitude of error variance determines the quality of alignment. To analyze the

error variance, we first propose a quality metric to measure how sensitive an image

alignment method is to errors. We study how error variance gets accumulated and

propagated in the alignment process using a simple 1D example. Based on the anal-

ysis, we propose a minimum variance approach to select an optimal set of existing

frames to register a newly arrived frame. We begin with definition of the quality

metric.
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1. Quality Metric for Image Alignment

We propose the following quality metric υ to quantify alignment error. The scalar

υ measures average pixel-wise alignment variance and will be defined for each frame

sequence.
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Fig. 7. An illustration of metric υ using a panorama composed by two equally sized

frames with equal number of pixels. Frame 1 is the reference image in the

alignment.

Since image alignment is not perfect due to round off errors and image charac-

teristics, the displacement between the actual coordinate Xi of the ith pixel and its

ideal coordinate X∗
i is a random vector Di = Xi−X∗

i . Let np be the number of pixels

in panorama P . For P , metric υ is,

υ(P ) =
1

np

npX
i=1

V ar(Di) (4.3)

Metric υ is defined for a frame sequence as the average alignment variance of all pixels

in its first frame.

Figure 7 illustrates how to compute υ using a panorama with two equally sized

frames. The displacement between the two frames is caused by camera pan motion
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so that the only alignment parameter is the horizontal displacement, x12, between

the two frames. Frame 1 enters the system first, then Frame 2 is captured. Frame 2

will be put on the top of frame 1. Define x∗12 as the optimal displacement. Random

displacement error is d12 = x12 − x∗12. Since frame 1 is the reference frame, all its

pixels have zero variance. Alignment variance of each pixel in frame 2 is σ2. Figure

7(b) uses arrows to indicate variance amplitude. Let m, m ≤ np, be number of pixels

in each frame and m12, 0 < m12 ≤ m, be number of overlapping pixels. Metric υ of

the panorama can be computed as

υ =
1

np

((m−m12)× 0 + mσ2) =
m

np

σ2, (4.4)

where frame 1 contributes m−m12 pixels to the panorama and frame 2 contributes

m pixels to the panorama.

2. Analyzing Alignment Errors

In this section we use statistical metric υ to compare the quality of image alignment

methods. We begin with the simplest pair-wise alignment operation.

Error Variance in Pair-wise Alignment Define O as the set of the overlapped

pixels. According to the assumption in Section ??, the Total Matching Error (TME)

T over O becomes,

T =
X
i∈O

(a‖Xi −X∗
i ‖2

2 + b) (4.5)

= |O|a‖Xi −X∗
i ‖2

2 + |O|b. (4.6)

The image alignment is an optimization problem,

arg min
{Xi,i∈O}

T,
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subject to image integrity constraint, which actually reduces the unknown set {Xi, i ∈
O} to the single vector X defined in Equation 4.1. We must find X such that

T (X) ≤ |O|b + ε,

where ε is the truncation error from the minimization problem. Inserting it into

Equation 4.5, all possible solutions must be inside the ball,

‖X −X∗‖2 ≤
Ê

ε

|O|a, (4.7)

where X∗ is the optimal solution. Recall that AME is an approximation of real

matching function in the vicinity of the optimal. AME is unknown during the problem

solving process. Therefore, we can not directly use X∗ deducted from AME as the

solution. Any point in the ball with radius r =
q

ε
|O|a is a possible solution. To solve

the matching problem is just to sample a point from the ball with a unknown location.

Any point in the ball is likely to be a solution if the matching algorithm chooses its

initial point randomly. The dimensionality of the ball depends on the dimensionality

of X.

For the simple 1D case in Figure 7, the ball degrades to a line segment. If we

assume the solution is uniformly distributed, then its variance is

σ2 =
(2r)2

12
=

r2

3
=

ε

3|O|a. (4.8)

Inserting Equation 4.8 into Equation 4.4 and defining α = m12/m, we obtain the

Metric υ for pair-wise image alignment:

υ =
ε

3npaα
. (4.9)

For the general d−dimension case X = {x1, x2, ..., xd}, we have variances of the
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marginal distributions along each dimension, {σ2
x1

, σ2
x2

, ..., σ2
xd
}. We define

σ2 = max{σ2
x1

, σ2
x2

, ..., σ2
xd
}.

Interestingly, though the distribution of the solution point in the ball is unknown,

the d−dimension case has a similar format with the 1-dimensional case in Equation

4.8 with a different constant factor kd, as summarized as the following theorem.

Theorem 3. Using AME approximation of image matching function in the vicinity

of the optimal solution, the variance of alignment displacement error is

σ2 =
r2

kd

=
ε

kd|O|a, (4.10)

where kd ≥ 1 and d is the problem dimensionality. The exact value of kd depends on

d and the joint probability distribution function of the solution distribution over the

ball defined by Equation 4.7.

Proof. Define the joint probability density function as f(x1, x2, ..., xd), we haveZ r

−r
...
Z r

−r| {z }
d

f(x1, x2, ..., xd)dx1dx2...dxd = 1. (4.11)

Without loss of generality, we assume σ2
x1

= σ2. We compute σ2
x1

in the rest of

the proof. Because x1 has zero mean, we know

σ2
x1

= E(x2
1)− E2(x1) = E(x2

1).

We define,

f1(x1) =
Z r

−r
...
Z r

−r| {z }
d−1

f(x1, x2, ..., xd)dx2...dxd, (4.12)

and

F1(y) =
Z y

−r
f1(x1)dx1, (4.13)
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as the marginal probability density function and the cumulative probability function

for x1 respectively. Now we are ready to compute σ2,

σ2 =
Z r

−r
x2

1f1(x1)dx1

=
Z r

−r
x2

1dF1(x1)

= x2
1F1(x1)|r−r −

Z r

−r
2x1F1(x1)dx1

= r2 −
Z r

−r
2x1F1(x1)dx1

= r2 −
Z 0

−r
2x1F1(x1)dx1 −

Z r

0
2x1F1(x1)dx1

= r2 +
Z 0

−r
(−2x1)F1(x1)dx1 −

Z r

0
2x1F1(x1)dx1

Applying the Second Mean Value Theorem for Integrals, we know ∃ξ ∈ [−r, 0], ∃ζ ∈
[0, r] such that,Z 0

−r
(−2x1)F1(x1)dx1 = F1(ξ)

Z 0

−r
(−2x1)dx1 = F1(ξ)r

2,

and Z r

0
(2x1)F1(x1)dx1 = F1(ζ)

Z r

0
(2x1)dx1 = F1(ζ)r2.

