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ABSTRACT 

 
Early Development of Wetland Plant and Invertebrate Communities: Effects and 

Implications of Restoration. (August 2006) 

Matthew D. Berg, B.S., Texas A&M University at Galveston 

    Co-Chairs of Advisory Committee: Dr. X. Ben Wu 
       Dr. Steven G. Whisenant 
 
 
 Loss of wetland habitats across the nation is staggering and continues, especially 

in urbanizing areas. Thus, wetland restoration has become a priority. However, questions 

remain regarding system function and biotic communities. We studied a constructed 

floodplain wetland complex near Dallas, Texas. We sought to improve understanding of 

wetland ecosystem development under the influence of different approaches to wetland 

restoration in an urbanizing landscape. In the wetland complex, 10 constructed sloughs, 

approximately 70m by 15m, were designated for this study. Our experiment monitored 

the establishment of aquatic plant and invertebrate communities under different 

experimental conditions. In 5 sloughs, 5 native perennial hydrophyte species were 

transplanted in blocks in each slough, with the remaining 5 sloughs unplanted. Portions 

of each slough were caged to determine the effects of protective caging. Using 1m2 

caged and neighboring uncaged areas as quadrats, we sampled vegetation and the 

invertebrate community over two years to determine the effects of restoration treatments 

on the communities.  
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 Slough planting did not result in statistically different levels of plant cover. 

However, invertebrate abundance was greater in planted sloughs, and plant composition 

was different, comprised more of perennial species in planted sloughs than in unplanted 

sloughs. Caging did not have an effect on plant or invertebrate communities. However, 

changes due to time resulted in significant increases in plant cover and invertebrate 

abundance and shifts in community composition.  Four of 5 transplanted species were 

emergent growth forms. Emergent cover and the remaining species, Potamogeton 

nodosus, a floating-leafed plant, accounted for invertebrate community variation. 

Transplanted emergent species did not fare well, though other emergent species did 

colonize the site, along with widespread coverage by submerged Najas guadalupensis. 

Potamogeton spread rapidly, colonizing unplanted sloughs, and this will likely affect 

community development across the site. Plant and invertebrate richness values were low, 

likely due to hydrological extremes and the short period of time since construction. 

Water level fluctuations resulted in plant communities dominated by obligate wetland 

plants, though drought stress took a toll on survival of plants and invertebrates in late 

summer. Community development and system function were dependent mostly upon 

time and hydrology. 
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To those who enjoy exploring moist ground and muddying their boots in a marsh, those 

who appreciate the solitude of a wetland at dawn… 



vi 

 

ACKNOWLEDGEMENTS 

 

Without much help, this work would have been impossible. I thank Gary Dick, 

Michael Smart, Dian Smith, Joe Snow, and the people at LAERF for their invaluable 

knowledge regarding wetland vegetation and their assistance in growing and maintaining 

the plants for the study. I am grateful to Ram Lopez, Steve Reagan, Kurt Sewell, Krista 

Thomas, and LAERF for their labor in constructing protective cages and transplanting 

vegetation. I thank Matt Simmons for his perspective on wetland function and 

cooperation on site visits. I also appreciate Feng Liu, Humberto Perotto, and Chen Yue 

for their cooperation and support in research. I extend thanks to Steve Whisenant for his 

time and valued experience and Fran Gelwick for her long hours and technical expertise 

in ecological analysis and research design. I am forever grateful to Ben Wu for his 

assistance, insight, encouragement, and motivation in ecological research. Without your 

help, these studies would have remained in the planning stages. Thanks for your long 

hours and rigorous ethic, both professionally and personally, in caring for your students. 

Finally, I would like to thank Jeff Harrison, Lori Jones, Ben Naylor, and friends and 

family for their consistent support and comfort outside the lab and classroom, without 

which, it would have been nearly impossible to complete these last few years. 



vii 

 

TABLE OF CONTENTS 

 

                                                                                                                                      Page 

ABSTRACT .................................................................................................................. iii 

DEDICATION ............................................................................................................... v 

ACKNOWLEDGEMENTS .......................................................................................... vi 

TABLE OF CONTENTS ............................................................................................. vii 

LIST OF FIGURES ...................................................................................................... ix 

LIST OF TABLES ........................................................................................................ xi 

CHAPTER 

I  INTRODUCTION TO WETLAND RESTORATION...................................... 1 

II  EFFECTS OF TRANSPLANTING, PROTECTIVE CAGING, AND 

TIME ON INITIAL WETLAND PLANT COMMUNITY 

DEVELOPMENT .............................................................................................. 4 

Introduction ........................................................................................................ 4 
Methods.............................................................................................................. 8 

Study Site ..................................................................................................... 8 
Study Design .............................................................................................. 10 

Wetland Design .................................................................................... 10 
Quadrat Scale ....................................................................................... 13 
Plot Transect Scale ............................................................................... 13 
Slough Scale ......................................................................................... 15 
Statistical Analyses .............................................................................. 16 

Results .................... ......................................................................................... 17 
Quadrat Scale ............................................................................................. 17 

Transplant Species................................................................................ 17 
Caging .................................................................................................. 21 

Plot Transect Scale ..................................................................................... 22 
Transplant Species................................................................................ 22 

Slough Scale ............................................................................................... 25 



viii 

 

CHAPTER                                                                                                                    Page 

Planting Treatment ............................................................................... 25 
Discussion ........................................................................................................ 28 

Planting and Assembly Rules..................................................................... 28 
Temporal Effects on Community Development ........................................ 38 
Protective Caging ....................................................................................... 49 
Effects of Scale........................................................................................... 52 

Conclusion........................................................................................................ 54 

III  AQUATIC MACROINVERTEBRATE COLONIZATION AND THE 

EFFECT OF VEGETATION STRUCTURE .................................................. 56 

Introduction ...................................................................................................... 56 
Methods............................................................................................................ 58 

Study Site ................................................................................................... 58 
Study Design .............................................................................................. 59 
Statistical Analysis ..................................................................................... 61 

Results .............................................................................................................. 62 
Discussion ........................................................................................................ 68 

Vegetation Effects ...................................................................................... 68 
Colonization and Hydrology ...................................................................... 72 
Predation..................................................................................................... 76 
Community Implications............................................................................ 78 

Conclusion........................................................................................................ 79 

IV  SUMMARY ..................................................................................................... 80 

LITERATURE CITED ................................................................................................ 83 

VITA .......................................................................................................................... 101 



ix 

 

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 2.1 Wetland sampling design ................................................................................... 14 

 2.2 Community structure by planting treatment....................................................... 18 

 2.3 Percent cover by transplanted species and colonizing species as a 

proportion of total plant cover in different planting treatments ......................... 19 

 2.4 Wetland Indicator Status Index under different planting treatments. ................ 23 

 2.5 Relative cover by transplant species (colonizing species excluded)  

 in each treatment plot ......................................................................................... 31 

 2.6 Extreme water level fluctuations will likely have a large impact  

 on developing wetland plant communities......................................................... 44 

 3.1 Total invertebrate abundance in each summer for caged and  

 uncaged subplots within unplanted and planted wetland sloughs...................... 63  

 3.2 Invertebrate community composition in each summer for caged  

 and uncaged subplots within unplanted and planted wetland sloughs ............... 64 

 3.3 Canonical correspondence analysis (CCA) relating invertebrate  

 community composition to plant cover components and wetland 

restoration treatments ......................................................................................... 67 

 3.4 Empty exoskeleton on emergent Eleocharis quadrangulata  

 (Michx.) Roem. & Schult. after metamorphosis of dragonfly  

(Odonata) nymph................................................................................................ 69 



x 

 

 

FIGURE                                                                                                                        Page 

 3.5 Dense floating-leafed cover composed primarily of  

 Potamogeton nodosus with Ludwigia repens..................................................... 70 



xi 

 

LIST OF TABLES 

 

TABLE                                                                                                                        Page 

 2.1  Species present in sample plots. ...................................................................... 40 



1 

 

CHAPTER I 

INTRODUCTION TO WETLAND RESTORATION 

 
 For millennia, wetlands have been focal points for human settlement, with their 

resources and products meeting vital needs of human inhabitants in communities around 

the globe (Tiner 1999, Mitsch 2005). Though these systems connect upland and aquatic 

habitats, they are distinct from each, with characteristic species and processes that are 

not found elsewhere. 

 Though wetlands have proven extremely valuable to civilization, through both 

direct or indirect use, they have been considered wastelands in some locations at 

different times in history. As such, they have been targeted for conversion to drier 

upland areas able to meet more aims of human development. Following the resulting 

degradation of surrounding areas and loss of valuable services and products exclusively 

found in wetlands, the perception of these areas started to change. It is now recognized 

that wetlands perform many invaluable functions, including water quality improvement, 

erosion minimization, floodwater abatement, shoreline stabilization, habitat, nutrient 

cycling, recharging of groundwater, and sites of cultivation for many critical agricultural 

products (Mitsch and Gosselink 1986, Tiner 1999). 

  

 

__________________ 

This thesis follows the style of Wetlands. 
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 As public recognition of the value of wetlands increased, legislation in the form 

of the Federal Clean Water Act began to address issues of wetland protection. Though it 

was an important first step, it allowed some continued development of certain wetlands. 

As wetlands became a topic of controversy, guidelines were required to define and 

identify wetlands in order to delineate their area and regulate exploitation of important 

habitat and system function. Various federal and state organizations have created criteria 

for the delineation of wetlands to meet this need. However, wetlands are difficult to 

define due their variability and the presence of countless types of wetlands across the 

globe. Many attempts have been made to develop a common definition, but there has 

been no universal standard to date (Mitsch and Gosselink 1986, Tiner 1999). A national 

goal of “no net loss” of wetlands has been in place for over a decade. Progress has been 

made in wetland protection, but the function of wetland systems is not yet completely 

understood. To complicate this situation, the “no net loss” goal allows for mitigation 

wetlands to replace natural wetlands lost to development, agriculture, and other causes. 

Fierce debate remains regarding the effectiveness of this replacement, and demand for 

knowledge of processes in natural, restored, and created wetlands is ever increasing. 

 Though wetland protection is the most desired option, there is a continuing need 

for improving the ability to restore and create wetlands to replace those that have been 

lost in the past, and some loss will likely continue in the future, though at reduced rates 

well below historic levels (Mitsch 2005). Most current restoration efforts focus on the 

establishment of vegetation structure, but fully functioning wetland habitats require 

much more than plant cover. New developments are underlining the critical nature of 
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hydrology and unseen processes of nutrient cycling and soil activity. One necessity is to 

treat wetland restoration projects as experiments, with each attempt contributing to the 

body of science (Grayson et al. 1999, Kentula 2000). Research has demonstrated that 

very real constraints play a tremendously important role in the development of restored 

wetlands, and proper planning with an understanding of system dynamics, utilization of 

a landscape/ecosystem perspective, and implementation of clear and obtainable goals is 

crucial for the long-term success of wetlands restoration (Ehrenfeld and Toth 1997, Race 

and Fonseca 1998, Ehrenfeld 2000, Kentula 2000, Choi 2004, Simenstad et al. 2006).  
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CHAPTER II 

EFFECTS OF TRANSPLANTING, PROTECTIVE CAGING, AND TIME ON 

INITIAL WETLAND PLANT COMMUNITY DEVELOPMENT 

 
INTRODUCTION 

 

 Wetlands and associated habitats perform multiple functions in the landscape and 

their direct and indirect effects are important, both locally and far removed from the 

wetland itself. Appreciation for their ability to provide critical habitat, mitigate floods, 

abate stormwater, recharge aquifers, improve water quality, and increase aesthetic appeal 

of the landscape (Mitsch and Gosselink 1986, Noon 1996) has grown in recent years. In 

recognition of their critical levels of loss, both historically and in contemporary times, 

wetlands are increasingly being created and restored, both in the United States and 

abroad. These wetlands are created for various purposes, including legally obligatory 

mitigation, recreation, wildlife habitat enhancement, wastewater and stormwater 

treatment, and others (Mitsch et al. 2005). Though wetland creation and restoration 

projects are rapidly becoming more common and larger in scope, the science behind the 

discipline is still quite new, and many questions remain regarding the proper approaches 

and effects of different practices (Zedler 2000).  
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 One of the most commonly created wetland classes includes emergent freshwater 

marshes. One difficulty with applying a uniform approach to their creation is that they 

constitute an extremely diverse group of wetland types (Mitsch and Gosselink 1986). 

Freshwater marshes show significant variation in dominant species, hydrology, soils, and 

seasonality both in large geographic regions but also among wetlands separate by short 

distances. Since these wetlands are very distinct, each project must take into account the 

environmental conditions and landscape context of the specific location when planning 

restoration or creation efforts.  

 Predicting long-term dynamics in developing wetlands is very difficult (Zedler 

and Callaway 1999, Kellogg and Bridgham 2002, Hughes et al. 2005). Since there is 

significant uncertainty intrinsic in wetland restoration and creation and gaps in scientific 

knowledge remain, it is critical to employ experimental investigation during project 

implementation. This will both increase the likelihood of success in the individual 

wetland site and will contribute to the growing body of scientific knowledge regarding 

the patterns and processes at work in new wetlands. 

