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ABSTRACT

Least Squares Based Finite Element Formulations

and Their Applications in Fluid Mechanics. (December 2006)

Vivek Prabhakar, B. Tech., Indian Institute of Technology, Kanpur

Chair of Advisory Committee: Dr. J. N. Reddy

In this research, least-squares based finite element formulations and their applications

in fluid mechanics are presented. Least-squares formulations offer several computational

and theoretical advantages for Newtonian as well as non-Newtonian fluid flows. Most

notably, these formulations circumvent the inf-sup condition of Ladyzhenskaya-Babuska-

Brezzi (LBB) such that the choice of approximating space is not subject to any compatibil-

ity condition. Also, the resulting coefficient matrix is symmetric and positive-definite. It

has been observed that pressure and velocities are not strongly coupled in traditional least-

squares based finite element formulations. Penalty based least-squares formulations that

fix the pressure-velocity coupling problem are proposed, implemented in a computational

scheme, and evaluated in this study. The continuity equation is treated as a constraint on

the velocity field and the constraint is enforced using the penalty method. These penalty

based formulations produce accurate results for even low penalty parameters (in the range

of 10-50 penalty parameter). A stress based least-squares formulation is also being pro-

posed to couple pressure and velocities. Stress components are introduced as independent

variables to make the system first order. The continuity equation is eliminated from the

system with suitable modifications. Least-squares formulations are also developed for vis-

coelastic flows and moving boundary flows. All the formulations developed in this study

are tested using several benchmark problems. All of the finite element models developed

in this study performed well in all cases.

A method to exploit orthogonality of modal bases to avoid numerical integration and
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have a fast computation is also developed during this study. The entries of the coefficient

matrix are calculated analytically. The properties of Jacobi polynomials are used and most

of the entries of the coefficient matrix are recast so that they can be evaluated analytically.
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CHAPTER I

INTRODUCTION

A. Background

The past two decades have witnessed a great deal of progress in the area of computational

fluid dynamics (CFD). A large number of methods have been proposed for the numerical

solution of the Navier-Stokes equations governing flows of viscous incompressible fluids.

Direct discretization methods include finite difference and finite volume techniques, the

finite element method using conformal and nonconformal elements, and spectral methods.

The finite element method is considered to be the most effective method for solving solid

mechanics problems, but the method has not achieved the same level of acceptance in CFD

compared to the finite difference or finite volume techniques. This is primarily due to two

reasons: (1) CFD is dominated by researchers whose primary education and background is

in fluid mechanics and, consequently, they are exposed to finite difference techniques early

in their education, and (2) finite difference and finite volume techniques are very simple in

concept when compared to the finite element method, which involves considerable formu-

lating effort and computational time due to non-segregated approach used to solve the finite

element equations. However, the finite element method enjoys the generality of application

to geometrically complex problems as well as to multiphysics problems. The method is

gaining popularity in CFD.

The Navier-Stokes equations can be expressed in terms of the primitive variables (e.g.,

velocities and pressure), secondary variables (velocity gradients, vorticity, stream function,

stresses, etc.), or a combination of the two. The finite element model depends on the choice

of variables as well as on the method (e.g., Galerkin, collocation, least-squares, and so on)

This dissertation follows the style ofIEEE Transactions on Automatic Control.
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used to satisfy the equations. Often, the finite element model is based on weighted-integral

formulations where the choice of the weight function gives rise to different models.

Among the finite element models that involve primitive variables, the pressure-velocity

finite element formulation is the most common one. The pressure-velocity formulation has

several disadvantages. When the standard weak form Galerkin formulation is used, the

biggest problem to be faced is the use of compatible approximation spaces for the veloc-

ity field and pressure variable. The choice must be such that they satisfy the inf-sup (or

LBB) condition. Also, for nonlinear equations, coefficient matrix is nonsymmetric and

computational cost is high.

In the past few years, finite element models based on least-squares variational princi-

ples have drawn considerable attention for the solution of Stokes and Navier-Stokes equa-

tions ([1]-[7]). Least-squares based finite element formulations offer several theoretical

and computational advantages. Most notably, such formulations circumvent the inf-sup

condition of Ladyzhenskaya-Babuska-Brezzi (LBB). As a result, equal order interpolation

functions can be used for all field variables. They also yield symmetric, positive-definite

coefficient matrix and, therefore, robust iterative solvers can be used to solve the resulting

system of algebraic equations.

Previous studies [8, 9] showed that mass conservation is not very good in least-squares

based formulations. Chang and Nelson [8] suggested that this is because the error is min-

imized on a global scale, allowing errors of significant size to remain on a local scale,

especially in areas in which the gradients of the variables are of significant size. They

also proposed a remedy, which consists of enforcing the continuity equation as an explicit

constraint through the use of Lagrange multipliers, negates one of the main advantages of

the least-squares methods, namely, the positive-definiteness of resulting coefficient matrix.

Deang and Gunzburger [10] also studied mass conservation in least-squares formulations

and analyzed weighted least-squares functionals. These formulations have better mass
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conservation than unweighted formulations but conditioning number of the resultant co-

efficient matrix becomes high. Bolton and Thatcher also addressed this problem for Stokes

[9] and Navier-Stokes equations [11] and proposed weighting of particular terms in the

least-squares functional. Pontaza and Reddy [5, 12] used high order basis functions and

they did not observe problems with mass conservation. However, for unsteady problems,

numerical solutions became unstable if sufficiently highp-level was not used.

Another problem associated with least-squares formulations is an ill-behaved tem-

poral evolution of pressure field. In least-squares based finite element formulations, the

divergence-free constraint on the velocity field is enforced directly through the least-squares

functional and, thus, the pressure does not have a well-defined role in these formulations.

Unsteady problems, especially with inflow/outflow boundaries, produce spurious pressure

evolution with time due to this lack of strong pressure velocity coupling.

B. Present study

In this work we present penalty based least-squares finite element formulations for fluid

flow problems. We combine the idea of least-squares variational principles with the penalty

method. Least-squares formulations result in a symmetric, positive-definite coefficient ma-

trix, which can be solved using robust iterative methods like preconditioned conjugate gra-

dient method. The least-squares formulation results in a minimization problem rather than

a saddle point problem and the choice of approximations used for the field variables is

not subjected to the LBB condition. High-order element expansions are used to construct

the discrete model, which does not experience locking. Equal-order integration is used for

all variables in this study. We implement iterative penalty method proposed by Gunzberger

[13]. The best feature of present formulation is that it requires very small penalty parameter,

Re= 10− 40, to yield very accurate solution. For such small penalty parameters, the coef-
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ficient matrix is better conditioned and convergence is not slow as in the traditional penalty

finite element model. Due to the use of high-order expansions, we also obtain very accurate

velocity as well as pressure fields. Thus, the disadvantages of the weak form penalty finite

element model are overcome by the penalty least-squares finite element model.

We present this formulation as an alternative to the spectral/hp least-squares finite

element model presented by Pontaza and Reddy [5, 12] for steady and unsteady problems.

In their formulation the divergence-free constraint on the velocity field is enforced directly

through the least-squares functional, and pressure is retained as an independent variable.

For unsteady problems, this approach seems to have disadvantages as the time-evolution of

the pressure field is not well-behaved. It is believed that it lacks a strong pressure-velocity

coupling. The present formulation avoids this problem altogether by eliminating pressure

via Eq. (2.7).

The present penalty least-squares finite element models are better alternative to tradi-

tional weak form penalty finite element model also. Advantage of the present models are

that they produce very accurate results for very low penalty parameters. In addition, there

is no need to under-integrate penalty terms of the coefficient matrix. We note that the com-

puted pressure fields are continuous in this formulation as opposed to weak form penalty

finite element formulation, and their values are found to be in excellent agreement with

published results. This penalty least-squares formulation produces a symmetric positive-

definite coefficient matrix while the weak form penalty finite element formulation produces

unsymmetric coefficient matrix.

Thep-version of the finite element method is known to possess superior convergence

characteristics compared with theh-version. Nevertheless, most of the current finite ele-

ment research has involved the use of low-order finite element approximation mainly be-

cause of low computational cost associated withh-version. In this study we implement

the penalty least-squares formulation using bilinear basis functions also, which are widely
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used in practice. When using bilinear basis functions a least-squares collocation approach

is appropriate [14], which we adopt here.

Another way to couple pressure and velocity is to eliminate the continuity equation

and include it in the Navier-Stokes equations implicitly. In this work, we present a stress

based least-squares finite element formulation in an attempt to couple velocity and pressure

by eliminating continuity equation. In the proposed formulation, continuity equation is

eliminated from the system of governing equations with suitable modifications.

We extend least-squares based formulations to viscoelastic flows and use Oldroyd-B

constitutive model. We develop basic least-squares formulation and penalty least-squares

formulation for viscoelastic flows. The second order governing equations are recast as

first order equations by introducing components of stress tensor. The benchmark problem

chosen to test the formulations is transient plane Poiseuille flow in a channel bounded by

two parallel fixed plates. Weissenberg number varies between 1 and 10.

Another topic which we address in this study is computational cost associated with

p-methods. Most of the finite element implementations use low order expansions because

they require less computational cost per degree of freedom, and convergence is achieved

by refining the mesh. On the other hand, high order expansions demonstrate exponential

convergence. If high accuracy is required, then we can justify using high-order methods

by the fact that the error will converge at a faster rate than the increase in operation count.

Therefore, it will ultimately be more efficient to use high order methods. Nevertheless,

the cross-over point between the required accuracy and relative cost of low and high order

methods for a given application is a point of much debate. A further argument which

can be presented for using high order methods is the numerical diffusion and the enhance

phase properties that these schemes demonstrate [12]. In this study, we implement also

hierarchical modal bases. In addition to the flexibility in handling nonuniform resolution

requirements, hierarchical bases can lead to better conditioning of mass and coefficient
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matrices [15]. We implement these bases in the context of least-squares finite element

model [5, 12]. As described earlier, high order expansions require more computational

time per degree of freedom (during Gauss quadrature to evaluate coefficient matrices). We

exploit orthogonality of Jacobi polynomials, and evaluate the coefficient matrices without

using any quadrature. We recast the terms of the coefficient matrix using the properties of

Jacobi polynomial and evaluate them exactly. For orthogonal elements, coefficient matrix

entries are written in alternative forms and analytical expressions are developed to calculate

them exactly. It is to be mentioned that multidimensional shape functions are constructed

using tensor product of one-dimensional shape functions.

Lastly, we present least-squares based finite element method to simulate moving bound-

ary flows. We use the volume of fluid (VOF) method and model surface tension force using

the continuum surface force (CSF) model. The two-dimensional Navier-Stokes equations

are expressed as an equivalent set of first-order equations by introducing strain rates as

additional dependent variables. Thehp least-squares method is used to develop the finite

element model. We solve the broken dam problem to test this method and compare results

with the benchmark results of Martin and Moyce [16].
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CHAPTER II

SPECTRAL/HP PENALTY LEAST-SQUARES FINITE ELEMENT FORMULATION

FOR THE STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A. Introduction

The past two decades have witnessed a great deal of progress in the area of computational

fluid dynamics. A large number of methods have been proposed for the numerical so-

lution of the Navier-Stokes equations governing flows of viscous incompressible fluids.

Direct discretization methods include finite difference and finite volume techniques, the

finite element method using conformal and nonconformal elements, and spectral methods.

The finite element method is considered to be the most effective method for solving solid

mechanics problems but the method has not achieved the same level of acceptance in the

context of fluid flow analysis.

The velocity-pressure finite element formulation of the incompressible Navier-Stokes

equations has several disadvantages. When the standard weak form Galerkin formulation

is used, the biggest problem to be faced is the use of compatible approximation spaces for

the velocity field and pressure variable. The choice must be such that they satisfy the inf-

sup (or LBB) condition [17, 18]. The penalty finite element formulation circumvents this

problem. It also reduces one independent variable (pressure). However, the penalty formu-

lation has its own disadvantages. In principle, a very high penalty parameter(108 − 1012)

is required to obtain accurate solutions. For high penalty parameters, the contribution from

the viscous terms would be negligibly small compared to the penalty terms in the computer,

Numerical results reported in this chapter appear in the article “Spectral/hp penalty
least-squares finite element formulation for the steady incompressible Navier-Stokes equa-
tions” by V. Prabhakar and J. N. Reddy,J. Comp. Phys., vol. 215, pp. 274-297, 2006.
Copyright (2006) Elsevier Science.
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and a trivial solution is obtained. This is termed as “locking”. To circumvent locking and

to obtain acceptable solution, underintegration (reduced integration) of penalty terms has

been proposed [19]. The other problem with this formulation is inaccurate prediction of

the pressure, which is calculated using equation

p = −γ(∇ · u) (2.1)

WhenC0-continuous shape functions are used to interpolate velocities, pressure is discon-

tinuous along element boundaries, and an averaging is needed to obtainacceptablepressure

field [20]. However, pressure field computed in this manner is not very accurate; a very

high penalty parameter is needed to obtain accurate pressure. For large values of penalty

parameters, the condition number of the finite element coefficient matrix is very high and

hence the convergence of iterative solvers is very poor.

First penalty based finite element formulation for the Navier-Stokes equations was

proposed almost three decades ago and there have been subsequent improvements but it did

not gain much popularity mainly because of ill-conditioning of coefficient matrix which

renders iterative solvers ineffective. Recently, Bochov and Gunzburger [21] proposed

least-squares based penalty formulation for Stokes equations but their study was mathe-

matical and no numerical results were reported. Hasthaven and coworkers [22, 23] have

proposed spectral/hp penalty methods where they implement boundary conditions using

this approach.

In this chapter we present spectral/hp penalty least-squares finite element formula-

tion for fluid flow problems. We combine the idea of least-squares variational principles

with penalty method. Least-squares formulations result in a symmetric positive-definite

coefficient matrix, which can be solved using robust iterative methods like preconditioned
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conjugate gradient method. The least-squares formulation results in a minimization prob-

lem rather than a saddle point problem and the choice of elements is not subjected to the

LBB condition. High-order element expansions are used to construct the discrete model,

which does not experience locking. Equal-order integration is used for all the terms in this

study. We implement iterative penalty method proposed by Gunzberger [13]. The best

feature of present formulation is that it requires very small penalty parameter,10 − 40 to

yield very accurate solution. For such small penalty parameters, the coefficient matrix is

better conditioned and convergence is not slow as in the traditional penalty finite element

model. Due to the use of high-order expansions, we also obtain very accurate velocity as

well as pressure fields. Thus, the disadvantages of the weak form penalty finite element

model are overcome by the penalty least-squares finite element model.

We present this formulation as an alternative to the spectral/hp least-squares finite

element formulation presented by Pontaza and Reddy [5, 12] for steady and unsteady

problems. In their formulation the divergence-free constraint on the velocity field is en-

forced directly through the least-squares functional, and pressure is retained as an inde-

pendent variable. For unsteady problems, this approach seems to have disadvantages as

the time-evolution of the pressure field is not well-behaved. It is believed that it lacks a

strong pressure-velocity coupling. The present formulation avoids this problem altogether

by eliminating pressure via Eq. (2.7).

The present chapter is organized as follows. In section B, the penalty least-squares

finite element model for the steady incompressible Navier-Stokes equations is presented.

Numerical results are presented in section C. The spectral convergence is verified using the

exact solution of the Kovasznay flow problem. first we present results for 2D lid driven cav-

ity problem at Re=104 and compare the results with Jiang et. al [36]. Next, numerical re-

sults are presented for the two-dimensional flow over a backward-facing step and results are

compared with the benchmark solutions of Gartling [24] and Pontaza and Reddy [5]. Next,
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we consider flow past a circular cylinder at low Reynolds number and compare the pre-

dicted surface pressure distribution with experimental measurements of Grove et al. [25].

To test mass conservation rigorously, we solved 2D flow past a large circular cylinder in

a channel. Lastly, in section D, we extend this formulation to velocity-temperature cou-

pled problems and present results for buoyant flow inside a square enclosure and compare

results with the benchmark solution of Davis et al. [26].

B. The incompressible Navier-Stokes equations

Notations: Let Ω denote an open bounded domain inRn, n=2 or 3, having a sufficiently

smooth boundaryΓ. Throughout this dissertation, vectors will be denoted by boldface let-

ters, e.g.,u, and tensors by underlined boldface capitals, e.g.,T. We use the standard

notation and definition for the Sobolev spacesHs (Ω) and Hs (Γ), s ≥ 0, with corre-

sponding inner products denoted by(·, ·)s, Ω and(·, ·)s, Γ. By Hs (Ω) we denote the product

space[Hs (Ω)]n; andH1
0 (Ω) denotes the space of functions fromH1 (Ω) that vanish on the

boundaryΓ.

The steady Incompressible Navier-Stokes equations in dimensionless form can be

written as follows:

(u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (2.2)

∇ · u = 0 in Ω (2.3)

u = us onΓu (2.4)

n̂ · σ = f s onΓf (2.5)

whereu (x) is the velocity vector,σ = −p I + 1/Re
[
(∇u) + (∇u)T

]
is the total stress,
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p (x) is the pressure,f is a dimensionless force,n̂ is the outward unit normal on the bound-

ary of Ω, us is the prescribed velocity on the boundaryΓu, andf s are the prescribed trac-

tions on the boundaryΓf , Γ = Γu ∪ Γf andΓu ∩ Γf = ∅, and Re is the Reynolds number.

In the penalty method, pressure is eliminated from the Navier-Stokes equations using

the following expression, which follows from the application of the penalty method to the

Navier-Stokes equations with the divergence-free constraint (see [27], [28], and [29]):

p = −γ(∇ · u) (2.6)

Gunzberger [13] proposed an iterative penalty method

pn = pn−1 − γ(∇ · u) (2.7)

wheren is the nonlinear iteration number. An advantage of this method is that the value of

penalty parameter needed to enforce the continuity constraint is equal to the square of the

one needed in the non-iterative penalty method [13]. This, in turn, results in a coefficient

matrix with smaller conditioning number. In this study we use the iterative penalty method.

Therefore, the problem becomes one of finding the velocityu (x) such that

(u · ∇)u− γ∇(∇ · u)− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f −∇pn−1 in Ω (2.8)

u = us onΓu (2.9)

n̂ · σ = f s onΓf (2.10)

wheren in the superscript(n − 1) is the nonlinear iteration number. Since the solution at

iteration(n− 1) is known,∇pn−1 is known and therefore transferred to the right-hand side



12

of the equation.

1. The velocity-dilatation-vorticity first-order system

To cast the second-order system (2.8)-(2.10) into a first-order system, we introduce the

vorticity vector,ω = ∇× u, and use the vector identity

∇×∇× u = −∇2u +∇ (∇ · u)

We introduce another scalar independent variable dilatation, which is defined as

D = ∇ · u

Then Eqs. (2.8)-(2.10) can now be replaced by an equivalent system of first-order equations.

The problem now can be stated as one of finding the velocity vectoru (x), dilatationD (x),

and vorticityω (x) such that

(u · ∇)u− γ∇D +
1

Re
∇× ω = f −∇pn−1 in Ω (2.11)

ω −∇× u = 0 in Ω (2.12)

D −∇ · u = 0 in Ω (2.13)

u = us onΓu (2.14)

ω = ωs onΓω (2.15)

Typically Γu ∩ Γω = ∅, i.e., if velocity is specified at a boundary, vorticity need not be

specified there.
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a. L2 least-squares formulation

The least-squares functional of the problem can be set up by summing up the squares of

the residuals of the new set of equations

J (u, D, ω; f) =
1

2

( ∥∥ (u · ∇)u− γ∇D +
1

Re
∇× ω − f +∇pn−1

∥∥2

0

+
∥∥ ω −∇× u

∥∥2

0
+

∥∥ D −∇ · u
∥∥2

0

)
(2.16)

Considering the homogeneous pure velocity boundary condition case, the least-squares

principle for functional (2.16) can be stated as:

find the velocity vectoru (x), dilatationD (x), and vorticityω (x) such that

J (u, D, ω; f) ≤ J
(
ũ, D̃, ω̃; f

)
∀

(
ũ, D̃, ω̃

)
∈ X (2.17)

i.e.,

seek (u, D, ω) such that J (u, D, ω; f) is minimized over X.

where we use the space

X =
{

(u, D, ω) ∈ H1
0 (Ω)×H1 (Ω)×H1 (Ω)

}

The variational problem (after linearization using Newton’s method)corresponding to the

least-squares principle is given by

B
(
(u, D, ω) ,

(
ũ, D̃, ω̃

))
= F

((
ũ, D̃, ω̃

))
∀

(
ũ, D̃, ω̃

)
∈ X (2.18)

where
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B
(
(u, D, ω) ,

(
ũ, D̃, ω̃

))
=

∫

Ω

(
(u · ∇)u0 + (u0 · ∇)u− γD +

1

Re
∇× ω

)
·

(
(ũ · ∇)u0 + (u0 · ∇) ũ− γD̃ +

1

Re
∇× ω̃

)
dΩ

+

∫

Ω

(ω −∇× u) · (ω̃ −∇× ũ) dΩ

+

∫

Ω

(D −∇ · u)
(
D̃ −∇ · ũ

)
dΩ

and

F
((

ũ, D̃, ω̃
))

=

∫

Ω

(
f −∇pn−1 + (u0 · ∇)u0

) ·
(

(ũ · ∇)u0 + (u0 · ∇) ũ− γD̃ +
1

Re
∇× ω̃

)
dΩ

LetXhp denote a finite-dimensional subspace ofX. Then the least-squares discretized

model of the Navier-Stokes equations is defined by the following discrete variational prob-

lem: find
(
uhp, Dhp,ωhp

) ∈ Xhp such that

B
((

uhp, Dhp, ωhp
)
,
(
ũhp, D̃hp, ω̃hp

))
= F

((
ũhp, D̃hp, ω̃hp

))
∀

(
ũhp, D̃hp, ω̃hp

)
∈ Xhp

(2.19)

b. Expansion bases

Having defined the finite element framework in terms of the penalty least-squares formula-

tion, we need to choose proper basis functions to interpolate dependent variables. Almost

all the penalty finite element implementations use low order expansions, linear or quadratic,

and perform different order integration to integrate penalty terms and rest of the terms in

the coefficient matrix. In this study, we use high order interpolation functions that give

p-convergence but computational work associated per degree of freedom is more compared
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to that of low order interpolation functions. One way to tackle the computational problem

is to use expansion bases that are orthogonal. We use spectral bases that give exponential

convergence and, the same time, satisfy orthogonality conditions. It is to be mentioned that

all the variables are be approximated using the same interpolation functions since there is

no compatibility condition such as LBB condition in this formulation.

