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ABSTRACT

Hybrid Analysis of Memory References

and Its Application to Automatic Parallelization. (December 2006)

Silvius Vasile Rus, B.S., Babes-Bolyai University

Chair of Advisory Committee: Dr. Lawrence Rauchwerger

Executing sequential code in parallel on a multithreaded machine has been an

elusive goal of the academic and industrial research communities for many years. It

has recently become more important due to the widespread introduction of multi-

cores in PCs. Automatic multithreading has not been achieved because classic, static

compiler analysis was not powerful enough and program behavior was found to be, in

many cases, input dependent. Speculative thread level parallelization was a welcome

avenue for advancing parallelization coverage but its performance was not always op-

timal due to the sometimes unnecessary overhead of checking every dynamic memory

reference.

In this dissertation we introduce a novel analysis technique, Hybrid Analysis,

which unifies static and dynamic memory reference techniques into a seamless com-

piler framework which extracts almost maximum available parallelism from scientific

codes and incurs close to the minimum necessary run time overhead. We present how

to extract maximum information from the quantities that could not be sufficiently

analyzed through static compiler methods, and how to generate sufficient conditions

which, when evaluated dynamically, can validate optimizations.

Our techniques have been fully implemented in the Polaris compiler and resulted

in whole program speedups on a large number of industry standard benchmark ap-

plications.
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CHAPTER I

INTRODUCTION

This dissertation presents new compiler technology for the hybrid (static and

dynamic) analysis of memory reference patterns in programs and its application to the

automatic translation of legacy sequential applications into equivalent multithreaded

ones.

A. Parallel Computers

The timelines of computing and supercomputing have overlapped almost from

the beginning. There was always a need for more performance than could be offered

by the fastest computer. First large scientific problems, then military and business

applications pressured manufacturers into creating more and more powerful machines.

This led naturally to parallelism. More machines of the same type, working together,

can solve the same problem faster and address larger problems.

Although first common only in dedicated large scale systems such as mainframes,

parallelism has become mainstream recently with the widespread availability of mul-

ticore processors. In the 1990’s, the main driver of system performance increase had

been frequency scaling. Severely limited by overheating and the processor-memory

gap, frequency scaling has been overtaken by parallelism over the past few years. In-

deed, parallelism is now everywhere, from game devices and laptops to workstations

to servers to supercomputers.

This dissertation follows the style of IEEE Transactions on Parallel and Dis-
tributed Systems.
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B. Automatic Parallelization

In order to use parallel hardware efficiently, sequential programs must be divided

into concurrent parts (parallelized). These parts must be synchronized so that the

outcome of their execution is consistent with that of a sequential run. Parallelization

can be performed either by the programmer or automatically in software or hardware.

The programmer can write explicitly parallel programs using parallel languages,

parallel directives as extensions to a sequential language, or by using parallel libraries.

Unfortunately, writing parallel applications explicitly has several drawbacks. First,

there is a great amount of legacy sequential software which would have to be reengi-

neered. Second, most programmers have not been trained to write parallel programs.

Additionally, parallel software design tools are not as developed as their sequential

counterparts, which results altogether in higher software development costs.

Automatic parallelization methods use hardware and software mechanisms to

run sequential applications in parallel efficiently, without programmer assistance.

At the level of machine instructions, this problem was solved partially with the

introduction of out-of-order processors, either static (explicitly parallel instruction

computing) or dynamic (superscalar). While the static ones require a compiler to

detect small sets of instructions that can be executed concurrently, the dynamic

ones analyze and extract parallel instruction sets at run time. Unfortunately, the

performance improvement of instruction level parallelism does not scale beyond a

small constant factor dependent on the structure of the sequential program.

At the level of repetitive structures such as loops, parallelization performance

can scale with the data set size. Since parallelization at this level requires analysis

of a large window of instructions, it has been performed mostly in software, using

compilers (though sometimes with hardware support). Loop parallelization as com-
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piler optimization has been the subject of a large amount of research over the past

few decades. However, the performance of the automatic parallelizers provided by

parallel computer manufacturers is in most cases well below the opportunities offered

by the hardware.

There are two important reasons why compiler analysis fails to extract efficient

parallelism from sequential applications. First, the behavior of the application may

be input dependent. The same loop may or may not be parallelizable depending on

a value read from a file at run time. In such a case, the compiler must make the

sometimes overly conservative decision of generating sequential code, even when the

actual run time values would not prevent parallelization. Second, the compiler may

lack the symbolic representation and analysis power to understand the behavior of

the application with respect to parallelism, and thus fails to detect it even in input

independent cases.

All parallelization problems can be solved at run time, when needed input values

become available and when symbolic variables take numeric values. The first proposed

run time parallelization methods were based on the instrumentation of virtually each

memory access operation. Although accurate, these methods incur high run time

overhead which can negate the benefits of parallelization. Moreover, run time methods

based on instrumentation perform too much unnecessary analysis work. For instance,

run time parallelization analysis for a loop with n iterations will incur Θ(n) overhead

even when the parallelization decision does not depend on the iteration count, but

rather on the loop bounds.
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C. Hybrid Analysis

As we have discussed over the previous section, run time techniques are crucial

to the effectiveness of automatic parallelization, but they often perform unnecessary

work resulting in unnecessary overhead. It is thus imperative to design dynamic

analysis methods whose run time overhead is proportional only to the number of

variables that affect the parallelization decision. If the decision to parallelize a loop

with n iterations depends only of the values of its bounds, a run time test should

cause Θ(1) overhead, and not Θ(n).

Hybrid Analysis represents the process of extracting at compile time sufficient

conditions for optimizing transformations that could not be verified statically, and

of validating them at run time in the presence of actual values. This dissertation

presents a general framework for the Hybrid Analysis (HA) of memory reference pat-

terns and its application to parallelization – Hybrid Dependence Analysis (HDA).

Hybrid Analysis can also be applied to compiler optimization problems beyond par-

allelization, such as constant propagation or liveness analysis.

Let us illustrate the way Hybrid Analysis works through an example.1 Consider

the loop in Fig. 1. In order to generate code for its parallel execution, the compiler

must prove that the set of read references [101:100+n] and the set of write references

[1:n] are disjoint, i.e., that their intersection is empty.

An accurate compile time parallelization decision based on symbolic calculus

cannot be made, because the validity of the decision depends on the input value n,

which is not known before run time. The conservative static decision (a) would thus

1This particular example presents a very simple dependence problem and is dis-
cussed here for illustration purposes only. The actual cases that can be handled by
Hybrid Analysis are much more complex, as will be shown over the remainder of this
chapter.
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1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo 101:100+n


U


Empty?


1:n


n<101


Write
 Read


1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo

(a) Compile time overly conservative decision: do not execute in parallel.

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo

1 Read ∗ , n
2 Do j = 1 , n
3 Call MarkRead( j +100 , t r a c e )
4 Call MarkWrite ( j , t r a c e )
5 EndDo
6 i s P a r a l l e l = Analyze ( t r a c e )
7 I f ( i s P a r a l l e l )
8 Parallel Loop
9 Else

10 Sequent i a l Loop
11 EndIf

(b) Run time parallelization based on instrumenting every memory reference.

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo 101:100+n


U


Empty?


1:n


n<101


Write
 Read


1 Read ∗ , n
2 I f ( n<101) Then
3 Parallel Loop
4 Else
5 Sequent i a l Loop
6 EndIf

(c) Hybrid Analysis: extract condition at compile time, evaluate it at run time.

Fig. 1. Example of an input-sensitive memory reference pattern and corresponding code

after parallelization.

be not to execute the loop in parallel.

Run time analysis methods [1] take a different approach (b). They instrument

every dynamic memory reference and then make optimization decisions at run time

based on dynamic analysis of the produced trace. Although accurate, they often

perform a large amount of unnecessary work, since their overhead complexity is pro-

portional to the number of memory operations and sometimes data set size of the

program.

Let us observe that in the case in Fig. 1 (a), condition (n < 101) is sufficient

to prove the read and write sets disjoint. Moreover, static analysis may have already

extracted this condition but could not use it for a decision because it contained input

value n. On the other hand, the instrumentation based run time analysis (b) ignores
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this partial symbolic result and ends up performing much more work than necessary.

Hybrid Analysis (c) combines the advantages of static and dynamic methods.

It starts at compile time by performing symbolic calculus and extracts conditions

under which certain optimization transformations are legal. At run time, it evaluates

these optimization correctness predicates and switches on the optimization when they

hold true. Optimization based on Hybrid Analysis has the same applicability as any

dynamic optimization method, but in general most of the work is performed at compile

time using scalable, symbolic calculus methods. In other words, the complexity of

Hybrid Analysis is often independent of the number of dynamic operations or data

set size of the program.

D. Contribution

We believe that this dissertation makes the following contributions:

• It introduces Hybrid Analysis, a novel compiler technique that bridges seam-

lessly static and dynamic analysis of memory reference patterns, and which has

been applied succesfully to dependence analysis and Array SSA.

• It presents a new representation for sets of memory references, the Uniform Set

of References (USR), that relies on partial symbolic aggregation to reduce the

complexity of associated optimization problems by orders of magnitude.

• It presents an implementation of the Hybrid Analysis framework and its applica-

tion to parallelization, Hybrid Dependence Analysis, in a research compiler. The

implementation and experimental results prove that automatic parallelization

works for scientific applications. Our techniques have been fully implemented

in the Polaris compiler and resulted in whole program speedups of at least 2 on

4 processors on 18 out of 22 industry standard benchmark applications.
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E. Organization

Chapter II introduces the fundamentals and discusses the state of the art in

compiler-based automatic parallelization. Chapter III presents the memory reference

analysis framework and a generic hybrid data dependence analysis method, which are

crucial to implementing an automatic parallelization tool. Chapter IV presents the

lower level symbolic analysis of scalar values, which is used throughout the memory

reference analysis framework. Chapter V describes the engineering of the automatic

parallelization tool and presents a detailed case study. Chapter VI discusses related

compiler implementation issues. Chapter VII presents a comprehensive evaluation of

our hybrid optimization techniques. Chapter VIII summarizes the contributions of

the dissertation and discusses future research on Hybrid Analysis. A user manual and

a developer/reference manual are available as the first and second appendices respec-

tively. Partial results of this dissertation have been published in refereed workshop

and conference proceedings and journals [2, 3, 4, 5, 6, 7].
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CHAPTER II

FUNDAMENTALS AND PREVIOUS WORK

A. Fundamentals of Automatic Parallelization

Automatic parallelization represents the algorithmic transformation of a sequen-

tial program into an equivalent parallel counterpart. Efficient automatic paralleliza-

tion is conditioned by three factors: a small number of synchronization points (high

granularity), an even distribution of work among different threads (load balancing),

and a good affinity of data to processing units (data locality).

This dissertation focuses on the detection of loop level parallelism at high granu-

larity levels, which translates into a low number of synchronization points. Although

our results could be improved by addressing load balancing and locality issues, our

techniques precondition all such optimizations and have been successful on their own

to the efficient parallelization of a large number of applications. We are thus focusing

on the automatic parallelization of large loops, possibly spanning multiple subpro-

grams and possibly containing complex control structures.

1. Scalar Data Flow and Data Dependence

Fig. 2 presents three sequential code fragments (column 1). Let us assume that,

for each case, we want to execute in parallel the two statements enclosed in a rectangle.

When the two statements are executed on different threads, there are no guarantees

of relative ordering between them. In the example on the first row, the assignment

of 8 to X may happen on thread 2 after the value stored in X is used on thread

1. In this case, thread 1 will wrongfully use value 5 stored previously in X. There

is a fundamental producer-consumer relation between these two statements. Such a



9

X = 8

... = X


X = 5

Write

Read


... = X

X = 8


X = 5

Read

Write


Flow


Anti


X = 5

X = 8


... = X


Write

Write


Output


... = X

X = 8


Thread 1
 Thread 2


... = X

X = 8


... = Y

X = 8


Y = 5


Privatization

(Renaming)


X = 5

Y = 8


... = Y

X = 5


X = 8


Thread 1
 Thread 2


Thread 1
 Thread 2


Possible Parallel

Execution
Sequential Code


Fig. 2. Data dependences prevent parallelization. Privatization can eliminate storage related

dependences.

relation cannot be broken, because a value cannot be consumed before it is produced,

thus the two statements cannot be executed in parallel. The statements are said to

be flow dependent. This relation is also known in literature as a RAW (read after

write) dependence or race condition.

The second row presents a different situation. The two statements selected for

parallelization do not share any values. In the sequential program the value of X

in the first two statements is 5, and in the third one it is 8. Statements 2 and 3

are therefore not flow dependent. However, the second column presents a scenario

in which the result of the parallel program is different from the sequential one. This

consequence is caused by the fact that the two flows of values 5 and 8 share a single

memory location. The two operations are said to be anti dependent. This relation

is also known as WAR (write after read). By using an additional memory location

Y for the first two references to X, we can separate the flow of data into two, one

using X and the other using Y. These two flows can then be carried concurrently by

separate threads. We will use the terms renaming and privatization interchangeably
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to denote the transformation that removes storage related dependences. The first

term is used more with respect to Instruction Level Parallelism while the second is

generally associated with Thread Level Parallelism, where the dependence is usually

removed by creating private versions of the conflicting storage object for each thread.

The third row presents a similar scenario, although here the storage related

dependence is between two write operations at the same memory location. This type

of data dependence is known as output or WAW (write after write). Analogous to anti

dependences, output dependences can be removed through renaming/privatization

The last class of data dependences is known as input or RAR (read after read).

These dependences are not important from the point of view of the correctness of

parallelization for shared memory machines, because data access is handled by the

hardware. However, input dependences are important to the study of data locality

as well as to the automatic generation of communication primitives in distributed

memory systems. They will not be discussed further in this dissertation.

2. Array Data Flow and Data Dependence

The analysis of scalar data flow and data dependence is crucial to extracting

Instruction Level Parallelism (ILP). However, the performance gain of ILP does not

scale with the data set. Thread Level Parallelism can achieve scalable performance by

employing a larger number of computation resources, e.g. more processors. A larger

data set can thus be processed in the same time budget by allocating more hardware

execution threads, while a fixed size problem can be solved faster. In order to achieve

this scalability, the compiler must be able to understand how large data structures are

referenced. In general, scalable programs reference memory through parameterized

objects named containers. The most used containers are arrays, which are collections

of fixed size objects stored consecutively in memory. In a compiler, each element of an
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Do i = 1 , 100
A[ i ] = f (A[ i ] )

EndDo

Do i = 1 , 100
A[ i +1] = f (A[ i ] )

EndDo

RW
i = 1


RW
i = 2


RW
i = 3


RW
i = 4


(a)

R
 W
i = 1


R
 W
i = 2


R
 W
i = 3


R
i = 4


(b)

Fig. 3. Generic memory references through arrays. (a) different locations are referenced in

each iteration respectively; no data flow is possible. (b) there is a data flow from

each iteration i to iteration i+1 on array element i+1.

array is identified by the array name and its position in the array (array subscript).

The subscript can be either a single integer or an expression describing a point in a

multidimensional, rectangular, integral coordinate space, which can be linearized to

describe a memory location relative to the beginning of the array.

Fig. 3 presents two examples of accessing memory through arrays using loops.

The array subscript formula is in general a symbolic expression that contains the loop

index, in this particular case i and i+1. In the first example (a), the only location in

array A referenced in some iteration i is at offset i. Therefore, the locations referenced

in two different iterations will always be different. This means there cannot exist data

flow between the operations in any two different iterations, thus any two iterations

can be executed in parallel concurrently. The loop is said to be parallelizable.

On the contrary, in the second example (b), each iteration i writes location i+1

which will then be read in iteration i+1. There is thus data flow from the operation

in each iteration i to the following iteration. This data flow imposes a strict execution

order on iterations: 1, 2, ..., 100. In other words, the loop cannot be parallelized.
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When arrays are referenced using subscript expressions that are affine combina-

tion of the loop index, and when the loop bounds are known at compile time, compilers

can make the decision on whether a loop can or cannot be parallelized. The analysis

is based on the formulas of the subscripts of significant references, e.g., read vs write.

Dependence relations are represented symbolically, e.g., i→ i + 1. However, in other

cases the necessary information is not available at compile time either because it is

input dependent or because the compiler cannot perform complex symbolic calculus.

In such cases, decisions can still be made at run time after instrumenting all memory

references and building the unfolded, dynamic data dependence relation table.

B. Current State of the Art in Automatic Parallelization

A parallelizing compiler has two main components (Fig. 4). In the analysis

phase, the compiler identifies data dependence relations among operations in different

iterations. In the transformation phase, it modifies the code to generate and manage

a number of parallel threads.

1. Compiler Analysis

a. Data Flow Analysis

There has been a very large amount of research on the analysis of the flow of

information (data) in programs. In addition to parallelization, data flow knowledge is

crucial to several other optimization techniques such as register allocation, constant

propagation, common subexpression elimination, checkpoint size reduction or dead

code elimination.

Data flow analysis for scalars has been performed traditionally using monotone

dataflow iterative methods [8] and lately using the Static Single Assignment program
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Fig. 4. Organization of the compiler techniques needed for the automatic parallelization of

loops for shared memory machines.
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representation [9] or similar representations [10, 11, 12].

When memory is referenced through arrays, data flow relations can be computed

by analyzing the symbolic subscript values. Individual symbolic values can be com-

pared using value range dictionaries generally based on abstract interpretation of

arithmetic operations, control flow and recurrences. Most nontrivial programs con-

tain loop nests possibly spanning several subprograms and containing complex control

flow. When the subscripts, inner loop bounds and control predicates are affine com-

binations of loop invariants and outer loop bounds and indices, data flow equations

can be formulated as linear integer programming problems.

Array data flow relations have been represented in several ways. One way is

to partition, for a given program context, all memory locations referenced within

that context, into RO (read only), WF (write first) and RW (read write). Each set

in the partition can be represented using triplet-based representations such as the

linear memory access descriptor (LMAD) [13, 14, 15] or gated array region (GAR)

[16], or by using linear constraint sets [17] or Presburger formulas [18]. Similar to

the RO/WF/RW partition, there are several other equivalent classifications based on

whether an operation may or must modify the data at a particular memory location.

Other representations of data flow are Last Write Trees [19] and Array SSA [20],

which maintain explicit def-use edges.

Most data flow analysis methods described in literature are interprocedural and

rely on interval analysis to summarize the effect of larger and larger program contexts

[21, 22, 23, 24, 25, 26, 27, 28]. They compute data flow relations expressed using sets

of references. [13, 14, 15] compute RO/WF/RW partitions, [16, 29] use GARs, [30, 19]

compute Last Write Trees, and [17, 31, 32, 33, 34] use linear constraint sets.

[35] computes the flow between data referenced by nonlinear index expressions

by defining and identifying relevant properties of index arrays, such as closed form
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Dimension A(10 ,10)
Do j = 1 , 10
Do i = 1 , j−1
A( i , j ) = A( j , i )

EndDo
EndDo write


1
 10


10


(i
1
, j
1
)


(j
2
, i
2
)


read

6 ∃ integers j1, i1, j2, i2 such that :
1 . 1 ≤ j1, j2 ≤ 10
2 . 1 ≤ i1 ≤ j1 − 1
3 . 1 ≤ i2 ≤ j2 − 1
4 . i1 = j2, i2 = j1
5 . j1 6= j2 ∨ i1 6= i2

(a) (b) (c)

Fig. 5. (a) Kernel to make matrix symmetric. (b) Geometric and (c) algebraic interpreta-

tions of the data dependence test for the write vs. read operations.

values or distance. [36] presents data flow analysis for parallel programs. [37] presents

instance-wise iterative array dataflow analysis based on constraint sets. [38] estimates

the probability of dataflow edges. [39, 34] present a good discussion of array dataflow

work in general.

b. Data Dependence Analysis

Several representations have been proposed to detect or measure data depen-

dences between operations in different iterations of a loop. One way is to measure,

for each pair of iterations, the set of memory locations (as LMAD, GAR, linear con-

straints set etc) on which there are data dependences between the two iterations.

For loop nests that access memory in a regular way we can measure the distance

as a number of iterations between two dependent operations [40, 41]. [42] presents

an application that displays interactively dependence information in human readable

form.

Most data dependence tests have a geometric interpretation [43]. They take

the subscript space corresponding to two operations in two different iterations and
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prove them disjoint. When subscripts are affine combinations of loop indices and loop

invariants, the subscript spaces appear as polyhedra in an n-dimensional Euclidian

space. Since the subscripts have integer coordinates, only the points with integer

coordinates are of interest.

Fig. 5(a) shows a kernel that makes matrix A symmetric by copying the upper

diagonal elements to their mirror lower diagonal position. A geometric interpretation

of the test (b) can be given by associating integer points in a 2-dimensional space

with either the iteration vector of each operation or with the address of the associated

memory reference. We can see that the set of points associated with read references

is disjoint from the set of points associated with write references. The corresponding

algebraic form (c) can be used to prove disjointness automatically. Each linear con-

straint describes either a half space (inequations) or a hyperplane (equations). The

dependence test proves, using symbolic calculus, that there are no points of integer

coordinates in the intersection of these half spaces and hyperplanes.

In conclusion, proving data independence reduces to proving that the intersection

of two n-dimensional bodies does not contain any Diophantine (integer coordinates)

points. This problem is NP-hard when subscripts are affine and apparently unde-

cidable when subscript expressions are arbitrarily complex. However, in most cases

memory is referenced in a simple way, and several models of reduced complexity have

proved to cover many practical cases.

The first dependence tests consisted mostly of bound checks and elementary

number theory results such as the GCD test [8]. These tests are very simple, thus

inexpensive, but cannot handle complex cases. Most later tests rely on Fourier-

Motzkin variable elimination (FMVE) to reduce the number of coupled constraints

repeatedly. After all variables have been eliminated, the remaining identity may be a

tautology (dependences exist) or a contradiction (no dependences). However, variable



17

Table I. Static dependence tests.

Test name Description

SIV, ZIV, MIV, Delta Test [45] Constraint propagation for coupled subscripts.

GCD Test[8, 46, 47] Greatest common divisor test.

Lambda Test [48] Constraint sets (including coupled subscripts).

Power Test[49] Fourier-Motzkin variable elimination (FMVE).

SVCT [50] Single variable per constraint test.

Acyclic Test [50] Acyclic elimination graph.

SLRT [50] Simple loop residue test.

Banerjee Test[8, 46, 47] Approximation, ignores Dophantine requirement.

Symbolic Banerjee Test[39] Symbolic Banerjee test.

Integer Programming [43, 50, 51] Fourier-Motzkin variable elimination.

(V)I-test [47, 52, 44] Polynomial time Banerjee with integers.

Omega Test[18, 53] Presburger algebra, FMVE with integers.

Range Test [54, 55, 56, 57] Value range-based nonlinear.

ART Test [58, 14] Access region test.

Commutativity Test [59] Find operations that can happen in any order.

Container semantics [60, 61, 62, 63] Detection of parallelizable container operations.

Index property [64, 35, 65] Subscript properties, e.g. closed form value.

Monotonicity [66, 67, 68, 55, 69] Based on monotonicity of the subscript.

Shape/Traversal [70, 71, 72, 73] Shape/traversal analysis of linked structures.

Pattern matching [74, 75, 76, 77] Recognition/substitution of a reference pattern.

MHP [78] May happen in parallel analysis for Java.

elimination may result in loss of information. The Banerjee test [8] returns success

(independence) when the intersection of the constraint spaces is completely empty.

There are cases when, although the intersection is not empty, it does not contain any

points of integer coordinates. In such cases the Banerjee test will report dependences

when in actuality there are none. The (V)I-test [44] and the Omega test [18] take into

account these issues. The Omega test is the only one that can solve any dependence

equation with affine constraints in which the loop bounds are known. Most of these

tests also handle cases when the loop bounds and other invariant values are symbolic

(but comparable at compile time).

Table I presents a list of the common data dependence tests or classes of tests,
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together with a brief explanation and some references to papers where the tests are

described and/or compared against others. Here is a list of interesting comparisons

and overviews: [79] - comparison of ddtests and their impact as seen statically and

dynamically; [80] - summary of constraint-based data dependence analysis; [81] -

comparison of I-test and Omega, comparison of Banerjee and FMVE; [82] - evaluation

of several dependence tests; [58] - comparison of ART test against GCD, extreme

value, FMVE, generalized GCD, Power, Lambda, I-test, Delta, Range; and [83] -

dependence test and parallelization results for PERFECT codes using Omega, I-test

and Banerjee.

None of the existent symbolic tests can solve arbitrarily complex dependence

equations, even when all needed values are available at compile time.

c. Analysis of Array References

Most of the static analysis methods presented above work with sets of array ref-

erences (addresses) or with sets of iterations. In both cases, they are integer numbers

which are generally organized in sets. Since in most cases subscripts are affine, the sets

of references or iterations are organized as polyhedra. The LMAD ([13, 14, 15]) and

GAR ([16]) represent polyhedra by listing an initial starting point plus a stride and a

span in each dimension of the space. Linear constraints [17] describe the half-spaces

that bound the polyhedra and are in general more accurate than the triplet-based

representations when polyhedra facets are not orthogonal. However, the polyhedra

described by linear constraint sets must be scanned [84] in order to describe all the

points within, whereas the triplet-based representations can be translated to Fortran

or C code directly. Presburger formulas [18] are logical forms that include linear

constraint sets and quantification operators ∀ and ∃.

Certain classes of non-array references can be converted into arrays, or can be
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reasoned with as if they were array references. [60, 61, 62, 63] showed that containers

in C++ and Java behave under certain circumstances like arrays. [85] showed that

even machine code references can be pattern-matched into linear constraint sets. [86]

showed how some classes of pointer-based references can be transformed into array

references.

The analysis of arrays in loops generally reduces to analyzing their subscripts.

They depend on either values produced by recurrences or on values stored in indirec-

tion (subscript) arrays.

The first set of analysis methods try to model recurrences in order to extract

closed forms for the n-th term of a recurrence. The analysis of recurrences was

presented [87] as abstract interpretation, as [88, 89] cycle detection on graphs, and

[90] using the inverted chain of recurrences formulas.

When a closed form cannot be extracted, these methods extract closed forms for

a property rather than a value, specifically for properties that must be checked by

a specific optimization technique, such as parallelization. [66, 91] present data flow

and data dependence analysis based on the monotonicity of recurrence values with

applications to the parallelization of recursive subprograms. [67, 68] present similar

data dependence tests based on monotonic value evolutions. [64, 35] present a set

of subscript properties that are relevant to parallelization and can be checked auto-

matically under certain circumstances: injectivity, monotonicity, closed-form value,

closed-form bounds. [55] presents value-based Java data dependence analysis using

index equivalence, additive constant difference and inequality graphs.

The subscript property that received most attention is value range. Even when

two values cannot be compared directly, they can be proven distinct by proving that

their possible value ranges are disjoint. [54, 92, 57, 56] present value range analysis

and its applications to data dependence analysis.
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[39] presents a comprehensive view of symbolic analysis for optimization (espe-

cially parallelization), including value analysis. [93] presents backwards, on demand

value analysis using GSA. [94] presents a method for the discovery of regular strides

in pointer programs by profiling, and presents applications to prefetching.

2. Compiler Transformations

In general, the parallelization of sequential code on a shared memory system

is achieved by inserting explicit calls to multithreading routines that create threads

and keep them synchronized when needed. When parallelizing for a machine with

distributed memory, the communication of data between threads is also managed

through calls to a runtime library. From a correctness perspective, the generation

of multithreaded code is straightforward once the necessary data dependence infor-

mation has been computed. In addition to proving independence, Hybrid Analysis

information can be used to detect cases when dependences can be removed through

a code transformation.

a. Removing Flow Dependences

In many cases, although there is data flow between different iterations, the code

can be transformed into an (quasi-)equivalent parallelizable one. Although order-1

recurrences have data flow from each iteration to the next, some classes of recurrences

have closed forms, i.e., algebraic formulas for the n-th term. By replacing all uses of

the recurrence term with its closed form, the data flow between iterations is eliminated

completely (induction variable substitution) [8].

Reductions are operations of form X = X op exp, where exp is an expression that

does not reference X. When a variable is referenced only through reduction operations,

the implicit flow dependences can be removed by substituting the algorithm with a
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parallel counterpart (reduction parallelization) [95]. Other patterns can be recognized

and parallelized, such as prefix computation [96, 75].

Several loop transformations have been devised to modify a loop nest so that

a particular level in the nest can be parallelized: loop strip mining, interchanging,

peeling, splitting, distribution [97, 98, 40, 99, 100, 101, 102, 103, 104, 39].

A data flow can be broken speculatively by guessing the values of the data [105,

106, 107]. This method seems to work best with linear recurrences controlled by

predicate arrays that are almost entirely true or almost entirely false. In such cases

closed forms are used speculatively.

b. Removing Storage Related Dependences

In most nontrivial programs, memory is reused across computation threads that

do not share information. For instance, it is a common practice to use temporary

variables whose liveness range is included in a loop body. There cannot exist a flow

of information across iterations through these temporaries. However, the loop cannot

be executed in parallel because each iteration will define and use the data at the same

memory locations. The compiler can privatize, in other words rename the memory

locations for each iteration, thus disambiguating the data flow [108, 102, 109, 19, 93,

110, 29, 111, 112].

c. Results in Automatic Parallelization

[97] presents testing of vectorization capabilities, including a compile-time/run-

time hybrid approach based on validity predicates. [113] describes the automatic par-

allelization of four PERFECT benchmark codes. [114] gives a general parallelization

overview in Polaris. [16] presents automatic parallelization based on GAR summaries.

[115, 116] present SUIF best parallelization results with interprocedural analysis. [117]
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present parallel performance enhancement techniques (such as load balancing) based

on post-mortem analysis. [39] presents a comprehensive set of anlyses and trans-

formations for parallelization. [118] discusses parallelization artifacts that lead to

false sharing. [119] presents transformations for large granularity, good decomposi-

tion, vectorization, and locality. [120] presents practical parallelization performance

issues (beyond data dependence analysis) and show results on several PERFECT

benchmarks and other codes. [121] discusses compiler requirements for an automatic

parallelization of all PERFECT benchmarks. [122] offers an empirical evaluation

of three parallelizing compilers. [91] discusses parallelization of recursive programs.

[123, 124] present parallelization, locality improvement and reduction of false shar-

ing. [125] presents automatic parallelization results in a commercial compiler. [126]

presents performance results for automatic parallelization among other optimization

techniques. [127] presents challenges to automatic parallelization for DSPs, with no

caches, multiple address spaces and direct memory access.

3. Run Time Parallelization Techniques

Dependence relations cannot be analyzed at compile time when they depend on

input values or when the necessary representation/analysis methods are too complex.

Several run time analysis methods have been proposed to perform data dependence

tests at run time, in the presence of necessary actual values read from input or

computed during program execution.

a. Instrumentation of Memory References

[128, 129, 130, 131, 132, 1, 133] present the Lazy Reduction Privatizing Doall

test. The LRPD test consists of two phases. In the marking phase, each memory
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1 Read ∗ , n
2 Do j = 1 , n
3 A( ind1 ( j ) ) = A( ind2 ( j ) )
4 EndDo

1 Read ∗ , n
2 Do j = 1 , n
3 Call MarkRead( ind2 ( j ) , t r a c e )
4 Call MarkWrite ( ind1 ( j ) , t r a c e )
5 EndDo
6 i s P a r a l l e l = Analyze ( t r a c e )
7 I f ( i s P a r a l l e l )
8 Parallel Loop
9 Else

10 Sequent i a l Loop
11 EndIf

(a) Instrumentation of each reference is necessary.

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo

1 Read ∗ , n
2 Do j = 1 , n
3 Call MarkRead( j +100 , t r a c e )
4 Call MarkWrite ( j , t r a c e )
5 EndDo
6 i s P a r a l l e l = Analyze ( t r a c e )
7 I f ( i s P a r a l l e l )
8 Parallel Loop
9 Else

10 Sequent i a l Loop
11 EndIf

(b) Instrumentation of each reference is not necessary. A simple loop bound check is sufficient.

Fig. 6. Run time parallelization based on instrumenting every memory reference.

reference1 is recorded in a shadow data structure. In the analysis phase, the shadow

data structure is processed to extract dependence information. Fig. 6(a) presents a

scenario where marking each memory reference is necessary because every reference

is made through indirection. In this case, LRPD is optimal in the sense that inde-

pendence cannot be decided with less run time overhead. The LRPD can be applied

speculatively, or using an inspector/executor strategy (Fig. 7).

[134] presents a test similar to LRPD used to reduce the overhead of dependence

profiling for speculative low-level speculative parallelization, i.e. to estimate depen-

dence probabilities. Several speculation methods [135, 136, 107] use a variety of tests

conceptually similar to LRPD to validate the data flow or data dependence relations

on which they speculate.

1Although overhead can be reduced by a constant factor [133], the asymptotic
complexity remains proportional to the number of dynamic memory references.
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1 Read ∗ , n
2 Do j = 1 , n
3 A( ind1 ( j )) =

A( ind2 ( j ) )
4 EndDo

1 Read ∗ , n
2 Do j = 1 , n
3 Call MarkRead( ind2 ( j ) ,

t r a c e )
4 Call MarkWrite ( ind1 ( j ) ,

t r a c e )
5 EndDo
6 i s P a r a l l e l = Analyze ( t r a c e )
7 I f ( i s P a r a l l e l )
8 Parallel Loop
9 Else

10 Sequent i a l Loop
11 EndIf

1 Read ∗ , n
2 Call copy (A, saveA )
3 Do j = 1 , n
4 Call MarkRead( ind2 ( j ) ,

t r a c e )
5 Call MarkWrite ( ind1 ( j ) ,

t r a c e )
6 A( ind1 ( j ) ) = A( ind2 ( j ) )
7 EndDo
8 i s P a r a l l e l = Analyze ( t r a c e )
9 I f (NOT i s P a r a l l e l )

10 Call copy ( saveA , A)
11 Sequent i a l Loop
12 EndIf

(a) (b) (c)

Fig. 7. Inspector / executor vs. speculative execution. (a) original code, (b) inspector/ex-

ecutor parallelization and (c) speculative parallelization.

[94, 136] present the use of profiling to measure the regularity of memory ref-

erences, with application to prefetching and speculative parallelization respectively.

Both methods use the profiling information only as a profitability guide and resort

to other checkers for correctness.

b. Optimization Predicate Extraction

The effectiveness of the run time tests based on instrumentation of virtually all

memory reference has been limited by their inherent overhead, even when optimized

for scalability. Fig. 6(b) presents a case in which LRPD would perform a large number

Θ(n) of markings. However, in this case a simple check of the array and loop bounds

would suffice to determine independence.

The alternative is to extract, at compile time, the validity predicates of the

optimizing transformation. These predicates can then be verified at run time, usually

with significantly less overhead. Vectorizing compilers had introduced [97] simple run

time methods to decide when it is profitable to vectorize, e.g., a test on the length

of the vector. In [31, 32, 53, 137, 20, 138] the authors had recognized this need to
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bridge compile-time and run time analysis.

[31, 32] present the extraction of predicates under which a data flow or data

dependence relation will hold true, which translates into less expensive run time

tests. Their methods can solve the problem in Fig. 6(b). However, their solutions did

not go far enough for significant impact in automatic parallelization. Their method

cannot extract predicates when there is a variable number of compile time unknowns,

such as indirection arrays or arrays of control variables.

[139] showed how sufficient predicates can be extracted by simplifying Presburger

formulas with uninterpreted function symbols. [140] showed how uninterpreted sym-

bols can be used to hide unimportant aspects that appear to, but do not prevent

optimization. Although these two approaches are the closest to Hybrid Analysis, we

could not extract their exact mathematical formulations so we could not compare

their theoretical foundations. Also, these two approaches were not implemented fully

in a run time optimizer or parallelizer so there are no empirical proofs of their ap-

plicability and effectiveness. We present in this dissertation extensive proof of the

applicability and effectiveness of Hybrid Analysis.

c. Partially Parallel Loops and Communication Schedules

Partially parallel loops and communication schedules is not the focus of this

dissertation. However, they have been the target of dynamic analysis methods and

the techniques we propose here can be applied to these problems as well.

