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ABSTRACT 

Rapid Carrier Phase Acquisition for 

Large QAM Signal Constellations. (December 1996) 

Jason Dillard Preston, B. S. Electrical Engineering, Lamar University; 

B. S. Mathematics, I. amar University 

Chair of Advisory Committee: Dr. Costas N. Georghiades 

This work addresses the problem of rapid carrier-phase acquisition for QAM 

constellations, and specifically for the 32-QAM, 64-QAM, 128-QAM, and 256-QAM 

constellations, operating over an AWGN channel. It is assumed that there is no 

frequency or symbol timing error. Seven algorithms in all are derived and tested. 

The first is the maximum-likelihood (ML) estimator, which is found to be accurate 

but impractical to implement. A suboptimal ML type estimator is derived from the 

ML algorithm and is found to be simpler but still impractical. The power-law (PL) 

estimator is derived as the low SNR limit of the ML estimator, and is found to be very 

simple, but having poor error performance. A threshold is added to the PL algorithm 

and the performance is improved, but not enough for rapid phase acquisition for 

most cases. An algorithm is derived specifically for use on the cross constellations 

which further improves performance, but this algorithm is superseded by an estimator 

based on a, trellis structure and the Viterbi Algorithm which is developed. I'inally a 

suboptimal version of the trellis algorithm is developed which reduces the complexity 

of the trellis algorithm by two-thirds. Both the trellis and the suboptimal trellis 

algorithm perform well enough for phase acquisition and are simple and practical to 

implemenl, . 
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CHAPTER I 

INTRODUCTION 

The objective of this work is to evaluate the performance of several algorithms for 

rapid carrier phase acquisition for large quadrature amplitude modulation (QAM) 

signal constellations when the data sequence is unknown and the signal is corrupted 

by additive white Gaussian noise (AWGN). It is assumed that there is no intersymbol 

interference and no frequency offset. The constellations considered in this work are 

the 32-QAM (cross), 64-QAM, 128-QAM (cross), and 256-QAM constellations, but 

the algorithms discussed in this work can be applied to other QAM signal sets. 

A. Problem Background 

Burst mode transmission systems, such as time division multiple access (TDMA) and 

slow frequency hopping (FH), are widely used in wireless digital communications [I]. 

The best, performance in terms of error probability is achieved through the use of 

phase-coherent demodulation, which requires an accurate carrier phase reference at 

the receiver [2]. In these types of systems phase estimation for each burst is an 

important design consideration. Although carrier frequency and symbol timing can 

be accurately tracked by using a stable reference at the receiver, and by tracking over 

several bursts, the reference carrier phase tends to drift to such a degree that phase 

estimation is required for each burst [3]. 

Communication system designers have traditionally used a phase-locked loop 

(PI, I, ) as the phase acquisition and tracking mechanism for QAM constellations, but 

this approach leaves much to be desired since the phase acquisition time of PI. L's far 

The journal model is IEEE Transactions on Communications. 



exceeds the time required for optimal phase estimation [3]. The PLL is also subject 

to hang-up, which is the prolonged dwell at large phase errors. For these reasons 

most burst mode system designs do not use PLL's for carrier synchronization. 

One prevalent phase acquisition technique which has been used in burst mode 

systems involves the use of a preamble, or a predetermined sequence of symbols, at 

the beginning of each burst to allow the receiver to use a priori knowledge of the 

transmitted sequence to estimate the phase [l]. While this scheme performs well 

and is very simple to implement, it has the undesirable property that energy and 

bandwidth are wasted on the preamble preceding each burst. 

Another powerful technique which has been used in burst mode coinmunication 

systems is to treat the carrier phase 0 as an unknown and nonrandom parameter, 

and estimate it using some parameter estimation algorithm [0] [5] [6] [7] [8]. These 

algorithms are implemented digitally, and produce their estimate using the sampled 

sequence of output from the matched filter receiver. Efficient phase estimation 

algorithms exist for small QAM signal constellations, as well as for M-ary phase 

shift keying (M-PSK) constellations. For example, applications which use M-PSK 

constellations can easily handle the phase estimation problem by use of the M-th 

power algorithm, which is computationally simple and yields good estimates [9]. For 

large QAM constellations, however, many estimation algorithms are so complex that 

they are impractical for virtually all applications, and the M-th power algorithm has 

poor performance, especially for cross constellations. 

This work will focus on finding practical phase estimation algorithms that per- 

form well for large QAM signal sets, and that do not require a preamble. 



B. Description of Evaluation Methods Used 

The purpose of this work is to derive and evaluate several phase estimation algorithms 

on typical large r/2 rotationally symmetric QAM signal sets. The algorithms rvill be 

implemented for four constellations. These constellations are the 32-QAM, 64-QAM, 

128-QAM, and 256-QAM constellations shown in Figure 1. All of the constellations 

have been normalized to have average energy equal to one. 

Since constellations with difi'ereut sizes will be considered there needs to be a 

common reference for simulation, so that the algoritlun's performance for different 

constellations can be compared in a fair way. This comparison will be based on symbol 

error probability. Figure 2 shows an approximation, or more specifically a tight upper 

bound, to the symbol error probability for the four constellations considered in this 

paper. This approximation is given in [2] as 

P~ — 2 erfc 
( 

37 
2(N — I) 

(1. 1) 

where 7 is the signal-to-noise ratio (SNR) per symbol, and N is the number of symbols 

in the constellation. It is reasonable to assume that, for most applications, the symbol 

error probability will fall between 10 and 10, since this is a practical operating 

condition. The choice of SNR's used for the simulations in this work will be directed 

by this assumption. For instance, the SNR's that give a symbol error probability of 

10 z and 10 s for 32-QAM are about 19dB and 24dB per symbol respectively, hence 

19dB and 24dB will be used as the SNR's when simulating 32-QAM signals. The 

SNR's for the other constellations were chosen in a similar way. Table I shows the 

SNR's used in the simulations for the various constellations. 
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Symbol Error Probability for Various Constellations 

10 

10 

Zl 
lO 

o10 
o. 
I 
0 
I 

LU — 10 0 
Cl 

E 
ro 

10 

:— ::::: 32-. QAM 

-"- 64'-QAM" 

—:: —;;; 128-:. QAM 

~ . . :. 256-QAM 

10 

10 
16 18 20 22 24 26 28 30 32 34 

SNR in dB per Symbol 

Fig. 2. Symbol Error. , Probabilities for Various Constellations 



Table I. SNR's Used in Simulations 

Signal SNR in dB per Symbol 

Constellation Low end High end 

32-QAM 

64-QAM 

128-QAM 

256-QAM 

19 

22 

25 

28 

24 

27 

30 

C. The Cramer-Rao Bound 

In this work the performance of an algorithm will be measured in terms of mean 

squared error with respect to the true phase offset. The Cramer-Rao bound (CRB) 

provides an objective reference to use in evaluating the algorithms. It is established 

in parameter estimation theory that the CRB is a lower bound on the variance of an 

unbiased estimate [10]. Therefore the phase estimation algorithms can be evaluated 

in terms of how close they come to achieving the CRB. In this section the CRB for 

the phase estimators will be derived. 