Therefore,

σ2 = (1 + F1(ξ)− F1(ζ))r2,

and

kd = 1/(1 + F1(ξ)− F1(ζ))

is the constant.

As summarized in Theorem 3 the quality of the solution is determined by how

many pixels are involved in the matching, |O|, and the image characteristics a.
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Insertion Without Updating Panoramic Display A naive approach is to insert

new frames using one panoramic image that is never updated. We can use use metric

υ to analyze the resulting performance.

Consider inserting a new frame 3 with the same size into the panorama in Figure

7. Define m23, 0 ≤ m23 ≤ m, as number of overlapping pixels between frame 2 and

frame 3. To simplify the notation, we also define β = m23

m
. Hence m23 = βm as

illustrated in Figure 8.

Frame 3 
y 

o 
x 

13x

(1-β)m βm 

23x

12x

(β-α)m (1-β)m 

Fig. 8. Insertion of a new frame into the panorama generated by frame 1 and frame 2

in Figure 7.

Define x13 as the offset of frame 3 and x∗13 as the corresponding optimal offset.

Recall that x12 is the offset of frame 2. Because frame 2 carries displacement error
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d12 = x12 − x∗12, the TME in Equation 4.5 becomes,

T = (1− β)m
�
a(x13 − x∗13)

2 + b)
�

+ βm
�
a(x13 − x∗13 + d12)

2 + b)
�
.

This equation can be simplified as,

T = ma(x13 − x∗13 + βd12)
2

+ m
�
ad2

12(β − β2) + b
�
. (4.14)

It is not surprising that its residual m
�
ad2

12(β − β2) + b
�

gets bigger because of the

displacement error in frame 2. Using the result from Equation 4.7, the radius of the

ball that covers possible solution is
È

ε
ma

. The variance of the solution for a given d12

is,

V ar(x13|d12) =
ε

3ma
.

Equation 4.14 also tells us the expected solution for a given d12 is,

E(x13|d12) = x∗13 − βd12.

From knowledge of conditional variance, we know that

V ar(x13) = E(V ar(x13|d12)) + V ar(E(x13|d12)).

Therefore, we can get the variance of displacement for each pixel in frame 3,

V ar(x13) =
ε

3ma
(1 +

β2

α
). (4.15)

Now, we can compute metric υ for this case. Figure 8 also tells us that frame 1

contributes (1 − α)m − (1 − β)m = (β − α)m pixels to the panorama, frame 2

contributes (1 − β)m to the panorama, and frame 3 contributes m pixels to the
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panorama. Plug them in to Equation 4.3,

υ =
1

np

�
m

ε

3ma
(1 +

β2

α
) + (1− β)m

ε

3αma

�
=

ε

3npa
(1 +

β2

α
+

1− β

α
). (4.16)

Comparing to υ from Equation 4.9, the result in Equation 4.16 may grow; the

panoramic display deteriorates over time due to deterioration of the matching func-

tion, which decreases the subsequent alignment accuracy. This can also be seen in the

increase of the residual in Equation 4.14, which indicates a decrease in the signal/noise

ratio. Since the panorama is not updated, the deteriorating trend continues as new

frames are inserted. To address this, we must update the panorama as frames are

inserted. However, as shown in next section, this may suffer from error propagation

if it is not designed properly.

Insertion With Updating Panoramic Display Instead of aligning frame 3 with

respect to a fixed panorama, we can align it with respect to the existing frames

including either frame 1 or frame 2 or both. The choice depends on a tradeoff between

reducing

• variance, and

• computation time.

We use the example in Figure 8 to illustrate different outcomes for different

approaches. As shown in the figure, there are three unknown variables: x12, x13, and

x23. The last variable x23 is defined as the offset between frame 2 and frame 3. We

know that x13 + x23 = x12 under ideal settings. Due to this relationship, we only

need two out of three variables. Since x12 is known when the third frame enters the

system, we first match frame 2 with frame 3.



53

Since there are βm pixels overlapped between the two images, the TME function

T is,

T = βma‖x23 − x∗23‖2
2 + βmb.

The corresponding variance is

V ar(x23) =
ε

3βma
.

However, we need to know V ar(x13), because frame 1 is the reference coordinate. We

know that x12 and x23 are independent random variables. Therefore,

V ar(x13) = V ar(x12) + V ar(x23) =
ε

3ma
(
1

α
+

1

β
). (4.17)

The variance from x12 propagates to x13 and can grow with each new insertion

unless we choose the right images to align with as follows.

3. Image Alignment Methods

1 2 

3 1/m13 

1 2 

3 

1 2 

3 

(a)   (b)   (c)   

1/m12 

1/m23 1/m13 1/m23 

1/m12 1/m12 

Fig. 9. Graphical representation of alternate methods. Each node represents a camera

frame. Each edge represents an overlap between two frames. With edge length

proportion to the inverse of the number of overlapping pixels, selective pair-wise

matching finds the shortest path from node 3 to node 1 (the reference node).
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Selective Pair-wise Matching (SPM) An alternative is to align frame 3 with

frame 1. Define m13, 0 ≤ m13 ≤ m, as number of pixels between frame 1 and frame

3. To simplify the notation, we define γ = m13/m. Following a similar derivation, we

obtain

V ar(x13) =
ε

3maγ
. (4.18)

Although Equation 4.18 does not contain variance from frame 2, V ar(x13) is

not necessarily smaller than that of Equation 4.17. If we limit ourselves to pair-wise

matching, the choice of matching depends on which pair yields smaller variance,

V ar(x13) =
ε

3ma
min{1

γ
,
1

α
+

1

β
}

=
ε

3a
min{ 1

m13

,
1

m12

+
1

m23

}.

Figure 9 uses a graph to illustrate the selective pair-wise matching process. With

each node represents a frame and each edge represents the overlapping relationship

between frames, the choice of the least variance matching is to find the shortest path

from the new node to the reference node.

Minimum Variance Matching (MVM) In Figure 8, another possible method

is to simultaneously align the third frame with both frame 1 and frame 2. This is

different from the result in Equation 4.15, because more pixels are involved in the

matching process. In Equation 4.15, part of frame 1 has been covered by frame 2 in the

fixed panorama and hence can not participate the alignment process. Equation 4.10

shows that variance declines as more pixels are involved in the matching. However,

it also could increase the chance of error propagation and increase the variance. The

minimum variance matching approach is to find the best set of matching images so

that the variance of matching is the smallest.
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Let us consider a general case. Assume that the jth frame enters the system, it

intersects with a set of existing frames Mj. For the lth frame in Mj, we also know

that the number of pixels in frame j intersecting with frame l is mjl. Define Xj and

Xl as the vectors that describe the location of image j and image l with respect to

the reference image respectively.