[141, 142, 143, 144, 145, 146] present the inspector/executor scheme for dynamic

computation of the communication schedule including schedule reuse and other im-

provements such as dependence uniformization for regular schedules.

[147, 148, 149, 150, 151, 152] present partial redundancy elimination and ag-

gregation analysis for interprocedural movement of communication primitives and
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overlapping of communication and I/O with computation.

[153] presents speculative parallel thread spawning for the superthreaded ar-

chitecture. [154] presents parallelization of partially parallel loops using dynamic

scheduling. [155] introduces the R-LRPD dependence test and cascaded execution of

partially parallel loops.

d. Inspector Executor vs. Speculative Optimization

From the point of view of the execution of optimized code, there are two main

strategies (Fig. 7). The inspector/executor method validates the optimizing transfor-

mation and runs the optimized code only when correct. The speculative execution

strategy first makes copies of data subjected to side effects and then runs the op-

timized code. If the speculative assumption is proved wrong, the original data is

restored and the nonspeculative code version is executed instead. Although specula-

tion may impose a large overhead in case of repeated failure, when successful it can be

more profitable than the inspector/executor method in the case when the inspector

duplicates a significant amount of the original loop. Also, in certain cases specula-

tion is the only viable method because the validity of the transformation cannot be

evaluated until the optimized code has finished executing.

[141, 142, 143, 144, 145, 146] present the inspector/executor scheme with sched-

ule reuse and other improvements such as dependence uniformization for regular

schedules. [128, 129, 130, 131, 132, 1, 105, 133, 155, 156, 136, 135, 107, 157] present

speculation for thread level parallelization, mostly at loop level. [158] discusses the

choice between inspector/executor and speculative execution.

Hybrid Analysis uses both the inspector/executor and the speculative execution

strategies based on a cost estimation model.
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CHAPTER III

HYBRID MEMORY REFERENCE ANALYSIS

The analysis of memory references is essential to many optimizations: paralleliza-

tion, locality improvement, and data flow related transformations such as constant

propagation or memory exclusion.

Static memory reference analysis relies on a symbolic representation of the ex-

pressions that make up the addresses at which memory is accessed. The analysis

generally consists of comparisons between symbolic addresses. For instance, in the

example in Fig. 1, in order to decide whether the loop can be executed in parallel,

we need to prove that j1 6= j2 + 100,∀j1, j2 ∈ 1..n. Two symbolic expressions cannot

always be compared because their values may depend on input data which are only

known at run time. In this case all subsequent optimization must be conservatively

dismissed. However, in many cases the actual addresses turn out to satisfy the as-

sumption of the optimization. For instance, the loop in Fig. 1 cannot be parallelized

because, when n = 101, there are j1 = 101, j2 = 1, j1, j2 ∈ 1..n, and j1 = j2 + 100.

However, it may turn out at run time that n ≤ 100, in which case the loop could

have been parallelized.

Dynamic memory reference analysis consists of recording, at run time, the ac-

tual value of each accessed memory address. These values are then used to validate

optimization assumptions. For instance, in the example in Fig. 1, we can record at

run time all the values taken by address expressions j and j + 100. In order to find

out whether the loop can be run in parallel, we just need to prove the resulting ad-

dress sets disjoint. This can be done using an always on run time test. Generally,

the implementation of a run time optimization uses code versioning. An optimized

code version is produced at compile time and invoked at run time when all necessary
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assumptions hold true.

In general, static analysis is preferred because it uses time and memory propor-

tional to the size of the program. In contrast, although always applicable, dynamic

analysis incurs a run time cost proportional to the dynamic number of individual

memory references. However, in the example in Fig. 1, checking every dynamic mem-

ory reference is unnecessary. We can see that a sufficient condition for parallelization

would be n ≤ 100.

This section presents representations and techniques for hybrid memory refer-

ences analysis. The analysis process starts at compile time, based on symbolical

calculus. When optimization decisions are not reached at compile time, hybrid anal-

ysis extracts conditions which can validate them at run time, in the presence of actual

values, but with much less overhead than pure dynamic methods. The border between

what occurs at compile time and what occurs at run-time depends to a large extent

on the power of current compiler algorithms and, with their continuous improvement,

can be smoothly shifted towards better performance and less overhead.

A. An Overview of Hybrid Analysis Applied to Parallelization

Hybrid Analysis combines the advantages of static and dynamic methods. It

starts at compile time by performing symbolic calculus and extracts conditions under

which certain optimization transformations are legal. At run time, it evaluates these

optimization correctness predicates and switches on the optimization when they hold

true.

The compile-time part of Hybrid Analysis formulates an independence problem

in terms of sets of references: the set of memory locations read in one iteration must

not overlap with the set of memory locations written in another iteration.
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(a)

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +200)
4 I f ( x < 0) Then
5 A( j ) = A( j ) + A( j +100)
6 EndIf
7 EndDo
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Empty?


Empty?
 Empty?


Empty?


(b)
 (c)


(d)
 (e)


Write
Read


(f)
 (x>=0 || n<101) && n<201


Fig. 8. Extraction of an independence predicate from an independence equation. The black

nodes represent simple conditions and logical operations that are easier to evaluate

at run time than it is to solve the original independence problem. (a) Original code.

(b) Independence equation as intersection of read and write reference sets. ∩ and

∪ stand for set intersection and union respectively and # means predication. (c)

The original problem was divided into two subproblems. ∧ and ∨ stand for logical

and and or respectively. (d) Intermediate result. (e) The final result is an accurate

independence predicate which is inserted in the generated code (f) and that will be

evaluated efficiently at run time.

Most reference patterns in loops are more complex than those in Fig. 1(a). The

relevant sets of references read and write cannot, in general, be represented as linear

intervals. Moreover, parallelization is profitable at large levels of granularity, which

correspond to large loops, spanning a large amount of code. Quite often, such loops

contain nonlinear patterns, such as indirect memory references or nonlinear control

flow. Let us follow the slightly more complex example in Fig. 8(a). The independence

question is still represented as whether a set intersection is empty (b), but the set of

read references is not a simple interval because of the unknown control flow value of
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x < 0. It is thus not straightforward to extract conditions such as the bound check

presented in Fig. 1. However, the problem of proving the read and write sets disjoint

can be divided into two subproblems (c). In order to solve the first subproblem, let

us notice that when x < 0 is false, the corresponding predicated set becomes empty.

When x < 0 is true, the subproblem reduces to proving the sets disjoint, which is

similar to the simpler problem in Fig. 1. The subproblem on the right in Fig. 8(c) is

similar to the simpler problem in Fig. 1. The final result is shown in Fig. 8(f) as a

simple logical expression which can be evaluated quickly at run time. Let us point

out the important steps taken to solve these problems.

•We represent the set of memory locations that carry cross-iteration dependences as

a tree in which the leaves are linear intervals and the internal nodes are operators,

such as set union, set intersection and predication (Fig. 8(b)). We formulate the

independence problem as testing whether this dependence set is empty.

• We apply a sequence of transformations which convert this problem into an equiv-

alent logical expression that can be evaluated efficiently at run time (Fig. 8(c-e)).

These transformations are applied in a recursive descent on the tree representation

of the dependence set and are based on set algebra semantics.

B. Proposed Memory Reference Representation:USR

The USR, or Uniform Set of References, is a symbolic and compact representation

of memory reference sets in a program. It can represent symbolically the aggrega-

tion of array memory references at any hierarchical level (on the loop and procedure

call graph) in a program. It can represent the control flow (gates), inter-procedural

issues (call sites) and recurrences (when array references, i.e., indices or gates, have

to be expressed symbolically as a recurrence with no closed form solution or as an
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subscripted subscripts). Its evaluation and subsequent optimization decisions can be:

initiated and completed at compile time if all symbolic values can be analyzed, com-

pared, or initiated at compile time with partial but insufficient results and completed

at run-time.

Any nontrivial program consists of several subprograms, complex loop nests and

control structures, which determine the shape and size of memory reference patterns.

In order to scale across large programs, most analysis techniques use aggregation, i.e.,

a way to represent several addresses by a single symbolic expression. For instance,

the interval [n+1:n+4] is the aggregation of {n+1,n+2,n+3,n+4}. In the example in

Fig. 1, we know that the set of read references for some iteration j is {j+100}. We

can express the set of read references for the whole iteration space symbolically as

[101:n+100].

In addition to aggregating memory reference sets over loops, control structures

and subprograms, an analysis process must also operate on these sets according to

logic particular to the particular analysis goals. Consider the example in Fig. 10(a).

Let us assume that we want to propagate constant 0 stored in some elements of array

A from the definition site at line 2 to the use site at line 5, and thus eliminate several

unnecessary multiplication operations. Let us assume that we computed the set of

addresses at which we write at line 2, [1:10], and we computed the set of addresses

from which we read at line 5, [6:15]. In order to find the exact locations for which

we can propagate constant 0, we must compute the intersection of these two sets.

Most analysis techniques perform, in addition to aggregation, set operations such as

intersection, set difference and union.

The symbolic aggregation process models the effect of language constructs on

the set of memory addresses. It is essentially an abstract interpretation process that

produces sets of references. The remainder of this section presents the rationale
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1 Program Erathostenes
2 Read n
3 Do i = 2 , n
4 isPr ime ( i ) = true
5 EndDo
6 pCounter = 0
7 cCounter = 0
8 Do i = 2 , Sqrt (n)
9 I f ( i sPr ime ( i ) )

10 Call AddSolution ( pSolut ion , pCounter , i )
11 Do j = i ∗ i , n , i
12 isPr ime ( i ) = f a l s e
13 EndDo
14 Else
15 Call AddSolution ( cSo lut ion , cCounter , i )
16 EndIf
17 EndDo
18 Call Pr in tSo lu t i on ( pSolut ion , pCounter ,

’ Primes : ’ )
19 Call Pr in tSo lu t i on ( cSo lut ion , cCounter ,

’Non−Primes : ’ )
20 End

21 Subroutine AddSolution (V, c , x )
22 c=c+1
23 V( c ) = x
24 End

25 Subroutine Pr in tSo lu t i on (V, c , msg)
26 Print msg
27 Do i =1 , c
28 Print V( c )
29 End

1


19
18
8
3
 6
 7
2


4
 9


10
 11
 15


12


21


23
22


25


27
26


28


Erathostenes


AddSolution
 PrintSolution


(a) (b)

Fig. 9. Program model: (a) Sample program – Erathostenes’ sieve. (b) Call Graph and

Control Dependence Graphs (CD edges shown as solid lines). CD siblings are con-

nected by dotted lines given by the postdominance relation in the original Control

Flow Graph. Subprogram call relations are shown as dashed lines.

behind the design of the USR and gives a formal definition. We start by presenting

the program model and then detail our abstract interpretation rule for each program

component. The design of the USR guarantees the representation’s closure over the

abstract interpretation process. This guarantees the applicability of any analysis

technique based on USRs and set operations to any program that fits our model.
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1. Program Model

This section describes the class of programs that USR-based analysis techniques

can handle.

We see the program as a collection of subprograms as in Fig. 9. Each subprogram

is seen as a Control Dependence Graph (CDG). The Call Graph and all CDGs are

assumed acyclic except for CDG self loops. For the simplicity of the presentation we

will assume all CDGs to be trees. The same analysis techniques can be generalized

to general directed acyclic CDGs. When a subprogram’s CDG is not a tree, we

transform it into an equivalent block structured program, for which the CDG is a tree

(Section VI. A). In addition to control dependence, we preserve the postdominance

relations between control dependence siblings so we can reconstruct an equivalent

control flow graph. The program must be in static single assignment (SSA) form.

In our model, each terminal CDG node is either an assignment statement, an

I/O statement or a subprogram call. Each internal node is either an If-Then-Else

statement or a Do statement. In our model, an analysis is an abstract interpretation

(as a postorder traversal) of the CDG. Within a list of siblings, they are interpreted

left to right. If-Then-Else structures, loops and subprogram calls have specific inter-

pretations which reflect its semantic. Additionally, analysis techniques are allowed

to perform set operations: intersection, set difference and union. For example, the

constant propagation process in Fig. 10(a) performs set intersections after analyzing

the two loops.

2. Background: the Linear Memory Access Descriptor

In many cases, subscript functions and predicates are linear, which makes them

easy to represent using a classic representation such as constraint sets [159, 160] or
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triplet based LMADs [161]. For practical reasons 1 we have chosen to use the triplet

based LMAD as the elementary building block for USRs. We will show how we use

this representation not only when the reference pattern is completely affine, but also

to describe affine subsets. The use of LMADs in our framework can be substituted

with little effort by any other semantically equivalent representation such as sets of

linear constraints.

[161] defined the Linear Memory Access Descriptor (LMAD) as a representa-

tion of the subscripting offset sequence. Consider a loop nest of depth D with in-

dices Ik, k = 1, D, where Ik = 0, Uk. Consider a reference to memory given by

A(s1(~I), s2(~I), . . . , sm(~I)), where ~I=(I1, I2, . . . , Id). If the subscripting function can

be written in a sum-of-products form with respect to the individual loop indices,

Fa(s(~I)) = f0 + f1(I1) + f2(I2) + · · ·+ fm(Im) (3.1)

then, we can isolate the effect of each loop index on the subscripting offset sequence.

The isolated effect of any loop in a loop nest on a memory reference represents

a dimension of the access. A dimension k can be characterized by its stride and the

number of iterations in the loop. The LMAD contains a starting value, called the

base offset and a set of dimensions. For the loop at line 2 in Fig. 1(a), the Read

pattern on array A is represented by a 1-dimensional LMAD, 100+[1:n-1]. The offset

is 100, the stride of the single dimension is 1 and the iteration count is n. Throughout

this presentation, we will use the simple interval notation for single dimensional, unit

stride LMADs: [101:100+n].

1Our Polaris compiler already uses LMAD representation.
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1 Do i = 1 , 10
2 A( i ) = 0
3 EndDo
4 Do i = 6 , 15
5 B( i ) = 5∗A( i )
6 Enddo

use ∩ def = [6 : 15] ∩ [1 : 10] = [6 : 10]

1 Do i = 1 , 10
2 A( i ) = 0
3 EndDo
4 Do i = 6 , 10
5 B( i ) = 0
6 Enddo
7 Do i = 11 , 15
8 B( i ) = 5∗A( i )
9 Enddo

(a)

1 Do i = m, n
2 A( i ) = 0
3 EndDo
4 Do i = p , q
5 B( i ) = 5∗A( i )
6 Enddo

use ∩ def = [p : q] ∩ [m : n] =?

1 Do i = m, n
2 A( i ) = 0
3 EndDo
4 Do i = ? , ?
5 B( i ) = 0
6 Enddo
7 Do i = ? , ?
8 B( i ) = 5∗A( i )
9 Enddo

(b)

Fig. 10. USR intersection (∩): (a) when the result is an LMAD and (b) when the result

cannot be represented as an LMAD.

3. Abstraction of Set Operations

a. Set Intersection

In the example in Fig. 10(a), we could express the result of the intersection

[6 : 15] ∩ [1 : 10] as an LMAD, [6 : 10]. However, in the example in Fig. 10(b), due

to the fact that the loop bounds are represented by symbolic names, the intersection

of two LMADs cannot be represented as an LMAD. The universe of LMADs is not

closed with respect to set intersection. Any analysis based solely on LMADs cannot

analyze any program slice containing this code sample.

In order to represent the result of the intersection in Fig. 10(b), we have intro-

duced a symbolic operator ∩. Rather than using a conservative LMAD value for the

result, we prefer to keep it as [p : q] ∩ [m : n]. Although the intersection cannot be

performed at compile time, what is left for run time analysis is just one interval in-

tersection operation, which is asymptotically less expensive than instrumenting every
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1 Do j = 1 , 1000
2 Do i = 1 , 10
3 A( i ) = . . .
4 EndDo
5 Do i = 1 , 5
6 A( i ) = foo (A( i ) )
7 Enddo
8 EndDo

use− def = [1 : 5]− [1 : 10] = ∅

OMP PARALLEL PRIV ATE(A)
1 Do j = 1 , 1000
2 Do i = 1 , 10
3 A( i ) = . . .
4 EndDo
5 Do i = 1 , 5
6 A( i ) = foo (A( i ) )
7 Enddo
8 EndDo

(a)

1 Do j = 1 , 1000
2 Do i = m, n
3 A( i ) = . . .
4 EndDo
5 Do i = p , q
6 A( i ) = foo (A( i ) )
7 Enddo
8 EndDo

use− def = [p : q]− [m : n] =?

i s P r i v a t i z a b l e = ?
I f ( i s P r i v a t i z a b l e )

C === Parallel version ===
OMP PARALLEL PRIV ATE(A)
1 Do j = 1 , 1000
2 Do i = m, n
3 A( i ) = . . .
4 EndDo
5 Do i = p , q
6 A( i ) = foo (A( i ) )
7 Enddo
8 EndDo
9 Else
C === Sequential version ===

. . .

(b)

Fig. 11. USR difference (−): (a) when the result is an LMAD and (b) when the result cannot

be represented as an LMAD.

reference. The advantage comes from the fact that the use and def sets are partially

aggregated at compile time.

b. Set Difference

Consider the loop nest on the left hand side in the example in Fig. 11(a). Let us

assume that we want to parallelize the outermost loop (line 1). Although it appears

that the statement at line 6 causes a cross-iteration dependence on memory locations

A(1:5), this dependence can be eliminated by privatizing array A. The equivalent

parallel code is shown on the right. In order to verify the validity of the privatization

transformation, the compiler must prove that the use at line 6 is covered by the def

at line 3, for each iteration of the outermost loop. In other words, it must prove a
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1 Do i = 1 , 5
2 A( i ) = 0
3 EndDo
4 Do i = 11 , 15
5 A( i ) = 0
6 EndDo
7 Do i = 1 , 15
8 B( i ) = 5∗A( i )
9 Enddo

use ∩ def = [1 : 15] ∩ ([1 : 5] ∪ [11 : 15]) = [6 : 10]

1 Do i = 1 , 10
2 A( i ) = 0
3 EndDo
4 Do i = 1 , 5
5 B( i ) = 0
6 Enddo
7 Do i = 6 , 10
8 B( i ) = 5∗A( i )
9 Enddo

10 Do i = 11 , 15
11 B( i ) = 0
12 Enddo

(a)

1 Do i = m, n
2 A( i ) = 0
3 EndDo
4 Do i = r , s
5 A( i ) = 0
6 EndDo
7 Do i = p , q
8 B( i ) = 5∗A( i )
9 Enddo

use ∩ def = [p : q] ∩ ([r : s] ∪ [m : n]) =?

1 Do i = m, n
2 A( i ) = 0
3 EndDo
1 Do i = r , s
2 A( i ) = 0
3 EndDo
4 Call i n i t z e r o (A,

[p : q] ∩ ([r : s] ∪ [m : n] )
7 Call i n i t o r i g (A,

[p : q]− ([r : s] ∪ [m : n] )

(b)

Fig. 12. USR union (∪): (a) when the result is an LMAD and (b) when the result cannot

be represented as an LMAD.

set difference identity: use− def = ∅. In this case the result of the LMAD operation

[1 : 5] − [1 : 10] can be expressed using an LMAD. However, in the slightly more

complex example in Fig. 11(b), the result of the set difference cannot be expressed as

an LMAD. Similarly to the intersection operator introduced above, we use a symbolic

set difference operator and keep the partially aggregated result [p : q] − [m : n].

Although this expression cannot be evaluated before run time, it costs far less to

compute it than to instrument and analyze every dynamic reference to A.

c. Set Union

Consider the example in Fig. 12(a). It shows a constant propagation opportunity

similar to the one in Fig. 10(a). The difference is that the def set is not contiguous,

but consists of two LMADs. We use the union operator ∪ to describe symbolic unions
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1 Do i = 1 , 10
2 A( i ) = 0
3 EndDo
4 Do i = 1 , 10
5 B( i ) = 5∗A( i )
6 EndDo

use = ⊗∪

i=1,10
{i} = [1 : 10]

def = ⊗∪

i=1,10
{i} = [1 : 10]

use ∩ def = [1 : 10] ∩ [1 : 10] = [1 : 10]

1 Do i = 1 , 10
2 A( i ) = 0
3 EndDo
4 Do i = 1 , 10
5 B( i ) = 0
6 EndDo

(a)

1 Do i = 1 , 10
2 A( ind ( i ) ) = 0
3 EndDo
4 Do i = 1 , 10
5 B( i ) = 5∗A( i )
6 EndDo

use = ⊗∪

i=1,10
{i}

def = ⊗∪

i=1,10{ind(i)}
use ∩ def = [1 : 10] ∩ ⊗∪

i=1,10
{ind(i)}

1 Do i = 1 , 10
2 A( ind ( i ) ) = 0
3 EndDo
4 Do i = 1 , 10
5 B(?) = ?
6 EndDo

(b)

Fig. 13. USR expansion (⊗∪): (a) when the result is an LMAD and (b) when the result

cannot be represented as an LMAD.

between sets of references. Fig. 10(b) shows a slightly more complex case where

neither the union nor the intersection could be performed symbolically. However,

they are partially aggregated. At run time, the exact sets of addresses at which

the constant can be propagated will be evaluated by performing the necessary set

operations.

4. Abstraction of Loops

Over the previous examples we have taken for granted that the effect of a loop

Do i = 1, 10 on an individual reference such as A(i) is LMAD [1 : 10]. This is

always the case when the reference pattern inside the loop is a single point which

is an affine function of the loop index, as is the case in Fig. 13(a). However, when

the reference inside the loop is through a nonlinear expression such as subscripted

subscripts (Fig. 13(b)), we cannot aggregate the effect of the whole loop symbolically

into an LMAD anymore. In order to let the abstract interpretation process aggregate

the effect on memory of program slices that contains nonlinear addressing, we have

introduced a new set expansion operator ⊗∪Recurrence. The result of ⊗∪Recurrence is
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1 n = 5
. . .

2 I f ( n<10)
3 Do i = 1 , 10
4 A( i ) = 0
5 EndDo
6 EndIf
7 Do i = 1 , 10
8 B( i ) = 5∗A( i )
9 EndDo

use = [1 : 10]
def = (5 < 10)#[1 : 10] = [1 : 10]
use ∩ def = [1 : 10] ∩ ((5 < 10)#[1 : 10]) = [1 : 10]

1 n = 5
. . .

2 I f ( n<10)
3 Do i = 1 , 10
4 A( i ) = 0
5 EndDo
6 EndIf
7 Do i = 1 , 10
8 B( i ) = 0
9 EndDo

(a)

1 Read n
2 I f ( n<10)
3 Do i = 1 , 10
4 A( i ) = 0
5 EndDo
6 EndIf
7 Do i = 1 , 10
8 B( i ) = 5∗A( i )
9 EndDo

use ∩ def = [1 : 10] ∩ ((n < 10)#[1 : 10]) =?

1 Read n
2 I f ( n<10)
3 Do i = 1 , 10
4 A( i ) = 0
5 EndDo
6 I f ( n<10)
7 Do i = 1 , 10
8 B( i ) = 0
9 EndDo

10 Else
11 Do i = 1 , 10
12 B( i ) = 5∗A( i )
13 EndDo
14 EndIf

(a)

Fig. 14. USR gate (#): (a) when the result is an LMAD and (b) when the result cannot be

represented as an LMAD.

the union of the effect on memory of individual iterations, over the whole iteration

space. In other words, ⊗∪i=1,nseti =
⋃n

i seti. For completeness, we also introduce the

complementary operator ⊗∩Recurrence, where ⊗∩i=1,nseti =
⋂n

i seti. The evaluation of

expansion operators can be prohibitively expensive. However, expressions involving

expansion are useful when the per-iteration reference pattern is not just an individual

reference, but an already aggregated LMAD. In such cases, we still benefit from

an asymptotic reduction in complexity while maintaining analysis accuracy, whereas

other techniques would resort to approximation and miss optimization opportunities.
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5. Abstraction of Control

All nontrivial programs contain explicit control constructs such as If-Then-Else.

In the example in Fig. 14(a), the definition at line 4 is conditioned by predicate

n < 10. If we know that the predicate holds true at compile time, then we can infer

that the definition covers the use for memory locations A(1:10) and we can propagate

the constants from definition site 4 to use site 8. However, in Fig. 14(b) we do not

know the value of the predicate at compile time. Then the memory reference pattern

across the whole If block (lines 2-6) cannot be expressed as an interval. Although

the LMAD extends intervals by providing a placeholder for a predicate, we chose

for generality to introduce a gate operator #. The result of predicate#set is set

when the predicate holds true and ∅ when the predicate holds false respectively. The

gate operator is crucial to extracting control-accurate memory reference patterns,

and is easy to reason with at run time. It translates into a simple logical expression

evaluation.

6. Abstraction of Subprograms

Virtually all nontrivial programs consist of several subprograms. Analysis of pro-

gram slices spanning multiple subprograms is crucial to the applicability and efficiency

of global optimization techniques. For instance, large granularity parallelism is found

usually at the outer loop level in nests spanning multiple subprograms. The simplest

way to analyze subprograms is to inline them. However, for large programs inlining

is impractical because it may lead to code expansion exponential in the size of the

call graph. We chose not to inline subprograms. Our analysis strategy is to (1) create

a parameterized view of the memory reference pattern of each subprogram and (2)

to instantiate this view at each corresponding call site. In the example in Fig. 15(a),
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1 Call i n i t (A)
2 Do i = 1 , 10
3 B( i ) = 5∗A( i )
4 EndDo
. . .
Sub i n i t (V)
5 Do i = 1 , 10
6 V( i ) = 0
7 EndDo

use = [1 : 10] ./ Call init = [1 : 10]
def = [1 : 10]
use ∩ def = [1 : 10] ∩ [1 : 10] = [1 : 10]

1 Call i n i t (A)
2 Do i = 1 , 10
3 B( i ) = 0
4 EndDo
. . .
Sub i n i t (V)
5 Do i = 1 , 10
6 V( i ) = 0
7 EndDo

(a)

1 Call i n i t (A)
2 Do i = 1 , 10
3 B( i ) = 5∗A( i )
4 EndDo
. . .
Sub i n i t (V)
2 Read n
5 Do i = 1 , n
6 V( i ) = 0
7 EndDo

use = [1 : 10]
def = [1 : n] ./ Call init

use ∩ def = [1 : 10] ∩ ([1 : n] ./ Call init)

1 Call i n i t (A)
2 Do i = 1 , ?
3 B( i ) = 0
4 EndDo
2 Do i = ? , 10
3 B( i ) = 5∗A( i )
4 EndDo
. . .
Sub i n i t (V)
2 Read n
5 Do i = 1 , n
6 V( i ) = 0
7 EndDo

(b)

Fig. 15. USR translation (USR ./ CallSite): (a) when the result is an LMAD and (b) when

the result cannot be represented as an LMAD.

the definition site within subroutine init references memory locations V(1:10). At the

call site at line 2, this translates to definitions at locations A(1:10). The translation

from the parameterized reference set V(1:10) to the actual A(1:10) can be done at

compile time, thus the values can be propagated. In the example in Fig. 15(b), one of

the parameters of the reference pattern, n, is defined within the called subroutine and

thus cannot be translated at any call site. We introduce the translation ./ operator

to postpone the process of computing the parameterized reference set at the call site.

This process can then be performed at run time, in the presence of the actual value of

n, using either the inspector/executor or speculative execution run time optimization

models.
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Σ = {∩,∪,−, (, ), #,⊗∪,⊗∩, ./,
LMADs, Gate, Recurrence, CallSite}

N = {USR}, S = USR

P = {USR→ LMADs|(USR)
USR→ USR ∩ USR

USR→ USR ∪ USR

USR→ USR− USR

USR→ Gate#USR

USR→ ⊗∪RecurrenceUSR

USR→ ⊗∩RecurrenceUSR

USR→ USR ./ CallSite}

Fig. 16. USR formal definition. ∩, ∪, − are elementary set operations: intersection, union,

difference. Gate#USR represents reference set USR predicated by condition Gate.

⊗∪i=1,nUSR(i) represents the union of reference sets USR(i) across the iteration

space i = 1 : n. USR(formals) ./ Call Site represents the image of the generic

reference set USR(formals) instantiated at a particular call site.

7. Formal Definition

The USR is a symbolic representation of a program slice that computes a set of

memory addresses. When the address formula is an affine function of loop indices and

bounds, the USR is usually an LMAD2. When the analysis process combines LMADs

such that the result cannot be represented as an LMAD, the USR is a symbolic

expression in which the leaves are LMADs and the internal operators pinpoint the

exact points and causes of static analysis failure, usually nonlinearity. They constitute

an excellent starting point for extracting run time conditions from a USR equation

as will be shown over the following sections.

Formally, a USR is an expression in the language presented in Fig. 16. The crucial

2The LMAD has some limitations to the shape of the affine polytope it can rep-
resent. We can easily adapt our system to a different primary representation by
just replacing the LMAD data structure with a new data structure that preserves its
semantics (such as systems of linear constraints)
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feature of the USR is that it is closed with respect to all the operations required

by aggregation and classification processes that make up a large class of analysis

techniques. The USR can thus be used to implement a large class of optimization

techniques which are guaranteed to apply to any program that fits our model.

We define the evaluation of a USR as the process of finding the set of addresses

it represents, as integer values (i.e., not symbolic). Some USRs can be evaluated at

compile-time (such as the ones that are made of an LMAD containing only known

integer values). The ones that cannot be evaluated at compile-time can be embedded

in the code and evaluated at run time. However, many optimization decisions do not

require USRs to be evaluated at all, but rather seek answers to questions about the

relations between two or more USRs.

C. Hybrid Memory Reference Analysis using USRs

Memory reference analysis usually consists of computing the relation between two

or more sets of addresses, as is the case in dependence analysis or array privatization.

In other cases, such as constant propagation, we are interested in computing the exact

shape and size of a set of addresses, such as the ones that contain constant values.

There are two important benefits to using USRs. First, the analysis is scalable

due to symbolic aggregation. Second, if a compile time decision cannot be reached,

the USRs can be compared (or computed) efficiently at run time.

The following subsection presents our implementation based on USRs of the

Memory Classification Analysis [161], a general array data flow analysis technique.

We introduce then a general way to express optimization validity questions such as

“is this loop parallelizable?” as USR identities. Section D shows in great detail how

we can extract efficient run time tests to verify arbitrarily complex USR identities at
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Table II. MCA partitions for the privatization problem on array A in Fig. 11(a).

Lines RO WF RW

3 ∅ {i} ∅
2-4 ∅ [1 : 10] ∅

6 ∅ ∅ {i}
5-7 ∅ ∅ [1 : 10]

2-7 ∅ [1 : 10] ∅

run time, thus enabling a large class of low cost dynamic optimization techniques.

1. Memory Classification Analysis

Memory Classification Analysis (MCA), presented in [161], consists of partition-

ing the memory locations referenced within a given program slice into ReadOnly

(RO), WriteFirst (WF) and ReadWrite (RW). RO locations are read but never writ-

ten, WF are first written then possibly read and/or written, and RW are first read,

then written – with possibly other read and write operations in between or afterwards.

This classification helps express data flow and data dependence relations across arbi-

trarily large program slices in a scalable way, as long as the underlying representation

is scalable.

Consider the privatization problem presented in Fig. 11(a). A naive dependence

analysis would report possible flow dependences at statement 6 across iterations of

the outer loop. However, we can see that the read at line 6 is covered by the write

at line 3 within the same iteration of the outer loop, thus it cannot possibly cause

cross-iteration dependences after privatizing array A. However, in general it is not

easy to decide whether privatization can eliminate dependences. MCA makes it easy

to solve the array privatization problem. Table II presents the MCA partitions at

various levels for the code in Fig. 11(a). The last row shows that, at the outer loop
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1 A( 1 ) = . . .
2 A( 2 ) = . . .
3 A( i ) = A( j )

Lines RO WF RW

1 ∅ {1} ∅
2 ∅ {2} ∅

1-2 ∅ [1 : 2] ∅
3 {j} − {i} {i} − {j} {i} ∩ {j}

1-3 {j} − ([1 : 2] ∪ {i}) [1 : 2] ∪ ({i} − {j}) ({i} ∩ {j})− [1 : 2]

(a) (b)

Fig. 17. Classification of references in straight line code. (a) Sample code. (b) MCA

partitions.

body level, all memory locations referenced are first written to. In other words, all

reads are contained to locations defined within the same iteration of the outer loop,

thus cannot cause cross iteration dependences after privatization.

MCA partitions can be used to solve a variety of optimization problems, from

dependence analysis to checkpoint size reduction. Additionally, other problems can

be solved using memory reference aggregation and classification processes similar to

MCA. The remainder of this section presents our implementation of MCA in which

the RO, WF and RW sets are represented as USRs.

At a high level, MCA can be seen as an abstract interpretation of the program.

It consists of a bottom-up traversal of the CDG of each program, and of the Call

Graph at the interprocedural level. At each point, the RO, WF and RW sets are

computed based on the previously computed partitions of the statements below in

the CDG/Call Graph. For instance, in Table II, the classification across lines 2-4 is

based on the classification at line 3.

a. Classification of References in Straight Line Code

Consider the example in Fig. 17. The effect on memory of the statement at

line 1 is the partition (RO, WF, RW) shown on the second row. The RO and RW

sets are empty, and the WF set consists of a single element, address 1 (addresses are
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Algorithm McaSuccess iveBlocks
Input : (WF1, RO1, RW1) , (WF2, RO2, RW2)
Output : (WF, RO, RW )
WF = WF1 ∪ (WF2 − (RO1 ∪RW1))
RO = (RO1 − (WF2 ∪RW2)) ∪ (RO2 − (WF1 ∪RW1))
RW = RW1 ∪ (RW2 −WF1) ∪ (RO1 ∩WF2)

Fig. 18. MCA algorithm for successive statements.

kept relative to the beginning of the array). After computing the effect of statement

1ant that of statement 2, the analysis merges them into a single (RO, WF, RW)

partition. After analyzing statement 3, its effect is merged to that of the block made

of statements 1 and 2.

Fig. 18 presents the formulas that merge the MCA partitions corresponding to

two consecutive blocks. In order to compute the WF component across both blocks,

we need to unite the WF1 of the first block (because they will certainly be WF across

both blocks) with the part of WF2 (second block) that was not read in the first block

(RO1 ∪ RW1). Because the values of i and j are not known, the results cannot be

expressed as LMADs. The operations that could not be performed are represented

by USR operators ∪, ∩ and −.

Formally, a block is a contiguous sequences of Control Dependence Graph sib-

lings. An element in a block can be a single statement such as an assignment, as well

as a loop, an If-Then-Else structure or a subprogram call.

b. Classification of References in Conditional Blocks

Consider the example in Fig. 19. We can see that location A(2) gets initialized

regardless of the value of x. Also, the use of A(1) at line 7 is always covered by its

definition at line 2. This kind of information can be used to validate transformations

such as renaming or to verify program correctness (ensure that A(1) is not used
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1 I f ( x<0)
2 A( 1 ) = . . .
3 Else
4 A( 2 ) = . . .
5 EndIf
6 I f ( x<0)
7 A(2) = 2∗A(1)
8 EndIf

Lines RO WF RW

2 ∅ {1} ∅
4 ∅ {2} ∅

1-5 ∅ ((x < 0)#{1}) ∪ ((x ≥ 0)#{2}) ∅
7 {1} {2} ∅

6-8 (x < 0)#{1} (x < 0)#{2} ∅
1-8 ∅ ((x < 0)#{1}) ∪ {2} ∅

(a) (b)

Fig. 19. Classification of references in conditional blocks. (a) Sample code. (b) MCA

partitions.

Algorithm McaCondit ionalBlocks
Input : condition , (WF1, RO1, RW1) , (WF2, RO2, RW2)
Output : (WF, RO, RW )
RO = (condition#RO1) ∪ (¬condition#RO2)
WF = (condition#WF1) ∪ (¬condition#WF2)
RW = (condition#RW1) ∪ (¬condition#RW2)

Fig. 20. MCA algorithm for mutually exclusive conditional blocks.

without being defined). Let us see how this information is extracted automatically

by MCA.