Let tl represent the unknown phase offset and let C = (c, ) be the constellation 

containing N symbols. It is assumed that the symbols c; are independent and are 

all equally likely to be transmitted (i. i. d. ). In the k-th symbol interval, the received 

symbol is given by 

r(k) =m(k)e" +n(k), 

where m(k) C C is the transmitted data symbol and n(k) is the complex AWGN 

variable with E(n(k)] = 0 and E[]n(k)] ] = Ns/2. 



To obtain the CRB for any estimator of 0 we must first forin the likelihood 

function 

Ic 

f(r I 0) = II f(r(k) I 0) 
a=1 

Taking the logarithm ive obtain the log-likelihood function 

(1 3) 

L(r 
I 0) = ln f(r I 0) = P In f(r(k) I 

0). 
s=l 

(1. 4) 

The variance of any estimate 0 is bounded by the CRB 

1 
8 — E [~8~I r 0 

] 
' (1 g) 

To simplify the derivation of a useful lower bound we will assume that the estimator 

has prior knowledge of the transmitted sequence m = (m(k)). This is an optimistic 

assumption since the estimators derived in this work assume no prior knowledge of 

m. The resulting expression will still be a lower bound for cr-. We can now form the 

log-likelihood function in terms of the joint Gaussian density. 

r [(k)- (k)"s['i 
L(r I 0) = gin exp(— 

Np ( N 

1 1 = 1C ln + — Q — r(k) — m(k)e" 
[ ~zap Np „, 

= IC ln — — P (Ir(k)I — 2' [r(k)m(k)ei ] + Im(k)I ) ~Np Np „, 
K 

+ — Q 2Re (r(k)m(k)e'P] 

R 
= If, + — g (r (k)m(k)*e ' + r(k)'m(k)e" ), Np 4 

(1 6) 

where Ei includes all terms which do not depend on 0. We can now take the first 



and second partial derivatives with respect to 8, 

&1L(r ] iI) 1 

0 Ns 
= — P ( — j r(k)m(k)'e ' +j r(k)*m(k)e' ) (1 7) 

II'L( 
] ll) 1 

&IP N „, = — g ( — r(k)m(k)*e ' — r(k)'m(k)e ) 
r& 

= — — Q (r(k)m(k)*e ss 4- r(k)*m(k)e~s), 
Np 

(1. 8) 

We now take the expected value, using thc fact that, E[r(k)] = m(k)e's and E[r(k)*] 

m(k)*e ~o 

E 
[ ] 

= — — P (E [r(k)m(k)'e ' 
] + E [r(k)*m(k)e )) 

] ci L(r ] tl)l 1 

r& 

(E [r(k)] m(k)*e " + E [r(k)*] m(k)e~ ) 
r& 

Q (]m(k) ] + ]m(k) ]') 
Np 

I& 

= — — Q ]m(k)]'. 
s s=i 

(1. 9) 

If we now note that for large IC, K Qz, ]m(k)] = E[]c;[ ] we can form the CRB as 

a function of SNR and K. 

o. - ) 
~ IC( 

& g~, Im(k)]s) 

1 

Ro 

1 

2ICp 
' 

(1. 10) 

where p = E[]c, ]s]/Ns is the SNR. The inverse proportionality of p and os expressed 

in (1. 10) is common in phase estimation. 



CHAPTER II 

MAXIMUM LII&ELIHOOD PHASE ESTIMATION 

The purpose of this chapter is to evaluate the performance of the maximum lil&elihood 

(ML) algorithm for phase estimation given an unknown signal sequence. The ML es- 

timate is an important benchmark, since it is well established in parameter estimation 

theory that any ML estimate is asymptotically unbiased and efficient. That is, for an 

arbitrarily large number of observations, r(k), the variance of the ML estimate will 

attain the Cramer-Rao bound. 

A. Derivation of the Maximum Likelihood Estimate 

In ML phase estimation we treat the carrier phase offset 0 as an unknown nonrandom 

variable and estimate it using maximum likelihood techniques [3], [4], [5], [2]. The 

MAP estimate is the value of 0 which maximizes the a posteriori density function 

f(0 [ r) = f(r I 0)f(0) 
f(r) 

(2. 1) 

If there is no prior knowledge of 0 we can assume that f (0) is uniform. Hence the value 

of 0 which maximizes f(8 [ r) is identical to the value of 0 which maximizes f(r 
~ 
0), 

and is therefore the ML estimate. By monotonicity of the logarithm function, the 

ML estimate also maximizes ln f(r ~ 0), which is the log-likelihood function given in 

(1. 4). So to produce the ML estimate 0 we need to ffud the value of 0 that maximizes 

max L(r 
( 0) = ln f(r ] 0) = P ln f(r(1") 

( 
0). 

x=1 
(zk2) 

At this point we cannot assume the receiver has any knowledge of the transmitted 

symbol sequence m. Instead we assume that the signals in the constellation C are all 
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equally likely to be transmitted, and take the expected value. 

f(r(&) I 0) = Ec[f(r(&) I 0, 1 )I 

Jv 

Qf(r(k) I0, c)p(~) 

N 

f( (k) I0, ~) 
i=l 

1 / I 2i 
—, g exp 

( 
— — r(&) e " — c* 

~ ) 
. 

(2 3) 

We can now substitute into (2. 2), realizing that the 1/N term can be omitted since it 

will not affect the maximizat, ion. Hence the ML estimate, 0M', is found by maximizing 

the log-likelihood function 

Ic f iv 

, "" ri')~1=2' ~ IE "r( — ~ i~) 
k=1 ~=1 

(2. 4) 

Explicit solution for a value of 0 which maximizes L(r 
I 0) is impossible, so 0 must 

be obtained by use of numerical methods. Therefore any algorithm that attempts to 

produce an ML estimate using (2. 4) can only claim to produce an estimate that is 

within a certain tolerance of 0Mc. Further complicating the matter is the fact that 

p is actually an unknown parameter which also needs to be estimated. In a, time 

division multiple access system, for example, g could be estimated from symbol error 

rates during previous transmission bursts, assuming the statistics of the noise in the 

channel do not change rapidly. For the purpose of simulating the ML phase estimator, 

however, this work will assume that, the estimator has perfect knowledge of g. 

Since the constellations under consideration in this work are )r/2 rotationally 

symmetric, the log-likelihood function is periodic with period x/2. A phase off'sct of 

0 is indistinguishable from one of 0+ kx/2 for any integer k, unless some knowledge of 

the sequence m is used. Therefore it is suflicient to maximize L(r 
I 0) for 0 F [0, x/2). 
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Fig. 3. A Typical Log-Likelihood F'unction L(r [ 0) for 128-JAM, 0 = 45' 

As shown in Figure 3, L(r [ 0) may have many local maxima. Maximization 

over the entire range requires first a coarse then 0, fine optimization, resulting in 

many evaluations of la(r [ 0) for each estimate. Furthermore, each evaluation requires 

IC logarithm operations, and IC N exponentials, scalar multiplications, complex 

multiplications, and complex norms. For even moderate values of IC, aud N the 

computational load is quite considerable. 

1. Implementation of the ML Algorithm 

In this simulation, ss in all of the simulations described in this work, the vector r is 

generated by randomly choosing a signal from the constellation C, multiplying by en 

where 0 is uniformly distributed on [0, 77/2), and adding the complex AWGN. The 

program used in the simulations for this algorithm performs a coarse optimization in 

the range of [0, 77/2) by evaluating L(r [ 0) at 2' increments. After the approximate 
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location of the maximum has been found the program uses a, second order Newton's 

method algorithm to refine the estimate. After the refined estimate is produced, the 

squared error from the true phase olfset is determined. This procedure is repeated 

for 1000 iterations to obtain an average performance. 

