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ABSTRACT

LDPC Code-Based Bandwidth Efficient Coding Schemes

for Wireless Communications. (August 2006)

Hari Sankar, B. Tech, Indian Institute of Technology, Madras

Chair of Advisory Committee: Dr. Krishna R. Narayanan

This dissertation deals with the design of bandwidth-efficient coding schemes

with Low-Density Parity-Check (LDPC) for reliable wireless communications. Code

design for wireless channels roughly falls into three categories: (1) when channel state

information (CSI) is known only to the receiver (2) more practical case of partial CSI

at the receiver when the channel has to be estimated (3) when CSI is known to the

receiver as well as the transmitter. We consider coding schemes for all the above

categories.

For the first scenario, we describe a bandwidth efficient scheme which uses high-

order constellations such as QAM over both AWGN as well as fading channels. We

propose a simple design with LDPC codes which combines the good properties of

Multi-level Coding (MLC) and bit-interleaved coded-modulation (BICM) schemes.

Through simulations, we show that the proposed scheme performs better than MLC

for short-medium lengths on AWGN and block-fading channels. For the first case,

we also characterize the rate-diversity tradeoff of MIMO-OFDM and SISO-OFDM

systems. We design optimal coding schemes which achieve this tradeoff when trans-

mission is from a constrained constellation. Through simulations, we show that with

a sub-optimal iterative decoder, the performance of this coding scheme is very close

to the optimal limit for MIMO (flat quasi-static fading), MIMO-OFDM and SISO-
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OFDM systems.

For the second case, we design non-systematic Irregular Repeat Accumulate

(IRA) codes, which are a special class of LDPC codes, for Inter-Symbol Interference

(ISI) fading channels when CSI is estimated at the receiver. We use Orthogonal Fre-

quency Division Multiplexing (OFDM) to convert the ISI fading channel into parallel

flat fading subchannels. We use a simple receiver structure that performs iterative

channel estimation and decoding and use non-systematic IRA codes that are opti-

mized for this receiver. This combination is shown to perform very close to a receiver

with perfect CSI and is also shown to be robust to change in the number of channel

taps and Doppler.

For the third case, we look at bandwidth efficient schemes for fading channels

that perform close to capacity when the channel state information is known at the

transmitter as well as the receiver. Schemes that achieve capacity with a Gaussian

codebook for the above system are already known but not for constrained constella-

tions. We derive the near-optimum scheme to achieve capacity with constrained con-

stellations and then propose coding schemes which perform close to capacity. Through

linear transformations, a MIMO system can be converted into non-interfering parallel

subchannels and we further extend the proposed coding schemes to the MIMO case

too.
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CHAPTER I

INTRODUCTION

In the past two decades, the popularity of wireless communication systems has

exploded. Wireless devices have shifted from being a luxury to a necessity in every

household. The bandwidth allocated to commercial wireless communications, how-

ever, has not followed the same trend as the demand for these devices. Hence there is

a pressing need to design bandwidth-efficient communication systems over the wire-

less channel to accommodate this ever-increasing demand. The ultimate limit to the

number of users or data-rates that can be supported, for a given bandwidth and a

given power constraint, is dictated by the Shannon limit [2]. If power is not con-

strained, theoretically infinite capacity is possible. However, in practice, the power

of transmission is constrained by the battery life of the wireless device and also the

interference to other cells. The problem can then be stated as follows: given the

Shannon limit for the bandwidth and power constraints, what is the best practical

channel coding scheme that can approach this limit. We will answer this question for

the wireless channel in this dissertation.

A. Overview of the Dissertation

Typically, a wireless channel is characterized as a dynamic channel where the signal-

noise ratio (SNR) fluctuates with time, space and/or frequency. Fluctuation of SNR

translates to a different channel condition over time, space and frequency. This

characteristic leads to the notion of parallel channels to transmit data through. Thus,

The journal model is IEEE Transactions on Information Theory.
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designing codes for the wireless channel presents us with the problem of designing

codes for a set of parallel channels. This work broadly falls under the category of

code-design for parallel channels and it can be applied to any system with parallel

channels to communicate with.

There are three important scenarios to be considered while designing coding

schemes for wireless channels. These scenarios are given by:

1. Channel State Information (CSI) is available to only the receiver (CSIR).

2. CSI is not available to either the transmitter or the receiver and it has to be

estimated from pilots which we denote as Partial CSI (PaCSI).

3. CSI is available to both the transmitter and the receiver (CSITR).

Code-design for each of these scenarios can be drastically different and they are con-

sidered separately in each chapter of this dissertation.

1. CSI at the Receiver: Higher Constellations

Chapter III considers the case where CSI is known perfectly to the receiver [3]. In

addition, assume that a bandwidth efficient constellation such as QAM is chosen for

transmission over the wireless channel. There are up to m different types of bits in

22m-QAM or 2m-PAM, which are protected differently from one another in terms of

bit-error rate (BER). In order to achieve the capacity of this channel, it is well-known

that multiple code-books (up to m different ones) are required. If the code-rates are

chosen carefully, a multi-stage decoder (MSD) is sufficient to achieve capacity [4].

A multi-stage decoder functions as follows: decoding of the k-th stage (bit-position)

takes into account the output of the all the other k − 1 bit-positions decoded so far.

This scheme is known as a multi-level coding with multi-stage decoding (MLC/MSD).



3

This scheme follows directly from the chain-rule of mutual information. Suboptimal

schemes such as MLC with parallel independent decoding (PID), where decoding

of different stages is performed independently, and bit-interleaved coded modulation

(BICM) [5], where multiple code-books are replaced by a single code-book, have also

received attention since they are more pragmatic. It has been shown that if the

constellation applied is Gray mapping, the penalty from capacity for these schemes

is negligible.

The above discussion is valid with respect to capacity i.e. MLC has a distinct

advantage over BICM for infinite code-word length. However, for practical schemes,

which require codes of length of a few thousands, through our research, we show that

this is not the case. For the same latency and complexity, multi-level coding must

apply a component code which is 1/m times the length of an overall BICM code

if there are m different levels in the constellation. Now consider a scheme where a

Low-Density Parity-Check (LDPC) or turbo code is used for error-correction with the

higher-order constellation. It is well-known that LDPC and turbo codes improve their

performance drastically with the length of the code especially over lengths ranging

from hundreds to thousands. In such a case, a BICM scheme with a single code of m

times the length of each component code of MLC will perform much better in terms

of bit-error rate (BER) than MLC. Hence, in this scenario, BICM is not merely a

pragmatic scheme but a better scheme in terms of bit-error rate. The advantage of

BICM becomes more prominent when m is large.

In the presented work, the properties of an LDPC code are further utilized (these

properties are discussed in detail in Chapter II). An irregular LDPC code is applied

with the above BICM scheme. Since different coded bits (same as bit nodes) of an

LDPC code are protected differently due to the irregularity of the LDPC code, the

connections of coded bits to different bit-positions of the modulated word can be
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optimized. In this way, a different sub-code is provided to different levels of the

modulated word. Since the check nodes are common to all the coded bits, it is still a

single code. Hence, a multi-level coding scheme (MLC) within a BICM framework has

been incorporated thus providing the best of both approaches. Through simulations,

we show that this scheme can provide gains over a conventional BICM scheme as well

as MLC schemes.

2. CSIR with Multiple Transmit Antennas: Rate-Diversity Tradeoff

In Chapter IV, a multiple-input multiple-output (MIMO) system with quasi-static

fading is considered. In order to circumvent the harmful effects of fading, especially

quasi-static fading, various forms of diversity techniques are used in practice. One

such technique is to use multiple transmit and receive antennas which provide gains

in diversity and outage probability over a single-antenna system. As mentioned in

Section 2, diversity and transmit rate are inversely proportional to each other for a

constrained constellation such as QAM. Hence, there is tradeoff between diversity and

rate for a constrained constellation which defines the ultimate limits of diversity for

variable-rate coding schemes [6]. We present schemes that use Low-Density Parity-

Check (LDPC) codes and perform close to the rate-diversity tradeoff. In this chapter,

we consider both flat-fading (MIMO) as well as frequency-selective fading (MIMO-

OFDM), where OFDM is used to convert the frequency-selective fading channel into

flat-fading subchannels. We show that a system with LDPC codes as the outer-code

and a simple serial-parallel converter as an inner code achieves the rate-diversity trade-

off over MIMO and MIMO-OFDM systems for a constrained constellation (QAM).

Through simulations, we show that the presented scheme performs better than all

MIMO-OFDM systems proposed so far in literature [7].
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3. Partial CSI at the Receiver

In Chapter V, we discuss a scheme where perfect CSI is not available to the receiver

and the receiver derives CSI through estimation with the aid of pilots [8] [9]. Use of

pilots can be conserved if a differential detector is used to kick start the iterations

without the knowledge of the channel. In the subsequent iterations, information from

the channel code along with the pilots can be used to improve the channel estimates.

This results in savings in the number of pilots without much penalty in performance.

In order to guarantee differential detection in the first iteration, the inner code of

the coding scheme must be an accumulator. Hence a special class of LDPC codes

known as Irregular Repeat Accumulate (IRA) codes is used where the inner code is

an accumulator. However, the challenge with IRA codes is that the systematic part

is transmitted as such and for our scheme to work, the systematic part must also be

differentially encoded. Hence, non-systematic IRA codes are required.

Given a channel estimation algorithm and ratio of pilots, the amount of irreg-

ularity can be optimized for the best performance. Extrinsic Information Transfer

(EXIT) chart based optimization [10] [11] for the irregularity profile is applied to

obtain optimum performance. Though simulations, we prove that the performance of

this scheme can be close to the performance with perfect CSI at the receiver. This is

possible because of the powerful IRA code which improves CSI apart from protecting

against errors on the fading channel.

4. Perfect CSI at the Transmitter and Receiver

Chapter VI considers code-design and signal-processing for CSITR [12]. CSI esti-

mated at the receiver can be fed back to the transmitter to improve the performance

of the wireless system. In certain communication systems, for example, in TDD
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systems, reciprocity can be assumed between the forward channel and the reverse

channel whereby the forward and reverse channel coefficients are the same. In this

case, CSI can be easily obtained at both the transmitter as well as the receiver. In

terms of capacity, CSI at both transmitter and receiver (CSITR) makes a difference

only at low SNRs as compared to CSI at only the receiver. However, the main ad-

vantages of CSITR are that it simplifies the decoder design significantly and prevents

the occurence of outage over slow-fading channels. CSI at only the receiver however

results in outage over slow-fading channels.

Consider a system with parallel subchannels for transmission of data with an

overall power constraint. In practice, OFDM systems, a set of power controlled

channels, or MIMO systems with CSITR fall under the category of systems with

parallel subchannels. Given a power constraint at the transmitter, the problem can

be stated as follows: what is the best power and rate allocation for this system which

maximizes the sum-information-rate? For the Gaussian constellation, this problem

is already solved and it yields the familiar water-filling power allocation [13]. In

practice, however, signalling is always constrained (like QAM, QPSK etc.). Given this

additional constraint, the rate and power allocation has to be derived. Furthermore,

for practical systems, the CSITR changes from block to block and the power allocation

must be a simple closed form expression which can be derived quickly for each block.

We approximate the constrained capacity of QAM systems and derive a closed-

form power allocation expression that maximizes sum-rate. If a separate code-book

is allocated to each of the subchannels (code-rate is chosen corresponding to the rate

the subchannel supports), the constrained capacity of this system can be achieved.

If a single code-book is assigned to all the subchannels, an ML decoder can still

achieve the capacity, however, this ML decoder could be very complex. Yet, it is

more practical to use one code-book for all the subchannels which is an assumption
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we make in this work.

It is difficult to design a code which performs well over all code-rates between

0 and 1 (through puncturing). It is only possible for a code to perform well over

a smaller range of rates as for example, between 0.3 and 0.7. Hence an algorithm

is derived which allocates different constellation to each subchannel such that the

overall code-rate is in a chosen range. This algorithm will derive the best constella-

tion for each subchannel based on the subchannel state. Through simulations with

LDPC codes, we show that the presented scheme performs very close to the maximum

constrained sum-information-rate and also to the unconstrained capacity.

5. Memory-Saving LDPC Codes

For any communication system, hardware complexity of each of the components must

be as minimal as possible. LDPC codes are decoded by a soft-decision decoding algo-

rithm known as sum-product decoding (discussed in Chapter II). The main problem

with sum-product decoding of LDPC codes of lengths longer than a few thousand,

is that the memory required on the chip is huge. In Chapter VII, a new strain

of sum-product decoding of LDPC codes is devised which results in lower hardware

complexity and memory requirement than a conventional sum-product decoding algo-

rithm [14]. An extension of this work is now being considered for many state-of-the-art

wireless systems including IEEE 802.11n and IEEE 802.16.

Conventional sum-product decoding algorithm is usually implemented as a par-

allel decoding algorithm where all the bit node operations are carried out in one

time-instant and all the check node updates in another time-instant. This scheme

promises very high decoding speeds as all the operations are in parallel. However, in

this case, the complete bipartite graph of the LDPC code has to be built in hardware

which can make the chip-size huge as well as lead to congestion problems. In our re-
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search, a solution to this problem is presented by dividing the graph into two halves,

with each half very similar to the other in structure. In this manner, only one half

of the graph needs to be built in hardware and the decoding can be done for the two

different halves at different time-instants. This results in savings in hardware and

chip-size but the penalty is in decoding speed. Decoding speed is roughly halved due

to the above operation. However, for today’s applications the speed provided by the

presented scheme will be much more than sufficient.

The performance of this scheme is analyzed using a technique known as density

evolution and the best code is designed with the given decoding schedule. From

simulations, it is shown that the proposed scheme performs as well as the conventional

sum-product decoding algorithm on the corresponding optimized LDPC code. Thus

there is no penalty as a result of splitting the bipartite graph.

We finally present the conclusion and future work in Chapter VIII.
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CHAPTER II

BACKGROUND

In this chapter, we discuss the fundamentals of a communication system. We

describe a communication channel and the special characteristics of a wireless chan-

nel. We also discuss a popular technique known as Orthogonal Frequency-Division

Multiplexing (OFDM) [15]. We finally present a relatively new class of channel codes

known as Low-Density Parity-Check (LDPC) codes [16].

A. Communication Channel

Communication systems transmit information through a medium which is known as

a channel. The channel distorts the transmitted signal in one or more of the following

ways: (1) as the signal propagates through the medium, its power attenuates (path

loss), (2) the medium often distorts the signal in time or frequency or both, (3) the

channel often distorts the signal in a non-linear fashion in which case the analysis of

such a system becomes very difficult. Apart from these deleterious properties of the

channel, noise is added at the receiver which can be modelled as a Gaussian random

process [17]. A practical communication scheme has to encode the information to be

transmitted in a suitable way, in order for the receiver to decode the signal successfully

and overcome the shortcomings of the channel. Since the focus of this dissertation

is on wireless communication systems, we discuss some key properties of the wireless

channel below.
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1. Wireless Channel

When messages are transmitted over a wireless medium, the signal undergoes a phe-

nomenon known as fading [18]. Assume that s[k] is the discrete baseband representa-

tion of a phase- or amplitude-modulated digital signal that is transmitted. Through-

out this dissertation, we consider only phase- and amplitude-modulated signals which

are represented as follows:

s[k] = A[k] + jB[k] (2.1)

where A[k] is the real part of the transmitted signal, B[k] is the imaginary part of the

transmitted signal and j represents
√−1.

√
A2[k] + B2[k] is the amplitude of s[k]

and is constant if the signal is phase-modulated and varying if the signal is amplitude-

modulated. In wireless transmission, the transmitted signal is often reflected from

a number of obstacles before arriving at the receiver. Each of these reflected paths

undergoes a different phase shift and can arrive at the receiver at different time-

instants. There may or may not be a line-of-sight component in the received signal.

The signals from different reflections might also add constructively or destructively

at the receiver. Thus the received demodulated signal can be represented as:

y[k] =
L−1∑
i=0

h[i]s[k − i] + n[k] (2.2)

where y[k] is the received signal at the k-th time instant, s[k − i] is the signal trans-

mitted at the k − i-th time instant, h[i] is the fade coefficient which can be modelled

as a complex Gaussian random variable and n[k] is the additive white complex Gaus-

sian noise added at the receiver. The validity of the assumption that h[i] is complex

Gaussian, is based on the fact that there are large number of reflected paths and the

central limit theorem applies. If there is a line-of-sight path, the complex Gaussian
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random variable has a non-zero mean and the magnitude of h[i] is Ricean distributed,

and if there is no line-of-sight component, the magnitude is Rayleigh distributed. All

through this dissertation, we assume that the magnitude of fading is Rayleigh dis-

tributed, i.e. there is no line-of-sight component. For a fading channel, h[k]s are

usually referred to as the channel state information (CSI).

Note that Eqn. (2.2) assumes that there are L taps in the channel which results

in Inter-Symbol Interference (ISI). ISI is caused when the variance of the delay asso-

ciated with different reflected paths arriving at the receiver, known as delay-spread,

is significant compared to the symbol interval. The fading channel is said to be

frequency-selective when it causes ISI. In Eqn. (2.2), it is usually assumed that h[i]

are independent for different i. The relative powers of the h[i] i = 0, 1, . . . , L − 1 is

given by the power-delay profile. In this dissertation, for frequency-selective fading

channel, we assume that the power-delay profile is uniform i.e. the power of each of

the taps in the channel, h[i] is equal. Eqn. (2.2) does not provide any information

on how the channel taps h[i] change with time. Coherence time is a measure of the

time-correlation of the fading taps of the channel. If the coherence time is significant

(>100 times) compared to the symbol interval, fading is supposed to be slow. If

coherence time is relatively small, fading is fast. Doppler spread, fd, is defined as the

inverse of the coherence time and is the maximum dispersion in frequency that a pure

sinusoid will undergo when transmitted over the channel. It is defined as:

fd =
v

λ
(2.3)

where v is the velocity of the receiver and λ is the wavelength of transmission.

If the delay spread of the channel is very small compared to the symbol interval,

the channel will not cause ISI and and the signal is said to undergo flat fading. If the
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channel is flat, Eqn. (2.2) can be re-written as follows:

y[k] = h[k]s[k] + n[k]. (2.4)

2. Effects of Fading: Design Challenges

The effects of fading are always deleterious and special coding and signal processing

methods need to be employed to overcome these effects. There are three situations

under which one must consider coding for fading channels (later in this chapter, we will

present a scheme known as Orthogonal Frequency Division Multiplexing (OFDM),

which transforms the frequency-selective channel into a set of parallel flat-fading

channels; hence consideration of coding schemes for flat-fading is sufficient):

1. Channel State Information (CSI) is available to only the receiver (CSIR).

2. CSI is not available to either the transmitter or the receiver and it has to be

estimated from pilots which we denote as Partial CSI (PaCSI).

3. CSI is available to both the transmitter and the receiver (CSITR).

Designing coding schemes for the first two cases again depends on whether the fading

is fast or slow. If fading is fast, many realizations of the channel will be present over

a single code-word and law of large numbers can be applied. The capacity of this

scheme is the expectation of the information-rate for a given channel realization over

the probability distribution of the channel realization. For this case, code-design is

not that challenging as codes which are designed for the AWGN channel are sufficient

with the code-rate determined by the capacity of the channel.

However, if fading is very slow, there will only be finite number of channel real-

izations over a code-word. We will use the terms slow fading and quasi-static fading

interchangeably in this dissertation to represent this scenario. For the first two cases
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(CSIR and PaCSI), under slow fading, the information-rate that the channel sup-

ports is a random variable. The absolute capacity of this channel is zero as there is

a non-zero probability that the rate chosen for transmission is not supported by the

channel. Whenever the channel does not support the transmitted rate, the channel

is said to be in outage. The probability of being in outage is denoted as outage prob-

ability. There is only the notion of outage capacity which is defined as the maximum

rate supported for a given probability of outage, p (p-outage-capacity).