In order to classify references across the If-Then-Else structure at lines 1-5, the

analysis first classifies individual statements 2 and 4. It then applies the classification

formulas shown in Fig. 20 to produce the values shown on the row labeled 1-5 in

the table in Fig. 19(b). A similar process produces the classification across lines 6-8.

The overall partition for lines 1-8 is produced using the algorithm presented in the

previous section (Fig. 18).

c. Classification of References in Loops

The example in Fig. 21 shows the MCA process for two arrays across the iteration

space of a loop. The results must be the same as if the loop were fully unrolled and
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1 Do i =1 ,10
2 A( i +1) = 2∗A( i )
3 B( i ) = 2∗B( i +1)
4 EndDo

Lines for A RO WF RW

2 {i} {i + 1} ∅
1-4 {1} [2 : 11] ∅

Lines for B RO WF RW

3 {i + 1} {i} ∅
1-4 {11} {1} [2 : 10]

(a) (b)

Fig. 21. Classification of references in loops. (a) Sample code. (b) MCA partitions.

Algorithm McaLoopBlock
Input : (j = 1, n) , (WFj , ROj , RWj)
Output : (WF, RO, RW )

WF = ⊗∪

j=1,n

[

WFj −⊗∪

k=1,j−1
(ROk ∪RWk)

]

RO = (⊗∪

j=1,nROj)−
[

⊗∪

j=1,n(WFj ∪RWj)
]

RW =
[

⊗∪

j=1,n
(ROj ∪RWj)

]

− (WF ∪RO)

Algorithm FastMcaLoopBlock
Input : (j = 1, n) , (WFj , ROj , RWj)
Output : (WF, RO, RW )
WF = ⊗∪

j=1,n
WFj

RO = ⊗∪

j=1,nROj

RW = ⊗∪

j=1,n
RWj

dirty = WF ∩RO

RW = RW ∪ dirty

RO = RO − dirty

WF = WF − dirty

(a) (b)

Fig. 22. MCA algorithm for loops. (a) accurate but possibly slower, (b) approximative

but faster.

we applied the rules for straight line code. The actual MCA partition computation

shown in Fig.22 does not rely on unrolling. It is based on abstract interpretation of

USRs across loops, i.e. using the ⊗∪ operator.

The formula for computing WF in Fig.22(a) appears to have quadratic complexity

(j = 1, n and k = 1, j − 1). This would imply that its run time evaluation would be

costly. However, in many cases run time USR evaluation is not needed, and even when

it is needed it can often be done in linear time similar to a partial sum computation.

The algorithm in Fig.22(b) produces simpler USRs but does not represent accurately

the order between writes and reads in different iterations of the loop. The conservative
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1 Do i =1 ,1000
2 x1 = 1
3 Do j =1,2

x2 = φ(x1, x5)
4 I f (x2=1)
5 Do k=1,10
6 A(k ) = 0
7 Enddo
8 x3=0
9 Else

10 Do k=1,10
11 . . . = A(k )
12 Enddo
13 x4=1
14 EndIf

x5 = φ(x3, x4)
15 EndDo
16 EndDo

Across l i n e s 4−14:
ROj = (x2 6= 1)#[1 : 10]
WFj = (x2 = 1)#[1 : 10]
RWj = ∅

(a)

WF = ⊗∪

j=1,2

[

WFj −⊗∪

k=1,j−1
(ROk ∪RWk)

]

=
[

WF1 −⊗∪

k=1,0
(ROk ∪RWk)

]

∪
[

WF2 −⊗∪

k=1,1
(ROk ∪RWk)

]

= ([1 : 10]− ∅) ∪ (∅ − ∅)
= [1 : 10]

RO = (⊗∪

j=1,2
ROj)−

[

⊗∪

j=1,2
(WFj ∪RWj)

]

= (RO1 ∪RO2)− (WF1 ∪WF2 ∪RW1 ∪RW2)
= (∅ ∪ [1 : 10])− ([1 : 10] ∪ ∅ ∪ ∅ ∪ ∅)
= ∅

RW =
[

⊗∪

j=1,2(ROj ∪RWj)
]

− (WF ∪RO)

=
[

⊗∪

j=1,2
(ROj ∪ ∅)

]

− (WF ∪RO)

= (RO1 ∪RO2)− (WF ∪RO)
= (∅ ∪ [1 : 10])− ([1 : 10] ∪ ∅)
= ∅

(b)

RW = (⊗∪

j=1,2
RWj) ∪ (RO ∩WF )

= ∅ ∪
[

(⊗∪

j=1,2ROj) ∩ (⊗∪

j=1,2WFj)
]

= (RO1 ∪RO2) ∩ (WF1 ∪WF2)
= (∅ ∪ [1 : 10]) ∩ ([1 : 10] ∪ ∅)
= [1 : 10] ∩ [1 : 10]
= [1 : 10]

(c)

Fig. 23. Case study to compare the algorithms in Fig.22. (a) Sample code showing

the Static Single Assignment numbers and φ functions for variable x. RW

for the body of the outer loop using (b) the accurate algorithm and (c) the

approximating algorithm.

direction is to classify read-write overlaps as RW although it could be possible that

the actual sequence was write, read.

The difference between the accurate and approximative algorithms presented

in Fig.22 is illustrated in Fig.23. The MCA partition for the loop at lines 3-15

produced by the accurate algorithm shows that the outermost loop at line 1 can be

parallelized after privatizing array A. There can exist no upwards exposed reads since

RO = RW = ∅. Using the approximating algorithm, RW = [1 : 10], which would

imply the existence of flow dependences across iterations of the outermost loop, which

in turn would prevent it from being executed in parallel. We have used the accurate
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1 Do j =1 ,1000
2 Call i n i t (A, j )
3 Do i =1 ,10
4 R( i , j ) = R( i , j ) + A( i )
5 EndDo
6 EndDo

. . .
7 Sub i n i t (V, x )
8 Do i =1 ,10
9 V( i ) = i ∗x

10 Enddo

(a)

init:V RO WF RW

9 ∅ {i} ∅
7-10 ∅ [1 : 10] ∅

A RO WF RW

2 ∅ [1 : 10] ∅
4 {i} ∅ ∅

3-5 [1 : 10] ∅ ∅
2-5 ∅ [1 : 10] ∅

(b)

Fig. 24. Classification of references at subprogram call sites. (a) Sample code. (b)

MCA partitions.

Algorithm McaSubprogramBlock
Input : Call subpgm(actuals) , (WFformals, ROformals, RWformals)
Output : (WF, RO, RW )
RO = ROformals ./ Call subpgm(actuals)
WF = WFformals ./ Call subpgm(actuals)
RW = RWformals ./ Call subpgm(actuals)

Fig. 25. MCA algorithm for a subprogram call site.

algorithm in all our experiments, although there were just a few cases where it was

really needed. When compilation speed is very important, the simple approximating

version could be used instead.

d. Interprocedural Classification of References

The classification of memory locations referenced by a called subprogram relies on

the parameterized classification of the callee. We use the USR translation operation

./ to create an actual instance of the MCA partition of the callee. The symbolic name

translation is based on our interprocedural extension to Static Single Assignment. In

the example in Fig. 24, V → A. The translation operation (Fig.25) replaces formal

arguments and global variables in the caller with their corresponding actual values at
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Algorighm BuildDependenceSet
Input : ( j =1,n ) , (ROj , WFj , RWj)
DS = (⊗∪

j=1,n
WFj) ∩ (⊗∪

j=1,n
ROj)

DS = DS ∪
[

(⊗∪

j=1,n
WFj) ∩ (⊗∪

j=1,n
ROj)

]

DS = DS ∪
[

(⊗∪

j=1,n
WFj) ∩ (⊗∪

j=1,n
RWj)

]

DS = DS ∪
[

⊗∪

j=1,n
RWj ∩ (⊗∪

k=1,j−1
RWk)

]

DS = DS ∪
[

(⊗∪

j=1,nWFj ∩ (⊗∪

k=1,j−1
WFk))

]

Fig. 26. Algorithm to compute the set of memory locations that carry cross iteration

dependences (expressed as a USR).

the call site.

2. Dependence Testing as Verification of USR Identities

Data dependence is the foundation a number of important transformations nec-

essary in order to use parallel hardware efficiently, such as thread level parallelization,

SIMD-ization, vectorization or instruction level parallelization.

Most classic data dependence analysis techniques consider each pair of statements

that may access the same array and prove that different iterations of a loop will access

different array elements respectively. This is sufficient to prove that there is no flow

of information among iterations, thus they can be executed in parallel without any

synchronization.

Rather than looking at pairs of statements, we look at memory locations that

correspond to data dependences. We compute the set of all the memory locations

referenced by two statements executed in different iterations of a loop, and in which

at least one is write. Fig. 26 shows how we compute this Dependence Set, based on

the results of MCA across the loop body. DS is expressed as a USR.

Proving that there are no cross-iteration dependences reduces to proving that

DS = ∅. We have reduced the data dependence problem to proving that a USR is
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empty. The following section presents in detail how verifying USR identities can be

done efficiently in a hybrid (static and dynamic) way.

D. Hybrid Dependence Analysis

This section presents a technique to prove USR identities such as Dependence Set =

∅ at compile time and run time. Although proving such identities applies to several

analysis techniques, we will restrict the presentation to data dependence analysis.

Hybrid Dependence Analysis represents the process of solving dependence

equations efficiently by using a mix of compile time and run time techniques. We

represent dependence equations as DS = ∅, where DS is the set of all memory lo-

cations that carry dependences. The compile time part of HDA starts by trying to

prove statically that the dependence set is empty. If it succeeds, the corresponding

loop will be run in parallel without using any run time tests. If it proves statically

that the dependence set is not empty, the loop will be run sequentially. When a de-

cision cannot be made at compile time, HDA extracts statically simple independence

conditions that are (1) sufficient to prove the loop parallel and (2) easy to evaluate

at run time. Its run time analysis consists of evaluating the independence condition

and selecting the parallel code version when it holds true.

In Fig. 8 we presented this process intuitively for a simple case. In this section

we will describe how we automate the process of extracting simple independence

conditions from general dependence equations. We will first present formally the data

structures involved in this transformation and then follow with a detailed presentation

of the algorithms. We use an existing USR representation [3] for sets of references,

which has a tree structure as shown in Fig. 8(b). We will introduce a representation

named PDAG to represent independence conditions. They can be seen as symbolic
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Σ = {∧,∨,¬, (, ),⊗∧,⊗∨, ./, LogicalExpression, Recurrence,

Call Site, Library routine, Reference based test}
N = {PDAG}, S = PDAG

P = {PDAG→ LogicalExpression|(PDAG)
PDAG→ PDAG ∧ PDAG

PDAG→ PDAG ∨ PDAG

PDAG→ ¬PDAG

PDAG→ ⊗∧RecurrencePDAG

PDAG→ ⊗∨RecurrencePDAG

PDAG→ PDAG ./ Call Site

PDAG→ Library routine

PDAG→ Reference based test}

Fig. 27. PDAG formal definition. ∧, ∨, ¬ are the elementary logical operators and, or, not.

⊗∧i=1,nPDAG(i) holds true if and only if each of PDAG(i) holds true, i = 1, n.

PDAG(formals) ./ Call Site represents the instantiation of a generic PDAG at a

particular call site. A specialized library routine may be employed to produce the

value of the predicate. If a test based on simple comparisons and logical operations

cannot be found, we fall back to a reference based test.

expressions that will produce at run time the boolean value of a dependence test.

1. Symbolic Representation: the PDAG

The Predicate Directed Acyclic Graph (PDAG) is an analytical, symbolic repre-

sentation of a boolean expression. PDAGs are extracted automatically from depen-

dence equations that cannot be solved statically DS = ∅, where DS is represented

as a USR. PDAGs are the boundary between the compile time and run time analysis.

They are the final result of static analysis, conditions used to predicate the validity

of dynamic optimizations. They are inserted in the generated code and evaluated at

run time. Their dynamic values are used to choose between sequential and parallel

code versions. In its simplest form, the PDAG is a logical expression such as x < 0 in

Fig. 1(c). At the other extreme, it can be an arbitrary program slice that produces
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a boolean value. PDAGs are represented as trees having logical expressions as leaves

and operators as internal nodes as in Fig. 8(b-e). The PDAG tree structure generally

mirrors the tree structure of the dependence set as a USR, which in turn generally

mirrors the block structure of the program. This makes PDAGs relatively easy to

associate with sections in the original program, which makes it easier for compiler

writers to program and understand the analysis process.

PDAGs are expressive enough to represent any possible dependence question,

and simple enough to be quickly evaluated dynamically. The grammar in Fig. 27

defines PDAGs formally. They rely mostly on simple, logical operations and have

a direct mapping to executable code. In addition to classic ∧, ∨, and ¬ operators,

PDAGs can also express conjunction (⊗∧) and disjunction (⊗∨) of predicates over

iteration spaces. Library routines such as monotonicity checks may be employed to

express particular problems more efficiently, and reference based tests represent the

fallback when cheaper conditions cannot be extracted.

2. Symbolic Analysis Algorithms

a. Syntax Directed Predicate Extraction

After resolving all statically analyzable dependence questions we are left with a

Dependence Set (DS), represented as a USR, for which we could not give a definitive

answer. For the resolution of this problem we have formulated the algorithm Solve

shown in Fig. 28. This algorithm extracts a set of conditions, represented as a PDAG,

which, when evaluated dynamically, returns true if and only if the dependence set is

empty.

Algorithm Solve extracts the PDAG from the dependence set by recursively de-

scending its USR tree and decomposing the nodes using elementary set algebra iden-



55

P = Solve Included

Syntax Directed (A,D)


P

P = P v Solve Included

Approximations (A, D)


Necessary

and Sufficient


Only

Sufficient


P = Solve Disjoint

Syntax Directed (A,D)


P

P = P v Solve Disjoint

Approximations (A, D)


Necessary

and Sufficient


Only

Sufficient


P = Solve Syntax Directed (D)


Input D

as USR


P


Output P

as PDAG


P = P v Solve

Reference Based (D)


Necessary

and Sufficient


Only

Sufficient


D
Set Intersection
 Set Difference


Other


Fig. 28. Algorithm Solve: Extraction of a sufficient run time test as a PDAG from a

dependence equation D = ∅. Details on the implementation of the subalgorithms

are presented in the Appendix. We accumulate PDAGs in increasing order of

complexity when the partial solutions are sufficient but not necessary, using the

logical or operator ∨.

tity transformations (Fig. 29). For instance, in order to prove a union of two terms

empty, it is necessary and sufficient to prove both terms empty. In other words,

A ∪B = ∅ ⇔ A = ∅ ∧B = ∅.

Our current implementation is optimistic, i.e., it extracts sufficient independence

conditions. A similar approach can be used to extract pessimistic dependence con-

ditions. Inexpensive pessimistic conditions could be used at run time to flag the

sequential loops quickly and thus avoid the overhead of more expensive dependence

tests. The algorithm maintains throughout the recursive descent process information
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Algorithm Solve Syntax Directed
Input: D as USR
Output: P as PDAG s.t. P ⇒ A = ∅

Case D of:
LMADs: P = HasEmptyDimension(LMADs)
A ∪B: P = Solve(A = ∅) ∧ Solve(B = ∅)
q#A: P = q ∨ Solve(A = ∅)
⊗∪

i=1,n(Ai): P = ⊗∧

i=1,nSolve(Ai)

A ./ Call Site: P = Solve(A = ∅) ./ Call Site

Algorithm Solve Disjoint Syntax Directed
Input: A, D as USRs
Output: P as PDAG s.t. P ⇒ (A ∩D = ∅)

Case D of:
B ∪ C: P = Solve(A ∩B = ∅) ∧ Solve(A ∩ C = ∅)
q#B: P = q ∨ Solve(A ∩B = ∅)
⊗∪

i=1,n(Bi): P = ⊗∧

i=1,nSolve(A ∩Bi)

Case A of:
B ∪ C: P = Solve(B ∩D = ∅) ∧ Solve(C ∩D = ∅)
q#B: P = q ∨ Solve(B ∩D = ∅)
⊗∪

i=1,n(Bi): P = ⊗∧

i=1,nSolve(Bi ∩D)

Algorithm Solve Included Syntax Directed
Input: A, D as USRs
Output: P as PDAG s.t. P ⇒ (A−D = ∅)

Case D of:
B ∪ C: P = Solve(A−B = ∅) ∨ Solve(A− C = ∅)
B ∩ C: P = Solve(A−B = ∅) ∧ Solve(A− C = ∅)
B − C: P = Solve(A−B = ∅) ∧ Solve(A ∩ C = ∅)
q#B: P = (q,true) ∧ Solve(A−B = ∅)

Case A of:
B ∪ C: P = Solve(B −D = ∅) ∧ Solve(C −D = ∅)
B ∩ C: P = Solve(B −D = ∅) ∨ Solve(C −D = ∅)
B − C: P = Solve(B −D = ∅)
q#B: P = (q,false) ∨ Solve(B −D = ∅)

Fig. 29. Algorithms to extract a PDAG from a USR identity based on USR syntax.

on whether the current solution is equivalent to the original independence problem.

When the solution obtained by the recursive descent approach is sufficient but not

necessary, more specialized and expensive reference based tests [129, 3] can be gener-

ated, thus avoiding a conservative decision (i.e., not parallel). The dynamic evaluation

of these tests will then ensure an exact answer but will cost a higher run-time over-

head, proportional to the dynamic reference count of the Dependence Set we started

form. Fig. 30 presents such a case where a simple independence condition cannot be

extracted.
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1 Read ∗ , ( p ( j ) , j =1 ,100) ,
( q ( j ) , j =1 ,100)

2 Do j = 1 , 100
3 A(p( j ) ) = A(q ( j ) )
4 EndDo

U


p(j)
 q(j)


Empty


X
U


j=1,100
 j=1,100


X
U


Fig. 30. A Hybrid Analysis extreme: in general, no test can solve this problem faster than

the reference-by-reference LRPD test.

Unfortunately, the recursive descent approach does not work for set intersections

and differences as well as for unions. An intersection could be empty even if none of

its terms are (e.g., a set of odd numbers vs. a set of even ones). Algorithms Solve

Disjoint Syntax Directed and Solve Included Syntax Directed continue the recursive

descent according to the syntax of the terms of intersections and differences. They rely

on dividing more complex equations such as A ∩ (B ∪ C) = ∅ into simpler equations

such as A∩B = ∅ and A∩C = ∅, based on elementary set identities. However, there

are USR configurations that cannot be broken up, such as A ∩B ∩ C = ∅.

When the recursive descent described in algorithm Solve reaches such a point, it

resorts to approximation to extract conditions that, in most cases, are sufficient but

not necessary to prove independence.

b. Extracting PDAGs from USR Approximations

In the example in Fig. 31, array W could be proved privatizable by showing that

the read at line 9 is covered by the write at line 5. However, the shape of the USR

that describes the write pattern is outside any of the cases in the Solve algorithms

presented above. We will show that even when two USRs cannot be compared directly,

a meaningful PDAG can often be extracted based on comparisons between predicated

approximations of the USRs.
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(a)

1 Read ∗ , x ( i , j ) ,
j =1,n , i =1 , l en ( j )

2 Do j = 1 , n
3 Do i = 1 , l en ( j )
4 I f ( x ( i , j ) < 0)
5 W( i ) = . . .
6 EndIf
7 EndDo
8 Do i = 1 , l en ( j )
9 . . . = W( i )

10 EndDo
11 EndDo

-


Empty?
(b)
 (c)


Write
Read


X
U


1:len(j)


x(i,j) < 0


i=1,len(j)


i


#


X
U


j=1,n


Exposed

Read


v
X


j=1,n
Solve Included (Read, Write)


Write  =         = 1:len(j), cond
write
=


i=1,len(j)
i


X
U


(d)


v
X


i=1,len(j)
x(i,j) < 0


Read   = 1:len(j), cond
read
 = .TRUE.


Fig. 31. Extraction of an independence predicate using approximation.

Several memory reference analysis techniques have proposed the use of approxi-

mations of reference sets in the presence of subscript arrays or arrays of conditionals

[162, 161, 3]. These techniques generally approximate a memory reference set P that

does not fit a particular model with a pair (bP c, dP e) such that bP c ⊆ P ⊆ dP e

and bP c and dP e fit their model. We apply this to our framework by approximating

complex USRs with predicated LMADs.

Returning to the example in Fig. 31, when trying to prove array W privatizable

we cannot compare the USRs of the read and write descriptors directly. Instead, we

compute dreade and bwritec as LMADs and record the assumptions made during the

approximation process. The problem reduces to proving dreade ⊆ bwritec. Since

read ⊆ dreade and bwritec ⊆ write, this condition is sufficient to prove that read ⊆

write. In our example, dreade = [1 : len(j)], and bwritec = [1 : len(j)], when

⊗∧i=1,len(j)x(i, j) < 0. The approximation process is invoked by algorithms Solve

Disjoint Approximations and Solve Included Approximations shown in Fig. 32.

The approximation algorithm (not shown) is based on a recursive descent on the

USR structure. When looking for underestimates, the algorithm makes choices that

maximize the size of the result, and when looking for overestimates, it minimizes. In

the example in Fig. 31, the underestimate of write is maximized optimistically and

ends up covering the overestimate of the read. In general, this aggressive approach
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Algorithm Solve Disjoint Approximations
Input: A, D as USRs
Output: P as PDAG s.t. P ⇒ (A ∩D = ∅)

(condA, dAe) = a conditional LMAD overestimate of A
(condD, dDe) = a conditional LMAD overestimate of D
P = condA ∧ condD ∧ SolveDisjointLMADs(dAe, dDe)

Algorithm Solve Included Approximations
Input: A, D as USRs
Output: P as PDAG s.t. P ⇒ (A−D = ∅)

(condA, dAe) = a conditional LMAD overestimate of A
(condD, bDc) = a conditional LMAD underestimate of D
P = P ∨ (condA ∧ condD ∧ SolveIncludedLMADs(dAe, bDc))

Fig. 32. Algorithms to extract a PDAG from a USR identity based on USR approximation.

increases the chances of extracting nontrivial conditions.

c. Predicate Extraction from Finite Valued USRs

USRs are symbolic sets that depend on the value of program variables. When a

variable may take a known, limited number of values (possibly symbolic) we can par-

tially evaluate the USR for all these possible values. Then the USR can be represented

as a union of all its specialized versions, each guarded by its assumption. Consider

USR d = {f(MOD(i, 2))}. Then d = (MOD(i, 2) = 0)#{f(0)} ∪ (MOD(i, 2) =

1)#{f(1)}. based on the fact that intrinsic MOD(∗, 2) may take only one of two

values, 0 or 1. Assuming that f(j) = j/2, the USR reduces to {0} at compile-time.

Similarly, a set difference {j} − {k} can be expressed as (j.NE.k)#{j}, which does

not solve the problem at compile-time, but leaves less to be done at run time.

When the number of values taken by an input sensitivity variable is not known

at compile-time, we can still enumerate a small set of important cases followed by a

fallback solution.

An extreme case is when complex subscripts are created within the program,

resulting in nontrivial USRs with empty input sensitivity sets. In such a case we
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generate executable code from PDAGs and run it at compile-time.

d. Extracting PDAGs from LMAD Equations

When the recursive descent on USRs reaches leaves, we have to extract conditions

from equations involving linear intervals. Although in general these are hard problems

even for linear memory reference descriptors like the LMAD [161, 159], most practical

cases are tractable. We have modified the multi-dimensional LMAD intersection and

subtraction algorithms presented in [161] to return sufficient conditions under which

their result is empty. For instance, the problem of proving two 1-dimensional LMADs

disjoint, is equivalent to a bounds check and a GCD test.

3. Testing Monotonicity and Disjoint Intervals

1 Do j = 1 , n
2 Do i = 1 , l en ( j )
3 A( ptr ( j )+ i ) = . . .
4 EndDo
5 EndDo

Fig. 33. Example of a case where a sorting based test is more accurate than applying the

Solve algorithm.

Consider the dependence problem on array A in the example in Fig 33. A direct

application of the Solve algorithm would result in a test of n∗(n−1)/2 bound checks,

one for each pair ([ptr(j)+1:ptr(j)+len(j)], [ptr(k)+1:ptr(k)+len(k)]), where j = 1 : n

and k = 1, j − 1. However, a less expensive solution exists for this case: We can

verify, dynamically, in O(n log(n)) time, that the sequence dDie = [loweri : upperi]

is non-overlapping by sorting the pairs loweri : upperi (based on loweri) and verifying

that upperi < loweri+1. A quicker (O(n)) and sufficient but not necessary version of

the test verifies whether the intervals already form a monotonic sequence.
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It is important to note that n may be much smaller than the actual number of

dynamic memory references since it represents the number of partially aggregated

intervals, rather than individual references. We extended the applicability of this test

to multi-dimensional LMADs by defining order in multi-dimensional integer spaces.

Sorting-based tests are generated whenever the per-iteration reference set can be

bounded by a symbolic interval.

4. Reference Pattern Library: Extensible Compiler

Recognizing and taking advantage of particular patterns such as sortable in-

tervals will always provide better solutions to some classes of problems, since the

programmer’s level of abstraction is often above the programming language seman-

tics. Pattern recognition presents two main challenges. First, a pattern must be

general enough so that two semantically equivalent patterns will be recognized as

such even when they are textually different. Second, the pattern recognition must be

quick in order to be applicable (pattern recognition in programs is often associated

to subgraph isomorphism).

We have created an offline XML database of memory reference patterns as USRs.

These patterns can be analyzed by programmers and can be associated specialized

library routines for a particular analysis, such as sorting-based checks for dependence

analysis. A dependence test can then be broken up into parts for which solutions are

known, and an overall solution can be composed using the general algorithm Solve.

By storing patterns as USRs, the possibility of finding a match in the library is

greatly enhanced. Aggregation and normalization bring textually different memory

reference patterns to a comparable form. We have identified several similar patterns

across different subroutines within the same program and even between completely

different programs. Semantic reference pattern matching reduces (partially) to syn-
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1 Read ∗ , n , x ,
(p( j ) , l ( j ) , ( y ( i , j ) ,
i =1, l ( j ) ) , j =1,n)

2 Do j = 1 , n
3 Call geteu (W, j )
4 Do i = 1 , l ( j )
5 A(p( j )+ i ) = W( i )+

+ 1/A(p( j )+ i )
6 EndDo
7 EndDo

. . .

. . .

8 Subroutine geteu (W, j )
9 I f ( x .EQ. 0 )

10 Do i = 1 , l ( j )
11 W( i ) = . . .
12 EndDo
13 Else
14 Do i = 1 , l ( j )
15 I f ( y ( i , j ) .GT. 0 )
16 W( i ) = . . .
17 EndIf
18 EndDo
19 EndIf

Fig. 34. Example extracted from DYFESM, loop SOLVH do20. The loop at line 2 can be

executed in parallel if and only if there are no cross-iteration dependences on arrays

W and A.

tactic pattern matching on the USR grammar, which can be implemented efficiently.

5. Fallback: Reference-based Dependence Tests

Extraction of equivalent simple conditions from dependence equations is not al-

ways possible, for instance in the example in Fig. 30. We have two generally applicable

solutions that can solve arbitrarily complex dependence equations. In case the ag-

gregation process was partially successful, we can embed the USRs in the generated

code and evaluate them at run time [3]. The run time dependence test will consist

of checking whether the result is empty. When (partial) aggregation and predicate

extraction is not possible we fall back to the LRPD test [129], which has a complexity

proportional to the dynamic memory reference count, but scales well with the number

of processors.

6. Case Study

The HDA process for the loop at line 2 in Fig. 34 is shown in Fig. 35. Block (a)

shows the dependence set resulting from the invocation of algorithm Build Dependence
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Fig. 35. PDAG extraction from the parallelization problem for the loop at line 2 in Fig. 34

(partial PDAGs are shaded). The numeric labels represent dependence equations

DS = ∅, where DS is the corresponding node. For instance, equation 2 in block

(b) has as DS the dependence set for variable W .
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Set for variables W and A (empty descriptors such as RW for W are not shown). (b)

Problem 1 is divided into subproblems 2 and 3 by applying algorithm Solve. (c)

Problem 3 is divided into subproblems 4 and 5 by applying algorithm SolveDisjoint.

Because problems 4 and 5 are sufficient but not equivalent to problem 3, algorithm

SolveDisjoint will add the fallback solution, a reference-based test on array W. (d)

Problems 3, 4 and 5 are detailed by showing the exact shape of their USRs. (e)

Algorithm Solve transforms problem 4 into the conjunction of problems 8 and 9 over

the iteration space of the loop. Algorithms Solve and SolveIncluded transform problem

5 into a disjunction of problems 10 and 11. Problem 3 is recognized as a pattern by

algorithm SolveDisjoint and is assigned a library routine solution.

In Fig 36 (f) problems 8 and 9 are transformed in simple equivalent conditions

by applying algorithm Solve recursively. Problem 10 is transformed in condition

(x.EQ.0) and problem 12. Problem 12 will then reduce to true at compile-time af-

ter it undergoes the approximation phase in algorithm SolveIncluded and is applied

algorithm SolveIncludedLMADs. Similarly, problem 11 reduces to problem 13, which

is also solved by the approximation phase in SolveIncluded followed by SolveInclud-

edLMADs. (g) The final result is shown after symbolic simplification and hoisting of

loop invariants.

It is important to note that a fully automated analysis technique of USRs and

PDAGs produced run-time tests that have a clear meaning to a programmer. The

independence conditions on W shown in the boxes in block (g) can be identified as (1)

the absolute lack of write references and (2) the absolute lack of exposed reads. The

second one is the actual behavior of the application and a common pattern observed

in several applications. This makes us believe that HA operates at the right level

of abstraction and thus manages to extract high semantics such as data dependence

from low-level program representation, similar to the way a programmer would do.
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Fig. 36. PDAG extraction from the parallelization problem for the loop at line 2 in Fig. 34

(continued from Fig. 35).

E. Other Applications of Memory Reference Analysis

1. Array Data Flow Analysis

A large class of optimization decisions depend on the compiler’s ability to deter-

mine with accuracy the characteristics of the flow of values in the program. Specifi-

cally, for a given use of a value (a variable name at a point in the program text), it

is crucial to know its exact definition site (the point in the program text where the

value was defined).



66

x = 5
x = 7
. . . = x

(a)

x1 = 5
x2 = 7
. . . = x2

(b)

A(3) = 5
A(4) = 7
. . . = A(3)

(c)

A1(3) = 5
A2(4) = 7
. . . = A2(3)

(d)

Fig. 37. (a) Scalar code, (b) scalar SSA form, (c) array code and (d) improper use of scalar

SSA form for arrays.

a. Region Array SSA

Static Single Assignment (SSA) is a program representation that presents the flow

of values explicitly. In Fig. 37(a), the compiler must perform control flow analysis

to find out which of the two values, 5 or 7, will be used in the last statement. By

numbering each static definition and matching them with the corresponding uses, the

use-def chains become explicit. In Fig. 37(b) it is clear that the value used is x2 (7)

and not x1 (5).

Unfortunately, such a simple construction cannot be built for arrays the same

way as for scalars. Fig. 37(d) shows a failed attempt to apply the same reasoning to

the code in Fig. 37(c). Based on SSA numbers, we would draw the conclusion that

the value used in the last statement is that defined by A2, which would be wrong. The

fundamental reason why we cannot extend scalar SSA form to arrays directly is that

an array definition generally does not kill all previous definitions to the same array

variable, unlike in the case of scalar variables. In Fig. 37(c), the second definition

does not kill the first one. In order to represent the flow of values stored in arrays, the

SSA representation must account for individual array elements rather than treating

the whole array as a scalar.

Element-wise Array SSA was proposed as a solution by [163]. Essentially, for

every array there is corresponding @ array, which stores, at every program point

and for every array element, the location of the corresponding reaching definition
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Do i =1,3
A1 ( i )=0

Enddo
Do i =1,3

A2 ( i +3)=1
EndDo
@A3 = MAX(@A1, @A2)

(a)

Array SSA :
@A3 = [(A1, 1), (A1, 2), (A1, 3),

(A2, 1), (A2, 2), (A2, 3)]

S imp l i f i e d ve r s i on :
@A3 = [A1, A1, A1, A2, A2, A2]

Aggregated array r e g i on s :
A3 ← A1 = [1 : 3]
A3 ← A2 = [4 : 6]

(b)

Fig. 38. (a) Sample code in Array SSA form (not all gates shown for simplicity). (b) Array

SSA forms: (top) as proposed by citeknobe.popl.98, (center) with reduced accuracy

and (bottom) using aggregated array regions.

under the form of an iteration vector. The computation of @ arrays consists of

lexicographic MAX operations on iteration vectors. Although there are methods to

reduce the number of MAX operation for certain cases, in general they cannot be

eliminated. This led to limited applicability for compile-time analysis and potentially

high overhead for derived run-time analysis, because the MAX operation must be

performed for each element.

We propose a new Region Array SSA representation. Rather than storing the

exact iteration vector of the reaching definition for each array location, we just store

the SSA name of the reaching definition. Although our representation is not as precise

as [163], that did not affect the success of our associated optimization techniques.

This simplification allowed us to employ a different representation of @ arrays as

aggregated array regions. Fig. 38 depicts the relation between element-wise Array

SSA and our Region Array SSA. Rather than storing for each array element its

reaching definition, we store, for each use-def relation such as A3 ← A1, the whole

array region on which values defined at A1 reach A3.

We use the USR [3] representation for array regions, which can represent uni-

formly arbitrarily complex regions. Moreover, when an analysis based on USRs can-
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not reach a static decision, the analysis can be continued at run time with minimal

necessary overhead. For instance, in the example in Fig. 38, let us assume that the

loop bounds were not known at compile time. In that case the MAX operation could

not be performed statically. Its run time as proposed by [163] would require O(n)

time, where n is the dimension of the array. Using Region Array SSA, the region

corresponding to A3 ← A1 can be computed at run time in O(1) time, thus indepen-

dent of the array size. Our resulting Region Array SSA representation has two main

advantages over [20]:

• We can analyze many complex patterns at compile time using symbolic array re-

gion analysis (essentially symbolic set operations), whereas the previous Array SSA

representation often fails to compute element-wise MAX operations symbolically (for

the complex cases).

•When a static optimization decision cannot be reached, we can extract significantly

less expensive run time tests based on partial aggregation of array regions.

b. Transformations Based on Data Flow Analysis

A number of important classic scalar transformations can be extended to arrays

using MCA partitions directly, or via Region Array SSA: constant propagation, global

common subexpression elimination or live variable analysis.

Additionally, array data flow information expressed using USRs can be used to

implement hybrid array privatization and to reduce the amount of memory that needs

to be copied during program checkpoints.

2. Efficient Recompilation

To be profitable, the overhead of dynamic compilation must be smaller than the

benefits it brings. This simple rule has been enforced traditionally by detecting hot
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1 Call i n i t ( ind )
2 Do i =1 , nsteps
3 Call proce s s (A, ind , i )
4 EndDo
. . .
5 Sub proce s s (A, i )
6 Do j =1 ,1000
7 A( ind ( i ) ) = A( ind ( i ) ) + f ( i , j )
8 EndDo

1 Call i n i t ( ind )
f a s t p r o c e s s = s p e c i a l i z e ( p roc e s s )

2 Do i =1 , nsteps
3 Call f a s t p r o c e s s (A, ind , i )
4 EndDo

(a) (b)

C When ind ( : ) i s a permutation
5 Sub f a s t p r o c e s s (A, ind , i )
OMP PARALLEL DO

6 Do j =1 ,1000
7 A( ind ( i ) ) = A( ind ( i ) ) + f ( i , j )
8 EndDo

C When ind ( : ) i s not a permutation
5 Sub f a s t p r o c e s s (A, ind , i )
OMP PARALLEL DO REDUCTION(+ : A)
6 Do j =1 ,1000
7 A( ind ( i ) ) = A( ind ( i ) ) + f ( i , j )
8 EndDo

(c) (d)

Fig. 39. Dynamic optimization through recompilation after specialization. (a) Sequential

code. (b) Dynamic compilation through specialization, (c) when ind(:) is found to

be a permutation, and (d) when ind(:) is found to contain repeating values.

spots, small program slices that are executed often. Hot spots are inexpensive to

optimize because they are relatively small and their optimization has a great impact

because they represent an important part of the total execution time.

