
SCALING REINFORCEMENT LEARNING TO THE UNCONSTRAINED

MULTI-AGENT DOMAIN

A Dissertation

by

VICTOR PALMER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2007

Major Subject: Computer Science



SCALING REINFORCEMENT LEARNING TO THE UNCONSTRAINED

MULTI-AGENT DOMAIN

A Dissertation

by

VICTOR PALMER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Thomas Ioerger
Committee Members, Brit Grosskopf

John Keyser
Vivek Sarin

Head of Department, Valerie Taylor

August 2007

Major Subject: Computer Science



iii

ABSTRACT

Scaling Reinforcement Learning to the Unconstrained Multi-Agent Domain.

(August 2007)

Victor Palmer, B.S., Lubbock Christian University

Chair of Advisory Committee: Dr. Thomas Ioerger

Reinforcement learning is a machine learning technique designed to mimic the

way animals learn by receiving rewards and punishment. It is designed to train

intelligent agents when very little is known about the agent’s environment, and con-

sequently the agent’s designer is unable to hand-craft an appropriate policy. Using

reinforcement learning, the agent’s designer can merely give reward to the agent when

it does something right, and the algorithm will craft an appropriate policy automati-

cally. In many situations it is desirable to use this technique to train systems of agents

(for example, to train robots to play RoboCup soccer in a coordinated fashion). Un-

fortunately, several significant computational issues occur when using this technique

to train systems of agents. This dissertation introduces a suite of techniques that

overcome many of these difficulties in various common situations.

First, we show how multi-agent reinforcement learning can be made more tractable

by forming coalitions out of the agents, and training each coalition separately. Coali-

tions are formed by using information-theoretic techniques, and we find that by using

a coalition-based approach, the computational complexity of reinforcement-learning

can be made linear in the total system agent count. Next we look at ways to integrate

domain knowledge into the reinforcement learning process, and how this can signifi-

cantly improve the policy quality in multi-agent situations. Specifically, we find that

integrating domain knowledge into a reinforcement learning process can overcome



iv

training data deficiencies and allow the learner to converge to acceptable solutions

when lack of training data would have prevented such convergence without domain

knowledge. We then show how to train policies over continuous action spaces, which

can reduce problem complexity for domains that require continuous action spaces

(analog controllers) by eliminating the need to finely discretize the action space. Fi-

nally, we look at ways to perform reinforcement learning on modern GPUs and show

how by doing this we can tackle significantly larger problems. We find that by offload-

ing some of the RL computation to the GPU, we can achieve almost a 4.5 speedup

factor in the total training process.
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CHAPTER I

INTRODUCTION

Agents are extraordinarily powerful constructs. Once trained, they are capable of

adaptive, autonomous action, and have proved themselves to be useful in a vast array

of diverse environments. In fact, recent years have seen an explosion in the number

of successful agent-based system that have been significantly deployed. Application

domains have run the gamut of everything from air-traffic control [1], Internet news

(Newt) and mail (Maxims) filtering [2], electronic commerce (Kabash) [3], business

process managment (ADEPT) [4], medical patient monitoring (Guardian) [5] and

managemenet [6], AI for video game opponents (reactive agents)[7], etc.

Of course, each of these applications represents a great deal of work by humans

to craft agent behavior in such a way that the agent designer’s goals are accomplished.

To make this task a little easier, there are a variety of agent programming languages

(historically everything from low-level languages such as Prolog or Lisp, to very high-

level cognitive modeling tools such as ACT-R [8, 9] and SOAR have been used [10])

that can help streamline the process of crafting an agent’s behavior (also called an

agent’s policy). Even so, it is not very difficult to imagine that in some cases, the

complexity of crafting an agent’s behavior can be quite extreme, especially when

trying to design policies for entire systems of agents (for example, the coordination

mechanisms for robotic soccer teams in RoboCup [11, 12]).

An alternative to programming agent behavior by hand is to use various forms

of machine learning that allow agents to learn on their own how to act in different

circumstances. In some cases this approach is absolutely required: sometimes, al-

The journal model is Artificial Intelligence.
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though an agent’s creator knows what he wants the agent to do, he has no idea how

the agent should act to accomplish that goal).

More generally, when using these machine learning techniques, one specifies a task

or goal that one wants an agent to achieve, and then lets the algorithm automatically

sculpt an agent’s policy to achieve the goal or task. Fortunately, today there are a

variety of algorithms that are capable of this type of automatic policy generation,

including genetic algorithms [13, 14, 15], neural approaches [16], and reinforcement

learning [17, 18], among others. In this dissertation we will focus on the latter of

these techniques. Specifically, we will concentrate on some of the issues encountered

when trying to apply reinforcement learning to systems of multiple agents.

Practically there are several major computational issues that prevent reinforce-

ment learning from being applied in this type of multi-agent environment. Primarily

these issues are computational in nature. That is, most reinforcement learning algo-

rithms have computational requirements which are simply untenable when applied to

multi-agent domains. In the next sections we will introduce and formalize some of

these problems, and then, in the rest of this dissertation, propose solutions to address

some of these problems.

A. Reinforcement Learning Background

The term “reinforcement learning” (RL) [17, 18] is broadly used to describe the

process of training an agent to choose its actions in order to maximize some measure

of reward. This learning usually takes place in an environment with an a priori

unknown structure such that the agent must learn how to act by repeated interactions

with the environment.
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RL is especially useful in domains where it is not clear exactly how an agent’s

creator would hand-code a good policy. Modern uses of reinforcement learning in-

clude some very interesting and hard problems such as developing effective treatment

schedules for HIV patients [19], building natural-spoken-language human-computer

interfaces [20], imagine recognition [21], balancing and bicycle riding [22, 23, 24],

robot coordination [25], robot swimming [26], and simulating various neurobiological

phenomena such as the auditory system [27] and temporal sequence learning [28].

1. History of Reinforcement Learning

Historically, reinforcement learning represents the merger of two related fields of study.

The first field grew out of a study called “optimal control”, a somewhat out-dated

term (mainly used in the 1950s) to describe the problem of developing a controller to

minimize some aspect of a dynamical system’s operation (perhaps the amount of en-

ergy expended by a manufacturing plant controller, for example). This field actually

has roots which reach as far back as Hamilton’s physics-based study of dynamic sys-

tems, but in 1957 it was modernized by Richard Bellman [29] and recast into the field

of study now called “dynamic programming”. Bellman’s contribution was at least

two-fold: first, he recast the “optimal control” problem in discrete stochastic terms

(in terms of a Markov Decision Process). Traditionally, the “optimal control” prob-

lem was phrased in continuous terms since it was generally applied to real, physical

dynamic systems. Second, he introduced an algorithm called value iteration (which

we will introduce in detail later) to solve the “optimal control problem” on discrete

stochastic domains. Shortly thereafter, an almost identical algorithm was proposed

by Howard [30], and modern times have seen an explosion in related algorithms:

approximation methods (see [31] for a summary), asynchronous methods [32, 33],
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situations where state information is limited (POMDPs, see [34] for a summary), etc.

The second field of study that eventually merged into reinforcement learning

originated in the psychological community with the study of trial and error learning.

There is a famous quote from Thordike (one of the pioneers of this field), which

Thorndike called the “Law of Effect”:

Of several responses made to the same situation, those which are ac-

companied or closely followed by satisfaction to the animal will, other

things being equal, be more firmly connected with the situation, so that,

when it recurs, they will be more likely to recur; those which are accom-

panied or closely followed by discomfort to the animal will, other things

being equal, have their connections with that situation weakened, so that,

when it recurs, they will be less likely to occur. The greater the satis-

faction or discomfort, the greater the strengthening or weakening of the

bond. (Thorndike, 1911, p. 244)

The quotation rings almost eerily true when one thinks of how modern reinforce-

ment algorithms operate, especially algorithms such as Watkins’s Q-Learning [35, 36]

(discussed in more detail shortly). More importantly Thorndike’s Law of Effect de-

scribed a learning organism that interacted with its environment and taught itself

how to act to receive ‘satisfaction’.

With the advent of research on artificial intelligence, AI researchers began to

experiment with ways to implement this trial-and-error type learning algorithmically.

Perhaps some of the earliest research into trial-and-error learning was done almost

simultaneously by two separate groups in 1954. In that year Minsky [37] described

constructing an analog (effectively neural-net-based) machine designed to learn by

trial and error (essentially mimicking the neuro-biological Hebb’s rule [38], which had
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been introduced only a few years earlier), and Farley and Clark came up with an

almost identical proposal that same year [39]. Minsky also made a huge contribution

in 1961 when he (probably for the first time) formalized the credit-assignment prob-

lem: ‘if one receives a reward now, how does one know which past actions helped to

obtain that reward?’. In many ways, almost all reinforcement learning algorithms try

to solve this exact problem [40].

Concurrently, some fundamental applications of reinforcement learning material-

ized. Perhaps the first was Michie’s designing of a colored bead-based machine called

MENACE (Matchbox Educable Noughts and Crosses Engine) that could learn how

to play tic-tac-toe [41, 42], and another algorithm called BOXES which successfully

tackled the pole-balancing problem [43]. The game of Blackjack was well-learned by

reinforcement methods soon after [44]. Also worthy of mention here, though devel-

oped much earlier, is Samuel’s famous checkers program [45], although by appearances

Samuel worked very much independently of the rest of the reinforcement learning tract

during this period.

Finally, the two threads of research, psychologically-based trial-and-error learn-

ing and the optimal-control problem merged with the introduction of Watkin’s Q-

learning algorithm in 1989 [36]. This algorithm was based on an agent exploring its

environment and developing an appropriate policy that would generate high levels of

reward, but also, contained rigorous proofs that the policies generated by this mech-

anism also solved the optimal control problem in many domains. The introduction

of this algorithms was soon followed by Tesauro’s development of a highly-successful

backgammon program, TD-Gammon in 1992 [46]. More modern times have seen the

introduction of approximate reinforcement learning algorithms [23], and the use of

neural-nets to perform RL [25].
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2. Mathematical Notation

Before we proceed with our introduction to reinforcement learning, it will be extremely

helpful to nail down the mathematical terminology. Mathematically, in this disserta-

tion we will work in the typical (multi-agent) reinforcement learning paradigm [17]

in which a set of learning agents interacts with an environment modeled as a Markov

decision process (MDP). Specifically, let there be a set of N agents {n1, n2, . . . , nN}

which interacts with an environment modelled by an MDP. At each time-step the

environment is in some state si ∈ S, and each agent can perform an action ai ∈ A.

As such the environment state, joint agent actions and reward at each time-step

t ∈ {0, 1, 2, . . .} are denoted st ∈ S, at ∈ AN , and rt ∈ R respectively. Since the

environment is modelled as an MDP, its dynamics are characterized by state transi-

tion probabilities, P(s, a, s′) = Pr{st+1 = s′|st = s, at = a}, and expected rewards

R(s, a) = E{rt+1|st = s, at = a}, which we assume to be finite.

System agents decide what actions to take at each time-step by following a policy

π(at; st) such that the probability that the system agents will (collectively) perform

action at when the environment is in state st is π(at; st). Under a given policy, one

can define the expected discounted reward Qπ(s, a) an agent would receive if it started

in state s, performed action a, and then followed policy π:

Qπ(s, a) = Eat∼π;st∼P

[

∞
∑

t=0

γtrt | s0 = s, a0 = a

]

(1.1)

For any such system, there exists an optimal policy π∗ such that:

∀s, a Qπ∗

(s, a) ≥ max
π

Qπ(s, a) (1.2)

Other measures of policy quality exist, such as the average policy reward η(π):
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η(π) =
∑

s,a

ρπ(s)π(a; s)R(s, a) (1.3)

3. Review of Reinforcement Learning Techniques

Now that we have a mathematical foundation for talking about reinforcement learn-

ing, we can survey several contemporary RL algorithms in more detail:

a. Value Iteration

Value iteration [47, 29] is a straightforward method which attempts to directly learn

the optimal discounted reward of a given state-action pair (or more simply, learn the

Qπ∗

(s, a) function). The optimal policy can then be recovered simply as:

π∗(s) = arg max
a
Qπ∗

(s, a) (1.4)

This algorithm proceeds by performing the following update infinitely often (in prac-

tice until the Q-values converge):

Q(s, a) W R(s, a) + γ
∑

s′∈S

P (s, a, s′)Q(s′, π(s′)) (1.5)

π(s) = arg max
a
Q(s, a) (1.6)

This update can be shown to converge such that π → π∗ [29, 47]. The ad-

vantage of value iteration is that it is very flexible (the updates can be performed

asynchronously and in parallel [48]), though it is relatively slow to converge, and in

the worst case, the number of required iterations before the optimal policy is reached
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grows polynomially in 1/(1− γ) such that convergence is extremely slow for systems

with a discounting factor ≈ 1 [49]. As such, value iteration is rarely used on the

sizeable problems of interest today.

b. Policy Iteration

Policy iteration [49] works by directly searching through policy space for the optimal

policy π∗. The algorithm begins by choosing an arbitrary initial policy π and then

performing the following steps:

Step 1: Solve the linear equations:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

P (s, π(s), s′)Vπ(s′) (1.7)

Step 2: Improve the policy:

π(s) W arg max
a

(R(s, a) + γ
∑

s′∈S

P (s, a, s′)Vπ(s′)) (1.8)

Since there are at most |A||S| unique policies, and the sequence of policies gener-

ated by policy iteration have increasingly higher valuations, the algorithm terminates

with at the optimal policy in (at worst) an exponential number of iterations [50].

c. Model-Free Methods: Q-Learning

In domains where we do not have access to the transition function P (s, a, s′), we can

still search for the optimal policy by using a technique called Q-learning [36, 35]. In
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Q-learning, an agent explores the state/action space (either by random exploration

or by some other heuristic) and repeatedly performs the update:

Q(s, a) W Q(s, a) + α(r + γmax
a′

Q(s′, a′) −Q(s, a)) (1.9)

where 〈s, a, r, s′〉 is an experience tuple gathered from state space exploration, and

α is a learning rate. It has been shown that under this update rule the Q(s, a) will

converge to Q∗(s, a) (under the condition that the update is performed an infinite

number of times) [51, 52].

d. Least-Squares Policy Iteration

State spaces in modern RL problems can be absolutely huge, and as such explicit

representation of the Q-function is rarely an option. Fortunately, it is often times

possible to approximate a Q-function as a linear superposition of basis functions φi

such that (for some parameter vector ω ∈ R
k):

Q(s, a) ≈
k
∑

i=1

φi(s, a)ωi = Q̂(s, a;ω) (1.10)

For a given policy π, we can determine the ω such that:

∑

s,a

∣

∣

∣
Qπ(s, a) − Q̂(s, a;ω)

∣

∣

∣
(1.11)

is minimized by using Least-Squares Temporal Difference Q-Learning (LSTD-Q) [23].

We can rewrite the expression for Q(s, a):
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R(s, a) + γ
∑

s′∈S

P (s, a, s′)
∑

a′∈A

π(a′; s′)Qπ(s′, a′) (1.12)

as a matrix equation

Qπ = R + γPΠπQ
π (1.13)

where Qπ and R are vectors of size |S||A|, P is a stochastic matrix of size |S||A|×|S|,

P ((s, a), s′) = P (s, a, s′), Ππ is a stochastic matrix of size |S| × |S||A| that describes

policy π: Ππ(s′, (s′, a′)) = π(a′; s′). Or, writing it as a linear system, we have:

(I − γPΠπ)Qπ = R (1.14)

We can also write our approximation expression as a matrix equation. That is,

Qπ(s, a) ≈ Q̂π(s, a;w) =
k
∑

j=1

φj(s, a)wj (1.15)

can be re-expressed in vector form. If we define a column vector:

φ(s, a) = [φ(s, a), φ(s, a), . . . , φk(s, a)] (1.16)

and a matrix

Φ =
[

φ(s, a), . . . , φ(s|S|, a|A|);
]

(1.17)

we can compactly write Q̂π as:

Q̂π = Φω (1.18)
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In this framework it has been shown [23] that the error-minimizing (L2) approxima-

tion Q̂π can be obtained by solving the following system for w:

A(π)ω = b (1.19)

where:

A(π) =
∑

s∈S

∑

a∈A

∑

s′∈S

P (s, a, s′)q(s, a, s′) (1.20)

q(s, a, s′) = φ(s, a)(φ(s, a) − γ φ(s′, π(s′))) (1.21)

b =
∑

s∈S

∑

a∈A

∑

s′∈S

P(s, a, s′) [φ(s, a)R(s, a, s′)] (1.22)

If we are allowed to interact with the environment, we may be able to gather L

experience tuples:

D = {(si, ai, ri, s
′
i)| i = 1, 2, . . . , L} (1.23)

where ri is the reward obtained when action ai was taken in state si, resulting in a

transition to state s′i. If L of these experience tuples are collected, A and b can be

approximated by [23]:

Ã(π) =
1

L

L
∑

i=1

[φ(si, ai)(φ(si, ai) − γφ(s′i, π(s′i))) ] (1.24)

b̃ =
1

L
=

L
∑

i=1

[φ(si, ai)ri] (1.25)
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After solving for ω, one has immediately an improved policy π′:

π′(s) = arg max
a′

Q̂(s, a′) (1.26)

which can then be used to generate a new A(π′), re-solve for ω, and generate another

improved policy π′′, etc. This process is performed iteratively (essentially implement-

ing an actor-critic policy iteration scheme in an approximated-Q environment) until

the series of ω stabilizes, at which point one will have ω = ω∗ such that Q̂(ω) = Q̂π∗

[23]. Each iteration of the algorithm requires O(L(k2 + k|A| + k3)) computational

effort.

B. Reinforcement Learning in Multi-Agent Systems

Using reinforcement learning in the context of multi-agent systems presents several

unique challenges. The first relates to how the multi-agent system is represented

in the state-space of the MDP. A simple approach is to say that each agent has

some action space Ai and that the joint action space of the multi-agent system is

simply A = Ai ⊗A2 ⊗ . . .⊗AN where N is the number of agents in the system. As

such, system actions can be represented by action vectors a, where each component

represents the actions taken by each system agent. In this case, the size of A is now

exponential in the number of agents, |A| = |Ai|N (assuming the agents all have an

action space with the same cardinality). This is unfortunate, since this means that

Q(s, a) must be defined over an exponential number of actions, which in turn means

that most policy training algorithms, whose execution times are dependent at least

linearly with the size of the action space will have computational requirements which

scale exponentially with the number of system agents. Table I lists the computational
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Table I. Computational complexity of common RL algorithms

Algorithm Computational complexity Computational complexity

Algorithm for single-agent system on MAS domains

Value iteration (full

backups)

O(|S|2|A|) O(|S|2|A|N)

Policy iteration O(|S|2|A| + |S|3) O(|S|2|A|N + |S|3)

Q-learning O(|S||A|2) O(|S||A|2N)

LSPI O(L(k2 + k|A| + k3)) O(L(k2 + k|A|N + k3))

complexity of several common reinforcement learning algorithms.

We will refer to this problem generally as the “exponential-action-space (EAS)

problem”, and the reader should note that it has implications for many aspects of

reinforcement learning. For example, a subtle side-effect of the EAS problem occurs

during action selection in multi-agent domains: since there are now an exponential

number of available actions, an exponential number of Q(s, a) values need to be

evaluated before the joint action for all the system agents can be determined.

Despite these problems, using reinforcement learning in the multi-agent domain

is appealing, and as such, some recent work has been done to extend reinforcement

learning techniques such that they overcome EAS-type problems.

C. Related Research

There has already been a great deal of work done on how to solve the problem of how

to efficiently train large, multi-agent systems. However, almost all of this research

assumes some pre-knowledge of the agent system. Our position is differentiated be-

cause our methods require little to no system pre-knowledge before training. Some
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of the extant approaches to training large systems are listed below.

1. Naive Single-Agent Training

As one approach to the problem of the computational complexity of RL, one may

simply ignore the fact that system agents are part of a collective and train each agent

independently of the others. This is certainly a computationally efficient approach

(since training need only occur over a one-agent action space at a time), but this

approach has significant drawbacks. At its core, the problem is this: from the per-

spective of each agent, the other system agents are part of the environment. Training

the first agent n1, the other agents are seen to execute whatever policy they executed

when the training samples for n1 were generated. Presumably however, when we train

the next agent n2, we will assign it a different policy than the one it followed when n1

was being trained. Immediately, we have a conflict - since n2 adopted a new policy,

and n2 was part of n1’s environment, n1’s environment has been altered. In fact, since

n1 finds itself in an effectively new environment (with n2 adopting the post-training

policy), the original policy of n1 may perform sub-optimally.

Several authors have noted this problem. One particularly insightful description

terms it “agents working at cross purposes” [53], and to some extent, if two agents

to not cooperate at some level during learning, one risks not being able to learn

a social-welfare optimizing policy [54]. Work has been done on methods to extend

this kind of naive single agent training in a way that still preserves the reduction in

computational complexity that goes with training each agent separately.
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a. Relation to Game Theory

This notion of training at cross-purposes is slightly academic and difficult to get a

feel for in the general case. However, there are specific, small-scale examples where

this type of behavior becomes obvious. In [55] Hu and Wellman adapt Q-learning to

a zero-sum, 2-player game. This toy-domain is useful because the authors are able to

have each agent take into consideration both its own policy and the current policy of

the other agent. This is accomplished by maintaining two separate Q tables, one for

the agent itself, and one for the opposing agent. The authors show how this approach

allows their system to converge to Nash equilibrium. Even with this sophisticated

approach however, the author’s raise the point that even when Nash equilibrium has

been reached, there is no guarantee that the equilibrium is globally optimal.

b. Relation to Gradient Ascent

While training single agents at a time necessarily introduces the risk of training system

agents to work at ‘cross purposes’ and never reaching a globally optimal system-wide

policy, several authors have done work showing how, under the right conditions, one

can train system agents one at a time and guarantee that the system will converge

to a Nash equilibrium. A Nash equilibrium is a set of agent policies such that each

agent cannot improve its local reward by changing its policy alone.

The basic approach involves thinking about reward as an energy surface over

the space of agent policies. That is, imagine a multi-dimensional surface defined over

the policies for each agent. Specifically, one might visualize a situation where each

axis of the multi-dimensional energy surface corresponds to the policy of one of the

system agents. This energy surface will have a global maximum, and more than likely
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have many more local maxima. In this situation, the global maximum corresponds

to the social-welfare maximizing policy set, and each local maxima represents a Nash

equilibrium point.

If we were performing standard gradient ascent on such a surface, it would not

be hard to reach one of these local maximum (although we couldn’t guarantee that

we would reach the global maximum). As such, several authors have shown how it

is possible to perform gradient ascent in the policy space of an agent system. The

central contribution from most of these works is a method to parameterize the policies

such that they can be modified continuously. That is, gradient ascent requires that

we be able to take infinitesimal steps, and much of the work in this area concerns

how to parameterize policies so that this is possible, and proving convergence results

when such infinitesimal updates are not possible because of the domain.

Bowling and Veloso [56, 57] have introduced a family of algorithms called WoLF

(Win or Learn Fast) which provides a framework for parameterizing and updating

agent policies such that convergence guarantees can be had. The name stems from

the fact that the algorithm adjusts agent policies more quickly when performance

is suboptimal (and hence the agent is more likely to be farther away from a Nash

equilibrium) and more slowly when the agent is performing well (when it is most

likely close to a Nash equilibrium).

