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ABSTRACT 

Depositional Environment of the Niddle Pennsylvanian 

Granite Mash; Lambert 1, Hryhor, and Sundance Fields, 

Northern Palo Dura Basin, Oldham County, Texas (August 1986) 

Amy Laura Mharton, B. S. . The University of Texas at Austin 

Chairman of Advisory Committee: Dr. Robert R. Berg 

The Lambert 1, Hryhor, and Sundance fields in Oldham County, 

Texas produce oil from the Niddle Pennsylvanian Canyon granite wash. 

Canyon granite wash conglomerates and sandstones have a total thick- 

ness of about 450 feet (137 m) and were derived from granitic rocks 

of the Bravo Dome. The sediment was transported across carbonate 

platforms by streams and deposited in the Oldham Trough as fan-deltas. 

The Oldham Trough is a structural depression east of the Bravo Dome 

that connects the Palo Ouro and Dalhart basins. Granite wash deposits 

consist primarily of imbricated gravels and cross-stratified sands 

which are very poorly sorted and have a mean grain size of '1. 5 Ima. 

The conglomerates and sandstones are arkoses and consist dominantly 

of feldspar, granitic rock fragments, and quartz. Carbonate cement 

averages 5l of the bulk composition, The association of primary 

an'd secondary rock properties suggests rapid deposition and shallow 

burial history. 

Six depositional stages for the Middle Pennsylvanian are recog- 

nized; 1) Strawn Limestone platform development and progradation, 

2) Strawn granite wash progradation, 3) a second Strawn Limestone 

development due to transgression and basin subsidence, 4) Canyon 



Limestone platform development and progradation, 5) Canyon granite 

wash progradation, and 6) a second Canyon Limestone development 

due to transgression and basin subsidence, with mound-like 

buildups� 

: 

occurring on structural highs, and shale filling the Oldham Trough. 

The Cisco shales of the Middle and Late Pennsylvanian are the 

probable source rocks for the Pennsylvanian oil. Temperatures and 

burial depth were great enough for the shales to generate oil and 

possibly wet gas. Oil accumulated in structural traps located on 

upthrown blocks bounded by high-angle reverse and normal faults. 
The reservoir conglomerates and sandstones have an average 

porosity of 18% and an average permeability of 75 md. Calculated 

water resistivity is 0. 028 ohm-meter. Reasonable net pay cutoff . 

values in these granite wash reservoirs are 9. 5% for porosity and 

1. 5 md for permeability. 
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INTRODUCTION 

The Middle Pennsylvanian granite wash is a substantial oil and 

gas reservoir in the Texas Panhandle. The term "granite wash" refers 

to sandstone derived from a nearby granitic source (Flawn, 1965). 
No surface exposures of Pennsylvanian granite wash occur in the study 

area, and therefore its study depends on subsurface data: the primary 

rock properties observed 0n cores, core analysis, electric logs, 
drill stem tests, dip logs, and seismic records. 

Five granite wash fields have been discovered adjacent to the 

Bravo Dome in Oldham County, Texas; the Lambert 'I, Hryhor, Sundance, 

Pond, and Brandi. The section at Lambert 1, Hryhor, and Sundance 

fields, which is the focus of this thesis, consists of granitic rock 

fragments, feldspathic sandstones, and silty mudstones, interbedded 

with limestones and shales. 

The objectives of this study are interpretation of the deposi- 

tional environment of the granite wash, and determination of reservoir 

geometry and properties. This study is undertaken in order to explain 

the origin of the reservoirs, to aid in log interpretation, and to 

facilitate future prospecting for other granite wash reservoirs in 

the Texas Panhandle. 

This thesis fol'iows the style and format of the American 
Association of Petroleum Geolo fsts Bulletin. 



Regional Structure 

The major positive structural features of the Texas Panhandle 

consist of the Amarillo Uplift, Bravo Dome, and Matador Arch 

(Figure 1). The basins include the Anadarko, Dalhart and Palo Duro. 

The Amarillo Uplift covers 4 counties and extends into 8 others. 

It is dominated by a northwest-southeast granitic core that comes 

to the surface in Oklahoma'to form the Wichita Mountains (Roth, 1949). 

The Bravo Dome is an , eastern extension of the Sierra Grande Uplift 

(Kluth and Coney, 1981) and occupies central and western Oldham county. 

The Matador Arch separates the Palo Duro and Midland basins. 

The Anadarko basin is bounded on the north by broad, flat cratonal 

shelf areas, on the south by the Amarillo Uplift, and on the west 

by the Cimarron Arch (Evans. 1979; Pippin, 1970; Adler et al. , 1971). 
The basin occupies 6 counties in the eastern Texas Panhandle and 

extends into 5 other Texas counties. However, most of the basin 

is in Oklahoma. The Anadarko is approximately 30, 000 feet (9150 m) 

deep (Budnik and Smith, 1982), with a northwest-southeast trending 

axis adjacent to the Amarillo Uplift (Nicholson, 1960). The boundary 

between the Amarillo Uplift and the basin is a complicated zone of 

folds and faults (Adler et al. , 1971). 

The asymmetric Palo Duro basin is bounded on the northeast by 

the Amarillo Uplift, on the northwest by the Bravo Dome, and on the 

south by the Matador Arch. It occupies approximately 14 counties 

in the southern Panhandle. It is a relatively shallow basin, approxi- 

mately 11, 000 feet (3354 m) deep, and maximum Pennsylvanian deposition 

occurred along a northwest trending axis (Dutton, 1980a). 
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The Dalhart basin is a northwestern extension of the Palo Duro 

basin (Roth, 1949), and is bounded on the west by the Sierra Grande 

UpIift and on the east by the Cimmarron Arch. It occupies 2 counties 

in the northwest Panhandle and approximately half of Cimmarron county 

in Oklahoma. The Dalhart basin is also relatively shallow, 10, 000 

to 12, 000 feet (3050 to 3680 m) deep (Budni k and Smith, 1982) and 

is less structurally comp1+githan the Anadarko basin (Adler et al. , 
1971). 

These structural features controlled the areas of erosion and 

deposition from the early Pennsylvanian through the Permian. The 

upi ifts eventually formed barriers to seaways that connected the 

basins, and resulted fn the formation of barred and landlocked basins 

(Rogatz, 1935). Restricted seaway circulation and dry climatic condi- 

tions in the Permian produced the evaporite sequences which seal 

the Pennsylvanian sediments. 

Regional Stratigraphy 

The Anadarko basin contains rocks representing most of the Paleo- 

zoic Era (Evans, 1979). They are aproximately 20, 000 feet (6098 m) 

thick in the Texas Panhandle and reach a maximum thickness of 40, 000 

feet (12, 195 m) in Oklahoma (Adler et al. , 1971). The basin is a 

significant oil and gas province. The most important reservoir rocks 

for oil and gas accumulation, in order of importance, have been; 

the Pennsylvanian sandstones and Iimestones; the Middle Ordovician 

sandstones and carbonates; the Mississippian carbonates; the Lower 

Ordovician Iimestones; and the Silurian carbonates. Both structural 

and stratigraphic traps are important. 



The Cambrian in the Anadarko basin consists of the Reagan 

Sandstone. The Ordovician system comprises the Arbuckle Limestone 

and Simpson Group sandstones, and the Viola Limestone and Sylvan 

Shale. The Siluro-Devonian consists of the Hunton Group limestones. 

The Mississippian contains the Kinderhookian, Osagian, Meramercian, 

and Chesterian. The Pennsylvanian system comprises the Springerian 

in the eastern part of the basin and also, the Morrowan, Atokan, 

Des Moinesfan, Missourian, and Virgilian series occur throughout 

the basin. The Permian contains the Wolfcampian, Leonardian and 

Guadalupian series. Triassic, Tertiary, and Ouaternary strata uncon- 

formably overlie the Permian. Other unconformities are recognized 

at the base of the Silurian, Mississippian, Triassic, Tertiary, and 

Ouaternary (Coasaittee of Panhandle Geological Soc. , 1955). 
The Palo Dura basin contains approximately 13, 700 feet (4177 m) 

of Paleozoic age rocks (Birsa, 1977). The sequence has good reservoir 

rocks, a high organic content, and abundant traps and seals. However, 

the basin generally lacks production except around the margin. It 
has been suggested that the geothermal gradient may have been too 

low for significant amounts of hydrocarbons to be generated (Dutton, 

1980b; Fritz, 1986). 

The Cambrian basa'I Hickory sandstone in the Palo Duro basin 

is relatively thin and is restricted to the south centra'I and eastern 

portion of the basin (Birsa, 1977). The Ordovician consists of approx- 

imately 550 feet (168 m) of Ellenburger limestone. The Silurian and 

Devonian are absent due to erosion and non-deposition (Dutton, 1980a). 
The Mississippian contains Osagian, Meramecian, and Chesterian rocks 



which are simply referred to as the Mississippi lime. The Mississippi 

lime is approximately 450 feet (137 m) of light-colored carbonates 

(Bfrsa, 1977). All of the Pennsylvanian series are present and account 

for approximately 4, 400 feet (1341 m) of the sequence. The lithologies 

are highly variable and contain shale, limestone, red beds, sandstone, 

and granite wash. The Permian is the thickest sequence of sediments 

found in the Pa'lo Duro basin, and is approximately 7500 feet (2287 m) 

thick. The Wolfcampian is primarily carbonate and shale. The 

Leonardian and Guadalupian contain evaporite, red beds, and some 

sandstone. Triassic, Tertiary, and quaternary strata unconformab'ly 

overlie the Permian System. Other major unconformities are at the 

base of the Cambrian, Ordovician. Mississippian, and Pennsylvanian 

(Birsa, 1977). 

The Dalhart basin is stratigraphically similar to the Palo Duro 

because it was a northern extension of the basin (Dutton, 1980a). 
It contains the same sequence of rocks as the Palo Duro with the 

following exceptions and different thicknesses (McCasland, 1980). 
The Ordovician also contains the Simpson sandstones and dolomites, 

and the Viola limestone. The Mississippian also contains the Kinder- 

hook sandstones with interbedded dolomite. The Wolfcampian sediments 

reach a total thickness of more than 5000 feet (1524 m), and average 

between 800 and 2100 feet (243 and 640 m) (McCasland, 1980). Triassic, 
Jurassic, Cretaceous, Tertiary and Ouaternary strata unconformably 

overlie the Permian system. Other major unconformities are equivalent 

to those in the Palo Duro basin. 



Oil and Gas Fields in the Texas Panhandle 

The Panhandle Oil and Gas Field is the major reservoir in the 

Texas Panhandle (Figure 1). Gas was first discovered in 1918, in 

Potter County at a depth of 2, 600 feet (793 m) (Rogatz, 1935), and 

oil was discovered in 1921 at a depth of 2, 900 feet (884 m). 

Lithologies of Wolfcampian age that produce oil and gas are dolomite, 

limestone, sandstone, granite wash, and weathered granite. Local 

names of the producing horizons are; Brown Dolomite, White Dolomite, 

Moore County Lime, Arkosfc Dolomite, Arkosic Lime, and Granite Wash. 

Uplift of the Amarillo mountains during the Atokan caused the 

south edge of the Anadarko basin to shift northward producing a rever- 
sal of dip direction from west to southeast (Pippin, 1970). The 

northwest-southeast trending granitic core was exposed and erosion 
resulted in the deposition of granite wash northeast into the Anadarko 

basin and southwest into the Palo Duro basin (Rogatz, 1935). Granite 

wash interbedded with marine muds and carbonate filled the Anadarko 

basin and the uplift was covered by Wolfcampian time. Southeast 

tilting of the Anadarko during the Cretaceous caused updip wedging 

of Permian and Pennsylvanian sediments which formed the trap along 

the west edge of the Panhandle and Hugoton fields (Pippin, 1970). 
The evaportic Wichita Formation formed a seal over the Wolfcampian 

reservoir beds. The Panhandle field fs an anticlinal trap whose 

southeastern part has a steep structural dip which gradually decreases 
to the northwest. The steep dip has caused the gas, oil and water 

columns to cut across formation boundaries (Pippin, 1970). Progres- 

sively older reservoi rs are found in the updip direction. Formation 



water moves downdip and west to east causing a hydrodynamic tilt 
of the gas-water contact (Pippin, 1970). 

The northern extension of the Panhandle field is often referred 
to as the Hugoton gas field (Figure 1), and is a large stratigraphic 
trap. The Herington and Krider formations produce gas and are equiva- 

lent to the Brown Dolomite in the Texas Panhandle. Reservoir beds 

thin updip and pinch-out westward. The updfp point where the reser-, 

voirss 

produce only water appears to be determined by an abrupt local 
change of porosity and permeability. However, the critical trapping 
mechanism is the southeastward, downdip dynamic flow of formation 

water (Pippin, 1970). 

Ofl production in the Texas Panhandle covers 300, 000 acres, 
extending approximately 125 miles (202 km) in parts of 5 Texas 

counties, and gas production in the Panhandle and Hugoton fields 
covers 5, 000, 000 acres, extending approximately 50 miles (81 km) 

in Texas and 110 miles (177 km) in Oklahoma and Kansas (Rogatz, 1935). 
The American Petroleum Institute's original oil-in-place estimates 
as of December 31, 1979 were 6, 060, 000, 000 barrels. Estimated cumula- 

tive production was 1, 333, 374, 000 barrels. Ultimate recovery of 
natural gas for the Texas panhandle was 55, 835, 860 million cubic . 

feet (American Petroleum Institute, 1980). 
The Pennsylvanian Morrow Sandstone is also a significant oil 

reservoir in the Texas Panhandle. Oil is produced from more than 

60 fields in Texas with many additional fields in Oklahoma, Kansas, 
and Colorado (Galloway et al. . 1983). The two most productive fie'lds 
in Texas are both in Ochiltree County. The Texas panhandle fields 



have a cumulative production of more than 40 million barrels that 

has been produced from deltaic and fluvial sandstones of the Morrow 

(Galloway et al. , 1983). 

Granite Wash Oil Fields 

Granite wash reservoirs adjacent to the Amarillo Uplift have 

been compared to modern al. 'iuvfal fans. Dutton (1982) interpreted 

the granite wash reservoirs at Mobeetie field, Wheeler County 

(Figure 1) as ancient fan deltas, or alluvial fans that prograded 

into a body of water from an adjacent highland. Granite wash is 
found near the flanks of uplffts, with shales and sandstones a short 

distance away and shales and thin limestones basinwards (Dutton, 

1980a). 

Lambert 1, Hryhor, and Sundance Fields 

Granite wash reservoirs have also been discovered adjacent to 
the Bravo Dome in 0'ldham County. A narrow, northwest trending trough 

connects the Dalhart and Palo Ouro basins in eastern Oldham and western 

Potter counties, Texas (Dutton, 1980a) (Figure 2). The study area 

is located within this trough, approximately 12-15 miles (19-24 km) 

northeast of Vega. Texas. The trough is bounded on the west by the 

Bravo Dome and on the east by the Amarillo Uplift. The intervening 

low is referred to here as the Oldham trough. 



10 

Tectonic Histor , The crystalline basement in the Texas Panhandle 

consists of Precambrian igneous rocks (Figure 2). Muehlberger et 

al. , (1976) referred to the basement complex underlying the granite 

wash in the study area as the "Panhandle Yolcanic Terrane" and gave 

an age of 1100-1200 Ma. The Pennsylvanian granite wash was deposited 

directly above weathered Precambrian basement in the Oldham trough. 

The Palo Dura Basin contains Cambrian and Ordovician rocks whose 

absence in the Oldham trough is probably due to pre-Pennsylvanian 

erosion. Nid-Ordovician to early Mississippian rocks are also absent. 

Adams (1954) postulated that a northwest trending extension of the 

Transcontinental Arch, the Texas Peninsula, separated the West Texas 

and Oklahoma embayments and prevented mid-Ordovician to Early Nissis- 

sippian deposition on the crest of the low lying arch. By early 

Mississippian time, the Peninsula ceased to be a positive element 

and younger Paleozoic beds were deposited over it. 
The Dal hart basin and the Palo Duro basin were initiated fn 

the Late Mississippian during development of the Amarillo Uplift 

and associated folding, which began in the mid-Devonian (Nicholson, 

1960). The Sierra Grande Uplift and Bravo Dome began to form in 

Morrow-Atokan time (Bi rsa, 1977). Uplift of the Amarillo Mountains 

was accomplished primarily by large-scale block faulting, which produc- 

ed relatively high, rugged land masses, similar to those of the 

Ancestral Rocky Nountains. Development of the intracratonic basement 

uplifts may have been the result of the complex intraplate response 

to the collision of North America with South America-Africa (Kiuth 

and Coney, 1981). Both the Amarillo Uplift and Bravo Dome are consi- 
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dered to be the major contributors of granite wash in the Texas 

Panhandle during the Pennsylvanian. 

Intense weathering of exposed granite highlands during the Early 

and Middle Pennsylvanian resulted in granite wash accumulations on 

adjacent slopes in many of the basins and troughs in Colorado. 

Oklahoma, New Mexico. and Texas. . During the Pennsylvanian the study 

area was located approximately 10-11' north of the equator (Schopf, 

1975). The hot, humid climate contributed to the rapid weathering 

of the granite highlands. The Mobeetie field of Wheeler County, 

Texas (Dutton, 1982) produces oil from coarse-grained conglomerates 

shed from the Amari1lo Up'fift. Erosion of the granite core of the 

Pedernal Uplift in southeastern New Mexico provided coarse-grained 

clastics to the Permian and Orogrande basins (Meyer, 1966). 
The Lambert I, Hryhor, and Sundance fields lie just east of 

the Bravo Dome. High structural relief, produced by Precambrian 

faulting, combined with an impermeable seal of shale or limestone, 

resulted in the formation of the hydrocarbon reservoirs (Figure 3). 
Following deposition of the Pennsylvanian, Permian, Triassic, 

and Jurassic, the Panhandle was possibly covered with Cretaceous 

marine sediments. Erosion has eliminated most evidence (Eddleman, 

1961), but remnants of Cretaceous rocks have been identified in the 

Palo Dura Basin (Dutton and others, 1979). Movement along pre-existing 
faults was renewed by the Late Cretaceous Laramide orogeny. The 

late Miocene-Pliocene Ogallala Formation was deposited across the 

entire area . 



