
 

EXPERIMENTAL INVESTIGATION OF FILM COOLING 

EFFECTIVENESS ON GAS TURBINE BLADES 

 

 

A Dissertation 

by 

ZHIHONG GAO 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

 

August 2007 

 

 

Major Subject: Mechanical Engineering 

 



 

EXPERIMENTAL INVESTIGATION OF FILM COOLING EFFECTIVENESS 

ON GAS TURBINE BLADES 

 

 

A Dissertation 

by 

ZHIHONG GAO 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

 

Approved by: 

Chair of Committee,      Je-Chin Han 
Committee Members,      N.K. Anand 
        Hamn-Ching Chen 
        Sai Lau 
Head of Department,      Dennis O’Neal 

 

 

August 2007 

 

Major Subject: Mechanical Engineering 



iii 

 

ABSTRACT 

 

Experimental Investigation of Film Cooling Effectiveness on Gas Turbine Blades. 

(August 2007) 

Zhihong Gao, B.E., Harbin Institute of Technology; 

M.E., Harbin Institute of Technology; 

M.S., National University of Singapore 

Chair of Advisory Committee: Dr. Je-Chin Han 

 

 

The hot gas temperature in gas turbine engines is far above the permissible metal 

temperatures. Advanced cooling technologies must be applied to cool the blades, so they 

can withstand the extreme conditions. Film cooling is widely used in modern high 

temperature and high pressure blades as an active cooling scheme. In this study, the film 

cooling effectiveness in different regions of gas turbine blades was investigated with 

various film hole/slot configurations and mainstream flow conditions. The study 

consisted of four parts: 1) effect of upstream wake on blade surface film cooling, 2) 

effect of upstream vortex on platform purge flow cooling, 3) influence of hole shape and 

angle on leading edge film cooling and 4) slot film cooling on trailing edge. Pressure 

sensitive paint (PSP) technique was used to get the conduction-free film cooling 

effectiveness distribution.  

For the blade surface film cooling, the effectiveness from axial shaped holes and 

compound angle shaped holes were examined. Results showed that the compound angle 
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shaped holes offer better film effectiveness than the axial shaped holes. The upstream 

stationary wakes have detrimental effect on film effectiveness in certain wake rod phase 

positions.  

For platform purge flow cooling, the stator-rotor gap was simulated by a typical 

labyrinth-like seal. Delta wings were used to generate vortex and modeled the passage 

vortex generated by the upstream vanes. Results showed that the upstream vortex 

reduces the film cooling effectiveness on the platform.  

For the leading edge film cooling, two film cooling designs, each with four film 

cooling hole configurations, were investigated. Results showed that the shaped holes 

provide higher film cooling effectiveness than the cylindrical holes at higher average 

blowing ratios. In the same range of average blowing ratio, the radial angle holes 

produce better effectiveness than the compound angle holes. The seven-row design 

results in much higher effectiveness than the three-row design.  

For the trailing edge slot cooling, the effect of slot lip thickness on film 

effectiveness under the two mainstream conditions was investigated. Results showed 

thinner lips offer higher effectiveness. The film effectiveness on the slots reduces when 

the incoming mainstream boundary layer thickness decreases. 
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NOMENCLATURE 

CD Discharge coefficient 

Co Oxygen concentration  

Cx Axial chord length of the blade  

d Diameter of film-cooling holes  

D Diameter of leading edge model 

I Pixel intensity for an image 

M Average blowing ratio (=ρcVc /ρmVm) 

LE Leading edge of the blade 

p Spanwise distance between film cooling holes 

P Local static pressure 

Pt Total pressure at the cascade inlet 

PO2 Partial pressure of oxygen 

PS Blade pressure-side 

s Streamwise distance from the stagnation line row or slot height 

t Lip thickness  

SS Blade suction-side 

TE Trailing edge of the blade 

Tu Turbulence intensity level at the cascade inlet  

x Axial distance  

y Spanwise distance 

z Lateral distance 

Vc Averaged velocity of coolant air from all film cooling holes 
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δ Boundary layer thickness 

η Local film-cooling effectiveness 

η  Spanwise averaged film cooling effectiveness 

θ Angle from the stagnation line along the surface 

ρc Density of coolant air 

ρm Density of mainstream air 

 

Subscript 

air Mainstream air with air as coolant 

c Coolant 

m Mainstream 

mix Mainstream air with nitrogen as coolant 

ref Reference image with no mainstream and coolant flow 

blk Image without illumination (black) 
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1. INTRODUCTION 

Gas turbines are widely used in aircraft propulsion and land-based power 

generation or industrial applications. Thermal efficiency and power output of gas 

turbine increase with increasing turbine rotor inlet temperatures. The operating 

temperatures are far above the permissible metal temperatures. Advanced cooling 

technologies must be applied to the airfoils, so they can withstand these extreme 

conditions. Han et al. [1] describes many cooling techniques that are commonly used in 

various combinations to increase the lifetime of the turbine blades. Impingement 

cooling, rib turbulated cooling, and pin-fin cooling are typically used to remove heat 

from the inner walls of the blades. In order to overcome the hazard from the severe 

environment and prevent failure of turbine components, film cooling has been widely 

accepted as an active cooling method. In a film cooled component, relatively cooler air 

is penetrated through discrete holes or slots to provide a protective film between the hot 

mainstream gas and the turbine component to maintain the surface at a lower 

temperature thus protect the turbine component surface. However, excessive use of 

coolant reduces the gain of the higher inlet temperature because the consumption of 

compressed air and the mixing between the hot mainstream flow and coolant reduce the 

thermal efficiency of entire system. Thus, much research has been conducted to 

understand the physical phenomena regarding the film cooling process and to find better 

configurations that can provide more protection with less coolant. 

 

 

 
This dissertation follows the style of ASME Journal of Turbomachinery. 
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1.1 Literature Review on Turbine Blade Surface Film Cooling  

Among the vast literatures related to the film cooling, majority of the recent 

work focuses on comparative assessment of two or more film cooling hole 

configurations. Among the variety of film cooling hole designs, four kinds of hole 

geometries are generally considered: cylindrical holes, laterally-diffused (fanshape) 

holes, forward-diffused (laidback) holes, and laterally- and forward-diffused (laidback 

fanshape) holes. Figure 1.1 shows the four kinds of hole geometries with the cross 

section view cutting along the hole centerline. Depending on the angle (β) of the 

projected hole centerline on the surface with respect to the mainstream direction, a film 

cooling hole can be identified as an axial hole (if β = 0°) or a compound angle hole ( if β 

> 0°). Figure 1.1 also conceptually shows the film cooling effectiveness distribution 

associated with the various hole configurations. In general, the compound angle hole 

gives better effectiveness as the coolant is deflected by the mainstream and covers a 

larger surface area. The shaped holes performs better than the cylindrical holes because 

the expanded hole breakout area reduces the jet momentum and diminish the jet lift-off.  

Film cooling on a flat plate is often chosen as a baseline study. Goldstein et al. 

[2] showed the benefits of film-cooling with shaped holes. They compared film-cooling 

effectiveness for straight round holes and axial shaped holes with lateral diffusion of 

10°. The axis of both the hole geometries were inclined at 35° from the test surface. 

They reported a significant increase in the film-cooling effectiveness immediately 

downstream of the shaped holes as well as increased lateral coolant displacement. They 

attributed this effect primarily to the reduced mean velocity of the coolant at the hole 

exit causing the jet to stay closer to the surface. Thole et al. [3] carried out flow field 

measurements using LDV at the exit of three different hole 
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Fig. 1.1 Film cooling hole configurations 
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 geometries. The hole geometries included a round hole, a hole with a laterally 

expanded exit, and a hole with a forward-laterally expanded exit. All holes were 

oriented at an angle of at 30° from the surface. Their findings showed that both the 

shaped holes had less shear mixing of the injection jet with the mainstream and greater 

lateral spreading of the coolant compared to that of a round hole. Additionally, the 

forward-laterally shaped hole had relatively lower film effectiveness than the laterally 

expanded shaped hole due to excessive diffusion of the coolant and subsequent 

mainstream interaction. Gritsch et al. [4] studied the same cooling hole configurations 

and orientations as [3] with a density ratio of 1.85. Their film-cooling effectiveness 

measurements were confined to x/D = 10 in order to focus in the nearfield of the cooling 

hole. As compared to the cylindrical hole, both expanded holes showed significantly 

improved thermal protection of the surface downstream of the ejection location, 

particularly at high blowing ratios.  Along similar lines, Yu et al. [5] studied film-

effectiveness and heat transfer distributions on a flat plate with straight circular hole, 

10° forward diffusion shaped hole, and another type of hole with an additional 10° 

lateral diffusion. In each case, the axis of the hole was oriented 30° relative to the 

mainstream direction. The last mentioned hole provided the highest film cooling 

performance as well as overall heat transfer reduction.  

All of the above studies were performed on a flat plate with axially oriented 

holes. Schmidt et al. [6] examined film-cooling performance of 60° compound angled 

holes on a flat plate surface, with and without forward expanded shaped exit, and 

compared that with cylindrical holes aligned with the mainstream. The round and 

shaped exit holes with compound angle had significantly greater effectiveness at larger 

momentum flux ratios. The compound angle holes with expanded exits had a much 
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improved lateral distribution of coolant near the hole for all momentum flux ratios.  

Dittmar et al. [7], in a slight deviation, conducted measurements on a model of a suction 

side of an actual turbine guide vane inside a wind tunnel. Four different cooling hole 

configurations - a double row of cylindrical holes, a double row of discrete slots, a 

single row of straight fan-shaped holes, and a single row of compound angle fan-shaped 

holes, were chosen to study adiabatic film-cooling effectiveness and heat transfer 

coefficient. Both the shaped holes featured expansion only in the lateral direction. The 

streamwise injection angle was 45° for all cases with an additional lateral angle of 35° 

from the mainstream direction for compound shaped holes. According to their study, 

fan-shaped holes provided good effectiveness values at moderate and high blowing 

ratios unlike the cylindrical holes which suffered from jet separation. In another study 

involving pressure and suction side models inside a wind tunnel, Chen et al. [8] 

investigated both axial and compound shaped holes with forward diffusion. The 

compound angle in their study was 45°. On the concave surface, improvement in 

laterally averaged effectiveness due to the addition of compound angle was found at 

high blowing ratio of 2. On the convex surface, significant improvement in 

effectiveness is seen at both low and high blowing ratios.  

Hole shape study in linear cascades are fewer in comparison to those in flat plate 

and model airfoils. Teng and Han [9] studied one row of film holes near the gill-hole 

portion of the suction side. The hole geometries considered in their study were same as 

those of [3] and [4] but with a slightly higher inclined angle of 45o. They reported that 

spanwise-averaged film effectiveness of shaped holes could be about two times higher 

than that of cylindrical holes. In addition, fan-shaped holes performed better than 

laidback fan-shaped holes. More recently, Mhetras et al. [10] observed the excellent 
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coolant coverage offered by compound shaped holes near the tip region of the pressure 

side. Their study showed that the shaped holes on the pressure side of the blade could be 

utilized in cooling the cut-back region of the tip cavity floor. 

Effect of a rotating, unsteady wake on film cooling effectiveness and coolant jet 

temperature profiles on the suction side of a turbine blade were investigated by Teng et 

al. [11] in a low speed cascade. A spoked-wheel mechanism was used to generate the 

upstream wakes. They found that unsteady wake reduced the effectiveness magnitudes. 

Local heat transfer immediately downstream of the holes was found to increase by as 

much as 60% due to film injection. Ou et al. [12] simulated unsteady wake conditions 

using the same mechanism as [11] over a linear turbine blade cascade with film cooling. 

They tested no-wake case and wake Strouhal numbers of 0.1 and 0.3. Air and CO2 were 

used to study effect of density ratio. It was found that increasing wake passing 

frequency increases local Nusselt numbers for all blowing ratios, but this effect is 

reduced at higher blowing ratios. It was concluded that the additional increases in 

Nusselt numbers due to unsteady wake, blowing ratio, and density ratio were only 

secondary when compared to the dramatic increases in Nusselt numbers only due to 

film injection over the no film holes case. They concluded that heat transfer coefficients 

increase and film cooling effectiveness values decreased with an increase in unsteady 

wake strength. Further, Mehendale et al. [13], in the same test facility and for the same 

experimental conditions, found that an increase in wake Strouhal number leaded to a 

decrease in film effectiveness over most of the blade surface for both density ratio 

injections and at all blowing ratios. Du et al. [14] performed a similar experiment with 

the addition of trailing edge coolant ejection from the wake-producing bars. The 

addition of wake coolant had a relatively small effect on downstream blade heat transfer 
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coefficient, but reduced leading edge film effectiveness below the wake case with no 

coolant ejection. Detailed heat transfer measurements on transonic film-cooled blade 

with and without NGV shock waves and wakes were made by Rigby et al. [15]. It was 

found that there was a significant change of film-cooling behavior on the suction 

surface when simulated NGV unsteady effects were introduced. Heidmann et al. [16] 

studied the effect of wake passing on showerhead film cooling performance in an 

annular cascade with an upstream rotating row of cylindrical rods.  A high wake 

Strouhal number was found to decrease effectiveness but it was also found to divert the 

coolant towards the pressure side resulting in slightly better cooling on the pressure 

side.  

Most of experimental study of the film cooling was focused on the mid-span 

region only, the endwall effect was not captured. By using the Pressure Sensitive Paint 

(PSP) techniques, Mhetras et al.[17] and Narzary et. al. [18] were able to obtain detailed 

film cooling effectiveness distribution on a fully film cooled blade surface. Both tests 

were done in the same cascade. The flow conditions, film cooling hole locations and 

internal coolant supply cavities were similar for the two studies. Both test blades had 

three showerhead rows of cylindrical holes with 30° angle in radial direction in the 

leading region. However, the hole configurations on the blade surfaces were different. 

They were compound angle cylindrical holes in Mhetras et al. study [17], while the 

compound angle fan-shape laid-back holes in Narzary et. al. study[18]. During the film 

cooling test, the holes on both the pressure side and suction side were all open as well as 

the showerhead holes. They showed the coolant on the suction side was swept 

substantially to the mid-span region because of the tip leakage vortices and endwall 

vortices. It has been shown that the highest effectiveness was obtained at M=0.9 for 
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cylindrical holes, while shaped holes didn’t present the optimal blowing ratio from 

M=0.3 to M=1.2. The effectiveness keeps increasing with increase of blowing in the 

range of blowing ratio studied for the shaped holes. Comparison of the two film cooling 

hole designs shows suction side gains higher effectiveness with the shaped holes. The 

effectiveness on the pressure side was comparable for the two hole configurations. The 

upstream wake effect was also simulated by the stationary rods periodically placed 

upstream of the blade. Depending on the wake rods positions, the film cooling 

effectiveness was degraded in different degree. In another paper by Mhetras and Han 

[19], they studied the upstream film cooling accumulation effect on the downstream 

film cooling using superposition method. Four rows and two rows of compound angle 

cylindrical holes were arranged on the pressure surface and suction surface, 

respectively. Results showed the film cooling effectiveness on the suction was much 

higher than on the pressure side, although pressure side had more film cooling holes. 

Superposition from individual film cooling holes showed good agreement with 

experimental data. 

1.2 Literature Review on Fluid Flow, Heat Transfer and Film Cooling on Platform 

Several reviews have been published by Han et al. [1], Langston [20], Chyu 

[21], Simon and Piggush [22], which give an overview of the flow near the endwall and 

platform regions, as well as heat transfer and film cooling on these regions. The 

secondary flows near the platform increase the heat transfer between the mainstream 

gases and the uncooled platform. The secondary flows also make film cooling on the 

platform more difficult. Studies by Langston et al. [23, 24] revealed some features of 

these flows. When a boundary layer flow approaches a blade or vane, as shown in 
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Fig. 1.2. Passage vortex in vane [24] 
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Fig. 1.2, vortex forms at the leading edge and continues along each side of the blade or 

vane forming a horseshoe vortex.  The pressure distribution in each passage causes the 

suction side leg of the horseshoe vortex to follow the suction side of the blade near the 

endwall. The pressure side leg of the horseshoe vortex is carried across the passage and 

gains strength. This large vortex is often called the passage vortex and crosses the 

passage to meet the suction side leg of the horseshoe vortex on the adjacent blade. 