In a related work, Kakade [58] showed that training a multi-agent system by

iteratively performing approximate policy iteration agent-by-agent is mathematically

equivalent to performing gradient ascent on a particular policy-quality measure (the

long-term reward [58]). Approximate policy iteration is well suited to gradient-ascent-

type learning since generally each policy is represented by a continuous-valued weight

vector ~ω, and since policy iteration is generally performed in the space of ~ω, adjusting

the policy weight vector directly provides a natural method to incrementally adjust
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policies.

2. Coordinated Reinforcement Learning

Coordinated reinforcement learning is a framework for performing reinforcement learn-

ing (that is, it is used with an RL algorithm such as value iteration, policy iteration,

etc.) which seeks to overcome the high computational costs of training policies over

large numbers of agents [59, 60, 61, 62]. The technique starts out by assuming that

the Q(s, a) function for the multi-agent system can be written in the form

Q(s, a) =
N
∑

i=1

QAi
(si, ai) (1.27)

where s and a are vectors of states and actions available/performable by the entire

multi-agent system, and si represents portion of the system state vector accessible to

agent Ai and ai represents the portion of the action vector performed by agent Ai.

Coordinated reinforcement learning (CRL) gets around the exponential action

space problem because in many reinforcement learning algorithms (such as Q-learning

and Least-Squares Policy Iteration), the single-agent Q functions can each be up-

dated independently, as is shown in [59]. The method gets around the problem of

multi-agent action selection by assuming that we possess a coordination graph of

inter-agent dependencies. Groups of agents that are all interdependent must have

their joint actions maximized over Q by brute-force search. That is, if agents A1, A2

and A3 are all mutually dependent on each other, the maximizing multi-agent action

a = {aA1
, aA2

, aA3
} must be determined by testing all possible Q(s, a) and choosing

the collective action with the highest payoff. If, on the other hand, agent A1 was

dependent on no other agent, A2 was dependent on A1 only and A3 was dependent
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on A3 only, then A1’s Q1-function could be maximized first, and then, depending on

which action was selected by A1, agents A2’s action could be chosen to maximize

Q2(s, a), etc. As [59] shows, this approach leads to system action selection which

maximizes the total system Q(s, a) function - again, as long as Q(s, a) can be writ-

ten as a linear sum of single-agent Q-functions. As such, coordinated reinforcement

learning techniques are only appropriate when a lot of knowledge is possessed about

the domain a priori - we must at least know the coordination graph for our agents

and have enough knowledge of the domain to say whether a linear decomposition of

the system-wide Q(s, a) function would be appropriate.

3. Modified Reward Functions

Another approach is to modify the reward function each agent trains under in order

to encourage each agent to not work at “cross purposes” with other system agents.

Wolpert, et. al. [53] propose the use of a modified reward function, roughly of the

form:

Ri(s, a) = R(s, a) − r(s, a) (1.28)

where Ri is the reward function used for training agent ni, R is the global reward

function, and r is a created function that describes the reward the system would obtain

if agent ni “never existed”. The motivation is to let ni train under a reward function

that isolates its singular contribution to global reward. The authors demonstrate

the use of this class of functions in several experimental domains, though the reader

should note that strictly, such an approach is contrary to the purposes of this present

work. Here we seek to present methods for training multi-agent systems that do not
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require foreknowledge about system structure. System knowledge is incorporated into

the Wolpert approach through the creation of the reward function r(s, a). In order

to compute this function one must know how agent ni interacts with other agents in

order to create an MDP such that the actions of ni do not affect the other system

agents (again, trying to make ni “never exist”).

4. TPOT-RL

TPOT-RL (team-partitioned opaque-transition reinforcement learning) [11] is a re-

inforcement learning method specifically designed for training large teams of agents

over very large state spaces. Most relevant here, the algorithm works by effectively

reducing the state space over which training must occur by only training agents to

act on states/actions in which they are capable of acting. The algorithm was initially

developed for use in robotic soccer where not all agent actions are possible in every

state, and some agents (because of their pre-assigned team position, etc), cannot act

in certain states anyway. By using knowledge of the domain, this algorithm is able

to shrink the state space the policy must operate on, and by doing so can effectively

operate on extremely large state spaces. Other than that novelty, the algorithm acts

much like Q-learning - letting agents determine from experience the environmental

transition probabilities.

D. Extending Reinforcement Learning to Unconstrained Multi-Agent Domains

Here we will extend the work done on using reinforcement learning in multi-agent do-

mains to the case of training multi-agent systems when very little is known about the
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multi-agent environment. We call such domains ‘unconstrained’ multi-agent domains

since pre-training, the learner has little information about the nature of the learning

system (agent interactions, environment properties, etc.). This is in marked contrast

to the domain for which much of the research cited above is intended.

We can encapsulate our research question for this dissertation as the following:

How can reinforcement learning be scaled up to learn over unconstrained multi-agent

domains?

In Chapter II, we introduce a method to reduce multi-agent training times by first

partitioning agents into coalitions. Intra-agent coalitions are allowed to communicate

and coordinate their actions while extra-coalitional agents are not. This is a fairly

standard approach [63, 64, 64, 65, 66], and is also very computationally convenient

because only intra-coalitional agents needs to be trained together. If k is the largest

coalition size, then LSPI never needs to be performed over more than k agents at a

time. This reduces the complexity of training from O(CN) to O(Ck). The problem,

however, is that of knowing which coalitions to form before training. Because of

high training times, it is necessary to know which coalitions to form before training

occurs. Coordinated Reinforcement Learning assumes that the system designer has

enough pre-knowledge of the system to be able to manually form these clusterings

pre-training.

We present an algorithm called Information-Based Coalition Formation (IBCF)

that is able to form coalitions such that post-training the system performs well. The

algorithm derives information-theoretic relationships between system agents solely

from the training data (which is obviously available before training). We demon-

strate our algorithm on several domains, and show that even though our algorithm

requires much less pre-knowledge about our agent systems, it is able to perform com-

petitively with CRL, which requires a great deal more knowledge for the algorithm to
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execute successfully. Specifically, we demonstrate IBCF on several problem domains:

the multi-agent inverted pendulum problem (where multiple agents with partial state

information must coordinate to keep a pendulum upright,the SysAdmin problem do-

main [59], and a power-grid management domain [67].

In Chapter III we address the problem of the sample complexity of multi-agent

reinforcement learning. The sample complexity of a learning process is the number of

samples that a learner must be exposed to in order to, with a high probability, learn a

given concept. After reviewing how the sample complexity for multi-agent RL grows

exponentially with the number of system agents, we introduce a framework to perform

‘hybrid’ reinforcement learning, where the learner uses not only training examples (of

which there may not be enough because of the number of agents in a system), but

also user-provided domain knowledge. In the context of this dissertation, we assume

that whatever domain knowledge we do have may be imperfect and potentially be

in the form of fuzzy-logic based rules. We develop a mechanism to integrate this

fuzzy domain knowledge into the reinforcement learning process and demonstrate

how the sample complexity of a RL problem can be reduced through our integration

mechanism operating on a simple pole-balancing controller.

In Chapter IV we overcome a significant problem which hinders the use of con-

tinuous action spaces with the LSPI algorithm on some domains. Continuous action

spaces are often required for systems dealing with analog control. If one does not

use a continuous action spaces in such domains, one is forced to finely partition up

the action space, resulting in increased computational training complexity, and com-

pounding the effects of exponential multi-agent RL complexity scaling. Inherently

LSPI is able to learn over continuous action spaces, though we present some subtle

problems that manifest when continuous LSPI is used on ’narrow-Q’ domains, or do-

mains where, because of a high discounting factor γ or extremely delayed rewards, the
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Q values for most states/actions are very similar. We demonstrate how continuous

action select fails on narrow-Q domains and present a novel heuristic for repairing

the narrow Q values. After discussing the potential non-optimality introduced by the

heuristic, we demonstrate the successful use of the heuristic on a windy, inverted pen-

dulum domain. In this domain the controller must be able to apply strong corrective

forces when the pendulum experiences strong ’gusts’ of wind, and only apply soft

corrective forces otherwise. We demonstrate how, using our normalization technique,

we are able to train a continuous-action controller over a domain which otherwise

required a segmented action space.

Finally, in Chapter V, we present an implementation of the LSPI algorithm which

runs almost exclusively on the GPU, and analyze the performance enhancements that

come from exploiting the GPU’s SIMD architecture. Specifically, we concentrate on

the part of the LSPI algorithm involved in constructing the A matrix, and show

how by parallelizing this construction over experience tuples, we can achieve over

a 4.5x speedup using standard CPU-only hardware, which is close to the largest

theoretical speedup via parallelization on our test hardware. Finally, we discuss some

limitations of the hardware-induced limitations of the implementation, and provide a

Brook-based source code listing of our GPU LSPI implementation.
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CHAPTER II

REDUCING REINFORCEMENT-LEARNING COMPLEXITY THROUGH

COALITION FORMATION

A. Introduction

In this chapter we examine how a performance gain in multi-agent reinforcement

learning can be realized by first partitioning system agents into a set of coalitions.

The motivation is a simple one and has been repeated throughout this dissertation:

the computational requirements for training policies over multiple agents scales ex-

ponentially with the number of agents. The reason is that the action-space of a

multi-agent system scales exponentially with the number of agents, and most rein-

forcement learning algorithms scale at least linearly with the size of the training action

space.

Thus we are faced with two competing objectives. One the one hand, computa-

tional considerations urge training as few agents together as possible. On the other

hand, performing reinforcement learning on large numbers of agents simultaneously

generates policies which maximize reward over joint agent actions, leading to phe-

nomena such as agent ‘coordination’ and ‘cooperation’.

We seek to find a balance between these two objectives - we will present a method

which trains agents together where such training results in significantly higher agent

performance, but otherwise trains agents separately to keep computational require-

ments to a minimum. Specifically, we will present a method which first groups agents

together into cooperative coalitions and then attempts to generate policies which

maximize system reward over the joint actions of each agent coalition.
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Such an approach is inherently an approximation in the sense that because we

separate our agents into coalitions and deprive them of being able to coordinate their

actions, we may not be able to achieve the globally optimal policy. In this spirit of this

work however, we show how the errors introduced by this approximation are bounded

and demonstrate the effective use of this technique on several difficult experimental

domains.

Generally, the process of coalition formation, where distinct autonomous agents

come together to act as a coherent group is an important form of interaction in multi-

agent systems. In many domains, partitioning a collection of agents into judiciously

chosen coalitions can result in significant performance benefits to the entire agent sys-

tem such as reduced agent coordination costs and training times, and increased access

to pooled resources. The use of coalitions has been advocated in a wide variety of

domains including electronic commerce [68] (purchasing agents pooling their require-

ments to obtain larger discounts), grid-computing [69], and e-business [70] (where

agents can come together to form organizations to fill market niches). The coalition

formation process can be viewed as being composed of three main activities [66]:

1. Coalition Structure (CS) Generation: The creation of coalitions such that

agents in a given coalition coordinate their actions while agents in different coali-

tions do not. This involves partitioning the agents into disjoint sets, and such a

partition is called a coalition structure. For example, in a multi-agent system com-

posed of three agents n1, n2, n3, there are seven possible coalitions: {n1},{n2},{n3},

{n1, n2}, {n2, n3}, {n3, n1}, {n1, n2, n3}. A valid coalition structure would be CS =

{{n1}, {n2, n3}}

2. Coalition Value Maximization: In this step, the resources of the individual

coalition agents are pooled to maximize the payoff to each coalition. In a market-

based environment, this might mean literally combining financial resources to gain
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more bargaining sway.

3. Payoff Distribution: Since coalition formation generally occurs in the context

of autonomous, self-interested agents, at some point reward distributed to a coalition

must be parceled to its member agents, and there are various common methods for

doing this - equally among members, proportional to the agent’s contribution to the

coalition, etc.

Recent work on coalition formation has concentrated on the first of these steps

(CS generation), and we will continue that tradition here. Generally, CS generation

takes place in the context of some valuation function V (CS) which measures the

fitness of a given coalition structure. If the task structure of the environment is

known ahead of time, this function may be directly evaluatable as in [64], while in

other contexts, one may use the sum of individual agent reward payoffs (which would

require performing all three steps of the coalition formation process).

In general, the goal of CS-generation is to construct a coalition structure which

maximizes this valuation function V (CS). Many authors have proposed algorithms

for coalition formation in different situations, such as when optimality bounds are

required [66, 71], or when coalition size can be bounded from above [64]. While

much of this work has centered on deterministic algorithms, the field has seen some

application of stochastic methods as well (particularly genetic algorithms [65]).

Traditionally, CS-generation requires access to the valuation function V (CS) (for

example, in the Sen & Dutta work, V (CS) is needed to perform fitness evaluation

in the genetic algorithm). And in fact, many accesses to V (CS) may be required

before a CS generation algorithm terminates. If the nature of the agent system, its

environment, the task structure, etc. are known a priori, evaluating this function

may be able to be done directly (as in [64]). However, in other cases, such as when

dealing with coalition formation among physical robotic systems, valuing a coalition
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structure may need to be done empirically by retraining the system to respect the

CS and then letting the system interact with the environment, which might be an

expensive undertaking.

B. Contribution

In this chapter work we look at the problem of coalition structure generation when

repeated evaluation of V (CS) is not feasible. This is at heart a functional maximiza-

tion problem, made more complex since direct evaluation of the objective function is

not possible. Fortunately, similar problems have been solved in related fields.[72, 73,

74, 75]

1. Classifier Training and Feature Selection

A similar problem is encountered by the classifier-training community with the prob-

lem of features selection. Feature selection is of great interest to the classifier training

community because training classifiers over large numbers of features can incur sig-

nificant computational costs, as well as invite potential problems with overfitting

[76, 77].

One solution is to applying feature selection on a training corpus before using it

to train a classifier can reduce the dimensionality of a training corpus by discarding

all but the features necessary for the classifier to function well. This training corpus

is used to train a classifier, it is desirable to keep features which make the error rate

of the final trained classifier is as low as possible.

There are two approaches to solving this problem. The first is a family of algo-
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rithms known as “wrappers” [74] and the second is a family of algorithms know as

“filters”.

a. Wrappers

The simplest wrapper algorithms operate by adding features in a greedy fashion until

a [74] maximum classifier performance is obtained. A set of features F is maintained,

and at each iteration of the wrapper-generation algorithm a new ’test’ feature is added

to F . The classifier is then trained over F and its post-training performance evalu-

ated. For a set of N features, this approach requires up to N(N−1)/2 iterations, and

consequently requires N(N − 1)/2 calls to the classifier training algorithm. Although

effective, if the time required to train the classifier is high, and, more seriously if the

number of features is high, this approach can be unacceptable because of computa-

tional limitations. Additionally, because the algorithm is greedy, optimality cannot

be guaranteed. Some work has been done on look-ahead extensions to this simple

greedy technique to ameliorate that problem [78].

b. Filters

A second approach is to use “filters”. This approach constructs a suitable feature-set

before training the classifier or evaluating its performance. Because feature selection

occurs before classifier training, the performance of the classifier cannot be used to

determine which features will result in a low-error post training classifier. Instead,

intrinsic properties and interactions of the features themselves must be used to de-

termine which set of features will yield a high performance classifier.

Although there are many diverse algorithms available for filter-based feature
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selection, in this chapter we will concern ourselves with the class of information-theory

filters. Information-theory based filters use statistical properties of the training corpus

to determine which sets of features will result in the lowest error for the post-training

classifier. As a generalization, most such approaches seek to select those features

which possess the most statistical information about class labels.

As a side-note, occasionally research on information-based filters is performed

under the name of ’minimum entropy filter’ research. Mathematically, however, en-

tropy and information are identical aside from a sign, and the difference is more one

of perspective and terminology [73, 79].

A wide variation of information-based filtering techniques exist, perhaps the

largest distinguishing feature between the approaches being the degree to which

“inter-feature-interactions” are considered. Some simple information-based filters

merely choose the n features in a greedy fashion that convey the highest amount

of information about class labels (as in [80]). This approach does not consider inter-

feature interactions, and can result in many redundant features. More sophisticated

information-based filters look at binary interactions between features (examining the

mutual information between features) [72, 75], and still other algorithms consider full

n2-type interactions between features.

2. Approach

The parallels between filter methods in classifier feature selection and our situation

are significant. In both cases there is a need to maximize an objective function. In

the case of classifier training this is the error ε(C), here it is the coalition-structure

valuation function V (CS).

As such, we will view coalition formation from an information theoretic stand-
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point. First we will describe an abstract coalition structure CS0 such that each

coalition Ci ∈ CS0 maximizes certain statistical properties (specifically the Keibler-

Leibeck measure over states, actions, and reward). We will show how by maximizing

this KL-measure across its component coalitions CS0 also maximizes policy quality

across the system. We will then propose an algorithm to go about forming coalition to

approximate CS0. Since our algorithm will inherently only approximate this coalition

structure CS0, we will finally discuss how policy quality varies with approximation

errors.

We will need a pre-existing training corpus to calculate the KL measure over

coalitions, and as such, here we will concentrate exclusively on corpus-based rein-

forcement learning. Specifically we will use the Least-Squares Policy Iteration [23]

algorithm to train, where experience data is collected in one stage and training occurs

afterward).

C. Preliminaries

1. Coalitions and Spaces

Definition: Coalition. A coalition of C = {ni, . . . , nk} groups a set of agents

together such that they are able to act in a coordinated fashion. At each time-

step each agent possesses a state sni ∈ Sni
and performs an action ani ∈ Ani

at

each time-step. We will treat the coalition as a composite-entity with a state space

SC =
⊗

ni∈C
Sni

and an action space AC =
⊗

ni∈C
Ani

. At each time-step the coalition

has a state sC =
⋃

ni∈S
sni and performs an action aC =

⋃

ni∈A
ani .

�
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Implicit in this definition is that an agent nh in a coalition Ci has no access to the

state or action of another agent nj in coalition Ck.

Definition: Coalition Structure. A coalition structure CS = {C1, . . . , C|CS|} is

a set of coalitions Ci such that each system agents ni is a member of precisely one

coalition Cj ∈ CS. The state-space of a coalition structure is SC =
⊗

Ci
SCi

and the

action space is AC =
⊗

Ci
ACi

. At each time-step a coalition-structure has a joint

state sCS =
⋃

Ci∈CS
sCi and performs a joint action aCS =

⋃

Ci∈CS
aCi .

�

Most generally, coalitions serve only to partition agents into groups such that each

agent may belong to more than one coalition [81]. Here however, because an agent

can have only a single policy, and we will eventually train one policy per coalition, we

will demand that an agent belong to only one such coalition in a coalition-structure.

2. Reduced Training Corpi

Before policy training can occur, LSPI requires that we collect a number of experience

tuples (collectively referred to as a training corpus T ) by allowing our agent system

to interact with the environment:

T = {〈st, at, s
′
t, rt〉} (2.1)

Not all of this information is available to each agent. In accordance with our previously-

introduced notation, we will write the training corpus available to coalition C as a
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reduced corpus TC

T C = {〈sC
t , a

C
t , s

′C
t , rt〉} (2.2)

3. Policies

Definition: Single Agent Policy. A single-agent policy πni maps the state of an

agent ni, s
ni , to the action of that agent ni, a

ni such that ani = πC(sni).

�

Definition: Coalition Policy. A coalition policy πC maps the joint state of a

coalition C, sC, to a joint action of coalition C, aS such that aS = πC(sC).

�

Definition: Coalition Structure Policy. A coalition-structure policy πCS maps

the joint state of a coalition structure CS, sCS , to a joint action of coalition structure

CS, aSS such that aCS = πCS(sCS) =
⋃

Ci∈CS
πCi(sCi).

�

4. Coalition Structure Valuation

Definition: Value of a Coalition Structure. The value of a coalition structure

CS = {Ci} will be determined by training and evaluating |CS| policies πCi , one

policy to deterministically control the agents in each coalition Ci ∈ CS. The value of

a coalition structure V (CS) is:
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V (CS) = ρ(πCS) = ρ({πCi}) = E
[

∞
∑

t=1

γt−1rt|s0, {πCi}
]

(2.3)

with respect to some arbitrary initial state si, where each πCi has been trained via

reinforcement learning, and where rt is the global reward of all agents in all coalitions.

5. Choice of Reward Function

Notice that our policy quality is defined in terms of the global system reward. This

is in contrast to other related work where different reward functions are used for each

agent, etc (see [53] for an example of this). Specifically, in the Wolpert, et. al. work

the authors delve into the problem of how to train agents independently so that they

do not “work at cross-purposes” [53]. The authors show results that using a modified

reward function for each agent allows them to more or less accomplish this.

Our work is related to this work in that both purpose to develop a method

for training large multi-agent systems that does not have exponential computational

requirements. However, the Wolpert work, like CRL, requires foreknowledge of the

agent system. Specifically, in order to construct the modified reward function for

agent ni, a modified MDP must be constructed where agent ni’s actions do not affect

the other agents (or in Wolpert’s terminology, the MDP must be constructed as if ni

“had never existed”). This requires knowledge of how ni interacts with other system

agents. If one has this information, the author’s show that training can be performed

agent-by-agent with reasonable results.

We treat the domain where little or no a priori information is available about

how the system agents relate to each other. We seek to generate adequate coalitions

purely from training data, without the need to probe the system further.
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Thus, we are more or less restricted to using the global reward function. The

purpose is to develop a coalition formation algorithm that operates with minimal

information about system structure. Using a different reward function for an agent

or group of agents would seem to require additional, agent-specific knowledge and

would more or less violate the spirit of this work.

D. Information Theory

1. Introduction

Information theory is a mathematical theory of data transmission and storage. Founded

by Claude Shannon in 1948, [? 82], information theory was originally designed to de-

scribe the amount of information that could be successfully transmitted over a noisy

communication channel (such as a telephone line). The theory is far more general

however, and can be used to describe the amount of information contained in very

arbitrary random variables.

Specifically, Shannon defined the amount of information contained in a random

variable X with probability distribution p(X) to be:

IX = −
∫ +∞

−∞

p(x) log p(x)dx (2.4)

Notice that this quantity is maximized when p(x) is uniform over the probability

domain. As such, information can be thought of as measuring the uncertainty inherent

in a probability distribution. That is, for probability distributions where most of the

probability is concentrated in a very small portion of the domain, even when we find

out the exact value of x, we have really not gained that much information since we
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were already fairly certain of the value x beforehand. On the other hand, imagine

that p(x) is very spread out such that beforehand we have little idea of the exact value

of x. In this case, upon determining the exact value of x, we gain a lot of information

since we were initially extremely uncertain.

The notion of information can be extended to multiple variables in a fairly

straightforward manner, and one can speak of the information contained between

pairs of random variables. The appropriate metric for this is mutual information,

and is conceptually similar to the correlation between variables. However, mutual

information is specifically tied to the amount of information one random variables

tells about about another random variable.

For example, imagine that we have a situation with two random variables X and

Y . If we want to choose a biometrics domain, we might imagine that X represents

the gender of a person, and Y represents their height. Before knowing either X or

Y , we’ll say that X is P (X = male) = 0.5, P (X = female) = 0.5, and that Y is a

Gaussian distributed around about 5’5”.

