
SIMULATING PLANT MOTION 

WITH LEVELS OF DETAIL 

A Senior Honors Thesis 

by 

REBECCA LYNN FLANNERY 

Submitted to the Office of Honors Programs 

k. Academic Scholarships 

Texas AkM University 

in partial fulfillment of the requirements of the 

UNIVERSITY UNDERGRADUATE 

RESEARCH FELLOWS 

April 2003 

Group: 

Engineering & Physics I 



SIMULATING PLANT MOTION 

WITH LEVELS OF DETAIL 

A Senior Honors Thesis 

by 

REBECCA LYNN FLANNERY 

Submitted to the Office of Honors Programs 

& Academic Scholarships 

Texas A&M University 

in partial fulfillment of the requirements of the 

UNIVERSITY UNDERGRADUATE 
RESEARCH FELLOWS 

Approved as to style and content by: 

John Keyser 
(Fellows Advisor) 

Edward A, Funkhouser 
(Executive Director) 

April 2003 

Group: Engineering & Physics I 



ABSTRACT 

Simulating Plant Motion With 

Levels of Detail. (April 2003) 

Rebecca Lynn Flannery 

Department of Computer Science 
Texas A&M University 

Fellows Advisor: Dr. John Keyser 
Department of Computer Science 

Levels of detail are an effective means of reducing computational power in three- 

dimensional computer animations. Simpler models are used to represent objects farther 

away from the camera. Without this simplification, the processor may get hogged down 

with calculations, resulting in a considerable drop in the speed of the animation. This 

slowdown is undesirable, especially when dealing with interactive animations. 

The purpose of this research is to simplify a model of a tree represented using a 

Lindenmayer system, or L-system. To generate a tree, an L-system takes a set of 

parameters, such as branch length, and iterates through those parameters a given number 

of times. The tradinonal approach to simplifying objects by reducing the number of 

polygons will not work on such a parameter based model. Further complications arise 

from the fact that the trees being animated here are not static models; they are constantly 

in motion due to a simulated wind. A suitable method for simplification must reduce the 

number of iterations and adjust the given parameters in order to keep both the overall 

shape, size, and motion of the tree close to the original full size model. 



TABLE OF CONTENTS 

Page 

ABSTRACT 
ln 

TABLE OF CONTENTS 1V 

LIST OF FIGURES . 

INTRODUCTION . 

PREVIOUS WORK 

LINDENMAYER SYSTEMS 

CALCULATING BRANCH MOTION 

Bend Angle 
Rotation Angle 
Force 

8 
10 
12 

SIMPLIFICATION OF A GIVEN L-SYSTEM . 

RESULTS . 
17 

CONCLUSIONS 18 

REFERENCES . 
19 

VITA . . . 20 



LIST OF FIGURES 

FIGURE 
Page 

I Screen shot of plant and wind simulation software 

2 Branch level L-system parameters . . . 

3 Tree level L-system parameters . 

4 Comparison of simplified trees with original 17 



Modeling every polygon in the aforementioned scene would be computationally 

very expensive, if not impossible. Levels of detail, or LODs, are a commonly used 

solution to the problem of rendering complex scenes. An object close to the viewer 

appears large on the screen, while an object far from the viewer appears small. This 

farther, smaller object may take up only a fraction of the screen. In this case several 

polygons may map to each pixel. The farther away the object is from the viewer, the 

smaller it will appear. Thus, calculating how to display every polygon wastes computing 

power. LODs display a simplified version of the object, which can be rendered faster. 

Each LOD corresponds to a range of distances from the viewer. At close 

distances, say closer than 1 meter, the object will appear in full detail. At the next LOD, 

say between 1 meter and 5 meters away, the object will be simplified. At the next LOD, 

the object will be simplified even more. This simplification continues at each LOD. 

Note that the programmer determines the number of LODs in a scene as well as the 

distance ranges. 

In this project, we are simulating wind blowing through trees. Our overall goal is 

to simplify the computation power required to run the simulation on trees farther away 

from the viewer. On simulations such as this, the biggest slowdowns come from the 

sheer number of calculations required to run the simulation. The purpose of LODs in 

simulation, then, is not to reduce the number of polygons but to reduce the number 

and/or complexity of the equations that must be solved at each time step. 