The Newton's method algorithm locates the maximum within a tolerance of 

5 10 " radians, or about 2. 86 10 z degrees. If ive assume the worst case, that is 

the maximum error allowed by the tolerance is introduced by the fine optimization 

algorithm every time an estimate is produced, the squared error introduced is about 

8. 21 10 4 degrees squared. This worst case tolerance error is at least one order 

of magnitude below thc CRB for all values ol' If and q used in the ML estimator 

simulations presented in this work. 

When tl is close to 0 or ii/2 the algorithm may converge on an estimate near 

the opposite end of the range [0, x/2). This is due to the x/2 periodicity of L(r 
~ 
0). 

In these cases, (0 — 0) is not a fair measure of the accuracy of the estimate. The 

measure of squared error used in the simulation is 

= min . 2— (2. 5) 

which takes into account this problem to produce a fair measure of accuracy. 

2. Results for the ML Algoritlim Simulations 

The simulation results for the ML phase estimator are shown in Figures 4, 5, 6, and 7. 

These graphs show the mean squared error of the ML estimate, irz, versus the vector 

length IC. We can see from these figures that the performance of the ML estimate for 



an unknown sequence comes close to achieving the CRB given by (1. 10), which was 

derived for a known sequence. 

B. A Suboptimal Version of the ML Algorithm 

It is possible to significantly reduce the computational complexity of the ML algorithm 

with a relatively small loss in accuracy. We begin by examining (2. 4), and consider 

what is the maximum possible contribution to the innermost summation for any 

particular values of k and i. This maximum contribution is given by 

max exp( — p r(k)e ' — c, 
~ ). e 

(2. 6) 

The maximum occurs when arg(r(k)e rs) = arg(c;), and has a value given by 

I ( 7 
I 

(') "- 
I ) =-v(-» tl (&)I — I~I)') t»»l 

Note that this expression no longer depends on 0, so any signal point cl such that 

~cf ~ 

= ~c;~ will produce the same maximum contribution to the sum. Furthermore, 

this maximum contribution rapidly becomes smaller as (r(k)~ — ~c, ( becomes larger. 

This indicates that most of the sum is made up of terms for which ]r(k)[ — [c;[ is 

small, and that some other terms are much less significant. 

To take advantage of these facts we first partition the constellation C into the L 

subsets, (S~), r which contain the signal points that are at the same distance from 

the origin, or equivalently, that have equal energy. Also, let M~ be the number of 

signal points contained in Sn Let c~ represent the m-th signal point in Sn We can 

now rewrite (2. 4) in terms of the subsets 

K f n Ar( 

rtcI')=2'"[EE w(-» (&) "— '-I)I t'&) 
a=1 I=1 »»»=1 
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ML Estimation Performance for 32-QAM 
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Fig. 4. ML Estimator Results for 32-@AM 
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ML Estimation Performance for 64-QAM 
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Fig. 5. ML Estimator Results for 64-QAM 
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ML Estimation Performance for 128-QAM 
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Fig. 6. ML Estimator Results for 128-QAM 
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ML Estimation Performance for 256-QAM 
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Fig, 7. ML Estimator Results for 256-QAM 
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This form of the log-likelihood function lends itself to the selective omission and 

inclusion of terms in the summation corresponding to the individual subsets. If we 

define ~ci~ to be the magnitude of the signal points in subset Si, or the characteristic 

magnitude of Si, a method of deciding which subsets to include can be devised. For 

example, if we assume that any contribution made by the innermost summation of 

(2. 8) of less than some threshold value T is negligible, we obtain a rule that states 

that the subset Si should be included if and only if (~r(k)~ — 
~ci~) & — Wain(T/Mi). 

The nonlinear nature of the logarithm function, however, makes the effect of T on 

l, (r 
~ 

0) impossible to determine. 

Tlie simulations in this work are based on another method of choosing wliich 

subsets to include. The idea of this method is to make maximum likelihood decisions 

about which subset m(k) came from based ou r(k). In other words, we choose the 

subset Si for which (~r(k)~ — 
~ci~) is minimum. To decrease the effect of niaking 

decision errors we also include a, certain number of subsets adjacent to the one chosen 

by the ML criterion. We can assume without loss of generality that the subsets are 

ordered such that ~ci) & (cs~ & . . . & ~cc~, and for notational convenience we can 

define Si — — () for all I g' (1, 2, . . . , L). If we now let dz be the sequence of integers 

such that 

()r(k)) — )cs, ()' & (~r(I)) — [ci~)' for all I g ds 

we can defin a suboptimal log-likelihood function. The algorithm which produces an 

estimate based on the new log-likelihood function will be referred to as the suboptimal 

maximum likelihood (SML) algorithm. The suboptimal estimate, Ossrr„ is defined as 
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Table II. Constellation Subset Information for 32-JAM 

32-JAM (L = 5) 

Mi 

0. 3162 

0. 7071 

0. 9487 

1. 1402 

1. 3038 

the value of II which maximizes 

Jr f da+p M& 

r( ~ e = p l 

~ 
Z Z . "'( ' "'~) 

Ssu I=dg-p m=1 

(2 10) 

where p is the range of adjacent subsets to be included. For example, il'for a particular 

r(k) the subset whose characteristic magnitude is closest to )r(k)~ is Sn and p = '2, 

then the subsets included in (2. 10) for that particular value of k will be Sz, Ss, S~, Ss, 

a. nd Ss. 

Tables II, III, IV, and V show the values of L, Mn and ~c~~ for the 32-@AM, 64- 

JAM, 128-@AM, and 256-@AM constellations respectively. The tables show that the 

difference between the characteristic magnitudes of neighboring subsets gets smaller 

as the number of points in the constellation increases. This indicates that a larger 

value of p may be required to produce an accurate phase estimate for the larger 

constellations, since the probability of choosing the wrong subset is high for larger 

constellations, 
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Table III. Constellation Subset Information for 64-JAM 

64-@AM (, L = 9) 

M& ic(i 

4 0. 2812 

8 0 4SSO 

4 0. 6547 

8 0. 7868 

S 0. 8997 

12 1. 0911 

8 1. 1751 

8 1. 3274 

4 1. 5275 
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Table IV. Constellation Subset Information for 128-QAM 

I M( 

128-QAM IL = 16) 

ic(i I M( 

0. 1562 1. 0000 

3 4 

6 12 

7 8 

8 8 

0. 3492 

0. 4685 

0. 5631 

0. 6439 

0. 7809 

0. 8410 

0. 9500 

10 8 

11 4 

12 8 

13 8 

14 16 

15 S 

16 8 

1. 0467 

1. 0932 

1. 1370 

1. 2198 

1. 2591 

1. 3343 

1. 4399 

Table V. Constellation Subset Information for 256-QAM 

M( M( 

256-QAM fL = 32) 

M( IG(l I M( 

12 

0. 1085 

0. 2425 

0. 3254 

0. 3911 

0. 4472 

0. 5423 

0. 5841 

0. 6598 

10 

12 

13 

14 

15 

16 

16 

0. 6945 

0. 7276 

0. 7593 

0. 7896 

0. 8471 

0. 8745 

0. 9267 

0. 9762 

17 

18 

19 

20 

21 

22 

24 

16 1. 0000 

1. 0233 

1. 0683 

1. 0901 

1. 1324 

1. 1530 

1. 1732 

1. 1931 

25 16 

26 8 

27 8 

28 8 

29 4 

30 8 

31 8 

32 4 

1. 2127 

1. 2696 

1. 3061 

1. 3416 

1. 4100 

1. 4266 

1. 5244 

1. 6270 
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1. Implementation of the SML Algorithm 

The implementation of the SML algorithm is very similar to that of the optimal 

ML algorithm. The coarse optimization of J(r 
~ 

6) is performed at 2' increments, 

and the fme optimization is performed using thc same Newton's method algorithm 

as before. For this algoritlun the program performed 1500 iterations to obtain an 

average performance. 

