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ABSTRACT 
 
 

Steiner Network Construction for Signal Net Routing with  
 

Double-sided Timing Constraints. 
 

 (August 2006) 
 

Qiuyang Li, B.S., Nankai University; 

M.S., Nankai University 

Chair of Advisory Committee: Dr. Jiang Hu 

 

     Compared to conventional Steiner tree signal net routing, non-tree topology is often 

superior in many aspects including timing performance, tolerance to open faults and 

variations. In nano-scale VLSI designs, interconnect delay is a performance bottleneck and 

variation effects are increasingly problematic. Therefore the advantages of non-tree 

topology are particularly appealing for timing critical net routings in nano-scale VLSI 

designs. We propose Steiner network construction heuristics which can generate either tree 

or non-tree of signal net with different slack wirelength tradeoffs, and handle both long 

path and short path constraints. Extensive experiments in different scenarios show that our 

heuristics usually improve timing slack by hundreds of pico seconds compared to 

traditional tree approaches while increasing only slightly in wirelength. These results show 

that our algorithm is a very promising approach for timing critical net routings. 
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CHAPTER I 

INTRODUCTION 

The interconnect delay is a well-known performance bottleneck in VLSI circuit 

designs. Therefore for timing optimization, the optimization of interconnect topology, say 

singal net routing, is very important for the circuit design.  

In practice, because Steiner tree [1] is cost-effective and its delay is relatively easy 

to compute, people almost always use it for signal net routing. However, non-tree topology 

has some remarkable advantages compared to trees. Non-tree routing can significantly 

improve signal propagation delay, reduce signal skew, and afford increased reliability with 

respect to open faults that may be caused by manufacturing defects and electro-migration 

[3]. That is, the redundant paths in a non-tree network provide certain tolerance to open 

faults and therefore can improve manufacturing yield and reliability [2]. Moreover, non-

tree topology sometimes can reduce delay variations [2]. Although non-tree delay 

computation is more expensive than that of trees, the computation overhead of non-tree can 

usually be alleviated by the advancement on computation techniques and facilities. And the 

design needs often eventually outweigh computation overhead if the overhead is not 

prohibitively large. 

1.1 Previous Work 

Perhaps the first non-tree routing work is [3]. It starts with a Steiner tree topology. 

Then it iteratively searches for a new edge to add, so that the maximum source-sink delay 

in the resulting routing graph will be minimized. It keeps on doing this until no further 

delay improvement is possible. The later work of [4] inserts links sequentially between the  

___________ 

This thesis follows the style of IEEE Transactions on Microwave Theory and Techniques. 
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source and the sink with the maximum delay in the topology with shortest feasible length. 

The recent work of [2] is focused on the reliability and manufacturing yield of non-tree 

routing. It augments extra edges to an existing tree to increase the percentage of 2-

connected wires, which implies tolerance to open faults. The works of [3, 4] on timing 

driven non-tree routing have two main weaknesses. Since they start from an existing tree, 

and then add wires on it, the performance of the resulting non-trees depends on the initial 

trees. The arbitrary starting tree cannot guarantee a good non-tree solution. The other 

weakness is that they [3, 4] optimize only delay without considering timing constraints. In 

reality, maximizing slack or minimizing wire cost subject to timing constraints is a more 

common and useful problem formulation [5].  

   The timing constraints in previous works [5] almost always consider only the 

upper bounds for sink delays. In fact, there are delay lower bounds due to the short path 

(hold time) constraints in synchronous circuits. Some gate sizing works [6] consider both 

delay upper bound and lower bound at the same time. To the best of our knowledge, there 

is no signal net routing work considering the double-sided timing constraints yet. This is 

perhaps due to the reason that delay lower bound can be easily satisfied by padding extra 

delay. The delay padding can be implemented by wire detour, adding dummy capacitors or 

inserting redundant buffers. The former two approaches may increase the delay along the 

long path. The later approach of redundant buffers may intensify the leakage power 

problem. They all can increase the unnecessary complexity. Thus, we need to handle the 

short path constraints in a more careful manner. 
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1.2 Outline 