Nodal expansion:In the standard intervalΩst = {ξ| − 1 < ξ < 1} nodal expansions

are defined as

ψi(ξ) =
(ξ − 1)(ξ + 1)L′p(ξ)

p(p + 1)Lp(ξi)(ξ − ξi)
(2.20)

In Eq. (2.20),Lp = P 0,0
p is the Legendre polynomial of orderp andξi denotes the location

of the roots of(ξ − 1)(ξ + 1)L′p(ξ) = 0 in the interval[−1, 1]. Nodal expansion follows

discrete orthogonality i.e.,ψp(ξq) = δpq. This property has been exploited during the

calculation of conjugate gradient residual, which makes computations very fast. Details on

the multidimensional construction of nodal expansions can be found in Ref. [30].

The integrals in Eq. (2.19) are evaluated using Gauss quadrature rules. In the com-

puter implementation, Gauss-Lobatto-Legendre rule is used, which is imperative to exploit

discrete orthogonality of nodal basis functions. This integration is not full integration still

for the sake of fast numerical integration we use this. We would like to mention that this

integration gives identically same results as full integration (Gauss-Legendre) gives and

unlike in traditional penalty finite element formulation where coefficient matrix is almost

singular and reduced integration is imperative to obtain acceptable solution. For details on

standard finite element computer implementation, such as mappingΩ̄e À Ω̂e, numerical

integration inΩ̂e, and assembly using the direct stiffness approach, see Reddy [27, 28]. For

linearization, we use Newton’s method, details of which can be found in [31].
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2. The stress based first-order system

To define the first-order velocity-stress system, ’scaled’ stress tensor (symmetric part of

velocity gradient tensor) is introduced

T =
[
(∇u) + (∇u)T

]
(2.21)

Then Eqs. (2.8)-(2.10) can now be replaced by an equivalent system of first-order

equations. The problem now can be stated as one of finding the velocity vectoru (x) and

stress tensorT (x) such that

(u · ∇)u− γ∇[1

2
tr(T)

]− 1

Re
∇ ·T = f −∇pn−1 in Ω (2.22)

T−
[
(∇u) + (∇u)T

]
= 0 in Ω (2.23)

u = us onΓu (2.24)

n̂ ·T = Ts onΓT (2.25)

Typically Γu ∩ ΓT = ∅, i.e., if velocity is specified at a boundary, and stress need not be

specified there. TheL2 least-squares formulation and finite element model proceed in a

similar manner as that described for the dilatation-vorticity based first-order system.

3. Implementation of boundary conditions

In general, in a given problem we have boundary conditions on the primary variables and/or

secondary variables [27]. Boundary conditions on the primary variables can be imple-

mented easily in the strong sense by restricting the value of corresponding degree of free-

dom. Symmetry boundary conditions in 2D arev = 0 andω = 0 (at the wally =constant).

Boundary conditions on the secondary variables (typically, they involve derivatives of

the primary variables) are imposed in a weak sense through the least-squares functional.
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For example, the outflow boundary condition,n̂ · σ̃ = n̂ · (−p I + (1/Re) ∇u) = 0 is

implemented by modifying theL2 least-squares functional to be

J (u, D, ω; f) =
1

2

( ∥∥ (u · ∇)u− γ∇D +
1

Re
∇× ω − f +∇pn−1

∥∥2

0

+
∥∥ ω −∇× u

∥∥2

0
+

∥∥ D −∇ · u
∥∥2

0
+ ‖ n̂ · σ̃ ‖2

0, Γoutflow

)
(2.26)

In the boundary term, pressurep is replaced by (pn−1 − γD). For long domains, the strong

outflow boundary conditionp = 0 also gives good results [5].

4. Solution of algebraic equations

In this study, we use both direct as well as iterative solvers. We use Schur complement

method [32, 30] and condense out all interior degrees of freedom. Fig. 9 shows one such

mesh with interface nodes shown by square symbols and interior nodes shown by triangles.

Since interior nodes of an element are not connected to other elements, coefficient matrix

entries of corresponding degrees of freedom get contribution only from the nodes of that

element and hence can be expressed in terms of interface nodes of that element. In this

way, all interior degrees of freedom are eliminated and the system of equations is solved

for interface degrees of freedom. Details of Schur complement can be found in [32, 30].

While generating the mesh, one should number global interface degrees of freedom first,

followed by global interior degrees of freedom. In addition, the global interior degrees of

freedom should be numbered consecutively to maximize the benefit of this procedure.

The Schur complement method has two-fold benefit. First, if coefficient matrix is

stored, then one needs to store coefficient matrix corresponding to interface degrees of

freedom. This saves tremendous amount of memory and one needs to solve for only the

interface degrees of freedom. Secondly, conditioning number of new coefficient matrix is

significantly lower than that of original matrix and iterative solvers converge faster [30].
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To construct Schur complement, we need to invert elemental coefficient matrices which

is computationally very cheap. Once Schur complement matrix is constructed, direct or

iterative solvers can be used to solve this system. We note that Schur complement method

can also be implemented in ‘element by element’ PCG method, where the global coefficient

matrix is not stored (see [1] for details on ’element by element’ solution algorithm). This

is particularly desirable for large problems where even coefficient matrix corresponding to

interface degrees of freedom requires large memory.

a. Direct solvers

Schur complement eliminates all interior degrees of freedom and therefore memory stor-

age required to save coefficient matrix is significantly low and direct solvers can be used

for relatively large problems. Given a SPD coefficient matrix,Ndof by Ndof with band-

width B, banded Cholesky factorization is an effective direct solver providedNdof >> B.

The amount of work required for this factorization is approximatelyNdof (B
2 + 3B) flops

andNdof square roots. We store only the nonzero lower triangular part in a(B + 1) by

Ndof array. At this point we caution the reader that because of round-off errors Cholesky

factorization may not be stable (square-root of negative numbers may arise); see [33]. In

particular, for high penalty parameters, Cholesky factorization may be unstable. But the

present formulation requires very low value of penalty parameter and hence we did not

face this problem.

b. Iterative solvers

For large problems, direct solvers are not a good choice both in terms of computer mem-

ory and CPU time. For SPD coefficient matrix, preconditioned conjugate gradient (PCG)

methods are optimal choice. In this study we use Jacobi preconditioner as only diagonal

entries of coefficient matrix are needed to be stored as opposed to other preconditioners
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which require partial or full storage of coefficient matrix.

5. Calculation of pressure

Unlike the non-iterative penalty method, in the iterative penalty method, pressure is calcu-

lated (actually updated) in every nonlinear iteration through the following equation

pn = pn−1 − γDn (2.27)

Thus no post-processing is needed in this formulation to compute pressure. Unlike

penalty finite element formulations where pressure is not continuous, this formulation gives

smooth and very accurate pressure field.

C. Numerical results

In this section, numerical results obtained with the penalty least-squares finite element

model are presented for a number of benchmark problems. First, spectral convergence

of the proposed algorithm is verified for both vorticity-dilatation and stress based least-

squares finite element formulations. Next, results are presented for 2D lid driven cavity

flow, flow over a backward facing step, and flow past a circular cylinder at low Reynolds

number. To test mass conservation rigourously we solve 2D flow past a large circular

cylinder in a channel. We use vorticity-dilatation based first order system in this study

because it carries lesser degrees of freedom compared to stress based first order system and

gives equally accurate results. We also investigate accuracy of the formulation with respect

to the penalty parameter for these problems.

In this study, both direct and iterative solvers are used. All results presented are ob-
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tained using direct solver (banded Cholesky factorization) unless stated otherwise. Real

world fluid mechanics problems are generally big in size requiring large number of degrees

of freedom. For such problems direct solvers are not efficient because of both memory

required and CPU time taken. Therefore, all problems are also solved using iterative solver

(PCG), and PCG convergence history is reported, which show that present formulation

is free from ill-conditioning problem. Dilatation contours are presented for all problems

apart from reportingL2-norm of the residual of continuity equation (dilatation) asL2-norm

gives global picture only. TheL2-norm of the least-squares functional and other variables

are defined as

‖J ‖0 =
[1

2

Nem∑
e=1

∫

Ωe

(
R2

1 + R2
2 + R2

3 + R2
4

)
dΩe

] 1
2

‖D‖0 =
( Nem∑

e=1

∫

Ωe

D2 dΩe
) 1

2

whereRi is residual ofith partial differential equation of the system andD is an

independent variable (dilatation, vorticity, etc.). Some authors report square of these val-

ues. Nevertheless spectral convergence is important.L2-norm of the residual should decay

exponentially withp-level.

For all the problems considered in this chapter, non-linear convergence is declared

when the relative norm of the residual,‖∆U‖/‖U‖ is less than10−3 unless mentioned,

whereU is the solution vector (includes all degrees of freedom at a node). Convergence of

conjugate gradient is declared whenL2-norm of error is less than10−6.

1. Verification problem: Kovasznay flow

The benchmark problem to be used for the purpose of verification of the least-squares

based finite element models is an analytical solution to the two-dimensional steady incom-
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pressible Navier-Stokes due to Kovasznay [34]. Domain of interest isΩ̄ = [−0.5, 1.5] ×
[−0.5, 1.5]. The solution is given by

u = 1− eλx cos(2πy) (2.28)

v =
λ

2π
eλx sin(2πy) (2.29)

p = p0 − 1

2
e2λx (2.30)

whereλ = Re/2− [(Re2/4)+4π2]1/2 andp0 is a reference pressure (an arbitrary constant).

Drichlet boundary conditions on velocities are specified using the exact solution given

by Eqs. (2.28) and (2.29). The discrete system is linearized using Newton’s method and

resulting symmetric positive-definite (SPD) system of equations has been solved using the

Choleski factorization. A uniform mesh of 64 quadrilateral elements is used for spatial

discretization. Newton’s convergence is declared when the relative norm of the residual

is less than10−10. Penalty parameter used is102 for which L2-norm of the residual of

continuity equation is below10−12 for all p-levels used here and does not interfere with the

spectral convergence.

Streamlines obtained with the present formulation for the Kovasznay flow are shown

in Fig. 1(a). and Fig. 1(b) contains dilatation contours.

To verify spectral convergence,L2 norm of least-square functionalJ andL2 error of

the velocity, pressure and vorticity fields are plotted against polynomial order in Fig. 2 for

the dilatation-vorticity based first-order formulation. On logarithmic-linear scale we obtain

almost straight line for all the variables verifying exponential decay with respect to the

polynomial degree used.

Next, spectral convergence of stress based first order system is verified. Fig. 3 shows

that formulation achieves spectral convergence for all variables including pressure. The fact

that functionals are notH1-norm equivalent and hence define non-equivalent formulations
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Fig. 2. Convergence of the least-squares functional, velocity, pressure and vorticity fields to

the exact Kovasznay solution in theL2 norm

does not imply that the method is not optimal. It simply means that optimality of the

resulting method can not be established a priori using standard elliptic theory.

Simulations are carried out for various values of penalty parameters. Thep-level used

is 9. Newton’s iteration does not converge for penalty parameters less than one. For penalty

parameter greater than one, non-linear convergence depends on the value of penalty param-

eter as shown in Table I. Newton’s convergence is declared when the relative norm of the

residual is less than10−10. TheL2 norm of least-square functional remains almost the same

(5 × 10−9) andL2-norm of the residual of continuity equation is below10−12 for all these

penalty parameters.

2. 2D Lid-driven cavity flow

Next, the two-dimensional lid-driven cavity problem is analyzed to test our formulation.

The flow is driven by the translation of the top boundary. No slip boundary condition
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the exact Kovasznay solution in theL2 norm

is imposed on all solid walls. On the top wall (y = 1.0) boundary conditions areu =

u(x), v = 0. To avoid singularity in the boundary condition, we specify a hyperbolic

tangentu-velocity distribution on the top wall:

u(x) =





tanh(β x) 0 ≤ x ≤ 0.5

− tanh(β (x− 1)) 0.5 < x ≤ 1.0

with β > 0. In the present study,β = 100 and500 are used, which give a smooth but

at the same time sharp transition fromu = 0.0 to u = 1.0 near the walls of the driven

surface. This boundary condition results in a well posed boundary condition as singularities

at the corners are eliminated. The standard boundary condition (u = 1 everywhere) would

destroy the high accuracy properties associated with high-order expansions by polluting the

solution near the corners. High order methods are sensitive to these types of singularities.
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Table I. Number of Newton’s iterations required for nonlinear convergence.

Penalty parameterNo. of Newtons itr.

1 23

5 14

10 13

50 11

100 11

These singularities render the computational method unstable.

We use18 × 18 nonuniform mesh which is graded towards the wall; corner elements

have the dimension of0.008 × 0.008. The 8th order nodal expansion is used in each ele-

ment and there are total of84, 100 degrees of freedom in the mesh. All internal degrees of

freedom are condensed out, resulting in 20,596 interface degrees of freedom with a band-

width of 1148. The banded Cholesky factorization is used to solve for the interface degrees

of freedom. In this study, the global nodes are numbered in a natural order and no effort

is made to reduce the band-width. Band-width can be reduced with a suitable choice of

a node numbering scheme. An alternate approach to minimize the bandwidth is by using

the graph-theory. A popular choice is the Reverse Cuthill-McKee permutation [35]. This

problem has been solved for the penalty parameter varying from5 to 40. We use Re con-

tinuation method and start with Re=100 and march till Re=104 at the increment of 300.

Results are presented forβ = 100.

Fig. 4(a) contains plots of streamline at Re=104. Results match qualitatively very

well with the published results of Jiang et al. [36], who used least-squares finite element

formulation with an almost uniform400 × 408 mesh of bi-linear elements and one-point

quadrature. A penalty parameter of10 is used for these results. The value of theL2 least-
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squares functional remains below1.1 × 10−2 andL2-norm of the residual of continuity

equation is below3.1 × 10−6 for these computations. Typically it takes two Newton’s

iterations to converge for every Re step. Fig. 4(b) shows pressure contours and Fig. 4(c)

contains dilatation contours. Dilatation contours show that mass conservation is satisfied

very well locally at all points in the domain with a maximum value of dilatation around

6 × 10−6 near the top corner. Penalty parameter used is only10 and it works very well

for even for this high Reynolds number. This problem is not a very good example to judge

required penalty parameter at high Re, as there is no mass coming in or going out, problems

of flow over a backward facing step and flow past circular cylinder will test it better.

Theu-velocity profiles along the vertical mid-line of the cavityx = 0.5 is shown in

Fig. 5(a) for various values of the penalty parameter and the results are compared with those

of Jiang et al. [36]. Again, we see excellent agreement between the two results even for

γ = 5. In Fig. 5(b)v-velocity profiles are plotted along the horizontal mid-line of the cavity

y = 0.5 for various values of the penalty parameter. We note that boundary conditions are

different for the two studies. Jiang et al. [36] used lid velocity of 1 everywhere while in our

case lid velocity varies withx.

Next, PCG convergence history is plotted for four Newton’s iterations for Re=100 in

Fig. 6. We use10× 10 grid with the corner element having dimension of0.05× 0.05. The

p-level used is 7 and the penalty parameter is taken to be 10. Zero initial guess is used for

all variables including pressure. There are no pronounced fluctuation.

As Fig. 5(a) and 5(b) show, formulation gives very accurate results for even penalty

parameter of 5. Typical penalty parameter values used in the traditional penalty finite

element formulation are in the range of108 − 1012. For such a high penalty parameter,

conditioning number of the resulting coefficient matrix becomes very high and different

order integration rule is used to integrate penalty terms to obtainacceptablesolution. Some

explanations have been given in literature to justify the use of different order integration
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schemes for various terms of the coefficient matrix. In this study we have used equal order

integration for all terms.

We solve this problem forβ = 500 also on two different grids18 × 18 and22 × 22

with corner element having dimension0.008× 0.008 and0.007× 0.007 respectively with

8th order nodal expansion in each element (γ = 20). Variation of lid velocity withx for

β = 100 and500 is shown in Fig. 7.

They closely emulate the standard ill-posed boundary condition. As Fig. 8(a) and

8(b) show that on18 × 18 mesh results are not satisfactory while results are accurate on

22 × 22 mesh. We see that even for singular boundary conditions (close to 1) accurate

results can be obtained withh-refinement. For singular boundary conditions simulation

becomes unstable (Newton’s iterations do not converge) around Reynolds number of 7100

for 18×18 mesh. The Reynolds number at which the simulation becomes unstable depends
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on theh-refinement used.

3. Flow over a backward-facing step

Next, we consider two-dimensional steady flow over a backward-facing step at Re= 800.

The geometry and boundary conditions, taken from the benchmark solution of Gartling [24],

are shown in Fig. 9. No-slip boundary condition is imposed on all walls. Boundary con-

dition of u(y) = 0 is imposed for−0.5 ≤ y ≤ 0.0. A parabolic velocity profile given

by u(y) = 24y(0.5 − y) is specified at the inlet for0.0 ≤ y ≤ 0.5. This produces a

maximum inflow velocity ofumax = 1.5 and a mean inflow velocity ofuavg = 1.0. The

Reynolds number is based on the mean inflow velocity. At the outflow, boundary condition

is implemented as described earlier in section 3. The domain,Ω̄ = [0, 30] × [−0.5, 0.5],

is discretized using32 elements as shown in Fig. 9. To accurately resolve primary and

secondary circulation zones, a non-uniform mesh is used. Interface nodes are shown with

squares while interior nodes are shown with triangles. We use11th order nodal expansion

in each element. There are16, 284 degrees of freedom in the mesh. We condense out all

interior degrees of freedom, resulting in3, 434 interface degrees of freedom and a band-

width of 260. In this case, the nodes are numbered in they-direction first to reduce the

bandwidth. One might think to use a very high orderp-level to reduce interface degrees of

freedom and bandwidth (which will also reduce memory storage) but in that case cost of

elemental matrix inversion will be high to construct the Schur complement. Simulations

are carried out for penalty parameter of 5 to 30. We use Re continuation method and start

with Re=100 and march till Re=800 with an increment of 100.

Fig. 10(a), 10(b) and 10(c) contain plots of streamlines, pressure and dilatation con-

tours for the penalty parameter of20. Results match qualitatively very well with the pub-

lished results of Pontaza and Reddy [5]. After reattachment of the upper wall eddy, the

flow slowly recovers towards a fully developed Poiseuille flow. Flow is almost fully de-
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Fig. 9. Mesh and boundary conditions for flow over a backward facing step

veloped at the exit (x = 30) with no pressure gradient in the direction of flow. This is

because outlet boundary condition ofp = 0 also gives good results. The value of theL2

least-squares functional remains below3× 10−2 andL2-norm of the residual of continuity

equation is below1.1× 10−5 for these computations. Fig. 10(c) shows dilatation contours,

which are similar to the pressure contours. Dilatation has a high value in the reattachment

zone where there are sharp gradients.

Theu-velocity profiles along the channel height atx = 7 andx = 15 are compared

with the benchmark results of Gartling [24] in Fig. 11for penalty parameter of20. We find

excellent agreement.

Pressure profiles along the length of the channel are plotted in Fig. 12 for penalty pa-

rameters of5, 10, 20 and30 and compared with the result of Pontaza and Reddy [5]. They

give identically same results and match well with that of [5]. A comparison of primary

reattachment length (S1), secondary separation length (S2), and secondary reattachment

length (S3) for various values of penalty parameter is presented in Table II. Accurate val-

ues of reattachment lengths are found by running stress based formulation where stresses

are primary variables.

Next, PCG convergence history is plotted in Fig. 13. We present this formulation as

an alternative tohp least-square formulation of Pontaza and Reddy [5, 12]. To compare

PCG history, we run the simulation on10× 2 uniform grid and use 11th order polynomial
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Table II. Separation and reattachment lengths for flow over a backward facing step Re =

800.

γ = 5 γ = 10 γ = 20 γ = 30 Gartling [24]

S1 6.17 6.11 6.10 6.10 6.10

S2 4.93 4.87 4.86 4.85 4.85

S3 10.43 10.47 10.48 10.48 10.48

expansion (same as used in [5]). They reported that for Re=800 with solution of Re=700

as initial guess, it takes 4 Newton’s iterations to converge and it takes approximately 4500,

3500, 2500 and 700 PCG iterations to converge when the Jacobi preconditioner is used.

In our case for penalty parameter of 40, it takes six Newton’s iterations to converge and

it takes approximately 1850, 1600, 1850, 1850, 1800 and 1500 iterations to converge; PCG

convergence is declared whenL2-norm of residual is below10−6 in both the cases. The

only difference is that Pontaza and Reddy did not use Schur complement method. Another

small difference is that they used modal basis but modal basis has, in general, sightly better

conditioning than the nodal basis. Both formulations have the same number of independent

variables (4). Its clear from this plot that conditioning of coefficient matrix is almost the

same as that produced byhp least-squares formulation of Pontaza and Reddy [5].

4. Flow past a circular cylinder at low Reynolds number

The third benchmark problem considered here is the steady two-dimensional flow of an

incompressible fluid past a circular cylinder. The Reynolds number is taken to be40, for

which a steady-state solution exists. Domain of interest is[−10.0, 15.0] × [−10.0, 10.0].

Thex-component of inlet velocity (u) is specified to be1.0 and they-component (v) is set

to zero. Symmetry boundary conditions,ω = 0 andv = 0, are imposed on the top and
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bottom walls. The outflow boundary conditions are imposed in a weak sense through the

least-squares functional.

Fig. 14 contains a close-up view of the geometric discretization around the circular

cylinder. We generate orthogonal mesh using rectangular elements everywhere in the do-

main except around the cylinder. One layer of body fitting mesh is generated around the

cylinder. At this point we will digress a bit and talk about reducing computational cost for

high order finite element based formulations. For rectangular elements jacobian matrix is



39

X

Y

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

Fig. 14. Closeup view of the geometric discretization around the cylinder



40

of the form (see Reddy [27, 28])

J =




h1

2
0

0 h2

2




and global derivatives of shape functions are




∂ψe
i

∂x

∂ψe
i

∂y


 = J−1




∂ψe
i

∂ξ

∂ψe
i

∂η


 =




2
h1

∂ψe
i

∂ξ

2
h2

∂ψe
i

∂η




where∂ψe
i

∂ξ
and∂ψe

i

∂η
are local derivatives of shape functions. Therefore, calculation of global

derivatives of the shape functions is straight forward. In the case of curved elements, we

need to calculate jacobian matrix for each element and carry out matrix multiplications

to obtain global derivatives of the shape functions, which is computationally costly (see

Reddy [27]). Such grids reduce a lot of computational time. It is to be mentioned that even

for moderate size problems we cannot store global derivatives of shape functions for all el-

ements of the mesh. In order to accurately represent the curved boundary, we implement an

isoparametric formulation; i.e., we use the same expansion order to interpolate dependent

variables and the geometry.

We use two-dimensional incompressible Navier-Stokes equations in the dilatation-

vorticity first-order form. There are424 quadrilateral elements in the mesh. The7th order

nodal expansions are used in each element. Discrete model contains84, 644 degrees of

freedom. We condense out all interior degrees of freedom. There are23, 588 interface

degrees of freedom and bandwidth of the system is1256.