 An issue of great importance in wetland restoration is that of vegetation 

dynamics and succession (Noon 1996, Simenstad et al. 2006). Natural freshwater 

wetlands are highly dynamic in nature (van der Valk 2005), showing significant shifts in 

plant cover and species composition at multiple time scales, due to disturbance, periodic 

changes, or both factors. Changing conditions allow growth of different plant species, 

resulting in changes of wetland organization and function. Certain species may either 

facilitate or suppress colonization by other macrophyte species, drastically altering 
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wetland succession. Such changes can affect nutrient cycling, primary production, 

habitat quality, soil formation, and many other wetland processes. Depending on 

landscape context and other factors, created and restored wetlands have been shown 

either structurally or functionally to fall all along a continuum of similarity to targeted 

reference wetlands and even amongst each other (Wilson and Mitsch 1996, Malakoff 

1998, Zedler and Callaway 1999, Campbell et al. 2002, Mushet et al. 2002, Heaven et al. 

2003, Seabloom and van der Valk 2003, Zampella and Laidig 2003, Balcombe et al. 

2005b, Spieles 2005), demonstrating the highly variable response of wetland 

development to site conditions.  

 Commonly used approaches to wetland plant restoration include (1) total reliance 

on self-design, whereby a remnant seed bank or other plant material source (including 

introduction by humans) provides propagules which are ‘selected’ by conditions in the 

wetland and contribute differentially based on life history traits or survival requirements 

and (2) human design or ‘botanical engineering’ of highly-planned projects using 

transplanted vegetation preselected from a pool of available species and introduced into 

somewhat tightly controlled conditions. The action of wetland self-design has important 

implications in newly created wetlands, due to the lack of an established seed bank and 

the difficulty of dispersal for many wetland species (Noon 1996). However, in locations 

that do have remnant vegetation or in which vectors of dispersal are present, self-design 

alone is often adequate for reestablishment of vegetation (Mitsch and Wilson 1996, 

Mitsch et al. 1998, Luckeydoo 2002). The value of wetland self-design and the necessity 

of human design have been debated (Mitsch et al. 1998, Streever and Zedler 2000), but 
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the utilized approach is largely dependent on past land use and current conditions, with 

complete self-design and complete ‘designer wetland’ approaches likely representing 

opposite endpoints of a continuum of wetland design options. Self-design will almost 

always exert strong selective pressure in wetland development, and this should be 

utilized in the practice of restoration. 

 Within the setting of a newly created wetland complex, our objective was to 

investigate the effect of different wetland planting approaches on the early development 

of plant communities. We investigated the hypotheses (1) that planting of created 

wetlands with different species results in hydrophyte communities that are distinct in 

cover and composition from those left to natural colonization processes alone, (2) that 

protective caging of transplant stock increases initial survival and affects plant 

communities at small scales, and (3) that transplanted and colonizing plant communities 

show significant temporal changes in the initial years of development. Knowledge 

gained in comparing transplanting and self-design approaches could then be applied to 

other local wetlands in a similar landscape context, and conclusions regarding initial 

wetland dynamics would contribute to the understanding of wetland ecology in other 

regions as well (Noon 1996). 
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METHODS 

 

Study Site 

 

 The wetland site is located in Garland, Texas, USA, 27 km northeast of Dallas on 

the edge of a rapidly expanding metropolitan area (32°94’N, 96°59’W). From the early 

1970s, the City of Garland disposed of solid waste at the Castle Drive Municipal 

Landfill prior to its closure in the fall of 2002. Over the course of years of management, 

a large 31 ha depression adjacent to the landfill and bordering a riparian area was 

excavated for soil as the landfill grew and was ultimately capped with clay. The riparian 

corridor follows Rowlett Creek and is part of a 3,143 ha watershed flowing into Lake 

Ray Hubbard, a large multiuse reservoir approximately 2.5 km downstream, ultimately 

contributing to the Trinity River. Fragments of bottomland hardwood forest remain in 

the area, dominated by Quercus spp. and Ulmus spp., though forested areas locally are 

limited to a narrow buffer along Rowlett Creek itself, and hackberry (Celtis laevigata 

Willd.) and green ash (Fraxinus pennsylvanica Marsh.) are characteristic of more 

disturbed areas (Nixon et al. 1991). Although the site lies within the Blackland Prairie 

ecoregion (Omernik 1995), the site itself is largely characterized by the hydrology, 

vegetation, and soils resulting from its low position in the landscape and its consistent 

disturbance. In the excavated depression, the surface soil has been removed 

mechanically, to more than 5 m in some areas. Heavy clays showing high shrink-swell 

potential, and partially weathered marl dominate the remaining soil. As periodic 
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floodwaters from the creek rose and fell in the unvegetated basin, several disturbance-

specialist plant species, including black willow (Salix nigra Marsh.), creeping primrose-

willow (Ludwigia repens Forst.), and common cattail (Typha latifolia L.), had started to 

colonize the area. Extreme fluctuations in water level corresponding to the hydrology of 

an urbanizing area posed a significant obstacle to widespread revegetation. However, 

more desirable wetland macrophytes were present, including arrowheads (Sagittaria 

spp.) and burrhead (Echinodorus spp.), indicating the presence of at least a small seed 

bank or other mechanism of colonization and necessary conditions for hydrophyte 

establishment.  

 To establish a wetland complex with the potential for serving multiple purposes 

as mitigation bank, research site, and recreation area, heavy machinery was utilized to 

contour the depression, creating topographic variation in the form of shallow (~1.5-2 m) 

elliptical sloughs interspersed with 2.5 m ridges and surrounded by an oxbow lake 3 m 

in depth at its deepest point. A shallow water table maintains water levels in the sloughs, 

though elevated areas become quite dry in summer and extended periods without 

precipitation. Large berms created during site manipulation remain in place and cause 

the site to retain in-basin rainfall and runoff from surrounding upland areas.  

 Various measures involving major manipulation and maintenance of soil and 

plant communities have been proposed to establish wetland vegetation near landfill sites 

(Simmons 1999), but these are most often unsustainable, do not replicate natural or 

reference site conditions, and require intensive management. Therefore, alternative 
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wetland restoration strategies focusing on the establishment of desirable native 

vegetation were formulated and incorporated into the study.  

 

Study Design 

 

Wetland Design 

 

Using the constructed wetland complex as the basis for the experiment, 10 

sloughs were designated for inclusion in a comparative study to determine the response 

of plant community dynamics under different methods to wetland restoration. Sloughs 

were chosen based on their relative similarities in soil, orientation, elevation and thus 

hydroperiod. Ten of the designated sloughs were randomly assigned a plant or non-plant 

status, with 5 sloughs each designated for planting and controls. Each of the planted 

sloughs was subdivided into 5 blocks, each of which would be planted with one common 

wetland plant species. These 5 species were randomly assigned in a randomized 

complete block design. This use of clustering of transplanted conspecifics has 

successfully been used in revegetation efforts in the past to improve initial survival and 

increase subsequent resilience in the face of herbivory. These “founder” populations can 

then provide sources of native plant materials for colonization of remaining areas of 

wetland habitat (Smart et al 1996).  
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 In the summer of 2003, with the cooperation of the U.S. Army Corps of 

Engineers Lewisville Aquatic Ecosystem Research Facility (LAERF), 6 small watertight 

wooden aboveground nurseries were constructed as grow-out ponds for transplant 

materials. Harvesting several hundred individuals of different species from on-site 

cultures at LAERF, plants were moved to the constructed nurseries and allowed to grow 

through the summer months and develop rootstock. Submerged plants were potted in 

wetland soil harvested on-site and maintained at water levels of approximately 0.75 m, 

and emergent plants were potted in topsoil and maintained at approximately 0.2 m water 

depth, according to plant requirements. Plants used included American pondweed (PW) 

Potamogeton nodosus Poir., broadleaf arrowhead (AH) Sagittaria latifolia Willd., bull-

tongue arrowhead (BT) Sagittaria lancifolia L., flatstem spikerush Eleocharis 

compressa Sullivant, squarestem spikerush (SR) Eleocharis quadrangulata (Michx.) 

Roemer & J.A. Schultes, swamp smartweed (SW) Polygonum hydropiperoides Michx., 

and creeping burrhead Echinodorus cordifolius (L.) Griseb. Except for Potamogeton, a 

floating-leaf submerged plant, all plants are considered emergent species and are found 

in shallow areas of wetlands. All plants were potted as single stems and fertilized with 

ammonium sulfate and were watered using alum-treated water from the adjacent Corps 

of Engineers reservoir Lewisville Lake. Plants lost through mortality from heat stress 

and transplant stress were replaced in the initial two week period following relocation. 

Due to high losses and low vigor of E. cordifolius and E. compressa, these species were 

removed from the initial planting list, leaving the remaining species for the transplanting 

effort. 
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 After one year of growth, the plants were moved approximately 40 km to the 

Garland site from transplanting in June 2004. The 5 selected species were introduced 

into the randomly assigned species blocks using the input and assistance of LAERF staff 

and volunteers. Stems were planted at 0.15, 0.3, and 0.45 m below estimated mean water 

level at a horizontal spacing of 1 m and a vertical spacing of approximately 0.3 m on the 

slough slopes. Multiple planting depths were implemented in order to accommodate 

plant survival through predicted water level fluctuations during the year, most notably 

summer drawdown. Blocks were planted with approximately 25 individuals per species, 

and unplanted buffers of 10 m were left between species to eliminate edge effects.  

 Within each species block, plants located centrally with respect to the flanking 

buffers were designated as paired plots for comparison of plant cover. The southernmost 

of the paired plots was enclosed in a fencing structure to minimize herbivory and 

mechanical disturbance of the plants and their roots. Cages were manually constructed 

from commercially available 14 gauge welded steel wire of 2” by 4” mesh cut to form 

cages 1.8 m x  0.6 m x 0.3 m in height and enclosed on all sides except the bottom, in 

order to avoid damaging plants during installation. These cages and adjacent uncaged 

marked areas of identical size served as quadrats covering just over 1 m2 each. Quadrats 

were also established in unplanted sloughs as controls, with three cages and adjacent 

uncaged areas distributed equidistant from each other in a manner similar to that 

employed in planted sloughs.  
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Quadrat Scale 

 

A series of quadrats were established within the protective cages and in 

neighboring uncaged areas in the planted sloughs and in the unplanted sloughs (Figure 

2.1). Vegetation cover was sampled in late summer, approximately coinciding with 

maximal vigor and coverage (Matthews et al. 2005). Aerial cover was documented by 

visual estimate for each species. Species were also grouped by growth form, including 

emergent, floating-leaf, and submergent hydrophytes, and species longevity was noted 

for comparison of annual and perennial cover components. Presence or absence of a 

floating algal mat was also noted, with its total cover estimated where present. 

Transplant species, caging, and date were considered treatment variables. In the field, n 

= 6 research quadrats were placed in each of 5 unplanted sloughs and n = 10 quadrats 

constructed in each of 5 planted sloughs, for a total of n = 80 annually sampled quadrats. 

 

Plot Transect Scale 

 

To document the vertical dynamics of the hydrophyte community, short 3m 

transects were also established and centered on mean water level. Lines were positioned 

through each uncaged quadrat resulting in transects in both unplanted and planted  
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Figure 2.1. Wetland sampling design. Planted slough depicted, with longer lines 
separating species blocks. In each of 5 blocks, caged (closed rectangles) and uncaged 
(open rectangles) 1m2 quadrats were established for vegetation sampling. 3m transects 
were established through each uncaged quadrat to monitor vertical spread of transplanted 
and colonizing vegetation. 10m transects were also established on slough ends along the 
longitudinal axis (bold lines). Planted sloughs had aged and uncaged quadrats for each of 
5 species blocks; unplanted control sloughs contained 3 caged and 3 uncaged quadrats 
randomly placed along the slough shoreline. 
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sloughs. Along these transects, percent cover of the hydrophyte canopy was estimated 

for each species along the vertical gradient, extending from below permanent water to 

near the slope break at the top of the sloughs. Similar to the prevalence index of Spieles 

(2005), an average “wetness value,” or wetland indicator status index (WIS index) was 

determined for transects by obtaining the regional wetland indicator status for each 

species and awarding a score from 0 for upland species to 10 for obligate species, with 

all intermediate status values scored separately. For example, a FACW species would 

receive a score of 8, with a FACW+ receiving a 9 and a FACW- receiving a 7. Index 

scores were weighted by proportional cover by individual species. Average wetness 

values were used to determine upslope expansion and development of the wetland plant 

community. Algal mat cover was not considered in this calculation. To monitor this 

vertical spread of wetland vegetation, transects were installed at n = 3 sites and n = 5 

sites within unplanted and planted sloughs, respectively. 

 

Slough Scale 

 

 To investigate effect of transplanting hydrophytes on the developing plant 

community at the level of a whole slough, at a larger scale and further removed from 

transplants themselves, a disjunct transect was established at the ends of the major axis 

of the sloughs. One 10 m segment was placed at each end, resulting in a 20 m transect 

for the entire slough. Along these transects, vegetation cover was estimated, with 

component macrophytes identified by species and classified by plant growth form. The 
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slough transects were located up to 20 m from planted plots and did not cross portions of 

sloughs receiving transplanted vegetation. An average WIS Index was again calculated 

to determine colonization by hydrophytic vegetation. At the level of whole sloughs, each 

of the sloughs was sampled with one transect 20 m in total length for n = 5 in both 

unplanted and planted sloughs. 

 

Statistical Analyses 

  

 Sampling was conducted in late summer in 2004 and 2005 in quadrats and plot 

and slough transects. Statistical analyses of plant cover were performed using repeated 

measures MANOVA procedures in SPSS 12.0 (Norusis 2004) to identify differences 

among species planting treatment, caging treatment, and sampling date. In comparisons 

of effects of transplant species on resulting total cover and species composition, the 

Student-Newman-Keuls method for multiple comparisons was used where applicable. 