In this thesis, we propose Steiner network construction heuristics which consider 

delay upper bound and lower bound simultaneously for timing critical nets. We will show 

that sometimes a link insertion can simultaneously reduce long path delay and increase 

short path delay. One heuristic is a greedy link insertion in an existing tree or non-tree, 

which is similar to [3] but the solution search is trimmed for the double-sided timing 

constraints. The other is a dynamic programming based constructive algorithm which can 

generate a set of solutions with different slack-wirelength tradeoff and can reach either tree 

or non-tree topology.  

By comparing to the traditional AHHK tree results, our extensive experimental 

results show that this Steiner network construction usually improves slack by hundreds of 

pico seconds. The non-tree approach may bring some wirelength and runtime overhead, but 

from the experimental results, this overhead is in a relatively small range. And moreover, 

because it is applied to only a small number of timing critical nets, the impact of overhead 

to overall chip design is very limited. Beside this, we also do the Monte Carlo simulation 

with process variations considered. The results show that our method can improve timing 

yield greatly with both nominal slack improvement and delay variability (standard 

deviation) reduction. 

The rest of this thesis is organized as following. Chapter II discusses a lemma of 

link insertion and then gives our problem formulation. Chapter III addresses our algorithm. 

In Chapter IV, we show our experiment results. And then we conclude in Chapter V. 
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CHAPTER II 

PRELIMINARY 

In this chapter, we will show that proper link insertion in an existing tree or nontree 

can reduce long path delay and increase short path delay simultaneously. That is, link 

insertion may reduce the difference of the maximum path delay and the minimum path 

delay. 

Considering insert a link between two nodes i  and j  in an  network (Fig.1), 

which can be either a tree or a nontree. Let the link resistance be 

RC

R  and link capacitance be 

. According to the ∏ -model, this link insertion is equivalent to adding capacitance  

at node i  and 

C / 2C

j , respectively, and inserting resistance R  between i  and j . 

 

 i

j
2
CR

2
C

 

Fig.1   Insert a link in an  network. RC

 

 

The link capacitance always increases the delay by , ,( )
2i lc i i i j
Ct R R= + ,  and 

, ,( )
2j lc i j j j
Ct R R= + , ). Here  is the path resistance from the source to node . And , ,(i i j jR R ( )i j

,i jR  is the transfer resistance which equals the voltage at node i  when 1A current is 
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injected into node j  and all the other node capacitances are set to zero [4]. After the link 

insertion, the delay to i  and j  are changed from  and it jt  to  and it� jt�  according to the 

following equations [7]: 

(1 )( ) ( ),t t t t ti i i lc j j, lcα α= − + + +�                   (1) 

,(1 )( ) ( ),j j j lc i i lct t t t tβ β= − + + +�                      (2) 

Where i

i j

r
R r r

α =
+ −

 and j

i j

r
R r r

β =
+ −

. In general,  and ir jr  are equal to the 

Elmore delay at i  and j , respectively, when node capacitance 1, 1i jC C= = −  and the other 

node capacitances are set to zero [4]. 

The above equations show that the link capacitance always increases signal delay 

while the link resistance attempts to average the delay between i  and j . It is 

strightforward to derive the following condition on the simultaneous improvement for both 

long path and short path delay. 

Lemma: If a link with resistance R  and capacitance C  is inserted between a node i  

on a long path and a node j  on a short path in a Steiner network, the necessary and 

sufficient condition of simultaneously reducing delay to node i  and increasing delay to 

node j  is , ,
1( 1)i i lc j j lct t t
α

≥ − + + t . 