Fig. 15(a) and 15(b) contain plots of streamlines and pressure contours and dilatation

contours for Re= 40 andγ = 20. The value of the recirculation length is found to be4.55

cylinder radii. Our result is in good agreement with the numerical value of4.50 cylinder

radii by Kawaguti and Jain [37], whereas Dennis and Chang [38] reported a recirculation
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length of4.69 cylinder radii. The value of theL2 least-squares functional remains below

1.3× 10−2.

A comparison of the experimental values of the surface pressure coefficient distribu-

tion along the cylinder surface with the computed values is shown in Fig. 16 for the penalty

parameters of20,30, and40. Experimental values are taken from Grove et al. [25]. Our

results are in good agreement with the experimental measurements. Pressure coefficient

distribution is almost same for the all the penalty parameters considered here. Drag coeffi-

cient isCD = 1.55 which is in good agreement with the published results of Tritton [39],

who reported it to be1.56.

It has been seen earlier that nonlinear convergence is dependent on penalty parameter.
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For very low value of penalty parameter (1-10) Newton’s convergence is slow (this value

is problem dependent). In Fig. 17(a) nonlinear convergence is plotted for various values of

penalty parameter. As plot reveals that convergence is slow forγ = 20. In Fig. 17(b) we

plot pressure convergence history. For all the problem solved in this chapter pressure con-

vergence is almost the same as the nonlinear convergence but one needs to make sure that

pressure also converges. For very low value of the penalty parameter, pressure convergence

is slow, which in turn slows nonlinear convergence.

5. Flow past a large circular cylinder in a channel

We tested this formulation for various problems but they do not test mass conservation

rigorously. To test mass conservation rigorously, we solve flow past a large circular cylinder

in a channel with blockage ratio of 2 (H/D = 2). Chang and Nelson [8] used similar problem

to test mass conservation for Stokes flow. Domain of interest is[−5.0, 10.0]× [−1.0, 1.0].

Cylinder has unit diameter and it is centered at (0.0, 0.0). We use similar grid as used

earlier for flow past a circular cylinder. Ap-level of 6 is used and there are76, 584 degrees

of freedom in the mesh. Mesh is fine near the cylinder. No-slip boundary conditions are

imposed on side walls. At inletu = 1.0 andv = 0.0. The outflow boundary conditions are

imposed in a weak sense through the least-squares functional. Reynolds number considered

here is 40 for which steady state solution exists.

Fig. 18(a) shows streamline plot. In this case separation delayed.u-velocity contours

around the cylinder are shown in Fig. 18(b). We calculate mass flow rate at the inlet, out-

let and sectionx = 0 and we find very good mass conservation as shown by Table III.

We solved this problem using hp least-squares formulation [5] also (under same condi-

tions) and calculated mass flow rates. Even for low values of penalty parameter, present

formulation conserves mass better than hp least-squares formulation [5] does.

In Fig. 19 we plot dilatation contours for penalty parameter of 40. Mass conservation
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Table III. Mass flow rate for various values of penalty parameter.

γ = 40 γ = 70 hp Least-squares

Inlet 2.000 2.000 2.000

x = 0 1.982 1.986 1.974

Outlet 1.987 1.991 1.975
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Fig. 19. Dilatation contours for flow past a large circular cylinder

is satisfied to a very good extent as shown by this plot. It requires a bit higher value of

penalty parameter compared to the last example. Dilatation values are a bit high at the

inlet. This might be because we use very coarse grid at the inlet. This example shows that

even for very low value of the penalty parameter, mass conservation is satisfied to a very

good extent in this formulation.

6. 3D Lid-driven cavity flow

Next, the three-dimensional lid-driven cavity problem is analyzed to further test our for-

mulation. The flow is driven by the translation of the top boundary. Projection of the grid

on thexy-plane is shown in Fig. 20. Grid is stacked in thez-direction. A non-uniform
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mesh of6× 6× 3 cubic finite elements is used to discretize the domain. Reynolds number

considered here is 100. We model only a half of the domain as flow is symmetric about

the planez = 0.5 for this Reynolds number [36, 40]. No slip boundary condition is im-

posed on all solid walls. On the symmetry plane, boundary conditions used are∂u/∂z = 0,

∂v/∂z = 0 andw = 0 which are equivalent toσxz = 0, σyz = 0 andw = 0. On the top

wall (y = 1.0) boundary conditions areu = us(x, z), v = w = 0. To avoid singularity in

the boundary condition, we specify a hyperbolic tangentialu-velocity distribution on the

top wall: us = g(x) g(z), where

g(s) =





tanh(β s) 0 ≤ s ≤ 0.5

− tanh(β (s− 1)) 0.5 < s ≤ 1.0

with β > 0. In the present study we tookβ = 50, which gave a smooth but at the same time

sharp transition fromu = 0.0 to u = 1.0 near the walls of the driven surface. To recast

the second order PDEs into first order PDEs, we introduce stress tensor as independent

variable. We use a 5th order nodal expansion in each element and there are total of138, 384

degrees of freedom in the mesh. This problem has been solved for the penalty parameter

of 10 to 30. The value of theL2 least-squares functional remains below10−3 for these

computations.

Fig. 21 contains plots of streamline and pressure contours at various planes. Results

match qualitatively well with the published results of Jiang et al. [36], who used least-

squares finite element formulation with an almost uniform50× 52× 25 mesh of tri-linear

elements and one-point quadrature (which reduces the least-squares model to a collocation

model). A penalty parameter of20 is used. Theu-velocity profiles along the vertical mid-

line of the planez = 0.5 are compared with those of Jiang et al. [36] in Fig. 22. Again, we

see excellent agreement between the two results.

Next, we investigate accuracy of the present formulation with respect to the magnitude
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of the penalty parameter. For this purpose we solve the 3D lid-driven problem for the

penalty parameter of10 to 30. Fig. 23 contains a comparison ofu-velocity profiles along

the vertical mid-line of the planez = 0.5 for these two penalty parameters. Maximum

difference inu-velocities is less than 1 percent. We can conclude that for this problem

penalty parameter of10 gives sufficiently accurate results.
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D. Temperature-Velocity coupled problem

Here, we consider steady incompressible fluid flow in a domainΩ ⊂ R2 bounded by

Γ = Γθ ∪ Γq whereΓθ andΓq are the isothermal and the adiabatic boundaries as well as

Γθ ∩ Γq = ∅. The fluid motion is induced by the temperature gradient across the vertical

walls. The buoyancy effect is approximated by the Boussinesq assumption. The Navier-

Stokes equations and the energy equation in dimensionless form are given below.

Find the velocityu (x), pressurep (x) and temperatureθ (x) such that

(u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
+ θ

g

|g| = 0 in Ω (2.31)

∇ · u = 0 in Ω (2.32)

(u · ∇) θ − 1

Pe
∇2θ = 0 in Ω (2.33)

u = us onΓu (2.34)

n̂ · σ = f s onΓf (2.35)

θ = θs onΓθ (2.36)

n̂ · q = qs onΓq (2.37)

whereg is gravitational acceleration vector which is acting in negativey-direction. Here we

take the cavity wall length and buoyant speed ((|g|α∆θl)1/2) as characteristic length and

velocity, respectively. The characteristic numbers are Re = (Ra/Pr)1/2 , Pe= (Ra Pr)1/2 ,

Ra = α|g|l3∆θ/(κν) and Pr= ν/κ, whereα is the volumetric thermal expansion coef-

ficient, l is the characteristic length,∆θ is the characteristic temperature,κ is the thermal

diffusivity, andν = µ/ρ is the kinematic viscosity.
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1. The vorticity-dilatation/heat flux based first-order system

To make the system first-order, we introduce vorticity-dilatation and heat flux vector as

independent variables. The resulting first-order system in dimensionless form can be stated

as follows:

Find the velocityu (x), dilatationD (x), vorticity ω (x), temperatureθ (x) and heat

flux q (x) such that

(u · ∇)u− γ∇D +
1

Re
∇× ω + θ

g

|g| +∇pn−1 = 0 in Ω (2.38)

ω −∇× u = 0 in Ω (2.39)

D −∇ · u = 0 in Ω (2.40)

(u · ∇) θ +∇ · q = 0 in Ω (2.41)

q +
1

Pe
∇θ = 0 in Ω (2.42)

u = us onΓu (2.43)

ω = ωs onΓω (2.44)

θ = θs onΓθ (2.45)

n̂ · q = qs onΓq (2.46)

TheL2 least-squares formulation and finite element model development proceed in a simi-

lar manner as described for the incompressible Navier-Stokes equations.

2. Numerical example: Buoyancy-driven flow inside a square enclosure

As a numerical example, we consider two-dimensional, steady, buoyancy-driven flow in a

square enclosure with differentially heated vertical walls. The square enclosure is taken
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to be the unit square,̄Ω = [0, 1] × [0, 1]. A finite element mesh of10 × 10 nonuniform

quadrilateral finite elements is used to discretize the domain with the corner element having

dimension0.02× 0.02. No slip velocity boundary condition is imposed on all solid walls.

qy is 0 at the top and bottom walls while left side wall is kept atθ = 1 and right side wall

at θ = 0.

Computations have been performed for Rayleigh numbers of104, 105, 106. Air is

taken as the working fluid with Prandtl number0.71; 7th order nodal expansion is used.

There are seven degrees of freedom at each node. There are total35, 287 degrees of freedom

in the mesh. We condense out all interior degrees of freedom. There are10, 087 interface

degrees of freedom and bandwidth of the system is1015. The discrete model is linearized

using Newton’s method and algebraic equations are solved using the banded Cholesky

factorization. Computations have been performed for penalty parameters of10, 20, and30.

The Nusselt number on the vertical boundary at x = 0 is calculated as

Nu(y) = qx(y) Pe

and the average Nusselt number (at x = 0) is calculated as

Nu =

∫ 1

0

Nu(y)dy

Components of heat flux are taken to be the primary variables. Therefore, in spite of using

C0 continuous basis functions, we obtain smooth solution for heat fluxes. The average

Nusselt number on the boundary is calculated using numerical integration using 8-point

Gauss quadrature. We use Ra continuation method, start with Ra =105 and proceed till106

with Ra increment of105. Zero initial guess is used for Ra =105. It takes 10 Newton’s

iterations to converge for Ra =105. Subsequent Rayleigh numbers take 2-3 Newton’s
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iterations to converge. The value of theL2 least-squares functional remains below1×10−4

for all Rayleigh numbers.

Fig. 24 contains plots of streamlines of the flow field and temperature distribution

for Rayleigh numbers of105 and106. The patterns exhibit the required centrosymmetry

and are in qualitative agreement with previously reported numerical results of Davis [26].

Fig. 24(e) shows vorticity contours which match well qualitatively with that of [26]. In

Fig. 24(f) dilatation contours are plotted. Mass conservation is satisfied to very good ex-

tent. Maximum dilatation value is of the order10−6. Fig. 25(a) contains the plot ofu-

velocity profile along the vertical mid-line for penalty parameters of10, 20 and30. All

three penalty parameters give identical values. Fig. 25(b) contains plots of temperature

distributions along the vertical mid-line for three penalty parameters. Although the penalty

parameter does not appear directly in the energy equation, there will be an effect of it on the

temperature field since the temperature field depends on the velocity field for both coupled

and decoupled formulations. Again all three penalty parameters give identical values. The

average Nusselt number on the vertical boundary of the cavity at x = 0 for three Rayliegh

numbers are compared with the benchmark result of Davis [26] in Table IV.

Table IV. Average Nusselt number atx = 0 for various values of penalty parameter and

Rayleigh number.

γ = 5 γ = 10 γ = 20 Davis [26]

Ra= 104 2.244 2.244 2.244 2.238

Ra= 105 4.521 4.522 4.522 4.509

Ra= 106 8.824 8.824 8.825 8.817

In Fig. 26 we plot PCG convergence history for Ra =104. Zero initial guess is used. It

takes six Newton’s iterations to converge. Penalty parameter is 10. Again PCG converges
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CHAPTER III

SPECTRAL/HP PENALTY LEAST-SQUARES FINITE ELEMENT FORMULATION

FOR UNSTEADY INCOMPRESSIBLE FLOWS

A. Introduction

In the past few years, finite element models based on least-squares functionals have drawn

considerable attention ([1]-[7]). Given a set of partial differential equations, the least-

squares method allows us to define an unconstrained minimization problem. These for-

mulations have several advantages over the traditionally used weak form Galerkin formu-

lations. Most notably, the least-squares formulations circumvent the inf-sup condition of

Ladyzhenskaya-Babuska-Brezzi (LBB). So the choice of approximating space is not sub-

ject to LBB conditions. Also, the resulting algebraic system is symmetric and positive-

definite.

Previous study of Pontaza and Reddy [12] showed that in these formulations, tempo-

ral evolution of pressure field ill-behaves, which in turn leads to spurious solutions in many

cases. Unsteady problems, especially with inflow/outflow boundaries, produce spurious

pressure evolution with time, mainly due to the lack of strong pressure velocity coupling.

In these formulations, the divergence-free constraint on the velocity field is enforced di-

rectly through the least-squares functional and pressure does not play a role in enforcing

divergence free constraint.

Recently, Prabhakar and Reddy [6] presented a spectral/hp penalty least-squares finite

element formulation for steady incompressible Navier-Stokes equations. For steady-state

flows, pressure evolution does not pose any problem. In the present study, we extend

this formulation to unsteady problems. For time integration, space-time decoupled for-

mulations are popular, where discretization in space and time are carried out separately.
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In space-time decoupled formulations, least-squares variational principles are applied in

space only. Pontaza and Reddy [12] and Surana et al. [31] implemented space-time cou-

pled least-squares formulations. These formulations have higher accuracy than decoupled

formulations but associated computational costs are very high. A two-dimensional problem

becomes a three-dimensional problem, with time as the additional dimension. In this study,

we implement space-time decoupled time integration schemes, namely Crank-Nicholson

scheme and backward multi-step scheme (BDF2).

In another study Prabhakar et al. [41] extended this idea for unsteady problems and

implemented it using low order basis functions (bilinear) with one-point Gauss quadrature,

which is equivalent to the collocation approach. Thep-version of the finite element method

is known to possess superior convergence characteristics compared with theh-version.

Nevertheless, most of the current finite element research has involved the use of low-order

approximations, mainly because of low computational cost associated with theh-version.

If high accuracy is required, then we may justify using high-order methods by the fact that

the error will converge at a faster rate than the operation count increases. Therefore , it

will ultimately be more efficient to use high-order methods. Nevertheless, the cross-over

point between the required accuracy and relative computational cost of low and high order

methods for a given application is a point of much debate.

Several studies have been reported on penalty models implemented in the context of

weak form Galerkin formulation. They achieved some popularity mainly because they

circumvent LBB stability condition. Also there is a reduction in number of independent

variables. Almost all these studies use low order basis functions and reduced order inte-

gration for penalty terms to circumvent locking. Also, the penalty parameter used is of the

order108 to 1012. For such penalty parameter, the coefficient matrix is ill-conditioned and

iterative solvers do not perform well. In this study, high-order element expansions are used

to construct the discrete model, which does not experience locking. Equal-order integration



61

is used for all the terms of the coefficient matrix.

The present chapter is organized as follows. In Section B, the penalty least-squares fi-

nite element model for the incompressible Navier-Stokes equations is presented. Numerical

results are presented in Section C. First, the second-order accuracy of the time integration

scheme is established using method of manufactured solution. Next, we present results for

2D impulsively started lid-driven cavity at Reynolds number of 5,000. Lastly, numerical

results are presented for the transient two-dimensional flow over a backward-facing step.

Simulations for various penalty parameters are carried out and evolution of velocity and

pressure fields with time are reported.

B. The incompressible Navier-Stokes equations

The unsteady incompressible Navier-Stokes equations in dimensionless form can be written

as follows:

∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω× (0, τ ] (3.1)

∇ · u = 0 in Ω× (0, τ ] (3.2)

u = u0(x) onΩ (3.3)

u = us onΓu × (0, τ ] (3.4)

n̂ · σ = f s onΓf × (0, τ ] (3.5)

whereu (x) is the velocity vector,σ = −p I + 1/Re
[
(∇u) + (∇u)T

]
is the total stress,

p (x) is the pressure,f is a dimensionless force,n̂ is the outward unit normal on the bound-

ary of Ω, us is the prescribed velocity on the boundaryΓu, andf s are the prescribed trac-

tions on the boundaryΓf , Γ = Γu ∪ Γf andΓu ∩ Γf = ∅, and Re denotes the Reynolds
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number.

In the penalty method, the continuity equation is treated as a constraint, which is

included back into the formulation in a least-squares sense. This amounts to replacing

pressure in the Navier-Stokes equations with the following expression (see [27], [28], and

[29] for additional details):

p = −γ(∇ · u) (3.6)

Gunzberger [13] proposed an iterative penalty method in which the pressure is up-

dated using the formula

pn = pn−1 − γ(∇ · u) (3.7)

wheren is the iteration number during the solution of nonlinear equations. An advan-

tage of this method is that the value of the penalty parameter needed to enforce the con-

tinuity constraint is equal to the square-root of the one needed in the non-iterative penalty

method [13]. This, in turn, results in a coefficient matrix with smaller conditioning number.

In this study, we use the iterative penalty method.
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The problem at hand can now be stated as one of finding the velocityu (x) such that

∂u

∂t
+ (u · ∇)u− γ∇(∇ · u)− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f −∇pn−1 in Ω× (0, τ ]

(3.8)

u = u0(x) in Ω (3.9)

u = us onΓu × (0, τ ]

(3.10)

n̂ · σ = f s onΓf × (0, τ ]

(3.11)

Since the solution at iteration(n−1) is known,∇pn−1 is known and, therefore, transferred

to the right-hand side of the equation.

1. The velocity-dilatation-vorticity first-order system

In the interest of reducing the order of the equations to avoidCk-approximation (k ≥ 1)

of the filed variables, we cast the second-order system (3.8)-(3.11) as a set of first-order

equations by introducing the vorticity vector,ω = ∇ × u, and dilatation,D = ∇ · u, as

independent dependent variables. Then the problem can be stated as one of finding the
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velocity vectoru (x), dilatationD (x), and vorticityω (x) such that

∂u

∂t
+ (u · ∇)u− γ∇D +

1

Re
∇× ω = f −∇pn−1 in Ω× (0, τ ] (3.12)

ω −∇× u = 0 in Ω× (0, τ ] (3.13)

D −∇ · u = 0 in Ω× (0, τ ] (3.14)

u = u0(x) onΓu (3.15)

u = us onΓu × (0, τ ] (3.16)

ω = ωs onΓω × (0, τ ] (3.17)

Typically, Γu ∩ Γω = ∅, i.e., if velocity is specified at a boundary, vorticity need not be

specified there.

a. L2 least-squares formulation

The least-squares functional of the problem can be set up by summing up the squares

of the residuals of the new set of equations. For time integration, space-time decoupled

formulations are used. In space-time decoupled formulations, discretizations in space and

time are introduced independently. Generally, the temporal operators are represented by

truncated Taylor series expansions in time domain. We use Crank-Nicholson or backward

multi-step scheme (BDF2). Least-square functional for backward multi-step schemes can

be written as
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J (u, D, ω; f) =
1

2

( ∥∥ γ0

∆t
us+1 −

Mα∑
q=0

βq

∆t
us−q + (u · ∇)u− γ∇D +

1

Re
∇× ω

− f +∇pn−1
∥∥2

0,Ω×(0,τ ]
+

∥∥ ω −∇× u
∥∥2

0,Ω×(0,τ ]

+
∥∥ D −∇ · u∥∥2

0,Ω×(0,τ ]

)
(3.18)

whereγ0 =
∑Mα

q=0 βq for consistency,βq are weights associated with a particular multi-step

scheme, and∆t = ts+1 − ts is the time increment.

Considering the homogeneous, pure velocity, boundary condition case, the least-squares

principle for functional (3.18) can be stated as follows:

find (u, D, ω) ∈ X, u(x, 0)=u0(x) such that

J (u, D, ω; f) ≤ J
(
ũ, D̃, ω̃; f

)
∀

(
ũ, D̃, ω̃

)
∈ X (3.19)

where we use the space

X =
{

(u, D, ω) ∈ H1
0 (Ω)×H1 (Ω)×H1 (Ω)

}

The variational problem (after linearization using Newton’s method) corresponding to the

least-squares principle is given by: find (u, D, ω) ∈ X, u(x, 0)=u0(x) such that

B
(
(u, D, ω) ,

(
ũ, D̃, ω̃

))
= F

((
ũ, D̃, ω̃

))
∀

(
ũ, D̃, ω̃

)
∈ X (3.20)

Let Xh denote a finite-dimensional subspace ofX. Then the least-squares discretized

model of the Navier-Stokes equations is defined by the following discrete variational prob-

lem: find
(
uh, Dh,ωh

) ∈ Xh, u(x, 0)=u0(x) such that

B
((

uh, Dh,ωh
)
,
(
ũh, D̃h, ω̃h

))
= F

((
ũh, D̃h, ω̃h

))
∀

(
ũh, D̃h, ω̃h

)
∈ Xh (3.21)
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b. Expansion bases

Nodal expansion:In the standard intervalΩst = {ξ| − 1 < ξ < 1} nodal expansions are

defined as

ψi(ξ) =
(ξ − 1)(ξ + 1)L′p(ξ)

p(p + 1)Lp(ξi)(ξ − ξi)
(3.22)

In Eq. (3.22),Lp = P 0,0
p is the Legendre polynomial of orderp andξi denotes the location

of the roots of(ξ − 1)(ξ + 1)L′p(ξ) = 0 in the interval[−1, 1]. Details on the multidi-

mensional construction of nodal expansions can be found in Ref. [30]. The integrals in

Eq. (3.21) are evaluated using Gauss-Lobatto-Legendre quadrature rule. For details on

standard finite element computer implementation, such as mappingΩ̄e À Ω̂e, numerical

integration inΩ̂e, and assembly using the direct stiffness approach, see Reddy [27, 28]. For

linearization, we use Newton’s method, details of which can be found in [31].

C. Numerical results

In this section, numerical results obtained with the present least-squares finite element

model are presented. First, second-order accuracy of the time integration scheme used

is verified. Next, results are presented for impulsively started lid-driven cavity problem

and transient flow over a backward facing step problem.

For all the problems considered in this chapter, non-linear convergence is declared

when the relative norm of the residual,‖∆U‖/‖U‖ is less than10−3, unless mentioned

otherwise, whereU is the solution vector (includes all degrees of freedom at a node). Con-

vergence of the conjugate gradient method to solve the equations is declared when the

L2-norm of error is less than10−6.
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1. Verification problem

In the first numerical example, we establish the second-order accuracy of the time inte-

gration scheme used. We use the method of manufactured solutions. The idea behind

manufactured solutions is to come up with an exact solution to the, preferably one that is

infinitely differentiable, not trivially reproduced by the element approximation functions

and utilize all terms of the governing equation. We consider a unit square and take the

exact solution of the incompressible Navier-Stokes equations to be of the form:

u(x, y, t) = πsin2(πx)sin(πy)cos(πy)sin(t)

v(x, y, t) = −πsin(πx)cos(πx)sin2(πy)sin(t)

p(x, y, t) = cos(πx)sin(πy)sin(t)

The prescribed velocity field satisfies continuity equation and the source termf of

the momentum equations represents the residual of the differential equations such that the

prescribed solution is the exact solution to the problem.