Statistical significance was assumed at p = 0.050 for all analyses. 
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RESULTS 

 

Quadrat Scale 

 

Transplant Species 

  

While total cover increased dramatically in the two years of this study (p < 

0.0001), though with a high degree of variability (16.7% ± 2.7 year 1, 47.0% ± 3.1 year 

2; plant cover given as mean ± S.E.), differences in total cover between each planting 

treatments (five transplant species and no-planting) were not significant (p = 0.11). 

However, the composition of cover did differ between planting treatments (Figure 2.2). 

Macrophyte species richness was significantly different (p < 0.0001), with unplanted 

quadrats showing fewer species than any of the transplanted quadrats. Though an 

increase in species richness did occur over the course of the study (p < 0.0001), values 

were remarkably low across both years and all planting treatments, with most quadrats 

having only 1-2 species in the 2004 and transplanted quadrats with 2-3 species by the 

2005. Transplanted species were somewhat widespread in all planted treatments in 2004, 

but colonizing species were dominant in unplanted sloughs in the same year and in all 

planting treatments in 2005 (Figure 2.3). 
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Figure 2.2. Community structure by planting treatment.  Values given as 
means ± S.E. AH indicates plot planted with S. latifolia, BT S. lancifolia, 
PW P. nodosus, SW P. hydropiperoides, and SR E. quadrangulata. Unpl. 
indicates unplanted control plots. Floating-leaf cover had become 
widespread even in 2004, and submergent cover was the dominant structure 
in 2005. Non-wetland obligate species (other) largely disappeared by 2005. 

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

Planting Treatment

To
ta

l C
ov

er

Submergent Floating Leaf
Emergent Other

Quadrat Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

Planting Treatment

To
ta

l C
ov

er

Quadrat Scale
2005

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

Planting Treatment

To
ta

l C
ov

er

Transect Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

Planting Treatment

To
ta

l C
ov

er

Transect Scale
2005

0.0

0.2

0.4

0.6

0.8

1.0

Planted Unplanted

Planting Treatment

To
ta

l C
ov

er

Slough Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

Planted Unplanted

Planting Treatment

To
ta

l C
ov

er

Slough Scale
2005



19 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

To
ta

l C
ov

er
Transplants
Colonizers

Quadrat Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

To
ta

l C
ov

er

Quadrat Scale
2005

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

To
ta

l C
ov

er

Transect Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

AH BT
PW SW SR

Unpl.

To
ta

l C
ov

er

Transect Scale
2005

0.0

0.2

0.4

0.6

0.8

1.0

Planted Unplanted

Planting Treatment

To
ta

l C
ov

er

Slough Scale
2004

0.0

0.2

0.4

0.6

0.8

1.0

Planted Unplanted

Planting Treatment

To
ta

l C
ov

er

Slough Scale
2005

Figure 2.3. Percent cover by transplanted species and colonizing species as a 
proportion of total plant cover in different planting treatments. Values given as means 
± S.E. AH indicated planting with S. latifolia, BT S. lancifolia, PW P. nodosus, SW P. 
hydropiperoides, and SR E. quadrangulata. Increases in transplant cover were largely 
due to P. nodosus. Large increase in colonizer cover in quadrats was due to spread of 
Najas. Loss of colonizers in transects largely a result of mortality among facultative 
species. 
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 Quadrat cover by submersed vegetation, comprised of a dense matrix of Najas 

guadalupensis (Spreng.) Magnus and Chara spp., differed with year (p < 0.0001) but 

was not significantly different between planting treatments (p = 0.36).  Though minimal 

in the initial year of study (4.4% ± 1.5), the Najas-Chara growth covered 32.1% ± 3.5 of 

quadrat area by the end of 2005 and constituted the majority of growth by colonizing 

species. Cumulative cover by all annual species was not significant between treatments, 

though sampling date did have an effect (p < 0.0001). 

Surprisingly, emergent plant cover did not change over time (p = 0.89), though it 

did vary significantly with planting treatment (p = 0.03). S. latifolia, S. lancifolia, P. 

nodosus, P. hydropiperoides, and E. quadrangulata were not detected outside of 

quadrats in which they were planted. Cover by each species was remarkably low (< 

1.5%), even after two years of growth. In fact, transplanted S. latifolia had completely 

disappeared from its plots by the end of the second year of study. A locally abundant 

emergent, Typha latifolia, was rare in 2004 but had grown in total cover to ~2% in the 

second year, and was present across planting treatments (p = 0.79). 

Cover by floating-leafed vegetation became a major component of total cover 

over the course of study and was significant between planting treatments (p = 0.005). 

Ludwigia repens Forst. was common along slough borders in both years (5.1% ± 1.4 

2004, 3.5 % ± 0.7 2005), though it did not differ between planting treatments ( p = 0.53). 

P. nodosus spread rapidly and was present in five of six planting treatments three months 

after planting and all treatments but unplanted quadrats by 2005. Cover was significant 

between years (p = 0.003). Though it was common in many other planting treatments, 
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cover remained much higher (p < 0.0001) in plots initially planted with the species (26.5 

± 16.1 2004, 28.0% ± 12.1 2005). It was also common in plots planted with S. latifolia.  

By the second year of study, a floating algal mat had developed along the border 

of the sloughs on the site. Cover by this mat was significant between treatments (p < 

0.0001), with unplanted quadrats showing the lowest values. E. quadrangulata quadrats 

contained nearly 20% algal cover, while unplanted quadrats had none. 

 

Caging 

 

The use of protected sloughs had little effect on the initial survival and spread of 

both transplanted species and colonizing species. Total cover was not significantly 

different between caging treatments (p = 0.09), nor was species richness (p = 0.36). One 

primary area of concern in the wetland restoration, success of transplanted emergent 

species, showed no effect with caging (S. latifolia p = 0.57, S. lancifolia p = 0.91, P. 

hydropiperoides p = 0.12, E. quadrangulata p = 0.14). P. nodosus was not significant (p 

= 0.71), nor was cover by the submersed Najas-Chara matrix (p = 0.30) or the floating 

algal mat (p = 0.13). 
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Plot Transect Scale 

 

Transplant Species 

 

 As at the scale of the sampled quadrats, the time had a larger effect (p < 0.0001) 

on total cover than did the planting treatments (p = 0.84). Total cover along transects 

increased from 36.9% ± 4.1 in 2004 to 62.2% ± 4.7 by 2005. This trend of the 

importance of time over treatment also held for most measures of the plant community at 

the transect scale. While species richness increased but remained low among the 

quadrats, the same measure actually decreased (p < 0.0001) along transects, from 2.7 ± 

0.2 in 2004 to 1.6 ± 0.2 in 2005. Only transects in plots planted with P. nodosus showed 

no change, remaining constant at ~ 2 species. 

 The average Wetland Indicator Status Index for the transects was not 

significantly different between planting treatments (p = 0.53), but did increase over time 

(p = 0.03). Index scores of 8.8 ± 0.3 (corresponding to slightly drier than FACW+) 

increased to 10.0 ± 0.0, near complete dominance by wetland obligates species (Figure 

2.4). 

 As in the quadrats, submersed cover increased dramatically between years (p = 

0.01) but was not significantly different between planting treatments (p = 0.10). As 

much of the length of the transects fell above the water level, cover by the Najas-Chara 

matrix was lower than in quadrats. However, submersed cover (3.67% ± 1.8 2004, 

17.5% ± 3.9 2005) still contributed to the increase in total cover.  
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 Cover by emergent species showed no significant difference between planting 

treatments (p = 0.75) and actually showed a minimal (p = 0.14) decrease between years 

(12.7% ± 1.8 2004, 7.9% ± 1.9 2005). Cover due to transplanted species was very low (< 

1%) or absent in most cases. However, individuals of transplanted species, whether from  

 

Figure 2.4. Wetland Indicator Status Index under different planting treatments. Values 
given as means ± S.E. AH plots planted with S. latifolia, BT S. lancifolia, PW P. 
nodosus, SW P. hydropiperoides, and SR E. quadrangulata, respectively. Although 
significant cover by facultative wetland and facultative upland species was present in 
2004, all plots were completely dominated by wetland obligate species in 2005. 
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transplanted stock or colonizing plants, were found in treatment plots in addition to the 

plot planted with that species. S. latifolia and S. lancifolia were found on multiple 

transects outside their transplanted plots, but were still low in frequency. T. latifolia, as it 

did at the quadrat scale, increased (p = 0.04) over the course of the study, from 0% in 

2004 to 1.8% ± 0.8 in 2005, but was not significantly different between treatments (p = 

0.11). Cyperus erythrorhizos Muhl., an annual colonizer that was common in many wet 

areas in the first year (3.2% ± 1.0) was rare by 2005 (0.4% ± 0.3). Though the decrease 

was significant between years (p = 0.046), planting treatment did not have an effect (p = 

0.38). One species rare at the quadrat scale, Leersia hexandra Sw., contributed more to 

cover at the transect scale (6.0% ± 1.3 2004, 4.8% ± 1.6 2005). This species was not 

significantly different between sampling date or planting treatment. 

 Though total cover by floating-leafed vegetation was not significantly different 

between years (p = 0.051) or planting treatment (p = 0.66), its component species 

showed different trends. L. repens was nearly constant between all levels at nearly 8% 

cover. However, P. nodosus increased between years (p = 0.01) and differences between 

planting treatments were significant (p = 0.004), with plots planted with P. nodosus itself 

retaining highest cover. 

 The algal mat was also present along portions of multiple transects in 2005. As it 

did among quadrats, algal cover was significantly different between planting treatments 

(p = 0.002), with unplanted plots again among the lower values. Unplanted transects had 

nearly 0% algal cover, while planted S. latifolia plots had consistently high coverage, 

over 40%. Planted P. nodosus plots had low algal cover in quadrats and transects 
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(approximately 10%), more nearly resembling unplanted plots than those treated with 

other transplant species. 

 Chamaecrista fasciculata (Michx.) Greene, a colonizing facultative upland 

annual species frequently found on upslope portions of transects, showed no significant 

differences between treatments (p = 0.53) but declined (p = 0.04) from 3.3% ± 1.6 in 

2004 to 0% in 2005. 

 

Slough Scale 

 

Planting Treatment 

 

 At the slough scale, total macrophyte cover was not significantly different 

between planted and unplanted sloughs (p = 0.14) or between years (p = 0.28). Plant 

cover at this scale (62.6% ± 7.2 2004, 77.3% ± 6.4 2005) was also somewhat higher than 

among both quadrats and transects. Species richness was also roughly equivalent 

between years (p = 0.60) and planting treatment (p = 0.12). Overall across both years, 

the increased scale of measurement translated into slightly increased richness over 

smaller scales. However, these values were still very low (4.8 ± 0.5 2004, 5.1 ± 0.4 

2005). By the end of 2005, however, species richness values that were nearly identical 

between planting treatments (approximately 4.8 species per transect) had begun to 

diverge somewhat, with planted sloughs harboring slightly higher numbers of species 

(6.2 ± 0.2) than unplanted sloughs (4.0 ± 0.4). 
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 Among sloughs, increases in WIS Index values between years were minimal (p = 

0.06). However, trends were almost identical to those at the plot transect scale. With 

some facultative species present in 2004, scores were 8.8 ± 0.5. The plant community 

was almost entirely dominated by obligate hydrophytes by the second year of growth 

(10.0 ± 0.0), however, after the die-off of upland and inundation-intolerant species. The 

introduction of transplanted vegetation had no effect (p = 0.65) on the average WIS 

Index of species at the slough level. 

 As at other scales, slough-level submersed cover showed significant differences 

between years (p = 0.03). However, the Najas-Chara matrix was not significantly 

different between unplanted and planted plots (p = 0.11), though differences became 

more apparent in 2005, with unplanted sloughs at 33.8% ± 15.3 compared to 5.8% ± 5.7 

in planted sloughs. The patchy nature of submersed cover at the site contributed to very 

high levels of variability between transects. 

 Total emergent vegetation was not significantly different with date (p = 0.85) or 

planting treatment (p = 0.73). Though S. latifolia and S. lancifolia were found in both 

planted and unplanted sloughs, transplanted species were present at very low levels. 

Much of the emergent cover was comprised of L. hexandra, C. erythrorhizos, and T. 

latifolia, species found in both planting treatments. Likewise, none of these colonizing 

emergent species was significantly different between years, with initial establishment 

occurring in 2004 and little expansion observed by 2005. 
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 Floating-leafed vegetation was a major component of slough macrophyte cover. 

While it did not differ with planting treatment (p = 0.22) or date (p = 0.49), cumulative 

cover of 22.1% ± 6.6 in 2004 and 30.2 % ± 6.1 in 2005 made L. repens and P. nodosus 

the dominant hydrophytes at the slough scale. L. repens was common in both years (15.9 

% ± 5.9 in 2004, 19.0% ± 6.9 in 2005) and comparable between planted and unplanted 

sloughs. P. nodosus was present in some unplanted sloughs by 2005 at slightly lower 

levels than in planted sloughs (p = 0.6). In contrast with measurement at smaller scales, 

P. nodosus did not differ between years (p = 0.52). By 2005, floating cover was 

dominated by L. repens in unplanted sloughs (25.8% ± 13.0 versus 12.1% ± 4.9 in 

planted sloughs) and by P. nodosus in planted sloughs (19.9% ± 8.9 versus 2.2% ± 0.0 in 

unplanted sloughs). 