2. Results for the SML Algorithm Simulations 

The simulation results for the SML phase estimator are shown in Figures 8 through 

14. Figures 8 and 0 show the performance of the SML estimator for 32-JAM when 

p = 0 and p = 1 respectively. When p = 0 there is a significant loss in accuracy 

from the ML estimate, but when p = 1 the performance of the SML estimator is 

nearly identical to that of the ML estimator, shown in Figure 4. Likewise, Figure 10 

shows that for 64-CIAM and p = 1 the SML algorithm has performance comparable 

to that oi' the ML algorithm shown in Figure 5. The results for 128-JAM are shown 

in Figures 11 and 12 for p = 1 and p = 2 respectively. When p = 1 there is a 

performance loss noticeable for lower SNRs and small vector lengths. For p = 2 the 

performance is comparable to that of the ML algorithm, shown in Figure 6, The 

results for 256-JAM are shown in Figures 13 and 14 f' or p = 2 and p = 3 respectively. 

When p = 2 there is a performance loss noticeable mainly at small vector lengths. 

1"or p = 3 the performance is again comparable to that of the ML algorithm, shown 

in Figure 7. 
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10 
Suboptimal ML Estimation Performance for 64-QAM, p=1 

10 

— — 
. CHB. for. 22dB 

ORB for 27dB 

+ Simulation Results for 22dB 

x: ' Bi'mulaIIorI Results for 27dB 

Cll ( 
ca 
'0 

p c10 
UJ 
0) 

, +, 

10 

10 
10 20 30 40 50 60 70 80 90 100 

Vector Length 

Fig. 10. Suboptimat ML Estimator Results for 64-JAM, p = 1 
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Fig. 11. Suboptimal ML Estimator Results for 128-@AM, p = 1 
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Fig. 12. Suboptimal ML Estimator Results for 128-@AM, p = 2 
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Fig. 13. Suboptimat ML Estimator Results for 266-JAM, p = 2 
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CHAPTER IH 

POWER LAW PHASE ESTIMATION 

The purpose of this chapter is to examine the performance of the power law (PL) phase 

estimator when it is applied to the high order QAM constellations under consideration 

in this work. It is well known that the power law is a simple algorithm which produces 

good estimates when applied to PSI& constellations. However, as shown in [9], the 

algorithm performs poorly for QAM constellations. This poor performance is due 

mainly to the effects of self-noise, or noise introduced by the transmitted sequence m 

itself, independent of the AWGN. 

The power law estimate is derived from the log-likelihood function by letting 

9 ~ 0. The resulting estimate does not depend on y, so this parameter does not need 

to be known or estimated as with the ML estimate. 

A. Derivation of the Power Law Estimate 

A derivation of the PI. estimate is given in [9], and is repeated here in more detail 

for completeness. To derive the power law estimate we begin with the log-likelihood 

function, which gives the ML estimate 8 as the value of 8 that maximizes 

K -e 2 
max I (r ] 0) = P lnEo(exp( — g. r(k)e ' — c; )j 

k=l 

= g lnEc[exp( — 
q (]r(f")] — 2Ae(r(I. )c e 2 )+]c;] ))] 

k=1 
a (3. 1) 

= 
gin Ec [exp( 

— y ( — 2Re(r(i;)c;*e ee) + Ic, l'))j — E pll (I;)I'. 
k=1 
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The summation on the far right is a constant with respect to 0, and can be omitted. 

Thus we can obtain the ML estimate by maximizing 

max L'(r 
( 0) = g In l(r ( 0) 

a=1 
(3. 2) 

where 

l(r 
~ 

0) = En[exp(p (r(k)c;*e ' + r(k)'c, e" — )c, ('))]. (3. 3) 

We can now expand l(r 
~ 
0) into a power series 

l(r ( 0) Ec[1+ P ~ (7 (r(k)c, *c ' + r(k) c, r. " — ~c, ( )) ] 
m=1 

CO m m — n 

= I + Ec[g 7 g g A(m, n, n. ')(r(k)c, e ' )"(r(k)'c, el )" ((c;f )"' " "] 
mml nm0 n'm0 

= 1 + g p P P A(m, n, n. ')r(k)"r(k)"" e ' " " Ec[c, "c, '"' 
m=1 +m0 n'm0 

(-l where A(m, n, n') =, „I, p. The first tenn along with all other terms for which 

n = n' combine to form the phase independent part of l(r 
~ 0), which converges to 1 

as p — + 0. Hence the phase dependent part of l(r 
~ 

0) is given by 

OD m m-n 

ld(r ( 0) = P p P P A(rn, n, n')r(k)"r(k)'" e 'I" "I Ec[c; "c;* "]. 
m=1 nm0 0 

n'ga (3 5) 

lt is easily shown that for constellations that are invariant under rotation of 

2x/P, 

E[c;"c*'j = 0 for p — q g' (O, P2P, . . . }, (3. 6) 

hence the terms in (3. 5) are nonzero only if n — n' C (0, P, 2P, . . . }. For M-PS' 

constellations P = M, but for the ClAM constellations considered in this work P = 4. 

The function ld(r 
~ 0) is dominated by the nonzero term in (3. 5) for which m is 
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smallest. This occurs for m = P, and hence we have 

(3. 7) 

lr / p 
4't. 

I u = pi p+ — i. (a)'sf~"I. -'"+ I&1'EI~'I, ")) ~, - o 

, = —, RejE[c;* ] P r(k) e r 

This is the log-likelihood function for vanishingly small p, and it is maxinaized for 

Ir 

Opn = — arg E[c;*"] Q r(l;)" 
k=1 

(3. 8) 

Clearly this estimate is much simpler lo implement than the ML estimate. The term 

E[c;* ] is a constant which lies on the negative real axis for Lhe constellations under 

consideration. There is no need Lo maximize a nonlinear function, and a new estimate 

can easily be produced for each signalling interval using information from the previous 

interval. 

Figures 15 and 16 give an indication of how the algorithm works. Figure 15 shows 

the effects of raising the points of thc 256-@AM constellation to the 4-th power, and 

then multiplying by a negative constant. The result of this transform is a. collection 

of 64 distinct points, since four signal points in the original constellation are mappecl 

to a single point in the transformed set. The points along the positive real axis in 

Figure 15 correspond Lo the signal points in the original constellation which lie along 

the diagonal lines y = +x. The transformed set is clearly biased in the direction of 

these points. Figure 16 shows Lhe results of performing the same transform on the 

256-@AM constellation with a phase offset of 0 = x/16. The resulting pattern has 

been rotated by x/4 or 40, and is therefore biased in the direction of er" . 1'rom this 

illustration it can be surmised Lhat the signal points which lie on or near the positive 

real axis in figure 15 are good indicators of 0 since they tend to drive the summation 

in (. '3. 8) in the direction of e14s. Signal points rvhich lie farther off the real axis or 



in the lel't half of the plane are more likely to introduce error (self-noise) into the 

estimate. An algorithm which attempts to exploit these properties will be discussed 

later in this chapter. 

