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ABSTRACT 

The semiconductor manufacturing industry is increasingly using copper to 

design and fabricate faster and smaller integrated circuits, Despite copper's electrical 

advantages, few ways exist to deposit it uniformly into the steep vias and benches 

present on modern IC substrates. Electroless deposition, which plates a seed layer of 

copper onto a substrate in a liquid bath without the use of a power source, is a 

reliable method of depositing copper. Effects of low temperature annealing on the 

adhesion of copper thin films deposited using electroless plating were investigated: 

electroless copper deposition was performed on silicon substrates onto v hich a thin 

barrier and adhesion layer of titanium nitride (TiN) had been previously deposited. 

The resulting samples were then annealed at a low temperature, and the adhesion of 

the copper Sm to the substrate was evaluated using a tape test. Results indicate that 

low temperature annealing improves the adhesion of the electroless plated copper thin 

film to the substrate. Since good adhesion is a fundamental requirement of an 

effective metallization method, this work paves the way for future integration of 

electroless copper deposition into modern semiconductor manufacturing facilities. 
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I. INTRODUCTION 

A. Role of Inrerconnectsin Determining Circuit Speed ond Density 

In modem integrated circuits (ICs), patterned layers of conductive thin films 

are used to connect devices in the circuit and to connect the circuit to the outside 

world. Interconnects are the fine lines of a metal conductor which elec&cally connect 

inditddual devices. 

Properties of interconnects govern the performance of modem integrated 

circuits. For all but the shortest interconnect lines, signal propagation delay in the 

interconnect lines is the governing factor in the operating speed of modem integrated 

circuits [I]. (Transistor switching speed also plays a part in circuit operating speed, 

but improvements in device technology have reduced transistor switching times far 

below that required for a signal to travel through even the shortest of interconnect 

lines. ) 

Signal propagation delay in an interconnect line is dictated by the RC time 

constant of the line, which governs how fast the line can be switched between binary 

R L' 
logic levels. This RC time constant varies as ', where R, is the ohm-per-square 

d 

(sheet) resistance of the interconnect material, L is the length of the line, and d. , is the 

dielectric thickness separating adjacent lines [2], 

Circuit designers have sought to reduce signal propagation delay in ICs while 

simultaneously to design as small of a circuit as possible. To minimize circuit size, 

The format and style of this thesis foBow that of the IEEE Transacrions on Electron Devices. 



chip designers reduce both L and transistor sizes. A reduction in areas of transistor 

terminals necessitates corresponding reductions in the cross-sectional area of 

interconnect lines. Current density is the product of an electric current and the cross- 

sectional area of the line in which it travels: if the cross-sectional area of a line is 

scaled down at a rate greater than the rate at which the current in the line is reduced, 

the current density in the line increases. 

B. Electromig ration Issues 

Electromigration is the mass transfer of metal atoms in an interconnect line 

due to stress conditions of high temperature and high current density. It is caused by 

the transfer of kinetic energy from electrons to metal atoms [1, 2]. The type of 

interconnect material used governs the maximum current density that a line can 

tolerate without experiencing electromigration, At a typical circuit operating 

temperature of 100'C, copper can tolerate a maximum current density several orders 

of magnitude greater than aluminum [1]. 

Reliability failures caused by electromigration-induced interconnect failures in 

aluminum-based ICs have motivated circuit manufacturers to choose copper over 

aluminum as an interconnect materiaL A bonus effect of the choice of copper over 

aluminum is copper's lower resistivity (for thin Sm Cu, p = 2. 0 le-cm; for thin Em 

Al, p = 2. 7-3, 0 ltI2-cm [2, 3]). The change to copper allows manufacturers to take 



advantage of copper's higher tolerance for electromigration as well as its lower 

resistivity, resulting in an even further decrease of the RC time constant [1]. 

C, Diffusion Barrier Materials 

While copper's electrical properties are superior to those of aluminum, the use 

of copper introduces diI6culties in the manufacturing process that have not been 

previously encountered with aluminum One problem is copper' s high diffusivity in 

siTicon and siT[con dioxide (SiO, ). Diffusion of copper into silicon is undesirable 

because the presence of copper atoms in silicon devices shortens the lifetime of 

carriers, which results in a greater leakage current and a lower device reliability in 

metal-oxide semiconductor (MOS) transistors [4]. The diffusion of copper atoms 

into SiO& causes increased RC delay due to an effective decrease in d„, the distance 

between lines. In extreme cases of diffusion, the diffused copper atoms form a 

unwanted short circuit between adjacent interconnects, which results in circuit failure. 

The use of diffusion barrier materials in the copper deposition process 

eliminates the diffusion of copper into silicon and SiO, . In the interconnect 

fabrication process, immediately after trenches and via openings are patterned in the 

dielectric layer, a thin layer of the diffusion barrier metal is deposited. The copper is 

then deposited and patterned, and another thin layer of the barrier metal is deposited, 

effectively encapsulating the copper inside the barrier metal, preventing the dillusion 

of copper atoms into the surrounding material [2]. 