Figure 3. Structure map drawn on the top of the Canyon granite wash conglomerate. Contour 

interval is 100 feet. Cored wells are circled. The type log is from the H12 well 

and indicated as a star. 
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~Strati ra h . The Lambert i. Hryhor, and Sandance fields contain 

Early and Nidd'le Pennsylvanian conglomerates and coarse-grained sand- 

stones which were eroded from the exposed Bravo Dome and trapped 

in the Oldham trough. The section unconformably overlies Precambrian 

basement rock (Table 1). Carbonates were deposited intermittently, 

interfingering with the clastic deposits (Figure 4). Canyon granite 
wash was transported across the carbonate bui'ldup and deposited on 

the slope. A typical log response for the lower Pennsylvanian section 
is shown in Figure 5. Informal formation names used in the study 

area do not necessarily correlate exactly to the Canyon and Strawn 

groups. 

Carbonate deposits developed around the margins of the Palo 

Duro and Dalhart basins during the Pennsylvanian (Birsa, 1977). 
The ridge of the Amarillo Uplift was probably sufficiently high to 
resist marine inundation from Late Nississippian until Early Permian 

time (Eddleman, 1961), while the Bravo Dome and stable shelf areas 
of the north and northwest Panhandle were covered earlier. Fine 

clastics accumu'lated in the center of the basins. Subsidence and 

renewed carbonate deposition followed in the Early Permian. 

The Palo Duro and Dalhart basins were filled by the end of 
Wolfcampian, and the seas became landlocked (Eddleman, 1961). 
Evaporitic dolomite, anhydrite, and salt with interbedded red and 

green shales were formed throughout the remainder of the Permian, 

Triassic, and Ourassic. Due to the Laramide orogeny, at the end 

of the Cretaceous, no marine deposits younger than Permian are known 

in the Panhandle area (Nicholson, 1960). The Texas Panhandle has 



Table 1. Stratigraphic section for the Paleozoic of the Oldham Trough, Oldham County, Texas Panhandle (modified from Handford and Button, 1980). 

, Era System Series group 
Informal 

formation name 

6eneral Lithology 
and depositional setting 

Permian 

Leonardian 

Clear Fork 

Wichita 

Tubb 

Red Cave 

Panhandle Limestone 

red beds anhydrite and 

peritidal dolomite 

Paleozoic 
Nolfcampian Undifferentiated Brown Dolomite 

Virgilian Cisco 
Limestone and shale 
Cisco shale 

Pennsylvanian Missourian Canyon 

OesMoinesian Strawn 

Canyon Linmstone 

Canyon 6ranite Nash 

Strawn Limestone 

Strawn 6ranite Mash 

shelf and shelf-margin 
carbonate, basinal shale. 
and deltaic sandstone 

Precambrian Complex of Intrusives Basement granite 



Figure 4. Generalized stratigraphic 
granite wash conglomerate 
top of the Brown Dolomite. 
for simplicity. However, 
in Appendix II. 

cross section A-A' showing the correlation of the Canyon 

from the Bravo Dome to the Oldham Trough. The datum is the 
The Brown Dolomite Formation is denoted as a zone of dolomite 

the zone contains several lithologies. Line of section shown 
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Figure 5. Gamma-ray and resistivity log response of the Granite 
Wash Conglomerate, Aurora 1 (H12), Hryhor field. Diagram shows the informal formation names used in mapping the fields. Location of well is shown in Figure 3. 
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been tectonically inactive since early Tertiary time. 

oi I in the Canyon Granite Wash in Section 82, Block GM-5, State Capitol 
Lands Survey, Oldham County, Texas in Oecember, 1978. Evaluation 

of electric logs led to the re-entry of a previously plugged well. 
The Jay Taylor A-I (Ll) was perforated at 6776-6786 feet (2066-2069 m) 

and treated with 500 gallons of acid. The initial production was 

477 barrels of oil/day with an API gravity of 42. 8'. Successful 

completion initiated the development of the Lambert I field. 
Due to the success of the Lambert I field, numerous seismic 

surveys were run from 1979 through 1983. Interpretation of structural 
highs, and normal and high-angle reverse faults led to the discovery 
of two additional fields, the Sundance (1981) and the Hryhor (1982). 
Many additional wildcat wells were drilled on fault bounded structures 
interpreted from seismic records. The Pond and Brandi fields were 

discovered in 1983. 

The Lambert I, Hryhor, and Sundance fields are structural traps 
(Figure 3). The depositional and tectonic history greatly influence 
reservoir quality (Table 2). As of August, 1985, the Lambert I field 
leads in cumulative production with 1. 8 million barrels of oil. 
The Hryhor and Sundance fields have produced 1. 2 million and 1. 0 

mil'Ifon barrels of oil respectively (Table 3). Maximum thickness 
of the Canyon granite zone is 497 feet (151 m) and is encountered 

at approximately 7250 feet (2210 m) in the Aurora 12 (H23) well. 
Estimated total reserves for the three fields is 6 million barrels 
of oil. 



Table 2. Cumulative production, April 1985, and average reservoir characterisitics ~ Canyon Granite Wash, Oldham Trough, Northern Palo Ouro Basin, Texas Panhandle. 

Pie 1 d 

Average 

Porosity 
9 

Average Water Oil 
Persmability Saturation Gravity 

(Nd) (' API ) 

Average 
Oil Zone 

Thickness 
(ft) 

Number of 
producing 

wells Area 

(acres) 

Cussaulative 

production 
(Nbbl) 

Estimated 
Total 

Reserves 
(Mbbl) 

Lambert 1 15 86 

Hryhor 17 67 

Sundance 19. 3 45 
(includes Neptune 1 well) 

48. 0 

44. 5 

45. 0 

41. 5 87 

35 12 

175 

259 

211 

1. 8 

1. 2 

1. 0 

2. 5 

2. 2 

1. 3 

Estimated total reserves figures from a study by Keplinger. Inc. , Apri'I 1985. 



Table 3, csnyen Orant to Mash onplecton records. Lenhert I, Hryhor snd Sundanco fields, Oldhan County, Texas Panhandle. 

Field Hell 
Csnpletian 

Nell Sate Tep Can SN 

Synhot (south-year) (ft) 
Subsea 

(ft) 
Perforated 
Interest 

Initial Production Sally Production 
February-1986 

011 Mater 011 Naker 
bbls/day huis/day bhls/day hbls/day 

Lanbert I 

Hryhor 

Jay Taylor 5-1 
Jay Taylor O-l 
Jsy Taylor 0-1 
Fulton-King A-I 

Fulton-King A-2 

Ful ton- King A-3 

Aurora I 

aurora 2 
Aurora 3 
Aurora I 
Aurora 6 
Aurora 7 
Aurora 8 
Aurora 9 
Aurora 10 
Aurora ll 
Aurora 13 

Nrora 15 

Ll 

L2 

L3 
Ll 

L5 

H12 

HI 3 
Hl ~ 

HIS 

MI 7 
NS 
H19 

H20 

Hfl 

H22 

02t 

826 

1-79 
S-TS 
6-79 
~ -79 

~ -79 

5-79 

3-02 
1-06 
6. 02 
~ -02 
5-82 
5-02 
5-S2 
5-82 
5-S2 
5-82 
6-82 
0-02 
5-85 
10-02 

5768 
5670 
6825 
665l 

6750 

7066 

709D 

TDI5 
7052 
7126 
70&4 

7130 
7165 
709D 
7100 
7090 

TI26 

-3151 
-3078 
-3174 
-3054 

-302 
Plugged Sack 

-9590 
-9508 
-355 
-3550 
-3533 
-3517 
-350D 
-3517 
-3562 
-3530 

Plugged Sack 
-3507 

6T/5-6786 
6707-67N 
NI5-NN 
6655-6730 
6740-BTN 
SSN-6650 
6670-6720 
6760-NDO 

7146-7156 
709-7130 
7168-7176 
7152-7150 
7140-71N 
7124-7152 
7NO-7122 
7202-7207 
7155-7160 
7000-7150 
71N-7115 
7092-71 40 
TN2-7N5 
I ISO-T 1 40 

477 
655 
296 
576 

556 

249 

454 
505 
Nl 
564 
755 
TN 
223 
636 
545 
582 

0 
0 

50 
0 

I ~ 

30 
26 
0 
0 
0 

33 
66 
3 
0 
0 

3 
47 
0 

162 

297 
16t 
302 
1st 

91 

101 
87 

6 
137 
I l9 
N 
10 
0 

192 
101 

3 
213 
I l4 
71 

151 
151 
130 
141 

0 
138 

06 
'161 

31 
5 

Shut In I 06 
59 232 ' 

295 
30 202 
6 159 

Shut In 7-85 

Sundance Parker Creek I 
Parker Creek 2 
Parker Creek 3 
Parker Creek I 
Parker Creek 6 
Parker Creek 7 

Parker Ctaek 0 
Parker Cfeak 10 
Parker Creek ll 
Parker Creek 12 
Parker Creek 13 
Parker Creek 14 
Parker Creek 15 
Neptune I 
Neptune 3 

SN 
520 
S29 
330 
S32 
333 

534 
536 
S37 
538 
S39 
540 
541 

042 
944 

8-Sl 
11-81 
11%1 
12-81 
2-02 
3-84 

2-82 
3-82 
3-02 
8-82 
9-02 
3-94 
10-02 
6-02 
3-04 

701 0 
701 8 
Taao 

7039 
7060 
7025 

7078 
7122 
7100 
7103 
7090 
7150 
TI'/0 

7097 
7157 

-3407 
-3405 
-3430 
-3%4 
-3390 
-3445 

-3430 
-3f45 
-3440 
-3413 
-3406 
-3457 
-3485 
-3439 
-3455 

7020-7058 
7032-704I 
TSN-7034 
7060-7105 
7076-7134 
7031-7NS 
7NB-7050 
706S-78/0 
ID78-7112 
7734-7740 
7126-7140 
I I D6-7164 
7096-7162 
7152-7156 
7160-7176 
7093-7119 
7142-'7144 
715$-7160 

565 
350 
390 
297 

389 
I 

366 
IN 
160 

9 
163 
572 

6 

0 
0 
0 
0 
0 

27 

0 
75 
23 

299 
24 

17 225 
Shut In 10-S4 
Shut ln 7-83 

31 125 
38 78 

Shut In 7-84 
36 

la 167 
Shot Ie 7-85 
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Methods 

Interpretation of the depositional environment at Lambert I 
and Sundance fields was based on the examination of full diameter 

cores from two well s, the Jay Taylor B-I (L2) and the Parker Creek 

I (527). The locations of these wells are circled in Figure 3. 
The slabbed cores were photographed and fully described to establish 
the vertical sequence' of sedimentary structures, texture, and gross 

composition. 

A petrographic analysis was conducted on thin sections taken 

from representative intervals, normal to bedding. The analysis was 
' 

made according to standard techniques. The grain size was determined 

by long axis measurements of 100 detrital grains. The composition 

was determined for each sample by a point count of 100 grains. Size 
influenced composition percentages; therefore, the gravels (& 2 mm) 

' 

were separated from the sands (& 2 ma). Results are presented as 
a percentage of the total composition. The detrital grains were 

classified as monocrystalline quartz, feldspar, rock fragments (includ- 
ing polycrystalline quartz), other grains, and matrix (including 
clay and chlorite). Percentages were normalized after subtracting 
cement and thin section porosity. Coamerciai core analyses by Core 

Laboratories. Inc. provided porosity and permeability measurements. 

The reservoir was mapped using logs from 65 wells. The logs 
were interpreted to define formation boundaries, estimate shale 
content, and calculate porosi ties. Shale content was estimated from 

the gamna-ray log. All beds within the Canyon granite wash interval 
with API units greater than 225 were counted as shale. Cross sections 
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were constructed across the study area, and structure and isopachous 

maps were drawn to determine the morphology and structural configura- 
tion of the reservoir. Seismic data were interpreted to define faults. 

Porosity and permeability data were classified and evaluated 

in order to describe the average properties of the reservoir (Amyx, 

et al. , 1960). Porosity versus bulk density was plotted from core 
analysis and log data to estimate grain density. True resistivity 
versus porosity plots were constructed to determine water saturation 
values (Pfckett, 1966). 
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CHARACTERISTICS OF THE CANYON GRANITE MASH CONGLONERATE 

Introduction 

The Canyon granite wash sediments at the Lambert 1 and Sundance 

fie'Ids do not fall into any well-ordered pattern on a local scale. 
However, for descriptive purposes, the sediments can be divided 

into four general facies; conglomerate, sandstone, mudstone, and 

shale. In 140 feet (43 m) of core from the Jay Taylor B-1 (L2) 
' 

well, approximately 23% is conglomerate, 75% sandstone, less than 

1% mudstone, and 1% shale. The 42 feet (13 m) of core from the 

Parker Creek 1 (S27) well contains approximately 5% conglomerate, 

20% sandstone, 69% mudstone, and 6% shale. Facies are differentiated 
by their primary rock properties; sedimentary structures, composition, 

and texture. These properties can be used to interpret the 

environment of deposition and transport mechanisms. 

The L2 and S27 cores contain a variety of sedimentary structures; 
pebble imbrication, cross-stratification, parallel lamination, convo- 

luted lamination and soft-sediment deformation. The contacts between 

the four facies and their associated sedimentary structures occur 

apparently at random, and no ordered vertical sequence can be estab- 
lished for these cores. Bed set boundaries are difficult to identify. 
The most common sedimentary structure observed in the vertical 
sequence of the L2 core is cross-stratification of very coarse to 
fine-grained sandstone. The S27 core is dominated by mudstone, 

in which the most corvaon structures are convoluted lamination and 

other soft-sediment deformation features. 
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Trace fossils and fossils are scarce, but several types are 

present in the silty mudstones and shales of both cores. 

Composition is highly variable. Percentages of rock fragments, 

fe'Idspar, and quartz are dependent on grain size. Beds containing 

more gravel have a higher rock fragment percentage, and beds contain- 

ing less gravel have a higher feldspar percentage. 

The texture is also variable, but is dominated by very poorly- 

sorted, angular and loosely-packed conglomerate and coarse-grained 

sandstone. 

Sedimentary Structures 

The conglomerate facies contains the fewest sedimentary struc- 
tures. Conglomerates are of two types; structureless gravel beds 

and imbricated gravel beds. The two types occur in variable vertical 
sequences 4 to 10 feet (1. 2 to 3. 1 m) thick. Internal lamination 

is not discernable in the structure eless gravel beds (Figure 6-B). 
This may be the result of the grain size being too large to allow 

sedimentary structures to be seen in the slabbed face of the 4-inch 
diameter core. Lack of fabric could also have been caused by rapid 
deposition (Blatt, et al. , 1980). Shale clasts are observed fn 

the L2 core compressed between pebble grains (Figure 6-G). They 

are identified as clasts because they are discontinuous lenses with 

irregular thicknesses and outlines. 

The imbricated gravel beds contain pebbles with their long 

axes oriented in the same direction. Orientation of the pebble 
grains is produced by high flow intensities or mass emplacement 



Figure 6. Sedimentary structures in vertical sequence of the Canyon granite wash 

conglomerate in the Jay Taylor B-l (L2) core. The boldface letters in 

the lower left corner of the photographs refer to the captions below. 

6756 feet; sharp inclined contact between fine- to medium-grainded 

sandstone below and pebbly sandstone above. Bedding in the fine- to 

medium-grained sandstone is inclined 18'. The pebble in the structureless 

pebbly sandstone is 24 sm in long axis diameter. 

6759 feet; structureless gravel, poorly-sorted, loosely-packed, patchy 

cement, pebb'les are angular. fine-grained sand and silt matrix, lack 

of stratification features. 

6787 feet; fine- to medium-grained sandstone shows parallel, even, hori- 

zontal laminae, which are in alternating 20-40 mn bands. 

6794 feet; tightly cemented very coarse-grained to pebbly sandstone, 

dolomite cemented fractures. 

6796 feet; rock fragments and broken and fragmented crinoid stems, 

suspended in silty mudstone. Coarse-grained sand shows wavy flow pattern. 

6812. 5 feet; cross-stratified fine- to coarse-grained pebbly sandstone, 

poorly-sorted, containing multidirectional trough or planar cress-bedding 

with a truncation surface. Pebble in upper right corner is 11 sm in 

long axis diameter. 

6813 feet; structureless gravel, poorly-sorted. interbedded with compres- 

sed shale clasts. Pebble at base of photo is 18 mn in long axis 

diameter. 

6823 feet; cross-stratified fine- to coarse-grained pebbly sandstone, 

poorly-sorted. containing multidirectional trough or planar cross-bedding 

with truncation surfaces. 

J . 6839 feet; coarse-grained pebbly sandstone overlain by very fine- to 

medium-grained sandstone, sharp irregular contact. Contact and bedding 

in the overlying sandstone are inclined '12'. 

6849 feet; black charcoal and shale flakes interlaminated with 

fine-grained sandstone. Bedding in the coarse-grained sandstone above 

the discontinuous shale laminae is inclined 18-20'. Pebbly sandstone 

below is slightly inclined. Opposite inclination direction is probably 

due to the core slab orientation. 

L. 6852 feet; cross-stratified fine- to medium-grained sandstone, moderately- 

sorted, containing smltidirectional trough or planar cross-bedding with 

a truncation surface. 
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(Blatt, et al. , 1980). At flow depths of 1 meter, mean velocities ' 

of 40 to 100 cm/sec are required to transport the maximum grain 

sizes of 2 to 13 mm observed in the L2 core (Hjulstrom, 1935). . 
' 

Some of the imbricated gravel beds appear inclined 16-21'. However, 

these beds contain more sand than the others and may be pebbly sand- 

stone which is cross-stratified, and not inclined imbrication. 

Contacts between the conglomerate facies and the mudstone and shale 

facies are usual'ly sharp. The contact between the conglomerate 

facies and the sandstone facies can be sharp, with the contact estab- 
lished by wavy, i rregu'lar shale lamination. However, the contact 
is usually gradational and the result of reverse or norma'1 grading. 
Internal contacts between the structureless gravel beds and imbricated 

gravel beds are gradual. 

Sandstone is the most prominent facies in the vertical sequence 

of the L2 core, and the section contains the most recognizable sedi- 
mentary structures: cross-stratification, parallel lamination, 

massive pebbly sandstone, and deformation features. Pebbles are 
scattered randomly throughout much of this facies. The stratified 
sandstone beds contain both low- and high-angle, multidirectional 

cross-bedding with Ibad set thicknesses ranging from 2 to 14 feet 
(0. 6 to 4. 3 m). Low angle stratification is inclined 5-8' (Figure 
6-L), and high angle stratification is inclined 18-20' (Figure 6A). 