Goldstein and Spores [25] and Wang et al. [26] found several “corner” vortices that 

formed near the intersection of the blade surface and the endwall. 

Film cooling is commonly used to protect the platform. Coolant may enter 

through discrete holes (similar to the midspan of the airfoil). Takeishi et al. [27] studied 

film cooling through discrete holes in three locations on a vane endwall. They found 

that the coolant was swept from the pressure side of the passage toward the suction side. 

Also, the film cooling effectiveness near the leading edge of the blade was very low due 

to the formation of the horseshoe vortex. Harasgama and Burton [28] placed film 

cooling holes evenly along an iso-Mach line near the leading edge of a passage. The 

pressure side of the passage received very little coolant. Similarly, Jabbari et al. [29] 

found that coolant from discrete holes in the downstream half of the passage did not 

produce uniform coverage, as the coolant moved away from the pressure side of the 

passage. Studies by Friedrichs et al. [30, 31] also showed that evenly spaced rows of 

coolant holes did not provide even coverage for the endwall. Using an ammonia and 

diazo technique, they measured the amount of coolant coverage at every point on the 

endwall. The horseshoe vortex prevented the coolant from covering the leading edge of 

the blade, while the passage vortex lifted the coolant in its path off of the surface. The 

coolant in the passage was swept from the pressure side toward the suction side by the 
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passage flow. Based on these results, Friedrichs et al. [32] repositioned the film cooling 

holes to attempt to cover the entire endwall with the same amount of coolant. Coverage 

in the majority of the passage was significantly improved, but the coverage near the 

leading edge and close to the suction surface was still poor, due to the horseshoe vortex 

and the suction side corner vortex. In a recent study, Barigozzi et al. [33] compared film 

cooling designs with cylindrical holes or fanshaped holes. With increasing blowing 

ratios, the passage vortex was weakened and cross flow in the passage was reduced.  

Upstream of the inlet guide vane, a gap commonly exists between the 

combustion chamber and the vane endwall. A similar gap exists between the vane 

endwall and the rotor platform, ensuring the rotor can move freely. Coolant air is often 

injected through these gaps, or slots, in order to prevent hot mainstream gases from 

entering the engine cavity. This coolant air has a secondary effect of protecting the 

platform region, and if this air is used effectively, the need for discrete hole film cooling 

can be reduced. An early study by Blair [34] showed that the film cooling effectiveness 

for upstream slot injection varied greatly through the passage due to the secondary 

flows. Granser and Schulenberg [35] showed that coolant from an upstream slot could 

reduce the secondary flows in the passage by increasing the momentum of the boundary 

layer. Similarly, coolant slots used by Roy et al. [36] reduced the heat transfer near the 

leading edge. Burd et al. [37] and Oke et al. [38, 39] also studied film cooling through 

slots upstream of vanes. They found coolant from the slot could provide coverage for 

most of the passage. In order to provide adequate coverage for the entire endwall or 

platform, an upstream slot could be combined with discrete holes. Nicklas [40] 

measured the heat transfer coefficients and film cooling effectiveness with an upstream 

slot and three rows of discrete holes. Liu et al. [41] found that an increased blowing 
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ratio gave more uniform protection to the platform, for the densely spaced cooling holes 

they used to simulate upstream slot cooling. Zhang and Jaiswal [42] and Zhang and 

Moon [43] used pressure sensitive paint to measure the film cooling effectiveness for 

two rows of discrete holes upstream of the passage or for a single slot. They confirmed 

that effectiveness was significantly improved with increasing blowing ratio. Knost and 

Thole [44] found that areas that are typically difficult to cool, including the area near the 

leading edge, could be cooled effectively with upstream slot injection. Cardwell et al. 

[45] showed that effectiveness was reduced significantly if two adjacent vanes were not 

properly aligned. Wright et al. [46 – 48] considered a variety of stator-rotor seal 

configurations, discrete film hole combinations, and flow parameters. They concluded 

the film cooling effectiveness on the blade platform (within a linear cascade) was 

significantly affected by the upstream seal configuration. In addition, it is possible to 

minimize the purge flow, if the purge flow was thoughtfully combined with additional 

discrete film cooling.  

Most of the studies have been performed on linear cascades or turbine vanes; 

few studies were done in rotating environment to examine the effect of upstream vane 

on rotor platform cooling. Suryanarayanan et al. [49, 50] studied the film cooling 

effectiveness by stator-rotor purge flow on the 1st stage rotor platform in a three-stage 

turbine facility. They also studied the discrete hole film cooling on the downstream of 

the platform and combined it with the stator-rotor purge flow cooling. They found that 

the film cooling effectiveness increased with increasing of purge coolant rate. Increasing 

the rotational speed, the film effectiveness from the stator-rotor purge flow also 

increased.  However, for the downstream discrete film cooling, the best film protection 
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on the rotor platform took place at reference speed of 2550 rpm.  For all rotational 

speed, local blowing ratio unity offered the best film coverage and effectiveness level.  

Due to the inherent complexities in designing and instrumenting rotating 

systems, it would be useful if some of the upstream vane effect can be modeled in a 

cascade environment. Wright et al. [51] modeled the effect of the upstream passing vane 

on rotor platform film cooling in a low speed wind tunnel. Stationary cylindrical rods 

were used to simulate the upstream wake created by the trailing edge of the vanes. Delta 

wings were used to simulate the passage vortex created by the upstream vane. Fig 1.3 

schematically shows vortex is created when the freestream passes over a delta wing. 

The platform was cooled by the purge flow from a simulated labyrinth-like seal. They 

found that wake rod didn’t affect the platform film cooling effectiveness significantly, 

while the vortex created by the delta wings had a profound impact on the film cooling 

effectiveness. 

 
Fig. 1.3 Vortex created by delta wing [51] 
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1.3 Literature Review on Turbine Blade Leading Edge Heat Transfer and Film 

Cooling 

The leading edge of the turbine blades is subject to the greatest heat load due to 

flow stagnation. Many researchers used cylinder or semicylinder to model the blade 

leading edge. The leading edge film cooling was investigated under different freestream 

conditions. Luckey et al. [52] simulated the airfoil leading edge using a cylinder with 

several rows of film cooling holes. They correlated their result for the optimum blowing 

ratio and injection angle. Karni and Goldstein [53] studied the effect of blowing ratio 

and injection location on the mass transfer coefficient. Mick and Mayle [54] studied the 

effect of coolant blowing ratio and film cooling hole location on the stagnation region. 

Mehendale and Han [55, 56] investigated the effect of Reynolds number and turbulence 

on heat transfer and film cooling effectiveness.  Ou et al. [57] presented the effect of 

film hole location and inclined film slots on the leading edge film cooling heat transfer. 

Ekkad et al. [58] presented the effect of coolant density and free-stream turbulence. 

Using the same test facility, Gao et al. [59] assessed pressure sensitive paint (PSP) and 

transient infrared thermogrpahy technique. Funazaki et al. [60] studied the effect of 

unsteady wake on the leading edge film cooling effectiveness.  Ou and Rivir [61] 

examined the effect of turbulence intensity, blowing ratio, and Reynolds number.   

Some researches have been conducted in cascade environment. Nirmalan and 

Hylton [62] studied the effects of various parameters on film cooling in a turbine vane 

cascade under the conditions similar to the ranges of actual engines. Abuaf et al. [63] 

presented heat transfer coefficients and film effectiveness for a film cooled vane.  Cruse 

et al. [64] studied the effect of leading-edge shapes.  Ekkad et al. [65] studied the 

combined effect of unsteady wake and free stream turbulence on the film cooling 
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effectiveness and the heat transfer coefficient with air and CO2 film injection.  Cutbirth 

and Bogard [66] studied the effects of coolant density ratio on film cooling effectiveness 

on a simulated turbine vane. Mhetras et al. [67] studied the effect of upstream wake on 

the leading edge film cooling effectiveness in a 5-blade linear cascade. Some 

researchers studied leading edge film cooling under rotating environment. Dring et al. 

[68] investigated film cooling performance in a low speed rotating facility.  Takeishi et 

al. [69] also reported the film cooling effectiveness distributions on a low speed stator-

rotor stage using a rotating rig with a one-stage turbine model. Abhari and Epstein [70] 

investigated time-resolved measurements of heat transfer on a fully cooled transonic 

turbine stage.  Using a short-duration blowdown turbine test facility, they simulated full 

engine parameters.  Ahn et al. [71, 72] studied film cooling effectiveness on the leading 

edge with two-row and three-row hole injection under rotating condition in a three-stage 

turbine using PSP technique. 

The film cooling holes in above studies were cylindrical holes and angle in the 

radial direction; recently, the shaped holes come into consideration for the leading edge 

film cooling.  Mouzon et al. [73] compared the film performance between the laidback 

holes and cylindrical holes on a three row leading edge model. The holes were located 

at 0° and ±20°. They were inclined 45° to the surface and angle in radial (spanwise) 

direction. They found that the laidback holes resulted in much higher net heat flux 

reduction than the cylindrical holes. Falcoz et al [74] investigated cylindrical holes, 

conical holes and laidback (forward diffused) holes on a leading model. Four rows of 

film holes located at ±22.5° and ±7.5°. The holes were angle in the radial direction and 

inclined 45° to the surface.  The hole to hole spacing was p/d=4.  Their results indicated 

that the laidback holes showed a better lateral coverage. The best spanwise averaged 
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film cooling effectiveness was achieved by conical holes.  Kim and Kim [75] studied 

cylindrical holes and laidback holes and tear-drop shaped (both laterally and forward 

expanded) holes. Three rows of radial angle hole were located at 0° and ±23° with a 

hole to hole spacing of p/d=7.5.  The holes were inclined 30° to the surface.  They 

showed that holes with a laidback type widened exits gave higher film cooling 

effectiveness than tear-drop shaped holes. Both laidback holes and tear-drop shaped 

holes were better than cylindrical holes. Reiss and Bölcs [76] studied effect of shaped 

hole with compound angle orientation. They compared cylindrical holes, laidback 

(forward diffused) holes and fanshaped (laterally diffused) holes. Five rows of leading 

edge film holes were located at 0°, ±20° and ±40°. The stagnation holes were angle in 

the radial direction while the rest holes were angle 60° to the mainstream direction.  The 

holes were inclined 45° to the surface. They found that laidback holes gave the best 

overall film cooling performance. The fanshape holes performed better than cylindrical 

holes, but not as well as laidback holes. Lu et al. [77] also studied the effect of hole 

orientation and hole shape on leading edge film cooling. They examined compound 

angle cylindrical holes and compound angle laidback fanshaped holes. Three rows of 

film cooling holes were located at 0° and ±15° with a hole to hole spacing of p/d=4. 

These holes were inclined 30° to the surface. The compound angle holes were angled at 

30° or 45° with respect to the local mainstream direction. They found that the shaped 

holes give much higher effectiveness than cylindrical holes. For the compound angle 

holes, the effectiveness was improved at lower blowing ratios, but reduced at higher 

blowing ratios due to jet liftoff.  
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1.4 Literature Review on Trailing Edge Slot Film Cooling 

Trailing edge region is one of the regions on airfoils which are hard to cool 

because trailing edge must be thin to reduce aerodynamic losses.  It is of great challenge 

to implement cooling design in a relatively small area of the airfoil. In addition to the 

internal cooling enhancement techniques, such as pin fins or blockage inserts, one of the 

cooling techniques frequently used by turbine blade designers is ejecting cooling air 

through spanwise slots located on the airfoil pressure side near the trailing edge. Several 

studies have been performed for aerodynamics and film cooling effectiveness by slot 

injection on the trailing edge.  Uzol et al. [78] studied discharge coefficients from a 

cutback trailing edge with several cutback lengths, spanwise rib spacing, free stream 

Reynolds number and chordwise rib length.  Aerodynamic loss characteristics using PIV 

flow measurement technique was studied by Uzol et al. [79] for different ejection rates 

and cutback lengths.  An experimental and numerical investigation for trailing edge slot 

injection was performed by Holloway et al. [80, 81] under realistic engine flow 

conditions.  Periodic vortex shedding from the pressure side lip was found to cause a 

relatively fast decay in film cooling effectiveness on the cutback portion of the trailing 

edge for larger lip thicknesses. 

A comprehensive survey of film cooling investigations prior to 1971 was done 

by Goldstein [82] and included data for slots as well as discrete holes. Most of the slots 

cooling studies presented in [82] were two dimensional.  Taslim et al. [83] reported a 

comprehensive parametric study of the effects of slot exit geometries on film cooling 

effectiveness. They found that lip-to-slot height ratio has strong impact on film cooling 

effectiveness. Martini et al. [84, 85] measured the film cooling effectiveness and heat 

transfer on the trailing edge cutback of gas turbine airfoils with different internal 
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cooling structures using IR camera. They showed the strong impact of internal design 

on the film cooling performance downstream of the ejection slot. They found fast decay 

in film cooling effectiveness was attributed to vortex shedding from the pressure side 

lip.  Cunha et al. [86] studied the impact of trailing edge ejection on heat transfer using 

a closed form, analytical solution for temperature profiles for four different 

configurations.  Impact of several geometrical design features on the trailing edge 

design and durability were investigated.  Chen et al. [87] measured heat transfer and 

film cooling effectiveness on the slot floor with liquid crystal technique. They found the 

heat transfer coefficient on the slots increased due to mixing from internal cooling, 

however, the overall heat flux reduction was high with the slot cooling. Recently, Cakan 

and Talim [88] measured the mass/heat transfer coefficients on the trailing edge slot 

floor, slot sidewalls and lands using naphthalene sublimation method. They found that 

averaged mass transfer on the land sidewalls are higher than that on the slot floor 

surface.  

1.5 Objective of the Present Study 

As reviewed, the film cooling effectiveness is influenced by many factors, such 

as the blowing ratio, density ratios, incoming freestream flow properties (upstream 

wake, passage vortex, turbulence, etc), film hole or slot configurations (angle and 

shapes), film cooled surface conditions (curvature, roughness), and so on. Depending on 

the regions on the blade, these factors may not play an equally important role on local 

film cooling effectiveness distribution. The purpose of this study is to investigate gas 

turbine blade leading edge, trailing edge, and blade surface and platform regions film 

cooling under the impact of some of above factors. Three temperatures (coolant 
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temperature, free stream temperature and adiabatic surface temperature) involves in film 

cooling, so it is hard to get conduction-free effectiveness data in the conventional heat 

transfer experiments. Particularly with heavily distributed film cooling holes, correction 

of conduction is of great pain. In this study, pressure sensitive paint (PSP) is used to 

measurement the film cooling effectiveness distribution. PSP technique is based on 

heat/mass analogy. The conduction error associated with heat transfer experiment is 

eliminated.  

For film cooling on the blade pressure side and suction side, most of 

experimental study of the film cooling was focused on the mid-span region only, the 

endwall effect and tip leakage effect were not captured. The objective of this study is to 

capture the film cooling effectiveness distribution on blade pressure side or suction side 

of fully film cooled blades. The effects of film hole configuration and upstream wake on 

the film cooling effectiveness are examined. Two kinds of hole configurations are 

considered: axial fan shaped laidback hole and compound angle fan shaped laidback 

holes. The upstream wake effect are simulated by periodically placed stationary metal 

rods. Test is done in a five-blade cascade at a relatively high Mach number and high 

pressure condition.  

For the platform film cooling study, the objective is to examine the upstream 

vane passage vortex effect on the downstream blade platform film-cooling 

effectiveness. The coolant is purged through a new labyrinth-like slot, which is a typical 

stator-rotor seal used in the gas turbine engines. The effect of the upstream vane passage 

vortex is modeled by delta wings. Since the vane passage vortex varies depending on 

the vane configurations, it is hard to know the exact size and strength of passage vortex 

generated by upstream vanes. By varying the size of the delta wings and the flow attack 
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angles, a range of vortices’ size and strength are simulated. Two sets of delta wings are 

selected in the test The delta wings are placed upstream of labyrinth-like seal at an 

attack angle of 30° and 45°, respectively. Test is done in a in the same high flow as 

blade surface film cooling study.  