In addition to preventing the diffusion of copper, the diffusion barrier layer' ~ 

promotes adhesion between copper and the surrounding dielectric material. The 

effects of various adhesion layer materials on the adhesion of copper are under much 

investigation. Adhesion is a fundamental requirement of an effective metallization 

scheme: metal must adhere to the silicon substrate and to the walls of the dielectric 

that defines the window through which the metal will make contact down to the 

substrate or to other interconnect lines [2]. 

Diffusion barrier metals currently used to contain copper and promote copper 

adhesion include titanium, titanium nitride, tantalum, tantalum nitride, siTicon ni~de, 

and silicon carbide. Titanium nitride (TiN) was chosen for this study because it has 

been shown to be an effective diffusion barrier material [I, 3, 5). Its chief advantage 

as an adhesion layer is its ability to reduce Si02 to form interfacial bonds between TiN 

and Si02, which promote adhesion and stability [2). 

D. Limitations of Existing Copper Deposition Methods 

The principal disadvantage to replacing aluminum metallization methods with 

copper-based methods is the inadequacies of existing processes with which to process 

copper. Aluminum, because of its straightforward deposition process, has been used 

for decades to fabricate interconnects. Because copper's deposition processes are 

less developed, manufacturers have encountered dd5culty in reliably depositing 

copper to create state-of-the-art interconnects, 



To keep interconnect capacitance at a minimum, modern interconnect 

fabrication techniques deposit thick layers of dielectric between each successive 

horizontal layer of stacked copper interconnects. This thick dielectric must be 

selectively removed to create vias, or openings between adjacent metal layers into 

which additional metal will be deposited to make electrical connections between the 

layers. The aspect ratio of these vias — simply the ratio of the opening's height to its 

diameter — is large and increasing; current manufacturing processes require that void- 

iree copper plugs be deposited into via openings with aspect ratios of greater than 4: l 

When employed to deposit copper into such high-aspect ratio ~ 
conventional metallization methods perform poorly. Vacuum-based techniques, such 

as chemical vapor deposition (CVD) and physical vapor deposition (PVD), while able 

to deposit aluminum into vias of lower aspect ratios, are unable to deposit copper 

with satisfactory results. High-vacuum PVD sputtering methods provide nonuniform 

coverage of these vias. This is due to long mean fic paths of the evaporant species, 

which result in low surface migration of the reactants [2], resulting in voids in the 

copper via plug. Previous research has found no reliable way to deposit a void-fic 

copper plug into high-aspect ratio vias using conventional metallization methods [7]. 

Electroplanng has been investigated as a technique to fill high-aspect ratio vias 

with copper. As employed in the semiconductor industry, electroplating consists of 

placing a wafer substrate into a liquid bath rich in ions of the metal to be deposited. 

A power source is connected to electrodes: one electrode is a ring clamped around 



the wafer's edge; the other is fixed above the wafer in the bath. The resulting 

difference in voltage between the electrodes causes the metal ions to strike the wafer 

surface and lose their positive electric charge. As this process is continued, a uniform 

metal Eyer is deposited onto the wafer surface. 

Electroplating requires the presence of a suitable conductive layer on the 

substrate surface for metal plating to begin. The diffusion barrier metal is thin and 

typically a poor conductor, resulting in a high resistance per unit length — and thus a 

large voltage drop irom the electrode at the edge of the wafer to the wafer's center. 

Such a difference in voltage during electroplating causes the plating of a film with 

nonuniform thickness, which is undesirable. Instead, a thin seed layer, usually 10% or 

less of the total metal thickness desired in trenches and vias, is deposited onto the 

diffusion barrier metal prior to electroplating. Because of its higher conductivity, the 

seed layer causes uniform electroplated fill of vias and trenches, 

The copper seed layer can be deposited using various methods. Despite their 

inability to rehably fill vias and trenches with copper, vacuum-based depositions do 

have limited usefulness in depositing thin copper seed layers. PVD and CVD 

processes for the deposition of copper seed layers have been developed, but they lack 

conformal coverage of the sides and bottoms of vias and trenches. These deposition 

methods are also slow and expensive. 



E. Electroless copper deposition 

Electroless copper deposition, also called "electroless plating", is an alternate 

method to deposit the copper seed layer needed for electroplating. Unlike 

electroplating, it requires no external voltage or current source (hence the term 

"electroless"); thus, it can be used to deposit a seed layer directly onto the diffusion 

barrier metaL 

The electroless deposition process exhibits two advantages over using CVD 

or PVD to deposit a copper seed hyer. First, because it is a liquid-based process, 

which features greater surface migration of reactants, the step coverage and 

uniformity of electroless plated seed films are superior to those deposited using vapor 

deposition techniques. Second, because it is performed at temperatures in the range 

of 30 to 60'C at atmospheric pressure, it is easier and cheaper to integrate into a 

manufacturing environment than high-temperature, high-vacuum systems. 