However, hot spot based dynamic compilation was successful mostly for just-

in-time compilation of otherwise interpreted programs. Since the compiled version is

always faster than the interpreted one, the success is almost guaranteed. However, we

consider here the problem of recompiling for optimization through specialization even

when the original version was also compiled. In this case, hot spot based compilation

cannot guarantee success anymore because the program slices selected as hot spots

may or may not benefit at all from recompilation. Specialization is beneficial only

when the slice input set has a positive impact on the optimization opportunities.

In addition to recognizing hot spots, it is crucial to recognize what program slices

can be optimized and how often they need to be recompiled. We have shown how to
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express several optimization problems as USR identities. We have also shown how

to extract PDAGs from these identities. The PDAGs represent the input sensitivity

of the optimization. They give the exact liveness range of a specialization. Consider

the example in Fig. 39. If we knew that subscript array ind contained non-repeating

values, we could classify the loop at lines 6-8 as independent and it could be executed

in parallel. Otherwise, it would have to be executed as a parallel reduction, which is

not as fast as a fully parallel loop. We can extract a PDAG that verifies the necessary

properties of array ind exactly after its definition point, i.e. subroutine init. PDAG

evaluation happens as soon as their input values are available. This way, we recompile

only once, before the loop at line 2, rather than for every iteration of the loop at line 2.

This particular example could be solved efficiently without recompilation by creating

at compile time the two optimized versions and just selecting the right one at run

time. However, the number of necessary versions is in general exponential in the

number of dynamic decisions, which could make this approach impractical.

3. Program Verification and Symbolic Debugging

USRs provide a high level view of the memory reference pattern of a program.

This property can be exploited by a high level debugger such as a data race checker

for multithreaded program. For instance, a programmer may parallelize a loop using

an OpenMP assertion, but may be unsure of the lack of data dependences, or whether

an array should/could be privatized. All necessary race violations could be computed

at compile- and run time and presented graphically using USRs.

The USRs could also be used to compute and display other memory related

verification formulas such as uses of undefined array sections, at both compile- and

run time.
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F. Related Work

Data Dependence Analysis. Most of the previous data dependence work was

based on the representation of memory reference sets using linear constraints. De-

pendence questions were reduced to proving that a system of linear constraints had

no integer-valued solution [43, 49, 164, 45, 50, 165, 159, 15]. In all these systems, the

symbolic expressions must be linear, although some particular extensions can han-

dle certain classes of nonlinear references. They cannot generally be used to analyze

(1) memory references through index arrays, (2) memory references controlled by ar-

rays of conditionals and (3) memory references indexed or controlled by data values

computed within the code section under analysis.

Pattern recognition and index property analysis were proposed as solutions for

nonlinear reference patterns [74]. Its applicability is limited to the cases studied.

Symbolic value range [54] and monotonicity analysis [39, 91, 74, 166, 57, 167] also

targeted some classes of nonlinear reference patterns. They are generally not inte-

grated well with other techniques and thus lack generality. For instance, the Range

Test [54] compares the value ranges of two reference sets, but does not deal with

strided patterns directly. We use value ranges and monotonicity information [54, 167]

in a more general way, not only to compare offsets, but also strides and spans, and

to prove predicate implication, redundancy or contradiction.

Run time data dependence tests were proposed to solve dependence problems

that did not have compile-time solutions [141, 168, 143, 129, 169]. Their overhead

may sometimes void the optimization benefits they bring. Our approach reduces the

overhead by performing much of the analysis symbolically, at compile-time.

Hybrid Dependence Analysis and Parallelization. One of the first forms of

hybrid analysis was conditional vectorization [170]. It is an effective technique, but
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limited in scope to small loops. [148] presents a powerful interprocedural partial

redundancy elimination analysis and its application to the detection of array data

flow relations on particular control flow paths, which in turn leads to aggressively

optimized placement of communication primitives, which is similar conceptually to

hoisting USR computation to the data flow locations where their input variables

become available [3]. HDA pushes symbolic analysis further and extracts PDAGs as

cascades of conditions that are later hoisted in a similar fashion, which leads to even

lighter run time tests. We cannot make a quantitative comparison with [148] because

we targeted different classes of programs.

[31, 171, 32] synthesize simple conditions from data dependence and data flow

equations on arrays. Their applicability is limited to checks on scalars such as loop

bounds or scalar control flow values so they cannot extract predicates for general

reference patterns through indirection arrays or arrays of conditionals. Their approach

could be applied to solve cases such as the one in Fig. 1, but would fail to extract run

time tests for cases such as the ones in Figs. 34 and 33. In such cases they choose

to take conservative decisions. A similar approach of comparable symbolic power

is presented by [161]. Safety guards are inserted to predicate optimistic results of

statically undecidable LMAD operations. [139] showed how sufficient predicates can

be extracted by simplifying Presburger formulas with uninterpreted function symbols.

Although our implementations are different, they are fundamentally very similar.

Unfortunately they did not apply it to real applications so we cannot compare the

quality of the generated run time tests, which is what makes the difference in dynamic

optimization methods. [3] uses USRs to express dependence tests but does not provide

a way to extract simple run time tests. They propose the evaluation of USRs at run

time followed by comparison to the empty set. However, in general a simple Yes/No

answer is sufficient. The evaluation of USRs is generally not needed and it often results
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in unnecessary run time overhead. For instance, the best speedup presented by [3] on

MDG on 4 processors is 2.1, while our best is 3.7, albeit on different machines.

[172] focuses on reducing the overhead of reference-by-reference run time tests by

grouping together reference sets that have the same dependence patterns. Only one

representative test is performed, resulting in lower overhead. However, only accesses

that have identical control and very similar indexing (e.g., differ by constant offset) are

recognized as similar. The PDAGs can express much more complex relations between

reference patterns and eliminate more classes of redundant checks. A decisive role is

played by the USRs unification of apparently different patterns which would otherwise

appear to be unrelated. Their best speedup on MDG on 4 processors is 1.7, while

ours is 3.7 (though on different machines).

G. Conclusions

The advantage of Hybrid Analysis over traditional methods comes from its ability

to use partial symbolic results. These results are often not sufficient to make a decision

at compile time. On the other hand, they are ignored by run time methods, which

redo the entire analysis process for each dynamic instance resulting in high overhead.

Hybrid analysis extracts conditions from partially aggregated information which leads

to run time tests of reduced complexity.

We implemented a full working Hybrid Optimization framework in the Polaris

research compiler. Its backbone consists of an analytical representation for memory

reference sets across arbitrarily large program contexts and of a predicate extrac-

tion technique that can extract sufficient conditions from identities involving sets of

memory references. The entire analysis process is interprocedural and control-flow

sensitive.
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The following chapter presents a symbolic value comparison and logic reasoning

module that is used to simplify USRs and PDAGs. Chapter VII presents a thorough

validation of the impact of Hybrid Analysis to efficient automatic parallelization.
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CHAPTER IV

SYMBOLIC VALUE ANALYSIS

A. Motivation

The efficiency of Hybrid Analysis depends, to a large extent, on the relevance of

run time tests. A test that will always fail to prove anything will still use up time

unnecessarily even if it is inexpensive. In order to extract relevant run time tests,

we need to perform an as accurate as possible symbolic analysis at compile time.

In addition to improving the quality of run time tests, this will also lead to more

problems being solved completely at compile time.

All programs compute values which are described symbolically as variables. The

values that some variables may take during execution are hard to predict; in general

this problem is at least as hard as the halting problem. However, we are interested

primarily in values that affect the memory reference pattern, i.e., play a role in com-

puting the address of a memory reference. Such values are often computed in a simple

way.

There are two types of symbolic values that may influence memory reference

analysis, those that are used to compute indices and those that are used to predicate

statements that compute addresses or statements that use the indices to reference

memory. In the example in Fig. 40, the values in array W can be propagated from

definition site 3 to use site 8 and thus eliminate costly multiplication operations.

However, the compiler must be able to reason about the range of addresses referenced

at the two statements. It has to prove that m ≤ 2∗m. Although this is not generally

true (e.g., m = −5), it is so when m ≥ 0, which is the only interesting case anyway

since for negative values the code in the loops does not get executed. Additionally,
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1 I f ( x<MAX(v (1 ) , v ( 2 ) ) )
2 Do i =1 ,2∗m
3 W( i ) = 0
4 EndDo
5 EndIf
6 Do i =1,m
7 I f ( x<v(1+MOD( i ) ) )
8 . . . = W( i )∗3
9 EndIf

10 EndDo

Fig. 40. Symbolic value analysis for comparison of addresses.

the compiler must prove that each of the conditions in the statement at line 7 implies

the condition at line 1.

This type of symbolic reasoning about memory reference addresses and control

predicates has two components. First, there has to be a mechanism to formulate op-

timization questions. We have already shown that the most important parallelization

questions can be formulated as USR identities. Second, there has to be a mechanism

to answer these questions. This section presents a symbolic mechanism to compare

symbolic expressions that make up the address part of USRs and to prove relations

between the predicates that represent the control.

When index functions are relatively simple expressions of the loop induction

variables and the array references are not masked by a complex control flow, then the

analysis is relatively straight forward. For example, if in a loop an array is indexed

through an affine function of the loop induction variable and the references are control

flow insensitive then the data dependence analysis can be performed accurately and,

if possible and profitable, the loop can be parallelized.

Unfortunately, arrays are not always referenced in such a simple manner. Some-

times the values of the addresses used are not known during compilation, e.g., when

the values of the addresses are read from an input file or computed within the program
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(use of indirection arrays). In other situations although the addresses are expressed

as a simple function of the loop induction variable, the control flow that masks the

actual references makes it impossible to compute a closed form of the index variable

and thus very difficult to perform any meaningful analysis.

However, memory reference analysis and subsequent loop parallelization, cannot

be performed with sufficient accuracy when arrays are indexed by subscripts that

cannot be expressed as a closed form of the loop induction variable. Arrays cannot

be proved independent because their indices cannot be analyzed with classical data

dependence techniques and indices of arrays (addresses) cannot be computed inde-

pendently by each iteration (or processor). We propose the Value Evolution Graph

(VEG) as a novel representation for the value flow of induction variables that can-

not be expressed as a simple algebraic function of their loop index. We show how

this technique can improve the accuracy of data dependence analysis, privatization

and the recognition of certain classes of memory reference patterns, such as push-

back sequences. We show how these improved techniques can lead to the automatic

parallelization of a larger number of codes.

1. Background and a Motivating Example

Recurrences with closed forms are those in which the i-th term can be written

as an algebraic formula of i. In recurrences with closed forms most relations between

values are proved using symbolic calculus. For example, references to arrays using

recurrences with closed forms, can be meaningfully expressed using systems of linear

constraints [173, 159, 160] or triplet-based notations [161, 174] containing the closed

form terms and other symbolic values such as loop bounds. We will not address such

recurrences in this chapter. When a recurrence with no closed form is used to index

an array, the corresponding memory reference set cannot be summarized using an
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1 o ld = p
2 q = 0
3 DO i = 1 , o ld
4 q = q+1
5 B(q ) = 1
6 IF (A(q ) .GT. 0 )
7 p = p+1
8 A(p) = 0
9 ENDIF

10 ENDDO

11 sum = 0
12 DO i = old +1 , p
13 sum = sum+A( i )

+B( i−o ld )
14 ENDDO

1 old = p0

3 DO i = 1 , o ld
p1 = µ(p0 , p3 )

5 B( i ) = 1
6 IF (A( i ) .GT. 0 )
7 p2 = p1+1
8 A(p2 ) = 0
9 ENDIF

p3 = γ (p1 , p2 )
10 ENDDO

p4 = η (p0 , p1 )
11 sum = 0
12 DO i = old +1 , p4

13 sum = sum+A( i )
+B( i−o ld )

14 ENDDO
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Fig. 41. (a) Code sample, (b) in GSA after closed form substitution, (c) Value Evolution

Graphs.

algebraic formula. For example, the algebraic expressions for the index of array A at

line 8 in Fig. 41(a) for iterations k and k+1 are identical, p, but their values always

differ. Hence, we need to develop alternative analysis techniques that can deal with

such cases. There are various uses for information about recurrence values. In the

example in Fig. 41, we can find array A independent in the loop at line 3 if we show

that q < p and that the values of p are different in any two iterations that write to

A. We can propagate the values stored in array A in the loop at line 3 to where they

are used at line 13 if we know that the set of the definition indices covers the set of

use indices. We can propagate the values in B if we know that p ≤ 2 ∗ old (the value

of p at statement 12).

2. Our Solution: The Value Evolution Graph

To solve the problems presented above we propose to model the value flow of the

recurrences without closed form with the Value Evolution Graph (VEG) and use it
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to obtain sufficient information to allow parallelization.

The reference pattern on array B in Fig. 41 (a) uses a recurrence with closed form

q(i) = i, which was substituted in Fig. 41(b). It is easy to prove that there are no loop

carried dependences on B because the index of B is expressed as an analytical function

of the loop index. However, there is no such formula for the index of A because it

is indexed by p, which is defined by a recurrence without a closed form (due to

conditional incrementation). Fortunately, data dependence analysis does not require

us to have closed form solutions, but rather to prove relations between the index sets

corresponding to different iterations. In order to prove array A independent, we first

need to show that statements 6 and 8 are independent. Note that at statement 6 we

read from A at offsets between [1:old], and at 8 we write based on all the values of the

recurrence on p. We can do it by finding all the values of the recurrence – its image

– and prove that they do not intersect [1:old]. We also need to prove that statement

8 does not cause cross-iteration dependences by itself. We can do it by proving that

the value of the index at line 8 always takes a positive step.

The Value Evolution Graph shown at the bottom of Fig. 41(c) translate the

problems of computing the step, image, and last value of the recurrence within the

first loop into graph problems. Although the idea of value flow in the program is not

new [175, 88, 68], the VEG offers unique features and functionality needed by various

analyses (Sec. B). We have integrated the VEG into our USR-based generic memory

reference analysis framework that can thus solve multiple classes of optimization

problems in the presence of recurrences without closed forms.

In this section, we will make two important points. First, we define the Value

Evolution Graph that can represent the data flow in recurrences used as array in-

dices which have no closed form solutions. The graphs are pruned based on control

dependence predicates and produce tighter value ranges than abstract interpretation
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methods. Second, unlike previous efforts of looking for patterns in the code text,

we can analyze partially aggregated and classified memory descriptors. This single

generic approach both extends and unifies in a single framework most cases which

were previously solved using various, different, pattern matching techniques. It al-

lows for the parallelization of important classes of memory reference patterns, e.g.,

pushbacks.

In the following section we will formally introduce the Value Evolution Graph

(VEG), and present its use in Memory Classification Analysis. Then we will show

how we have used it to perform more accurate dependence analysis, privatization and

finally parallelization.

B. The Value Evolution Graph (VEG)

Finite recurrences are usually described by an initial value, a function to com-

pute an element based on the previous one1 (an evolution function), and a limiting

condition. Depending on the evolution function’s formula, in certain cases we can

evaluate important characteristics even for recurrences without closed forms: the dis-

tance between two consecutive elements, the image of the recurrence, i.e. the set of

all values it may take, and the last element in the sequence.

We introduce the Value Evolution Graph (VEG), a compiler representation for

the flow of values across arbitrarily large and complex program sections, including,

but not limited to, recurrences without closed forms. Consider the loop at line 3

in Fig. 41. It performs a repeated conditional push to a stack array A. The stack

pointer is stored in variable p. Due to the fact that p is incremented conditionally,

there is no closed form for the recurrence that defines its value. We represent values

1We only address first order recurrences here.
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as Gated Static Single Assignment (GSA) [10] names. In GSA, there are three types

of φ-nodes. γ nodes merge two values on different forward control flow paths. µ nodes

merge a loop back value with a loop incoming value. η nodes merge the outcome of

a loop with the value before the loop. While this helps to discern between the values

of p on the left and right hand side of the assignment at line 7 respectively, it does

not differentiate between the value of p at line 8 in successive iterations. However, it

makes it easy to determine that the stack array is written only at position p2, and

that p2 is always the result of an addition of 1 to p1. The subgraph consisting of {p1,

p2, p3} (in Fig. 41(c)) represents the value flow between different GSA names for p in

a single iteration of the loop. Each edge label represents the value added to its source

to obtain its destination. The dashed edge carries values across iterations, but is not

part of the VEG as it does not contribute to the flow of values within an iteration.

We can employ well-known graph algorithms to prove that the distance between two

consecutive values of p2 is always 1, which makes the write to A(p2) be a stack push

operation.

We will show how we construct the VEG in general, and how we run queries on

it to compute recurrence characteristics over complex program constructs, such as

loop nests, complex control flow, and subprogram calls.

1. Formal Definition

We define a value scope to be either a loop body (without inner loops), or a

whole subprogram (without any loops). Immediately inner loops and call sites are

seen as simple statements. We treat arrays as scalars and assume that programs have

been restructured such that control dependence graph contains no cycles other than

self-loops at loop headers. We have implemented such a restructuring pass in our

research compiler.
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Given a value scope, the Value Evolution Graph is defined as a directed acyclic

graph in which the nodes are all the GSA names defined in the value scope and the

edges represent the flow of values between the nodes.

In addition to the nodes defined in the value scope, we add, for every immediately

inner loop, the set of GSA names that carry values outside the inner loop. An example

is p1 in Fig. 41.

Such nodes appear both in their current value scope graph as well as in the

immediately outside value scope graph. They are called µ nodes in the context of

the graph corresponding to the inner value scope and are displayed as double circles.

Nodes representing variables assigned values defined outside their scope are called

input nodes and are labeled with the assigned value (they are displayed as rectangles).

The µ and input nodes are the only places where values can flow into a VEG. Values

can flow out of the VEG through µ nodes only.

An edge between two variables p and q represents the evolution from p to q,

defined as the function f, where q = f(p). The evolution belongs to a scope if p and

q are defined within the scope, and all symbolic terms in f are defined outside it. We

represent four types of evolutions, additive and multiplicative for integer values and

or and and for logical values. We represent an evolution by its type and the value

of the free term. Certain evolutions can be composed along a path symbolically. For

instance, the evolution along path p1 → p2 → p3 is an additive evolution with value

1 + 0 = 1. Instead of keeping a single value for an evolution, we store a range of

possible values. This allows us to define an aggregated evolution from a node p to a

node q as the union of the evolutions along all paths from p to q. For example, the

aggregated evolution from p1 to p3 is [0:1], which represents the union of the evolution

[0:0] along path p1 → p3 and the evolution [1:1] along path p1 → p2 → p3.

VEGs are as scalable as the GSA representation of the program since the number
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Table III. Extracting evolutions from the program.

Statement Edge Ev. Type Label

b1 = a + exp a→ b1 + exp

b1 = a .OR. exp a→ b1 ∨ exp

b1 = a * exp a→ b1 * exp

b1 = a .AND. exp a→ b1 ∧ exp

b1 = a a→ b1 Default Identity

b1 = exp no edge, mark input node

b2 = γ(b0, b1) b1 → b2 Default Identity

b0 → b2 Default Identity

b2 = µ(b0, b1) no edge, mark µ node

b2 = η(b0, b1) b1 → b2 Default Loop effect

b0 → b2 Default Identity

CALL sub(b1→b2) b1 → b2 Default sub effect

of nodes in all VEGs is at most twice the number of GSA names in the program and

every node corresponding to a φ definition has the same number of incoming edges

as the number of φ arguments. All other nodes have at most one incoming edge.

2. Value Evolution Graph Construction

Table III shows how we create edges from their corresponding statements. For

now, we support only one evolution type per VEG. This evolution type is given by

the first evolution we encounter, and is called the default type of the graph. If a value

is computed in a way different from the ones shown in the table, we conservatively

transform it into an input node and label it with [−∞ : +∞] (or [.FALSE.:.TRUE.]).
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If it is computed in an assignment statement, then we try to find a closer range for the

right hand side of the statement. We compute the aggregated evolution of an entire

recurrence as the aggregated evolution, over all iterations, from the µ node to all nodes

that may carry evolutions to the next iteration. We draw an edge from the value of

the µ node to the corresponding value on the left hand side of the corresponding

η definition, and we label it with the aggregated evolution of the inner recurrence.

Fig. 41(c) shows such an edge between p1 (a µ node in the inner recurrence {p1, p2,

p3}) and p4. The range [0:old] is a result of multiplying the range of the aggregated

evolution from p1 to p3, [0:1], with the iteration count of the loop, old. When values

are obtained as a result of a subprogram call, we add edges to represent the aggregated

value evolutions of the OUT actual arguments (and global variables) as functions of

IN actual arguments (and global variables). In the last line in Table III, b2 and b1

are the OUT and IN arguments respectively.

The VEGs are built in a single bottom-up traversal of the whole program. The

call graphs and the loop nest graphs of each program are traversed in reverse topo-

logical order. Within each scope we identify all definitions, build edges and associate

input values. We use aggregated information from inner loops and called subpro-

grams as shown in Table III. We compute the aggregated value evolution for all the

recurrences associated with the loops using shortest/longest path algorithms that are

linear in the size of the graph (number of edges + number of nodes). We compute

the shortest and longest paths between every µ and input node and every other node.

If every node is reachable from exactly one µ node and there are no input nodes, the

complexity of the algorithm is linear in the number of GSA names + the number of

arguments in all the φ nodes in the program. If more than one µ node can reach one

same other node (coupled recurrences), the complexity may increase by a factor of at

most the number of coupled recurrences.
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3. Queries on Value Evolution Graphs

We obtain needed information about the values taken by induction variables by

querying the VEG. All the queries we support are implemented using shortest path

algorithms. Since all the VEGs are acyclic, these algorithms have linear complexity.

Given two GSA variables (possibly identical) and a loop, we can compute the

range of possible values for the difference between the value of the second variable in

some iteration i + 1, and the value of the first variable in iteration i. For recurrences

without closed forms, this computes the distance between two consecutive elements.

In the example in Fig. 41, the distance between p2 in iteration i and p2 in iteration

i + 1 is exactly 1. This information can be used to prove that the write pattern on

array A at statement 8 cannot cause any cross-iteration dependences. The value of

the distance between a source node and a destination node across two consecutive

iterations of a loop can be used for comparisons only if the destination node is not

reachable from an input node.

Given a GSA variable and a loop, we can compute the range of values that the

variable may take over the iteration space of the loop. For recurrences without closed

forms, this computes their image and can be used to evaluate the last element. In

the example in Fig. 41, the range for variable p2 over the loop is [p0+1:p0+old]. This

information is crucial for proving that the write pattern on array A at statement 8

cannot have cross-iteration dependences with the read pattern at statement 6 (they

are contained in disjoint ranges [p0+1:p0+old] and [1:p0] respectively). This informa-

tion is computed in O(d) time, where d is the depth of the loop nest between the

given loop and the definition site of the given variable.

Given two GSA variables in the same subprogram, we can compare their values

even if they are not in the same value scope, by comparing their ranges in a larger
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1 A(p1 ) = . . .
2 f1 = 0
3 IF ( cond )
4 f2 = 1
5 p2 = p1+1
6 ENDIF

p3 = γ (p1 , p2 ,
cond )

f3 = γ (f1 , f2 ,
cond )

7 IF ( f3 .GT. 0 )
8 p4 = p3−1
9 ENDIF

p5 = γ (p3 , p4 ,
f3 .GT. 0 )

10 IF ( f3 .EQ. 1 )
11 . . . = A(p5 )
12 ENDIF
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Fig. 42. (a) Sample code in GSA, (b) VEG for f1, f2, f3; VEG for p1, p2, p3, p4, p5 – (c)

before pruning, (d) after pruning based on GSA Paths, and (e) based on range

tracing.

common scope. This information can be used to prove either an order between their

values or their equality and which in turn can be used in many compiler analyses.

4. VEG Conditional Pruning

We can prune a VEG by removing certain edges that cannot be taken when based

on the truth value of a condition. The shortest path algorithms used to compute

aggregated evolutions will then produce tighter ranges. Consider the code shown in

Fig. 42 (a). Because we do not know anything about the value of cond, we cannot

compare the values of p1 and p5, information that is needed to determine if the

memory read at offset p5 in array A is always covered by the write at offset p1. Based

on its corresponding VEG (Fig. 42 (c)), we can only infer that p5 ∈ [p1-1:p1+1].

The GSA path technique [93] describes how control dependence relations can be

used to disambiguate the flow of values at γ gates. The GSA path technique can infer
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that at line 11 condition f3.EQ.1 holds true, which implies also f3.GT.0 holds true.

To the VEG, this means that value p5 comes from p4 and not directly from p3. With

the VEG pruned using this information (Fig. 42 (d)), we have p5 ∈ [p1-1:p1].

We have improved on [93] by using the VEG to trace back ranges extracted from

given control dependence predicates. The read from array A at line 11 is guarded by

condition f3.EQ.1. This implies f3.EQ.1 holds true. From this predicate, we extract

the range [1:1] for f3. In Fig. 42 (b), we trace this range for f3 backward to see where

it could have come from. Since the initial value for input node f1 is 0, and the edge

f1 → f3 has weight 0, the only range that can be produced on the path f1 → f3 is

0+0=0. The GSA gate f3=γ(f1,f2,cond), associates the pair (f1, f3) with condition

.NOT.cond. Since f3 cannot come from f1, .NOT.cond must be false, thus cond must

be true. The same predicate, cond, controls the other gate, p3=γ(p1,p2,cond). Since

cond holds true, p3 must have come from p2, and not from p1. So the edge p1 → p3

cannot be taken. This leads to the graph in Fig. 42 (e). On the pruned graph in

Fig. 42 (e), p5 = p1+1+0-1+0 = p1, which proves the read at line 11 covered by the

write at line 1.

This method improves on [93], leads to more accurate ranges than the abstract

interpretation method used in [176], and can solve classes of problems that [88] cannot.

One use of VEG conditional pruning is presented in Sec. D.

C. VEG-based Memory Reference Analysis

Fig. 43 shows the bottom-up analysis of the program context across lines 3-11

for a code snippet extracted from benchmark application TRACK. Note that the leaf

node 1 represents a successfully aggregated memory access pattern (statements 4-6).

The subtree rooted by node 3 represents the reference pattern across statements 3-
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Program main
1 Do k= 1 , 100

q1 = µ(q0 , q2 )
2 o ld = q1

3 Call bu i ld (q1→q2 )
4 . . . = A( old : q2−1)
5 EndDo
. . .

Function ten (b , e )
1 Do j = b , e−1
2 I f (A( j ) . . . )
3 Return . F .
4 EndIf
5 EndDo
6 Return .T.
7 End

Sub bu i ld (p0→p5 )
1 o ld = p0

2 Do i = 1 ,100
p1 = µ(p0 , p4 )

3 I f ( ten ( old , p1 ) )
4 Do j = p1 , p1+9
5 A( j ) = . . .
6 EndDo
7 p2 = p1+10
8 Else
9 A(p1 ) = . . .
10 p3 = p1+1
11 EndIf

p4 = γ (p2 , p3 )
12 EndDo

p5 = η (p0 , p1 )
13 End

Context LMAD Node U-estimate O-estimate

5 j – j j

4-6 [p1:p1+9] 1 [p1:p1+9] [p1:p1+9]

3-7 – 3 ∅ [p1:p1+9]

9 p1 2 p1 p1

8-11 – 4 ∅ p1

3-11 – 5 p1 [p1:p1+9]

1

[p1 : p1+9]

2

[p1 : p1]

ten(old, p1)

3

.NOT.ten(old, p1)

4

U
5

Fig. 43. Aggregation of WF across lines 3-11 for this code snippet extracted from PER-

FECT/TRACK/EXTEND do400. The LMAD column shows the cases in which

the descriptor can be represented as an LMAD. The Node column lists the label

of the node that roots the corresponding USR in the figure on the right. The last

columns show LMAD-based under- and over-estimates (as sets) for each USR.

7. The internal node 3 shows that the value of the conditional ten(old, p1) – which

controls the memory reference – is unknown. Throughout the aggregation process,

every USR node is associated with a lowerbound and an upperbound (in the sense

of set inclusion) using lists of LMADs. The underestimate is a list of LMADs that is

completely contained in the USR. The overestimate is a list of LMADs that completely

contains the USR.
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1. Using the VEG in Memory Classification Analysis

We have shown (Section III.C.1) how MCA classifies all memory locations ac-

cessed within the context in Read Only (RO), Write First (WF) and Read Write

(RW).

The most important memory classification process takes place at loop level

(Fig. 45). For instance, in the example in Fig. 41, the WF pattern for array B

within an iteration of the loop at line 3 is {i}. Across the entire loop, it is ⊗∪i=1,old{i}

= [1:old]. When the recurrence has no closed form, these operations cannot be per-

formed symbolically. However, we can use the VEG to detect contiguous sequences

of memory locations indexed by recurrences without closed forms. These sequences,

found by algorithm ContiguousWrite are used to adjusts the results of McaLoopBlock.

Consider the example in Fig. 43. Conceptually, the loop in program main per-

forms a repeated pushback on array A, based on index q. The stack array A is also

read at line 4 in program main and at line 2 in function ten. Both reads are to

elements that have been pushed within the same iteration of the loop in program

main, thus they are covered by writes. Consequently, array A is privatizable.

Traditional analysis fails because of the conditional incrementation of the index

p by either 10 or 1. Recent work [74, 68, 166] focused on statement-level pattern

matching of recurrence expressions. These approaches fail to relate the write to A(j)

at line 5 in subroutine build to p. Also, they cannot handle the presence of read

memory references and recurrences over multiple variables (q, old, p).

Our approach is to aggregate memory references symbolically using VEG infor-

mation. Our addition to MCA does not require new data structures, as the new

information is used to refine the existent RO, WF, and RW descriptors. We aggre-

gate the reference pattern over the loop at line 4 in subroutine build into [p1:p1+9].
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We cannot aggregate the reference pattern over the outer loop in subroutine build

because the recurrence on p1 has no closed form. Regardless of the value returned

by function ten, we can see that the write pattern is contiguous, i.e. it has no gaps

between any two successive iterations. The write access pattern can be aggregated

across the whole loop as [p0:p5-1]. At the beginning of any iteration i, the extent of

the contiguously written section in previous iterations is [p0:p1-1]. The read from A

at line 2 in function ten is always within [old:p1-1]. We can prove it is covered by

previous writes, since old = p0. Also, we can find that the extent of the contiguous

write for the whole loop is [p0:p5-1]. At the call site in program main, this translates

into [q1:q2-1], which covers the successive reads completely within every iteration.

We solved this MCA problem not based on the closed form of the index but rather on

the information about the recurrence exposed by the VEG.

In order to parallelize the loop in program main, we still have to prove that there

are no cross-iteration output dependencies. We do it by proving that the per-iteration

descriptor, [q1:q2-1], is increasing, i.e. it has no overlaps. A VEG query is used to

evaluate the step from q2-1 to q1 across two successive iterations and to prove it is

positive.

Fig. 44 shows how the relations between USR and VEG operations.

2. Memory Reference Sequence Classification

A memory reference sequence is increasing in a loop if every access index in

iteration i + 1 is strictly larger than any index in iterations 1 to i (Fig. 46(a)). It is

contiguous in a loop if it is contiguous within every iteration and, for any iteration i,

its image over all iterations up to i is contiguous (Fig. 46(b)). It is consecutive in a

loop if it is both contiguous and increasing in the loop (Fig. 46(c)). These definitions

can be extended to strided memory access. These properties have to be proved true
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Inclusion Exclusion

UnionIntersectionDifference Contiguous Sequence

Increasing Sequence

StepRange

Memory Classification Analysis Dependence Analysis

REFERENCE SET OPERATIONS

ANALYSIS TECHNIQUES

VEG INFORMATION

Logic Inference

Fig. 44. Details on how the VEG information is used.

Algorithm McaLoopBlockCw ( )
Input : (j = 1, n) , (WFj , ROj , RWj)
Output : (WF, RO, RW )
Call ContiguousWrite (WFi, ROi, RWi ) → CW

Call McaLoopBlock (WFi, ROi, RWi ) →WF, RO, RW

CALL UpdateCw(WF, RO, RW, CW ) →WF, RO, RW

Algorithm Update
Input : WF, RO, RW, CW

Output :WF, RO, RW

RO = RO − CW

RW = RW − CW

WF = WF ∪ CW

END

Fig. 45. The integration of the search for contiguous write-first sequences in the Memory

Classification Algorithm. We have modified the abstract intepretation phase at

loop header level. The McaLoopBlock algorithmn is presented in Fig. 22.

across all control paths.

We use VEG information to measure and compare the extent of memory reference

sets and recurrence steps. This analysis is control-flow sensitive. In order to prove

a sequence contiguous, we show that on all paths, and under the same or implied

conditions the step of induction variable (obtained from the VEG) is smaller or equal

to the span of the memory reference, at the loop level.
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length = 7-1 = 6


1
 6
 7
 8
2
 3
 4
 9
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step = 7


(a)


(b)


(c)


Fig. 46. Increasing (a), contiguous (b), and consecutive (c) reference patterns in a loop.

Table IV. Uses of memory reference sequence classification for the parallelization of

the outer loop of a doubly nested loop.

Sequence Class Context Benefit

1 Contiguous Inner Privatization

2 Increasing Outer Independence

3 Contigous Outer Efficient parallel code

3. VEG Applications to Classic Compiler Optimizations

Let us assume that we want to parallelize the outer loop of the nested loops

Outer and Inner. Table IV presents the overall use of memory reference sequence

classification in privatization and data dependence analysis.

a. Dataflow Analysis

We can use the WF , RO, and RW sets to prove general dataflow relations. For

instance, a WF followed by a RO represents a def-use edge with weight WF ∩ RO.

This information can be used in transformations such as constant propagation. In

the example in Fig. 41, we can prove that there is a def-use edge between lines 8 and
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Fig. 47. Integration in the Hybrid Analysis framework.

13 on array A, with weight [old+1:p4]. We can thus propagate all constant array

values at offsets within this range.

b. Privatization

The privatization transformation benefits from memory reference sequence classi-

fication indirectly. The refined WF , RO, and RW sets for Inner will result in refined

ROi, WFi, and RWi sets for Outer. leading to more opportunities for privatization.

This corresponds to edge 6 in Fig. 47, and to row 1 in Table IV.

c. Dependence Analysis

Let us assume that we have the descriptors ROi, WFi, and RWi for Outer. If

we can find a memory reference sequence d that includes them and is increasing in

Outer, then there can exist no cross iteration data dependences. This corresponds to

edges 3 and 5 in Fig. 47, and to row 2 in Table IV.
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4. Recognition of Pushbacks and

Other Parallelizable Prefix Computations

Many programs access arrays in loops according to patterns that are determined

by loop induction variables. Even though induction variables are computed by re-

currences, there are many important cases in which such loops can be executed in

parallel. First, necessary conditions are that (i) there should be no data dependences

between iterations of the loop except those involving the induction variable, (ii) there

is no dependence cycle between the induction variable used as an address and the

data computation, and (iii) it must be possible to compute the values taken on by

the induction variable in parallel. Two cases in which the induction values can be

computed in parallel are when the induction recurrence has a closed form solution or

when it is associative; in the former case parallelization is trivial and in the latter case

it can be done using a parallel prefix type computation [177]. Parallel prefix typically

consists of three stages: (i) compute the local prefix sums of the associative induction

variable, (ii) compute the prefix sums of the induction variable across processors,

(iii) use the results of the cross-processor phase to compute the corresponding global

values of the local indices, and then copy out the contents of the local arrays to their

corresponding offset in the global array.

[178] addresses loops that contain the pattern p = p+1; A(p) = ... and where p

does not appear anywhere else in the loop body, and parallelize them using a technique

named “array-splitting,” which is essentially a prefix computation.

