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ABSTRACT 
 
 

Spectroscopic and ab initio Studies on the Conformations and Vibrational Spectra of 

Selected Cyclic and Bicyclic Molecules. (December 2006) 

Abdulaziz A. H. Al-Saadi, B.S., King Fahd University for Petroleum and Minerals; 

M.S., King Fahd University for Petroleum and Minerals 

Chair of Advisory Committee: Dr. Jaan Laane 
 
 
 

 The structure, potential energy functions and vibrational spectra of several cyclic 

and bicyclic molecules have been investigated using several spectroscopic techniques 

and high-level ab initio and density functional theory (DFT) calculations. Laser induced 

fluorescence and Raman spectroscopies were used to study the conformation of 2-

indanol in the electronic ground and excited states. These, along with detailed ab initio 

calculations, confirmed the existence of four different stable conformations with the one 

undergoing an intermolecular hydrogen bonding being the most stable. A theoretical 

two-dimensional surface in terms of the ring-puckering and the hydroxyl group internal 

rotation vibrations was constructed. This work was extended to obtain preliminary 

insights on the conformations and ring-puckering frequencies of 3-cyclopenten-1-ol 

using ab initio and DFT calculations.  

 Infrared and Raman spectra were also utilized to study the structures and 

vibrational spectra of �-crotonolactone and 2,3-cyclopentenopyridine (pyrindan). Ab 



 iv 

initio results showed that �-crotonolactone is rigidly planar in the electronic ground state 

and has a nearly harmonic ring-puckering potential function. The calculated vibrational 

levels were shown to be in very good agreement with the experimental ring-puckering 

frequency from vapor-phase Raman observations. 

 The structures, vibrational spectra, and potential energy functions of several 

cyclic molecules were reinvestigated using high-level ab initio computations, and 

detailed vibrational analyses based on DFT-B3LYP calculated frequencies were also 

carried out. A number of new insights were presented by re-evaluating the available 

experimental data for several cyclopentenes, silacyclobutanes and silacyclopentenes. It 

was found that the vibrational spectra of some deuterated cyclopentenes possess 

extensive coupling between several ring modes and other low-frequency modes. 

Reassignments of these spectra have been proposed. Frequencies from DFT-B3LYP 

calculations showed very good agreement with the experimental values for 

silacyclobutane and its derivatives. The presence of silicon and halogen atoms did not 

affect the accuracy of the DFT calculations. In addition, the ring-puckering potential 

energy function for silacyclopent-2-ene was studied and alternative assignments of the 

far-infrared results were proposed. The new assignments are in good agreement with 

computational results. Silacyclopent-2-ene and its -1,1-d2 isotopomer were shown to be 

slightly puckered with barriers of less than 50 cm-1. 
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CHAPTER I 

INTRODUCTION 

 

 

 Many conformational processes undergone by cyclic molecules can be well 

represented by vibrational potential energy surfaces (PES). Such processes include 

isomerizations achieved by internal rotation, intramolecular hydrogen bonding, ring 

inversions and ring bendings [1]. Large-amplitude low-frequency motions, such as the 

ring-puckering and ring-twisting vibrations, in cyclic and bicyclic molecules are of 

special interest to spectroscopists since structural changes are often associated with these 

out-of-plane motions. In 1945 R. P. Bell postulated that unusual quartic oscillation 

potential energy functions would govern some of these vibrations [2] and the first 

spectroscopic observations of the ring puckering were achieved in 1960 at MIT (R. C. 

Lord laboratory) [3] and Berkeley (W. D. Gwinn laboratory) [4].  

For the past few decades, high-resolution far infrared and low-frequency Raman 

spectroscopic techniques have been employed to characterize these large amplitude ring 

motions for a wide array of cyclic molecules and to determine the potential energy 

functions governing such motions [5-9]. The determination of the potential energy 

functions   yields  valuable  information  about  the   molecular   conformations,   energy  
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 2 

barriers between different structures, as well as the forces responsible for the molecule 

configurations. Ab initio calculations have also become an integral part of this research. 