When considering double sided timing constraints, each sink  has a delay upper 

bound 

iv

iq  and a delay lower bound iq . The delay upper bound is the same as the required 

arrival time (RAT) in traditional methods. We define the late slack of a sink  as iv
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i is q t= − i  where  is the delay. Similarly, the early slack of a sink  is defined as it iv

i i i
s t q= − . The slack of a sink  is iv min( , )ii is s s= . The late slack, early slack and slack of 

a network (or subnetwork) are the minimum late slack, early slack and slack among all 

sinks in the network, respectively. For a network (or subnetwork), the sink having the 

minimum late (early) slack is called late (early) critical sink. Here is our problem 

formulation: 

Timing Driven Steiner Network Construction: 

Given a source node , a set of sink nodes  with each sink  having 

load capacitance , lower delay bound 

0v 1 2{ , ,..., }nv v v iv

ic
i

q  and upper delay bound iq , construct a rectlinear 

Steiner network spanning the source and the sinks such that the slack of the network is 

maximized. 
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CHAPTER III 

ALGORITHM 

Before we dive into the details of the algorithm, let’s review our problem 

formulation. 

Given a source node , a set of sink nodes  with each sink  having 

load capacitance , lower delay bound 

0v 1 2{ , ,..., }nv v v iv

ic
i

q  and upper delay bound iq , construct a rectlinear 

Steiner network spanning the source and the sinks such that the slack of the network is 

maximized. 

Then comes the procedure of our algorithm, constructive Steiner network heuristic. 

Step 1. Initialization: A set of subnetworks are initialized with the sink nodes. It is 

the first candidate solution. 

n  = number of sinks 

0O = new empty solution  

for  to  1i = n

      = new empty subnetwork iG

      add sink node  to  iv iG

      add  to  iG 0O

add  to solution set  0O O

 

 

Step 2. Merging selection: In a candidate solution , select two subnetworks to 

merge.  

iO

For two different scenarios: (1) If long path constraints and short path constraints 

are almost equally tight, we first choose the subnetwork with the maximum ( ) / 2q q t′+ + , 



8 

and then merge it with its nearest neighboring subnetwork. (2) If long path constraints 

dominate, we choose a pair of subnetworks whose merging root is farthest from the source 

among all pairs. 

for every subnetwork  in  G kO

      Choose  with maximum iG ( ) / 2q q t′+ +  

 for every other subnetwork G  in  kO

     Choose jG  with minimum j i j ix x y y− + −  

call Step 3 to merge  and iG jG  

kn = the number of subnetworks in  kO

max =i = j  = 0 

for i  = 1 to  kn

    for j  =  to  i kn

         if j i j ix x y y− + −  > max then  m=i; n = j 

call Step 3 to merge  and  mG nG

 

Step 3. Merging: Merge these two subnetworks. 

Use two different method to merge two selected subnetwoks  and iG jG  of solution 

. One is root-root merging. And the other method is shortest merging where two nodes 

from the two subnetworks with the minimum distance are connected directly. By doing this, 

we get two candidate solutions. 

kO

mO  = new empty solution 

mO  =  kO

mG  = new empty subnetwork 

node set of  = { node set of  } { node set of  mG iG ∪ jG } 

edge set of  = { edge set of  }∪{ edge set of  mG iG jG } 

mv  = new node with coordinate { , } ( , , )i j omedian x x x ( , , )i j omedian y y y
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add  to and it is the new root mv mG

add edges { ,  and { ,}i mv v }j mv v  to  mG

delete  and iG jG  in  mO

call Step 4 to insert link in  mG

 

nO  = new empty solution 

nO  =  kO

nG  = new empty subnetwork in  nO

node set of  = { node set of  } { node set of  nG iG ∪ jG } 

edge set of  = { edge set of  } { edge set of  nG iG ∪ jG } 

min =  ∞

for every node  in  iv iG

    for every node jv  in jG  

         if j i j ix x y y− + −  < min  then  p=i; q = j 

nv  = new node with coordinate { ( , , )p q omedian x x x , ( , , )p q omedian y y y } 

add  to and it is the new root nv nG

add edges { ,  and { ,}i nv v }j nv v  to  nG

delete  and iG jG  in  nO

call Step 4 to insert link in  nG

 

delete old solution  kO

 

Step 4. Link insertion: Insert link into the result subnetwork G  of solution . kO

For the two subnetworks obtained from mergings, we insert a link in each of them. 