In this work, we use the VEG to extend the applicability of the parallel prefix

parallelization to more general types of loops that cannot be analyzed using pattern

matching techniques alone. In particular, for loops with induction variables with no

closed form solution, we impose the condition that the induction variable can only be
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used as an address into an array, i.e., it does not contribute to the global data and/or

control flow of the loop. In other words, if the induction variable is assigned to a

shared variable or controls the execution of the program (e.g., used as an absolute

inner loop bound) we will take the conservative approach and not parallelize it. An

exception is made for the case when the value of the recurrence is used to test loop

termination.

a. Pushback Sequences

We first consider loops which compute so-called pushback sequences that are

generally defined as a sequence of consecutive write-first (WF) reference sets. In

the following, we describe how we have used information provided by the VEG to

extend the applicability of parallel prefix parallelization to pushback sequences. For

illustration we use the code example in Fig. 43 which effectively performs a pushback

on array A.

References to the pushback array have to be WF only. This implies that read

accesses, to the array covered by the WF are allowed in any order. The WF set

is computed accurately by the VEG improved MCA and thus qualifies more loops

for parallelization. In the example in Fig. 43 we can see that the read at line 2 in

function ten is always covered by a write in a previous iteration of the loop at line 2

in subroutine build, but within the same iteration of the loop in program main.

Most previous techniques analyze the patterns in which the induction variable

appears, and from that try to infer which array addresses are used; this only works

if there is a very simple (e.g., identity) relation between between induction values

and array indices. We can qualify more loops as pushbacks since we can use VEG

enhanced MCA to analyze more complex functions of the induction variable and
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determine if the resulting index sequence satisfies the step ≤ length2 condition.

Information provided by the VEG can help us identify cases in which the induc-

tion variable does not contribute to the control flow, even if it would appear that it

does using pattern matching techniques. For instance, in Fig. 43 the reference to A

at line 2 in function ten is through j, which is the index of the loop at line 1 This

loop has recurrence values as bounds. The looping statement can be normalized as

DO k = 1, e-b. We use the VEG and evaluate the (e-b) loop bound and find that

it does not depend on the induction variable of the outer loop, i.e., that we do not

use the value of the induction variables of the loop we are considering (we use a local

value).

We can parallelize loops where the recurrence value is also used as an early termi-

nation condition. Such cases are common for error checks such as stack overflow which

usually result in premature loop exits. We execute the parallel prefix speculatively

[179], compute the final value of the recurrence variable (before the termination) and

then use it to copy out only the section of the private arrays that fits in the correct

bounds.

b. Other Parallelizable Sequences

Using VEG enhanced MCA we can parallelize additional sequences with parallel

prefix. Here are some interesting sequences we can recognize:

A sequence whose index is generated by a simple associative recurrence with any

positive step such that step > length. In this case, the copy out phase will require

that the computation of the indices into the global array be done in a more complex

manner than for a pushback. Instead of using ranges of global addresses we have to

2The step of the recurrence versus the length of the memory access.
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compute them individually.

Sequences whose index is generated by a more complex associative induction of

some form v = f(v, k) where f is an associative operator. In this case, VEG enhanced

MCA can be used to guide the application of the set operations. (Although it is true

the set operations themselves will be more complex, that is a symbolic manipulation

problem that is beyond the scope of this paper.)

It is interesting to remark that when we do not deal with a simple pushback

sequence, the parallel prefix computation of the recurrence value and the actual com-

putation of the loop must be done, conceptually, in separate stages. Sometimes it is

beneficial to perform in the local stage only the computation of the recurrence values

and leave the remainder of the loop computation for the third phase of the parallel

prefix. Other times, when the distribution of the recurrence computation implies a

large amount of work duplication, it is beneficial to compute everything in the first

phase in private storage and leave the actual address computation and copy out for

the third phase. The compiler can use a simple work evaluation model to decide

between the two alternatives.

D. Case Studies

Hybrid Analysis [3] integrates compile-time and run-time analysis of memory

reference patterns. Its static part consists mainly of a framework for aggregation

of memory references using the compact USR memory location set representation.

This framework is used to perform Memory Classification Analysis which is used for

automatic parallelization. We have integrated the information produced by VEGs in

this framework – Fig. 47. Fig. 44 shows the relation between three levels of abstrac-

tion in the analysis process. High-level routines such as dependence analysis relies
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Table V. Loops parallelized. CP = Conditional Pushback, SL(U) = Stack Lookup

(and Update), P-CW = Privatization based on Contiguous Writes, P-VEG

= Privatization using the VEG directly.

Program Loop Seq. % Description

TRACK EXTEND do400 15-65 CP-SLU, P-CW

FPTRAK do300 4-50 CP-SL

GETDAT do300 1-5 CP-SLU, P-CW

P3M PP do100 52 P-CW, P-VEG

SUBPP do140 9 P-CW

BDNA ACTFOR do240 29 P-VEG

MDLJDP2 JLOOPB do20 12 CP

ADM DKZMH do60 6 P-CW

QCD QQQLPS do21 < 1 CP

DYFESM SETCOL do1 < 1 CP

HYDRO2D WNFLE do10 < 1 CP

on memory reference set operations (such as intersection) and on the recognition of

increasing memory reference sequences. These operations rely heavily on VEG in-

formation, such as step, range, or logical inferences. We implemented the VEG and

integrated it with the Hybrid Analysis pass in Polaris.

Table V presents our results over codes TRACK, BDNA, QCD, ADM and DYFESM

from the PERFECT benchmark suite, P3M from the NCSA suite, and HYDRO2D

and MDLJDP2 are from SPEC92. The third column shows the percentage of the to-

tal sequential execution of the program spent in the loop. The parallelization of these

loops is crucial to the overall performance improvement in TRACK, BDNA, ADM,
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P3M, and MDLJDP2. Although our new techniques can parallelize a larger number

of loops, we only display results in addition to the ones obtained using traditional

analysis techniques.

Seven out of the eleven parallelized loops were conditional pushbacks. The cases

in TRACK are the most difficult as the arrays are not used as a stack at statement

level, but only at the whole loop body level. We are not aware of any other static

analysis that can parallelize any of these three loops. Six out of eleven loops required

privatization analysis based on either contiguous writes or VEG information directly

(value ranges).

Loop BDNA/ACTFOR do240 contains an inner loop that fills an index array ind

with values within range [1:i], where i is the index of the outer loop. These values are

then used to index a read operation on an array xdt. Since array xdt is first written

in every iteration of the outer loop from 1 to i, this write covers all successive reads

from xdt(ind(:)). The read pattern ind(:) is found to be completely contained in [1:i]

based on the VEG range approximation for ind, which proves xdt privatizable. This

pattern also appears on some arrays in P3M/PP do100.

We also ran the analysis on the Barnes-Hut code TREE from the University of

Hawaii in order to compare our results to previous work reported in [74]. This is an

interesting case of an array that is used as a stack (push and pop operations) within

an iteration of a loop, and is thus privatizable. However, the loop cannot contain

cross-iteration dependences because the stack array is a local variable in a subroutine

treewalk which is called from within the loop. Even if the code were inlined, our

VEG-enhanced MCA would find the array privatizable in the outer loop.
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1 DO i = 1 , ny
2 DO j = 1 , nx
3 DO k = 1 , nz
4 p = k
5 CALL s r (A(p ) , inc )
6 IF (A(p ) .GT. 0 ) GOTO 8
7 ENDDO
8 p = p + inc
9 DO k = p , nz
10 A(k ) = . . .
11 ENDDO
12 DO k = 1 , nz
13 . . . = A(k )
14 ENDDO
15 ENDDO
16 ENDDO

3 DO k = 1 , nz
4 p1 = k
5 CALL s r (A(p1 ) ,

inc3 )
6 IF (A(p1 ) .GT. 0 ) GOTO 8
7 ENDDO

p2 = η (p0 , p1 )
8 p3 = p2 + inc3
9 DO k = p3 , nz
10 A(k ) = . . .
11 ENDDO
. . .
19 SUB s r ( a , inc )
20 inc1 = 0
21 a = . . .
22 IF ( . . . ) inc2 = 1

inc3 = γ ( inc1 , inc2 )
23 END

inc
1
:0
 inc
2
:1
inc
3
0
 0
 p
1
 p
2
inc
3
=[0:1]


Fig. 48. Code extracted from DKZMH do60.

1. ADM/DKZMH do60

The loops at line 1 and 2 in Fig. 48 can be parallelized if we can show that array

A is privatizable. We show that A has no exposed reads for the context between lines

3-14.

At lines 3-11, WF = [1:p2] ∪ [p3:nz]. The distance between p2 and p3 is the

value range for variable inc3. This range was found by the VEG for subroutine sr to

be [0:1]. This implies p2+1 ≥ p3, so WF = [1:nz]. At lines 3-14, RO = RO -WF

= [1:nz] - [1:nz] = ∅. WF = [1:nz].

2. TRACK/EXTEND do400

This loop is our most complex case, and was presented in detail as the loop in

program main in Fig. 43. It consists of pushbacks performed in an inner loop. Another

loop, inner to both of them, reads backwards the elements that were pushed within

the same iteration of the outermost loop and, based on some condition, may modify

some of these locations. It is crucial to prove that the access within an iteration of
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1 flag1 = 0
2 Do j = old , p
3 I f (A( j ) . . . )
4 flag2 = 1
5 same1 = j
6 GoTo 9
7 EndIf
8 EndDo

flag3 = η (flag1 , flag2 )
same2 = η (same0 , same1 )

9 I f ( flag3 .EQ. 1 )
10 A(same2 ) = . . .
11 EndIf

flag
1
:0
 flag
2
:1


0
 0


0
 0


same
2


same
0
 same
1


flag
3


Fig. 49. Code extracted from EXTEND do400.

the outer loop is confined to locations that were pushed within the same iteration. In

addition to the problems discussed with relation to Fig. 43, this loop presents another

problem that can only be solved using a conditionally pruned VEG.

This innermost loop is shown in Fig. 49. The range of the elements that have

been pushed back within the current iteration of the outermost loop is [old:p]. The

write reference at line 10 is at offset same2. We must prove that same2 is within

[old:p]. A simple query on the range of values for same2 on the VEG returns a range

of [1:p] because it has to take into account the possibility that same2 was not defined

in the loop at line 2. The value could have come on edge same0 → same2. Since

same0 could have carried a value from a previous iteration of the outermost loop,

same2 might not be confined to what was pushed in the current iteration. However,

this edge is removed during the pruning of the VEG based on condition flag3.EQ.1.

Since a value for flag3 could have come only on edge flag2 → flag3, and since the

pair ( flag2, flag3) corresponds to the same control flow edge as ( same1, same2)

(based on GSA γ predicates), we can remove edge same0 → same2. The VEG now

evaluates the range of same2 to [old:p] for the use at the statement at line 10.
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Table VI. Comparison to recent work on memory referenced through recurrences with-

out closed forms.

Gupta et al Lin, Padua Wu, Padua Our Framework

[91] [74] [68, 166]

1 Problems Solved Privatization, Privatization, Data Dep. Privatization, Data

Data Dep. Data Dep. Dep., Dataflow

2 Method Memory Reference Algorithm Monotonic evol. Memory Reference

Analysis recognition Sequence Classif.

3 Recurrence Model Implicit Implicit: DDG Explicit: evol. Explicit: VEG

4 Multi-variable Not specified No No Yes

5 Distance Ranges Yes No Yes Yes

6 Conditional Ranges Range extraction No No Range extraction

and tracing

7 Mem. Ref. Type Generic Single indexed Not defined Generic

8 Interprocedural Yes No No Yes

9 Pushback Seq. Par. No Yes (restrictive) No Yes (more general)

E. Related Work

1. Recurrence Recognition, Classification, and Parallelization

[87, 180, 88, 89] present the automatic recognition and classification of general

recurrences. The idea of a value graph was introduced in [175]. Although similar to

the SSA graph [88], the VEG adds more power and functionality to the representation:

closure for the meet-over-paths operator using ranges and accuracy by pruning based

on conditionals. [181] discusses the parallelization of linear recurrences. [182] and [96]

present the recognition and parallelization of certain classes of recurrences but do not

address cases when memory is referenced using the values of the recurrence. We

express recurrence functions as paths in VEGs. Although in theory these techniques

could cover more cases, in practice they are limited to recurrence formulae consisting

of linear algebraic expressions coupled with conditionals. Since some of the edges in

the VEG represent algebraic relations and others represent conditional execution, we
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can also represent this mix of linear functions and conditionals.

2. Analysis of Memory Referenced by Recurrences without Closed Forms

[39] and [183] found more closed forms for classes of recurrences that had not been

commonly recognized/substituted by compilers. [184] presents the parallelization of

loop nests that may contain recurrences by flattening the nests into single loops and

pre-computing the recurrences in inspector loops. This method may not be feasible

when the recurrence depends on computation within the loop itself. [185] presents

the use of monotonicity in reducing the number of bound checks for arrays referenced

using a recurrence without closed form.

Let us follow (by row in Table VI) a comparison between our framework and

the most recent work on the parallelization of loops that reference memory through

recurrences without closed forms [91, 74, 68, 166].

In rows 1 and 2, [74] presents three algorithm recognition techniques that can be

used for privatization and dependence analysis. [68, 166] used the concept of mono-

tonic evolutions for data dependence tests. We introduce a single technique that cov-

ers all the problems solved by [74, 68, 166], has wider applicability, and, additionally,

builds generic array dataflow information that can be used by other transformations

(such as constant propagation). [91] uses monotonic information to improve memory

reference set operation accuracy in a generic way, but does not recognize contigu-

ous sequences. [68, 166] do not address privatization and [74] does it only based on

specific algorithm recognition. Our analysis is generic and was used uniformly to

the parallelization of loops EXTEND do400, FPTRAK do300, GETDAT do300 from

TRACK, DKZMH do60, PP do100, SUBPP do140 and ACTFOR do240. [74] cannot

solve the privatization problems of the first four, and it solves the last three using

two algorithm recognition methods.
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As shown in rows 3, 4, 5 and 6, [68, 166] introduced the idea of evolution and

a recurrence model that produces distance ranges. [91] extracts ranges from array

indices as well as from predicates based on affine expressions. We believe that the

VEG graph representation makes it easier to express aggregated evolutions by asso-

ciating them with graph paths. These paths contain explicit evolution and control

information (by using GSA). The VEG can model recurrences defined using multiple

variables, unlike previous representations that rely on the statement-level pattern i

= i + exp. The VEGs are pruned based on ranges extracted from conditional values,

which leads to closer value ranges. The static parallelization of loop EXTEND do400

can only be decided on this pruned graph, and has not been reported before.

Rows 7 and 8 compare the genericity of the memory reference type handled

by each analysis technique. [74, 68, 166] require that arrays be unidimensional and

that the index expression consist of exactly the recurrence variable. The recurrence

variable cannot appear in the loop text except for the recurrence statements and as

an array index. Our framework is more flexible: we analyze partially aggregated

generic memory descriptors that represent the reference pattern in a single state-

ment, an inner loops or a whole subprogram uniformly. Loop DKZMH do60, and

loops EXTEND do400 and FPTRAK do300 reference memory in inner loops and via

subroutines; some arrays are two-dimensional; in one case array elements are seen as

scalars inside a called subprogram; in a few cases, the recurrence variable appears in

the bounds of an inner loop, while the actual array index expression is the loop index.

Row 9 shows that our parallelization of pushback sequences is more general

than the one presented in [74] where the important loops EXTEND do400, FP-

TRAK do300 and GETDAT do300 from TRACK could not be parallelized.

Our work also led to improvements to the range techniques presented by [54, 176],
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and to the GSA path technique presented by [93].

F. Conclusions and Future Work

The symbolic value information offered by the VEG is crucial to the efficiency

of USR and PDAG-based analysis techniques. They solve more problems at compile-

time, thus avoiding unnecessary run time tests. They also result in more meaningful

and lighter run time tests, which leads to significant reduction in overhead, and thus

overall performance increase.

For now, we treat arrays as scalars. We are planning to investigate the use

of array dataflow information produced by MCA to create more expressive value

evolution graphs.

We are also looking into further applications of value evolution graphs to the

GSA path technique. Preliminary results show that, with minor improvement, we

could solve more complex problems such as the compile time parallelization of loop

INTERF do1000 in code MDG from the PERFECT suite.
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CHAPTER V

ENGINEERING A HYBRID AUTOMATIC PARALLELIZER

A. Automatic Parallelizer Overview

We have implemented the automatic parallelization tool in the Polaris research

compiler framework based on Hybrid Analysis. Our parallelization tool takes as input

sequential Fortran 77 code and produces Fortran code with OpenMP parallelization

directives.

In the example in Fig. 50, the sequential loop (a) was parallelized by inserting

OpenMP directives before and after the loop. OpenMP is a source-level directive

based parallelization language. Using OpenMP the programmer, and in our case the

parallelizing compiler, can specify what loops are to be run in parallel, which variables

must be privatized, the variables that participate in a reduction operation and other

issues related to multithreaded execution.

We chose OpenMP due its wide acceptance by compiler and library providers.

However, the Polaris internal representation is not hardwired to OpenMP directives.

It is rather made of abstractions, represented as annotations, that may or may not

correspond directly to OpenMP directives. There are thus two steps that are taken

in the parallelization process. First, the parallelizer analyzes the program and builds

the parallelization annotations. These annotations are then translated into OpenMP

directives and, in some cases, modifications to the code.

The following sections present our run time parallelization design based on Hy-

brid Analysis. The last section presents in detail the parallelization abstractions and

the way they are translated into OpenMP directives.
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1 Do i =1 , 100
2 tmp = f ( i )
3 A( i ) = A( i +100)+tmp
4 s = s+A( i )
5 EndDo

$OMP PARALLEL

$OMP + PRIV ATE(TMP )
. . .
$OMP DO

$OMP + REDUCTION(+ : S)
1 Do i =1 , 100
2 tmp = f ( i )
3 A( i ) = A( i +100)+tmp
4 s = s+A( i )
5 EndDo

$OMP END DO

. . .
$OMP END

(a) (b)

Fig. 50. Loop parallelization. (a) Original sequential loop. (b) After parallelization

using OpenMP directives.

Table VII. Comparison of parallel code generation strategies.

Strategy Advantage Disadvantage

Multiple versions Fastest Large code size

Dynamic generation Small codes size Recompilation penalty

Only parallel Small codes size, fast parallel Slower sequentially

B. Static vs. Dynamic Parallelization

When the loop is found parallelizable statically, no run time dependence tests

are needed. Otherwise, we need to predicate the parallel execution to the run time

value of the PDAG that represents the independence condition.

In the example in Fig. 51, the loop can be run in parallel only if the two arrays

are respectively independent. There are three approaches (Table VII) to generating

code that can be run either in parallel or sequentially depending on a dynamic value.
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1 Do i =1 ,100
2 A(p( i ) ) = A( i )
3 B(q ( i ) ) = B( i )
4 EndDo

i s LoopPa r a l l e l = i sP a r a l l e l A AND i sP a r a l l e l B
mustRestoreTc = f a l s e
I f (NOT i sLoopPa r a l l e l )
mustRestoreTc = true
tc = omp get num threads ( )
Call omp set num threads (1 )

EndIf
$OMP PARALLEL

$OMP + PRIV ATE(TMP )
$OMP DO

1 Do i =1 ,100
2 A(p( i ) ) = A( i )
3 B(q ( i ) ) = B( i )
4 EndDo

$OMP END DO

$OMP END

I f ( mustRestoreTc )
Call omp set num threads ( tc )

EndIf

(a) (b)

Fig. 51. Run time loop parallelization. (a) Original sequential loop. (b) After paral-

lelization using OpenMP directives.

First, we could generate two versions (sequential and parallel) at compile time.

The right version will then be dispatched dynamically using a conditional jump. This

approach would be fastest but it could incur exponential code increase when loop

nests are parallelized at multiple levels. There are also other factors discussed over

the following sections that could increase the number of versions further.

Another approach would be to generate parallel code at run time using a dynamic

compiler. We have not explored this possibility due to the lack of dynamic compilation

capabilities in our compiler framework. Although the overhead of recompilation could

be large, this approach could work in cases where the code cannot be parallelized well

otherwise. The compiler could be run concurrently with the application and the

parallel code versions could be used as they become available. This approach could

also be attractive when other issues such as run time privatization and reduction

parallelization (see following sections) are factored in.
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Rather than generating multiple (parallel/sequential) versions, we chose to just

generate a parallel version. When the dependence test fails, the number of threads

is set to 1 so the loop gets executed sequentially. The number of threads gets then

restored to its original value, which is usually set by the user via a shell environment

variable.

C. Dynamic Optimization Strategy

Our run time optimization (parallelization) model takes a code slice (loop) and

produces an optimized (parallelized) version. The choice between the optimized (par-

allelized) and original version is made at run time based on the value of a run time

test expressed as a PDAG.

1. Inspector/Executor

In most cases the value of the run time test can be computed before the loop is

executed. For those cases we implemented an inspector/executor model conceptually

similar to [141]. Rather than computing communication schedules we just produce a

boolean value: parallel or sequential.

The inspector/executor model is relatively easy to implement. We find the point

in the program where all the necessary values to compute the PDAG become available.

If this point dominates the entry to the parallelized loop, then we can apply the

inspector/executor strategy. We generate code to evaluate the PDAG and save its

result in a boolean variable. The value of this boolean variable is then used in the

run time test as shown in Fig.51(b).

If the data needed to compute the PDAG are not available before entering the

loop, we extract a slice of the loop that computes just the necessary values. Unfor-
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tunately, in some cases the computation in the slice can be so expensive that it may

reduce significantly or even cancel the profitability of the optimization (paralleliza-

tion).

For performance reasons, it is crucial that the inspector phase be parallelizable.

Otherwise, the parallelization will not scale with the number of available processing

units. Although all the operations required to evaluate PDAGs are parallel, it is

possible that the slice that precomputes needed values cannot be parallelized (it

could be a linked list traversal).

2. Speculation

When the values needed to compute the PDAG are not available before the loop

we could extract a slice to precompute them. However, this can be very expensive.

In the worst case, the whole loop could appear to be a strongly connected data flow

graph that must be executed sequentially, and which produces a needed value at

the end of the last iteration. In such a case the inspector is the whole loop, so no

optimization is possible.

Fortunately there is an alternative that does not require precomputation of values

needed by the PDAG. Instead, we can execute the loop speculatively in parallel and

evaluate the PDAG along. The values required by the PDAG will always be available

before the end of the loop, so we will know whether the loop was indeed parallelizable

at the latest upon exit from the parallel section.

a. Checkpointing

In order to account for the case when the speculation failed, we must checkpoint

the state of the program before entering the speculative section. In case of failure,

the program state is restored to that before the speculative section, and the code is
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reexecuted using the unoptimized (sequential) version.

We implemented an efficient checkpointing scheme based on array dataflow anal-

ysis such that only objects that may be modified within a loop, and which are live

upon exiting the loop, are saved before executing the loop in parallel speculatively.

We used the dataflow information produced by MCA.

3. Inspector/Executor vs. Speculative Execution

The choice between inspector/executor and speculative execution is either dic-

tated by the data dependence relations or by a performance model. For many classes

of access patterns there are parallel inspectors. Any access based only on precomputed

subscript arrays, induction variables and per-iteration temporary variables leads to

parallel inspectors. When an array A is written based on an index or conditional

that contains references to A, there may exist a cycle between the computation and

address. For arrays this situation cannot always be proven at compile time (though a

linked list traversal can be proven). Then we have the choice to either distribute the

loop and isolate the statements that are in the cycle or to use the speculative paral-

lelization strategy [155, 1]. If we believe that the statements that potentially form a

data dependence cycle are indeed sequential (e.g., linked list traversal) then specula-

tive execution will fail and loop distribution is the better choice. The loop containing

the cycle will be executed serially and its results will be used by the second, possibly

parallel loop. When USRs are computed, they store references to the statements they

were extracted from. These references are kept throughout the aggregation process.

In case there is a dependence involving arrays, found as an overlap of two USRs, the

statements referenced by the two USRs give us a superset of the dependence cycle.

When dependence cycles are not an issue, then the decision is based on the ratio

between the execution time of an inspector loop and that of the entire loop. Small
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1 t o t a lE r r o r = 0
2 ptr = 0
3 Do i =1 ,1000
4 Do j =1 ,10
5 W( j ) = . . .
6 EndDo
7 sum = 0
8 Do j =1 ,20
9 sum = sum+W( j )

10 EndDo
11 e r r o r = f (sum)
12 I f ( e r ro r <t o l e r an c e )
13 ptr = ptr+1
14 Result ( ptr ) = sum
15 to t a lE r r o r = to t a lE r r o r + e r r o r
16 EndIf
17 EndDo

Fig. 52. Example of a loop that can be run in parallel after removing dependences through

privatization and after reduction and pushback parallelization.

inspectors seem to perform well. A more detailed discussion about these choices can

be found in [130].

Regardless of the chosen strategy, the run-time overhead for dependence testing

is reduced by the level of aggregation that our HA framework achieves.

D. Transformations to Remove Dependences

Consider the example in Fig. 52. Each iteration computes some values that are

stored in array W. Their sum is then computed and stored in scalar sum, and used

to compute an error measure, error. If the error is within some tolerance threshold,

the sum is pushed to a result stack, Result, and the error is added to a total.

Based solely on data dependence analysis, the loop at line 3 should be declared

sequential. There are possible cross iteration dependences on arrays W and Result,

as well as on scalars j, sum, error, ptr and totalError.

Let us notice that variables W, j, sum and error are defined before being used in

each iteration of the outermost loop. Our analysis also finds that their WFi sets are
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loop invariant. Essentially, that means that there are output dependences between

each iteration, but these dependences can be eliminated by privatizing them, i.e.,

creating a private copy for each iteration. In practice, we create private copies for

each execution thread rather than for each iteration. Our analysis also finds that

their ROi and RWi sets are empty, except for W, where ROi = [11 : 20]. This means

that privatization removes all other cross iteration dependences. Since their liveness

ranges are within a single iteration, there can possibly be no value flow across different

iterations.

When privatizing array W, the parallel version will allocate additional storage per

processor. Each thread will reference its private version of W wherever the sequential

version would reference W. This could create two problems. First, the loop at line 8

uses elements of W that are initialized before the loop. Although those reads do not

cause cross iteration dependences, they will use uninitialized data when reading from

the private version of W. We must initialize the private versions by copying in from

the original W at locations [11:20]. The second problem could happen if W is used

after the loop. In that case, we must copy out the values at locations [1:10] from the

private version of the thread that executed the last iteration to the original version.

Variable totalError has a nonempty RW descriptor, which means it has a cross

iteration flow dependence. This dependence cannot be removed by privatization since

there could be a flow of values across iterations in case the condition at line 12 is

true for at least two iterations. However, the specific pattern of the computation of

totalError allows us to make an algorithm substitution, widely known and accepted

as reduction parallelization. A detailed discution of reduction parallelization can be

found in [186].

Variables ptr and Result are part of another pattern that we classified using the

Value Evolution Graph as a conditional pushback sequence. This pattern also has an
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1 Do i =1 ,1000
2 Do j=begin ( i ) , end ( i )
3 W( j ) = . . .
4 EndDo
. . .
5 EndDo

Fig. 53. In order to parallelize the outer loop, privatization of array W may or may not be

needed depending on the values of subscript arrays begin and end.

equivalent parallel counterpart that we substitute in automatically.

These transformations have been studied extensively and are well documented

in literature. However, there are a few aspects that become interesting when they are

performed in the context of dynamic parallelization. The remainder of this section

presents in detail some of the challenges (and opportunities) of these transformations

presented by the need (and capability) of making decisions at run time.

1. Hybrid Privatization

In the example in Fig. 52 array W is written at locations [1:10] in every iteration

of the outermost loop. It is thus clear at compile time that it must be privatized to

eliminate output dependences.

In other cases, it cannot be determined at compile time whether privatization is

needed. Consider the case in Fig. 53. If begin(i) = 10 ∗ i+ 1 and end(i) = 10 ∗ i+ 10,

statement 3 does not cause any dependences in the outer loop. However, if begin(i) =

1 and end(i) = 10, there are dependence between any two different iterations of the

outer loop.

The conservative decision would be to always privatize when not sure. However,

this could be highly inefficient. It may be that array W is initialized in independent

blocks and its values will be used after the loop nest. The array may have a very
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Table VIII. Comparison of run time privatization strategies.

Strategy Advantage Disadvantage

Multiple versions Fastest Large code size

Predicated Smaller codes size Predication penalty

Pointer-based Smallest codes size Pointer penalty

Dynamic compilation Small codes size Recompilation penalty

large size, so privatization might use a large amount of unnecessary storage and will

perform unnecessary copy-in and copy-out. It would be better to actually analyze

the subscript arrays before the loop and find out whether privatization is needed or

not.

We express the privatization problem as a USR identity, which translates into a

PDAG based on interval trees.

⊗∪i=1,n

[

WFi ∩
(

⊗∪k=1,i−1WFk

)]

= ∅

Unfortunately knowing at run time whether the variable is privatizable is too

late. The code has already been generated at compile time. It is thus necessary to

generate code that can switch at run time between using the original variable and

using the private variable.

There are at least four possible designs (Table VIII). First, we can create two

versions of the whole loop. This approach achieves the lowest run time overhead but

may lead to increase in code size exponential in the number of run time decisions.

Second, we could create predicated multiple versions just for the individual statements

that may reference the privatized variable. This is our current implementation. This

leads to a lower increase in code size but has possibly higher overhead. Third, we

can replace all uses of the variable in the loop with a pointer which is set at run time

before the loop based on the privatization decision. This could be the best approach



116

1 W( 1 ) = . . .
2 W(n ) = . . .
3 Do i =1 ,1000
4 Do j =2,n−1
5 W( j ) = . . .
6 EndDo
7 . . . = W(1)
. . .
8 Enddo

Fig. 54. Privatization with copy-in. Only the ends of the array must be copied.

but it requires pointer manipulation which is unavailable in our Fortran 77 compiler

framework. Finally, we could rely on dynamic code generation through recompilation.

Although the overhead of recompilation is generally high, the quality of the generated

code might make up for it for important loops that run for a long time and do not

need to be recompiled often.

a. Hybrid Copy In

Copy-in and copy-out are operations required to maintain the private and shared

(original) versions of a variable consistent. The conservative direction is to perform

both copy-in and copy-out when unsure. However, being overly conservative is often

suboptimal. Using USRs, we can express the exact array sections that must be copied

in. In the example in Fig. 54, Copy in = {1, n}. In general,

Copy in =
(

⊗∪i=1,nROi

)

−
[(

⊗∪i=1,nWFi

)

∪
(

⊗∪i=1,nRWi

)]

b. Hybrid Copy Out and Last Value Assignment

Conceptually, Copy-out is the complementary operation of Copy-in. When per-

forming privatization, the original shared variable must be updated after the loop

using the values stored in the private versions. The update is required only if the
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variable may be used after the loop.

There are two reasons why a variable may not be used after the loop. First, it

may be that the variable is a temporary that is not referenced on any control flow

path after the loop. This can be checked easily by traversing the control flow graph.

Second, it may be that the variable is rewritten on all control flow paths before it is

used again. In this case the values defined in the loop are not needed again. When

the variable is scalar, this can also be checked relatively easily. When it is array, this

is a complex array dataflow problem. Fortunately, we can use the MCA information

to solve it efficiently.

While Copy-in incurs relatively small run-time overhead (time proportional to

the amount of private data), Copy-out can be more complex. In case the last iteration

does not write a private array completely, we have to check which previous iteration

wrote it last.

This problem is known as determining the last assignment and it can be for-

mulated in two ways. Traditionally, it was formulated as finding, for each memory

location, the iteration vector and statement that wrote it last. This statement, at

this iteration vector can then write directly to the shared rather than private version.

This approach is very precise but quite complex when the loop spans multiple sub-

programs because iterations vectors become much more complex (require call stack

information). We have also given a dual formulation to this problem. For each itera-

tion, we compute the set of memory locations that can be written out as a USR. At

the end of the loop, this set is written out to the shared variable by each iteration.

Since all these sets are mutually disjoint, the copy-out operation is fully parallel.

Copy out = WFi −
(

⊗∪k=i+1,nWFi

)
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1 Do i =1 ,1000
2 Do j=begin ( i ) , end ( i )
3 R( j ) = R( j ) + . . .
4 EndDo
. . .
5 EndDo

Fig. 55. In order to parallelize the outer loop, reduction parallelization on array W may or

may not be needed depending on the values of subscript arrays begin and end.

2. Hybrid Reduction Parallelization

In the example in Fig. 55 it cannot be known at compile time whether the ref-

erence pattern on array R is fully independent or whether there are cross-iteration

dependences for the outer loop. The outer loop can be parallelized in both cases

because the operation on R is recognized as a reduction. However, reduction paral-

lelization is significantly more expensive than a fully parallel loop.

[186] presents a more general discussion on how to parallelize reductions at run

time using an adaptive system based on parameters such as the degree of sparsity

of the contention matrix (elements X iterations). Our contribution here is that we

can find out easily a particular case, i.e., when the reduction is trivial (independent

update). We express this using a USR identity from which we extract a PDAG.

⊗∪i=1,n

[

RWi ∩
(

⊗∪k=1,i−1RWk

)]

= ∅

The conservative direction is to always execute as a reduction. However, if we

know at run time that the pattern is actually independent, we can run a more efficient

code version. The implementation is analogous to the one for run time privatization

discussed in Table VIII.
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1 Sub compute (W, R, n)
2 Dimension R(1000 ) , W(∗ )
3 Do i =1 ,1000
4 Do j =1,n
5 W( j ) = . . .
6 EndDo
. . .
7 EndDo

. . .
8 Program main
9 Dimension R(1000 ) , W(10000)

10 Read n
11 Call compute (R, W, n)

Fig. 56. In order to parallelize the outer loop, reduction parallelization on array W may or

may not be needed depending on the values of subscript arrays begin and end.

3. Pushback Sequence Parallelization

We have discussed in Section IV.C.4 pushback sequences that are generally defined

as a sequence of consecutive write-first (WF) reference sets. The fundamental effect

of the transformation is that it eliminates all dependences caused by the pushback

operation on the stack arrays and stack pointers.

Our pushback recognition based on USRs is more general than previous recogni-

tion methods which can deal only with textual matches (which are the trivial partic-

ular case when using USRs).

E. Automatic Detection of Array Bounds

In the example in Fig. 56, in order to parallelize the loop at line 3, we must pri-

vatize array W. If we just insert an OpenMP directive PRIVATE for W, the OpenMP

compiler will generate an error message: Cannot use PRIVATE with an assumed size

array. This message is caused by the fact that the OpenMP compiler cannot figure

out the size of the array, thus it does not know how much memory to allocate for the

private versions (and therefore the extent of copy-in and copy-out operations).
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When the array does not have a LASTPRIVATE clause it is possible to find a

conservative overestimation of the array size. The simplest, though practically useless

is the whole address space. We can do better by tracing the array into the calling

context. In our case, it is traced to array main::W, which is of size 10,000. However,

it may be that the dynamic value of n is 10, and we would still overshoot by a factor

of 1000.

Our algorithm first checks the USRs that describe the reference pattern within

the loop. If this pattern is linear, we compute the bounds directly from the USR.

If the pattern is nonlinear, we compute a linear approximation. We then compare

this linear approximation against the conservative measure obtained by analyzing

the originating storage within calling contexts. The minimum is used as new array

bounds. When there are multiple loops in the same subprogram, we can either take

the maximum across all loops, or allocate private variables explicitly for each loop,

bypassing the OpenMP mechanism.

When the array does have a LASTPRIVATE clause, the exact size must be

known. Overestimating it may result in writing over the bounds of the original array

in the copy-out phase.