Since outage probability is the ultimate limit for these schemes, the aim of the

coding scheme is to improve the outage probability as much as possible for the given

resource constraints. Outage probability can be improved through providing diversity

and coding gain. Diversity is defined as follows [19]:

D = lim
SNR→∞

10 log P1

P2

ΔSNR(dB)
(2.5)

where D is the diversity, SNR is the Signal-Noise Ratio, and P1, P2 are the prob-

abilities of error (frame or bit) of the system at two different SNRs separated by

ΔSNR which is in dB scale. The three main sources of diversity are time, frequency

and space. Assume that the term multiplexing rate denotes the rate of increase of

transmission rate with SNR. For a codebook derived from Gaussian distributed sym-

bols (popularly known as Gaussian codebook), diversity has a relationship with the

multiplexing rate, which is known as the diversity-multiplexing tradeoff [20]. This

tradeoff suggests that the multiplexing rate, which is defined as the rate of increase of

transmission rate with SNR, is inversely proportional to the diversity provided by the

system. This property stems from the fact that diversity and multiplexing rate are

the two factors that use up the degrees of freedom present in the system and hence

they are inversely proportional. The number of degrees of freedom in a Gaussian

constellation increases with SNR, hence the rate of transmission can scale with SNR
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for a fixed diversity.

When the transmitted signal is constrained to be from a finite-size constellation

to transmit from, such as QAM, there is a relationship between the transmission

rate (note that here the rate is fixed and does not increase with SNR) and diversity

provided by the system [6]. For SNRs higher than a particular value, the number

of degrees of freedom in the system does not increase with SNR for a constrained

constellation and hence there is a diversity-rate tradeoff. Hence, for a quasi-static

fading system with a constrained constellation to transmit from, the optimality of a

coding scheme is determined by how close the scheme performs to the diversity-rate

tradeoff.

For CSIRT (case three), when using a Gaussian codebook subject to an overall

power constraint, waterfilling across different channel realizations [13] is optimal to

achieve the capacity of the system. Waterfilling pours more power into the “good”

channels and less power into the “bad” channels. The number of channel realizations

can be finite (slow-fading) or infinite (fast-fading) and waterfilling can be performed

easily for both cases. Note that there is no outage for these cases, as the channel

state is already known to the transmitter, and the transmitter can change the rate

of transmission to prevent outage. Gaussian codebooks are not easily implementable

in practice and signaling is always constrained. With a constrained constellation,

waterfilling is not the optimal method to achieve the overall capacity of the system

and other optimal design methods have to be derived.

B. Orthogonal Frequency Division Multiplexing

A frequency-selective fading channel can be converted into a set of parallel flat-fading

channels without loss of any information. Orthogonal Frequency-Division Multiplex-
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ing (OFDM) [15] is a popular linear technique which achieves this end. Assume

that Eqn. (2.2) represents the frequency-selective fading channel. It is well-known

that convolution in the time domain is equivalent to multiplication in the frequency

domain. For the discrete case (i.e. discrete in the time and frequency domains), mul-

tiplication in the frequency domain is equivalent to circular convolution in the time

domain. ISI is discrete convolution in the time domain. If the discrete convolution

due to ISI can be made to mimic circular convolution, an ISI channel can be trans-

formed into multiplication in the frequency domain which corresponds to a parallel

flat-fading channel.

1. Single-Input Single-Output OFDM System

The mathematical model of the single-input single-output (SISO) OFDM system is

given in Figure 1. Assume that a vector of transmit values of length N , X, is incident

Cyclic−Prefix

&
 Parallel to

Serial

IFFT
CHANNEL

&

Cyclic−Prefix

 Serial to
Parallel

Strip

FFT

X[n] x[n] y[n] Y[n]

NNNN

Fig. 1. Block diagram of an OFDM system

at the input of an OFDM system [21]:

X[k] =
√

Es [X0[k]X1[k] . . .XN−1[k]] (2.6)



16

where Xi[k] are complex numbers representing the symbol to be transmitted satisfying

E(XH
i [k]Xi[k]) = 1 and k represents the time index. E(.) denotes expectation of the

random quantity over its probability distribution. Since each of the i represents a

particular sub-frequency, Xi is said to be transmitted in subcarrier i. The OFDM

system, as shown in Figure 1 applies an Inverse Fast Fourier Transform (IFFT) [22]

module which can be represented as:

x[k] = FN×NX[k] (2.7)

where the square matrix FN×N of size N × N is the IFFT operator and the result

x[k] is a vector of length N representing the time-domain equivalent of X[k]. The

l, m-th element of FN×N can be represented as:

Fl,m =
1√
N

exp−j2π (l−1)(m−1)
N (2.8)

If the number of taps in the ISI (frequency-selective fading) channel is assumed to be

L, as in Eqn. (2.2), a guard interval (GI) of length L − 1 is required in an OFDM

system to prevent ISI between OFDM symbols (x[k], x[k − 1] are OFDM symbols).

Furthermore, a cyclic shift of the transmit vector x[k] has to be transmitted in the

guard interval in order to guarantee the orthogonality of the subcarriers. Thus the
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received vector, after the removal of the guard interval, can be represented as follows:

y[k] = h[k]x[k] + n[k]

h[k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0[k] h1[k] . . . hL−1[k] 0 0 . . . 0

0 h0[k] . . . hL−2[k] hL−1[k] 0 . . . 0

...
. . .

. . .
. . .

. . .
. . .

...
...

hL−1[k] 0 . . . 0 h0[k] h1[k] . . . hL−2[k]

...
. . .

. . .
. . .

. . .
. . .

...
...

h1[k] h2[k] . . . hL−1[k] 0 . . . 0 h0[k]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

where h0[k], h1[k], . . . , hL−1[k] represent the L taps of the ISI channel and n[k] repre-

sents the AWGN noise vector of size N × 1 satisfying the constraint E(n[k]n[k]H) =

2σ2IN×N . σ2 is the variance of the real and imaginary components of the noise and

IN×N represents an identity matrix of size N × N . The eigen-value-decomposition

(EVD) of the Toeplitz matrix h[k] can be represented as follows:

h[k] = FN×NDFH
N×N (2.10)

where FN×N is the IFFT matrix as in Eqn. (2.2), FH
N×N is Fast-Fourier Transform

(FFT) matrix (since FN×NFH
N×N = IN×N). Also D is an N × N diagonal matrix

whose diagonal entries are given by the vector which is the product of FH
N×N and

[h0[k], h1[k], . . . , hL−1[k]]T . D can be written as:

D = diag
[
FH

N×N [h0[k], h1[k], . . . , hL−1[k]]T
]

(2.11)
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At the OFDM receiver, FFT is performed on the received sequence, y[k], to obtain:

Y[k] = FH
N×Ny[k]

= FH
N×N

(
FN×NDFH

N×Nx[k] + n[k]
)

= DX[k] + Ñ[k] (2.12)

where E(N[k]N[k]H) = 2σ2IN×N . Thus the frequency-selective channel has been

converted into a set of parallel flat-fading channels.

2. MIMO-OFDM System

In a multiple-input multiple-output-OFDM (MIMO-OFDM) system, there are mul-

tiple antennas (say NT ) to transmit from and multiple receiver antennas (say NR).

Apart from this, the physical SISO channel between any two transmit-receive an-

tenna pairs (say t-th transmit antenna and r-th receive antenna) is an ISI chan-

nel with taps ht,r[l] l = 0, 1, . . . , L − 1. Assume that L is the maximum chan-

nel length of all the NT NR SISO channels. The MIMO channel can then be rep-

resented as a sequence of matrices h[l] l = 0, 1, . . . , L − 1 whose elements are

ht,r[l] t = 1, 2, . . . , NT r = 1, 2, . . . , NR.

Instead of a transmit vector as in Eqn. (2.6), we have a transmit matrix S

which is of size NT × N , where N is the number of subcarriers as in the previous

section. Assuming the cyclic prefix is inserted at the transmitter and stripped at

the receiver (ideally), what is obtained at each of the antennas over the n-th tone,

n = 0, 1, . . . , N − 1, is as follows:

yr[n] =

√
Es

NT

NT∑
t=1

Ht,r[n]St,n + Ñr[n], r = 1, 2, . . . , NR (2.13)

where the noise Ñr[n] is white and complex (circularly symmetric complex Gaussian
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and zero mean) and

Ht,r[n] =

L−1∑
l=0

ht,r[l] exp−j2π ln
N (2.14)

Denote:

y[n] = [y1[n]y2[n] . . . yNR
[n]]T ,

S[n] = [S1,nS2,n . . . SNT ,n]T ,

Ñ[n] =
[
Ñ1[n]Ñ2[n] . . . ÑNR

[n]
]T

, (2.15)

then the system equation of a MIMO-OFDM can be stated as follows:

y[n] =

√
Es

NT

H[n]S[n] + Ñ[n] (2.16)

with H[n] being a NR × NT matrix given by:

H[n] =

L−1∑
l=0

h[l] exp−j2π ln
N (2.17)

C. Low-Density Parity-Check Codes

Low-density parity check (LDPC) codes [23], discovered by Gallager and rediscovered

by MacKay [16], perform close to capacity on most memoryless channels. LDPC codes

have been proved to achieve capacity on binary erasure channels (BEC). Unlike turbo

codes, they can be optimized for good bit-error rate performance over a given channel

and for a given code-rate.

1. LDPC Code Representation

LDPC codes can be represented in terms of a bipartite graph [24] as shown in Fig-

ure 2. LDPC codes consist of two kinds of nodes - variable nodes, and check nodes.

The variable nodes correspond to the coded bits in a codeword. The check nodes cor-
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respond to the parity-check constraints satisfied by the variable nodes. The degree

of a variable node [25] is the number of checks it participates in, while the degree of

a check node is the number of variable nodes that are connected to the check. If all

variable nodes have the same degree and so do the check nodes, it is a regular LDPC

code. Otherwise, it is an irregular LDPC code. The irregularity is typically specified

by a polynomial called variable (check) node degree profile. That is,

λ(x) :=

dv∑
i=1

λi xi−1, ρ(x) :=

dc∑
i=1

ρi xi−1 (2.18)

where λi (ρi) represents the fraction of edges that are connected to the variable nodes

(check nodes) of degree i. If λ′
i represented the fraction of nodes instead of edges, λ′(x)

is the degree profile from the node perspective. Similarly, ρ′(x) represents the check

node profile from the node perspective. Note that a given degree profile represents

an ensemble of LDPC codes, as these nodes can be connected in any random fashion

in the bipartite graph.
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Fig. 2. Bipartite graph of an LDPC code
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2. Sum-product Decoding Algorithm of LDPC Codes

Assume that a binary phase shift keying (BPSK) modulation is used and an additive

white Gaussian noise (AWGN) channel is present. If X = (x0, x1, . . . , xn−1) is the

transmitted codeword (after modulation) and Y = (y0, y1, . . . , yn−1) is the received

word, then clearly,

yk = xk + nk (2.19)

where nk is the noise sample which is a zero-mean, Gaussian random variable with

variance σ2. Soft information is represented in terms of log-likelihood-ratios (LLRs),

which is defined as:

L(xi) = log
P (yi|xi = 1)

P (yi|xi = −1)
(2.20)

Sum-product decoding algorithm is an iterative message passing algorithm that passes

messages between variable and check nodes along each edge. Let us consider the qth

stage of decoding:

3. Update at the Variable Nodes

Consider the ith variable node and assume that it is of degree V (Figure 3). It gets

extrinsic information Lch(xi) = −2yi/σ
2 from the channel and incoming edge-LLRs

L
(q−1)
c→v,l(xi) for l = 1, 2, . . . , V along each of the V edges. The outgoing LLR on the

j th edge at the qth iteration, L
(q)
v→c,j(xi), is:

L
(q)
v→c,j(xi) = Lch(xi) +

V∑
l=1,l �=j

L
(q−1)
c→v,l(xi) (2.21)
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At the beginning of the first iteration, all the incoming edge-LLRs are assumed to be

zero i.e.

L
(0)
c→v,l(xi) = 0 l = 1, . . . , V (2.22)

Fig. 3. Sum-product decoding at the variable node

4. Update at the Check Nodes

Consider the kth check node with degree C at the qth iteration (Figure 4). If

L
(q)
v→c,j(yk) for j = 1, 2, . . . , C represent the LLRs incident on this check node, then

the output LLR on the lth edge is governed by:

tanh

(
|L(q)

c→v,l(yk)|
2

)
=

C∏
j=1,j �=l

tanh

(
|L(q)

v→c,j(yk)|
2

)
(2.23)

This completes the iteration.
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Fig. 4. Sum-product decoding at the check node

5. Decision

Soft output on the ith bit at the end of Q iterations is given as:

L(xi) = Lch(xi) +

νi−1∑
l=0

L
(Q)
c→v,l(xi) (2.24)

Hard decision on the bit is obtained as follows:

x̂i =

⎧⎪⎨
⎪⎩

1 if L(xi) < 0

0 if L(xi) ≥ 0
(2.25)

The threshold of an LDPC code is σ∗, which is the maximum noise standard

deviation, σ for which bit error rate, Pe tends to zero as number of iterations increases.

6. Density Evolution

Density Evolution [25] is the technique which keeps track of the probability density

functions (pdf s) of the messages (usually LLRs) passed from variable to check nodes

or check to variable nodes in an iteration. It is a very useful tool which aids in
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predicting the bit-error rate performance of a given code-ensemble represented by the

degree profiles under sum-product decoding and also in designing optimal code-book

ensembles. Since we use Gaussian Approximation (GA) based density evolution for

designing LDPC codes throughout this dissertation, our focus will be on GA which

is discussed in the following section.

A channel is said to be symmetric if:

p(y|x = 1) = p(−y|x = −1), (2.26)

where p(.) is the pdf function, y is the received signal and x is the transmitted signal.

When the channel is symmetric, then Bit-error rate(BER) or Frame-error rate(FER)

is independent of the transmitted codeword. In such a case, it suffices to transmit

the all-zero codeword for analysis.

a. Consistency

A pdf, f , is consistent if it satisfies f(x) = f(−x)ex for all x > 0. Suppose a channel

is symmetric and if P0 is the distribution of LLRs of the received signal. Under the

assumption that the all-zero codeword is transmitted, P0 is consistent. Consistency

condition simplifies the density evolution considerably.

7. Gaussian Approximation (GA) on Density Evolution

For an AWGN channel with BPSK/QPSK modulation (QPSK with Gray mapping),

assuming that the all-zero codeword is transmitted, the LLR of the received signal

has a Gaussian distribution. In addition, assume that the distribution of the mes-

sages (LLRs) passed on any of the edges of the graph, in any given iteration, is

Gaussian or a mixture of Gaussians. Then, density evolution simplifies to tracking

the means(m) and variances(σ2) of the Gaussian mixtures. This is called Gaussian
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approximation [26]. Consistency condition for Gaussians simplifies the variance to

σ2 = 2m. Hence, in GA, we just have to keep track of the means over iterations to see

how the densities evolve. With GA, optimization for thresholds is a linear problem.

Let us take a brief look at the evolution of means under GA.

a. Variable Node

Sum-product decoding at the variable node is merely sum of the LLRs, which trans-

lates to convolution of the densities of LLRs. Since the incident LLRs on each of the

edges of a variable node from the check nodes are independent Gaussians, the pdf of

the LLR that is passed on an edge from variable to check in the next iteration is the

sum of the means and the variances. Hence,

m
(l)
v,i = mu0 + (i − 1)m(l−1)

u , (2.27)

where m
(l)
v,i is the mean of the o/p message on an edge of degree-i variable node at

the lth iteration, mu0 is the mean of the channel LLR and m
(l−1)
u is the mean of the

message from check in the (l − 1)th iteration.

Since the code can be irregular, the means of the Gaussians emanating from

different degree variable nodes will be different, hence on an average we have to

assume that the message, v at the check node is a mixture of Gaussians rather than

a single Gaussian. That is:

f (l)
v =

dl∑
i=1

λiN (m
(l)
v,i, 2m

(l)
v,i) (2.28)
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b. Check Node

From sum-product decoding of check node it is easy to observe that:

E

[
tanh

u
(l)
j

2

]
= E

[
tanh

v(l)

2

]j−1

, (2.29)

where u
(l)
j is the message from a j-degree check node to the variable nodes in the lth

iteration and v(l) is the message from variable node to check.

If u ∼ N (mu, 2mu), E
[
tanh u

2

]
depends only on mu. Hence, define E

[
tanh u

2

]
:=

1 − φ(mu). φ(x) is a continuous, monotically decreasing function defined on [0,∞)

with φ(0) = 1 and φ(∞) = 0.

⇒ E

[
tanh

v(l)

2

]
= 1 −

dl∑
i=2

λiφ(m
(l)
v,i ⇒ m

(l)
u,j = φ−1

⎛
⎝1 −

[
1 −

dl∑
i=2

λiφ(m
(l)
v,i

]j−1
⎞
⎠

(2.30)

Finally,

m(l)
u =

dr∑
j=2

ρjm
(l)
u,j (2.31)

Threshold of an LDPC code is defined as the standard deviation (σ) of the noise

at which the bit-error rate of the code goes to zero. The final problem is to optimize

the profiles ((λ, ρ)) to obtain the maximum possible noise threshold for a given rate

which turns out to be a linear problem. [26] provides a more detailed description of

the optimization. The density of message from check to variable (Eqn. (2.30)) may

not be Gaussian in reality. Nevertheless, from comparison of the optimized code-

profiles and noise thresholds of LDPC codes obtained through GA and actual density

evolution, it can be deduced that GA is a good approximation.
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CHAPTER III

CODING FOR HIGH-ORDER CONSTELLATIONS WITH CSIR∗

The problem with designing codes for high order constellation schemes (e.g.

QAM) is that different bits of a modulated symbol (referred to as “levels” from

here on) get different amount of protection, in terms of BER. This is due to the

asymmetry in bit to constellation mapping. Coding schemes must take this into ac-

count in their design. A common approach to solve this problem is to use multilevel

codes (MLC), where a separate code is assigned to each of the levels, with multistage

decoding (MSD) [4] (decoding the levels one after the other, assuming all the levels

decoded so far are perfectly known). MLC/MSD is known to achieve capacity for

these schemes. Alternative sub-optimal schemes have been considered in literature,

which include MLC with parallel independent decoding (PID) of the component lev-

els where the levels are decoded independently at the same time, and bit interleaved

coded modulation (BICM) where a single code provides protection to all the levels.

MLC with MSD achieves the capacity of this system which implies it is optimal

asymptotically in the length of the code. However, in the finite-length case, both

MLC with MSD or with PID can have a component code of length only 1/m times

(in 2m−PAM or 22m−QAM) the code-length of an equivalent BICM scheme for the

same complexity and latency. Therefore, with MLC, using codes like LDPC codes

and turbo codes whose performance improves significantly with length will be dis-

advantageous. For finite-lengths, schemes with BICM can have a distinct advantage

∗ c© 2004 IEEE. Reprinted, with permission, from “Design of LDPC codes for
high order constellations,” H. Sankar, N. Sindhushayana and K. R. Narayanan, in
Proc. IEEE Globecomm, vol. 5, pp. 3113-3117, Nov. 29 - Dec. 3, 2004, Dallas, TX.
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over MLC schemes as will be shown in this work. However, code-design for BICM

schemes is tricky as the channel messages from the demodulator are not identically

distributed due to the inherent unequal protection. In this work [3] [27], we present

a simple code-design for Gray-mapped PAM schemes with LDPC codes, which pos-

sesses the advantages of both BICM, as it uses only one LDPC code, and of MLC, as it

provides unequal error protection to different levels separately with LDPC subcodes.

This will become clearer in the following sections. It is always possible to perform

iterative demodulation to improve the BER performance of higher-order modulation

schemes but with Gray mapping, it is known that the performance of iterative demod-

ulation does not improve much [4]. Hence, in this work, we choose the demodulation

to be one-shot (i.e. no iterations between decoder and demodulator).

The code-design presented in this work provides a separate sub-profile for each

level of the modulator and optimizes the profile for minimum bit-error rate. The codes

thus designed perform very well for short lengths (up to 10000 bits) which is required

for most applications. Specifically, the scheme presented here performs better than

MLC/PID with LDPC component codes for the same parameters (maximum variable

node degree, code-length and code-rate) on additive white Gaussian noise (AWGN)

and block-fading channels with CSIR. Since 2m-PAM represents one quadrature com-

ponent of 22m-QAM, the optimization holds true for QAM too. In general, this idea

can be extended to other modulation schemes like M-PSK very easily.

Hou et al. have considered the design of LDPC codes for MLC/PID and BICM

schemes [28]. However, they used differential evolution to design the codes which is

very complicated. Moreover, the scheme presented here is better for shorter lengths,

because as stated earlier, it is a blend of MLC/MSD and BICM.
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A. Multilevel Coding

Optimization of code profiles for high order constellations such as 2m-PAM is not as

straightforward as that for BPSK. This is because bits at different levels are protected

unequally by the modulator i.e. the average LLRs (log-likelihood ratios) of different

bits from a demapped symbol are different. Hence, coding has to make up for this

discrepancy by giving more protection to the bits (levels) receiving lesser protection

from the modulator/demodulator. This is what MLC accomplishes [4]. MLC provides

a separate component code for each of the levels. In order to achieve the constrained

capacity, decoding must start with the decoder of the lowest level and proceed to the

higher levels taking into account the decisions of prior decoding stages. This type of

decoding is called MSD. The order in which the levels are decoded is not important.