II. ELECTROLESS COPPER DEPOSITION THEORY AND PROCESSES 

A. Deposition Chemistry of Electroless Copper 

The electroless deposition of copper atoms occurs when copper ions in 

aqueous solution are neutralized by electrons [6]. These electrons are supplied by a 

reduction reaction in the liquid phase: 

HCOH + 2OK w HCOO + 'rsH~ + H20 + 2e (I) 

The two electrons then neutralize one copper ion, resulting in its deposition: 

Cu +2e mCu'] (2) 

Thus the overall reaction, in which (1) and (2) occur simultaneously, is 

4OH + 2HtCO+ Cu" m Cu + 2H20+ Ht + 2HCOO (3) 

This reaction is autocatalytic, that is, the presence of copper atoms on the 

substrate surface causes the plating of additional copper atoms to continue; however, 

if no copper or other catalyst is already present on the substrate surface, the reaction 

is dii5cult to initiate. (A TiN surface is conductive, but is not catalytic for electroless 

copper deposition [5]. ) To begin the deposition process, the surface is activated with 

palladium atoms prior to copper deposition. Palladium has been previously shown to 

initiate electroless deposition for many metals, including copper [3, 6, 8, 9]. 



B. Process Sequence To Deposit Electroless Copper 

The electroless deposition of metals is a process employed in various 

industries for decades. In the electronics industry, its principal use has been to 

deposit nickel, gold, palladium, copper, or other metals onto fiberghss substrates to 

create electrical connections on printed wiring boards. Only during the last decade 

have researchers pursued the integration of electroless metal deposition into a VLSI 

or ULSI manufacturing process. 

The following process is based on the M-Copper electroless plating process 

developed by MacDermid, Inc. MacDermid, a large supplier of industrial chemicals 

to manufacturers of printed wiring boards, provided the process and many of the 

chemicals used in this research, 

I. Removal of surface oxide hyer 

TiN Sms oxidize to form a surface layer of TIOt when exposed to ambient mr 

at room temperature. This TiO, layer must be removed in order to expose a pure TiN 

surface before further processing can be done [3], Immersion in hydrofluoric acid 

(HF) solution can be used for this purpose, but since pure HF is a safety hazard and 

an extremely rapid etchant, a standard buffered oxide etch (BOE) solution is 

preferred. (A typical dilute BOE solution consists of 6. 4% HF and 36. 0% NE4OH. ) 



2. Conditioning of surface 

To promote the conformal coverage and adhesion of the electroless copper 

Sm, the substrate to be plated is then immersed in an aqueous solution of conditioner. 

The conditioner solution contains proprietary ingredients, typically surfactants, which 

help to control surface tension [5]. Other additives, including stabiTizers and ductility 

promoters, may also be present in the conditioner solution. 

3. Activation of surface 

Deposition of electroless copper using wet activation is in wide use, with most 

research using the addition of PdClq into the electroless plating solution [5, 8]. This 

results in nucleation of Pd atoms on the surface of the TiN layer, which continues 

only until the surface is covered with Pd atoms, since exposed areas of TiN are 

needed to continue the Pd nucleation. The electroless copper deposition process can 

then begin since the Pd atoms act as a catalyst to the copper deposition. Once the 

R'st layer of copper atoms covers the surface, the copper deposition process 

continues autocatalytically, as described above. 

MacDermid's M-Copper electroless copper deposition process employs the 

use of a tin-palladium (Snpd) colloid to activate the surface on which deposition is 

desired, Activation occurs in two steps. First, the SnPd colloid nucleates on the TiN 

surface in an activator solution. Next, Sn atoms are stripped away i'rom the Pd atoms 

in an accelerator solution, leaving exposed Pd atoms to act as an initial catalyst for 

electroless copper deposition. 



4. Deposition of electroless copper 

The last step in the deposition process deposits the actual copper atoms onto 

the activated substrate surface. Successful electroless copper deposition has been 

accomplished using both acid and alkaline copper deposition solutions; the copper 

deposition solution employed by MacDermid and in this research is alkaline. 



III. ADHESION TESTS AND ANNEALING 

A. Qualitative Adhesion Tests 

While the electroless copper deposition process has been studied in depth for 

the past decade, few studies have been performed on the adhesion of elecnoiess 

copper films to diffusion barrier materials such as TiN. This is somewhat puzzling, 

since copper in siTicon ICs must be encapsulated in a diffusion barrier materiaL In 

addition, the fundamental requirement that a metallization film must adhere to the 

substrate motivates a study of the adhesion of electroless copper on diffusion barrier 

materials. 

The simplest method of determining the adhesion of a thin film to a substrate 

is to apply a mechanical adhesion test. Such a test relates the adhesion of the Sm to 

the force applied or work done during the test [10]. Adhesion tests have been widely 

used to determine the adhesion strength of films, and several tests to determine the 

adhesion of a thin Sm to a substrate have been proposed. These include the peel test 

[11], pin-pull test, indentation test, scratch test, and others [12], (These tests have 

been used to determine the adhesion of a variety of materials, not only thin films. ) 

While many tests exist and have been employed to make qualitative comparisons of 

adhesion strengths, little quantitative data on thin fil adhesion exists. The lack of 

quantifiable data on adhesion — and the lack of methods with which to determine it- 

is a problem that plagues the microelectronics industry. This is because most 

adhesion tests measure a combination of the stress required to delaminate a thin film 



and the deformation sMess that occurs following delamination [13], whereas the 

delamination stress alone is of primary interest. 

In this research, the delamination stress of electroless plated copper Sms was 

qualitatively measured using the binary tape test, a type of peel test. (Use of the tape 

test to determine adhesion of a thin film to a substrate is common industry practice. 

