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ABSTRACT

Rapid Carrier Phase Acquisition for
Large QAM Signal Constellations. (December 1996)
Jason Dillard Preston, B.S. Electrical Engineering, Lamar University;
B.S. Mathematics, Lamar University

Chair of Advisory Committee: Dr. Costas N. Georghiades

This work addresses the problem of rapid carrier-phase acquisition for QAM
constellations, and specifically for the 32-QAM, 64-QAM, 128-QAM, and 256-QAM
constellations, operating over an AWGN channel. It is assumed that there is no
frequency or symbol timing error. Seven algorithms in all are derived and tested.
The first is the maximum-likelihood (ML) estimator, which is found to be accurate
but impractical to implement. A suboptimal ML type estimator is derived from the
ML algorithm and is found to be simpler but still impractical. The power-law (PL)
estimator is derived as the low SNR limit of the ML estimator, and is found to be very
simple, but having poor error performance. A threshold is added to the PL algorithm
and the performance is improved, but not enough for rapid phase acquisition for
most cases. An algorithm is derived specifically for use on the cross constellations
which further improves performance, but this algorithm is superseded by an estimator
based on a trellis structure and the Viterbi Algorithm which is developed. Finally a
suboptimal version of the trellis algorithm is developed which reduces the complexity
of the trellis algorithm by two-thirds. Both the trellis and the suboptimal trellis
algorithm perform well enough for phase acquisition and are simple and practical to

implement.



To my very patient wife, Laura
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CHAPTER |

INTRODUCTION
The objective of this work is to evaluate the performance of several algorithms for
rapid carrier phase acquisition for large quadrature amplitude modulat.ion (QAM)
signal constellations when the data sequence is unknown and the signal is corrupted
by additive white Gaussian noise (AWGN). It is assumed that there is no intersymbol
interference and no frequency offset. The constellations considered in this work are
the 32-QAM (cross), 64-QAM, 128-QAM (cross), and 256-QAM constellations, but

the algorithms discussed in this work can be applied to other QAM signal sets.

A. Problem Background

Burst mode transmission systems, such as time division multiple access (TDMA) and
slow frequency hopping (FH), are widely used in wireless digital communications [1].
The best performance in terms of error probability is achieved through the use of
phase-coherent demodulation, which requires an accurate carrier phase reference at
the receiver [2]. In these types of systems phase estimation for each burst is an
important design consideration. Although carrier frequency ;nd symbol timing can
be accurately tracked by using a stable reference at the receiver, and by tracking over
several bursts, the reference carrier phase tends to drift to such a degree that phase
estimation is required for each burst [3].

Communication system designers have traditionally used a phase-locked loop
(PLL) as the phase acquisition and tracking mechanism for QAM constellations, but

this approach leaves much to be desired since the phase acquisition time of PLL’s far

The journal model is IEEE Transactions on Communications.



exceeds the time required for optimal phase estimation {3]. The PLL is also subject
to hang-up, which is the prolonged dwell at large phase erroz:s. For these reasons
most burst mode system designs do not use PLL’s for carrier synchronization.

One prevalent phase acquisition technique which has been used in burst mode
systems involves the use of a preamble, or a predetermined sequence of symbols, at
the beginning of each burst to allow the receiver to use a priori knowledge of the
transmitted sequence to estimate the phase [1]. While this scheme performs well
and is very simple to implement, it has the undesirable property that energy and
bandwidth are wasted on the preamble preceding each burst.

Another powerful technique which has been used in burst mode communication
systems is to treat the carrier phase # as an unknown and nonrandom parameter,
and estimate it using some parameter estimation algorithm (4] [5] [6] [7] [8]. These
algorithms are implemented digitally, and produce their estimate using the sampled
sequence of output from the matched filter receiver. Efficient phase estimation
algorithms exist for small QAM signal constellations, as well as for M-ary phase
shift keying (M-PSK) constellations. For example, applications which use M-PSK
constellations can easily handle the phase estimation problem by use of the M-th
power algorithm, which is computationally simple and yields good estimates [9]. For
large QAM constellations, however, many estimation algorithms are so complex that
they are impractical for virtually all applications, and the M-th power algorithm has
poor performance, especially for cross constellations.

This work will focus on finding practical phase estimation algorithms that per-

form well for large QAM signal sets, and that do not require a preamble.



B. Description of Evaluation Methods Used

The purpose of this work is to derive and evaluate several phase estimation algorithms
on typical large 7 /2 rotationally symmetric QAM signal sets. The algorithms will be
implemented for four constellations. These constellations are the 32-QAM, 64-QAM,
128-QAM, and 256-QAM constellations shown in Figure 1. All of the constellations
have been normalized to have average energy equal to one.

Since constellations with different sizes will be considered there needs to be a
common reference for simulation, so that the algorithm’s performance for different
constellations can be compared in a fair way. This comparison will be based on symbol
error probability. Figure 2 shows an approximation, or more specifically a tight upper
bound, to the symbol error probability for the four constellations considered in this
paper. This approximation is given in [2] as

PNzZ-erfc( ———2(;7_ Wk (1.1)
where 7 is the signal-to-noise ratio (SNR) per symbol, and A is the number of symbols
in the constellation. It is reasonable to assume that, for most applications, the symbol
error probability will fall between 1072 and 107%, since this is a practical operating
condition. The choice of SNR’s used for the simulations in this work will be directed
by this assumption. For instance, the SNR’s that give a symbol error probability of
1072 and 107° for 32-QAM are about 19dB and 24dB per symbol respectively, hence
19dB and 24dB will be used as the SNR’s when simulating 32-QAM signals. The
SNR'’s for the other constellations were chosen in a similar way. Table I shows the

SNR’s used in the simulations for the various constellations.
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Table I. SNR’s Used in Simulations

Signal SNR in dB per Symbol

Constellation | Low end | High end
32-QAM 19 24
64-QAM 22 27
128-QAM 25 30

256-QAM 28 33

C. The Cramer-Rao Bound

In this work the performance of an algorithm will be measured in terms of mean
squared error with respect to the true phase offset. The Cramer—Rao bound (CRB)
provides an objective reference to use in evaluating the algorithms. It is established
in parameter estimation theory that the CRB is a lower bound on the variance of an
unbiased estimate [10]. Therefore the phase estimation algorithms can be evaluated
in terms of how close they come to achieving the CRB. In this section the CRB for
the phase estimators will be derived.

Let 8 represent the unknown phase offset and let C' = {¢;} be the constellation
containing N symbols. It is assumed that the symbols ¢; are independent and are
all equally likely to be transmitted (i.i.d.). In the k-th symbol interval, the received

symbol is given by
(k) = m(k)e’® + n(k), (1.2)

where m(k) € C is the transmitted data symbol and n(k) is the complex AWGN
variable with E{n(k)] = 0 and E[jn(k)|*] = No/2.



To obtain the CRB for any estimator of # we must first form the likelihood

function

K
fe19)= g:[ Fir(k) 1 6).