PREVIOUS WORK 

Previous work on this projiect was performed by Jacob Beaudoin and Nathan 

Montcleone. Monteleone created an application to read in an I. -System as a text file and 

output a three-dintcnsional model of the tree structure. "fhe software also had the 

capability to simulate a simple wind blowing on the tree. In this case, , the wind was 

I'CSIIICtCd to a conStant. VClochy and d11cetlon. Thc software was wrIttCB In G++, thc 

graphics were displayed using OpenGL, and the graphical interface was designed using 

the functionality of GI. UT. 

Bcautlon1 then modtfIcd thc apphcatlon, giving lt. a fcw morc fcaiurcs and 

making the wind simulation more accurate. Bis work enabled the user to interactively 

modify the wind speed while the application was running. Be also added a feature to 



add a bark texture to the branches and a leaf texture to the leaves. In addition to 

simulating the force on each branch as propagated down from the leaves, he added an 

additional force from the wind resistance on the branch itself. 

Much research has been done on LODs, especially on polygonal mesh 

simplification. Research on LODs involving animation is scarcer but still available. For 

example, Schodl et al. [2000] used "video textures" to create animations of repetitive 

and quasi-repetitive motions like a runner, a pendulum, and a candle flame. They had 

problems creating more complex motion like grass blowing in the wind and waves on 

the beach. While there is also a good body of research on modeling individual plants, 

there has not been as much research on modeling large groups of plants. Deussen et al. 

[1998] modeled a realistic plant scene, but their method applies only to static images. 

Weber and Penn [1995] used a method to model the sway of trees and large grasses in 

light to moderate winds. Their method also incorporates LODs to accommodate a 

viewer moving through the scene, but it is not real-time for large numbers of trees. In 

addition, their algorithm for making the trees sway in the wind is not physically based. 



LINDENMAYER S YSTEMS 

A Lindenmayer system, or L-system, uses a set of rules and symbols to 

iteratively describe some structure. L-systems were introduced in 1968 by Aristid 

Lindenmayer with the goal of describing the development of simple multicellular 

organisms. Later the abilities of L-systems were extended to be able to describe higher 

plants and complex branching structures. Prusinkiewicz and Lindenmayer [1990] 

describe the workings of L-systems as "defining complex objects by successively 

replacing parts of a simple initial object using a set of rewriting rules or productions, " 

and they note that at each time step all of the productions are applied simultaneously. 

All L-systems consist of an axiom and a finite set of productions. They are 

commonly implemented using strings, in which case it is easy to interpret the axiom as 

the basic input string of the L-system. The productions define rules for replacing 

symbols in the axiom with other strings of symbols. At each iteration, the same 

productions are run on the newly produced string from the previous step. In this way, a 

successively longer string, and thus a more complicated structure, is built. 

With the addition of special symbols into the alphabet of the system, the strings 

generated by an L-system can be interpreted geometrically. The regular alphabet 

symbols would be used to draw a straight line. The special symbol + can be interpreted 

to mean, "rotate counterclockwise by the given predefined angle. " The complement to 

this symbol is - which means, "rotate clockwise by the given predefined angle. " 

Brackets, [ and ], can also be added to the alphabet in order to create subgroups of 



symbols. Using a combination of these special symbols allows us to use a textual 

representation of an L-system in order to produce a visual representation of a tree. 

One important thing to note about L-systems is that in order to be useful, the 

regular alphabet symbols used in the construction of the L-system must have meaning. 

In our tree representation, each symbol has associated with it a length. This information 

is vital or the program would have no idea how long to make the branches. In fact each 

level of branches has several parameters associated with it. Aside from length, each 

branch also has a defined radius. Bend strength and rotation strength are also applied to 

individual levels of branches. These two parameters have no effect on the structure of 

the tree; rather they affect how the tree reacts to the wind. Bend strength determines 

how hard a tree resists bending. Lower bend strength leads to a more "wobbly" branch, 

and higher bend strength leads to a stiffer branch. Similarly, rotation strength 

determines how strongly a branch resists rotating around its parent branch. These 

parameters are summarized in Figure 2 below. 

Parameter Name 

Radius 
Len th 

Radius of the branch 

Len th of the branch 

Descri tion 

Bend Strength 

Rotation Strength 

Factor defining resistance to bending in relation to the 
arent branch 

Factor defining resistance to rotation about the primary 
axis of the arent branch 

Fig. 2. Branch level L-system parameters. 