An alternative to MSD is decoding the component codes independently. This scheme

is MSD/PID.

B. BICM: An Alternative to MLC

When a single code is used without differentiating the levels of the demodulator, the

resulting scheme called is BICM [5]. When Gray mapping is used, the difference in

capacity from MLC/MSD to BICM is negligible for one-shot demodulation [4]. This is

a very promising result for practical short-medium codelength schemes. With coding

schemes like turbo and LDPC codes whose power-efficiency increases tremendously

with increase in length, it might be advantageous to use BICM for finite lengths.

Therefore, this work implements a BICM one-shot demodulation scheme with Gray

mapping where a single LDPC code is employed. At the same time, this scheme

is different from the conventional BICM scheme, as each level of the demodulator

is protected unequally by a subcode of the LDPC code and hence it has the good
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properties of MLC as well. Note that we call it a subcode because a different variable

node degree-profile is chosen for each of these levels. On the check node side, however,

all these variable nodes are connected, hence it is a single code. An irregular LDPC

code protects the coded-bits unequally and the inequality can be controlled through

the variable-node degree profiles. This design results in better BER.

C. System Description

A channel is symmetric if:

p(yk|xk = 1) = p(−yk|xk = 0), (3.1)

where p(.) is the pdf function, y is the received signal corresponding to a transmitted

bit of x.

For a symmetric channel, it suffices to apply density evolution assuming the all-

zero codeword has been transmitted for threshold determination and code design.

When high order constellations like PAM or QAM are used, the resulting binary-

input channels are not symmetric. Since symmetry condition simplifies things, it is

always a desirable property. We use the concept of i.i.d. channel adapters [29] [28]

to symmetrize the equivalent binary-input channels. Assume the constellation in

question is 2m-PAM - Figure 5 shows our system. In this work, we consider two types

of channels with 2m-PAM as the constellation:

1. An AWGN channel for which we design the code for PAMs of different sizes -

yk = xk + nk (3.2)

where xk is transmitted symbol from 2m-PAM constellation, yk is the received

value and nk is the AWGN noise with variance σ2.
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2. Block-fading channel with B independent block realizations over a codeword

and the B values of the channel is known to the receiver (CSIR). The AWGN

optimized codes are directly applied to this channel.

yk = αxk + nk (3.3)

where xk is transmitted symbol from 2m-PAM constellation, yk is the received

value, α is the CSI which is available to the receiver and nk is the AWGN noise

with variance No/2.

Fig. 5. LDPC BICM system

D. Code Optimization

Since differential evolution is very complex, for an AWGN or block-fading channel,

Gaussian approximation can be applied to simplify the code design. But as the de-

modulator is not necessarily a linear system, the LLR outputs of the demodulator for

different levels need not be Gaussian distributed anymore. Hence application of the

Gaussian approximation might give an optimistic value for the threshold. Neverthe-

less, it can aid in finding good code-profiles. In this work, we consider the code-design

for the plain AWGN channel. Since fading is a case of AWGN with different instan-

taneous SNR, we expect these codes to perform well on them too.
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The code structure is as follows - a single code is designed which provides unequal

error protection to different levels. Different sets of variable nodes and hence different

variable-node profiles are set aside for different levels of the demodulator. But there

is just one set of check nodes for all the different sets of variable nodes and hence it is

a single code. This can be better understood from Figure 6. Also, the deinterleaver

between demodulator and decoder must make sure that the different levels of the

demodulator are transferred to the right sets of variable nodes of the decoder. If the

LLRs for different levels in the constellation are assumed to be Gaussian distributed

with different means (Gaussian approximation), these means can be obtained through

simulations of the soft-demodulator at different SNRs. These mean-values will drive

the optimization. We set aside separate λs for different levels. For example, if we

have 2m-PAM or 22m-QAM, then we have m levels of bits, hence if dl if the maximum

left degree, there are m sets of λs (λj,i j = 1, 2, . . . , m & i ∈ [1, dl]) satisfying the

following conditions:

m∑
j=1

dl∑
i=1

λj,i = 1 (3.4)

dl∑
i=1

λ1,i

i
=

dl∑
i=1

λ2,i

i
= . . . =

dl∑
i=1

λm,i

i
(3.5)

Eqn. (3.5) is due to the fact that the number of bits connected to each of the m

levels are equal. The means of the LLRs at the m different levels from the demod-

ulator is evaluated through simulations (this can be done analytically too through

the approximations in [30]) and represented as mu1 , mu2 , . . . , mum . Optimization is

then carried out with these channel means muj
for the set λj,i for all i. So density

evolution with Gaussian approximation for this case at the l-th iteration will have
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Fig. 6. LDPC coding scheme: demodulator generates LLRs of m bits for a received

symbol which serve as a priori probability for m variable nodes each in a

different level. The number on the node represents the degree of the node
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the following modifications:

m
(l)
v,j,i = muj

+ (i − 1)m(l−1)
u (3.6)

where m
(l)
v,j,i is the mean of the Gaussian output from a degree-i variable node at the

jth level to the check node. Therefore, the outgoing message v to the check node at

the lth iteration will have the following Gaussian mixture density f
(l)
v :

f (l)
v =

m∑
j=1

dl∑
i=1

λj,iN (m
(l)
v,j,i, 2m

(l)
v,j,i) (3.7)

⇒ E

[
tanh

m
(l)
v

2

]
= 1 −

m∑
j=1

dl∑
i=1

λj,iφ(m
(l)
v,j,i) (3.8)

where φ(m
(l)
v,j,i) is given by [26]:

φ(x) =

⎧⎪⎨
⎪⎩

1 − 1√
4πx

∫
R

tanhu
2
e−

(u−x)2

4x du, if x > 0

1, if x = 0
(3.9)

The mean of the output of a check node of degree k, m
(l)
u,k is given by:

m
(l)
u,k = φ−1

⎡
⎣1 −

(
1 −

m∑
j=1

dl∑
i=1

λj,iφ(m
(l)
v,j,i)

)k−1
⎤
⎦ (3.10)

Note that the check nodes are shared by all the levels as there is just a single code.

Proceeding further, we obtain the mean of the message passed from check to variable

m
(l)
u as:

m(l)
u =

dr∑
k=1

ρjφ
−1

⎡
⎣1 −

(
1 −

m∑
j=1

dl∑
i=1

λj,iφ(m
(l)
v,j,i)

)k−1
⎤
⎦ (3.11)

Threshold of the LDPC code is the standard deviation of the noise, σ∗, below

which m
(l)
v and m

(l)
u → ∞ as l → ∞. Note that (3.11) is similar to (10) in [26].

The only difference is that here there are more variables, λj,is. Proceeding in the
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same manner as in [26], the problem of optimizing the profiles, λ and ρ, for the best

threshold for a given rate of the code reduces to a linear optimization problem. This is

certainly a much simpler scheme compared to actual density evolution, which involves

keeping track of actual pdfs of the messages between variable and check nodes.

E. Simulations and Results

By applying the optimization based on the Gaussian approximation [26], we obtained

the degree-profiles of the rate-1/2 LDPC code for a 4-PAM scheme (equivalent to a

16-QAM scheme) over an AWGN channel. The left maximum degree, dl was fixed

at 15. The optimized code-profile is shown in Table I. Our code has a threshold of

Eb/No = 2.52dB (for the given scheme of rate-1/2 4-PAM Eb/No is same as Es/No).

The channel capacity is 2.11dB and the PID capacity is 2.27dB.

In order to characterize the advantages of our proposed scheme, we have sim-

ulated the rate 0.5, 4-PAM BICM scheme for an overall code-length of 1000 bits

and compared this performance to the best optimized rate-0.5 4-PAM MLC/PID and

MLC/MSD schemes respectively (code-profiles for MLC obtained from [28], variable-

node degree, dl constrained to 15) on an AWGN channel. It must be noted that these

MLC codes were designed with actual density evolution. Overall code-length of 1000

implies that the length of the BICM code is 1000 and lengths of the MLC component

codes are 500 each (for the same complexity and latency requirement). As can be

seen from Figure 7 and Figure 8, our proposed scheme has gains of over 1dB at a FER

of 0.01. This gain will be higher for higher-order constellations as the length of the

component codes will further reduce. Hence BICM is not merely a pragmatic scheme

but a more optimal scheme at short-medium block-lengths even though MLC/MSD

achieves capacity (infinite-length code-words). Also it is also more practical to main-
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Table I. Degree profiles

i λ1,i λ2,i j ρj

2 0.1587 0.1262 7 1

3 0.0569 0.2113

4 0.0257 0.0192

5 0.0228 0.0098

6 0.0230 0.0062

7 0.0243 0.0038

8 0.0264 0.0024

9 0.0290 0.0017

10 0.0323 0.0014

11 0.0358 0.0011

12 0.0395 0.0007

13 0.0433 0.0004

14 0.0469 0.0006

15 0.0489 0.0016
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tain a single code (BICM) for all the bit-positions as used in our scheme.
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Fig. 7. Comparison of our scheme (BER) to the best MLC/MSD and MLC/PID

schemes for gray-mapped 4-PAM R=0.5 (1000,500) LDPC and dl = 15 for

AWGN

Over a block-fading channel, even for a longer code-length of 16200 (comparable

to 2 irregular component codes of length 8100 in [31] with dl =15), the proposed

BICM scheme achieves a gain of over 2.5dB at an FER of 0.02 as can be seen from

Figure 9 and Figure 10 (BER and FER respectively). There are 16 independent block

realizations of fading over one block (16200) of the code.

Figure 11 compares the performance of the proposed scheme with 4-PAM to a

BICM scheme also with 4-PAM but with an LDPC rate 0.5 code optimized for AWGN

channel with BPSK constellation. As can be seen, the BPSK-AWGN optimized LDPC

code performance is around 0.4 dB away from the proposed BICM scheme which
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Fig. 8. Comparison of our scheme (FER) to the best MLC/MSD and MLC/PID

schemes for gray-mapped 4-PAM R=0.5 (1000,500) LDPC and dl = 15 for

AWGN
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Fig. 9. Comparison of BER of our scheme to the best MLC/PID scheme for

gray-mapped 4-PAM R=0.5 (16200,8100) LDPC and dl = 15 for block-fading
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Fig. 10. Comparison of FER of our scheme to the MLC/PID scheme for gray-mapped

4-PAM R=0.5 (16200,8100) LDPC and dl = 15 for block-fading
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underlines the fact that special BICM code-design schemes (as the one proposed) are

required for better performance. In all the optimizations, we have assumed the right
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BER − BPSK−AWGN opt. code

Fig. 11. Comparison of the proposed scheme to a BICM scheme with BPSK/AWGN

optimized LDPC code and gray-mapped 4-PAM R=0.5 (16200,8100) and

dl = 15 for AWGN

nodes are concentrated in one degree. This scheme can be extended to mixture of

right degrees in which case we expect even better performance. All simulations were

run for 100 iterations.

In summary, we designed a simple power and bandwidth efficient scheme (blend

of MLC/BICM) with LDPC codes. The optimization technique for the design of

code-profiles follows a simple linear programming method and can be implemented

very easily as opposed to differential evolution. Even though this work deals with
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PAM/QAM case, it can be easily extended to other constellations too. Simulation

results show that for practical short and medium block-lengths, the proposed scheme

achieves much better BER performance than MLC/MSD and MLC/PID schemes

over AWGN and block-fading channels. This is so in spite of the fact that the MLC

schemes were designed with exact density evolution.
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CHAPTER IV

SPACE-TIME AND SPACE-FREQUENCY CODING WITH LDPC CODES

Quasi-static fading with the channel state (fade) known only to the receiver

(CSIR) is an adverse system to design channel codes for. The capacity of this system

is zero as there is a non-zero probability that the transmitted rate is not supported

by the channel (this event is defined as outage and its probability is called outage-

probability). Diversity of some form such as space, frequency or time is required to

improve the outage probability of this system. Some forms of diversity (e.g. receive

diversity) come for free, while others like transmit diversity do not.

In practice, signalling is always constrained to a maximum constellation-size. In

this case, beyond a certain SNR, the degrees of freedom available from the channel

is fixed and cannot increase (e.g. with 64-QAM and 2 transmit antennas, the total

degrees of freedom is fixed by the constellation). These degrees have to be shared

between transmit diversity and transmission rate. For this case, there is a rate-

diversity tradeoff [6], where the “rate” is the actual transmission rate and not the

rate of increase of transmission rate as before. Consider a scheme with random-

like linear codes such as Low-Density Parity-Check codes as the outer-code and a

simple serial-parallel converter as the inner-code. The number of parallel streams at

the output of this system is equal to the number of transmit antennas, NT . It has

been shown that this scheme achieves the rate-diversity tradeoff with a Maximum-

Likelihood (ML) decoder [32]. In this work, we derive the rate-diversity tradeoff

of MIMO-OFDM system (Multiple-Input Multiple-Output system with Orthogonal

Frequency Division Multiplexing) and prove that random-like codes such as LDPC

codes or turbo-codes achieve the tradeoff with an ML decoder. Furthermore, we show
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that for a single-input single-output (SISO) OFDM system, all the frequency diversity

is achievable with a channel code which has a large-enough minimum-distance (dmin).

Thus, for a SISO-OFDM system, we show that full-diversity is achievable for code-

rates tending to 1.

Finally through simulations, we demonstrate that the coding gain of the proposed

scheme is good. Thus, the contribution of this work is as follows:

1. Characterization of rate-diversity tradeoff of MIMO-OFDM and SISO-OFDM

systems

2. Achievability of rate-diversity tradeoff of MIMO-OFDM and SISO-OFDM sys-

tems with random-like codes such as LDPC with an ML decoder

3. Achievability of rate-diversity tradeoff of MIMO-OFDM, SISO-OFDM and MIMO

systems with LDPC codes and sub-optimal iterative sum-product decoder

We also make comparisons to some schemes presented in literature for MIMO-

OFDM [1] [33]. In comparison to these schemes presented in literature, our scheme

has the following advantages:

1. Our scheme performs very close to the rate-diversity tradeoff while the schemes

presented in [1] and [33] are far away from the tradeoff. In fact the schemes

presented in these references require a penalty in code-rate of the precoder for

every additional degree of frequency-diversity that can be guaranteed. This is

not the case with our scheme where we show that rate-diversity tradeoff exists

only for the transmit diversity and that frequency-diversity can come for free.

2. These schemes in literature require a re-design of the precoder to maximize

the transmission rate for different frequency-diversity to be guaranteed (this

maximum rate is still far from the rate our scheme guarantees for the same
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frequency diversity achieved) while our proposed scheme requires only a single

code which can be punctured to obtain different code-rate which will provide

different diversity depending on the rate-diversity tradeoff.

3. Our scheme applies the use of sum-product decoder (turbo decoder for turbo

codes) which have very practical complexity compared to the ML decoder re-

quired for the block-coded precoder which is very complex.

4. Since the codes we use are more random in nature, the coding gain obtainable

can be much higher (this is shown through simulations but is difficult to be

proved).

A. System Description

Consider a system as shown in Figure 12. The output of the LDPC encoder is

converted from serial into NT parallel streams where NT is the number of transmit

antennas. The incumbent bits on each of the streams is mapped to symbols of a

Fig. 12. System description of a MIMO-OFDM system
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fixed constellation, say QPSK, 16-QAM etc. (constellation remains the same across

antennas). In this work, we consider two cases: (1) where frequency-selective fading

is present and OFDM is used to circumvent ISI, and (2) when fading is flat and there

is no ISI present - for this case, we present simulation results directly. In both cases,

we assume that the fading is slow and remains constant over the block of the LDPC

codeword transmitted and that only the receiver has access to the fade coefficients

(CSIR). With respect to outage, this is the worst-case scenario and most difficult

to code for, as inherently the amount of diversity is fixed and small and there is a

non-zero probability that the rate transmitted is not supported by the channel. Let

us first consider the case where OFDM is applied to take care of frequency-selective

fading and there are NT transmit antennas.

B. OFDM with Multiple Antennas

Throughout this work, we assume that the OFDM system is ideal with a long-enough

guard interval and no Inter-Carrier Interference (ICI) and thereby it converts the

frequency-selective fading channel into parallel flat-fading channels. Assume that

over a given tone, i, of the OFDM system, a vector:

xi =
[
x

(1)
i x

(2)
i . . . x

(NT )
i

]
(4.1)

is incident on the OFDM modulator. If the IFFT operation at the transmitter and

the FFT operation at the receiver are ideal, x
(l)
i is the symbol transmitted from the

l-th antenna at the i-th tone. This vector passes through a flat-faded MIMO channel

and is obtained at the receiver as:

rk =

√
Es

NT
H(expj 2πi

N )xi + ni i = 0, 1, . . . , N − 1 (4.2)
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where rk is a vector of size NR × 1, NR is the number of receive antennas, N is the

number of subcarriers, E(||xi||2) = NT ⇒ E(||x(l)
i ||2) = 1 l = 0, 1, . . . , NT − 1, and

nk is the complex Gaussian received noise vector of the same size as rk satisfying:

E(ninl
H) = σ2INR×NR

δ[i − l] (4.3)

with (.)H being the Hermitian operator, INR×NR
being an identity matrix of size

NR × NR and σ2 is the variance of the noise. The channel transfer function, H(expj 2πi
N )

is of size NR × NT and is defined as follows:

H(expj 2πi
N ) =

L−1∑
k=0

h(k) expj 2πik
N (4.4)

where L is the total number of taps in the channel and h(k) is a NR × NT random

complex-matrix representing the k-th tap of the MIMO-ISI channel (in the time

domain). As is evident, there is the notion of data being transmitted in the frequency

domain in a MIMO-OFDM system similar to a single-antenna OFDM system and

the channel transfer function is a Fourier transform of the time-domain MIMO-ISI

channel as given by Eqn. (4.4). We further assume that h(k) is complex Gaussian

with variance 1/2L in the real and imaginary parts (uniform power delay profile),

and h(k), h(n) are independent, if k �= n.

1. Code Design

Assume that a codeword of the LDPC code is transmitted in one OFDM symbol

from NT antennas. In other words, NT ×N symbols of the higher-order constellation

span a single codeword of the LDPC code. N can be chosen to satisfy this condition.

For the time being, assume that an ML decoder is available at the receiver for this

system. The ML decoder must choose the NT × N codesymbol, X̃ = [x̃1x̃2 . . . ˜xN−1]
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which maximizes the likelihood probability or minimizes the Euclidean distance:

X̃ = arg min
X

N−1∑
i=0

||ri −
√

Es

NT
H(expj 2πi

N )xi||2 (4.5)

A standard approach to the problem of code-design is to consider the pair-wise

error probability (PEP) between any two code-symbols (we define a code-symbol

as a code-word of the LDPC code, which is a set of coded-bits, mapped to their

corresponding symbols in the constellation that is transmitted). We follow the steps

in [1] in this section. For the sake of completeness, the steps in [1] are retraced here.

Assume that X1 and X2 are two code-symbols which correspond to codewords C1

and C2 respectively of the LDPC code. For a given channel realization which is fixed

over the duration of the code-symbol and which is known to the receiver, the PEP in

choosing X2 while X1 was transmitted, can be written as [19]:

P (X1 → X2|H) = Q

(√
Es

2NT σ2
d2(X1,X2|H)

)
(4.6)

where

d2(X1,X2|H) =

N−1∑
i=0

||H(expj 2πi
N )(X1,i −X2,i)||2 (4.7)

Applying Chernoff bound, Q(x) ≤ 1
2
exp−x2

2 ,

P (X1 → X2|H) ≤ 1

2
exp

−
(

Es
4NT σ2 d2(X1,X2|H)

)
(4.8)

Denote E = X1 − X2. With a uniform power delay profile, the expectation of PEP

over the distribution of the channel transformation matrix yields the following upper-

bound [34]:

P (X1 → X2) ≤ 1

2

Rank(Z)−1∏
k=0

1(
1 + Es

4NT σ2 λk(Z)
)NR

(4.9)
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where Z = T(E)TH(E) and:

T(E) = [ET RET . . . RL−1ET ] (4.10)

with R = (exp−j 2πi
N ) i = 0, 1, . . . , N − 1 and λk(Z) is the k-th eigen-value of Z in

Eqn. (4.9).