 Algal mat cover was significantly different between years (p < 0.0001). Also, this 

growth of algae was very different between planting treatments (p = 0.001), with mat 

coverage of 1.3% ± 1.3 in unplanted sloughs and 16.1% ± 2.6 in planted sloughs, both in 

2005. 
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DISCUSSION 

 

Planting and Assembly Rules 

 

 Use of different planting treatments did have an effect on the establishment and 

development of wetland plant communities. While total cover was comparable across all 

planting treatments at all scales, the composition of that cover and the identity of the 

dominant species under different treatments may have lasting impacts on system 

function (Callaway et al. 2003).  

 Many factors affect the dynamics of wetland plant communities, particularly in 

the years immediately following many wetlands creation and restoration projects, and a 

proper understanding of these factors is necessary when planning a plant community on 

a previously vacant site. As proposed by Keddy (1999), the trajectories of wetland plant 

communities are largely determined by species pools, filters on establishment, and plant 

traits. By introducing transplant stock, the pool of available species is expanded by 

virtue of overcoming potential dispersal limitations, and such approaches are preferred 

in certain unpredictable environments and when using species with certain life history 

traits (Keddy 1999, Whisenant 1999). Environmental filters select certain species based 

on certain abiotic factors, though biotic factors such as facilitation and competition are 

also important, and plants whose traits require or tolerate these conditions will survive 

(Keddy 1999). Assuming the transplanted stock display the necessary the necessary 
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traits, the developing plant community will likely include both introduced materials as 

well as colonizing individuals of other members of the local species pool.  

 Individuals of transplanted species and their congeners (especially Sagittaria spp. 

and Polygonum spp.) were present on site in very low densities prior to restoration 

efforts. However, large-scale soil disturbance likely removed or buried most of these 

plants. Reappearance by these species following treatment was observed outside 

restoration  plots, as was establishment of other common wetland species, but it was not 

determined whether this was a result of reproduction of transplanted stock, regrowth 

from the residual seed bank, or introduction by other means, including stormwater inputs 

and waterfowl (Charalambidou and Santamaria 2005). As plants were present initially, 

dispersal was not a limiting factor in the presence of these species in the wetland 

complex. Low frequencies, whether due to reduced seed densities or conditions that 

were only marginally favorable to the establishment of these species, were enhanced by 

the introduction of mature plants through transplanting efforts. In addition, species that 

were not present at the site before restoration (E. quadrangulata, P. hydropiperoides, 

and P. nodosus) and which may have been limited by dispersal into the wetland, became 

an important component of the plant community by increasing the available members of 

the local species pool.  

 In our study, the response of developing wetland plant communities was distinct 

between planted and unplanted sloughs, and results indicate initially very different 

structure in the initial years of wetland restoration. The use of transplants in appears to 

have resulted in minor differences in total cover but significant differences in species 
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richness and dominance. Introduction of plant material into selected plots altered the 

community structure of those plots. While unplanted plots displayed coverage dominated 

by L. repens and N. guadalupensis/Chara spp., cover by transplanted emergent and 

floating species played a larger role in each of the planted plots, with P. nodosus 

comprising a large portion of cover even outside its own plots (Figure 2.5). Though most 

of the species transplanted were emergent species (with the exception of P. nodosus), 

much of the cover in planted plots was floating-leafed vegetation. 

 The apparent high mortality and lack of growth among planted emergent species 

in the sloughs may significantly impact future trends in the plant community. Emergent 

species are important primary producers in inland freshwater marshes (Mitsch and 

Gosselink 1986), and struggles of these species may inhibit the development of 

characteristically complex food webs and functional pathways.  Pezeshki et al. (2000) 

found that moderate-duration (maximum 42 days) preconditioning through flooding 

prior to transplant efforts had no effect on plant survival and performance among 

emergent species Panicum hemitomon Shult. and Sagittaria lancifolia once in the field. 

However, a combination of preconditioning and fertilization of transplants resulted in 

species-dependent increased performance. Our study utilized transplants preconditioned 

off site under high water conditions for one year. It is possible fertilization increased 

growth of these transplants, at least initially. However, this was likely through an 

increase in production of belowground biomass. Even by the end of 2004, many 

transplants, most notably Sagittaria and Polygonum, had shed much of their 

photosynthetic structure, and few if any leaves remained on the majority of the plants.  
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Figure 2.5. Relative cover by transplant species (colonizing species excluded) in each 
treatment plot. AH represents S. latifolia, BT S. lancifolia, PW P. nodosus, SW P. 
hydropiperoides, and SR E quadrangulata, respectively. Under nearly all treatments, 
except planting with E. quadrangulata, P. nodosus became the dominant transplant 
species by 2005 and was present to a limited extent even in unplanted plots. Emergent 
transplants typically showed either no change in cover or mortality after one year. 
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However, by the beginning of 2005, the remaining rootstock produced a flush of new 

aboveground growth. It is likely that among transplants, most of the energy went to 

production of rootstock in preparation for growth in the following year, rather than leaf 

production and photosynthesis in the year of planting. With expected benefits of 

fertilization, it is puzzling that emergent cover remained very low. However, planting at 

low densities has been shown to have only a minimal effect on developing plant 

communities (Kellogg and Bridgham 2002), and our site may follow the same trend. 

 Interestingly, a floating algal mat in 2005 was found to be significantly greater in 

planted plots than in unplanted control plots. Fertilization meant to enhance macrophyte 

growth likely contributed to a spatially variable bloom of algae (Wu and Mitsch 1998). 

Almost no algal cover was found in unplanted sloughs at all scales. This cover by algae 

likely affected spread of macrophyte cover. As algae benefited from the lingering effects 

of transplant fertilization, growth was concentrated around planted areas. Despite 

periodic storms, the floating mat was observed to be physically held in place by plant 

stems, both of transplants and senesced stems of inundated annuals from the previous 

year. Dense floating mats were observed to be associated with sparse cover by 

transplants, creating a feedback mechanism. Dense transplant growth retained algal 

cover, potentially shading out new growth under the slough water surface.  Such a 

pattern of algal dominance in early succession has been observed elsewhere and may 

initially lead to suppression of emergent and submergent macrophytes (Yallop and 

O’Connell 2000). Lack of macrophyte growth also likely meant increased available 

nutrients for algal uptake. Where much of the fertilization was partitioned in macrophyte 
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growth, absence of algae led in increased dominance by hydrophytes. We suspect that 

over time, the nutrients resulting from fertilization will be exhausted and macrophytes 

will outcompete algae (Lougheed et al. 2004), limiting future algal blooms. Additionally, 

and probably more important to emergent plant growth was the duration and severity of 

flooding very likely played a role in diminished emergent cover.  

Watershed urbanization has been shown to result in increased proportion of 

overland flow, resulting in alteration of timing and intensity of inputs to associated 

wetlands, and changes in base flow characteristics, depending on landscape context and 

regional climate (Owen 1999, Rose and Peters, 2001, Wissmar et al. 2004, White and 

Greer 2005, Roy et al. 2006). The Garland, Texas area has experienced rapid suburban 

expansion in recent years as agricultural lands are converted to housing and additional 

development, and this has altered the flow patterns and channel morphology of Rowlett 

Creek. The resulting amplification of hydrological impacts on the wetlands over the 

course of this study was significant, with intense seasonal floods and drying in summer 

months.  

Hydrology is often an important determinant of wetland plant communities 

(Weiher and Keddy 1995, Keddy 1999), and the effect of urban hydrology may 

potentially act as a stringent filter in the assembly of species in the developing plant 

community on site. As originally designed, the wetland complex, located adjacent to 

Rowlett Creek, would contain both inlet and outlet structures to allow passage of 

floodwaters through the system. However, earthen berms constructed during excavation 

were never removed. This resulted in a largely enclosed depression that is removed from 
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all but extreme floods and retains water from floods, runoff, and direct rainfall for much 

longer and at far greater depths than anticipated. The growth form and life history 

strategies of plants had a major role in the development and expansion of the wetland 

plant community in this context. Emergent species, especially transplanted plants, 

showed very little development outside the immediate area of transplantation. 

Rhizomatous expansion and growth from tubers accounted for most of the development 

of Eleocharis and Sagittaria.  

Urbanization and associated hydrological patterns have had significant effects on 

growth and function of emergent wetland vegetation elsewhere (Kleppel 2004). Under 

relatively narrow water level fluctuations, growth and diversity of emergent vegetation is 

actually enhanced by allowing periodic soil oxidation for germination and expansion of 

new plants (Kellogg and Bridgham 2002, Coops et al. 2004). Low levels of flooding 

may also result in increases in wetland species richness and improved wetland 

functioning (Fennessy et al. 1994, Engelhardt and Ritchie 2002), underscoring the value 

of hydrologic variability within relatively restricted ranges. In our wetland, periodic high 

water allowed germination of species such as Sagittaria latifolia at slightly higher 

elevations than depths which initially received transplants. However, evapotranspiration 

resulted in significant summer drawdown, causing widespread drought stress and loss of 

aboveground biomass in many individual plants stranded above the receding water level. 

Alternatively, when plants sprouted and began to spread at the new lower water levels, 

fall and winter rains flooded the site, raising water levels up to 2m in some locations, 

submerging emergent plants to depths beyond their tolerance. This rapid and extreme 
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increase of water depths likely impeded gas exchange, arrested root processes ad 

germination, and in some cases, increased depth to such an extent that photosynthesis 

was no longer possible (Pezeshki et al. 2000). Widespread mortality of wetland plants 

has been shown to occur with significantly lesser flooding (Pezeshki et al. 2000, Fraser 

and Kairnezis 2005), and this likely favors plant species with special strategies including 

annual life cycles and reproduction by fragmentation.  

These fluctuations in water level did allow for colonization by several annual 

species. In 2004, many of these plants were facultative or facultative upland species, 

including Chamaecrista fasiculata and Iva annua L, which took advantage of barren 

substrate following construction and colonized the site in very high densities. However, 

unseasonably high rainfall and cool temperatures the remainder of the year led to higher 

water levels and mortality of species not adapted to hypoxic or saturated soil conditions. 

Water level has been shown to be a critical factor in the development of vegetation at the 

interface between aquatic and terrestrial habitats (Hudon 2004), and this was observed in 

our site. The overall increase in affinity for hydric soils among the species represented in 

the plant community is reflected in the increase in the WIS Index for the site and 

corresponds with findings of other studies (Fennessy et al. 1994). Upland and peripheral 

species were drastically reduced or disappeared altogether, while wetland obligates 

almost completely dominated the site in 2005.  

 Though hydrological variability hindered the growth and survival of obligate 

emergent and facultative species, it likely represented a factor significantly favoring the 

proliferation and dominance of P. nodosus. Establishment of most emergent species in 
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wetlands initially depends on germination, though vegetative reproduction increases in 

importance thereafter and as water levels rise (Smith et al. 2002). While emergent 

species showed some expansion in 2004, P. nodosus had already spread rapidly, and by 

2005 showed extensive coverage in planted sloughs. Potamogeton growth occurred 

primarily through rhizome extension; vegetative propagation independent of germination 

requirements. Additionally, much of the expansion of Potamogeton resulted from 

mechanical disturbance, which removed portions of fragile stems and leaves from the 

parent plant. These detached sections were then transported by wind and deposited along 

the slough shore. Locally, prevailing winds are southerly in summer and northerly and 

westerly in winter. As the sloughs are primarily arranged along this axis of wind 

direction, this provided a mechanism for transport and expansion. Fragments deposited 

by wind quickly rooted and began to spread, acting as source colonies for further plant 

propagation. As water levels fluctuated seasonally, translocated plants were able to 

colonize new areas throughout the slough as submerged areas experienced drawdown in 

dry periods of the year. Due to this translocation and the flexible, floating nature of this 

species, Potamogeton was also able to remain its photosynthetic structures at the water 

line, enduring the periodic stress of drastically increased water depths. Remants of 

colonizing Individuals of this species were found far above the mean water level, 

indicating an ability to adapt to hydrologic variability and colonize new substrate. 

P. nodosus is presently the dominant species in planted sloughs, and given time, 

will likely colonize unplanted sloughs as well. Similar trends by Potamogeton spp. have 

been documented at sites in many regions, with typical  species of pondweeds 
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contributing >50% of aquatic plant biomass in some studies (Kennison et al. 1998, 

Engelhardt and Kadlec 2001). Though dominance has been linked to mechanisms such 

as eutrophication (van den Berg et al. 1999, Cristofor et al. 2003, Hudon 2004) and 

disturbance by wind-related stress (Havens et al. 2004), rapid expansion and dominance 

by Potamogeton is also often associated with extremes in hydrology, both drawdown 

and periodic high water (Capers 2003, Combroux and Bornette 2004, Turner et al. 

2005). In many cases, Potamogeton in highly variable and dynamic systems can quickly 

dominate other macrophytes through its rapid growth and its ability to reproduce by 

seed, rhizome extension, and fragmentation. 

Over the course of the study, dense growth of submersed Najas 

guadalupensis/Chara spp. was widespread in all plots, regardless of planting treatment. 