In general, if we have two random variables X and Y , then the mutual informa-

tion between the two variables is:

M(X;Y ) =

∫

X

∫

Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (2.5)

However, imagine that for a given subject, we are able to determine X. Immediately,

the distribution of Y changes. Let us say that we learn that the subject is male -

in this case the probability distribution for Y changes. Since the subject is male,

Y ’s mean would shift to larger height values and the variance would shrink as well.

Likewise, if we were able to figure our Y for a subject (lets say we found out that

Y = 6′8”), the probability distribution for X would change as well. In this case,
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since we know that the subject is very tall and is therefore most likely male, the

conditional probability distribution for X might look like P (X = male|Y ) = 0.9,

P (X = female|Y ) = 0.1.

In this example the random variables X and Y were not independent, and know-

ing one value told us something about the other value. We could look at this in a

slightly different way: knowing the value of one of the variables decreased the amount

of information that was available in the other one. That is, in the height example,

once we had figured out that the subject was male, we were more certain about the

subject’s height (the variance of the distribution decreased) ... and thus, if we were

to measure the subject’s height, we would find out less information.

2. Application to Reinforcement Learning

We can write down the mutual information in the training corpus relating states and

actions to reward as the following:

I(r; s, a) =
∑

a

∫

r

∫

s

P (s, a, r) log
P (s, a, r)

P (s, a)P (r)
(2.6)

The reader may worry about the raw estimation of P (s, a, s′, r) that needs to occur

in order for the expression to be evaluated. We will discuss in a few sections how to

go about practically computing this integral. We can also speak of the information

available to agents in a coalition Ci:

I(Ci) ≡ I(r; sCi , aCi) (2.7)
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=

∫

r

∫

sCi

∫

aCi

P (sCi , aCi , r) log
P (sCi , aCi , r)

P (sCi , aCi)P (r)
(2.8)

Since our goal is to maximize the amount of information possessed by each coalition,

we will attempt to form coalitions to maximize this quantity. Intuitively this makes

sense - if each coalition has a great deal of information about how states and actions

relate to reward, reinforcement learning should be able to take this information and

produce a high-performance policy. However, there are also very good quantifiable

reasons for forming coalitions for maximize this quantity as well as we will discuss

shortly. However, before we proceed, the following observation will be useful to us in

our analysis.

Observation: If C is a coalition, and TC is a training corpus generated for use by

the LSPI algorithm, P (sC , aC) =
∏

ni∈C P (sni)P (ani) when these probabilities are

calculated over TC because we know a priori, these probabilities are independent to

begin with.

Reason: This theorem does not claim to prove anything new about the above-

mentioned probabilities, only to make rigorous a probabalistic relationship that is

required to be true by the LSPI algorithm. That is, this is not making a claim about

P (sC , aC) being estimated by
∏

ni∈C P (sni)P (ani), instead, this theorem points out

that the training samples in LSPI must be collected in such a way to satisfy this

requirement for the LSPI algorithm to work (this is given as one of the requirements

of the algorithm in the presentation papers [23]. Specifically, this algorithm requires

that the training examples randomly sample the state and action spaces of all agents

to be trained before training begins. This requirement is equivalent to the above
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probability relationship.

In practice this sampling is done by seeding the agent system to a random state

and then having the system perform the random policy and measuring reward, en-

suring that each training sample is taken from a random point in state/action space.

Since we will only use the LSPI learning algorithm here, and we must have this even

sampling to satisfy the constraints of the algorithm, the observation must hold.

�

E. Why Maximize Mutual Information?

Mutual information over a set of variables can be written in terms of the Leibler-

Kullback divergence (KL measure). This measure is written D(p||q) where p and q

are two probability distributions, and D measures the distance between the two dis-

tributions (although D is not technically a distance metric because it is not symmetric

and it does not obey the triangle rule).

D(p||q) =

∫

X

p(x) log
p(x)

q(x)
dx (2.9)

Now let X and Y be random variables with a joint distribution p(X, Y ) and marginal

distributions p(x), and p(y). We can write the mutual information I(X;Y ) in terms

of the KL measure:

I(X;Y ) =

∫

X

∫

Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy = D(p(x, y)||p(x)p(y)) (2.10)

and in this context, where we talk about the information contained in coalitions, we
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can write:

I(C) = I(sC , aC ; r) ≡ D(C) = D(P (sC , aC , r)||P (sC , aC)P (r)) (2.11)

It is interesting to express the coalition information in terms of the KL measure be-

cause many theorems about the KL measure have been proven, and we can use this

foundation to prove some theorems relevant to the coalition-information system we

consider here.

Theorem 1: The system policy quality ρ(πC) is maximized when the KL measure

D(C) = D(P (sC , aC , r)||P (sC , aC)P (r)) is maximized with respect to single-agent

membership additions to some coalition C.

Proof: Consider the case of a coalition C with KL measure D(C). Now let us add

an agent ni to the coalition C to form coalition C ′. We will use the property of the

KL measure that, for three distributions p(x), q(x), r(x), we have:

D(p(x)||q(x)) = D(r(x)||q(x)) iff p(x) = r(x) (2.12)

such that if:

D(P (sC , aC , r)||P (sC , aC)P (r)) = D(P (sC′

, aC′

, r)||P (sC′

, aC′

)P (r)) (2.13)

and we rewrite
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D(P (sC′

, aC′

, r)||P (sC′

, aC′

)P (r)) = D(P (sC′

, aC′

, r)||P (sC , aC)P (sni , ani)P (r))

(2.14)

since P (sC , aC) (for any coalition) is by design just a product individual state/action

probabilities, and we also rewrite

D(P (sC , aC , r)||P (sC , aC)P (r)) = A (2.15)

A = D(P (sC , aC , r)P (sni , ani)||P (sC , aC)P (sni , ani)P (r)) (2.16)

which we can do because:

D(p(x)||q(x)) = D(p(x)r(x)||q(x)r(x)) (2.17)

and, we have that:

DA = DB (2.18)

where

DA = D(P (sC , aC , r)P (sni , ani)||P (sC , aC)P (sni , ani)P (r)) (2.19)

DB = D(P (sC′

, aC′

, r)||P (sC , aC)P (sni , ani)P (r)) (2.20)

such that we have finally:

P (sC′

, aC′

, r) = P (sC , aC , r)P (sni , ani) (2.21)
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P (r|sC′

, aC′

) =
P (sC′

, aC′

, r)

P (sC′ , aC′)
(2.22)

P (r|sC′

, aC′

) =
P (sC′

, aC′

, r)

P (sC , aC)P (sni)P (ani)
(2.23)

and by the previous result

P (r|sC′

, aC′

) =
P (sC , aC , r)P (sni , ani)

P (sC , aC)P (sni)P (ani)
(2.24)

P (r|sC′

, aC′

) = P (r|sC , aC) (2.25)

Such that adding agent ni to the coalition has absolutely no effect on our the reward

function and therefore has no effect on the final policy. Also, note that this result

holds even if we add other agents to the coalition before adding agent ni. That is, by

the properties of the KL measure we have that if:

D(P (sC , aC , sni , ani , r)||P (sC , aC , sni , ani)P (r)) = D(P (sC , aC , r)||P (sC , aC)P (r))

(2.26)

then

D(P (sC , aC , x, sni , ani , r)||P (sC , aC , x, sni , ani)P (r)) = A (2.27)

A = D(P (sC , aC , x, r)||P (sC , aC , x)P (r)) (2.28)

for any variables x. This means that when a coalition has a maximized KL measure
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for single-agent additions, then the KL measure is maximized even under arbitrary

multi-agent additions.

Intuitively this make sense - adding an agent ni into a coalition should increase

the information contained in that coalition. However, if we add another agent nj in

first before we add in ni, we can never get more information out of ni. In fact, nj

may provide some of the information that ni would provide, such that the incremental

information gain provided by ni can only be less if other agents are added first.

�

Theorem 2: Coalition policy quality can never increase by removing an agent from

a coalition.

Proof: Let C1 be a coalition, and let C2 be that coalition with agent ni removed. The

policy πC1 maps states to actions as:

πC1 : {sC2 , sni} 7→ {aC1 , ani} (2.29)

and policy πC2 maps:

πC2 : sC1 7→ aC1 (2.30)

Thus, the entirety of the space of policies πC2 is contained in the space of policies πC1 ,

and no better policy can be had by removing agent ni and adopting a policy πC1 .

�

Corollary: When mutual information is maximized, coalition policy quality cannot

increase by any membership changes.
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Proof: By Theorem 1 we have that under these conditions policy quality cannot

increase through agent additions, and by Theorem 2 we have that policy quality

cannot increase though agent subtractions. Therefore, policy quality cannot increase

under arbitrary membership changes.

�

1. IBCF Algorithm

We will now introduce an algorithm which will seek to form coalitions to maximize mu-

tual information. According to the just-derived theorems, we have reason to believe

that if we could maximize each coalition’s mutual information (or could construct each

coalition so that additional agents did not increase the coalition’s information), this

would result in high-quality coalitions post-training. As such, our algorithm, which

we will term IBCF (Information-Based Coalition Formation), will seek to greedily

maximize coalition information, stopping only when no more information gain is pos-

sible with a given coalition or when a coalition has reached the maximum allowable

size. The code for the IBCF algorithm is listed in Appendix A.

F. Analysis of Computational Requirements

1. Introduction

Conceptually this algorithm works by greedily attempting to form coalitions with

maximum information content. It does this iteratively. Starting with a given coali-
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tion C, the algorithm blindly tried adding different agents, and chooses to add the

agent which most dramatically increases the coalition’s information. If the maximum

coalition size is reached, the coalition is ’closed’, a new coalition is created, and the

process continues.

Since, at each iteration, one agent is assigned to a some coalition, the overall

cost of the algorithm will scale as O(N2). That is, in the first pass, all N agents are

added to an empty coalition to see which one possesses the most information, on the

next pass, the N − 1 remaining agents are each added to the 1-agent coalition, etc.

2. Analysis

Result: The ICBF algorithm runs in O(N22KL) where N is the number of system

agents, K is the largest allowed coalition size and L is the number of training exam-

ples used.

Derivation: In the inner-most loop, the information calculation integral takesO(2|C||L|)

work, where |C| is the current coalition size and |L| is the number of training exam-

ples. Simply, this is because to compute the information integral one can always

grid up the integration space into finite-size cells, of which there will be O(2|C|) of

them (two dimensions for each coalition agent, one state, and one action dimension).

Naively, one could simply iterate through the O(2|C|) cells, and, for each one, sort

through each of the |L| training tuples to see whether each tuple occupied the cell. If

the maximum coalition size is K, then this cost never reaches above O(2K |L|).

Since each time the inner loop is run an agent is removed from the available

POOL agents, the inner information integral is computed N times the first iteration,

N − 1 times the second iteration, etc. Thus, we have that the total execution time
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for the algorithm is:

O(N22K |L|) (2.31)

where N is the total number of system agents, and K is the largest permissible

coalition size.

�

3. Discussion

This algorithm still scales exponentially with the number of agents. In this respect

we have not gained a strict scaling advantage, though we are able to specify a fixed

maximum coalition size K to help keep computational requirements reasonable. In

this respect, this algorithm is much like the coalition formation algorithm presented in

[? ], since both avoid exponential requirement scaling by capping the largest coalition

size.

Additionally, note that this does not include estimates for training time. Im-

plicitly training time is bounded by the size of the generated coalitions. As we have

pointed out repeatedly in this work, the computational requirements for most re-

inforcement learning algorithms scales as O(CN) where N is the number of agents

trained simultaneously. As such, even after running the ICBF algorithm, an addi-

tional training step must be performed which will incur an O(CK) cost. In some ways

this additional cost does not change anything since the overall scaling for even the

combined coalition formation / training procedure is still O(N22K |L|).
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G. Errors and the Information Integral

We will now discuss some issues related to the numerical accuracy of the information

integral calculation. Obviously, the probabilities in the integral are continuous and

cannot be evaluated via sampling at every point in the state/action domain. This

can be done by standard Newton-Cotes-type numerical integration, and we will use

this framework to provide a rough bound on how errors in this integral depend on

system parameters.

Theorem 3: If the information integral is calculated for a m-agent coalition via first-

order Newton-Cotes numerical integration, the total error of the integral is bounded

by:

εtotal <

[

h3

24
|f ′′(ξ)| +O

(

√

1

4n
log

[

1 +

√

1 − hk

nhk

]

)

]

(2.32)

where f is the coalition information function, and as usual, ξ is chosen to maximize

the derivative, k = 2m + 1 is the number of integration variables, n is the number

of experience tuples used for training, and h is the grid-size used for the numerical

integration.

Proof: If we are calculating the information integral for a m-agent coalition, we will

be integrating over k = 2m + 1 variables (a state/action pair for each agent, plus

global reward), and for the sake of discussion we will assume that each integration

variable assumes the range [0, 1]. Our information integral will be of the following

form:
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Î(sC , aC ; r) =

∫

x1

∫

x2

. . .

∫

xk

P̂1 log
P̂2

P̂3

(2.33)

where P1, P2, P3 are the probability distributions from the mutual information expres-

sion. Assume that each of these probability distributions has some error caused by

sampling the probability at a given point by a finite number of samples:

Pi = P̂i + εi (2.34)

Such that:

Î(sC , aC ; r) =

∫

(P1 + ε1) log

[

P2 + ε2
P3 + ε3

]

(2.35)

Î(sC , aC ; r) =

∫

(P1) log

[

P2

P3

]

+ E1 + E2 + E3 + E4 (2.36)

E1 =

∫

(P1 + ε1) log [1 + ε2/P2] (2.37)

E2 = −
∫

(P1 + ε1) log [1 + ε3/P3] (2.38)

E3 = ε1

∫

logP2 (2.39)

E4 = −ε1
∫

logP3 (2.40)

such that:

Î(sC , aC ; r) =

∫
[

(P1) log

[

P2

P3

]]

+

∫

O(ε log [1 + ε′]) (2.41)
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and since our integration domain is a unit hypercube

Î(sC , aC ; r) =

∫
[

(P1) log

[

P2

P3

]]

+O(|ε log [1 + ε′] |) (2.42)

Now, the probability errors will decrease as the law of large number such that:

ε =

√

p(1 − p)

n
(2.43)

ε′ =
1

p

√

p(1 − p)√
n

=

√

1 − p

np
(2.44)

where we have abused notation slightly - p is in fact P1 or P2 or P3 depending on

which error term is under discussion, and where n is the number of samples used to

estimate the probabilities. We also have (maximizing the above equations)

|ε| <
√

1

4n
(2.45)

|ε′| <
√

1 − P0

nP0

(2.46)

where P0 is the smallest non-zero probability in the integral that we will need to

estimate (we never have to worry about actual 0 probabilities because they drop out

of the information integral) then:

Î(sC , aC ; r) =

∫
[

(P1) log

[

P2

P3

]]

+O
(

√

1

4n
log

[

1 +

√

1 − P0

nP0

]

)

(2.47)

Obviously, this integral cannot be performed in a continuous fashion. Instead, we will

take the standard numerical integration technique of dividing the integration space
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into multi-dimensional boxes (each h units on a side) and computing the integral over

those boxes. That is, let us divide the k-dimensional integration space into a set of

(1/h)k multi-dimensional bins B = {B1, . . . B(1/h)k} such that the integral decomposes

into:

Î(sC , aC ; r) = I(sC , aC ; r) + εint = A (2.48)

A =
∑

Bi∈B

hk

[

P1(Bi) log

[

P2(Bi)

P3(Bi)

]]

+O
(

√

1

4n
log

[

1 +

√

1 − P0

nP0

]

)

(2.49)

where P (Bi) is the probability that one of the training tuples falls in the mutli-

dimensional bin Bi. Effectively we are sampling the multi-dimensional probability

distribution at the center of each box, and the error of this expression can be deter-

mined by the standard Newton-Cotes formula for numerical integration errors. Here

we will use the zero-eth order Newton-Cotes forumla (approximating each bin by a

constant value) which yields:

εint =
h3

24
|f ′′(ξ)| (2.50)

where:

f = P1 log
P2

P3

(2.51)

and ξ is as usual the value which maximizes the error. Finally, we have

εtotal <

[

h3

24
|f ′′(ξ)| +O

(

√

1

4n
log

[

1 +

√

1 − P0

nP0

]

)

]

(2.52)
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Now, although the exact value of P0 will depend on the nature of the agent system

we deal with, we should have that:

P0 ∝ hk (2.53)

as we take smaller and smaller bins, the minimum non-zero probability in any bin

will shrink. Thus, we can write:

εtotal <

[

h3

24
|f ′′(ξ)| +O

(

√

1

4n
log

[

1 +

√

1 − hk

nhk

]

)

]

(2.54)

�

The most interesting aspect about the error term is that while decreasing bin

sizes helps the integration error, it hurts the probability sampling error. Fortunately

however the sampling error grows logarithmically such that shrinking the bin sizes by

a given amount only has a logarithmic effect on the total error.

H. Error and Policy Quality

We now want to look and see how the quality of our policy correlates with the amount

of information contained in a coalition. Specifically, after the last section, we showed

how error could enter into the information integral - a natural question is “How much

would this error affect final policy quality?”.

As a first step in this direction, we will introduce a theorem relating the informa-

tion content of a coalition to policy quality, for a specific class of systems. Specifically,

we will introduce a new definition, invariantly Markov, which will describe an ide-
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alized environment, and will then proceed to prove a theorem which applies to such

systems.

1. Coalitions and the Markov Property

As a first step, imagine that we have a system such that the environment of each

coalition to be Markovian no matter which agents are in that coalition. This is not

unreasonable, and in fact is assumed by training algorithms such as LSPI, and was

included in our earlier assumptions in the initial chapters of this dissertation. How-

ever, this requirement has some subtle consequences which warrant mention.

Definition 1: Reducibly Markov. An agent system is reducibly Markov if for any

agent coalition C, the state transition model P (s, a, s′) of that coalition C is an MDP

such that ∂P (s, a, s′)/∂t = 0 for all times t.

2. Deviations

For most system this is technically rarely the case. That is, the transition model for

any given agent will depend on the actions of all other system agents. Consider the

simple case of robot exploration, where a system of robots navigates an environment

in order to map it out. Even here the transition model of each agent is affect by the

actions of the other agents - for example, there may be collisions, or other robots

which block narrow hallways, etc.
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3. A More Stringent Requirement

A more demanding extension of reducibly Markov is that the transition model of an

agent coalition not be affected by the behavior of other system agents. Note that

this does not imply that reward is not dependent jointly on the actions of all system

agents, only that the way each agent can move around in its environment is not af-

fected by the policies of other agents.

Definition 2: Invariantly Markov. An agent system is invariantly Markov if

for any agent coalition C, the environmental transition function of that coalition

P (sC , aC , s′C) can be modeled exactly by a Markov decision process M such that

∂M/∂πni
= 0 for all ni /∈ C.

Theorem 4: Let our agent system be invariantly Markov. Let C0 be a coalition that

has its KL measure D(C0) maximized with respect to single-agent additions and has

been trained to some policy πC0 . Let C be some coalition of agents derived from C0

by a series of agent removals. If our coalition system is invariantly Markov then:

∆ρ = ρ(πC0) − ρ(πC) ≤ (I0 −H0) − (I − 1)

(I0 −H0)
(2.55)

Where H0 is the entropy of P0 = P (sC0 , aC0 , r), I is the mutual information of C, and

I0 is the mutual information of C0.

Proof: Because our system is invariantly Markov, as we subtract agents from C0 our

environmental transition model will not change, and the performance of the agents

remaining in C0 is independent of removed agents. Thus, we assign the removed agents

to the pure random policy. This may result in an overall performance decrease. In
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the worst case, this could be:

P (sC , aC , r) ∝ δ(r) = P1 (2.56)

where δ is the Dirac delta function (in other words, no non-zero reward is ever given

out for anything). This is the worst-case state/action/reward function for any coali-

tion (if the system has negative rewards we may simply translate all reward until the

lowest possible reward is 0).

Now examine what happens when we remove an agent ni from coalition C0 to

form C. With a probability 1/|A| the agent ni will execute the action from the joint

policy πC0 anyway, but with probability 1 − 1/|A| the agent will execute a different

(random) action. In these cases we will say that the system can do no worse than if

it adopted the worst-case state/action/reward distribution.

P (sC , aC , r) =
1

|A|P0(s
C , aC , r) +

[

1 − 1

|A|

]

P1 (2.57)

This extends simply for the case of multiple agent removals

P (sC , aC , r) =
1

|A|
n

P0(s
C , aC , r) +

[

1 − 1

|A|
n
]

P1 (2.58)

Instead of carrying around the n-dependent notation, we will simply rewrite this as

P (sC , aC , r) = (1 − g)P0(s
C , aC , r) + gP1(s

C , aC , r) (2.59)

where

0 ≤ g ≤ 1 (2.60)
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so that

R(s, a) = (1 − g)

∫

r

rP0 + g

∫

r

rP1 = (1 − g)R0 + gR1 (2.61)

Now let us look at the difference in mutual information between the optimal coalition

C0 and the coalition C:

∆I = I(C0) − I(C) = I0 − I (2.62)

∆I =

∫

P0log
P0

PB

−
∫

[(1 − g)P0 + gP1] log

[

P0(1 − g) + gP1

PB

]

(2.63)

where PB = P (r)
∏

i P (sni)P (ani). Using the equality log(x + y) = log(x) + log(1 +

y/x) we can reduce this expression to:

∆I =

∫

P0 logP0 +

∫

A+

∫

B +

∫

C +

∫

D +

∫

E (2.64)

where the integrals are taken over states, actions and reward, and:

A = −(1 − g)P0 logP0(1 − c) (2.65)

B = −(1 − g)P0 log

[

P1g + (1 − g)P0

P0(1 − g)

]

(2.66)

C = −gP1 logP1g (2.67)

D = −gP1 log

[

P1g + (1 − g)P0

P1g

]

(2.68)
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E = −P0 logPB + [(1 − g)P0 + gP1] logPB (2.69)

We can make the expression an inequality by removing some always-positive expres-

sions from the right-hand side

∆I ≥
∫

P0 logP0 +

∫

A′ +

∫

B′ +

∫

C ′ +

∫

D′ +

∫

E (2.70)

where

A′ = −(1 − g)P0 logP0 (2.71)

B′ = (1 − g)P0 log [P0(1 − g)] (2.72)

C ′ = gP1 logP1g (2.73)

D′ = gP1 log [P1g] (2.74)

∆I ≥
(

1 − (1 − g)
)

∫

P0 log
P0

PB

−
∫

gP1 log
P1

PB

+K (2.75)

K = (1 − c)H0 + cH1 + (1 − g) log(1 − g) + g log g (2.76)

where H0, H1 are the entropies of the two distributions

H0 =

∫

P0 logP0 (2.77)

H1 =

∫

P1 logP1 (2.78)
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or

∆I ≥ gI0 − gI1 + (1 − g)H0 + gH1 + (1 − g) log(1 − g) + g log g (2.79)

since −1 ≤ (1 − g) log(1 − g) + g log g ≤ 0 we have:

∆I ≥ gI0 − gI1 + (1 − g)H0 + gH1 − 1 (2.80)

I0 − I ≥ gI0 − gI1 + (1 − g)H0 + gH1 − 1 (2.81)

I0 − I − (H0 − 1) ≥ g(I0 − I1 −H0 +H1) (2.82)

I0 − I − (H0 − 1)

I0 − I1 −H0 +H1

≥ g (2.83)

however, since we chose a Dirac-delta function for our worst-case distribution P1, we

have I1 = 0, and H1 = 0, such that:

(I0 −H0) − (I − 1)

(I0 −H0)
≥ g (2.84)

and finally, we have:

R0 −R

R0

≤ (I0 −H0) − (I − 1)

(I0 −H0)
(2.85)

Since policy quality is directly related to reward
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∆ρ = ρ(πC0) − ρ(πC) (2.86)

∆ρ =
∞
∑

t=0

(RC0

t −RC
t )γt (2.87)

∆ρ ≤
∞
∑

t=0

(RC0

t −RC0

t

[

1 − (I0 −H0) − (I − 1)

(I0 −H0)

]

)γt (2.88)

∆ρ ≤
∞

∑

t=0

(RC0

t

(I0 −H0) − (I − 1)

(I0 −H0)
)γt (2.89)

∆ρ ≤ (I0 −H0) − (I − 1)

(I0 −H0)
(2.90)

�

4. Discussion

Theorem 4 provides a bound on how much deviations from optimal information

affect policy quality. Since Theorem 2 says that the only way we can negatively

affect policy quality is by agent removals, and the result was entirely in terms of

the information content of the altered coalition C, Theorem 4 gives us a bound on

how much worse the coalition may perform if its mutual information is not actually

maximized.