Nlultidirectional cross-stratification is observed at several intervals 
(Figure 6-F, H, and L), and was probably formed by current-transported 

sediment deposited in bars containing planar and/or trough 

cross-bedding. Parallel laminated sandstone occurs in 3-5 feet 
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(0. 91-1. 5 m) thick strata interbedded with the gravel beds. and 

cross-stratified sandstone beds. 6rading is not apparent in the 

horizontally stratified sandstones. However, lamination is observed 

in 1 to 2 inch (2. 5 to 5. 0 cm) bands of alternating grain size (Figure 
6-C). Pebbles as large as 25 mm are found fn medium to coarse-grained 

sandstones (Figure 7-8). These sandstones which contain large pebbles 

appear to lack fabric (Figure 6-A and Figure 7-8). As for the struc- 
tureless gravel beds in the conglomerate facies, this is probably 

due to rapid deposition (Blatt. et al. . 1980). Soft sediment deforma- 

tion features are mostly observed in the mudstones. However, small 

displacements on synsedimentary faults also occur in the fine-grained 
sandstones (Figure 7-J). Contacts between the sandstone facies 
and mudstone facies are usually sharp (Figure 7-C, H, K, L, and 

B-E). 

The mudstone facies contains a substantial amount of silt and 

fine-grained sandstone. Fine-grained sand lenses may be starved 

ripples (Figure 7-E and K), and fine- to medium-grained sand lenses 
may also be starved ripples (Figure 8-A). Soft sediment deformation 

is pervasive in the mudstones (Figure 7-D. E, and L). Displacements 

on synsedimentary faIilts are small. probably 1 to 5 inches (2. 5 

to 12. 7 cm), but difficult to measure on the face of a slabbed core. 
Rapid current deposition is suggested by fluid escape structures 
observed in the 527 core (Figure 8-D). There is little evidence 
of bioturbation in the sediment throughout the vertical sequence. 
However, a few trace fossi'ls were observed (Figure B-D), Contacts 
with other sedimentary facies are sharp. 



Figure 7. Sedimentary structures in vertical sequence of the Canyon granite wash 

conglomerate in the parka~ Creek 1 (527) core. The boldface letters in 

the lower left corner of the photographs refer to the captions below. 

7032 feetl structureless gravel, poorly-sorted, well-cemented, pebble 

at base of photo is 54 ma in long axis diameter. 

7033 feet; massive pebbly sandstone, poorly-sorted, pebble in upper 

slab is 28 vm in long axis diameter. Navy lineation in the upper part 

of the photo is a crack in the slab, not a lamination. 

7036 feet; silty madstone overlain by fine- to coarse-grained sandstone' 

sharp even contact. Sandstone is inclined 8 to 10'. 

7038 feet; silty mudstone with convoluted laminations overlies cross- 
stratified fine- to medium-grained sandstone, sandstone contains multi- 

directional trough or planar cross-bedding with a truncation surface 

in lower right corner of photo. 

7040 feet; silty mudstone with fine-grained sandstone laminae, sandstone 

is probably starved ripple laminae, synsedimentary fault with 20-40 mm 

displacement. 

7041 feet; silty mudstone with suspended coarse-grained sand and pebbles. 

7043 feet; silty mudstone overlain by fine- to coarse-grained sandstone, 

sandstone is poorly-sorted and grades upward into silty mudstone ~ sharp 

contact. A coarse-grained mass is suspended in the upper mudstone. 

7044 feet; silty mudstone with fine- to medium-grained sand lenses 

overlain by medium- to coarse-grained sandstone. Sharp contact. 

7074 feet; massive fine-grained sandstone with rock fragments displaced 

by synsedimentary fault with unknown displacement. 

7075 feet; silty mudstone with fine-grained sand lenses. Lenses are 

discontinuous, wavy, uneven, laminations. medium- to coarse-grained 

sandstone overlies mudstone, sharp irregular contact. 

7075. 5 feet; pebbles and coarse-grained sandstone suspended in silty 
mudstone, 8 mn displaceamnt on synsedimentary fault in upper portion 

of photo. 

7075. 7 feet; silty mudstone with suspended fine- to medium-grained sand. 

Shale clast is 32 ssa long and 12 ma thick and is also suspended in the 

madstone. 





Figure 8. Sedimentary structures in vertical sequence continued 
from Figure 7, Parker Creek 1 (S27) core. The boldface 
letters in lower left corner of the photographs refer 
to the captions below. 

A. 7D79 feet; silty mudstone with fine-grained sand. 
Sand laminae are wavy, uneven, and discontinuous, may 

be starved rippled laminae. Medium-grained sand lenses 
interbedded with mudstone in upper portion of photo. 

B. 7080 feet; medium-grained sandstone overlies fine-grained 
sandstone, which overlies silty mudstone. The mudstone 

and fine-grained sandstone are separated by a sharp 
contact. 

C. 7084 feet; coarse-grained sandstone grades upward into 
fine-grained sandstone with even, parallel, horizontal, 
continuous laminae. At very top of photo, faint contact 
is observed with coarse-grained sandstone repeated 
above. 

D. 7085 feet; silty mudstone with very fine-grained sand 

with convoluted laminae, may be a fluid-escape structure. 
Burrow at top left of photo. 

E. 7087 feet; very fine-grained sandstone abruptly overlies 
black shale with sharp contact. 
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Trace fossils present in the black shales and silty mudstones 

of the parker Creek 1 (S27) core include Asterosoma, Chondrites, 

mint-~ero11thes(?). ~ohfomor ha(. ). ala notice s(7). ans ieichichnos. 
In the Jay Taylor B-1 (L2) core the only trace fossil observed is 
Chondrites. The known distribution of the trace fossil types seen 

in the granite wash cores range from lagoonal to abysal plain; the 
only environment common to these fossil types is the near shore, 
shelf environment (Chamberlain, 1978; Locke, 1983). Other fossils 
observed in the L2 core were broken and fragmented crinoid stems 

suspended in silty mudstone (Figure 6-E). 

Composition 

The conglomerate and sandstone compositions throughout the 
cored sequence are variable. Since the compositional percentages 
are influenced by the grain size, gravel size grains () 2 mm) are 
analyzed separately from sand grains (( 2 mm) (Appendix III-A and 

III-B). The analyses show that the gravel population has a majority 
of granitic rock fragments, the sand population a majority of feld- 
spars, and the very fine-grained sand and coarse-silt a majority 
of quartz. Average detrital compositions are summarized in Table 4. 

The compositions from the L2 and S27 core samples plot within 
the arkose field ( Folk, 1980). High granitic rock fragment and 

feldspar content characterize arkoses. The L2 core has an average 
of 68K granitic rock fragments plus feldspar and the S27 core has 

an average of 60%. The logarithmic rock fragment-to-feldspar ratio 
plot of the samples from the two cores shows that as grain size 



Table 4. Average compositional and textural properties of the Canyon granite wash from the Jay Taylor B-l (L2) and the Parker Creek 1 (S27) cores, Oldham County, Texas. 

We)1 
Detrital C sition 

Grain izea Gravel & 2 mn Sand & 2 nm Mean Max a Oz F Rx 0th Oz F Rx 0th 
C t ~Pit 

Mx C03 
5 of total 5 of total 

JTBI (L2) 

PCl (S27) 0. 83 4, 2 . 05-2. 3 1 3 9 0 24 41 7 2 13 6 

1. 5 6. 0 0. 44-2. 5 3 8 13 0 18 37 10 3 8 4 

3. 8 

aLong axis measurements; o standard deviation 
b 

Qz n monocrystailine quartz, F feldspar. Rx = rock fragsmnts including polycrystalline quartz, 0th = other detrital grains, (clays and chlorite). 
cC03 = csarbonate cement. 
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increases, the rock fragment-to-feldspar ratio also increases (Figure 
9) (Appendix IV). Since many of. the larger gravel grains were exluded 

from the thin section analyses, the actual rock fragment-to-feldspar 

ratio is greater for some samples than the percentages ca 1 cul ated 

from the petrology. 

Monocrystalline quartz content in the L2 core varies little 
and averages 21% (Figure 10). Composition of the very fine-grained 
sand and coarse-silt in the S27 core is primarily quartz, and there- 
fore the core has an overall higher quartz content, averaging 25K 

(Figure 11), than the L2 core, which lacks fine-grained sediment. 

Monocrystalline quartz was recognized as having simple or wavy extinc- 
tion, no cleavage, and a uniaxial interference figure. 

Feldspar composition is primarily potassium feldspar, which 

is the host for the perthitic grains. The sands have very minor 

percentages of plagioclase. Potassium feldspar was identified by 

its gray to yellow interference colors, biaxial interference figure, 
and alteration features. 

Rock fragments are primarily igneous rock fragments, but include 
small percentages of sedimentary rock fragments and polycrystalline 
quartz. Igneous rock fragments were recognized by the presence 
of quartz and feldspar combined in one grain. Most of the sedimentary 

rock fragments are clay clasts which are compressed between other 
grains. 

Accessory minerals inc] pde' muscovite, biotite, and zircon. 
Zircon was identified, bj, f/&: very high relief, and third or 
fourth-order interferehce cgi's. Oxides include anatase (Figure 
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Figure 10. Iiazimum and mean grain size and generalized composition plotted with gamaa-ray and res'fstivity logs. Center lithology column shows the vertical sequence of the Canyon 
granite wash in the Jay Taylor B-1 (L2) core. 
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'l2-G) and possibly also hematite or magnetite (Figure 12-C and 12-A). 
The oxides were opaque and recognized by reflected light. 

The matrix content of the conglomerate and coarse-grained sand- 

stone beds is very low, averaging BX and 13% in the L2 and S27 cores, 
respectively. However, it can range as high as 29K in the 

finer-grained sandstones. The matrix is the result of both detrital 
and authigenic processes. Detrital matrix is minor and is primarily 
the result of contemporaneous deposition of clay with the silt and 

sand. Authigenic matrix is mainly due to the alteration of feldspars 
to chlorite. The chlorite is green, yellow, and brown in plain 
polarized light, and occurs as fibrous and blocky particles. Some 

feldspars are almost completely obscured by chlorite alteration, 
and seri citization (Figure 12-F). Sericitization of the feldspar 
grain produces a di rty appearance in thin section, and renders the 

feldspars easily distinguishable from quartz grains. 

Evidence of feldspar dissolution is common (Figure 12-A, 8, 
D, and E). However. original pore space is much more abundant than 

dissolved pore space. Dissolution may have been caused by the migra- 

tion of formation waters. The dissolution occurs randomly, and 

relatively unaltered grains exist in close proximity to dissolved 

grains (Figure 12-A, B, and F). Arkoses coasnonly contain feldspars, 
in all stages of alteration (Blatt, et al. , 1980), 

quartz overgrowths are only seen on a few very fine-grained 
sand particles. No overgrowths are observed on larger grains. 
The sand particles with quartz overgrowths were probably transported 
from another sour ce area and did not form in place. 



Figure 12. Photomicrographs of the Canyon granite wash conglomerate 
in the Jay Taylor 8-1 (L2) core taken at 25x power. Blue 
color is epoxy and represents porosity. The bar scale 
represents 0. 8 millimeter. The boldface letters in the 
lower left corner of the photographs refer to the caption 
below. 

A. 6751 feet; dissolved feldspar grain (Fd) in plain-polar- 
ized light, arrow indicates outline of the original 
grain. Opaque oxides may be hematite or magnetite. 
Some surrounding feldspar grains appear unaltered. 
Other feldspar grains are heavily sericitized, and 

appear dirty, brownish in color. 

B. 6784 feet; dissolved feldspars in cross-polarized light, 
dissolution occurs along selective plains of perthite. 
Dolomite rhombs (Dol) have replaced feldspar and have 

grown into the dissolved pore space. Surrounded feldspar 
grains appear unaltered, or sericitized. 

C. 6787 feet; opaque oxide (Ox) coats and penetrates grains 
along fractures. Other oxides are opaque rounded 

particles. The oxides may be hematite or magnetite. 

D. 6784 feet; dissolved feldspar in plain-polarized light. 
Feldspar grain is sericitized and partially dissolved. 
Corresponding photo E, in crossed-polarized light, 
shows dolomite rhombs that have replaced feldspar and 

have grown into dissolved pore space. 

E. 6784 feet; photomicrograph D in crossed-polarized light, 
dissolved feldspar grain, arrow indicates dolomite 
rhombs (Dol) replacing feldspar and growing into dissolv- 
ed pore space. 

F. 6826 feet; dissolved feldspar in plain-polarized light, 
chlorite has replaced feldspar. Surrounding feldspar 
grains are unaltered or sericitized, but not dissolved. 

G. 6826 feet; opaque oxide, anatase (A). titanium oxide 
(Ti02), forms in clusters in original and dissolved 
pore space. Surrounding feldspar grains are serici tized. 

H. Bar scale represents 0. 8 millimeter. 
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Do'lomi te rhombs al so repl ace feldspar grains. However, only 

small portions of the grains are replaced, and the rhombs seem to 
be found only in dissolved pore space ( Figure 12-B, E). Chlorite 
also occurs as alterations of the dolomite rhombs. 

Pyrite fs seen in thin section with reflected light. It also 
occurs as nodules in the mudstones of the Parker Creek 1 (S27) core. 

The amount of carbonate cement is low, averaging 4X in the 
L2 core and 6% in the S27 core. The cementation occurs in random 

patches. There is no evidence of silica cement. Fibrous dolomite 

cement is found between individual grains and in fractures in the 
pebbly sandstone and mudstone. Where cementation occurs, dissolution 
and chlorite alteration are apparently absent and grains are relative- 
ly unaltered. Oxides are also not present in these cemented zones. 
This suggests that cementation occurred before chlorite alteration. 
There is some evidence for several stages of cementation but the 
low cement percentage prevents a detailed analysis. 

The Canyon granite wash characteristics suggest a relatively 
shallow and uncomplicated diagenetic history. The following mineralo- 
gical relationships recognized by Blatt et al. (1980) support this 
statement, 1) no formation of quartz overgrowths, 2) serici tization 
of K-feldspars. 3) dissolution of feldspars, and 4) precipitation 
of cement into pores. Other relationships which characterize deep 
buria'1 such as pressure solution were not seen in the two cores. 
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Texture 

The textural characteristics of the Canyon granite wash are 

highly variable (Figures 10, 11). The sediment is classified as 

immature (Folk, 1980). The L2 and 527 cores exhibit bimodal grain 
size distributions with a population of gravel, and a population 

of coarse to very-fine grained sand. Mean quartz sizes range from 

medium-grained sand to gravel in the L2 core and very-fine grained 

sand to gravel in the S27 core. The sediment is generally very 

poorly-sorted. Gravel and very-coarse grained sand are mostly angular 
in shape. Individual beds that coarsen upward, fine upward, and 

appear ungraded are present in both cores. This is probably the 
result of large fluctuations in discharge and other flow character- 
istics. The cores exhibit abrupt vertical and lateral changes in 

sorting and maximum and mean grain size. 
The Canyon granite wash from the L2 core has average mean and 

maximum grain sizes of 1. 5 mm and 6. 0 ava, respectively (Table 4). 
The standard deviation ranges from 0. 44 phi (well-sorted) to 2. 6 

phi (very poorly-sorted). The granite wash from the S27 core is 
finer grained, with average mean grain size of 0. 83 xsn and average 

maximum grain size of 4. 2 ma. However, the long-axis measurement 

of the largest pebble observed in the core is 54 ass (Figure 7-8). 
The standard deviation ranges from . 05 phi (very well-sorted) to 
2. 3 phi (very poorly-sorted). 

The variability of grain size and composition suggests that 
the sediment was derived from a nearby source. The presence of 
fluid-escape structures, syndepositional faulting, and debris flow 
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deposits probably indicates rapid deposition and burial. 
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INTERPRETATION 

Introduction 

The Canyon granite wash conglomerate and sandstone consists ': 

of coarse-grained debris eroded from the Bravo Dome. The sediment 

was current transported across a carbonate shelf and deposited into 
the Oldham trough. The association of sedimentary structures, compo- . 

sitions and textures suggests short transport distance from a 

high-relief source area and is interpreted to be the result of 
fan-delta deposition. A fan-delta is an alluvial fan that progrades 

into a standing body of water from an adjacent highland (McGowen, 

1970; Nestcott and Ethridge, 1980). Imbricated gravel and cross- 
stratified bed sets are dominant and probably represent braided 

stream deposits. During the transgression which followed Canyon 

granite wash sedimentation, carbonate mounds developed on high-relief 
structures and shale filled the 0'ldham trough, eventually covering 
the carbonate mounds. 

Alluvial Fan Deposits 

Alluvial fan deposits can be divided into three depositional 
facies: proximal, medial, and distal. Braided stream processes 
are primarily responsible for transporting and depositing the 
sediment. Mean particle size and surface slope decrease from the 
head to the toe of alluvial fans (Friedman and Sanders, 1978). 

The . proximal facies is located at the apex of the fan complex 

where slope angles are highest. It is characterized by debris flows, 
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pebble imbrication and lack of stratification features (Klein, 1982). 
The sediment is poorly-sorted and shows a broad range of particle 
size. Particle shape is angular. Debris flow deposits are supported 

by a muddy matrix, and most of the sands are grain supported. In 

humid regions, stream flow dominates with less debris and mud flows 

(Frledman and Sanders, 1978). 

The medial facies is characterized by cross-stratification, , 

pebble imbrication, parallel lamination, and debris flows. The 

cross-stratification is developed by longitudinal and transverse 
bars. The medial facies is better sorted than the proximal facies 
because of the increase in sand content, but is generally still 
poorly-sorted. The grave'I clasts are imbricated and the interbedded . 

sandstone is parallel laminated. 

The distal facies is located at the toe of the fan, and has 

the lowest slope. The sands are better sorted than the medial fan. 
However, some sands may contain gravel. The facies is characterized 
by cut and fill cross-stratification, convoluted lamination, low-angle 

forset beds. rip-up clasts and concretions. Pebbles are imbricated 
in the gravelly sand. The toe of a fan that builds out into a lake 
or shallow sea may be unstable and yield to sediment slumping 

(Neilson, 1982). 

A normal vertical sequence shows the proximal facies prograding 
over the medial facies, and the medial prograding over the distal 
facies. Coals can form on abandoned fan segments where sediment 

is deposited in a lake or marsh (Klein, 1982). 
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Sediment Source 

The Canyon granite wash is separated laterally from the granitic 
basement rocks of the Bravo Dome by platform carbonates (Figure 4). 
The granite wash was most likely transported across the carbonate; 
platform by stream channels. However, only one such channel has 

been discovered, in the Nanarte Field which lies just west of the 

study area on the carbonate platform. The channels may be related 
to the underlying Precambrian basement structure. Basement block 
faulting probably controlled the positions of the channels. The 

' 

channels would have preferentially flowed in the low areas, and 

more channels have probably not been found because the grabens have 

not been dri'lied. 