Taking the logarithm we obtain the log-likelihood function

L(r|0) =1n zm (r(k) | 0).

k=1

The variance of any estimate § is bounded by the CRB

o> — ,1 .
B[]

(1.3)

(1.4)

(1.5)

To simplify the derivation of a useful lower bound we will assume that the estimator

has prior knowledge of the transmitted sequence m = {m(k)}. This is an optimistic

assumption since the estimators derived in this work assume no prior knowledge of

m. The resulting expression will still be a lower bound for a; We can now form the

log-likelihood function in terms of the joint Gaussian density.

Eln‘/_e)cp( W)
1

_Kln\/_ A ; | (k) —m(k )eﬂl

=Kln

\/—o N z (kP

=+ Fo E 2Re [r(k)m(k)e’’]

K
Kt~ 3 (r(Rym(k)e + r(k)y'm(k)e),

No

k=1

— 2Re [r(k)ym(k)e”] + jm(k)[?)

(1.6)

where K; includes all terms which do not depend on 8. We can now take the first



and second partial derivatives with respect to 8,

K
b1 9) Nioh (o Bm(te + jr (k) m(k)e”) ()
3QL(P|9):LK —r(B)m(ky e — r(k )
i = W (rkmb) (k)m(k)e) .
A_L K((M k) e—i0 *m(k Je) ’
= 5 3 (e 4 (4 (1)

We now take the expected value, using the fact that E[r(k)] = m(k)e?® and E[r(k)*] =

m(k)e.
B[P < 3 (8 bmere ] 4 B e miige”])
= & (BRI e + By m(i)e)
= —Nii (i) + m(B)%) 19)
=2 Sl

>
I

If we now note that for large K, ¥ =K, [m(k)|* ~ E[|c;|?] we can form the CRB as

a function of SNR and K.
1
B
* T B T Im(B)?)
1
= oK Elle]
No
_ 1
2Ky

(1.10)

where v = E[|¢;|*]/No is the SNR. The inverse proportionality of v and o;? expressed

in (1.10) is common in phase estimation.



CHAPTER II

MAXIMUM LIKELIHOOD PHASE ESTIMATION
The purpose of this chapter is to evaluate the performance of the maximum likelihood
(ML) algorithm for phase estimation given an unknown signal sequence. The ML es-
timate is an important benchmark, since it is well established in parameter estimation
theory that any ML estimate is asymptotically unbiased and efficient. That is, for an
arbitrarily large number of observations, (), the variance of the ML estimate will

attain the Cramer-Rao bound.

A. Derivation of the Maximum Likelihood Estimate

In ML phase estimation we treat the carrier phase offset 8 as an unknown nonrandom

variable and estimate it using maximum likelihood techniques [3], [4], [5], {2). The

MAP estimate is the value of § which maximizes the a posteriori density function

_ 1 10)f)
fr)

If there is no prior knowledge of & we can assume that f(#) is uniform. Hence the value

f(0|r) (2.1)

of § which maximizes f(8 | r) is identical to the value of § which maximizes f(r | 0),
and is therefore the ML estimate. By monotonicity of the logarithm function, the
ML estimate also maximizes In f(r | 8), which is the log-likelihood function given in

(1.4). So to produce the ML estimate  we need to find the value of  that maximizes
max Lr|0)=Inf(r|0) = Zlnf (2.2)

At this point we cannot assume the receiver has any knowledge of the transmitted

symbol sequence m. Instead we assume that the signals in the constellation C are all



equally likely to be transmitted, and take the expected value.
f(r(k) | 0) = Eclf(r(i) | 9,C)]
= Zf k) | 0,¢:)P(ci)

i=1

1N

= FLI0W105)

_1 & Lo - off
_N:L:;exp(—m'h( )e -—q|)

(23)

We can now substitute into (2.2), realizing that the 1/N term can be omitted since it

will not affect the maximization. Hence the ML estimate, 0ML, is found by maximizing

b

Explicit solution for a value of @ which maximizes L(r | §) is impossible, so & must

the log-likelihood function

K [N
max Lir|8) =3 In|> exp (—’7 . lr(lc)e‘je -
= L=

be obtained by use of numerical methods. Therefore any algorithm that atiempts to
produce an ML estimate using (2.4) can only claim to produce an estimate that is
within a certain tolerance of le[,. Further complicating the matter is the fact that
¥ is actually an unknown parameter which also needs to be estimated. In a time
division multiple access system, for example, ¥ could be estimated from symbol error
rates during previous transmission bursts, assuming the statistics of the noise in the
channel do not change rapi(v]]yA For the purpose of simulating the ML phase estimator,
however, this work will assume that the estimator has perfect knowledge of 7.

Since the constellations under consideration in this work are 7/2 rotationally
symmetric, the log-likelihood function is periodic with period x/2. A phase offset of
6 is indistinguishable from one of 6+ kx /2 for any integer k, unless some knowledge of

the sequence m is used. Therefore it is sufficient to maximize L(r | 8) for ¢ € {0, 7/2).
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As shown in Figure 3, L(r | ) may have many local maxima. Maximization
over the entire range requires first a coarse then a fine optimization, resulting in
many evaluations of L(r | ) for each estimate. Furthermore, each evaluation requires
I logarithm operations, and K - N exponentials, scalar multiplications, complex
multiplications, and complex norms. For even moderate values of K, and N the

computational load is quite considerable.

1. Implementation of the ML Algorithm

In this simulation, as in all of the simulations described in this work, the vector r is
generated by randomly choosing a signal from the constellation C, multiplying by e/’
where 8 is uniformly distributed on [0,7/2), and adding the complex AWGN. The
program used in the simulations for this algorithm performs a coarse optimization in

the range of [0,7/2) by evaluating L(r | #) at 2° increments. After the approximate



location of the maximum has been found the program uses a second order Newton’s
method algorithm to refine the estimate. After the refined estimate is produced, the
squared error from the true phase offset is determined. This procedure is repeated
for 1000 jterations to obtain an average performance.

The Newton’s method algorithm locates the maximum within a tolerance of
5-10~* radians, or about 2.86 - 1072 degrees. If we assume the worst case, that is
the maximum error allowed by the tolerance is introduced by the fine optimization
algorithm every time an estimate is produced, the squared error introduced is about
8.21 - 107* degrees squared. This worst case tolerance error is at least one order
of magnitude below the CRB for all values of K and « used in the ML estimator
simulations presented in this work.

When 6 is close to 0 or m/2 the algorithm may converge on an estimate near
the opposite end of the range [0,#/2). This is due to the /2 periodicity of L(r | 6).
In these cases, (§ — §)? is not a fair measure of the accuracy of the estimate. The

measure of squared error used in the simulation is

(8-0y
¢ =mind(g_§+ ) (2.5)
®-0-32

which takes into account this problem to produce a fair measure of accuracy.

2. Results for the ML Algorithm Simulations

The simulation results for the ML phase estimator are shown in Figures 4, 5, 6, and 7.
These graphs show the mean squared error of the ML estimate, ag, versus the vector

length K. We can see from these figures that the performance of the ML estimate for
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an unknown sequence comes close to achieving the CRB given by (1.10), which was

derived for a known sequence.