This maximization may fail for a variety of reasons. It may be the case that

errors in the information integral mislead us into not including an appropriate agent

in a coalition, or maximum coalition size restraints may prevent us from maximizing
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Fig. 1. The cart-pole balancing problem.

mutual information. Either way, this theorem gives us a bound on how much these

errors will affect final policy quality. Specifically, it is reassuring that the error only

scales linearly with information deviations.

It is true that this Theorem 4 is something of an idealization, since it is proven

only for invariantly Markov systems. Future work might be done to expand this

theorem to more general domains.

I. Experiment 1: Multi-Agent Cart-Pole Balancing Problem

One of the classic problems in reinforcement learning is the cart-pole balancing prob-

lem. In this problem we have a cart of mass M capable of frictionless, one-dimensional

motion. Attached to this cart via a hinge is a pole with a mass m on top. Gravity

acts to pull the top mass down, but the pole and mass can be kept in the upright

position by judicious movements of the cart. Figure 1 illustrates the basic quantities

associated with this problem.

Agents in this system are capable of applying some impulse either to the left or

to the right of the cart, and reward is given out to the agents if the pole is within

some angle tolerance of the upright position. System parameters are specified in two



58

variables, θ, the angle of the pole away from the upright position, and ω = θ̇, the

angular velocity of the pole.

We performed a multi-agent version of this simulation to demonstrate our coali-

tion formation algorithm. Specifically, in our system, each agent was given a single

sensor which measured some linear combination of θ and ω (to enable direct combina-

tion of these two variables, both θ and ω were normalized to have zero mean and unit

variance before use in all cases). Specifically, each agent was given a single sensor ηi:

ηi = cos(φi)θ + sin(φi)ω (2.91)

And as usual, each agent was capable of imparting a force from the left or right to

the cart. This problem is interesting, because individually, each agent has insufficient

information to solve the pole-balancing problem. That is, neither θ or ω alone is

enough to solve the pole balancing problem, and neither is any linear combination

of these two variables. Agents must be in coalitions such that other agents supply

missing pieces of information to allow both agents to come to a joint decision as to

what force to apply to the cart.

Pre-training, we ran our IBCF algorithm as described above on the cart-pole

agents. Intuitively, one would expect that the maximum amount of reward-related

information would occur in two-agent coalitions {n1, n2} (as in Figure 2) such that

{φ1 = x, φ2 = x + π/2}, with higher-agent coalitions offering no informational ad-

vantage. That is, such a two-agent coalition has all the information contained in the

original θ and ω variables - and in fact, the two variables θ and ω can be recovered

by a rotation of {η1, η2} by an angle −x.

We collected a training corpus by allowing N = 8 agents to interact with a

pole-cart system. All physical constants and simulation methods were taken directly
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Fig. 2. Relative information example. Relative information gain between the sin-

gle-agent coalitions C1 = {n1}, C2 = {n2} with φ1 = 0, φ2 = φ1 + φ, and

the two-agent coalition C3 = {n1, n2}. Specifically, ∆I = I(C3)−(I(C1)+I(C2))/2
(I(C1)+I(C2))/2

.

Notice that when φ = 0 the sensors of the two agents are identical and no

information gain is achieved. The maximum is achieved at φ = π/2 when the

two sensor outputs are ’orthogonal’.
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Fig. 3. Algorithm comparison with fixed network connectivity.

Table II. Results of the cart-pole balancing experiment, ± one STD shown

Algorithm Upright timesteps

Random policy 30 ± 24

CRL 507 ± 102

IBCF 505 ± 105

from the single-agent pole-balancing example presented in [23]. During experience

collection, agents followed a random policy, applying force from the left or right with

equal probability. We initialized the sensor angles to be the following φ1 = 0, φ2 =

π/2, φ3 = π/8, φ4 = π/8+π/2, φ5 = π/4, φ6 = π/4+π/2, φ7 = 3π/4, φ8 = 3π/4+π/2.

After the training corpus was collected (we collected 1600 tuples, or 200 per agent,

as in the original Lagoudakis and Parr paper), we ran IBCF over the corpus, which

produced the following coalition structure:

CSIBCF = {{n1, n2}, {n3, n4}, {n5, n6}, {n7, n8}} (2.92)
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As expected, the algorithm matched agents with complementary sensors such that

intra-coalition mutual information between states/actions and reward was maximized.

After coalition structure generation, we trained each coalition in isolation to balance

the pole using the reinforcement learning scheme described in [23] (Least-Squares

Policy Iteration). After training was complete, we measured the average time the

system was able to keep the pole balanced upright (with all agents in all coalitions

able to apply forces simultaneously, of course). For comparison, we also measured

the average ’upright time’ when randomly generated coalition structures (made up of

strictly two-agent coalitions) were used, and the average upright time for a single agent

balancing the pole with access with both θ and ω directly (essentially reproducing

the single-angle case presented in [23] ... in this domain, the single-agent policy will

perform optimally). For each case, we allowed the system to try to balance the pole

500 times, and the average upright times are plotted in Figure 3 and listed in Table

II. The IBCF-coalition based results are nearly identical to the single-agent results,

as expected, since each coalition has as much information about the system as does

the single agent. Note that we did not compare against a direct search for an optimal

coalition structure because the rather long training/evaluation times for this domain

made this untenable.

J. Experiment 2: Multi-Agent Network Control Problem (SysAdmin)

The SysAdmin problem, as presented in [59] simulates the management of network

by a system of agents. The problem roughly goes as follows: there is a network of N

machines (connected to each other through some network topology), each of which

is managed by an agent. These machines are designed to run processes, and when a
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Fig. 4. Example network topologies. Two network topologies with the coalitions pro-

duced by IBCF drawn on the figure.

machine completes a process, its agent is given some reward. Specifically, machines

are capable of being in three ’stability’ states STATE = {HEALTHY, UNSTABLE,

DEAD} and three ’process’ states LOAD = {IDLE, PROCSES RUNNING, PROCSS

COMPLETE}. Healthy machines turn into unstable machines with some probability,

and unstable machines turn into dead machines with some probability. Unstable ma-

chines take longer to complete processes (and hence generate less reward on average)

and dead machines cannot run processes at all. To make matters more complicated,

unstable and dead machines can send bad packets to their neighbors, causing them

to go unstable and eventually die as well. At each time-step, each agent must decide

whether or not to reboot its machine. Rebooting returns the machine to the healthy

state, but at the cost of losing all running process (which effectively incurs some

reward penalty since all work done on processes up to this point will be lost).

For our experiment, we generated machine networks with various numbers of

nodes and with randomly generated network topologies. Specifically, to generate a

network of size N with a connectivity of m we first set up our N nodes and then

randomly connected each node to m other nodes in the network.

For each network, we collected a training corpus by having each agent follow a
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random policy and reboot its machine with a 50% probability. All other simulation

parameters were as described in the [59] work. To speed up training, we capped our

coalition sizes at three agents in all cases. After coalition generation, we trained each

coalition in isolation, using Least-Squares Policy Iteration, as outlined in [23].

It is interesting to observe the coalitions that our algorithm generated for various

network topologies. Notice in Figure 4a that for a system where nodes are strictly

connected to two neighbors (and an appropriate three-agent coalition structure is ob-

vious), our algorithm generates coalitions reflecting these dependencies. Other more

complex topologies resulted in different coalition structures, for example in Figure

4b, though the interdependencies of the network are still somewhat represented.

First, we examined how the algorithm performed as a function of network con-

nectivity. Since in all cases we capped the maximum coalition size at 3, as the

network nodes became increasingly interconnected, one would expect post-training

performance of the system to drop off. One would expect that knowledge of the state

of nodes connected to an agent’s node would assist that agent in choosing a more

optimal restart policy.

Look at Figure 5, which shows post-training average reward as a function of

the number of connections each node had (these results are also listed in Table III).

Notice that although for sparse networks (less than 2 connections per node) the

algorithm performs relatively well. Although the general trend is for reward to drop

off with network connectivity (as should be expected since more connections means

more opportunities for faulty nodes to spread their faulty state to their neighbors),

there is a large drop-off from 2 connections per node to 3 connections per node. This

makes sense in the context of our algorithm - with each node connected to only two

other nodes, each node need only concern itself with its own state plus the state

of its two neighbors, and thus a 3-agent coalition was generally sufficient to group
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agents together. In the situation where we have each node connected to 3 other

nodes however, each node must concern itself with its own state, plus the state of its

three other neighbor nodes, which suggests that a 4-agent coalition would have better

served the situation.

To compare our algorithm’s performance against CRL, we also generated a series

of 600 random-topology, 12-node networks such that each node was connected to

exactly two other nodes. This replicated the test networks used to benchmark CRL

in [59]. We ran our IBCF algorithm on these networks, first generating coalitions,

and then using LSPI to train each coalition separately. For further comparison, we

also formed random coalitions and then used LSPI to train each random coalition

separately. In Figure 6 (Table IV) we see that our algorithm produced coalitions that

significantly outperformed the random coalitions, and the IBCF-based system also

came close to the performance of the CRL algorithm.
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Since the overall reason for training agents in coalitions in the first place was

to reduce training times, we explored the training times required to train networks

of various sizes. In this case as well we capped the coalition size to 3 nodes. We

generated random networks of various sizes (for each size we generated 500 random

topologies), and in all cases each network node was connected to exactly two other

nodes (not that this would affect the time required to train a policy). For comparison

we monitored the time to train each network with CRL and with our combination

of IBCF and then LSPI over each generated coalition. Additionally, we trained each

network with standard LSPI over all network nodes simultaneously. Look at Figure

7 and Table V. We see that our IBCF-based approach and the CRL algorithm both

have training times that do not scale exponentially with agent count, though, as

expected, the training times for naive system-wide LSPI scaled exponentially with

agent count. Notice also that our algorithm was slightly slower than CRL in all

cases. This is because whereas CRL assumes that the system designer has effectively

already divided the agents into coalitions and can thus immediately begin to train

the system. In contrast, we must first perform a pass of IBCF to form our coalitions

and then proceed to perform an LSPI pass to train each coalition.



Fig. 5. Algorithm performance as a function of network connectivity (number of connections per node).
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Table III. Algorithm performance on the network control problem as a function of

connected nodes

Neighbor Nodes Average Reward Standard Deviation

0 576 15

1 571 21

2 552 24

3 410 29

4 388 31

5 357 48

6 321 56



Fig. 6. Results of the SysAdmin simulation. Performance of the various algorithms on the 2-neighbor, 12-node network

control problem.
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Table IV. Performance comparisons on the 12-node, 2 connection set

Algorithm Long-Term Reward Mean Standard Deviation

Random Policy 450 100

IBCF 554 24

Coordinated RL 570 50



Fig. 7. Average training times (in minutes) for the various algorithms as a function of network size.

7
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1. Discussion

Our results show that our IBCF algorithm performed admirably against coordinated

RL, even though our algorithm had access to far less information, and additionally,

generated coalition structures before training took place.

Additionally, as expected, as the complexity of our networks increased, our al-

gorithm performed less well. Specifically, when we increased the number of nearest

neighbors past our maximum coalition size, network performance decreased sharply.

Notice that the network’s performance was even worse than when the random policy

was applied. This is a little misleading. In the first experiment, where we compared

the performance of IBCF against CRL, our networks were relatively simple. By in-

creasing the connectivity of our networks, we also increased the rate at which errors

could be transmitted, inherently lowering network performance. Another side-effect of

this is that lower-complexity networks (see the 1-nearest-neighbor results) inherently

performed better, in part because there were fewer linkages to transmit faults.

The important result here is that there was a sharp drop-off in network per-

formance after the demands of the domain exceeded the coalitional capacity. We

interpret this as the case where we are unable to maximize mutual information (addi-

tional agents would have increased the mutual information) and generate sub-optimal

coalitions. This is in some extent the point, since the maximum coalition size was

intentionally capped below the nearest neighbor count. Note that the algorithm’s

performance did decrease gracefully beyond the 2-neighbor point. Lower neighbor

networks generally performed better because there were fewer linkages and thus a

lower probability of being ‘infected’ by connected faulty nodes.
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Table V. Average training times (minutes)

Network Size Full Network LSPI Coordinated RL IBCF + LSPI

1 0.061 0.019 0.048

2 0.332 0.094 0.150

3 2.157 0.240 0.332

4 11.824 0.422 0.553

5 76.283 0.667 0.847

6 - 0.985 1.259

7 - 1.312 1.659

8 - 1.679 2.006

9 - 1.998 2.544

10 - 2.701 3.149

11 - 3.150 3.935

12 - 3.733 4.582
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Table VI. Results of the power-grid experiment

Network Random CRL ICBF

A 29.7 ± 0.13 0.08 ± 0.01 0.07 ± 0.02

B 52.00 ± 0.24 0.13 ± 0.02 0.15 ± 0.20

C 96.8 ± 0.31 40.86 ± 1.14 45.21 ± 2.12

D 44.14 ± 0.37 0.11 ± 0.02 0.12 ± 0.03

K. Experiment 3: Power Distribution

We also tested our algorithm on a third domain, Schneider’s power grid domain [67].

In this domain one has a network (much like the SysAdmin domain), only each node

can either be a provider (a fixed voltage source), a customer with a desired voltage, or

a distributor (where agent control takes place). Links between nodes have resistances,

and the distributors must set the resistances to meet the demand of the customers. If

a given customer’s demand is not met, then the grid is penalized equal to the demand

minus supply. The total penalty is simply the sum of the penalties incurred across all

customers. At each time-step each distributor can either double, halve, or maintain

their resistances (3 possible actions), and there are 6 possible resistance levels.

Structurally, these networks are very similar to the SysAdmin networks from the

previous experiment, usually not exceeding each node having 2 neighbors. We ran

the same simulator we built for the SysAdmin domain on the power-grid networks

(after altering the simulation to accommodate the physical electrical parameters).

We compared the results against CRL run on the same network. We used exactly

the experimental setup as described in [62]. This called for 10,000 training samples

to be generated, and the network to be evaluated for 60,000 time-steps. The results

are shown below in Table VI (network topologies are as in [67, 59]:



74

The experiment showed that our algorithm was again comparable to CRL in

terms of post-training performance. The one notable result from this experimental

run is network C. Here the complexity of the network exceeds the 2-nearest neighbor

motif of the other networks. In [62] the authors use a 2-node basis to represent their

environment (that is, they restrict each agent to only observing two of their linked

neighbors). This explains why CRL does worse on this network, and similarly, since

we limited ourselves to coalitions of 3 agents or less, our algorithm fared poorly on

this higher-complexity network.

L. Conclusions

We have present a unique algorithm capable of generating high-performance agent

coalitions before any training occurs, and without knowing any a priori information

about agent relationships.

Our approach was to form coalitions to maximize mutual information, and we

provided a basic theoretical justification for this approach. We also derived error

bounds which relate deviations from maximal coalition information to policy quality

decreases. We found the relationship between information and policy quality to be

linear.

This approach is inherently an approximation in the sense that post-coalition-

formation we train over groups of separated agents and are not guaranteed to achieve

the globally optimal policy.

We applied our algorithm to three multi-agent reinforcement domains: the multi-

agent pole-balancing problem (as in [23]) and the SysAdmin, network management

problem (as in [59]), and a power-grid management domain (see [? 59]. In all cases
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our algorithm performed comparably to coordinated reinforcement learning. We no-

ticed performance drop offs whenever the system complexity exceeded our maximum

coalition size. This was a trend in both network-based domains (SysAdmin and power

grid), and should be expected. In such cases we hypothesize that the algorithm is not

able to maximize mutual information - additional agents would significantly increase

the coalition’s knowledge of how states and actions relate to reward. Raising the

coalition size limit would probably solve this problem, though note that even when

system complexity grew too high, our algorithm failed gracefully, as would be ex-

pected from a non-exponential (linear in fact) relationship between information and

policy quality.
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CHAPTER III

INTEGRATING FUZZY KNOWLEDGE INTO REINFORCEMENT LEARNING

Reinforcement learning is hard. Given a set of (possibly noisy) examples of how an

agent’s actions affect the environment, one must essentially produce a model of the

potentially very complex interactions between agent actions, environmental response,

and external rewards distributed to the agent from a series of training examples. As

we discuss in this chapter, the sample complexity of reinforcement learning (the num-

ber of samples that the learning agent needs to have access to in order to develop a

good policy) grows exponentially with the size of the agent system. As such, in many

cases it is difficult, if not impossible, to supply the learning system with enough train-

ing examples to successfully develop a high-performance policy. Fortunately, this is

somewhat of a common problem in machine learning in general. Many learning con-

cepts have sample complexities that are infeasible, and the approach that is generally

taken to rectify the situation is to engage in some sort of ’hybrid learning’ where, in

addition to training examples, the learner is given access to domain knowledge [83].

This domain knowledge can augment what is available from the training examples

and allow the learner to develop a solution superior to what could be obtained from

training examples alone.

Interestingly, there has been a long-standing interest in integrating pre-training

domain knowledge into the reinforcement learning process to ’help’ the learner out by

giving hints about the nature of the learning environment. Historically, this domain

knowledge has taken various forms - for example, the work by Mahadevan, et. al.

[84] which considered the effect of giving learners knowledge of important environ-

mental sub-tasks to speed up learning, or the work by Milan [85] which examined the

effects of giving learning agents reflex rules to focus state-space exploration where it
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is most needed. Other examples include Mostafa’s work on giving ‘hints’ to machine

learning processes to help out learning [86, 87, 88, 89], and Mataric’s work on using

“rich reward functions” (modifying a system’s reward function to reflect user-provided

knowledge) [90, 91], or Hailu’s work on how embedding environmental knowledge can

ease state space construction [92].

In our research direction however, we have focused on domains where we know

little or no information about the training system. As such, we wish to here treat the

case where we have some domain knowledge, but this knowledge is at best incomplete,

and as such we must express our knowledge in terms of fuzzy logic rules. We will

show how to incorporate this knowledge into the RL training paradigm by systematic

modification of the system reward function. In the spirit of this dissertation, this con-

stitutes an approximate method since inherently, modification of the reward function

introduces some error into training. We quantify this error and demonstrate the use

of our technique on several experimental domains. Specifically, we see how the addi-

tion of domain knowledge (encoded in simple fuzzy rules) significantly improves the

performance of the post-learning pole-balancing controller and significantly reduces

the sample complexity on this domain.

Our work will be most closely related to the Mataric work cited above, though

we will not explicitly use any of the techniques derived therein. Specifically, whereas

previous work on reward-shaping techniques (such as the Mataric work) focused on

older reinforcement learning techniques such as Q-learning, here we focus on the

use of more modern RL techniques such as Least-Squares Policy Iteration (LSPI)

[23]. In that algorithm there are two quantities, A and b, which are generated

solely from experience tuples sampled from the environment. As previously discussed,

A essentially captures the transition model of the environment, while b captures

the dynamics of the environmental reward function. Here we present a method to
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incorporate domain knowledge (and specifically, fuzzy domain knowledge) into the

reward vector b.

A. Sample Complexity and Reinforcement Learning

The sample complexity of a concept is the number of training examples that a learner

trying to learn the concept needs to be exposed to before the learner can, with high

probability, learn the concept. Specifically, in the case of reinforcement learning, the

sample complexity has been shown to be the following: In order to guarantee that

with probability 1 − δ that one will obtain post-training a policy π such that:

||Q∗(s, a) −Qπ(s, a)|| ≤ ε||Q∗(s, a)|| (3.1)

the learner needs access to:

m = O

( |A|nK
(1 − γ)ε

ln
|A|n

(1 − γ)ε
+ ln

2

δ

)

(3.2)

training examples, where |A| is the size of the action space of a single agent, n is

the number of system agents, and K is a parameter which depends on the details of

the environmental MDP. Notice that like the sample complexity grows exponentially

with agent count such that for large systems of multiple agents, it seems likely that

the learner will have to learn from inadequate numbers of training examples.

In this chapter we present a framework for overcoming such training example

shortages by injecting domain knowledge into the reinforcement learning process. As

we said before, given the context of this dissertation we specifically want to concen-

trate on domain knowledge expressible as fuzzy-logic based rules.
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B. Domain Knowledge and Fuzzy Rules

Fuzzy logic is an extension of fuzzy set theory that deals with approximate reason-

ing (in contrast to the absolute reasoning found in classical predicate logic) [93, 94].

Fundamental to fuzzy logic is the notion of membership functions. Generally mem-

bership functions h(X) are real-valued functions with a range between 0 and 1, and

represent the degree to which X belongs to the set that h represents. By convention,

higher values of the membership function represent a higher degree of belonging to

the associated fuzzy set. For example, we might define the fuzzy set red with the

associated membership function hred(blood) = 1, hred(grass) = 0, hred(sunset) = 0.8,

hred(maroon) = 0.5, etc. The higher the value of h, the more the predicate X belongs

to h’s associated fuzzy set.

We now wish to explore how domain knowledge (eventually in terms of fuzzy

rules) can be integrated into the LSPI learning environment. To begin with, let us

imagine that we have expressed what we know about a given learning domain in

terms of fuzzy rules (for example “If TOO CLOSE Then AVOID COLLISION” in

a navigation robot). Specifically, we will take these fuzzy rules F as consisting of a

fuzzy predicate over state variables which maps to an agent action:

F : S 7→ A (3.3)

We can represent F as a fuzzy set by defining a membership function hF (s, a) (and

as usual with fuzzy-logic setups, we will take 0 ≤ hF (s, a) ≤ 1). Here if a (s, a) pair

has a high hF (s, a) it means that taking action a in state s is a good example of the

rule F , and conversely if hF (s, a) is low, it means that performing a in state s is a

bad example of the fuzzy rule F .

At some point, we would like to encourage a learner to take advantage of this
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rule. Taking inspiration from the work on rich-reward functions by Mataric [90],

we will primarily seek to accomplish this by modifying the reward function R(s, a)

(where C is some constant):

R′(s, a) = R(s, a) + C hF (s, a) (3.4)

That is, we perform rule integration by offering the learner some reward proportional

to how well a given state action pair is an example of the rule F .