High-level quantum mechanical treatments of the cyclic and bicyclic molecules provide 

a great deal of information and guidance when such calculations are performed in the 

proper manner.  

Since three points define a plane, three-membered rings possess no out-of-plane 

vibrations. However, four-, five-, and six-membered rings have one, two, and three out-

of-plane motions, respectively. In most out-of-plane cases, the ring-puckering motion 

has the lowest frequency. In cyclobutane the only out-of-plane ring-bending motion is 

the ring-puckering vibration. In the case of cyclopentane and cyclohexane, however, 

there are two or three out-of-plane motions of comparable energies, and these have to be 

considered simultaneously. 

When unsaturated ring molecules, such as cyclopentene and 1,4-cyclohexadiene, 

were studied, Laane and Lord [10,11] showed that such cyclic molecules can be 

regarded as pseudo-four-membered rings because they have ring puckering vibrations 

that are similar to that in cyclobutane. Because of the presence of the C=C bonds in the 

skeleton of the ring, the two olefinic carbon atoms move as a single unit during the 

puckering vibration. For cyclopentene [10] and 1,4-cyclohexadiene [11], the ring-

twisting vibrations involving the double bonds are of higher energy than the puckering 

vibrations. The frequency for the twisting of the double bond in cyclopentene is 380 cm-1 

whereas the sequence of ring-puckering frequencies lies below 160 cm-1. Moreover, six-

membered rings with one double bond, such as cyclohexene, can be envisioned as 
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pseudo-five-membered rings similar to cyclopentane, where no double bonds are 

present. In pseudo-five-membered rings, as with five-membered rings themselves, the 

ring-twisting and ring-bending (essentially ring-puckering) frequencies are relatively 

low and similar in frequency. The ring-bending motions of cyclopentene and 

cyclohexene are shown below. 
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In order to describe the out-of-plane motions with a mathematical model, R. P. Bell 

[2] proposed that the ring-puckering vibration of a four-membered ring molecule could 

be represented by a quartic potential energy function. Further far-infrared spectroscopic 

investigations [3,12,13] showed that the ring-puckering vibrations are best represented 

by mixed quartic-quadratic potential functions. In addition, Raman studies on 

cyclobutane found it to have a double-minimum energy function [14]. Double-minimum 

potential functions require both quartic and quadratic terms that can better describe the 

shape of the potential function. In this work, the conformations and vibrational 

frequencies of several cyclic molecules have been studied in the electronic ground and 

excited states using several spectroscopic techniques as well as ab initio calculations. 

The results of these investigations will be presented herein. 
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2-INDANOL 

2-Indanol represents an interesting case for study since in its most stable form it is 

stabilized by internal hydrogen bonding that exists between the hydroxyl hydrogen atom 

and the �-electron cloud of the benzene ring. Infrared, Raman, and laser induced 

fluorescence spectroscopic investigations have been carried out on 2-indanol, and these 

results will be presented. Detailed ab initio calculations using the MP2/cc-pVTZ and 

DFT-B3LYP levels of theory have been also carried out to confirm our experimental 

results. A few spectroscopic investigations on 2-indanol have been previously reported 

[15-17]. These studies concluded that 2-indanol exists in four possible conformations, 

which can interchange through the ring-puckering vibration and the internal rotation of 

the OH group on the five-membered ring. A potential energy surface in terms of these 

two vibrational coordinates is essential in understanding how the molecule changes its 

conformations and which pathways it follows to interconvert from one structure to 

another. Density functional theory calculations will be used to predict the vibrational 

frequencies of each structure and to help in normal mode assignments of the fifty-four 

fundamentals associated with each structure. In addition, spectroscopic results of 2-

indanol which confirm the presence of the four conformers in the electronic ground and 

electronic excited states will be presented. 