There is a lot of constraint for leading edge film cooling. The limited space, 

small wall thickness and high curvature are the obstacles of leading edge film cooling 

study. The research on shaped holes and varying hole angle is limited, especially for 

heavily film cooled designs. It is a challenge to achieving accurate effectiveness data in 

heat transfer experiment. In this study, by using Pressure Sensitive Paint (PSP) 

technique, accurate film cooling effectiveness are obtained for heavily film cooled 

leading edge models. Two leading edge film cooling designs are investigated: a heavily 

film cooled design with seven rows of film holes and moderately film cooled design 

with three rows. Four different film hole configurations are applied to the two designs: 

radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped 

holes and compound angle shaped holes.  

The slot film cooling on the trailing edge is a complicated three dimensional 

problems. Effectiveness data were only available for the slot floor surface in the open 

literature. The lands play an important role to maintain the blade structure. However, 

similar to the squealer tip, the land is very narrow.  Reliable adiabatic effectiveness data 

for the land is hard to obtain with heat transfer measurement due to conduction.  In this 

study, Pressure sensitive paint (PSP) measurement technique is used to measure the film 

cooling effectiveness on the slots, lands and slot sidewalls. In the past studies, the 

trailing edge with pressure side cutback was simulated as an inclined plate. The 

mainstream flow was basically two dimensional. In the current study, the test is done on 
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a modeled airfoil placed in the middle of wind tunnel. The mainstream flow is closer to 

that in a cascade environment. The effect of slot lip thickness and incoming mainstream 

boundary layer thickness on the slot film cooling is investigated. Tests are done with 

several different blowing ratios. 
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2. PRESSURE SENSITIVE PAINT MEASUREMENT THEORY AND DATA 

ANALYSIS 

Data for film cooling effectiveness were obtained using the Pressure Sensitive 

Paint (PSP) technique. Figure 2.1 schematically shows the PSP setup for film cooling 

effectiveness measurement. PSP is a photo-luminescent material that emits light when 

excited, with the emitted light intensity inversely proportional to the partial pressure of 

oxygen.  This light intensity is recorded using a CCD camera. The image intensity 

obtained from PSP by the camera during data acquisition is normalized with a reference 

image intensity ( refI ) taken under no-flow condition.  Background noise in the optical 

setup is removed by subtracting the image intensities with the image intensity obtained 

under no-flow conditions and without light excitation ( blkI ).  The resulting intensity 

ratio can be converted to pressure ratio using a pre-determined calibration curve and can 

be expressed as:  
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where I denotes the intensity obtained for each pixel and f(Pratio) is the relationship 

between intensity ratio and pressure ratio obtained after calibration.   

Calibration of PSP system was performed using a vacuum chamber at several 

known pressures varying from 0 to 1.8atm.  The same optical setup that was used during 

experiments was chosen for calibration. The calibration curve is shown in Fig. 2.2.  PSP 

is also sensitive to temperature with higher temperatures resulting in lower light 

emission. Hence, the paint was also calibrated at different temperatures. It was observed 

that if the emitted light intensity at a certain temperature was normalized with the 
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Fig. 2.1 PSP setup for film cooling effectiveness measurement 
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Fig. 2.2 (a) PSP calibration at single reference temperature 
(b) PSP calibration at corresponding reference temperature 
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reference image intensity taken at the same temperature, the temperature sensitivity can 

be minimized as shown in Fig. 2.2(b). Hence, during experiments, the reference ( refI ) 

and black ( blkI ) images were acquired immediately after stopping the mainstream flow 

so that the test surface temperature does not change appreciably.  

To obtain film cooling effectiveness, air and nitrogen were used alternately as 

coolant.  Nitrogen which has nearly the same molecular weight as that of air displaces 

the oxygen molecules on the surface causing a change in the emitted light intensity from 

PSP.  By noting the difference in partial pressure between the air and nitrogen injection 

cases, the film cooling effectiveness can be determined using the following equation. 
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where Cair, Cmix and CN2 are the oxygen concentrations of mainstream air, air/nitrogen 

mixture and nitrogen on the test surface respectively. The definition of film 

effectiveness in Eq. (2.2) based on mass transfer analogy assumes similar form as that 

of adiabatic film cooling effectiveness given in Eq. (2.3). 
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The accuracy of the PSP technique for measuring film-cooling effectiveness has 

been compared by Wright et al [89] on a flat plate with compound angled film holes 

using steady-state Infra-Red (IR) technique and steady-state Temperature Sensitive 

Paint (TSP) technique.  Results were obtained for a range of blowing ratios and showed 

reasonable agreement with each other. All three measurement techniques agreed within 

15% of each other.  Larger uncertainties for heat transfer techniques such as IR and TSP 
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methods were due to lateral heat conduction in the flat plate as corrections for heat 

conduction were not included in the presented results. 

The film cooled platform was coated with PSP using an air brush.  It was excited 

by a strobe light fitted with a narrow band-pass interference filter (optical wavelength = 

520nm).  Upon excitation, the PSP coated surface emitted light with a wavelength 

higher than 600nm. A 12-bit scientific grade CCD camera (Cooke Sensicam QE with 

CCD temperature maintained at –15oC using 2-stage peltier cooler), fitted with a 35mm 

lens and a 600nm long-pass filter, recorded images.  The filter mounted on the camera 

was chosen such that it did not allow any reflected light from the illumination source to 

pass through. The camera and the strobe light were triggered simultaneously using a 

TTL signal from a function generator.  A total of 200 TIF images were captured and 

ensemble-averaged to get the individual intensities. A computer program was used to 

convert these pixel intensities into pressure using the calibration curve and then into 

film cooling effectiveness.  

Uncertainty calculations were performed based on a confidence level of 95% 

and are based on the uncertainty analysis method of Coleman and Steele [90].  Lower 

effectiveness magnitudes have higher uncertainties.  For an effectiveness magnitude of 

0.3, uncertainty was around ±1% while for effectiveness magnitude of 0.05, uncertainty 

was as high as ±8%.  This uncertainty is the result of uncertainties in calibration (4%), 

image capture (1%), and blowing ratio (4%). 
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3. EFFECT OF UPSTREAM WAKE ON FILM-COOLING EFFECTIVENESS 

DISTRIBUTION ON GAS TURBINE BLADES WITH SHAPED HOLES 

3.1 Experimental Facilities  

The measurements were conducted in a 5-blade linear cascade facility as shown 

in Fig. 3.1. Some of important dimensions of the cascade are listed in Table 3.1. The 

inlet cross section of the test section was 19.6cm (width) x 12.7cm (height) while the 

exit cross section was 12.9cm (width) x 12.7cm (height). The top plate which acted as 

the shroud for the blades and the outer side walls of the test section were machined out 

of 1.27cm thick acrylic sheets for optical access. The three middle blades in the cascade 

had a span of 12.64cm and an axial chord length of 8.13cm. The tip gap clearance was 

about 0.5% of the blade span. A honeycomb mesh, 7.62cm long with a cell size of 

1.27cm, was put 1.78m upstream to the blade leading edge to obtain uniform velocity 

distribution. Flow conditions in adjacent passages of the center blade were ensured to be 

identical by adjusting the trailing edge tailboards for the cascade. The mainstream air 

was supplied by a centrifugal compressor that could deliver a volume flow rate up to 

6.2m3/s. The cascade inlet and exit velocities were set to be 96m/s and 156m/s 

corresponding to inlet and exit Mach numbers of 0.27 and 0.44, respectively. The 

Reynolds number based on the axial chord length and exit velocity was 750,000 and the 

overall pressure ratio (Pt/P) was 1.14 (where Pt is inlet total pressure and P is exit static 

pressure). Turbulence intensity and boundary layer thickness was recorded 6.3cm 

upstream of the middle blade using. The boundary layer thickness was about 1.5cm. 

Along the span, the turbulence intensity (Tu) varied from 6% at the centre to about 11% 

close to the walls. The mainstream flow conditions are listed in Table 3.2. 
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Fig. 3.1 Schematic of the cascade with film cooled blade 
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Table 3.1 Cascade and Blade Parameters 

Blade span (cm) 12.64 Inlet area (cm2) 249 
Tip clearance (cm) 0.064 Exit area (cm2) 164 
Axial chord length (cm) 8.13 Inlet angle (°) 50.5 
Pitch (cm) 7.69 Exit angle (°) 66.4 

 

 

Table 3.2 Mainstream Flow Conditions 

Inlet Mach No. 0.27 Pressure ratio (Pt/P) 1.14 
Exit Mach No. 0.44 Turbulence intensity 6% 
Reynolds No. 750,000 Boundary layer thickness (cm) 1.5 
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As indicated in Fig. 1.1, four different discrete holes configuration are generally 

used in blade film cooling. In this study, the blades were cooled with laidback fanshaped 

holes. Two film cooling designs were presented and the effect of hole angle with respect 

to mainstream direction was investigated in current study. The holes were oriented in 

axial direction in one design (Blade 1); and angled 45° to the axial direction in the other 

design (Blade 2). Two film cooled test blades were made using Stereolithography 

(SLA). They had a squealer tip with a recess of 2.4% (2.84mm) of blade span while the 

two adjacent blades had a flat tip. The tip gap clearance for the test blade and the two 

adjacent guide blades was 1% of the blade span. The leading edge of the blade could be 

approximated as an arc with a radius of 2.4mm. Figure 3.2 and Fig. 3.3 show the film 

cooling hole configurations on the test blades with the internal coolant passage 

geometry. Some of important parameters of the film cooling hole configurations are 

listed in Table 3.3. The film cooling holes locations on the blade surface were the same 

for the two blades. All these laidback fanshaped holes were inclined 45° to the blade 

surface. The laidback fanshape holes were featured with a lateral diffusion angle (γ ) of 

10° from the hole centerline and a forward expansion angle (δ ) of 10° to the blade 

surface. Four rows of shaped holes were arranged on the pressure side at axial locations 

of 1.24cm (PS1, 23 holesl), 3.62cm (PS2, 22 holes), 5.01cm (PS3, 23 holes) and 6.1cm 

(PS4, 22 holes). Two rows were provided on the suction side at axial locations of 

0.38cm (SS1, 23 holes) and 3.56cm (SS2, 22 holes). The rows of holes were staggered; 

therefore, PS2, PS4 and SS2 had one hole less than PS1, PS3 and SS1. The spanwise 

spacing was kept constant, i.e., s/d ratio was maintained at 8.2. All these holes had a 

diameter 0.65mm of the metering part (before expansion). For the axial shaped holes 

(Blade 1), the total length of the hole was 6.8 times of hole diameter of metering part. 
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Fig. 3.2 Film cooled blade with axial shaped holes (Blade 1) 
(a) film cooling holes and cavities (b) film cooling hole configuration 
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Fig. 3.3 Film cooled blade with compound angle shaped holes (Blade 2) 
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Table 3.3 Film Cooling Hole Configurations 

 Axial shaped hole 
(Blade 1) 

Compound angle shaped hole 
(blade 2) 

Angle to blade surface (°) 45 45 
Axial angle (°) 0 45 
Radial angle (°) 90 45 
No. of hole rows  PS: 4; SS: 2 PS: 4; SS: 2 
No. of holes in each row 22 or 23 22 or 23 
Hole diameter (d, mm) 0.65 0.65 
Lateral diffusion angle (°) 10 10 
Forward diffusion angle(°) 10 10 
Hole to hole spacing (s/d) 8.2 8.2 
Hole length (L) 6.8d 9d 
Hole Expansion length 2.9d 4.25d 
Exit to inlet area ratio 3.7 4.5 
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The expansion starting at 3.9 times of hole diameter, resulted in a area ratio of 3.7 

between exit cross section to inlet cross section. For the compound angle shaped holes 

(Blade 2), the total length of the hole was 9 times of hole diameter of metering part. The 

expansion started at 4.75 times of hole diameter, which resulted in a area ratio of 4.5 

between exit cross section to the inlet cross section of a hole.  

Coolant was supplied to the film holes via 4 cavities numbered from 1 to 4. The 

cavity cross sections were modeled similar to the internal cooling passages in turbine 

blades with coolant injection through the bottom of the blade. The coolant was heated to 

same temperature as mainstream before fed into the coolant cavity. The coolant flow 

rate in each cavity was monitored by a dedicated rotameter. The PS1 holes and SS1 

holes shared the first cavity; likewise, the PS2 holes and SS2 holes shared the secondary 

cavity. The remaining two cavities supplied coolant to the rows PS3 and PS4, 

respectively. During the test, coolant was only allowed to eject to either pressure side or 

suction side, so film cooling holes on the other side were sealed.  

The effects of wake generated by upstream vane were simulated by stationary 

rods. The rods were inserted periodically upstream of the cascade inlet to simulate 

stationary upstream wakes. A rod diameter of 4.8mm was selected to simulate typical 

airfoil trailing edge. They were placed upstream of the blades at a distance equal to 50% 

of axial chord.  The rods were placed at four equally spaced positions corresponding to 

the blade pitch. The four positions divided the passage into quarters. The rod locations 

are shown in Fig. 3.4. The rod directly upstream of the leading edge was indicated as the 

0% phase location and was 6.3cm upstream of the leading edge in the flow direction. 

Rod locations for 25%, 50% and 75% were progressively located along the blade pitch. 

The periodically placed upstream rods may be thought as a progressing wake in a 
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rotating turbine.  Four sets of experiments were conducted to cover all phase locations.  

Two rods were placed with one in the pressure side passage of the test blade and the 

other at the corresponding periodic location in the suction side passage for 25%, 50% 

and 75% phase locations while a single rod was placed in front of the stagnation line of 

the test blade for phase location 0%. 

 

Fig. 3.4 Wake rod phase position and conceptual view of wake effect on test blade 
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3.2 Mach Number and Local Blowing Ratio Distribution on the Blade Surface 

Figure 3.5 shows the Mach number distributions at three span locations - 50%, 

75% and 94% without the presence of wake rods and film cooling holes. The Mach 

numbers were calculated from the pressure ratio, which was obtained by normalizing 

the blade inlet total pressure with the static pressure over the blade surface. The static 

pressure at the respective locations was measured using pressure taps instrumented on a 

separate blade without film cooling. The inlet total pressure was measured using a pitot 

tube placed 6.3cm upstream of the center blade. The pressures were recorded with a 48-

channel Scanivalve System coupled with LabView software. LabView discarded all data 

that fell outside the initial mean ±1.5 standard deviation. It then recorded the mean 

value of the screened data. Every pressure measurement was repeated at least three 

times to reduce data uncertainty and verify data repeatability. The pressure side Mach 

number distributions for all three span locations are more or less similar. There is a 

gradual decrease in Mach number till x/Cx ~ 0.6 after which there is a sharp rise. On the 

suction side, the Mach number distribution shows a steady increase till x/Cx ~ 0.65, 

beyond which it starts falling. The point of inflection on the suction side corresponds to 

the throat region where the mainstream reaches its maximum velocity. The interaction 

of the mainstream and tip leakage vortex can be clearly observed from this plot, with an 

appreciable reduction of Mach number for the 94% span case in the first half of the 

blade axial chord. 

Figure 3.6 shows the Mach number distribution under the influence of stationary 

wakes at four phase locations.  Data is shown for the same three blade span locations. It 

is interesting to find that the midspan region is most affected by the upstream 
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Fig. 3.5 Mach number distributions without upstream wake 

Suction side

Pressure side
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Fig. 3.6 Mach number distributions under the influence of upstream wake rods 

Pressure side

Suction side 

Pressure side Pressure side

Suction sideSuction side 
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 rods followed by 75% and 94% span locations. This is indicative of the fact that the 

strong endwall vortices and tip leakage vortices override any small disturbance created 

by the wake rods. In the midspan region, where the influence of endwall vortices is 

negligible, the effect of wake rods become apparent. It has to be noted that the pressure 

measurements were carried out on a blade without cooling holes. With the presence of 

film cooling, the boundary layer attached to the blade surface is disturbed. This is 

particularly true at higher blowing ratios. In general, on the pressure side, the wake rods 

at phase 0% show the highest influence on the Mach number distribution followed by 

phase 75%. The other two wake rod phases show little or no effect. On the suction side, 

rod phase 25% followed by rod phase 0% shows the highest influence in the midspan 

region. This agrees well with the conceptual wake paths depicted in Fig. 3.4. On the 

suction side near tip region (75% and 94% blade span), the wake rod effect on Mach 

number is not substantial as the tip leakage flow is predominant. 