The Dirichlet boundary conditions on velocities are specified using the exact solution

given above. The discrete system is linearized using Newton’s method and resulting sym-

metric positive-definite (SPD) system of equations has been solved using the Choleski fac-

torization. A4×4 uniform mesh of quadrilateral elements is used for spatial discretization.

Newton’s convergence is declared when the relative norm of the residual is less than10−10.

Penalty parameter used is102 for which L2-norm of the residual of continuity equation is

below10−12, and does not interfere with the convergence.

The time evolution of fields is computed fort ∈ [0, 20] for decreasing time step size

varying from10−1 to 10−3. TheL2 error inv-velocity, pressure, and vorticity is recorded

at t = 5 and plotted in Fig. 27 as a function of time step on log-log scale. The errors decay
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Fig. 27. Convergence of the velocity, pressure and vorticity fields in theL2 norm for de-

creasing time step size.

at an algebraic rate with slope 2, as expected for the second-order accurate time integration

scheme.

2. 2D Lid-driven cavity flow

Next, the two-dimensional lid-driven cavity problem is analyzed to test the presented for-

mulation. The flow is driven by the translation of the top boundary. No slip boundary

condition is imposed on all solid walls. On the top wall (y = 1.0), the boundary conditions

are taken asu = û(x, t), v = 0. To avoid singularity in the boundary condition, we specify
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a hyperbolic tangentu-velocity distribution on the top wall:

u(x) =





tanh(β x) 0 ≤ x ≤ 0.5

− tanh(β (x− 1)) 0.5 < x ≤ 1.0

with β > 0. In the present study,β = 50 is used, which gives a smooth but at the same time

sharp transition fromu = 0.0 to u = 1.0 is represented near the walls of the driven surface.

This boundary condition results in a well-posed boundary condition as singularities at the

corners are eliminated. The standard boundary condition (u = 1 everywhere) would make

the problem singular and destroys the high accuracy properties associated with high-order

expansions by polluting the solution near the corners. High order methods are sensitive to

these types of singularities.

The u-velocity of the driven surface also varies in time according to a hyperbolic

tangent distribution. So lid velocity is given by ulid(x, t) = ulid(x)tanh(t).

We use14× 14 nonuniform mesh that is graded towards the wall; the corner elements

have the dimension of0.01× 0.01. The 7th-order nodal expansion is used in each element,

and there are a total of39, 204 degrees of freedom in the mesh. All internal degrees of

freedom are condensed out using Schur complement method (see [6] for details), resulting

in 10, 980 interface degrees of freedom with a bandwidth of788. The preconditioned con-

jugate gradient is used to solve for the interface degrees of freedom. This problem has been

solved for the penalty parameters10 and30. Reynolds number is taken to be Re = 5,000.

Initial velocity conditions are taken to be zero everywhere. The Crank-Nicholson scheme

is used for time marching, and a time increment of 0.2 has been used for all results reported

in this section.

Fig. 28 contains streamline plots for various times. Upon start-up a long narrow vortex

forms close to the lid. The vortex gradually moves to the right and begins to grow.

Streamlines at the steady state are shown in Fig. 29. At the steady state, there is
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= 5000
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one primary vortex, three first vortices, at left and right bottom corners, named BR and

BL, and the top left corner is named TL; and two second vortices appear at left and right

bottom corners. Centers of these vortices are reported in Table V and compared with the

benchmark values of Ghia et al. [42]. These values match well with the corresponding

values of Ghia et al. [42]. A penalty parameter of10 is used for these results. The value

of theL2 least-squares functional remains below3.4 × 10−2 andL2-norm of the residual

of continuity equation is below10−5 at all times for the penalty parameter of30. Typically,

it takes two Newton’s iterations to converge for every time step. Fig. 30 shows pressure

contours. Pressurep = 0 is specified at the center of the cavity.

Table V. Location of Vortices: comparison with the benchmark results of Ghia.

Present Ghia et al. [42]

Primary 0.5147,0.5341 0.5117,0.5352

First BR 0.8085,0.0725 0.8086,0.0742

First BL 0.0743,0.1347 0.0703,0.1367

First TL 0.0640,0.9107 0.0625,0.9102

Second BR 0.9801,0.0166 0.9805,0.0195

Second BL 0.0073,0.0074 0.0117,0.0078

Dilatation contours are shown in Fig. 31; it is clear that mass conservation is satisfied

very well locally at all points in the domain, with a maximum value of dilatation approxi-

mately1 × 10−5 near the top corner. Penalty parameter used in this case is only10, and it

works very well for even for this high Reynolds number.

Theu-velocity profiles along the vertical middle line of the cavityx = 0.5 at steady

state are shown in Fig. 32(a) for various values of the penalty parameter, and the results are

compared with those of Ghia et al. [42]. Again, we see excellent agreement between the
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two solutions even forγ = 10.

In Fig. 32(b)v-velocity profiles are plotted along the horizontal middle line of the

cavity y = 0.5 for various values of the penalty parameter. We note that boundary con-

ditions are slightly different for the two studies. Ghia et al. [42] used lid velocity of 1.0

everywhere on the top wall while in our case lid velocity varies withx and time.

Time history ofv-velocity at (0.5,0.2) is plotted in Fig. 33 for penalty parameters of

10 and 30. All three penalty parameters give identical time evolution of the velocity field.

Steady state is reached aroundt = 120 nondimensional time.

Next, number of PCG iterations required for the convergence of PCG solver is plotted

against time in Fig. 34. Each data point in the plot represents the sum of PCG iterations at

each Newton step, thus indicating the total number of PCG iterations required to converge

at a time step. The penalty parameter used is 10 in this case.
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As Figs. 32(a) and Fig. 32(b) indicate, the present model gives very accurate results

for even penalty parameter of 10. Typical penalty parameter values used in the traditional

penalty finite element model are in the range of108 to 1012. For such a high penalty pa-

rameter, conditioning number of the resulting coefficient matrix becomes very high and

different order integration rule is used to integrate penalty terms to obtainacceptablesolu-

tion. In this study we have used equal order integration for all terms.

3. Transient flow over a backward-facing step

Next, we consider transient flow over a two-dimensional backward-facing step at Re= 800.

The domain of interest is̄Ω = [0, 30] × [−0.5, 0.5]. Mesh and boundary conditions are

shown in Fig. 35. The boundary and initial conditions used here are the same as those

used in the works of Gresho et al. [43] and Pontaza and Reddy [12]:u = v = 0 on

the horizontal walls,−p + µ∂u/∂n = 0 and∂v/∂n = 0 on the outflow boundary, and

u = [tanh(t/4)]ub(y) + [1 − tanh(t/4)]up(y) andv = 0 on the inflow boundary. Here

ub(y) = max[0, 24y(0.5 − y)] is the true inlet boundary condition andup(y) = 3(0.5 −
y)(0.5 + y) is the Poiseuille flow observed infinitely far downstream at steady-state. The

initial velocity field is set tou = up(y) andv = 0 everywhere in the computational domain.

The inlet condition is varied fast but smoothly from Poisuille flow to flow over a backward

facing step.

To accurately resolve primary and secondary circulation zones, a nonuniform mesh
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is used. We use7th order nodal expansion in each element (Mesh A). There are19, 604

degrees of freedom in the mesh. We condense out all interior degrees of freedom, resulting

in 5, 780 interface degrees of freedom and a bandwidth of268. Simulations are carried out

for penalty parameter of 30, 50, and 100. The Crank-Nicholson scheme is used for time

marching, and a time increment of∆t = 0.2 has been used for all the results reported in

this section.

Fig. 36 shows the evolution of the velocity flow field during initial stage. The main

flow coming from the inlet follows a sinuous path, forming a series of eddies along the

upper and lower wall. At the steady state, two eddies (primary and secondary separation

zones) remain, all other eddies die out. These plots match qualitatively well with the pub-

lished results of Prabhakar and Reddy [41].

In the steady state, the primary reattachment length is around 6.10, while secondary

separation and reattachment lengths are approximately 4.9 and 10.4, respectively. Fig. 37

shows the evolution of pressure field. In this formulation pressure field evolves smoothly.

The pressure gradient caused by eddies can be seen in these plots. Dilatation contours at

steady state are plotted in Fig. 38 for three penalty parameters. Maximum value of the

dilatation is around10−6, showing that mass conservation is very good.

Time history ofv-velocity signal at two locations (10,0) and (13,0) are plotted in

Fig. 39 for three penalty parameters and compared with the results of Prabhakar et al. [41],

who used collocation penalty least-squares (bilinear shape functions with one-point Gauss

quadrature). Results match well for all three penalty parameters. For all the penalty param-

eters, we obtain smooth and monotonic decay of the transient. There are no fluctuations in

thev-velocity field, showing that mesh resolution is adequate.

In Figs. 40(a) and 40(b) mass flow rate across sectionsx = 5 andx = 10 are plotted

with time for three penalty parameters considered here. There is less than 0.5% of mass

loss for these penalty parameters, showing that mass conservation is very good even for
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low values of penalty parameters.

Next, the number of PCG iterations required are plotted against time in Fig. 41. The

PCG solver converges steadily without much fluctuation (not shown here) indicating good

conditioning of coefficient matrix. The penalty parameter is taken to be 30 in this case.

The previous works of Gresho et al. [43], Torczynski [44], and Pontaza and Reddy

[12] showed that lack of spatial resolution induces unrealistic temporal chaotic behavior,

resulting in an erroneous prediction of the long-term behavior of the flow. In such cases,

either simulation diverges or the velocities fluctuate with time if it converges to steady state

[12]. Pontaza and Reddy [12] reported that simulations diverge forp level less than 9
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on 30 × 4 mesh, when space-time decoupled formulations are used. In our case, mesh is

coarser than the one used in [12], but still simulations predict correct evolution of field and

reach the steady state. To examine sensitivity of accuracy onp-level, simulations are run for

p = 5 on24× 4 mesh (Mesh B) for penalty parameters of 30, 50, and 100. Time evolution

of v-velocity at two locations (10,0) and (13,0) are plotted in Fig. 42 and compared with

the results obtained usingp = 7. Even for thisp-level, velocity evolution is quite accurate.

TheL2-norm of least-squares functional and dilatation are plotted in Figs. 43(a) and

43(b) for p levels of 5 and 7 and penalty parameter of 30. These plots show monotonic

convergence to steady state.
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CHAPTER IV

A COLLOCATION PENALTY LEAST-SQUARES FINITE ELEMENT

FORMULATION FOR INCOMPRESSIBLE FLOWS

A. Introduction

Recently, there has been substantial interest in the use of least-squares based finite element

formulations for the numerical solution of Stokes and Navier-Stokes equations [1, 2, 3, 4,

5, 6]. They offer several theoretical and computational advantages. Most notably, such for-

mulations circumvent the inf-sup condition of Ladyzhenskaya-Babuska-Brezzi (LBB). So

the choice of approximating spaces is not subject to any condition, and a single continuous

piecewise polynomial space can be used for the approximation of all unknowns. They also

yield symmetric positive-definite coefficient matrix and robust iterative solvers can be used

to solve resulting system of linear equations.

Previous studies [8, 9] showed that mass conservation is not very good in least-squares

based formulations when low order basis functions are used. Chang and Nelson [8] sug-

gested that this is because the error is minimized on a global scale, allowing errors of

significant size to remain on a local scale, especially in areas in which the gradients of the

variables are of significant size. They also proposed a remedy. Unfortunately, this remedy,

which consists of enforcing the continuity equation as an explicit constraint through the use

of Lagrange multipliers, negates one of the main advantages of the least-squares methods,

namely, the positive-definiteness of resulting coefficient matrix. Deang and Gunzburger

[10] also studied mass conservation in least-squares formulations and analyzed weighted

least-squares functionals. These formulations showed better mass conservation than un-

weighted formulations but conditioning number of the resultant coefficient matrix became

high. Bolton and Thatcher also addressed this problem for Stokes [9] and Navier-Stokes
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equations [11] and proposed weighting of particular terms in the least-squares functional.

Another problem associated with least-squares formulations is an ill-behaved tem-

poral evolution of pressure field. In least-squares based finite element formulations, the

divergence-free constraint on the velocity field is enforced directly through the least-squares

functional and pressure does not play a role in enforcing it. Thus, the pressure does not

have a well-defined role in these formulations. Unsteady problems, especially with in-

flow/outflow boundaries, produce spurious pressure evolution with time due to this lack of

strong pressure velocity coupling.

Recently, Pontaza [45] proposed the use of a regularized divergence-free constraint to

improve the velocity-pressure coupling. In the resulting variational problem the pressure

is readily identified as an enforcer of the divergence-free constraint. The formulation was

shown to give a smooth and accurate temporal evolution of the pressure field and excellent

conservation of mass in time.

Penalty based finite element formulations for the Navier-Stokes equations were pro-

posed almost three decades ago and there have been subsequent improvements. The penalty

methods did not gain much popularity mainly because of ill-conditioning of the coefficient

matrix, which renders iterative solvers ineffective. Prabhakar and Reddy [6] proposed a

least-squares based penalty formulation for the steady incompressible Navier-Stokes equa-

tions where the pressure degree of freedom is eliminated using an iterative penalization.

This eliminates the issue of proper velocity-pressure coupling, as the pressure is no longer

explicitly present in the formulation. They used spectral high-order basis functions to con-

struct the discrete models. This formulation gave accurate numerical results and good

conservation of mass for low penalty parameters (10-40).

In this chapter we implement the penalty least-squares formulation using bi-linear

basis functions, which are widely used in practice. Further, we extend the implementation

to simulate unsteady flows. When using bi-linear basis functions a least-squares collocation
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approach is appropriate [14], which we adopt here.

The present chapter is organized as follows. In section B, the penalty based least-

squares finite element model for the incompressible Navier-Stokes equations is presented.

Numerical results are presented in section C. Theh-convergence is verified using the ex-

act solution of the Kovasznay flow problem. We then present results for 2D flow past a

large circular cylinder in a channel. We check the dependence of mass conservation on

penalty parameter and mesh size. Next, numerical results are presented for the transient

two-dimensional flow over a backward-facing step. We run simulations for various penalty

parameters and report the evolution of velocity and pressure field with time. Lastly, in sec-

tion D, we extend this formulation to velocity-temperature coupled problems and present

results for buoyant flow inside a square enclosure and compare results with benchmark

solution of Davis et al. [26] and Prabhakar and Reddy [6].

B. The incompressible Navier-Stokes equations

The unsteady Incompressible Navier-Stokes equations in dimensionless form can be writ-

ten as follows:

∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω× (0, τ ] (4.1)

∇ · u = 0 in Ω× (0, τ ] (4.2)

u = u0(x) onΩ (4.3)

u = us onΓu × (0, τ ] (4.4)

n̂ · σ = f s onΓf × (0, τ ] (4.5)
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whereu (x) is the velocity vector,σ = −p I + 1/Re
[
(∇u) + (∇u)T

]
is the total stress,

p (x) is the pressure,f is a dimensionless force,n̂ is the outward unit normal on the bound-

ary of Ω, us is the prescribed velocity on the boundaryΓu, andf s are the prescribed trac-

tions on the boundaryΓf , Γ = Γu ∪ Γf andΓu ∩ Γf = ∅, and Re is the Reynolds number.

In the penalty method, pressure is eliminated from the Navier-Stokes equations using

the following expression (see [27], [28], and [29]):

p = −γ(∇ · u) (4.6)

Gunzburger [13] proposed an iterative penalty method

pn = pn−1 − γ(∇ · u) (4.7)

wheren is the nonlinear iteration number. An advantage of this method is that the value

of penalty parameter needed to enforce the continuity constraint is equal to the square-

root of the one needed in the non-iterative penalty method [13]. This, in turn, results in

a coefficient matrix with smaller conditioning number. In this study we use the iterative

penalty method.

Therefore, the problem becomes one of finding the velocityu (x) such that

∂u

∂t
+ (u · ∇)u− γ∇(∇ · u)− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f −∇pn−1 in Ω× (0, τ ]

(4.8)

u = u0(x) in Ω (4.9)

u = us onΓu × (0, τ ]

(4.10)

n̂ · σ = f s onΓf × (0, τ ]

(4.11)
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wheren in the superscript(n − 1) is the nonlinear iteration number. Since the solution at

iteration(n− 1) is known,∇pn−1 is known and therefore transferred to the right-hand side

of the equation.

1. The velocity-dilatation-vorticity first-order system

To cast the second-order system (4.8)-(4.11) into a first-order system, we introduce the

vorticity vector,ω = ∇ × u, and dilatation,D = ∇ · u, as independent variables. Then

the problem can be stated as one of finding the velocity vectoru (x), dilatationD (x), and

vorticity ω (x) such that

∂u

∂t
+ (u · ∇)u− γ∇D +

1

Re
∇× ω = f −∇pn−1 in Ω× (0, τ ] (4.12)

ω −∇× u = 0 in Ω× (0, τ ] (4.13)

D −∇ · u = 0 in Ω× (0, τ ] (4.14)

u = u0(x) onΓu (4.15)

u = us onΓu × (0, τ ] (4.16)

ω = ωs onΓω × (0, τ ] (4.17)

Typically Γu ∩ Γω = ∅, i.e., if velocity is specified at a boundary, vorticity need not be

specified there.

a. L2 least-squares formulation

The least-squares functional of the problem can be set up by summing up the squares

of the residuals of the new set of equations. In this study, we use space time decoupled

formulation. In space-time decoupled formulations, discretization in space and time are

done independently. Generally, the temporal operators are represented by truncated Taylor
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series expansions in time domain. We use a Crank-Nicholson or a backward multi-step

scheme (BDF2) in this study. Least-square functional for backward multi-step schemes

can be written as

J (u, D, ω; f) =
1

2

( ∥∥ γ0

∆t
us+1 −

Mα∑
q=0

βq

∆t
us−q + (u · ∇)u− γ∇D +

1

Re
∇× ω

− f +∇pn−1
∥∥2

0,Ω×(0,τ ]
+

∥∥ ω −∇× u
∥∥2

0,Ω×(0,τ ]

+
∥∥ D −∇ · u

∥∥2

0,Ω×(0,τ ]

)
(4.18)

whereγ0 =
∑Mα

q=0 βq for consistency,βq are weights associated with a particular multi-step

scheme,∆t = ts+1 − ts is the time increment.

Considering the homogeneous pure velocity boundary condition case, the least-squares

principle for functional (4.18) can be stated as:

find (u, D, ω) ∈ X, u(x, 0)=u0(x) such that

J (u, D, ω; f) ≤ J
(
ũ, D̃, ω̃; f

)
∀

(
ũ, D̃, ω̃

)
∈ X (4.19)

where we use the space

X =
{

(u, D, ω) ∈ H1
0 (Ω)×H1 (Ω)×H1 (Ω)

}

The variational problem (after linearization using Newton’s method)corresponding to the

least-squares principle is given by: find (u, D, ω) ∈ X, u(x, 0)=u0(x) such that

B
(
(u, D, ω) ,

(
ũ, D̃, ω̃

))
= F

((
ũ, D̃, ω̃

))
∀

(
ũ, D̃, ω̃

)
∈ X (4.20)

Let Xh denote a finite-dimensional subspace ofX. Then the least-squares discretized

model of the Navier-Stokes equations is defined by the following discrete variational prob-
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lem: find
(
uh, Dh,ωh

) ∈ Xh, u(x, 0)=u0(x) such that

B
((

uh, Dh,ωh
)
,
(
ũh, D̃h, ω̃h

))
= F

((
ũh, D̃h, ω̃h

))
∀

(
ũh, D̃h, ω̃h

)
∈ Xh (4.21)

Having defined the finite element framework in terms of the penalty least-squares

formulation, we need to choose proper basis functions to interpolate dependent variables.

We use bi-linear basis functions in this study. The integrals in Eq. (4.21) are evaluated

using one point Gauss quadrature rules, which is equivalent to adopting a least-squares

collocation approach [14]. For details on standard finite element computer implementation,

such as mappinḡΩe À Ω̂e, numerical integration in̂Ωe, and assembly using the direct

stiffness approach, see Reddy [27, 28]. For linearization, we use Newton’s method, details

of which can be found in [31].

C. Numerical results

In this section, numerical results obtained with the present least-squares finite element

model are presented. First,h-convergence of the proposed formulation are verified. Next,

results are presented for steady flow past a large circular cylinder in a channel, transient

flow over a backward facing step and unsteady flow past circular cylinder.

For all the problems considered in this chapter, non-linear convergence is declared

when the relative norm of the residual,‖∆U‖/‖U‖ is less than10−3 unless mentioned,

whereU is the solution vector (includes all degrees of freedom at a node). Convergence of

conjugate gradient is declared whenL2-norm of error is less than10−6.

1. Verification problem: Kovasznay flow

Kovasznay flow problem is used for the purpose of verification of the penalty least-squares

based finite element model. Domain of interest isΩ̄ = [−0.5, 1.5] × [−0.5, 1.5]. The
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analytical solution is given by [34]

u = 1− eλx cos(2πy) (4.22)

v =
λ

2π
eλx sin(2πy) (4.23)

p = p0 − 1

2
e2λx (4.24)

whereλ = Re/2− [(Re2/4)+4π2]1/2 andp0 is a reference pressure (an arbitrary constant).

Drichlet boundary conditions on velocities are specified using the exact solution given

by Eqs. (4.22) and (4.23). The discrete system is linearized using Newton’s method and re-

sulting symmetric positive-definite (SPD) system of equations has been solved using PCG

solver. Newton’s convergence is declared when the relative norm of the residual is less than

10−10. Convergence of conjugate gradient is declared whenL2-norm of error is less than

10−10.

Streamlines obtained with the present formulation for the Kovasznay flow are shown in

Fig. 44. We perform an h-refinement study. For such a study, the p-level of of the element

approximation function is fixed, and mesh is refined systematically. The error measures

should decay at an algebraic rate as the mesh is refined. On a log-log scale it should be

a straight line. We use p-level of 5 for which approximation theory implies that the best

convergence rate in theL2 norm is 6. Penalty parameter used is102.

Four different uniform meshes are used to perform the h-refinement study. The meshes

are varied successively from6×6 to 20×20. In Fig. 45L2 norm of least-square functional

J and L2 error of the velocity, pressure and vorticity fields are plotted against h. An

algebraic convergence rate slightly lower than 6 is achieved by least-squares functional

and pressure, and an algebraic convergence rate slightly better than 6 is achieved by u, v

velocities and vorticity.
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2. Steady flow past a large circular cylinder in a channel

To test mass conservation rigorously, we solve flow past a large circular cylinder in a chan-

nel with blockage ratio of 2 (H/D = 2). Domain of interest is[−10.0, 15.0] × [−1.0, 1.0].