Erosive channels of granite wash are found in several wells 
above the Canyon Limestone. This granite wash has been informally 
named here as the Nanarte granite wash (Appendix V). These channels 

may have been the conduits for granite wash found farther out in 
the basin and may have supplied the sediment to alluvial fans recog- 
nized by Dutton (1980a). 

Depositional Environment of the Canyon Granite Mash 

The morpho'logy of the Canyon granite wash interval was determined 

by constructing isopachous maps and cross sections. Cross section 
A-A' trends southwest-northeast and shows the characteristic geometry 

of alluvial fans (Figure 4). The Strawn and Canyon granite wash 

are lens-shaped bodies that thin both toward and away from the sedi- 
ment source. This probably reflects the continued uplift of the 
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adjacent highland during fan sedimentation (Bull, 1972). The internal 

geometry of the Canyon granite wash is very complex and is probably ' 

due to alternating intervals of transgression and progradation during ' 

the uplift of the Bravo Dome. The Lambert 1, Kryhor, and Sundance 

field area consists of a complex network of braided stream deposits. 
The interval of Canyon granite wash examined in the Jay Taylor 

B-1 (L2) well represents the medial facies of an alluvial fan. 
Sedimentary structures. composition, and texture indicate rapid 
deposition from a nearby source and rapid burial. The dominant 

sedimentary structures are low-angle cross-stratification of fine- 
'to very coarse-grained gravelly sandstone beds. The gravel grains 
are imbricated and some of the interbedded sandstone beds are parallel 
laminated. 

' 
Structureless gravel beds and debris-flow deposits are 

also present. The cross-stratified sandstones probably represent 
channel and 'fongitudinal or transverse bar deposits. The interval 
is generally very poorly-sorted. Kowever, some beds are better 
sorted. Syndepositional faults indicate unstable slopes which also 
suggests rapid deposition and burial. 

The Parker Creek 1 (S27) core represents the medial to distal 
fan facies. The core is dominated by marine mudstone. The most 

common sedimentary structures are convo'luted lamination and other 
soft sediment deformation features. Conglomerate and sandstone 

beds are interbedded with the mudstone . These beds are primarily 
cross-stratified . This interval probably represents the transition 
between alluvial fan and marine sedimentation. The conglomerate 
and sandstone is better sorted than the L2 core but is generally 
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still poorly-sorted. 

The sediment distribution of the Canyon granite wash in the 

Lambert I, Hr yhor, and Sundance field area illustrates the complex 

nature of this deposit (Figure 13). The highly variable gross thick- 
ness is probably due to two factors; 1) the complex sediment distribu- 
tion of alluvial fan deposits, and 2) the complex structure of the 
area . Alluvial fan sediments consist primarily of braided stream 

deposits which diverge and overlap at random. This produces highly 
variable thicknesses of channel fill on a local scale. Nevertheless, 
the entire study area has a minimum thickness of at least 200 feet 
(61 m) of Canyon granite wash. The interval thickness in the Lambert 

I Field ranges from 236 to 378 feet (72 to 115 m); in the Hryhor 

Field from 237 to 497 feet (72 to 151 m); and in the Sundance Field 
from 288 to greater than 401 feet (88 to &122 m) (Appendix VI). 

The gross isopachous map shows the position of the carbonate 
platform margin and Canyon granite wash lenses extending into the 
Oldham Trough. The lenses reach a maximum thickness of 450 feet 
(137 m) and average 350 feet (106 m). The Canyon granite wash prob- 
ably does not extend far to the east of the Ware Jupiter 1 (P70) 
well. Several wells have abnormal thicknesses due to faulting, 
and the hatchured areas on the gross and net isopachous maps contain 
wells affected by faulting. These thicknesses were not used in 

constructing the isopachs. A section of the Canyon granite wash 

interval is repeated in the Aurora 11 (H22) well, Hryhor Field, 
by a high angle reverse fault. In the Lambert 1 Field, the Fulton 
King A-1 (L4) well is missing 125 feet of section because of a normal 



Figure 13. Gross isopach of the Canyon granite wash interval in the Lambert 1, Hryhor, and Sundance 

fields showing the trend and morphology of the granite wash lenses. Hachured areas 
contain wells whose granite wash thickness is effected by faulting and therefore not 

used in mapping the trends. Contour interval is 50 feet. 
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fault. 

The net isopachous map shows the same general features (Figure 

14). Beds which have values on the gaama-ray log over 225 API units 

were counted as shale. Shale intervals range from 18 to 85 feet 
(5. 5 to 26 m) in the Lambert I Field; 40 to 168 feet (12 to 51 m) 

' 

in the Hryhor Field; and 28 to 93 feet (8. 5 to 28 m) in the Sundance 

Field (Appendix VI). Most of the shale beds are found near the 

top of the granite wash section. The increase in marine shales 

toward the top of the section may be the result of transgression 
due to decreased subsidence and decreased sediment supply. The 

alternation of alluvial fan deposits and marine shale is probably 

the result of lateral shifting of braided stream channels, rather 
than basinwide sea-level fluctuations. 

Canyon Limestone 

The Canyon granite wash is closely associated with the Canyon 

Limestone that forms the carbonate platform across which granite 
wash was transported. This platform extends around the margins 

of the Palo Duro and Dalhart basins (Dutton, 1980a; Birsa . 1977), 
as well as the Oldham Trough. Maximum thickness of Canyon platform 

limestone is 712 feet (217 m) in the Amy 1 (P45) well (Figure 15). 
Here the Canyon Limestone rests directly on granitic basement. 

In addition to forming platform areas, the Canyon Limestone 

also occurs as mound-like buildups on structural highs seaward of 
the platform edge. Carbonate mounds are thus closely associated 
with producing fields. The Lambert I and Hryhor fields are both 



Figure 14. Net isopach of the Canyon granite wash interval in the Lambert I, Hryhor, and Sundance 

fields showing the distribution of clean granite wash using a cutoff of 225 API units 

on the gamaa-ray log. Hachured areas contain wells whose granite wash thickness is 
effected by faulting and therefore not used in mapping the trends. Contour interval 

is 50 feet. 
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Figure 15. Isopach of the Canyon Limestone interval in the Lambert I, Hryhor, and Sundance fields 
showing the carbonate platform margin. Mound-like buildups occur basinward of and 

along the margin. The carbonate mounds generally correlate with high relief structures, 
and therefore correlate with the fields. Contour interval is variable. 
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capped by carbonate buildups with maximum thicknesses of 38 feet 
(1 1. 5 m) and 46 feet (14 . m) respectively. The Sundance Fie1d occurs 

on the platform margin but is associated with contour irregularities 
that may represent buildups along the edge of the platform. 

Another carbonate buildup occurs in the Exotic 1 (P50) and 

New Atlantis (P59) wells. However, the Canyon granite wash is approx- 

imately 150 feet (46 m) structurally lower than in the Hryhor Field 
and does not produce in these wells (Figure 3). 

The platform is shown to trend east-west near the Lambert 1 

Field. However, it may continue to trend north-south, and the 20 

feet (6 m) of carbonate buildup in the Mitchell Creek 1 (P58) well 

may represent another structural high. 

The association of carbonate buildups with structural highs 

and productive reservoirs is potentially a very powerful tool for 
further exploration. 

Structural Setting of the Fields 

The study area is structurally complex, and the interpretation 
of seismic sections shows the presence of numerous faults. Most 

of the major faults are high-angle reverse faults, but a few normal 

faults also occur. In addition, an isolith was constructed on the 
interval thickness form the top of the Brown Dolomite to the top 
of the Canyon granite wash. The map showed abrupt changes in interval 
thickness which were explained by fau'Iting. Major fau'its in the 

study area strike north-south and may curve slightly (Figure 3). 
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A typical seismic section shows two hi gh-angle reverse faults 
which form the boundaries of the Hryhor and Sundance fields (Figure 
16). The three fields in the study area occur on structural highs 

formed by high-angle reverse and normal faults. The Lambert I Field 
is structurally highest with maximum elevation of -3100 feet (-945 m). 
The Sundance Field has a maximum elevation of -3400 feet (-1037 m) 

and the Hryhor -3500 feet (-1067 m) (Figure 3). 

Lambert I Field 

The Lambert I Field is located on the up-thrown block of a 

normal fault. Compressional forces probably produced the two succes- 
sive high-angle reverse faults which bound the Hryhor and Sundance 

fields. The normal faulting in the Lambert I Fie'ld is probably 
the result of extension produced when the Sundance block bent over. 
Other small faults are also thought to break the continuity of the 
field also. 

Cross-section B-B' trends north-south and shows the variability 
in thickness through the field due to sedimentation and faulting 
(Figure 17). The Canyon granite wash interval thickens across the 
fault from 236 feet (72 m) in the Fulton King A-1 (L4) well to 373 
feet (114 m) in the Fulton King A-6 (Lg) well (Appendix VI). 
Increased thickness on the down-thrown side indicates movement of 
the fault during Niddle Pennsylvanian deposition. 

Lateral and vertical correlation is difficult due to the rapid 
shifting of the channels and bars. The fault cuts the Fulton King 
A-1 (L4) well at -3054 feet (-93'l m) and shortens the section by 



Figure 16. Higrated 12-fold seismic section showing the two high-angle reverse faults which form 

the boundaries of the Sundance and Hryhor fields. Several minor faults cut the section 
but only a few are indicated. Yertical scale is two-way travel time, measured in 

seconds. Line of the seismic line 4-123 is shown in Appendix II. 
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Figure 17. Stratigraphic cross-section B-B' showing the vertical and lateral variation of the 
Canyon granite wash in the Lambert I Field. A normal fault cuts the Fulton King A-2 

(L5) well. Datum is the top of the Strawn Limestone. Location of the cross-section 
is shown in Appendix II. No horizontal scale. 
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approximately 125 feet (38 m). Restoration of the lost section 
results in a gross thickness of approximately 360 feet (110 m). 
This is in close accordance with the thickness predicted by the 
gross i sopachous map, which was drawn excluding the Fulton King 

A-2 (L4) well (Figure '13). 

The datum for cross-section B-B' is the Strawn Limestone. 
On the assumption that the Strawn Limestone was originally horizontal, 
the cross-section indicates that the surface of the Precambrian 

basement has 50 to 75 feet (15 to 23 m) of relief. 

Hryhor Field 

The Hryhor Field is located on the upthrown side of a high-angle 
reverse fault. Cross-section C-C' trends northwest-southeast and 

shows the high-angle reverse fault cutting the Aurora 12 (H23) well 

(Figure 18). The Canyon granite wash interval thickness is 333 
feet (101 m) in the Aurora 6 (H17) well. The fault cuts the Aurora 

12 (H23) well at -3909 feet (-1192 m) and approximately 175 feet 
(54 m) of the Canyon granite wash interval is repeated. The total 
interval thickness is 477 feet (145 m). Removal of the repeated 
section leaves a gross thickness of approximately 300 feet (90 m), 
which correlates well with the thicknesses of nearby wells not affect- 
ed by faulting. The Aurora 2 (H13) may also be cut by the fault, 
repeating part of the Strawn granite wash interval. 



Figure 18. Stratigraphic cross-section C-C' showing the vertical and lateral variation of the 

Canyon granite wash across the study area. A high-angle reverse fault cuts the Aurora 

12 (H23) well. The datum is the top of the Canyon Limestone. Location of the cross- 
section is shown in Appendix II. No horizontal scale. 
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Sundance Field 

The Sundance Field also occurs on the upthrown side of a high 

angle reverse fault. Cross-section D-D' trends northwest-southeast 

(Figure 19). The datum is the Canyon Limestone. The fault bounding 

the west side of the Sundance Field is not evident on the 

cross-section but probably occurs between the Parker Camp 1 (P60) 
and Parker Creek 9 (S35) wells. The cross-section shows the eastward 

thickening of the Canyon granite wash interval. The fault between 

the Sundance and Kryhor fields may cut the Aurora 2 (H13) well, 
repeating part of the Strawn granite wash interval. 

Depositional History 

The granite wash sediments in the Oldham Trough form thick 
sequences of alluvial fan deposits basinward of the carbonate 

platform. Their position can be explained by a multiple sequence 

of transgressions and regressions during the Middle Pennsylvanian. 

A contributing factor to the depositional setting is the Bravo Dome, 

which was periodically active and supplied sediment to the adjacent 
basins. 

The depositional sequence is illustrated by a diagrammatic 

cross-section which extends from the Bravo Dome to the Oldham Trough 

and represents a distance of approximately 40 miles (65 km) (Figure 
20). Major depositional stages are numbered from 1 (oldest) to 
6 (youngest). 

During high stands of sea level, the carbonate platform built 
upward and outward. The Strawn Limestone platform prograded across 



Figure 19. Stratigraphic cross-section D-D' showing the vertical and lateral variation of the 

Canyon granite wash in the Sundance field. A high-angle reverse fault cuts the section 
between the Parker Creek 11 (S37) and the Aurora 2 (H13) wells. The datum is the 

top of the Canyon Limestone. Location of the cross-section is shown in Appendix II. 
No horizontal scale. 
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Figure 20. Diagrammatic cross-section from the Bravo Dome to the Oldham Trough showing the deposi- 
tional history of the Canyon and Str'awn sediments in the study area . The circled 
numbers represent six depositional stages during the Middle Pennsylvanian. The 

cross-section represents a distance of approximately 40 miles (65 km). 
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the uneven Precambrian granitic rocks (Stage 1). The cross-section, 
however, depicts the basement surface as horizontal for simplicity. 
Vertical uplift of the Bravo Dome provided a new source of coarse- 
clastic sediments which were carried across the platform and deposited 
as great fan-like sheets extending basinward from the platform slope 
(Stage 2). 

A subsequent transgression a'llowed a second Strawn Limestone 

to buildup and back over the platform (Stage 3). This three stage 
sequence was repeated with a Canyon platform building up and out 
across the underlying Strawn Limestone (Stage 4). The Canyon 

Limestone probably did not prograde as far into the Oldham Trough 

as the Strawn Limestone because of continuing subsidence which may 

have increased water depths. Renewed uplift of the Bravo Dome provid- 
ed new coarse-grained debris that was carried into the basin (Stage 
5). The Canyon granite wash was then transgressed by a second Canyon 

Limestone and mound-like buildups formed on structural highs (Stage 
6). The Canyon Limestone continued buildup of the carbonate platform 
and the trough was filled with shale. 

This hypothesis requires great quantities of clastic sediment 

transported across the broad carbonate platform. There is evidence 
that the transport was through channels cut on the surface of the 
carbonate platform. One of these may have been preserved in the 
Nanarte Field. The stream gradients were probably high enough to 
transport sediment entirely across the platform, 'leaving little 
evidence of channel fill. Also, the sediment that was left behind 

may have accumulated in low areas which have not been drilled. 
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Additional evidence for the channeling may exist in the variable 
thickness of the Canyon granite wash seen on the isopachous maps, 

but some thickness variation may be due to minor faulting. The 

entire area was a dynamic system with uplift and erosion of the 

Bravo Dome, subsidence of the basins, and small displacements on 

minor faults occurring simultaneously. 

Finally, faulting died out during the Late pennsylvanian as 
shown by the apparent decrease in the throw of the faults (Figure 16). 
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OIL ACCUNlLATION 

Oil Source 

Source rocks for the Pennsylvanian oil are probably the black 

Cisco shales which lie directly over the Canyon Limestone and fi 1 1 

the adjacent Dalhart and Palo Duro basins. Based on geochemical 

evidence, Dutton (1980b) concluded that the Palo Duro Basin was 

not an area of major hydrocarbon generation. However, total organic 
carbon (TOC) data show that higher values are associated with 

Pennsylvanian and lower Permian basinal shales near the study area 

(Dutton, 1980b). Maximum TOC of 2. 13% occurs at the Stanolind Herring 

1 well which is 2000 feet (610 m) southeast of the Parker Camp 

(P60) well. Clastic rocks that contain greater than 1. 0% TOC are 
considered to be good source rocks (Tfssot and Welte, 1978). In 

the Stanolind Herring 1 well, the kerogen color is orange and the 
vitrinite reflectance is 0. 52% (Button et al. , 1982). Basinal shales 
of the Pennsylvanian and Wolfcampian with relatively high values 
of TOC that coincide with abundant lipid-rich kerogen may have gener- 
ated hydrocarbons. Thermal-maturity indicators studied by Dutton 

et al. , (1982) show that source beds in the Pa'Io Duro Basin have 

reached the threshold of the oil generation window. 

Time and temperature are important in oil generation and destruc- 
tion. A long exposure time for a source rock at low temperatures 

has the same effect as short exposure time at high temperatures. 
Waples (1980) applied N. V. Lopatin's method for timing of hydrocarbon 

generation to the burial history of the source rock. The burial 
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history of the Cisco shale in the study area is illustrated in a 

Lopatin diagram (Figure 21). A geothermal gradient of 1. 0'F/100 

feet (18'C/km) was calculated from a bottom hole temperature of 
149'F (65'C) in the Fulton Iris (P51) well at 8150 feet (2485 m). 

The geothermal gradient in the Palo Duro Basin is 1. 1'F/100 feet 
(20'C/km) (Dutton, 1980b). 

Lopatin's method assumes that the relationship of maturity 

to time is linear, and therefore the relationship of maturity to 
temperature will be exponential (Waples, 1980). Time and temperature 

calcuations were made from Figure 21 by estimating the time the 

Ci sco shale spent in each temperature interval of 10'C (Table 5). 
The time was then multiplied by a temperature factor, defined by 

Lopatin, to obtain a time-temperature index (TTI). Total TTI was 

calculated by summing the TTI values for each interval. 

Waples (1980) assigned total TTI values to different stages 
of hydrocarbon generation. A value of 15 total TTI marks the onset 
of oil generation. Peak oil generation correlates with 75 total 
TTI and 160 marks the end of oil generation. The upper limit for 
the occurrence of wet gas is about 1, 500 total TTI. 

The onset of oil generation in the Cisco shale occurred approxi- 
mately 250 million years ago in the Late Permian, with oil being 

generated until the Late Triassic when the Cisco reached a depth 

in excess of 6000 feet (1830 m). Wet gas may also have been generated 
until the Late Cretaceous when burial was greater than 7000 feet 
(2134 m). Oil is produced in the Lambert 1. Hryhor, and Sundance 

fields. Gas is produced in the Hebe 1 (P53) well from the Canyon 
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Table 5. Calculation of time-temperature index (TTI) for burial 
history of the Cisco Shale in Figure 21. 