Define Xjl and X∗
jl as the relative offset and the optimal relative offset between

frame j and frame l. Then the TME formulation of the matching between frame j

and all images in set Mj is,

T =
X

l∈Mj

�
amjl‖Xjl −X∗

jl‖2
2 + bmjl

�
.

Since we are looking for the absolution location Xj = Xl+Xjl, we change the equation

above to,

T =
X

l∈Mj

�
amjl‖Xj −Xl −X∗

jl‖2
2 + bmjl

�
.

Apply the same approach we did for Equation 4.14, we get

E(Xj|{Xl, l ∈ Mj}) =

P
l∈Mj

�
mjl(Xl + X∗

jl)
�P

l∈Mj
mjl

(4.19)

and

V ar(Xj|{Xl, l ∈ Mj}) =
ε

kda
P

l∈Mj
mjl

.

Therefore,

V ar(Xj) = V ar(E(Xj|{Xl, l ∈ Mj}))

+ E(V ar(Xj|{Xl, l ∈ Mj}))

=

P
l∈Mj

m2
jlV ar(Xl)

(
P

l∈Mj
mjl)2

+
ε

kda
P

l∈Mj
mjl

.

From Theorem 3, we know that V ar(Xl) = ε
kda

wl, where wl has been computed when
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the lth image entered the system. Inserting them into V ar(Xj), we get

V ar(Xj) =
ε

kda

� 1P
l∈Mj

mjl

+

P
l∈Mj

m2
jlwl

(
P

l∈Mj
mjl)2

�
. (4.20)

Matching over all overlapping frames may not provide us with the smallest variance.

What we want is an optimal set of overlapping frames. If the lth image is not used in

the matching, we can simply set mjl = 0 in Equation 4.20 to get the new variance.

This defines a minimization problem. Define Il, l ∈ Mj as the image choice variable,

we get the following optimization problem,

min F ({Il, l ∈ Mj}) =
1P

l∈Mj
Il

+

P
l∈Mj

I2
l wl

(
P

l∈Mj
Il)2

(4.21)

subject to X
l∈Mj

Il ≤ m̄j, (4.22)

Il = {0,mjl},∀l ∈ Mj (4.23)

where m̄j is the maximum limit for number of pixels involved in the matching problem.

The constraint in Equation 4.22 controls the size of the subsequent matching problem

to limit computation time. We solve this optimization problem to derive the optimal

set of matching images.

Minimum Variance Based Incremental Frame Alignment Algorithm (MVIFA)

The optimal solution of Equation 4.21 yields the minimum variance. However, this is

a nonlinear combinatorial problem, which could be very computationally expensive.

Though the number of overlapping images k = |Mj| is usually a small number, solving

it exhaustively requires time exponential in k.
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Looking closer, we observe that when the constraint in Equation 4.22 is binding,X
l∈Mj

Il = m̄j,

the objective function in Equation 4.21 becomes

F ({Il, l ∈ Mj}) =
1

m̄j

+

P
l∈Mj

I2
l wl

(m̄j)2
.

Then the minimization problem is simplified as,

F ′ = min
{Il,l∈Mj}

X
l∈Mj

I2
l wl (4.24)

subject to the constraint in Equation 4.23. The lth candidate matching image takes

mjl-pixel space in total m̄j pixels and contributes m2
jlwl to variance if it is selected.

The variance per pixel is m2
jlwl/mjl = mjlwl. Define candidate solution set as

M̂j ⊆ Mj, sum of pixels in M̂j as s1 =
P

l∈M̂j
mjl, and partial variance sum as

s2 =
P

l∈M̂j
I2
l wl. We propose an approach that is based on the order of the vari-

ance density and solves the problem for the case that the constraint in Equation 4.22

is binding. This algorithm takes the images that contribute less variance first and

gradually expands the set until it reaches the constraint.

The algorithm above does not directly offer a solution when
P

l∈Mj
mjl < m̄j.

This is not a problem, because we can treat m̄j as a variable to perform a search over

it. Recall the F ′ defined in Equation 4.24, this new optimization problem is,

min
m̄j

1

m̄j

+
F ′

m̄2
j

, (4.25)

which can be solved straightforwardly by keeping tracking of F value in the for loop

of the MVIFA algorithm. Instead of using the final F (M̂j), we output the smallest F

and its corresponding set of frames. With this modification, we have
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Algorithm 2: MVIFA Algorithm

M̂j = ∅, s1 = 0, s2 = 0; O(1)

Compute mjlwl, l ∈ Mj; O(k)

Sort {mjlwl, l ∈ Mj} in ascending order; O(k log k)

for each l in the ascending sequence of mjlwl; O(k)

do

if s1 + mjl ≤ m̄j then

s1 = s1 + mjl, s2 = s2 + m2
jlwl, M̂j = M̂j ∪ {l}

else

Break for loop

F (M̂j) = 1
s1

+ s2

s2
1
; O(1)

Output M̂j and F (M̂j); O(1)

Theorem 4. The MVIFA algorithm finds the optimal set of overlapping frames in

O(k log k) time for a image with k overlapping frames.

4. Pair-wise Matching

As stated in Section 2, with an optimal set of existing frames, the resulting pair-wise

alignment sub problems can be solved using any image mosaicing methods. Equation

4.19 also tells us that the optimal alignment parameter, X, is a weighted average of

the pair-wise matching results using the number of overlapping pixels as the weight.

C. Experiments and Results

We have installed a Canon VCC3 Pan-Tilt-Zoom camera at the UC Berkeley campus.

The camera has a pan range of 180◦ and a tilt range of 55◦. It features an 1/4-inch

CCD sensor with a maximum resolution of 768 × 576. Its horizontal field of view
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ranges from 4◦ to 46◦. Our processor is a 2.53Ghz Intel Pentium 4 PC with 1GB

RAM and an 80GB hard drive.

1. Construction Phase

In construction phase, we construct a panorama by directing the camera to visit a set

of predefined coordinates, each of which defines a composing frame of the panorama.