Cylinder has unit diameter and it is centered at (0.0, 0.0). No-slip boundary conditions are

imposed on side walls. At inlet, boundary conditions areu = 1.0 andv = 0.0. The out-

flow boundary conditions are imposed in a weak sense through the least-squares functional.

Reynolds number considered here is 40 for which steady state solution exists. Problem is

solved for three penalty parameters, 20, 30 and 50.

Fig. 46 contains a close-up view of the geometric discretization around the circular

cylinder. We use quadrilateral elements. There are 1824 elements and 1938 nodes in the

mesh (Mesh 1). Fig. 47(a) shows streamline plot for the penalty parameter of 30. U-

velocity contours around the cylinder are shown in Fig. 47(b). The predicted wake extends

1.68 cylinder radius measured from the back of the cylinder for all three penalty parameters

considered here. Next, in Fig. 48(a) and Fig. 48(b), u and v-velocities are plotted along line

AB (see Fig. 46). Present results are compared with the results of Prabhakar and Reddy [6]

who solved same problem using a spectral/hp penalty least-squares formulation. Present

results matches well with the results of Prabhakar and Reddy [6]. Results are almost

identical for all three penalty parameters. Mass flow rate at x=0 is calculated and found to

be≈ 2 for all three penalty parameters if Newton’s convergence is declared when relative

norm of the residual is less than10−6 (it depends on nonlinear convergence).

Next we coarsen the mesh. We generate a similar mesh shown in Fig. 49(a) and

Fig. 49(b) with 720 elements and 802 nodes (Mesh 2). U and v-velocities are plotted along

line AB and compared with the results obtained with hp penalty least-squares formulation.

While u-velocity profile matches to a good extent, v-velocities are quite off. Speculating

that till now mass conservation was good because of fine mesh and not because of penalty
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parameter, we increase penalty parameter in an attempt to get better mass conservation

and hence accurate results. But all three penalty parameters (20, 40, 60) produce equally

’inaccurate results’ on coarse mesh showing that penalty parameter of 20 is sufficient to

enforce continuity constraint and error is because of insufficient mesh resolution and not

because of low value of penalty parameter.

3. Transient flow over a backward-facing step

Next, we consider two-dimensional transient flow over a backward-facing step at Re= 800.

The domain of interest is̄Ω = [0, 30] × [−0.5, 0.5]. The boundary and initial conditions

used here are those used in the work of Gresho et al. [43] and Pontaza and Reddy [12]: u =

v = 0 on the horizontal walls,−p + µ∂u/∂n = 0 and∂v/∂n = 0 on the outflow boundary,

and u = [tanh(t/4)]ub(y) + [1-tanh(t/4)]up(y) and v=0 on the inflow boundary. Hereub(y)

= max[0,24y(0.5-y)] is the true inlet boundary condition andup(y) = 3(0.5-y)(0.5+y) is the

Poiseuille flow observed infinitely far downstream at steady flow conditions. The initial

velocity field is set to u=up(y) and v = 0 everywhere in the computational domain. The

inlet condition is varied fast but smoothly from Poisuille flow to flow over a backward

facing step.

A 150 × 50 mesh has been used. Along x direction, there are 90 uniform element till

x=15 and 60 uniform element from x=15 to x=30 (Mesh A). Mesh is uniform in y direction.

Crank-Nicholson scheme is used for time marching and a time increment of 0.20 has been

used for all the results reported in this section.

Fig. 50 shows the evolution of the flow field. The main flow coming from the inlet

follows a sinuous path, forming a series of eddies along the upper and lower wall. At the

steady state, two eddies (primary and secondary separation zones) remain, all other eddies

die out. These plots match qualitatively well with the published results of Pontaza and

Reddy [12]. In the steady state, the primary reattachment length is around 6.10, while
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secondary separation and reattachment lengths approximately 4.9 and 10.4 respectively.

Fig. 51 shows the evolution of pressure field. In this formulation pressure field evolves

smoothly. The pressure gradient caused by eddies can be seen in these plots. At all time,

at the outlet (x=30) there is no pressure gradient in y direction. That’s why boundary

condition of p=0 also performs well for long domains.

Fig. 52(a) and 52(b) show the time history of the v-velocity component at two loca-

tions along the channel’s mid-section for the three penalty parameters. For all the penalty

parameters, we obtain smooth and monotonic decay of the transient. There are no fluctua-

tions in v-velocity signals showing that mesh resolution is adequate.

Time histories of the mass flow rates across x=5 and x=10 are plotted in Fig. 53 for

penalty parameter of 30, 50 and 100. There is less than 1% of mass loss for all three penalty

parameters. As expected mass conservation is better forγ = 100 thanγ = 30 andγ = 50.

Previous work of Gresho et al. [43], Torczynski [44] and Pontaza and Reddy [12]

showed that lack of spatial resolution induces unrealistic temporal chaotic behavior result-

ing in an erroneous prediction of the long-term behavior of the flow. In such cases either

simulation diverges or the velocities fluctuate with time if it converges to steady state [12].

We coarsen the mesh and solve this problem on100× 40 (60+40 in x direction) (Mesh B).

This mesh is uniform in y direction. Fig. 54(a) and 54(b) show time history of v-velocity

at two locations for various values of penalty parameters. Velocity evolution is slightly off

but same for penalty parameters of 50 and 100.

Expecting that penalty parameter is not sufficient to enforce continuity constraint, we

increase penalty parameter to 200. Penalty parameter of 200 also produces ’equally inac-

curate’ showing that inaccuracy in not because of penalty parameter but inadequate mesh

resolution. v-signal forγ = 200 fluctuates more probable because PCG does not converge

properly (PCG tolerance of10−6 is used for all simulations). In Fig. 55, time history of

mass flow rates are plotted at section x=5 and x=10 for penalty parameters of 50, 100 and
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200. Mass flow rates on this mesh B is almost same as that on mesh A.

D. Temperature-Velocity coupled problem

We consider steady incompressible fluid flow in a domainΩ ⊂ R2 bounded byΓ = Γθ∪Γq

whereΓθ andΓq are the isothermal and the adiabatic boundaries as well asΓθ∩Γq = ∅. The

fluid motion is induced by the temperature gradient across the vertical walls. The buoyancy

effect is approximated by the Boussinesq assumption. The Navier-Stokes equations and the

energy equation in dimensionless form are given below.
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Find the velocityu (x), pressurep (x) and temperatureθ (x) such that

(u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
+ θ

g

|g| = 0 in Ω (4.25)

∇ · u = 0 in Ω (4.26)

(u · ∇) θ − 1

Pe
∇2θ = 0 in Ω (4.27)

u = us onΓu (4.28)

n̂ · σ = f s onΓf (4.29)

θ = θs onΓθ (4.30)

n̂ · q = qs onΓq (4.31)

whereg is gravitational acceleration vector which is acting in negativey-direction. Here we

take the cavity wall length and buoyant speed ((|g|α∆θl)1/2) as characteristic length and

velocity, respectively. The characteristic numbers are Re = (Ra/Pr)1/2 , Pe= (Ra Pr)1/2 ,

Ra = α|g|l3∆θ/(κν) and Pr= ν/κ, whereα is the volumetric thermal expansion coef-

ficient, l is the characteristic length,∆θ is the characteristic temperature,κ is the thermal

diffusivity, andν = µ/ρ is the kinematic viscosity.

1. The vorticity-dilatation/heat flux based first-order system

Vorticity-dilatation and heat flux vector are introduced as independent variables to make

the system first order. The resulting first-order system in dimensionless form can be stated

as follows:

Find the velocityu (x), dilatationD (x), vorticity ω (x), temperatureθ (x) and heat
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flux q (x) such that

(u · ∇)u− γ∇D +
1

Re
∇× ω + θ

g

|g| +∇pn−1 = 0 in Ω (4.32)

ω −∇× u = 0 in Ω (4.33)

D −∇ · u = 0 in Ω (4.34)

(u · ∇) θ +∇ · q = 0 in Ω (4.35)

q +
1

Pe
∇θ = 0 in Ω (4.36)

u = us onΓu (4.37)

ω = ωs onΓω (4.38)

θ = θs onΓθ (4.39)

n̂ · q = qs onΓq (4.40)

TheL2 least-squares formulation and finite element model development proceed in a simi-

lar manner as described for the incompressible Navier-Stokes equations.

2. Numerical example: Buoyancy-driven flow inside a square enclosure

As a numerical example, we consider two-dimensional, steady, buoyancy-driven flow in a

square enclosure with differentially heated vertical walls. The square enclosure is taken

to be the unit square,̄Ω = [0, 1] × [0, 1]. A finite element mesh of100 × 100 nonuniform

quadrilateral finite elements is used to discretize the domain with the corner element having

dimension0.001×0.001. No slip velocity boundary condition is imposed on all solid walls.

qy is 0 at the top and bottom walls while left side wall is kept atθ = 1 and right side wall

at θ = 0.

Computations have been performed for Rayleigh numbers of105 and106. Air is taken
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as the working fluid with Prandtl number0.71. Computations have been performed for

penalty parameters of10, 20 and40.

The Nusselt number on the vertical boundary at x=0 is calculated as

Nu(y) = qx(y) Pe

and the average Nusselt number (at x=0) is calculated as

Nu =

∫ 1

0

Nu(y)dy

Components of heat flux are taken to be the primary variables. Therefore, in spite of using

C0 continuous basis functions, we obtain smooth solution for heat fluxes. The average

Nusselt number on the boundary is calculated using numerical integration using 9-point

Gauss quadrature. We use Ra continuation method, start with Ra =105 and proceed till106

with Ra increment of105. Zero initial guess is used for Ra =105. It takes 10 Newton’s

iterations to converge for Ra =105. Subsequent Rayleigh numbers take 2-3 Newton’s

iterations to converge.

Fig. 56 contains plots of streamlines of the flow field and temperature distribution

for Rayleigh numbers of105 and106. The patterns exhibit the required centrosymmetry

and are in qualitative agreement with previously reported numerical results of Davis [26].

Fig. 57(a) contains the plot ofu-velocity profile along the vertical mid-line for penalty

parameters of10 and20 for Rayleigh number of106. All three penalty parameters give

identical values. Fig 57(b) contains plots of temperature distributions along the vertical

mid-line for three penalty parameters. Again all three penalty parameters give identical

values. The average Nusselt number on the vertical boundary of the cavity atx = 0 for

Rayliegh numbers are compared with the benchmark result of Davis [26] in Table VI.
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Fig. 56. Numerical results for 2D thermal cavity flow. (a) Streamlines atRa = 105 (b)

temperature contours forRa = 106 , (c) streamlines forRa = 106 (d) temperature

contours forRa = 106
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Fig. 57. (a) u-velocity (b)temperature along the vertical midline of the enclosureRa = 106



114

Table VI. Average Nusselt number on the vertical boundary of the cavity atx = 0.

γ = 10 γ = 20 γ = 40 Davis [26]

Ra= 105 4.517 4.526 4.533 4.509

Ra= 106 8.833 8.845 8.853 8.817

Next, we coarsen the mesh and solve the problem on50× 50 non-uniform mesh with

corner element of size 0.002 (elements sizes are doubled). Temperature and u-velocity

profile along vertical midline are plotted in Fig. 58(a) and 58(b). Results are slightly off.

In an attempt to fix this, we increase penalty parameter to 60. Still results are ’equally

inaccurate’ showing that inaccuracy is not because of continuity constraint enforcement

and penalty parameter of 20 is sufficient to enforce continuity constraint to a good extent.
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CHAPTER V

A STRESS BASED LEAST-SQUARES FINITE ELEMENT MODEL FOR

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A. Introduction

In the past few years finite element models based on least-squares variational principles

have drawn considerable attention for the solution of Stokes and Navier-Stokes equations

[1, 2, 3, 4, 5, 6]. Least-squares based finite element formulations offer several theoretical

and computational advantages. Most notably, such formulations circumvent the inf-sup

condition of Ladyzhenskaya-Babuska-Brezzi (LBB). As a result equal order interpolation

functions can be used for all field variables. They also yield symmetric positive-definite co-

efficient matrix and therefore robust iterative solvers can be used to solve resulting system

of algebraic equations.

Vorticity based least-squares formulation is the most popular first order formulation

for the solution of Stokes and Navier-Stokes equations since only one additional indepen-

dent variable is introduced in 2D compared to three in stress based formulation and four

in velocity-flux formulation. In this chapter we present a stress based least-squares finite

element formulation that carries five independent variables. In the proposed formulation,

continuity equation becomes an algebraic equation and is eliminated from the system of

governing equations with suitable modifications.

Bochev and Gunzburger [46] studied stress based first order system for the incom-

pressible Stokes equations but retained continuity equation. They analyzed weighted (mesh

dependent weights) as well as the unweightedL2 least-squares functional. They showed

that weighted least-squares formulation converges faster but suffers from the problem of

bad conditioning of the coefficient matrix. They tested the formulation with several model
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problems. However, no detailed numerical results were reported.

Previous studies [8, 9] showed that mass conservation is not very good in least-squares

based formulations. Chang and Nelson [8] suggested that this is because the error is min-

imized on a global scale, allowing errors of significant size to remain on a local scale,

especially in areas in which the gradients of the variables are of significant size. They

also proposed a remedy. Unfortunately, this remedy, which consists of enforcing the con-

tinuity equation as an explicit constraint through the use of Lagrange multipliers, negates

one of the main advantages of the least-squares methods, namely, the positive-definiteness

of resulting coefficient matrix. Deang and Gunzburger [10] also studied mass conserva-

tion in least-squares formulations and analyzed weighted least-squares functionals. These

formulations have better mass conservation than un-weighted formulations but condition-

ing number of the resultant coefficient matrix becomes high. Bolton and Thatcher also

addressed this problem for Stokes [9] and Navier-Stokes equations [11] and proposed

weighting of particular terms in the least-squares functional. Pontaza and Reddy [5, 12]

used high order basis functions and they did not observe problems with mass conservation.

However, for unsteady backward facing problem numerical solutions become unstable if

sufficiently highp-level was not used. In this study we pay particular attention to mass

conservation and solve problems on relatively coarse meshes to check mass conservation.

We examine mesh dependence of the solution for transient backward facing step problem.

The chapter is organized as follows. In section B, the stress based least-squares finite

element model for the steady incompressible Navier-Stokes equations is presented. Nu-

merical results are presented in section C. Theh andp convergence are verified using the

exact solution of the Kovasznay flow problem. first we present results for 2D flow past

a large circular cylinder in a channel. We check the dependence of mass conservation on

mesh size. Next, numerical results are presented for the transient two-dimensional flow

over a backward-facing step. We run the simulation for various meshes and report evolu-
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tion of velocity field with time. We compare these results with the results obtained using

traditional vorticity-pressure formulation. We conclude the chapter with some remarks.

B. The incompressible Navier-Stokes equations

The steady incompressible Navier-Stokes equations in dimensionless form can be written

as

∇ · u = 0 in Ω (5.1)

(u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (5.2)

u = us onΓu (5.3)

n̂ · σ = f s onΓf (5.4)

whereu (x) is the velocity vector,σ = −p I + 1/Re
[
(∇u) + (∇u)T

]
is the total stress,

p (x) is the pressure,f is a dimensionless force,n̂ is the outward unit normal on the bound-

ary of Ω, us is the prescribed velocity on the boundaryΓu, andf s are the prescribed trac-

tions on the boundaryΓf , Γ = Γu ∪ Γf andΓu ∩ Γf = ∅, and Re is the Reynolds number.

1. The stress based first-order system

To define the first-order velocity-pressure-stress system, ’scaled’ stress tensor (symmetric

part of velocity gradient tensor) is introduced

T =
[
(∇u) + (∇u)T

]
(5.5)

Then Eqs. (5.1)-(5.4) can be replaced by an equivalent system of first-order equations.

The problem now can be stated as one of finding the velocity vectoru (x), pressurep(x)



119

and stress tensorT (x) such that

∇ · u = 0 in Ω (5.6)

(u · ∇)u +∇p− 1

Re
∇ ·T = f in Ω (5.7)

T−
[
(∇u) + (∇u)T

]
= 0 in Ω (5.8)

u = us onΓu (5.9)

n̂ ·T = Ts onΓT (5.10)

In component form these equations can be written as

∂u

∂x
+

∂v

∂y
= 0 in Ω (5.11)

u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
− 1

Re

[∂Txx

∂x
+

∂Txy

∂y

]
= fx in Ω (5.12)

u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
− 1

Re

[∂Txy

∂x
+

∂Tyy

∂y

]
= fy in Ω (5.13)

Txx − 2
∂u

∂x
= 0 in Ω (5.14)

Txy − ∂u

∂y
− ∂v

∂x
= 0 in Ω (5.15)

Tyy − 2
∂v

∂y
= 0 in Ω (5.16)

u = us onΓu (5.17)

n̂ ·T = Ts onΓT (5.18)
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Continuity equation can be written as

∂u

∂x
+

∂v

∂y
= 0 in Ω (5.19)

⇒ Txx = −Tyy in Ω (5.20)

Continuity equation is eliminated andTyy is replaced by -Txx in the system of gov-

erning equations. Then Navier-Stokes and continuity equations can now be replaced by an

equivalent system of first-order equations. The problem now can be stated as one of finding

the velocity vectoru (x) pressurep (x) and stress tensor componentsTxx, Txy such that

u
∂u

∂x
+ v

∂u

∂y
+

∂p

∂x
− 1

Re

[∂Txx

∂x
+

∂Txy

∂y

]
= fx in Ω (5.21)

u
∂v

∂x
+ v

∂v

∂y
+

∂p

∂y
− 1

Re

[∂Txy

∂x
− ∂Txx

∂y

]
= fy inΩ (5.22)

Txx − 2
∂u

∂x
= 0 in Ω (5.23)

Txy − ∂u

∂y
− ∂v

∂x
= 0 in Ω (5.24)

− Txx − 2
∂v

∂y
= 0 in Ω (5.25)

u = us onΓu (5.26)

n̂ ·T = Ts onΓT (5.27)

a. L2 least-squares formulation

The least-squares functional of the problem can be set up by summing up the squares of

the residual of the new set of equations

J (u, p, Txx, Txy; f) =
1

2

( ∥∥R1

∥∥2

0
+

∥∥ R2

∥∥2

0
+

∥∥ R3

∥∥2

0
+

∥∥ R4

∥∥2

0
+

∥∥ R5

∥∥2

0

)
(5.28)
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whereR1, R2, R3, R4, R5 are the residuals of Eqs. (5.21)- (5.25).

Considering the homogeneous pure velocity boundary condition case, the least-squares

principle for functional (5.28) can be stated as:

find the velocity vectoru (x), pressurep(x) and stress componentsTxx andTxy such that

J (u, p, Txx, Txy; f) ≤ J
(
ũ, p̃, T̃xx, T̃xy; f

)
∀

(
ũ, p̃, T̃xx, T̃xy

)
∈ X (5.29)

where we use the space

X =
{

(u, p, Txx, Txy) ∈ H1
0 (Ω)×H1(Ω) ∩ L̄2(Ω)×H1 (Ω)×H1 (Ω)

}

The variational problem and finite element model are constructed in conventional way,

details of which can be found in [5].

We use space-time decoupled formulation where discretization in space and time are

done independently. The Crank-Nicolson scheme is used for time approximation.

b. Expansion bases

There is no compatibility condition, such as LBB condition, in this formulation so all the

variables are approximated using the same interpolation functions. We use low order basis

functions (bilinear Lagrange basis functions) in this study except when we verifyh andp

convergence, we use high order nodal expansion.

Nodal expansion:In the standard intervalΩst = {ξ| − 1 < ξ < 1} nodal expansions

are defined as

ψi(ξ) =
(ξ − 1)(ξ + 1)L′p(ξ)

p(p + 1)Lp(ξi)(ξ − ξi)
(5.30)

In Eq. (5.30),Lp = P 0,0
p is the Legendre polynomial of orderp andξi denotes the location

of the roots of(ξ − 1)(ξ + 1)L′p(ξ) = 0 in the interval[−1, 1]. Details on the multidimen-
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sional construction of nodal expansions can be found in Ref. [30].

The integrals are evaluated using Gauss quadrature rules. In the computer implemen-

tation, one point Gauss quadrature is used for bilinear Lagange basis functions and Gauss-

Lobatto-Legendre rule is used for high order basis functions. For details on standard finite

element computer implementation, such as mappingΩ̄e À Ω̂e, numerical integration in

Ω̂e, and assembly using the direct stiffness approach, see Reddy [27, 28]. For linearization,

we use Newton’s method, details of which can be found in [31].

C. Numerical results

In this section, numerical results obtained with the present least-squares finite element

model are presented. First,h and p convergence of the proposed formulation are veri-

fied. Next, results are presented for steady flow past a circular cylinder and transient flow

over a backward facing step.

For all the problems considered in this chapter, non-linear convergence is declared

when the relative norm of the residual,‖∆U‖/‖U‖ is less than10−3 unless mentioned,

whereU is the solution vector (includes all degrees of freedom at a node). Convergence of

conjugate gradient is declared whenL2-norm of error is less than10−6.

1. Verification problem: Kovasznay flow

The benchmark problem to be used for the purpose of verification of the least-squares based

finite element model is an analytical solution to the two-dimensional steady incompressible

Navier-Stokes due to Kovasznay [34]. Domain of interest isΩ̄ = [−0.5, 1.5]× [−0.5, 1.5].

The solution is given by

u = 1− eλx cos(2πy) (5.31)
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v =
λ

2π
eλx sin(2πy) (5.32)

p = p0 − 1

2
e2λx (5.33)

whereλ = Re/2− [(Re2/4)+4π2]1/2 andp0 is a reference pressure (an arbitrary constant).

Dirichlet boundary conditions on velocities are specified using the exact solution given

by Eqs. (5.31) and (5.32). The discrete system is linearized using Newton’s method and re-

sulting symmetric positive-definite (SPD) system of equations has been solved using PCG

solver. Newton’s convergence is declared when the relative norm of the residual is less than

10−10. Convergence of conjugate gradient is declared whenL2-norm of error is less than

10−10.

An 8 × 8 uniform mesh is used . To verify spectral convergence (p-convergence),L2

norm of least-square functionalJ andL2 error of the velocity, pressure and stress fields are

plotted against polynomial order in Fig. 59. On logarithmic-linear scale we obtain almost

straight line for all the variables verifying exponential decay with respect to the polynomial

degree used.

Next, we perform anh-refinement study. For such a study, we fix thep-level of the

element approximation functions, and systematically refine the mesh. The error measures

should decay at an algebraic rate as the mesh is refined. On a log-log scale it should be

a straight line. We usep-level of 3 for which approximation theory implies that the best

convergence rate in theL2 norm is 4.