Hence, the order of diversity of a coding scheme is the minimum rank over all

pairwise difference matrices of code-symbols following the definition in [19]. In the

next sub-section, we will take a more careful look at the rotated difference matrix

T(E) in order to maximize the diversity.

2. SISO-OFDM System

In this sub-section, we show that all the frequency-diversity can be achieved at no

expense of code-rate when transmission occurs through a SISO system. Consider

the matrix Z derived in the previous sub-section. When NT = 1, the difference

code-symbol parameter, E is a vector and not a matrix anymore. T(E) becomes:

T(E) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e0 e1 . . . eN−1

e0 exp−j 2π1
N e1 . . . exp−j 2πN−1

N eN−1

...
...

. . .
...

e0 exp−j 2πL−1
N e1 . . . exp−j 2π(L−1)(N−1)

N eN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(4.11)

Assume that a code exists with minimum distance dmin > mL, where m is the

number of bits mapped to a constellation symbol (e.g. m = 2 for QPSK and m = 4

for 16QAM) and L is the number of taps in the ISI channel. In such a case, atleast

L non-zero rows of T(E) will be present for each set of difference symbols, E. Let

us consider the matrix with the first L non-zero rows of T(E). Denote these rows as
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i1, i2, . . . , iL and the truncated matrix as T′(E). T′(E) is given as:

T′(E) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ei1 ei2 . . . eiL

exp−j
2πi1

N ei1 exp−j
2πi2

N ei2 . . . exp−j
2πiL

N eiL

...
...

. . .
...

exp−j 2π
N

i1(L−1) ei1 exp−j 2π
N

i2(L−1) ei2 . . . exp−j 2π
N

iL(L−1) eiL

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(4.12)

In order to determine the rank of this matrix, let us apply an elementary transfor-

mation to this matrix. Multiply each row of T′(E) by the corresponding eil l =

1, 2, . . . , L. This results in T′′(E) given by:

T′′(E) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

exp−j
2πi1

N exp−j
2πi2

N . . . exp−j
2πiL

N

...
...

. . .
...

exp−j 2π
N

i1(L−1) exp−j 2π
N

i2(L−1) . . . exp−j 2π
N

iL(L−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(4.13)

which is a Vandermonde matrix and is full-rank. Hence, all the diversity in a single-

antenna OFDM system can be obtained by merely using a channel code with a min-

imum distance larger than a factor of the number of taps in the channel and an ML

decoder for the system, irrespective of the rate of the code (as length of the code-word

can be made as large as required to increase dmin).

dmin > mL (4.14)

is the required condition and will guarantee the full frequency-diversity. However,

this condition is not always required to obtain the full diversity (when dmin codebits

are distributed to more than dmin/m code-symbols, which is usually more probable,

dmin can be slightly less than mL and T′′(E) can still be full-rank). It must also

be noted that in order to obtain the full frequency-diversity, an interleaver is not
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required. However, without an interleaver, the coding gain might be small as the

rows of the Vandermonde matrix, T′′(E), might be very similar to each other and

hence the determinant will be of small magnitude. An interleaver will ensure that

the rows are not similar and guarantee a high coding gain.

3. MIMO-OFDM

It has already been proved that a random code such as an LDPC code achieves the

rate-diversity tradeoff [6] over a basic MIMO system [32] with BPSK constellation.

For higher-order constellations, it has been conjectured that LDPC code achieves the

rate-diversity tradeoff for long lengths of the code. Based on this previous work, we

make the assumption that the rate-diversity tradeoff for a basic MIMO system is

achievable for any fixed constellation by random codes to prove the achievability of

the tradeoff for a MIMO-OFDM system.

Theorem 1 : If a long random code of a given code-rate, R, achieves a transmit

diversity of d in its basic MIMO mode of operation (i.e. no frequency diversity, receive

diversity equal to NR is always available), then it will achieve dL order diversity as

a result of the presence of frequency diversity of order L given that the code-rate R

remains the same.

Proof : We present arguments which are true asymptotic in length of the LDPC

code:

When there are multiple antennas to transmit from, the matrix TO(E) takes the
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following form:

TO(E) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
0 e1

1 . . . e1
N−1

...
...

. . .
...

eNT
0 eNT

1 . . . eNT
N−1

e1
0 exp−j 2π1

N e1
1 . . . exp−j 2πN−1

N e1
N−1

...
...

. . .
...

eNT
0 exp−j 2π1

N eNT
1 . . . exp−j 2πN−1

N eNT
N−1

...
...

. . .
...

e1
0 exp−j 2πL−1

N e1
1 . . . exp−j

2π(L−1)(N−1)
N e1

N−1

...
...

. . .
...

eNT
0 exp−j 2πL−1

N eNT
1 . . . exp−j 2π(L−1)(N−1)

N eNT
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(4.15)

In order to prove that all the frequency diversity is achievable in the presence of

multiple transmit antennas, we apply the following lemmas:

Lemma 1 (Scaling Property): For an expurgated random code [23], the minimum

distance, dmin, scales as:

dmin ≈ βNcode, (4.16)

where β is a non-zero constant and Ncode is the length of an LDPC code-word.

This property was proved by Gallager in his dissertation work on LDPC codes.

LDPC are a class of linear block codes which when constructed in a pseudo-random

manner satisfy this lemma, especially for long lengths of the code.

Assumption 1 : Proof of Theorem 1 is simpler with a sub-class of LDPC codes

with a non-zero fraction of odd-degree check nodes. For this class of LDPC codes, all-

one word is not a valid code-word (all-one word being a valid codeword is disastrous
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as then the maximum transmit diversity achievable in a plain MIMO system is 1

irrespective of code-rate) and furthermore, the weight of the highest Hamming weight

code-word is ΔNcode, where Δ is strictly less than 1.

Δ < 1 (4.17)

Lemma 2 : When bits of the random LDPC code is mapped to a higher-order con-

stellation, the scaling property of the minimum distance of the codewords in terms

of the symbols in the constellation (code-symbols), Smin, is preserved i.e.

Smin ≈ β ′Ncode. (4.18)

Proof : Since the bits are mapped one-one to symbols in the constellation, the mini-

mum distance in terms of the constellation-symbols is atleast dmin/m, where m is the

number of bits present in a symbol of the constellation. Hence the scaling property

prevails, even though the scale factor is lower. Smin corresponds to the minimum

number of non-zero entries in the error code-symbol, E.

Lemma 3 : When coded bits of the LDPC code in Assumption 1 are randomly

mapped to constellation symbols, the maximum number of non-zero code-symbols in

the error code-symbol, E given by Δ′Ncode/m is such that Δ′ < 1.

Proof : From Eqn. (4.17), it is evident that atleast (1−Δ)Ncode bits are different

between any two LDPC codewords, where (1 − Δ) > 0 strictly. Zero code-symbols

occur in E when the bits in m consecutive positions of the error code-word (these are

in bits) which make up the constellation symbol are zero. Since (1 − Δ) > 0, there

is a non-zero probability that these m positions of the error code-word are zero (this

strictly non-zero probability is atleast (1 − Δ)m). Thus Lemma 3 is true.
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Denote the first NT columns of TO(E) as S(E).

S(E) =

⎡
⎢⎢⎢⎢⎣

e1
0 e1

1 . . . e1
N−1

...
...

. . .
...

eNT
0 eNT

1 . . . eNT
N−1

⎤
⎥⎥⎥⎥⎦

T

(4.19)

These columns represent the multiplexed LDPC codeword transmitted over NT trans-

mit antennas. Assume that the rank of this matrix is Nd for any set of error code-

symbols, E, which also represents the transmit diversity order achieved by the LDPC

code when transmitted over a MIMO system with NT transmit antennas and no

frequency diversity. Since the LDPC code is assumed to achieve the rate-diversity

tradeoff of the MIMO system, Nd depends on the code-rate of transmission chosen.

If S(E) is assumed to have rank Nd, it implies that S(E) has Nd independent

columns and therefore has atleast Nd non-zero columns for every E. Let us denote

these Nd independent non-zero columns of S(E) for a given error code-symbol as

S′(E). One way to prove that TO(E) can have rank NdL is to show that with non-

zero probability, there are some NdL rows in S′(E) with only one entry in each column.

If these correspoding rows in TO(E) are considered (denote this matrix as T′′
O(E)),

they will be full-rank, equal to NdL, since this matrix has a Vandermonde structure.

As an example, assume that Nd = 2, NT = 2, L = 2 and also that the NdL rows of

S ′(E) with single entries are i0, i1, . . . , i5. Then T ′′
O(E) can be expressed as in Eqn.

(4.20).

T
′′(E)
O =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e1
i0

e1
i1

0 0

exp−j
2πi0

N e1
i0

exp−j
2πi1

N e1
i1

0 0

0 0 e1
i2

e1
i3

0 0 exp−j
2πi2

N e1
i2

exp−j
2πi3

N e1
i3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

(4.20)
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As can be seen from T
′′(E)
O , no column can be expressed as a linear combination

of other columns and no row can be expressed as linear combination of other rows

and hence, T
′′(E)
O is full-rank. Hence in order to complete the proof of Theorem

1, we need to show that NdL rows of S′(E) exist with single entries, with a high

probability. Assume that a given error code-symbol, E, has a weight (number of non-

zero positions) given by δNcode/m (for different code-symbols, δ can be different).

From Eqn. (4.18), the minimum value of δ is β ′ and from Lemma 3, the maximum

value of δ = Δ′ < 1.

Since a random code such as LDPC code distributes the ones in its codewords

randomly among the total length of the code-word (and also because of the interleaver

present between the encoder and S-P converter in Figure 28, it can be safely assumed

that the δNcode/m non-zero symbols are independently distributed among the Ncode/m

total symbols of S(E). This implies that the probability that a given element in a

column of S(E) is non-zero is

P =
δNcode

m
Ncode

m

= δ (4.21)

Given this probability, the following is true for a given row of S′(E). In a given row

of S′(E), the probability of all the elements being zero is given by:

Pall−zero = [1 − δ]Nd (4.22)

Probability of finding a single-entry in a given row, Pse is:

Pse =
[
(1 − δ)Nd−1 δ

]
(4.23)

As 0 < δ < 1 strictly, Pse is a finite non-zero quantity. The average number of
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single-entry columns, Nse, is proportional to:

Nse = NPse (4.24)

where N is the number of sub-carriers and is also equal to the number of rows in

S(E). Nse is a strictly non-zero quantity and can be made greater than NdL merely

by increasing N (which implies increasing Ncode. Hence, Theorem 1 is proved.

Thus we show that rate and transmit diversity have a tradeoff given by the

rate-diversity tradeoff but frequency diversity can come for free. If diversity of Nd is

guaranteed by the basic MIMO system, it can be shown that asymptotically in length

Ncode = NNT of the code (by letting N → ∞), diversity of NdL can be achieved with

no penalty in the rate of the code. Thus there is no rate-diversity tradeoff for the

frequency part of the overall diversity and frequency-diversity will come for free.

C. Simulation Results

In this section, we present simulation results for an LDPC coded MIMO system with

NT = 2 and NR = 2. We consider three lengths for the LDPC code - Ncode = 4096

bits (very short), 16384 bits (short) and 131092 bits (long). The Ncode coded bits are

split into 2 (= NT ) streams of Ncode/2 bits each and which are then Gray-mapped

to Ncode/4 QPSK symbols each. These symbols are transmitted over an OFDM

symbol with N = 1024 or 4096 or 32768 subcarriers. The receiver consists of a

MAP demodulator for the MIMO system with 2 receive antennas followed by the

sum-product decoder for the LDPC code with 100 iterations. Iterations between the

demapper and the LDPC decoder are in general helpful, however, if AWGN optimized

LDPC codes are used, iterations between demapper and demodulator will not improve

performance much. Unless the extrinsic characteristics of the LDPC code is matched
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to that of the demapper (EXIT charts [35]), iterations between demapper and decoder

will not improve performance.

We consider up to four separate code-rates for the LDPC code - 1/3, 0.5 (= 0.49

which is slightly less than rate 0.5, but for practical purposes, we will refer to the

rate as 0.5), 2/3 and 0.9 to demonstrate the rate-diversity tradeoff. The profiles for

these codes are the best optimized ones for AWGN channel with a maximum variable

degree of 20. For all these codes, it was ensured that atleast a small fraction of

check nodes have an odd degree. The SNR assumed in one of the simulation figures

for comparison purposes, is defined as SNR = Es/σ
2 which can be viewed as the

transmit SNR from Eqn. (4.2). This definition of SNR is chosen as opposed to

Eb/No, to facilitate easy comparison of simulation results with other references. Note

that this definition of SNR is the same as in [1] (in [1], their Es is 1/NT times our Es,

hence overall SNR is the same). Corresponding to the code-rates of R = 1/3, 1/2, 2/3

and 0.9, the overall transmission rate (assuming QPSK from each transmit antenna)

from across all antennas is R × m × NT which will be equal to 4/3, 2 (slightly less

than 2), 8/3 and 3.6 bps/Hz respectively.

For the MIMO case with no OFDM, we show the simulated results in Figure 13

with length 16384 LDPC code over a quasi-static fading channel where there are only

4 channel realizations (2×2) over the entire code-word. As can be seen, for Rate < 2

bps/Hz, all the diversity of 4 can be achieved, but for higher rate, asymptotically

only diversity of 2 is achievable. Thus, the rate-diversity tradeoff for MIMO systems

is closely followed by LDPC codes [32].

Diversity is defined as a measure asymptotic in SNR given by Eqn. (2.5). In

Figure 13, the highest-rate code of code-rate 2/3 can achieve a slope higher than 2

for SNRs shown, but is expected to stabilize to a diversity of 2 at high SNRs. This

is merely an artifact of observing the slope at finite SNRs.
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Fig. 13. Simulation results of a 2 × 2 MIMO system with QPSK and LDPC code-rate

0.5 and rate 0.67 (correspond to ≈2 b/s/Hz and 2.67 b/s/Hz respectively).

The two numbers on the curve stand for the slope for that 2 dB section and

the expected diversity order respectively
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For the MIMO-OFDM case, we show the simulated results in Figure 14 with

length 16384 LDPC code for all code-rates and Figure 15 with 131092 length LDPC

code for code-rate 1/3. For both these cases, the number of taps L = 2. As can be

seen, for code-rates given by 1/3 and 1/2, the highest diversity of 8 is achievable (it

is our belief that the slope will tend to 8 as SNR increases further - some of the loss

of slope can be attributed to the sub-optimal decoder used) while with code-rate 2/3,

diversity of 4 is achievable as predicted by Theorem 1.
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Fig. 14. Simulation results of a 2 × 2 MIMO-OFDM (L = 2) system with QPSK

and LDPC code-rate 0.33, 0.5 and rate 0.67 (correspond to 1.33 b/s/Hz, ≈2

b/s/Hz and 2.67 b/s/Hz respectively). The two numbers on the curve stand

for the slope for that 2 dB section and the expected diversity order respectively

For the MIMO-OFDM case, we also show the simulated results in Figure 16

with length 4096 LDPC code for code-rates 2/3 and 0.9. As can be seen from the
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Fig. 15. Simulation results of a 2 × 2 MIMO-OFDM (L = 2) system with QPSK and

LDPC code-rate 0.33 (corresponds to 1.33 b/s/Hz) and code-length 131072.

The two numbers on the curve stand for the slope for that 2 dB section and

the expected diversity order respectively
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figure, the diversity for the 2/3 code-rate LDPC code for finite SNRs is higher than

4 (=5) but stabilizes to less than 4 at high SNRs. For code-rate 0.9, this effect is less

pronounced, as for the SNRs shown, the curve stabilizes to a slope of 4.
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Fig. 16. Simulation results of a 2 × 2 MIMO-OFDM (L = 2) system with QPSK and

LDPC code-rate 0.67 and 0.9 (correspond to 2.67 and 3.6 b/s/Hz respectively).

The two numbers on the curve stand for the slope for that 2 dB section and

the expected diversity order respectively

In Figure 17, we compare the proposed scheme with code-rate equal to 1/2 QPSK,

Ncode = 16384 and 2 × 2 MIMO system with L = 2 taps, to the simulation result for

the same system given in Fig. 1(a) in [1]. The code in [1] has actually a transmission

rate of 1b/s/Hz which is half our transmission rate for the same diversity, as they

have to sacrifice rate to achieve the frequency diversity (the authors of [1] state that

their scheme does not yield the optimal rate-diversity tradeoff). As seen from the
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figure, our proposed scheme achieves better performance than the compared scheme

with double the transmission rate. Our coding gain is also very good as it performs

as well as a code which is half its rate in [1]. This can be attributed to the use of

random-like codes such as LDPC codes. Fitz et al. also designed coding schemes for
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Fig. 17. Comparison of simulation results to Fig. 1(b) in [1]

MIMO-OFDM system [36], however they were unable to achieve the full-diversity of

the MIMO-OFDM system (Table III in [36]) as opposed to our scheme which can

achieve the full-diversity, due to the constraints on the code-rate they chose. The

scheme in [36] also does not have the advantages of a variable-diversity variable-rate

scheme as the one presented in this work.

For the plain SISO-OFDM case, we simulate an LDPC code of length 16384 and

code-rate 0.8 over a SISO-OFDM system with L = 2, 4 and QPSK modulation. The
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number of subcarriers is N = 8192. As can be seen from Figure 18, the diversities of

2 and 4 are achievable with this code-rate as proved in Section 2.
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Fig. 18. Simulation results of a SISO-OFDM system with QPSK and LDPC code-rate

0.8 with L =2 and L =4

In summary, we have characterized the rate-diversity tradeoff for MIMO-OFDM

and SISO-OFDM systems in this work. We show that there is no tradeoff in rate

in order to obtain the frequency diversity present but only careful code-design is

required. We prove that a scheme with LDPC codes as an outer-code and serial-

parallel converter as an inner code achieves this rate-diversity tradeoff for MIMO-

OFDM and SISO-OFDM systems with an ML decoder. We further show through

simulations that the proposed scheme with a sub-optimal sum-product decoder can

perform very close to this tradeoff curve with good coding gains. The presented
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scheme is a very flexible scheme and can achieve different diversities as the requirement

might arise by merely changing the code-rates.
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CHAPTER V

DESIGN OF LDPC CODES FOR OFDM WITH PARTIAL CSI∗

Irregular Repeat Accumulate (IRA) codes perform very close to capacity on most

memory-less channels with coherent detection. Further, techniques are available to

design good IRA codes that can be matched to a given channel for a given rate [37].

IRA codes also have the advantage of having an easily implementable encoder struc-

ture and their encoding and decoding can be done in linear time. In this work [9] [8],

we design good IRA codes for Inter-symbol interference (ISI) channels when OFDM

is used. The focus is on the case when CSI is not available at the receiver and has to

to be estimated from a few pilots.

When CSI is available, code design for multipath fading ISI channels can be

done in two ways - a soft output equalizer can be used in conjunction with a decoder

and codes can be optimized [38] [39] or OFDM can be used to circumvent ISI and

code design for flat-fading channels can be directly applied. The second approach is

simpler and is considered in this work but perfect CSI is not assumed at the receiver.

Most of the work done on OFDM so far has assumed the availability of perfect

channel information at the receiver. However, this is a very optimistic assumption and

in practice some kind of estimation has to be done. Acquiring correct channel state

information is a difficult problem as the complexity of an optimal channel estimator

is quite high and it also requires knowledge of the statistics of the channel [40] [41].

In this work, we propose the use of IRA codes with a very simple receiver that

∗ c© 2005 IEEE. Reprinted, with permission, from “Design of IRA codes for
OFDM with partial CSI,” H. Sankar and K. R. Narayanan, IEEE Transactions on
Wireless Communications, vol. 4, no. 5, Sep. 2005, pp. 2491-2497.
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performs iterative estimation and decoding. The channel estimator does not require

knowledge of the number of taps in the ISI channel or the statistics of the fading

process. Similar receiver structures have been considered in [42] [43] but code design

is not addressed in these papers. Low-density Parity-check (LDPC) code design for

a similar scheme on correlated flat-fading channels has been considered in [44].

The key components of the technique used in this work are the use of differential

encoding across sub-carriers in an OFDM system and the use of a non-systematic IRA

code, which is carefully optimized. Hence, the technique can be thought of as a joint

code and receiver design approach. We use EXIT charts to optimize the IRA code [10].