Both species are annuals with high rates of reproduction via seeds (Najas) or spores 

(Chara) and are common in shallow lakes with high visibility. Soil introduced with 

transplants had high densities of Najas seed, a measure utilized by LAERF in restoration 

projects to encourage rapid cover of bare substrate. Sediment stabilization by the 

anchoring action of many fibrous roots in Najas, increases in water clarity resulting from 

reduction of water currents by both Najas and Chara, and nutrient retention in 

submerged tissues often affect establishment of other macrophytes in shallow lakes 

(Kufel and Kufel 2002, Nõges et al. 2003, Schutten et al. 2005). As these submersed 

plants are held to be somewhat transitional in nature in shallow lakes, it is anticipated 

that they will eventually be outcompeted by more desirable macrophytes through 

succession over time, though Chara may likely continue in importance (Smart et al. 
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1996, Havens et al. 2004). Initially, however, Najas will likely impact system processes 

through rapid generation of biomass. Dense growth of submersed Najas/Chara clumps 

filled the entire water column in many plots, from the substrate to the water surface, 

resulting in several kg/m2 of plant material in the slough shallows. At these densities and 

under current conditions, competition with floating-leafed and germinating broad-leafed 

emergent plants will likely result in dominant coverage of submersed cover in portions 

of many sloughs. Some quadrats with near complete coverage of submersed cover were 

found to have low levels of cover by other hydrophytes. High densities may result in 

diminished spread by floating-leafed vegetation and less available substrate for 

colonization and expansion by emergent vegetation and may also suppress competition 

through allelopathy (Gross et al. 2003). Vigor of perennial vegetation found in dense 

clumps of submersed vegetation was qualitatively observed to be lower than among 

individuals in areas with reduced Najas/Chara cover, possibly demonstrating 

competitive stress. 

 

Temporal Effects on Community Development 

 

While planting did have a significant effect on the plant community, the passage 

of time also had a profound impact on the makeup of developing hydrophyte 

associations. By 2005, the site was dominated by submersed Najas guadalupensis 

vegetation, with Potamogeton nodosus forming a major component of plant cover in 

planted sloughs. Life history strategies encouraging rapid growth and high rates of 
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reproduction likely contributed to the increasing dominance of both species. 

Interestingly, species richness values differed on scale of study, with quadrats increasing 

in species present, while transects showed a significant decline. Regardless of trend, 

species richness was very low both in quadrats and along transects, with only 1-3 

species/m2. However, this may an artifact of using small quadrats and relatively short 

transects in sampling. Though each individual plot contained very few species, the 

sloughs as a whole were more species rich. The number of species represented in all 

quadrats and transects was actually somewhat higher (Table 2.1), and additional species 

were present in the site but not found in sampled plots.  

Dispersal limitations likely explain the current paucity of other typical regional 

hydrophytes, though these may be introduced in time through colonization processes. 

Migrating waterfowl are seasonally abundant on the site, and have been shown to 

transport small seeds of certain wetland emergent and submersed aquatic species as well 

as oogonia of Charophyte algae in other areas (Holt Mueller and van der Valk 2002) 

Charalambidou and Santamaria 2005). The cumulative effect of large numbers of birds 

in successive seasons may contribute significantly to an influx of propagules and species 

into the wetland over time. Likewise, transplanting was partially able to overcome this 

dispersal obstacle for some species, and resulted in higher numbers of species in planted 

areas than in unplanted controls. Additionally, among the transplanted species, only 

Sagittaria lancifolia and Sagittaria latifolia were believed to have been present prior to 

transplanting. The removal of topsoil likely removed the majority of wetland plant 

propagules, diminishing the seed bank and reducing the pool of colonizers from within 
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the site. Created and restored wetlands recovering from intense disturbance often face 

this obstacle, and species richness often increases over time, but this is dependent upon 

dispersal vectors (Luckeydoo et al. 2002). Through establishment of transplanted 

vegetation,  

 

 

Species Indicator Status
Alternanthera philoxeroides (Mart.) Griseb. OBL
Ambrosia trifida L. FAC
Ammannia coccinea Rottb. OBL
Chamaecrista fasciculata (Michx.) Greene FACU-
Cyperus erythrorhizos Muhl. OBL
Eleocharis acicularis (L.) Roemer & J.A. Schultes OBL
Eleocharis compressa Sullivant FACW
Eleocharis quadrangulata (Michx.) Roemer & J.A. Schultes OBL
Iva annua  L. FAC
Leersia hexandra Sw. OBL
Ludwigia repens J.R. Forst. OBL
Najas guadalupensis  (Spreng.) Magnus OBL
Panicum dichotomiflorum Michx. FACW
Pluchea odorata L. Cass. OBL
Polygonum hydropiperoides Michx. OBL
Polygonum lapathifolium L. FACW-
Populus deltoides Bartr. ex Marsh. FAC
Potamogeton nodosus Poir. OBL
Sagittaria lancifolia  L. OBL
Sagittaria latifolia Willd. OBL
Salix nigra Marsh. FACW+
Sesbania exaltata (P. Mill.) McVaugh FACW-
Sesbania vesicaria  (Jacq.) Ell. FAC+
Symphyotrichum subulatum (Michx.) Nesom OBL
Typha latifolia L. OBL

Table 2.1. Species present in sample plots. Though richness in quadrats 
and along transects themselves was low, the number of species present 
in the wetland was higher, and many of these were wetland obligates. 
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created wetlands have, in some cases, species richness values that actually exceed those 

of unplanted restored wetlands and even reference wetlands (Heaven et al. 2003), though 

species composition is often dominated by early-successional or facultative upland 

species.  By 2005, introduction of other hydrophytes locally had resulted in increased 

species richness in areas that received transplants. Transplanting can boost species 

richness initially, and this may be sustained by increased subsequent propagule 

production (Kellogg and Bridgham 2002). 

Another significant barrier to higher species richness and diversity was the 

fluctuation of water levels in the site. Quadrats were primarily located just below the 

mean water level, resulting in somewhat stable inundation for much of the year. 

However, transects spanned the slough slope from water depths of approximately 0.5m 

to elevations of 0.5m above mean water levels.  

Over time, transplants such as P. nodosus spread between planting treatments, 

and a few colonizing species, including Leersia hexandra, began to appear in low 

numbers in quadrats. L. hexandra is common in broadleaf freshwater marshes and its 

rhizomatous growth allows rapid colonization and expansion in newly flooded substrate 

in areas near preexisting wetlands (Wetzel et al. 2001), and other species with similar 

growth strategies will likely colonize the site in the future. Najas became present in 

nearly all plots, increasing richness slightly in the quadrats. While obligate wetlands 

plants increased in the quadrats, the loss of facultative species resulted in the overall 

decline in transect richness. In 2004, peripheral wetland species including Iva annua, 

Pluchea odorata (L.) Cass., and Polygonum lapathifolium L., were common along drier 
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upslope portions of slough shores, and dense stands of Chamaecrista fasciculata were 

found slightly higher. These warm season annuals were able to quickly colonize the new 

substrate and were widespread by early summer 2004. The typical summer pattern of 

dry, weather allowed continued dominance of these species in many areas. However, by 

fall and winter 2004, uncharacteristically high rainfall and seasonal reductions in 

evapotranspiration combined to drastically increase the water level in the wetland 

complex. Upland and facultative plants were inundated, and almost no open ground 

remained above water until late spring. The annual facultative species experienced 

complete mortality under the increased water levels. While larger slough transects 

captured more species, there were still only 3-4 species/20m transect. Interestingly, 

planted sloughs increased in species richness while unplanted soughs declined in number 

of species present. As among plot transects, we suspect alternating flooding and 

desiccation caused mortality of some species that initially colonized the site in 2004, 

resulting in the loss of several facultative species. However, transport of uprooted and 

detached transplant fragments likely also contributed to local increases in species 

richness as viable propagules from elsewhere in the transplanted sloughs were deposited 

on slough shores by wind and wave action. Sagittaria spp. tubers were observed to 

resprout and expand via rhizomatous growth after deposition through this process. 

While the seasonal variations in hydrology may increase the hydrophytic 

character of the site, the highly variable nature of local hydrology and resulting frequent 

and intense disturbances may cause a periodic ‘resetting’ of the site, resulting in 

dramatic changes between alternate states (Kennison et al. 1998, Yallop and O’Connell 
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2000, Didham et al. 2005) and increasing the importance and dominance of annuals and 

opportunistic species. Periodic inundation resulted in harsh environmental conditions 

that favored neither wetland obligates or upland vegetation (Figure 2.6). It is likely that 

the plant community will be dominated by short-lived opportunistic ruderal species and 

species that tolerate or adapt to extreme variation in water levels, such as P. nodosus and 

Typha spp. (Fennessy et al. 1994, Weiher and Keddy 1995, Giovannini and da Motta 

Marques 1999). Perennial vegetation must tolerate these hydrological regimes are will 

be forced to rely on annual colonization as conditions allow (DeBerry and Perry 2004). 

This may prove to be problematic, as disturbance-prone conditions often enhance 

performance of invasive species and early colonizers that may suppress growth of 

desirable native species (Farnsworth and Meyerson 2003, Hager 2004, van der Valk 

2005). Such extremes are initially stressful on plant community formation, resulting in 

periodic loss of species and biomass (McKinstry and Anderson 2003, Turner et al. 

2005), but sustained drying may actually benefit the site in the long run, allowing 

germination and enhancing soil nutrient cycling. Additionally, perennial wetland 

obligates can survive dry conditions for periods of over a year and will respond with 

fluctuations in plant distribution and community composition upon reflooding (Hudon 

2004, van der Valk 2005), though this response assumes healthy macrophyte growth or 

at least a viable seed bank is present on the site (Liu et al. 2006). Though minimal 

flooding and drawdown can be beneficial, the current hydrologic regime in the wetlands 

is much more characterized by flooding than drying, and this stress may prove difficult 

to overcome for all but floating-leaf and submersed aquatic vegetation. 
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Figure 2.6. Extreme water level fluctuations will likely have a large impact on 
developing wetland plant communities. The views are of the same location from 
different perspectives, both in 2005. At top, note high water, drowned upland vegetation, 
and algal mats found in late spring. By late summer, water levels had receded, exposing 
fish spawning pits and resulting in severe soil cracking.
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Time and proximity to seed source have been shown to be important 

determinants of wetland plant colonization (Reinartz and Warne 1993, Onaindia et al. 

2001, Luckeydoo et al. 2002), but even as seeds are dispersed into the wetland, they 

must be able to survive highly variable conditions (Liu et al. 2006). Increases in species 

richness may stabilize, not due to establishment of high successional perennial species as 

observed by Parikh and Gale (1998), but rather due to extreme environmental conditions 

that represent a barrier to macrophyte survival. Emergent freshwater marshes are also 

somewhat uncommon in north Texas, and geographic isolation from other wetlands may 

prevent dispersal of some typical wetland plant species in the region (McKinstry and 

Anderson 2003). Land use of surrounding areas may further affect and suppress species 

richness by altering propagule availability and dispersal vectors (Houlahan et al. 2006). 

If this barrier proves in surmountable, further transplants of additional species may be 

required in the future and may improve wetland function (Callaway et al. 2003). 

However, the location of the wetland within the floodplain of Rowlett Creek may 

diminish the effect of isolation and increase the likelihood of dispersal of propagules into 

the sloughs (Matthews et al. 2005). One potential factor that may improve survival by an 

increased number of species the topographic heterogeneity and increased wetland edge 

habitat created as part of mechanical manipulation of the wetland. Species richness 

among ponds and sloughs has been correlated with pond perimeter (Matthews et al. 

2005) and increases in environmental heterogeneity (Brooks et al. 2005). Diversity of 

wetland obligates is largely tied to emergent species, plants often found in a fringe 

around open water.  The creation of multiple sloughs increases this available fringe, and 
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topographic heterogeneity may allow the continued presence of wetland fringe 

vegetation even in periods of high water, maintaining the potential habitat required for 

high species richness. Nevertheless, the small size of individual sloughs themselves may 

result in low levels of stable, interior wetland habitat, which could limit the 

establishment of some sensitive species (Matthews et al. 2005). 

 Another factor that may affect wetland development is that urban wetlands are 

often hydrogeomorphically atypical to regional wetlands (Cole and Brooks 2000, 

Kentula et al. 2004). Such disparity in environmental conditions between local wetlands 

may limit dispersal and survival of colonizing plants, even from nearby sources 

(Grayson et al. 1999), leading change in system function (Ehrenfeld 2004). The nature of 

drainage on the site and fluctuating hydrological regimes will likely lead to highly 

dynamic seasonal patterns of plant cover (Smith et al. 2002), with marked differences 

between summer and winter species and abundance patterns. Riverine floods have been 

shown to act as both a disturbance and a vector for plant colonization (Assini 2001), but 

only when both inflow and outflow are permitted will this propagule source be realized. 

The current lack of stability in environmental conditions will preclude establishment of 

sensitive perennial species and will probably lead to a landscape comprised largely of 

open water habitat and bare ground, though annual species will likely colonize many 

areas in warm months. This highly transitional nature will likely impact formation of 

wetland soils and alter succession trajectories.  Constant saturation and drying cycles 

may not only decrease plant growth and resulting organic matter inputs, but may also 

stress the soil microbial community and inhibit proper soil processes. A lack of sediment 
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and nutrient inputs into the system from riverine floodwaters will probably further 

prohibit plant growth and colonization.  

Much focus is placed on the long-term succession and vegetation dynamics of 

wetland sites, but noticeable changes occur on much shorter time scales. Particularly 

among algae and submersed vegetation, changes in biomass may occur over periods of 

weeks and even days (Hudon 2004). While fluctuations among existing plant 

populations will occur over time, until an outlet is installed on the site, seasonal 

succession pathways due to extreme water level changes will likely play a very 

significant role on the site and may drastically affect long-term succession (Smith et al. 

2002) as seasonal extremes cause widespread mortality and prevent germination of 

colonizing plants (Wetzel 2001, van der Valk 2005). Additionally, since lack of outflow 

magnifies hydrological fluctuation, seasonal variation and interannual climate change 

may also act as a filter on species establishment and community composition (Singer et 

al. 1996, Zedler and Callaway 1999, Hudon 2004, Johnson et al. 2005, Toth 2005). 