 

3-CYCLOPENTEN-1-OL 

3-Cyclopenten-1-ol is similar in structure to 2-indanol except that no benzene ring 

is attached to the five-membered ring. As in the case of 2-indanol, 3-cyclopenten-1-ol in 
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its global minimum structure is stabilized by the intramolecular bonding taking place 

between the hydroxyl hydrogen and the �-cloud of C=C bond. An 1H NMR study has 

previously predicted the puckering angle in 3-cyclopenten-1-ol to be approximately 40° 

[18]. Liquid-phase infrared experiments showed that a splitting in the OH stretching 

region of approximately 24 cm-1 is present [18-20]. This indicated the presence of both a 

free -OH stretching and intramolecularly-bonded -OH stretching vibrations. Ab initio 

calculations have reproduced highly satisfactory results for the conformations and 

vibrational frequencies of 2-indanol. These findings provided incentive for investigating 

3-cyclopenten-1-ol using ab initio and DFT calculations. Since 3-cyclopenten-1-ol has 

fewer atoms than 2-indanol, a higher level of calculation was possible on this molecule. 

The conformational behavior, calculated infrared and Raman vibrational spectra in the 

electronic ground state (S0) for 3-cyclopenten-1-ol based on ab initio calculations will be 

presented. 

 

�-CROTONOLACTONE 

The �-crotonolactone molecule has been reported in microwave studies [21,22] to 

be planar in its electronic ground state, and its ring-puckering potential energy function 

was thought to be primarily governed by a quadratic term. An interesting feature of the 

molecule is the conjugation between the C=C and C=O groups. Several studies of 

unsaturated lactones in the spectral region below 1800 cm-1 have been reported [23-25]. 

These studies focused on the doublet bands associated with the C=O stretching vibration 

in various solvents. In the present work, the vapor-phase infrared and Raman spectra and 
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complete vibrational analysis based on experimental and calculated spectroscopic results 

will be presented. The potential energy function of the ring-puckering vibration in �-

crotonolactone was generated based on high-level ab initio results and kinetic energy 

expressions. The ring-puckering quantum transitions based on ab initio calculations will 

be presented. The structure and vibrational results obtained for �-crotonolactone will be 

compared with 2-cyclopenten-1-one which has been previously characterized by 

different spectroscopic techniques. 

 

2,3-CYCLPENTENOPYRIDINE 

As a continuation of investigations on molecules of the indan family, the infrared 

and Raman spectra of 2,3-cyclopentenopyridine, which is also known as pyrindan, have 

been carried out. Pyrindan has C1 symmetry in its puckered configuration, but due to its 

non-rigidity it can be analyzed as a planar molecule with Cs symmetry. Fantoni and 

Caminati reported a microwave study of the ring-puckering and ring-twisting vibrations 

of pyrindan and obtained a puckering barrier of 390 cm-1 [26]. The UV spectra of 

pyrindan in solvents have also been reported [27,28]. Apparently no other spectroscopic 

studies have been reported. In this work, a combined study of vibrational spectroscopy 

and ab initio calculations on pyrindan in its electronic ground and excited states will be 

presented. The conformational structure of pyrindan was compared to that of indan in its 

electronic ground state. Vibrational assignments of the forty-eight normal modes have 

been made on the basis of the observed and calculated infrared and Raman spectra. 

Preliminary UV spectroscopic results of the electronic excited state (S1) showing the 
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region where the n��* transition is expected will also be presented. Detailed ab initio 

calculations using the MP2 and DFT-B3LYP theories for studying the puckering barrier 

and angle have been made. These computational results were used to construct 

theoretical potential energy functions in terms of the puckering coordinate.  