In addition to the parameters for each branch, there are a few parameters defined 

for the tree as a whole. Derivation length is the most obvious of these parameters. It 

affects the overall size and complexity of the tree by determining how many times the L- 

system is iterated through in order to generate the complete tree structure. Branching 

angle is also applied to the whole tree. Branching angle determines how much each 

branch is bent off of its parent. Rotation angle is another parameter that applies to the 

whole tree. It determines how much each child branch is rotated around the axis of its 

parent, These parameters are summarized in the table below. 

Parameter Name 

Derivation Len th Number of iterations 

Descri tion 

Branching Angle 

Rotating Angle 

Angle at which a child branch is bent in relation to its parent 
branch 

Angle at which a child branch is rotated about the primary 
axis of its arent branch 

Fig. 3. Tree level L-system parameters. 



CALCULATING BRANCH MOTION 

As stated before, the goal of this project is to simplify tree models by reducing 

the number of calculations, which must be done. Reducing the derivation length reduces 

the number of branches, which in turn reduces the number of calculations the application 

must compute. Simply reducing the derivation length is not enough, however. Not only 

will the motion of the tree be different but also will the overall size of the tree. A whole 

new L-system must be constructed to produce the simplified tree model. The challenge 

lies in trying to figure out how to assign values to parameters of the new L-system in 

order to make the motion similar to that of the tree generated by the original L-system. 

Ideally we would like the swaying of the simplified tree to match up fairly well 

with that of the original tree. That is, the angles that each branch makes in relation to its 

parent branch should match visually at each time step. To discover if there is some sort 

of algorithm for designing the new L-system, we start by looking at the equations that 

govern the tree motion. The overall angle that each branch makes in relation to its 

parent is determined by the bend angle and the rotation angle. The equations for 

determining these values are very similar to each other. 

Bend Angle 

The bend angle is calculated by incrementing the bend angle from the previous 

time step. The size of the increment is determined by multiplying the bend velocity by 

the length of the time step. Bend velocity is simply a measure of how fast the branch is 



bending. It can have positive or negative values. The bend angle for a branch at the 

current time step is given by the following equation: 

where: 

8„= bend angle for current time step 

8~, = bend angle for previous time step 

v, = bend velocity 

d t = length of time step 

Bend velocity changes at each time step, and so must be recalculated each time. 

Like bend angle, the bend velocity for the current time step is calculated by incrementing 

the bend velocity from the previous time step. 

Here we introduce absorbed force and propagated force. Each branch does not 

absorb 100% of the force applied to it. Rather, only a fraction of the force is absorbed, 

and the rest is propagated to its parent branch. Simply put, the absorbed force is what 

causes a branch to move; the propagated force is what causes the branch below it to 

move. This propagated force is what causes the whole tree to sway, instead of just the 

branches with a leaf on the end. 

To increment the bend velocity, the x component of the force vector is multiplied 

by the constant fraction representing the percentage of force absorbed. The resulting 

number is then added to the previous bend velocity. The bend strength of the branch, as 

defined in the L-system text file, reduces the bend velocity slightly by making the branch 



10 

stiffer. The bend velocity for a branch at the current time step is given by the following 

equation: 

k„ 
vs = vs 1 

+ F, *k„, , — 8, , 
1000 

where: 

v, = bend velocity for current time step 

v, , 
= bend velocity for previous time step 

F„= x component of the calculated force vector 

k« — — percentage of the force absorbed by the branch 

8s I 
bend angle for previous time step 

k„= bend strength of the branch 

Rotation Angle 

The equations for rotation angle are very similar to the equations for bend angle. 

The rotation angle is calculated by incrementing the rotation angle from the previous 

time step. The size of the increment is determined by multiplying the rotation velocity 

by the length of the time step. Rotation velocity can have positive or negative values. 

The rotation angle for a branch at the current time step is given by the following 

equation: 

8, =8, , +v, +At 

where: 