Temperature 
Interval 

Temperature Time 
Factor (m. y. ) 

Interval 
TTI 

Total 
TTI 

20-30'C 

30-40 

40-50 

50-60 

60-70 

70-80 

80-90 

90-100 

100-110 

110-120 

120-130 

130-140 

140-150 

2-8 

2-6 

2-5 

2-4 

2-3 

2-2 

2-1 

16 

14 

25 

88 

128 

0. 02 

0. 04 

0. 02 

0. 16 

0. 50 

0. 75 

0. 75 

7. 0 

3. 0 

22. 0 

100. 0 

704. 0 

2048. 0 

0. 02 
' 

0. 06 

0. 08 

0. 25 

0. 75 

1. 5 

2. 2 

12. 2 

34. 2 

'l 34. 2 

838. 2 

2886. 2 
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granite wash, and the Rodger 1 well, 3 miles (5 km) north of the 

study area, has produced gas also. 

Oil could have been generated ear Iier in the equivalent shales 

deeper in the Dalhart and Palo Duro basins. However, Dutton's (1980b) 

geochemical data suggest that these shales may not have had TOC 

values, kerogen compositions, and vitrinite reflectances sufficient 
for hydrocarbon generation. 

Trapping Mechanisms 

The Cisco shales probably generated the oil produced from the 

Lambert I, Hryhor, and Sundance fields. A deep down-dropped fault 
block that trends east-west is located approximately 1 mile (1. 6 km) 

north of the study area. It contains shale that is buried about 

1600 feet (488 m) deeper than the Cisco shale in the study area. 
This fault may have provided a migration route along with other 
minor faults for the oil found in the granite wash reservoirs. 

The oil migrated into structurally high areas produced by fault- 
ing, and the faults prevented further migration. The Sundance Field 
is bounded by a high-angle reverse fault. The Parker Creek 9 (535), 
Spring Creek (P68), Connie (P47), and the Single Fold (P66) are 
located on the down-dropped block and do not produce. 

The Hryhor Field is a'tso bounded by a high-angle reverse fault. 
The Aurora 12 (H23) is located on the down-dropped block and does 

not produce. The Lambert I and the Hryhor fields are separated 

by a structural low (Figure 3). The Lambert I is approximately 

400 feet (122 m) structurally higher than the Hryhor field and 
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produces from the upthrown block of a normal fault. It is possible . 
' 

that before movement on the normal fault began, the Hryhor and Lambert 

I field were a single continuous reservoir. Subsequent deformation 

may have produced the trough that now separates the fields. 

Log Interpretation 

Determination of porosity from well logs fs dependent upon 

assumed values for matrix density and fluid density. Analyses of 
the L2 and S27 cores provide the opportunity to compare porosity 
values measured from the cores with those calculated from Formation 

Density Logs. Core porosity values generally approximate true poro- 

sityy 

and in any case are likely to represent maximum values. 

Average porosities and permeabilities measured for stratigraphic 
intervals form the L2 and 527 cores are presented in Table 6. The 

intervals correspond to those described in Appendix III. Porosity 
values range from 3 to 'l6. 7 percent. Permeability ranges from 0. 1 

to 613 md. Porosity and permeability are highest in gravelly sand- : 

stones and conglomerates. 

Porosity and permeability values for the L2 core are presented 
in graphic form in Figure 22. Between 6800 and 6750 feet (2073 
and 2058 m) porosity and permeability generally increase upward. 

Below 6800 feet, they are variable and show no discernable pattern. 
Oil saturation decreases from about 10% at the top of the core to 
0% at the bottom. Water saturation shows a corresponding downward 

increase from about 50% to 90K. 
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Table 6. Average porosities and permeabilities for the Canyon granite wash. Lambert 
1 and Sundance fields, Oldham County, Texas. Interval footage correlates 
with core descriptions (Appendix III). 

Wel I Interval 
(ft) 

Footage 
(ft) 

Number ~porosl t ~Pb11i tv 

of Mean Range Geometric Mean Range 
Samples (5) (5) (md) (md) 

L2 

327 

6751-6765 

6765-6770 

6770-6774 

6774-6777 

6777-6788 

6788-6794 

6794-6796 

6796-6799 

6799-6802 

6802-6809 

6809-6812 

6812-6814 

6814-6816. 5 

6816. 5-6822 

6822-6833 

6833-6839. 5 

6839. 5-6852 

6852-6862 

7032-7036 

7036-7038 

7038-7039 

7039-7042 

7042-7043 

7043-7044 

7044-7050 

7050-7064 

7064-7065. 5 

7065. 5-7066 

7066-7073 

7073-7074 

7074-7076 

7076-7088 

14 

5 

4 

3 

ll 
6 

2 

3 

3 

7 

3 

2 

2. 5 

5. 5 

11 

6. 5 

12. 5 

10 

2 

1 

3 

1 

1 

6 

14 
1. 5 

. 5 

7 

1 

2 

12 

14 

5 

4 

3 
ll 
6 

shale 

3 

3 

core missing 

3 

2 

3 

5 

ll 
7 

12 

10 

4 

shale 

1 

shale 

1 

shale 

core missing 

shale 

shale 

1 

shale 

4 

13. 5 

ll 
13 
13 

12 

9 

6 

12. 3 

'14. 5 

10. 6 

12. 3 
13. 5 

13. 3 

12 ' 2 

12. 5 

15. 3 

12 

9. 4 

10. 2 

'15. 2 

8. 0 

10. 1 

8. 2-16. 1 

8. 8-13 
12-13. 8 

11. 8-13. 9 

8. 6-14. 1 

3. 5-12. 6 

3-9 

9. 9-15. 7 

13. 8-15. 2 

8. 7-12. 5 

6. 8-15. 6 

11. 4-15. 6 

8. 9-16 
4-15. 9 

4. 6-16. 1 

14. 7-16. 7 

10. 9-'I 3. 1 

4. 8-6. 7 

91 18-613 
18. 5 4. 6-34 
25 15-37 

16 13-26 

15 5. 8-65 

3 0. 2-13 

0. 6 0. 1-1. 6 

24 5. 6-112 

23 22-24 

3. 5 1-12 
14 4. 4-26 

27. 5 17-53 

26. 5 8-290 

9 5. '1-15 

7 0. 6-23 
36 11-123 

22 13-34 

0. 3 

&0. 1 

0. 4 

0. 2 

2. 9 

0. 2 0. 1-0. 3 
md Millidarcy 
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Porosities calculated from density 'logs are consistently higher 
than core analysis porosi ties. A cross plot of bul k density and 

porosity values from both core analyses and density logs illustrates 
the higher log porosities, which are represented by solid squares 
on Figure 23. The distribution of core porosities indicates a matrix 
density value of about 2. 60 gm/cm3 for the granite wash. This 
contrasts with the matrix density value of 2. 71 gm/cm3 used in density 
log porosity calculations. If matrix density is calculated theoreti- 
cally based on the average mineralogical composition as determined 
in thin-section, the resulting value is approximately 2. 59 gm/cm3 

(Table 7). This suggests that the matrix density of 2. 60 gm/cm3 

determined from Figure 23 is close to the actual value. In addition, 
grain densities from the granite wash intervals in the L2 core are 
also in the 2. 59 to 2. 64 gm/cm3 range. 

A cross plot of permeability and porosity from the Jay Taylor 
8-1 (L2) core shows an abrupt change in the relationship of these 
two values (Figure 24). This change occurs at a porosity value 
of 9. 5X and a permeability value of 1. 5 md. 

Formation water resistivity was determined by a cross plot 
method used to interpret well log data (Pickett, 1 966). Resistivity 
and well log porosity are plotted on logarithmic scales. The plot 
for the Jay Taylor 8-1 (L2) well indicates a water resistivity (Rw) 

of 0. 025 ohm-meter (Figure 25). Water resistivity for the Fulton 
King A-2 (L5) well is 0. 028 ohm-meter (Figure 26). 
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Table 7. Calculation of Granite Wash bulk density. 

Composition Percentage Density 
g/cm3 

Constituent 
Densi )y 

g/cm 

Quartz 

Orthoclase 

Rock Fragments 

Matrix 

Total 

20 

45 

25 

10 

100% 

2. 65 

2. 56 

2. 60 

2. 55a 

0. 53 

1. 152 

0. 65 

0. 255 

2. 59 g/cm3 

aShale density from density log 
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Ninimum water resistivity values measured from drill stem tests 
range from 0. 027 to 0, 029 ohm-meter at 135'F bottom hole temperature. 

Based on these values, all perforated intervals which produced oil 
or oil and water lie above the line of 50% water saturation. From 

this plot it can be concluded that for water saturation calculations, 
the density log values for porosity are correct. The cementation 

exponent (m) is equa'1 to 2 for log-derived values of porosity. 
However, the log-derived porosities do not agree with core 

porosities (Figure 23). This means that for true porosities the 

cementation exponent has a value different from 2. 
In summary, the log-derived values are satisfactory for calcula- 

tion of water saturation, and for selection of zones for oi'1 produc- 

tion. However, for economic evaluation of the reservoir, log-derived 
values of porosity should be corrected in order to calculate more 

realistic estimates of oil in place. 

Reservoir Properties 

Porosity and permeability data from the Jay Taylor B-1 (L2) 
and Parker Creek 1 (S27) core analyses were classified in an effort 
to describe the average properties of the reservoir, and evaluate 
porosity distributions, net pay sand, and permeability distributions. 
The data were classified into ranges of 1% porosity (Figures 27 

and 28). The number of occurrences in a particular range is referred 
to as the frequency and expressed as a percentage. The cumulative 

frequency is the sum of the frequency percentages of each range. 
Nost porosity distributions are relatively symmetrical (bell-shaped 



Figure 27. Classification of porosity data into ranges of 1 per cent porosity for 
all samples from the Jay Taylor 8-1 (L2) core. The data are shown on the; 

A) frequency histogram and cumulative frequency curve, and 8) cumulative 

frequency curve plotted on an arithmetic probability scale. 
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Figure 28. Classification of porosity data into ranges of 1 

all samples from the Parker Creek 1 (527) core. 
the; A) frequency histogram and cumulative frequency 

frequency curve plotted on an arithmetic probability 

per cent porosity for 
The data are shown on 

curve, and 8) cumulative 
scale. 
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curve) (Amyx et al. , 1960). However, the L2 core data do not produce 

a normal distribution (Figure 27a). One possible reason for this 
deviation is that leached feldspars may have produced enough secondary 

porosity to skew the distribution. 

Porosity ranges from 1 to 175 in the L2 core with a mean of 
15% and a median of 12. 8X (Figure 27a). The median is the value 

of the porosity corresponding to the 50% point on the cumulative 

frequency curve, and divides the histogram into equal parts (Amyx, 

et al. , 1960). The bimodal distribution is easily recognized when 

the data are plotted on arithmetic probability paper. A normal 

distribution plotted on arithmetic probability paper approximates 

a stri ght line (Amyx et al. , 1960). However, the L2 core data produce 

a segmented line which represents two porosity distributions (Figure 

27b). 

The 527 core has porosfties ranging from 4 to 16K with a mean 

of 15% and a median of 10. 2% (Figure 28a). The data produce a bimodal 

distribution. Less data were available, but thin section analysis 
indicated feldspar leaching similar to the L2 core. The data produce 

a segmented line when plotted on arithmetic probability paper (Figure 
28b). 

The cumulative volume capacity for the classified data of the 

L2 and 527 cores shows the net productive granite wash as deter- 
mined by a porosity distribution (Figures 29 and 30). For the L2 

core, Lambert 1 field, 97. 5X of the storage capacity is represented 

by samples having porosities of 8. 5% or greater. Therefore a cutoff 
value of 8. 5% porosity used to determine net pay granite wash would 



Figure 29. Calculation of porosity distribution from classified data for determination 

of cumulative capacity for the Jay Taylor 8-1 (L2) core. The data are 

shown on a cumulative capacity curve. 

8 Range Mid-value No. of Frequency 
of range, I Samples Fraction 

Fi 

Capacity Fraction Cumulative 

Capacity Capacity 
(&) 

1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 
16-17 

1, 5 

2. 5 

3. 5 

4. 5 

5. 5 

6. 5 

7. 5 

8. 5 
9. 5 

10. 5 

11. 5 
12. 5 

13. 5 
14. 5 

15. 5 
16. 5 

1 

0 
20 
3 
0 
1 

0 
6 
2 

3 
14 
14 
16 
21 

14 
4 

0. 0099 
0. 0 
0. 0198 
0. 0297 
0. 0 
0. 0099 
0. 0 
0. 0594 
0. 0198 
0. 0297 
0. 1386 
0. 1386 
0. 1584 
0. 2079 
0. 1386 
0. 0396 

0. 0148 
0. 0 
0. 0693 
0. 1336 
0. 0 
0. 0643 
0. 0 
0. 5049 
0. 1881 
0. 3118 
1. 593 
1. 732 
2. 138 
3. 014 
2. 'f 48 
0. 6534 

0. 0012 
0. 0 
0. 0055 
0. 0106 
0. 0 
0. 0051 
0. 0 
0. 0401 
0. 0149 
0. 0247 
0. 1266 
0. 1376 
0. 1699 
0. 2390 
0. 1707 
0. 0519 

99. 8 
99. 7 
99. 7 

99. 1 

98. 1 

98. 1 

97. 5 

97. 5 

93. 5 

92. 1 

89. 6 
77. 0 
63. 1 

46. 1 

22. 3 
5. 2 

Capacity = Qipi n 

Porosity average da = giFi Fraction capacity 8iFi Cumulative Capacity = 2 
i i 

a 

8(Fi 
7a 
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Figure 30. Calculation of porosity distribution from classified data for determination 

of cumulative capacity for the Parker Creek 1 (S27) core. The data are 
shown on a cumulative capacity curve. 

4 Range Mid-value No. of Frequency Capacity Fraction 
of range ~ Samples Fraction Capacity 

Fi 

Cumulative 

Capacity 
(&) 

4-5 
5-6 
6-7 
7-8 
8-9 
9-10 

10-11 
11-12 
12-13 
13-14 
14-15 
15-16 

4. 5 

5. 5 
6. 5 
7. 5 

8. 5 

9. 5 

10. 5 
11. 5 
12. 5 

13. 5 

14. 5 

15. 5 

0. 0909 
0. 0 
0. 0909 
0. 0 
0. 0909 
0. 0909 
0. 2727 
0. 0909 
0. 0909 
0. 0909 
0. 0 
. 0909 

0. 4091 
0. 0 
0. 5908 
0. 0 
0. 7726 
0. 8635 
2. 86 
1. 045 
1. 136 
1. 227 
0. 0 
1. 408 

0. 0396 
0. 0 
0. 0573 
0. 0 
0. 0749 
0. 0837 
0. 277 
0. 1013 
0. 1102 
0. 1190 
0. 0 
0. 1365 

99. 9 
96. 0 
96. 0 
90. 3 
90. 3 
82. 8 
77. 4 
46. 7 

36. 6 
25. 6 
13. 7 
13. 7 

Capacity giFi 
Porosity average $a = giFi 

n 

Fraction capacity pi pi Cumulative Capacity = 2 6 iFi 

ga &a 
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include at least 97K of the producible hydrocarbons. Using a cutoff 
value of 9. 5X porosity, as suggested in the previous section, would 

include more than 93. 5 percent of the producible hydrocarbons. 

The storage capacity of the granite wash in the 527 core, 
Sundance field. is greater than the L2 core in the lower porosity 
ranges (Figure 30). A cutoff of 6. 5% porosity includes only 96K 

of the producible hydrocarbons, and an 9. 5% porosity cutoff value 

would include less than 90%. 

Permeabi'lity data from the L2 core were a'iso classified in 

order to estimate an average value (Figure 31). Data were ana'lyzed 

in the same manner as the porosity data except in the selection 
of the ranges. The permeability ranges are selected on equal 

intervals of the logarithm of permeability (Amyx et al. , 1960). 
Permeability ranges from 0. 1 to 613 md with a mean of 17. 5 md (Figure 
31A). Since permeabi Iity is classified on a logarithmic scale the 

mean is calculated geometrically. The data are not normally 

distributed and, like the porosity distribution, are skewed. The 

data when plotted on arithmetic probability paper produce a segmented 

line (Figure 318). This indicates that more than one normal 

distribution exists. The presence of two permeability distributions 
could be due to vertical variations in the granite wash beds or 
'lateral variations. In this case they are probably vertical 
variations. As illustrated in Figure 22, the permeability decreases 
from 613 to an average of 20 md in the upper section of the core, 
possibly due to a subtle decrease in grain-size and/or increase 
in matrix content of the granite wash downward. 



Figure 31. Classification of permeability data into equal logarithmic intervals. 
The data are shown on the; 4) frequency histogram and cumulative frequency 

curve. and 8) cumulative frequency curve plotted on an arithmetic probability 
scale. 

Permeability 
Range 

No. of 
Samples 

Frequency 
(&) 

Cumulative 
Frequency (I) 

. 1-. 2 

. 2-. 4 

. 4-. 8 

. 8-1. 6 
1. 6-3. 2 
3. 2-6. 4 
6. 4-12. 8 

12. 8-25. 6 
25. 6-51. 2 

51. 2-102. 4 
102. 4-204. 8 
204. 8-409. 6 
409. 6-819. 2 

3 
1 

1 

3 
1 

11 
15 
31 
14 
12 
6 
3 
1 

2. 94 
0. 98 
0. 98 
2. 94 
0. 98 

10. 78 
14. 70 
30. 39 
13. 72 
11. 76 
5. 88 
2. 94 
0. 98 

2. 94 
3. 92 
4. 90 
7. 84 
8. 82 

19. 60 
34. 30 
64. 69 
78. 41 

90. 17 
96. 05 
98. 99 
99. 97 

Ranges calculated by: g = log2k3 k~ 
= 2iki where 3 = 1, 2, 3 . . . , 

k 
ky range limits 
ki initial permeability . 1 md 
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CONCLUSIONS 

Canyon and Strawn granite wash conglomerates and sandstones 

were derived from granitic rocks of the Bravo Dome. Two carbonate 

platforms developed and prograded across the Precambrian basement. 

The granite wash was transported across the carbonate platforms 

by streams and deposited in the Oldham Trough in fan-deltas. The 

granite wash sediments are generally very poorly-sorted and are 

primarily composed of granitic rock fragments and feldspar. The 

sedimentary structures are dominately imbricated gravels and cross- 

stratified sandstones. The association of primary and secondary 

rock properties suggests rapid deposition and shallow burial history. 
The sandstones are concentrated in narrow channel-like bodies that 
extend northeastward across the area from the base of the carbonate 

pl atf orms. 