Then we get two new candidate solutions. 

mO =  // the following operations are taken in this new solution  kO mO

ev  is the early critical sink of  G

lv  is the late critical sink of  G



10 

use dijkstra’s algorithm to find the shortest path ,e lp G∈  which connects  and .  ev lv
for each node ,  ,i ev p∈ l

for each edge ,j e le p∈    // je :{ ( , )j jx y , ( , )k kx y } 
tentatively insert link between  and { , }. 

for all temporarily inserted link  
iv ( , , )i j kmedian x x x ( , , )i j kmedian y y y

we finally insert the one with the maximum slack improvement.  
 

Step 5. Candidate solution pruning: For a new candidate solution, compare it with 

previous generated candidate solution for pruning.  

If  candidate solution  has the exactly same sink set as ,  ,i kO ,i kO
If , , ,i j i kC C≤

,i j i k
q q≤

,
 and , ,i j i kq q≥ ,  

prune  ,i kO
 

Step 6. Solutions at the source: Choose the best solution at the source. 

for every solution  in the solution set O  iO

choose the one with maximum slack or minimum capacitance without negative 
slack. 

 

Each step will be explained in detail later. 

3.1 Discussion on Topology 

The effect of link insertion depends on the initial tree topology. There is area-radius 

tradeoff among different tree topologies. The area refers to the total wirelength and the 

radius is the maximum source-sink path length in a tree. The two extreme cases of this 

trade-off are: (1) chain-like topology (Fig. 2(a)), which has small area and large radius, and 

is usually derived from minimum spanning tree algorithms; (2) star-like topology (Fig. 2(b)) 

with relatively large area and small radius, and can be obtained from the shortest path tree 

or Rectilinear Steiner Aborescence (RSA) algorithms [1]. 
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(a) Chain-like topology                 (b) Star-like topology 
Fig. 2   Chain-like topology and star-like topology.  

 
 

The major weakness of a tree with chain-like topology is that the delay of some 

sinks may suffer from the long path length. For example, if  in Fig. 2(a) is the late critical 

sink with tight delay upper bound, the long detour may cause large delay constraint 

violation. If we include non-tree topology into consideration, we may reach different 

conclusions. If a link (dashed line) is inserted in the chain-like topology as in Fig. 2(a), the 

long detour problem is eliminated and the small wirelength is still enjoyed. However, if the 

late critical sink is  instead, perhaps the star-like topology in Fig. 2(b) is still better. Thus, 

it is not clear which tree topology can facilitate a good non-tree solution in general. Our 

constructive algorithm probes different topologies so that the chance of capturing good 

non-tree solutions can be increased. 

1v

2v

3.2 Constructive Steiner Network Heuristic 

If we treat a network as a tree plus links, the problem of network construction can 

be accordingly decomposed into finding a proper tree topology and link insertions. We 

combine these two concerns into a dynamic programming based heuristic. This heuristic is 

a bottom-up merging procedure where multiple candidate solutions are generated to probe 

good topologies and link insertions. At the beginning, a set of subnetworks are initialized 

with the sink nodes. In each iteration, a pair of subnetworks is selected to be merged. 
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Different merging solutions are generated. For each new subnetwork resulting from a 

merging, another candidate solution is generated by inserting a link in it. These candidate 

solutions are propagated toward the source. 

Solution characterization. A candidate solution  is a set of subnetwork . It 

can be characterized by the total load capacitance , delay lower bound 

iO ,i jG

,i jC
,i j

q  and delay 

upper bound ,i jq  at each root jv . It is easy to derive that the delay upper bound ,i jq  is same 

as the late slack of . Similarly, the delay lower bound ,i jG
,i j

q  is equal to the negative of 

early slack.  