Five different uniform meshes are used to perform the h-refinement study. The meshes

are varied successively from6×6 to 20×20. In Fig. 60L2 norm of least-square functional

J andL2 error of the velocity, pressure and stress fields are plotted against h. An algebraic

convergence rate slightly better than 4 is achieved byu, v andTxy and slightly lower than

4 is achieved byp, Txx andL2 norm of error.
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2. Flow past a large circular cylinder in a channel

To test mass conservation rigorously, we solve flow past a large circular cylinder in a chan-

nel with blockage ratio of 2 (H/D = 2). Chang and Nelson [8] used similar problem to

test mass conservation for Stokes flow. Domain of interest is[−10.0, 15.0] × [−1.0, 1.0].

Cylinder has unit diameter and it is centered at (0.0, 0.0). No-slip boundary conditions are

imposed on side walls. At inlet boundary conditions areu = 1.0 andv = 0.0. The out-

flow boundary conditions are imposed in a weak sense through the least-squares functional.

Reynolds number considered here is 40 for which steady state solution exists.

Fig. 61 contains a close-up view of the geometric discretization around the circular

cylinder. We use quadrilateral elements. There are 1824 element in the mesh and 1938

nodes (Mesh 1). Fig. 62(a) shows streamline plot. In this case separation delayed.u-

velocity contours around the cylinder are shown in Fig. 62(b). The predicted wake extends

1.68 cylinder radius measured from the back of the cylinder.

Next, u andv-velocities are plotted along line AB (see Fig. 61). Present results are

compared with the results of Prabhakar and Reddy [6] who solved same problem using

Spectral/hp penalty least-squares formulation. Results in [6] are expected to be accurate

to a good extent. Present results match well with the results of Prabhakar and Reddy [6].

Mass flow rate atx = 0 is calculated and found to be 1.98.

Next we coarsen the mesh. We generate a similar mesh shown in Fig. 61 with 720 ele-

ments and 802 nodes (Mesh 2);u andv-velocities are plotted along line AB (see Fig. 64(a)

and 64(b)) and compared with the results obtained withhp penalty least-squares formula-

tion. Whileu-velocity profile matches to a good extent,v-velocities are significantly off.
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3. Transient flow over a backward-facing step

Next, we consider two-dimensional transient flow over a backward-facing step at Re= 800.

The domain of interest is̄Ω = [0, 30] × [−0.5, 0.5]. The boundary and initial conditions

used here are those used in the work of Gresho et al. [43] and Pontaza and Reddy [12]:

u = v = 0 on the horizontal walls,−p + µ∂u/∂n = 0 and∂v/∂n = 0 on the outflow

boundary, andu = [tanh(t/4)]ub(y) + [1 − tanh(t/4)]up(y) and v = 0 on the inflow

boundary. Hereub(y) = max[0, 24y(0.5 − y)] is the true inlet boundary condition and

up(y) = 3(0.5 − y)(0.5 + y) is the Poiseuille flow observed infinitely far downstream at

steady flow conditions. The initial velocity field is set tou = up(y) andv = 0 everywhere

in the computational domain. The inlet condition is varied fast but smoothly from Poisuille

flow to flow over a backward facing step.

A 150× 50 mesh has been used. Alongx direction, there are 90 uniform element till

x = 15 and 60 uniform element fromx = 15 to x = 30. Mesh is uniform in they direction.

A time increment of 0.2 has been used for time marching.

Fig. 65 shows the evolution of the flow field. The main flow coming from the inlet

follows a sinuous path, forming a series of eddies along the upper and lower wall. At the

steady state, two eddies (primary and secondary separation zones) remain, all other eddies

die out. These plots match qualitatively well with the published result of Pontaza and

Reddy [12].

We also solve this problem using vorticity based first-order least-squares finite ele-

ment method under the same conditions. Fig. 66 shows the time history of thev-velocity

component at two locations along the channel’s mid-section for stress based and vorticity

based first order formulations. Both formulations predict same velocity evolution. There

are no fluctuations inv-velocity signal showing that mesh resolution is adequate.

Previous work of Gresho et al. [43], Torczynski [44] and Pontaza and Reddy [12]
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Fig. 66. Time history of the v-velocity component at two selected locations: Mesh A

showed that lack of spatial resolution induces unrealistic temporal chaotic behavior result-

ing in an erroneous prediction of of the long-term behavior of the flow. In such cases either

simulation diverges or the velocities fluctuate with time if it converges to steady state [12].

We coarsen the mesh and solve this problem on60 × 20 (40+20 in thex direction)

and40 × 16 mesh (25+15 in thex direction). These meshes are uniform in they direc-

tion. Fig. 67 shows time history ofv-velocity at two locations for both stress based and

vorticity based formulations for60 × 20 mesh. Stress based formulation does not show

much sensitivity towards mesh coarsening and for60× 20 grid results are close to that for
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150×50. Vorticity based formulation shows pronounced fluctuation inv-velocity. However

simulation does not diverge.

On40× 16 mesh,v-velocity evolutions are same for both the formulations but signif-

icantly off from accurate results on150 × 50 mesh (Fig. 68). Steady state is achieved in

these simulations.
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CHAPTER VI

LEAST-SQUARES BASED FINITE ELEMENT FORMULATIONS FOR

VISCOELASTIC FLUID FLOWS

A. Introduction

In the last two decades, much effort has been devoted to devising stable numerical algo-

rithms for viscoelastic flows [47, 48, 49]. However, limits in the maximum attainable

Weissenberg number, a parameter that characterizes the degree of viscoelasticity (memory

effect), still exist. The mathematical model of viscoelastic flows consists of the continuity

equation, momentum equations, and constitutive equations relating stress to strain. Consti-

tutive equations for viscoelastic fluids can be differential equations or integral equations.

Generally, due their simplicity, differential constitutive equations are used, which have hy-

perbolic character [50]. Coupling these hyperbolic constitutive equations to the elliptic

momentum equations leads to a system of equations with mixed character.

The constitutive equations are, in general, nonlinear, and the nonlinearity depends on

a nondimensional number called Weissenberg number, which is a measure of the memory

of the fluid. Most numerical algorithms fail to converge above a critical value of this pa-

rameter [51]. Stabilization techniques have been used to remove numerical instabilities

in order to extend the range of Weissenberg number over which converged solution can be

obtained. For steady-state viscoelastic flow problems, it has been demonstrated that with

some kind of stablizing measures, such as elastic viscous stress split (EVSS) [52] and

adaptive viscous stress split (AVSS) [53], numerical stability can be improved. The idea

is to enhance the elliptic character of the momentum equation by making elliptic operator

as strong as possible. Some successful techniques are described in [54]. Fietier and Dev-

ille [55] investigated the source of numerical instabilities occurring in the simulation of
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time-dependent flows of viscoelastic fluids by direct numerical simulations.

Finite element formulations have achieved success in the past for solving viscoelastic

flows. For incompressible Navier-stokes, there exist a compatibility condition also known

as the LBB condition on the approximation spaces for velocity and pressure. Likewise, the

addition of the constitutive equation, Eq. 6.18, imposes compatibility constraints on the

interpolation of the velocity field, pressure, and stresses [48]. The hyperbolic character of

the constitutive equation is often handled with some upwinding. Marchal and Crochet [56]

used streamline upwinding while Fortin and Fortin [57] used upwinding by discontinuous

finite element formulation. Wapperom et al. [58] proposed hybrid finite element/finite

volume scheme where they integrated finite element and finite volume methods.

As demonstrated in the previous chapters, the least-squares based finite element for-

mulations are good alternative to the weak form finite element formulations of the incom-

pressible Navier-stokes equations. It is well known that least-squares formulations circum-

vent the compatibility conditions (LBB conditions) between approximating spaces. Also

least-squares based formulations produce symmetric positive definite coefficient matrix,

and robust matrix solver can be used to solve resultant algebraic equations. These proper-

ties hold for viscoelastic flows also. Surana et al. [59] presented least-squares formulation

for steady viscoelastic flows. They showed that Galerkin method with weak form remains

variationally inconsistent where as least-squares process always yields variationally con-

sistent integral forms. They usedk-version least-squares formulation withCk (k ≥ 1) con-

tinuous functions; i.e., derivatives orderk are made continuous between elements. It is well

know that a two- or three-dimensionalC1 basis functions constructed by taking the tensor

product of a one-dimensionalC1 basis cannot enforceC1 continuity when the elements

are geometrically distorted, making it difficult to generate two- and three-dimensionalCk

functions. In another study, Garritsma [60] used direct minimization of the discontinu-

ous least-squares method,C0-continuous functions were used andC1-continuity is imple-
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mented in weak sense through least-squares functional. This formulation suffers from the

problem of bad conditioning of coefficient matrix and increase in degrees of freedom in

spite of the fact that auxiliary variables are not introduced [14]. Both of these studies were

concerned with steady viscoelastic flows.

In this chapter, we present least-squares based finite element formulations for un-

steady viscoelastic flows. We use Oldroyd-B constitutive equation. Unlike Surana et al.

[59] and Garritsma [60], where they minimize the least-squares functional of the original

second-order equations directly, we recast the second-order governing equations as a set

of first-order equations by introducing stresses as independent variables. An alternative

first-order system can be formed by introducing vorticity as an independent variable. For

incompressible Navier-Stokes equations, it has been observed that pressure evolution was

not well behaved in traditional least-squares method, and Prabhakar and Reddy [6, 41]

have developed penalty based least-squares formulations (refer to the previous chapters for

details). In this study, we extend the penalty least-squares formulation to viscoelastic flows.

Pressure is eliminated using the penalty approach and least-squares functional is formed in

terms of velocity field, stresses, and extra stresses. Transient flow in a channel is used as

benchmark problem to test the formulations developed here.

The present chapter is organized as follows. In Section B, the least-squares finite ele-

ment model for the viscoelastic flows is presented. The penalty least-squares formulation

is presented in Section C, and numerical results are discussed in Section D. Transient flow

in a channel is used as a benchmark problem. Results are presented for Weissenberg num-

ber of 1 and 10 and Reynolds number of 0.1 and 1. The effect of channel length on flow

characteristics is also investigated by analyzing for channel lengths of 16, 32 and 64.
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B. Governing equations

For isothermal incompressible viscoelastic flows governing equations in nondimensional

form can be stated as:

find the velocityu (x), pressurep (x) and extra-stress tensorA such that

∇ · u = 0 in Ω

(6.1)

Re
∂u

∂t
+ Reu · ∇u +∇p +∇ ·

[µ2

µ
((∇u) + (∇u)T)) + A

]
= 0 in Ω× (0, τ ]

(6.2)

We
∂A

∂t
+ Weu · ∇A− µ1

µ
[(∇u) + (∇u)T]−We(L ·A + A · LT) + A = 0 in Ω× (0, τ ]

(6.3)

whereLT = ∇u. The total viscosityµ is split into Newtonian solvent (µ2) and

polymeric contribution (µ1) such thatµ = µ1 + µ2. Here Reynolds and Weissenberg

numbers are given by

Re = ρUL/µ, We = λU/L

whereU andL are characteristic velocity and length scales of the flow, andλ is the

relaxation time.

1. The velocity-stress-extra stress first-order system

The momentum equations are second-order equations while the continuity equation and

constitutive equations are first-order equations. To make the whole system first order, we

introduce stress tensor components as independent variables.

Then the problem can be stated as one of finding the velocity vectoru (x), , pressure
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p (x), Eulerian rate of deformation tensorT and extra-stress tensorA such that

∇ · u = 0 in Ω (6.4)

Re
∂u

∂t
+ Reu · ∇u +∇p +∇ ·

(µ2

µ
T + A

)
= 0 in Ω× (0, τ ] (6.5)

T−
[
(∇u) + (∇u)T

]
= 0 in Ω (6.6)

We
∂A

∂t
+ Weu · ∇A− µ1

µ
T−We(L ·A + A · LT) + A = 0 in Ω× (0, τ ] (6.7)

a. L2 least-squares formulation

The least-squares functional of the problem can be set up by summing up the squares of the

residuals of the new set of equations. In this study, we use space-time decoupled formula-

tion, in which discretization in space and time are carried out independently. Generally, the

temporal operators are represented by truncated Taylor series expansions in time. We use

the Crank-Nicholson or a backward multi-step scheme (BDF2) in this study. Least-square

functional for backward multi-step schemes can be written as

J (u, D, ω; f) =
1

2

( ∥∥Re
( γ0

∆t
us+1 −

Mα∑
q=0

βq

∆t
us−q

)
+ Reu · ∇u +∇p

+∇ ·
(µ2

µ
T + A

) ∥∥2

0,Ω×(0,τ ]
+

∥∥T−
[
(∇u) + (∇u)T

] ∥∥2

0,Ω×(0,τ ]

+
∥∥ We

( γ0

∆t
As+1 −

Mα∑
q=0

βq

∆t
As−q

)
+ Weu · ∇A− µ1

µ
T

−We(L ·A + A · LT) + A
∥∥2

0,Ω×(0,τ ]

)
(6.8)

whereγ0 =
∑Mα

q=0 βq for consistency,βq are weights associated with a particular multi-step

scheme,∆t = ts+1 − ts is the time increment.
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Considering the homogeneous pure velocity boundary condition case, the least-squares

principle for functional (6.8) can be stated as:

find (u, p,T,A) ∈ X, u(x, 0)=u0(x), andA(x, 0)=A0(x) such that

J (u, p,T,A; f) ≤ J
(
ũ, p̃, T̃, Ã; f

)
∀

(
ũ, p̃, T̃, Ã

)
∈ X (6.9)

where we use the space

X =
{

(u, p,T,A) ∈ H1
0 (Ω)×H1(Ω) ∩ L̄2(Ω)×H1 (Ω)×H1 (Ω)

}

The variational problem (after linearization using Newton’s method) corresponding to the

least-squares principle is given by: find (u, p,T,A) ∈ X, u(x, 0)=u0(x), andA(x, 0)=A0(x)

such that

B
(
(u, p,T,A) ,

(
ũ, p̃, T̃, Ã

))
= F

((
ũ, p̃, T̃, Ã

))
∀

(
ũ, p̃, T̃, Ã

)
∈ X (6.10)

Let Xhp denote a finite-dimensional subspace ofX. Then the least-squares discretized

model of the Navier-Stokes equations is defined by the following discrete variational prob-

lem: find (uhp, php,Thp,Ahp) ∈ Xhp, u(x, 0)=u0(x), and A(x, 0)=A0(x) such that

B
((

uhp, php,Thp,Ahp
)
,
(
ũhp, p̃hp, T̃

hp
, Ã

hp
))

=F
((

ũhp, p̃hp, T̃
hp

, Ã
hp

))

∀
(
ũhp, p̃hp, T̃

hp
, Ã

hp
)
∈ Xhp

(6.11)

2. Expansion bases

In this study, we use both low and high order basis functions. We use bilinear basis func-

tions with one point Gauss quadrature, which is equivalent to adopting a least-squares col-

location approach [14]. For details on standard finite element computer implementation,
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such as mappinḡΩe À Ω̂e, numerical integration in̂Ωe, and assembly using the direct

stiffness approach, see Reddy [27, 28]. For linearization, we use Newton’s method, details

of which can be found in [31].

C. Penalty least-squares formulation

In the penalty method, pressure is eliminated from the Navier-Stokes equations using the

following relation, which follows from the application of the penalty method to the Navier-

Stokes equations with the divergence-free constraint (see [27], [28], and [29]):

p = −γ(∇ · u) (6.12)

Gunzberger [13] proposed an iterative penalty method

pn = pn−1 − γ(∇ · u) (6.13)

Find the velocityu (x), and extra-stress tensorA such that

Re
∂u

∂t
+ Reu · ∇u− γ∇(∇ · u) +∇ ·

[µ2

µ
((∇u) + (∇u)T)) + A

]
= −∇pn−1 in Ω× (0, τ ]

(6.14)

We
∂A

∂t
+ Weu · ∇A− µ1

µ
[(∇u) + (∇u)T]−We(L ·A + A · LT) + A = 0 in Ω× (0, τ ]

(6.15)

To make the system first order, we introduce extra-stress tensor components as independent

variables.

Then the problem can be stated as one of finding the velocity vectoru (x), Eulerian
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rate of deformation tensorT and extra-stress tensorA such that

Re
∂u

∂t
+ Reu · ∇u− γ∇[1

2
tr(T)

]
+∇ ·

(µ2

µ
T + A

)
= −∇pn−1 in Ω× (0, τ ]

(6.16)

T−
[
(∇u) + (∇u)T

]
= 0 in Ω (6.17)

We
∂A

∂t
+ Weu · ∇A− µ1

µ
T−We(L ·A + A · LT) + A = 0 in Ω× (0, τ ]

(6.18)

TheL2 least-squares formulation and finite element model development proceed in a simi-

lar manner to that described earlier.

D. Numerical results

In this section, numerical results obtained with the present least-squares finite element mod-

els are presented. The problem considered here is the transient flow in a channel for which

analytical results exist [61]. For all the cases considered here, nonlinear convergence

is declared when the relative norm of the residual,‖∆U‖/‖U‖ is less than10−3 unless

mentioned, whereU is the solution vector (includes all degrees of freedom at a node).

Convergence of conjugate gradient is declared whenL2-norm of error is less than10−6.

The boundary conditions used are on velocity field and extra-stresses. Velocity is

imposed at both inlet and outlet through the analytical profiles of Waters and King [61]

for the Oldroyd-B model. At inlet, extra-stress boundary condition is also imposed using

the analytical solution. On side walls, no-slip boundary condition is used. Geometry and

boundary conditions are shown in fig 1. Velocity values are reported at point A (along the

centerline) and extra-stress values are reported at point B. These points areL/8 distance

away from the exit of the channel. Os and Phillips [51] observed that stability of numerical
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algorithm (spectral element method) depended on the channel length also. Problem has

been solved for channel length ofL = 16, 32 and64. Velocity values are reported at point

A while extra-stress values are reported at point B (see Fig. 69).

u = 0, v = 0

u = 0, v = 0

Inlet bc Outlet bcB

A

Fig. 69. Geometry and boundary conditions

Weissenberg number considered in this study varies between 1 to 10. Problems are

solved for low Reynolds number varying between 0.1 to 1. Value of parameterβ is taken

to be1/9. The performance of the algorithm is shown by solving the transient channel flow

problem for various values of Weissenberg number and Reynolds number.

1. Results for We=1

A time increment of 0.01 is used for all of the simulations for We = 1. For larger values

of ∆t solution is not sufficiently accurate. Fig. 70 shows evolution of velocity, extra-stress

tensor componentsAxx andAxy with time for We = 1 and Re = 1 for channel length of

L=16. Mesh used for this simulation is32 × 8 bilinear elements. Numerical results are

compared with the analytical results, and there is good agreement between them. The flow

reaches steady state and no instability is observed. Next, Reynolds number is decreased

to 0.1 with all other parameters held constant (We, channel length, and mesh). Results
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are plotted in Fig. 71. Again we see good agreement between the numerical results and

analytical solutions.

Next, we investigate the effect of channel length on the stability of the numerical al-

gorithm. Channel length is increased to 32. A64 × 8 mesh is used for this computation.

Simulation converges and good agreement is found between numerical and analytical so-

lutions. The problem is then solved for channel length of 64 with64 × 8 mesh for Re=1.

Again, the flow field converges. These cases indicate, unlike the spectral element method

of Os and Phillips [51], the channel length has no effect on the stability in the present

formulation.

In this chapter we also proposed penalty least-squares finite element formulation for

viscoelastic flows. It has been observed that pressure evolution is not well behaved in

traditional least-squares formulations [45] when implemented in context of incompressible

Navier-Stokes equations. Penalty based formulations fix this problem [6, 41]. For this

simple geometry (flow in a channel), pressure is well behaved so penalty method does not

offer any advantages but for complicated geometries, we expect penalty method to perform

better than traditional least-squares formulation.

2. Results for We=10

For We=10, smaller time increment (∆t) is required. We use∆t of 0.005 to 0.001 for this

Weissenberg number. For such small∆t, the condition number of the coefficient matrix

becomes high [45] and preconditioned conjugate gradient (PCG) solver converges slowly.

It takes 50,000 PCG iterations to converge. Slow PCG convergence coupled with small

∆t makes the computation time intensive. Pontaza [45] proposed scaling of momentum

equations by∆t to fix high conditioning number problem and it worked very well for

incompressible Navier-Stokes equation. This procedure essentially reduces weight of mo-

mentum equations (which is equivalent to increasing weight of the continuity equation).
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Fig. 70. Transient solution for channel flow: We=1, Re=1
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In the case of viscoelastic flows, this procedures (time scaling of momentum and consti-

tutive equations to reduce conditioning number) does not work. Scaling momentum and

constitutive equations by∆t fixes conditioning number of the coefficient matrix and PCG

converges in 1000 iterations but accuracy of solution is poor, as shown in Fig. 72 (simu-

lation diverges). This is mainly because of presence of constitutive equations. The scaling

reduces weight associated with constitutive equations.

Fig. 73 shows evolution of velocity and extra-stress tensor componentsAxx andAxy

with time for We=10 and Re=1 for channel length ofL = 16. Mesh used for this simulation

is 32 × 8 bilinear elements. The time increment used is 0.005. Numerical results are in

good agreement with the analytical solutions. The simulation could not be carried out to

steady state because of the high computational cost.
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CHAPTER VII

ORTHOGONALITY OF MODAL BASES IN HP FINITE ELEMENT MODELS

A. Introduction

The past two decades have witnessed a great deal of progress in the area of computational

fluid dynamics. A large number of methods have been proposed for the numerical solution

of the Navier-Stokes equations governing flows of viscous incompressible fluids. Direct

discretization includes finite difference and finite volume techniques, mixed finite element

methods using conformal and nonconformal elements, and spectral methods. Finite ele-

ment method and its derivatives (e.g., least-squares finite element model, spectral/hp finite

element model) have gained popularity in the recent times.

In the finite element method, we select basis functions to approximate dependent vari-

ables and perform coordinate transformation to evaluate the coefficient matrices. On the

basis of polynomial order used, the finite element models can be divided into two groups:

low-order expansions (order less than three) and high-order expansion (order higher than

three). Most of the finite element implementations use low order expansions because they

require less computational time per degree of freedom, and convergence is achieved by

refining the mesh. On the other hand, high order expansions demonstrate exponential con-

vergence. If high accuracy is required then we can justify using high-order expansions

by the fact that the error will converge at a faster rate than the increase in the operation

count. Therefore, ultimately it is more efficient to use high-order methods. Nevertheless,

the cross-over point between the required accuracy and relative cost of low and high-order

methods for a given application is a point of much debate. A further argument presented

for using high-order methods is the numerical diffusion and the enhanced phase properties

that these schemes demonstrate [12, 30].
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In the context of least-squares finite element models, low-order nodal expansions have

been found to lock and reduced integration is used to obtain acceptable numerical results.

In this case, resulting coefficient matrix is nearly singular. Furthermore, the numerical solu-

tion may not be smooth at the nodes and post-processing is needed to recover nodal values

from the reduced integration points. Pontaza and Reddy [5, 12] presented spectral/hp least-

squares finite element models and Prabhakar and Reddy [6] presented spectral/hp penalty

least-squares finite element models. They combined the idea of least-squares method with

spectral/hp methods, and the models performed well in solving Navier-Stokes equations.