In [9] an approximation to the MSE performance of Opi, for moderate to high p 

is given as 

8, 8, a- +— 6s 2K~ A' (3. 9) 

where 

E[(cl(]E[(cl(" '] ), 
IE(c']I' 

2(E[c, ]l E[(c (+] — E (c, ]E[c' P] — E [c, ]E[c P] 
2 4P'(E[cP]l" 

(:3. 10) 

The two terms in (3. 9) correspond to effects of additive noise and self-noise respec- 

tively. For any M-PSI( constellation, Bi — — 1 and Bz = 0, indicating that there is no 

self-noise present and that crz = oz, the CRB. Ilence under conditions of moderate 

to high SNR for PSI& constellations the power law produces a good estimate. For 

@AM constellations, however, the self-noise term tends to dominate. 

Table VI gives the values for 8, and Bs for the constellations considered in this 

work. When it is taken into account that the I/2p factor which multiplies 8, can be 

on the order of 10 to 10 " for typical SNHs, it is clear that the effects of self-noise 

tend to dominate the performance of the estimate. 

It is also interesting to note that the ratio 8, : Bz is roughly half as big for the 

cross constellations as it is for the square constellations. This would indicate that thc 

eff'ects of self-noise are of greater significance for cross constellations than I' or square 

ones. This is due to the fact that the cross constellations do not have proportionately 

as many of the high-energy signal points which tend to produce better estimates of 

8, and which introduce less self-noise. 
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Table VI. Additive and Self-Noise Coefficients 

Constellation Bi 

32-JAM 

64-@AM 

128-@AM 

256-JAM 

52. 6316 3. 1413 

5. 8081 0. 1674 

62. 0675 3. 7929 

6. 2685 0. 2019 

1. Simulation Results for the PI, Algoritlun 

Simulations wcne run for the PL algorithm for 10, 000 iterations. Figures 17 through 

20 show the simulation results for the four constellations, along with the CRB. The 

approximation a- is plotted only for thc higher SNRs simulated because the curves 

for the lower and higher SNRs fall very close together. This algorithm clearly does 

not perform well enough to be used for rapid phase estimation for the constellations 

considered here. The next section will discuss a wsy to improve the performance of 

the power law estimator. 

B. The Power Law with Thresholding 

In some cases it is possible to produce a more accurate estimate than Opc by omitting 

some terms from the summation in (3. 8). As stated in the previous section, some 

signal points in the constellations tend to be detrimental to the accuracy of the 

estimate Oi q, while other points introduce less self-noise and tend to help the accuracy 

of Oi q. It would seem desira, ble to devise s. method to produce an estimate using only 

the information at the receiver that tends to produce a inore accurate estimate. Since 

the most beneficial signal points lie towards thc corners of the constellation, a simple 
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way to partially achieve this goal is Lo introduce a threshold, T. Any received signals 

for which [r(k)[ & T will be used in estimating Lhe phase offset, and the rest will 

not. We define C' = (c';) as the subset of C containing the N' signal points that lie 

outside the circle of radius T centered at the origin. The new estimate is given by 

lc' 

Opnr = — arg E[c, " 
] Q r'(k) 

k=1 
(3. 11) 

where r' = (r'(k)} is the vector containing all received signals for which [r(k)[ & T, 

and A ' is the number of symbols in r'. 

Under conditions of high SNR we can assume that the receiver perfectly detects 

the symbols which correspond to Lransmission of a. signal point, from C'. Using this 

assumption we can derive an approximation to the performance ol' Oper based on the 

approximation given in (3. 9). If we assume that at least one symbol from C' has been 

transmitted the approximate error variance is 

where E[Ii"] = IC E[P(m(k) C C')] = IC &, 7' = ~z — — 
~all pl 7 and 8' , and Bz 

are the constants defined in (3. 10) calculated for C'. Since the constellations have 

been normalized we can write the approximation as 

(3. 13) 

If no symbols from C' are detected at Lhe receiver, an esLimate must be produced 

based on no information. The error 0 — 0 in this case is unil'ormly distributed along the 

interval ( — x/4, x/4). Therefore the variance for this case is as = x /4S. 'I'o obtain 

the overall approximate performance we take the expected value over the two cases of 

no symbols from C' detected and at, least one symbol from C' detected. If we let Po 

be t, he probability that no symbols from C' are detected, the resulting approximation 
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Is given as 

oo (I — Pp)a, + P&&o'o 

N N'E 2pE[~c'('j N 48 (3. 14) 

Since (3. 14) is an approximation for the case of no errors in detecting symbols 

from C', it can be expected to be more accurate when few detection errors are made. 

For this reason it should be evaluated at values of T that result in fewer detection 

errors. A set of reasonable threshold values at which to evaluate (3. 14) is T = ~ 
for I = I, 2, . . . , f — 1, which can be easily obtained using values listed in Tables II 

through V. 

1. Simulation IIesuits for the PI, T Algorithm 

The threshold value that produces the best performance for a, particular constellation 

depends on the vector length. For instance, thc threshold which minimizes the MSE 

for a vector length of 100 symbols may not be the same as the best threshold for 300 

symbols. In this work the vector length at which the performance is optimized is 300 

symbols. However, the optimal threshold for 100 symbols was found to differ only 

slightly from that of 300 symbols. 

Simulations were run for thc PLT algorithm I'or 10, 000 iterations. Figure 21 

shows the performance of the PLT algorithm vrn sus T for the 32-JAM constellation, 

as well as o - at appropriate values of T. The difference between thc approximation Sszr 

and the simulation results is due mainly to the effect of detection errors. According 

to this graph the threshold that minimizes the MSE I' or IC = 300 is about T = 1. 25. 

Figure 22 shows the performance of the PLT versus Ix and the approximation for 

T = 1. 25. Figure 23 shows the performance of the PLT as well as the CRB and 



t, he approximation o~ . Figures 24 through 32 show similar graphs for the other 
PI 

constellations. These graphs indicate that the optimal threshold values are about 

T = 1. 45 for 64-@AM, T = 1. 40 for 128-JAM, and T = 1. 50 for 256-JAM. 

It is interesting to note that for 64-JAM when T = 1. 45, C' contains only the 

corner points of the constellation. The performance is very good at this threshold 

value because no self-noise is introduced unless detection errors occur. I'or the 256- 

@AM constellation, inclusion of only the corner points does not result in the best 

performance for IC = 300 because I he probability of receiving useful phase inl'ormation 

is too small. The best threshold for this case is one that includes poi»t, s which 

introduce some self-noise, but at the same l, ime provide the receiver with more phase 

information. 
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Power Law Estimation Performance for 64-QAM, Threshold=1. 45 
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Power Law Estimation Performance for 256-QAM, Threshold=1. 50 
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CHAPTER IV 

GROUPING ALGORITHM FOR CROSS CONSTELLATIONS 

The purpose of this chapter is to briefly describe and evaluate an algorithm that was 

motivated by the success of thresholding in improving the performance of the power 

law described in Chapter III. This algoritlun is only applicable to cross constellations, 

and it attempts to reduce or eliminate the effects of self'-noise which are inevitably 

introduced when using the PLT algorithm on cross constellations. 