B. A Suboptimal Version of the ML Algorithm

It is possible to significantly reduce the computational complexity of the ML algorithm
with a relatively small loss in accuracy. We begin by examining (2.4), and consider
what is the maximum possible contribution to the innermost summation for any

particular values of & and 7. This maximum contribution is given by
max  exp (—'y~ |r(k)e“i" - c,‘r), (2.6)
The maximum occurs when arg(r(k)e ) = arg(c;), and has a value given by
mp oo (=1 p0 = of ) oo r- (el =) @)

Note that this expression no longer depends on 6, so any signal point ¢; such that
le;| = |&] will produce the same maximum contribution to the sum. Furthermore,
this maximum contribution rapidly becomes smaller as |r(k)| — || becomes larger.
This indicates that most of the sum is made up of terms for which |r(k)| - [ is
small, and that some other terms are much less significant.

To take advantage of these facts we first partition the constellation C' into the L
subsets, {Si}%;, which contain the signal points that are at the same distance from
the origin, or equivalently, that have equal energy. Also, let M; be the number of
signal points contained in S;. Let &, represent the m-th signal point in S;. We can
now rewrite (2.4) in terms of the subsets

K LM A
max Lir|0)=Y |3 > exp(—’y- lr(k)e"’a - E;,,.l )] (2.8)

k=1  Li=1m=1
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This form of the log-likelihood function lends itself to the selective omission and
inclusion of terms in the summation corresponding to the individual subsets. 1f we
define |¢| to be the magnitude of the signal points in subset S;, or the characteristic
magnitude of Sj, a method of deciding which subsets to include can be devised. For
example, if we assume that any contribution made by the innermost summation of
(2.8) of less than some threshold value T' is negligible, we obtain a rule that states
that the subset S; should be included if and only if (|r(k)| — |&])? < —NoIn(T/M;).
The nonlinear nature of the logarithm function, however, makes the effect of 7' on
L(r | 8) impossible to determine.

The simulations in this work are based on another method of choosing which
subsets to include. The idea of this method is to make maximum likelihood decisions
about which subset m(k) came from based on r(k). In other words, we choose the
subset S; for which (Jr(k)| — |&[)? is minimum. To decrease the effect of making
decision errors we also include a certain number of subsets adjacent to the one chosen
by the ML criterion. We can assume without loss of generality that the subsets are
ordered such that [&] < |&| < ... < {é.], and for notational convenience we can
define S; = @ for all I ¢ {1,2,...,L}. If we now let di be the sequence of integers

such that
(1)) = fea )? < (Ir(W) = [al)? for all 1:#dy (29)

we can define a suboptimal log-likelihood function. The algorithm which produces an
estimate based on the new log-likelihood function will be referred to as the suboptimal

maximum likelihood (SML) algorithm. The suboptimal estimate, éSML, is defined as



"Table I1. Constellation Subset Information for 32-QAM

32-QAM (L = 5)
U M| jal

1] 4| o362
2! 8 | 07071
3| 4 | 0.9487
41 8 1.1402
5] 8 | 1.3038

the value of  which maximizes

K dtp M
max L0 =>m| ¥ ¥ exp( | (k)™ = G | )}
k=t U=dy-pm=1

(2.10)

where p is the range of adjacent subsets to be included. For example, if for a particular
(k) the subset whose characteristic magnitude is closest to |r(k)| is Sy, and p = 2,
then the subsets included in (2.10) for that particular value of k will be S,, S3, S4, Ss,
and Sg.

Tables 11, III, IV, and V show the values of L, M;, and |&] for the 32-QAM, 64-
QAM, 128-QAM, and 256-QAM constellations respectively. The tables show that the
difference between the characteristic magnitude.s of neighboring subsets gets smaller
as the number of points in the constellation increases. This indicates that a larger
value of p may be required to produce an accurate phase estimate for the larger
constellations, since the probability of choosing the wrong subset is high for larger

constellations.



Table 111. Constellation Subset Information for 64-QAM

64-QAM (L = 9)
Ml el

1] 4 0.2812
2| 8 | 0.4880
3| 4| 0.6547
4| 8 | 07868
5| 8 | 0.8997
6|12 1.0911
71 8 1.1751
8| 8 1.3274
9| 4 | 15215




Table IV. Constellation Subset Information for 128-QAM

128-QAM (L = 16)
M| Jal U M| &)
1] 4 01562 9 | 8 | 1.0000
2] 8 (03492 | 10| 8 |1.0467
314 | 04685 |[ 11| 4 | 1.0932
4| 8 |0.5631 || 12| 8 | 1.1370
5| 8 [0.6439 | 13| 8 |1.2198
6112 10.7809 || 14 | 16 [ 1.2501
7] 8 0841015 | 8 | 1.3343
81 8 [0.9500 |16 | 8 |1.4399

Table V. Constellation Subs;et Information for 256-QAM
256-QAM (L = 32)

LM &l LM el LM & LM &

1] 4 |01085 ) 9 | 8 |0.6945 || 17| 16 | 1.0000 || 25 | 16 | 1.2127
2| 8 10242510 8 [0.7276 | 18 | 8 |1.0233 || 26 | 8 | 1.2696
3|4 (03254 )11 4 {07593 19| 8 [1.0683 | 27| 8 | 1.3061
41 8 [0.3911 (| 12| 8 |0.7896 || 20 | S |1.0901 || 28 | 8 | 1.3416
5| 8 [0.4472 (13| 8 [0.8471 {121 | 8 |1.1324 || 29| 4 [ 1.4100
612 | 0.5423 || 14 | 16 | 0.8745 (|22 | 8 | 1.1530 || 30 | 8 | 1.4266
7| 8 0584115 | 8 | 09267 {23 | 8 [1.1732 || 31| 8 |1.5244
8| 8 [0.6598 |16 | 4 |0.9762 [ 24| 4 [1.1931 | 32| 4 |1.6270

21



1. Implementation of the SML Algorithm

The implementation of the SML algorithm is very similar to that of the optimal
ML algorithm. The coarse optimization of L(r | 8) is performed at 2° increments,
and the fine optimization is performed using the same Newton’s method algorithm
as before. For this algorithm the program performed 1500 iterations to obtain an

average performance.

2. Results for the SML Algotithm Simulations

The simulation results for the SML phase estimator are shown in Figures 8 through
14. Figures 8 and 9 show the performance of the SML estimator for 32-QAM when
p = 0 and p = 1 respectively. When p = 0 there is a significant loss in accuracy
from the ML estimate, but when p = 1 the performance of the SML estimator is
nearly identical to that of the ML estimator, shown in Figure 4. Likewise, Figure 10
shows that for 64-QAM and p = 1 the SML algorithm has performance comparable
to that of the ML algorithm shown in Figure 5. The results for 128-QAM are shown
in Figures 11 and 12 for p = 1 and p = 2 respectively. When p = 1 there is a
performance loss noticeable for lower SNRs and small vector lengths. For p = 2 the
performance is comparable to that of the ML algorithm, shown in Figure 6. The
results for 256-QAM are shown in Figures 13 and 14 for p = 2 and p = 3 respectively.
When p = 2 there is a performance loss noticeable mainly at small vector lengths.
For p = 3 the performance is again comparable to that of the ML algorithm, shown

in Figure 7.
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Fig. 8. Suboptimal ML Estimator Results for 32-QAM, p =0
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CHAPTER III

POWER LAW PHASE ESTIMATION

The purpose of this chapter is to examine the performance of the power law (PL) phase
estimator when it is applied to the high order QAM constellations under consideration
in this work. 1t is well known that the power law is a simple algorithm which produces
good estimates when applied to PSK constellations. However, as shown in [9], the
algorithm performs poorly for QAM constellations. This poor performance is due
mainly to the effects of self-noise, or noise introduced by the transmitted sequence m
itself, independent of the AWGN.