Having outlined the need for high-order expansion basis, we need to decide the types

of expansion bases used. Many types of high-order expansion bases can be found in the

literature. Peano [62] constructed a hierarchial triangular basis using area coordinates. A

variation of this construction was later developed by [63] that introduces Legendre poly-

nomials to avoid round-off error for high-orderp-expansions. However, both approaches

require special integration rules which are quite complicated at high polynomial order. Du-

biner [64] first developed an alternative hierarchical basis for triangular domains that is

based on cartesian coordinates. Dubiner’s basis was implemented by [65] using a Galerkin

finite element model of the Navier-Stokes equations, and it was found to be competitive in

cost with the nodal basis on quadrilaterals employed in the spectral element method [66].

Warburton et al. [67] developed a unified description of hybrid basis functions. They de-

veloped five types of basis functions that are either modal, nodal or mixed, and which may

or may not be hierarchical.

In this chapter, we implement hierarchical modal bases. Hierarchical bases can lead to

better conditioning of mass and coefficient matrices [15]. We implement these bases in the

context of least-squares finite element model of the Navier-Stokes equations [5, 12]. As

described earlier, high-order expansions require more work per degree of freedom (during

Gauss quadrature). In this chapter we exploit orthogonality of Jacobi polynomials, and
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calculate integrals without using any numerical quadrature rule. We recast the terms of

the coefficient matrix using the properties of Jacobi polynomial and evaluate them exactly.

For rectangular elements, coefficient matrix entries are written in alternative forms and

analytical expressions are developed to calculate them exactly. It is to be mentioned that

multidimensional shape functions are constructed using tensor product of one-dimensional

shape functions. Limitation of the procedure developed here is that it can be used for

rectangular elements.

The present chapter is organized as follows. In section B, we review the least-squares

finite element formulation for the steady incompressible Navier-Stokes equations. The

Navier-Stokes equations are recast as first-order system using vorticity as additional de-

pendent variable, and then the finite element formulation for these first-order systems is

presented. In section C, we present a couple of properties associated with Jacobi polyno-

mials and use them to evaluate the entries of coefficient matrix. Then in sections D and

E we recast entries of coefficient matrix for one-dimensional and multidimensional cases

and evaluate them analytically. We implement primary boundary conditions by inverting

mass matrix, description of which is given in section F. In section G, we present space-

time decoupled least-square formulation. Numerical results are presented in section H.

The spectral convergence is verified using the Kovasznay flow solution. Numerical results

are presented for transient 2-D flow over a backward-facing step. We compare results with

the benchmark solution of Gartling [24] and Pontaza and Reddy [5]. Lastly, we consider

the flow past a circular cylinder at low Reynolds number and compare the predicted surface

pressure distribution with the experimental measurements of Grove et al. [25].
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B. Least-squares finite element formulation

The steady incompressible Navier-Stokes equations in dimensionless form can be written

as follows:

(u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (7.1)

∇ · u = 0 in Ω (7.2)

u = us onΓu (7.3)

n̂ · σ = f s onΓf (7.4)

whereu (x) is the velocity vector,p (x) is the pressure,σ = −p I+1/Re
[
(∇u) + (∇u)T]

is the total stress,f is a dimensionless force,̂n is the outward unit normal on the boundary

of Ω, us is the prescribed velocity on the boundaryΓu, andf s is the prescribed boundary

stress on the boundaryΓf , Γ = Γu ∪ Γf andΓu ∩ Γf = ∅, and Re is the Reynolds number.

To reduce the system to first order, we introduce vorticity vector as an independent

variable. We make use of the vector identity

∇×∇× u = −∇2u +∇ (∇ · u)

Then determining the solution of the stationary Navier-Stokes equations, Equations. (7.1)-

(7.4), can now be stated as:
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find the velocityu (x), pressurep (x), and vorticityω (x) such that

(u · ∇)u +∇p +
1

Re
∇× ω = f in Ω (7.5)

ω −∇× u = 0 in Ω (7.6)

∇ · u = 0 in Ω (7.7)

∇ · ω = 0 in Ω (7.8)

u = us onΓu (7.9)

ω = ωs onΓω (7.10)

TheL2 least-squares functional associated with the velocity-pressure-vorticity equa-

tions presented above is given by

J (u, p, ω; f) =
1

2

( ∥∥ (u · ∇)u +∇p +
1

Re
∇× ω − f

∥∥2

0
+ ‖ω −∇× u ‖2

0

+ ‖∇ · u ‖2
0 + ‖∇ · ω ‖2

0

)
(7.11)

The least-squares principle can be stated as one of finding(u, p, ω) ∈ X such that for all

(v, q, ψ) ∈ X

J (u, p, ω; f) ≤ J (v, q, ψ; f) (7.12)

holds, where

X =
{

(u, p, ω) ∈ H1
0 (Ω)×H1 (Ω) ∩ L̄2 (Ω)×H1 (Ω)

}

The Euler-Lagrange equations associated with this minimum principle are equivalent to the

following variational problem: find(u, p, ω) ∈ X such that for all(v, q, ψ) ∈ X

B ((u, p, ω) , (v, q, ψ)) = F ((v, q, ψ)) (7.13)
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where

B ((u, p, ω) , (v, q, ψ)) =

∫

Ω

(
(u0 · ∇)u +∇p +

1

Re
∇× ω

)
·

(
(u0 · ∇)v +∇q +

1

Re
∇×ψ

)
dΩ

+

∫

Ω

(ω −∇× u) · (ψ −∇× v) dΩ +

∫

Ω

(∇ · u) (∇ · v) dΩ

+

∫

Ω

(∇ · ω) (∇ ·ψ) dΩ

and

F ((v, q, ψ)) =

∫

Ω

f ·
(

(u0 · ∇)v +∇q +
1

Re
∇×ψ

)
dΩ

We have used Picard method, where we linearize equations first and then minimize

the least-squares functional.

1. Finite element model

The finite element model is obtained by restricting (7.13) to a finite-dimensional subspace

Xhp of the spaceX. Then the discrete least-squares finite element model for the incom-

pressible Navier-Stokes equations is given by the following discrete variational problem:

find
(
uhp, php,ωhp

) ∈ Xhp such that for all
(
vhp, qhp,ψhp

) ∈ Xhp

B ((
uhp, php,ωhp

)
,
(
vhp, qhp, ψhp

))
= F ((

vhp, qhp, ψhp
))

(7.14)

For details, see Pontaza and Reddy [5]. This procedure leads to the following system

of equations:
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


[S11 + S22] [S12 − S21] [0] [S20]

[S21 − S12] [S11 + S22] [0] − [S10]

[0] [0] [S11 + S22] 1
Re

[S12 − S21]

[S02] − [S01] 1
Re

[S21 − S12] 1
Re2 [S11 + S22] + [S00]







{vx}
{vy}
{P}
{ωz}




+




[C00(v)] [0] [C01(v)] 1
Re

[C02(v)]

[0] [C00(v)] [C02(v)] − 1
Re

[C01(v)]

[C10(v)] [C20(v)] [0] [0]

1
Re

[C20(v)] − 1
Re

[C10(v)] [0] [0]







{vx}
{vy}
{P}
{ωz}




=




{F 1}
{F 2}
{F 3}
{F 4}




C00
ij (v) =

∫

Ωe

CiCj dx dy, Ci = vx
∂ψi

∂x
+ vy

∂ψi

∂y

C01
ij (v) =

∫

Ωe

Ci
∂ψj

∂x
dx dy, C02

ij (v) =

∫

Ωe

Ci
∂ψj

∂y
dx dy

C10
ij (v) =

∫

Ωe

∂ψi

∂x
Cj dx dy, C20

ij (v) =

∫

Ωe

∂ψi

∂y
Cj dx dy

S00
ij =

∫

Ωe

ψiψj dΩ

S01
ij =

∫

Ωe

ψi
∂ψj

∂x
dxdy, S02

ij =

∫

Ωe

ψi
∂ψj

∂y
dxdy

S10
ij =

∫

Ωe

∂ψi

∂x
ψj dxdy, S20

ij =

∫

Ωe

∂ψi

∂y
ψj dxdy

S11
ij =

∫

Ωe

∂ψi

∂x

∂ψj

∂x
dx dy, S22

ij =

∫

Ωe

∂ψi

∂y

∂ψj

∂y
dx dy

S12
ij =

∫

Ωe

∂ψi

∂x

∂ψj

∂y
dx dy, S21

ij =

∫

Ωe

∂ψi

∂y

∂ψj

∂x
dx dy
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F 1
i =

∫

Ωe

Ci fx dxdy

F 2
i =

∫

Ωe

Ci fy dx dy

F 3
i =

∫

Ωe

(
∂ψi

∂x
fx +

∂ψi

∂y
fy

)
dx dy

F 4
i =

∫

Ωe

1

Re

(
∂ψi

∂y
fx − ∂ψi

∂x
fy

)
dx dy

We proceed to develop a discrete problem by choosing appropriate finite element sub-

spaces for the velocity, pressure and vorticity. There are no restrictive compatibility con-

ditions on the discrete spaces, so we choose the same finite element subspace for each of

the primary variables. The only requirement on the approximating spaces is that we choose

continuous piecewise polynomials.

Modal expansion: In the standard intervalΩst = {ξ|−1 < ξ < 1}modal expansions

are defined as

ψi(ξ) =





1−ξ
2

i = 1

(
1−ξ
2

) (
1+ξ
2

)
P α,β

p−2 2 ≤ i ≤ p, p ≥ 2

1+ξ
2

i = p + 1

(7.15)

In definition (7.15),P α,β
p are the Jacobi polynomials of orderp. We use ultraspheric poly-

nomials corresponding to the choiceα = β = 1. Multidimensional modal expansions

are constructed by taking tensor product of one-dimensional modal expansions. An impor-

tant property of Jacobi polynomials is their orthogonal relationship given by the following

equation: ∫ 1

−1

(1− x)α(1 + x)β Pα,β
p (x) Pα,β

q (x) dx = C δpq (7.16)
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where the value ofC depends onα, β, andp, and it has the value

C =
2α+β+1

2p + α + β + 1

Γ(p + α + 1)Γ(p + β + 1)

p!Γ(p + α + β + 1)
(7.17)

Other notable property is that the multidimensional shape functions are constructed by

taking tensor product of one-dimensional shape functions. These two properties make the

computation of coefficient matrix very fast. The shape functions in two dimensions are

given below.

Interior modes:

φinterior
mn =

(1 + ξ

2

)(1− ξ

2

)
P 1,1

m−1(ξ)
(1 + η

2

)(1− η

2

)
P 1,1

n−1(η)

Vertex modes:

φvertex1 =
(1− ξ

2

)(1− η

2

)

φvertex2 =
(1 + ξ

2

)(1− η

2

)

φvertex3 =
(1 + ξ

2

)(1 + η

2

)

φvertex4 =
(1− ξ

2

)(1 + η

2

)
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Fig. 74. Shape of modal expansion modes for a polynomial order ofP = 5

Edge modes:

φedge1
m =

(1 + ξ

2

)(1− ξ

2

)
P 1,1

m−1(ξ)
(1− η

2

)

φedge2
n =

(1 + ξ

2

)(1− η

2

)(1 + η

2

)
P 1,1

n−1(η)

φedge3
m =

(1 + ξ

2

)(1− ξ

2

)
P 1,1

m−1(ξ)
(1 + η

2

)

φedge4
n =

(1− ξ

2

)(1− η

2

)(1 + η

2

)
P 1,1

n−1(η)

Fig. 74 shows 1-D modal expansions of order 5. Expansion modesψ0 andψP are

the same as the linear finite element expansion. These are boundary modes since they are

the only modes which have magnitude at the ends of the interval. The remaining interior
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modes are zero at the ends of the interval and increase in polynomial order as is typical in

a hierarchial expansion. This setting helps implementing boundary conditions.

C. Orthogonality of Modal bases

Modal bases defined above consist of Jacobi polynomials which are orthogonal polynomi-

als satisfying the condition (7.16). In Fig. 75 non-zero entries of (ψi , ψj), (ψi , dψj/dξ)

and (dψi/dξ , dψj/dξ) in 1-D for P = 9 are plotted, where

(ψi , ψj) =

∫
ψiψjdξ (7.18)

etc; (ψi , ψj) has 32 non-zero entries out of 100. Rest of the entries are zero by the

virtue of orthogonality of Jacobi polynomials; (ψi , dψj/dξ) has 22 non-zero entries while

(dψi/dξ , dψj/dξ) has 12 non-zero entries. Analytical expressions will be developed to

compute these non-zero entries without using any quadrature rule.

In Fig. 76 non-zero entries of (ψi , ψj), (ψi , ∂ψj/∂ξ), (∂ψi/∂ξ , ∂ψj/∂η), (∂ψi/∂ξ , ∂ψj/∂ξ)

in 2-D forP = 9 are plotted. In 2-D, (ψi , ψj), (ψi , ∂ψj/∂ξ), (∂ψi/∂ξ , ∂ψj/∂η), (∂ψi/∂ξ , ∂ψj/∂ξ)

have 1024, 704 , 484 and 384 non-zero entries, respectively, out of 10,000. These entries

can be computed analytically for rectangular elements.

To exploit these orthogonality relationships while computing coefficient matrix, we

need to recast stiffness matrix entries in a slightly different form. We will first state follow-

ing relationships which will be useful later. For a proof of these equalities, see [68].

Relation 1: All Jacobi polynomials,P α,β
n (x), satisfy a three-term recurrence relation

of the form

xP α,β
n (x) = aα,β

n−1,nP α,β
n−1(x) + aα,β

n,n P α,β
n (x) + aα,β

n+1,nP α,β
n+1(x) (7.19)

whereaα,β depends only onα,β andn. Forα = β = 1, aα,β
n,n =0 and above equation can be
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Fig. 75. Nonzero entries of (a)ψi ψj (b) ψi dψj/dξ(c) dψi / dξ dψj / dξ
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Fig. 76. Nonzero entries of (a)ψi ψj (b) ψi dψj/dξ(c)dψi / dξ dψj / dη (d)dψi/dξ dψj/dξ
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written as

xP α,β
n (x) = aα,β

n−1,nP
α,β

n−1(x) + aα,β
n+1,nP α,β

n+1(x) (7.20)

or, for the sake of compactness, we rewrite above equation by droppingα andβ as we

considerα = β = 1 only

xPn(x) = a1(n)Pn−1(x) + a2(n)Pn+1(x) (7.21)

where

a1(n) =
n + 1

2n + 3
(7.22)

and

a2(n) =
(n + 1)(n + 3)

(n + 2)(2n + 3)
(7.23)

Relation 2: All Jacobi polynomials,P α,β
n (x), satisfy a three-term recurrence relation

of the form

(1− x2)
dP α,β

n (x)

dx
= cα,β

n−1,nP
α,β

n−1(x) + cα,β
n,n P α,β

n (x) + cα,β
n+1,nP α,β

n+1(x) (7.24)

wherecα,β depends only onα,β andn. Forα = β = 1, cα,β
n,n =0 and above equation can be

written as

(1− x2)
dP α,β

n (x)

dx
= cα,β

n−1,nP
α,β

n−1(x) + cα,β
n+1,nP

α,β
n+1(x) (7.25)

Again, for the sake of compactness, we rewrite above equation by droppingα andβ and

consideringα = β = 1 only

(1− x2)
dPn(x)

dx
= c1(n)Pn−1(x) + c2(n)Pn+1(x) (7.26)

where

c1(n) =
(n + 1)(n + 3)

(2n + 3)
(7.27)
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and

c2(n) =
2n(n + 1)(n + 3)

(2n + 3)(2n + 4)
(7.28)

D. One-dimensional case

Let us recast entries of coefficient matrix using these relationships.

∫
ψpψqdξ =

∫
(1− ξ)

2

(1 + ξ)

2
Pp

(1− ξ)

2

(1 + ξ)

2
Pqdξ

=
1

16

∫
(1− ξ)(1 + ξ)PpPqdξ −

∫
(1− ξ)(1 + ξ)ξ2PpPqdξ

ξ2Pq = ξ[ξPq]

= [a1(q)ξPq−1 + a2(q)ξPq+1]

= a1(q)[a1(q − 1)Pq−2 + a2(q − 1)Pq] + a2(q)[a1(q + 1)Pq + a2(q + 1)Pq+2]

= a1(q)a1(q − 1)Pq−2 + [a1(q)a2(q − 1) + a2(q)a1(q + 1)]Pq+

a2(q)a2(q + 1)Pq+2

∫
(1− ξ)(1 + ξ)ξ2PpPqdξ = a1(q)a1(q − 1)δp,q−2C1+

[a1(q)a2(q − 1) + a2(q)a1(q + 1)]δp,qC2+

a2(q)a2(q + 1)δp,q+2C3

∫
ψp

dψq

dξ
dξ =

1

16

∫
(1− ξ)(1 + ξ)Pp

d[(1− ξ2)Pq]

dξ

=
1

16

∫
(1− ξ)(1 + ξ)Pp[(1− ξ2)

dPq

dξ
− Pq2ξ]dξ

=
1

16

∫
(1− ξ)(1 + ξ)Pp(1− ξ2)

dPq

dξ
dξ

− 2

16

∫
(1− ξ)(1 + ξ)PpξPqdξ



167

A =

∫
(1− ξ)(1 + ξ)Pp[c1(q)Pq−1 + c2(q)Pq+1]dξ

= c1(q)δp,q−1C1 + c2(q)δp,q+1C2

B =

∫
(1− ξ)(1 + ξ)Pp[a1(q)Pq−1 + a2(q)Pq+1]dξ

= a1(q)δp,q−1C1 + a2(q)δp,q+1C2

∫
ψp

dψq

dξ
dξ =

A− 2B

16

HereC1, C2 andC3 are given by Equation (7.17) .We calculate (dψ/dξ , dψ/dξ) term

using the Gauss quadrature.

E. Multidimensional case

One of the notable property of modal bases used here is that multidimensional basis func-

tions are constructed by taking tensor product of one-dimensional basis functions. So they

can be separated. Separation is particularly easy when we use orthogonal grid. For rectan-

gular elements jacobian matrix is of the form (see Reddy [27, 28])

J =




h1

2
0

0 h2

2




and global derivatives of shape functions are



∂ψe
i

∂x

∂ψe
i

∂y


 = J−1




∂ψe
i

∂ξ

∂ψe
i

∂η


 =




2
h1

∂ψe
i

∂ξ

2
h2

∂ψe
i

∂η




where∂ψe
i

∂ξ
, and∂ψe

i

∂η
are local derivatives of shape functions. We will use this representation

to develop analytical expressions of entries of coefficient matrix.

Multidimensional shape functions are constructed by taking the tensor product of one-
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dimensional shape function.

φi(ξ, η) → φp,q(ξ, η) = ψp(ξ)ψq(η)

φj(ξ, η) → φr,s(ξ, η) = ψr(ξ)ψs(η)

φk(ξ, η) → φm,n(ξ, η) = ψm(ξ)ψn(η)

The entries of the coefficient matrix can now be rewritten as

∫
φiφjdx dy =

∫
φi(ξ, η)φj(ξ, η)J dξ dη

= J

∫
ψp(ξ)ψr(ξ)dξ

∫
ψq(η)ψs(η)dη

∫
φi

∂φj

∂x
dx dy =

∫
φi(ξ, η)

2

h1

∂φj(ξ, η)

∂ξ
J dξ dη

= J
2

h1

∫
ψp(ξ)

∂ψr(ξ)

∂ξ
dξ

∫
ψq(η)ψs(η)dη

∫
∂φi

∂x

∂φj

∂x
dx dy =

∫
2

h1

∂φi(ξ, η)

∂ξ

2

h1

∂φj(ξ, η)

∂ξ
J dξ dη

= J
4

h2
1

∫
∂ψp(ξ)

∂ξ

∂ψr(ξ)

∂ξ
dξ

∫
ψq(η)ψs(η)dη

∫
∂φi

∂x

∂φj

∂y
dx dy =

∫
2

h1

∂φi(ξ, η)

∂ξ

2

h2

∂φj(ξ, η)

∂η
J dξ dη

= J
4

h1h2

∫
∂ψp(ξ)

∂ξ
ψr(ξ)dξ

∫
ψq(η)

∂ψs(η)

∂η
dη

All these 1-D integrals can be calculated analytically using expressions developed in

the previous section.
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Non-linear termC02
ij (v) can be written as

∫
Ci

∂φj

∂y
dxdy =

∫
(U

∂φi

∂x
+ V

∂φi

∂y
)
∂φj

∂y
dxdy

=

∫
(U

∂φi

∂ξ

2

h1

+ V
∂φi

∂η

2

h2

)
∂φj

∂η

2

h2

Jdξdη

=

∫ ∑
Ukφk

∂φi

∂ξ

2

h1

2

h2

∂φj

∂η
Jdξdη +

∫ ∑
Vkφk

∂φi

∂η

2

h2

2

h2

∂φj

∂η
Jdξdη

∫ ∑
Ukφk

∂φi

∂ξ

∂φj

∂η
dξdη =

∑(
Uk

∫
ψm

∂ψp

∂ξ
ψrdξ

∫
ψnψq

∂ψs

∂η
dη

)

All these 1-D integrals are evaluated using the 1-D Gauss quadrature rule.

We have recast all the entries of coefficient matrix exceptC00
ij , which we calculate

using the 2-D Gauss quadrature.

1. Computer implementation

In multidimensions, shape functions are constructed by taking tensor product of one-dimensional

shape functions. To use orthogonality we again separate them into one-dimensional shape

functions. In one-dimension we have vertex and interior modes. All the derivation pre-

sented earlier is for interior modes consisting of Jacobi polynomials. Shape functions for

the vertex modes can be written as

(1− ξ

2

)
=

1

2

(
P 1,1

0 − P 1,1
1

2

)

Thus, vertex modes in one-dimension can be written as1
2
(P 1,1

0 − ξi
P 1,1

1

2
), whereξi takes the

values of±1. Now previous derivations can be used for vertex modes also.
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F. Implementation of boundary conditions

Since the modal basis functions do not satisfy interpolation and partition of unity proper-

ties, boundary conditions must be interpolated using some technique. Here the boundary

conditions are implemented using the least-squares method. Supposeu = f(x) on Γ. We

approximatef(x) with g(x) such that

f(x) ≈ g(x) =
n∑

j=0

Cjφj(x)

whereφj are the same shape functions that are used to interpolate dependent variables in

our formulation. Above equation is written for an element boundaryΓe that coincides with

domain boundaryΓ. We assemble global coefficient matrix obtained by this equation

E = g(x)− f(x)

E2 = (Cjφj − f, Ckφk − f)

We minimize the square of the error with respect toCj and obtain

∂(E)2

∂Ck

= 2(Cjφj − f, φk) = 0

⇒ (Cjφj, φk) = (f, φk) ⇒ AC = B

where

Akj = (φkφj) =

∫
φj(x)φk(x)dx

Bk = (f, φk) =

∫
f(x)φk(x)dx

G. Time dependent problems

For time integration, space-time coupled or space-time decoupled methods can be used.