While seasonal fluctuations played an important role in the pattern of developing 

vegetation, the duration and intensity of inundation of the site was markedly different 

between years, with summer 2005 water levels averaging 0.5m higher than the 

corresponding period in 2004 and taking more than a month longer than the previous 

year to return to mean water levels. Such fluctuations likely present significant stress to 

many plants, and the interaction of seasonal and annual climate patterns will likely 

inhibit many desirable species from colonizing the site beyond a single growing season. 

Crisman et al. (2005) document the difficulty in establishing wetland macrophytes under 
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rapid drawdown and reflooding regimes, and phytoplankton and cyanobacteria often 

become the dominant means of primary production in such circumstances.  

 Nevertheless, as submersed plants are shaded and potentially replaced by floating 

Potamogeton, this may have further significant impacts on the function of the aquatic 

system. Gas exchange in submersed vegetation releases oxygen to the surrounding water 

column with moderate rates of transfer to aquatic sediments, retaining much of the 

dissolved oxygen locally. However, floating-leafed vegetation gas exchange occurs at 

the water-air interface, releasing oxygen to the atmosphere and depleting dissolved 

oxygen (Caraco 2006). Additionally, while P. nodosus produces high levels of organic 

matter, it is the distribution of this growth that may affect the system. Submersed 

species, such as Najas guadalupensis, reinvest much of their organic matter output in 

sediments, through rootstock growth and deposition of plant material. Floating-leafed 

species often produce much higher levels of organic matter, but this is concentrated at 

the surface and in respiring aquatic tissues. During photosynthesis, organic matter is 

imported without oxygen, resulting in increased deficits of dissolved oxygen. As plants 

senesce, carbon is exported from P. nodosus communities and is transported greater 

distances than in systems dominated by submersed plants. Najas spp. have been shown 

to be unaffected by Potamogeton spp. competition (Agami and Waisel 1985), but if a 

shift in community structure does occur, such differences in plant physiology may have 

profound impacts on system function and the pattern of wetland vegetation (Caraco 

2006).  
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Protective Caging 

 

 Protective caging was utilized upon recommendation by LAERF personnel and is 

widely utilized in wetland restoration and other projects involving the transplanting of 

wetland vegetation. Due to the potential for intense grazing pressure on sparsely planted 

introduced plant materials in the initial stages of restoration projects, mechanical 

structures minimizing access to plants themselves are a commonly used approach to 

increase initial survival. Many emergent species, including Typha latifolia, have been 

shown to suffer high rates of mortality after underwater cutting to simulate herbivory, 

and detrimental effects were compounded by variable flooding regimes (Mathis and 

Middleton 1999).  As such, protection of transplanted emergent vegetation was a 

priority. Prior to planting, site inspection and test planting revealed the potential for 

herbivory by pond slider turtles Trachemys spp. and common carp Cyprinus carpio L. 

Mammalian herbivory was not anticipated. However, despite the possibility of plant 

disturbance, caging had almost no effect on plant survival.  

 While herbivory did not play a significant role, the structure of cages may have 

actually provided the basis for some of the vegetation patterns observed. Though not 

born out in statistical comparisons, cages did appear to provide a focal point for growth 

of floating-leafed and submersed vegetation. Though cages themselves did not harbor 

significantly higher levels of plant cover, growth around cages and in neighboring plots 

possibly obscured trends in plant community expansion which may have been an artifact 

of design and placement of cages. When sampling, we observed uncaged quadrats 
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directly adjacent to caged quadrats to have somewhat higher Najas and Potamogeton 

cover than unsampled areas at greater distances from cages. While cover between 

sampled caged and uncaged plots was not significant, differences between uncaged plots 

near cages and uncaged areas removed from cages likely were. We suspect that cages 

served as protection not from herbivory and biological disturbance but from mechanical 

disturbance. Periodic storms and seasonal wind patterns dislodged some P. nodosus 

transplant fragments and transported them along the slough. Caged areas apparently 

trapped some of these fragments, and vegetative growth of translocated segments 

continued within and adjacent to cages. As cages and surrounding areas became 

‘hotspots’ for this new vegetative growth, the increasingly dense vegetation produced a 

positive feedback mechanism by which cages and plant cover both reduced removal of 

plant material and increased retention of fragments from elsewhere in the slough. As 

structure increased capture and growth of submersed and floating-leafed cover, 

expansion continued in an approximately north-south axis, roughly corresponding to 

prevailing winds. P. nodosus and N. guadalupensis likely increased their dominance 

through this mechanism, as structure elsewhere on the sloughs was associated with 

elevated levels of each species. Terminal ends of sloughs along the north-south axis had 

much higher percentage cover by these species than did lateral shores of the same 

sloughs. As fragments were transported, they were carried by wind and wave energy 

until their movement was impeded. In ends of sloughs as well as cages, these areas 

became dense colonies of submersed and floating-leafed plants that spread outward 
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along the shore and into uncaged plots. These founder colonies may serve as an 

important front for further expansion (Smart et al. 1996).  

 Though herbivory is not at present a driving force in our study site, its role may 

increase in the future as herbivores themselves colonize the site. As vegetation continues 

to become established in bare substrate, terrestrial organisms will likely move into the 

wetland to utilize developing resources in and around sloughs. Aquatic herbivores have 

already been observed to have moved into and dispersed across the site in association 

with periods of flooding. These organisms, particularly turtles, can influence plant 

community succession and dynamics as they selectively graze hydrophytes in sloughs. 

Common carp also affect growth of both submergent and emergent macrophytes 

(Lougheed et al. 2004, Tatrái et al. 2005) and may colonize the wetlands in the future. 

Though transplanted herbaceous species were not appreciably reduced by grazing 

pressure to date, woody colonizing species and saplings planted elsewhere in the 

wetland, including Populus deltoides Bartr. ex Marsh. and Salix nigra, suffered heavily 

from mammalian herbivory. If this grazing pressure shifts to emergent species, there 

may be profound effects on production and community composition, possibly degrading 

the system (Johnson Randall and Foote 2005). While the lack of herbivory on 

hydrophytes in our site was not a certainty beforehand, caging is often a critical 

preventative measure in the early stages of plant establishment. 
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Effects of Scale 

 

 One interesting trend in the data is the decrease of observable effects of 

transplanting with increased scale of examination. At the small scale of sampled 

quadrats, we found detectable differences in species richness, total cover by the all 

transplanted species as well as cover by each individual introduced species, and cover by 

emergent and floating-leafed plants. With the exception of P. nodosus, planted species 

were restricted to plots originally receiving transplant of that species, and no plants were 

found in unplanted sloughs. When transects were examined, total cover by all 

transplanted species was again significantly different between planting treatments. 

However, individual transplant species were present in such low densities that only 

Potamogeton showed significant effects between planted and unplanted sloughs. At the 

slough scale, even strong differences in P. nodosus between planting treatments 

disappeared. While none of the individual species were present in different quantities 

based on planting, the sum of all transplanted species remained significantly different, 

with planted sloughs retaining greater cover. Curiously, while cover by non-transplanted 

colonizing species was not different between planted and unplanted treatments in 

quadrats or transects, planting treatment resulted in significant differences in colonizer 

cover at the scale of whole sloughs. It is to be expected that a lack of transplanted 

vegetation presents open substrate and an available niche for colonizing species to fill, 

resulting in an inverse relationship between transplant and colonizer cover. However, it 

is interesting that this pattern was not observed at smaller spatial scales. One possible 
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explanation offered by Kellogg and Bridgham (2002) is that lack of differences between 

planting treatments indicates rapid colonization during the process of succession. While 

this may be true at larger scales, similarities between treatments are largely a result of 

dominance by only one or two species in this site. 

 This overall trend of lack of significance between planted plots and controls in 

initial years poses serious questions about the future development of the system. Though 

Parikh and Gale (1998) observed only slight differences among perennial cover between 

restored and reference wetlands, responses between treatments in our wetland, rather 

than being a result of consistent high levels of growth, were instead tied to consistent 

lack of cover and richness. All treatments are far below desired perennial cover of 

observed nearby reference wetlands. As vegetation sampling yielded low estimates of 

species richness compared with the species actually present in the wetlands, perhaps the 

scale of observation plays a role in determining the effects of planting on community 

assembly. Will differences between plant communities arise and become more 

pronounced as transplanted vegetation undergoes expansion and reproduction, or will 

they remain dampened by slow transplant growth and roughly equivalent rates of 

colonization by additional species? Time will tell, but the answer most likely lies 

ultimately in site hydrology. Under current conditions of extreme water level fluctuation 

and associated plant stress, only plants adapted to such unstable conditions will expand 

in total coverage. Some transplanted species may not have life history traits necessary 

for survival in this environment, and this may lead to domination of the site by one 

transplanted species (P. nodosus), several species of pioneering warm season annuals, 
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and a few hardy perennials, including Typha latifolia and possibly Sagittaria spp. 

Woody perennials that tolerate alternating periods of inundation and drying, such as 

Salix nigra, may also increase in importance in the wetland complex in the future. An 

almost identical pattern of colonization during drawdown by plants including 

Polygonum lapathifolium, Cyperus spp., and Populus deltoides has also been observed 

elsewhere (Hudon 2004) and may represent the future status of wetland vegetation 

dynamics in the sloughs.  

   

CONCLUSION 

 

 We sought to determine the effects of using different species in transplanting 

efforts, protective caging of introduced plant materials, and the passage of time on the 

development of the plant community as part of a wetland restoration project. While 

introduced emergent species did not contribute significantly to community development, 

transplanted Potamogeton nodosus dominated the system and will likely affect 

community dynamics in the future. Unplanted sloughs were largely dominated by 

aggressive annuals after two growing seasons. Species richness was very low across the 

entire site, regardless of transplanting. Caging had no effect on plant cover or 

community composition but may prove to be a focal point for submersed and floating-

leaf vegetation. Many of the significant changes at the species level were associated with 

the passage of time.  
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 Though the dominance of P. nodosus and N. guadalupensis and colonization by 

annual species is likely to continue, there is a tremendous need for continued monitoring 

of the system well into the future. As seasonal and interannual fluctuations occur and 

more species are dispersed into the site, the composition and function of the wetland 

plant community will likely continue to fluctuate, and it would be very difficult to 

predict future vegetation succession. As conditions change, more plantings may be 

necessary, possibly including a more species-rich mix, which may improve wetland 

function and enhance the likelihood of at least a portion of those species being suited to 

environmental conditions in the wetland. Time and hydrology will remain critical. 
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CHAPTER III 

AQUATIC MACROINVERTEBRATE COLONIZATION AND THE EFFECT OF 

VEGETATION STRUCTURE 

 

INTRODUCTION 

 

 Wetlands are important habitats because they perform countless functions at the 

landscape scale (Mitsch and Gosselink 1986, Noon 1996) and have been greatly reduced 

in extent from historical levels. Various approaches to replacing these wetlands include 

construction of new wetlands as well as restoration of damaged or disturbed existing 

wetlands. Though wetland creation and restoration projects are rapidly becoming more 

common and larger in scope, the science behind the discipline is still quite new, and 

many questions remain unanswered regarding these approaches differences among the 

effects of such practices (Zedler 2000). Depending on landscape context and other 

factors, different studies have shown created and restored wetlands, either structurally or 

functionally, to vary along a continuum of similarity to their targeted reference wetlands 

and even to each other (Wilson and Mitsch 1996, Malakoff 1998, Zedler and Callaway 

1999, Campbell et al. 2002, Mushet et al. 2002, Heaven et al. 2003, Seabloom and van 

der Valk 2003, Zampella and Laidig 2003, Balcombe et al. 2005a, Spieles 2005), thus 

demonstrating the highly variable and contextual responses of wetland development.  

 One key element in successful wetland restoration is the aquatic invertebrate 

communities that develop in project areas. Organisms representing a broad range of taxa 
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play critical roles in system function of all wetland types (Brooks 2000, Craft 2000, 

Euliss et al. 2002). However, much uncertainty remains regarding the effects on the 

invertebrate assemblage and its dynamics during the initial years, depending on the 

approach taken in wetlands restoration. In mitigation wetlands, invertebrate communities 

sometimes replicate natural communities (Streever et al. 1996, Gleason et al. 2004, 

Stanczak and Keiper 2004, Balcome et al. 2005), but similarities depend upon various 

factors, including macroinvertebrate taxa (Hillman and Quinn 2002). 

 To improve our understanding of the development of aquatic invertebrate 

communities in restored wetlands, we sampled the invertebrate community in 10 sloughs 

(approximately 70 m x 15 m) in a restored wetland complex. Our objectives were to 

determine the change in invertebrate distribution and abundance (1) following initial 

transplantation of wetland vegetation, (2) in response to protective caging of 

transplanted vegetation, and (3) correlated species-environment relationships within 

developing wetland sloughs. 