This test was selected over other tests because of the lack of facilities to perform 

other tests in the Institute for Solid-State Electronics Laboratory at Texas ASSAM. ) In 

the tape test, pressure-sensitive tape is applied to the surface of the Sm, then lifted 

away quickly. The presence of copper on the tape, or of any exposed area on the 

substrate, indicates poor adhesion of the film. This test is only a qualitative one, 

indicating only whether the film passes or fails, and provides no measure of the stress 

that causes the delamination. 

B. Quantitative Adhesion Test 

Researchers at Rice University and Texas Instruments have recently 

developed an electrostatic adhesion test, which allows the quantitative measurement 

of the delamination stress of thin fihns. This method uses electrostatic forces to 

generate high tensile stresses normal to the surface of the copper film, which allows a 

precise measurement of delamination stress of the film [10, 14]. 

As implemented by Rice and TI, the electrostatic adhesion test is 

accomplished using a structure similar to a parallel plate capacitor, with one plate 

being the thin Sm to be tested and the other mounted in a rigid ceramic probe 



structure. To prevent arcing between the plates, this test is performed in a vacuum 

As the voltage between the plates is increased, the thin film experiences an upward 

force due to electrostatic attraction to the probe. This force eventually becomes 

strong enough to delaminate the thin film from the substrate. When the film contacts 

the probe, a short circuit resuits between the probe and the substrate. The voltage at 

which this short circuit occurs is recorded, and the delamination stress can be 

determined Irom simple math [10, 13, 14]. This method allows allows for a wider 

measure of' adhesion strength than other mechanical adhesion tests. 

C. Use of Anneals to Improve Film Adhesion 

It has been demonstrated that an anneal following metal deposition results in 

improved adhesion of the metal thin film to the substrate [2]. Both low temperature 

and high temperature anneals can be performed to improve the adhesion of a copper 

fil to the underlying substrate: each employs a different mechanism to improve 

adhesion. 

High temperature anneals are carried out at temperatures of several hundred 

degrees Celsius. The end result is that some copper atoms diffuse into — but not 

through — the diffusion barrier layer because of the high temperature. This promotes 

chemical bonding between the copper and barrier layers, resulting in improved 

adhesion between them 

High temperature anneals are advantageous because they form chemical bonds 

between films, but such anneals must be used judiciously. When silicon wafer 



substrates are subjected to high-temperature conditions for any period of time, the 

properties of devices fabricated on the wafer during previous processing steps can be 

altered unfavorably and irreparably. Thus, lower-temperature anneals are used 

whenever possible. 

Low temperature anneals do not result in chemical bonding between film and 

barrier layers, but do reduce the number of point defects and other irregularities in the 

deposited metal film These defects are often responsible for poor adhesion of film to 

substrate [12]. It is also plausible that low temperature anneals purge the film of 

trapped gases evolved during the electroless copper deposition process. 
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IV. MOTIVATION AND PROBLEM STATEMENT 

Copper metallization in integrated circuits has many advantages, but the 

implementation of processes to deposit copper has been difficult. Various copper 

deposition methods have been studied. The eleclroless deposition of copper seed 

layers followed by electroplated copper fill of vias and trenches is an especially 

attractive process because of its low cost, high reliability, and ease of integration into 

existing manufacturing flows. 

Much research has been done on electroless metallization for multi-level 

interconnections on bare dielectrics [5, 6, 8], but little research has been performed 

specifically on the electroless deposition of copper onto barrier metals [3]. Because 

adhesion of a thin fiim to a substrate is the most important quality that a thin film 

should possess, it is important that the adhesion of electroless copper films to 

diffusion barrier materials be studied in more detaiL Titanium nitride, one such barrier 

metal, has been extensively studied and is in widespread use in the manufacture of 

integrated circuits. However, a major obstacle to overcome in the use of electroless 

copper on TiN is the lack of adequate adhesion of copper to TiN. Extremely thin 

layers of copper have been shown to have adequate adhesion, but adhesion is weak 

for the thicknesses desired for seed layers (appoximately 300-600k). 

It has been found that electroless copper depositions exhibit high levels of 

compressive stress [15]. It is believed that a combination of high compressive stress 

and a non-chemical bond between the copper and TiN films causes a low 



delamination stress of copper films above a certain thickness. It has been 

demonstrated that low temperature post-deposition annealing will significantly reduce 

the internal film stress of electroless copper deposited on silicon [15]. Based on this 

previous data, the hypothesis is that low-temperature annealing of electroless copper 

deposited on titanium nitride will also reduce the compressive stress and result in 

improved fihn adhesion. 

The objective of this research is to investigate how the delamination stress of 

an electroless deposited copper thin film on a blanket TiN-deposited silicon substrate 

depends on the post-deposition annealing conditions applied to the substrate. 

Adhesion of the copper fihn to the substrate was characterized using the tape test, 

which gives a pass or fail result [11]. Factors affecting adhesion include the thickness 

of the deposited copper film, the annealing temperature, and the time of annealing. 



V. EXPERIMENTAL PROCEDURE 

A, Substrates and Supplies Used 

The first step in this research was to develop an electroless copper deposition 

method suitable for semiconductor processing. The electroless copper deposition 

process in these experiments was adapted Irom MacDermid's M-Copper electroless 

copper deposition process for printed wiring boards. Chemicals used in this process 

contain proprietary additives which enhance the coverage, uniformity, and consistency 

of copper depositions. 