F. Case Study: DYFESM/MXMULT do10

Fig. 57 shows an important computational core in benchmark application DYFESM

(42% of the total sequential execution time). The main data structure, array MX,

is divided into logical blocks corresponding to a physical discretization of the two

dimensional object it models. Array MX contains one block for each physical dis-

cretization block. Each block in MX is made of all physical elements fully contained

in its corresponding physical block. Additionally, MX contains a block that stores



121

1 Do i s s = 1 , nss
2 i l o c = pptr ( i s s )
3 neq i = ib l e n ( i s s )
4 Call blckmx ( i s s , mx( i l o c ) , mx( i l o c b ) , x , neq i )
5 EndDo

6 Sub blckmx ( i s s , mxi , mxb , x , neq i )
7 Call zerov (mxi , neq i )
8 Do k = 1 , nepss ( i s s )
9 id = idbegs ( i s s )+k−1

10 . . . / / compute array ′mxe′

11 Call assemr ( id , mxe , mxi , mxb)
12 EndDo

13 Sub assemr ( id , rhse , rh s i , rhsb )
14 Do in = 1 , nnped
15 node = Abs( icond ( in , id ) )
16 i b l o c k = iwherd ( node , 1 )
17 i r e l = iwherd ( node , 2 )
18 I f ( i b l o c k .EQ. nblock )
19 Do i = 1 , 5
20 rhsb ( i+i r e l −1) = rhsb ( i+i r e l −1)+rhse ( i , in )
21 EndDo
22 Else
23 Do i = 1 , 5
24 r h s i ( i+i r e l −1) = rh s i ( i+i r e l −1)+rhse ( i , in )
25 EndDo
26 EndIf
27 EndDo

1
 2, 4, 5, 6, 8
9
7
3
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 6
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Block 1
 Last Block
Block 4
Block 3
Block 2


Block 1
 Block 2


Block 3
 Block 4


iloc=pptr(iss)
 neqi =

iblen(iss)


ilocb


MX


Fig. 57. Code extracted from loop MXMULT do10 in benchmark application

DYFESM (PERFECT suite) and schematic representation of the main data

structure, array MX.
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all the boundary nodes (shared by at least two physical blocks). Depending on block

size, the size ratio of the last block over the whole array can range from 0 to 100%.

In the test input size MX contains 4 blocks of 4 elements each, plus a last block of

size 9.

The loop at line 1 iterates over the physical blocks. In each iteration iss, it calls

subroutine blckmx. Within blckmx, arrays MXI and MXB are aliased to MX blocks

iss and the last one respectively. Subroutine blckmx calls subroutine assemr, which

takes an array of intermediate values RHSE and updates either RHSI (MXI) or RHSB

(MXB) based on the values of indirection arrays iwhered and icond.

Each iteration produces two descriptors: WFiss, which is exactly the iss block in

MX, and RWiss, which is a part of the last block. The operations at lines 20 and 24

are reductions. Moreover, in every iteration of the outermost loop the origin of WF

references (line 7) dominates the RW operations at lines 20 and 24. It results that the

dependences that cannot be removed by privatization and reduction parallelization

consist of the intersection of WF and RW , as illustrated by Fig. 58. The USR

representation in this figure differs slightly from the one used throughout this paper.

It was generated automatically by Polaris using the GraphViz dot tool [187].

Fig. 59 shows a PDAG extracted from the dependence set in Fig. 58. This

PDAG essentially tests whether the RW sections are empty for all iss = 1, nss. The

PDAG consists only of comparisons, but it is only sufficient, and not necessary to

prove independence. In this particular case, this PDAG will actually not produce

meaningful information for any realistic input set. The dependence test for MX

consists of a cascade. The PDAG made of comparisons is doubled by the evaluation

of the whole USR and its comparison against the empty set.

Fig. 60 presents the USR that computes all the locations that have cross-iteration

RW overlaps. It is a union across the iteration space of the intersection of the per-
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WF/RW: MX : 

iss=1,nss iss=1,nss

WF: MX : [1:(-1)+iblen(iss)]+(-1)+pptr(iss) RW: MX : 

BLCKMX(+pptr(iss)) BLCKMX(+pptr(nblock))

k=1,nepss(iss)

k=1,nepss(iss) MXI: [1:(-1)+neqi]+0

ASSEMR

in=1,nnped

iwherd(ABS(icond(in, id)), 1)+(-1)*nblock.NE.0

RHSI: [1:4]+(-1)+iwherd(ABS(icond(in, id)), 2)

ASSEMR

in=1,nnped

iwherd(ABS(icond(in, id)), 1)+(-1)*nblock.EQ.0

RHSB: [1:4]+(-1)+iwherd(ABS(icond(in, id)), 2)

Fig. 58. Dependence set as a USR for array MX in loop MXMULT do10. Only RW vs.

WF dependences shown. Triangle = intersection, inverted triangle = union, el-

lipse = recurrence, empty diamond = difference (second term designated by dotted

line), diamond with conditional = gate, hexagon = translation across subprogram

boundary, and rectangle = list of LMADs.
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DO iss = 1, nss

*

BLCKMX BLCKMX

DO k = 1, nepss(iss)

ASSEMR

DO in = 1, nnped

iwherd(ABS(icond(in, id)), 1)+(-1)*nblock.EQ.0

DO k = 1, nepss(iss)

ASSEMR

DO in = 1, nnped

iwherd(ABS(icond(in, id)), 1)+(-1)*nblock.NE.0

Fig. 59. Sufficient PDAG consisting of only simple expressions extracted from the depen-

dence test on array MX in loop MXMULT do10. Ellipse = logical AND across an

iteration space, triangle = logical AND, hexagon = translation across subprogram

boundaries, rectangle = conditional expression.
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RW/RW: MX : iss=1,nss

RW: MX : 

L: iss=1,nss(di6=1,iss-1)

BLCKMX(+pptr(iss)) BLCKMX(+pptr(nblock))

k=1,nepss(iss)

k=1,nepss(iss) MXI: [1:neqi-1]+0

ASSEMR

in=1,nnped

iwherd(ABS(icond(in, id)), 1).NE.nblock

RHSI: [1:4]+iwherd(ABS(icond(in, id)), 2)-1

ASSEMR

in=1,nnped

iwherd(ABS(icond(in, id)), 1).EQ.nblock

RHSB: [1:4]+iwherd(ABS(icond(in, id)), 2)-1

Fig. 60. Dependence set as a USR for array MX in loop MXMULT do10. Only RW vs. RW

dependences shown. They are the ones that can be removed by parallelizing the

reduction operation. In addition to the symbol explanation given in Fig. 58, the

dotted ellipse means a partial iteration space, in this case 1,2,...,iss-1.
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iteration RWiss and the RW across all iterations before iss. The PDAG extracted by

Hybrid Analysis essentially tests whether the RW sections are empty for all iss = 1,

nss. The memoization mechanism in the PDAG extraction algorithm actually returns

a reference counted clone of the PDAG shown in Fig. 59. This PDAG is doubled by

a USR evaluation test.

In general, this test is crucial to the correctness of the parallelization. In par-

ticular cases (when there are no WF/WF overlaps), the loop could be executed as a

full reduction using OpenMP primitives regardless whether there are or not RW/RW

overhead. The work complexity of the reduction operation would be O(n ∗ p) (as-

suming n elements on p processors). Our solution is much better. When we knew

that the operation is indeed fully independent, we avoid the final reduction operation

by using shared rather than private storage for MX (switching at run time based on

the overlap PDAG). Even though for this loop the test always fails, we can compute

the exact reduction operation footprint, which in our case is the last block in MX.

This reduces the work complexity from O(n ∗ p) to O(
√

n ∗ p), in the case where the

number of blocks stays constant but the block size increases with n, the total number

of elements.

Fig. 61 presents (a) the output dependence set and (b) its corresponding nec-

essary and sufficient PDAG, which consists of a call to a run time library that can

decide whether a set of intervals are mutually disjoint. Similarly to the dynamic

reduction decision, it is important from a performance stand point to know whether

there are any output dependence. The presence of dependences would trigger a pos-

sibly expensive computation of last value assignment locations for each iteration,

which is similar in complexity to a reduction on operator MAX. Knowing that there

are no dependences would avoid this possibly expensive operation and would elimi-

nate the need to allocate private storage and to initialize it. In this particular case it
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WF/WF: MX : iss=1,nss

WF: MX : [1:iblen(iss)-1]+pptr(iss)-1

L: iss=1,nss(di6=1,iss-1)

DISJOINT: iss = 1, nss: [1:iblen(iss)-1]+block_pptr(iss)

(a) (b)

Fig. 61. (a) Output dependence set descriptor as USR and (b) necessary and sufficient

PDAG as call to a run time library.

turns out dynamically that there are no output dependences (the blocks are accessed

within bounds respectively). However, here privatization still takes place because it

is imposed by the reduction operation.

All the tests discussed above are generated as inspectors. They all rely on indi-

rection arrays that are either read from an input file or computed at the beginning

of the execution, before entering the main computation loop. The reuse rate is about

1000, which means each test was executed only once for 1000 dynamic instantiations

of the loop. Table IX shows the dynamic characteristics of the tests. The simple

PDAGs fail to prove RW and WF disjoint, but the more expensive test based on

USR evaluation succeeds.

Fig. 62 presents the actual parallel (OpenMP) code generated by Polaris us-

ing Hybrid Analysis. Variables mxmult do10 is indep, mxmult do10 mx nopriv, mx-

mult do10 mx nored and r 43 are precomputed before the loop. The first three are

the values returned by the inspector cascades that decide whether the loop can be
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IF ( .NOT. mxmult do10 is indep ) THEN
C Save the cur rent number o f threads .

mxmult do10 np = omp get num threads ( )
C Run s e qu e n t i a l l y .

CALL omp set num threads (1 )
ENDIF

! $OMP PARALLEL

! $OMP + DEFAULT (SHARED)
! $OMP + PRIV ATE(ISS, NEQI, PC1, PC0, MX0)

IF ( .NOT. mxmult do10 mx nored ) THEN
CALL u s r z e r o ou t r 8 (mx0 , r 43 )

ENDIF
! $OMP DO

DO i s s = 1 , nss , 1
C Call to bu i ld COPY OUT de s c r i p t o r r 57 f o r (mx, mx0 ) .

CALL rt lmadi mxmult do10 mx p red copy out o 1 ( i s s )
neq i = i b l e n ( i s s )
pc0 = pptr ( i s s )
pc1 = pptr ( nblock )
IF ( .NOT. mxmult do10 mx nopriv .OR. .NOT. mxmult do10 mx nored ) THEN
CALL blckmx ( i s s , mx0( pc0 ) , mx0( pc1 ) , x , neqi , neqb )

ELSE
CALL blckmx ( i s s , mx( pc0 ) , mx( pc1 ) , x , neqi , neqb )

ENDIF
2 CONTINUE

IF ( .NOT. mxmult do10 mx nored .OR. .NOT. mxmult do10 mx nopriv ) THEN
CALL usr copy out (mx0 , mx, r 57 , 8 )

ENDIF
ENDDO

! $OMP END DO

IF ( .NOT. mxmult do10 mx nored ) THEN
CALL us r r educe add r8 (mx0 , mx, r 43 )

ENDIF
! $OMP END PARALLEL

C After per−symbol t e s t s .
IF ( .NOT. mxmult do10 is indep ) THEN

C Switch back to p a r a l l e l .
CALL omp set num threads ( mxmult do10 np )

ENDIF

Fig. 62. Parallel code for loop MXMULT do10. Variables mxmult do10 is indep, mx-

mult do10 mx nopriv, mxmult do10 mx nored and r 43 are precomputed be-

fore the loop. The call to rtlmadi ... copy out o 1 computes USR r 57, which

is then used in the call to usr copy out.
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Table IX. Run time tests actually executed to decide whether the dependence struc-

ture on array MX prohibits or allows parallelization. %S represents the time

spent in the test as a percentage of the execution time of the loop.

Test Type Accuracy Success % S

Parallel/Sequential Simple Expression Sufficient Fail 0.005
USR Evaluation Necessary&Sufficient Pass 0.025

Indep. Update/Reduct. Simple Expression Sufficient Fail 0.005
USR Evaluation Necessary&Sufficient Fail 0.030

Indep. Write/Priv. Interval Trees Necessary&Sufficient Pass 0.005

executed in parallel (indep ≡ there are no unremovable dependences), whether the

reference pattern on MX is free of output dependences (nopriv ≡ there are no out-

put dependences), and whether the RW reference pattern on MX is an independent

update or a reduction (nored ≡ there are no cross-iteration RW dependences). RW

dependences are treated separately only when the compile time analysis recognized

the operation that produces them as a reduction.

1. Discussion

The code generation presented in this case study is not necessarily the most

efficient possible. It is the result of a strategy that applies to the general case, and

which takes into account a large array of possible run time scenarios.

In this particular case, the compiler could do better by identifying at compile

time the originating sites of WF and RW respectively and create code versions that

write directly in the shared MX assuming that the output dependence test will pass.

This code version can be selected at run time after the output dependence test does

pass. The advantage is that the copy-out phase is not necessary in this optimized

version.

Unfortunately the number of optimized versions is an exponential function of the
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number of dynamic decisions. An alternative would be to generate optimized code at

run time, but that is beyond the scope of this paper.
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CHAPTER VI

COMPILER DESIGN AND IMPLEMENTATION

We have implemented the Hybrid Analysis framework in Polaris [188], a source

to source Fortran 77 research compiler. Our implementation consists of a generic

bottom-up program traversal method that implements the abstract interpretation

process to aggregate memory references. The atom of information is a triplet (RO,

WF, RW), each of which is represented as a USR. When the analysis reaches a

loop header, we perform dependence analysis, i.e., extract PDAGs from dependence

questions, and generate parallel execution code and run time tests when necessary.

This section presents four important aspects of the implementation. First, we

had to implement a set of prepasses to bring the input program to our program

model. Second, we had to implement a symbolic analysis engine in order to push

the static component of hybrid analysis as far as possible. Third, we will discuss the

design rationale and complexity of the USR. Fourth, we will present the design and

implementation of the PDAG, our boundary between static and dynamic analysis.

A. Making General Applications Fit our Program Model

The program model presented in Section III.1 helped us formalize the analysis

process. However, most programs use language constructs that do not fit this model.

We have implemented a series of filters that transform a given program such as a

standard benchmark application into a program that fits our model.

First, we transform the program into an equivalent one in which the control

dependence graph (CDG) is acyclic. Then we disambiguate aliased variables by using

a single name for a whole alias class. Last, we perform a series of transformations

that translate language constructs specific to Fortran 77 into simpler equivalent ones,
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thus avoiding special cases.

1. Bringing Programs to Block Structured Form

A program in block structured form is a program that contains no jump instruc-

tions such as GOTO or RETURN. In such a program the only control structures are

nested If-Then-Else blocks, Do and While loops. For simplification, we treat inter-

nally While loops as Do loops with an infinite number of iterations, each of which

is guarded by the While condition. The While loops are restored before the code

generation phase.

In all block structured form programs the CDG is a tree which mirrors the

block hierarchy relations. Conversely, all programs for which the CDG is a tree

can be rewritten without any jump statements by simply traversing the CDG. Jump

statements can be treated as No-ops on the CDG because they are just control markers

which on the CDG are represented explicitly by CDG edges.

When the CDG is not a tree but a DAG, it can be converted to a tree by splitting

nodes with multiple parents. Although in theory this could lead to an exponential

increase in the number of statements, in practice the increase was below 40% across

a large class of benchmark programs. Newer, better written codes use fewer GOTOs

and thus require almost no node splitting. Our proposed analysis can be performed

on programs for which the CDG is a DAG, but we have preferred to simplify them

to trees (thus block structured programs) for simplicity.

Trivial CDG cycles (self loops) can be tolerated by our analysis as long as they

are marked as loops. This way, the abstract interpretation process will process them

as loops and thus produce an accurate view of the memory reference pattern.

Nontrivial CDG cycles do not fit our representation. In more common terms

they correspond to loops with premature exits. Our approach is to modify the CDG
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1 Do i =1 ,10
2 I f ( x ( i )<0)
3 GoTo 9
4 EndIf
5 Print x ( i )
6 EndDo
7 Print ’ A l l OK. ’
8 Return
9 Print ’ Bad x . ’

10 Return

2
1


7
 5
 9


T


F

F
 T


F


(a) (b)

99 peFlag = f a l s e
98 peS i t e1 = f a l s e
1 Do i =1 ,10

97 I f (NOT peFlag )
2 I f ( x ( i )<0)

96 peFlag = true
95 peS i t e1 = true
3 GoTo 94
4 EndIf
5 Print x ( i )

94 EndIf
6 EndDo

93 I f ( peS i t e1 )
92 GoTo 9
91 EndIf
7 Print ’ A l l OK. ’
8 Return
9 Print ’ Bad x . ’

10 Return

2


1


97
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99 peFlag = f a l s e
98 peS i t e1 = f a l s e
1 Do i =1 ,10

97 I f (NOT peFlag )
2 I f ( x ( i )<0)
3 peFlag = true

96 peS i t e1 = true
95 Else
5 Print x ( i )
4 EndIf

94 EndIf
6 EndDo

93 I f ( peS i t e1 )
9 Print ’ Bad x . ’

92 Else
7 Print ’ A l l OK. ’

91 EndIf

(c) (d) (e)

Fig. 63. Code Restructuring. (a) Original code and (b) corresponding CDG with a

nontrivial cycle. (c) After insertion of control variables peFlag and peSite1.

(d) Corresponding CDG with only a trivial cycle and (e) code generated from

the CDG (without any jump statements such as GOTO and RETURN).
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so that it becomes a DAG with self loops. This modification is illustrated in Fig. 63.

The loop at line 1 in Fig. 63(a) contains a premature exit controlled by the conditional

at line 2. The conditional and the loop header form a cycle in the CDG. In order to

remove this cycle, we introduce a control variable peFlag (Fig. 63(c)), which is set to

true when the premature exit would have happened. Instead of jumping outside the

loop, we now jump to the end of the current iteration. The whole iteration is guarded

by the control variable. Additionally, we keep another control variable peSite1 which

stores the exact location of the premature exit in case there are multiple such sites.

The stub right after the loop jumps to the correct target when the loop is exited

prematurely. Although this transformed program still contains GOTOs, its CDG

,Fig. 63(d), does not contain cycles anymore except for the self loop at node 1. We

then rewrite this CDG as the program in Fig. 63(e).

In general, our restructuring process relies on introducing control variables for

every node in nontrivial strongly connected components in the CDG, except for the

node that has a parent outside the connected component. At this point, our algorithm

cannot deal with strongly connected components that can be entered from more than

one point.

2. Alias Disambiguation

Aliases are different names that reference the same memory location. Recogniz-

ing aliases is crucial especially for analyses where the order of references is important,

such as privatization. The Fortran 77 standard forbids the programmer from creating

aliases within a subprogram by associating two formal arguments or global variables,

when any of the objects is written to within that subprogram (or any called sub-

program). While this helps greatly with intraprocedural analysis, there are other

classes of alias that are important to recognize, and where possible eliminate, when
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1 Sub t e s t
2 Common / c / x ( 100 ) , z ( 1 0 ) , w(90)
3 x (11) = 1
4 Call i n i t ( a )
. . .
5 Sub i n i t ( v )
6 Common / c / y ( 10 , 1 0 ) , t (5 )
7 I f ( y (1 , 2)=1)
8 v = 0
9 EndIf

(a)

1 Sub t e s t
2 Common / c / x y ( 100 ) , z t 1 ( 5 ) , z t 2 ( 5 ) , w(90)
3 x y (11) = 1
4 Call i n i t ( a )
. . .
5 Sub i n i t ( v )
6 Common / c / x y ( 10 , 1 0 ) , z t 1 ( 5 ) , z t 2 ( 5 ) , w(90)
7 I f ( x y (1 , 2)=1)
8 v = 0
9 EndIf

(b)

Fig. 64. Unification of COMMON structures disambiguates aliases. (a) Original code.

(b) After common unification.

performing interprocedural analysis.

a. Commons

In Fortran 77 global variables are managed using COMMONs. They are globally

visible names that contain a list of objects (scalars and arrays) of sizes known at

compile time. Unfortunately these lists do not have to match across different subpro-

grams. Consider the example in Fig. 64(a). The same common block /c/ has different

variable lists in the two subprograms. When performing interprocedural analysis it is

crucial to map name test:/c/x into init:/c/y. In order to make this translation easier,

we implemented a unification pass that renames the common variable lists (and their

associated uses) so that they match across subroutines. There are cases where this

renaming schemes cannot work, such as the case when the memory used by a floating

point variable in a subprogram is used for two integers in another. In that case, our

analysis considers them all aliased. We do not perform array reshaping when unify-

ing in order to preserve as much information about array bounds as possible. This

information is valuable for extracting symbolic range information because Fortran 77

forbids out of bounds array accesses.
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1 Real A( 3 0 ) , B(20)
2 Equivalence (A( 1 1 ) , B( 1 ) )
3 Do i =1 ,20
4 A( i ) = B( i )
5 EndDo

A: ++++++++++ ++++++++++ ++++++++++

B: ++++++++++ ++++++++++

1 Real A(30)
3 Do i =1 ,20
4 A( i ) = A( i +10)
5 EndDo

(a) (b)

Fig. 65. Unification of EQUIVALENCE-ed names disambiguates aliases. (a) Original

code. (b) After equivalence unification.

b. Equivalence

In the example in Fig. 65(a), the loop at line 3 seems parallelizable. However,

it actually contains cross iteration dependences due to the fact that A and B are

aliased. When the alias is disambiguated in Fig. 65(a), the dependences are easy to

point out. We perform an automated renaming algorithm for all EQUIVALENCE-ed

names. This routine attempts to not reshape arrays wherever possible. The names

that are still aliased after this filter are marked as such and considered as the same

object by all subsequent analysis passes.

c. Type Mismatches across Subprograms

In legacy codes it is relatively common to hand-optimize codes for a small memory

usage. In Fortran 77, this is usually done by identifying call graph slices that do not

have any data dependences. Subprograms in the same slice usually communicate with

each other through commons, but some such variables are temporary with respect to

the whole slice. In this case, these variables global to a slice are overlayed in memory

with some other variables global to another slice. This overlay is done by giving the

same name to two different commons. Our common restructuring mechanism may
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1 Sub compute (A, V, W)
2 Dimension A(10 ,10)
3 Dimension V( ∗ ) , W(1)
4 Do i =1 ,10
5 Do j =1 ,10
6 V( j ) = . . .
7 W( j ) = . . .
8 EndDo
9 A( f ( i ) , i ) = g (V, W)

10 EndDo

Fig. 66. Array bounds issues.

fail in these cases. However, in many such cases the interprocedural analysis across

the two slices is not relevant since they do not share an actual data flow.

When there is an overlap between a Real and an Integer variables in two different

subprograms, due to either commons or argument matching, the Fortran 77 standard

forbids any data flow to occur. This means that the data flow paths are guaranteed

to be different. We have implemented a simple pass that recognizes type mismatches,

traces them to the original storage, and splits the storage by renaming based on

the number of actual data flows. This transformation is the reverse of the manual

storage-saving optimization and can be used just for analysis purposes (the code can

be left in its original hand-optimized form).

3. Language and Programming Style Issues

There are several Fortran 77 issues and related programming patterns that we

want to address for clarity. They are not fundamental to the techniques proposed in

this document but are important for practical reasons.
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a. Array Bound Declarations

Fortran 77 forbids out of bounds array accesses. In the example in Fig. 66,

this means, assuming the code follows the language standard, that the loop at line

4 cannot carry any dependences on A since the access to A(f(i), i) is always within

A(1:10,i).

Most compilers rely on language standards although there are programming prac-

tices that go against them. For instance, in order to parallelize the loop at line 4 in

Fig. 66, the compiler has to privatize arrays V and W. Array V is declared with as-

sumed size. The backend OpenMP compiler that we use currently reports an error if

a Private directive is attached to an assumed size variable. We designed a pass that

figures out a safe size for assumed size variables based on both the originating storage

and the USRs that describe its access pattern within the loop (sometimes not the

whole array must be privatized).

Unfortunately array W is declared as having a single element but is used as if it

had 10 elements. This is a common practice against the language standard. When

we generate a Private directive for W, the backend compiler privatizes only the first

element, which results in erroneus results. We addressed this common mistake by

conservatively replacing declarations such as W(1) with W(*).

b. Multiple Subprogram Entries

Fortran 77 allows a subprogram to be entered at different points. While offering

an incremental amount of flexibility, this causes an unnatural difficulty in represent-

ing relations between subprograms in the call graph. We decided to transform the

programs into equivalent ones such that every subprogram has exactly a single entry

point, situated at the first executable statement. While this does increase the code
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1 Program main
2 Call compute ( . . . )
. . .
3 Do i =1 ,100
4 Call compute ( . . . )
5 EndDo

7 Sub compute ( . . . )
8 Data i s I n i t i a l i z e d / f a l s e /
9 I f (NOT i s I n i t i a l i z e d )
0 Call i n i t i a l i z e ( . . . )

11 i s I n i t i a l i z e d = true
12 EndIf

. . .

Fig. 67. Lazy initialization pattern.

size, it is sufficiently rare not to make a visible difference in performance overall.

c. Data Statements

DATA statements are the Fortran 77 equivalent of static local variables in C and

C++. They are guaranteed to be initialized only upon the first dynamic entry to the

subprogram where they are declared. Because they create a special case in the data

flow structure of the program, we decided to replace them with global variables that

are initialized using assignment statements (and loops) at the beginning of the main

subprogram.

d. Lazy Initialization Code

Fig. 67 shows a common pattern used especially in conjunction with DATA

statements. Subprogram compute is offered as a library function. However, the

library does not offer an interface for subroutine initialize so this subroutine must

be called on demand upon first entry to compute. This pattern is not particular to

Fortran 77, but is used in C programs as well.

Unfortunately, while making it easy to design modular libraries, this makes it

hard for the compiler to analyze loops such as the one at line 3 in Fig. 67. When

subprogram initialize has global side effects, these effects seem to possibly happen at

every iteration. These apparent side effects may prevent further optimization such as
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Table X. Attribute grammar for generating Fortran code for USRs.

Syntax Production Attribute Grammar Production

D → LMAD list CALL set(D.val, LMAD list)

D → D1 −D2 CALL subtract (D.val, D1.val, D2.val)

D → D1 ∩D2 CALL intersect(D.val, D1.val, D2.val)

D → D1 ∪D2 CALL unite (D.val, D1.val, D2.val)

D → D1#Gate IF (Gate.predicate) THEN
CALL set (D.val, D1.val)

ELSE

CALL set (D.val, ∅)
ENDIF

D → D1 ./ CallSite CALL shift(CallSite.offset, D.val, D1.val)

D → D1 ⊗ (i = 1, N) CALL set (D.val, ∅)
DO i=1,N

CALL unite (D.val, D.val, D1.val)

ENDDO

parallelization.

Our solution to this common problem is to recognize these patterns by finding

conditions that control assignment statements that change the value of their predicate.

When such structures are invoked at several sites, all of which dominated by a single

one, then the initialization phase can only occur at the common dominator site.

We then split the original suprogram in two (initialization and work) and invoke

them both at the common dominator. At all other sites, we invoke only the work

component.

B. USR Design and Implementation

When a USR-based optimization decision cannot be reached at compile time,

Hybrid Analysis generates run time code to make the decision at run time. In most

cases, the run time test will be a PDAG. In other cases, the run time test will consist

of evaluating the USR. In both cases, it is crucial that the USR be simplified as much
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as possible at compile time, so that the associated run time evaluation phase has

reduced overhead.

The code generation for USR evaluation is a translation to Fortran of the lan-

guage presented in Fig. 16. In order to evaluate [1 : n] ∩ [101 : 100 + n] we first

obtain the value of n (assume it is 10). Then we perform the required operation

[1 : 10] ∩ [101 : 110] = ∅. The translation is based on an attribute grammar [8]

described in Table X. The only attribute we use is the run-time value of the USR

as a list of LMADs made of known integer values. Gates translate to If statements,

recurrences to Do loops. Set operations and CallSite nodes translate into calls to a

run-time support library that operates on lists of LMADs with known integer values.

The generated statements are inserted in the code at the first point where all the

values they use are defined. In case the evaluation method is an inspector, we clone

the program slice [189] that computes the values referenced by the USR.

1. USR Optimization

This section focuses on methods to reduce the complexity of USRs. This re-

duction in complexity will translate into a reduction in run time overhead for the

evaluation of USRs and associated PDAGs. Optimization is performed both during

compilation and when evaluating USRs at run time. A USR can be viewed at the

same time as a set, as an algebraic expression or as a parse tree, which means we can

apply known simplification techniques for these three types of representation.

The static optimization phase is based on symbolic analysis. It either simplifies

or restructures USRs so that their predicted evaluation time decreases. Such USR

transformations are based on dataflow analysis (such as loop invariant hoisting), on

control dependence analysis (such as AND-ing mutually exclusive predicates), based

on set identities (such as (A − B) − A = ∅), and based on lattice identities (such as
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Table XI. USR evaluation cost model.

USR D Cost c(D)

LMAD list 0

D1 −D2 c(D1) + c(D2) + 1

D1 ∩D2 c(D1) + c(D2) + 1

D1 ∪D2 c(D1) + c(D2) + 1

D1#Gate c(D1) + 1

D1 ./ CallSite c(D1) + 1

D1 ⊗ (i = 1, N) N ∗ c(D1) + N − 1

A−> = ∅). Loop invariant USR hoisting is similar to the inspector re-use technique

in [141]. The remainder of this section presents the static methods in detail.

Other optimizations are performed at the run-time library level, e.g., contiguous

aggregation, coalescing and interleaving. These optimizations were introduced in [13]

as compile time optimizations.

a. Optimization Based on Minimal Evaluation Cost Form

Throughout this section we will assume that all data needed to evaluate the USR

are already precomputed (no slicing is necessary). Let us associate a cost with every

USR as shown in Table XI.

The USR can be viewed as a tree. An evaluation of the USR can be viewed as

a bottom-up traversal of its tree. The cost of the evaluation can be estimated using

our model.

Let us observe that the same USR can be represented in several equivalent forms.

For instance: ∪N
j=1(A ∩ Bj) = A

⋂∪N
j=1Bj. In the first case, the evaluation cost is

N ∗1+N−1 = 2∗N−1, while in the second it is N−1+1 = N . In general, an USR

can be brought to equivalent forms through transformations such as distribution. We

define the minimal (evaluation) cost form of an USR the form that has the minimal
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cost across all possible equivalent forms.

Intuitively, the evaluation cost decreases when we hoist above recurrence nodes

all nodes that are invariant to the respective recurrences.

b. Partial Invariants

The observation in the previous section relies on the fact that we identified A as

invariant within the recurrence j = 1, N . In general, an operand of a recurrence may

contain invariants that cannot be hoisted trivially above the recurrence operator.

For instance, ∪N
j=1(Aj − B − Cj) 6= ∪N

j=1Aj − B − ∪N
j=1Cj. The right formula is

(∪N
j=1(Aj − Cj))−B.

This section presents an algorithmic O(N) method for extracting all invariants

with respect to a recurrence from an USR with N operands. We consider that we

already know which operands (as LMAD lists) are invariant.

The extraction is based on the following equations:

∪N
j=1(A ∪Bj) = A

⋃∪N
j=1Bj (6.1)

∪N
j=1(A ∩Bj) = A

⋂∪N
j=1Bj (6.2)

∪N
j=1(Aj −B) = (∪N

j=1Aj)−B (6.3)

∪N
j=1(A−Bj) = A− ∩N

j=1Bj (6.4)

In order to bring the operands of the recurrence to one of the forms in the

equations above we perform transformations such as the following (similar equations

exist for all combinations of set operations).

(Ai ∪B) ∪ Ci = B ∪ (Ai ∪ Ci) (6.5)

(Ai −B) ∩ Ci = (Ai ∩ Ci)−B (6.6)

(Ai ∪B)− Ci = (Ai − Ci) ∪ (B − Ci) (6.7)
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1 Do j =1,n
2 Do k=1,m
3 tmp(k ) = . . .
4 EndDo
5 Do k=1,m
6 IF ( c (k , j )<0)
7 . . . = tmp(k )
8 EndIf
9 EndDo

Fig. 68. Access pattern that can be approximated using LMADs.

Based on our simple model, none of these transformations increases the cost.

Some of them (such as 3) seem to be non-profitable since the cost stays the same.

We still prefer to hoist invariants in order to take advantage of other optimization

opportunities such the ones presented over the following sections.

c. Approximation with LMAD Lists

Consider the code in Fig. 68. The read (2) access pattern on array tmp has a

complex shape because it is controlled by an array of conditions c(:,:). However,

regardless of its shape, the read memory accesses are completely overlapped by the

previous writes (1). This results in the array tmp being privatizable in the context of

parallelizing the outer loop.

We cannot make this inference using USRs directly. The details needed to pre-

cisely represent the shape of the memory access make it hard to compare the read

and the write descriptors.

Our solution is to use two additional descriptors with every USR. They represent

an Overestimate and an Underestimate of the USR using lists of LMADs.

The rules for approximating an USR with a list of LMADs are shown in Ta-

ble XII. Using these rules we compute estimates for arbitrarily complex USRs. The

approximations must be conservative, i.e. an overestimate must be larger than its
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Table XII. USR approximation using LMAD lists.

USR D U(D) O(D)

LMAD list LMAD list LMAD list

D1 −D2 U(D1)−O(D2), or ∅1 O(D1)− U(D2), or O(D1)

D1 ∩D2 U(D1) ∩ U(D2), or ∅ O(D1) if size(D1) < size(D2), else O(D2)

D1 ∪D2 U(D1) ∪ U(D2) O(D1) ∪O(D2)

D1#Gate ∅ O(D1)

D1 ./ CallSite U(D1) ./ CallSite O(D1) ./ CallSite

D1 ⊗ (i = 1, N) O(D1)⊗ (i = 1, N), or > U(D1)⊗ (i = 1, N), or D1|i=1, or ∅

corresponding memory reference descriptor. On the other hand, very loose estimates

do not lead to any conclusions. The rules shown in Table XII reflect our effort of

maintaining the estimates as close to the real descriptors as possible.

These estimations are used to simplify the USRs based on the fact that O(D1) ⊆

U(D2)⇒ D1 ⊆ D2. This is expressed in terms of USR operations using the following

equations.

O(D1) ⊆ U(D2)⇒ D1 −D2 = ∅ (6.8)

O(D1) ⊆ U(D2)⇒ D1 ∩D2 = D1 (6.9)

O(D1) ⊆ U(D2)⇒ D1 ∪D2 = D2 (6.10)

d. Language Specific Optimization

As described in the previous section, every USR has two estimates (O and U).

In some cases they cannot be obtained or maintained and they are conservatively

assumed to be > (top), respectively ⊥ (bottom). While for ⊥ there is a definite value

(∅), such a value does not exist for >. There are two provisions in the Fortran 77
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Standard that help obtaining values for > within certain contexts.

When the dimension of an array is fully specified (all dimension bounds are

expressions different from the asterisk), > is conservatively set to the size of the

array (Fortran 77 Standard, section 5.2.3, page 5-3).

When an array is passed as an actual argument to a subprogram, it is subject

to the Restrictions on Association of Entities (Fortran 77 Standard, section 15.9.3.6,

page 15-20). The standard states that if two dummy entities in the called subprogram

are associated during the execution of a subprogram call, than neither dummy entity

can be defined during that particular call. We use this provision of the standard

to limit the > value of USRs that represent write memory descriptors that can be

associated. Consider this statement: CALL sub(A(1), A(10)). We can infer that the

descriptor that corresponds to the write pattern corresponding to the first argument

is limited to the memory region A(1:9). Otherwise the standard would be violated,

since the part of A that extends past A(9) is associated with the second argument.

Redundancy Elimination and Trivial Case Detection

There are two sources for both redundancy and triviality. First, the predicates

in USR gates may be incompatible or they may imply each other. More formally,

(D1#G) ∩ (D2#Ḡ) = ∅ (6.11)

(D1#G)− (D2#Ḡ) = D1 (6.12)

(D#G1) ∩ (D#G2) = D#G1,∀G1 ⇒ G2 (6.13)

(D#G1)− (D#G2) = ∅,∀G1 ⇒ G2 (6.14)

Second, set lattice properties like idempotency, complementariness, absorption
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lead to simpler descriptors. Formally,

A ∩ A = A (6.15)

A ∩ (B − A) = A ∩B ∩ Ā = ∅ (6.16)

(A ∪B) ∩ A = A (6.17)

The set lattice of the USRs representing the memory access for a symbol always

has a bottom value (⊥ = ∅). As we showed in the previous section, in certain cases

a top value (>) can be computed. These values can be used for simplifications as

follows.