We have taken 21 320×240-pixel frames. During the construction process, we combine

our MVIFA Algorithm with Breadth First Search (BFS) to generate a panorama. The

BFS starts with camera home position frame, which also our reference frame. It is

node 0 in Figure 10. The BFS incrementally covers all 21 points represented by the

21 nodes in the graph illustrated in Figure 10. The pair-wise matching algorithm is a

feature-based algorithm. The overall computation time to generate such a panorama

is 9.7 seconds, which is even less than the camera travel time. The VCC3 camera

can only travel with a maximum speed of 70◦ per second. To cover all 21 points,

it takes about 30 seconds because of frequent stops. Since our algorithm generates

the panorama incrementally, it can compute the panorama as the camera travels

around. It outputs the full panorama 331 milliseconds after the camera completes

its travel. The 21 nodes in Figure 10 are numbered according to the order of arrival.

Note that nodes 5, 10, 11, 13, 16, and 18 only align with a subset of their neighbors,

which confirms our analysis that to align with as many frames as possible does not

necessarily minimize the variance.
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0 1 4 9 14 8 3 

2 5 10 15 17 12 6 

7 11 16 19 20 18 13 

Reference node   normal nodes Matching edge Edge that is not  
used for matching 

Fig. 10. Resulting matching sequence from MVIFA-BFS using the 21 frames. Each

node represents a frame and node numbers are corresponding to BFS frame

capturing order. The distribution of matching edges is determined by image

alignment mechanisms. The alignment edges are directional: node a → node

b means frame a is captured later and uses the existing frame b for alignment.

2. Update Phase

We next test how long it takes to update an existing panoramic display. Based on

results of 1000 test runs, the algorithm required an average of 331 milliseconds to

update the panorama. The parameter m̄j in Equation 4.22 determines the trade-off

between panorama quality and computation time. In our settings, m̄j = 90000 offers

the best trade-off. The update operation is activated when the camera leaves for a

new pan-tilt-zoom setting. Since camera travel and stabilization time usually requires

more than 331 milliseconds, image alignment can be computed as fast as the camera

can be tele-operated.
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3. Performance Comparison

We compare the calibration accuracy of our MVIFA algorithm with that of two other

options. The first option is to simply align a newly-captured frame with its recent

neighbors, which is called Time-Based Incremental Frame Alignment (TBIFA). The

rationale behind it is that recent neighbors are less vulnerable to the change of en-

vironment. The second option is to align the newly-captured frame with the frames

with large overlapping regions, which is called Location-Based Incremental Frame

Alignment (LBIFA). The rationale behind it is that large overlaps tend to produce

less variance. To ensure a fair comparison, we set the same constraint in Equation

4.22 across all three options. We select the total number of feature pixels involved as

m̄j = 5000. For the TBIFA, we rank neighbors according to their arrival time. We

add the most recent images to the alignment set until the constraint in Equation 4.22

is binding. For the LBIFA, the only difference is that we rank all neighbors of the

new frame according to the size of the overlapping area. For each alignment method,

we insert 500 frames into the system as a trial. We repeat each trial 50 times. The

data shown in Figure 11 is an average of 50 trials.

Recall that our algorithm selects a subset of frames to align a new frame to min-

imize the variance of the measured pan and tilt position of the new frame. Therefore,

the alignment accuracy is measured using the average variance of the pan and tilt

positions of the last 20 frames after the new frame is inserted. Because the variance

of a single frame heavily depends on its distance to the reference frame, we use the

average of 20 to smooth the location variation in comparison. Since each frame is uni-

formly, independently, and identically distributed in the camera pan and tilt space,

the mean location of the 20 frames is about the same according to the Strong Law
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Fig. 11. A comparison of alignment results using the MVIFA algorithm, Loca-

tion-Based Extrinsic Calibration (LBIFA), and Time-Based Extrinsic Cali-

bration (TBIFA). The variance unit is ε
kda

× 10−3.

of Large Numbers. Although variance usually does not have a unit, Equation 4.20

suggests that the variance in our system can be measured by constant ε
kda

.

Figure 11 illustrates some interesting results. Both the TBIFA algorithm and

our MVIFA algorithm show a trend of convergence. This is due to the fact that there

are not enough pixels to bind the constraint in Equation 4.22 at the beginning. As

more and more frames enter the system, the constraint binds and the average variance

converges to a fixed value. It is clear that the MVIFA algorithm is more effective in

variance reduction. Our data shows that it reduces the variance by 65% on average

if compared with TBIFA. What surprises us is that the LBIFA is actually the worst

among the three methods. One big problem is that variance does not converge for
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the 500 frames inserted. This is because the selection of candidate frames is solely

based on the size of the overlapping area, which does not consider the variance of the

selected frame. Even after the constraint is binding, a single frame with very large

variance can dominate the solution. We know that the variances of initial frames are

large. A good method should avoid those frames whenever possible. The TBIFA can

avoid them over time, but the LBIFA fails and hence cannot converge. Our MVIFA

algorithm reduces variance by 81% on average in comparison to LBIFA.
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CHAPTER V

FRAME GRAPH BASED PANORAMA DOCUMENTATION ALGORITHM

As illustrated in Figure 12, our system automatically steers a networked pan-tilt-

zoom camera to inspect and document construction activities. The input is a set of

preset image features, human inspector commands, and on-site motion detectors. The

resulting “foveal” video images are aligned and inserted into a coherent panoramic

display. Figure 12(b) illustrates the evolving panorama interface.

The evolving panorama can structure and organize the documented video frames.

If stored naively, the evolving panorama can consume a large amount of memory. For

example, the evolving panorama in Figure 12(b) could have a maximum resolution

of 28800 × 9600 at zoom=10x. We propose a Frame Graph based Panorama Doc-

umentation algorithm (FGPD) including frame insertion, archiving and adjustment

operations to manage the online panorama documentation. For a panorama with n

frames and a new frame with k neighbors and p overlapping pixels, our frame insertion

algorithm registers the new frame at O(log2 n+k log k + p) time, our frame archiving

algorithm moves outdated neighboring frames to hard disk at O(k2 + k log2 n) time,

and our frame adjustment algorithm improves the alignment quality of the panorama

at time linear to n and the number of overlapping pixels. Our panorama documen-

tation algorithm combines the PIIAA and MVIFA algorithm and achieve real time

panorama video construction.
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(b) 
Fig. 12. Top figure (a) camera motion is determined by a combination of preset points,

human inspector commands, and motion detector inputs. The resulting video

sequences are aligned and inserted into the evolving panorama. Lower figure

(b) illustrates panoramic interface, the inset frame is a sample detail captured

by the robotic camera and insertion algorithms.
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A. Algorithms

1. Frame Graph

Our evolving panorama is a collection of parameterized frame sequences stored in

Frame Graph (FG), which is a variation of planar 2D graph. In an FG, node j

contains,

• node ID j,

• frame sequence Fj,

• rectangle Rj that describes the image coverage area, and

• total number of pixels of image mj.