If we examine the results for the P LT algorithm for the 32-QAM and 128-QAM 

constellations we can see that the best pcifoimance is achieved ivhen the algoritlim 

attempts to detect only the signals corresponding to the outermost eight symbols. 

Choosing a value of T such that C' consists of these eight points results in the smallest 

value for Br. However, the self-noise still tends to be the dominant factor I'or large 

A. Derivation of the Grouping Algorithm 

First, we partition the eight point constellation C' into two subconstellations C, ' and 

Cz, such that each subset forms a PSK constellation as shown in Figure 33. If at this 

point the received symbols r' could be classified into subset, s r', and rs, corresponding 

to transinitted symbols from C, ' or Cz, either subset could be used in equation (3, 11) 

to prodiice a, better estimate than Oper. In this case we have Bi — 1 Bs 0 allcl 

N' = 4. Elimination of the self noise in this way greatly enhances the accuracy of the 

estimate 

Further performance gains are possible, especially at smaller values of It', since 

only part of the phase inforination available has been used thus far. In the limit of 
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Partitioning C' into Two 4-PSK Subconsteltations 

0. 5 

0 

-0. 5 

-1. 5 
-1. 5 -0. 5 0 0. 5 1. 5 

Fig. 33. C' for 128-JAM Partitioned into Two 4-PSK Subconstellations 



high SNR for any 4-PSII constellation we have 

rc' 

1[ ]+4] p i(t)4 1+4 p I4 148 

k=1 k= I 

ffr), 1)s i40 

(4. 1) 

Since this sum vector always points in the direct. ion of e'44 regardless of the original 

constellation, we can add Lwo such vectors prodiiced from symbols corresponding Lo 

different PSI& constellations and produce a, larger vector which points in the direction 

of ejss. Hence an estimate can be produced which uses all of the phase information 

available. This estimate is given as 

Kj' rrl 

Oc = — arg E(c'i ' 
j g's(f') + ~(cs i j Q "a(I") 

k=1 k=1 

where IC, 
' arid Its are the number if received symbols in ri and r~ respectively. The 

performance of this estimat, e can be approximated using (3. 14) using the values B', = 

1, B, ' = 0, and N' = S. It can be shown that in the limit of high SNR this algorithm 

makes optimal use of the phase information in r'. 

1. Implementation of the Grouping Algorithm 

Although the formula for the estimaLe is known, there is also the problem of classifying 

the symbols in r' into ri and r~. This task can be simplified by first taking Lhe fourth 

power of the received symbols. Assuming no detection errors are made, the symbols 

in r' will map into Lwo regions on the complex plane, as illustrated in Figure 34. 

Figure 35 shows the effect of a phase offset of 0 = tr/ill radians, which results in a 

rotation of ir/4 radians when Llie fourth power is t, aken. 

Once the fourth power is taken the problem involves locating the two dist, inct 

groups of points on the plane, and deterinining which group each point belongs to. 



Perfectly Detected C' Symbols for 128-QAM, SNR=30dB 
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Fig. 34. The Fourth Power of Threshold Detected Data for 128-@AM, 0 = 0 
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Perfectly Detected C' Symbols for 1 28-0AM, SNR=30dB, theta=pi/16 
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Fig. 35. The Fourth Power of Threshold Detected Data for 128-JAM, 0 = rr/16 



The algoritlun used to perl'orm this task is a form of the Linde-Buzo-Gray (LBG) 

algorithni commonly used in training vector quantizers [I I]. The LBG algorithm is 

an iterative algorithm that effectively partitions the symbols in r' into two groups 

such that the sum of the variance of the symbols in the groups is minimized. 

Let Yi and Ys represent the location of the centroid of the two groups of points 

in the plane. These values can initially be set to any two distinct points, and for the 

program described in this work they are initially set to equal the position of the first 

two threshold-detected symbols. The algorithm that classifies the symbols into the 

groups ri and rz is as follows: 

1. Place each unclassified symbol into the nearest 

group based on the distance to the centroids 

2. Recompute the centroids based on tlie neiv groupings, 

Yi — — r', and Yz — — 
Pz 

3. Reclassify all symbols into the nearest group 

based on the distance to the centroids 

4. If any symbols changed groups, go to step 2 

Figure 3G shows the results of performing this procedure on the data shown in Figure 

3l. Once the algorithm has converged, an estimate is produced using equation (4. 2). 

2. Simulation Results for the Grouping Algorithm 

Simulations were run for the grouping algorithm for 1500 iterations. Figures 37 and 38 

show the simulation results for 32-@AM and 128-t)AM respectively. Detection errors 

hurt the performance of the algorithm for both constellations, but the effect of these 
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errors is more pronounced for 32-JAM. The performance for 128-JAM comes closer 

to the approximation. The difference between the simulation and approxinsat ion al, 

the smaller vector lengths in Figure 38 is due to the fact that approximation does 

not take into account the case when symbols from only one of the subconstellations 

C, 
' have been detected. 

Even though the grouping algorithm failed to meet the expectations set forth by 

the approximation, it did achieve the goal of improving upon the accuracy of the PLT 

algorithm. Furthermore it indicates that algorithms which rely on decisions about 

the transmitted sequence can be feasible for phase acquisition. This type of decision 

based algorithm will be explored more fully in the next chapter. 
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Grouping Algorithm Results for 128-QAM 
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CHAPTER V 

TRELLIS ALGORITHM PHASE ESTIMATION 

The purpose of this chapter is to evaluate the performance of an algorithm which 

uses the idea, of a, trellis snd the Viterbi algorithm to produce a phase estimate. The 

algorithm is based on one presented by Ungerboeck in [7] for carrier phase tracking. 

Changes have been made to the algorithm to make it more suitable for fast, carrier 

acquisition, and to allow its use for large constellations. It will be shown that for 

high SNR and large If l, he algorithm acts as a decision-directed estimator, which is 

known to perform very well for high SNR. 

A. Derivation of the Trellis Algorithm 

In Chapter III a derivation for the ML estimate for the case of 7 ~ 0 was given. Here 

a derivation is given for the case of 7 ~ oo. Again, the ML estimate is l, he value of 

0 which maximizes the log-likelihood function 

rc 

max L(r ] 0) = QlnEo[exp( — 7 ~r(k)e ' — 
c;~ )]. 

k=1 
(g I) 

As g ~ oo we have r(k) ~ m(k)e', so in the limit r(k) = c, sc' for some j 6 

(1, 2, . . . , %}. All terms in Eo[. ] for which c; g cr become zero, leaving as the log- 

likelihood function 

rr 

(r [0) = — 7Q r(k)e ' — c, , 
~ s=] 

Ir 
= — 

& g (]r(k)] — 2Re[r(k)cr', s*e 
] + [c, s[ ) 

s=r 

I rr 
= 27Re)g r(k)c, r. *e ' + lfq 

s=l 

(5 2) 



where I&l includes all terms that do not depend on 0. This form of the log-likelihood 

function is maximized for 

j Ik 

0 = arg (Q r(k)c, k* 

k=l 
(6 "3) 

In cases where the sequence (c, k) is known, such as when a preamble is used, 0 is a. 

good estimate, especially at higher SNR. When the transmitted sequence is unknown, 

however, it must be estimated. For this case the estimate becomes 

0pp = alg 
Q 

l(k)c'k 
Xl=l 

(6 4) 

where cl is the estimate of the transmitted symbol for the I;-th interval. This is the 

decision-directed phase estilnate which is commonly used for carrier phase tracking 

after acquisition. When the phase offset is completely unknown, symbol-by-symbol 

estimation of the transmitted data. is impossible. Under certain conditions, however, 

sequence decisions can be made well enough to produce an accurate phase estimate. 