Six depositional stages for the Middle Pennsylvanian are recog- 

nized; 1) Strawn Limestone platform development and progradation, 

2) Strawn granite wash progradation, 3) a second Strawn Limestone 

development due to transgression and basin subsidence, 4) Canyon 

Limestone platform development and progradatfon, 5) Canyon granite 
wash progradation, and 6) a second Canyon Limestone development 

due to transgression and basin subsidence, with mound-'like buildups 

occurring on structural highs, and shale filling the Oldham Trough. 

The Cisco shales of the Middle and Late Pennsy'Ivanian are the 

probab'le source rocks for the Pennsylvanian oil. Temperatures and 

burial depth were great enough for the shales to generate oi'I and 

possibly wet gas. Oil accumulated in structural traps located on 
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upthrown blocks bounded by high-angle reverse and normal faults. 
Interpretation of reservoir properties from well logs presents 

some problems. Grain density of the granite wash is approximately 

2. 60 gm/cm3, and porosities calculated at 2. 71 gm/cm3 (limestone 

density) produce values approximately SX too high. Water resistivi- 
ties of 0. 028 ohm-meter are calculated from resistivity-porosity 

plots. Reasonable net pay cutoff values in these granite wash reser- 

voirss 

are 9. 55 for porosity and 1. 5 md for permeability. 

Future exploration for granite wash reservoirs should concentrate 

on finding structurally high areas located along or slightly basinward 

of the carbonate margin which rims the Oldham Trough and the Dalhart 

and Palo Duro basins. The regional distribution of Pennsylvanian 

granite wash indicates that the channels cut across the platforms 

and produced fan-like sheets on the slopes of the platform and out 

into the basins. 
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APPENDICES 

The following pages include: 

I) Mell symbol identification. 

II) Index map of study area showing well control and locations of cross sections. 

III) Petrographic analysis and core descriptions of: 
A) Jay Taylor B-1 (L-2) 
B) Parker Creek 1 (S27) 

IV) Rock fragment/feldspar ratio vs. grain size data. 
V) Structure map data. 

VI) Isopach map data. 

VII) Jay Taylor B-1 (L-2) core analysis. 



APPENDIX I 

MELL SVHBOL IDENTIFICATION 

Symbol Well Name Field League/Sectfon Spud Date 
(month-year) 

Depth Elev. 
(K. B. ) 

Type 
(month- 

year) 

Ll 

L2 

L3 

L4 

L5 

L6 

L7 

LB 

L9 

L)0 
Lll 
H12 

H13 

H14 

H15 

H16 

H17 

H18 

H19 

H20 

H21 

H22 

H23 

H24 

Jay Taylor A-1 
Jay Taylor 8-1 
Jay Taylor D-1 

Fulton-Kfng A-1 
Fulton-King A-2 
Fulton-King A-3 
Fulton-King A-4 
Fulton-King A-5 
Fulton-Kfng A-6 

Fulton-King A-7 
Fulton Ranch 1 

Aurora 1 

Aurora 2 
Aurora 3 
Aurora 4 
Aurora 5 
Aurora 6 
Aurora 7 
Aurora 8 
Aurora 9 
Aurora 10 
Aurora 11 
Aurora 12 
Aurora 13 

Lambert 1 

Lambert 1 

Lmabert I 
Lambert 1 

Lambert 1 

Lambert 1 

Lambert 1 

Lambert I 
Lambert 1 

Lmabert 1 

Lambert I 
Hryhor 

Hryhor 

Hryhor 

Hryhor 

Hryhor 
Hryhor 

Hryhor 

Hryhor 

Hryhor 

Hryhor 

Hryhor 

Hryhor 

Hryhor 

582 
582 
S82 

582 
582 
L317 
582 
L317 
582 

L317 
L31 7 

L316 
L316 
L316 
L316 
L317 
L316 
L317 
L316 
L316 
L316 
L317 
L316 
L316 

12-78 
1-79 
5-79 
2-79 
3-79 
4-79 
6-79 
2-80 
4-81 

9-82 
7-85 
2-82 
2-82 
3-82 
3-82 
3-82 
4-82 
4-82 
5-82 
5-82 
5-82 
5-82 
5-82 
7-82 

7500 
7425 
7550 
7227 

7204 
7300 
7275 
7531 
7433 

7400 
7270 
7822 
7722 
7800 
7500 
8024 
7815 
75'l l 
7504 
7700 
7500 
7323 
7900 
7511 

3617 
3610 
3652 
3600 
3577 
3608 
3594 
3665 
3540 

3669 
3617 
3584 
3590 
3567 
3555 
3563 
3575 
3551 
3613 
3575 
3563 
3538 
3593 
3568 

Oil 
Oil 
Oil 
Oil 
Oil 
Oil 
SMD 

Dry 

Shut fn 
(12-81) 
Dry 

Dry 
Oil 
Oil 
Oil 
Oil 
Dry 
Oil 
Oil 
Oil 
Oil 
Oil 
Oil 
Dry 

Di 1 



Appendix I (continued) 

Symbol Well Name Pie)d League/Section Spud Date 
(month-year) 

Depth Elev. 
(5. 8. ) 

Type 
(month- 

year) 

H25 

H26 

527 

528 
529 
530 
531 
532 
533 

534 
S35 
536 

537 

538 
539 
S40 

541 
N42 

N43 

N44 

P45 

Aurora 14 
Aurora 15 
Parker Creek 1 

Parker Creek 2 
Parker Creek 3 
Parker Creek 4 
Parker Creek 5 
Parker Creek 6 
Parker Creek 7 

Parker Creek 8 
Parker Creek 9 
Parker Creek 10 

Parker Creek ll 

Parker Creek 12 
Parker Creek 13 
Parker Creek 14 

Parker Creek 15 
Neptune 1 

Neptune 2 
Neptune 3 

Any 1 

Hryhor 

Hryhor 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Sundance 

Neptune 

Neptune 

Neptune 

Peripheral 

L316 
L316 
L316 

L316 
L307 

L316 
L307 

L316 
L316 

L316 
L3D7 

L316 

L316 

L316 
L316 
L316 

L316 
L316 
L316 
L316 

585 

6-82 
9-82 
7-81 

8-81 
10-81 
11-81 
12-81 
12-81 
12-81 

1-82 
2-82 
2-82 

3-82 

7-82 
8-82 
8-82 

8-82 
5-82 
5-82 
5-82 

12-82 

7575 
7500 
7608 

7600 
7518 
7610 
7500 
765D 

7600 

7650 
7700 
7650 

7616 

7500 
7500 
7510 

7500 
7860 
7800 
7620 

7248 

3539 
3580 
3603 

3613 
3570 
3635 
3575 
3670 
3580 

3640 
3574 
3677 

3669 

3690 
3684 
3693 

3585 
3658 
3643 
3692 

3683 

SWO 

Oil 
Shut-In 
(1-86) 

Oil 
Oil 
Oil 
Ory 

Oil 
Shut In 
(7-85) 

Oil 
Dry 
Shut-In 
(10-84) 

Shut in 
(7-83) 

Oil 
Oil 
Shut-In 
(7-84) 

Oil 
Oil 
Dry 
Shut-In 
(7-85) 

Oil 



Appendix I (continued) 

Symbo I Well Name Field League/Sectfon Spud Date Depth 
(month-year) 

El ev. 
(K, . B. ) (smnth- 

year) 

P46 

P47 

P48 
P49 
P50 

P51 
P52 

P53 
P55 

P58 
P59 
P60 
P65 

P66 

P67 

968 
P69 
P70 
P71 

Connie 1 

Cottonwood Camp 1 
Diana 1 

Exotic 1 

Fulton Irfs 1 

Gravel Pit 1 

Hebe 1 

Jay Taylor E-1 
Mitchell Creek 1 

New Atlantis 1 

Parker Camp I 
Sharan 1 

Slnglefold 1 

South Parker Creek 1 

Spring Creek 1 

Sunshine 1 

Ware Jupiter 1 

York 1 

Perfpheral 

Peripheral 
Peripheral 
Peripheral 
Peripheral 
Peripheral 
Perfpheral 
Perfpheral 
Peripheral 
Peripheral 
Peripheral 
Peripheral 
Peripheral 
Peripheral 
Perfpheral 
Peripheral 
Peripheral 
Peripheral 
Peripheral 

586 

L316 
L317 
S81 
L317 
L317 
L316 

581 
L316 
583 
L317 
L307 

1. 316 
L3'1 6 
L316 
L316 
L307 
L317 
384 

3-83 
9-8'I 

9-82 
12-79 
4-82 
10-79 
8-82 
4-80 
11-81 
9-82 
10-82 
9-83 
1-81 
7-82 
10-82 
10-79 
4-82 
12-83 

7015 

7800 
792D 

7300 
8300 
8257 
7630 
7364 
7530 
7200 
8000 
7970 
7450 
7790 
7800 
7600 
7757 
8150 
7647 

3745 

3726 
3570 
3550 
3550 
3568 
3744 
3521 
3750 
3570 
3625 
3572 
3717 
3707 
3725 
3596 
3620 
3613 
3585 

Shut-In 
(5-84) 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Gas 

Dry 

Dry 

Dry 

Dry 

Dil 
Dry 

Dry 

Dry 
SWD 

Dry 
Dry 

Note: Kelly Bushing (K. B. ) -10 = Ground Level 
SWD = Salt Water Dfsposal 
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APPENDIX III 

PETROGRAPHIC ANALYSES AND CORE DESCRIPTIONS 

Appendix III-A 

Appendix III-B 

Jay Taylor B-l (L2) 
Lambert 1 Field 
Oldham, County, Texas 

Parker Creek 1 (S27) 
Sundance Field- 
Oldham, County, Texas 

Core descriptions and petrographic analyses abbreviations include: 

ft - feet 
in inches 
ssn millimeter 

Petrographic analyses table superscript notations include: 

Grain sizea - Long axis measurements; Nax = Maximum Size, 
a = standard deviation 

Detrital Compositionb; Oz = monocrystalline quartz, F = feldspar, 
Rx = rock fragments including polycrystalline quartz, 0th = other detrital grains, Mx = matrix (clays and chlorite). 

Cementc; C03 carbonate cement. 



PETROGRAPHIC ANALYSIS 

Jay Taylor 8-1 (L2) 
Lambert 1 Field 
Oldham County. Texas 
Core: 6751-6802 and 6809. 5-6862. 5 

Depth 

(ft) 

Gra Sizes 
Nean Nax 

Ile sss 

Detrital Composition 
Gravel & 2 mn 

F Rx 0th Oz F 

2 mm 

0th 
6 

C t ~P1t 
Nx COS 6 of total 
5 5 of total 

6751 
6755 
6756 
6757 
6773 
6781 
6784 
6787 
6796 
6798 
6812. 5 
6813 
6815 
6823 
6826 
6833. 2 
6839 
6845. 5 
6852 
6861 

1. 1 4. 6 
2. 5 5. 6 
1. 4 6. 8 
1. 5 5. 7 
1. 6 4. 8 
1. 6 7. 2 
1. 2 5. 8 
1. 4 6. 0 
0. 36 3. 2 
1. 5 7. 3 
1. 5 . 4. 5 
2. 4 12. 4 
0. 73 3. 1 

1. 2 5. 4 
2. 6 9. 6 
0. 83 3. 9 
1. 7 8. 1 

1. 5 6. 1 

0. 52 2. 4 
2. 2 7. 7 

1. 3 
1. 4 
1. 8 
1. 3 
1. 2 
1. 8 
1. 3 
1. 3 
0. 66 
1. 5 

1. 3 
'1. 9 ' 

0. 65 
1. 3 
2. 0 
0. 77 
2. 5 

1. 7 
0. 44 
1. 7 

10 
20 
3 
4 

12 
1 

5 
4 
1 

6 
2 

20 
1 

5 

21 

3 
11 
7 
0 

17 

30 
26 
14 
16 
13 
14 
10 
19 

1 

10 
16 
21 

3 
7 

21 

4 
9 

10 
0 

23 

10 
8 

20 
21 

11 

22 
27 
17 
20 
30 
18 
8 

22 
22 

0 15 
0 18 

28 

15 
26 
12 

32 
26 
33 
33 
38 
48 
31 

32 
21 

35 
41 
29 
57 
43 
26 
67 
40 
44 
53 
26 

7 
6 

'15 

21 

15 
7 

18 
15 
6 

13 
15 
6 

13 
15 

5 

5 

3 
6 
9 
8 

&1 

&1 

&1 

&1 

1 

I 
3 
2 
3 
1 

2 
2 
3 
8 
2 

&1 

&1 

5 
4 

&1 

4 
8 

12 
5 
6 
7 
3 
8 

48 
3 
3 

13 
1 

0 
2 
2 

6 
8 
8 
5 

8 
ll 
0 
0 
9 
1 

2 
2 

0 
14 
0 
3 
0 
6 

15 
0 
3 
0 
0 
2 

15 
13 
15 
13 
8 
5 

11 
10 
0 
3 
8 

9 
10 

5 

11 
4 
7 

10 
16 

aLong-axis measurements; o = standard deviation. 
Oz = monocrystalline quartz, F = feldspar, Rx = rock fragments 
0th - other detrital 

grained' 

Nx matrix (clays and chlorite). 
C03 = carbonate cement. 

including polycrystalline quartz, 
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CORE DESCRIPTION 

Jay Taylor 8-1 (L2) 
Lambert 1 Field 
Oldham County, Texas 
Canyon granite Mash Conglomerate 
Core: 6750. 8-6802. 1 and 6809. 5-6862 feet (6752. 8-6804. 1 and 6811. 5-6864 feet corrected 

to electric log). 

Depth Thickness 
(tt) (rt) 

Descrfptfon 

6750. 8 

6751 14. 3 

Shale; black; very silty; thin, even ~ parallel, horizontal, 
continuous lmsinae; ffneiy bioturbated with 2 ms gray lenses; 
apparent high organic content; sharp basal contact. - 

i. 

Conglomerate and sandstone: gray; fine sand- to pebble-grained; 
poorly-sorted, pebbles are subangular to subrounded. granitic ~ 

even, parallel, continuous lamfnae fnclfned 18-21', patchy cement; 
abundant charcoal flakes; nmxfmum pebble size fs 18 ms. 
Interbedded with . 5-1 am shale laminae at 6756. 7. Wavy, 
irregular, . 5-1 sm shale lamina basal contact. 

Thin section: 6751 
6755 
6756 
6757 

6765. 3 4. 5 Conglomerate and sandstone; reddish gray; very-coarse sandto 
pebble-grained; poorly sorted; pebb'Ies are subangular to 
subrounded, granftic ~ even, parallel, contfnuous laminae inclined 
18-20', smderately cemented; abundant charcoal fIakes; maxfsuss 
pebble size fs 22 sass wavy, irregular basal contact. 

6769. 8 4. 2 Conglomerate and sandstone; pinkish gray; fine-sand to pebble- 
grafnedl poorly sorted, pebbles are subangular to subrounded, 
granfticl even, parallel, continuous lmsfnae fnclfned 16', maximum 
pebble sfze fs 10 sss. 

Thin section: 6773 

6774 3. 0 Core mfssfng. 

6777 11. 0 Conglomerate and sandstone; gray; fine-sand to pebble-grained; 
poorly sorted; pebbles are subangular to subrounded, granitfc; 
10-30 cm fining upward sets; even, parallel, horizontal, 
continuous laminae; maximum pebble size fs 13 sss. Mavy. 
irregular, . 5 sm shale lamina at 6781. 5. Wavy. irregular. basal 
contact. 

Thfn section: 6781 
6784 
6787 
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Jay Taylor B-l (L2) (contfnued) 

Depth Thickness 
(«) («) 

Description 

6. 0 Conglomerate and sandstone; gray; fine- to pebble-grained; poorly 
sorted; pebbles are subround to subangular, granitic; even, 
parallel, continuous laminae inclined 14', moderately cemented; 
maximum pebble sfze fs 11 ssn, . 5-1 ssn shale lamina basal contact. 

6794 1. 0 Conglomerate and sandstone; reddfsh gray; smdfum-sand to granule- 
grafned; moderately sorted; granules are angular to subrounded, 
granftfc; wall cemented; wavy dolomite veins 2-3 ms thfck; maxfmum 
granule size fs 4 ms. Sharp basal contact. 

6795 1. 0 Shale; black; very silty; . 5-1 mn, even, parallel, horizontal, 
contfnuous 'lanrfnae; broken and fragmented crfnofd stems increase 
fn abundance downwards fine)y bfoturbated with 2-3 mn gray lenses; 
gradational contact. 

Silty mudstone; brown; suspended medium sand- to granule-sfze 
grains; scattered broken and fragsmnted crfnoid stems. 

Thin section: 6796 

6796. 9 1. 6 Conglonmrate and sandstone; pinkish gray: fine-sand to pebble- 
grafned; poorly sorted; pebbles are subangular to subrounded, 
granitfci even, parallel, continuous lamfnae inclined 19'; well 
cemented; nmxfmum pebble size is 8 nm. Gradational contact. 

Thin section: 6798 

6798. 5 3. 6 Conglomerate and sandstone; pinkish gray; very-Ane sand- to 
pebble-grained; poorly sorted; pebbles are subangular to 
subrounded, granitic; even, parallel, continuous laminae fnclfned 
6'1 7-15 cm ffnfng upward sets; . 5-2 nm charcoal flakes increase 
fn abundance downward; maximum pebble size fs 18 nm. 

6802. 1 6. 9 Core missing. 

6809 3. 5 Conglomerate and sandstone; pinkish gray; fine sand- to pebble- 
grafned; poorly sorted: pebbles are angular to rounded, granitic; 
abundant black shale f1akes; even, parallel, continuous laminae 
inclined 21', maxfnmm pebble size fs 12 ms; wavy. irregular, . 5-1 nm shale lamina basal contact. 

6812. 5 1. 0 Conglomerate and sandstone; reddish gray; fine sand- to pebble- 
grained; poorly sorted; pebbles are angular to subrounded, 
granitic; black. wavy, . 5-2 mn thick and 25 sm long discontinuous 
shale clasts; irregular, . 5 sss shale lamina basal contact. 