Experiments were performed with five different average blowing ratios (M) of 

0.4, 0.6, 0.9, 1.2 and 1.5.  As mentioned earlier, the coolant was injected from only one 

side of the blade. The holes on the other side, which was not being tested, were sealed. 

The average blowing ratio was defined as M = ρcVc/ρmVm, where Vm is mainstream 

velocity at 50% of the blade span in the hole row location. In the current study, the 

density of coolant and mainstream is the same; the blowing ratio is reduced to a velocity 

ratio. By knowing the local mainstream velocity, total coolant mass flow rate required 

by a cavity was pre-determined for each average blowing ratio and was set using a 

dedicated rotameter connected to the coolant loop for each cavity. The coolant velocity 

Vc was calculated based on the round cross section area of the cylindrical part of a film 

cooling hole. The actual or local blowing ratio Mlocal = ρc,localVc,local/ρm,localVm,local for the 
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holes in a hole row can vary due to the pressure variation in the coolant cavity and on 

the outer surface of the blade along its span. To check the coolant distribution, the local 

blowing ratio was examined. The discharge coefficients CD was calculated and the mass 

flow rate from each hole was determined. The local blowing ratio distribution on the 

suction side or pressure side was quite uniform. The coolant mass flow rate for the holes 

in a cavity was found relatively evenly distributed. 

3.3 Film-Cooling Effectiveness on the Blade Surface 

The film cooling effectiveness distributions on the blade surface were measured 

at five blowing ratios and four wake rod positions using pressure sensitive paint. During 

the film cooling effectiveness test, the coolant was only allowed to eject from one side 

of the blade surface (either pressure side (PS) or suction side (SS)).  All the holes on the 

side of interest were open while the holes on the other side were sealed. As shown in 

Fig. 3.7, camera was placed at two locations to capture the film cooling effectiveness 

distribution on the whole pressure surface, three locations to capture it on the suction 

surface. The effectiveness data obtained at each individual camera position was 

projected onto a radial plane passing through the axial chord of the blade and combined 

to form a complete picture for pressure side or suction side. In the contour plots, the 

abscissa and the ordinate were normalized with the axial chord length and the blade 

height, respectively. 
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Fig. 3.7 Optical setup for PSP film cooling measurement on blade surface 
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3.3.1 Effectiveness on Film Cooled Blade with Axial Shaped Holes  

To examine of effect of upstream wake, film cooling effectiveness distribution 

on the blade surface without presence of upstream wake was taken as the baseline case. 

Figure 3.8 shows the film cooling effectiveness distribution on the pressure side or 

suction side of Blade 1 (with axial shaped holes) of baseline case. Although these film 

cooling holes were oriented in axial direction, the coolant jets are re-directed by the 

mainstream. The tip leakage flow drives the coolant upward towards the tip on the 

pressure side near the tip region, while the pressure side horse vortex and corner vortex 

drag the coolant to the hub on the pressure side near the hub region. Starting at x/Cx ~ 

0.3 on the suction side, the coolant is swept towards the midspan by the spiraling 

motion of the passage vortex near the hub and the tip leakage vortex near the tip. It is 

well known that the passage vortex drifts from the pressure-side leading edge towards 

the suction-side trailing edge of the adjacent blade and climbs on to the suction surface 

with an upwash motion. The tip leakage vortex, however, creates a downwash motion 

on the suction surface. These vortices acting on the suction surface result in a well 

defined converged coolant trace toward the midspan and attribute to the two unprotected 

triangular zones near the tip and hub. The effects of secondary vortices on effectiveness 

distribution were also observed in by Mhetras et al. [17] and Narzary et al. [18]. 

Compared with pressure side film cooling, the coolant trace on the suction side is longer 

and effectiveness level is higher. The suction side convex surface produces favorable 

pressure gradient and flow acceleration, making it easier for coolant to stay close to the 

suction surface. On the contrary, coolant jets tend to separate from the concave 
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(a) Pressure Side   

(b) Suction Side 
Fig. 3.8 Film cooling effectiveness distribution for varying blowing ratios without wake on 

Blade 1 (with axial shaped holes) 



44 

 

 pressure surface. Therefore, in general, the film coverage on the suction surface is 

better than that on the pressure surface. However, the film cooling effectiveness 

distribution on the pressure side is fairly uniform with the multiple rows of film cooling 

hole design, particularly at higher blowing ratios. 

As shown in Fig. 3.8, the film cooling effectiveness from PS1 row is the lower 

than the other PS rows (except PS2 at low M) and the coolant from PS1 row barely 

reaches PS2 row. Due to the big curvature coupled with the flow deacceleration, the 

coolant jets from PS1 row tend to lift off from the surface, resulting in poor film 

coverage. The highest effectiveness from PS1 row is achieved at M=0.6. As the jet 

momentum increases with blowing ratio, the coolant penetrates the freestream and mix 

with the freestream, therefore very limited coolant protection remains on the surface. 

For the downstream PS rows (PS2, PS3 and PS4), the film cooling effectiveness 

increases when the blowing ratio increases from M=0.4 to M=1.2. The film cooling 

effectiveness magnitude are comparable for M=0.9 and M=1.2. Further increasing the 

blowing ratio to M=1.5, the effectiveness magnitude from the PS rows drops due to jet 

liftoff. The coolant no longer stays attached to the surface. In general, the effectiveness 

in the downstream is better than that in the upstream at moderate and high blowing 

ratios (M=0.9. 1.2 and 1.5) because more coolant from upstream is carried over to 

downstream. In addition, the flow acceleration and reduced curvature in the downstream 

region are also favorable to the elevated effectiveness. At low blowing ratio M=0.4, the 

pressure inside the cavity may not be high enough to drive the coolant to eject through 

the holes, therefore, the coolant jets are not observed from some of the PS2 holes. 

Immediately downstream of SS1 row, the highest effectiveness occurs at M=0.6. 

The effectiveness near the holes drops when the blowing ratio is greater than M=0.6. 
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The higher jet momentum causes the jet penetration and the mixing with the freestream 

is enhanced. This leads to a thinner coolant trace and lower magnitude in effectiveness. 

The coolant from SS1 row extends beyond SS2 row. This leads to an elevated 

effectiveness downstream of SS2 row. The highest effectiveness immediately 

downstream of SS2 row is achieved at M=0.9. Because of the convex curvature on the 

suction side, the dispersed coolant re-attached to the surface. This leads to widened 

coolant traces in the downstream of both SS1 row and SS2 row. When the blowing ratio 

increases, more coolant will be convected downstream and covers a wider area on the 

surface.  

The spanwise averaged effectiveness versus normalized axial chord length for 

the no wake case on Blade 1 is presented in Fig. 3.9. The sharp peaks in the plot 

correspond to the row locations. On the whole, film cooling effectiveness on the 

pressure side decays faster than that on the suction side because jet lift-off from the 

concave surface. In general, blowing ratio M=0.6 gives the highest film cooling 

effectiveness for the first rows (PS1 or SS1); while M=0.9 offers highest effectiveness 

for the other rows immediately downstream of film cooling holes. Due to the jet lift off, 

the effectiveness in these near hole regions are lower for higher blowing ratios. 

However, further downstream of film cooling holes, higher blowing ratios provide 

higher effectiveness because more coolant is convected back to the surface.   
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Fig. 3.9 Spanwise averaged effectiveness for the case of no wake on Blade 1 
(with axial shaped holes) 
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To understand the nature of influence exerted by the wake rods at each phase 

location, the effectiveness distribution for M=0.9 at four wake rod phases are presented 

in Fig. 3.10. Compared with the case of no wake, the wake produced by the rods 

reduces the film cooling effectiveness. The mixing between the coolant and mainstream 

is enhanced by the wakes. The wake rod positions at 0% and 25% exhibits the more 

adverse effect on film-cooling effectiveness. A conceptual view of the wake paths 

shown in Fig. 3.4 for 0% and 25% attests to this fact. Vortex shedding from the wake 

rods brings additional turbulence in the mainstream resulting in more mixing of the 

mainstream with the coolant, thereby, the coolant trace is shortened. The wake rods at 

phase 0% show more degradation of coolant trace on the pressure side. The downstream 

propagation of the wake is evident from the short coolant traces near the PS4 row. On 

the suction side, it appears that the 25% wake rod location has a relatively higher 

impact. The wake propagation along the suction surface can be gauged by the coolant 

trace degradation near the trailing edge. An interesting observation can be made by 

looking at the suction side effectiveness contours. It appears that the secondary vortices 

shield the coolant from SS2 row holes to some extent from the incoming mainstream, as 

a result, the coolant traces close to the tip and hub regions propagate downstream in 

comparison to those near the midspan region.  

Figure 3.11 shows the effectiveness distribution on Blade 1 at rod phase location 

0% for varying blowing ratios. It can be seen that the effectiveness on pressure side 

dramatically decreases at this rod location for all the blowing ratios. The enhanced 

mainstream turbulence produced by the wakes rapidly mixes the coolant with 

mainstream when the coolant ejects from the holes. The pressure surface is barely 

protected by the film cooling at this rod phase location. The effectiveness on the suction  
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Fig. 3.10 Film cooling effectiveness distribution on Blade 1 for M=0.9 at varying 
wake rod phases  
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Fig. 3.11 Effectiveness distribution Blade 1 at wake rod phase 0% 
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side also decreases. The coolant trace becomes shorter and effectiveness level becomes 

lower. However, the damage on suction side is not as sever as on the pressure side.  

Figure 3.12 shows the effectiveness distribution on Blade 1 at rod phase location 

25%. On the suction side, as can be seen, not only the elevated effectiveness is reduced, 

but also the coolant trace is much narrowed and shortened at this rod phase location. 

The coolant has mixed with mainstream before it reaches SS2 row. Similar to the case 

of no wake, the best effectiveness is achieved at M=0.6 immediately downstream of 

SS1 row; blowing ratio M=1.5 gives better coverage further downstream of SS2 rows 

near the trailing edge. As shown in Fig. 3.8, the secondary flow is predominant in tip 

region and hub region. The wake effect is more pronounced in the midspan region. On 

the pressure side, the adverse effect of wake rod still observable, but not as bad as that at 

phase 0%.  

Figure 3.13 shows the wake rods effect on the spanwise averaged effectiveness 

for varying blowing ratios. Wake rod phase at 0% has the maximum detrimental effect 

on pressure side film cooling. The film cooling effectiveness for the other wake rod 

phases is comparable. For the suction side film cooling, the 25%, followed by 0%, 

shows the largest effect. The effectiveness at the other two rod phase locations (50% and 

75%) are comparable to the case of no wake.  

The blowing ratio effect on the spanwise averaged film cooling effectiveness at 

different wake rod phases are presented in Fig. 3.14. In general, M=0.4 provides the 

lowest effectiveness for either pressure side film cooling or suction side film cooling. 

For pressure side film cooling, the impact of blowing ratio is reduced at wake rod phase 

0%. As aforementioned for the case of no wake, the film cooling effectiveness 

immediately downstream of the holes is reduced at high blowing ratios (M=1.2 and 
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Fig. 3.12 Effectiveness distribution on Blade1 at wake rod phase 25%  
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M=1.5) due to increased jet momentum. Further downstream of the holes, the high 

blowing ratio presents higher effectiveness because more coolant is dispersed and 

convected back to the surface. The effectiveness decays faster with x/Cx for pressure 

side film cooling that suction side film cooling as the coolant tends to lift off from the 

concave pressure surface. A sharp drop for the suction side film cooling appears for 

wake rod phase 25%. 

3.3.2 Effectiveness on Film Cooled Blade with Compound Angle Shaped Holes  

Figure 3.15 shows the effectiveness distribution on the Blade 2 surface (with 

compound angle shaped holes) for the case of no wake. Compared with Blade 1 (with 

axial shaped holes), some common characteristics of film cooling is observed. 

1. The detrimental effect of the secondary flow on film-cooling effectiveness 

distribution is clearly observed near the endwall and blade tip. Starting at x/Cx ~ 0.3 

on the suction side, the spiraling motion of the passage vortex near the hub surface 

and the tip leakage vortex draws the coolant towards the blade midspan. These 

vortices acting on the suction surface result in a well defined converged coolant 

trace toward the midspan. On the pressure side, the corner vortices drive the coolant 

to hub region. This leads to downward coolant traces. However, the tip leakages 

draw the coolant to the blade tip. In the midspan region on the pressure side, the 

coolant basically follow the mainstream flow and is deflected to the axial direction.  

2. The film coverage on the suction surface is better than that on the pressure surface, 

although there are more rows of cooling holes on the pressure side. The coolant 

traces on the suction side are much longer than that on the pressure surface. The 
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peak of effectiveness for the suction side film cooling is also higher than pressure 

side film cooling.  

3. The coolant accumulation from the upstream film holes is observed with an elevated 

film cooling effectiveness in the downstream. This is true for film cooling 

effectiveness on both pressure side and suction side. 

Compared with Fig. 3.8, it is clearly seen that effectiveness from the compound 

angle shaped holes (Blade 2) is much higher than the axial shaped holes (Blade 1), 

particularly at higher blowing ratios. The film cooling effectiveness increases with the 

increase of blowing ratio for either pressure side coolant injection or suction side 

coolant injection. Jet lift-off is not observed even for the highest blowing ratio M=1.5. 

However, for the axial shaped hole cooled blade (Blade 1), optimal blowing ratio exists, 

beyond which the film cooling effectiveness drops because of jet liftoff. As indicated in 

Table 3.3, the compound angled shaped holes have a larger exit cross-sectional area than 

the axial shaped hole. Therefore, the coolant jet momentum is further reduced. The 

coolant jets are more likely suppressed by the mainstream and stay close to the surface. 

This is more noticeable for the film cooling effectiveness distribution on the suction 

side. In addition, the coolant jet more spreads out from the compound angle holes by the 

mainstream. The film coverage area increases.  

The comparison of spanwise averaged effectiveness for the axial shaped holes 

and the compound angle shaped holes is shown in Fig. 3.16 for the case of no wake. 

Usually, the coolant jets from compound angle shaped holes are deflected by the 

mainstream, and cover a wider surface area. Whereas the coolant jets from axial shaped 

hole follow the mainstream directions and the jet coverage is confined to the axial 

direction.  Therefore, in general, the compound angle shaped holes perform better than 
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(a) Pressure Side 

(b) Suction Side 
Fig. 3.15  Film cooling effectiveness distribution on Blade 2 for varying blowing ratios 

without wake 
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Fig. 3.16 Comparison of spanwise averaged film cooling effectiveness for axial shaped holes 
(Blade 1) and compound angled shaped holes (Blade 2). 
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axial shaped holes. In addition, the compound angle holes have larger exit area. The jet 

momentum from those compound angle shaped holes is further reduced. Coolant is 

more easily to stay close to the surface with the reduced jet momentum. On the pressure 

side, the compound angle shaped holes and axial shaped holes show comparable 

effectiveness for the moderate blowing ratio M=0.6 and M=0.9. At higher blowing ratio 

M=1.2 and M=1.5, the compound angle holes shows better effectiveness. On the suction 

side, a clear rise in effectiveness is observed for compound angled shaped holes. As the 

blowing ratio increases, the advantage of compound angled shaped hole becomes more 

evident. However, the compound angle shaped holes might cause higher heat transfer 

coefficients and losses due to coolant jets deflection by mainstream, as compared to the 

axial shaped holes.  

The spanwise averaged effectiveness for the compound angle shaped holes for 

the no wake case is presented in Fig. 3.17. The effectiveness increases with blowing 

ratio for either pressure side or suction side. There is no optimal blowing ratio observed 

in the range considered. Overall, the effectiveness levels on the suction side are higher 

than that on the pressure side for a particular blowing ratio, as seen from the contour 

maps. 

The effect of wake rods is also examined on Blade 2. Similar to the case for 

axial shaped hole, the wake produced by the rods reduces the film cooling effectiveness. 