Edge ejl links node j and node l, which contains,

• edge ID in format of jl,

• indicator variable Ijl to show if the edge has been used for alignment, where

Ijl =

8>>>>><>>>>>:
0 no alignment

1 frame j is aligned to frame l

−1 frame l is aligned to frame j

• relative offset Xjl between node j and node l if Ijl 6= 0,

• number of overlapping pixels mjl, and

• rectangle that describes the overlapped area Rjl.
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(a) (b) (c) 

(d) (e) (f) 

b a c 

d e f 
(g)   

 normal frames 
Reference frame  

Alignment edge 
No alignment Edge  

Fig. 13. An example of frame graph with six frames. Figures (a-e) are frames and

figure (b) is the corresponding FG.
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Figure 13 illustrates a sample FG with six frame sequences. For frame sequence

j, its Mj is just its edge set and M̂j is just the set of edges that have Ijl = 1.

Alignment edges and nodes formulate a Directional Acyclic Graph (DAG) with its

only sink located at the reference frame. As a data structure, FG also has a set of

maintenance algorithms including frame insertion, archiving, and adjustment.

2. Frame Insertion Algorithm

Each time after the camera changes its pan-tilt-zoom settings, a new frame sequence

will be generated and needs to be inserted into the FG. As illustrated in Figure

12, frame insertion algorithm contains three parts: computing intersection frames,

choosing the optimal alignment frames, and performing pair-wise alignment.

On the other hand, according to the p− pixel limit imposed by the MVIFA

algorithm and the complexity bound of the pair-wise algorithm, the overall pair-

wise alignment time is O(p). The remaining part is to find the existing frames that

intersect the new frame, which is to find Mj for new frame j.

Assume there are n nodes in the FG at the moment. If n is small, an O(n) linear

brute-force search can identify the set. However, n grows as the number of frame

sequences accumulates. Computing Mj efficiently requires an indexing data structure.

Since we want to find out all overlapping frames, each of which is represented by a

rectangle, this formulates a range search problem with the query window defined by

the new frame. However, a regular 2D range searching problem [69] only reports

points that intersect a query rectangle whereas the queried objects are also rectangles

in our problem. A simple solution is to store center points of all existing frames and

enlarge the query rectangle, which is similar to compute Minkowski Sums [70] for each

queried rectangle. Therefore, we can identify set Mj in O(log2 n + k) for k = |Mj|.
With Mj, we can establish the edges between the new node and the existing nodes.



69

The complete frame insertion algorithm is described as follows,

Algorithm 3: Frame Insertion Algorithm

Compute Mj using range search; O(log2 n + k)

Add edges to FG ; O(k)

Run MVIFA Algorithm to get M̂j ; O(k log k)

Run pair-wise alignment algorithm for each edge in M̂j; O(p)

Update alignment edges ; O(k)

Insert the center point of the new frame to the range tree; O(log2 n)

Theorem 5. If a range tree is used as indexing data structure, it takes O(log2 n +

k log k + p) time to insert a new frame to a Frame Graph.

3. Frame Archiving Algorithm

A new frame may cover an old frame. If a frame has been mostly covered by its later

neighboring frames, we should archive the frame to hard disk to reduce the number

of nodes in the FG. Define pt ≥ 1 be the minimum number of pixels a frame has to

contribute to the panorama, frame archiving algorithm is performed right after new

frame j has been inserted,

Algorithm 4: Frame Archiving Algorithm

for each node l ∈ Mj do

Compute region R̄l = {∪iRli, i ∈ Ml, ti > tl}; O(k)

if pixel number(Rl − R̄l) < pt then

archive node l and its edges; O(k)

delete l from the range tree ; O(log2 n)
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Theorem 6. It takes O(k2 + k log2 n) time to find and archive the old frames that

are covered by a new frame.

4. Frame Adjustment Algorithm

On the other hand, a new frame may provide better alignment choice to its overlapping

frames which leads to frame adjustment algorithm. After frame j enters the system,

there is a subset of overlapping images Mj − M̂j that are not used to align frame j.

We know that the frames with big alignment errors are located in the subset. The

frame adjustment algorithm is targeted at the worst aligned frame l in set Mj − M̂j.

Define Ml and M̂l be the set of overlapping frames and the set of alignment frames

for frame l respectively. Let mjl be the number of overlapping pixels between frame

l and frame j.

Algorithm 5: Frame Adjustment Algorithm

Find the node l ∈ Mj − M̂j; O(k)

Update M̂l using the MVIFA Algorithm; O(1)

if j ∈ M̂l then

Run pair-wise alignment algorithm between frame l and frame j; O(mjl)

Update alignment edges for frame l; O(k)

Recursively adjust frames that aligned to frame l; O(n)

As illustrated in the algorithm, for the adjusted frame l, we only need to perform

one pair-wise alignment between frame l and frame j, which yields Xjl. Xl can be

refined incrementally because of the weighted sum format. Changing of Xl leads to

the adjustment of all other frames that either directly or indirectly aligned to frame

l. Since n > k, the total complexity of the frame adjustment algorithm is,
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Theorem 7. It takes O(n + mjl) time to adjust the alignment parameters of frame

l and other effected frames after frame j enters the system.

B. Experiments and Results

As shown in Table III and Figure 14, images from 4 different cameras are used in

experiments. Cameras VCC3, VCC4, and HCM 280 are PTZ cameras. Camera SD

630 is a regular digital camera mounted on a tripod, which provides high resolution

images for comparing algorithms.

Table III. A comparison of technical specifications of cameras tested in our experi-

ments. VCC3, VCC4, and SD 630 are from Canon. HCM 280 is from

Panasonic.