C. Potential Negative Effects of Added Domain Knowledge

1. Derivation

In this chapter, we intend to use reward shaping to integrate domain knowledge

into the reinforcement learning process. However, we must at some point recognize

a somewhat obvious potential danger: after using reward shaping on the reward

function R, when we train an agent using reinforcement learning, we train on a

modified reward function R′. This reward function R′ is not the one which was

established by the environment (after all, we just shaped it with helpful fuzzy domain

knowledge), and this should give us pause.

In fact, we saw that depending on how the reward function is modified, the post-

training system can exhibit vastly different behaviors with vastly different quality

measures. Even if we shape the reward function in a way that we think will result in

better performance, there is still the question of how much shaping we can or should

do.

A more abstract version (and one that will be amenable to analysis) is to ask
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what is the worst cast performance hit that we could take by modifying our reward

function by some given amount. Fortunately, this question can be answered in a fairly

straightforward manner due to some theorems that were proved by Bertsekas [95]:

Theorem 1 (Bertsekas): Let π̂0, π̂1, π̂2, . . . , π̂m be the sequence of policies generated

by an approximate policy iteration algorithm and let Q̂π̂0 , Q̂π̂1 , Q̂π̂2 , . . . , Q̂π̂m be the

corresponding approximate value functions. Let ε and δ be positive scalars that

bound the error in all approximations (over all iterations) to value functions and

policies respectively. If

∀m = 0, 1, 2, . . . , ||Q̂π̂m −Qπ̂m||∞ ≤ ε (3.5)

and

∀m = 0, 1, 2, . . . , ||Tπ̂m+1
Q̂π̂m − T∗Q̂

π̂m||∞ ≤ δ (3.6)

where T is the Bellman optimality operator defined as:

(T∗)Q(s, a) = R(s, a) + γ
∑

s′∈S

P(s, a, s′) max
a′∈A

Q(s′, a′) (3.7)

Then, this sequence eventually produces policies whose performance is at most

a constant multiple of ε and δ away from the optimal performance:

lim
m→∞

||Q̂π̂m −Q∗||∞ ≤ δ + 2γε

(1 − γ)2
(3.8)

�



82

This theorem makes guarantees about the final quality of a policy trained under policy

iteration when the Q function undergoes a small perturbation (potentially a different

one at each iteration of training). The theorem above was originally intended to be

used in an approximate policy iteration setting, where the value function Q is repre-

sented by linear combinations of basis functions, and the ’perturbations’ are caused

by approximation error. However, the theorem generally applies to any situation

where there is some finite ’error’ introduced to the Q function.

Theorem 2: Let R be a reward function. If we modify R as R′ = R+∆R such that

∀s, a |∆R| < εR and run LSPI on the modified reward function, we will have:

lim
m→∞

||Q̂π̂m −Q∗||∞ ≤ 2γ(εA + εR/(1 − γ))

(1 − γ)2
(3.9)

where Q∗ is the discounted reward of the optimal policy for the reward function R,

and εA is the approximation error from the Bertsekas proof (Theorem 1).

Proof: If we modify R′ as above, and let Q′ be the discounted reward under the

reward function R′, we have (by the definition of discounted reward):

Q′π(s, a) = R′(s, a) + γ
∑

s′∈S

P (s, a, s′)Q′π(s′, π(s′)) (3.10)

This expression can be re-expressed in the following form (by repeatedly using the

expression for discounted reward):

Q′π(s, a) = R′(s, a) +
∞
∑

i=1

γi

(

∑

s′∈S

R′(s′, π(s′))P π
i (s, a, s′)

)

(3.11)

Where P π
i (s, a, s′) is the probability of being in state s′ after starting in state s
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and taking action a, then following the policy π for i actions. Since R′(s, a) =

R(s, a) + ∆R(s, a), we have:

Q′π(s, a) = R(s, a)+∆R(s, a)+
∞
∑

i=1

γi

(

∑

s′∈S

(R(s′, π(s′)) + ∆R(s′, π(s′)))P π
i (s, a, s′)

)

(3.12)

Letting

∆Qπ(s, a) = ∆R(s, a) +
∞
∑

i=1

γi

(

∑

s′∈S

∆R(s′, π(s′))P π
i (s, a, s′)

)

(3.13)

we also have

Q′π(s, a) = Qπ(s, a) + ∆Qπ(s, a) (3.14)

However, by assumption ∀s, a ||∆R(s, a)|| < εR, such that:

∀s, a ||∆Qπ(s, a)|| < εR
1 − γ

(3.15)

Such that:

∀s, a |Q′π(s, a) −Qπ(s, a)| < εR
1 − γ

(3.16)

for any policy π ... in particular, this applies to the policies produced by approximate

policy iteration:

∀s, a ∀m = 0, 1, 2, . . . , |Q′π̂m(s, a) −Qπ̂m(s, a)| < εR
1 − γ

(3.17)
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Where, just to be clear, Q′π̂m(s, a) is the discounted reward obtained from following

policy π̂m under the reward function R′ = R + ∆R and Qπ̂m(s, a) is the discounted

reward obtained from following the same policy under the unmodified reward function

R. Thus, if we have, for some fixed εA (assumed in Theorem 1):

∀m = 0, 1, 2, . . . , ||Q̂′
π̂m −Q′π̂m||∞ ≤ εA (3.18)

then we have:

∀m = 0, 1, 2, . . . , ||Q̂′
π̂m −Qπ̂m||∞ ≤ εA +

εR
1 − γ

(3.19)

such that Theorem 1 is satisfied with ε = εA + εR

1−γ
so that in the limit of policy

iteration we have:

lim
m→∞

||Q̂π̂m −Q∗||∞ ≤
2γ(εA + εR

1−γ
)

(1 − γ)2
(3.20)

�

2. Interpretation

Theorem 2 has several properties worthy of discussion. First, we see that optimality

bound is proportional to the amount of reward shaping εR. This makes intuitive sense

that the more we alter the reward function, the more we risk training a sub-optimal

policy. Second, we see that the bound is highly dependent on the discounting factor γ.

A γ near one spreads the local reward modifications out to neighboring state/action

pairs, increasing the potential optimality loss.

One may question just how much one must alter the reward function to signifi-
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cantly impact the learning system. It may appear at first that in order to impact the

learning process that adjustments on the order of the average reward would need to be

applied. This is not correct because of the nature of the applied domain-knowledge-

based reward.

In most reinforcement learning systems, reward is parceled out sparingly, with

large temporal gaps between reward. Because of discounting, far future rewards have

numerically small impacts on the current discounted reward function of the system.

Domain knowledge, however, is applied continuously. That is, a good domain theory is

applicable at all times, and can thus reinforce the learner at every time step. Because

domain-knowledge based reward can be given out more often, this reward does not

need to be as numerically large as the temporally sparse reward given via the original

reward function R(s, a).

As a quick example of how much smaller domain-knowledge reward can be, note

that, with a discounting factor of γ = 0.9, a reward of +12 at t = 20 (twenty time-

steps in the future) has the same numerical impact on the t = 0 discounted reward

function as an immediate, t = 0 reward of +1.

In fact, a constant infusion of domain-knowledge-based reward can have impacts

far beyond remedying problems associated with insufficient training data. For ex-

ample, the mixing time of an MDP refers to the time taken for the average reward

expected by an agent to reach within ε of its equilibrium value. It has been shown

that the computational complexity of reinforcement learning vary polynomially with

this mixing time (specifically, proportional to 1
1−γ

)[? ]. A practical way to reduce the

mixing time of an RL problem is to reduce the discounting factor γ, though this has

the negative practical effect of forcing the learning system to have a more temporally

narrow view of reward (that is, far-future rewards have little impact on the current

discounted reward when the discounting factor is small). Since domain-knowledge-
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based reward is constantly supplied, infusing domain-knowledge into a system can

allow the system designer to lower γ since the learning system is receiving more

useful ‘guiding’ reward more often.

D. Fuzzy Reward Shaping

If we accept the dangers faced by reward shaping, the fuzzy knowledge/approximate

reinforcement learning platform allows for a very straightforward and concise method

for representing knowledge through reward modification as described above. By in-

spection, one may see that the only place reward enters into the training equations

in LSPI is through the term b when solving the system A(π)ω = b. This term is a

representation of reward sampled evenly over the state-space of the system:

b =
1

|A||S|
∑

s∈S

∑

a∈A

φ(s, a)R(s, a) (3.21)

If we wish to use a post-integration reward function R′(s, a) = R(s, a) +ChF (s, a), b

becomes:

b′ = b+ bF (3.22)

bF =
C

|A||S|
∑

s∈S

∑

a∈A

φ(s, a)hF (s, a) (3.23)

As such, a fuzzy rule can be simply represented in the this architecture as a reward

vector. That is, bF contains all the information necessary to represent the rule F

in the reward function of the system. This form is particularly advantageous since

the reward vector only involves hF and φ, which are generally exact, closed form

functions, and thus the summation may be able to be done directly in closed form.
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Fig. 8. The cart-pole balancing problem revisited.

E. Integrating Fuzzy Knowledge

It seems realistic that in most situations we will need to integrate not one but many

fuzzy rules to capture the dynamics of a given system. As such, it would be nice to

be able to say that two rules were implemented with equal ’strength’, for example.

Fortunately, since our fuzzy rules are entirely represented as reward vectors, this type

of measured reward distortion is possible. Here we will simply use:

b′ = C0
b

|b| +
N
∑

i=1

Ci
bFi

|bFi
| (3.24)

where the Ci are weighting constants the relative importance of each reward vector.

The reader should note at this point that because of the way LSPI is structured,

changes in the magnitude of b have no effect on the final policy (policies are con-

structed by noting the relative differences in reward through the arg maxQ(s, a)). As

such, the magnitude of the constants in the above equation are unimportant - only

the relative magnitudes can have any effect on the final policy.
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F. Cart-Pole Balancing Problem Domain

To demonstrate the integration of domain knowledge using this framework, we chose

one of the classic problems in reinforcement learning, the cart-pole balancing problem.

In this problem we have a cart of mass M capable of frictionless, one-dimensional

motion. Attached to this cart via a hinge is a pole with a mass m on top. Gravity

acts to pull the top mass down, but the pole and mass can be kept in the upright

position by judicious movements of the cart (see Figure 8 for an account of the

quantities involved in this problem).

Agents in this system are capable of applying some impulse either to the left or

to the right of the cart, and reward is given out to the agents if the pole is within

some angle tolerance of the upright position. System parameters are specified in two

variables, θ, the angle of the pole away from the upright position, and θ̇, the angular

velocity of the pole. All physical constants and simulation methods (other than one

exception noted below) are as described in [23].

As in [23], we collected our training corpora by having an agent follow a random

policy (pushing on the cart from the left or the right with equal probability), and

observing the reaction of the cart-pole system. In all cases, after the training corpus

was collected, we performed LSPI to generate an optimal policy for the balancing

agent.

To examine how domain knowledge affected the sample complexity on this do-

main, we presented the learning agent with various numbers of training examples

(from 0 to 20,000), and monitored what percentage of learners, post-training were

able to keep the pole upright for at least 100 time-steps. Specifically, we initially

generated a corpus of 20,000 training examples, and then sampled subsets of this

corpus to obtain however many training examples were required.
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Fig. 9. Fuzzy membership functions illustrated. The membership functions for COUN-

TERCLOCKWISE, STILL, and CLOCKWISE had the same shape, only they

were defined on θ̇ over the domain θ̇ ∈ [−1, 1].

Table VII. Rules integrated into the inverted pendulum problem

Rule Description

Rule 1 If LEFT apply force to the right

Rule 2 If RIGHT apply force to the left

Rule 3 If MIDDLE do not apply any force

Rule 4 If CLOCKWISE don’t apply force to the right

Rule 5 If COUNTERCLOCKWISE don’t apply force to the left
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We integrated the fuzzy rules listed in Table VII as outlined in previous sec-

tions. The fuzzy membership functions were as Figure 9. We first created a domain-

knowledge vector:

bk = bR1 + bR2 + bR3 + bR4 + bR5 (3.25)

We then modified the system reward vector as:

b′ = b0 + Cbk (3.26)

where C was varied between 0 and 1. Look at Figure 3. As we increase the weight of

the knowledge vector bk the learning agent is able to obtain higher success rates with

fewer training examples. Although in all cases the learner exhibits the typical inverse

exponential approach to a 100% success rate, the rate at which this is achieved is

dramatically increased by the addition of domain knowledge. Also, look at Table II.

Here we list the number of training examples where each series intersects the 90%

success rate line. Notice that significant performance improvement happens even

with only minimal relative scaling of the domain knowledge vector, and that after

about C = 0.1, further increasing the value of C only slightly decreases the number

of training examples required to reach a 90% success rate (Table VIII and Figure 10).

G. Conclusions

We have demonstrated the incorporation of fuzzy domain knowledge into the rein-

forcement learning process via reward shaping. Specifically, we concentrated on ap-

proximate reinforcement learning using the Least-Squares Policy Iteration algorithm
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Fig. 10. The results of the sample complexity experiment. As more and more domain

knowledge is integrated into the reinforcement learning process, the learner

needs fewer and fewer examples to successfully learn how to balance the pole.

Different series represent different values of C.



92

Table VIII. Number of training examples before the learner had a 90% success prob-

ability

C Number of Training Examples (nearest 500 samples)

0 9000

0.01 6000

0.05 4000

0.1 4000

0.2 4000

0.3 3500

0.5 3000

1.0 3000

[23]. Additionally, we derived bounds for how much reward shaping can affect final

policy quality.

This method is useful when, as has been our focus in the rest of this dissertation,

we do not have complete knowledge of the training domain, and in fact, may only

have knowledge enough to write down a few fuzzy rules which govern the domain.

Our simulation domain consisted of a training-example-limited version of the

cart-pole balancing problem such that without external domain knowledge, standard

LSPI reinforcement learning produced a poorly-performing controller when insuffi-

cient training examples were supplied to the learner. We encoded domain knowledge

in simple rules that one would reasonably expect a pole-balancing controller to follow

and integrated the knowledge into the learning environment via reward shaping as

outlined in this chapter. With domain knowledge integration, we saw that the learner

was able to achieve higher success rates with fewer training examples. Finally, we

saw how even slightly modifying the reward vector could have significantly decrease
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the sample complexity of the learning process.
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CHAPTER IV

LEAST-SQUARES POLICY ITERATION OVER CONTINUOUS ACTION

SPACES

A. Introduction

In some domains, using a continuous action space instead of a discrete action space

can result in computational savings. The main problem we have addressed throughout

this dissertation is how we can minimize the negative effects of exponential action-

space scaling in multi-agent systems. In domains where continuous action-spaces are

needed (consider any agent embodied in an analog controller, for example) one can

often either use a single continuous action (say, a = [−10,+10]), or create many

actions corresponding to gradations of the action’s desired range (i.e, a1 = −10, a2 =

−9, a3 = −8, . . . , aN−2 = 8, aN−1 = 9, aN = 10). Even worse, imagine if we need

to train many agents with such action spaces. In the first example, with a single

continuous action space, our multi-agent action space would simply scale as O(Cn)

(where n is the number of system agents), whereas in our discrete gradation-based

approach, the action space would scale as O((10C)n).

As in previous chapters, here we will focus on the Least-Squares Policy Iteration

algorithm [23]. Interestingly enough, LSPI is already theoretically able to learn over

continuous action spaces (that is, nothing about the algorithm’s construction assumes

that the action spaces are discrete). However, we show in this chapter that there are

several significant practical implementation issues that may arise when one tries to

use LSPI with continuous action spaces in certain domains.

First, we show how symmetry effects in the basis functions used to approximate
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the discounted reward function Q can cause the typical action-selection mechanism

used in discrete-action LSPI to fail on “narrow-Q” domains (commonly encountered

domains where Q-values are numerically very close to one another due to high dis-

counting factors, system structure, etc.). We provide a simple, theoretically justified

heuristic solution to this action-selection problem and show how it is possible to suc-

cessfully train high-performance, continuous-action controllers using LSPI under the

heuristic. We evaluate the performance of these controllers on a noisy inverted pen-

dulum domain where a weighted pole must be kept upright in the presence of strong,

random, externally applied ‘noise’ forces. In this domain, the controller must be able

to apply gentle, corrective forces in the absence of wind, and much stronger corrective

forces when wind is present. As such, this domain is well-suited to a continuous-action

(here continuous-force) controller. Finally, we examine some practical issues relating

to the speed with which a trained continuous-action controller can operate (since the

number of actions is no longer finite, controller operation/action selection necessarily

involves a maximization search). We provide a framework for using stochastic search

methods to find Q-maximizing actions and show how one can exploit the temporal

coherence of the controller response to speed up action selection.

B. Related Work

Eventually, the simulation domains we work with in this chapter will be fairly simple.

In fact, we will work with an enhanced pole balancing simulator. This is worthy of

note because inherently, the experimental domain is not difficult in general, and in

fact there exist a myriad of techniques to directly solve the pole balancing problem

in many domains. The dynamics of the problem are exactly known, so that a closed-
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form controller to perfectly keep the pole upright is possible. Additionally, it is a

simple matter to develop a fuzzy-logic based controller for this problem, and various

approaches such as genetic algorithms [96] and direct hand-coding have been used.

In this chapter we examine a specific problem that occurs specifically when using

LSPI on continuous action spaces. This problem is not inherent to our simulation

domain, and in general it does not plague other machine learning techniques which

might be used to solve this problem. The problem we will introduce occurs specifi-

cally in reinforcement learning because of the way the algorithm chooses to represent

reward. As we will see, by discounting reward through time, the algorithm opens

itself up to action-selection failure on certain domains. This line of research is not at

all relevant to other learning algorithms which do not employ reward discounting.

Thus, it is not the experimental domain itself that is useful, but rather the

demonstration of reinforcement learning on the domain. Other techniques could solve

the ’problem’ easily, and without the problems that are incurred by using RL. Again,

our experimental domain is only a successful demonstration of our technique. There

are certainly domains where the type of continuous-action-space RL would need to

be used to the exclusion of other techniques.

C. Continuous-Action Selection Failure on Narrow-Q Domains

1. Basis Functions

Most published LSPI work done thus far has been done with discrete action spaces

such that basis functions of the following form are used:
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Fig. 11. The inverted pendulum balancing problem.

φi(s, a) = ψi(s)δa,a′ (4.1)

for some a′ indexed by i. That is, there is generally some state-related part of the

function (for example, radial basis functions are often used), and then there is an

action-part which has generally been a delta function: if a is equal to some action

a′ then the basis function is simply the state-based part ψi, otherwise it is zero. For

example, in the typical LSPI pole balancing problem, the system state is measured by

the pole’s angle with the vertical θ and the pole’s angular velocity θ̇ - additionally, the

system has access to three actions, impart an impulse to the left or right, or impart

no impulse (these quantities are illustrated in Figure 11). If we define the following

vectors then:

x = {−π

, ,

π


},y = {−, , } (4.2)

z = {LEFT,NONE,RIGHT} (4.3)

then reasonable basis functions would be [23]:
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Fig. 12. Illustration of the basis functions used in the IP problem.

φm,n,p(s = {θ, θ̇}, a) = e−((xm−θ)2+(yn−θ̇)2)/2δa,zp
(4.4)

for a total of 27 basis functions illustrated in Figure 12. Generally, these functions are

indexed through a single index i (here 1 ≤ i ≤ 27). If one wishes to use LSPI in the

context of continuous-action spaces, the discrete delta-function action-dependence

of the basis functions must be replaced with some sort of continuous dependence.

Although this could be accomplished in such a way such that the basis functions φi

were no longer sparable into a state-based and action-based part, it has generally

been a common practice to make the basis functions separable even over different

state space dimensions (note that the φm,n,p above is simply a basis function in θ

multiplied by a basis function in θ̇), we will proceed by assuming that our basis

functions are of the form:

φi(s, a) = ψj(s)χk(a) (4.5)
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2. Symmetry-Induced Problems with Action Selection

In policy iteration, after one has found the Q-values of the previous policy, an im-

proved policy is constructed as:

π′(s) = arg max
a
Q̂(s, a) (4.6)

Q̂ in the LSPI framework is of course just:

Q̂(s, a) =
∑

i

φi(s, a)ωi =
∑

j

∑

k

ψj(s)χk(a)ωj,k (4.7)

=
∑

k

χk(a)
∑

j

ψj(s)ωj,k =
∑

k

χk(a)Q̂k(s) (4.8)

The reader may observe that in the case of discrete action spaces, the Q̂k(s) are

simply the expected discounted rewards of choosing action ak in state s (because in

the case of discrete actions χk(a) = δa,ak
). As such, in some domains the Q̂k(s) may

be numerically very similar, and we call these domains narrow-Q domains :

∀k, k′
∣

∣

∣
Q̂k(s) − Q̂k′(s)

∣

∣

∣
� Q̂k(s) (4.9)

3. A Practical Example of an Extreme Narrow-Q̂ Domain

The reader should note that examples of domains where narrow-Q effects manifest

significantly are not that far fetched. One potential situation where this might happen

is a learning environment with a high discounting factor γ ≈ 1: For example, consider

the case of the inverted pendulum balancing problem where positive reward is given

when the pendulum is within some angle-tolerance of upright and negative reward is
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given when the pendulum is outside this zone (fallen over). Now imagine that the

domain is such that even the best controller can hold the pendulum up for no more

than K time-steps (perhaps there are random forces applied to the system). Finally,

imagine that we have set the pendulum in the upright position and that we attempt

to estimate the average discounted reward obtained if we apply a force to the left,

to the right, or apply no force at all. Since no matter which action is performed the

system will not be able to keep the pendulum upright for more than K time-steps,

the discounted reward for all three actions will look something like this:

Q̂(s = upright, a) = Ca +
∞
∑

t=K+1

γt ∗ (−1) = Ca −
γK+1

1 − γ
(4.10)

lim
γ→∞

(

Ca −
γK+1

1 − γ

)

/

(

Ca′ − γK+1

1 − γ

)

= 1 (4.11)

such that the expected rewards of the three actions can be made relatively infinitesi-

mally close together by taking γ increasingly closer to 1.

4. Action Selection: The Problem

Having Q̂k relatively very similar can lead to the following problem when selecting

Q̂-maximizing actions over continuous action spaces: Imagine that we have a one-

dimensional action space defined by the action variable a, and we choose to represent

this space in terms of radial basis functions (a not implausible choice considering

the popularity of this basis for representing state spaces for LSPI). Further (as is

typical), imagine that we lay our basis functions evenly spaced along the a dimension.

Specifically, let us say that we use three basis functions χ−1, χ0, χ1 (illustrated in

Figure 13C):
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(example) χi(a) = e−(a−3i)2/2 (4.12)

such that our basis functions are simple Gaussians centered at −3, 0, 3 respectively.

Now imagine that we work in a narrow-Q domain such that all three Q̂k(s) are roughly

the same, so that effectively:

Q̂(s, a) ≈ Q̂1(s)
∑

k

χk(a) (4.13)

Thus, in this case, the Q̂-maximizing action never changes as we move from state

to state (the state-dependent scaling Q̂1(s) factor cannot change which action is Q̂-

maximizing), and as such, the system state no longer determines the optimal action.