Consider the problem of joint estimation of (cl} and 0. Let {0k} be a, sequence 

of phase estimates. From Bayes theorem we have 

f((ck}, (0k} ~ r(&)) ~ f(r(&) I (ck), {0k)), (6 6) 

since all sequences (cl} are equally likely and (0l) is assumed to bc uniformly 

distributed. The log-likelihood function to be maximized is given by 

lr 

I-(r(&) 
I (ck), (0k)) = -7 p ~r(&) 

k=1 
(5 6) 

Hence to maximize the log-likelihood function we want to minimize the metric 

Ir 

I({c } {0 }) = Q l 
(&) "" — gk 

k=l 
(6 7) 

In this work the Viterbi algoritlnn is used to attempt to produce the sequence of 
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Fig. 39. A Four State Fully 1»terconnected Trellis 

estimates (cs), and the sequence (Os) is produced using equation (5. 4). 

Let each symbol c, in the constellation C correspond to a state I, in a trellis. I, 

at the k-th level of the trellis will be referred to as I, 1. Since the symbols are i. i. cl. 

every state in the trellis is connected to every state iu the next level, as shown in 

Figure 39 for a simplified four state case. Let each state be associated with a vector 

V and a metric M. For trellis state I, 2 these variables have values of V, 2 and M, ». 

The algorithm is initialized using thc first received symbol r(1). For each state 

I, 1 the variables become 

V, , = r(1)c, * 

(5. S) 
M , 1 = (lr(1)l — lc. l)' 

Note that the optimal high SNR estimate given in (5. 4) based on only the first received 

symbol is given by 0, 1 
— — arg(V, 1) for some state I, , 1. Also, the state corresponding to 

the correct estimate will most lilcely have the smallest metric M, 1. Hence we choose 



0, = 0, l for the state with the smallest metric M, l. 

For all other k the values of V, s and M, l depend on the previous level in the 

trellis as well as the data. r(k). We define the metric for the transition between state 

I, s l to state I, s as 

d(r(k)(c(~0(s l) ~r(k)e '" ' — c(~ . (5. 9) 

This lnetric is used to deter(nine the survivor paths through the trellis. The total 

path metric of a, path entering state I, , s from state I, q l is given by 

D(I, , l l, I(, s) = M. , s ( + d(l (k), c( 
~ 
0. , s-() (5. 10) 

Each state I, q chooses as the survivor the incolning path for which the total path 

metric is minimized. 

If we let I s, represent, the state for which D(I„, q (, I(s) is the minimum 

incoming path metric, the values assigned to V and M are 

Vi, l — — V s l+ r(k)c(* 
(5. 11) 

M(s = D(I~, s-(, I(s). 

The phase estimate at time k is given by 0s = 0, s for the state I, s with the smallest 

metric M, s. 

Assume that at, time I& the state I rr has the smallest total path metric M„, (;. 

The phase estimate at this t, inle can be written as 

/ rc 

0(r = al'g p T(k)cl, 
k=1 

where cq represents the values of cs for the nodes I, s that the minimum metric path 
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passed through. The value of the path metric at this node is given by 

k=1 (5. 13) 

= J((cs), (I'r)). 

IIence if the Viterbi algorithm produces the correct sequence of estimates ca, the 

appropriate metric is minimized and Orc = Onn. 

1. Reducing Computational Load l'or the Trellis Algorit, hm 

A constellation with order N will give rise to a. trellis with N states. If a trellis 

has N states then the transition from one level to the next requires N calculations 

of the metric given in equation (5. 10), as ivell as N comparisons to determine the 

survivor paths. Furthermore the ir/2 phase ambiguity of the constellations results 

in redundaucy in the trellis states. For every symbol c, C C there are states 

which correspond to synibols c, erV for m E (0, 1, 2, 3). Since received a, sequence 

(r(1), r(2), . . . ) is indistinguishable from a. sequence (r(1)e' ~, r(2)e' I, . . . ) the 

trellis will always have at least four states with identical metrics M, ru corresponding 

to the estimates Og+ z 
. Only one estimate is needed, so calculating four is ineflicient. 

To eliminate some of the redundancy we define the constellation Q = (q;) to be 

the symbols from C which lie in the first quadrant. If we snake the assumption that 

0 g [0, ir/2) then we can think of lhe received sequence in terms of the symbols rj, . 

r(k) = q;e' ' ~' l for soine i and m. (5. 14) 

The received symbols are mapped into the first quadrant by taking the angle modulus 

ii/2 using the transform 
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The trellis algorithm can now be applied using the smaller constellation Q and the 

transformed received data ri —— (ri(k)), with modifications to the distance metric to 

account for the efFects of the (nodulus. 

Since the state I, «, for the modified algorithm corresponds to four states in the 

original algorithm, the state I, k must consider four possible metrics when choosing 

the incoming path. The metric for the path entering I» k from I, k i is 

nl &( D'(I, , k „I, , k) = M, k i+ min [»f(r(k), q» ~ 
0, , « i+ — ) . 

melo, &, z, sl ' 2 

(5. 16) 

The case for m = 2 will never produce the minimum metric and does not need to l&e 

considered, and a value of m = — 1 is equivalent to m = 3, so the metric can now l&e 

written as 

mx ) 
D (I, « — I It, k) M, k-( + min tf(r(k) q» I 0. , k-i + — )]. mef-»o&I ' 2 

(5. 17) 

The three possible incoming metrics correspond to three vectors r, (k)e&qe* 1-™&I, If 

m is the value of m that minimizes D'(I, «, , I, «) the values assigned to thc variables 

are 

\t«=V, k i+r((k)e ' '"-'+ & q(' 

M», « = D'(I. , k-&, I(, k) 

(5. 18) 

This mo»lified algorithm produces an estimate with the same accuracy as l&cfore 

with a significant reduction in the computational load. It requires the calculation 

of three metrics for each state, and the trellis contains N/4 states, therefore —, '„N io 

metrics and comparisons are required for each transition between levels. The compu- 

tational load can still be considerable for large constellations, however. For example, 

—, s(256) = 12288 metrics to compute for every level in the trellis. 
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2. Thresholding for the Trellis Algorithm 

It will be shown in the results that the algorithm performs poorly without further 

modifications. Decision errors early in the trellis can cause the path corresponding 

to incorrect decisions to be chosen as the survivor path instead of the correct path. 

When this happens it is unlikely that the algorithm will recover, and the estimate 

produced will not be accurate. 