 

 

 

 

 

 

 

 



58 

 

METHODS 

 

Study Site 

 

 Following the closure in fall 2002 of a municipal landfill operated by the City of 

Garland, Texas, the adjacent land underwent major changes intended to create a research 

area for the study of wetland development in creation and restoration projects. Located 

approximately 27 km northeast of Dallas in northeast Dallas County (32°94’N, 

96°59’W), the wetland research project is adjacent to an area experiencing rapid 

suburban development, and as such is subject to rapidly changing hydrological 

conditions. After nearly three decades of landfill operation, a large 31 ha borrow pit was 

excavated. The upper 3-5 m of removed soil was incorporated into, and used to cap, the 

old landfill area. In the borrow pit, the water table is quite high because it immediately 

borders Rowlett Creek. The creek is the main drainage in the 3,143 ha Rowlett Creek 

watershed, contributing to the Trinity River. Remaining forested riparian corridors, 

dominated by Quercus spp and Ulmus spp. (Nixon et al. 1991), have been significantly 

impacted based on observed channel features such as downcutting of the creekbed and 

active sloughing of stream banks. Within the borrow pit, eolian deposition and periodic 

(seasonal) floods had transported colonizing plant material typical of other disturbed 

local wetland sites, including Typha latifolia L., Salix nigra Marsh., and Ludwigia 

repens Forst. However, summer evaporation of water from dense clay soils having high 

shrink-swell potential had limited the development of plant cover.    
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 In this setting, heavy machinery was used to increase topographic heterogeneity 

that would help to create a wetland complex of several sloughs, flats, ridges, and a large 

oxbow lake. Water level in these sloughs is maintained by groundwater and is 

augmented by increased local precipitation in spring and fall, to produce depths that 

range from 1 to 2 m throughout much of the year. Evapotranspiration during summer dry 

spells causes significant drawdown and a reduction of water levels.  Occasionally, large 

rainfall events elevate water levels enough to temporarily connect the sloughs within the 

complex. Ten sloughs were designated for our investigation of the initial response of 

aquatic macroinvertebrate communities. 

 

Study Design 

 

 In ten sloughs in the site, multiple-factor vegetation transplanting treatments 

were implemented to establish planted and unplanted experimental sloughs. In each of 

five sloughs, five wetland species were planted near the mean water level and arranged 

in species blocks: Potamogeton nodosus Poir., Sagittaria latifolia Willd., Sagittaria 

lancifolia L., Eleocharis quadrangulata (Michx.) Roemer & J.A. Schultes, and 

Polygonum hydropiperoides Michx. Each of these species is common to regional 

wetlands, widely used in revegetation efforts, and was preconditioned offsite at the U.S. 

Army Corps of Engineers Lewisville Aquatic Ecosystem Research Facility (LAERF).  

With the exception of P. nodosus, which was transplanted at slightly greater depths, all 

plants used are herbaceous emergent species. Within planted blocks grouped by species, 
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both caged and uncaged quadrats were established to test the effect of protective caging 

on the survival and spread of our transplanted vegetation as well as colonizing 

hydrophytes. With five species, each planted slough contained five each of caged and 

uncaged subplots, one of each per transplanted species area. Cages were approximately 

1m2 and were constructed using 14 gauge welded steel wire with 5 cm x 10 cm mesh and 

anchored with 1.3 cm steel reinforcing bar to prevent the displacement of cages by 

animals and debris transported into and within the wetland during high water. Three 

caged and three uncaged quadrats were established in each of the five unplanted sloughs 

as controls for caging and transplanting effects.  

 Macroinvertebrates were collected in late summer in 2004 and 2005. In each 

year, 10 quadrats (5 uncaged, 5 caged) were sampled in each planted slough, and 6 (3 

uncaged, 3 caged) quadrats were sampled in control sloughs receiving no transplanted 

vegetation. Within each of these quadrats, we visually estimated percent total cover by 

each plant species (transplanted as well as colonizing species) and sampled vegetation 

and the water column collectively for aquatic macroinvertebrates. Using a hollow 

cylinder (30 cm diameter x 45 cm height), we enclosed a portion of the sampled quadrat, 

disturbed the substrate to suspend invertebrates in the water column, and collected them 

in a hand-held net with 1 mm mesh. After two minutes of sampling effort, the quadrat 

was considered exhaustively sampled when no additional macroinvertebrates were 

found. In caged quadrats, rebar anchors were temporarily removed and the cage was 

raised briefly to permit sampling and was immediately repositioned following 

macroinvertebrate collection. Invertebrates were collected and identified (to order or 
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family as needed to distinguish among commonly reported wetland taxa; Brooks 2000) 

upon return from the wetland site.  

 

Statistical Analyses 

 

 Invertebrate counts were summed by caging treatment and slough and means 

were calculated for each cage treatment within each slough for comparisons between 

treatments. Statistical comparisons of total invertebrate abundance were performed with 

repeated measures MANOVA procedures using SPSS 12.0 (Norusis 2004). A 

significance level of p = 0.05 was used for statistical tests.  

 Counts of each invertebrate taxon were used in a correspondence analysis (CA) 

to determine environmental gradients related to plant cover components. We used 

canonical correspondence analyses (CCA) in CANOCO (Jongman et al. 1995) to 

quantify relationships between the invertebrate abundance matrix and a matrix of 

explanatory variables (including arcsine-transformed plant cover and environmental 

factors) related to our restoration transplanting treatments. Sampling date was utilized as 

a blocking variable to remove variation due to temporal replication within sloughs. 

Using Monte Carlo simulation (N = 499 permutations), we tested each variable for its 

significant (p = 0.05) contribution to the distribution of macroinvertebrate abundance in 

our samples. We also omitted variables having a high degree of mutlicollinearity (VIF > 

3). To visualize their relationships, we used biplots of results for invertebrates, 

explanatory variables, and supplemental environmental variables (those variables having 



62 

 

high VIF values but included in plots in order to visualize their relationships to other 

variables).  

 

RESULTS 

 

 Overall, total invertebrate abundance was significantly different between 

unplanted and planted sloughs (p < 0.0001). Although these differences were not 

significant in 2004 (p = 0.090), they were significant in 2005 (p = 0.002) as abundance 

values diverged. Transplanted sloughs (228.9/m2 ± 20.5, abundance given as mean ± 

S.E.) harbored greater numbers of individuals per sampled quadrat than did unplanted 

sloughs (99.0/m2 ± 26.5) in 2005 (Figure 3.1). Additionally, the passage of time had a 

significant effect on total abundance (p < 0.0001), which increased by almost an order of 

magnitude across the two years. Whereas in 2004 some samples yielded no 

invertebrates, by 2005 samples in all sloughs contained multiple taxa, and many sloughs 

had over 100 individuals/m2. The protective caging had no significant effect on 

macroinvertebrate abundance (p = 0.542), and comparable numbers of organisms were 

found in caged (32.7/m2 ± 17.1 in 2004, 153.6/m2 ± 47.2 in 2005) and uncaged plots 

(31.26/m2 ± 20.4 in 2004, 174.36/m2 ± 42.9 in 2005). 

  

  



63 

 

Figure 3.1 Total invertebrate abundance in each summer for caged 
and uncaged subplots within unplanted and planted wetland 
sloughs. 
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Figure 3.2. Invertebrate community composition in each summer 
for caged and uncaged subplots within unplanted and planted 
wetland sloughs. Plots in both years were generally dominated by 
snails and aquatic insect life stages, although the composition of 
insects changed dramatically between years. 
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 As did invertebrate abundance, the composition of the macroinvertebrate 

community also changed between years but was not significantly affected by caging 

(Figure 3.2). While Basommatophoran snails (in the families Physidae and Planorbidae) 

were particularly common in all treatments in both years (approximately 50% of total 

invertebrates in 2004, 40% in 2005), the relative abundance of other taxa shifted 

dramatically. Odonates comprised 5-10% of invertebrates in 2004, but in 2005 had 

increased to approximately 30% in all treatments. Coleoptera and Hemiptera, somewhat 

common (30% and 10% of the total invertebrate abundance, respectively) in 2004, were 

almost entirely absent in 2005, but instead Ephemeroptera (15%), Diptera (10%), and 

Amphipoda (5%) were present. Trichoptera, Decapoda, and Hirudinea were present both 

years, but at very low frequencies, occurring in only one or two samples. Overall, the 

system was dominated in summer by snails and aquatic life stages of insects in both 

years. The CCA for slough invertebrates yielded a total inertia of 1.377, with axis I (p = 

0.006) and axis II accounting for 28.0% of total species data variation, and of this, 

87.7% was due to included environmental factors. CCA indicated Potamogeton nodosus 

cover, Ludwigia repens J.R. Forst. cover, emergent cover, and total invertebrate 

abundance were significantly related to invertebrate community variation along axis I, 

and emergent cover, total plant cover, and total invertebrate abundance were significant 

along axis II (Figure 3.3). 
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Restoration treatments of transplanting and protective caging of wetland vegetation were 

not significantly related to either axis, nor was cover by submersed vegetation. 

Therefore, these variables were fitted to the regression and plotted after the model for 

other environmental variables was determined, to visualize relationships. As indicated 

on the plot, submergent cover was statistically nonsignificant due to its strong negative 

correlation with emergent cover and positive correlation with total cover. Diptera and 

Oligochaeta were associated with low plant cover and low total invertebrate abundance. 

Amphipoda, Decapoda, and Trichoptera were associated with high values of cover by 

floating-leafed plants P. nodosus and L. repens. As most of the centroids of invertebrate 

data are clustered around the origin, this may indicate either a weak correlation with 

environmental data or a significant relationship with intermediate values along these 

gradients. We suspect that the relationships demonstrated are in fact weak correlations 

with environmental gradients, as both high and low extremes of plant cover data were 

present in sampling. However, intermediate cover values may provide both cover and 

freedom of movement where either would be unavailable among extremely dense or 

open vegetation.  Overall, 68.0% of species data variation was due to covariance with 

sampling date, which was used as a blocking variable. 
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Figure 3.3. Canonical correspondence analysis (CCA) relating invertebrate 
community composition to plant cover components and wetland restoration 
treatments. Open circles indicate centroids of invertebrate distribution (AMPH = 
Amphipoda, BASO = Basommatophora, COLEO = Coleoptera, DECA = Decapoda, 
DIPT = Diptera, EPHEM = Ephemeroptera, HEMIP = Hemiptera, HIRU = Hirudinea, 
ODON = Odonata, OLIGO = Oligochaeta, TRICH = Trichoptera). Solid arrows 
indicate environmental vectors toward increasing values with longer arrows indicating 
broader range of variation in invertebrate data (Emerg. = emergent plant cover, L. rep. 
= L. repens cover, P. nod = P. nodosus cover, TotAbund = total invertebrate 
abundance, TotCover = total plant cover). Dotted arrows indicate insignificant 
supplemental environmental variables (submergent plant cover). Inverted triangles 
indicate insignificant nominal variables representing planting and caging treatments.  
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DISCUSSION 

 

 Aquatic invertebrates are a critically important but sometimes overlooked 

component of wetland ecosystems. They perform critical roles in the food web, act as 

primary consumers and decomposers, and often indicate healthy system function on a 

larger scale (Brooks 2000, Craft 2000, Euliss et al. 2002, Momo et al. 2006). While 

protective caging of transplanted vegetation did not affect the abundance of aquatic 

invertebrates in sloughs within the wetland complex, the introduction of transplants 

themselves did have a positive effect on total invertebrate abundance. There was a 

dramatic increase in macroinvertebrate abundance over the first two years of 

development of the newly restored wetlands. While neither transplanting or caging had a 

significant effect on invertebrate community assemblage, compositional change over 

time between the two years of the study may have profound impacts on system function 

in the future as the plant and invertebrate communities develop interdependently.   

  

Vegetation Effects 

  

 The extent of vegetation does have implications for system function. Expanding 

plant cover as a result of transplanting vegetation may provide important structure for 

emergence and metamorphosis of juvenile life stages (Figures 3.4 and 3.5) and may 

exclude some predators while providing grazing opportunities  
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Figure 3.4. Empty exoskeleton on emergent Eleocharis quadrangulata (Michx.) Roem. 
& Schult.after metamorphosis of dragonfly (Odonata) nymph.



70 

 

 

Figure 3.5. Dense floating-leafed cover composed primarily of Potamogeton nodosus 
with Ludwigia repens. A well-developed vegetation canopy likely provided important 
potential for grazing and cover for some groups of aquatic invertebrates. 
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(Parsons and Matthews 1995), and many invertebrate groups are positively associated 

with organic matter (Spieles and Mitsch 2003). CCA analysis indicated floating cover by 

transplanted Potamogeton nodosus and colonizing Ludwigia repens were significant in 

explaining invertebrate variation, and high growth rates of both of these species may 

have significant implications for this site. Many other studies have concluded that 

floating cover is a significant factor in explaining invertebrate community variation and 

likely results in increased macroinvertebrate abundance (Parsons and Matthews 1995, 

van Duinen et al. 2003). Regardless of species identity, vegetation growth form and 

structure is strongly correlated with invertebrate community structure (van den Berg et 

al. 1997, Garono and Kooser 2001, Phillips 2003, Schindler et al. 2003, Bried and Ervin 

2005, Kostecke et al. 2005, Hornung and Foote 2006), and plant species richness 

increases invertebrate richness (Nicolet et al. 2004). Increased production of organic 

matter may expedite soil formation and provide feeding opportunities, affecting 

invertebrate community development (Craft 2000, Flinn et al. 2005). However, most 

wetland invertebrates require heterogeneity of habitats to complete various life stages, so 

monotypic cover across the site will likely diminish taxonomic diversity if floating cover 

does come to dominate the sloughs. 
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Colonization and Hydrology 

 

 One critical determinant of aquatic macroinvertebrate assemblages in developing 

wetlands is that of dispersal through various vectors from other wetland areas off-site 

(Brady et al. 2002). This may occur via wind, floodwaters, or wildlife for different 

organisms (Charalambidou and Santamaria 2005). A potential factor initially affecting 

the invertebrate community may be the introduction of vegetation transplants 

themselves. Plants were collected at LAERF and preconditioned in constructed nursery 

ponds under fertilization and relatively constant water levels for one year to establish 

vigorous rootstock. Through collection from ponds in the facility, soil gathered along 

with plant stems was transferred during potting in submerged containers. This soil likely 

contained eggs and small numbers of various life stages of different macroinvertebrates. 