Because the Institute for Solid-State Electronics Lab at Texas ARM hcked 

the capability to deposit uniform TiN films, 200mm-diameter silicon wafers were 

obtained fiom Advanced Micro Devices and Motorola and were used as the 

substrates in this experiment. The wafers were obtained with blanket TiN Sms 

already deposited. The thickness of the TiN fil on both groups of wafers was gkA. 

Before experiments began, the electroless copper deposition process described 

below was performed on several substrates in order to fully understand the process 

sequence and much of the chemistry involved. After this initial learning stage, 

experiments were started. 
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B. Experirnenr Sequence 

1. Preparation of solutions 

The first step in plating an electroless copper film onto a substrate was to 

prepare the solutions required for plating. (Appendix A lists details of solution 

preparation. ) The activator solution was disposed of and remixed once per tbree- 

month period; the copper plating solution was fieshly mixed each day that plating was 

to be performed. All other solutions were disposed of and remixed approximately 

every two weeks. 

Because it is necessary to perform predeposition steps at an elevated 

temperature, the beakers containing the BOE, conditioner, activator, and accelerator 

solutions were placed into a large pan Sled with water. This arrangement was then 

phced on top of a hot phte. The water temperature was measured using a standard 

mercury thermometer, and was held at 46'C during processing. The predip and 

copper plating solutions were allowed to remain at room temperature, 26'C. 

2. Preparation of sample for phting 

A single 200mm wafer was removed Rom its box and was placed Ront-side- 

up on a lint-free disposable towel using plastic forceps, A diamond-tipped scribe was 

used to snap the wafer into 4 pieces of approximately equal shape and size. One such 

piece was picked up using plastic forceps, which would remain on the sample until the 
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conclusion of the plating process, and rinsed for 30 seconds under a steady stream of 

deionized (DI) water to remove particulates. 

The sample was then immersed into the buffered oxide etch gIOE) solution 

and agitated for 60 seconds to remove any native TIO~ growth. The sample was then 

removed from the solution and rinsed for 30 seconds under DI water. 

3. Preparation of surface 

The sample was then immersed into the conditioner solution and agitated for 5 

minutes. The conditioner solution is a mildly alkaline solution designed to optimize 

copper film coverage and adhesion. The sample was then removed Rom the 

conditioner solution and rinsed for 30 seconds under DI water. 

4. Activation of surface 

The sample was then immersed into the predip solution and agitated for 60 

seconds. The predip solution is mildly acidic and prepares the substrate surface for 

uniform adsorption of the activator. The sample was removed Rom the predip 

solution and was not rinsed. 

The sample was then immersed into the activator solution and agitated for 5 

minutes. The activator solution contained an SnPd colloid, which acted as a catalyst 

for the subsequent electroless copper deposition. The sample was then removed fiom 

the activator solution and rinsed for 30 seconds under DI water. 
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The sample was then immersed into the accelerator solution and agitated for 2 

Vi minutes. The accelerator solution strips Sn atoms trom the SnPd colloid, resulting 

in a high surface density of Pd atoms. The sample was then removed from the 

accelerate solution and rinsed for 30 seconds under DI water. 

The sample was then immersed into the electroless copper plating solution and 

agitated for a variable length of time. In this research, deposition times ranged Irom 

15 seconds to 5 minutes. The sample was then removed f'rom the electroless plating 

solution and rinsed for 30 seconds under DI water. 

The sample was then blown dry using compressed nitrogen gas. The plastic 

forceps were detached and the sample was placed inside a sealed Petri dish to prevent 

contamination or mechanical disturbances. 

5. Measurement of Sm thickness 

A square of approximately 20mm on a side was cut trom the approximate 

center of each sample using a diamond-tipped scribe. Photolithography techniques 

were used to pattern and etch trenches through the plated copper film on this square 

sample. (Appendix B details photolithography and copper etch techniques used in 

this experiment. ) A Sloan Dektak' diamond stylus profilometer was then used to 

measure the depth of the trench in the copper film The depth of the trench indicates 

the approximate thickness of the copper film on the sample. 

Copper film thicknesses ranged from 200k to a nominal seed layer thickness 

of nearly 400k. Further details can be found in Part VI. 
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6. Dicing of plated substrate sample into adhesion test samples 

The remaining portion of each t/4-wafer sample was cut into rectangles of 

approximate dimensions 2cm x lcm using a diamond-tipped scribe. 

7. Pre-anneal tape test 

To determine the adhesion of the copper Sm to the substrate prior to any 

anneal, a tape test was applied to each small adhesion test sample. Pre-anneal testing 

and post-anneal testing each used one-half of the available sample area. A 3-line x 3- 

hne crosshatch pattern was scratched onto the surface using a diamond-tipped scribe 

in order to promote Sm delamination. A strip of 3M Scotch tape of length 2cm was 

peeled and cut Rom a roll of tape and placed on top of the sample to cover the 

scratched area. Air bubbles, if any, were smoothed out R' om under the tape. The 

tape was then pressed down onto the sample with the maximum possible hand 

pressure without cracking the sample. The edge of the tape overhanging the edge of 

the sample was then slowly peeled up until it was approximately perpendicular to the 

sample surface. The tape was then pulled away irom the substrate as quickly as 

possible in an attempt to delaminate the copper film fiom the substrate. 