 

CYCLOPENTENE 

 The structures and vibrational spectra of cyclopentene-d0 and its 1-d1, 1,2,3,3-d4, 

and -d8 isotopomers have been extensively studied by means of different spectroscopic 

techniques [10,29-37]. Cyclopentene is a pseudo-four-membered ring that can be 

thought of as a four-membered ring in terms of its out-of-plane ring motion. Far-infrared 

results fitted with a two-dimensional potential energy function in terms of the ring-

puckering and ring-twisting coordinates showed that cyclopentene has a puckering 

barrier of 232 cm-1 and a dihedral angle of 26° [29]. The high level of accuracy with 

which ab initio and density functional theory calculations can reproduce the 

conformational energies and vibrational spectra for several cyclic and bicyclic 

hydrocarbons provides motivation to reinvestigate the structure and infrared and Raman 

spectra of cyclopentene. Revisions of the previously reported vibrational assignments for 

cyclopentene have been accomplished with the help of density functional theory (DFT) 

calculations. DFT calculations have also allowed the reassignments of several of the 

vibrational frequencies in the d1, d4, and d8 isotopomers. These vibrational reassignments 

will be presented in detail. In addition, ab initio calculations using the MP2/cc-pVTZ 

basis set were used to predict the inversion barrier and dihedral angle of cyclopentene. 
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Comparison of the calculated barriers and angles when employing different basis sets to 

previously reported experimental values will be presented.  

 

SILACYCLOBUTANE 

The first preparation of silacyclobutane and some of its derivatives was reported by 

Laane in 1967 [38]. The structure of silacyclobutane was studied by several 

spectroscopic techniques and all these studies concluded that the molecule is puckered 

with a puckering angle of about 30°. Silacyclobutane-1,1-d2 , 1,1-

difluorosilacyclobutane and 1,1-dichlorosilacyclobutane have also been investigated. 

The vibrational infrared and Raman spectra and complete vibrational analyses on the 

basis of normal mode calculations were proposed for the four molecules [39]. The 

availability of high-level ab initio quantum mechanical calculations has now made it 

appropriate to reinvestigate the original assignments and revise them wherever 

necessary. Attention will be directed to the characteristic frequency always present near 

1130 cm-1 which was recognized as the fingerprint of silacyclobutane rings. The detailed 

computational results and vibrational reassignment based on experiment and theory will 

be presented. 

 

SILACYCLOPENT-2-ENE 

Silacyclopent-2-ene and silacyclopent-3-ene were previously investigated and their 

ring-puckering vibrations were characterized by single-minima potential functions 

characteristic of planar structures [40,41]. The planar structure of the 2-ene was 
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explained in terms of an unusual interaction between the d orbital of the silicon atom and 

the �-electrons of the C=C double bond. High-level ab initio calculations on the 

structures of these two molecules have been carried out to evaluate the experimental 

conclusions. Revised potential energy functions for the silacyclopent-2-ene and 

silacyclopent-2-ene-1,1-d2 will be proposed. The kinetic energy expressions for the 

molecules were also calculated based on the more accurate structure from the coupled 

cluster calculations. The structures and vibrational frequencies of 1,1-difluoro- and 1,1-

dichlorosilacyclopent-2-ene were also investigated by ab initio and DFT calculations 

and the results will be presented. The CH2 bending vibrations in cyclopentene, 

cyclobutane, silacyclopent-2-ene, silacyclopent-3-ene, and silacyclobutane, as well as 

some disilacyclic molecules will be discussed in some detail. 
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CHAPTER II 

THEORETICAL AND COMPUTATIONAL METHODS 

 

 

INTRODUCTION 

 In recent years, computational quantum chemistry has been very widely used not 

only by theoretical research groups but also by experimental chemists in various fields of 

chemistry, including molecular spectroscopy and structure. The rapid developments in 

molecular simulation software packages and the presence of powerful computing 

facilities have greatly aided many areas of both research and teaching and have helped 

solve many problems in science. 

 Limitations that computational tools had in the past which led to faulty 

conclusions have been overcome in recent years. Nowadays, new research problems in 

different areas of chemistry can be supported and properly guided by making use of 

available computational techniques. Moreover, quantum chemical techniques can help 

resolve issues that can not be practically achieved due to instrumentation limits. 