The power law estimate is derived from the log-likelihood function by letting
4 — 0. The resulting estimate does not depend on v, so this parameter does not need

to be known or estimated as with the ML estimate.

A. Derivation of the Power Law Estimate

A derivation of the PL estimate is given in [9], and is repeated here in more detail
for completeness. To derive the power law estimate we begin with the log-likelihood

function, which gives the ML estimate 6 as the value of 8 that maximizes

max L(r|6) = ZlnEc[exp( ke — al))

=i

- Z In B¢ [exp(—7- (Ir(B)? = 2Re{r(k)e"e™} + |af?))]

=
>

¢ K (3.1
In E¢ exp( —7 - (=2Re{r(k)ci"e™} + | )} -'g’ﬂ?'(k)lz

k=1
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The summation on the far right is a constant with respect to 8, and can be omitted.

Thus we can obtain the ML estimate by maximizing
max L'(r Z Inl(r | 6) (3.2)
where
Ur | 0) = Belexp(y - (r(k)ei™e™ + r(k) e’ = |ei}?))]. (3.3)
We can now expand {(r | 9) into a power series

(el 0)= Eeft+ 5 (3 (rkee™ 4 rlk) e = lef?) "]
m=1

=1+ Ee[ X am Y ¥ Almn ) (Bee P (kY ) (1))
m= n=0 n’=0

o m m— . (3.4)

=1+ ZVMZ Z A m n. n/)r(l,)" k)’" —j(n—n") Ee { m-n un-n]

=1 n=0 n'=0

where A(m,n,n') = ﬁ{% The first term along with all other terms for which
n = n' combine to form the phase independent part of I(r | 8), which converges to 1
as v — 0. Hence the phase dependent part of {(r | §) is given by
ly(r | 0) = Z 7mz z A(m,n,n')r(k) r(k )-n —i(n=n")6 [ -nciamfn']l
m=1 =0 g
n'#n (3.5)

1t is easily shown that for constellations that are invariant under rotation of

2r/P,
Elere™) =0 for p—gq¢ {0,P,2P,...}, (3.6)

hence the terms in (3.5) are nonzero only if n — n’ € {0,P,2P,...}. For M-PSK
constellations P = M, but for the QAM constellations considered in this work P = 4.

The function ly(r | ) is dominated by the nonzero term in (3.5) for which m-is
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smallest. This occurs for m = P, and hence we have
K P
Lo(r | 6) = Zln(l + %(T(k)PE[C,,-P]e_JPﬂ + 7’(k)*PE[c‘_P]eJP9)) as 70
5 x _
= TJ—!RE[E[C.-‘P]Z:IT(I::)PE"M]. (3.7
This is the log-likelihood function for vanishingly small v, and it is maximized for
N 1 K
Opr, = P8 (E[c,-"P] ’g t(L)P) (3.8)
Clearly this estimate is much simpler to implement than the ML estimate. The term
E[ei*F] is a constant which lies on the negative real axis for the constellations under
consideration. There is no need to maximize a nonlinear function, and a new estimate
can easily be produced for each signalling interval using information from the previous
interval.

Figures 15 and 16 give an indication of how the algorithm works. Figure 15 shows
the effects of raising the points of the 256-QAM constellation to the 4-th power, and
then multiplying by a negative constant. The result of this transform is a collection
of 64 distinct points, since four signal points in the original constellation are mapped
to a single point in the transformed set. The points along the positive real axis in
Figure 15 correspond to the signal points in the original constellation which lie along
the diagonal lines y = 2. The transformed set is clearly biased in the direction of
these points. Figure 16 shows the results of performing the same transform on the
256-QAM constellation with a phase offset of # = x/16. The resulting pattern has
been rotated by 7/4 or 40, and is therefore biased in the direction of ¢/*, From this
illustration it can be surmised that the signal points which lie on or near the positive
real axis in figure 15 are good indicators of # since they tend to drive the summation

in (3.8) in the direction of €. Signal points which lie farther off the real axis or
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in the left half of the plane are more likely to introduce error (self-noise) into the
estimate. An algorithm which attempts to exploit these properties will be discussed
later in this chapter.

In [9] an approximation to the MSE performance of épL for moderate to high

is given as
-
G oy T E (3.9)
where
3112 (] B[] P=1
B, = ZlellBle™ ““lgﬁﬂal Iy
o _ ABFENH ~ B - e, O
2 = .

4P?|Elc] ]}

The two terms in (3.9) correspond to effects of additive noise and self-noise respec-
tively. For any M-PSK constellation, B; = 1 and B; = 0, indicating that there is no
self-noise present and that o;,, ~ 04, the CRB. Hence under conditions of moderate
to high SNR for PSK constellations the power law produces a good estimate. For
QAM constellations, however, the self-noise term tends to dominate.

Table VI gives the values for B, and B, for the constellations considered in this
work. When it is taken into account that the 1/2v factor which multiplies By can be
on the order of 1072 to 10~* for typical SNRs, it is clear that the effects of self-noise
tend to dominate the performance of the estimate.

It is also interesting to note that the ratio /3, : B, is roughly half as big for the
cross constellations as it is for the square constellations. This would indicate that the
effects of self-noise are of greater significance for cross constellations than for square
ones. This is due to the fact that the cross constellations do not have proportionately
as many of the high-energy signal points which tend to produce better estimates of

6, and which introduce less self-noise.
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Fig. 15. The 256-QAM Constellation Raised to the 4-th Power, Multiplied by —1



35

2 ; t £ ; s ;
% 4 0 1 2 3 4 5

Fig. 16. The 256-QAM Constellation Rotated § = /4 and Raised to the 4-th Power,
Multiplied by —1
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Table VI. Additive and Self-Noise Coefficients

Constellation B, B,

32-QAM 52.6316 | 3.1413
64-QAM 5.8081 | 0.1674
128-QAM | 62.0675 | 3.7929
256-QAM 6.2685 | 0.2019

1. Simulation Results for the PL Algorithm

Simulations were run for the PL algorithm for 10,000 iterations. Figures 17 through
20 show the simulation results for the four constellations, along with the CRB. The
approximation ag” is plotted only for the higher SNRs simulated because the curves
for the lower and higher SNRs fall very close together.  This algorithm clearly does
not perform well enough to be used for rapid phase estimation for the constellations
considered here. The next section will discuss a way to improve the performance of

the power law estimator.