The basic idea is to use a simple differential detector during the first iteration (hence

the use of IRA code) and then use the output of the differential detector to generate

soft output from the decoder which can then be used to perform pseudo-coherent

detection. A similar receiver design for Multiple-Input Multiple-Output (MIMO) ISI

channels with OFDM and serial concatenated codes but with differential encoding

in time (rather than across sub-carriers as is being proposed here) was considered in

[45]. Consequently, the schemes considered in [45] may not be robust to faster fading

and is certainly not suitable for block fading as they are differential in time rather

than in frequency (our scheme). Also their scheme does not optimize the code for a

given receiver structure.

A. System Description and Decoding

1. IRA Codes

IRA codes are represented in terms of a bipartite graph similar to an LDPC code.

IRA codes consist of three kinds of nodes - information nodes, check nodes and parity

nodes. The information nodes correspond to the information bits in a codeword.
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The parity nodes correspond to the parity bits in the codeword. The check nodes

correspond to the parity-check constraints satisfied by the information and the parity

nodes. The degree of an information node or a parity node is the number of checks it

participates in while the degree of a check node is the number of information nodes

that are connected to the check. The degree of a parity node is 2 unless stated

otherwise. If the information bits are transmitted along with the parity bits, it is a

systematic IRA code otherwise it is a non-systematic IRA code. In this work, we are

interested in non-systematic IRA codes for two reasons: one, they allow differential

detection and two, the outer irregular part can be easily matched to the inner code

and channel and hence code design is easier.

2. System Description

As shown in Figure 20, the data bits are repeated irregularly and then passed onto a

differential encoder (accumulator). Some of the symbols (say 1 every p symbols) at

the output of the accumulator are set to zero which act as pilot symbols. This can be

done by setting the corresponding input bits to zero or one depending on which will

give a zero output. As shown in figure 20, the coded bits are incident on the OFDM

modulator. Adjacent coded bits of the IRA codeword are transmitted as BPSK

symbols on adjacent sub-carriers of the OFDM symbol through the channel. An IRA

codeword is assumed to span several groups of OFDM symbols. Assume that the

length of the IRA codeword is N = M1 ×N1 where N1 is the number of sub-carriers.

By one group of OFDM symbols, we mean the set of N1 symbols which is of total

duration N1Ts in the time domain (where Ts is 1/fs, fs being the bit-rate) obtained

after IFFT of the bits present in all the N1 sub-carriers. The channel is assumed to

have L−taps with uniform power distribution among them. The modulator uses an

appropriate guard interval to counter ISI and a cyclic shift in the guard interval to
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Fig. 20. System description of an IRA-OFDM system

prevent inter-carrier interference (ICI). For the time being, assume that the channel

is a block fading channel i.e. over a group of OFDM symbols the fading is constant

and across OFDM symbol groups, the channel is independent. This assumption

of fading being constant over an OFDM symbol group shall be relaxed later when

slow/fast fading is considered, the rest being the same. After demodulation of the

received OFDM symbols which involves a stripping of the guard interval and an FFT

operation on the received baseband signal, decoding is done in the following fashion.

3. Decoding

We consider BPSK signaling (0 → −1, 1 → +1) and assuming proper sampling

of the outputs from the matched filter, the received discrete-time baseband signal

corresponding to the j2−th sub-carrier in the j1−th OFDM symbol can be written
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as:

rk = hkyk + nk

k = j1 × N1 + j2, j1 = 1, . . . , M1, j2 = 1, . . . , N1 (5.1)

hk = αke
jθk (5.2)

where yk is the DBPSK signal (±1), yk = vkyk−1, nk is the i.i.d complex AWGN

with zero mean and variance σ2 = N0/2 in each dimension. vk is the input bit to

the DBPSK modulator. The fading amplitude αk is a normalized Rayleigh random

variable with E[α2
k] = 1 and pdf pα(α) = 2αk exp(−α2

k) for αk > 0 and the fading

amplitude θk is assumed to be uniformly distributed in [0, 2π]. For coherent detection,

θk is perfectly known whereas for non-coherent detection it is unknown. Also for the

case where there is Doppler, we use a two-dimensional isotropic scattering land mobile

Rayleigh channel model to describe the correlated Rayleigh process, αk which has

autocorrelation Rk = 0.5Jo(2kπfdTs), where fdTs is the normalized Doppler spread,

and Jo(.) is the zeroth order Bessel function of the first kind.

For the proposed scheme, the first step is one-symbol differential detection on

the received values which is as follows [44]:

uk = Real(rkr
∗
k−1) (5.3)

where ∗ represents the complex conjugate. The log-likelihood ratio (LLR) for uk can

be obtained from its pdf. The conditional pdf of uk given αk and vk is [18]:

fU |α,V (u|α, v) =

⎧⎪⎪⎨
⎪⎪⎩

1
2N0

exp
(

vu−α2/2
N0

)
, −∞ < vu ≤ 0;

1
2N0

exp
(

vu−α2/2
N0

)
Q
(√

α2

N0
,
√

4vu
N0

)
, 0 < vu < ∞;

where Q(a, b) is the Marcum Q function. Then, we can obtain the true pdf of uk
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using:

fU |V (u|v) =

∫ ∞

0

fU |α,V (u|α, v)fα(α)dα, (5.4)

= 2

∫ ∞

0

fU |α,V (u|α, v)αe−α2

dα. (5.5)

Since this is complex to evaluate, a simpler method would be to substitute α with

E[α], which leads to:

fU |α,V (u|α, v) =

⎧⎪⎪⎨
⎪⎪⎩

1
2N0

exp
(

vu−π/8
N0

)
, −∞ < vu ≤ 0;

1
2N0

exp
(

vu−π/8
N0

)
Q
(√

α2

N0
,
√

4vu
N0

)
, 0 < vu < ∞;

The corresponding LLR can then be computed as:

Lch(vk) = sign(uk)

⎛
⎝2|uk|

N0
+ log

⎛
⎝Q(

√
π2

4N0
,

√
4|uk|
N0

)

⎞
⎠
⎞
⎠ . (5.6)

In the proposed scheme, however, we have used a simpler expression [46] [44] which

assumes that uk is Gaussian distributed and is given by:

fU |V (u|v) ≈ N (v, 2N0 + N2
0 ), (5.7)

Lch(vk) ≈ 2uk

2N0 + N2
0

(5.8)

As stated earlier, we apply non-systematic IRA codes to this system to allow differen-

tial detection and due to the ease of design. For iterations to start in a non-systematic

IRA code, some check nodes must have degree 1. In the proposed design, we consider

a fraction, ρ′
1 (0 < ρ′

1 < 1), of the check nodes to have degree 1 and the rest of the

check nodes have a higher degree. Once the soft decisions on vk has been obtained,

decoding is performed as follows.

In the bipartite graph of the IRA code (figure 19), the parity nodes, yk and

the edges connected to these nodes are removed. Note that Lch(vk) is the a priori
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information on vks. There is no a priori information on the information nodes and the

LLRs on the edges of the interleaver (L
(0)
e (xi)) are initialized to zero. Two iterations of

sum-product decoding are performed at the check nodes and at the information nodes

on this residual bipartite graph. Assuming the number of edges in the interleaver is

M , the extrinsic edge LLRs (L
(2)
e (xi), i = 1, . . . , M) from the information nodes to

the check nodes after the two iterations can be obtained. For the edges connected to

the degree-1 check nodes, define a soft output:

L0
e,so(xi) = L(2)

e (xi) + Lch(vi) (5.9)

and for the edges connected to the higher degree check node define the same as

L0
e,so(xi) = L

(2)
e (xi).

The subsequent iterations (call it q, q ≥ 0) use Lq
e,so(xi) as a priori information

on the uncoded bits to an APP decoder for the accumulator trellis and along with the

presence of the pilot symbols in the trellis, extrinsic values Lq
coded(yk) on the coded

bits yk can be obtained. In order to obtain the extrinsic values, Lq
coded(yk), an estimate

of the channel is required. A simple moving-average filter of length K can be used to

obtain complex estimates of the channel given as:

ĥq
j1N1+j2

=
1

K

(j2+K/2)modN1∑
i=(j2−K/2)modN1

rj1N1+i tanh

(
Lq−1

coded(yj1N1+i)

2

)
.

j1 = 1, . . . , M1 j2 = 1, . . . , N1 (5.10)

where mod is the modulo operation. Note that ĥj1N1+j2 has to be determined sepa-

rately for each OFDM symbol, as each OFDM symbol has independent fades. The

moving average filter runs circularly over each OFDM symbol (due to the periodicity

of FFT) to calculate the corresponding ĥj1N1+j2. These estimates can be used to
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obtain the LLRs on yk as:

L̂ch(yk) =
2

σ2
R(r∗kĥk) (5.11)

where R(a) represents the real part of a. Lch(yk) serves as a priori information on the

coded bits and using Lq
e,so(xk) as a priori information on the uncoded bits, the APP (a

posteriori probability) decoder for the accumulator can obtain extrinsic information

on the uncoded bits. A decoding procedure similar to sum-product decoding for the

variable nodes can be applied to the information nodes to obtain extrinsic information

(Lq+1
e,so(xk)) on the uncoded bits of the accumulator. These set of iterations of channel

estimation, APP decoding of accumulator and information nodes decoding continue

for a fixed number of iterations after which a hard decision is obtained from the soft

values.

B. Code Design

In the system considered here, since there are several channel realizations in a single

codeword, we will assume that the channel is ergodic. The problem of code design

boils down to finding the optimum check and information node profiles which perform

as close to capacity as possible. For the check node, we consider a fraction (ρ′
1) of

the nodes to be of degree 1 and the rest to be of another degree. To design the

information node profile, it is easier to assume the serial concatenated structure of

IRA codes and then optimize [10].

Extrinsic Information Transfer (EXIT) charts [35] are a robust measure to track

the progress of the decoder in an iterative scheme. Through simulations, it has been

conjectured that the EXIT curve of the outer code must lie very close to that of the

inner code to maximize the rate of the outer code and for good BER performance. If
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there is a gap, then it will result in rate loss. Also the EXIT curve of the outer decoder

must lie completely below the EXIT curve of the inner decoder for the iterations to

converge. For the proposed scheme, EXIT curve is obtained for the inner decoder

(for the accumulator). The EXIT curve of the outer irregular repeat decoder must

then be matched to the inner one. This method can be applied separately to the case

with perfect channel knowledge at the receiver and with partial channel knowledge

where a channel estimator is used, to design different codes for the two schemes.

In the case of non-systematic IRA codes with no check nodes of degree 1, the

EXIT curves of both the inner and the outer decoder start from the (0, 0) point and

hence iterations cannot start at all. If the non-systematic code is doped with some

check nodes of degree 1, however, the EXIT curve of the inner code will start from

a non-zero point and the outer code which always starts from the all-zero point can

be matched with the guarantee that the iterations will start. There will be a slight

rate loss, the magnitude of which depends on the fraction of degree 1 check nodes.

Deciding upon a good value for ρ′
1 is a tricky problem for the fading channel. Even

though we have assumed the channel to be ergodic for the infinite length case, for

the finite length case for any given block of the IRA codeword and its associated

channel realizations, it may not be ergodic. In other words, the EXIT curve of the

inner decoder can shift around its average from block to block of the code.

The ergodic EXIT curve for the inner code with the above parameters can be

obtained easily. Finding the optimum information node profiles for the outer code is

then a curve-fitting problem which can be done as follows [10]:

Define a function J(.) as the mutual information function between the random

variables X and Y = X + N where Pr(X = m) = Pr(X = −m) = 1/2 and N is zero

mean, Gaussian noise with variance σ2 and assume that m = σ2/2 so that symmetry
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condition is satisfied [25]. Then:

J(σ) = H(X) − H(X|Y )

= 1 −
∫ ∞

−∞

e−
(ξ−σ2/2)2

2σ2

√
2πσ2

. log2(1 + e−ξ)dξ (5.12)

where H(X) is the entropy of X and H(X|Y ) is entropy of X conditioned on Y .

If Li,in is the LLR incident on a degree-dv information node and Lj,out is the

extrinsic LLR on the j−th edge connected to the same node, then:

Lj,out =
∑
i�=j

Li,in (5.13)

Further, if we assume that Li,in is Gaussian distributed with standard deviation,

J−1(IA,O), where IA,O is the a priori mutual information incident on the irregular

repeat from the inner code. Then:

IE,O(IA,O, dv) = J(
√

dv − 1.J−1(IA,O)) (5.14)

where IE,O(IA,O, dv) is the extrinsic information from the irregular repeat nodes back

to the inner code through an information node of degree-dv.

Hence, owing to the linear property of mutual information, the overall extrinsic

mutual information from the irregular repeat outer code can be given as:

IE,O(IA,O) =

Dv∑
dv=2

λdvIE,O(IA,O, dv) (5.15)

where λdv is the degree profile of the information nodes from the edge perspective.

Since the EXIT curve of the inner code has to be matched to the EXIT curve of the
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outer code, if (IE,I , IA,I) is a point on the EXIT curve of the inner code:

IE,O(IE,I) ≥ IA,I (5.16)

⇒
Dv∑

dv=2

λdvIE,O(IE,I , dv) ≥ IA,I (5.17)

Solving for λs is a constrained linear optimization problem which can be easily done.

In this type of code design sufficiently long length of the code and proper interleav-

ing is assumed to make the messages passed between the inner and outer decoder

independent.

C. Capacity of the System

The capacity of the OFDM system with a frequency-selective channel given perfect

knowledge of the channel is equal to the sum-capacity of parallel flat fading channels

given perfect knowledge of the channel. The system is equivalent to:

rk = hkyk + nk (5.18)

where yk is the input BPSK symbol (±1) to the OFDM modulator, rk is the complex

received value after the OFDM demodulator, hk is the complex-valued channel which

is known at the receiver and nk is complex-valued white Gaussian noise with variance

σ2 = N0/2 in each dimension. When hk is known at the receiver, Eqn. 5.18 can be

written as:

rkh
∗
k = ‖hk‖2yk + h∗

knk. (5.19)

Note that this operation does not change the overall capacity of the system. Since,

the information about yk is present only in the real part of LHS, the above equation
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can be further simplified to:

wk = R(rkh
∗
k) = ‖hk‖2yk + R(h∗

knk) (5.20)

where R(.) represents the real part.

Also I(R; Y |H) = I(W ; Y |H) and the capacity of the system is EH [I(W ; Y |H)].

Since the channel is ergodic,

EH [I(W ; Y |H)] =

∑M
i=1 I(W ; Y |Hi)

M
(5.21)

I(W ; Y |Hi) =
1

2
.
∑
y=±1

∫ ∞

−∞
pW |Hi

(w|hi, Y = y)

log2

2pW |Hi
(w|hi, Y = y)

pW |Hi
(w|hi, Y = −1) + pW |Hi

(w|hi, Y = 1)
dw (5.22)

A plot of the capacity against Eb/N0 has been given in Figure 21. It has been

conjectured that the ergodic capacity [35] is close to the area under the EXIT curve

of the inner code + channel ((A)in) multiplied by the rate of the inner code (Rin) for

most of the channels i.e.

I(R; Y ) = (A)inRin (5.23)

This was verified to be fairly accurate for the EXIT curve of the inner code.

D. Results

For a rate 1/2 code with perfect CSIR at the receiver, the ergodic capacity is around

Eb/N0 = 1.9 dB. However, the EXIT curve of the irregular part could be matched to

the inner decoder EXIT curve for the given rate of 0.5 only at 2.3 dB. The EXIT curve

for the inner decoder was obtained for this Eb/N0 and the outer code was designed to

match it as shown in Figure 22. For the receiver with no channel information other

than from the channel estimator (CE), to obtain a rate-0.5 code, its matching could
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be done only at Eb/N0 = 2.4 dB. The profiles obtained for the two cases are:

CSIR: λ(x) = 0.3318x2 + 0.6682x7

CE: λ(x) = 0.3067x2 + 0.3148x6 + 0.3824x7 (5.24)

The presence of degree-2 information nodes leads to error-floors, hence, it was set to

zero. For this rate, ρ′
1 = 0.5 and ρ′

4 = 0.5 was found to be a good check degree profile.
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Fig. 22. EXIT chart matching for the case with perfect channel state information at

the receiver

The length of the IRA codeword is chosen to be 32768 i.e. M1N1 = 32768 and

the number of sub-carriers in the OFDM is assumed to be N1 = 1024 unless stated

otherwise. Also, fading across OFDM symbols is assumed to be block fading so that

over an OFDM symbol, the fading does not change. Fading on different multipaths
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is always independent. Two cases have been considered for simulations - one with

perfect channel state information at the receiver (CSIR) and another with the channel

estimator. The channel estimator is a simple moving-average filter as described in

Section II with K = 150. The number of iterations is set to 100. A small ratio of

pilots is required so that the error propagation is curbed at regular intervals. Unless

otherwise stated, a pilot ratio of 1 every 32 symbols is used. As stated earlier, pilots

are inserted in the trellis so that they can aid in APP decoding of the accumulator

also.

Simulation results comparing the optimized code for CSIR system and for the

channel estimation system (CE) have been presented in Figure 23. It can be seen

that the system with the channel estimator system performs within a few tenths of

dB from the CSIR system. The system with channel estimation has been penalized

in Eb/N0 for the presence of pilots. The same figure also shows the CSIR and CE

scheme for a longer length of 131072 coded bits and N1 = 256 and the same rate. The

codes turned out to have the same profile as (5.24). The CSIR code performs closer

to its threshold of 2.3 dB for this length and so does the CE code to its threshold. For

longer lengths, the system has more diversity and is closer to being ergodic and hence,

the EXIT curve is less random and the design more exact. To show the importance

of the proposed code optimization, Figure 24 compares the CE optimized code (25)

to an AWGN optimized rate 1/2 systematic IRA code of the same complexity and

to a (3,6) regular LDPC code in a receiver with channel estimator. The codes are

of length 32768 and the number of sub-carriers in an OFDM symbol is 1024. It can

be seen that code (25) performs the best followed by (3,6) LDPC code and the IRA

code. This is because code (25) and (3,6) are better matched to the characteristics

of the channel estimator than the AWGN optimized IRA code.

To show the robustness of the proposed scheme to different channel lengths, 2
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Fig. 23. BER of CSIR and NCSI with channel estimator for a rate-0.5 IRA code of

length 32768 BPSK and OFDM with 1024 sub-carriers and CSIR and NCSI

rate-0.5 length 131072 IRA and OFDM (256 subc.). Ergodic capacity with

CSIR is Eb/N0 = 1.9 dB
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Fig. 24. Comparison of BER of (i) NCSI with channel estimator for the rate-0.5 IRA

code given by (25) of length 32768 BPSK and OFDM with 1024 sub-carriers,

(ii) AWGN optimized rate-0.5 IRA code of same decoding complexity, and

(iii) (3,6) LDPC code
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different channel lengths of 4 and 10 have been compared in Figure 25. For length

10, the CSIR system has also been simulated in the same figure for comparison. The

codes have the same profiles as (5.24) for the CE and CSIR system. It can be seen

that the proposed scheme performs very close to the coherent system under the case

of 10 multipaths too and hence the proposed scheme is not sensitive to the number of

taps. An optimum Weiner filter on the other hand would be sensitive to the number

of taps in the channel.
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Fig. 25. BER of a rate-0.5 length 32768 IRA code BPSK and OFDM with 1024

sub-carriers and 4, 10 multipaths on an NCSI system with channel estimator

and with CSIR

To show the sensitivity of the proposed scheme to the ratio of pilots introduced

in the trellis, 3 different pilot ratios of 1/32, 1/64 and 1/128 were simulated for
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the 4-tap channel and the results are presented in Figure 26. The proposed system

performs well for all these pilot ratios. The pilot separation is however a function

of the coherence bandwidth - coherence bandwidth is roughly 256 bits for the 4-tap

channel.
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Fig. 26. BER of NCSI with channel estimator for a rate-0.5 length 32768 IRA code

BPSK and OFDM with 1024 sub-carriers and p=1/32, 1/64 and 1/128 and

channel with 4 multipaths. Ergodic capacity with CSIR is Eb/N0 = 1.9 dB

To show the robustness of the proposed scheme to fading over an OFDM symbol,

simulation results are shown when there is a Doppler of fd = 100, 400Hz in Figure 27.