Solution pruning. If there is another candidate solution  with the subnetwork set 

have the exactly same sink sets as candidate solution , the two solutions can be 

compared for pruning. If for each corresponding subnetwork 

kO

iO

j  has , , ,i j k jC C≤
, ,i j k j

q q≤  

and ,i j k jq q≥ , , solution  is inferior and can be pruned. kO

Merging selection. We propose two merging selection criteria for two different 

scenarios: (1) long path constraints and short path constraints are almost equally tight, and 

(2) long path constraints dominate. 

For the first scenario, we use a merging scheme similar to prescribed skew clock 

tree routing [9]. In fact, when the delay upper bound of each sink is equal to its delay lower 

bound, i.e., the delay constraints degenerate to a single value target, this problem is 

equivalent to prescribed skew clock routing. In prescribed skew clock routing, the subtree 

with the maximum delay target is merged first to reduce the chance of wire detour [9]. 

Since we have delay upper and lower bound instead of a single delay target, we use the 

average ( ) / 2q q t′+ +  as the criterion. The t′  is the anticipated wire delay from the source 
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node to the root of the subnetwork. This is to encourage subnetworks with roots far away 

from the source to be merged early. In each iteration, we first choose the subnetwork with 

the maximum ( ) / 2q q t′+ + , and then merge it with its nearest neighboring subnetwork. 

The second scenario is more like traditional signal routing [1]. Therefore, we adopt 

a merging criterion similar as that of Rectilinear Steiner Aborescence (RSA) [10]. That is, 

we choose a pair of subnetworks whose merging root is farthest from the source among all 

pairs. If we consider merging subnetworks rooted at ,( i i )x y  and ,( )j jx y , then the merging 

root is at ( ( 0 0, , ), ( , , ))m i j m i jmedian x x x y median y y y= = 0 0( , ) where xx y  is the location of 

the source node. Then, the pair with the maximum value 0m m 0x x y y− + −  is selected for 

a merging. Our method is different from the well-known RSA algorithm [10] which 

restricts all sinks in one quadrant if the source is at (0,0). Our merging selection can handle 

the cases that sinks are distributed in multiple quadrants. 

Merging. After a pair of subnetworks is selected, we consider two types of 

mergings between them. One is the root-root merging as in Fig. 3(a) where subnetwork  

and  are merged at node . The other is the shortest merging where two nodes from the 

two subnetworks with the minimum distance are coneected directly. After the merging, the 

node closest to the source is selected as the root for the merged network. For example, in 

Fig. 3(b), the merging between  and  is obtained by connecting  and  where 

reroot occurs. Then  is chosen as the root. 

5G

6G 7v

5G 6G 2v 3v

5v
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v4

v3

v1

v2

v6

v5

v7

v0

v3

v4

v1
v2

v6

v5

v0

 

                (a) root-root merging                         (b) Shortest merging 
Fig. 3  Root-root merging and shortest merging. 

 
 

The root-root merging is very similar as the RSA [10] heuristic which leads to star-

like topology. The shortest merging is more likely to result in chain-like topology. By 

having these two different types of merging, various topologies can be generated to 

compete for the best slack solution. 

Link insertion. For the two subnetworks obtained from merging, we insert a link in 

each of them such that the slack is maximized considering the double-sided timing 

constraints. 

For the given subnetwork G , which can be either tree or non-tree, we first identify 

its early critical sink  and late critical sink  (both defined in Chapter II). Next we find 

the shortest path  which connects the two critical sinks. For each node , we 

tentatively insert a link between  and each edge 

ev lv

,e lp ∈G l,i ev p∈

iv ,j e le p∈  with the shortest connection. If 

node  is at coordinate iv ( , )iix y , and the two ending nodes of je  are at ( , )j jx y  and 

( , )k kx y , respectively, the link is inserted between node  and location iv ( , )c cx y  where 

( , , )c i j kx median x x x=  and . For each link insertion result, we 

evaluate the slack S of the network. For all temporarily inserted link we finally insert the 

one that gives the maximum slack improvement.  