B. The Power Law with Thresholding

In some cases it is possible to produce a more accurate estimate than bpp, by omitting
some terms from the summation in (3.8). As stated in the previous section, some
signal points in the constellations tend to be detrimental to the accuracy of the
estimate épl,, while other points introduce less self-noise and tend to help the accuracy
of Op,. It would seem desirable to devise a method to produce an estimate using only
the information at the receiver that tends to produce a more accurate estimate. Since

the most beneficial signal points lie towards the corners of the constellation, a simple
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way to partially achieve this goal is to introduce a threshold, T. Any received signals

for which |r(k)| > T will be used in estimating the phase offset, and the rest will

not. We define C” = {c/} as the subset of C containing the N’ signal points that lie

outside the circle of radius T' centered at the origin. The new estimate is given by
Oprr = %arg (E[c"”] yor '<k)”> (3.11)

k=1

where ' = {r'(k)} is the vector containing all received signals for which [r(k)| > T,

and K’ is the number of symbols in r'.

Under conditions of high SNR we can assume that the receiver perfectly detects
the symbols which correspond to transmission of a signal point from €. Using this
assumption we can derive an approximation to the performance of ﬁpu based on the
approximation given in (3.9). If we assume that at least one symbol from C’ has been

transmitted the approximate error variance is

o 1 B 9
~ BT (27 + B (3.12)
where E[K'] = K - E[P(m(k) € C')] = K%, v = HEB = Hlelly and B} and B

are the constants defined in (3.10) calculated for C'. Since the constellations have

been normalized we can write the approximation as

’ /
ot~ o (s 5 1)
If no symbols from C’ are detected at the receiver, an estimate must be produced
based on no information. The error §— in this case is uniformly distributed along the
interval (—=/4,7/4). Therefore the variance for this case is o3 = 72/48. Lo obtain
the overall approximate performance we take the expected value over the two cases of
no symbols from C' detected and at least one symbol from C’ detected. If we let P ‘

be the probability that no symbols from C’ are detected, the resulting approximation
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is given as

o = (1~ P)ol+ Pyl

Grur
_wn\ K , _wnK_2
_{y_(¥=N N B p) (NN
N N'K \27E[| ] N 48" (3.14)

Since (3.14) is an approximation for the case of no errors in detecting symbols

from C’, it can be expected to be more accurate when few detection errors are made.
Tor this reason it should be evaluated at values of T' that result in fewer detection
errors. A set of reasonable threshold values at which to evaluate (3.14) is T = jc—‘liy—‘ﬂl
for { =1,2,...,L —1, which can be easily obtained using values listed in Tables II

through V.

1. Simulation Results for the PLT Algorithm

The threshold value that produces the best performance for a particular consteliation
depends on the vector length. For instance, the threshold which minimizes the MSE
for a vector length of 100 symbols may not be the same as the best threshold for 300
symbols. In this work the vector length at which the performance is optimized is 300
symbols. However, the optimal threshold for 100 symbols was found to differ only
stightly from that of 300 symbols.

Simulations were run for the PLT algorithm for 10,000 iterations. Figure 21
shows the performance of the PLT algorithm versus T for the 32-QAM constellation,
as well as Ugnr at appropriate values of T'. The difference between the approximation
and the simulation results is due mainly to the effect of detection errors. According
to this graph the threshold that minimizes the MSE for K = 300 is about 7" = 1.25.
Figure 22 shows the performance of the PLT versus K and the approximation for

T = 1.25. Figure 23 shows the performance of the PLT as well as the CRB and
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1 oximation o3 .
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Figures 24 through 32 show similar graphs for the other
constellations. These graphs indicate that the optimal threshold values are about
T = 1.45 for 64-QAM, T = 1.40 for 128-QAM, and T = 1.50 for 256-QAM.

1t is interesting to note that for 64-QAM when 1" = 1.45, C' contains only the
corner points of the constellation. The performance is very good at this threshold
value because no self-noise is introduced unless detection errors occur. Ior the 256-
QAM constellation, inclusion of only the corner points does not result in the best
performance for I = 300 because the probability of receiving useful phase information
is too small. The best threshold for this case is one that includes points which
introduce some self-noise, but at the same time provide the receiver with more phase

information.
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Power Law Performance vs. Threshold for 32-QAM, K=300 Symbols
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Fig. 21. PLT Algorithm Performance vs. Threshold for 32-QAM, K=300 Symbols
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Power Law Estimation Performance for 32-QAM, Threshold=1.25
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Fig. 22. PLT Algorithm Performance for 32-QAM, T=1.25



MSE in deg"2

Power Law Estimation Performance for 32-QAM, Threshold=1.25

46

|+ .. Simulation Resulis for:

X Simulation Re:

1

Fig.

1 1 1 1
100 200 300 400 500
Vector Length

23. PLT Algorithm Performance for 32-QAM and CRB, T=1

600

25



47

Power Law Performance vs. Threshold for 64-QAM, K=300 Symbols
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Fig. 24. PLT Algorithm Performance vs. Threshold for 64-QAM, K=300 Symbols
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Power Law Estimation Performance for 64-QAM, Threshold=1.45
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. Fig. 25. PLT Algorithm Performance for 64-QAM, T=1.45
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Power Law Estimation Performance for 64-QAM, Threshold=1.45
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Fig. 26. PLT Algorithm Performance for 64-QAM and CRB, T=1.45
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Power Law Performance vs. Threshold for 128-QAM, K=300 Symbols
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Fig. 27. PLT Algorithm Performance vs. Threshold for 128-QAM, K=300 Symbols
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Power Law Estimation Performance for 128-QAM, Threshold=1.40
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Fig. 28. PLT Algorithm Performance for 128-QAM, T=1.40
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Power Law Estimation Performance for 128-QAM, Threshold=1.40
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Fig. 29. PLT Algorithm Performance for 128-QAM and CRB, T=1.40



53

, Power Law Performance vs. Threshold for 256~QAM, K=300 Symbols
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Fig. 30. PLT Algorithm Performance vs. Threshold for 256-QAM, K=300 Symbols
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CHAPTER IV

GROUPING ALGORITHM FOR CROSS CONSTELLATIONS
The purpose of this chapter is to briefly describe and evaluate an algorithm that was
motivated by the success of thresholding in improving the performance of the power
law described in Chapter I11. This algorithm is only applicable to cross constellations,
and it attempts to reduce or eliminate the effects of self-noise which are inevitably
introduced when using the PLT algorithm on cross constellations.

If we examine the results for the PLT algorithm for the 32-QAM and 128-QAM
constellations we can see that the best performance is achieved when the algorithm
attempts to detect only the signals corresponding to the outermost eight symbols.
Choosing a value of T' such that C” consists of these eight points results in the smallest
value for B;. However, the self-noise still tends to be the dominani factor for large

K.

A. Derivation of the Grouping Algorithm

First, we partition the eight point constellation C’ into twa subconstellations C; and
Cj, such that each subset forms a PSK constellation as shown in Figure 33. 1f at this
point the received symbols r’ could be classified into subsets ry and r}, corresponding
to transmitted symbols from C] or €}, either subset could be used in equation (3.11)
to produce a better estimate than épLT, In this case we have B{ = 1, B} = 0, and
N’ = 4. Elimination c‘uf the self noise in this way greatly enhances the accuracy of the
estimate.