The bit-rate is assumed to be fs = 1 Mbps. It can be seen that fd = 100 performs

well but fd = 400 has a floor effect due to the fading. However, the OFDM symbol

can still withstand this much of Doppler if the number of sub-carriers is reduced to
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256 as shown in the same figure.
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Fig. 27. BER of NCSI with channel estimator for a rate-0.5 length 32768 IRA code

BPSK and OFDM with N1=1024 sub-carriers and Doppler over an OFDM

symbol of 0,100 and 400 and 256 sub-carriers with Doppler 400. Ergodic

capacity with CSIR is Eb/N0 = 1.9 dB

In summary, a novel scheme with IRA codes on a frequency-selective block fading

channel with partial CSI is proposed in this work. Non-systematic IRA codes were

designed for the proposed scheme. It performs within a few tenths of a dB of the

coherent detection case with the channel parameters. The scheme is robust to changes

in number of taps and time-delay profile of the channel and requires a very simple

channel estimator.
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CHAPTER VI

LDPC CODE DESIGN FOR ADAPTIVE MODULATION

Communication systems with channel state information at both the transmitter

and the receiver (CSITR) are becoming increasingly common owing to the higher

data rates these systems can support. Capacity-achieving coding schemes for CSITR

systems have only been derived assuming Gaussian constellations at the transmitter

(waterfilling) [47] [48]. Gaussian constellations are not practical and hence trasmit

signals have to be constrained (for example QAM). So capacity-achieving schemes for

constrained constellations have to be derived and it is still an open problem.

In the first part of this work [12] [49], we derive the constrained capacity and

the capacity-achieving power allocation algorithm for a single-antenna system with

parallel flat-fading subchannels and CSITR assuming transmission of constrained

constellation symbols such as QAM. In practice, this is similar to a multicarrier

system (for example, OFDM) with CSITR. The resulting power-allocation for the

constrained constellation system is different from waterfilling obtained for Gaussian

constellations. Information theory suggests that a single ideal (capacity-achieving)

code with ML decoding and having a code-rate given by the average of the code-rates

supported on each of the parallel subchannels achieves the capacity of this system.

However, achieving performance of ML decoding with practical codes such as LDPC

codes [25] is a difficult problem and ML performance can only be approached. If

practical codes are used, a dedicated codebook for each of the subchannels will be

required to perform close to the constrained limit. However, it is very impractical to

maintain multiple codebooks/decoders at the transmitter and receiver. So we design

the power/rate allocation algorithm with a single mother-code whose coded bits will
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be transmitted from all the different subchannels. Since only one code is used, it is

a Bit-Interleaved Coded Modulation (BICM) system [5]. Let this one code (which

we call mother-code) have a code-rate Rmin. Depending on the average code-rate

supported over all subchannels, the mother code has to be punctured to obtain code-

rates higher than Rmin. Rate-adaptation across subchannels for given subchannel

states is then obtained by transmitting different QAM constellations (2-QAM, 4-

QAM, 16-QAM or 64-QAM) from different subchannels in spite of using a single

code. In practice, it is very difficult to obtain good BER performance over the whole

spectrum of code-rates with a single code through puncturing. Hence, the mother-

code is assumed to perform well within the code-rate range Rmin to Rmax. There is

also an overall power constraint on a single code-word transmitted. This proposed

method can however be extended easily to a case where the power constraint is over

multiple codewords. In summary, we derive the capacity of the system with parallel

flat-fading channels and CSITR under the following constraints:

1. Transmission is from a constrained constellation such as BPSK, QPSK, 16-QAM

or 64-QAM.

2. A single code is used for all the subchannels together. Rate allocation is obtained

by transmitting different constellations from different subchannels.

3. Power constraint on a single codeword transmitted. Proposed method can be

easily extended to more relaxed power constraints.

4. The average code-rate is constrained between Rmin and Rmax.

In the second part of this work, a multiple antenna system is considered with

CSITR. Through linear transformation, a Multiple-Input Multiple-Output (MIMO)

system can be resolved into a set of parallel subchannels. We then apply the princi-
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ples discussed earlier for multicarrier transmission directly to obtain the constrained

capacity and the capacity-achieving power/rate allocation. All of the constraints dis-

cussed above (1-4) hold for this case too. The LDPC mother-code is designed for an

AWGN channel with a fixed code-rate, Rmin. If the average code-rate supported on all

the subchannels is higher than the rate of the mother-code, the mother code is punc-

tured. Finally through simulations with this LDPC code, we show that the proposed

allocation algorithm is very robust and performs within 1.5-2dB of the unconstrained

capacity limit.

Since the subchannel states change from one codeword block to the next, it

is a must for the power/rate allocation algorithm to be simple enough to enable

fast implementation for each codeword block. The proposed power-allocation and

rate-determination satisfies this condition and it can be implemented on-the-fly at

the transmitter to keep track of the changes in the subchannel states. The power-

allocation algorithm proposed is also near-optimal in terms of information rate and

it provides a practical coding scheme to achieve the capacity of the constrained

multi-channel system. Some of the conventional bit-loading schemes optimize power-

allocation for multicarrier and ADSL systems [50] [51], however, they either do not

consider coding or do not maximize the sum-information rate as proposed in this

work. Also the computational complexity of the proposed method here is lower than

bit-loading algorithms which are more numerically intensive and hence may not be

very friendly to fast implementation.

Some other schemes in literature [52] [53] have considered the constrained sig-

naling power/rate allocation problem. [52] does not consider coding and hence, it is

far from capacity. [53] considered adaptive modulation with coding but this method

suffers from the following shortcomings: this scheme is subject to the characteris-

tics of a particular code that is going to be employed for this system. It is not a
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very general design and the optimization procedure has to be applied every time a

different code is employed. This scheme employs multiple codebooks to maximize

throughput. It is not very obvious if such a system can be easily implemented for

practical systems. This scheme also performs further away from capacity than our

proposed scheme in spite of employing multiple codebooks. [54] considered capacity

of BPSK OFDM systems, however, their work does not look into higher constellations

and coding schemes to approach capacity when using higher constellations.

A. System Description

1. System Model

The system considered here is as follows (Figure 28): assume that there are M flat-
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Fig. 28. Adaptive modulation system description

fading parallel subchannels over which data is to be transmitted. Channel state

information (CSI) is known to the receiver and the transmitter perfectly. The output

of a channel encoder is modulated into symbols of different constellations (BPSK (2-

QAM), QPSK (4-QAM), 16-QAM or 64-QAM) at each of the subchannels depending
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on the subchannel state. Due to practical constraints, a single LDPC mother-code

with code-rate Rmin is used and is punctured to obtain higher code-rates if the code-

rate supported by the subchannels is higher than Rmin. (This scheme can be very

easily extended to a system with a dedicated codebook for each subchannel.) Dif-

ferent rates of transmission from different subchannels is obtained by changing the

constellation in the different subchannels. The channel is assumed to be static over

the length of a codeword and it changes from one codeword to the next. A sin-

gle codeword of the LDPC code spans multiple symbols from each subchannel, and

the fade remains constant on all subchannels for the whole duration of the codeword

(quasi-static fading). With this channel model, the received samples can be expressed

as:

ym = αmxm + nm, m = 1, 2, . . . , M (6.1)

where ym is the received value, αm is the magnitude of the channel gain of the m-th

subchannel and xm can belong to one of the following constellations - BPSK, QPSK,

16-QAM or 64-QAM. Note that ym has already been compensated for any phase

rotation that might occur at the receiver (so that the fade value αm is real) and

nm is the complex AWGN noise with variance of one dimension σ2 (σ2 = No/2).

Modulation schemes other than the above ones for xm can be easily incorporated into

the system, however, for the sake of simplicity, we consider only these constellations

here. There is a short-term power constraint on xm i.e. each codeword (which will

occupy all the subchannels and multiple time-slots) is constrained to have a given

power, P. This scheme can be easily extended to a power constraint on more than

one codeword.

This power, P, is allocated among the subchannels depending on the state of the

subchannel. For the simplicity of analysis, the number of symbols transmitted from
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each subcarrier (can be from any of the constellations mentioned above) is assumed

to be the same corresponding to a codeword from the LDPC code. That is, one single

codeword of the LDPC code will be multiplexed into M or lower streams, one for each

of the subchannel transmitting signals, in such a way that the total number of symbols

(refers to modulation symbols and not bits) from each subchannel is equal. Mapping

codewords to subchannels is considered in more detail in Section V-A. The problem

then is to maximize the sum-rate of these subchannels subject to the constraints 1)-4)

in Section 1. It is assumed that depending on the state of the subchannel, different

constellations can be used for different subchannels. The system model can be better

understood from Figure 28.

B. Sum Information Rate for Gaussian Signaling

Define Γ = (γ1γ2 . . . γM) where γi is the power allocated to the i-th subchannel and

α = (α1α2 . . . αM). The sum information rate with Gaussian signaling for the above

system, for a given α is given below [55]:

IM(Γ|α) =

M∑
m=1

log(1 +
α2

mγm

σ2
) (6.2)

where IM(Γ|α) is the sum-rate, γm is the power allocated to the m-th subchannel,

subject to the power constraint:

1

M

M∑
m=1

γm ≤ P. (6.3)

Maximizing the information rate is then an optimization problem, which has the

following solution [13]:

γm =

(
μ − σ2

α2
m

)+

(6.4)
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where (.)+ is zero if (.) is less than zero and μ is such that Eqn. (6.3) is satisfied.

C. Capacity of Constrained Constellations

The capacity of constrained modulation schemes over AWGN channel with noise

variance σ2 can be evaluated as follows. If X is the transmitted symbol and Y is the

received symbol, then:

I(X;Y) = H(Y) − H(Y|X)

= H(Y) − log(2πeσ2) (6.5)

where H(Y) can be obtained from pY(y) which is given as [56]:

pY =
N∑

k=1

pY|xk
P (xk) (6.6)

where N is the number of points in the transmit constellation that x belongs to

(N = 16 for 16-QAM). Eqn. (6.6) can be evaluated only through simulations and

closed-form expressions cannot be obtained for the constrained capacity in Eqn. (6.5).

Then it is not a straightforward problem to optimize the power distribution for con-

strained constellations. Hence, we need to look at approximations for the capacity

of constrained modulation schemes which can be manipulated easily in the corre-

sponding optimization to yield good power distributions. Also the resulting power-

allocation expression has to be very simple so that it can be implemented on-the-fly

at the transmitter to keep up with the changes in the fade values. (Time-consuming

methods as numerical optimization techniques will not be very useful here).

The capacity obtained for schemes like BPSK, QPSK, and 16-QAM have shapes

similar to exponential curves. Also, as will become obvious in the next part of

this section, assuming an exponential function for the capacities can help in solv-
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ing the optimization problem analytically. Exponential functions of the form f(x) =

a(1 − exp(−bx)) [57] have similar shapes as the constrained capacity curve, where

a, b are constants that depend on the constellation and x is the SNR Curve-fitting

with minimum mean-squared error as the criterion provides the best values for the

parameters a and b for different constellations as tabulated in Table II. The actual

capacities and their corresponding approximations for BPSK, QPSK, 16-QAM and

64-QAM are shown in Figure 29. As can be seen the two curves match very well

for BPSK, QPSK and 16-QAM and fairly well for 64-QAM over the whole range of

SNRs.

Table II. Optimum values for a and b

Const. a b

BPSK 1 1.325

QPSK 2 0.657

16QAM 4 0.202

64QAM 6 0.0714

D. Optimization of Power Profiles

In the previous section, we described how to obtain approximate expressions for the

constrained capacity of BPSK, QPSK, 16-QAM and 64-QAM. These can be written

as:

C(SNR) ≈ a
(
1 − exp−bSNR

)
(6.7)

where SNR is the signal to noise ratio (Es/No) and Es is the energy available at

the transmitter to send a constellation symbol. Assume that transmitting symbols
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from different constellations is possible from different subchannels. The goal is to

maximize sum information rate subject to a power constraint, which again turns out

to be an optimization problem. Also assume that the transmitter can send only the

same number of symbols from each subcarrier for a given codeword. (Variable-rate

schemes are still possible as different constellations can be transmitted from different

subchannels.) The sum information rate, given by:

ICMM(Γ|α) =

M∑
m=1

am(1 − exp− bmγmα2
m

No ) (6.8)

has to be maximized subject to the power constraint in Eqn. (6.3). (No is the

PSD of AWGN noise and is equal to 2σ2 in the previous section). Note that different

subchannels can transmit from different constellations. Solutions for this optimization

problem through the Lagrange method [58] can be shown to take the form (derived

in Appendix A):

γm =
No

bmα2
m

(
log μ − log(

No

α2
mambm

)

)+

, (6.9)

where μ is chosen such that Eqn. (6.3) is satisfied.

For a fixed constellation, at very low SNRs, this power-allocation is very similar

to Gaussian waterfilling, however for higher SNRs it deviates from it. The main reason

for this behavior is that for a fixed constellation, there is no advantage in adding more

power into the best channel beyond the SNR where it saturates to its maximum rate

a. The transmitter can gain in sum-rate transferring that extra power into a different

subchannel which is starved for power. This is evident from the above expression

where there is an extra 1/α2
m outside the expression

(
log μ − log( No

α2
mambm

)
)+

.

It is a very challenging problem to design a single code which will perform well

(in terms of BER) over a large spectrum of code-rates (by puncturing or shortening).
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This is the reason why there is a constraint on the average code-rate supported by the

subchannels to be between Rmin and Rmax. Theoretically, for the parallel subchannel

system, sum-rate can be maximized if every subchannel trasmits from the highest

constellation available (denote it as Ch). This constellation will have the least penalty

from unconstrained sum-rate and hence will have the highest sum-rate. However, for

some set of the sub-channel values α (and esp. for lower SNRs), the average code-

rate of all subchannels will be very small (< Rmin) if all the subchannels transmit

from Ch. Since this is not feasible, a better idea would be for all the sub-channels

to transmit from the next lower-order constellation available, Ch−1. This will make

the overall code-rate higher, however, some of the subchannels might not provide

the maximum rate that they can support with Ch. This is because, with Ch−1, the

maximum rate supported is lower and it is possible that some subchannels are almost

saturated in this constellation. Hence, it is always better to transmit using a mixture

of constellations from different subchannels based on what rate each subchannel can

support.

As stated before, rate-adaptation across subchannels is obtained by transmitting

different constellations from different subchannels. In order to decide which constella-

tion can be supported on each sub-channel such that the overall code-rate constraint

is satisfied (Rmin < Ravg < Rmax) and what is the best sum-rate achievable, an al-

gorithm has been designed which is described below. This algorithm maximizes the

sum-rate by changing the constellation of each subchannel subject to a constraint

imposed on the code-rates of the individual subchannels (shown below). Define Cm

as the dimension or constellation number of m-th subchannel. It can be 0 - BPSK,

1 - QPSK, 2 - 16-QAM or 3 - 64-QAM. Let Rpr stand for the sum-rate obtained in

the previous iteration and R is the sum-rate obtained in the current iteration. One

iteration of Loop1 determines the power-allocation for each subchannel subject to its
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given constellation which is decided by the corresponding Cm. The breaking condi-

tion is when the current sum-rate R is less than Rpr which ensures that the sum-rate

is maximized. Loop2 ensures that the code-rate constraint is satisfied i.e. m-th sub-

channel transmits over a constellation which can support a code-rate, Rm less than

Rmax. This condition will make sure that the rate supported on a given subchannel is

not close to the saturation point for the corresponding constellation. In other words,

if the code-rate supported is close to 1, then that subchannel can support a better

code-rate if the next higher-order constellation is used instead.

• Initialization:

Rpr = 0, f lag = 1, Cm = 0 m = 1, 2, . . . , M

• Loop1: while(flag == 1)

flag = 0;

γm =
No

bmα2
m

(
log μ − log(

No

α2
mambm

)

)+

s.t.
1

M

M∑
m=1

γm ≤ P,

Rm = (1 − exp− bmγmα2
m

No )

R =

M∑
m=1

Rmam

if (R < Rpr)

break;

– Loop2 over m:

if (Rm > Rmax) & (Cm < 3)

flag = 1; Cm = Cm + 1;
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if (0 < Rm < Rmin) & (Cm > 0)

flag = 1; Cm = Cm − 1;

– end Loop2

• R = Rpr

• end Loop1

Note that am and bm take on values according to Cm, the constellation allocated

to the m-th subchannel. This algorithm is a suboptimal and greedy one (since it

searches over roughly half the total number of constellations suited for each subchan-

nel) which determines the constrained capacity of this system within some reasonable

error caused by the exponential approximations. This also provides the near-optimum

power and rate allocation scheme to approach the limit for constrained constellations

which is considered in the next subsection. For very low SNRs (Es/No < 0dB) de-

pending also on the values of the subchannel states, the average code-rate (average of

Rm) supported by the system might become lower than Rmin, the rate of the mother-

code. In that case, an outage can be declared and there will be no transmission. For

some realizations of α and P, the algorithm might provide an average code-rate less

than Rmin and declare an outage, even though with a different choice of constellations

over the subchannels, it might be possible to obtain an average code-rate higher than

Rmin. This is a very rare event and was never observed in the simulations.

1. Proposed Coding Scheme

As stated before, a single code is used for practical reasons. Variable rate is achieved

through different constellations from different subchannels. Hence the average rate
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of the channel code is:

Ravg =

∑M
m=1 amRm∑M

m=1 am

(6.10)

The mother-code can be punctured to give this rate. As stated before, equal number of

symbols (can be from different constellations) are transmitted from each subchannel.

Denote this length as Ls. Assume that Lb is the length of the punctured codeword

in bits. With the above rate of the mother-code, Ls is given by:

Ls =
Lb∑M

m=1 am

, (6.11)

If lb,m is the number of bits transmitted from the m-th subchannel, then:

lb,m = Lsam (6.12)

If however, multiple codebooks are allowed to be used at the transmitter, then the

corresponding channel code-rate of each of the subchannels should be Rm. Instead

of using M codes for M subchannels, lesser number of codebooks (say 2 or 3) can

also be used for comparable performance. Each of the codebooks can take care of

subchannels that are within a certain code-rate range and these subchannels can

be grouped together and encoded with that codebook. This can have comparable

performance as using M separate codebooks too.

From (6.9), it is obvious some of the subchannels may not get any power assigned

to them. In summary, the proposed scheme uses a single code with a rate determined

by the subchannel states. However, it is a variable-rate scheme as the constellation

is different from subchannel to subchannel and also a variable-power scheme as the

power is varied across subchannels and all this obtained in spite of using a single-code.

All the processing mentioned above to obtain the rate of the code, the length of

the codeword in bits, the total number of symbols transmitted and the constellations
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used from different subchannels are done at the transmitter. However, in practice,

this processing has to be done concurrently at the transmitter as well as the receiver

(which have knowledge of the fade magnitude values for the current block) to obtain

knowledge of parameters such as Ls, Lb, Ravg, Cm and the puncturing ratio so that

the receiver can decode the block.

E. Tighter Power and Rate Allocation

In the previous section, power and rate allocation methods based on the approximate

constrained capacity expressions (Eq. (6.7)) were discussed. These expressions are

very simple and very easy to implement in a practical system in which the channel

is changing from one code-block to the next. They are also good approximations as

can be seen from Figure 29 especially for lower-order constellations such as BPSK

and QPSK. We have observed that tighter expressions for constrained capacity can

be obtained by applying sum of exponentials for higher-order constellations such as

16-QAM and 64-QAM. As seen from Figure 30, sum of two and three exponentials

for 16-QAM and 64-QAM respectively makes the constrained capacity approximation

very tight.

C16−QAM(SNR) ≈
2∑

i=1

ai

(
1 − exp−biSNR

)

C64−QAM(SNR) ≈
3∑

i=1

ai

(
1 − exp−biSNR

)
(6.13)

Following the steps in the previous section, the resulting power allocation will satisfy

the condition that weighted sum of exponentials is a constant.

K∑
i=1

aibiα
2
i

σ2
exp

−biγmα2
i

σ2 = constant (6.14)
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where K is equal to 2 for 16-QAM and 3 for 64-QAM and higher for higher-order

constellations. There is no closed-form solution for this power allocation expression.

Numerical methods are required to optimize the power allocation in order to max-

imize the sum-information rate. However, since the left-side of (6.14) is a sum of

exponentials which is a monotonously decreasing function of γm, the solution can be

easily obtained through Newton-Raphson method within a few iterations. In some

practical systems, this method can be implemented for power allocation as it has

minimal complexity.

However, the main objective of this section is to obtain a tight approximation to

the sum-information rate and the sum-constrained capacity, as well as to determine

the best performance of an LDPC coded system with this set of tighter power alloca-

tion values. The best performance possible with the LDPC code will provide an idea

of how close the approximate power allocation method in the previous section is.