Camera pan tilt zoom focal length

VCC3 −90◦ ∼ +90◦ −30◦ ∼ +25◦ 10x 4.2 ∼ 42mm

VCC4 −100◦ ∼ +100◦ −30◦ ∼ +90◦ 16x 4 ∼ 64mm

HCM 280 −175◦ ∼ +175◦ 0◦ ∼ −120◦ 21x 3.8 ∼ 79.8mm

SD 630 N/A N/A 3x 5.8 ∼ 17.4mm

(a)  VCC3 (b)   VCC4 (c)   HCM 280 (d) SD 630 

Fig. 14. Cameras tested in the experiments.
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Our real time panorama video construction combines the PIIAA, MVIFA and

FGPD algorithm. Constructing panorama requires to perform a large number of

image alignments at various camera PTZ settings. With applications range from

natural observation and building construction documentation, our algorithm has been

tested in four different sites as illustrated in Figure 15.

We have designed and implemented several versions of this system. We deployed

our first construction camera system in June 2003 to monitor the Stanley Hall building

construction at UC Berkeley. At 285,000 square feet and 11 floors, the new Stanley

building is the largest campus construction project in 20 years. This $162 million

project is a research and teaching building scheduled to open in 2006. We used a

Canon VCC3 robotic camera. Figure 15(a) describes the site. We initially focused

on camera control. Over 93060 frames were recorded in the subsequent 2 years. The

most frequent users were construction project managers. From their feedback, we

noticed that there is a great interest for high-resolution panoramic video inspection

and documentation system.

Development of the evolving panorama began in the summer of 2003. We began

experiments with an improved Canon VCC4 camera our laboratory. As a test of

concept, we built small panorama consisting of 8 frames and superimposed live video

into the panorama to provide context and focus in the interface. We discovered

that (1) nominal pan-tilt-zoom values do not provide adequate accuracy for frame

registration and (2) traditional static panorama generation methods are either too

slow to fit speed requirement or limited to simple small scale cylindrical panoramas.

In September of 2004, we moved our Canon VCC3 camera from the Stanley

Hall construction site to the CITRIS Hall construction site approx 1/4 mile away on

the UC Berkeley campus. This $120 million project will add 150,000 square feet of

research and teaching space when it is completed in 2007. Figure 15(b) illustrates
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(a) Construction documentation of Stanley Hall building construction at
UC Berkeley.

(b) Construction documentation of CITRIS II building at UC Berkeley.

(c) Pilot test of natural observation at Central Park, College Station, TX

(d) Natural Observation at Richardson Bay Audubon Sanctuary, San
Francisco Bay.

Fig. 15. A snapshot of panoramic video created for bird watching.
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the camera view at a resolution of 2600 ∗ 900 pixels. Our new panorama generation

algorithms significantly reduce the panorama construction and update time from over

180 seconds to construct the 8-frame panorama in October of 2003 to only 9.7 seconds

to construct the 21-frame panorama in Figure 15(b).

After the panorama is constructed, it only takes 331 milliseconds to update it,

which allows it to be updated in real time and allows user to steer the Canon VCC4

PTZ camera to patrol the entire observation site to generate panorama on the fly.

Other than minor interruptions caused by hardware failure and network upgrade, the

system has been online stably and continuously for approximately 9 months. We

have archived more than 3150 frame sequences and generated 149 panoramic images

of the construction progress. The CITRIS Hall contruction management team uses

our system daily to track progress.

We select some panoramas collected to create time-elapsing motion panorama

for building construction progress documentation. The resulting motion panorama

contains 103 invidual panoramas from Feb 10, 2005 to June 2, 2005. Some panoramas

are not selected in the final motion panroama because of bad weather and lack of

construction progress during holidays. At a resultion of 2600×900 pixels, Figure 15(b)

is a snapshot of the motion panorama.

We also apply our algorithm to natural observation. As a pilot test, Figure 15(c)

illustrates a snapshot of motion panorama generated during bird watching. Experi-

ments were conducted from Aug 24, 2005 to Aug 31, 2005. We have collected 2186

frames and the original panorama has a resolution of 4000×1000 with a 240◦ horizon-

tal field of view and 60◦ vertical field of view. The camera used is a Panasonic HCM

280 networked pan-tilt-zoom camera. Under the same setup, Figure 15(d) illustrates

a panorama generated by PIIAA at an installation site for natural observation.
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CHAPTER VI

ON-DEMAND HIGH RESOLUTION PANORAMA VIDEO STEAMING

With high zoom and large pan/tilt capabilities, remote observation system equipped

with robotic cameras is able to achieve giga-pixel resolution. It is often the case that

multiple users including nature scientists and the general public want to share the

panorama video output at the same time. Each user may want to observe a different

sub region and time window of the panorama video. Transmitting the full-sized

ever-changing giga-pixel panorama video to every user is unnecessary and expensive

in bandwidth requirement. In this section, we present systems and algorithms that

allow on-demand sharing of a high-resolution panorama video. It is the first panorama

video system that is designed to efficiently deal with multiple different spatiotemporal

requests. We propose a patch-based approach in a spherical coordinate system to

organize data captured by cameras at the server end. Built on an existing video-

streaming protocol, the patch-based approach allows efficient on-demand transmission

of the request regions.

A. Inputs and Assumptions

1. Evolving Panorama Video

An evolving panorama video is the data representation we design to deal with spa-

tiotemporal camera frame inputs and user requests. The evolving panorama video is

not a panorama but a collection of individual frames with timestamped registration

parameters. The registration parameters allow the frame to be registered as part of

a virtual spherical panorama.

A panorama is usually constructed by projecting frames taken at different camera
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configurations into a common coordinate system, which is referred to as a composite

panorama coordinate system. We choose a spherical coordinate system as the com-

posite panorama coordinate system due to its relative small distortion if compared to

a planar panorama composite coordinate system and large tilt coverage if compared

to a cylindrical panorama composite coordinate system. In section III, we have shown

that image alignment on the same spherical surface can be performed very efficiently

because there exist projection invariants to allow the quick computation of registra-

tion parameters. Using a pre-calibrated camera, a point q = (u, v)T in a newly-arrived

video frame F is projected to the point q̃ = (ũ, ṽ)T in F̃ in the spherical coordinate

system. The spherical coordinate system is centered at the lens optical center and

has its radius equal to focal length f of the lens. The spherical pre-projection that

projects q to q̃ is,

ũ = arctan

�
u

f

�
, (6.1a)

ṽ = − arctan

�
v√

u2 + f 2

�
. (6.1b)

Each point (ũ, ṽ)T in F̃ is defined using local pan and tilt spherical coordinates with

units of radians. This is a local spherical coordinate because it forces the camera’s

optical axis to overlap with vector (ũ = 0, ṽ = 0). The next step is to re-project

the local spherical coordinate to a global spherical coordinate to obtain image reg-

istration parameters using image alignment. The concept of an evolving panorama

video builds on the fact that the panorama is continuously updated by the incoming

camera frames. In fact, we do not store and build the whole panorama in order to

avoid expensive computation.