11 

8„= rotation angle for current time step 

l9 ] rotation angle for previous time step 

v„= rotation velocity 

Ar = length of time step 

Like bend velocity, rotation velocity must be recalculated at each time step by 

incrementing the rotation velocity from the previous time step. To increment the 

rotation velocity, the y component of the force vector is multiplied by the constant 

fraction representing the percentage of force absorbed. Notice the difference here 

between bend velocity and rotation velocity. Bend velocity is calculated using the x 

component of the force vector, while rotation velocity is computed using the y 

component of the force vector. The resulting number is then added to the previous 

rotation velocity. The rotation strength of the branch, as defined in the L-system text 

file, reduces the rotation velocity slightly by making the branch stiffer. The rotation 

velocity for a branch at the current time step is given by the following equation: 

k„, 
v =v, +F, +k — 8 

1 r ra l 1 

1POO 

where: 

v, = rotation velocity for current time step 

v„, = rotation velocity for previous time step 

F, = y component of the calculated force vector 

kr„= percentage of the force absorbed by the branch 



12 

l9 
~ 

rotation angle for previous time step 

k„= rotation strength of the branch 

One other thing to note about these equations is the initial values of the 

parameters. The force has a value of zero at time t0 simply because the wind is not 

blowing at the beginning of the simulation. The values for the following parameters are 

all set to zero at time ta The values for bend velocity and rotation velocity are also zero 

in the beginning because of the lack of motion. The other parameters that are initially 

set to zero are 8, and 0, . 

Force 

The driving factor in the simulation is the force on the tree generated by the 

wind. In our simulation, force is calculated for both leaves and branches. The equation 

for force on a leaf is fairly simple. It is takes into account the surface area of the leaf, 

the speed of the wind, and the direction of the wind. Obviously a leaf with a larger 

surface area is going to have more force on it. The same goes for faster wind speed. 

The direction of the wind relative to the leaf also makes a big difference in how much 

force the leaf gathers. If the wind is hitting the leaf head on, in other words if the normal 

to the surface area of the leaf is parallel to the wind direction, then the leaf will absorb 

maximum force. If the leaf is at an angle to the wind, it will absorb less force. The force 

on a leaf is calculated by the following equation: 

F = N +(V ~ N)+A 



13 

where: 

N = unit vector normal to the surface of the leaf 

V = wind vector in the local coordinate system 

A = surface area of the leaf 

The force on a branch comes from two places. A small part of the force comes 

from the force of the wind blowing directly on the branch. The majority of the force is 

the force propagated from its children branches or, if the branch has a leaf attached, the 

force propagated from its child leaf. At with the force on the leaf, the force on a branch 

depends on the surface are of the branch and the angle at which the wind is blowing 

relative to the branch. Since the branch is round, not flat like a leaf, it absorbs much less 

force than a flat surface would. A coefficient of drag is introduced to determine what 

fraction of the force the branch absorbs directly from the wind. For purposes of this 

project, the coefficient of drag has been set to 0. 0015. The equation for force on a 

branch is as follows: 

F = F„+V +v' +A+sin(0)+k 

where: 

F„= propagated force 

V = normalized wind vector in the local coordinate system 

v = wind speed 

A = surface area of the branch 



14 

0 = angle between the branch and the wind vector 

k = coefficient of drag 

The propagated force is the force that is carried down to a branch from its 

children nodes. This force is some fraction of the total force acting on the children 

nodes. If a branch has a leaf on it, then the propagated force comes directly the force 

acting on the leaf. If the branch has other branches coming off of it, then the propagated 

force is derived from the sum of the forces acting on all of those children branches. The 

equation for the propagated force is as follows: 

F„= k~„+ PF, 
i=1 

where: 

krp percentage of the force propagated from the children 

F, , = force acting on child node i 

n = number of children nodes 



15 

SIMPLIFICATION OF A GIVEN L-SYSTEM 

The method we have developed to simplify a tree defined by a given L-system is 

based on a single concept: combine two branches into one. The motion of the new 

branch must adequately resemble the motion of the old branches. We measure this by 

comparing the angle the new branch makes with the combined angle, These angles 

should be the same at any time throughout the simulation. This requirement ensures that 

not only the angles of the new tree correspond to the original tree but also the period of 

the tree's "sway. " 

It should be noted that several assumptions were made about the original L- 

system before the simplified L-system was created. First, all trees had only one branch 

coming off each parent branch. Furthermore, no child branch was bent initially in 

relation to its parent branch. In essence, the original L-system described a stalk that 

went straight up. In addition each branch throughout the original tree had the same 

length, radius, bend strength, and rotation strength. The final restriction was on the 

number of branches, which were limited to be powers of two. For example, we took an 

original tree model with 8 branches, simplified it to one with 4 branches, and then 

simplified it even further to a model with only two branches. Doubtless these 

restrictions will not completely coincide with the simplification method we found. The 

idea is to extend the current system to encompass the lifting of these restrictions one at a 



16 

To continue with the simplification process, we are trying to match the bend 

angle of the simplified model to the overall angle made by two smaller branches in the 

original model. Substituting the equation for bend velocity into the equation for bend 

angle generates the following equation for bend angle: 

1000) 

ln this equation, kzz, kb„and Ar are constants. Os iand vs i are based on previous 

time steps. The only variable left that we have control over is the force. Thus in order 

to make the new branch have the same combined angle as the two original branches, it 

must have the same combined force. 