Concurrently, [59] has considered power allocation methods with arbitrary input

constellations. In their work, they apply the result that the derivative of mutual in-

formation is mean-squared error (MSE) [60] and derive the curves for MSE through

numerical integration for any input constellation. The resulting power allocation is

through numerical optimization techniques with the aid of the MSE curves for differ-

ent constellations, where the curves need to be stored. This may not be very practical

as it requires a large amount of resources. In our scheme, through Lagrange multipli-

ers, we obtain Eqns. (6.9) and (6.14). The LHS of these equations are derivatives of

mutual information with respect to SNR, γl (assume that σ2 is a constant) which is

in fact the minimum MSE in estimating the transmitted value, x given the received

value, y. Hence the exponential approximation (Eq. (6.7)) results in a closed-form

approximation for the MMSE as well as the power allocation which is tight for BPSK

and QPSK. With the aid of sum of exponentials, MMSE expression for 16-QAM
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and 64-QAM can be tightened but the resulting power allocation is not a closed-

form expression. However, due to presence of closed-form expression for MMSE, the

optimization is still very simple as the MSE curve values do not have to be stored

contrary to the scheme in [59]. Simplicity of the power allocation is very important

for a scheme where the channel realizations change quickly from block to block and

the power-allocation has to adapt itself.

F. Multiple Antennas

1. System Description

Consider a MIMO channel as shown in Figure 31. It is easier to represent the MIMO

Fig. 31. MIMO system description

channel in terms of vectors and matrices rather than scalars. The relationship of this

setup to the above method may not be clear at this point however, it will be clarified
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in the coming subsections. Let complex valued matrices of size r × t be represented

as Cr×t. Assume a vector of size t × 1, x is incident on a flat fading channel with an

channel matrix H ∈ Cr×t (r is the number of receiver antennas and t is the number

of transmit antennas) and the output of the channel is y. The channel is assumed to

be flat-fading channel with AWGN n. Both y and n belong to Cr×1. Then:

y = Hx + n (6.15)

The problem statement is as follows: which is the best power allocation scheme among

the different elements of x that can achieve the capacity on this channel when H is

known both at the transmitter as well as the receiver (CSITR). As shown in the

next sub-section the power-allocation for the case when x is Gaussian distributed is

straighforward to obtain [61]. However, the problem for constrained constellations

is unsolved and is difficult to obtain. In the following sub-sections, we derive an

expression for the constrained maximum sum-information-rate and the corresponding

power-allocation with constraints on x being a linear transformation of QAM symbols.

The advantage of this scheme is that a BICM system based on LDPC codes where the

coded bits are mapped to QAM symbols and linearly transformed into the transmitted

signals x can be used to perform close to capacity. This will become clear in the

following sub-sections.

2. Gaussian Constellation

For the Gaussian constellation, this problem has already been solved by Telatar [61].

We will re-derive the capacity expression as this derivation will be required for the

constrained constellation too. Assume a channel model given by (6.15). x has a

power constraint given by E[x′x] ≤ P, where ()′ stands for Hermitian. n is assumed

to be AWGN with E[nn′] = σ2Ir×r, where Ir×r is the identity matrix of size rxr. The
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power-allocation problem can be solved by performing a singular value decomposition

(SVD) of H. Eqn. (6.15) can be rewritten as:

y = UDV′x + n (6.16)

where U ∈ Cr×r such that U′U = Ir×r and V ∈ Ct×t and V′V = It×t. Also D

is a diagonal matrix of size r × t containing the singular values of H, i.e. Dr×t =

diag(λ1, λ2, . . . , λmin(r,t)). Eqn. (6.16) can be further simplified by left-multiplying it

by U′ which results in:

ỹ = Dx̃ + ñ, (6.17)

where x̃ = V′x, ñ = U′n, and E[x̃′x̃] ≤ P and E[ññ′] = σ2Ir×r. Since the transfor-

mations applied were linear and one-one, I(x;y) = I(x̃; ỹ). Eqn. (6.17) represents

a set of parallel Gaussian channels and mutual information is maximized when x̃ is

Gaussian distributed with power allocation given by water-filling distribution.

ỹi = λix̃i + ñi i = 1, . . . , min(r, t) (6.18)

is the the set of parallel Gaussian channels. The overall capacity can be obtained by

a power-allocation function,

P (i) = (μ − λ−2
i )+ (6.19)

where μ is chosen such that
∑min(r,t)

i P (i) = P and,

I(x;y) =
∑

i

log(μλ−2
i )+ (6.20)
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3. Constrained Constellation

Similar approach as above can be applied to constrained constellations too. Eqn.

(6.16) is a good starting-point for the constrained constellation.

y = UDV′x + n (6.21)

Transmit a vector x given by:

x = Vx̃ (6.22)

where the elements of the vector, x̃ are generated independently from one of the

standard constellations as 64-QAM, 16-QAM, QPSK or BPSK (i.e. the coded bits of

the channel code can be mapped to one of the four modulation symbols which form

the elements of x̃). As shown before, the power constraint on x̃ directly translates

from the same power constraint on x i.e. E[x′x] ≤ P ⇒ E[x̃′x̃] ≤ P. This is because

V is a Hermitian matrix.

Left-multiplying equation (6.21) with U′ leads to:

ỹ = Dx̃ + ñ (6.23)

This problem has the same characteristics as the single-antenna case discussed in the

previous sections as D is a diagonal matrix i.e. there are min(r, t) parallel subchannels

given by Eqn. (6.23). Hence, we have simplified the multiple antenna case to the

single-antenna case with multiple sub-channels. Coding approaches similar to the

ones discussed for the single-antenna case, based on a single mother-code under the

same set of constraints, can be applied here. This approach can be further extended

to a MIMO-OFDM system with multiple sub-channels very easily. Note that x does

not conform to any standard constellations and the problem where x conforms to
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a standard constellation is a difficult one to solve. The advantage of the proposed

system is that a BICM system based on an LDPC code where the coded bits are

mapped directly to QAM symbols x̃ can be used.

G. Results for Single Antenna System

In this section, we present simulation results for the single-antenna system with an

LDPC code assuming the transmission of different constellations from different sub-

channels. The number of subchannels is fixed as M = 8 for simulation purposes. Two

code-word lengths of the LDPC codes were chosen for simulations - 12288 and 393216.

We choose the LDPC mother code to be of rate Rmin = 1/3 and optimized for the

AWGN channel. Rmax is chosen as 0.8 in the optimization algorithm in Section D.

The mother code will be punctured to obtain higher rates as and when required from

block to block to equal the average of the code-rates supported on the subchannels.

At the detector, we use a MAP-demodulator followed by a sum-product decoder. The

mapping is chosen to be Gray for all the modulations (since the mapping is Gray,

iterations between demodulator and decoder do not help very much, hence iterative

demodulation is not used).

The performance of the proposed power and rate allocation method is determined

by the average gap of the LDPC code simulation (averaged over channel realizations)

from the sum-rate capacity of the Gaussian constellations as well as the constrained

constellation as shown in Figure 32. For each channel realization, the LDPC code is

simulated until the Bit Error Rate (BER) is less than 10−4 and the gap is determined.

The channel is assumed to be independent from one frame to the next and hence aver-

aging over channel realizations will give an estimate of the throughput (independence

assumed only for simulation purposes).



108

We have also obtained the sum-rate of the constrained system and a comparison

of this rate to the unconstrained system is shown in Figure 32. As it can be seen,

simulation of the coded system for the longer codeword length of 393,216 performs

within 1.5 dB of the unconstrained sum-rate limit. For the shorter length, the per-

formance is within 2 dB of the unconstrained limit. This is good performance in

spite of the fact a single-code once designed for the whole system has been punctured

to obtain rate-compatibility. The reason for the slight difference of 0.5dB between

unconstrained and constrained sum-rate capacities is because of the inaccuracies of

the exponential approximation and also because of the inherent difference between

constrained and unconstrained capacities. It can be concluded from the figure that

the proposed scheme is a very robust power/rate-allocation scheme which performs

very close to the theoretical limits and can be also easily implemented in real-time

(keeping track of the changes in the fade magnitudes from block to block) as the

power-allocation procedure is a very simple operation.

Figure 33 presents the comparison of tighter power allocation method with the

approximate power allocation method. As can be seen from the figure, the gain of

tighter power allocation is less than 0.5dB and most of the gain is in the higher SNR

regime. This is due to the fact that in this region, 16-QAM and 64-QAM is chosen

more often than BPSK and QPSK and since the approximation for the constrained

capacity for 16-QAM and 64-QAM with a single exponential is loose, the approximate

power allocation is farther than the tighter power allocation. However, as pointed

out earlier, the tighter approximation is more complex to implement.
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H. Results for MIMO System

The same LDPC mother-code used for the single antenna case was used here for two

different lengths of 393216 and 12288. The MIMO system assumed was a 4x4 system

(4 transmit and 4 receive antennas) which implies that M equals 4. A graph similar

to Figure 32 was obtained. Figure 34 shows the results for the MIMO case. As can be

seen, similar to the single antenna case, the simulation of the proposed scheme with

LDPC code performs within 1.5dB for the longer codeword length and within 2dB

for the shorter length of the unconstrained sum-rate and hence is robust for multiple

antennas too.

As in the single antenna case, Figure 35 presents the comparison of tighter power

allocation method with the approximate power allocation method. As can be seen

from the figure, the gain of tighter power allocation is less than 0.5dB and most of

the gain is again in the higher SNR regime.

When the channel state is known to the transmitter as well as the receiver,

Gaussian waterfilling (which is optimal for Gaussian codebooks) is not optimal for

the constrained constellations. Hence we have derived a near-optimal power/rate-

allocation method for the constrained case for a single antenna case. The resulting

power-allocation expression is very simple and it can implemented on-the-fly at the

transmitter to keep up with the changes in the fade values from block to block. We

further extend these principles to a practical MIMO system. We have also demon-

strated the practical capability of the proposed resource allocation method by simulat-

ing with a single LDPC mother-code optimized for the AWGN channel and punctured

to obtain higher rates. Through these simulations, we show that the coding scheme

performs close to the theoretical limit.
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CHAPTER VII

MEMORY-SAVING LDPC CODES∗

Carefully designed irregular low-density parity-check (LDPC) codes [23], [16], [24]

perform very close to capacity on additive white gaussian noise (AWGN) channels and

can achieve capacity on the binary erasure channel (BEC) [25]. However, one disad-

vantage of LDPC codes is that the message passing decoder requires a lot of memory

(number of fixed point numbers that need to be stored). The memory requirement

at the decoder increases linearly with the number of edges in the graph of LDPC

codes, which could turn out to be a bottleneck in many cases. In this work [14],

we propose a variation of the message-passing decoding algorithm, which is memory-

efficient and analyze this algorithm. Recently, similar decoding scheme has appeared

in [62]. The proposed algorithm performs almost as well as the conventional LDPC

code with sum-product decoding, in terms of bit-error rate. The main idea is to

split the LDPC code in two sub-codes and decode them in a turbo fashion instead

of applying the message passing algorithm to the entire graph. In splitting, we con-

sider a semi-random approach which is explained in detail later. We then analyze the

performance of LDPC codes with the proposed decoding algorithm and show how to

design good LDPC codes for the proposed scheme. We then show that LDPC codes

designed for conventional sum-product decoding are asymptotically optimal for this

scheme also and they perform very close to each other.

∗ c© 2004 IEEE. Reprinted, with permission, from “Memory-efficient sum-product
decoding of LDPC codes,” H. Sankar and K. R. Narayanan, IEEE Transactions on
Communications, vol. 52, no. 8, Aug. 2004, pp. 1225-1230.
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A. Proposed Decoding Algorithm

The object of the proposed decoding algorithm is to reduce memory requirements.

This has been accomplished by splitting the graph in a semi-random fashion into

two subgraphs and then applying sum-product decoding algorithm on each of the

subgraphs.

1. Proposed Splitting

1. Divide the check nodes into 2 halves (call them Half-1 and Half-2) such that

the two halves contain approximately the same number of check nodes of each

degree.

2. In connecting variable nodes to check nodes two possibilities arise:

• If the degree of a variable node is even, distribute the edges of this node

equally between Half-1 and Half-2

• If, on the other hand, the degree is odd, divide the edges among them

in such a way that one of the halves gets one edge more than the other.

For successive odd-degree variable nodes, the extra edge can be connected

to different halves, so as to ensure that each half has approximately the

same number of edges. This construction can be better understood from

Figure 36.

3. In each of the halves, the edges between the bit nodes and check nodes are

placed at random, subject to the degree profile limitations.

4. Denote the degree of the variable node i in Half-1 as ν
(1)
i and that in Half-2 as

ν
(2)
i .
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5. For better performance, it must be ensured that the degree-2 variable nodes of

the overall graph (Half-1+Half-2) do not form any loop of small lengths as far

as possible.

3

3

2

2

dv

Half-2
Half-1

Fig. 36. LDPC code under the new semi-random construction: circles represent vari-

able nodes and squares check-nodes. The numbers on the variable-nodes de-

note their overall degrees

The recently proposed concatenated Gallager codes [63] can be seen to be a

special case of this scheme.



117

2. Decoding

Assume transmission of bits with binary phase shift keying (BPSK) modulation over

an additive white Gaussian noise (AWGN) channel. If X = (x0, x1, . . . , xn−1) is the

transmitted codeword (after modulation) and Y = (y0, y1, . . . , yn−1) is the received

word, then clearly,

yk = xk + nk (7.1)

where nk is the noise sample which is a zero-mean, Gaussian random variable with

variance σ2. The decoding is done in the following fashion: sum-product decoding is

run on one of the halves for a fixed number of iterations (call these sub-iterations).

Denote this fixed number of sub-iterations as Q1. The extrinsics on each of the

variable nodes are obtained. Sum-product decoding is run on the other half with

these extrinsics as a priori information. These steps are repeated a fixed number of

times (call these super-iterations and let there be Q2 super-iterations) and the result

on the nodes is declared. This scheme is similar to turbo decoding. Note that when

a new set of sub-iterations is started on a half, the edge-LLRs(log-likelihood ratios)

are initialized to zero. So, over each sub-iteration of the decoding, there are just half

the number of active edges as there are in conventional sum-product decoding and,

hence, the memory requirement is reduced in half.

The algorithm is explained below in more detail. Let L
(m,q,h)
c→v,l (xi,v) denote the

LLR passed from check to variable along the lth edge incident on the ith variable

node during the mth super-iteration, qth sub-iteration and in Half-h( h = 1 or 2).

Similarly, let L
(m,q,h)
v→c,j (xi,v) denote the LLR passed from variable to check node along

the jth edge on the ith variable node during the m-th super-iteration, (q)th sub-

iteration and in Half-h (h = 1 or 2). Let us denote the extrinsics passed from Half-h
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to the other half, Half-(3 − h) (h = 1, 2) at the mth super-iteration as Lm,h(xi)

(L0,h(xi) = 0 ∀i). Also assume without loss of generality that the decoding starts on

Half-1. The iterative procedure is given by:

• Initialization: Set L1,2(xi) = Lch(xi) = −2yi/σ
2

• For m = 1 to Q2

– For h = 1 to 2

– Set edge LLRs to zero: L
(m,0,h)
c→v,l (xi,v) = 0 for h = 1, 2

∗ For q = 1 to Q1

∗ Bit node update:

L
(m,q,h)
v→c,j (xi,v) = Lm+h−2,(3−h)(xi) +

ν
(h)
i −1∑

l=0,l �=j

L
(m,q−1,h)
c→v,l (xi,v) (7.2)

∗ Check node update:

tanh

(
|L(m,q,h)

c→v,l (xk,c)|
2

)
=

ηk−1∏
j=0,j �=l

tanh

(
|L(m,q,h)

v→c,j (xk,c)|
2

)
(7.3)

∗ end q

– The extrinsics passed on to the other half (3 − h) is given by

Lm,h(xi) = Lch(xi) +

ν
(h)
i −1∑
l=0

L
(m,Q1,h)
c→v,l (xi,v) (7.4)

– end h

• end m

• Final LLRs:

L(xi) = LQ2,1(xi) +

ν
(2)
i −1∑
l=0

L
(Q2,Q1,2)
c→v,l (xi,v) (7.5)
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which are used to make a hard decision on transmitted bit, xi.

3. Quantifying Memory Savings

Let N1 represent the total number of edges in the overall graph (Half-1+Half-2) and

let the length of the code be N(N = N1

∑dv

i=1 λi/i). Then:

a. Memory Required for Sum-product Decoding

From Section II, it can be observed that in an iteration, L
(q)
c→v,l(xi) must be stored.

Since each edge has an LLR associated with it, this amounts to N1 fixed-point values.

Apart from these, the channel extrinsics have to be stored, which account for N

fixed-point values. So, the memory required from iteration to iteration is:

M1 = N1 + N1

dv∑
i=1

λi

i

= N +
N∑dv

i=1
λi

i

fixed-point numbers. (7.6)

b. Memory Required for the Proposed Scheme

Using the same argument as for conventional sum-product decoding, we need N1/2

fixed-point values for storing the edge-LLRs (instead of N1 fixed-point numbers as

in the conventional scheme; this is where the memory-saving comes in). We need

another 2N fixed-point numbers for storing the N extrinsics Lm,h→(3−h) which need

to be passed between halves and N channel LLRs. Therefore, memory required is:

M2 = N1/2 + 2N1

dv∑
i=1

λi

i

=
N

2
∑dv

i=1
λi

i

+ 2N fixed-point numbers. (7.7)
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Therefore, the memory saving is

μ = 1 − M2

M1
= 1 − 1 + 4

∑dv

i=1
λi

i

2 + 2
∑dv

i=1
λi

i

. (7.8)

It is worthy to note at this point that the proposed construction can result in

more savings because the size of the address mapping of the LDPC code (connects

variable nodes to check nodes) required at a time is reduced by half. Though it is

not quantified here, this could turn out to be considerable in some cases. Hence,

effectively μ can be greater than 1 − M2/M1. It is also possible that μ < 0 (when∑dv

i=1 λi/i > 0.5 ⇒ λ1 > 0).

B. Analysis and Optimization

In this section, we analyze the proposed sum-product decoding on an AWGN channel

based on the Gaussian approximation [26] for the semi-random construction described

earlier. Since it is not clear whether the proposed decoding algorithm performs close

to actual sum-product decoding or not, this analysis is important in understanding

the new scheme better.

1. Modified Degree Profiles

Let λ(x) represent the variable node profile from the edge perspective of the overall

LDPC code (Half-1+Half-2). It has a corresponding node perspective representa-

tion which we represent as λ̃(x). It is straight-forward to determine the node- and

edge-perspective variable node profiles of each of the halves for the semi-random con-

struction. Since both halves are symmetric, it is also safe to assume that they have

the same profiles - represent this profile in the node-perspective as λ̃′(x).

It can be easily observed that for:
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(i) dv even:

λ̃′
i =

λ̃2i−1

2
+ λ̃2i +

λ̃2i+1

2
i = 1, 2, . . . , dv/2 − 1

λ̃′
i =

λ̃2i−1

2
+ λ̃2i i = dv/2 (7.9)

(ii) dv odd:

λ̃′
i =

λ̃2i−1

2
+ λ̃2i +

λ̃2i+1

2
i = 1, 2, . . . ,

dv − 1

2

λ̃′
i =

λ̃2i−1

2
i =

dv + 1

2
. (7.10)

These equations stem from the fact that a degree-i variable node in one of the

halves can arise out of only 3 cases - a variable node degree of 2i−1, 2i or 2i+1 in the

overall LDPC code. If the overall degree is 2i− 1, half of these nodes will contribute

to degree-i in a half. If it is 2i, all those nodes will contribute to degree-i. If it is

2i + 1, again half of these nodes will contribute to degree-i.

Represent the corresponding λ-profile in the edge-perspective of each of the halves

obtained from λ̃′(x) as λ
′
(x). Let d

′
v be the maximum degree of λ̃′(x) and hence of

λ
′
(x).