Instead, this is determined entirely by symmetry effects in the action-space basis

functions χk. For example, here the χk functions collectively reinforce the a = 0

region such that Q̂(s, a = 0) is larger than any other point in the action space. In

this case then, the optimal policy would perform a = 0 in every state. Now, in general

most domains will not be such that all Q̂k are identical, but there is still the danger of

symmetry-based effects in the action-basis functions overwhelming the effects of state-

dependent Q̂k(s) weighting. One could design around this by choosing a set of basis

functions where this did not occur, but the problem is that the narrowness of the Q̂k(s)

is dependent on the current state of the system. In some states the Q̂k may be vastly

different and diminish the action-basis symmetry effects, and in other states, all the Q̂k

may very well be identical. This uncertainty makes it very difficult to, with certainty,

design one’s way around such symmetry-related problems. The reader should also

note that symmetry effects are only heightened in multi-dimensional action spaces.

In Figure 13C we have illustrated a two-dimensional analogue of the one dimension
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Fig. 13. Illustration of the Narrow-Q problem. (A) Illustrates sample basis func-

tions discussed in this section (B) Illustrates the Q̂(s, a) function for all

states in a narrow-Q domain where the Q̂k are very similar (C) Illustrates

a two-dimensional version of the same situation.
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example presented here - the reader may verify that in this case that the outside 8

basis functions contribute to make the origin the highest-valued point in the state

space.

5. Solutions

Three possible solutions present themselves for addressing symmetry-effects in narrow-

Q domains:

• Try to increase the numerical variance of the Q̂k by lowering the discounting

factor γ.

• Decrease the spread of the basis functions such that symmetry effects never

manifest.

• Forcibly make the domain wide-Q by normalizing the Q̂k prior to action selec-

tion.

The first option is unnaceptable because it changes how the learner values future

rewards relative to immediate rewards, and additionally, there is no guarantee that

this would result in increasing the spread of the Q̂k (it could work in the pendulum

from earlier, but this is not a general result). The second option would work, but

would also eliminate much of the apppeal of working in continuous action spaces.

That is, the overlapping nature of the action basis functions is what makes learning

on continuous action spaces interesting in the first place (if the action-basis functions

didn’t interact at all, we would be left with a discrete-action system). Thus, we will

concentrate on the last option - forcing our domain to be less ’narrow’ by rescaling

the Q̂k prior to action selection.
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6. Heuristic for Transforming Narrow-Q Domains

We propose a suitable heuristic method for avoiding the problems of overwhelming

symmetry effects on narrow-Q domains described in the last section: Instead of per-

forming action selection on Q(s, a) directly, we perform action selection on Q′(s, a)

such that:

Q′(s, a) =
∑

k

χk(a) (Qk(s) − A) /B (4.14)

A = min
k
Qk(s), B = max

k
Qk(s) − A (4.15)

This normalizes the Q̂k such that the largest Q̂k is scaled to 1 while the smallest is

scaled to 0. Thus, we have a guaranteed range for our Q̂k (for all states), and as such it

becomes possible to design action-basis functions such that there is a pre-determined

contribution from symmetry effects.

However, obviously we cannot arbitrarily change the Q(s, a) function without

repercussions. Fortunately, it is possible to determine the worst-case effects of this

transformation.

Theorem 1: If we normalize a system’s Q-function as:

Q′(s, a) =
∑

k

χk(a) (Qk(s) − A) /B (4.16)

A = min
k
Qk(s), B = max

k
Qk(s) − A (4.17)

then at worst, deviation in system performance can be bounded by:
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lim sup
m→∞

||Q̂π̂′

m −Q∗||∞ ≤ 2γ(εapprox + εbasis)

(1 − γ)2
(4.18)

εbasis =

∣

∣

∣

∣

max
s,a

A

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
a

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)
∣

∣

∣

∣

∣

(4.19)

Where π′
m is the policy resulting from action selection on the normalized Q-function

Q′, and εapproximation is any error introduced strictly from using basis functions to

approximate the Q-function.

Proof: First of all, note that the only thing that we will use this modified Q′ for

after the modification is to perform action selection. As such, we have two degrees

of freedom in the reward function to work with. That is, if I maximize a system’s

Q(s, a) function in a given state s and get an action a, then if I alter the reward

function R(s, a) for the system either by a uniform translation or an overall scale

transformation, Q(s, a) should still be maximized by choosing a in state s. That is,

for the purpose of action selection:

R(s, a) ≡ B(R(s, a) + A) (4.20)

This invariance in the reward function R carries over into the same type of invariance

in the Q function (if I want to scale Q by B then I just scale R by B, and if I want

to add A to Q(s, a) for all s and a, then I just add (A− 1)/A to R(s, a) for all states

and actions. This is not a new observation made here (see [95] for a very detailed

derivation and analysis of the implications).

As such the overall scale transformation B will be irrelevant to us, since we are

always free to perform a scale transformation on Q(s, a) without repercussions (no
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different than scaling all rewards in the system). The A factor is what we must

consider. Specifically,

Q′(s, a) = Q(s, a) +
∑

k

χk(a)A (4.21)

Which is not uniform, but has action-dependence component. However, if there were

some constant component to this expression, we could just subtract it out without

affecting action selection. We can rewrite the above expression as:

Q′(s, a) = Q(s, a) + A

(

min
a

∑

k

χk(a)

)

+ A

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)

(4.22)

Now, the middle term in the above expression is not constant, because A can vary

between states. However, because this is a narrow-Q domain, we will make the

approximation that essentially, ∀s, A(s) = A0. If we approximate the middle term as

constant, we can proceed to ignore it for the purposes of action selection:

Q′(s, a) = Q(s, a) + A

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)

(4.23)

or:

Q′(s, a) = Q(s, a) + ε (4.24)

εbasis = A

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)

(4.25)

but this is bounded because our basis functions are finite by assumption:
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|εbasis| <
∣

∣

∣

∣

max
s,a

A

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
a

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)
∣

∣

∣

∣

∣

(4.26)

However, because in this context we deal with approximate policy iteration (the

Least-Squares Policy Iteration algorithm), we are given some lee-way on how much

we distort the Q function. In fact, if we remember back to the Bertsekas theorem

used in Chapter IV, where if we could guarantee that (at each iteration):

||Q̂π −Qπ|| < ε (4.27)

then we could guarantee that our final policy would be such that:

lim sup
m→∞

||Q̂π̂m −Q∗||∞ ≤ 2γε

(1 − γ)2
(4.28)

In this case, in addition to whatever approximation error there is already, we will add

εbasis =

∣

∣

∣

∣

max
s,a

A

∣

∣

∣

∣

∣

∣

∣

∣

∣

max
a

(

∑

k

χk(a) − min
a

∑

k

χk(a)

)
∣

∣

∣

∣

∣

(4.29)

error and will have:

lim sup
m→∞

||Q̂π̂′
m −Q∗||∞ ≤ 2γ(εapprox + εbasis)

(1 − γ)2
(4.30)

where π′
m is the policy resulting from action selection on the normalized function Q′.

�
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7. Reducing the Heuristic Error

Let us briefly examine the structure of εbasis and look at ways to reduce this quantity.

The reader should notice that second term in ε is tied to how much ’hilliness’ is in

the basis functions. That is, in the extreme case of a set of constant basis functions,

this quantity would be zero, and in the case of using Dirac delta functions as basis

functions, this quantity would be quite high. Figure 14 actually calculates some

approximation errors for simple radial basis functions. Thus we see that while this

heuristic does introduce some error into the approximation process, the magnitude of

this error can be reduced by choosing basis functions which adequately cover action

space.

D. Experiment 1: Continuous Pole Balancing

To illustrate the use of our normalization technique on continuous action-spaces, we

chose the problem referenced earlier in this paper, the inverted pendulum domain. In

this domain we have a pendulum of length L with a weight of mass M attached to

the top of it. The pendulum is attached to the ground via a hinge, and gravity works

to continually pull the mass off-center.

Agents in this system are capable of applying some impulse either to the left or to

the right of the pendulum, and reward is given out to the agents if the mass is within

some angle tolerance of the upright position. System parameters are specified in two

variables, θ, the angle of the mass away from the upright position, and θ̇, the angular

velocity of the mass. All physical constants and simulation methods (other than one

exception noted below) are as described in the presentation of the inverted-pendulum

domain in [23]. Generally, this problem is well-solvable with discrete-action spaces, so
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Fig. 14. Approximation error and various basis functions. Three different sets of basis

functions. Each plots χk = e−(a−ck)/b where ck ∈ {−5, 0, 5}. A) plots b = 1,

and has a |εapprox| < 0.99, B) plots b = 5 and has a |εapprox| < 0.43, and C)

plots b = 10 and has a |εapprox| < 0.03. Notice how there is less approximation

error as the basis functions fill more of the space.
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to better illustrate the use of our methods (the use of continuous actions spaces), we

modified the domain slightly: in addition to gravity, our mass is subject to a ‘wind’

force that applies occasional, random force to the mass that is roughly an order of

magnitude stronger than the forces applied by gravity. Specifically, we found that the

forces exerted by gravity were on the order of (±30N) and we allowed our random

‘wind’ forces to assume the random (±300N).

The reason for the modification is as follows: Generally, in the discrete domain,

the agent is able to supply a fixed force from either the right or left, or choose not to

apply a force. In situations where the mass is very near vertical, only small forces need

to be occasionally applied to correct the position of the mass as it drifts off-center due

to gravity. Empirically, it is found that the system is easily made unstable by giving

the agent the ability to apply too much force. That is, if the agent’s actuators are

set very high (in comparison to the rest of the physical constants in the simulation),

choosing to impart a force in a given direction has significant consequences for the

dynamics of the system (since each action imparts a large amount of energy), and as

such the controller has a harder time keeping the mass centered. Generally this is

not an issue since only small corrective forces need be applied and the maximal agent

force can be capped. However, in the case of a strong-noise-wind domain, the agent

must be able to apply significant forces to counteract the effect of the wind. Thus a

successful controller must operate well in two domains. On the one hand the controller

must be able to impart a great deal of force very suddenly to oppose any strong-wind

forces when they occur, but on the other be able to apply gentle, corrective-only forces

to the pendulum when the system is near-upright to maintain stability. Thus, this

strong-wind-noise domain is well-suited to illustrating the advantages of a controller

capable of applying continuous levels of force (continuous action spaces).

We simulated several different versions of this problem to demonstrate our nor-
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malization technique. Specifically, we simulated the problem with and without the

random strong forces with several different ‘builds’ of agents. We began with the

standard pole-balancing agent which was able to apply a fixed amount of force in

either direction. We then implemented an agent which was able to apply multiple

force levels in either direction, and finally, an agent which was actually able to apply

continuous amounts of force. For our continuous action basis functions (necessary to

train an agent to operate over a continuous action space) we used two sets of func-

tions. First we used the radial basis functions that we have used throughout the rest

of this dissertation. Additionally, we used the first few terms of the Fourier expansion.

Specifically, our second set of action basis functions were of the form:

a(x) =
1 + cos(Cπx)

2
(4.31)

b(x) =
1 + sin(Cπx)

2
(4.32)

c(x) =
1 + cos(2Cπx)

2
(4.33)

and

χ(θ, θ̇)q∈{a,b,c},t∈{a,b,c} = q(θ)t(θ̇) (4.34)

where the Cs were chosen to normalize the data (for both θ and θ̇ to between -1 and 1.

This choice of basis functions still allows us to adequately express functions that are

spatially localized and demonstrate our technique with a basis set other than radial

basis functions. In total, we simulated seven different agent configurations as listed
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Table IX. Agent simulation settings

Agent Description Action Space Forces?

2-action, weak {-30N, 0, +30N} No

2-action, weak {-30N, 0, +30N} Yes

2-action, strong {-300N, 0, +300N} Yes

5-action, strong {-300N, -150N, 0, +150N, +300N} Yes

7-action, strong {-300N, -200N,-100N, 0, +100N, +200N, +300N} Yes

cont., w/ norm. [-300N,+300N] Yes

cont., w/o norm. [-300N,+300N] Yes

in Table IX, in each case performing training separately under two different sets of

basis functions (RBFs and Fourier functions).

In the case of the continuous controller, action selection (Q-maximization) was

performed by gridding up the function into .05N increments and performing a brute-

force search of the state space.

1. Results

The results of this experiment are displayed in Figure 15. As expected, in the base

agent simulation configuration, where there are no additional strong random ’wind’

forces, the weak agent is able to keep the pole up indefinitely. The basic pole balancing

problem is not particularly difficult, and the agent, while weak, could apply more than

enough force (±30N) to overcome the gravitational pull on the pole.

Next we tested the same agent in the presence of added, strong, random forces

(up to 300N in either direction). Not surprisingly, the agent was unable to keep the

pole up for any significant amount of time. In fact, the agent was generally able to
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Fig. 15. Results for the “Experiment 1” set of experiments.
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keep the pole up only for as long as it took the pole to fall over in the simulation. This

failure is due entirely to the fact that the agent was simply unable to apply enough

force to counteract the 300N magnitude forces being injected into the simulation.

Next we tested the agent which was able to apply 300N in either direction. This

agent, by design, was able to supply enough force to counteract the strong random

forces being injected into the system, but looking at the results of the experiment, we

see that the agent did not perform very well. The reason is that, although the agent

was able to counteract the strong injected forces, for much of the simulation, these

forces were absent, and the agent merely had to contend with small gravitational

forces. Being only able to exert large amounts of force, the agent, in trying to make

small corrective adjustments to the position of the pole, made the system unstable.

So, while the pole did not immediately fall over because of the injected random strong

forces, the agent was not able to keep the system upright for any length of time.

To address this, we implemented a 5-action agent that was able to apply two

levels of force in either direction (300N and 150N). This agent did much better,

presumably because it was able to supply large corrective forces when large injected

random forces were present, but also to use less intense forces to keep the system

upright when only gravity was acting on the system.

We then took this further, and implemented an agent capable of applying three

levels of force in either direction (300N ,200N , 100N). Not surprisingly the agent

performed even better. This increase in performance did come with an increase in

the size of the action space of the system (which was not computationally prohibitive

since we only dealt with a single agent).

Finally, we implemented an agent with a fully continuous action space. While

using an action space that was smaller (1 continuous action) than the previous four

agent simulation settings (2,5, and 7 actions), the system was able to keep the pole
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Fig. 16. Force response diagram for the 2-action strong agent.

upright for longer. We experimented with this agent both with and without Q nor-

malization (as described earlier in this chapter). With normalization, the system per-

formed well ... without normalization, the controller suffered from exactly the kind

of basis-function symmetry generated problems we described earlier in this chapter.

Without normalization, in all attempts the system (weight vector ω) failed to con-

verge to a useful policy during policy iteration. Upon investigation, we found that

using the standard action selection rule consistently resulted in choosing a zero force

in the case of the radial basis function action basis functions and resulted in choosing

a slightly positive constant force in the case of the Fourier series action basis functions

(the sum of the first three terms of the Fourier expansion has a maximum slightly to

the positive side of the origin).

In Figure 16 we plot the force zones for the continuous-action controller (the

discrete action zones are plotted in Figure 17). Notice that it has much the same

form as the discrete-action policy, with the major difference being that the zone B

actions which drive the system into the corrective corner zones C are much less harsh

(these regions apply significantly less force than the corner corrective zones). In fact,
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Fig. 17. Force response diagram for the continuous-action agent.

for small deviations from upright, the system seems to gently guide the system into

the corner corrective zones, and when in those zones, apply a large corrective force.

In all cases we trained the agent using radial basis functions and the Fourier-type

basis functions. No significant performance differences were seen between the two sets

of basis functions. This would suggest that the benefits of normalization we saw here

are fundamental and not a side-effect of the particular basis functions we used (see

Table X).

E. Stochastic Action Selection

Note that in continuous action spaces, finding the Q-maximizing action can no longer

be done for general systems by simply enumerating the possible actions and then

choosing the one with the highest Q (we could use this approach for our domain,

but in multi-dimensional action spaces, this approach would become too expensive).

Rather Q(s, a) becomes a continuous function in a and search techniques must be used

for maximization. Another issue to consider is that LSPI is commonly used to train
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Table X. Upright timesteps (capped at 1000) for the various simulation environments

(one STD shown)

Upright TimeSteps Upright TimeSteps

Method Radial Basis Functions Fourier Series Basis

2-action, weak, w/o forces 1000 1000

2-action, weak w/ forces 25 ± 14 23 ± 16

2-action, strong 202 ± 49 197 ± 51

5-action, weak 480 ± 125 462 ± 115

7-action, weak 510 ± 131 518 ± 119

continuous action, w/ norm. 550 ± 125 531 ± 122

continuous action, w/o norm. 26 ± 20 28 ± 19

system controllers (since it can operate over continuous state spaces) - e.g., pendulum

balancing and bicycle riding [23]. As such, it it often useful to be able to have the

controller select appropriate actions in a timely manner. Thus, ideally we would like

some mechanism to find Q-maximizing actions over continuous Q functions quickly.

Gradient ascent might be an appropriate option here (for speed), but in general

one expects the Q function to be rather hilly (consider even the simple examples

we have analyzed in this paper). As such our approach will be to use stochastic

search (specifically simulated annealing) to perform action selection. After providing

a framework for doing this, we will show how the explotation of temporal-coherence

in the controller’s responses can be used to speed up this stochastic search.
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1. Simulated Annealing-Based Action Selection

Simulated annealing [97, 98, 99] is a physically-inspired search algorithm which mim-

ics how a metal acquires lowest-energy configurations by gradual temperature reduc-

tion [97]. There is exhaustive documentation on how to use the algorithm in various

domains, but briefly, the algorithm seeks to maximize an objective function f(x)

through psuedo-random state space exploration. Updates to the current state are

accepted directly if they increase the objective function f (if f(x + ∆x) > f(x) in

other words) and accepted with probability e−(f(x)−f(x+∆x))/T otherwise, where T is

a temperature parameter which is decreased according to some cooling schedule.

To use simulated annealing to perform action selection (in a given state) in our

framework, one simply computes the set of Qk(s) and then attempts to maximize the

function:

Q′(s, a) =
∑

k

χk(a) (Qk(s) − A) /B (4.35)

as before. Termination of the algorithm is generally set for when no improvement of

the objective function has been seen for some number N search steps.

2. Experiment 2: Simulated Annealing Action Selection

To see how well stochastic action selection worked in our inverted pendulum domain,

we performed Experiment 1D of the previous section using simulated annealing for

action selection. We used a naive cooling schedule of T = 1/
√
i where i is the step-

number. No particular attempt was made to optimize the form of the cooling, which

is to say it is likely performance enhancements could be obtained over the reported

results by some careful modification of the cooling schedule [100, 101, 102]. Steps were
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Fig. 18. Results for the “Experiment 2” set of experiments.

generated as ∆xi ∈ [−1,+1] for all search steps, and this is also a naive approach,

as generally one wants to use smaller steps as the stochastic search grows closer to a

maxima.

The stability results for the post-training controller are plotted in Figure 18.

Note that stochastic action selection was used during training as well as for eval-

uation purposes. We see that the performance of the controller is almost identical

to that obtained when a brute force search of the Q-function was performed, which

implies that most of the time the simulated annealing approach successfully found

the value-maximizing action. The number of steps before search termination is listed

in Table I, and generally, several hundred steps were required before the annealing

algorithm converged (this could possibly be improved by a more carefully chosen

cooling schedule and/or step-generation technique). Convergence was declared when

no improvement to the objective function had occurred for N = 100 steps.
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3. Exploiting Temporal Coherence

One final caveat here is that simulated annealing, while well-suited to continuous

action-select, is not known for its execution speed. In fact, the slower the algorithm

proceeds, the more accurate the answer it generates [99]. We will here look at one

possible method for speeding up this simulated annealing action selection that is

especially suited to reinforcement learning / LSPI.

In many realms of real-time physical simulation, the concept of temporal coher-

ence is used to speed up computation. In a simulation context, temporal coherence

refers to the property of a system state in a given time-step to resemble the system

state in recent, past time-steps. That is, very generally, if we were monitoring the

state of a physical system as a function of time x(t), the central idea of temporal

coherence could be expressed as x(t) ≈ x(t+ 1).

Since LSPI is often used to train controllers, we can exploit the idea of tempo-

ral coherence here to speed up our action search. That is, in many cases, we may

suspect that temporally adjacent controller responses will be similar since the state

of the system will be similar. As such, we may gain some performance advantage

by beginning our stochastic action search at the point in action-space where the last

optimal action was found.

4. Experiment 3: Simulated Annealing Action Search with Temporal Coherence

We performed Experiment 2, only each time our simulated annealing search converged

on a state at, when simulated annealing was run for find the value-maximizing action

for the next time-step t + 1, the search was started at state a0 = at. We measured

stability and average number of steps before convergence as before, and the results
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are plotted in Figure 18. Notice that the stability results are roughly the same as

when the update rule from Experiment 2 was used (no speedup) and also roughly

equivalent to the results when brute-force maximization was used. However, taking

advantage of temporal coherence did offer a significant speedup in terms of number-

of-steps required for algorithm convergence. We also performed this version of the

experiment with the strong-wind forces turned off. In this case, we find the speedup

even more significant, and this should not be too surprising, since the assumptions of

temporal coherence are most accurate when the system is relatively ’predictable’, and

the system state is relatively unchanged from time-step to time-step, more or less the

case when the system is only applying corrective balancing forces, but definitely not

the case when the system must respond to strong random wind forces. The results

of this experiment are listed in Table XI.

Table XI. Search steps with and without the consideration of temporal coherence

Domain Avg. Steps

Wind, No Speedup 261 ± 7

Wind, With Speedup 175 ± 11

No Wind, No Speedup 260 ± 10

No Wind, With Speedup 150 ± 9

F. Conclusions

We have explored some of the difficulties encountered in using approximation-based

reinforcement learning (specifically the Least-Squares Policy Iteration algorithm [23])
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over continuous action spaces. We found that approaching the problem of action-

selection as it is generally approached in the discrete-action domain can lead to sig-

nificant algorithmic difficulties in narrow-Q domains (where all actions in a given

state have very numerically very similar Q-values). We proposed a theoretically jus-

tified heuristic solution to the problem, and demonstrated the use of the heuristic to

train a controller on a continuous-action domain.

In the spirit of the rest of this work, this approach is inherently an approximate

one. By modifying the Q-values, one changes the learning environment and risks

altering the quality of the final policy. However, in this chapter we derived bounds

on these effects.

Our simulation domain consisted of a noisy inverted pendulum problem where

the controller must be able to apply both small, gentle, corrective forces when the

pendulum is near vertical equilibrium, and large corrective forces in response to large

external noise forces. This domain was well suited to highlight the advantage of us-

ing continuous-action controllers, and we found that our continuous-action controller

outperformed comparable discrete-action controllers. We then discussed the prob-

lem of practically searching for Q-maximizing actions in a continuous action space

and proposed the use of simulated annealing to maximize the potentially very hilly,

continuous-action Q function. After providing a framework for this search, we showed

how the stochastic simulated annealing search could be sped up by exploiting tem-

poral coherence in the response of our balancing controller.
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CHAPTER V

ACCELERATED APPROXIMATE REINFORCEMENT LEARNING ON THE

GPU

The final technique presented in this dissertation to speed up reinforcement learning

(RL) in unconstrained multi-agent settings will be to “simply throw more compu-

tational power at the problem”. In this chapter, we will specifically concentrate on

speeding up the process of approximate policy iteration algorithms (and specifically

the Least-Squares Policy Iteration algorithm (LSPI) [23]) that we have used exten-

sively in previous chapters.