Computational chemistry, especially high-level theories and calculations, can also help 

refine, and perhaps change, some of the old concepts and understanding of chemical 

phenomena.  

 Quantum-mechanical calculations in chemistry started early in the last century 

with the use of empirical and semiemperical molecular orbital approaches, such as the 



 11 

Hückel method. These methods applied a simplified Hamiltonian rather than the 

complete molecular Hamiltonian and used parameters whose values were adjusted to fit 

the experimental data or even the results from other ab initio calculations.  

 

AB INITIO CALCULATIONS 

 Ab initio is Latin for “from the beginning”. The name implies that the 

computations in ab initio quantum mechanical methods are based on theoretical 

principles and universal physical constants without involving experimental data. Ab 

initio calculations also utilize the correct Hamiltonian to investigate the properties of the 

molecule. Some useful approximations are needed in order for the calculations not to 

consume an intensive amount of time and to be more reliable with the computer facilities 

available for use. Examples of these types of approximations are the use of the time-

independent Schrödinger equation, assuming the non-relavistic behavior of the 

wavefunctions describing the molecular system, and applying the Born-Oppenhimer 

approximation.  

 Since early in the last century, the developments in quantum mechanics evolved 

several theoretical approaches to find the approximate solutions of the Schrödinger 

equation and to calculate the chemical and physical properties for the molecules. In this 

chapter, brief highlights in simple mathematical formats will be presented to explain the 

Hartree-Fock (HF), second-order Møller-Plesset (MP2), and coupled cluster (CC) 

theories. The density-functional theory (DFT) will also be discussed briefly. These four 
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computational methods have been implemented in this research work. The following 

descriptions were mainly taken from Refs. [42-45]. 

 

 1. Hartree-Fock Theory 

 The Hartree-Fock (HF) calculation is a very commonly used method of ab initio 

calculations. The Hartree-Fock method has not been used in this work except for a few 

cases. However, since it is the first step for the Møller-Plesset perturbation theory and 

other more sophisticated approaches, some discussion about the nature of HF 

calculations will be presented.  

 The molecular time-independent Schrödinger equation is given by 
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where �  is Planck’s constant divided by 2�, km  is the mass of the particle k, Ψ  is the 

total wavefunction, r�  and R
�

 represent the positions of the electrons and nuclei, 

respectively, V is the potential energy component of the Hamiltonian and is given by the 

Coulomb repulsion or interaction between the electrons and nuclei , E is the total energy 

of the system, and 2
k∇  or “del squared” is the Laplacian operator and is defined by 
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 The exact solution of the Schrödinger equation for many-electron systems is not 

possible. Some assumptions, however, can be made in order to approximate the solutions 

for the total molecular wavefunction, Ψ . Based on the molecular orbital theory the total 
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wavefunction can be represented by individual molecular orbitals ( 1φ , 2φ , …, nφ ) that 

are chosen to be normalized and orthogonal with respect to each other to fulfill some of 

the conditions for Ψ . The simplest wavefunction built from these molecular orbitals is a 

Hartree product: 

)()( 11 rr �� φ=Ψ  )( 22 r�φ  …  )( nn r�φ . (3) 

One advantage of this method is that it breaks the many-electron systems into many 

simpler one-electron hydrogen-like problems each of which can be solved independently 

to give a single-electron wave function called an orbital and an energy called an orbital 

energy. This was the basis of the HF method which was introduced by Douglas Hartree 

in 1928 [46]. Later, more modifications were made to that approach to improve the 

outcome eigenvalues. For example, Slater- and Gaussian-type orbitals (STOs and GTOs) 

were used as mathematical functions to describe the wavefunctions in order to produce 

more reliable results.  

 An essential physical requirement of )(r�Ψ is that it must be antisymmetric with 

respect to exchange, meaning that it must change its sign when two identical particles 

are swapped within the system. The function shown in Eq. (3) does not fulfill the 

requirement of antisymmetry. The common way of having that requirement satisfied is 

by expressing the wavefunction in a form of a determinant. Switching any two electrons 

corresponds to swapping two rows of the determinant, which causes the sign to change.  