The surfaces of the tape and of the sample were then investigated to determine 

if any copper had delaminated Rom the substrate and adhered to the tape. The 

presence of copper on the tape, or missing Rom the substrate, indicated a score of 



"fail"on the pre-anneal tape test for that particular sample. The presence of copper 

that appeared to have delaminated from the lines in the scribed crosshatch pattern 

received a score of "marginal". A score of "pass" was recorded if no copper 

appeared on the tape. 

The vast majority of samples exhibited failing scores for adhesion on the pre- 

anneal tape test. Complete results appear in Part VI. 

8. Annealing of sample 

Two annealing experiments were performed over the course of this 

investigation. At first, it was believed that varying the conditions of a rapid thermal 

anneal (RTA) in an annealing chamber would give a clear pass/fail signal in the post- 

anneal tape test as the anneal times and temperatures were varied. Preliminary RTA 

results were obtained on an AG Associates Heatpulse 210 in an ambient argon 

aunosphere using anneal times as low as 10 seconds, and at temperatures as low as 

200'C. These data indicated that no pass/fail adhesion response could be found by 

lowering the temperature and time of the RTA, and thus this experiment was 

abandoned in favor of a technique that allowed a lower-temperature anneal 

To explore the effects of annealing at lower temperatures, a simple hot plate 

anneal was used. The apparatus for this second annealing experiment consisted of an 

electric hot plate, onto which was placed a solid copper disc of diameter 8cm and 

thickness lcm to act as a heat source. A copper cylinder of diameter 3cm and height 



Scm, into which a hole was drilled down the central axis, was placed atop the copper 

disc and secured using silver solder. A mercury thermometer capable of measuring 

temperatures up to 200'C was inserted into the hole and used to measure the 

annealing temperature. Because low temperature anneals do not result in reactions 

between the ambient atmosphere and the annealed film, these anneals were performed 

in ambient air. 

Anneals were performed by first allowing the hot plate to stabilize at the 

desired temperature. A sample was placed face-down on the surface of the hot plate 

using tweezers and the start time and temperature of the anneal were logged. After 

the desired annealing time had elapsed, the sample was removed 

fi�a 

the hot plate 

and allowed to cool face-up on a stainless steel tabletop, 

Samples were subjected to low temperature (60-150'C) annealing for 

durations of 5 to 300 seconds. The low temperature annealing experiment was 

continued because critical pass/fail limits were found as annealing conditions were 

varied. Results appear in Part VI. 

9. Post-anneal tape test of sample 

A post-anneal tape test was then performed on each sample m the same 

manner as the pre-anneal tape test. Results indicated an improvement in film adhesion 

after anneal for specific combinations of annealing conditions and copper Sm 

thicknesses. Results appear in Part VI. 
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VI. RESULTS AND DISCUSSION 

A. Results of Film Thickness Measurements 

The electroless plating sequence described in Part V was performed on four 

substrate samples. Table I indicates a summary of plating time and Sm thickness 

measurement for each of the four samples. 

TABLEI 
COPPER PLATING TIME AND FILM THICKNESS 

FOR FOUR SUBSTRATE SAMPLES 
Sample Time in Cu plating solution (s) Cu film thickness (A + 25A) 

120 275 

B 180 350 

C 180 230 

D 195 200 

Two issues are of note here: First, the copper film thickness could not be 

measured very precisely because of the low resolution of the diamond stylus 

profilometer used to measure the height of the trenches in the etched copper fihrL 

Second, the plating time of a given sample does not always result in a thicker copper 

film This may be due to the presence of organic contaminants on the substrate 

surface before plating is initiated. These contaminants may be present in the ambient 

air or in wafer storage containers [16]. Organic contaminants slow the electroless 
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film deposition because they prevent the BOE solution I'rom adequately removing the 

native oxide layer [16] (in this case, TIO2). It is believed that this results in 

inadequate nucleation of Pd atoms onto the surface during activation, thus resulting in 

reduced initial catalysis of the electroless copper deposition. It is believed that 

organic contamination did not have an effect on film adhesion. 

B. Results of pre-anneal tape test, anneal, and post-anneal tape test 

Following the measurement of film thickness on each of the samples, samples 

were diced into smaller portions, and a sequence of tape tests and anneals was 

performed as described in Part V. The result of each post-anneal tape test was given 

a score of "pass, " "marginal, " or "fail, " as described in Part V, and was recorded. 

The following four scatterplots indicate results of the post-anneal tape test for 

samples I'rom each of the four plated substrate samples, 
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Adheelun va. Anneal Time and Temperature for plated Suhelrete Sample A 
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Figure l. Effect of anneal time and temperature on adhesion for plated substrate 
sample A. 

In Figure 1, note that anneals of length 15s first begin to pass the test near an 

annealing temperature of 110-115'C, 
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Adhealon ve. Anneal Time and Temperature for Plated Substrate Sample B 
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Figure 2, Effect of anneal time and temperature on adhesion for phted substrate 
sample B. 

In Figure 2, note the presence of the apparent outlier with a passing score at 120s. 