We will present a method for direct, hardware-based computational speedup for

the two main parts of LSPI (policy evaluation and policy improvement) by paral-

lelizing the algorithm for execution on the GPU. While this approach does not solve

the scaling problems associated with using approximate reinforcement learning in a

multi-agent context, there are numerous justifications for seeking this sort of direct

computational speedup for multi-agent RL:

In the situations where we do not use any specially designed speed-up algorithms

for multi-agent reinforcement learning (because such the speed-up algorithms are not

applicable to the domain, for example), direct GPU-based parallelization will be

possible.

And, when we do use specialized, tractable algorithms (such as the ones presented

earlier in this dissertation), hardware-based acceleration will still be useful. Even in

Coordinated Reinforcement Learning [59] or gradient ascent approaches like MALSPI

(previous chapter), normal Least-Squares Policy Iteration is still performed in some

context. That is, many efficient reinforcement learning algorithms effectively act as

’wrapper’ algorithms around LSPI, and thus accelerating the core LSPI algorithm is
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still broadly useful.

A. Previous Work / Background

1. Parallel Computation in Artificial Intelligence

Parallel processing techniques have seen mixed levels of adoption by the artificial

intelligence community. On the one hand, certain aspects of artificial intelligence lend

themselves very naturally to parallel implementations. For example, the execution

of neural nets on parallel computers is a particularly obvious development, and was

explored very early in the course of that vein of research [103]. Additionally, in multi-

agent systems research, where one deals with inherently distinct autonomous agents

which can be simulated on independent hardware, the benefits of parallel computation

are fairly obvious and easy to exploit.

However, other aspects of artificial intelligence research such as many sub-disciplines

of machine learning (the large exception being neural network research) have rarely

seen parallel implementations. Specifically in the case of reinforcement learning, the

literature is fairly void of research in this area. Some notable exceptions are Kretch-

mar’s work [104] on multiple agents undergoing reinforcement learning in parallel

(although that work did not specifically address parallelizing the reinforcement learn-

ing algorithm itself), and Likas’ work on genetic/reinforcement-learning algorithms

[105] (there a novel algorithm was proposed which was amenable to parallelization ...

the research did not touch on methods to parallelize known, widely used and efficient

reinforcement learning algorithms).



125

2. GPU Background

Graphical processing units have evolved from their origins as simple co-processors

designed to speed up straightforward memory transfer operations (such as the ANTIC

co-processor for the original Atari machines, which supported only simple BitBLT

operations for sprites) to flexible, nearly stand-alone processors capable of performing

complex parallel computations. Today’s GPUs are SIMD (single instruction, multiple

data) processors capable of executing programs (often referred to as shaders) at speeds

on the order of tens of Gflops. Shaders come in several varieties such as pixel shaders

(also known as fragment shaders) which operate on color texture data and vertex

shaders, which operate on vertex data.

Although GPUs were initially designed for graphical purposes, and most early

shaders were written for real-time, rendering-related tasks, modern hardware is gen-

eral enough to support a wide variety of shader-based computation, and as such

GPUs are being used increasingly for scientific and data processing purposes. Recent

examples include applications such as finite-element simulations [106], modeling ice-

crystal growth [107], cloud simulation [108], fluid-flow using the lattice Boltzmann

model [109], etc. More mathematically oriented applications such as algorithms for

matrix manipulation [110, 111, 112] have also been explored. An excellent overview

of such such recent, non-graphical GPU-based algorithms can be found in [113].

B. Approach

In this chapter we will present an implementation of the popular Least-Squares Policy

Iteration reinforcement learning algorithm [23] such that portions of the algorithm

exploit parallelization and execute entirely on the GPU. Remember that at its core,
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LSPI is a simple iterative algorithm with two main parts:

Step 1: A matrix A is constructed which takes into account the current policy π and

the nature of the environmental state transition probabilitie. Essentially, this matrix

captures how the agent interacts with its environment. A vector b which represents

the reward function is also created in this step, but this vector only needs to be con-

structed once per run of the algorithm (not per iteration), and thus represents only

a fixed computational cost we will not attempt to lessen here.

Step 2: The linear system Aω = b is solved for the weight vector ω. An improved

policy π′ can be constructed from this weight vector, which will be used to construct

the next A in Step 1 of the next iteration of the algorithm.

Since A is a k × k matrix (where k is the number of basis functions used in Q-value

approximation), the computational effort in Step 2 is equivalent to the work required

to invert a k × k matrix. For many problems k will be fairly small (especially if the

basis functions are carefully chosen for the problem domain), and the effort required

to invert A will be fairly manageable. Even in domains where many basis functions

are required and A is large, Step 2 is still a very straightforward inversion operation.

Already a great deal of work has been done on efficiently solving linear systems of

equations on the GPU including work on both Gauss-Jordan Elimination and LU-

Decomposition (e.g. [114]), and we will certainly not contribute anything to this body

of work in the context of this dissertation.

As such, as we will concentrate specifically on speeding up the first step: the

construction of the matrix A. We will not consider the construction of b further

since its construction represents only a constant fixed cost to the policy iteration
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process.

Roughly, the effort involved in the construction of A scales with the number of

basis functions k, but also with the number of training samples (experience tuples)

used to train the agent. For even simple problems, the number of training points can

be large (several hundred thousand data points) [59, 23], and for multi-agent domains,

this number can grow well into the millions [26]. Since higher numbers of training

data points result in higher transition probability approximation accuracies [23] and

thus potentially in a more optimal post-training policy, the computational demands

of Step 1 should be viewed as scaling with the quality of the desired solution.

1. Factoring A

The expression for A is fairly complex, but we can simplify the expression if we

introduce the two matrices X and Y:

X =
[

~φ(s1, a1), . . . , ~φ(sN , aN)
]

(5.1)

Y =
[

~φ(s′1, a
′
1 = π(s′1)), . . . ,

~φ(s′N , a
′
N = π(s′N))

]

(5.2)

such that the matrix A can be defined as:

A = X(X − γY)T (5.3)

This particular factorization will come in useful later, as the two matrices X and Y

will be easier for us to compute separately.
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Fig. 19. Force diagrams for the cart-pole balancing problem.

C. Basis Functions in LSPI

While the basis functions used in LSPI can be anything (step functions, spherical

harmonic functions, etc.), generally the functions are chosen in such a way as to

ensure smooth and consistent coverage of the state/action space. This is generally

necessary since there is usually little a priori knowledge about the structure of the

state/action space (after all, reinforcement learning is intended for use in situations

where human designers have difficulty hand coding an appropriate policy for the

domain).

For example, in the original paper where LSPI was presented [23], the authors

tackled the problem of using LSPI to train a controller for the pole balancing problem.

This problem has two variables, x1 = θ, which is the angular deflection of the pole

from the upright position, and x2 = θ̇, which is the angular speed of the pole. The

agent has access to three actions - push left (a1), push right (a2), and don’t push

(a3), and the goal is to keep the pole balanced upright for as long as possible (these

quantities are illustrated in Figure 19). The authors used 27 radial basis functions

spaced evenly over the state/action space after the form (illustrated in Figure 20):

φi(s, a) = φi(x1, x2, a) ∈ {e−((x1−c1)2+(x2−c2)2)/3δa, c3} (5.4)



129

Fig. 20. Illustration of the basis functions used in the cart-pole balancing example.

where c1 ∈ {−1, 0, 1}, c2 ∈ {−1, 0, 1}, c3 ∈ {a1, a2, a3}. This series of basis functions

was chosen because the authors knew that x1 and x2 would generally lie in the range

x1, x2 ∈ [−1, 1], and so spacing basis functions over this area seemed like a good idea,

and in fact resulted in a very successful post-training policy [23].

It is important to note here that the authors chose to use a delta function for the

action-dependent part of the basis function. This is fairly common in LSPI problems,

and with good reason ... if delta functions are used for the action-dependencies,

maximization of the Q-function (again, which is necessary to determine which action

is most desirable to take next) reduces to the following operation: Imagine that our

basis functions are of the form φ(s, a) = ψ(s)χ(a) and that they are indexed by two

parameters i and j, one for the ’state’ functions ψi(s) and the other for the ’action’

functions χj(a) = δa,j (we will assume that there are m state-functions ψi(s) and n

action-functions χj(a)):
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φi,j(s, a) = ψi(s)δa,j (5.5)

Then we have:

arg max
a
Q̂(s, a) = arg max

a

∑

i,j

ψi(s)χj(a)ωij = arg max
a

∑

i,j

ψi(s)δa,jωij (5.6)

arg max
a
Q̂(s, a) = arg max

a

∑

i

ψi(s)ωia (5.7)

and if we let:

Qa(s) =
∑

i

ψi(s)ωia (5.8)

then maximizing Q̂ reduces to:

arg max
a
Q̂(s, a) = arg maxQa(s) (5.9)

which is a simple operation involving n comparisons, where n is the number of actions.

The nice thing here is that no matter how many actions we have, we only need

to compute the state-basis functions ψi(s) once (these could be quite complicated,

after all) ... then, to get the individual Q̂(s, a) we only have to multiply these values

with with portions of the weight vector ω.

Because of this simplifying property, it is fairly common in the literature to

structure the basis functions in this way (for example, all the examples presented in

[23] are structured this way), and as such, we will here work from the assumption
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that our basis functions assume the form:

φij(s, a) = ψi(s)δa,j (5.10)

D. Brook Architecture

Brook is a high-level language for developing GPU-accelerated applications [115]. It

allows programmers to write software in a familiar C-style environment, and takes

care of translating that high-level code into low-level fragment shader instruction

form. Specifically, Brook is a stream-based language, which means that much of Brook

is designed around performing repetitive calculations on large amounts of similarly

structured data, which makes sense for a language designed to develop programs for

SIMD-like GPUs.

1. Streams

All operations in Brook are performed on streams of data. Streams are roughly

analogous to arrays in C, except that operations cannot be performed on Streams in

a random access fashion. Instead, operations are atomically applied to all elements

of a stream. Practically, when an operation is applied to a stream, it is executed

as a render pass on the GPU, and a computational speedup is (hopefully) obtained

because of the GPU’s ability to operate on multiple stream elements simultaneously.
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2. Kernels and Reductions

Brook has two main categories of code that can be run on streams: kernels and

reductions. Kernels take multiple streams as input and produce a single output

stream. The dimensionality of the input streams and output streams must be identical

... if the dimensions of the input/output streams differ, the streams are replicated

until dimensionality is uniform across all input and output streams.

For example, if we were performing a kernel operation on a N × 1 column vector

(stream) A and a 1×M row vector (stream) B, we could produce an N ×M output

matrix C with the following kernel (which implements the outer product C = ABT ):

kernel outer_product(input stream A, input stream B, output stream

C) {

C = A * B

}

the kernel would run for each output element of C, and the input streams A and B

would be accessed appropriately.

Reductions, on the other hand, are used to reduce the dimensionality of input

streams and produce a lower-dimensional output stream. As such, reductions can be

used for operations such as summations, multiplying all the elements in a matrix,

searching for the maximum element in a stream, etc.

Reductions can only accept one input argument and only produce a single output

stream. In general, the input stream and output stream are different sizes, and groups

of input elements (input cells) are mapped to single elements of the output stream.

For example, we could perform a column-summation operation on a square, N × N

matrix A (and generate, say, a 1 × N row vector B of column sums) by performing

the following reduction:
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reduction summation(input stream A, output stream B) {

B += A

}

Which dimensions get reduced is determined by the size of the input/output streams,

which are defined before the reduction is executed.

E. Description of the Algorithm

We now describe our process for speeding up the construction of the A matrix:

1. Step 1: Loading the Experience Tuples



Fig. 21. Step 1 of the LSPI algorithm in Brook. Data from the training corpus is converted into two input streams. Note

that the ’post’ input stream has no action information. This is because this action information must be computed

... specifically, this information represents the actions that would be taken in states s′ under the current policy

π.

1
3

4
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Illustrated in Figure 21, the first step in computing the matrix A is to load the

N experience tuples into the video memory of the GPU for further processing. In a

Brook context this simply means that we have to create streams which contain this

training information.

This process can potentially be time-consuming, since the number of experience

tuples N can be very large and data transfer from the CPU to the GPU across

the graphics bus is generally relatively slow. However, like the construction of the

b matrix, this process needs only occur once per run of the entire policy iteration

algorithm - not on a per iteration basis - and thus represents only a fixed cost.

Again, because we’ll be implementing the algorithm in Brook, we need to express

the experience tuples as stream data. The most straightforward way to do this is to

create a stream of structures containing the tuple information. Since we’re only going

to be constructing the matrix A and not the reward-influenced b vector, we will only

need the state and action information from the experience tuples. For reasons we

will see in a moment, we will split the experience tuple data into what we will call

’pre’-reward information Ip and ’post’-reward information I ′p. The ’pre’ information

Ip will be defined as:

Ip = 〈s, a〉 (5.11)

or roughly, as what state the agent was in and what action the agent took. The ’post’

information will be defined as;

I ′p = 〈s′, π(s′)〉 (5.12)

or, roughly, as what state the agent ended up in and what action the agent will take if

it follows its current policy π. A complete (over-complete actually) experience tuple
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can be re-created by combing pre, post, and reward information as:

T = 〈s, a, r, s′〉 ∈ 〈Ip, r, I ′p〉 (5.13)

The benefit of separating an experience tuple in this way is that the pre and post

information will need to be processed separately, and in addition, both pre and post

information share a common composition. That is, both pre and post information

can be represented by a state part and an action part:

Ip, I
′
p = {STATE,ACTION} (5.14)

If we continue the example of the pole-balancing problem that we discussed

earlier, we might create the following pre/post information structure in Brook:

struct SubTuple {

float x1;

float x2;

float action;

}

Note that we have used floats to represents even the discrete variable ’action’ - this

is because in Brook all streams must be defined entirely in terms of floats. As such,

we can represent the training corpus as two 1×N streams of SubTuple information:

SubTuple pre_information<1, NUM_SAMPLES>;

SubTuple post_information<1, NUM_SAMPLES>;

Also note that at this point, the ’post’ information stream I ′p contains no action

information. This is because the action information in the ’post’ information stream
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(the action that the agent would take in the state s′ under the current policy) is

simply not included in the training data since this information is a function of the

current policy.

2. Step 2: Start Calculating the ’Post’ Actions

Illustrated in Figure 22, the eventual goal at this point is to fill in the missing action

information from the ’post’ stream. As a necessary intermediate step to that goal, we

will create vectors of basis functions from the ’post’ sub-tuple information stream. As

it will turn out, for each element of the post information stream, we need to generate

the vector ~Φ(s):

~Φ(s) =



















φ1,1(s, a1)

φ2,1(s, a1)

...

φm,n(s, an)



















(5.15)



Fig. 22. Step 2 of the LSPI algorithm in Brook. The state/action information from the ’post’ information stream I′p is

used in conjunction with the basis seed information to create a matrix of basis functions F.

1
3

8
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Currently our ’post’ information stream is of shape 1×N . After processing - after

creating a ~Φ vector from each element of the stream, this will become a (k = m×n)×N

stream (N , k-element ~Φ vectors tiled side by side) which we will call F. In order to

do this in Brook, we will run a kernel over the ’outer product’ of the row-shaped,

N element ’post’ information stream I ′p and a column-shaped, k-element stream B

containing information about the basis functions. The stream B is necessary since

a single kernel procedure must be able to compute all the basis functions ... this B

stream provides ’seed’ information to allow a single kernel program to simulate all

the basis functions.

To make this more clear, let’s continue the pole balancing problem presented ear-

lier ... in the original presentation paper [23], the authors constructed basis functions

of the form:

φi(s, a) = φi(x1, x2, a) ∈ {e−((x1−c1)2+(x2−c2)2)/3δa, c3} (5.16)

such that each basis function had three parameters c1, c2 and c3. As such, a unique

instantiation of these three c values yielded a unique basis function. In order to allow

a single kernel procedure to compute this entire family of basis functions, we need a

k-element column vector B such that each element has enough information to allow us

to instantiate all the parameters of a basis function, and will use the term basis seed

to represent this information. In the pole balancing case, a basis seed information

structure might be something like:

struct BasisSeed {

float c1;

float c2;

float c3;
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}

with the corresponding B column stream (27x1):

B =

































{−1,−1,LEFT}

{−1, 0,LEFT}

{−1, 1,LEFT}

{0,−1,LEFT}
...

{1, 1,RIGHT}

































(5.17)

3. Step 3: Action Determination

Illustrated in Figure 3, before we can fully process the ’post’ information stream,

we need to know the post actions a′ = π(s′). That is, for each element in the post

information stream, we have s′ from the training corpus, but we will also need to

compute what action would be taken under the current policy π in each state s′.

Because, as discussed earlier, the policy always chooses the action which max-

imizes the Q-function, we can figure out these a′ = π(s′) actions by computing the

method we discussed earlier ... since we have factored our basis functions as we

have, we need only compute the Qa(s
′) values and then simply choose the action

corresponding to the largest Qa(s
′).

In order to compute the Qa(s
′), we first performed Step 2, creating a basis-

function matrix F. In order to obtain Q-values from the φi,j(s, a) values in F, we

need to multiply each φi,j element by its corresponding ωi,j weight value. This can be

accomplished by a simple multiplication kernel. Specifically, we will perform a per-

element multiply of the k × 1-element weight vector ω and the k ×N basis-function

matrix F to yield a k × N matrix of Q-values, which we will simply denote Q. In
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Fig. 23. Step 3 of the LSPI algorithm in Brook. A) The basis vector stream F is

per-element multiplied with the weight vector ω to produce Q-values. B)

TheseQ-values are cell-summed to yield the Qa(s
′) discussed earlier. C) These

Qa(s
′) are compared to find the maximum. D) The index of the maximum

Qa(s
′) is recorded ... this ’action index’ is π(s′).
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particular, after multiplication, we transform every ~Φ(s) into a ’weighted’ version

~q(s):

~q(s) =



















φ1,1(s, a1)ω1,1

φ2,1(s, a1)ω2,1

...

φm,n(s, an)ωm,n



















(5.18)

To evaluate the quantities Qa(s), we can then perform a ’cell-based’ summation op-

eration, summing over rows 1 → m for Q1(s), m+ 1 → 2 ∗m for Q2(s), etc., since by

the definition of Qa(s) earlier, we have:

Qaj
(s) =

(j+1)∗m
∑

i=(j∗m)+1

~q(s)i (5.19)

Where we have made use of the fact that for any given aj, many of the φi,j(s, a) are

zero (because of the delta function). This takes us from a (k = m×n)×N matrix Q

to a n × N stream of Qa(s
′) values (Step 3b). We then need to find the maximum

Qa(s
′) in each column (Step 3c), by a reduction operation, and then determine the

row index of the element where each maximum Qa(s
′) appears (Step 3d), which is

performed by a kernel operation followed by a reduction. After this we are left with

a 1 ×N row-shaped stream of action a′ = π(s′) values.

4. Step 4: Computing Pre and Post Basis Functions

Illustrated in Figure 24, now that we have complete ’pre’ and ’post’ information

streams, we can go about computing the ’pre’ and ’post’ basis functions.

Similar to what we did before, we can run a kernel ’outer product’-fashion over
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Fig. 24. Step 4 of the LSPI algorithm in Brook. In this step we calculate basis vectors

for both the ’pre’ and ’post’ information streams.
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the basis seed column stream B and the pre and post information row streams, only

this time we compute regular basis vectors ~φ(s, a) for each stream element (as opposed

to computing ~Φ(s) earlier).

~φ(s, a) =



















φ1,1(s, a)

φ2,1(s, a)

...

φm,n(s, a)



















(5.20)

We generate a basis vector for each element of the ’pre’ information stream,

resulting in a k × N matrix X, and a basis vector for each element of the ’post’

information stream, resulting in a k × N matrix Y. At this point we have the two

matrices X and Y needed for the construction of A as discussed earlier. To speed up

computation however, we will also compute an intermediate stream:

Z = X − γY (5.21)

such that

A = XZT (5.22)

5. Step 5: Computing A

Illustrated in Figure 25, finally we can go about computing the final matrix A. A

single column of A can be computed by multiplying every row of stream X with a

given row from stream Z (the ith row of Z if one wants to compute the ith column of

A). This results in a (k×N)-sized stream, which then needs to be summed along its
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Fig. 25. Step 5 of the LSPI algorithm in Brook. Here we need to take the outer product

XZT . The most straightforward way to do this is to run a multiplication

kernel over X and row i of Z, which will generate a stream which can be

column-wise summed to yield column i of A. In practice, several columns

of A are computed simultaneously (batched in the intermediate stream then

summed at the same time) for efficiency.
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columns to obtain an (k × 1), column-shaped stream which becomes the ith column

of the matrix A.

This summation operation sums over the large N -element dimension, and be-

cause the addition is performed in parallel, requires O(log2N) passes. While this will

be a fairly small number, we would still like to minimize the total number of passes

in the algorithm, and so to speed up computation, b number of columns of A are

’qued-up’ in an intermediate stream and then the summation process calculates all b

columns of A at once. As such, the intermediate stream is actually a bk × N -sized

stream (see Figure 7).

F. Experiment

To compare the performance of our Brook-based A-generation scheme, we compared

its performance against MATLAB and pure C + + versions of the same code. The

test domain in all cases was the pole balancing problem [23] used frequently in the

rest of this dissertation.

Specifically, as before, the comparison task was strictly the construction of the

matrix A. That is, actually using the A matrix in a real LSPI training run would

involve first making the experience tuples available to whatever processor was build-

ing A (in the case of GPU-based construction, for example, this would involve data

transfer across the graphics bus), then inverting the matrix post-construction, etc.

Here we concentrate only on the construction of A and assume that, in the case of

GPU-based construction, we already have access to the experience tuples and don’t

need to worry about inversion. This is a reasonable assumption since again, the ex-

perience tuples would only have to be loaded once per run of the policy iteration
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algorithm, and thus represent only a constant, fixed cost to the process. Also, we do

not consider transferring the matrix A from video memory back to system memory

for further processing, as would be necessary if subsequent matrix inversion was per-

formed on the CPU. This is also reasonable because the matrix A is relatively small

(only k × k - perhaps on the order of a few million floats at most), and additionally,

the matrix A doesn’t have to be transferred at all since the linear system can be

solved on the GPU anyway [114, 110].

We examined the performance of all three methods for constructing A with

various numbers of experience tuples, and for various numbers of basis functions.

Specifically (so that we could adequately test the performance of the algorithm as a

function of number of basis functions) we implemented the multi-agent version of the

pole balancing problem (identical to the case in Chapter III), where we allow multiple

agents to apply force simultaneously to try and balance the pole. We implemented

no special dimensionality reduction techniques (such as employing MALSPI), and so

the state space, and thus the number of basis functions, scaled exponentially with

the number of agents in the training domain. We simulated the case of 1,2,3, and

4 balancing agents, which meant respectively 20,40,80, and 160 basis functions were

used.