 The Hartree-Fock method is a variational calculation. Variational methods 

provide an upper bound to the ground-state energy for a specific system [47]. In other 

words, the exact wavefunction ( oΨ ) becomes a lower bound to the energy calculated by 
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another normalized, antisymmetric wavefunction ( φΨ ). In mathematical form, the 

variational principle is given by 

)()( oo φφ Ψ≤Ψ EE . (4) 

The closer the trial function ( φΨ ) to the exact function ( oΨ ), the closer φE  will be to 

oE . This illustrates the importance of having a good approximation of the trial function 

at the start of the calculation. 

 In 1951 C. J. Roothaan [48] applied the variational principle to the solution from 

the Slater determinant to derive the following equation describing molecular orbital 

expansion coefficients, c�i ,: 

�
=
=

−
N

1�
1�

���� )S�F( i  0c � =i  . (5) 

Eq. (5) can be also written in matrix form as 

FC = SC� (6) 

where � is a diagonal matrix of orbital energies whose elements are the one-electron 

orbital energies, �i’s, F is the Fock matrix, and S is the overlap matrix indicating the 

overlap between the orbitals. The Fock matrix, F, accounts for the Coulomb repulsion of 

each electron with the static field of all of the other electrons. Roothaan’s approach was 

critical because he was the first to describe the matrix algebraic equations of the HF 

procedure using a basis set representation for the molecular orbitals as shown above in 

Eq. (5).  
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 The steps in a Hartree-Fock calculation start with an initial guess of the orbital 

coefficients. This function is used to calculate an energy and a new set of orbital 

coefficients, which can then be used to obtain a smaller energy value with an improved 

set of coefficients. This optimization procedure continues until no more improvement 

can be obtained within the predefined convergence criteria. This iterative procedure is 

said to be the self-consistent field (SCF).  

 In the Hartree-Fock description, the molecular orbitals are the solutions of one-

electron equations with each electron moving in the average field of all the other 

electrons. This accounts for the static interaction between the electrons but neglects the 

correlation between the motions of the electrons. The inadequate description of the 

electron correlation is the main deficiency of the HF theory. The methods that go beyond 

the Hartree-Fock theory in treating the electron-electron interaction more precisely are 

known as electron-correlation methods. These types of calculations begin with the HF 

calculation and then correct for correlation. Some of these methods are the Møller-

Plesset perturbation theory (MPn, where n is the order of correction), configuration 

interaction (CI), and coupled cluster (CC) theory. In the next two sections, brief 

introductions to the Møller-Plesset and coupled cluster theories will be presented. 

  

 2. Møller-Plesset Perturbation Theory 

 The perturbation theory expresses the solution to one problem in terms of another 

problem which has been solved previously. Thus, the perturbation theory splits the 

Hamiltonian into two or more parts as follows: 
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+++= )2()1()0( HHHH … )N(H+  . (7) 

The first term, )0(H , is the unperturbed term which can be solved exactly. The other 

terms ( )1(H , )2(H , … , )N(H ) are called the perturbation terms. In the Møller-Plesset 

method, the electron-correlation correction is added as a perturbation to the Hartree-

Fock wavefunction. Specifically, for the MPn method, Eq. (7) can be rewritten as 

VHH �)0( +=  (8) 

where V is the perturbation operator and the V� term is the perturbation applied to )0(H . 