Figuring out how to make the force match is a bit harder because there are more 

parameters to solve for, Following is a summary of the method used to simplify the L- 

system: 

1. Create a new branch with length equal to the sum of the lengths of thc two branches 

being replaced. 

2. Adjust the propagated force constant to be 

kryo„, 

= kzp'", where n represents the 

level of simplification, and the original tree would have n=0. 

3. Adjust ks, and k„ to correct the period of the branch's swaying. 

4. Adjust the force coming from the leaf to correct the amplitude of the sway. 

Currently the values in steps 3 and 4 are determined experimentally. 



17 

RESULTS 

The method developed herein seems to work fairly well. It works especially well 

at low speeds. As seen in Figure 4 below, it is possible to create an L-system that 

matches the performance of the original tree almost exactly. It does develop some 

problems as the wind speed increases, though. Some of the factors affecting the 

amplitude and periodicity of the swaying motion of the branches that aren't apparent at 

lower wind speeds start to come in to play at higher wind speeds. 

a b c 
Fig. 4. Comparison of simplified trees with original. The original tree (a) has eight 

branches. The middle picture (b) shows the tree simplified by one level. It has four 

branches and is viewed from farther away. The picture on the right shows (c) the tree 
simplified down to two branches and seen from still further away. At pictures were 

taken at time t=4. 



18 

CONCLUSIONS 

The method we have developed is useful but only on a limited scale. It does 

have the possibility of being developed further to handle a wider variety of plants. 

Specifically, we would like to get it to a place where it handles plants that are commonly 

recognized at "trees. " There are several possible extensions and improvements of the 

system described herein that might be implemented in the future. The most obvious one 

is to extend the system to handle multiple branches coming off of a single branch. This 

extension would allow more tree-like plants to be simulated, instead of just the stalk like 

structures implemented here. Calculating the force on each simplified branch becomes a 

much more difficult task because the propagated force comes from multiple sources. 

Before this extension can be implemented, however, work must be done to 

evaluate how the system reacts with branches that are bent at their "rest" position. 

Currently, all branches are in the same direction as their parent branch. Multiple 

branches must be bent by default, or all child branches would occupy the same physical 

space. 

Other extensions that might be investigated are the length of the simplified 

branch and randomized branch lengths. Currently the length of the simplified branch is 

the sum of the two smaller branches. Randomized branch lengths present many 

problems. The randomization algorithm must not be truly random. It must be repeatable 

if a suitable simplification is to be found. 



19 

REFERENCES 

Beaudoin, J. 2002. Wind Motion Through Simple Trees. 

Deussen, O. , et al. 1998. Realistic Modeling and Rendering of Plant Ecosystems. 

Proceedings of the 25" Annual Conference on Computer Graphics and 

Interactive Techniques. 275-286. 

Prusinkiewicz, P. and Lindenmayer, A. 1990. The Algorithmic Beauty of Plants. 

Springer-Verlag, New York. 

Schodl, A, Szeliski, R. , Salesin, D. , and Essa, l. 2000. Video Textures. Proceedings of 

the 27' Annual Conference on Computer Graphics and Interactive Techniques. 

489-498. 

Weber, J. and Penn, J. 1995. Creation and Rendering of Realistic Trees. Proceedings 

of the 22" Annual Conference on Computer Graphics and Interactive 

Techniques. 119-128. 



20 

VITA 

Rebecca Lynn Flannery 

5443 Rutherglenn 

Houston, TX 77096 

Education 

B. S. Computer Science Texas A&M University May 2003 

Honors 

TAMU Distinguished Student in engineering. 

TAMU/Barnes & Noble Academic Excellence Scholarship. 

Texas A&M President's Endowed Scholarship. 

National Merit Scholar 

Experience 

Computer Science Helpdesk Technician, Texas A&M University, 2002-Present 

Intern/Research Assistant, University of Utah, 2001, 2002 

Intern, Compaq Computer Corporation, 2000 