Different clients might have different spatiotemporal requests. It is important to

understand the relationship between the evolving panorama video and user requests.
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2. Understanding User Requests

L i v
e  L i v

e  

Time k-1 k 
Live video 

C lie
n t i 

k+1 

Fig. 16. The relationship between the evolving panorama and a user request. The

striped regions indicate how the evolving panorama updates as camera frames

arrive. The shaded box indicates the part of the data the user queries.

For a giga-pixel panorama video, it is impractical to transmit the entire video

sequence due to bandwidth limitations. The screen resolution of the display device

also limits the resolution of the video. Additionally, a user might not be interested in

the entire viewable region. As illustrated in Figure 16, a typical user request can be

viewed as a 3D rectangular query box in space and time. Define ri as the ith request,

ri = [u, v, w, h, ts, te], (6.2)

where (u, v) defines the center position of the requested rectangle on the panorama, w

and h are width and height of the rectangle, and time interval [ts, te] defines the time

window of the request. Figure 16 only illustrates a single user request. At any time

k, there may be many different concurrent requests. Addressing the need of different
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and concurrent requests is the requirement for our system.

With the concept of the evolving panorama and user requests, we are ready to

introduce the data representation and algorithms for the system.

B. Data Representation and Algorithms

Client i  
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1   
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Fig. 17. Evolving panorama video system diagram. The left hand side illustrates the

server side. The right hand side is a user at the client side. The grid at

server represents a patch-based high-resolution panorama video system that

allows multiple users to query different parts of the video concurrently. I’s

and B’s indicate the I-frame and the B-frame used in MPEG-2 compression.

A user sends a spatiotemporal request to server side and to retrieve the part

of his/her interests in the panorama.

We propose a patch-based panorama video data representation. This data repre-

sentation allows us to partition the image space and allows partial update and partial
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retrieval. Built on the data representation, we then present a frame insertion algo-

rithm and a user query algorithm. To illustrate the idea, we build our algorithms

based on the MPEG-2 streaming protocol, which is the most popular protocol that

can be decoded by a majority of client devices. However, the design can be easily

extended to more recent protocols such as the MPEG-4 family for better compression

and performance.

1. Patch-based Evolving Panorama Video Representation

We partition the panorama video into patches and encode each patch individually

using MPEG-2 algorithms. The grid in Figure 17 shows a snapshot of the patch-

based panorama at a given time. Only a subset of patches contain live video data

because cameras cannot provide full coverage of the entire viewable region at a high-

zoom setting. The panorama snapshot is a mixture of live patches and static patches.

Let us define the jth patch as pj, j = 1, ..., N for a total of N patches. Each patch

contains a set of video data pj = {pjk|k = 1, ...,∞} across the time dimension. Define

Fk as the camera coverage in the viewable region at time k. If pj intersects with Fk,

pjk contains live video data at time k. Otherwise, pjk is empty and does not need to

be stored. To summarize this, the whole patch-based evolving panorama video Pt at

time t is a collection of live patches pjks,

Pt = {pjk|j = 1, ..., N, k = 1, ..., t, pjk ∩ Fk 6= ∅}. (6.3)

2. Frame Insertion Algorithm

When a new video frame Ft arrives at time t, we need to update Pt−1 to get Pt,

Pt = Pt−1 ∪ {pjt|j ∈ {1, ..., N}, pjt ∩ Ft 6= ∅}. (6.4)
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Implementing Equation (6.4) on the streaming server is nontrivial. As illustrated in

Figure 17, for raw video frame Ft, its extrinsic camera parameters are first estimated

by aligning with previous frames. The alignment process is performed on the spher-

ical surface coordinate system. Next, we project the frame Ft onto the composite

panorama spherical coordinate system. For each patch pj intersecting with Ft, we

encode it individually. We use an MPEG-2 encoder for patch encoding in our im-

plementation. As with any MPEG-2 encoders, the size boundary for the number of

frames inside one group of pictures (GOP) is predefined. Each GOP contains one I

frame and the rest of the frames are either P frames or B frames. The size of the

GOP should not be too large for quick random temporal video retrieval. Each patch

holds its own GOP buffer. If the patch pj intersects the current frame Ft, the updated

patch data are inserted into patch video sequence Pj’s GOP buffer. Whenever the

GOP buffer reaches its size limit, we encode it using the standard MPEG-2. Since

only a partial area of the panorama contains live video data at a certain time range

and the number of the frames inside the GOP is predefined, the patch video data pjk

inside one patch video segment are not necessarily continuous in the time dimension.

We summarize the patch-based evolving panorama video encoding algorithm below.
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Algorithm 6: Frame Insertion Algorithm

input : Ft

output: Updated evolving panorama video

wrap Ft onto the spherical surface;

estimate Ft’s registration parameters by aligning it with previous frames;

project Ft onto the sphere panorama surface;

for each pj and pj ∩ Ft 6= ∅ do

insert pjt into pj’s GOP buffer;

for each pj, j = 1, ..., N do

if pj’s GOP buffer is full then

encode patch video segment;

store patch video segment start position and time data into lookup

table;

reset GOP buffer for incoming data;

3. User Query Algorithm

At time t, the system receives the ith user request ri = [u, v, w, h, ts, te]. To satisfy

the request, we need to send the following data to the user at time t,

ri ∩ Pt = {pjk|j ∈ {1, ..., N}, k ∈ [ts, te],

pjk ∩ ri 6= ∅, pjk 6= ∅}.
(6.5)

We implement this query as follows: for each pj we keep track of its start position and

the timestamp of I frames in a lookup table, which is used for random spatiotemporal

video access. After receiving ri, the streaming server first locates the nearest I frame

with respect to ts and te. If the streaming server identifies there is no live data in

patch pj in the requested time range, no additional video data is transmitted for patch



82

pj. This procedure can be summarized as the following algorithm.

Algorithm 7: User Query Algorithm

input : ri

output: ri ∩ P in MPEG-2 format

Identify patch set S = {pj|j ∈ {1, ..., N}, pj ∩ ri 6= ∅};
for each pj ∈ S do

find the nearest I frame pjb earlier or equal to ts;

find the nearest I frame pjc later or equal to te;

transmit the patch segments between pjb and pjc;

The decoding procedure at the client side is the standard MPEG-2 decoding. It

is worth mentioning that the output of the system is not always a video segment. As

illustrated in Figure 16, a user-requested region does not overlap with camera coverage

at time k + 1. It is possible that a user request might not intersect with any camera

frames for the entire query time window [ts, te]. For this situation, this algorithm will

output an I-frame that is closest to [ts, te]. Therefore, it sends a static image closest

to the request. If the user request happens to be overlapped with current live camera

coverage, the user receives live video. This algorithm allows three types of outputs:

a pre-stored video, a live video, and a static image.