The mixing between the coolant and mainstream is enhanced by the wakes. The wake 

rod positions at 0% and 25% exhibits the more pronounced influence on film-cooling 

effectiveness. The effect of wake rod on Blade 2 film cooling is presented in terms of 

spanwise averaged effectiveness in Fig. 3.18 and Fig. 3.19. Figure 3.18 shows the effect 

of blowing ratio. The film cooling effectiveness increases when blowing ratio increases 
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Fig. 3.17 Spanwise averaged effectiveness for the case of no wake 
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(a) Pressure Side 

(b) Suction Side 

Fig. 3.18 Spanwise averaged film cooling effectiveness on Blade 2(blowing ratio effect) 
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for either pressure side or suction side for all the wake rod position. The effectiveness 

trend pretty much follows that of the no-wake case. Figure 3.19 shows, for a given 

blowing ratio, the lowest effectiveness occurs at rod phase 0% for pressure surface, 25% 

for the suction surface.  

3.4 Conclusions 

Experimental tests were performed on high pressure turbine rotor blades with 

axial angle shaped holes and compound angle shaped holes. The shaped holes featured a 

10° expansion in the lateral direction and an additional 10° in the forward direction. The 

coolant was issued from either pressure side film cooling holes or suction side film 

cooling holes. The effect of blowing ratios and the presence of stationary, upstream 

wakes are examined.  Some of the main highlights from the present study are presented 

below: 

1. Pressure sensitive paint (PSP) technique enables us to clearly visualize the 

impact of the passage vortex, corner vortex and tip-leakage vortex on coolant 

film trace distribution over the blade surface. Accurate effectiveness data is 

obtained on the heavily film cooled blade surface.  

2. The suction side gains better film effectiveness than the pressure side. The 

suction side convex surface and favorable pressure gradient help the coolant stay 

closer to the surface; while the coolant jets tends to lift off the concave pressure 

surface. Even with more rows of film cooling holes, the effectiveness on the 

pressure side is still lower than on the suction side.  

3. The tip leakage vortex and passage vortex have severe detrimental effect on the 

suction side film cooling. The strong mixing sweeps the coolant away from the 
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suction surface and resulted two unprotected triangular zone near the trailing 

edge.  

4. An upstream wake can have a severe detrimental effect on film coverage 

depending on the wake rod phase locations.  Wake phase locations of 0% and 

25% significantly decrease the film cooling effectiveness magnitudes. Wakes 

from 50% and 75% phase locations do not attach to the blade surfaces and hence 

the adverse impact is reduced.  

5. The tip leakages vortices and endwall vortices are predominant at near tip and 

near hub region. The upstream wake effect on suction side is more observable at 

midspan region. 

6. Comparison between the compound angle shaped hole and axial shaped hole 

designs show higher effectiveness values for compound angle shaped holes on 

either pressure side or suction side, particularly, at higher blowing ratios. 

7. For the axial shaped holes, the moderate blowing ratio (M=0.6 and M=0.9) 

shows better film cooling effectiveness on either pressure side or suction side 

immediately downstream of the film cooling holes. Further downstream of the 

film cooling holes, high blowing ratios provide wider film coverage. For the 

axial shaped holes, optimal blowing ratios exists, beyond with effectiveness 

decreases.  

8. Film cooling effectiveness from the compound angle shaped holes increases 

with blowing ratio on either surface of the blade. There is no optimal blowing 

ratio observed in the range of study (M=0.4~1.5). 
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4. UPSTREAM VORTEX EFFECTS ON TURBINE BLADE PLATFORM FILM 

COOLING WITH TYPICAL STATOR-ROTOR PURGE FLOW  

4.1 Experimental Facilities  

Test for the platform purge flow cooling was done in the same five-blade 

cascade as that for blade film cooling test in Section 3. The mainstream flow conditions 

were set same as in blade film cooling test. Detailed cascade configurations and flow 

conditions can be found in Section 3. Figure 4.1 schematically shows the five-blade 

linear cascade with the platform test section cooled the purge flow. The definition of the 

coordinate, which will be used in the discussion, is presented in Fig. 4.1(b). Cx is the 

axial chord length of the blade, while x and x’ are the axial distance measured from the 

blade leading edge and the slot upstream edge, respectively. 

A new labyrinth-like seal, which is a typical rotor stator seal in real gas turbine 

engine, is used to simulate the stator-rotor purge slot. The seal covers two passages of 

the linear cascade. Figure 4.2 shows the seal configurations and two delta wing 

geometries. The seal consists of two parts, an upstream (stator) part with round teeth 

and a downstream (rotor) part with sharp teeth. The two parts match together and result 

in a throat width (s) of 0.19cm at the purge slot exit as indicated in Fig. 4.2(b) and Fig. 

4.2(c). The upstream part, with a radius of 0.1cm, breaks at 1.64cm upstream of blade 

leading on the platform. The downstream part is inclined 20° to the mainstream. The 

junction of inclined slot and the flat platform is located 0.62cm of leading edge. 

Therefore, the total breakout width (b) of the slot is 1.02cm. Other dimensions can be 

found in Fig. 4.2. A coolant plenum is attached underneath the purge slot. The coolant 

enters the plenum and travels through the seal before being expelled to the mainstream. 
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Fig. 4.1 (a) Schematic of cascade blade platform with upstream delta wing and purge slot 
(b) Definition of platform coordinates 
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Fig. 4.2 (a) Detail of a typical labyrinth-like stator rotor seal (b) Detail view of the seal 
(c) Notations of the seal (d)Two delta wing geometries 
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Five pressure taps are instrumented on the side wall the plenum to examine the pressure. 

Uniform pressure distribution was found inside the plenum during the film cooling test. 

The coolant purge flow rate is generally considered as a percentage of the mainstream 

mass flow rate. Four coolant mass flow rates (MFR) are considered in this study – 

0.25%, 0.5%, 0.75% and 1.0% of mainstream flow rate. The corresponding blowing 

ratios M, defined as the ratio of coolant mass flux (ρcVc) to mainstream mass flux 

(ρmVm), are 0.17, 0.33, 0.50 and 0.67. The coolant velocity at throat of seal (based on s) 

is used in the blowing ratio calculation. The mainstream velocity is measured at cascade 

inlet.  

Wright et al. [51] demonstrated that the vortex generated by delta wing can be 

used to simulate the passage vortex. Depending on the upstream vane configuration, the 

passage vortex generated by upstream vane varies in term of size and strength. 

Changing the delta wing size and attack angle will alter the vortex size and strength. In 

this study, two sets of delta wings are selected to model the different size and strength of 

vane passage vortices. Figure 4.2(d) shows the dimensions of the delta wings. One set 

of delta wings have a height of 20% of cascade height (h=0.2H) with a width of 1.5 

times of the delta wing height. The other set of delta wings were scaled down to the half 

size of the first set, i.e., the height is 10% of the cascade height (h=0.1H). The delta 

wings were located at a distance equivalent to 50% of axial chord upstream of the 

blades. They were periodically placed at four equally spaced locations. Figure 4.3 shows 

the locations of the delta wings relative to the blade leading edge. The delta wing edge 

directly upstream of the leading edge is indicated as the phase 0%. The delta wings shift 

a quarter of blade pitch along the pitchwise direction and progressively reach phase 
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Fig. 4.3 Delta wing phase positions in reference of blade leading edge 

Phase 0%  Phase 25% 

Phase 50%  Phase 75% 
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position 25%, 50%, and 75%. For a given size of delta wing, the vortex strength is 

determined by the mainstream attack angle (θ) to the delta wing. Two attack angles, 30° 

and 45°, were considered in the study to vary the strength of passage vortex. Figure 4.3 

also conceptually shows the vortices generated by the upstream delta wings and the 

passage vortex generated in the downstream local blade passage.  

4.2 Results and Discussion 

4.2.1 Film Cooling Effectiveness Distribution 

Prior to presenting the film effectiveness data, the pressure and Mach number 

distribution were examined and shown in Fig. 4.4.  The pressure distribution on the 

platform was represented by ratio of local static pressure and inlet total pressure. The 

local static pressure was measured by PSP while the inlet total pressure was measured 

by pitot tube upstream of the cascade inlet. Several pressure taps were put on the 

platform along the three curves to calibration PSP data. The pressure and Mach number 

data along three curves on the platform was extracted and compared with pressure tap 

measurement. One curve was offset of the blade pressure side by 10% of pitch length, 

the other was offset of suction side by 10%. The third curve was along the mid-passage. 

Pressure distribution on the blade surface along the midspan measured by pressure taps 

is also presented for comparison.  On the contour plots, the black line upstream of the 

blade leading edge indicates the junction of the inclined purge slot and the flat platform. 

It can be seen from the contour plot that the static pressure near the pressure side is 

higher than that near the suction side. This is driving force of blade work as well as the 

passage cross flow. From the leading edge to the trailing edge, the pressure gradually 

decreases; the mainstream flow is accelerated; Mach number increases. The pressure 
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Fig. 4.4 Pressure and Mach number distribution without coolant injection 
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 distribution along the slot exit is non-uniform with higher pressure existing near the 

blade leading edge. This non-uniform outer pressure affects coolant mass flow 

distribution along the slot, particularly, when the coolant flow rate is low. It can be seen 

from the line plots that the PSP data matched well with pressure tap data; the maximum 

deviation is less than 6%. Near the pressure side, the pressure is very close to the 

pressure on the blade midspan. However, near the suction side, the pressure is higher 

than that on the blade surface at midspan location. This results in a reduced driving 

force (pressure differential between pressure side and suction side) near the platform. It 

can be seen from Fig. 4.4(b), the velocity near the suction side on the platform is lower 

than the freestream velocity.  

The test cases that have been performed are listed in Table 4.1. However, not all 

the film cooling effectiveness distribution is presented. Results are selected to aid the 

discussion and understand the purge flow cooling. To study the effect of vane passage 

vortex simulated by the delta wings, the film cooling effectiveness without presence of 

the delta wings was taken as baseline case. Fig. 4.5 shows the detailed film cooling 

distributions on the blade platform with no upstream vane influence. The film 

effectiveness distributions are shown for four coolant flow ratios MFR=0.25%, 0.5%, 

0.75% and 1.0%, corresponding to the blowing ratio M=0.17, 0.33, 0.50 and 0.67, 

respectively. To clearly show the effectiveness distribution in the inclined slot and the 

flat platform, the contours are plotted at two difference scales. At the lowest flow rate of 

MFR = 0.25%, the coolant ejection from the slot is non-uniform. The high outer 

pressure near the leading edge of the blade prohibits the coolant exiting from this 

region. As the coolant mass flow rate increases, the pressure inside the coolant plenum 
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Table 4.1 Test Cases 

 Upstream 
vane effect

Vortex generator
Delta wing

Phase 
position

Purge  
flow rate

None 
(baseline) -- -- 0.25%, 0.5%

 0.75%, 1.0%

h=0.1H, θ=30°
0%, 25%
50%, 75%

0.25%, 0.5%
0.75%, 1.0%

h=0.1H, θ=45°
0%, 25%
50%, 75%

0.25%, 0.5%
0.75%, 1.0%

h=0.2H, θ=30°
0%, 25%
50%, 75%

0.25%, 0.5%
0.75%, 1.0%

h=0.2H, θ=45°
0%, 25%
50%, 75%

0.25%, 0.5%
0.75%, 1.0%

Passage 
vortex



73 

 

Fig. 4.5 Film cooling effectiveness at various coolant injection rates (baseline) (a) scale 0~1.0, (b) 
scale 0~0.7

MFR=0.25%                     MFR=0.5% 
M=0.17                             M=0.33 

MFR=0.75%                      MFR=1.0% 
M=0.50                M=0.67 

MFR=0.25%                      MFR=0.5% 
M=0.17                            M=0.33 

MFR=0.75%                      MFR=1.0% 
M=0.50                                   M=0.67 

(a) (b) 
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 increases. The coolant ejection becomes more uniform. It can be observed at 

MFR=0.5%~1.0%, the effectiveness at the slot exit is close to unity. The 20° inclination 

of slot keeps coolant close to the surface where exhibits high effectiveness. However, 

the mainstream and coolant mixing takes place in the inclined slot before the coolant 

reaches the flat platform. Therefore, the effectiveness in the inclined portion gradually 

decreases. At the junction of inclined slot and the flat platform, the effectiveness for 

MFR=0.75% and 1.0% drops to about 0.7. To better visualize the film cooling 

effectiveness downstream of the junction, the effectiveness distribution is presented Fig. 

4.5(b) with smaller scale. The pressure difference between the pressure side and the 

suction side induces cross flow in the passage. The flow is driven from pressure side to 

suction. The coolant is swept from the pressure side to the suction side. At low coolant 

mass flow rate (MFR=0.25% and 0.5%), the coolant is taken away from the surface by 

the horseshoe vortex, so film cooling effectiveness in the leading edge region is close to 

zero.  The effect of horseshoe vortex even extends to the inclined slot and results in a 

decreased effectiveness in the slot. When the coolant mass flow ratio increases, the 

strength of the horseshoes vortex is reduced by the purge flow. With less mixing with 

mainstream, the leading edge region gains some film coverage at MFR=0.75% and 

1.0%. Inside the blade passage, the coolant is skewed to the suction side by the cross 

flow. The cross flow also drives the pressure side leg of the horseshoes vortex moves to 

the suction side, and forms passage vortex. The strong passage vortex caused violent 

mixing between the coolant and mainstream. The film effectiveness quickly dies out. 

The passage vortex acts like a barrier, beyond which the coolant vanishes. Increasing 

the coolant flow rate weakens the effect of the passage vortex, and thus film coverage 
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extends a little to the downstream. However, from MFR=0.75% to MFR=1.0%, the 

increment of film coverage is limited. At the lowest flow rate of MFR = 0.25%, a large 

portion of the passage is left unprotected. Doubling coolant mass flow rate from 0.5% to 

1.0% of the mainstream flow yields only marginal improvement in film coverage. The 

coolant covers partial area of the upstream passage, while a large portion of the 

downstream half of the passage remains unprotected. The film protection on the 

platform is minimal after the mid-chord. From the studies [46-48], it can be conjectured 

that the film coverage would increase if the MFR were further increased. This is 

accompanied at the cost of large amount of coolant consumption. It may be an efficient 

way to cool the platform by combining the upstream purge flow cooling with discrete-

hole film cooling strategically arranged on the downstream of the platform. This 

research will continue on platform film cooling with combined upstream purge flow and 

downstream discrete hole film cooling.  

To create the vortex, the delta wings were periodically placed upstream of the 

stator-rotor seal. Because the exact size and strength of the passage vortex leaving the 

vane passage, corresponding to the present blade geometry, is not known, it is vital to 

consider a range of possibilities. Four delta wing configurations were generated by 

varying two sizes of delta wings (h=0.1H and h=0.2H) at two flow attack angles (θ=30° 

and θ=45°). For each delta wing configuration (given size and attack angle θ), four 

phase position along the pitchwise direction are used to simulate the advancement vane 

passage vortex. The influence of upstream vane passage vortex is presented in Fig. 4.6 

and Fig. 4.7 with MFR=0.75%. A generalization of the following discussion can be 

applied to the other coolant mass flow rates in the range of current study. Figure 4.6 
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shows the film cooling effectiveness distribution at MFR=0.75% under the influence of 

delta wing h=0.2H. Compared with MFR=0.75% in Fig. 4.5, the area with elevated film 

effectiveness decreases for all the phases in the presence of upstream delta wings. The 

effectiveness pattern are similar when delta wings are placed at the same phase position 

for θ=30° and θ=45°. The area of coolant coverage does not extend as deep into the 

passage when the delta wing is placed upstream of the blades except at phase position 

25%. As the vortex passes over the seal, the coolant lifts off the platform, and mixes 

with the mainstream. Therefore, it does not remain attached to the surface and results in 

a lower effectiveness. A better understanding of the interaction of delta wing generated 

vortex with downstream flow may be achieved from Fig. 4.3. At phase 0%, the vortex is 

close to the pressure side leading edge, so the effectiveness near the leading edge region 

of pressure side is reduced. At phase 25%, the upstream vortex reaches the center of the 

passage. It competes with passage vortex generated by the blades passage. The strength 

of local blade passage vortex reduced. So the coolant is more spread out to the 

downstream. Therefore at phase 25% the film coverage is slight larger than the case 

with no delta wings. At phase 50%, the upstream vortex is close to suction side leading 

edge. It interacts with suction leg horse vortex, and caused more mixing, therefore, the 

suction side leading edge is less protected. This is more evident at θ=45°. At phase 75%, 

the upstream vortex is more or less directed to the leading of the blade. As a result, the 

film effectiveness in the leading edge region reduces due to interaction of upstream 

vortex with horseshoe vortex reduces. 
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Fig. 4.6 Film cooling effectiveness at various phase location at MFR=0.75% with delta wing 
h=0.2H 

         

Phase 0%                                Phase 25% 

Phase 50%             Phase 75% 
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In general, the upstream vortex causes more turbulence mixing and is 

detrimental to the slot purge cooling. With a larger attack angle, the vortex strength for 

θ=45° is larger than that for θ=30°. Therefore, the adverse effect of upstream vane 

passage vortex is more evident for θ=45°. 