Over the course of growth in the nursery ponds, some of these organisms were observed 

to emerge and disperse, while others, particularly dragonflies (Odonata) were seen 

congregating around the ponds, likely utilizing them as small isolated wetlands for 

reproduction. As invertebrates differentially recruited and dispersed into the nursery 

ponds, they probably colonized the potted soil. Thus, when this substrate was introduced 

into the wetland site with the transplanted vegetation, some invertebrates were probably 

introduced as well, inoculating otherwise barren sloughs with low levels of aquatic 

organisms. Although these particular macroinvertebrates might also have colonized the 

site at a later time, this initial source of individuals may have accelerated recruitment of 

some taxa, especially those lacking an aerial life stage. Such introductions may not only 



73 

 

increase species diversity but result in assemblages that more resemble those of 

established wetlands (Brady et al. 2002, Gleason et al. 2004). Interestingly, Brady et al. 

(2002) also found that such facilitated recruitment resulted in dominance by gastropod 

snails where plants were introduced, whereas control plots contained higher numbers of 

chironomid dipterans. This trend was also observed in our study, but was not 

distinguishable from correlation due to early establishment of cover as a result of 

transplanting. 

 Between the two years of sampling, substantial hydrological changes occurred 

due to both seasonal weather patterns and interannual climate variation. Large earthen 

berms remain in place around the site, acting as levees to prevent all but the most 

extreme flood flows from entering the site. However, the resulting enclosed depression 

in which the wetland site sits receives considerable in-basin rainfall and large volumes of 

runoff from surrounding upland areas. Though floods are excluded, the retention of 

rainfall and runoff results in water level fluctuations with storm events. These sharp 

increases in water level periodically increase connectivity between sloughs, potentially 

allowing dispersal between these ponds as high water allows. As drawdown occurs 

through seasonal evapotranspiration, re-isolation increases, so that sloughs become more 

independent their developmental trajectories can differ during the majority of the warm 

season (Painter 1999). These shifts may affect invertebrate communities by allowing 

temporary mixing of assemblages, introducing some organisms and resulting in 

exclusion of others. Seasonal succession of wetland invertebrates has commonly been 

observed in wetland communities (Gonzales Martinez and Valladares Diez 1996, van 
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den Berg et al. 1997, Brooks 2000, Hillman and Quinn 2002), and likely occurred within 

the timeframe of our study, but the interval between sampling periods hindered its 

detection. 

 2004 was exceptionally cool and wet, resulting in relatively high water levels in 

sloughs throughout the year. Precipitation diminished in late 2005, resulting in drought-

like conditions in many portions of the site, exposing previously submerged areas and 

lowering water levels in the site. One the one hand, flooding may slow colonization 

(Bedford and Powell 2005), and on the other, falling water levels may exclude those 

macroinvertebrates that are characteristic of open water while elevating the abundance 

and dominance of those utilizing the margins of wetland habitat. Drought conditions 

may also prevent invertebrates with extended life histories requiring longer hydroperiods 

from completing their life cycles (Tronstad et al. 2005), which may make biological 

assessment of wetland function particularly difficult (Wilcox et al. 2002). Between 

periods following intense storms and summer drought conditions, water level changes in 

excess of 2 m represented an extremely variable hydrology for this area. Cyclic shifts 

between seasonal weather patterns and wet and dry years greatly affect the 

macroinvertebrate assemblage, and this likely occurred in the wetland site. 2005 

sampling occurred at the end of a wet period, and the invertebrate community was 

dominated by species more characteristic of open water. Brooks (2000) and Bedford and 

Powell (2005) determined that annual hydroperiod fluctuations were a major factor in 

determining invertebrate abundance and composition, though community assemblage 

was somewhat stable in the long-term, in contrast to our results. Though wet and dry 
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cycles are natural in many wetland communities, the severity and duration of such cycles 

in our site may be a barrier to colonization and long-term survival of some taxa. The 

timing of alternating wet and dry periods is likely critical in determining invertebrate 

community composition, as such phases must coincide with the requirements of different 

life stages of invertebrates. If conditions are excessively wet or dry or the seasonality of 

these conditions does not match what is needed by a given invertebrate’s life cycle, life 

stages may not be completed. 

 The low overall taxonomic richness could be due to many factors: the short 

interval of time since wetland restoration, significant barriers to colonization and 

dispersal, or the large shifts in wetland hydrology. Most likely, some combination of 

these influenced the dynamics of the macroinvertebrate community. Though life stages 

of many aquatic invertebrates are highly mobile and permit rapid colonization and 

establishment in new habitat, invertebrate diversity and total abundance are typically low 

in newly created wetlands (Craft 2000, van Duinen et al. 2003). Those that do become 

established in new wetlands must be able to tolerate temporal variations in 

environmental conditions, and both richness and abundance can be greatly affected by 

hydroperiod (Corti et al. 1997, Leeper and Taylor 1998, Brooks 2000, Lillie 2003), 

although invertebrate communities are typically adapted in the long-term to hydrological 

variation (Leslie et al. 1997). Continued urbanization and land use change of the area 

surrounding the wetland may magnify hydrological extremes and both reduce 

invertebrate richness and alter community composition (Lundkvist et al. 2002, Freeman 

and Schorr 2004, Batzer et al. 2005, Moreno and Callisto 2006). Interestingly, total 
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invertebrate abundance itself was highly correlated with invertebrate community 

composition. Those groups associated with the substrate (oligochaetes and dipterans) 

were negatively associated with total abundance, perhaps indicating dominance by these 

groups as a result of adverse water quality, soil conditions, or other factors. However, 

macroinvertebrates utilizing the water column or vegetation were associated with 

samples having a larger number of specimens. Thus, higher total abundance yielded a 

higher taxonomic richness through the addition of these latter taxonomic groups. 

 

Predation 

 

 While periodic high water provides connection between sloughs and a means of 

dispersal for invertebrates across the site, this connection also provides a pathway for 

colonization by predatory fishes in the sloughs. Before major soil manipulation and 

construction of the sloughs, a small pond was present in the site and received overflow 

from Rowlett Creek during storm events. Black bullheads Ameiurus melas (Rafinesque), 

mosquitofish Gambusia affinis (Baird and Girard), sunfishes Lepomis spp., and 

largemouth bass Micropterus salmoides (Lacepède) have been consistently observed in 

wetland sloughs. However, their relative distributions are highly variable. As drawdown 

occurs, mortality increases more quickly among the fish population in drier sloughs, 

although these sloughs are recolonized in high water periods. Though all sloughs had 

observed surface water even in the driest periods, this concentration of prey and 

predators likely reduced abundance of some invertebrate taxa, both through loss of 
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habitat and increased predation. Large numbers of small fishes, particularly juveniles, 

can consume large numbers of spatially-confined invertebrates, albeit to different 

degrees in different sloughs, but effects may not alter community composition (Corti et 

al. 1997, Batzer et al. 2000, Johansson and Brodin 2003, Blanco et al. 2004). Likewise, 

while waterbirds are seasonally abundant in the site, predation by these animals has been 

shown elsewhere to not contribute significantly to invertebrate community structure or 

overall abundance (Ashley et al. 2000). Caging was not strongly associated with in 

increased macroinvertebrate abundance. Despite the fact that mesh size allowed entry by 

most smaller (insectivorous) fishes while excluding larger adult piscivores, consumption 

and growth rates are lower for small fishes using the structure of plants as refuge than 

those in open water (Savino and Stein 1982, Maceina et al. 1991). The cages may also 

act as artificial cover, providing refuge for some of these fishes. Moreover, plant cover 

was not significantly greater in caged areas. However, dense plant cover would likely 

increase the difficulty of sampling in sites and may have resulted in underestimation of 

macroinvertebrate abundance. 
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Community Implications 

 

 Domination of sloughs by snails may be a reflection of current dominance of 

cover by submersed and floating vegetation (Parsons and Matthews 1995), and this may 

prove to be a factor in future development of slough systems. Grazing snails were 

observed in large numbers on bare substrates, and these patches of open substrate may 

be maintained by feeding and movement of crayfish and carp Cyprinus carpio 

(Linneaus), resulting in cloudy water in portions of the sloughs. Competition may 

suppress chironomid populations (Batzer et al. 2000) and wind-driven currents may also 

provide a feedback mechanism whereby locally increased turbidity inhibits growth and 

establishment of submerged vegetation, causing a dynamic patchy distribution of 

vegetation in the sloughs. Though dominance by the ubiquitous snails presently seems to 

indicate a lack of other taxa associated with bare substrate, the alternating patches and 

open areas eventually may provide niches for different macroinvertebrates, creating 

interior habitat in vegetation clumps, bare substrate, and edge habitat at the interface of 

the two and at low vegetation densities. Beginning in 2005, a submerged matrix of dense 

Najas guadalupensis (Spreng.) Magnus and Chara spp. dominated slough shallows in 

many portions of the site, and vegetation dynamics will likely continue to play a major 

role in structuring the invertebrate community. Marklund et al. (2001) found that very 

dense submerged growth excludes most insect groups but provides key habitat for snails. 

The continued importance of predatory invertebrates, including dragonflies, beetles, and 

true bugs, will also drive system structure. As grazers and invertebrates with various 
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feeding strategies become more common, larger numbers of the predatory taxa may be 

supported, and this in turn may result in complex interactions with both the fish and 

plant communities. 

 

CONCLUSION 

 

 We found that planting wetland sloughs resulted in increased wetland 

invertebrate abundance, though the planting treatment alone did not explain the variation 

in community structure. Plant cover accounted for much of the variation in abundance 

and distribution among the invertebrate assemblage, and emergent species cover and 

cover by floating-leafed species Ludwigia repens and Potamogeton nodosus were 

significant explanatory variables. While protective caging of vegetation did not result in 

significant differences in the invertebrate community, temporal variation resulted in 

increases in abundance and shifts in assemblage structure. As the invertebrate 

community will likely continue to be very dynamic and driven largely by hydrological 

conditions, complex seasonal and annual interactions will likely replace straight linear 

succession in the coming years. We recommend monitoring the macroinvertebrate 

assemblage following storm events and at shorter times intervals in order to track the 

community response to high water, resulting fish population dynamics, and changes in 

wetland vegetation. Collection of water quality parameters may also contribute to 

explanation of community dynamics. 
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CHAPTER IV 

SUMMARY 

 
 
 The purpose of our study was to contribute to the level of understanding in the 

growing science of wetland restoration and management. We conducted a study to 

monitor the characteristics of vegetation and aquatic macroinvertebrate community 

development and test the effects of using different approaches to the restoration of 

wetland habitats. In a constructed wetland complex in Garland, Dallas County, Texas, 

we implemented multiple-factor restoration techniques involving transplantation of 

wetland macrophytes and the utilization of protective caging for transplants. We 

investigated the following hypotheses: 

 Planting of restored wetlands using several species results in plant communities 

that differ from those left to colonization alone 

 Protective caging of vegetation increases survival and spread of transplants and 

affects community composition 

 Wetland plant communities show significant temporal changes during 

development 

 Sloughs with transplanted vegetation have higher invertebrate abundance values 

 Caging of vegetation results in higher levels of invertebrate abundance  
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 As our final objective, we also determined correlated species-environment 

relationships between invertebrate data and measured values of plant cover and 

restoration treatments to explain variation in abundance and distribution among the 

invertebrate community assemblage. 

 Based on the vegetation study, planted and unplanted wetland sloughs did not 

show significant differences between plant cover values. However, the composition of 

the plant communities in both of these broad-level treatments was significantly different. 

Unplanted sloughs were dominated by annuals and fast-growing colonizing species that 

were not part of initial transplanting efforts. Protective caging had no significant effect 

either on plant cover or on community composition. Time was perhaps the most 

significant factor in wetland plant community development. Over the course of the 

study, plant cover increased dramatically and showed shifts in component species, with 

floating-leafed and submersed species spreading to cover a large portion of the site. 

Wetland obligates also became more prevalent, though this was mostly due to colonizing 

plant growth and the expansion of one transplanted species, Potamogeton nodosus. 

Species richness was low in all treatments, likely a result of adverse environmental 

conditions. 

 In the invertebrate study, wetland sloughs receiving transplanted vegetation did 

have higher levels of invertebrate abundance. Though unplanted and planted sloughs 

were similar in 2004, the abundance values diverged in 2005, with planted sloughs 

supporting much higher abundance levels. As with the plant community, protective 

caging did not result in significant differences in invertebrate abundance or invertebrate 
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community composition. Though planting did result in higher invertebrate abundance, it 

was the composition of plant cover that better explained differences in invertebrate 

distribution and the components of the community assemblage. Cover by all emergent 

plant species and Potamogeton nodosus and Ludwigia repens (the latter two both 

floating-leafed plants) were significant explanatory variables. The use of planting and 

caging treatments themselves did not account for community composition. Again, the 

identity of plant cover species was more critical in determining effects among the 

invertebrate community. 

 Both the plant community and the aquatic macroinvertebrate community will 

likely continue to be very dynamic and driven largely by hydrological conditions, and 

complex seasonal and annual interactions will likely replace straight linear succession in 

the coming years. Composition of the developing communities will likely undergo 

frequent shifts with environmental conditions, especially among water levels in the 

wetland complex. With these frequent changes, wetland system function and community 

composition will be very difficult to predict. As such, frequent continuing monitoring is 

recommended as time and hydrology will be critical factors in the development of the 

restored wetland complex. 
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