For the sake of simplicity of notation, assume that dv is even from here on. The

optimization discussed here can be very easily extended to odd dvs too. Define a

K1 × K2(K1 = dv

2
, K2 = 3) matrix λ(c) as:

λ(c) =

[
λ

(c)
1 λ

(c)
2 . . . λ

(c)
dv
2

]
(7.11)

where:

λ
(c)
i =

[
λ̃2i−1

2

λ̃′
i

λ̃2i

λ̃′
i

λ̃2i+1
2

λ̃′
i

]
i = 1, 2, . . . , dv/2 − 1

λ
(c)
i =

[
λ̃2i−1

2

λ̃′
i

λ̃2i

λ̃′
i

0

]
i = dv/2 . (7.12)



122

Let λ
(c)
i,k represent the kth (1,2,. . . , K2) element of the vector λ

(c)
i . Note that in

each half, a variable node of degree i can be connected only to a variable node of

degree i − 1, i or i + 1 in the other half. The kth component of the vector, λ
(c)
i ,

namely, λ
(c)
i,k represents the fraction of nodes of degree i in any one half h that are

connected to nodes of degree i + 1, i and i − 1 respectively in the other half.

2. Evolution of Pdfs

As in [26], we assume that the output of every bit node and check node is a random

variable with a Gaussian distribution. Due to the irregularity, the overall pdf of the

messages passed from bit node to check node, vice versa and between the two halves

is a mixture of Gaussian densities. We assume that the right degree is concentrated

(all the check nodes are either of the same degree or are of degree i and i+1). Due to

this, it is reasonable to assume that the messages passed from the check node to the

bit node have a Gaussian pdf rather than a mixture of Gaussian pdfs. A discussion

of the notation used in this subsection is in order here:

• f0 = N (m0, 2m0) - pdf of the LLRs from the channel, where m0 = 2/σ2

• m
(m,q,h)
c,j - mean of the message passed from a check node of degree j to a variable

node during the mth super-iteration and the qth sub-iteration in the Half-h.

• f
(m,q,h)
c = N (m

(m,q,h)
c , 2m

(m,q,h)
c ) pdf of the message passed from a check node

to a variable node during the mth super-iteration and the qth sub-iteration in

the Half-h. Note that the mean of the messages is m
(m,q,h)
c =

∑
j ρj m

(m,q,h)
c,j .

• f
(m,q,h)
v,i,k - kth component of a Gaussian mixture pdf passed from a variable node

of degree i to a check node during the mth super-iteration and qth sub-iteration

in Half-h.
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• f̃
(m,h)
i - pdf of the messages passed from half h to the other half (3− h) during

the mth super-iteration at a variable node of degree i in a half

• m( ) - represents the means of the messages

Consider the qth sub-iteration during the mth super-iteration in Half-h. The

pdf of the message arriving at a node of degree i (including the contribution of the

channel and the extrinsic information from the other Half-(3 − h)) is given by

f
′(m,h)
i =

3∑
k=1

λ
(c)
i,k f̃

(m,3−h)
i+k−2 (7.13)

for the proposed scheme. The above expression results since a bit node of degree i

in one half is connected to a bit node of degree i− 1, i or i + 1 with probability λ
(c)
i,1 ,

λ
(c)
i,k and λ

(c)
i,k , respectively.

The pdf of the messages at the output of a variable node of degree i that is

passed to the check nodes is f
(m,q,h)
v,i can be computed as follows:

f
(m,q,h)
v,i = f

′(m,h)
i N [m0 + (i − 1)m(m,q−1,h)

c , 2(m0 + (i − 1)m(m,q−1,h)
c )]

=
3∑

k=1

λ
(c)
i,k N

(
m

(m,q,h)
v,i,k , 2m

(m,q,h)
v,i,k

)
, (7.14)

where

m
(m,q,h)
v,i,k = (i + k − 2)m(m−1,Q1,3−h)

c + m0 + (i − 1)m(m,q−1,h)
c . (7.15)

where m
(m−1,Q1,3−h)
c is the mean of the messages from the check nodes to bit nodes

during the (m − 1)th super-iteration, Q1th sub-iteration and in half (3 − h), and

represents convolution. The distribution at the input of a check node is then mixture
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of Gaussians given by:

f (m,q,h)
v =

dv
2∑

i=1

λ
′
i

3∑
k=1

λ
(c)
i,k N

(
m

(m,q,h)
v,i,k , 2m

(m,q,h)
v,i,k

)
. (7.16)

The output mean on an edge connected to a check node of degree j is:

m
(m,q,h)
c,j = φ−1

⎛
⎜⎝1 −

⎡
⎣1 −

dv
2∑

i=1

λ
′
i

3∑
k=1

λ
(c)
i,k φ(m

(m,q,h)
v,i,k )

⎤
⎦

j−1
⎞
⎟⎠ , (7.17)

where φ(x) = E[tanh(u/2)], u being a Gaussian random variable with mean x and

variance 2x.

Then, the mean of the message passed from the check nodes to bit nodes is given

by:

m(m,q+1,h)
c =

dr∑
j=1

ρj m
(m,q,h)
c,j . (7.18)

The distribution of the messages passed from the check nodes to the bit nodes is

f (m,q+1,h)
c = N (m(m,q+1,h)

c , 2m(m,q+1,h)
c ). (7.19)

The distribution of the message passed from half h to the other half 3−h at the

end of the Q1th sub-iteration at a node of degree i in half h is given by:

f̃
(m,h)
i = N (

im(m,Q1,3−h)
c , 2im(m,Q1,3−h)

c

)
, i = 1, 2, . . . , dv/2. (7.20)

The threshold of an LDPC code is the SNR (Signal-noise ratio) above which the

mean m
(m,q+1,h)
c → ∞ as the super-iterations progress. This can be easily determined

for a given λ(x) using the above equations. Nonlinear optimization techniques such

as fmincon in MATLAB can be used for finding the best λ-profiles for a given rate

once the threshold can be calculated.
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C. Results

Two sets of comparisons are presented here:

1. the optimum left degree profiles for a rate-1/2 LDPC code with a constant right

degree j = 9 was designed as explained in the previous section for the semi-

random case for Q1 = 3, Q1 = 5 and Q1 = 7. The best profiles that could be

obtained for all these cases turned out to be the same and is:

λ(x) = 0.21596x + 0.17317x2 + 0.02281x4 + 0.19311x5 + 0.39495x19 (7.21)

ρ(x) = x8. (7.22)

The threshold for this profile with the semi-random scheme is 0.4dB for the case

mentioned above and is the same for the scheme with conventional sum-product

decoding. Also, the threshold for this profile with conventional sum-product

decoding is the same as that of the best LDPC code with maximum left degree

20 and right nodes concentrated in one degree that was designed in [26]. This

suggests that the decoding scheme proposed here is just a minor variation of

actual sum-product decoding and performs very close to it.

For the conventional scheme, a code of length N = 10667 (number of edges is

approximately 48000) was constructed at random corresponding to the profile

given above. For the proposed semi-random scheme, a bipartite graph was

constructed as explained in Section IV. The 5334 check nodes were split into

two (each half getting 5334/2 = 2667 nodes) and then Half-1 and Half-2 were

constructed. A total of 75 iterations were used for both types of decoding (for

the proposed construction Q1 = 5 and Q2 = 75/5 = 15 was used). The BER

plot of the new semi-random and the conventional schemes have been compared
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in Figure 37. The same figure shows comparison of the schemes at lower number

of total iterations of 25 (Q1 = 5, Q2 = 5) and 50 (Q1 = 5, Q2 = 10) also. It

can be observed that the proposed scheme performs as well as conventional

sum-product decoding and reaches a BER of around 10−6 with 75 iterations

though the convergence is slower for the proposed scheme. The focus of this

work is on memory-saving and is aimed at applications which have reasonable

computational capability and can tolerate slower convergence. It is evident

from the simulation that the proposed algorithm is robust in terms of BER while

resulting in memory-savings. However, depending on the implementation of the

decoder and other factors like length of the code, amount of hardware available,

number of iterations and target BER, the amount of savings in memory or

whether there is any savings at all can change.

Same set of comparisons for the same code have been shown in Figure 38 for a

shorter block length of N = 2000. This figure shows that the proposed scheme

is robust for shorter blocklengths too.

2. In order to show that the proposed decoding technique can be used with regular

LDPC codes also, we have shown simulation results for a (3, 6) regular LDPC

code of rate-1/2 and length N = 16000 in Fig. 39 with the proposed semi-

random construction and for the original code. Again, it can be seen that

the proposed construction and decoding algorithms provide almost the same

performance as conventional sum-product decoding.

For the particular LDPC codes experimented with above, memory-saving (μ) is

at least 23% for irregular case and at least 12.5% for the regular case. Note that this

does not include the savings in memory from the address mapping of the LDPC code.
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The new scheme implemented here leads to savings in memory with little sacrifice

in performance. The analysis leads us to conclude that the proposed decoding scheme

is just a minor variation of actual sum-product decoding as the thresholds are the

same and the same deductions can be obtained from simulations. Even though the

convergence is slightly slower for the proposed scheme, the focus of this work is on

memory-saving. This scheme will especially come in handy in instances where memory

at the receiver is a bottle-neck and complexity is not the issue, as in DSP applications.

Splitting the graph into more than two halves will result in more memory-saving, but

the resulting decoding algorithm will be more sub-optimal as correlated information

will have to be exchanged between the subcodes. This has been considered in [62].
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

A. Conclusion

In this dissertation, we presented coding schemes for near-optimum performance over

wireless channels. We classified the code-design problem into three categories:

1. Channel State Information (CSI) is available only to the receiver (CSIR).

2. CSI is not available to either the transmitter or the receiver and it has to be

estimated from pilots which we denote as Partial CSI (PaCSI).

3. CSI is available to both the transmitter and the receiver (CSITR).

and designed robust coding schemes for each scenario separately. We designed coding

schemes for high-order constellations when CSIR is available, based on bit-interleaved

coded-modulation (BICM) and low-density parity-check (LDPC) codes. Multi-level

coding with multi-stage decoding (MLC/MSD) achieves the capacity of this system,

however, as we show through our work, finite-length performance can be quite dif-

ferent from infinite-length near-capacity performance. For the same complexity and

latency, we show that LDPC codes used with a BICM scheme has an advantage of

bit-error rate (BER) performance over MLC owing to higher overall code-length and

thereby better error-exponents. This advantage is retained even when the code-length

used for the scheme increases beyond a few tens of thousands. Thus BICM is not

merely a pragmatic scheme, as often thought, but also a more optimal scheme for

short code-lengths.
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We further characterize the rate-diversity tradeoff of MIMO and MIMO-OFDM

systems for a fixed constrained constellation (the tradeoff implicitly assumes CSIR

and has significance only when CSIR is available). It is proved in our work that for

SISO-OFDM systems, there is no tradeoff in rate in order to achieve all the frequency-

diversity present in the system. Any good code with minimum distance more than a

factor of L, the number of taps in the channel, can take advantage of all the frequency-

diversity present in the system and the code-rate of such a code can tend to 1. For

MIMO systems, the rate-diversity tradeoff has already been well-characterized and a

scheme with LDPC codes as the outer-code and serial-parallel mapper as the inner

code has been proved to achieve this rate-diversity tradeoff. ML decoder for this

coding scheme is however a requirement to achieve the tradeoff. We show through

simulations that with an iterative decoder for this scheme, performance very close to

the tradeoff curve is obtainable. We also prove for a MIMO-OFDM system that if the

coding scheme described above achieves a diversity of order Nd over the basic MIMO

system, it will achieve diversity of order NdL where L is the number of independent

taps in the channel. This proof is valid asymptotically in the length of the LDPC

code with an ML decoder. Through simulations, we show that this coding scheme

performs very close to the predicted rate-diversity tradeoff for MIMO-OFDM systems

with an iterative decoder and for finite lengths of the LDPC code.

Code design for PaCSI is performed on flat-fading channels where some pilots

are transmitted to aid in decoding as well as obtaining CSI at the receiver. The

object of this work is to minimize the amount of pilots as much as possible as pilots

are expensive in terms of power and bandwidth. Instead, the strength of the code

(here we use a non-systematic Irregular Repeat Accumulate (IRA) code) is used to

derive and improve the CSI at the receiver with the help of an iterative decoding and

channel estimation algorithm. For frequency-selective channels, OFDM can be used
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to convert the channel into parallel flat-fading channels. We further design the code

such that its EXIT chart is matched on an average (i.e. in ergodic sense) to that of

the channel + channel estimator. The proposed scheme performs close to the receiver

which has CSIR and also using a matched IRA code. The scheme is robust to changes

in number of taps and time-delay profile of the channel and requires a very simple

channel estimator.

For the case with CSITR, we consider a system with parallel flat-fading subchan-

nels for transmission of data, similar to a multicarrier system. Here the sub-channel

states are known perfectly to both the transmitter and the receiver. The results

presented so far in literature for this system, have only considered maximizing the

sum-rate with Gaussian constellations, which is not realizable in practice. We con-

sider practical QAM constellations for transmission instead, the size of which can

be varied across subchannels. Under this constraint, we derive the maximum sum-

information-rate of the overall system and the power/rate allocation algorithm to

achieve it, which has not been attempted before. A practical MIMO system can be

resolved into parallel subchannels and we then extend the allocation algorithm to a

MIMO case. We further constrain the system to use a single overall codebook which is

more practical and optimize the proposed power/rate allocation algorithm under this

constraint. The simulations with an LDPC code show that the proposed power/rate

allocation method is very robust and the code performance is within 2dB of even the

unconstrained Gaussian sum-rate limit for both cases.

B. Future Work

The future work can focus on the following areas:
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1. LDPC Codes for High-Order Constellations

In Chapter III, we focussed on designing LDPC codes for a BICM scheme which

also has properties of multi-level coding owing to the inherent unequal protection

present in LDPC codes. Here the code-profiles were optimized separately for different

constellations. In practice, for wireless communication systems, it is desirable to

have rate-compatible coding schemes. The receiver usually estimates the channel

and feeds back the modulation-coding scheme (MCS) that can be supported over the

channel for the current channel state (unless reciprocity is present and the transmitter

can estimate the channel and determine the MCS for the subsequent transmissions).

For these different MCS formats, it is desirable to use the same LDPC code (but

punctured for different code-rates) over different constellations, as requested in the

MCS. It was observed in this work that the overall profiles of the LDPC code for

different constellations for the same code-rate were not substantially different but

only the sub-profiles were different for different bits in the mapped word. Thus a

scheme can be devised where different bits of the same LDPC code are allocated

to different bits in the mapped word of the constellation with the overall profile

remaining the same. This problem again turns out to be an optimization problem.

This proposed scheme can be further extended to OFDM systems where the relative

SNRs of different subchannels is known to the transmitter and different bits of a

single LDPC code have to allocated to these subchannels.

2. Rate-Diversity Tradeoff

Chapter IV discussed coding schemes for achieving the rate-diversity tradeoff of

MIMO and MIMO-OFDM systems. It was shown that a coding scheme with LDPC

as an outer code and a simple serial to parallel converter as an inner code can achieve
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this tradeoff. However, an ML decoder for the overall scheme is required to achieve

the tradeoff. We showed in the same chapter that performance very close to the

tradeoff can be achieved with a sub-optimal iterative decoder. (i) It is an interesting

problem to study the effect of using the sub-optimal iterative decoder and whether it

leads to any penalties in performance. It would also be interesting to study if those

penalties diminish as the length of the LDPC code-word increases. Also for some

regions of the code-rates, higher diversity was observed for finite SNRs than what is

available asymptotically. It is an interesting problem to learn if this occurence is due

to the sub-optimal iterative decoder apart from the presence of many high-ranked

codewords than low-ranked ones for those code-rates. The low-ranked codewords

dominate at high SNRs and result in the diversity predicted by the tradeoff. (ii)

Another question to be answered is: it was shown in the proofs that asymptotically

in length of the LDPC code, all the frequency diversity present in the system is ob-

tained for free at no expense of the code-rate - are there any finite-length LDPC

codes which provably achieve the frequency-diversity at no expense of the code-rate.

Because simulations of finite-length LDPC codes perform very close to the tradeoff

it seems plausible that provably good finite-length LDPC codes with some structure

can be found which achieve the tradeoff. (iii) can it be proved for this scheme that

the coding gain obtained is greater than some number with very high probability -

this will establish these schemes to be superior to any scheme presented so far in

literature. Again, through simulations presented in this work, it can be conjectured

that the coding gain is “good” for this coding scheme.
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3. CSITR

a. Multi-user Information Theory

Multi-user information theory has a direct effect on the operation of cellular mo-

bile systems. Design of efficient coding schemes, bandwidth and power allocation

schemes are essential to maximize the overall throughput of these multi-user systems.

The capacity regions of multiple access channels and broadcast channels have been

characterized with Gaussian inputs. However, constrained inputs can change the

overall capacity with CSI at the receiver as well as the transmitter. The power and

rate-allocation schemes in this dissertation work in Chapter VI, apply to single-user

case with CSITR where the channels are easily parallelized and power and rate can

be allocated independently across the parallel subchannels. These algorithms have

to be rederived when there are multiple-users in the system. Under the constraint

of a practical constellation to transmit from, the problem is to maximize the overall

throughput or a weighted throughput (with some degree of fairness guaranteed to each

user). The solution to this type of problems is not as straightforward as a single-user

case, as the cost function need not be convex. It is an interesting problem to de-

sign coding schemes and the associated signal processing at transmitter and receiver

to maximize the overall information rate of the multi-user system with constrained

constellations to transmit from.

b. Effect of Channel Uncertainty on Practical Wireless Systems

In practical wireless systems, perfect CSI is not available and CSI has to be estimated

in order to improve the overall throughput of the system. There is always a certain

amount of uncertainty in the CSI owing to noise in channel estimation algorithms.

Resources in the form of transmit power and bandwidth have to be allocated to
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estimate CSI. Needless to say, these resources are expensive and they have to be used

efficiently. CSI at the receiver is obtained through pilots transmitted along with data.

CSI at transmitter can be obtained through different methods. In TDD systems, the

forward and reverse channels can be assumed to be the same (reciprocity) and the

estimate obtained for one direction can be used for the other. In this case, energy and

bandwidth spent for pilots is sufficient to obtain channel estimates in both directions.

In some other systems such as FDD systems, reciprocity does not hold and hence

the channel estimates at the receiver have to be fed back to the transmitter. CSI

to be fed back, can be compressed using a source-code and then channel-coded for

protection against errors in the channel. Feedback requires additional bandwidth and

power apart from those allocated to the pilots. The quality of channel estimates is

a direct function of the resources allocated to the pilots and feedback, as well as the

channel estimation and source-coding algorithms. The use of power and bandwith for

CSI determination in turn reduces the resources available for transmission of data-

traffic which results in reduced throughput. Hence there is a tradeoff between channel

uncertainty and the overall throughput of the system which has to be optimized. The

optimal point in this tradeoff is also a function of the specific channel estimation

algorithm applied, feedback strategy, and the transmitter rate and power allocation

algorithms if present. Thus there is the need to characterize and understand the effect

of channel uncertainty in wireless systems. There is also the fundamental question of

when CSI at the receiver and/or the transmitter can improve the overall performance

of the system, which has to be addressed. For some values of CSI, there can be

tremendous increase in the overall throughput while for some others there will be

negligible gain.



138

c. Outage Calculation

A by-product of the exponential expressions used to approximate constrained capacity

in Chapter VI is to use them in determining the outage probabilities with constrained

constellations to transmit from, when CSIR is available, over both SISO and MIMO

systems. The problem of outage determination for constrained constellations with

CSIR is complicated and can only be determined through simulations. These approx-

imations for capacity can result in closed-form expressions for the outage probability

with constrained constellations.
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APPENDIX A

POWER ALLOCATION WITH CONSTRAINED CONSTELLATION

The maximization of sum-information rate in Chapter VI is considered under the

approximation of the constrained capacity by a single exponential function. The

optimization problem can be stated as follows:

IM(Γ|α) =
M∑

m=1

am

[
1 − exp

(
−bmα2

mγm

σ2

)]
(A.1)

where IM(Γ|α) is the sum-rate, γm is the power allocated to the m-th subchannel,

subject to the power constraint:

1

M

M∑
m=1

γm ≤ P. (A.2)

Define:

J =
M∑

m=1

am

[
1 − exp

(
−bmα2

mγm

σ2

)]
− 1

μ′

(
1

M

M∑
m=1

γm −P

)
(A.3)

Setting ∂J
∂γm

= 0 results in the solution to the constrained optimization problem. This

implies:

ambmα2
m

σ2
exp

(
−bmα2

mγm

σ2

)
− 1

μ′M
= 0 (A.4)

Denote μ′M = μ. Solution to Eqn. (A.4) can be easily obtained to be:

γm =
σ2

bmα2
m

[
log μ − log

σ2

ambmα2
m

]+

(A.5)
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