A−> = ∅, A−⊥ = A (6.18)

A ∩ > = A, A ∩ ⊥ = ⊥ (6.19)

A ∪ > = >, A ∪ ⊥ = A (6.20)

C. PDAG Design and Implementation

PDAGs are implemented as directed acyclic graphs that can overlap with each

other in memory (using reference counted pointers). This allows for an exponential

number of logical nodes to be stored in linear space. This feature is crucial for the

scalability of techniques such as nested parallelism detection, where many of the

analysis domains are pairwise subsets.

In general, the detection of parallelism at an outer loop is not directly related

to the detection of parallelism at a contained, inner loop. However, a subset of the

problems is the same – and this commonality is exploited naturally by the way PDAGs
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1 Read n
2 Do i =1,n
3 A( i +100) = A( i )
5 B( i +200) = B( i +300)
6 EndDo

(a)

1 Read n
2 Do i =1,n
3 Do j =1,n
. . . / / ROi,j , WFi,j , RWi,j

8 EndDo
9 EndDo

(b)

Fig. 69. (a) Similar dependence tests for arrays A and B can be stored using a single PDAG.

(b) The per-iteration MCA partition descriptors will appear in sub-PDAGs in de-

pendence questions at both loop levels.

are built. We use memoization aggressively when building PDAGs. In the example in

Fig. 69(a), although the two arrays are referenced at different addresses, the run time

dependence test is the same, n ≤ 100. When building the PDAG for the dependence

test for A, we cache the result indexed by the input expression n ≤ 100. The second

time we want to build a PDAG, for the dependence test for B, we do not actually

build it, but rather use the cached PDAG. In addition to saving memory and time

during compilation, this actually reduces the run time overhead.

In the example in Fig. 69(a), let us assume that we have already performed

MCA for the body of the inner loop. The same resulting USR descriptors will be

used to build PDAGs for dependence tests at both loop levels. Parts of the results

of their comparisons may be common between the tests at the two loop levels. The

common parts are detected automatically by the memoization process during PDAG

construction. It does not matter whether the loops are nested cleanly. They could

actually be in different subprograms or/and separated by an arbitrary number of

statements. The analysis using USRs and PDAGs is thus scalable and very robust.
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D. Complexity of Hybrid Analysis

We now show that the computational effort of Hybrid Analysis is quite man-

ageable both at compile-time as well as at run-time thus yielding a viable solution

for optimization based on memory reference analysis such as thread level automatic

parallelization.

In order to understand the structure of space and time complexity of Hybrid

Analysis, we will separate its compile time phase into two parts. First, the Memory

Classification Analysis creates USRs but does not formulate optimization questions,

thus it does not extract PDAGs. Other analysis techniques based on aggregation of

USRs across the program will have similar complexity. Second, we have the extraction

of PDAGs from USR identities as needed by automatic parallelization.

1. Compile Time Complexity

a. Memory Classification Analysis

We will show that the memory and time used at compile-time is O(
∑

sym Stati-

cAccessCount(sym)) if no USR simplification is performed. Below, we give the time

complexity of our analysis of a single symbol assuming that the symbolic forward

propagation, range dictionary, and interprocedural SSA passes have already run.

Throughout this section, we assume symbolic comparisons of algebraic expressions

to take constant time.

The overall memory budget is composed of the storage needed to keep the USR

internal nodes and the memory needed to store the primary representation objects

(the LMADs). We allow the parse trees for different USRs to overlap in memory. This

way the number of additional internal nodes needed to represent the result of any USR

operation is constant. Every summary set update for successive blocks or statements
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can create 15 more USR nodes, every recurrence 9 more, every conditional can create

9 nodes, and every routine call 3 more (the number of nodes can be counted as the

maximum number of operators on the right hand side in Figs. 18, 20, 22, and 25.

The number of USR nodes is upper bounded by (15 ∗ S + 9 ∗ L + 9 ∗ I + 3 ∗ C),

when there are S statements, L loops, I IF statements, C call sites that may have

effect on the access pattern. Storage for the primary representation (LMADs) may

increase exponentially (worst case) with the number of static memory references. We

avoid this by limiting the number of LMADs that we store in an LMAD list to a

constant (50, for now). In our experiments, the limit was never reached because most

operations on LMADs either produce an LMAD (not increasing the size), or are not

exact, in which case the result is represented as an USR. The size of an LMAD is

proportional to the number of dimensions of the access pattern, which in practice is

< 4. Thus, total memory usage for computing the access pattern on an array A is

upper bounded by (12 ∗ S + 9 ∗ L + 9 ∗ I + 3 ∗C)∗sizeof(USR)+S ∗ 50 ∗ 4∗sizeof(1D-

LMAD), i.e., it is linear in the number of program statements that may have effect

on the access pattern.

Some of the optimizing transformations we apply to USRs require bottom-up

traversals of the associated parse trees with constant-time pattern matching per-

formed at every node. Because the size of USRs grows linearly, and there are a linear

number of aggregations, the time complexity is upper bounded by

O(
∑

sym

StaticAccessCount(sym)2)

The quadratic behavior is not reached in practice because the optimizing transforma-

tions performed reduce the sizes of USRs as they are aggregated.
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Table XIII. Compile-time analysis statistics in seconds for both MCA and PDAG ex-

traction for parallelization. Column 4 and 5 show the total number of

USR and PDAG nodes created (operator or leaves).

Code Lines Time USRs PDAGs

ADM 5,791 455 35,249 10,456

ARC2D 3,099 102 13,178 22

BDNA 4,919 36 11,181 156

DYFESM 3,903 38 6,841 756

FLO52 2,508 120 8,371 0

MDG 1,237 15 8,085 744

OCEAN 2,738 122 14,664 208

SPEC77 4,582 303 75,032 4,733

TRACK 2,523 245 27,790 2,931

TRFD 656 120 1,684 139

APPLU 3,980 56 13,212 34

APSI 7,488 399 36,593 10,800

MGRID 489 108 2,089 0

SWIM 435 7 1,785 0

WUPWISE 2,184 45 4,710 60

HYDRO2D 4,461 33 5,911 11

MATRIX300 439 3 1,458 0

MDLJDP2 4,172 18 6,928 444

NASA7 1,204 48 8,545 547

ORA 373 7 2,562 0

SWM256 487 8 1,520 0

TOMCATV 194 5 1,056 32

b. PDAG Extraction

The complexity of the syntax-directed translation could be exponential in the

worst case, due to productions such as: A ∩ (B ∪ C) = ∅ 7→ (A ∩B = ∅) ∧ (A ∩ C =

∅). However, this tendency is avoided through aggressive memoization of solutions

to common subproblems. The extraction of approximative tests and the pattern

matching algorithms have complexities at most linear with the size of the given USR.

Table XIII presents compilation statistics for a set of 22 applications from bench-
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mark suites PERFECT and SPEC. The number of USR and PDAG nodes is relatively

small. On the average, a USR node occupies about 3 KB, while a PDAG node oc-

cupies about 24 bytes. There is no precise correlation with the number of lines of

code because applications differ greatly in the static number of memory references.

In some cases the compilation times are long because of failed attempts to simplify

USRs, which may result in up to quadratic complexity [3].

2. Run Time Complexity

a. USR Evaluation

The additional memory required at run-time is for the lists of LMADs used at

run-time to evaluate USRs. Our USR evaluation scheme is similar to a register-based

evaluation scheme for an arithmetic expression. Instead of machine registers we use

lists of LMADs. In the worst case the number of our ’registers’ is linear with the

number of memory reference statements in the original code. Also, this number is

known at compile-time and they can be statically allocated. If the access pattern is

found linear at compile-time (as in direct indexing), then the size of a ’register’ is

input data invariant (the size of an LMAD is proportional to the number of linear

dimensions in the space it represents). If the access pattern is found linear at run-time

even though it did not seem linear at compile-time (as in subscripted subscripts that

take linear values at run-time), then the size of the ’register’ will still be constant.

The size of the ’register’ increases only when a recurrence has a non-linear access

pattern that cannot be aggregated using LMADs even at run-time. In the worst

case, the size of a ’register’ can be the same as the size of the data set tested for

dependences. In that case, we fall back to shadow array based analysis such as the

LRPD test. Although the complexity of LRPD is asymptotically the same as the
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Table XIV. Run time test dynamic overhead reduction through HDA: ratio between

the number of actual memory references and the number of PDAG oper-

ations performed at run time. Only the applications with run time tests

are shown.

App. ADM ARC2D DYFESM MDG OCEAN

Ratio 1.8 ∗ 105 1.2 ∗ 107 1.5 ∗ 104 6.7 ∗ 100 2.1 ∗ 104

App. SPEC77 TRACK TRFD APSI NASA7

Ratio 1.0 ∗ 100 1.0 ∗ 100 5.6 ∗ 104 1.6 ∗ 107 3.0 ∗ 106

dynamic memory reference count, its individual operations are very light, so the

overall overhead can be tolerated in many cases.

The time complexity is (worst case) that of the LRPD test, i.e., proportional to

either the number of distinct memory references or number of references for dense

and sparse access patterns, respectively. However, in practice, the actual complexity

is orders of magnitude smaller, depending on the degree of reference aggregation that

HA manages to extract. Many times we need only constant time to evaluate a small

number of conditions. Even with USRs that take non-constant time to evaluate, our

framework can easily take advantage of value reuse (a.k.a. schedule reuse) through

aggressive hoisting.

b. PDAG Evaluation

PDAGs are almost always faster to evaluate than USRs. In general they are

used when we do not need to evaluate a USR but rather answer a question about

an identity involving USRs. These questions are easier than evaluating the USRs

themselves and verifying the identity at run time. In some case, we do have to fall

back to either evaluating USRs or performing the LRPD test. Table XIV shows the

reduction in the number of run time operations as compared to the dynamic memory
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Fig. 70. Cascade of sufficient run time tests in increasing order of complexity.

reference count through USR aggregation and PDAG synthesis.

PDAGs contain four types of run time operations: (1) evaluation of elementary

conditional expressions, (2) sorted checks, (3) actual evaluation of USRs and com-

parison to the empty set and (4) reference-by-reference LRPD. We extract, for each

dependence equation, a cascade of tests (Fig. 70). ordered by their estimated com-

plexity. They range from O(1) tests as the one in Fig. 1 to O(n) dynamic reference

instrumentation as is the case in Fig. 30. Evaluating USRs at run time generally con-

sists of fewer (but more complex) operations than the reference-by-reference LRPD

[129]. In some cases they may either degenerate into inefficient enumerations or take

conservative decisions that can lead to false negatives. The LRPD has overhead pro-

portional to the dynamic reference count, but is optimal for cases where aggregation

and equation inversion are not possible (Fig. 30), and is always applicable, precise,

and has a more predictable complexity.
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All the tests can be run in either inspector/executor mode, or during speculative

parallel executions of the code. In both cases, we reuse the test results by means

of inspector hoisting, PDAG and USR common subexpression recognition, and run

time test result memoization. The choice between inspector/executor and specula-

tive execution requires a complex cost model. Presently, we choose speculation over

inspector/executor only if (1) a parallel inspector cannot be extracted or (2) if we

cannot extract a light inspector (a slice made of only scalar definitions). The actual

test code generation consists of a syntax-based translation from the PDAG grammar

to Fortran.

We apply loop invariant hoisting to USRs and PDAGs by performing aggressive

invariance analysis on their sets of input variables. Invariance problems on USRs

resulted from subscripted subscripts are formulated as dependence problems on the

subscript arrays, which are solved by the same HDA algorithm applied to the subscript

array. This is achieved by representing the exact referenced memory regions of the

subscript array as USR themselves, and thus identifying the exact subregion of the

subscript array that affects the shape or size of the memory pattern on the host

array. An interesting problem arises when a more expensive test such as LRPD can

be hoisted out of a loop, but a simpler O(1) version is loop variant. At this time we

(simplistically) hoist tests as far away as possible and build cascades from tests at

the same loop nesting level respectively.
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CHAPTER VII

EMPIRICAL EVALUATION

The experimental evaluation presented in the following sections will show that

Hybrid Analysis (a) extracts a very high degree of parallelism and, often, all the

available parallelism from a large number of applications, (b) it is applicable to a

large number of applications, (c) allows the generation of minimal run time tests and

(d) contributes significantly to the overall parallelization of programs, i.e., they are

instrumental in obtaining the presented results.

We have focused on the detection of parallelism rather than on optimizing parallel

code execution (e.g. locality enhancement, load balancing). We believe that the major

challenge in front us is to detect parallel loops, a step which preconditions any further

optimizations. We believe that the consistent solid performance results across a large

number of standard benchmark applications proves our claims on the effectiveness of

HA. Comprehensive analysis reports, performance tables and graphs can be found at

http://parasol.tamu.edu/compilers/ha

A. Methodology

We ran the automatic parallelizer based on HA on a set of industry standard

benchmark programs. The parallel code generation is done automatically using

OpenMP directives without any further optimizations. The selection of the loops

for which parallel code and possibly dynamic tests were generated was based on

profiling their sequential execution time. The automatic selection of parallelization

candidates based on some more sophisticated performance model is beyond the scope

of this paper.
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Fig. 71. SGI Altix 3700 system computational brick.

1. Hardware and Software Environment

We believe that the large number of results we obtained on a variety of systems

proves the effectiveness of HA. Since Polaris produces Fortran code with OpenMP

directives, we specify, for each architecture, the backend compiler used to generate

the executable multithreaded code.

We compare against three configurations: First, against the Intel compiler with

options -O -parallel -par threashold100 on the Altix and MacBook. Second, against

the IBM XL compiler with automatic parallelization enabled [125] and options -O5

-qsmp. First, against automatic parallelization by SUIF [116]. Unfortunately most of

the previous results that we compare against were obtained on different systems that

we did not have access to.

Speedups were always measured relative to the sequential execution time on the

same machine with the same compiler optimization level.

The SGI Altix 3700 is a cache coherent non-uniform memory access machine

(CC-NUMA) at the supercomputing center at Texas A&M University. The machine
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Fig. 72. Intel Core Duo processor in an Apple MacBook notebook computer.

has 128 processors organized in a fat tree. Fig. 71 presents a computational brick.

Each such brick contains four processors. The system does not offer guarantees of

allocating memory in the RAM of the owner processor. The processors are IA-64

Itanium2 (Madison) 1.3 GHz. The cache coherence protocol is snooping on the FSB

within a node and directory based (arbitration in SHUB) across nodes. Each node

has 4 GB of memory. We used as a backend compiler the native Intel version 9.0

compiler with options -O -openmp (except where noted otherwise).

The SGI Origin 350 we ran on is made of a single module. It has 4 R16000 MIPS

processors running at 600 MHz, 8 GB of RAM and individual 4MB L2 cache per each

processor. The cache coherence mechanism is unspecified. We used the native SGI

compiler with options -O -mp.

The Apple MacBook notebook is a single processor system, dual core with shared

L2 cache (Fig. 72). Sharing the on-chip L2 cache has the potential to reduce greatly

the traffic on the bus and offers the opportunity to implement cheap synchronization

mechanisms. The system has 512 MB of RAM. We used the native Intel version 9.1

compiler with options -O -openmp.



159

We have not run experiments on the SGI Challenge machine. However, we

compare against the results reported by [116]. The machine had 4 MIPS R4400

processors running at 200 MHz. The cache coherency mechanism is snooping on the

shared bus. The backend compiler and optimization options are not specified.

We have not run experiments on this machine. However, we compare against

the results reported by [125]. They show results in a two 1.1 GHz Power4 processors

configuration. The backend compiler was IBM XL Fortran, with flags -O5 -qsmp.

We measured the effectiveness of automatic parallelization using Hybrid Analysis

using the Polaris compiler framework. We have not used the data dependence analy-

sis, privatization and reduction parallelization passes already implemented in Polaris

because they have applicability limited to intraprocedural loops. We did, however,

make full use of several Polaris infrastructure elements, such as value range dictionar-

ies, induction variable recognition and substitution, Gated SSA and interprocedural

constant propagation among others. The new parallelization methods based on HA

supersede the previous methods in practically all cases.

Polaris produces Fortran code with OpenMP directives. This code was compiled

using the native compiler on the target machines. On the Altix machine we used

the Intel Fortran Compiler version 9.0 with options -O -openmp (except where noted

otherwise). On the Apple machine we used the Intel Fortran Compiler version 9.1

with options -O -openmp (except where noted otherwise).

2. Input Data Sets

PERFECT [121] is an industry standard benchmark application suite made of

floating point scientific computation such as molecular dynamics, structural mechan-

ics or missile tracking, among others. The PERFECT codes have traditionally been

harder to optimize automatically because their memory reference patterns appear
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Table XV. Experiment environments.

PERFECT SPEC2000 SPEC Other

Polaris/HA Altix, Macbook O350, Macbook Altix, Macbook

Intel Macbook Macbook Macbook

IBM Toronto - Power4 -

SUIF Challenge - -

complex and input dependent. Most compilers can extract only low granularity par-

allelism, which often cannot lead to performance even on a tightly couple parallel

machine as the Apple MacBook. However, programmer analysis found [121] large

granularity parallelism which can produce significant speedups on even the more

loosely coupled parallel machines such as the SGI Altix.

SPEC2000 [190] is the most widely accepted CPU benchmark suite. We only

show results on a set of five floating point applications because they were the only

ones written in Fortran 77, a prerequisite to using Polaris. One other application

written in Fortran 77, sixtrack could not be analyzed because of its size, since some

components of Polaris do not scale well beyond 10,000 lines of code.

Previous SPEC. We also show results on some previous versions of the SPEC

benchmarks (SPEC89 and SPEC92).

Several applications were left out either because our compiler framework could

not parse or analyze them correctly, or because they did not contain sufficient paral-

lelism to be of interest to a parallelizing compiler.

We do not have measurements for every pair (platform, data set). Table XV

shows the results we obtained and the ones we are comparing against. Most of our

results were collected on the Altix and MacBook systems. We report results only for

SPEC2000 on the O350 because the results on the Altix were very inconsistent across

runs (more than 100% variance). The machine has 128 processors, runs at over 90%
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utilization and the processor affinity of data is not guaranteed. The results on the

O350 were obtained in single user mode.

Some of the older PERFECT codes were compiled with -O0 (both the sequential

and the parallel versions) only on the Altix machine. The reason for this choice was

to increase in the most uniform manner the execution times of these codes. These

benchmarks and their (initially) reduced input sets have, on today’s machines, a

very short sequential execution time. Their parallelization, while correct, brings the

time of some loops down to the execution time of barriers on a CC-NUMA machine,

making it impossible to measure the effect of parallelization. We strongly believe that

the structural characteristics are still quite relevant and that expanding the execution

times by disabling sequential optimizations is a reasonable experiment for measuring

parallelism. In fact they are harder to parallelize than newer benchmarks with larger

input sets. For PERFECT codes MDG and TRACK we have larger input sets and

thus they have been compiled with -O.

3. Performance Metrics

Speedup was computed as Tsequential/Tparallel. Tsequential is the wall clock time

in seconds of the whole original application run sequentially. Tparallel is the wall

clock time in seconds of the whole parallelized application, including the overhead in-

curred by multithreading, run time tests and speculation mechanisms (checkpoint/re-

store/reexecute). Both Tsequential and Tparallel were measured on binaries produced

with the same optimization level in the backend compiler, and run on the same ma-

chine.

Normalized Execution Time is defined as Tparallel/Tsequential ∗ 100%. It shows

the relative reduction in time through parallelization, and is more common when

comparing architectures of the same scale, such as multicore processors.
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Parallel Coverage is defined as Tparallelizable/Tsequential ∗ 100%. Tparallelizable rep-

resents the part of the sequential execution time that is spent in loops that will be

parallelized. Based on Amdahl’s law, scalable parallelization requires parallel cover-

age close to 100%.

Granularity of parallelization is measured as Tsequential/Nglobal synchronizations, where

Nglobal synchronizations is the dynamic count of global synchronization points. Loosely

coupled parallel machines such as the 128 processor Altix system with a fat tree

interconnection network require high granularity parallelization because the cost of

synchronization is high. Low granularity can be tolerated better on the MacBook,

where the shared L2 cache allows for very quick synchronization.

B. Hybrid Analysis Automatic Parallelization Results

Fig. 73 presents full application speedups on all the benchmark codes. Automatic

parallelization based on HA resulted in speedups of at least 3 on 4 processors for 11

out of 22 applications and of at least 2 on 4 processors on 18 out of 22 applications.

The static part of HA is powerful in itself and manages to parallelize more loops than

previous static analysis methods in Polaris. Its strength lies primarily in its ability

to analyze large interprocedural contexts such as GLOOP do1000 (over 1,000 lines of

code), which could not be previously parallelized by Polaris. More importantly, the

speedup improvement through the dynamic component of HA is significant in 8 out

of the 22 applications.

OCEAN and NASA7 (partially) suffer from lack of memory locality in their time

consuming FFT loop nests. APPLU has outer loop flow dependences and cannot

be parallelized using the DOALL model. Several loops in TOMCATV could not be

parallelized at the outermost level resulting in low granularity and limited speedup
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Fig. 73. Hybrid Analysis results on the Altix (PERFECT and Previous SPEC) and the

O350 (SPEC2000) systems respectively. In the top graph, the white bars (4 pro-

cessors CT) correspond to speedups obtained using only compile-time methods and

measured on 4 processors.

despite large parallelization coverage.

The second graph in Fig. 73 shows the coverage of parallelization achieved by HA.

For 21 out of 22 applications the coverage is over 90% and many are at the 99% level.

The exception, APPLU, contains a large section with loop-carried flow dependences.

The excellent coverage does not sufficiently do justice to the power of HA because

it does not quantify the fact that we can detect course grain parallelism (outer loop

level) as well as fine grain level (inner loops). The exception was TOMCATV, where

the outer loop was found sequential and thus only inner loops were parallelized. In the

near future we plan to run our experiments on a machine that supports well nested

parallelism in order to better present the quality of the parallelization we obtain.

Fig. 74 shows the behavior of automatically parallelized code on the dual core,
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Fig. 74. Polaris/HA normalized execution times on a dual core processor. Sequential, par-

allel code executed on 1 and 2 threads respectively. All times are normalized to

the sequential execution time. Intel Core Duo 1.83MHz, 2x256 MB RAM 5300 /

Mac OSX Tiger 10.4.7, XCode 2.2.1, Intel Compiler 9.1.24 -openmp -O. ADM was

compiled with -O0 because the compilation with -O resulted in erroneous execution.

single processor system.

C. Evaluation of Run Time Tests

Overall, HA generated 42 tests based on evaluation of elementary conditional

expressions, 30 sorted-based tests and 81 based on USR run time evaluations. The

parallelization of only 4 loops required the application of the reference-by-reference

LRPD test. The second graph in Fig. 73 shows the coverage (and thus importance) of

the PDAG technique (evaluation of simple comparisons, sorting-based checks, USR

evaluation and reference-by reference LRPD) in parallelizing the codes. Table XIII(b)

presents the reduction in dynamic operations achieved by HA relative to reference-by-

reference (LRPD) tests as being at least four orders of magnitude in 7 applications.

The overhead of run time tests for all the applications that could not be parallelized

statically proves to be negligible (less than 0.1%) in most cases. In ADM, the overhead

of 4.67% is due to the run time evaluation of complex USRs. However, because this

run time test can be reused (outer loop invariant) its overhead decreases to 0.1% in
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the APSI version (much larger input set). The total run time overhead in MDG is

2.8% and is partially due to checkpointing for speculative parallelization.

Tables XVI and XVII show in detail which of the major loops required run time

tests.

D. Comparison to Other Parallelizing Compilers

We cannot compare our results with any of the previous hybrid parallelization

techniques [139, 31, 171, 32, 3] because they did not provide extensive results across

whole benchmark suites. The techniques described by [148] are applied to other

classes of programs (which involve point to point communication) and cannot be

compared directly. This section compares HA against a commercial compiler (Intel)

and two research parallelizers (IBM Toronto Lab [125] and SUIF [116]).

1. The Intel r© Compiler

Fig. 75 presents a comparison of the performance obtained by Polaris with Hybrid

Analysis against the Intel Compiler. Each pair of bars corresponds to the speedups

gained by automatic parallelization using the Intel Compiler and Polaris with HA

respectively. All execution times were measured on an Apple MacBook notebook

with Intel Core Duo 1.83MHz processor, with 2x256 MB RAM 5300 main memory,

running Mac OSX Tiger 10.4.7, and using XCode 2.2.1, Intel Compiler 9.1.24 -openmp

-O.

The graph shows that in most cases Polaris performs significantly better than

the Intel compiler. The difference comes from

• the increased coverage and granularity resulted from dynamic analysis (ADM,

MDG, DYFESM)
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Fig. 75. Comparison of Polaris/HA vs Intel Compiler. Speedup after automatic paralleliza-

tion on a dual core processor vs. a run of the original application.

• Intel Compiler’s lack of reduction recognition and array privatization (ADM,

BDNA)

• the more powerful interprocedural array reference analysis mechanism based on

USRs and VEG in Polaris (ADM, TRACK, TRFD).

In the two cases where the Intel Compiler does better (MGRID and SWM256), it does

marginally so. The same loops are parallelized statically in these two applications by

both Polaris/HA and the Intel Compiler.

The last column in Tables XVI and XVII show in detail that most of the major

parallelizable loops across all programs are missed by Intel Compiler’s parallelization

mechanism.

In conclusion, although the Intel Compiler manages to parallelize a large number

of smaller loops, this does not translate in speedup even on the tightly coupled dual



167

APPLU APSI MGRID SWIM WUPWISE
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
pe

ed
up

 

 
IBM Toronto 2 procs / Power
Polaris/HA 2 procs / SGI O350

Fig. 76. Speedup comparison between 2 processor runs using Polaris/HA on the SGI O350

and the IBM Toronto Lab parallelizing compiler on a Power machine.

core MacBook machine. This proves that our proposed array analysis techniques are

crucial to efficient automatic parallelization.

2. The IBM Toronto Lab Parallelizing Compiler

The IBM Toronto Lab presented their results in the automatic parallelization of

the SPEC2000 benchmarks on a two processor Power4 machine [125]. Fig. 76 shows a

comparison between HA and their results, for the five applications that are common

to our and their benchmark set. In the cases of APPLU, MGRID and SWIM, the

differences are sufficiently small to be attributed to the differences in architectures

and backend compilers.

However, the 2-processor run of APSI parallelized by the IBM compiler is slower

than the single processor run of the original code, whereas the HA version reduces
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Fig. 77. Comparison of automatic parallelization using HA against SUIF Interprocedural

Automatic Parallelizer: (a) Speedup on four processors, (b) Granularity as average

duration of a parallelized section expressed as percentage of the execution time,

and (c) Coverage as percentage of the execution time.

the running time by about 40%. Table XVII shows that several major loops in APSI

require run time tests (RUN do*).

In WUPWISE there are no run time tests created by HA, but array privatization

is necessary to parallelize all major loops.

In conclusion, the IBM parallelizing compiler seems to lack some of the same

essential analysis and transformation mechanisms as the Intel compiler: array priva-

tization, reduction recognition and run time analysis techniques.

3. The SUIF Research Compiler

[116] presents the most recent (2005) comprehensive results in automatic paral-

lelization, although based only on static analysis. Their techniques were implemented

in the SUIF compiler and include interprocedural data dependence analysis and pri-

vatization. Fig. 77 presents a detailed comparison with our results in the automatic

parallelization of PERFECT benchmarks. We compare SUIF/IPA with the static

part of HA (HA/Static) and with the full, static and dynamic, HA (Full HA). It is

not perfectly accurate because the measurements were taken on different machines.
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Furthermore, SUIF uses locality enhancement transformations which we did not do.

Program ARC2D was parallelized with approximately same coverage and at

the same granularity by both compilers and resulted in similar speedups, which

shows that the speedup comparison, although slightly imperfect, is quite relevant.

SUIF/IPA shows better parallelization coverage on ADM than the HA/Static. How-

ever, HA/Static favors parallelization at a higher level of granularity which results

in positive, though modest, speedup. Given an appropriate system we could gener-

ate nested parallelism and exploit both fine and coarse grain parallelism. Full HA

has better coverage and higher granularity resulting in speedup of more than 3 on

4 processors. The execution time in ADM (and more so in DYFESM and MDG) is

dominated by large loops that iterate over the whole data set and which can only be

parallelized at run time. SUIF/IPA manages to parallelize only inner loops and gets

good coverage but cannot achieve speedups. Full HA parallelizes them at the highest

level of granularity available and achieves good speedups on all three of them.

In conclusion, the SUIF compiler has powerful array privatization and reduction

parallelization techniques based on interprocedural analysis. However, its perfor-

mance is limited for the cases where the reference patterns are not linear or/and

input dependent. Additionally, VEG-based value analysis leads to better results even

when comparing statically parallelized loops in ADM, BDNA and TRACK.

Our hybrid (static and dynamic) methods often find parallelism at the outer level

of large nests spanning multiple loops in different subprograms, involving indirection

and complex control. This leads to better performance on both NUMA machines

as well as more tightly coupled dual cores. Hybrid Analysis increases the efficiency

of classic dynamic methods and produces scalable speedups close to the maximum

performance level achievable through multithreading.
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E. Discussion of Important Loops

Tables XVI and XVII present the most important loops from the PERFECT

and SPEC benchmark suites that were parallelized by Polaris using Hybrid Analysis.

The % column shows the relative importance of the loop as the percentage of execu-

tion time spent in the loop during a sequential run of its host application. The DD

Test column classifies the data dependence tests needed for parallelization. The most

common one is CT, which means the loop was proven independent at compile time.

Run time dependence tests are classified into SE (simple expressions such as n ≤ 100

as well as loops over simple expressions), IT (interval trees), UE (evaluation of the

USR that describes the dependence set at run time, followed by comparison against

the empty set), and LRPD (reference instrumentation and analysis of the resulting

trace). The fifth and sixth columns (Priv and Red) show whether privatization and

reduction parallelization were necessary. CT means that privatization was proven

necessary at compile time. In some cases such as ADM/RUN do20, the legality of

the privatization transformation is proven at run time as part of the DD Test. RT

marks the cases when they appeared to be necessary at compile time, but could have

been proven unnecessary at run time (so unnecessary copy-in, copy-out and reduc-

tion operations would have been avoided). The PB column shows which sequences

were recognized as pushbacks and parallelized. The IPA column shows which loops

contained subprogram calls, thus required interprocedural memory reference analysis.

However, not only the loops that contain subprogram calls required interprocedural

analysis. For instance, it is possible that an inspector be hoisted interprocedurally

to its definition point even though the loop it is extracted from does not contain any

subprogram calls. The Exec column shows, for the cases when a run time dependence

test was required, whether the execution strategy was inspector/executor or specula-
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Table XVI. Loop parallelization in PERFECT codes. % = percentage of total appli-

cation execution time. DD Test = type of data dependence test required

(CT = compile time, RT = run time, SE = simple logical expressions, IT

= interval trees, UE = USR evaluation, LRPD = LRPD run time test)

Priv = type of privatization required (A = array privatization). Red =

type of reduction required. PB = pushback required. IP = loop contains

subprogram calls. EX = execution type (IE = inspector/executor, SP

= speculative execution). Intel = parallelized automatically by the Intel

Compiler (version 9.0, -parallel -par threshold100).

Code Loop % DD Test Priv Red PB IP EX Intel
ADM RUN do20,...,100 44 RT:SE,UE CT,A - -

√
IE -

D*DTZ do30 31 CT CT,A CT -
√

- -
DKZMH do20,50 11 CT CT,A - -

√
- -

WCONT do40 5 CT CT,A CT -
√

- -
ARC2D STEPF* do* 29 CT CT - - - -

√
*PENT* do* 14 CT CT - - - -

√
FILERX do15 14 RT:SE,UE CT,A - - - IE -
RHS* do* 10 CT CT - - - -

√
TK* do1 8 CT CT - - - - -

BDNA ACTFOR do240,500 89 CT CT,A CT - - - -
DYFESM MXMULT do10 73 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLVH do20 9 RT:SE RT:IT,A - -
√

IE -
FORMR0 do20 7 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLXDD do4,10,30,50 9 RT:IT RT:IT,A RT:IT -
√

IE -
FLO52 *FLUX* do* 55 CT CT - - - -

√
PSMOO do40,80 21 CT CT - - - - -
EULER do* 15 CT CT CT - - -

√

MDG INTERF do1000 93 RT:SE CT,A CT -
√

SP -
POTENG do2000 6 CT CT,A CT -

√
- -

OCEAN FTRVMT do109 41 RT:SE CT - - - IE -
IN do10 15 CT - - - - - -
OUT do10 15 CT - - - - - -
CSR,RCS do20 7 CT CT - - - - -
ACAC,SCSC do30,40 6 CT CT,A - - - - -

SPEC77 GLOOP do1000 48 CT CT,A CT -
√

- -
GWATER do1000 24 RT:LRPD CT,A CT -

√
SP -

SICDKD do1000 4 CT CT,A - -
√

- -
TRACK EXTEND do400 50 CT CT,A -

√ √
- -

FPTRAK do300 46 CT CT,A -
√ √

- -
NLFILT do300 2 RT:LRPD CT,A - -

√
SP -

TRFD OLDA do100 67 CT CT,A - - - - -
OLDA do300 28 CT CT,A - - - - -
INTGRL do140 3 RT:IT RT:IT,A - - - IE -
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Table XVII. Loop parallelization in SPEC codes. (Legend in Table XVI.)

Code Loop % DD Test Priv Red PB IP EX Intel
APPLU JACL* do#1 34 CT CT - - - - -

RHS do#1,2,3,4 20 CT CT - - - -
√

APSI RUN do* 25 RT:SE,UE CT,A - -
√

IE -
D*DTZ do40 40 CT CT,A CT -

√
- -

DKZMH do30,60 12 CT CT,A - -
√

- -
WCONT do40 6 CT CT,A CT -

√
- -

HYD do20 5 CT CT CT - - - -
MGRID RESID do600 52 CT CT - - - -

√
PSINV do600 27 CT CT - - - -

√
RPRJ3 do100 7 CT CT - - - -

√
INTERP do400,800 8 CT CT - - - -

√
COMM3 do100,200,300 5 CT CT - - - - -

SWIM SHALLOW do3500 48 CT CT CT - - - -
CALC1 do100 14 CT CT - - - -

√
CALC2 do200 17 CT CT - - - -

√
CALC3 do300 19 CT CT - - - -

√

WUPWISE MULDEO do100,200 47 CT CT,A - -
√

- -
MULDOE do100,200 46 CT CT,A - -

√
- -

HYDRO2D FILTER do* 42 CT CT - - - -
√

FCT do* 18 CT CT - - - -
√

ARTDIF do* 14 CT CT - - - -
√

TRANS* do* 12 CT CT - - - -
√

TISTEP do* 6 CT CT - - - -
√

S1,S2 do100 4 CT CT - - - - -
MATRIX300 LBMK14 do20 13 CT CT - - - - -

SGEMM do* 86 CT - - -
√

- -
MDLJDP2 FRCUSE do20 76 CT CT CT -

√
- -

FRCBLD do20 11 CT CT CT
√ √

- -
POSTFR do* 8 CT CT CT - - - -
PREFOR do* 5 CT CT - - - - -

NASA7 VPETST do110 26 CT CT - -
√

- -
GMTTST do120 24 RT:UE CT - -

√
IE -

CFFT2D* do130,150 17 RT:LRPD CT - - - SP -
BTRTST do120 10 CT CT - -

√
- -

CHOTST do120 9 CT CT - -
√

- -
EMIT do5 6 CT RT:IT,A - - - IE -

ORA MAIN do9999 99 CT CT CT -
√

- -
SWM256 CALC1 do100 31 CT CT - - - -

√
CALC2 do200 38 CT CT - - - -

√
CALC3 do300 30 CT CT - - - -

√

TOMCATV MAIN do100/2,120/2,60,... 96 CT CT CT - - -
√
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tive execution. The Intel column shows whether the Intel r© Compiler parallelized the

corresponding loop. We did not have access to loop level analysis results from SUIF

and the IBM Toronto Lab parallelizing compiler.

The tables show that the methods presented in this dissertation are not only

applicable, but instrumental to the efficient automatic parallelization of real programs.

The remainder of this section matches the techniques presented in this dissertation

to the corresponding parallelized loops.