Fig. 4.7 shows the impact of the vortex created by upstream delta wing h=0.1H 

at MFR=0.75%. The delta wing dimension is scaled down to half of the previous one. 

With the smaller size of delta wing, both the size and strength of the vortex generated by 

this delta wing (h=0.1H) reduce. The upstream vortex alters the effectiveness 

distribution pattern. The impact of local passage vortex is dominant. When the coolant 

meets the local blade passage vortex, it is wiped off and disappears in the mainstream. 

Although θ=45° shows slightly more effect, the difference in effectiveness from the two 

attack angles is small. The vortex created by delta wing is directed to the passage at 

phase 0% and 25%, compared with baseline case, the effectiveness pattern is altered. 

The upstream vortex is close to the blade surface at phase 50% and 75%, and interacts 

with horseshoes vortex. However, the enhanced mixing doesn’t lift the coolant off the 

surface completely, there is still some coolant coverage left the near the leading edge 

region. Comparing with Fig. 4.6, it can be seen that upstream vortex from h=0.1H has 

less impact on the downstream film cooling effectiveness.  
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Fig. 4.7 Film cooling effectiveness at various phase location at 
MFR=0.75% with delta wing h=0.1H 

Phase 0%                          Phase 25% 
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θ=30° 

Phase 0%                            Phase 25% 

Phase 50%            Phase 75% 

θ=45° 



80 

 

4.2.2 Laterally Averaged Film Cooling Effectiveness 

More general comparisons of all the cases studied can be made by comparing 

the laterally averaged film cooling effectiveness versus axial chord. The arrows in the 

line plots (if any) indicate the location of slot exit and dashed lines indicate the blade 

leading edge. Fig. 4.8 shows the laterally averaged effectiveness for the baseline case 

(no delta wings). It can be seen from Fig 4.8(a), the higher coolant mass flow rate shows 

higher effectiveness. The averaged effectiveness at slot exit is about unity except 

MFR=0.25%, at which the coolant ejection is not uniform. The coolant quickly mixes 

with mainstream out of the slot exit and the effectiveness drops rapidly. The laterally 

averaged effectiveness reduces to about 0.54 for MFR=1.0% at the blade leading edge. 

It is even lower for the other coolant flow rates. Inside the blade passage, the coolant is 

further dissipated into mainstream. η  becomes negligible (<0.1) for all MFRs when 

x/Cx > 0.4. This indicates the passage vortex meets the blade suction surface around 

x/Cx=0.4 and starts climbing up to the suction surface of the blade. The coolant is lifted 

off by the passage vortex. The film protection vanishes downstream of the passage 

vortex. The blade surface film cooling study in previous section showed the coolant on 

the blade suction surface is swept towards to blade midspan when x/Cx>0.4. This is 

consistent with the current findings. The platform is partially covered by the purge 

coolant when x/Cx<0.4, beyond which the platform is left unprotected. Figure 4.8(b) 

shows η  vs x’/Ms, where x’=0 is defined at the slot exit (upstream edge of the seal). 

The correlations for the tangential slot and discrete hole film cooling on flat plate [82] 

are also presented in the plot for comparison. The experimental data is close to 

tangential slot correlation near the slot exit. Further downstream, η  for platform purge  
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(a)      (b) 

Fig. 4.8 Laterally averaged effectiveness for baseline case (a) effectiveness vs x/Cx (b) 
effectiveness vs x’/Ms  
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slot cooling is much lower than the tangential slot correlation. The passage induced 

secondary flow enhances mixing between the coolant and the mainstream. η  on the 

platform decreases rapidly. Comparing with discrete film cooling, η  from experiment is 

higher than the correlation downstream of slot exit. Further downstream, the η is lower 

than the discrete hole correlation on flat plate. There is little coolant remaining on the 

platform downstream of passage vortex. 

The influence of upstream vortex generated by delta wings at different phase 

positions is shown in Fig. 4.9 – Fig. 4.12. The upstream vortex induced additional 

turbulence and enhances the coolant and mainstream interaction. For all delta wing 

configurations, the averaged effectiveness decreases with presence of delta wings prior 

to the blade passage. In side the blade passages, the effect of upstream vortex is also 

detrimental except for delta wing h=0.2H at θ=30° and phase 25%. It seems with this 

configuration, the delta wing generated vortex is directed into the blade passage and 

competes with blade passage vortex. The strength of blade passage vortex reduces and 

the mixing between the coolant and the mainstream also reduces. The coolant is more 

spreaded out. Therefore, for this particular case, the effectiveness in the blade passage is 

slightly higher than the baseline case. The delta configuration h=0.2H, θ=45° has the 

largest detrimental effect on effectiveness. The averaged effectiveness has the largest 

phase dependency for h=0.2H, θ=30°. Although the local film effectiveness distribution 
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Fig. 4.9 Film cooling effectiveness at various delta wing phases at MFR=0.25% (M=0.17) 
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Fig. 4.10 Film cooling effectiveness at various delta wing phases at MFR=0.50% (M=0.33) 
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Fig. 4.11 Film cooling effectiveness at various delta wing phases at MFR=0.75% (M=0.50) 



86 

 

-0.2 0 0.2 0.4 0.6 0.8 1

No delta wing
Phase 0%
Phase 25%
Phase 50%
Phase 75%

Delta wing h=0.2H, θ =30O

x/Cx

η

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

_

Delta wing h=0.1H, θ =45O

x/Cx
-0.2 0 0.2 0.4 0.6 0.8 1

Delta wing h=0.1H, θ =30O

η

-0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

_

Delta wing h=0.2H, θ =45O

Fig. 4.12 Film cooling effectiveness at various delta wing phases at MFR=1.0% (M=0.67) 
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 is altered at difference phases, the averaged effectiveness from different phases for 

delta wing h=0.1H are comparable regardless of phase positions. For all the MFRs, the 

averaged effectiveness decays faster for delta wing h=0.2H with flow attack angle 

θ=45° that the other delta wing configurations.  

Fig. 4.13 and Fig. 4.14 show the effect delta wing configuration on the 

effectiveness for MFR=0.5% and MFR=1.0%, respectively (the discussion below is 

valid for MFR=0.25% and MFR=0.75% as well). In general, delta wing h=0.2H shows 

the more effect than h=0.1H. Attack angle θ=45° has more detrimental effect than θ=30° 

for delta wing h=0.2H. The effect from different flow attack angles are comparable for 

delta wing h=0.1H. When x/Cx>0.4, the effect of upstream vortex becomes less 

noticeable.   

To examine the effect of coolant injection ratio, delta wing with the most 

detrimental is chosen (i.e. h=0.2H, θ=45°). Fig. 4.15 and Fig. 4.16 show effect of 

coolant mass flow rate. Similar to the case without presence of delta wing, the 

effectiveness increases with coolant mass flow rate. Examining η  versus x’/ Ms, except 

at phase 0%, all the data for the other phase positions collapses well. η is lower than 

tangential slot correlation and higher than discrete hole correlation near the slot exit. 

Downstream of the passage, all the coolant are swept away by the passage vortex, so the 

η is even lower than discrete hole correlations.  
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Fig. 4.13 Effect of delta wing configuration on film cooling effectiveness at 
MFR=0.5% (M=0.33) 
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Fig. 4.14 Effect of delta wing configuration on film cooling effectiveness at MFR=1.0% 
(MFR=0.67)
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Fig. 4.15 Effect of coolant mass flow rate on film cooling effectiveness for delta wing h=0.2H, 
θ=45° 
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Fig. 4.16 Effect of coolant mass flow rate on film cooling effectiveness for delta wing 
h=0.2H, θ=45° 
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4.3 Conclusions 

An experimental study was undertaken to measure the film cooling effectiveness 

on a turbine blade platform within a five-blade linear cascade subject to purge flow 

from a typical stator-rotor seal. The labyrinth-like seal was located upstream of the 

blades, and the amount of purge flow through the seal varied from 0.25% to 1.0% of the 

mainstream flow. Delta wings were used to generate a vortex upstream of the blade 

passage; this vortex is similar to the passage vortex that would be created as the 

mainstream flow travels through the vane passage. Pressure sensitive paint was used to 

measure the film cooling effectiveness. Because the exact strength and structure of the 

vortex created in the vane passage varies, different size of delta wings combined with 

different attack angles were considered to show how the effectiveness changes when the 

upstream vortex structure changes. In general, the film cooling effectiveness increases 

with increasing coolant mass flow rate. The presence of upstream vane passage vortex is 

detrimental to the platform slot purge cooling, particularly, in the region between the 

purge slot and about the first half of platform (x/Cx<0.4). The strong mixing between 

the coolant and blade passage vortex causes effectiveness vanishing downstream of 

passage vortex. Depending on the phase position, the pattern of the effectiveness 

distribution alters. The larger delta wings (h=0.2H) have more effect on platform film 

cooling effectiveness than the smaller delta wings (h=0.1H). Combined with attack 

angle θ=45°, delta wings with h=0.2H have the largest adverse effect on film 

effectiveness. Delta wings h=0.1H show the same level of influence on the film cooling 

effectiveness at the attack angle 30° and 45°. 
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5. INFLUENCE OF HOLE SHAPE AND ANGLE ON SHOWERHEAD FILM 

COOLING  

5.1 Experimental Facilities 

Test for leading edge film cooling study is done in a low speed wind tunnel. Fig. 

5.1 schematically shows the experimental setup.  The mainstream flow travels through a 

nozzle and into the test tunnel.  The test section is placed in the wind tunnel. The center 

of the cylinder is located at 73.7 cm downstream of the nozzle exit.  The mainstream 

flow is adjusted to maintain a Reynolds number of 100,900 (based on the cylinder’s 

diameter).  To increase the freestream turbulence of the mainstream flow, a turbulence 

grid is added at the exit of the nozzle. With the grid, turbulence intensity of 7% with 

turbulence integral length scale about 1.5cm is measured near the cylinder. Fig. 5.1(a) 

also shows the position of excitation light and camera for PSP measurement. A close 

view of the test section is shown in Fig. 5.1(b). The turbine blade leading edge is 

modeled as a blunt body with a semicylinder and an afterbody. The semicylinder, made 

of  Stereolithography (SLA), can be detached from the afterbody when changing film 

cooling hole configuration. The semi-cylinder has a diameter of 7.62 cm, height of 25.4 

cm, and a wall thickness of 0.64 cm. The hollow semicylinder serves as a coolant 

plenum. Coolant flow travels through an orifice flow meter and enters the cylinder from 

bottom. The coolant is discharged to mainstream through the film cooling holes. 

Definition of coordinate can also be found in Fig. 5.1(b). The coordinate is used to 

present the effectiveness data.  

Two film cooling designs are considered: a heavily film cooled leading edge 

feathered with seven rows of film cooling holes, and a moderate case with three rows. 
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Four different film cooling hole configurations are applied for each design: radial angle 

cylindrical holes, compound angle cylindrical holes, radial angle shaped holes and 

compound angle shaped holes. In total, eight leading edge film cooled models are 

investigated. Fig. 5.2 shows the seven-row film-hole configurations. The seven rows are 

located at 0° (stagnation line), ±15°, ±30° and ±45°. For the radial angle holes (either 

cylindrical holes or shaped holes), the holes are oriented in the radial (spanwise) 

direction and orthogonal to the local mainstream direction. While for the compound 

angle holes, each row oriented at different angles with respect to the local mainstream 

due the constraint of space. As shown in Fig. 5.2(b) and Fig. 5.2(d), the holes are 

oriented (β) at 90°, 75°, 67.5°, and 60° to the local mainstream direction for the  row 0°, 

±15°, ±30° and ±45°, respectively. Fig. 5.3 shows the three-row film-hole 

configurations. The three rows of holes are located at 0° (stagnation line) and ±30° on 

either side of cylinder. The holes at ±30° are oriented at 67.5° to the local mainstream 

direction in the compound angle design. The stagnation row is always angled to the 

radial (spanwise) direction. For both seven-row and three-row designs, each row has 15 

holes with a p/d of 4. Fig. 5.4 shows hole orientations and the shaped hole angles. All 

these holes were angle (α) at 25° to the model surface and arranged inline pattern. The 

shaped holes are laidback fanshaped holes with lateral expansion (γ) of 5° from the hole 

centerline, and additional 5° forward expansion (δ) to the surface. The metering part of 

the shaped holes has the same diameter (d=0.32cm) as the cylindrical holes. The 

expansion of shaped holes starts in the middle of hole. This results in a area ratio about 

2 between the expanded cross section at the hole exit and the metering part. Details of 

holes dimension can be found in Table 5.1. 
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Fig. 5.3  Three-row film cooled leading edge models (a) radial angle cylindrical holes (b) 
compound angle cylindrical holes (c) radial angle shaped holes (d) compound angle shaped holes 
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Table 5.1 Film Cooling Hole Configurations 

Design 1  (Seven-row) 
cylindrical holes shaped holes Hole configurations Radial angle Compound angle Radial angle Compound angle 

Hole diameter 
(d, cm) 0.3715 0.3715 0.3715 0.3715 

Diameter ratio 
(D/d) 24 24 24 24 

Hole to hole 
spacing (p/d) 4d 4d 4d 4d 

Ratio of hole length 
to diameter (L/d) 4.73 4.73~5.46 4.73 4.73~5.46 

Lateral expansion 
angle (γ, °) 0 0 5 5 

Forward expansion 
angle (δ, °) 0 0 5 5 

Angle to surface (α, 
°) 25 25 25 25 

Streamwise angles 
(β, °) 90 90/75/ 67.5/60 90 90/75/ 67.5/60 

Ratio of hole 
breakout area to 
metering cross-

section area  

1.0 1.0 1.9 1.9/1.94/1.98/2.1 

Design 2  (Three-row) 
cylindrical holes shaped holes Hole configurations 

Radial angle Compound angle Radial angle Compound angle 
Hole diameter 

(d, cm) 0.3715 0.3715 0.3715 0.3715 

Diameter ratio 
(D/d) 24 24 24 24 

Hole to hole 
spacing (p/d) 4d 4d 4d 4d 

Ratio of hole length 
to diameter (L/d) 4.73 4.73~5.46 4.73 4.73~5.46 

Lateral expansion 
angle (γ, °) 0 0 5 5 

Forward expansion 
angle (δ, °) 0 0 5 5 

Angle to surface (α, 
°) 25 25 25 25 

Streamwise angles 
(β, °) 90 90/67.5 90 90/67.5 

Ratio of hole 
breakout area to 
metering cross-

section area  

1.0 1.0 1.9 1.9/1.98 
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5.2 Results and Discussion 

Due to the geometric symmetry and flow symmetry, only one-side midspan 

portion of cylinder was painted with PSP as indicated in Fig. 5.2 and Fig. 5.3. During 

the test, five averaged blowing ratios were examined ranging from M=0.5 to M=2.0. 

The driving force for the coolant to eject through the holes is pressure differential 

between the internal (coolant plenum) total pressure and external static pressure. The 

higher the pressure differential, the more the coolant ejects from the holes. Figure 5.5 

schematically shows the coolant mass flow rate distribution. It is reasonable to assume 

that internal total pressure is constant in the midspan region of the cylinder for a given 

average blowing ratio. This assumption won’t cause significant error in the calculation 

of discharge coefficients. However, the external static pressure along the curved surface 

varies with the biggest static pressure existing on the stagnation line. From stagnation to 

downstream, the surface static pressure gradually decreases and the driving force (the 

difference between internal pressure and external pressure of the cylinder) the gradually 

increases. Therefore, the least amount of coolant ejection occurs to the stagnation row. 

More coolant ejects from the downstream rows. This non-uniform coolant ejection will 

influence the film cooling effectiveness distribution on the leading edge surface.  