Further performance gains are possible, especially at smaller values of X, since

only part of the phase information available has been used thus far. In the limit of
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Partitioning C' intoTwo 4-PSK Subconstellations
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Fig. 33. C’ for 128-QAM Partitioned into Two 4-PSK Subconstellations
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high SNR. for any 4-PSK constellation we have

K’ K

B Y Ry =S e
k=1 k=1 (4.1)
= K'|c}|Be’.

Since this sum vector always points in the direction of e*f regardless of the original
constellation, we can add two such vectors produced from symbols corresponding to
different PSK constellations and produce a larger vector which points in the direction
of ¢/1?. Hence an estimate can be produced which uses all of the phase information

available. This estimate is given as
1 K} i
A 4 N =4
B = s (EL6,7 )X A0 + Bl k), («2)
k=t k=1

where K| and K7 are the number if received symbols in rj and rj respectively. The
performance of this estimate can be approximated using (3.14) using the values B} =
1, By = 0,and N’ =8. It can be shown that in the limit of high SNR this algorithm

makes optimal use of the phase information in r'.

1. Implementation of the Grouping Algorithm

Although the formula for the estimate is known, there is also the problem of classifying
the symbols in ' into ry and rj. This task can be simplified by first taking the fourth
power of the received symbols. Assuming no detection errors are made, the symbols
in v will map into two regions on the complex plane, as illustrated in Figure 34.
Figure 35 shows the effect of a phase offset of § = 7 /16 radians, which results in a
rotation of 7/4 radians when the fourth power is taken.

Once the fourth power is taken the problem involves locating the two distinct

groups of points on the plane, and determining which group each point belongs to.
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Fig. 34. The Fourth Power of Threshold Detected Data for 128-QAM, 0 = 0
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The algorithn used to perform this task is a form of the Linde-Buzo-Gray (LBG)
algorithm commonly used in training vector quantizers [11). The LBG algorithm is
an ilerative algorithm that effectively partitions the symbols in r’ into two groups
such that the sum of the variance of the symbols in the groups is minimized.

Let Y) and Y, represent the location of the centroid of the two groups of points
in the plane. These values can initially be set to any two distinct points, and for the
program described in this work they are initially set to equal the position of the first
two threshold-detected symbols. The algorithm that classifies the symbols into the

groups ry and ry is as follows:

1. Place each unclassified symbol into the nearest

group based on the distance to the centroids

2. Recompute the centroids based on the new groupings,
i=Fand ;=7

3. Reclassify all symbols into the nearest group
based on the distance to the centroids

4. If any symbols changed groups, go to step 2

Figure 36 shows the results of performing this procedure on the data shown in Figure

34. Once the algorithm has converged, an estimate is produced using equation (4.2).

2. Simulation Results for the Grouping Algorithm

Simulations were run for the grouping algorithm for 1500 iterations. Figures 37 and 38
show the simulation results for 32-QAM and 128-QAM respectively. Detection errors

hurt the performance of the algorithm for both constellations, but the effect of these
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errors is more pronounced for 32-QAM. The performance for 128-QAM comes closer
to the approximation. The difference belween the simulation and approximation at
the smaller vector lengths in Figure 38 is due to the fact that approximation does
not take into account the case when symbols from only one of the subconstellations
C! have been detected.

Even though the grouping algorithm failed to meet the expectations set forth by
the approximation, it did achieve the goal of improving upon the accuracy of the PLT
algorithm. Furthermore it indicates that algoritbhms which rely on decisions about
the transmitted sequence can be feasible for phase acquisition. This type of decision

based algorithm will be explored more fully in the next chapter.



MSE in deg”2

Grouping Algorithm Performance for

32-QAM

10 7
10°
10’
FrevbeLy :

+++#+‘+;++++{_;++++ :

‘0‘? I 1 41 1 i
0 100 200 300 400 500
Vector Length

Fig. 37. Grouping Algorithm Performance for 32-QAM

64

600



MSE in degn2

65

Grouping Algorithm Results for 128-QAM
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CHAPTER V

TRELLIS ALGORITHM PHASE ESTIMATION
The purpose of this chapter is to evaluate the performance of an algorithm which
uses the idea of a trellis and the Viterbi algorithm to produce a phase estimate. The
algorithm is based on one presented by Ungerboeck in (7] for carrier phase tracking.
Changes have been made to the algorithm to make it more suitable for fast carrier
acquisition, and to allow its use for large constellations. It will be shown that for
high SNR and large I the algorithm acts as a decision-directed estimator, which is

known to perform very well for high SNR.

A. Derivation of the Trellis Algorithm

In Chapter 11 a derivation for the ML estimate for the case of 7y — 0 was given. Here
a derivation is given for the case of ¥ — co. Again, the ML estimate is the value of

8 which maximizes the log-likelihood function
K X 2
max Lr|0) = k};ln E¢ [exp(—‘y- [r(k)c"s - c,| )] (5.1)

As v — oo we have r(k) — m(k)e®, so in the limit r(k) = ¢;xe?® for some j €
{1,2,...,N}. All terms in E¢[-] for which ¢; # ¢; become zero, leaving as the log-

likelihood function
K " )
Loo(r 10) = =7 3 [r(k)e™ — oy
k=1

K

= =1 Y (In(B)? ~ 2Refr(k)esue ™) + ejal?) (5.2)
k=1

= 27Re{lz\ r(k‘)c]'vk'c"oil + K

k=1
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where K, includes all terms that do not depend on 6. This form of the log-likelihood
function is maximized for
P
0o = arg (Z 7-(/.-,)%;). (5.3)
k=1
In cases where the sequence {c;;} is known, such as when a preamble is used, f, is a
good estimate, especially at higher SNR. When the transmitted sequence is unknown,
however, it must be estimated. For this case the estimate becomes »
N K
9pp = arg(kz; r(k)éz) (5.4)
where & is the estimate of the transmitted symbol for the k-th interval. This is the
decision-directed phase estimate which is commonly used for carrier phase tracking
after acquisition. When the phase offset is completely unknown, symbol-by-symbo}
estimation of the transmitted data is impossible. Under certain conditions, however,
sequence decisions can be made well enough to produce an accurate phase estimate.
Consider the problem of joint estimation of {¢} and §. Let {§;} be a sequence

of phase estimates. From Bayes theorem we have

F&d {0 1 r(R) o F(r(k) | (&}, (64)), (55)

since all sequences {¢&)} are equally likely and {6} is assumed to be uniformly

distributed. The log-likelihood function to be maximized is given by
N K " 2
L (k) Ha {0 = =y 3 [rtkye ™ — & (5.6)
k=1
Hence to maximize the log-likelihood function we want to minimize the metric
. LS . 2
J{ah b)) = 3 |rtk)e ™ — & (3.7)
k=1

In this work the Viterbi algorithm is used to attempt to produce the sequence of
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Fig. 39. A Four State Fully Interconnected Trellis .

estimates {&]}, and the sequence {0} is produced using equation (5.4).
Let each symbol ¢, in the constellation C correspond to a state I, in a trellis. I,
at the k-th level of the trellis will be referred to as I, 4. Since the symbols are i.i.d.
every state in the trellis is connected to every state iu the next level, as shown in
Figure 39 for a simplified four state case. Let each state be associated with a vector
V and a metric M. For trellis state I;x these variables have values of V;; and M, .
The algorithm is initialized using the first received symbol r(1). For each state

1,1 the variables become
Via = r(1)e*

Moy = (Ir(D)] = leel)*.