Here we consider space-time decoupled formulations. In space-time decoupled formula-
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tions, discretization in space and time are carried out independently. Generally, the time

derivatives are represented by a truncated Taylor series in time. Least-square functional for

backward multi-step scheme of orderMα can be written as

J (u, p, ω; f) =
1

2

( ∥∥ γ0

∆t
us+1 −

Mα−1∑
q=0

βq

∆t
us−q + (u0 · ∇)u +∇p +

1

Re
∇× ω

− f
∥∥2

0,Ω×(0,τ ]
+

∥∥ ω −∇× u
∥∥2

0,Ω×(0,τ ]
+

∥∥∇ · u
∥∥2

0,Ω×(0,τ ]

)
(7.29)

whereγ0 =
∑Mα−1

q=0 βq for consistency,βq are weights associated with a particular multi-

step scheme,∆t = ts+1 − ts is the time increment.

H. Numerical examples

In this section, we present numerical results obtained with the proposed formulation. First,

we verify spectral convergence. Next, we present results for the transient two-dimensional

flow over a backward facing step and steady flow past a circular cylinder at low Reynolds

number.

1. Verification : Kovasznay flow

The benchmark problem to be used for the purpose of verification of the least-squares

based finite element models is an analytical solution to the two-dimensional steady incom-

pressible Navier-Stokes due to Kovasznay [34]. Domain of interest isΩ̄ = [−0.5, 1.5] ×
[−0.5, 1.5]. The solution is given by

u = 1− eλx cos(2πy) (7.30)

v =
λ

2π
eλx sin(2πy) (7.31)
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p = p0 − 1

2
e2λx (7.32)

whereλ = Re/2− (Re2/4 + 4π2)1/2 andp0 is a reference pressure (an arbitrary constant).

We perform ap-refinement study. We fix spatial discretization and systematically

increase the order of polynomial used in each element. The discretization is a non-uniform

mesh of 8 quadrilateral finite elements. We choose theL2 least-squares functional as error

measure. Convergence of this measure to zero implies that theL2 norm of the governing

equations converges to zero.

We use 8 non-uniform quadrilateral elements for spatial discetization. The exact solu-

tion given by Equations (7.30) and (7.31) is used to prescribe Dirichlet boundary con-

ditions. The system is linearized using Picard’s method (Direct iteration method) and

resulting symmetric positive-definite (SPD) system of equations are solved using conju-

gate gradient method with Jacobi preconditioner. Nonlinear convergence is declared when
∑ndf

n=1 ‖∆Un‖/‖Un‖ is less than10−4, where ndf is total number of degrees of freedom in

the mesh andU is the solution vector (includes all degrees of freedom at a node). Conver-

gence of conjugate gradient is declared when error is less than10−6.

Fig. 77(a) shows streamlines for Kovasznay flow and Fig. 77(b) shows pressure con-

tours. To verify spectral convergence, we plotL2 norm of least-square functionalJ against

polynomial order for vorticity based first-order formulation in Fig. 78. On logarithmic-

linear scale we get almost straight line showing exponential decay of least-squares func-

tional.

2. Transient flow over a backward-facing step

We next consider a two-dimensional flow over a backward-facing step at Re= 800. The

geometry and boundary conditions are taken from the benchmark solution of Gartling [24]

and they are shown in Fig. 79. No-slip boundary condition is imposed on all walls. Bound-
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Fig. 77. Kovasznay flow (a) Streamlines (b) Pressure contours forRe = 40
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Fig. 78. Decay of least squares functional with polynomial order

ary condition ofu(y) = 0 is imposed for−0.5 ≤ y ≤ 0.0. A parabolic velocity profile

given byu(y) = 24y(0.5 − y) is specified at the inlet for0.0 ≤ y ≤ 0.5. This produces

a maximum inflow velocity ofumax = 1.5 and a mean inflow velocity ofuavg = 1.0.

The Reynolds number is based on the mean inflow velocity. We impose outflow bound-

ary condition in a weak sense through the least-squares functional [5]. For long domains,

the strong outflow boundary conditionp = 0 also gives good results. However, we pre-

fer the weak imposition of outflow boundary conditions. Initial condition is zero velocity

everywhere in the domain.

The domain,̄Ω = [0, 25]× [−0.5, 0.5], is discretized using22 finite elements as shown

in Figure6. To accurately resolve primary and secondary circulation zones, we use a non-

uniform grid. A 9th order modal expansion is used in each element, resulting in a total

of 7600 degrees of freedom in the mesh. The resulting discrete model is linearized using

Picard’s method. At each Picard step, the linear system of equations, involving a symmetric
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Fig. 79. Mesh and boundary conditions for flow over a backward facing step

positive-definite coefficient matrix, is solved using the conjugate gradient method with a

Jacobi preconditioner. Convergence of the conjugate gradient method is declared when the

norm of the residual is less than10−6. Nonlinear convergence is declared when the relative

norm of the residual in solution vector is less than10−4. A time increment of 0.2 is used to

march in time.

Fig. 80(a) shows the streamlines and pressure contours for0 ≤ x ≤ 15, where most

of the phenomena of interest occur. The primary reattachment length is approximately

6.10, while the secondary separation and reattachment lengths approximately 4.9 and 10.4

respectively. Fig. 80(b) shows the pressure contours. After reattachment of the upper wall

eddy, the flow slowly recovers towards a fully developed Poiseuille flow. The flow is almost

fully developed at the exit with no pressure gradient in y direction. This is because outlet

boundary condition ofp = 0 also gives identical results.

Fig. 81 shows evolution of velocity field with time. The main flow coming from the

inlet follows a sinuous path, forming a series of eddies along the upper and lower wall.

Initial velocity field is taken to be zero everywhere in the domain. Att = 400 the relative

norm of the residual in velocities between two consecutive time steps was less than10−4,

indicating that a steady state was achieved.

Fig. 82 shows a plot of theL2 least-squares functional as a function of time. Initially

there is some fluctuation but fluctuations damp with time and the functional stabilizes at a
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Fig. 80. Flow over a backward facing step atRe = 800 (a) Streamlines (b) Pressure contours

value of3× 10−3.

3. Steady flow past a circular cylinder at low Reynolds number

Next, we consider steady two-dimensional flow of an incompressible fluid past a circular

cylinder. The Reynolds number is taken to be40, for which a steady-state solution exists.

Domain of interest is[−10.0, 15.0]×[−10.0, 10.0]. Thex-component of inlet velocity (u) is

specified to be1.0 and they-component (v) is set to zero. Symmetry boundary conditions,

ωz = 0 and v = 0, are imposed on the top and bottom walls. The outflow boundary

conditions are imposed in a weak sense through the least-squares functional.

Fig. 83 contains a close-up view of the geometric discretization around the circular

cylinder. We generate orthogonal grid (rectangular elements) everywhere in the domain

except around the cylinder. One layer of body fitting grid is generated around the cylinder.

In order to accurately represent the curved boundary, we implement an isoparametric for-

mulation; i.e., we use the same expansion order to interpolate dependent variables and the

geometry.

We use two-dimensional steady incompressible Navier-Stokes equations in the vorticity-
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Fig. 81. Time history streamline plots for flow over a backward facing step at Re = 800.
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Fig. 82. Time history of theL2 least squares functional

based first-order form and with a9th order modal expansions in each element. The resulting

discrete model consists of a total of 209,196 degrees of freedom. The value of theL2 least-

squares functional remains below10−4.

Figs. 84 and 85 contain plots of the contours of streamlines and pressure, respectively,

in the wake region for Re= 40. The value of the recirculation length is found to be4.55

cylinder radii. The present result is in good agreement with the numerical value of4.55

cylinder radii by Pontaza and Reddy [5]. Dennis and Chang [38] reported a recirculation

length of4.69 cylinder radii.

A comparison of the experimental values of the surface pressure coefficient distribu-
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tion along the cylinder surface with the computed values is shown in Fig. 86. Experimental

values are taken from Grove et al. [25]. The present results are in good agreement with the

experimental measurements. Drag coefficient is calculated to beCD = 1.55, which is in

good agreement with the published results of Tritton [39], who reported a value of1.56.

Actual CPU time depends on the implementation (data-structure, node numbering

etc.) and vary from one implementation to other. To give the reader a feeling of the al-

gorithmic performance, we report the speed-up obtained by using proposed orthogonal

modal bases in Table VII.
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Fig. 84. Streamlines in the wake region for flow past a circular cylinder atRe = 40

Table VII. Speed up for various values of polynomial order.

Polynomial order (P) Speed-up(tnon-ortho/tortho)

7 2.1

9 3.1

11 4.5

At this point, we want to remind the reader that we recast all the terms of coeffi-

cient matrix exceptC00
ij term associated with rectangular elements. We evaluatedC00

ij using

the 2-D Guass quadrature. Calculation of other non-linear termsC01
ij , C02

ij , C10
ij , C20

ij is also

computationally expensive as they involve do-looping even though we calculate them by

performing 1-D Gauss quadrature. Most of the time is consumed in computing these terms

only. For curved elements, we performed 2-D Guass quadrature for all the terms of coeffi-

cient matrix.
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Fig. 85. Pressure contours for flow past a circular cylinder atRe = 40
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CHAPTER VIII

LEAST-SQUARES FINITE ELEMENT FORMULATION FOR MOVING BOUNDARY

FLOWS

A. Introduction

Numerical simulation of moving boundary, multi-fluid flows presents a challenge, because

the boundary changes and fluid properties are discontinuous across the fluid interface.

There are essentially two techniques for simulating moving boundaries: Lagrangian (front

tracking) and Eulerian (front capturing) schemes. The former schemes employ a moving

mesh system, in which mesh moves with the interface. On the other hand, the Eulerian

methods use a fixed mesh. While Lagrangian techniques are superior for small defor-

mations of the interfaces, Eulerian techniques are usually preferred for highly distorted,

complex interfaces.

Front tracking methods, e.g., Fritt and Boris [75] and Fyfe et al. [76], explicitly

treat the interface as a discontinuity. The advantage in these methods is that interface

conditions are easy to impose as interface always coincides with mesh. The nodes of the

mesh are moved according to the fluid velocity, and thus the mesh is severely distorted

and remeshing becomes unavoidable. Arbitrary Lagrangian–Eulerian methods remedy this

situation by allowing the internal nodes to move independently from the fluid velocity.

However, the selection of the mesh velocity is nontrival for complex flows.

In the second category, the computational grid is fixed throughout the simulation. An

additional unknown variable (volume fraction, color function) is used to identify interface.

Example of such methods are the level set method proposed by Zhu and Sethian [69],

volume of fluid (VOF) by Hirt and Nichols [70], and the marker and cell (MAC) method

by Harlow and Welch [71]. In the conventional MAC method, the interface is represented
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by Lagrangian marker particles advected by the local velocity. As a result, it can not ac-

curately define an interface, especially for three-dimensional flow, nor properly conserves

mass. However, one favored feature of this method is that, unlike many other methods, no

numerical diffusion exists. In the recent time, VOF algorithms based on Hirt and Nichols

[70] and level set methods have gained popularity . The common problem of front captur-

ing method is the inaccurate representation of surface tension force which is concentrated

on the interface. This difficulty can be alleviated by using a continuum surface force (CSF)

model proposed by Brackbill et al. [74]. The CSF model interprets surface tension as

a continuous, three-dimensional body force across an interface, rather than as a boundary

condition on the interface. For details see [1].

In this chapter, we use the VOF method to simulate moving boundary flows. The

main advantages of this method are that the interface shape is not constrained, changes in

topology are handled automatically, and the mass of each component is conserved exactly.

The interface location is captured as it moves through the grid by tracking the local volume

fraction. We use CSF method to model surface tension force. The two-dimensional Navier-

Stokes equations are expressed as an equivalent set of first-order equations by introducing

stresses as additional dependent variables. Thehp least-squares method is used to develop

the finite element model. We solve the broken dam problem to test this method and compare

results with the benchmark results of Martin and Moyce [16].

B. Numerical method

The motion of both fluids is governed by a Newtonian incompressible fluid flow model. We

consider the solution of the unsteady Navier-Stokes equations governing incompressible

flow, which in dimensionless form can be stated as follows:
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Find the velocityu (x) and pressurep (x) such that

∂u

∂t
+ (u · ∇)u +∇p− 1

Re
∇ ·

[
(∇u) + (∇u)T

]
= f in Ω (8.1)

∇ · u = 0 in Ω (8.2)

u = us onΓu (8.3)

n̂ · σ = f s onΓf (8.4)

whereΓ = Γu∪Γf andΓu∩Γf = ∅, Re is the Reynolds number,σ = −p I+1/Re
[
(∇u) + (∇u)T

]
,

f is a dimensionless force,̂n is the outward unit normal on the boundary ofΩ, us is the

prescribed velocity on the boundaryΓu, andf s are the prescribed tractions on the boundary

Γf . We assume that the problem is well posed and that a unique solution exists.

We recast this set of equations into a set of first order-equations using stresses as

independent variables, details of which can be found in [5].

The fluids are identified by different values of the color function C, which is convected

by the flow field:

∂C

∂t
+ (u · ∇) C = 0 (8.5)

Fluid properties such as the density and the viscosity are assumed to be distributed in

the same manner as C, i.e.

ρ = ρ1 +
ρ2 − ρ1

C2 − C1

(C − C1) (8.6)

µ = µ1 +
µ2 − µ1

C2 − C1

(C − C1) (8.7)

The governing equations are discretized using the least-squares finite element formu-

lation [5]. High-order expansions are used to construct the discrete model. The discrete
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model thus obtained is linearized by Newton’s method. We obtain a symmetric positive

definite matrix which is solved using PCG method. Nonlinear convergence is declared

when the relative norm of the residual in velocities,‖∆uhp‖/‖uhp‖, was less than10−4.

Convergence of conjugate gradient is declared when error is less than10−5.

C. Numerical results

The formulation is tested by solving the broken dam problem. This problem has been used

by many researchers as a test case for simulating moving boundary flows. Experimental

data for this case is available in [16]. The problem is solved as a two-fluid problem involv-

ing water and air. Initially, water occupies a1× 1 area at the bottom left corner. Right wall

breaks att = 0 and the water starts flowing under the effect of gravity. The nondimensional

gravitational acceleration,g, is taken to be unity. The densities for water and air are 1 and

0.001, respectively.

A 29×22 mesh, shown in Fig. 87, is used for this simulation. P-level of 3 is used. For

time marching Crank-Nicholson scheme is used with delta t of 0.005.

Fig. 88 shows the location of water front with time. We compared the present results

with the benchmark results of Martin and Moyce [16] and found very good agreement.

Fig. 89 shows the pressure contours att = 0.5, 1.0, 1.5, 2.0 and 2.5. There is a sharp

pressure variation across the boundary. Pressure contours give good feel of the interface.

Fig. 90 contains plots of streamlines and pressure contours att = 0.75. There is a

circulation zone near the interface on the air side. As the water flows, it drags the air and

this creates circulatory flow.
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CHAPTER IX

CONCLUSION

A. Summary and Concluding Remarks

In this work, we presented least-squares based finite element formulations and their appli-

cations to flows of viscous fluids. These formulations offer several theoretical and com-

putational advantages. Most notably, such formulations circumvent the inf-sup condition

of Ladyzhenskaya-Babuska-Brezzi (LBB). Therefore, the choice of approximating spaces

is not subject to any condition, and a single continuous piecewise polynomial space can

be used for the approximation of all variables. They also yield symmetric positive-definite

coefficient matrix and robust iterative solvers can be used to solve the resulting system

of linear equations. In this work, we developed penalty based least-squares formulations

where the pressure variable is eliminated using the penalty approach. It is demonstrated

through numerical example that these formulations perform well in practical implementa-

tion.

Following the introduction, in chapter II, we presented spectral/hp penalty least-squares

finite element formulation for the steady incompressible Navier-Stokes equations and its

validation and applications to a variety of benchmark problems. Continuity equation was

treated as a constraint on velocity field and this constraint was imposed using the penalty

method, eliminating pressure from the formulation. The pressure is postcomputed from the

known velocity field. Spectral convergence of theL2 least-squares functional was verified

using the Kovasznay flow solution to the incompressible Navier-Stokes equations. Both

vorticity-dilatation and stress based first-order systems achieved spectral convergence for

all the variables including pressure. Numerical results for incompressible 2D lid driven

cavity flow, flow over a backward-facing step, steady flow past a circular cylinder, flow
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past a large circular cylinder in a channel, and buoyant flow inside a square enclosure were

presented. In all cases, the present results were found to be in excellent agreement with

benchmark solutions available in the literature. For all numerical examples, the effect of

penalty parameter on the accuracy was investigated thoroughly and it was concluded that

the present model gives very accurate results even for small values of the penalty parameter

(10− 40).

We presented the penalty least-squares formulation as an alternative of spectral/hp

least-squares finite element formulation of Pontaza and Reddy [5, 12], where the continu-

ity residual is retained in the least-squares functional and enforced in a least-squares sense.

In the present formulation, the incompressibility condition can be satisfied to any extent

by a suitable value for the penalty parameter. Present formulation carries equal number

of independent variables as spectral/hp least-squares [5] carries. We presented PCG con-

vergence history of all the problems solved and plots showed that coefficient matrix was

well conditioned. We compared PCG history with that of spectral/hp least-squares [5] and

found similar convergence.

The present penalty least-squares finite element model is also a better alternative to

traditional weak form penalty finite element model. Advantage of the present model is that

it gives very accurate results for very low penalty parameters. In addition, there is no need

to under-integrate penalty terms of the coefficient matrix. We computed pressure for all the

problems solved herein and compared with the results of benchmark problems whenever

available. We note that the computed pressure fields are continuous in this formulation as

opposed to the weak form penalty finite element formulation, and their values are found

to be in excellent agreement with published results. This penalty least-squares formulation

produces a symmetric positive-definite coefficient matrix while the weak form penalty finite

element formulation produces unsymmetric coefficient matrix.

In chapter III, we presented spectral/hp penalty least-squares finite element formu-
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lation for the unsteady incompressible Navier-Stokes equations. The least-squares model

was formed in terms of velocity, vorticity and dilatation. Space-time decoupled formula-

tions were used for time discretization. Second order accuracy of time integration scheme

was verified using method of manufactured solution. Numerical results were presented for

impulsively started lid-driven cavity and flow over a backward facing step problem. For

these numerical examples, the effect of penalty parameter on the accuracy was investigated

thoroughly and it was concluded that the present model produces accurate results even for

low penalty parameters (10-50). We presented this formulation as an alternative to tra-

ditional least-squares formulation, which has problems with pressure evolution. Pressure

evolved smoothly in this formulation as verified through numerical examples.

In chapter IV, we presented a collocation penalty least-squares finite element formu-

lation for incompressible flows. The least-squares model was formed in terms of velocity,

vorticity, and dilatation. Theh-convergence was verified using the exact solution of Ko-

vasznay flow. Numerical results were presented for a number of benchmark problems. For

all numerical examples, the effect of penalty parameter on the accuracy was investigated

thoroughly and it was concluded that the present model produces accurate results even for

low penalty parameters (10-100). We solved problems on coarser meshes also for vari-

ous values of penalty parameters and found results to be ’equally inaccurate’ for all the

penalty parameters used, showing that inaccuracy was not because of low values of penalty

parameters but because of inadequate mesh resolution.

In chapter V, we presented a stress based least-squares finite element formulation for

the solution of incompressible Navier-Stokes equations. Stress components were intro-

duced as independent variables to make the system first order. Continuity equation became

an algebraic equation and was eliminated from the system with suitable modifications. This

formulation carried one less degree of freedom compared to existing stress based first or-

der formulations [46]. Theh andp convergence were verified using the exact solution of
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Kovasznay flow. Steady flow past a large circular cylinder in a channel was solved to check

mass conservation and we found good mass conservation. Transient flow over a backward

facing problem was solved on three different meshes and accuracy was investigated. We

compared results obtained by proposed formulation with that obtained by vorticity based

formulation and found that proposed formulation was less affected with mesh coarsening.

In chapter VI, we presented least-square based finite element formulations for vis-

coelastic fluid flows. We used Oldrolyd-B constitutive equations. First we presented

velocity-pressure-stress-extra stress least-squares formulation. Transient channel flow was

considered as benchmark problem to test the formulation. Formulation performed well

for low Weissenberg number (1-5). For higher Weissenberg numbers (≥ 10) very small

time step was required (∼ O(10−3))and simulation could not be carried for long time (so-

lution was accurate till simulations were carried out). Next we presented penalty based

least-squares formulation. Governing equations were recast as first order system in terms

of velocity-extra stress. Pressure was eliminated from governing equations using penalty

method approach.

In chapter VII, a method to exploit orthogonality of modal bases in order to avoid nu-

merical integration and have a fast computation, was presented. The entries of coefficient

matrix were calculated analytically. The properties of Jacobi polynomials were used and

most of the entries of coefficient matrix were recast so that they can be evaluated analyti-

cally. This strategy was implemented in the context of least-square finite element model, al-

though this procedure can be used in other finite element formulations. The equations were

linearized using direct iteration method (Picard method). Analytical expressions were de-

veloped for rectangular elements. Spectral convergence of theL2 least-squares functional

was verified using the exact solution of the Kovasznay flow. Numerical results were pre-

sented for unsteady flow over a backward-facing step. Also the steady flow past a circular

cylinder was analyzed and it showed reduction in computational cost.
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All the terms of coefficient matrix were recast exceptC00
ij term. This term was eval-

uated using the 2-D Guass quadrature. Also the 1-D Gauss integration was performed

for (∂ψ
∂ξ

∂ψ
∂ξ

), which was quite fast as it was 1-D integration, and 2-D and 3-D expressions

(∂ψ
∂ξ

∂ψ
∂ξ

) can be calculated by making use of the 1-D expression without the use of numerical

integration. Other than these two Gauss quadratures, no numerical integration was used to

evaluate the coefficients. Limitation of this procedure is that it can be used only for rectan-

gular elements. For skew elements, it is not possible to separate multidimensional integrals

(entries) into 1-D integrals. Therefore, one may choose to use analytical expressions to

evaluate entries for rectangular elements and use quadrature for curved elements.

Finally, in chapter VIII, we presentedhp least-squares finite element formulation to

simulate the moving boundary flows. We used VOF method to track the interface, which

is very similar to thelevel set method. The CSF (continuum surface force) model was used

to treat surface tension effects in the VOF. We solved the broken dam problem to test our

formulation and found very good agrement with the benchmark results.

In summary, we have amply demonstrated that the least-squares based finite element

formulations perform well in practical problems. One big advantage of the least-squares

formulations is their universality, i.e., the basic formulation is the same irrespective of

the differential equation. In future we expect the least-squares based finite element for-

mulations to be potential candidates for solving partial differential equations numerically

irrespective of their origin and physics involved in it.
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