1. Value Evolution Graph

The information produced by VEGs was used throughout the whole USR based

memory reference analysis. It led to more parallelization problems being solved at

compile time, such as the array privatization problems in loops ADM/DKZMH do50,

APSI/DKZMH do60, BDNA/ACTFOR do240 and TRACK/FPTRAK do300. Push-

back Sequence Parallelization based on the VEG achieved almost full parallelization

of application TRACK and applied to MDLJDP2/FRCBLD do20 as well.

It also led to more accurate and lighter run time tests, by eliminating impossible

scenarios at compile time, which would otherwise have to be verified at run time.

The contributions of the VEG are discussed in detail in Chapter IV.

2. USR Based Memory Reference Analysis

The majority of the important loops required one or more of the following tech-

niques: interprocedural analysis of loops containing subprogram calls, array priva-

tization, and reduction and pushback recognition and parallelization, None of these

techniques are used by the Intel compiler, but they are all implemented with little

effort using the Memory Reference Analysis based on USRs and PDAGs.

The USRs offer a precise interprocedural view of memory reference patterns
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without the combinatorial explosion inherent to inline expansion. They represent

linear patterns symbolically using LMADs, and pinpoint the exact location of non-

linear expressions: nonlinear control conditions or nonlinear array subscripts or loop

bounds.

USRs scaled well to loops over 1,000 lines of code (GLOOP do1000). Their

graph structure allows quick recognition of similar tests. The dependence tests of

loops RUN do20, RUN do30 and RUN do40 were found identical at compile time,

thus two unnecessary run time tests were avoided.

The contribution of the USR is presented in detail in Chapter III.

3. PDAG Based Efficient Run Time Tests

We only fell back to the LRPD test in a small number of cases: GWATER do1000,

NLFILT do300 and CFFT2D* do130,150. In all cases, the extracted PDAGs did not

contain any information simpler than an LRPD test and a USR evaluation test ap-

peared too expensive due to the total lack of symbolic memory reference aggregation.

The contribution of the PDAG is presented in detail in Chapter III.

a. ADM/APSI

Loops RUN do20,...,100 can be parallelized only after arrays SAVEX, SAVEY,

HELP and HELPA are proven privatizable. For the privatization of SAVEY we

extract an optimistic condition NY.LE.1, and for all the arrays we generate run time

tests based on USR evaluation. Although the number of memory references in each

loop is Θ(nsteps∗nx∗ny∗nz∗nfact), the complexity of the run time test is Θ(nfact)

(though with a large constant factor). The reduction factor comes from aggregation

Θ(nx), loop invariance (ny ∗ nz), and test reuse (nsteps).
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b. MDG

The most important loop, INTERF do1000, although always parallel, requires

complex symbolic reasoning which appears not to be available in any of the compilers

under test, thus the loop is not parallelized using static methods. The Intel compiler

reports it as sequential. Both Intel and SUIF report minimal speedups for 2 respec-

tively 4 processing units, while Polaris with Hybrid Analysis produces a speedup of

more than 1.8 on the Core Duo and 3.5 on the Altix. Although SUIF shows signif-

icant parallelization coverage, this happens at very low granularity, which results in

low performance gain.

c. DYFESM

All the important loops required run time tests because almost all data are

referenced through indirection. However, most data are accessed in contiguous blocks,

so tests based on reference instrumentation would be suboptimal. Hybrid Analysis

generated successful tests based on checking a scalar symmetry condition (variable

nsymm in loop SOLVH do20) or based on interval trees in all other major loops.

d. OCEAN

Loop FTRVMT do109 cannot be found parallel at compile time because an ex-

pansion operation cannot be proved nonoverlapping. This is a particular case of the

nonoverlapping intervals test in a multidimensional space with all the intervals having

the same size.
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4. Dynamic Parallelization, Privatization and Reduction

Chapter V presents a case study from DYFESM/MXMULT do10 in which pri-

vatization and reduction is decided at run time. Several other loops in DYFESM

have similar patterns that can only be decided at run time: SOLXDD do4,10,3,50,

FORMR0 do20 and SOLVH do10. In almost all of them, privatization with dynamic

last value or reduction parallelization are avoided at run time. Privatization with

dynamic last value computation is also avoided in TRFD/INTGRL do140.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

Compiler Optimization research has, for the most part, taken to two directions.

Static Analysis was always preferred because it does not cause execution overhead,

but misses optimization opportunities when decisions are input dependent. Dynamic

Analysis is precise but it incurs overhead that reduces the profitability of optimiza-

tions.

We proposed a hybrid compiler optimization model, a novel way to bridge static

and dynamic memory reference analysis. Rather than making conservative decisions

at compile time, the hybrid optimizer extracts predicates that can validate optimizing

transformations at run time, often with minimal costs. Instead of only answering the

question of whether an optimization is legal, it also generates the dynamic conditions

under which it would be legal. These conditions are frequently inexpensive to evaluate

at run time and thus increase the efficiency or run time optimization to the point

where they are almost always profitable.

The advantage of Hybrid Analysis over traditional methods comes from its ability

to use partial symbolic results. These results are often not sufficient to make a decision

at compile time. On the other hand, they are ignored by run time methods, which

redo the entire analysis process for each dynamic instance resulting in high overhead.

Hybrid analysis extracts conditions from partially aggregated information which leads

to run time tests of reduced complexity.

We implemented a full working Hybrid Optimization framework in the Polaris

research compiler. Its backbone consists of an analytical representation for memory

reference sets across arbitrarily large program contexts and of a predicate extraction

technique that can extract sufficient conditions from identities involving sets of mem-
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ory references. We also implemented a symbolic value comparison and logic reasoning

module that is used to simplify the analytical memory reference set descriptors. The

entire analysis process is interprocedural and control-flow sensitive.

We used this framework to implement a hybrid automatic parallelizer in the

Polaris research compiler, which resulted in program speedups of at least 2 on 4

processors, on 18 out of 22 industry standard benchmark applications

http://parasol.tamu.edu/compilers/ha

A. Contributions

1. Program Representation

Classic symbolic memory reference analysis techniques resort to approximation

when they fail to represent a reference set using linear constraints. In order to collect

precise information, Hybrid Analysis needs a representation for memory references

that can tolerate such static analysis failures and continue the analysis process without

resorting to approximation, thus preserving all the opportunities for optimization.

We proposed the Uniform Set of References (USR) as a representation for sets of

memory references that is closed in a scalable manner with respect to all the operations

performed by a large number of analysis techniques, over arbitrarily large program

contexts.

We also proposed a representation for the flow of program values, the Value

Evolution Graph, that can produce symbolic value range information with meaningful

accuracy even in the presence of complex recurrences and control flow. This leads

to a powerful symbolic calculator that performs comparisons of values such as USR

offsets, strides and loop bounds, and that solves logic queries such as implication of

control dependence predicates.
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2. Program Analysis

Hybrid Analysis aggregates memory references as USRs across arbitrarily large pro-

gram contexts. It also partitions the memory references three ways, based on the

whether they are only read, written before read, or read and written, which is needed

to preserve the original memory access order information. These results are used by

the automatic parallelizer to formulate data dependence and data flow questions.

Hybrid Analysis formulates a dependence test as Dependence Set = ∅, where

Dependence Set is the set of all dependent memory locations, expressed as a USR.

When this identity cannot be verified at compile time, we extract the sufficient con-

ditions under which it holds. The predicate extraction process follows the USR struc-

ture of the dependence set. It extracts predicates as simple as bound checks and as

complex as dynamic reference instrumentation, which are organized in a cascade of

simple-to-complex run time tests.

B. Future Work

1. Extending Hybrid Analysis

Although Hybrid Analysis has only been applied so far to programs written in

Fortran 77, it is not limited to them because it is a paradigm of analysis and not a

specific technique. However, the analysis and optimization of Fortran 77 programs

has traditionally been easier than that of programs written in languages with weaker

aliasing restrictions. It is important to investigate the effectiveness of the hybrid

paradigm beyond Fortran 77.
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a. Hybrid Pointer Analysis

There are several methods to perform data dependence analysis when memory

is referenced through pointers. When the pointers are initialized from the address of

array elements, the analysis may reduce to substituting pointers with array references,

and then applying the previously described methods [86, 57, 127]

In other cases, pointer references can be proved disjoint by proving that they

point to disjoint memory spaces such as disjoint arrays [191, 192, 70, 193, 194, 195,

196, 156, 197], although this is in general an NP-hard problem [198] even for flow

insensitive problems in intraprocedural contexts.

The pointer problems become more complex with dynamically linked data struc-

tures, when data dependence decisions are made based on the shape of the data

structure and an associated traversal. [70] presents dependence analysis for recursive

tree traversals (including tree modification), list-like traversals and arrays of pointers

traversals. [71, 72, 73] present more research in symbolic shape analysis for linked

data structures for dependence (and other) analysis.

[199] presents a general SSA numbering scheme for pointer dereferencing: it

stores, for every pointer reference, the number of the reaching definition of the variable

referenced by the pointer. [156] presents pointer analysis for thread-level speculation.

[200] presents probabilistic points-to analysis to be used for data flow speculation.

[201] presents static analysis of pointers and arrays for verification of C programs.

We intend to apply the hybrid paradigm to pointer analysis. Some cases when

pointers are bound to arrays allocated statically or on the stack can be applied the

techniques presented in this dissertation. However, dynamically allocated linked data

structures require a different analysis model, such as escape or shape analysis. Tradi-

tional compile time pointer analysis often fails because it relies on imprecise symbolic
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program information. On the other hand, reference based run time methods are not

viable because they may require an amount of storage proportional to the number

of locations that the pointer may address. We believe that a hybrid approach can

increase the rate of success of static pointer analysis with reduced run-time overhead.

b. Hybrid Optimization for High Level Languages

Analyzing C programs is hard not only to optimizing compilers but also to the

programmers who develop and maintain them. Modern C++ programs make exten-

sive use of standard library containers which limit aliasing in a way similar to Fortran

77 arrays, while still reaping the benefits of linked structures such as lists and trees.

We plan to investigate Hybrid Analysis techniques based on container semantics.

This approach can be generalized to programs written in any high level language

in which operations are implemented through standardized mechanisms (such as the

C++ Standard Library). The fundamental advantage of such an approach is that

it can rely on very high level semantic information guaranteed by the programming

language standard, which would be otherwise impossible to extract from a syntax

tree.

Checking the legality of optimizations is a particular case of automatic verifi-

cation. We want to research the possibility of reducing the overhead of other types

of verification such as correctness proofs or high level debugging for domain specific

languages. For instance, we want to investigate the possibility of developing an auto-

mated data race violation checker for parallel programs written using parallel libraries

such as MPI or STAPL.
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2. Applications of Hybrid Dataflow Analysis

Data flow information is crucial to other compiler technologies. Verification and

symbolic debugging require understanding of the flow of values and the alias relations

needed to compute it. Our proposed Hybrid Analysis techniques produce accurate

data flow information can can be used in all the following applications. There are

two types of data flow problems. First, they try to prove the lack of data flow

between two statements. Hybrid Analysis solves this problem by extracting a PDAG

from the equations DF = ∅, where DF is the USR that describes the exact array

region on which there is data flow. Second, USRs can be used to describe the data

flow relations necessary to generate communication for parallelization for distributed

memory systems.

a. Generation of Communication Schedules

The LMAD [202], Last Write Trees [203] and a variety of other representations

and/or techniques [204, 205, 206, 207, 208, 209] have been used to generate commu-

nication schedules for parallelization for distributed memory systems.

[141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152] presented run time

methods to produce highly efficient communication schedules. Their techniques try

to identify the exact locations of data flow source and destination, which allows them

to optimize the placement of communication primitives.

b. Compiler-based Cache Coherence

[210] presents interprocedural array dataflow analysis to detect stale memory

references on non-cache-coherent hardware and its uses in compiler-generated cache

coherency. [118] presents memory behavior of compiler-generated parallel code and
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parallelization artifacts that lead to false sharing. [211, 212] presents dataflow anal-

ysis for compilation for non-cache-coherent machines. [212] uses LMAD-based array

analysis and employs get/put instead of send/recv. [124] presents a method for spatial

locality improvement and reduction of false sharing.

c. Symbolic Debugging and Verification

[213, 214] discuss debugging issues for optimized or parallelized programs. [215]

presents applications of dataflow analysis to implementing efficient checks for algorithm-

based fault tolerance. [216] presents the creation of safe regions in Java programs,

i.e. exception-checks free, in which Fortran-like optimization are possible. [217] in-

troduces three analysis methods to remove runtime bound checks for Java arrays.

[138] present a hybrid (static and dynamic) method to detect uninitialized variables.

Array sections proved statically to be initialized before use are excluded from runtime

checks. However, the array region analysis is conservative (memory region operations

are not hybrid).

d. Other Uses

[33] presents array dataflow analysis with array regions as constraint sets with

application to constant propagation. [218] presents iteration reordering for grouping

references to the same memory bank together. The goal is to leave some banks

untouched long enough so that they can be efficiently put in low-power mode. Other

applications include global common subexpression elimination, scalarization of array

references, live variable analysis for register allocation and memory exclusion for

checkpoint size reduction.
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3. Dynamic Compilation Based on Input Sensitivity

The Hybrid Optimization paradigm blurred the line between compile and run

time. However, our current optimization framework relies entirely on compile time

generation of highly parameterized code, which may lead to suboptimal performance

due to additional logic, allocation of memory that may be never used, and increased

binary size. Dynamic compilation solves this problem by generating only the opti-

mized version that corresponds to the actual values, but incurs the additional dynamic

code generation overhead that may offset its benefits.

We want to pursue a new dynamic compilation model in which recompilation is

triggered by the input sensitivity of the validity and profitability of the optimization

(the set of values that may influence the optimization decision), which can be com-

puted using Hybrid Analysis. The definition site of the input sensitivity set pinpoints

the recompilation point for producing specialized versions for a specific optimization

and a given program slice.
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APPENDIX A

USER MANUAL

Overview

The automatic parallelizer is run as:

polaris -f switches-file sequential.f | list2src > parallel.f

The result is then passed to an OpenMP compiler. Using Intel’s ifort, the command

line is:

ifort -openmp parallel.f -o parallel.x

The code can then be run in parallel:

setenv OMP NUM THREADS 4

time ./parallel.x

Configuration Files

Polaris will look for two files in the current directory. ipa framework.routines

must contain a list of subprogram names, one on each line, in capitals. These routines

(and the slices of the call graph below them) are the only parts of the program

that get analyzed. If the file is not present, the whole program will be analyzed.

ipa framework.loops must contain loop names (Polaris convention), one on each line,

followed by a blank space and then a numeric value. The number can be the sum of

any subset of the following flags:

• 1: analyze this loop

• 2: generate parallel code (and associated run time tests if necessary)
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• 4: insert timing instrumentation around this loop

• 8: generate an HTML report (only compile time reports are generated at this

time although there is capability for run time reports in HTML as well)

If ipa framework.loops is missing, all the loops will be analyzed but (at this time) no

parallelization is performed (the equivalent of listing all loops with flag 1).

Compiler Switches

Here is the list of compiler switches required to run the automatic parallelizer:

• hybrid analysis: this is the master switch. 0 = off, 1 = on.

• ha parallelization: 0 = no parallelization, 1 = hybrid, 2 = static only.

• ha scope: 1 = limit the analysis to the program slice below the loops listed in

file ipa framework.loops. If the file does not exist, still limit the analysis to the

parts of the program that are in some loop (possibly interprocedurally).

• ha debug: 0 = off, 1 = on.

• ha redisplay call graph delay: the number of seconds after which the analysis

progress report is updated. The report is in the form of a PostScript file named

IPA framework.progress.ps. This file can be loaded in gv and monitored using

the watch file setting. It displays the nodes of the call graphs using four colors:

– black: will not be analyzed

– blue: will be analyzed

– red: is currently being analyzed

– maroon: was analyzed
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A node is colored even if it analyzed only partially.

• rt lmad display flags: a sum of any subset of the following flags that control

how a USR is displayed.

– 1=meaning: some human readable meaning as a string that can be at-

tached by the programmer. It is currently used to mark important nodes

such as RO ∩WF when displaying dependence equations.

– 2=registers: the number of the USR ’register’ numbers used when gener-

ating code to evaluate them at run time.

– 4=sources: the sets of statements that the USRs were extracted from. This

is not supported anymore.

– 8=estimates: the overestimate and the underestimate as lists of LMADs.

– 16=input: the input sensitivity set of the USR.

– 32=referred: the list of variables referenced by the USR.

– 64=reference counter: the reference counter of the USR nodes.

– 128=address: the unique USR identification number.

– 256=size: the size of the USR in bytes (not supported anymore).

– 512=enclosing dimensions: in case the USR is completely enclosed in a

subspace such as a line or plane, the coordinates of that plane.

– 1024=detailed descriptors: do not abbreviate (by default there is a maxi-

mum character length for any description in order to make it look better

when displayed as a graph).
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Program t e s t
Integer a (1000 ) , n , i
Read ∗ , n
Do 10 i = 1 , 100

10 a ( i ) = 3∗ a(100+ i )

Do 20 i = 1 , 100
20 a ( i ) = 2+a ( i −1)

Do 30 i = 1 , n
30 a ( i ) = a ( i )+2∗ a ( i +100)

Print ∗ , a (n/2)
End

(a)
PROGRAM te s t
INTEGER∗4 a , i , n
INTEGER∗4 numprocs , t e s t do20 a i ndep
COMMON / t e s t d o 2 0 i s i n d e p i n d ep s /
∗ t e s t do20 a i ndep
DIMENSION a (1000)

READ (UNIT = ∗ , FMT = ∗ ) n
CALL p t i t e s t d o 3 0 a i n d e p o 1 (n)

! $OMP PARALLEL

CSRD LOOPLABEL ’ TEST do10 ’
! $OMP DO

DO i = 1 , 100 , 1
a ( i ) = 3∗ a(100+ i )

ENDDO
! $OMP END DO

! $OMP END PARALLEL

CSRD LOOPLABEL ’ TEST do20 ’
DO i = 1 , 100 , 1

a ( i ) = 2+a((−1)+ i )
ENDDO

∗∗∗∗∗ continued from left column ∗∗∗∗∗

t e s t do30 indep = te s t do30 a i ndep
IF ( .NOT. t e s t do20 indep ) THEN

numprocs = omp get numthreads (1 )
CALL omp set numthreads (1 )

ENDIF
! $OMP PARALLEL

CSRD LOOPLABEL ’ TEST do30 ’
! $OMP DO

DO i = 1 , n , 1
a ( i ) = a ( i )+2∗a(100+ i )

ENDDO
! $OMP END DO

! $OMP END PARALLEL

IF ( omp get numthreads ( ) .EQ. 1 ) THEN
CALL omp set numthreads ( numprocs )

ENDIF
PRINT ∗ , a (n/2)
STOP
END

SUBROUTINE p t i t e s t d o 3 0 a i n d e p o 1 (n)
INTEGER∗4 n , t e s t do30 a i ndep
COMMON / t e s t d o 3 0 i s i n d e p i n d ep s / t e s t do30 a i ndep
t e s t do30 a i ndep = (−100)+n .LE.0
END

(b)

Fig. 78. Parallelization example. (a) Original sequential code. (b) After automatic

parallelization.
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Example

Fig. 78 presents an example with three loops. The first one, TEST do10 is found

parallel at compile time. The second one, TEST do20 is found sequential at compile

time. The third one needs a run time test.

Visualization of Parallelization Information

Fig. 79 presents the compile time report produced by the automatic parallelizer

based on Hybrid Analysis. The report is accessible at location ./halog/html files/ct parallel report.

The left frame shows loop level summaries, while the right frame shows details for

the selected loop (in this case SOLVH do20.

The underlined keywords contain links to symbol level details, either USRs such

as the dependence test for array XE or PDAGs such as the solvers (ordered by com-

plexity) for the same array XE.

The USR and PDAG graph representation require a GraphViz dot plugin. At this

time, we simply convert the .dot files to .ps using GraphViz (dot -Tps filename.dot

-o filename.ps), and configure the browser to use gv as an external viewer for

PostScript files.

Some sample USRs and PDAGs are shown in Figs. 58, 60, 59 and 61. Many more

examples are available by following link Compile-time Diagnostics Table on page

http://parasol.tamu.edu/compilers/ha/
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Fig. 79. Parallelization report after the compile time phase of Hybrid Analysis for DYFESM.
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APPENDIX B

REFERENCE MANUAL

This appendix presents the implementation details at the level of a reference

manual for compiler writers who develop code based on Hybrid Analysis.

Organization

The Polaris source code tree roots at directory cvdl. The code that implements

Hybrid Analysis and automatic parallelization resides in three subdirectories:

• ipa framework: a framework for interprocedural analysis. It contains generic

program traversal algorithms that can is to implement Memory Classification

Analysis.

• rt lmad: the definitions of the USR and the PDAG including construction and

manipulation routines.

• ipa rt lmad: the implementation of the MCA algorithms as well as automatic

parallelization.

The symbolic value analysis code is in directory base/Evolution. Several filters

are applied to make the code fit our program model. The filters can be found in

subdirectory filters.

Interprocedural MCA using USRs

Memory Classification Analysis is implemented as a single pass over the program.

Class IPA bu program manages a generic bottom-up traversal of the call graph. Class
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IPA bu routine manages a generic bottom-up traversal of the CDG of a program

unit. As of now, these routines expect the program to be structured, i.e., to contain

no GOTO or RETURN statements. Such statements are removed by filters. In rare

cases when they cannot be removed, all the code regions that may be affected are

excluded from analysis.

The generic traversal mechanism requires the programmer to provide an im-

plementation of class INFO base. This class should provide a container for all the

information produced by the analysis process. The generic traversal mechanism con-

tains empty slots for information and actions. The first refers to the data computed

by the traversal (such as MCA partitions) and the second one to the actions taken

(such as dependence analysis).

Information

To implement MCA, we designed class IPA RT LMAD info, which is derived

from INFO base. It is organized as an associative container (map), in which the key is

a symbol and the value is a triplet (RO, WF, RW) of USRs. The USR is implemented

by class RT LMAD. An IPA RT LMAD info object is associated with every node in

the Control Dependence Graph and it contains the classified and aggregated memory

references that take place at that node and in its children recursively.

Actions

In addition to collecting information, the generic traversal provides means to per-

form actions (decisions) at important points. The most important action (parallelism

detection) takes place at loop level. Other actions are mostly for bookkeeping, such

as freeing repositories associated with a program unit after processing all matching

call sites. Actions are also used for debugging.
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Algorithm run one b lock
Input : StmtList as l i s t o f statements
Output : I n f o as INFO base

In f o = ∅
For ( Stmt in StmtList ) Do

Loca l In f o = Call run one stmt ( Stmt )
In f o . add in fo ( Loca l In f o )

EndFor
End

Algorithm run one stmt
Input : Stmt as Statement
Output : I n f o as INFO base

Switch ( Stmt . s tmt c l a s s ( ) )
Case AssignmentStmt :

In f o . g e t i n f o (RegStmt , Stmt )
Case DoStmt :

Loca l In f o = ∅
Loca l In f o . g e t i n f o (RegStmt , Stmt ) // r e f e r e n c e s to loop bounds and index
Loca l In f o = run one b lock ( loop body ) / / r e f e r e n c e s as func t i on o f index
In f o . g e t i n f o (DoStmt , Loca l In f o ) // r e f e r e n c e s a c r o s s i t e r a t i o n space

Case CallStmt :
Loca l In f o = ∅
Loca l In f o . g e t i n f o (RegStmt , Stmt ) // r e f e r e n c e s in ac tua l e xp r e s s i on s
Loca l In f o = run one b lock ( sub body ) // r e f e r e n c e s as f unc t i on s o f fo rma l s
In f o . g e t i n f o ( CallStmt , Loca l In f o ) // r e f e r e n c e s as f unc t i on s o f a c tua l s

. . .
EndSwitch
End

Fig. 80. Interprocedural analysis framework as collection of information in a bot-

tom-up traversal of the program. The first argument to the polymorphic

method get info selects the correct code to process the given information.

USR Class

For historical reasons, the USR is named RT LMAD in the code. However, we

will use the name USR in this description in order to keep the dissertation consistent.

A USR object contains either a list of LMADs (implemented by the AbstractAccess

class, or a symbolic representation of an operation on USRs. Translation and expan-

sion operations have a single USR operand (named left), while union, intersection

and set difference have two operands, named left and right.

Once created, a USR cannot be modified. If a modification is necessary, then

the whole USR must be cloned and modified by a specialized method. This design
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choice made it possible to overlay large parts of the trees in memory using reference

counting and guarantees linear memory usage scalability.

There are a few important entities associated with USRs.

• Referenced Symbols: every USR references some symbols, for instance when

loop bounds are symbolic names rather than integer constants. These symbols

are important to know when moving a USR from one context to another such

as when creating an inspector.

• Input Values: every USR has a set of variables that it is sensitive to, i.e. that

determines its value (together with the operators it is made of). Input values

are different from referenced symbols. For instance, the USR that describes the

effect of a loop on an indirect access will reference the loop index. However,

with respect to the context outside the loop, the only symbols that the USR is

sensitive to are the indirection array and the ones present in the loop bounds

(the loop index is not even defined outside the loop).

Knowing this set precisely is crucial to decide which USRs are loop invariant

(they are invariant if their sensitivity set is invariant). Some USRs depend on

subscript arrays. In some cases, they depend only on a subregion of a subscript

array. In order to represent this accurately, the InputValues class is represented

as a set of pairs (variable name, location set), where location set the set of

indices of the subscript array that the USR is sensitive to. The location sets are

themselves represented as USRs. In order to avoid cycles and lengthy chains of

dependences we restricted the recursion to 2, i.e., the USRs that describe the

input values of another USR can only store input values as variables, and not

pairs (variable, location set).

• Estimates: an overestimate and underestimate of the USR as a list of LMADs.
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They are used in compile time comparisons as well as to extract run time tests.

• Enclosing Dimensions: the LMADs lose information about the dimension bounds

present in array declarations. This information is crucial to prove independence

based on the Fortran standard provision that forbids accessing outside the de-

clared bounds. For each USR we maintain the set of subdimensions in which it

is included, if such a subdimension (point, line, plane, hyperplane) exists.

The USRs provide several operations:

• Composition. All these operations take as operand a USR or two and result into

another USR. They are highly optimized to keep the resulting USRs as simple

as possible. When expanding {i} over iteration space i = 1, n, rather than

creating an operator node and returning ⊗∪i=1,n{i}, we instead return [1 : n].

– Union

– Intersection

– Set difference

– Expansion over an iteration space

– Predication

– Translation from a called subprogram to the caller at a call site

• Comparison

– Equality: tests whether two USRs represent the same set of locations.

– Inclusion: tests whether a USR is included in another. It is a powerful

recursive algorithm based on set algebra properties as well as on approxi-

mations (overestimates and underestimates).
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MCA: Putting it All Together

MCA is started when the Polaris driver invokes function ipa rt lmad defined in

file ipa rt lmad/ipa rt lmad.cc. This function builds an object of type IPA bu program

and then invokes its run() method. This method will build IPA bu routine objects

which will run their run one block() method described in Fig. 80.

Automatic Parallelization

Whenever the bottom up traversal of the program arrives at a loop header, an

ACTION base::after loop() action gets triggered. We have programmed this action

in IPA RT LMAD actions to perform static data dependence analysis, generate run

time test if necessary and parallelize the loop if possible.

Dependence Analysis

The dependence sets such as RO∩WF are built in function symbol parallel info().

The analysis of the dependence sets takes place in function symbol parallel diagnostic().

Here is a description of the information collected for each symbol (class SymbolCGPI):

• bool is pushback: true if this symbol is a pushback array, false otherwise.

• const RT LMAD* pushback d: pushback footprint (only defined if is pushback

is true).

• bool is pushback ptr: if true, this symbol is the stack top for some pushback.

• const RT LMAD* dependence d: there are dependences on these locations that

could not be eliminated.

• Solvers* dependence solvers: PDAGs for this symbol’s runtime dependence

tests.
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• IPA RUN TIME INFO dependence t: dependence flag: Yes = dependent, No =

independent, Unknown = runtime test.

• const RT LMAD* reduction d: reduction pattern on these locations.

• Solvers* reduction solvers: runtime test to decide whether this is a reduc-

tion or just an independent update.

• IPA RUN TIME INFO reduction t: Yes = reduction, No = independent update,

Unknown = runtime test.

• REDUCTION OP reduction op: reduction operator (+, *, MAX, MIN etc).

• const RT LMAD* output d: there are output dependences on these locations.

• Solvers* output solvers: runtime test to decide whether this is an indepen-

dent write or it is dependent and needs last value assignment computation.

• IPA RUN TIME INFO output t: Yes = needs last value, No = independent write,

Unknown = runtime test necessary.

• const RT LMAD* privatize d: These locations must be privatized. Some de-

pendences may have been removed based on this assumption.

• const RT LMAD* copy in d: these locations must be copied in.

• LV TYPE last value t: the type of last value assignemnt (none, static, dy-

namic).

• bool needs ckpt: this object needs to be backed up before speculative execu-

tion.
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PDAG Class

The PDAG class implements the concept of runtime test. Internally, a PDAG is:

• A Polaris expression such as n ≤ 200 or false.

• A tuple recurrence(i), op, PDAG(i), where op is ∨ or ∧.

• A tuple op, list of PDAGs, where op is ∨ or ∧.

• A tuple recurrence(i), interval(i), where interval(i) are intervals that must be

proved disjoint.

• An unsolved equation USR = ∅, for which a USR evaluation test or an LRPD

test will be generated.

PDAGs are built from equations such as dependence d = ∅ by calling function

solve(), defined in file rt lmad/solver.cc.

Generation of Run Time Test Code

The generation of run time tests (the Fortran translation of the PDAG) is per-

formed within the IPA RT LMAD actions::after program() method. It needs to be af-

ter the whole analysis process, but while the program is still in SSA. The code to eval-

uate a PDAG is generated either as an inspector, in a function named pti LoopName-

VarName TestName Complexity, or in the loop body for speculative execution. In

either case, they will build a variable named LoopName VarName TestName.

PDAGs are translated into Fortran code based on an attribute grammar. Logical

expressions are inserted verbatim. Logical operations over an iteration space are

implemented as parallel loops using a reduction operator (.AND. or .OR.) on the

accumulator. Interval disjointness tests are implemented as calls to the run time
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library, although a small stub is generated inline to store the interval bounds in an

array (which is passed to the run time library). USR evaluation code is generated

inline down to the level of USR operations, which are implemented as calls to the run

time library.

Inspectors are generated using an in-house interprocedural forward slicer.

At this point, LRPD tests are generated in a later phase because their generation

library expects the code to not be in SSA format. However, they are connected to

the PDAG tests through control variables and control flow constructs.

Generation of Parallel Code

The parallel code generation takes place after the whole program is analyzed and

the tests are generated. Parallelization information is communicated to the parallel

back end. This module generates parallelization directives which will be interpreted by

the parallel machine vendor compiler (at this point only OpenMP is fully supported

in Polaris).

The code communicates with the parallel back end through Polaris assertions.

We have developed several new assertions to implement the concepts of runtime priva-

tization, copy-in, last-value and reduction, as well as to implement the parallelization

of pushbak sequences. The definitions of these assertions are in directory base/Direc-

tive and the code that manages the generation of OpenMP directives is in postpass/-

PostPassOpenMP.cc.

The generation of LRPD tests is also managed through directives at this point.

Their actual code generation is handled by routines in directory rttest/.

Run Time Library

The code generation phase relies on a run time support library.
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USR Evaluation

Implements USR operations: union, intersection, difference, relocation (for trans-

lation across subroutine boundaries). It also implements operations based on a USR

mask: copy in, copy out, zero out and partial reduction.

The run time USR data structure packs a list of LMADs into a two-dimensional

array. This discussion considers row major order.

• Element (0,0) contains the size of each row.

• Element (0,1) contains the number of rows (one LMAD per row).

• Element (i, 0) contains the number of dimensions of the i-th LMAD.

• Element (i, 1) contains the starting offset of the i-th LMAD.

• Element (i, 2*j) contains the stride of the i-th LMAD in dimension j.

• Element (i, 2*j+1) contains the span of the i-th LMAD in dimension j.

The union, intersection and difference operations rely on aggressive simplification

based on the interleaving, coalescing and contiguous LMAD aggregation techniques

introduced by [13]. The current implementation tries to solve simple problems in

place, keeping the descriptors in their original two-dimensional arrays, based on sim-

ple heuristics. Harder problems may require complex manipulation of LMADs and

fall back to a linked list representation. For performance purposes, the current imple-

mentation uses a custom memory allocator (stack based), with a global deallocation

phase after each call to the library. The USR evaluation library is not thread safe

at this time, except for the masked operations (assuming they are called on different

arguments).
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The masked operations consist of asymptotically as many operations as the num-

ber of array elements described by the USR. This may be dramatically lower than

using a mask based on dense shadow arrays, which would be proportional to the size

of the array.

LRPD Test

There are two modules, one for marking and the second for analysis. The marking

functions are usually inlined so only the second module is normally linked in.

Other PDAG Evaluation

As of now, the only other PDAG evaluation operations that are neither simple

logical expressions, USR evaluation or LRPD, is an interval disjointness test. The

decision function expects two arguments: a vector containing the intervals as pairs

(begin, end), and the interval count (all integers). The implementation is based on

sorting the intervals using their beginning as the key, and then making sure that

endi < begini+1.

Support Library

Memcpy module. It implements memory copies that are used either directly

for checkpointing or to implement operations based on a USR mask. The current

implementation is based on the standard memcpy call.

Instrumentation module. It implements timing and counting functional-

ity. The interface consists of three functions: timer init(int*), timer start(int*) and

timer stop(int*,int*). Upon the first call to timer init, the library opens and reads

a file named TIMERS. This file must contain a list of names (one name per line)

corresponding to the timers in the application. Timer 0 will correspond to the first
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name and so on. The first parameter of each call to the timing routines must be this

timer id. The second parameter to timer stop is a possibly dynamic event type, such

as “the loop was parallel”.

The instrumentation module registers a display routine with the libc atexit mech-

anism. A timing/counting summary is printed upon successful program execution to

file timing.out.

Debugging Run Time Tests

USR Evaluation. There are four compile time options that can control perfor-

mance and debug options.

• -D STACK ALLOCATOR=... specifies that the library will use the fast stack

allocator rather than the libc malloc. The argument is the size of the stack. The

option we use is -D STACK ALLOCATOR=5000000.

• -DHEAP MONITOR turns on a rudimentary mechanism that catches memory

leaks. The default is not to use this flag as it incurs additional overhead.

• -DDISPLAY DIAGNOSTICS turns on the HTML display. The results of each

USR evaluation is recorded in file rt parallel report.html. The size of the file

can be very large if partial operations or test inspectors cannot be reused (each

dynamic instance will be recorded).

• -DDEBUG OPERATIONS turns on the text mode display. It lets you follow

the order of evaluation of USR operations as well as their operands, result and

destination register. This flag should be used in conjunction with the USR

display flag 2 (see user manual).

LRPD. The LRPD marking operations can be debugged by inserting tracing
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instructions in the marking routines. It is better to link in the library rather than

inline it so that modifications to the library do not require recompilation of the

application. The inlining flag is rt inline sub.

Instrumentation. The timing routines have built-in consistency checks. They

verify that the TIMERS file exists and has the right format. There is also basic

verification of the way the timers are used. For instance, a run time error will occur

if a timer is started twice. These run time checks must be switched on at compile

time using compilation flag -DDEBUG TIMERS.

Value Evolution Graph

The Value Evolution Graph (VEG) is implemented in directory cvdl/Evolution.

In addition to the EvolutionGraph class, the directory contains a set of higher-level

information routines, such as eg compare or eg range. The VEGs can only be built

when the program is in SSA. The construction of a VEG for a loop will trigger the

construction of all the VEGs in all inner loops interprocedurally.

Filters

The filters are independent passes over the whole program. They all reside in

directory filters/. Filters are run by their own driver. Each filter must be registered

with the driver. At registration, the filter must be given the list of other filters that

it depends on (that must be run before it).

The driver reads the switches file, resolves dependences, orders the filters and

run them. The filters require the program not to be in SSA.
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