The film-cooling effectiveness distribution on the leading edge models for the 

seven-row design is shown in Fig. 5.6. The white line through the film holes represents 

the stagnation line. The effectiveness is presented at five average blowing ratios ranging 

from M=0.5 to M=2.0. Although the film hole configurations are different, some 

common characteristic can be observed. Near the stagnation, the mainstream 

momentum is small, so the coolant jets from stagnation row basically go to radial 
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Fig. 5.6  Film cooling effectiveness distribution for seven-row design 

M=0.5        M=0.75 M=1.0   M=1.5         M=2.0 

(a) Radial angle cylindrical holes 

(c) Radial angle shaped holes 

(d) Compound angle shaped holes 

(b) Compound angle cylindrical holes (b) Compound angle cylindrical 
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direction without being deflected.  In the downstream region, the mainstream 

momentum increases. Subjected to the mainstream, the coolant jet is deflected. When 

the jet momentum increases (i.e. average blowing ratio increases), the deflection 

decreases. The jets are less deflected at higher average blowing ratio. The jets tend to go 

to more radial directions at higher average blowing ratio M=1.5 and M=2.0. Therefore, 

the upper portion of the leading edge model (with larger z/d) gains higher effectiveness 

due to coolant accumulation; while the effectiveness in the region downstream of film 

cooling holes (s/d>10) is reduced compared with lower average blowing ratios. At lower 

average blowing ratio M=0.5 to M=1.0, the coolant jets are more deflected to the 

streamwise direction, so the coolant accumulation effect is evident downstream of film 

cooling rows. This is featured with a larger downstream area covered by elevated film 

cooling effectiveness.  On the contrary, the coolant accumulation in the radial direction 

is not significant at these lower average blowing ratios. As the jet momentum increases 

from M=0.5 to M=2.0, the coolant jets tend to life off the surfaces. The area with 

elevated effectiveness reduces. In the region near the stagnation (0<s/d<6), the 

effectiveness seems to increase with increasing of average blowing ratios; Further 

downstream, (s/d>10) the film effectiveness decreases with increasing of average 

blowing ratios. Near the stagnation region, the mainstream momentum is small; the jet 

interaction with mainstream is weak. In addition, the small incline angle (α=25°) helps 

the coolant remain closer to the surface. More coolant accumulates around the 

stagnation region with more coolant injection. In the downstream region, the 

mainstream momentum increases. The interaction (mixing) between the coolant jet and 

mainstream enhances. The high the jet momentum, the stronger the interaction (mixing) 
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is. Therefore, the effectiveness decreases when average blowing ratio increases at 

s/d>10. 

The effect of hole angle can be detected by comparing Fig. 5.6(a) and Fig. 5.6(b) 

with cylindrical holes. For the compound angle holes, the angles of film holes to 

mainstream reduces (except the stagnation rows), the coolant jets are less deflected. 

Consequently, the coolant trace with elevated effectiveness become narrower but longer 

instead of spread-out.  The coolant accumulation in the radial direction, compared with 

radial angle holes, is less significant even at the highest average blowing ratio M=2.0. 

At lower average blowing ratios (M=0.5 and M=0.75), it seems that the compound 

angle holes result in higher effectiveness than the radial angle holes. However, at higher 

average blowing ratios (M=1.5 and M=2.0), the effectiveness from compound angles 

cylindrical holes seems lower than that from radial angle cylindrical holes.  This is 

largely due to the less jet spread-out with the compound angle holes.   

Fig. 5.6(c) shows the effectiveness distribution for radial angle shaped holes. 

Compared with the cylindrical holes (both radial angle and compound angle), the 

effectiveness for the shaped holes significantly increases except stagnation row at 

M=0.5. The jet momentum reduces due to hole expansion for the shaped holes. With 

lower jet momentum, the coolant tends to stay closer to the surface and offers better 

film protection. The advantage of the shaped holes becomes more evident at higher 

average blowing ratios. Similar to the radial angle cylindrical holes, the streamwise 

coolant accumulation is more noticeable at lower average blowing ratios; the spanwise 

(radial) coolant accumulation is more evident at higher average blowing ratios. The film 

effectiveness between the hole row (0<s/d<10) increases with increasing of average 
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blowing ratio. This is consistent with the observation from the radial angle cylindrical 

holes. However, further downstream, (s/d>10), the effectiveness for the radial angle 

shaped hole doesn’t decrease monotonically with increasing of average blowing ratios. 

The best film coverage is obtained at about M=1.0. At lowest average blowing ratio 

M=0.5, the pressure inside the cylinder is low. The high outer pressure in the stagnation 

region prohibits coolant ejecting from these stagnation holes. More coolant is directed 

to the downstream holes.   

Fig. 5.6(d) shows the effectiveness distribution for the compound angle shaped 

holes. Compared with it radial angle counterpart, the coolant trace with elevated 

effectiveness for the compound angle shaped holes becomes narrower and longer. This 

is similar to the observation for the cylindrical holes at different angles. At higher 

average blowing ratios M=1.5 and M=2.0, the effectiveness reduces because the coolant 

jets less spreads out. The area between the holes (in radial direction) is less protected. At 

lower average blowing ratios M=0.5 to M=1.0, the compound angle shaped holes seems 

offers better effectiveness than radial angle shaped holes for the region s/d>10.  

Fig 5.7 and Fig. 5.8 are the spanwise averaged effectiveness for the seven-row 

models. The data are presented in terms of s/d and θ (angles to the stagnations line), 

which are depicted in the bottom and top x-axes, respectively. The peak of the 

effectiveness corresponds to the location of film cooling rows. Fig. 5.7 shows influence 

of average blowing ratio on film cooling effectiveness. The film cooling effectiveness 

near the stagnation region (s/d<6 or θ<30°) increases with increasing of average 

blowing ratios. Further downstream (s/d>10 or θ>45°), the trend reversed. With multiple 

rows of film cooling design, the coolant accumulation effect can be detected from the 
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elevated effectiveness in the downstream region. The effectiveness variation with 

averaged blowing ratio is relatively small for the shaped holes, particularly, for the 

compound angle shaped holes.  

Fig. 5.8 shows the effect of hole configurations on film cooling effectiveness. 

For the stagnation rows, the holes are all angle to the radial direction, therefore, the lines 

for the same hole shape fall together. In general the shaped holes (red line) give better 

effectiveness than the cylindrical holes (black line) except at very low average blowing 

ratio M=0.5. Between the hole rows (0<s/d<10), the radial holes (both cylindrical hole 

and shaped holes) offer higher effectiveness than their compound angle counterparts. 

Downstream of film holes (s/d>10), the compound angle holes offer higher 

effectiveness at lower average blowing ratios (M=0.5 and M=0.75). At higher average 

blowing ratios (M=1.5 and M=2.0), the effectiveness from the radial angle shaped holes 

is slightly higher than compound angle shaped holes; the compound angle cylindrical 

higher than the radial angle cylindrical holes.  

Fig. 5.9 shows the film cooling effectiveness distribution for the three-row film 

cooling design. It can be seen that effectiveness level dramatically decreases with less 

number of film cooling holes. However, some characteristics observed in seven-row 

design also take place in the three row design. When the average blowing ratios 

increase, the effectiveness in the stagnation region (between the film rows) increases; it 

decreases in the downstream (s/d>7) region. The mainstream momentum is small in the 

stagnation region; the jet interaction with mainstream is limited. More coolant is 

accumulated in this region and convected to downstream with more coolant injection.  

Further downstream, the mainstream momentum increases. The interaction between the 
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Fig. 5.9  Film cooling effectiveness distribution for three-row design 
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 coolant and the jet is enhanced.  When the jet momentum increases, the jets are less 

deflected by the mainstream, and tend to penetrate the mainstream.  Therefore, the 

effectiveness on the surface reduces. For the same hole geometry (either cylindrical hole 

or shaped hole), it can been seen that the coolant jets from compound angle holes are 

narrower than that from radial angle holes. The jets less spread out and film coverage 

reduces. When compared with the cylindrical holes, the superiority of shaped holes in 

film coverage is obvious, particularly at higher average blowing ratios.  

Figure 5.10 shows the average blowing ratio effect on spanwise averaged 

effectiveness for the three-row design. When the average blowing ratio increases, the 

effectiveness in the area between the stagnation row and downstream row (s/d<5) 

increases for all these hole configurations. However, the trend reverses further 

downstream (s/d>7). The effectiveness for the shaped holes is relatively insensitive to 

average blowing ratio variation in this region (s/d>7), particularly for the radial angle 

shaped holes.  

The comparison of spanwise averaged film cooling effectiveness from different 

hole configurations is shown in Fig. 5.11. The radial angle shaped holes give best film 

cooling effectiveness. The evidence is more observable at higher averaged blowing 

ratios. In general, the shaped holes give better effectiveness than cylindrical holes; the 

radial angle holes give better effectiveness than compound angle holes.  

Fig. 5.12 shows the area averaged film cooling effectiveness. The abscissa is 

coolant mass consumption normalized with the case of seven-row at M=1. The seven-

row design produces better effectiveness than the three-row at similar coolant 

consumption. The area averaged effectiveness from the radial angle holes is higher than 
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Fig. 5.12 Area averaged effectiveness 
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the compound angle holes, the shaped holes is higher than the cylindrical holes for both 

seven-row and three-row designs. The radial angle shaped holes give best film 

effectiveness among the four configurations.  

5.3 Conclusions 

Two leading edge film cooling designs were investigated — a heavily film 

cooled leading edge with seven rows of film holes and a moderately film cooled model 

with three rows of film holes. For each design, four different film cooling hole 

configurations were studied. Pressure Sensitive Paint (PSP) experiments were 

performed to measure the film cooling effectiveness on leading edge models. PSP is the 

superior method for determining the film cooling effectiveness, especially for the 

surfaces with heavily distributed film holes.  Because PSP relies on the mass transfer 

rather than heat transfer, inherent problems associated with heat transfer methods are 

avoided. Main finding from the study are: 

1. The film cooling effectiveness for the seven-row design is much higher than that 

for the three-row design at the same average blowing ratio or at same amount of 

coolant consumption. Because of large row-to-row spacing, the film 

accumulation is relatively insignificant for the three-row models.  While the jets 

accumulation enhances for the seven-row models; the superposition of the 

coolant jets leads to elevated effectiveness level.  

In general, the shaped holes offer higher effectiveness than cylindrical hole at 

intermediate and high average blowing ratios (M=0.75~2.0) for both the three-

row and seven-row designs. The advantage of shaped holes is more evident at 

higher average blowing ratios (M=1.5 and 2.0). Due to increased breakout area, 
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the jet momentum from the shaped holes is reduced. Therefore, the coolant jets 

stay closer to the surface, and result in a higher effectiveness.  

2. Compared with compound angle holes, the coolant jets from radial angle holes 

are more deflected by the mainstream and cover a wider surface area,. For the 

three-row model, the radial angle holes provide higher effectiveness than its 

compound angle counterparts. For seven row model, similar behavior is 

observed at higher average blowing ratios (M=1.0~2.0).  

3. For both three-row and seven-row designs, the effectiveness increases with 

increasing of average blowing ratios in the stagnation region. In the downstream 

region, the enhanced interaction (mixing) between coolant jets and mainstream 

cause effectiveness decrease when average blowing ratio increases.  
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6. EXPERIMENTAL INVESTIGATION OF TRAILING EDGE SLOT FILM 

COOLING 

6.1 Experimental Setup 

Fig. 6.1 schematically shows the test facilities and optical setup. The low speed 

wind tunnel used in leading edge film cooling study is used for this study. The details of 

wind tunnel setup can be referred to Section 5. For optical access, the side wall of the 

wind tunnel was made of plexiglass. A CCD camera and a strobe light (excitation light) 

for the PSP test were placed close to the sidewall. Fig. 6.2(a) shows the schematic of the 

test section with sidewall removed to expose the interior of the test section. A turbine 

blade was modeled as a semicylinder followed by a symmetric afterbody. The current 

study was focused on film cooling on pressure side cutback trailing edge region. The 

mainstream flow on the suction side has little effect on the pressure side film cooling. A 

symmetric configuration was chosen because it was easy in fabrication. The trailing 

portion was tapered with an angle of 6°. The internal cooling design was similar to Lau 

et al.’s [91]. Lau et al. [91] demonstrated the internal heat transfer on the blade sidewalls 

was enhanced by 20%-70% with the blockages inserts. In the current design, two 

impingement plates spaced 3.56 cm apart were inserted into the internal passage. The 

impingement holes in the two plates, with a diameter of 0.95 cm, were staggered to each 

other. The cooling air turned to right before passing through the first impingement 

plates. Coolant jets discharging from the second plate impinged on the internal land of 

the trailing edge model. The trailing edge model simulated a turbine 
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Fig. 6.1 Test facilities and optical setup 
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Fig. 6.2  (a) Schematic of test section (b) dimensions of test section 
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blade trailing edge with pressure side cutback. The cutback trailing edge allows coolant 

traveling inside the internal cooling passage to discharge through the discrete slots, so 

that the trailing portion of the blade can be cooled. The notions for the slot are labeled in 

Fig. 6.2(a); detailed dimensions of the test section can be found in Fig. 6.3(b). To 

support the trailing edge structure, lands,  with width 0.64cm, were periodically placed 

along the spanwise direction. The land divided the cutback trailing edge into nine 

discrete slots. Each slot had a width (w) of 1.91cm and length (L) of 5.2cm. Because the 

lip thickness (t) is an important parameter that affects film cooling effectiveness, three 

trailing edge configurations with different lip thickness to slot height ratios (t/s) were 

chosen to study the effect of lip thickness. Fig. 6.3 shows the trailing edge model 

configurations with t/s of 0.6 (a thin lip), 1.0 (an intermediate thick lip) and 1.4 (a thick 

lip).  The three t/s ratios (0.6, 1.0 and 1.4) were chosen in the range of real turbine blade 

designs. The configuration with t/s of 1.0 was chosen as a baseline design to evaluate 

the other designs. In the three designs, the slot height (s) remained constant, i.e. 

0.635cm. The ratio t/s was achieved by varying the lip thickness. The geometrical 

parameters of the slot are also shown in Fig. 6.3. 

Tests were done at two different mainstream conditions as shown in Fig. 6.4(a) 

and Fig. 6.4(b). In the first case, there was no obstruction in the wind tunnel; the flow in 

the trailing edge portion was slightly decelerated. In the second case, a guide board was 

inserted in the wind tunnel. The mainstream flow was accelerated about two times from 

leading edge to the trailing edge. The flow in the second case more resembles the 

condition in turbine blade cascade environment. For both cases, the mainstream velocity 

near the trailing edge model was set at 20m/s. The location of pitot tube probes, which 
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Fig. 6.3 Trailing edge models with geometrical parameters 
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Fig. 6.4 Freestream flow conditions (a) no acceleration (b) with acceleration  
(c) velocity profile inside boundary layer 
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measured the mainstream velocity, are indicted in Fig. 6.4.  Boundary layer thickness 

for the two different mainstream flow conditions was measured with a boundary layer 

probe (total pressure probe). The probe was located 2.5cm upstream of the slot exit. The 

boundary layer thickness (δ) for the two mainstream conditions was 13mm (case 1) and 

8mm (case 2), which corresponded to boundary layer thickness to slot height ratio (δ/s) 

of 2.1 and 1.3, respectively. In the real engine condition, the δ/s is about 1. So the 

second case was closer to engine condition. The velocity profile inside the boundary 

layer was shown in Fig. 6.4(c) and compared with the 1/7 power law. 

Table 6.1 shows the test cases for the trailing edge film cooling study. At each 

mainstream condition, film cooling effectiveness was measured at different blowing 

ratios. The blowing ratio was defined as the coolant mass flux ratio to mainstream mass 

flux ratio, i.e., M=ρc Vc/ρm Vm. For the baseline configuration (t/s=1.0), five blowing 

ratios were tested covered a range of 0.25 to 1.5. For the other two configurations, three 

typical blowing ratios were tested, i.e. M=0.5, 1.0 and 1.5.  