C. Experiments and Results

We test our algorithms using a Dell Dimension DX with a 3.2Ghz Pentium dual-core

processor and 2GB RAM. The video camera is a Panasonic HCM 280a. It has a

2.8◦− 51◦ horizontal field of view. We have implemented our algorithms using Visual

C++ in Microsoft Visual Studio 2003.NET and adopted the MPEG-2 encoder and

decoder source code developed by the MPEG Software Simulation Group.

We have conducted experiments using the data from field tests. As illustrated in
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Figure 18, we have deployed our camera in two testing fields including a construction

site at UC Berkeley and a pond in Central Park, College Station, Texas. We have

collected data at both sites. For the construction site, data cover a duration from Feb.

10, 2005 to Jun. 2, 2005. The camera has been controlled by both online users and a

pre-programmed patrolling sequence. Data collected in the park cover the experiment

duration of Aug. 24, 2005 to Aug. 31, 2005. The construction site provides an urban

environment setting while tests in the park provide a natural environment setting.

(a) Construction site of the CITRIS II building at UC Berkeley.

(b) Central Park, College Station, TX

Fig. 18. Experiment sites.

The data for each trial consist of 609 image frames captured at a resolution of
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640 × 480. For a frame rate of 25 frames per second, the data represent 24 seconds

of recording by the HCM 280a. The overall raw RGB data file size is 536 megabytes

for the 24-bit color depth used in the experiment. The constructed panorama has an

overall resolution of 2742× 909 after cropping the uneven edges. The panorama size

is much smaller than what the camera can provide (i.e. giga-pixel level). Since our

tests involve speed tests, a large image file will involve an excessive mixture of RAM

and disk operations, which could bias the speed test results. Using a smaller data set

can minimize disk-seeking operations and reveal the real difference in computation

speed.

In the first test, we are interested in testing how much storage savings we can

gain from the design and how much computation time is needed to achieve the gain.

During all the tests, we set the MPEG-2 quantization level to 50 without a rate limit.

Therefore, we can compare the size of the video file data at the same video quality

at different patch size settings.

Table IV. Storage and computation speed versus different patch sizes.
Patch size #Patches File size (kb) Speed

1 96× 96 290 8044 6.9x
2 128× 96 220 8191 6.4x
3 256× 192 55 8871 5.0x
4 320× 240 36 9965 3.8x
5 480× 320 18 11099 3.1x
6 2742× 909 1 22163 1x

The last row in Table IV actually encodes the entire panorama video at once

without using patches, which is used as the benchmarking case. In this case, we

update and generate a full panorama for each arriving camera frame. Then the

full panorama is added into the GOP for encoding (same as [55]). The file size in

Table IV is displayed in units of kilobytes. Smaller file size means less storage and is
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preferable. It is interesting to see that patch-based approach has significant savings

in storage. This is expected because our system does not encode the un-updated part

of the panorama as opposed to the benchmarking case which repeatedly encodes the

un-updated regions. The speed column compares the computation speed under the

various patch size settings with the benchmarking case. As shown in the Table IV,

encoding the entire panorama in the benchmarking case takes more time than that

of the patch-based approach. The computation speed gets faster as the patch size

reduces. This can be explained by two reasons 1) less data: we do not repeatedly

encode the un-updated region and 2) smaller problem space: the block matching

problem space is much smaller for a smaller patch size in the MPEG-2 encoding.

In the second test, we are interested in studying how much bandwidth is needed

for a normal user query. We assume that user has a screen resolution of 800 ×
600. Therefore, the request follows the same size. We know that the bandwidth

requirement depends on how many patches the request intersects with. We study

two cases including the best-case scenario and the worst-case scenario. The best-

case scenario refers to the case that the request intersects with the least number of

patches. The worst-case scenario is the opposite. Again, the last row of the table is

the benchmark case. Table V summarizes the test results. As expected, a smaller

patch size is preferred because it requires less bandwidth.

Table V. Bandwidth for a user query versus different patch sizes.
Patch size Worst case (kbps) Best case (kbps)

1 96× 96 739.7 582.5
2 128× 96 794.3 608.1
3 256× 192 1344.1 860.2
4 320× 240 1476.3 830.4
5 480× 320 1849.8 822.1
6 2742× 909 7387.7 7387.7
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CHAPTER VII

CONCLUSION AND FUTURE WORK

We present system architecture, data representation, algorithms and protocols of

high resolution motion panorama for remote observation using networked robotic

cameras. We have analyzed, derived, and proved that projection invariants under

spherical coordinate systems. We present a projection invariant-based image align-

ment algorithm, which outperformed the best algorithm available by at least an order

of a magnitude.

We propose a variance-based quality metric to analyze how errors get accumu-

lated and use it to show that arbitrarily selecting a set of existing frames to register

new frames can cause registration errors to grow out of control in the incremental

frame registration process. We then propose a minimum variance alignment algo-

rithm to guarantee the quality of motion panorama over the long run. Our algorithm

can register a new frame in O(k log k) time for a panorama with k overlapping frames.

We propose a Frame Graph based panorama documentation algorithm including

frame insertion, archiving and adjustment operations to efficiently manage the online

panorama documentation.

We propose a patch-based panorama video encoding/decoding system that al-

lows multiple online users to share access to pan-tilt-zoom cameras with various spa-

tiotemporal requests. We have implemented the system and conducted field tests.

The experiments have shown that our system can significantly reduce the storage

needs and bandwidth requirements of online users.

A intelligent remote observation systems can provide the content understanding

ability. In Fall 2005, we join the search effort for legendary Ivory-Billed Wookpecker

(IBWO). We develop a autonomous nature observation system equipped with high
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resolution robotic video cameras. Our system has been installed in Brinkley, Arkansas

since Oct. 26, 2006. In the future, we will develop biometric filter algorithm to

compute the probability of matching a moving object with a known species from

image sequences. The biometric filter algorithm will extract both bird first order

information such as shape and size and second order bird data velocity by applying

Extended Kalman Filter (EKF) in velocity filter.
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