( , , )c iy median y y y= j k
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Solutions at the source. At the source, there are a set of solutions with different 

capacitance and slack trade-off. We can choose either the maximum slack solution or the 

minimum capacitance solution without negative slack. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

All algorithms are implemented in C++ and the experiments are performed on a PC 

computer with 3.2GHz processor and 1G memory. We generated different testcases with 

the number of sinks ranging from 5 to 25. Without loss of generality, we let the source be at 

coordinates (0,0). In some cases, all of the sinks are in one quadrant while some other cases 

have sinks distributed in four quadrants. For example, in the data tables, the notation of 

“15s, 2Q” means there are 15 sinks and they are distributed in two quadrants. The 70nm 

technology parameters reported in [12] are employed. We compare the following methods 

in the experiments: 

AHHK. This is a Steiner tree heuristic [1] which can achieve different area-radius 

tradeoff by varying a parameter [0,1]α ∈ . When the value of α  is shifted from 0 to 1, the 

resulting tree gradually changes from chain-like to star-like topology [1]. Although it is not 

directly timing driven, we can achieve very good timing performance by trying different α  

and choosing the result with the best slack. We tested AHHK trees with α = 0, 0.5, 1 in the 

experiments. 

AHHK+detour. If there is short path violation, the edge incident to the early 

critical sink is elongated to increase the delay till the early slack is close to the late slack, so 

that the overall slack is maximized. 

AHHK+link. Inserting links greedily similar as described in our algorithm step 4 

link insertion. The only difference is that here we try to insert links greedily until there isn’t 

timing performing improvement anymore. This method is similar to [3]. 

Steiner network. The dynamic programming based Steiner network construction 
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proposed in Chapter IV. 

4.1 Cases with Single Critical Sink 

For the testcases, we generated 15 nets with 5, 10, 15, 20, 25 sinks and sinks in 1 

quadrant, 2 quadrants and 4 quadrants, respectively. Each net has a single critical sink 

which is often on the long path. Therefore, wire detour is rarely necessary here.  

 
 

TABLE I 
CASES WITH 1 CRITICAL SINK, COMPARISON BETWEEN AHHK AND 

AHHK+LINK  
 

AHHK AHHK+link  
Case α  S W S W #L            2-C 

15s,1Q 
15s,2Q 
15s,4Q 
20s,1Q 
20s,2Q 
20s,4Q 
25s,1Q 
25s,2Q 
25s,4Q 

0 
0.5 

0 
0 
0 

0.5 
0 
1 
0 

-494 
-56

-709 
-704 

-2137
-243 
-746 

-49
-3106

8751
9055

15333
9887

12453
17519
9596

18183
19954

-196
-4

-455
-248

-1377
77

-442
-1

-1749

10700 
11004 
17799 
11963 
14415 
19491 
11290 
20411 
21612 

1     44%
1     42%
1     57%
1     41%
1     35%
1     24%
1     39%
1     33%
1     20%

Average  -916 13415 -488 15409 1     37%
 
Notes:  Comparison on slack S( ), total wirelength W(ps mμ ), the number of inserted links 
#L and percentage of 2-connected wires 2-C. 

 

In Table I above, we compare AHHK and AHHK+link on 9 cases among the 15 nets 

where links are indeed inserted. The average results in the last row show that link insertion 

can improve slack by about 428ps with about 15% increase on wirelength. The link 

insertion can also achieve about 37% 2-connected wires, which means about 37% of the 

wires are tolerant to open faults. 
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TABLE II 
CASES WITH 1 CRITICAL SINK, COMPARISON BETWEEN AHHK+LINK AND 

STEINER NETWORK 
 

AHHK+link Steiner network  

Case α  S ( )ps  W ( )mμ  #L      2-C CPU ( )s  S ( )ps W ( )mμ  #L          2-C CPU ( )s  