(58)

Note that the optimal high SNR estimate given in (5.4) based on only the first received
symbol is given by (9,'1 = arg(Vs,1) for some state /1. Also, the state corresponding to

the correct estimate will most likely have the smallest metric M;,;. Hence we choose
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0, = @,fl for the state with the smallest metric M ;.
For all other k the values of V.« and M, depend on the previous level in the
trellis as well as the data 7(k). We define the metric for the transition between state

I, k-1 to state Iy as
A(r(k), cilfupan) = [r(k)e 0o — g f2. (5.9)

This metric is used to determine the survivor paths through the trellis. The total

path metric of a path entering state I, ; from state /,4_, is given by
D{Taet, Teg) = Miemr + d(r (k) | Do), (5.10)

Each state J;x chooses as the survivor the incoming path for which the total path
metric is minimized.

If we let I,y represent the state for which D(Ix—y, 14) is the minimum
incoming path metric, the values assigned to V and M are

Vik = Vi1 + (k)™
(5.11)
M = D(Im g1, Lig)-

The phase estimate at time 4 is given by §; = 0, for the state I, ; with the smallest
metric M.

Assume that at time K the state I, x has the smallest total path metric M i

The phase estimate at this time can be written as

k=1

O = Mg(i r(k)a;) (5.12)

where ¢ represents the values of ¢; for the nodes I, that the minimum metric path
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passed through. The value of the path metric at this node is given by
K . 2
Mo i =3 [r(k)e™ — &
k=1 o (5.13)
= J({&}: {0
Hence if the Viterbi algorithm produces the correct sequence of estimates &, the

appropriate metric is minimized and x = dpp.

1. Reducing Computational Load for the Trellis Algorithm

A constellation with order N will give rise to a trellis with N states. If a trellis
has N states then the transition from one level to the next requires N? calculations
of the metric given in equation (5.10), as well as N2 comparisons to determine the
survivor paths. Furthermore the 7/2 phase ambiguity of the constellations results
in redundancy in the trellis states. For every symbol ¢, € C there are states
which correspond to symbols ¢,e’ for m € {0,1,2,3}. Since received a sequence
{r(1),7(2),-...} is indistinguishable from a sequence {r(1)e’#,r(2)e’s",...} the
trellis will always have at least four states with identical metrics M, corresponding
to the estimates é~+ . Only one estimate is needed, so calculating four is inefficient.

To eliminate some of the redundancy we define the constellation @ = {4} to be
the symbols from C which lie in the first quadrant. If we make the assumption that

0 € [0,7/2) then we can think of the received sequence in terms of the symbols ¢;.
(k) = ¢:ie?®*F)  for some ¢ and m. (5.14)

The received symbols are mapped into the first quadrant by taking the angle modulus

7 /2 using the transform

(k) = [r(B ) med £ (515)
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The trellis algorithm can now be applied using the smaller constellation Q and the
transformed received data ry = {r;(k)}, with modifications to the distance metric to
account for the effects of the modulus.

Since the state I, ;_; for the modified algorithm corresponds to four states in the
original a]éorithm, the state I, must consider four possible metrics when choosing

the incoming path. The metric for the path entering I x from I, 5_, is

5 mw
D'(Ispery Iup) = My g i r(k O 10+ —)|.
(Zoe=1, 1) 5,61 +m5§g‘11l'12v3} d(r(k), g0 | a1 + 5 ) )
(5.16)
The case for m = 2 will never produce the minimumn metric and does not need to be
considered, and a value of m = —1 is equivalent to m = 3, so the metric can now be

written as

mn

‘. _ B A
Dllis Tek) = Mo+ min,  Nd(r(k), ge | O + =5

)|

(5.17)
The three possible incoming metrics correspond ta three vectors ry (k)ej(éhk—‘*mT"). I
 is the value of m that minimizes D'(1, 41, I.x) the values assigned to the variables

are

Vik = Voo + 7‘1(’»‘)\‘3_“6"“”%1)‘):'
(5.18)
Mo = D'(Isps, Lip)-

This modified algorithm produces an estimate with the same accuracy as before
with a significant reduction in the computational load. It requires the calculation
of three metrics for each state, and the trellis contains N/4 states, therefore EN?
metrics and comparisons are required for each transition between levels. The compu-
tational load can still be considerable for large constellations, however. For example,

%(256)2 = 12288 metrics to compute for every level in the trellis.
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2. Thresholding for the Trellis Algorithm

It will be shown in the results that the algorithm performs poorly without further
modifications. Decision errors early in the trellis can cause the path corresponding
to incorrect decisions to be chosen as the survivor path instead of the correct path.
When this happens it is unlikely that the algorithm will recover, and the estimate
produced will not be accurate.

Better performance can be achieved with the use of a threshold. As in chapter
I1I we introduce a threshold T' and form the vector r' which consists of all r(k) for
which |r(k){ > T. This allows the use of a subset of the constellation @, resulting
in further reduction in the computational load. Unlike in chapter I1I, however, we
assume that some detection errors will be made, and design the algorithm to use this
incorrectly detected data in the estimate. To do this we define Q' to be the symbols
{q; € Q) such that |g;| > T'~ % where d,, is the minimum distance between symbols
in Q. This choice of Q' places an upper bound on the probability that a symbol in r'
does not correspond to a state in the trellis. For the lower SNRs considered in this
work the probability of this type of thresholding error will be less than about 1072, If
we let Ng: represent the number of symbols in @', then the algorithm requires %sz
metrics and comparisons for each transition between levels. Also fewer transitions
are required since the algorithin only moves to the next level when a symbol {rom r’
is detecled.

An approximation to the performance of this algorithm can be derived in a similar
way to equation (3.14) based on the CRB. Assuming that there are no unmanageabie

detection errors and no symbol decision errors the resulting approximation for the
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thresholded trellis algorithm is given by
o 1o (N=MY\ N (1 (NN
brr N NeK \2vE[|¢|] N 18

where Ny is the number of symbols in C' whose magnitude is greater than 7.

(5.19)

3. Results for the Trellis Algorithm

Simulations for the trellis algorithm were run for 10,000 iterations. Figures 40 and
41 show the simulation results and the approximation ag” versus T for 32-QAM.
Figure 40 shows that the algorithm performs poorly at most threshold values for the
lower SNR's, as well as some lower threshold values for the higher SNR’s. This poor
performance is due mainly to decision errors. There is a threshold value of about
T = 1.30 at which the performance for both the low and high SNR is acceptable.
Figure 41 shows the performance versus K at 7' = 1.30.

Figures 42 and 43 show similar graphs for 64-QAM. From Figure 42 we see that
in this case there is a choice of acceptable thresholds. Letting 7" = 1.2 results in
a trellis with eight states. Letting I' = 1.3 results in a trellis with five states, but
also results in a small performance loss. Choosing the higher threshold reduces the
amount of computation required to produce the estimate by about 60 percent. In
cases like this the higher threshold is preferred.