This may be due to tape slippage due to sloppy tape handling during the post-anneal 

tape test for that particular sample. Note also the 15s anneal at 130-145'C range of 

marginal adhesion, with a passing score at 133'C. 



29 

Adhesion vs. Anneal Time and Temperature lor plated Substrate Sample C 
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Figure 3. Effect of anneal time and temperature on adhesion for plated substrate 
sample C. 

120 

Figure 3 presents perhaps the clearest evidence for the ef'feet of low temperature 

annealing on adhesion. Note the evidence of a linear relationship between annealing 

time, annealing temperature, and adhesion for this sample. Also note that a 15s 

anneal results in a passing score near 115'C. 
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Adhesion vs. Anneal Time and Temperature lor isleted Substrate Semble O 
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Figure 4. Effect of anneal time and temperature on adhesion for plated substrate 
sample D. 

Here, note that even extremely low combinations of temperature and time resulted in 

passing scores on the post-anneal tape test. This may be due to the extreme thinness 

of the Sm. 

Box plots of the post-anneal tape test results were also generated to determine 

the effect of annealing time and temperature on adhesion. See Figures 5 and 6. 
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Figure 5. Distributions of passing, marginal, and faiTing results of the post-anneal 
tape test versus temperature for each of the 4 plated substrate samples. 

Figure 5 indicates a general trend of samples failing, to marginally passing, to 

fully passing the post-anneal tape test with increased median anneal temperature. 

Thus, if anneal time remains constant, but anneal temperature is increased, it is 

expected that adhesion of the annealed copper Sm to the substrate would improve 

compared to its adhesion prior to annealing. 
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Figure 6. Distributions of passing, marginal, and faiTing results of the post-anneal 

tape test versus anneal time for each of the 4 plated substrate samples. 

Figure 6 indicates a less clear relationship between post-anneal tape test 

results and median anneal time, This may be due to the treatment selection technique 

employed in this work: For each plated substrate sample, first a range of anneal 

temperatures was explored to find a critical region of temperature within which both 

passing and failing results for the post-anneal tape test could be found. After this 

range was found, the anneal time was varied for anneal temperatures within and 

below the critical range. A limited number of samples from each plated substrate 

sample could be cut: after these were used up, no further investigation of the effect 

of anneal time could be investigated. This resulted in a skewing of the adhesion vs. 
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time distribution, as seen in Figure 6, due to biased selections of anneal time. (The 

exception here is Plated Substrate Sample C, of which a sufficient number of samples 

could be cut so that a wider range of anneal time could be explored. ) 

The results displayed here indicate an improvement in the adhesion of 

electroless plated copper thin films on TiN deposited substrates after low temperature 

annealing. Anneal temperature is shown here to be the primary factor responsible for 

improved adhesion: both median temperature increase and individual temperature 

increases while holding anneal time constant result in improved adhesion. 

Insufficient data exists to show that an increase in median anneal time results 

in a greater number of samples fiom a given plated substrate sample passing the post- 

anneal tape test. This is due to sampling over a biased range of anneal time; however, 

individual data, as seen in the scatterplots above, suggest that holding anneal 

temperature constant while increasing anneal time results in improved adhesion. Only 

the test data from plated substrate sample C suffer lrom less biased time sampling and 

thus indicate that an increase in median anneal time results in improved adhesion. 

An examination of the lowest anneal temperatures at which each of the plated 

substrate samples pass a post-anneal tape test with an anneal time of 15s indicates a 

general trend of increased anneal temperature required for greater Em thicknesses to 

pass the post-anneal tape test. Several explanations for this relationship may exist; 

however, based on previous work, it is thought that the thermal energy supplied by 

low temperature annealing allows atoms in the copper lattice to vibrate more fieely, 

releasing hydrogen molecules trapped in the lattice during the electroless deposition 
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of copper [3]. Thicker films may require more thermal energy to allow all of the 

hydrogen to escape. Purging the hydrogen Rom the film with a low temperature 

anneal may decrease the compressive stress in the film, resulting in improved 

adhesion. Further work is needed to determine the amount of hydrogen purged Rom 

the fil during low temperature annealing, as well as any decrease in compressive 

stress after such annealing. 
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VII. SUMMARY AND CONCLUSIONS 

The superior electrical properties of copper have motivated a change from the 

use of aluminum to copper to fabricate interconnects on modern integrated circuits. 

This change has resulted in the building of faster, smaller, and more reliable circuits, 

but it has also required the development and implementation of new manufacturing 

processes to deposit copper reliably, 

One such new process is the electroplating of copper onto thin copper seed 

layers. Seed layers can be deposited by a variety of methods, but a novel method is 

electroless copper plating, which results in extremely conformal coverage of copper 

into high-aspect ratio vias, featuring high reliability at a low cost. 

Few studies of electroless copper deposition on diflusion barrier materials 

have been performed. Since the most important requirement of an effective 

metallization method is that the metal thin Sm must adhere to the substrate, this 

research investigated the adhesion of electroless plated copper thin films on titaniutn 

nitride, a barrier material in wide use for all types of copper deposition methods. The 

objective of the research is to characterize the effects of low temperature annealing on 

the adhesion of electroless copper Sms on TiN deposited substrates. 