6.2 Results and Discussions 

To aid understanding of the film cooling effectiveness data, Fig. 6.5 shows 

conceptual view of interaction between the mainstream and the coolant. Similar to the 

wake generated by the blade trailing edge, small wakes (eddies) was created by the lip 

at the slot exit. The wakes bring additional turbulence and enhance the mixing between 

the coolant and the mainstream. Thicker lips generate larger wakes. When ejecting from 

the slots, the coolant also experience expansion in both spanwise (y) and pitchwise (z) 

direction. Therefore, coolant may also climb over the land to gain film effectives.  
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Table 6.1 Test Cases for Trailing Edge Slot Film Cooling 

 δ/s=2.1 δ/s=1.3 

Configuration. 1 (t/s=0.6) M=0.5, 1.0, 1.5 M=0.5, 1.0, 1.5 
Configuration 2 

(baseline, t/s=1.0) 
M=0.25, 0.5, 0.75, 

 1.0, 1.25, 1.5 
M=0.25, 0.5, 0.75,  

1.0, 1.25, 1.5 
Configuration. 3 (t/s=1.4) M=0.5, 1.0, 1.5 M=0.5, 1.0, 1.5 
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Fig. 6.5 Conceptual view of mainstream and coolant jet interaction 
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Figure 6.6-6.8 show the effectiveness distribution on the slots, lands, and slot sidewalls. 

The abscissa and ordinate were normalized with slot height (s). As indicated in Fig. 6.3, 

the origin of x is the edge of the lip, y the midspan of the mode,l and z the slot height 

direction. Effectiveness was taken for the middle three slots including the lands, while 

for the slot sidewalls, only effectiveness on the middle sidewall was measured. 

Figure 6.6 shows the effectiveness on the slots and lands for the case of no 

mainstream acceleration where δ/s=2.1. A wide range of blowing ratios (from M=0.25 

to M=1.5) were studied for the baseline configuration (t/s=1.0).  Three typical blowing 

ratios were studies for the other two trailing edge configurations. It can be seen from 

Fig. 6.6(a) for the baseline configuration (t/s=1.0), the film cooling effectiveness near 

the slot is quite high, approximately 0.95. Close to the trailing, it slowly decays to 0.85 

for the moderate and high blowing ratios (M=0.75 to M=1.5). Even for the smallest 

blowing ratio M=0.25, good film effectiveness level (about 0.5) at trailing edge is 

maintained.  The film covered area on the slot with elevated film cooling (η>0.9)  

becomes larger with increasing of blowing ratios, but not significantly. From M=1.0 to 

M=1.5, the film effectiveness level and film coverage are comparable. The benefit to the 

film effectiveness is marginal with large amount of coolant ejection. On the contrary, it 

will cause more mixing loss (between the coolant and mainstream) and decrease the 

aerodynamics performance. Therefore, from the aerodynamic point of view, blowing 

ratio M=1.0 is desired. At lowest blowing ratio M=0.25, the coolant non-uniform 

distribution along the spanwise direction is observable from the effectiveness 

distribution on the slots. On the lands, the effectiveness level is much lower than that on 

the slots. The effectiveness on the lands increases from the slot to the trailing edge 
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Fig. 6.6 Film cooling effectiveness distribution on slots and lands without mainstream acceleration 
(δ/s=2.1) 
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(along x/s). From the conceptual sketch of Fig. 6.5, coolant expansion is expected to be 

stronger in the downstream region as the height of lands reduces. Therefore, 

downstream region of the lands gains more coolant protection than upstream region.  

Fig. 6.6(b) and Fig. 6.6(c) shows effectiveness on the slots and lands for the 

configuration of thin-lip (t/s=0.6) and thick-lip (t/s=1.4), respectively. Compared with 

Fig. 6.6(a), it can be seen that the effectiveness on the slot for the thin-lip (t/s=0.6) is 

higher, while for the thick-lip (t/s=1.4) is lower. Consequently, the effectiveness on the 

land increases for the thin-lip, decreases for the thick-lip. As depicted in Fig. 6.5, the lip 

creates wakes. The wakes result in additional mixing between the mainstream and 

coolant and reduce the film cooling effectiveness. The wakes associated with the thin 

lips are relatively small in size and weak in strength, so the mixing it incurring is also 

weak. Therefore, the effectiveness for the thin lips is usually higher for thinner lips. It is 

expected the slots with sharp edge (like knife edge) will give best film effectiveness due 

to minimized wakes. However, the lip thickness is limited by the structural integrity in 

blade designs. It can not be infinite small like a knife edge. Similarly to the baseline 

configuration, the film effectiveness on the slots for these two configurations increases 

with increasing of blowing ratios, but insignificantly. On the lands, the effectiveness in 

the downstream region is higher than that in the upstream region. 

Fig. 6.7 shows the film cooling effectiveness on the slot sidewall for the case of 

no mainstream acceleration ( i.e. δ/s=2.1). For the baseline case t/s=1 in Fig. 6.7(a), 

there is a big increase in effectiveness from M=0.25 to M=0.5. However, from M=0.5 to 

M=1.5, the increase in effectiveness is relatively small. The jet expansion can be clearly 

seen by the existence of effectiveness where z/s>1 (larger than slot height). As the 



128 

 

Fig. 6.7 Film cooling effectiveness distribution on slot sidewalls without mainstream acceleration 
(δ/s=2.1) 
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 sidewalls tapers down, it is anticipated that the coolant is less confined in the channel. 

It expands and crosses over the lands. That’s why the effectiveness on the land gradually 

increases with x/s. The advantage of thin-lip is shown in Fig. 6.7(b) again. At t/s=0.6, 

the coverage with elevated effectiveness (η>0.9) is extended all the way to the trailing 

edge. Compared with Fig 6.7(a) for t/s=1, the area with elevated effectiveness for 

t/s=1.4 seems extending further to downstream region. 

Figure 6.8 shows the effectiveness distribution on the slots and lands for the case 

of mainstream accelerated where δ/s=1.3. The effect of blowing ratio and lip thickness 

under this flow condition is similar to the condition without mainstream acceleration as 

discussed earlier for Fig. 6.6. The discussion of Fig. 6.8 will be focused on the effect of 

boundary layer thickness by comparing with Fig. 6.6. For all the three configurations, 

the effectiveness level near the slot is about the same as the condition δ/s=2.1. The 

difference resulted from the boundary layer thickness is observed in the downstream 

region close to the trailing edge. For the baseline configuration (t/s=1.0), the 

effectiveness on the slot near trailing edge increases at low blowing ratios M=0.25 and 

M=0.5. When the blowing ratios further increase, the effectiveness in this region 

slightly decreases. Figure 6.8(b) shows the effectiveness distribution for the 

configuration of t/s=0.6. Compared with Fig. 6.6(b), the effectiveness reduces at M=0.5 

and increases at M=1.0 and M=1.5 on the trailing portion of the slot. This trend is 

similar to that observed for baseline configuration of t/s=1.0. However, for the thick lip 

t/s=1.4, the effectiveness on the slot trailing portion reduces for all the three blowing 

ratios with the thinner boundary layer. As shown in Fig. 6.4(c), the velocity gradient 

inside the thin boundary layer is larger than that in thicker boundary layer. This results 
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Fig. 6.8 Film Cooling effectiveness distribution on slots and lands with mainstream acceleration 
(δ/s=1.3)
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 in more shear mixing. Therefore the mainstream and coolant mixing enhances and 

effectiveness reduces with thinner boundary layer. 

Figure 6.9 shows the laterally averaged effectiveness on the slot, land and slot 

sidewall for the baseline case (t/s=1.0) at δ/s=2.1.  In general, the effectiveness increases 

with increasing of blowing ratios. On the slot surface, the effectiveness level at the slot 

exit (x/d < 4) is about the same for all blowing ratio except M=0.25. Further 

downstream, the effectiveness for the lower blowing ratios decays faster. However, from 

M=0.5 to M=1.5, the difference in effectiveness at the trailing edge (x/s≈7.5) is less than 

10%.  On the sidewall, the effectiveness gradually increases along streamwise direction 

except M=0.25. At M=0.25, the small amount of coolant quickly mixes with the 

mainstream. The effectiveness on the sidewall increases with increasing of blowing 

ratios, however, the increment is insignificant from M=0.5 to M=1.5. On the lands, the 

effectiveness level is much lower than on the slots and sidewall (noted the different 

scale). The effectiveness increases as x/s increases. Toward the trailing edge, the height 

of the side decreases, therefore, the coolant lateral expansion increases and more coolant 

crosses over the lands.  

Figure 6.10 shows the spanwise averaged effectiveness for the three 

configurations under the condition of δ/s=2.1. The same configurations (t/s) are denoted 

by the same color, the different blowing ratios are identified by different symbols. In 

general, the thin lip gives higher effectiveness (blue>black>pink) at the same blowing 

ratios.  On the slots, the effectiveness level is about the same for the three configurations 

at same blowing ratios. Moreover, the high effectiveness maintains for a distance about 

x/s=4. Further downstream, the effectiveness decays faster for the thicker lips. For the 
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 same configuration (t/s), the effectiveness on the slots only slightly increases with 

blowing ratios. Particularly, at M=1.0 and M=1.5, the increment is not noticeable. On 

the sidewall, the difference in effectiveness for different lips is more profound. For the 

thinner lip design, the height of sidewall is correspondingly smaller. Therefore, the 

coolant jets are able to covered larger area of the side wall with elevated effectiveness. 

On the land, the effectiveness increases as the flow goes to the trailing edge. Again, the 

thinner lip exhibits higher effectiveness due to coolant jet expansion and smaller wakes. 

Figure 6.11 shows the spanwise averaged effectiveness under the condition of 

thin boundary layer condition (δ/s=1.3). On the slot floor near the slot exit (x/s<4), the 

thin lip doesn’t appear advantage over the thicker lips at the thin boundary layer. The 

shear mixing is stronger for the thin boundary layer condition. The small step (lip 

thickness) of the thin lip leads to quick interaction between the mainstream and coolant, 

and reduces the effectiveness. Further downstream, the vortex shedding is dominant 

over the shearing mixing, therefore, the thin lips exhibit advantage in effectiveness than 

the thick lips. On the lands, the combined effect of enhanced shearing mixing and 

vortex makes t/s=1 performing better than the other lip thickness.  

Figure 6.12 shows the effect of boundary layer thickness. In general, the 

effectiveness slightly increases with increasing boundary layer thickness (open symbols 

> close symbols) on the slots. While on the lands, the trend is reversed. The thin 

boundary layer thickness gives better effectiveness. With the thin boundary layer, the 

mixing between mainstream and coolant enhances and the effectiveness in the slot 

reduces. However, the enhanced mixing spreads more coolant to the land, therefore, the 

effectiveness on the lands are higher at thin boundary layer condition.  
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Fig. 6.11 Spanwise averaged effectiveness with mainstream acceleration (δ/s=1.3) 
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Fig. 6.13 shows slot film cooling effectiveness and compares the current data 

with Taslim’s correlation [83]. Near the slot, the current data is lower than the 

correlation. Further downstream, the data from the current study is higher than the 

correlation. The difference may be caused by the different trailing edge design and 

mainstream flow conditions.  

 

Fig. 6.13 Slot film cooling effectiveness and comparison with correlation [83] for δ/s=2.1  
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6.3 Conclusions 

The effect of the lip thickness on the trailing edge slot film cooling effectiveness 

was investigated under two mainstream flow conditions and varying blowing ratios. 

Three trailing edge models with pressure side cutback were presented. Effectiveness 

data on the slots, lands and sidewalls were measured using pressure sensitive paint 

technique. Based on the heat/mass analogy, the conduction error in effectiveness data is 

eliminated in PSP measurement. This is particularly useful for the effectiveness 

measurement on the narrow land and slot sidewalls. Main findings for the current study 

are as follows: 

1. The film effectiveness on the slot floor (0.8~0.95) is slightly higher than the 

sidewall (0.7~0.95). The lands receive the lowest film protection, particularly in 

the region near the slot exit (0.1~0.3).   

2. The film effectiveness on the slots, lands and sidewalls increases with increasing 

blowing ratios. However, the increment is mild from M=0.5 to M=1.5.  

3. The thinner lip offers higher effectiveness due to the small wakes. The effect of 

lip thickness is more evident in the downstream region of the slot floor where 

x/s>4. In this region, the vortex shedding enhances the interaction (mixing) 

between the mainstream and coolant. The advantage of thinner lip also presented 

on the sidewalls and lands with increased overall effectiveness.  

4. The interaction of mainstream and coolant enhances with the thinner boundary. 

More coolant is dispersed from the slots to the lands. Therefore, the thinner 

boundary layer thickness reduces effectiveness on slots but increase effectiveness 

on lands. 
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5. As the sidewall height decrease in the streamwise direction, the lateral expansion 

of coolant increases. Therefore, the effectiveness increases on the land in the 

streamwise direction. 
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7. SUMMARY 

Film cooling is commonly used in modern high temperature and high pressure 

blades as an active cooling scheme. In this study, the film cooling effectiveness in 

different regions of gas turbine blades was investigated with various film hole/slot 

configurations and mainstream flow conditions. The study consisted of four parts: 1) 

effect of upstream wake on blade surface film cooling, 2) effect of upstream vortex on 

platform purge flow cooling, 3) influence of hole shape and angle on leading edge film 

cooling and 4) slot film cooling on trailing edge. Pressure sensitive paint (PSP) 

technique was used to get the conduction-free film cooling effectiveness distribution.  

The effect of film cooling hole configurations and upstream wake was studied 

for a fully film cooled blade. Two hole configurations were considered: axial shaped 

hole and compound angle shaped hole. The upstream wake was simulated by the 

stationary rods periodically placed upstream of the blade passage at different phases. 

Results revealed that the tip leakage vortices and endwall vortices sweep the coolant 

film on the suction side to the midspan region. Because of the surface curvature, the 

effectiveness is lower on the pressure surface than that on the suction side. The presence 

of upstream wake rods results in lower film cooling effectiveness on the blade surface. 

The compound angle shaped holes outperform the axial angle shaped holes by the 

elevated film cooling effectiveness, particularly at higher blowing ratios. 

The effect of the upstream vane passage vortex on the downstream blade 

platform film-cooling effectiveness was examined in a five-blade linear cascade. A 

typical labyrinth-like seal was placed upstream of the cascade blades to simulate purge 

flow from a stator-rotor gap. Delta wings were periodically placed upstream of the 
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blades to model the effect of the passage vortex generated in the vane passage on the 

downstream blade platform film cooling effectiveness. The strength of vane passage 

vortex was varied by changing the size of the delta wings and mainstream attack angle 

to the delta wings. The vortex generated by the delta wings has a profound impact on 

the platform film cooling effectiveness. The upstream vortex creates more turbulent 

mixing within the blade passage and results in reduced film cooling effectiveness on the 

blade platform. When the vane induced secondary flow is included, the need for 

additional platform cooling becomes very obvious. 

The effect of hole geometry and angle on turbine blade leading edge film 

cooling was studied in a low speed windtunnel. The leading edge was modeled by a 

blunt body with a semicylinder and an afterbody. Two film cooling designs were 

considered: a heavily film cooled leading edge feathered with seven rows of film 

cooling holes, and a moderately film cooled leading edge with three rows. Results 

showed that the shaped holes provide higher film cooling effectiveness than the 

cylindrical holes, particularly at higher average blowing ratios. The radial angle holes 

have better effectiveness than the compound angle holes at M=1.0~2.0. The seven-row 

film cooling design results in much higher effectiveness on the leading edge region than 

the three-row design at the same average blowing ratio or same coolant mass flow rate.  

Film cooling effectiveness was measured for trailing edge models with pressure 

side cutback. The trailing edge models were cooled by ejecting coolant from spanwise 

discrete slots located on the pressure side. Two mainstream flow conditions were 

considered. In one condition, the mainstream flow was not accelerated; a relatively 

thicker boundary layer was developed upstream of slot exit. In the other condition, the 
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mainstream flow was accelerated and a thinner boundary layer was developed. The 

effect of slot lip thickness and blowing ratios on film effectiveness under the two 

mainstream conditions were investigated. Results showed that the film cooling 

effectiveness increases with increasing of blowing ratios. Thinner lips offer higher 

effectiveness. The effect of lip thickness is more evident in the downstream region of 

the trailing edge with faster decay in effectiveness for thicker slot lips. The film 

effectiveness on the slots decreases when the incoming mainstream boundary layer 

thickness decreases.  
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