Figures 44 andv45 show the simulation results and agn for 128-QAM. Figure 44
indicates that an appropriate choice for the threshold is a value of about T' = 1.30,
which results in a ten-state trellis.

Figures 46 and 47 show the simulation results and a'g" for 256-QAM. Figure 46
indicates that an appropriate choice for the threshold is a value of about 7" = 1.40,

which results in a four-state trellis.
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Fig. 40. Trellis Algorithm Performance and a‘g” vs T for 32-QAM, K = 300 Symbols
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Fig. 41. Trellis Algorithm Performance and a;ﬂ vs K for 32-QAM
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Trellis Algorithm Performance vs. Threshold for 128-QAM, K=300 Symbols
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Fig. 44. Trellis Algorithm Performance and o'gﬂ_ vs T for 128-QAM. K = 300 Symbols



MSE in degr2

9

Trellis Aigerithm Performance for 128-QAM, Threshold=1.30

CRBfor25d8 -

¢

10 L
0 100 200

i ) i
300 400 500 600
Vector Length

Fig. 45. Trellis Algorithm Performance and o'gTT vs K for 128-QAM
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Trellis Algorithm Performance vs. Threshold for 256-QAM, K=300 Symbols

+ Approximation for 33dB

% Simulatiors Resutts for 3348 -

MSE in degnh2

1 —l
0.9 1 1.1 12 1.3 14 15 16
Threshold

Fig. 46. Trellis Algorithm Performance and UEZTT vs T for 256-QAM, K "= 300 Symbols
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Trellis Algorithm Performance for 256-QAM, Threshold=1.40
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Fig. 47. Trellis Algorithm Performance and ‘73,”. vs K for 256-QAM
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B. A Suboptimal Version of the Trellis Algorithin

A further reduction in complexity can be achieved with a small loss in performance if
we apply the trellis algorithm to the fourth power of the received data. Let Q4 = {¢;'}
and rq = {r(k)*}. The algorithm can be applied using the simpler metric given in
equation (5.10), with the variables M and V taking values described in (5.11). The

estimate for each state I, 4 is given by
6 k= a.l’g(V k)- ‘ (5.20)
5, s, .

Thresholding is again applied to reduce complexity and achieve better performance.
The use of the euclidean distance metric on the transformed data results in a higher
probability of decision errors, which causes some degradation in performance. How-
ever, since the simpler metric can be used this algorithm requires about one third of
the computation to produce an estimate.

In the limit of high SNR, the estimate given by the path with the minimum

metric is

K
O = —arg (Z r(k)"c;;")

k=1

arg (ﬁ:(%e”')‘%“)

k=1

K
arg (ej‘” Z ex }3)
k=1

N

(5.21)

ENEERN

=0.

Hence in the limit of high SNR the algorithm produces a perfect estimate.
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1. Results for the Suboptimal Trellis Algorithm

Simulations for the suboptimal trellis algorithm were run for 10,000 iterations. The
results are shown in Figures 48 through 55. Figures 48, 50, 52, and 54 show the
performance of the suboptimal trellis algorithm versus T for the four constellations.
A value of T = 1.325 was chosen for 32-QAM to provide better overall performance,
still resulting in a four-state trellis. The other threshold values did not change from
before. Figures 49, 51, 53, and 55 show the performance versus K for the four

constellations at the appropriate values of T'.
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Suboptimal Trellis Algorithm Performance for 32-QAM, K=300 Symbols
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Fig. 48. Suboptimal Trellis Algorithm Performance vs T' for 32-QAM, K = 300
Symbols
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Suboptimal Trellis Algorithm Performance for 32-QAM, Threshold=1.325
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Fig. 49. Suboptimal Trellis Algorithm Performance vs K for 32-QAM
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Suboptimal Trellis Algorithm Performance for 64-QAM, K=300 Symbols
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Fig. 50. Suboptimal Trellis Algorithm Performance vs T for 64-QAM, K = 300
Symbols
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Suboptimal Trellis Algorithm Performance for 64-QAM, Threshold=1.30
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Fig. 51, Suboptimal Trellis Algorithm Performance vs K for 64-QAM



Suboptimal Trellis Algorithm Performance for 128-QAM, K=300 Symbols
T

88

MSE in deg”2
3

107 .

X

X

T

0.7 0.8

0.9

1
11
Threshold

Fig. 52. Suboptimal Trellis Algorithm Performance vs T for 128-QAM, K = 300

Symbols



MSE in deg”2

Suboptimal Trellis Algorithm for 128-QAM, Threshold=1.30

89

AN

L I L
0 100 200 300 400 500
Vector Length

Fig. 53. Suboptimal Trellis Algorithm Performance vs K for 128-QAM

600



90

Suboptimal Trellis Algorithm Performance for 256-QAM, K=300 Symbols
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Fig. 54. Suboptimal Trellis Algorithm Performance vs T for 256-QAM, K = 300
Symbols
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Suboptimal Trellis Algorithm Performance for 256-QAM, Threshold=1.40
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Tig. 55. Suboptimal Trellis Algorithm Performance vs K for 256-QAM
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CHAPTER VI

CONCLUSION
Seven carrier-phase estimation algorithms for QAM constellations have been derived
and evaluated in this work. Most of them were found to be inadequate in some way
for the purpose of rapid carrier-phase acquisition.

The ML algorithm discussed in Chapter II was found to perform well relative to
the CRB. The complexity of the algorithm, however, makes it an impractical solution
for virtually all applications requiring the use of large QAM signal sets. The need
to estimate the SNR is another drawback. In an efforl to produce a less complex
estimate using ML techniques, the SML algorithm was derived. It was found that
the SML algorithm could also produce a good estimate, but was still too complex to
be useful.

Chapter I1I discussed the PL estimator, which is obtained by maximizing the low
SNR limit of the log-likelihood function. This estimate is easily computed, but was
found to have very poor performance relative to the CRB. The PLT algorithm used a
threshold along with the PL algorithm to produce an estimate using a subset of the
received data. For all of the constellations considered, the ervor performance of the
PLT estimate was better than that of the PL estimate for an appropriate threshold
value. However, in most cases the performance was still not good enough to make
the PLT algorithm useful. The exception is the case of the 64-QAM constellation, for
which the mean-squared error performance of the PLT estimate comes within one to
two orders of magnitude of the CRB, for a vector length of about 150 symbols.

Chapter 1V briefly described an algorithm which is designed for use with cross
constellations. It uses the LBG algorithm to attempt to make decisions on a thresh-

olded subset of the received symbols. Although this algorithm performed better
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than the PLT algorithm, its reliance on the iterative LBG algorithm makes it less
attractive.

In Chapter V an algorithm based on the idea of a trellis was discussed. This
algorithm used the Viterbi algorithm to make decisions on a thresholded subset of
the received symbols, which allows a simple estimate to be produced. This algorithm
was shown to perform well for all constellations, with appropriate choice of threshold
values. A modified version of the trellis algorithm is presented, which performs
operations on the fourth power of the ;eceived symbols. This allows use of a simpler
metric and reduces the computation required by two-thirds. Both the trellis and
modified trellis algorithms were found to be useful and practical for rapid carrier-

phase estimation for all of the constellations considered in this work.
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