Thin sectfon: 6812. 5 
6813 
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Jay Taylor 8-1 (L2) (continued 

Depth Thickness 
(vt) (vt) 

Descriptfon 

6813. 5 3. 0 Conglomerate and sandstone; gray; very-fine sand- to 
pebble-grained; very poorly sorted; pebbles are subangular to 
rounded, granitic; even. parallel, continuous laminae inclined 
21'. black, . 5 sss, wavy shale laminae at 6814; maximum pebble 
sfze fs 16 ms; irregular, . 5 ms shale lamina basal contact. 

Thin section: 6816. 5 

6816. 5 5. 7 Conglomerate and sandstone; orangish gray; fine sand- to pebble- 
grained; very poorly sorted: pebbles are angular, granftfc; 
even ~ parallel. continuous laminae inclined 5-6 ', black, wavy, 
2 mm wide and 16 mm long shale clasts at 6821. 6; abundant black 
crystallfne charcoal flakes; smxfmum pebble size fs 9 sss; wavy, 
frregular, . 5 sm shale lamina basal contact. 

6822. 2 10. 8 Conglomerate and sandstone; gray; fine sand- to pebble-grained; 
poorly sorted: pebbles are angular to subrounded. granitic; 
even, parallel. continuous laminae fnclfned 16', 2. 3-4. 2 cm 
Tfnfng upward sets; abundant . 5-3 sss long and . 5 ms thick black 
charcoal flakes; rsaxfmum pebble size fs 19 sss; . 5 shale lamina 
at 6829. 3, 6822. 4. and 6833. Mavy, frregular, 2 mu black shale 
lamina basal contact. 

Thin section: 6823 
6826 

6833 6. 4 Conglcnmrate and sandstone; gray; fine sand- to pebble-grainedl 
poorly sorted; pebbles are angular to subangular, granitic; 
even, parallel, continuous laminae inclined 15'1 even, parallel, 
horizontal, continuous laminae at 5833-5834. 3, and 6835. 2-6836. 4; 
abundant black charcoal flakes; black shale lamina at 6835. 2. 
6837. 3, 6837. 6. 6838, 6838. 8, and 6839l maximum pebble size 
fs 8 ms. At 6838. 2-6839 fina to medium grained, no pebbles. 
Irregular, . 5-1 ssa shale lamina basal contact. 

Thin section: 6833. 2 
6839 

6839. 4 12. 6 Conglomerate and sandstone; gray; fine sand- to pebble-grained; 
poorly sorted; pebbles are subangular to rounded, granitic: 
even, parallel. horizontal' contfnuous lamfnae to even, parallel, 
continuous laminae fnclfned 9', 21 ms long and 1 sm thick charcoal 
clasts; shale lamina at 6845. 2, 6846, 6848. 1 ~ 6849, 6849. 5; 
sharp coarse grain basal contact. 

Thin sectfon: 6845. 5 
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Jay Taylor 8-1 (LZ) (continued) 

Depth Thfckness 
(ft) (fi) 

Descriptfon 

6852 10. 0 Conglomerate and sandstone; gray; ffne- to pebble-grained; poorly 
sorted: pebbles are subround to rounded; even, parallel, 
discontinuous laminae inclined 3'f discontfnuous shale laminae 
at top; coarsening downward to 6852. 81 6852. 8-6862 has 25-60 
cm fining upward sets, maximum pebble size fs 9 ms. Generally 
finer grained than above section. 

Thin section: 6852 
6861 



PETR06RAPHIC ANALYSIS 

Parker Creek 1 (S27) 
Sundance Field 
Oldham County. Texas 
Core: 7032-7050 and 7064-7088 

Depth 

(ft) 

grain Sizes 
Nean Nax a 

sss snl sls 

Detrital Cenpositionb 
6ravel & 2 mm Sand & 2 mm 

F Rx 0th Dz F Rx 0th 
6 

t t ~Ptt 
Nx C03 6 of total 

6 of total 

7032 
7038 
7042 
7043 
7045 
7046 
7065. 5 
7068 
7073 
7074 
7083 
7084 
7085 

2. 1 

0. 26 
1. 2 
0. 84 
0. 11 
0. 23 
2. 3 
0. 18 
0. 39 
0. 13 
2. 0 
1. 0 
0. 12 

8 ' 0 1. 9 3 6 
13 017 0 0 
88 14 3 1 
4. 8 0. 95 2 4 
0. 32 0. 07 D 0 
0. 79 0. 14 0 0 
6 4 1 4 3 8 
2. 5 D. 31 1 0 
3. 4 0. 53 0 0 
0. 44 0. 09 0 0 
9 5 2 3 1 7 
8 2 1 3 1 8 
0. 24 0. 05 0 0 

19 
0 
9 
6 
0 
0 

33 
0 
1 

0 
21 

0 
0 

24 
23 
31 
11 
38 
27 

2 
26 
24 
36 
29 
29 

26 

31 14 &1 3 14 
54 8 6 9 1 

44 7 1 4 0 
55 19 &1 3 0 
28 0 3 31 0 
55 4 2 12 0 
43 10 &1 1 7 
39 2 3 29 D 

46 6 &1 23 0 
36 '1 2 25 1 

28 '12 1 1 16 
52 6 3 1 12 
42 3 6 23 1 

3 
6 
1 

12 
0 
2 

0 
0 
0 
0 
2 

2 
3 

aLong-axis measurements; o standard deviation. 
b 

Dz = monocrystalline quartz, F = feldspar. Rx = rock fragments including polycrystalline quartz; 0th = other detrital grains, Nx matrix (clays and chlorite). 
C03 = carbonate cement. 
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CORE DESCRIPTION 
Parker Creek 1 (527) 
Sundance Field 
Oldham County. Texas 
Canyon Granite Mash Conglomerate 
Core: 7032. 3-7050 and 7074-7088 feet (7933. 8-7051. 5 and 7065. 5-7089. 5 feet corrected 

to electric log). 

Depth Thickness 
(ft) (ft) 

Description 

7032. 3 4. 2 Conglomerate and sandstone; reddish gray; medium sand- to pebble- 
grafned; pebbles are angular to subrounded: even, parallel, 
horizontal. contfnuous laminae at the top, grades downward to 
even. parallel, conttnuous laminae inclfned 18-20', 6-12 cm 
ffn1ng upward sets; maximum pebble s1ze fs 56 mn; no shale lamtna; 
sharp, wavy basal contact. 

Thin section: 7032 

7036. 5 4. 5 Silty mudstone; black to dark gray; uneven, nonparallel, discon- 
tinuous, wavy. truncated lamfnae; 4 mn shale clast at 7038; 
very ffne grained sand increases downward to 7039 ' then decreases 
to black s1ltstone at base. Gradational contact, abundant soft 
sediment deformation; pyrite nodules at 7040. 1. 

Thin section: 7038 

7041 2. 0 Silty mudstone; black to gray; uneven, nonparallel, d1scontfnuous, 
wavy tamfnae; amtrix supported pebbles and medfum grained sand 
1ncrease downward to gradationally become a ffne sand to pebble 
grained. wall cemented conglomerate. Sharp basal contact. 

Thin section: 7042 

7043 Silty mudstone; blacks 15 mn mass composed of medfum sand- to 
granule- sfzed grains suspended fn sflt: coarsens downward to 
medium grained sandstone; sharp basal contact. 

Thfn sectfon: 7043 

7043. 5 1. 0 Sandstone; lfght tan; very-fine grained; uneven, nonparallel, 
discontinuous laminae; 5-10 cm fin1ng upward sets. Sharp basal 
contact. 

7044. 5 5, 5 Stlty mudstone; black to dark gray; interbedded with very fine 
to coarse grained sand; uneven, nonparallel. wavy. dtscont1nuous. 
truncated sand lenses; abundant soft sedfment deformation; granule 
size grains are matrfx supported at 7048-7049. 8. 

Thin sectfon: 7045 
7046 

7050 13. 8 Core mfssing. 
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Parker Creek 1 (527) (continued) 

Depth Thickness 
(rt) (Tt) 

Description 

7063. 8 Sflty mudstone; black; even, parallel. slightly wavy, continuous 
laminae overlfe ffne to coarse grained sand, separated by a 
sharp contact. 

7064 1. 5 Shale; black; very sflty; . 5-1 ms, even. parallel. horizontal 
continuous laminae; finely bfoturbated with 2 ms gray lenses; 
sharp basal contact. 

7065. 5 Conglomerate and sandstone; gray; ffne sand to granule grained; 
poorly sorted, granules are subangular to subrounded. granftfc: 
massive; sharp basal contact. 

Thin section: 7065. 5 

7066 7. 0 Silty mudstone; gray to black; uneven, parallel, wavy. horizontal. 
contfnuous lasrlnae; fine to medium grained sand increases downward 
from 7065-7067, 7071-7071. 8, 7072. 8-7073 (all fining upward 
sets); sharp, wavy basal contact. 

Thin section: 7068 

7073 3. 1 Sflty mudstone; gray to black; occasfonally sandy; even, parallel. 
wavy, contfnuous laminae; ffne to pebble grained sand increases 
downward from 7073. 4-7073. 8; 4 mn wide and 11 ms long pebble 
lenses at 7074. 5: coarsening upward set at 7075. 6 with 20 mn 
shale clast; sharp, wavy basal contact. 

Thfn section: 7073 
7074 

7076. 1 10. 9 Silty mudstone; gray to black; occasionally sandy; uneven. paral- 
le'1, wavy, continous laminae; coarsely bioturbated; fine to 
pebble grafned sand interbedded at 7076. 2-7076. 3, 7079. 4-7079. 5. 
7079. 9-7080. 2, 7080. 5-7080. 8, 7081. 8-7081. 9. 7083, 7084. 8 (a'll 
fining upward sets); sharp basal contact. 

Thin section: 7083 
7084 
7085 

7087 'I. O Shale; very black; uneven, parallel, wavy to horizontal, contin- 
uous, laminae; apparent high organic content. 
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APPENDIX IV 

ROCK FRAGMENT/FELDSPAR RATIO VS. GRAIN SIZE DATA 

Wel 1 
Symbol 

Mean 
Grain Size 

Rock Fragment Feldspar 
Rx X F(&) 

Rx/F 
Ratio 

L2 

S27 

1. 1 
2. 5 
1. 4 
1. 5 
'1. 6 
1. 6 
1. 2 
1. 4 
0. 36 
1. 5 
1. 5 
2. 4 
0. 73 
1. 2 
3. 6 
0. 83 
1. 7 
1. 5 
0. 52 
2. 2 

2. 1 
0. 26 
1. 2 
0. 84 
0. 11 
0. 23 
2. 3 
0. 18 
0. 39 
0. 13 
2. 0 
1. 0 
0. 12 

37 
32 
29 
37 
28 
21 
28 
34 

7 
23 
31 
27 
26 
22 
26 

9 
12 
16 
9 

31 

33 
8 

16 
25 
0 
4 

43 
2 
7 
1 

33 
6 
3 

42 
46 
36 
37 
50 
49 
36 
36 
22 
41 
43 
49 
58 
48 
47 
70 
51 
51 
53 
43 

37 
54 
45 
59 
28 
55 
51 
39 
46 
36 
35 
60 
42 

0. 88 
0. 69 
0. 81 
1. 00 
0. 56 
0. 43 
0. 78 
0. 94 
0. 32 
0. 56 
0. 72 
0. 55 
0. 44 
0. 46 
0. 55 
0. 13 
0. 24 
0. 31 
0. 17 
0. 72 

0. 89 
0. 15 
0. 35 
0. 42 
0. 0 
0. 07 
0. 84 
0. 05 
0, 15 
0. 03 
0. 94 
0. 10 
0. 07 

Equation of t e least squares regression ine is 
The equivalent equation of the line is y = bx 
Values are: b . 35 

m = . 90 
Correlation coefficient is 0. 84. 

og y = m log x + log b 
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APPENDIX V 

STRUCTURE MAP DATA 

The following . abbreviations apply to the co'lumn headings: 

Cim - Ciasaaron 

Tubb - Tubb 

Red Ca - Red Cave 

Pan Lm - Panhandle Lime 

Brn Dolo - Brown Dolomite 

Cis Sh - Cisco Shale 

Man GW - Manarte Granite Wash 

Can Lm - Canyon Limestone 

Can GW - Canyon Granite Wash 

Stra Lm - Strawn Limestone 

Stra GW — Strawn Granite Wash 

PC - Precambrian Granite 

The following abbreviations apply to the well symbol: 

L - Lambert I Field 

H - Hryhor Field 

S - Sundance Field 

N - Neptune wells 

P - Peripheral wells 

The following abbreviations apply to missing data in the columns: 

NA — Not Available 

NP - Not Present 

NDE - Not Deep Enough 



Structure Map Data 

Symbol Mell Nanm Elev. Cim Tabb Pan 

Lm 

Brn 
Dolo 

Cia 
Sh 

Can 

Lm 

Can 

6M 

Stra 
Im 

Stra 
BM 

PC 

Ll 

L2 

L3 

L4 

LS 

L6 

L7 

LB 

L9 

L10 
Lll 
H12 

H13 

H14 

H15 

H16 

H17 

H18 

H19 

H20 

H21 

H22 

H23 

H24 

H25 

H26 

S27 
528 
529 
530 

Jay Taylor A-l 
Jay Taylor 8-1 
Jay Taylor D-1 

Fulton-King A-1 

Fulton-King A-2 

Fulton-King A-3 
Fulton-King A-4 
Fulton-King A-5 
Fulton-King A-6 
Fulton-King A-7 
Fulton Ranch 1 

Aurora 1 

Aurora 2 
Aurora 3 
Aurora 4 
Aurora 5 
Aurora 6 
Aurora 7 
Aurora 8 
Aurora 9 
Aurora 10 
Aurora 11 
Aurora 12 
Aurora 13 
Aurora 14 
Aurora 15 
Parker Creek 1 

Parker Creek 2 
Parker Creek 3 
Parker Creek 4 

361 7 

3601 
3652 
3600 
3577 
3608 
3594 
3665 
3540 
3669 
3617 
3584 
3590 
3567 
3555 
3563 
3575 
3551 
3613 
3575 
3563 
3538 
3603 
3568 
3539 
3580 
3603 
3613 
357D 

3635 

762 
860 

NA 

918 
897 
MA 

1049 
885 
855 
919 
899 
894 
888 
875 
905 
929 
875 
901 
891 
915 
901 
890 
893 
879 
939 
880 
953 
962 
972 
950 

607 
618 
MA 

655 
632 
MA 

644 
605 
575 
630 
635 
595 
590 
563 
615 
615 
557 
601 
5$5 
613 
584 
610 
563 
568 
624 
560 
633 
643 
625 
630 

272 
280 
NA 

306 
293 
MA 

3D9 

261 

230 
290 
274 
269 
260 
247 
255 
258 
230 
241 

253 
247 

233 
252 
251 

246 
269 
240 
325 
333 
330 
325 

-286 
-274 
-29$ 
-262 
-281 
-274 
-271 
-333 
-345 
-296 
-297 
-408 
-365 
-374 
-343 
-343 
-380 
-357 
-361 
-347 
-362 
-346 
-381 
-372 
-331 
-382 
-287 
-285 
-285 
-281 

-723 
-704 
-742 
-674 
-691 
-706 
-678 
-770 
-755 
-713 
-735 
-816 
-819 
-833 
-777 
-782 
-834 
-816 
-819 
-785 
-BOD 

-807 
-839 
-832 
-770 
-788 
-713 
-697 
-705 
-697 

-2683 
-2630 
-2728 
-2650 
-2583 
-2732 
-2780 
-2860 
-2682 
-2686 
-2815 
-3106 
-3045 
-3007 
-3129 
-31 67 
-3135 
-3149 
-3127 
-3160 
-3117 
-3160 
-3097 
-3115 
-3161 
-300D 
-3059 
-3052 
-3085 
-3D10 

-3123 
-3052 
-3150 

NP 

-3061 
NP 

NP 

-3170 
-3245 
-3071 
-3215 
-3436 
-3480 
-3487 
-3487 
-3598 
-3523 
-3522 
-3485 
-3570 
-3489 

NP 

-3663 
-3496 

NP 

-3508 
-3372 
-3385 
-3402 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

NP 

-3375 -3385 

-3151 
-3078 
-3174 
-3054 
-3067 
-3150 
-3200 
-3191 
-3252 
-3109 
-3237 
-3482 
-35DO 

-3508 
-3497 
-3606 
-3550 
-3533 
-3503 
-3578 
-3515 
-3562 
-3685 
-3521 
-3624 
-3534 
-3407 
-3405 
-3430 
-3404 

-3529 
-3420 
-3527 
-3290 
-3415 
-3464 
-3515 
-351 5 
-3625 
-3481 
-3488 
-3862 
-3880 
-3887 
-3887 
-3979 
-3883 
-3813 
NDET 

-3847 
-3925 

NDE 

-4182 
-3922 
-3861 

NDE/NP 

-3767 
-3763 
-3730 
-3779 

-3588 
-3452 
-3560 
-3309 
-3448 
-3490 
-3540 
-3547 
-3680 
-3509 
-3505 
-3891 
-3925 
-3929 

NOE 

-4029 
-3944 
-3837 

NDE 

-3869 
NDE 

NOE 

-4207 
NDE 

-3891 
NDE/MP 

-3845 
-3821 
-3805 
-3843 

-3791 
-3599 
-3776 
-3370 
-3583 
-3547 
-3586 
-3655 
-3782 
-3621 
-3553 
-4131 
-4070 
-4162 

NDE 

-4179 
-4205 

NDE 

NDE 

-4047 
NDE 

NDE 

NDE 

NDE 

-3991 
NDE 

-3897 
-3857 
-3870 

NDE 



Structure Map Data (continued) 

Symbol Nel'I Name Elev. Cim Tubb Red 

Ca 

Pan 

Lm 

Brn 

Dol o 
Cis 
Sb 

Can 

Lm 

Can 

GM 

Stra 
Lm 

Stra 
GW 

PC 

531 
532 
533 
S34 
535 
536 
537 
538 
539 
S40 
541 
N42 

843 
N44 

P45 
P46 
P47 

P48 

P49 
P50 
P51 
P52 

P53 
P55 

P58 
P59 

Parker Creek 5 
Parker Creek 6 
Parker Creek 7 
Parker Creek 8 
Parker Creek 9 
Parker Creek 10 
Parker Creek 11 
Parker Creek 12 
Parker Creek 13 
Parker Creek 14 
Parker Creek 15 
Neptune 1 

Npetune 2 
Neptune 3 
Amy 1 

Any 2 
Connie 
Cottonwood 

Creek I 
Diana I 
Exotic 1 

Fulton Iris I 
Gravel Pit I 
Hebe 1 

Jay Taylor E-I 
Hitchell Creek 1 

New Atlantis 1 

3573 
3670 
3580 
3640 
3574 
3677 
3669 
3690 
3684 
3693 
3685 
3658 
3643 
3692 
3683 
3745 
3726 
3570 