For the MATLAB-based simulation, we used the same code used in Chapter III

to train the multi-agent pole-balancing agents. For the C++ implementation, the

MATLAB commands were directly translated into C++, however, in all cases, the

hand-written C++ code performed worse than the MATLAB version, and as such,

we omit the results for the C++ simulations. The MATLAB (and C++) code was

executed on a 3GHz Pentium IV machine.

The Brook code used was exactly as listed in the subsequent ’Code Listing’

section, with appropriate modifications made for increasing numbers of agents and
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basis functions. The Brook code was executed on a 2.4GHZ Pentium IV machine

with a nVIDIA GeForce6 6800 video card with 128 MBs of video RAM.

1. Results

The first thing we looked at is how the MATLAB and the GPU implementations scaled

computationally with the number of experience tuples used to construct A. Figure

8 shows how computation time varies with number of samples used in construction.

Note that while the CPU implementation approaches a limit of no computation time

as the number of training samples goes to zero, the GPU implementation approaches

a constant fixed cost as the number of training samples decreases. This is most likely

due to the fixed costs associated with setting up and executing the various render

passes used in the algorithm (even if they operate on no data). Even though the

GPU implementation has this fixed cost, it scales much more slowly with increasing

numbers of training samples than does the CPU version, and the ’break-even’ point

is at about 400 training samples (Figure 26).

Note that the plot only extends to N = 2000 training samples. This is because

the graphics card we ran the simulation on had a maximum texture size of 2048×2048

pixels, limiting our pre and post information streams to 2048 elements. This does not

mean that the GPU-based algorithm could never be run on more than 2048 experience

tuples, only that a given run of the algorithm could only process 2048 elements at

a time. Because of the way A is constructed, it is be trivial to process ’batches’ of

training samples, and then combine the individual As produced by each batch: in

fact, if each ’batch’ produced a matrix Ai, the A for all the batches would simply be

A = A1 + A2 + . . . [23].

Next we explored how the CPU and GPU implementations of the LSPI algo-



149

Fig. 26. Benchmark of the Brook implementation of the LSPI algorithm. Here we plot

how the computational requirements of the CPU and GPU-based versions of

the LSPI algorithm vary with the number of training samples used. Note that

the plot only extends to 2000 training points. This is because the maximum

texture size on our test graphics card was 2048 pixels. This doesn’t imply that

the GPU-based algorithm could never process more than 2048 training sam-

ples, only that no more than N = 2048 training samples could be processed

in any given run.
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Fig. 27. Second benchmark of the Brook implementation of the LSPI algorithm. Here

we plot the ratio Tcpu/Tgpu, where Tcpu is the time required to construct A

on the CPU (MATLAB) and Tgpu is the time required to construct A on

the GPU. We also vary the number of basis functions used. Better relative

performance is obtained when more basis functions are used, though the ratio

seems to asymptotically approach something like 4.

rithm performed as a function of the number of basis functions used (Figure 27). As

mentioned before, we ran the algorithm with k = 20, 40, 80, and 160 basis functions

and compared the time required to construct A - we plot the results in Figure 9.

Specifically, in Figure 2 we plot the Tcpu/Tgpu, where Tcpu is the time required to

construct A on the CPU and Tgpu is the time required to construct A on the GPU.

The four curves represent the four different numbers of basis functions we used, and

better relative performance was seen when higher numbers of basis functions were

used.

Once again, the plot only extends to N = 2000, though by the curvature of

the graph, we expect not much more relative performance gain would have been
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extracted by using a higher N anyway. Notice also that the limit of the curves seems

to be asymptotically approaching something like 4.5 with increasing number of basis

functions.

2. Discussion

The fact that we saw algorithmic performance increase with increasing numbers of

training samples and basis functions is not surprising since the implementation pro-

posed in this chapter parallelizes the construction of A over both basis functions and

training examples. Further, simple calculations show that this simple Brook-based

implementation came surprisingly close to the theoretical maximum GPU/CPU speed

ratio.

According to NVidia-written documentation, the GeForce 6800 Ultra (the GPU

used in our experiments) can perform at a maximum of 40 Gflops, while a 3Ghz Pen-

tium 4 can perform at only at 6 Gflops [116]. This would mean that our GPU-based

algorithm could have only run 5.8 times faster than a pure CPU based algorithm.

Our experiments show that we approach something like a 4.5 CPU/GPU execution

time ratio.

G. Conclusion

Unlike the techniques presented in previous chapters, this LSPI implementation is not

an approximation-based method. That is, there is no additional error introduced into

the RL algorithm via this technique - it is entirely a hardware-based speedup. As such

it deviates slightly from the spirit of the rest of this dissertation. Nevertheless, it is,
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strictly speaking, a method that would be quite useful when applying reinforcement

learning in unconstrained multi-agent domains. As we discuss in the introduction,

even though this technique does not change the computational complexity of the

RL process, it does offer a speedup, and there are many likely situations where this

speedup can be applied even in conjunction with specialized algorithms which do

change the computational complexity of the multi-agent RL task.

As such, we introduced a GPU-based implementation of the standard LSPI al-

gorithm and demonstrated its use on a standard pole-balancing RL task. The imple-

mentation parallelizes the construction of the A matrix used in the LSPI algorithm,

and parallelizes this construction over both basis functions and training examples.

We saw, as expected, that relative performance (over a pure CPU-based implementa-

tion) increased as a function of both basis functions and training samples used. We

finally noted that our algorithm came achieved a CPU/GPU execution-time ratio of

4.5, which is close to the optimal ratio of 5.8.

Code for the Brook implementation and the basis seeds are listed in Appendix

A.
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CHAPTER VI

CONCLUSION

Throughout this dissertation, we have explored ways to reduce the computational

complexity of reinforcement learning in multi-agent environments. Previous work,

such as Guestrin’s Coordinated Reinforcement Learning [59], and Wolpert’s reward

modification method [53] has been done to address this issue, but in this dissertation

we concentrated on how to reduce the complexity of RL in the ’unconstrained’ mutli-

agent domain, that is, when we don’t know much about our agent learning system

before training commences.

We first demonstrated that a large reduction in computational complexity can be

achieved by first segmenting an agent population under training into non-cooperative

’coalitions’ and training each coalition separately. The problem, in unconstrained

domains is that it is not obvious, pre-training, which coalitions should be formed. We

introduced an algorithm called Information-Based Coalition Formation (IBCF), which

used information-theoretic methods to form coalitions pre-training directly from train-

ing data. The algorithm worked by forming coalitions such that the agents in each

coalition possessed as much information as possible about how states and actions re-

lated to rewards. We also proved optimality theorems for our algorithm. Specifically,

we showed how one can ensure optimally performing coalitions post-training by en-

suring that pre-training each coalition has a maximum amount of information about

how states and actions relate to reward. IBCF is a greedy algorithm, and as such

cannot guarantee that each coalition’s information is actually maximized. As such,

we proved error bounds for the case when a coalition’s information is not actually

maximized but comes close to being maximized. Finally, we demonstrated IBCF on

several multi-agent training domains. In all cases the algorithm performed compa-
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rably to peer-algorithms such as Coordinated Reinforcement Learning, except that

IBCF required no pre-knowledge about the agent training system.

We next addressed the problem of the sample complexity of multi-agent rein-

forcement learning. The sample complexity of a learning problem is a measure of

how many learning examples are required by a learner to, with a high probability,

learn a given concept. After discussing how the sample complexity of multi-agent

reinforcement learning grows exponentially with the number of system agents, we in-

troduced a mechanism to perform ’hybrid’ approximate reinforcement learning. ’Hy-

brid’ learning is a general concept in machine learning where one offsets a lack of

training examples by integrating domain knowledge into the learning process. Here,

since our focus is on the unconstrained multi-agent domain, where domain knowl-

edge, when it exists, will more than likely be vague and incomplete, we developed a

mechanism to incorporate ’fuzzy’ domain knowledge into multi-agent reinforcement

learning. Here fuzzy domain knowledge is domain knowledge which is written as a

series of fuzzy-logic based rules. Our approach centered on using reward shaping

methods similar to the work done by Mataric [90]. We demonstrated our integration

mechanism on a simple, training-example constrained pole balancing problem where

the learner was given various (and often inadequate) numbers of training examples.

We saw how the sample complexity of the learning process was reduced by the in-

tegration of some simple fuzzy rules. When performing reward shaping, one must

be careful not to so distort the reward function that the learner’s post-training per-

formance is harmed. We developed optimality bounds which determined how much

potential harm to post-training performance can be done by a given amount of reward

shaping. We also demonstrated that only a minimal amount of reward shaping needs

to be done to see significant reductions in the sample complexity of the RL process in

many domains. We pointed out that this was because domain knowledge translates
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into rewards over shorter timescales than typical rewards for reinforcement learning

problems, which allows much smaller magnitude domain knowledge rewards to have

a large impact of system dynamics.

The use of continuous action spaces can greatly reduce the action space of a multi-

agent reinforcement learning problem. In domains where the agent needs access to a

highly-segmented action space (for example, an agent aiming a projectile might need

an action space corresponding to various targeting angles (θ = 0, θ = .1, θ = 0.2,etc.),

a performance improvement can often be achieved by using one continuous action

space instead of a highly segmented action space with many discrete actions. How-

ever, we showed how using continuous action spaces with approximate reinforcement

learning can lead to action-selection problems in what we termed “Narrow-Q” do-

mains. Narrow-Q domains arise when reward is distributed very sparsely temporally.

We proposed a method to overcome the action-selection problems on Narrow-Q do-

mains by normalizing the Q-function. We bounded the amount of error that can be

introduced by this normalization process, and showed how this error can be minimized

by an appropriate choice of action-space basis functions.

Finally, we presented an implementation of approximate reinforcement learning

which ran almost entirely on the Graphics Processing Unit. We demonstrated how

one can parallelize certain aspects of the approximate RL algorithm to achieve a

performance increase on the GPU’s SIMD-based architecture. We managed to achieve

almost a 4.5x speedup over a CPU-based implementation of the approximate RL

algorithm, which came close to saturating the maximum possible speedup given the

architecture.
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A. Final Thoughts

Almost all the research in this dissertation employed, in some way, approximation to

reduce the computational complexity of multi-agent reinforcement learning. Whether

this was in the form the greedy algorithm we used for information-based coalition

formation (which was not guaranteed to maximize coalition information), or the re-

ward modification techniques used to integrate domain knowledge (which potentially

harmed post-training performance), or the Q-function normalization techniques used

to permit the use of continuous action spaces on narrow-Q domains (which also poten-

tially harmed post-training performance), most of our techniques involved some sort

of approximation-based approach. Using approximation like this, in order to over-

come the computational complexity of multi-agent reinforcement learning (at least in

the unconstrained domain) is necessary, and we believe that the trend for research

in this area will increasingly move toward approximation-based approaches. We be-

lieve no fundamental computational complexity reduction for either value-iteration or

policy-iteration is on the horizon - in order for an RL algorithm to scale polynomially

with the number of system agents, the algorithm would have to scale logarithmically

with the size of the action space of the system, which seems unlikely.

Additionally, parallel computational offers another avenue for speed improve-

ments to MARL computations. We demonstrated a simple version of this when we

performed MARL on the GPU, but much higher performing implementations of par-

allel MARL could no doubt be achieved (for example, by employing multiple GPUs

or other speciality hardware).

In the end, we believe that improvement in the MARL research area will come

from approaches other than a direct breakthrough in the complexity of value or policy

iteration, and it will be exciting to watch the literature as these alternative research
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directions are pursued.
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APPENDIX A

CODE LISTINGS

File: IBCF Psudocode

Set MAX_COALITION_SIZE = X Set CS = {} Set POOL = {n1,n2,...,nN}

GENERATE TRAINING SAMPLES FOR AGENTS IN POOL While POOL Not Empty

Set C = {}

Set IMPROVED = True

While IMPROVED = True AND |C| < MAX_COALITION_SIZE

IMAX = I(C)

IC = I(C)

IMPROVED = False

For i = 1 to |POOL|

C’ = {C,ni}

IC’ = I(C’)

If (IC’ > IMAX)

nMAX = ni

IMAX = IC’

End

End

If IMAX > IC
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IMPROVED = True

C = C + nMAX

CS = {CS, C}

POOL = POOL - nIndex

End

End

CS = CS + C

End

File: main_program.br

#include <stdio.h> #include <math.h>

void resetTimer(void); float getTimer(void);

//************************************************************************

Although no more than 2048 samples could be processed on this

graphics card, we built in support for multiple ’runs’. Here

we’ve set this number to 40, allowing for many more samples

to be processed than would fit in a single row vector stream.
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**************************************************************************//

#define NRUN 40

#define SAMPLES 2000

#define NRUN_SAMPLES 80000

// discounting parameter GAMMA ... used in LSPI

#define GAMMA 0.9f

// the number of basis functions used for approximation

#define BASIS_FUNCTIONS 10

// the number of state variables

#define VARS 3

// the number of possible actions

#define ACTIONS 4 #define ACTION_BASIS_FUNCTIONS 40

// when computing A, we may want to compute several columns at once

// GROUP defines how many columns of A we should compute simultaneously
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#define GROUP 8

#define ACTION_BASIS_FUNCTIONS_GROUP 320

// data structure for the experience tuples

// this will be used for the pre and post information streams

typedef struct Tuple_t {

float x1;

float x2;

float action;

float reward;

} Tuple;

// basis seed information ...

typedef struct BasisSeed_t {

float x1;

float x2;

float action;
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} BasisSeed;

// kernel to compute the basis functions ... with the delta function

// part considered

kernel void basis_function( Tuple data<>, BasisSeed seed<>, out

float basis<>) {

float c1,c2;

{

{

c1 = data.x1 - seed.x1;

c2 = data.x2 - seed.x2;

basis = exp( - (c1*c1 + c2*c2) / 3 );

}

// if this basis functions was used for bias

// just set it to 1

if (seed.x1 <= -100)

basis = 1;

}
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// check if the delta function zeros out the basis function

if (seed.action != data.action)

basis = 0;

}

// kernel to compute the basis functions ... with the delta function

// part NOT considered

kernel void basis_function_all( Tuple data<>, BasisSeed seed<>, out

float basis<>) {

float c1,c2;

{

c1 = data.x1 - seed.x1;

c2 = data.x2 - seed.x2;

basis = exp( - (c1*c1 + c2*c2) / 3 );

}

// if this basis function was used for bias

// just set it to 1

if (seed.x1 < -100)

basis = 1;
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}

//simple copy kernel

kernel void copy (float source<>, out float target<>) {

target = source;

}

//simple copy and then add kernel

kernel void copy_add (float source<>, float source2<>, out float

target<>) {

target = source + source2;

}

//kernel useful in computing the Z matrix

kernel void copy_add_mod(float source<>, float source2<>, float mod,

out float target<>) {

target = source + mod *source2;

}

//basis sum reduction

reduce void sum ( float data<>, reduce float output<> ) {

output += data;
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}

//same thing, except reduce to a single float

reduce void fsum ( float data<>, reduce float output ) {

output += data;

}

//simple max reduction

reduce void max (float source<>, reduce float output<>) {

if (source > output)

output = source;

}

//simple multiplication kernel

kernel void mult(float one<>, float two<>, out float output<>) {

output = one * two;

}

//this kernel finds the index of the maximum Qa values

kernel void find_action_max (float input<>, float index<>, float

action_max<>, out float action<>) {

if (input < action_max)

action = 0;
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else

action = index;

}

//this kernel is used to put the ’post’ actions into the post information stream

kernel void replace_actions (Tuple input<>, float actions<>, out

Tuple output<>) {

output.x1 = input.x1;

output.x2 = input.x2;

output.action = actions;

}

#define data raw.domain(int2(0,b),int2(SAMPLES,b+1)) #define pdata

praw.domain(int2(0,b),int2(SAMPLES,b+1))

main() {

//basic index variables

int i,j,b,index;

{



180

// the ’pre’ information stream

Tuple *input_raw;

Tuple raw<NRUN,SAMPLES>;

// the ’post’ information stream

Tuple *input_praw;

Tuple praw<NRUN,SAMPLES>;

// used to hold basis functions for the ’pre’ and ’post’

// basis function information streams X and Y

float basis< ACTION_BASIS_FUNCTIONS, SAMPLES >;

float pbasis< ACTION_BASIS_FUNCTIONS, SAMPLES >;

// used to hold the Q stream

float qvalues< ACTION_BASIS_FUNCTIONS, SAMPLES>;

// basis seed streams

BasisSeed input_seed[ACTION_BASIS_FUNCTIONS];

BasisSeed seed< ACTION_BASIS_FUNCTIONS, 1>;

// various intermediate streams used in policy evaluation/action selection

float action_temp< ACTIONS, SAMPLES >;

float action_max<1, SAMPLES >;
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float action_index<ACTIONS, 1>;

float action_index_input[ACTIONS] = {1,2,3,4};

// stream used to store omega

float input_coef[ACTION_BASIS_FUNCTIONS];

float coef<ACTION_BASIS_FUNCTIONS,1>;

// used to hold the actual A matrix

float A<ACTION_BASIS_FUNCTIONS, ACTION_BASIS_FUNCTIONS>;

// used to output the A matrix to the screen

float output_A[ACTION_BASIS_FUNCTIONS][ACTION_BASIS_FUNCTIONS];

// timer

float time;

// temporary matrix used to compute A

float dot_space<ACTION_BASIS_FUNCTIONS_GROUP,SAMPLES>;

float Asum_space<ACTION_BASIS_FUNCTIONS_GROUP,1>;

// indexes used to handle batch processing of the columns of A

int k,store_col[GROUP];
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// allocate the ’pre’ and ’post’ information streams

input_raw = (Tuple*)malloc( NRUN_SAMPLES*sizeof(Tuple) );

input_praw = (Tuple*)malloc( NRUN_SAMPLES*sizeof(Tuple) );

// initialize the ’post’ actions to zero

streamRead(action_index,action_index_input);

//read-in the training data

FILE *fp;

// read in ’pre’ state information

fp = fopen("c:\\x1_arc.txt","r+");

for (i = 0;i<NRUN_SAMPLES;i++)

fscanf(fp, "%f", &input_raw[i].x1);

fclose(fp);

fp = fopen("c:\\x2_arc.txt","r+");

for (i = 0;i<NRUN_SAMPLES;i++)

fscanf(fp, "%f", &input_raw[i].x2);

fclose(fp);
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// read in ’post’ state information

fp = fopen("c:\\x1p_arc.txt","r+");

for (i = 0;i<NRUN_SAMPLES;i++)

fscanf(fp, "%f", &input_praw[i].x1);

fclose(fp);

fp = fopen("c:\\x2p_arc.txt","r+");

for (i = 0;i<NRUN_SAMPLES;i++)

fscanf(fp, "%f", &input_praw[i].x2);

fclose(fp);

// read in ’pre’ action information

fp = fopen("c:\\action_arc.txt","r+");

for (i = 0;i<NRUN_SAMPLES;i++)

fscanf(fp, "%f", &input_raw[i].action);

fclose(fp);

// read in the initial omega

fp = fopen("c:\\coef.txt","r+");

for (i=0;i<ACTION_BASIS_FUNCTIONS;i++)

fscanf(fp,"%f",&input_coef[i]);

fclose(fp);
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// read in the basis seed information

fp = fopen("c:\\seed_data.txt","r+");

for (i=0;i<ACTION_BASIS_FUNCTIONS;i++)

fscanf(fp, "%f, %f, %f", &input_seed[i].x1,

&input_seed[i].x2,&input_seed[i].action);

fclose(fp);

//transfer all this information to video memory

streamRead( coef, input_coef );

streamRead( raw, input_raw );

streamRead( praw, input_praw );

streamRead( seed, input_seed );

//zero out the matrix A

for (i=0;i<ACTION_BASIS_FUNCTIONS;i++)

for (j=0;j<ACTION_BASIS_FUNCTIONS;j++)

output_A[i][j]=0;

streamRead( A, output_A );



185

//start the timer

resetTimer();

// do this for each run

for (b=0;b<NRUN;b++)

{

//compute the basis functions (in the dissertation, this is computing F)

basis_function_all( data, seed, basis );

//find the actions produced by the current policy

mult( coef, basis, qvalues );

sum( qvalues, action_temp);

max( action_temp, action_max);

find_action_max(action_temp, action_index, action_max, action_temp);

sum(action_temp, action_max);

//fill in the ’post’ action fields in the

//’post’ information stream

replace_actions( pdata,action_max,pdata);

//compute the basis functions (in the dissertation, computes X and Y)



186

basis_function( data, seed, basis );

basis_function( pdata, seed, pbasis );

//compute the Z intermediate matrix

copy_add_mod(basis,pbasis,-0.9f,pbasis);

//compute the matrix A

index = 0;k=0;

//for each of the columns of A

for (i=0;i<ACTION_BASIS_FUNCTIONS;i++)

{

//perform the multiplication part of the dot product

mult(basis, pbasis.domain(int2(0,i),int2(SAMPLES,i+1)),

dot_space.domain(int2(0,ACTION_BASIS_FUNCTIONS*index),

int2(SAMPLES,ACTION_BASIS_FUNCTIONS*(index+1)))

);

//keep track that we have another column of A ready for processing

store_col[index]=i;

index++;

//if we’ve got enough ready in this batch of A columns ...
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if (index >= GROUP)

{

// perform the summation on the entire batch at once

sum(dot_space.domain(

int2(0,ACTION_BASIS_FUNCTIONS*k),

int2(SAMPLES,ACTION_BASIS_FUNCTIONS*(k+1))),

Asum_space);

//now copy the columns into the appropriate place in video memory

// ... copy them to where A is stored

for (k=0;k<GROUP;k++)

{

copy_add(

A.domain(int2(store_col[k],0),

int2(store_col[k]+1,ACTION_BASIS_FUNCTIONS)),

Asum_space.domain(int2(0,ACTION_BASIS_FUNCTIONS*k),

int2(1,ACTION_BASIS_FUNCTIONS*(k+1))),

A.domain(int2(store_col[k],0),
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int2(store_col[k]+1,ACTION_BASIS_FUNCTIONS))

);

}

index = 0;

}

}

}

// stop timer

time = getTimer();

// write our results to a file

fp = fopen("c:\\output.txt","w+");

fprintf(fp, "%f",time);

fclose(fp);

//print A on the screen

streamWrite( A, output_A );

for(j=0;j<5;j++)
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{

for (i=0;i<5;i++)

{

fprintf(stderr, " %2.3f ",output_A[i][j]);

}

fprintf(stderr,"\n");

}

fprintf(stderr,"\n\n Time: %f \n\n", time);

}

return 0;

}

File: basis_seed.txt

-200, 0, 1
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-1,-1, 1 -1, 0, 1 -1, 1, 1

0,-1, 1

0, 0, 1

0, 1, 1

1,-1, 1

1, 0, 1

1, 1, 1

-200, 0, 2

-1,-1, 2 -1, 0, 2 -1, 1, 2

0,-1, 2

0, 0, 2

0, 1, 2

1,-1, 2

1, 0, 2

1, 1, 2

-200, 0, 3

-1,-1, 3 -1, 0, 3 -1, 1, 3

0,-1, 3

0, 0, 3

0, 1, 3

1,-1, 3

1, 0, 3

1, 1, 3
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-200, 0, 4 -1,-1, 4 -1, 0, 4 -1, 1, 4

0,-1, 4

0, 0, 4

0, 1, 4

1,-1, 4

1, 0, 4

1, 1, 4
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