Better performance can be achieved with the use of a threshold. As in chapter 

III we introduce a tlireshold Z" and form the vector r' which consists of all r(k) for 

which (r(k)~ ) T. This allows the use of a subset of the constellation Q, resulting 

in further reduction in the computational load. Unlike in chapter III, however, we 

assume that some detection errors will be made, and design the algorithm to use this 

incorrectly detected data in the estimate. To do this we define Q' to be the symbols 

(q; 6 Q) such that )q, ( ) Z' — ~&' where d is the minimum distance between symbols 

in Q. This choice of Q' places an iipper bound on the probability that a symbol in r' 

does not correspond to a state in the trellis. For the lower SNRs considered in this 

work the probability of this type of thresholding ra ror will be less than about, 10 '. lf 

we let IV@ represent the number of symbols in Q', then the algorithm requires, ~N& 

metrics and comparisons for each transition between levels. Also fewer transitions 

are required since t, he algoritlun only moves to the next level when a synibol from r' 

is detect, ed. 

An approximation to the performance of this algorithm can be derived in a. similar 

way to equation (3. 14) based on the CRB. Assuming that there are no unmanageable 

detection errors and no symbol decision errors the resulting approximation for the 



thresholded trellis algorithm is givcu by 

N Nr K 27E[~c'~ ] fif 48 

(5. 19) 

where lVr is the number of symbols in C whose magnitude is greater than T. 

3. Results for the Trellis Algorithm 

Simulations for the trellis algorithm were run for 10, 000 iterations. I"igures 40 snd 

41 show the simulation results aud the approximation o~ versus T for 32-@AM. rr 
I"igure 40 shows that the algorithm perfornis poorly at most threshold values for the 

lower SNR's, as well ss some lower threshold values for the higher SNR's. This poor 

performance is due mainly to decision errors. There is a, threshold value of about 

T = 1. 30 at, which the performance for both the low and high SNR is acceptable. 

Figure 41 shows the performance versus If at T = 1. 30. 

Figures 42 and 43 show similar graphs for 64-JAM. From Figure 42 we see that 

in this case there is a choice of acceptable thresholds. Letting T = 1. 2 results in 

a, trellis with eight states. I. etting T = 1. 3 results in s, trellis with five states, but 

also results in a sniall performance loss. Choosing the higher threshold reduces the 

amount of computation required to produce the estimate by about 60 percent. In 

cases like this the higher threshold is preferred. 

Figures 44 and 45 show the simulation results and os for 128-JAM. Figure 44 srr 

indicates that an appropriate choice 1' or thc threshold is a, value of about T = 1. 30, 

which results in a ten-state trellis. 

Figures 46 and 47 show the simulation results and cri for 256-JAM. Figure 46 
s7v 

indicates that an appropriate choice for thc threshold is a value of about T = 1. 40, 

which results in a four-state trellis. 
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10 
Trellis Algorithm Performance for 32-QAM, Threshold=1, 30 
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Trellis Algorithm Performance vs. Threshold for 256-0AM, K400 Symbols 
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Trellis Algorithm Performance for 256-0AM, Threshold=1. 40 
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B. A Suboptimal Version of the Trellis Algorithm 

A further reduction in consplexity can be achieved with a small loss in performance if 

we apply the trellis algorithm to the fourth power of the received data. Let Qq 
— — (q ) 

and r4 — — (r(k) }. The algorithm can be applied using the simpler metric give» in 

equation (5. 10), with the variables M and V taking values described in (5. 11). The 

estimate for each state I, k is given by 

1 
O. k = — arg(V, . k). (5 20) 

Thresholding is again applied to reduce complexity snd achieve better performance. 

The use of the euclidean distance metric on the transformed data results in a, higher 

probability of decision errors, which causes some degradation in performance. How- 

ever, since the simpler metric can be used this algorithm requires about onc third of 

the computation to produce an estimate. 

In the limit of high SNR, the estimate given by the path with the minimum 

metric is 

1 
Orc =— 

4 

1 

4 

1 

4 

arg Qr(k)'ck"' 

/ rr 

kku 

Ir 

asg e'" P ck (" 
k=1 

(5. 21) 

Hence in the limit of high SNR the algorithm produces a perfect estimate. 
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1. Results for the Suboptimal Trellis Algorithm 

Simulations for the suboptimal trellis algorithm were run for 10, 000 iterations. The 

results are shown in Figures 48 through 55. Figures 48, 50, 52, and 54 show the 

performance of the suboptimal trellis algorithm versus T for the four constellations. 

A value of T = 1. 325 was chosen for 32-QAM to provide better overall performance, 

still resulting in a four-state trellis. The other threshold values did not change from 

before, Figures 49, 51, 5'3, and 55 show the performance versus I& for the four 

constellations at the appropriate values of T. 
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Suboptimal Trellis Algorithm Performance for 64-QAM, K=300 Symbols 

10 

+" 22dB"" 

x 27dB 

10 

N 
C 

D p c10 
ill 
0) 

x x 

10 

&& 
- "'""x 

x xx" 

10 
0. 4 0. 6 0. 8 1 

Threshold 

1. 2 1. 4 1. 6 

Fig. 50. Suboptimal Trellis Atgoritlrrn Performance vs T for 64-+AM, lf = 300 

Symbols 



Suboptimal Trellis Algorithm Performance for 64-QAM, Threshold=1. 30 
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Suboptimaf Trellis Algorithm for 128-QAM, Threshold=1. 30 
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Suboptimal Trellis Algorithm Performance for 256-QAM, Threshold=1. 40 
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CHAPTER VI 

CONCLUSION 

Seven carrier-phase estimation algorithms for JAM constellations have been derived 

and evaluated in this worlc. Most of them were found to l&e inadequate in some way 

for the purpose of rapid carrier-phase acquisition. 

The ML algorithm discussed in Chapter II was found to perform well relative to 

the CRB. The complexity of the algoritlnn, however, makes it an impractical solution 

for virtually all applications requiring the use of large JAM signal sets. The need 

to estimate the SNR is another drawback. In an efforl, to produce a less complex 

estimate using ML techniques, the SML algorithm was derived. It was found that 

the SML algorithm could also produce a good estimate, 1&ut was still too complex to 

be useful. 

Chapter III discussed the PL estimator, which is obtained by maximizing the low 

SNR limit of the log-likelihood function. This estimate is easily computed, but &vas 

found to have very poor performance relative to the CRB. The PLT algorithm used a 

threshokl along with the PL algorithm to produce an estimate using a sul&set of the 

received data. For all of the constellations considered, the error perfonnance of the 

PLT estimate was better than that of the PL estimate for an appropriate threshold 

value. However, in most, cases the performance was still not good enough to make 

the PLT algorithm useful. The exception is the case of the 64-JAM constellation, for 

which the mean-squared error performance of the PLT estimate comes within one to 

two orders of magnitude of the CRB, for a vector length of about I50 synfl&ols. 

Chapter IV briefly described an algorithm which is designed for use with cross 

constellations. It uses the LBG algorithm to atten&pt to make decisions on a thresh- 

olded subset of the received symbols. Although this algorithm performed better 



than the PLT algorithm, its reliance on the iterative LBG algorithm makes it less 

attractive. 

In Chapter V an algorithm based on the idea of a. trellis was discussed. This 

algorithm used the Viterbi algorithm to make decisions on a thresholdecl subset of 

the received symbols, which allows a simple estimate to be produced. This algorithni 

was shown to perform ivell for all constellations, with appropriate choice of t, hreshold 

values. A modified version of the trellis algorithm is presented, whicli perfoinns 

operations on the fourth poiver of the received symbols. This allows use of a simplei 

metric and reduces the coniputation required by two-thirds. Both the trellis and 

modified trellis algorithms were found to be useful and practical for rapid carrier- 

phase estimation for all of the constellations considered in this work. 
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