3550 
3602 
3568 
3744 
3521 
3750 
3570 
3625 

953 
962 
958 
926 
944 
929 
937 
920 
9'I 9 
904 
915 
918 
903 
920 
958 
955 
911 

NA 

888 
NA 

953 
924 
871 
926 
932 
941 

633 
630 
630 
608 
622 
617 
611 
606 
6D4 

601 
587 
594 
587 
697 
621 
630 
596 
N 

630 
NA 

616 
619 
619 
635 
622 
630 

325 
330 
329 
3DO 

314 
307 
321 
290 
276 
274 
275 
276 
273 
282 

303 
315 
276 
300 

280 
N 
289 
301 
261 
320 
290 
275 

-290 
-285 
-271 
-315 
-356 
-303 
-289 
-292 
-321 
-369 
-343 
-337 
-341 
-330 
-277 
-265 
-336 
-285 

-292 
N 

-340 
-338 
-321 
-278 
-288 

327 

-715 
-692 
-675 
-695 
-746 
-715 
-686 
-724 
-712 
-757 
-726 
-724 
-729 
-726 
-675 
-658 
-732 
-720 

-714 
NA 

-827 
-756 
-729 
-650 
-835 
-780 

-3058 
-3010 
-3080 
-3035 
-3141 
-3033 
-3D9'I 

-2962 
-3011 
-2942 
-3043 
-2973 
-2982 
-2936 

HP 

NP 

-2944 
-3012 

-2666 
-3112 
-3292 
-3026 
-2679 
-2795 
-2594 
-3120 

NP 

NP 

NP 

HP 

NP 

-3401 
NP 

NP 

HP 

-3402 
NP 

NP 

NP 

NP 

NP 

NP 

-3400 
NP 

NP 

NP 

NP 

NP 

HP 

HP 

NP 

NP 

-3469 
-3370 
-341 9 
-3402 
-3579 
-3421 
-3423 
-3388 
-3361 
-3417 
-3440 
-3392 
-3455 
-3408 
-2685 
-2635 
-3423 

NP 

NP 

-3644 
HP 

-3374 
NP 

-30DD 

-31 20 
-3603 

-3476 
-3390 
-3446 
-3438 
-3605 
-3445 
-3439 
-341 3 
-3406 
-3457 
-3485 
-3439 
-3492 
-3465 

NP 

? 
-3466 
-3535 

-3237 
-3664 
-3902 
-3486 
-3249 
-3147 
-3140 
-3625 

-3765 
-3760 
-3804 
-38D5 
-3916 
-3833 
-3841 
-3760 
-3756 

NDE 

NDE 

-3770 
-3852 
-3753 

? 
-3213 
-3632 

-3598'I 
-4146? 
-4335 
-3626 
-3571 
-3208 
-3342? 
-4059? 

NP 

-3840 
-3875 

NP 

-3984 
-3903 
-3904 

NDE 

NDE 

NDE 

NDE 

-3882 
-3959 

NDE 

NP 

NDE 

-3846 
? 

NP 

-4201? 
-4412 
-3788 
-3595 

NP 

? 
-4095 

-3832 
HDE 

HDE 

HDE 

-4029 
NDE 

NDE 

NDE 

NDE 

NDE 

NDE 

-4014 
-4062 

NDE 

-3397 
NDE 

-3984 
-4210 

-3620 
-4519 
-4596 

NDE 

-3754 
-3495 
NDE? 

-4355 



Structure Map Data (continued) 

Symbol Nell Name Elev. Cim Tubb Red pan Drn Cis Man Can Can Stra Stra PC 

Ca Lm Do 1 o Sh DM Lm DM Lm GM 

P60 
P65 
P66 

P67 

P68 
P69 
P70 
P71 

Parker Camp 1 
Sharan 1 

Singlefold 1 

South Parker 
Creek 1 

Spring Creek 1 

Sunshine 'I 

Mare Jupiter 1 

York 1 

3572 
3717 
3707 
3725 

3596 
3620 
3613 
3585 

944 617 313 
NN NN 313 

867 597 252 
915 605 283 

846 526 21 1 

945 600 310 
973 653 295 
882 572 2'I 6 

-363 -773 -3233 
-335 -679 -2793 
-333 -752 -2943 
-363 -725 -2924 

-409 -809 -3073 
-330 -755 -3080 
-329 -835 -3309 
-374 -760 -2905 

-3723 -3808 
NP -3183 
NP -3432 

-3390 -3420 

-3556 -3599 
-3485 -35'10 

NP -4085 
NP -3395 

-3848 
-3248 
-3495 
-3455 

-3657 
-3550 
-4117 
-3423 

-4048 
-3383 
-3668 
-3633 

? 
-3875 
-4252 
-3743 

-4209 
7 

-3845 

NDE 

-3960 
-4337 
-3863 

-4240 
-3583 
-3988 
-3905 

NDE 

NDE 

-4432 
-3975 



APPENDIX Vl 

ISOPACH NAP DATA 

Symbol Well Name 

Thickness 
Canyon 

Limestone 

(ft) 

Approxlsmte 
Oil Zone 

Thickness 
(ft) 

Gross Thickness 
Canyon 

Granite Wash 

(ft) 

Shale 
225 API 

cut-off (ft) 

Net 

Thickness 
Canyon 

Granite Nash 

(ft) 

Ll 

L2 

L3 

L4 

LS 

L6 

L7 

LG 

L9 

L10 
Lll 
H12 

H13 

H14 

H15 

H16 

H17 

H18 

819 
H20 

H21 

H22 

H23 

H24 

Jay Taylor A-l 
Jay Taylor 8-1 
Jay Taylor 0-1 
Fulton-King A-l 
Fulton-King A-2 
Fulton-King A-3 
Fulton-King A-4 
Fulton-King A-5 

Fulton-King A-6 

Fulton-King A-7 

Fulton Ranch 1 

Aurora 1 

Aurora 2 
Aurora 3 
Aurora 4 
Aurora 5 
Aurora 6 
Aurora 7 
Aurora 8 
Aurora 9 
Aurora 10 
Aurora 11 
Aurora 12 
Aurora 13 

28 
26 
24 
0 
6 
0 
0 

21 

7 
38 
22 
46 
18 
21 

10 
7 

27 
11 
18 
10 
30 
0 

22 
34 

46 
85 

155 
135 
50 
Dry 

Dry 

Shut In 
Dry 

Dry 

54 
28 
20 
72 
Dry 

28 
42 
41 

4 
58 
11 
Dry 

30 

378 
342 
312 
236 
348 
314 
315 
324 
373 
362 
251 
380 
380 
379 
390 
373 
333 
280 

&372 

269 
4'I 2 

&230 

497 
&392 

55 
18 
63 
38 
56 
38 
85 
43 
25 
62 
65 
78 
68 
74 
64 
78 

168 
52 
68 
56 

102 
40 
66 

122 

323 
324 
249 
198 
292 
276 
230 
281 

348 
300 
186 
302 
312 
305 
326 
295 
165 
228 

&304 

213 
310 

&190 
431 

&270 



Isopach Nap Data (continued) 

Symbol Mell Masm 

Thf ck ness 
Canyon 

Lfmestone 

(rt) 

Approxfmate 
Dil Zone 

Thickness 
(Pt) 

Gross Thickness 
Canyon 

Granfte Mash 

(Pt) 

Shale 
225 API 

cutt-off (ft) 

Net 

Thickness 
Canyon 

Granite Mash 

(ft) 

H25 

H26 

S27 
528 
529 
530 
531 
532 
533 
534 
535 
S36 
537 
538 
539 
S40 
541 
N42 

N43 

N44 

P45 

P46 
P47 
P48 
P49 

Aurora 14 
Aurora 15 
Parker Creek 1 

Parker Creek 2 
Parker Creek 3 
Parker Creek 4 
Parker Creek 5 

Parker Creek 6 
Parker Creek 7 
Parker Creek 8 
Parker Creek 9 
Parker Creek 10 
Parker Creek 11 
Parker Creek 12 
Parker Creek 13 
Parker Creek 14 
Parker Creek '15 

Neptune 1 

Neptune 2 
Neptune 3 
Amy 1 

Amy 2 
Connie 1 

Cottonwood Camp 1 

Diana 1 

0 
26 

35 
20 
28 
18 

7 

20 
27 
36 
26 
24 
16 
25 
45 
40 
45 
47 
37 
57 

712 
&572 

43 
0 
0 

Ihy 
27 
Shut In 
16 
26 
16 
Dry 

52 

Shut In 
52 
Dry 

Shut In 
Shut In 
94 
52 
Shut In 
8 
27 

Dry 

Shut In 

Dry 

Dry 

Dry 

237 
&284 

360 
358 
300 
375 
288 
370 
358 
367 
311 
388 
400 
347 
350 

&401 

&382 

331 
360 
288 

0 
0 

166 
364 
361 

66 
70 
64 
67 
46 
50 
28 
46 
74 
49 
93 
68 
36 
70 
84 
52 
60 
66 

106 
62 
0 
0 

56 
40 
83 

171 
&214 

296 
291 

254 
325 
260 
324 
284 
318 
218 
320 
364 
277 

266 
&349 

&322 

265 
254 
226 

0 
0 

110 
324 
278 



Isopach Nap Data 

Symbol Mell Nasa 

Thfckness 
Canyon 

Lfsmstone 

(ft) 

Approximate 
Oil Zone 

Thickness 

(ft) 

Gross Thickness 
Canyon 

Granite Mash 

(ft) 

Shale 
225 API 

catt-off (ft) 

Net 

Thfckness 
Canyon 

Granite Nash 

(Pt) 

P50 
P51 

P52 
P53 
P55 
P58 
P59 
P60 

P65 
P66 
P67 

P68 

P69 
P70 
P71 

Exotic 1 

Fulton Iris 1 

Gravef Pit 1 

Hebe 1 

Jay Taylor E-l 
Nitchell Creek 1 

New Atlantfs 1 

Parker Camp 1 

Sharan 1 

Sfnglefold 1 

South Parker Creek 1 

Spring Creek 1 

Sunshine 
Mare Jupiter 1 

York 1 

21 

0 
112 

0 
157 

2D 

22 
40 
65 
63 
44 

40 
31 
28 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

Dry 

fhy 

482 
433 
140 
322 

51 

m2 
434 
200 
'1 35 
173 
178 

&320 

325 
130 
3m 

30 
58 
12 
56 
4 

13 
58 
62 
40 
32 
40 
62 
46 
12 

163 

452 
375 
128 
266 

47 
189 
376 
138 
95 

141 
138 

&258 

279 
118 
157 
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APPENDIX VII 

CORE ANALYSIS 

Jay Taylor 8-1 (L2) 

Depth Perneability 
(md) 

Porosity 
(S) 

Oil 
Saturation 

(S) 

Water 
Saturation 

(S) 

6751-52 
6752-53 
6753-54 
6754-55 
6755-56 
6756-57 
6757-58 
6758-59 
6759-60 
6760-61 
6761-62 
6762-63 
6763-64 
6764-65 
6765-66 
6766-67 
6767-68 
6768-69 
6769-70 
6770-71 
6771-72 
6772-73 
6773-74 
6774-75 
6775-76 
6776-77 
6777-78 
6778-79 
6779-80 
6780-81 
6781-82 
6782-83 
6783-84 
6784-85 
6785-86 
6786-87 
6787-88 
678&-&9 
6789-90 
6790-91. 
6791-92 

170. 0 
94. 0 

613. 0 
387. 0 
145. 0 
131. 0 
76. 0 

228. 0 
82. 0 
66. 0 
37. 0 

131. 0 
80. 0 
91. 0 
18. 0 
32. 0 
24. 0 
34. 0 
4. 6 

15. 0 
37. 0 
35. 0 
21. 0 
13. 0 
26. 0 
13. 0 
22. 0 
5. 8 
8. 2 

15. 0 
6. 3 
6. 6 

40. 0 
12. 0 
65. 0 
14. 0 
24. 0 
8. 8 

12. 0 
13. 0 
0. 4 

11. 2 
14. 0 
16. 1 

14. 7 
13. 5 
15. 3 
14. 2 
14. 5 
8. 2 

11. 3 
15. 1 

12. 8 
14. 4 
11. 3 
11. 2 
'I 2. 0 
13. 0 
9. 7 
8. 8 

12. 0 
13. 1 

9. 4 
13. 8 
13. 9 
8. 2 

11. 8 
13. 1 

13. 4 
12. 5 
12. 1 

11. 4 
8. 6 

13. 4 
13. 0 
14. 1 

12. 7 
12. 0 
11. 8 
11. 6 
12. 6 
3. 5 

5. 7 
8. 3 

ll. 3 
10. 0 
9. 9 

10. 9 
6. 6 
7. 1 

9. 2 
7. 2 
8. 0 
9. 0 
9. 1 

9. 5 
9. 0 
8. 2 
8. 0 
7. 7 
5. 5 
8. 7 
8. 3 
9. 4 
8. 8 
9. 3 
8. 2 
7. 9 
8. 7 
8. 0 
7. 9 
8. 1 

7. 6 
6. 0 
7. 0 
7. 4 
9. 5 
7. 3 
7. 0 
9. 0 
7. 5 
8. 5 

3. 9 

60. 1 

52. 0 
55. 1 

56. 7 
55. 4 
52. 2 
51. 2 
57. 1 

59. 8 
59. 6 
55. 3 
58. 4 
53. 6 
53. 1 

59. 3 
54. 1 

54. 6 
64. 6 
67. 1 

51. 2 
59. 8 
55. 4 
60. 7 
59. 9 
55. 4 
59. 7 
57. 3 
54. 3 
52. 0 
53. 4 
59. 8 
65. 9 
55. 0 
59. 6 
50. 1 

57. 2 
55. 3 
58. 6 
58. 0 
55. 1 

71. 3 
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Appendix 7 (continued) 

Depth Permeability 
(md) 

Porosity 
(5) 

Oii 
Saturation 

(5) 

Mater 
Saturation 

(5) 

6792-93 
6793-94 
6794-95 
6795-97 
6797-98 
6798-99 
6799-6800 
6800-01 
6801-02 
6809-10 
6810-11 
6811-12 
6812-13 
6813-14 
6814-15 
6815-16 
6816-17 
6817-18 
6818-19 
6819-20 
6820-21 
6821-22 
6822-23 
6823-24 
6824-25 
6825-26 
6826-27 
6827-28 
6828-29 
6829-30 
6830-31 
6831-32 
6832-33 
6833-34 
6834-35 
6835 36 
6836-37 
6837-38 
6838-39 
6839-40 
6840-41 
684'1-42 
6842-43 
6843-44 

0. 2 
9. 6 
0. 1 

Shale 
0. 1 

1. 6 
22. 0 
5. 6 

112. 0 
22. 0 
23. 0 
24. 0 
1. 0 

12. 0 
4. 4 

26. 0 
24. 0 
30. 0 
17. 0 
35. 0 
53. 0 
17. 0 

290. 0 
8. 0 

88. 0 
19. 0 
9. 7 

57. 0 
38. 0 
25. 0 
19. 0 
20. 0 
18. 0 
15. 0 
6. 8 

12. 0 
13. 0 
10. 0 
5. 4 
5. 1 

12. 0 
1. 8 

22. 0 
23. 0 

4. 1 

10. 1 

1. 7 

3. 0 
9. 0 

11. 5 
9. 9 

15. 7 
13. 8 
15. 2 
14. 2 
12. 5 
8. 7 
6. 8 

14. 4 
15. 6 
14. 3 
12. 6 
15. 6 
14. 2 
11. 4 
12. 1 

13. 1 
'14. 4 
13. 9 
8. 9 

14. 2 
11. 7 
13. 2 
16. 0 
14. 4 
14. 3 
15. 9 
14. 7 

12. 3 
14. 3 
14. 2 
4. 0 

10. 2 
15. 5 
11. 0 
14. 6 
'16. 1 

4. 5 

5. 5 

2. 1 

1. 3 
3. 2 
6. 5 
7. 2 
9. 6 
6. 4 
5. 5 
7. 4 
7. 8 
8. 4 
6. 2 
7. 4 
7. 1 

6. 0 
6. 0 
6. 6 
8. 1 

8. 9 
8. 9 
5. 4 
6. 1 

6. 9 
8. 7 
7. 5 

6. 6 
5. 7 
5. 8 
4. 8 
4. 3 
4. 0 
5. 5 
5. 9 
7. 2 
4. 6 
2. 1 

4. 2 
4. 4 
2. 5 

2. 8 
3. 1 

70. 9 
59. 2 
77. 7 

70. 6 
66. 9 
58. 7 
60. 2 
53. 5 

66. 8 
62. 5 
64. 1 

69. 6 
66. 4 
67. 2 
62. 4 
67. 8 
67. 0 
62. 4 
69. 2 
62. 8 
62. 6 
66. 0 
63. 1 

60. 2 
68. 2 
58. 1 

63. 2 
57. 6 
69. 5 

67. 7 
70. 4 
70. 1 

72. 0 
76. 4 
71. 0 
65. 1 

74. 3 
83. 5 
76. 4 
75. 5 

80. 1 

71. 3 
68. 5 
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Appendix 7 (continued) 

Depth Permeability 
(md) 

Porosity 
(&) 

Oil 
Saturation 

(&) 

Mater 
Saturation 

(5) 

6844-45 
6845-46 
6846-47 
6847-48 
6848-49 
6849-50 
6850-51 
6851-52 
6852-53 
6853-54 
6854-55 
6855-56 
6856-57 
6857-58 
6858-59 
6859-60 
6860-61 
6861-62 

11. 0 
6. 1 

3. 6 
5. 7 
0. 6 
6. 5 

18. 0 
7. 7 

11. 0 
13. 0 
35. 0 
19. 0 
27. 0 
64. 0 
38. 0 
53. 0 
95. 0 

123. 0 

11. 9 
12. 0 
11. 0 
11. 8 
4. 6 

12. 0 
15. 2 
13. 3 
15. 2 
15. 7 
16. 7 
16. 0 
14. 7 
15. 2 
14. 4 
15. 1 

15. 5 
14. 7 

1. 7 
2. 1 

2. 2 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 
0. 0 

74. 0 
76. 6 
80. 3 
83. 7 
84. 1 

85. 0 
85. 4 
87. 5 

87. 7 
88. 2 
88. 5 
90. 7 
88. 3 
88. 2 
88. 9 
86. 3 
89. 9 
86. 9 
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