5s,1Q  
5s,2Q  
5s,4Q  
10s,1Q 
10s,2Q 
10s,4Q 
15s,1Q 
15s,2Q 
15s,4Q 
20s,1Q 
20s,2Q 
20s,4Q 
25s,1Q 
25s,2Q 
25s,4Q 

0 
1 
0 
1 
1 

0.5 
1 
1 
1 
1 

0.5 
0.5 

1 
1 
1 

-3 
-15 
14 
26 
54 

112 
102 
-13 
-12 

7 
-3 
77 
-5 
-1 

-18 

5122
7442
9804
7409

12831
10120
9566

12135
18345
12372
14214
19491
13869
20411
23144

0          0
0          0
0          0
0          0
0          0
0          0
0          0
0          0
0          0
0          0
0          0
1     24%
0          0
1     33%
0          0

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02

120
82

123
124
188
199
320
283
130
177
177
242
534
308
211

7544
8641

11184
7743

14763
13468
8892

13195
18836
12429
17355
18639
14493
17019
24128

1      58% 
1      30% 
1      25% 
1      15% 
1      42% 
3      53% 
0           0 
1      20% 
1      22% 
1      19% 
2      39% 
1      19% 
2      34% 
1      18% 
1      17% 

0.01
0.01
0.02
0.05
0.09
0.49
0.25
0.38
0.72
2.28
4.95
0.53
1.41

10.48
0.66

Average  21 13085        3.8% 0.01 215 13889      27.4% 1.49
 
Notes:  Comparison on slack S( ), total wirelength W(ps mμ ), the number of inserted links 
#L, percentage of 2-connected wires 2-C and running time CPU(s). 

 

In Table II, we compare our constructive Steiner network heuristic and AHHK+link 

for the entire 15 nets. For AHHK+link, we pick the results of α  with the best timing slack. 

Among multiple solutions generated by the constructive heuristic, we report the solution 

with best slack and largest wirelength. According to the last row of Table II, it can improve 

the slack from 21ps to 215ps on average. The wirelength increase of our Steiner network 

heuristic is only 6% over the AHHK+link results. The following figures (Fig.4, Fig.5 and 

Fig.6) show these results. 
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Fig.4   Slack (AHHK+link vs Steiner network). 

 
Notes:  With our constructive Steiner network heuristic, we can get better slack result. 

 
 

 
Fig.5   Wirelength (AHHK+link vs Steiner network). 

 
Notes:  Comparing with AHHK+link, our Steiner network heuristic has only a little 
wirelength increase. 
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Fig.6   2-connected wire (AHHK+link vs Steiner network). 

 
Notes:  In some of our testcases, we didn’t insert links in AHHK, therefore there isn’t 2-
connected wire. While for our constructive Steiner network heuristic, we get more 2-
connected wires which can be more tolerant to open faults. 

 

The dynamic programming based Steiner network construction can generate a set of 

solutions with different slack-wirelength tradeoff.  

We also do Monte Carlo simulations (5000 runs for each result) to observe the 

behaviors of these algorithms under process variations. We consider wire width, sink 

capacitance and driver resistance variations which are assumed to follow Gaussian 

distribution with standard deviation equal to 5% of nominal value.  
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TABLE III 
MONTE CARLO RESULTS CORRESPONDING TO TABLE I 

 
AHHK AHHK+link  

Case α  sμ  sσ  Y sμ  sσ  Y 

15s,1Q 
15s,2Q 
15s,4Q 
20s,1Q 
20s,2Q 
20s,4Q 
25s,1Q 
25s,2Q 
25s,4Q 

0 
0.5 

0 
0 
0 

0.5 
0 
1 
0 

-497
-57

-711
-707

-2144
-245
-751

-51
-3117

34
27
50
35
69
42
40
43
91

0
2
0
0
0
0
0

12
0

-197
-4

-456
-249

-1382
  77

-447
-1

-1754

27 
27 
45 
29 
58 
42 
41 
44 
69 

0 
44

0 
0 
0 

97
0 

49
0

Average  -920 47.9 1.6% -490 42.4 21.1%
 
Notes:  mean slack sμ ( ), standard deviation of slack ps sσ ( ) and timing yield Y (the 
probability of non-negative slack). 

ps

 
 

The comparison between AHHK trees and AHHK+link results is in Table III above. 