Results from this research indicate a trend of improved adhesion, as measured 

by the tape test, with increased time and temperature for a low temperature anneal of 

electroless plated copper films on TiN. Results also indicate that thicker films require 
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a combination of greater temperature and greater anneal time than do thinner films for 

an improvement in adhesion. 

Further work is needed on two issues. First, a need exists to characterize the 

effects of low temperature annealing on the adhesion of electroless plated copper thin 

films on TiN beyond the limits of the tape test. A quantitative measurement of 

delamination stress is needed — indeed, the entire semiconductor fabrication industry 

suffers Rom the absence of a suitable measurement technique — but the electrostatic 

adhesion test is suggested to fill this need. Were this investigation performed using 

the electrostatic adhesion test instead of the tape test, this research would be a greater 

contribution to the field of semiconductor fabrication process development. 

Second, a closer analysis of the effect of low temperature annealing on the 

hydrogen content of electroless plated copper Sms may well yield the answer as to 

why such simple annealing results in improved film adhesion. Additionally, a 

measurement of the compressive stress in annealed vs. unannealed electroless plated 

copper Sms, while not possible in this experiment, may give a more clear answer as 

to why low temperature annealing improves the adhesion of these films on TiN. 

This investigation is another step in the development of electroless copper 

plating techniques to be employed in a modern semiconductor fabrication plant. 

These results pave the way for a greater understanding of rehable processes used to 

deposit copper and will eventually translate into the manufacture and availability of 

even smaller and faster integrated circuits utilizing copper metallization. 
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APPENDIX A 

PREPARATION OF SOLUTIONS FOR ELECI'ROLESS COPPER DEPOSITION 

The following is adapted Rom the instructions for M-Copper Processing, 

MacDermid, Inc. , 1997. 

Conditioner 

1. In a 1 L beaker, combine 825 mL DI water, 100 mL M-Condition A, 50 mL M- 

Condition B, and 25 mL M-Condition C. 

2. Stir thoroughly using glass rod. 

Predip 

l. In a 1 L beaker, combine 250 mL DI water and 750 mL M-Predip L. 

2. Stir thoroughly using glass rod, 

Activator 

l. In a 1 L beaker, combine 240 mL DI water, 750 mL M-Predip L, and 50 mL M- 

Activate. 
2. Stir thoroughly using glass rod. 

Accelerator 

l. In a 1 L beaker, combine 990 mL DI water, 10 g M-Accelerate A powder. Stir 

thoroughly until M-Accelerate A powder is completely dissolved. 

2. Add 10 mL M-Accelerate B. 
3. Stir thoroughly using ghss rod. 

Copper 

l. In a 1 L beaker, combine 823 mL DI water and 100 mL M-Copper 85B. Stir 

thoroughly. 

2. Slowly add 40 mL M-Copper 85A. 

3. Slowly add 30 mL M-Copper 85D, 

4. Add 2 mL M-Copper 85G. 
5. Stir thoroughly using glass rod. 



APPENDIX B 

PHOTOLITHOGRAPHY AND COPPER ETCH PROCEDURES 

The following procedures are adapted from the ELEN 472: Microelectronic Device 

Fabrication Laboratory Manual by Dr. Mark H. Weichold, Texas A8rM University, 

1991. 

APPENDIX B-1 
PHOTORESIST APPLICATION AND PATTERNING 

I. Immerse substrate in cold chloroethane and agitate for 3 minutes, 

2. Remove and immerse in acetone and agitate for 3 minutes. 

3. Remove and immerse in propanol and agitate for 3 minutes. 

4. Remove and immerse in methanol and agitate for 3 minutes. 

5. Blow substrate dry using Nt gun. 

6. Place substrate in dehydration oven for 5 minutes. 

7. Place substrate on vacuum chuck in resist coster. 

8. Place a small puddle (10 drops) of HMDS:PGMEA (1:1) on the center of the 

wafer and allow to spread. 

9, Set the spinner controls to 12 seconds and 0 rpm. Turn on the spinner, Ramp the 

speed immediately up to 8000 rpm and then quickly back down to 4000 rpm 

Spin at 4000 rpm for the remainder of the 12 seconds. 

10. Coat the substrate with 15 to 20 drops of AZ5214 positive photoresist in the same 

fashion as step 8. Spin at 4000 rpm for 30 seconds. 

11. Soft bake the substrate on a hot plate for 60 seconds at 80'C. 

12, Place the substrate on the contact printer platform. Roughly align the mask above 

the substrate and turn the mask vacuum on. Expose for 6. 5 seconds at 28. 3 

mW/cm'. 

13. Develop the substrate for 35 seconds in a 1:4 AZ400K:DI HsO developer 

solution. Agitate while immersed. 

14, Gently blow substrate dry using N, gun. Bake on hot plate at 135'C for 3 

minutes. 

APPENDIX B-2 

COPPER ETCH AND PHOTORESIST REMOVAL 

l. Immerse substrate in a dilute nitric acid solution (15% HNO, ) for 2 minutes or 

until no copper remains on the exposed surface. 

2. Remove substrate Rom the acid and rinse for 1 minute under DI HsO. 

3. Immerse substrate in acetone and agitate for 5 minutes to remove photoresist. 

4. Rinse substrate for 30 seconds under DI HqO and blow dry with Nt gun. 
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