Comparing with the deterministic results in Table I, we can see that the mean values sμ  of 

the slacks are about the same. On average, AHHK+link can reduce the standard deviation 

sσ  of slack by about 10% and increase timing yield from 1.6% to 21.2%.  

As in Table IV, the data indicate that our constructive method can reduce the 

standard deviation further by about 10% (Fig.7) and improve the timing yield from about 

61% to 100% compared to AHHK+link. 
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TABLE IV 
MONTE CARLO RESULTS CORRESPONDING TO TABLE II 

 
AHHK AHHK+link  

Case α  sμ  sσ  Y sμ  sσ  Y 

5s,1Q  
5s,2Q  
5s,4Q  
10s,1Q 
10s,2Q 
10s,4Q 
15s,1Q 
15s,2Q 
15s,4Q 
20s,1Q 
20s,2Q 
20s,4Q 
25s,1Q 
25s,2Q 
25s,4Q 

0 
1 
0 
1 
1 

0.5 
1 
1 
1 
1 

0.5 
0.5 

1 
1 
1 

-4
-15
14
24
52

111
102
-14
-12

7
-5
77
-8
-1

-20

20
23
27
23
41
26
26
36
44
29
37
42
38
44
54

43%
25%
70%
86%
89%

100%
100%
35%
39%
60%
44%
97%
42%
49%
35%

119
82

123
125
189
199
318
283
130
176
176
241
534
308
210

17 
19 
26 
22 
34 
29 
22 
28 
40 
27 
39 
39 
32 
36 
50 

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

Average  21 34.0 60.9% 214 30.7 100%
 
Notes:  mean slack sμ ( ), standard deviation of slack ps sσ ( ) and timing yield Y. ps
 

 
Fig.7   Monte Carlo: standard deviation of slack (AHHK+link vs Steiner network). 

 
Notes:  Comparing with the AHHK+link results, our Steiner network heuristic can reduce 
the standard deviation of slack. 
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4.2 Cases with Multiple Critical Sinks 

We also tested the algorithms in cases with multiple critical sinks. That is, there 

may be several sinks with similar timing criticality in each net. In order to see the effect on 

fixing short path delay constraint violations, these testcases usually have tighter constraints 

on short path than on long path.  

The wire detour method can increase the delay to the early critical sink but at the 

cost of increasing long path delay, while our approach can increase short path delay and 

reduce long path delay simultaneously. Moreover, wire detour cannot lead to any tolerance 

to open faults as in non-tree.  

The average results in Table V show that our Steiner network heuristic can improve 

the slack by about 80ps on average when compared to performing wire detour on existing 

trees. The wirelength increase due to our method is about 4% with respect to the wire 

detour results. 

TABLE V 
CASES WITH MU RITICAL SINKS 

AHHK AHHK+detour AHHK+link Steiner network 

LTIPLE C
 

S W S W S W S   W
-74 14 3 2 7 7 2 1 44 18 1667 43 1564 97 1729

 
otes:  Comparison on average results (10 nets with 5-25 sinks) of slack S( ), total N ps

wirelength W( mμ ). 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

This work investigates timing driven routing by using non-tree topology. We 

propose a constructive Steiner network heuristic algorithm to do the signal net routing, 

which can improve the timing performance greatly. Our constructive Steiner network 

heuristic method considers the double-sided timing constraints, adopts dynamic 

programming to construct the non-tree solution, and uses greedy link insertion to insert 

links in subnetwork. And it can handle those cases whose sinks are distributed in multiple 

quadrants. Experimental results show that this is a very promising approach even when 

both long path and short path constraints are considered. In future, we can find non-tree 

routing method using more accurate delay model and study buffered non-tree routings. 
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