The term V�  is assumed to be small in comparison with )0(H . The perturbed wave 

function, 	 , and energy, E, can be expanded in terms of the dimensionless parameter λ 

as 

++++= )3(3)2(2)1()0( 	�	��			 … (9) 

and 

++++= )3(3)2(2)1()0( ��� EEEEE … . (10) 

 

Eqs. (9) and (10) are then substituted in the Schrödinger equation to derive the 

wavefunctions and orbital energies at different orders. The ab initio Møller-Plesset 

treatment considers )0(H  as the sum of the Fock operators and )0(E  as the sum of orbital 

energies [49]. When the series is truncated after the first order of perturbation, the 

Hartree-Fock energy ( )1()0( EE + ) from the full Hamiltonian is obtained. This is identical 

to the first order of the Møller-Plesset expansion (MP1). The third term on the right hand 

side of Eqs. (9) and (10) can be included in the Hamiltonian to obtain the first order 
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correction due to correlation. The second order energy, )2(E , is the simplest correction 

that accounts for correlation and this method is called the second-order Møller-Plesset 

(MP2) theory.  

 The first perturbation to the Hartree-Fock energy, )2(E , is always negative and 

thus lowers the energy of the system. Because the MPn theory is not variational, it may 

overcorrect for the correlation, but this is rare. The order of correction can be increased 

to the MP3, MP4, MP5 levels (to include )5()4()3( ,, EEE  terms, etc.) or even higher for 

more accurate results. Including correlation generally improves the accuracy of 

computed energies and geometry. High accuracy work which aims for quantitative 

results should use higher orders of the MP treatment. The MP3 and MP4 calculations are 

commonly seen in the literature. 

 

 3. Coupled Cluster Theory 

 The coupled cluster (CC) theory is another ab initio approach to account for the 

electron correlation. The coupled cluster theory expresses the wavefunction as linear 

combinations of multiple determinants 

+++= 2211HF0 				 ccc … (11) 

where the coefficients ci  reflect the weight of each determinant in each expansion term. 

The Hartree-Fock determinant is sometimes included as a leading term in Eq. (11) 

because of its reasonable efficiency. In general, the higher-order determinants are 

constructed by promoting electrons from the occupied to unoccupied orbitals. The order 

of coupled cluster theory is determined by the type of excitation. For example, S stands 
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for singly-excited and D for doubly-excited systems. While the MPn method corrects for 

all types of excitations (S, D, T, Q, etc.) to the n-th order, the CC method includes all 

types of corrections for the given type of excitations.  

 The main component in CC theory is the cluster operator, T, which is defined as 

+++= 321 TTTT …+ nT  (12) 

where n is the total number of electrons and iT  is the operator for the i excitations from 

the reference. The type of coupled cluster theory is determined by choosing the cluster 

operator. For example, consideration of  1TT =  yields the CCS level which is a coupled 

cluster treatment including only single excitations. Similarly, when 21 TTT +=  is 

considered, this gives the CCSD (single and double excitations) method. Due to the 

number and complexity of the determinants used, ab initio calculations involving the 

coupled cluster method are very time-consuming. Generally, the CCSD method 

produces highly satisfactory results which are, in principle, more accurate than the 

results produced by the MP4 level of theory. Another commonly used approach of CC 

theory is the calculation of the triple excitation term as a perturbation to the CCSD 

terms. This gives rise to the CCSD(T) method which is commonly seen in the literatures. 

 

 4. Density Functional Theory 

 In recent years density functional theory (DFT) has become a popular choice for 

investigating the chemical properties of different types of molecules. The advantage of 

the DFT-based calculations is that they result in very satisfactory output and use less 

computational time than many other traditional quantum mechanical techniques. In 1964 
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Kohn and Hohenberg [50(a)] proposed that there exists a unique functional that 

determines the ground state energy and density exactly. However, the Kohn-Hoenberg 

theorem does not provide a specific form for this functional. This theorem was the basis 

of DFT which describes the energy of the molecule not from evaluating the total 

wavefunction but from solving for the electron density. Therefore, DFT can be classified 

as a method that is different from ab initio calculations. 

 In simple format, DFT methods split up the total electronic energy into smaller 

terms according to 

XCJVT EEEEE +++=  (13) 

where TE  is the kinetic energy term associated with the electron motions, VE  is the 

potential energy term associated with the nucleus-electron attraction and nucleus-nucleus 

repulsion, JE  is the average electron-electron repulsion term, and XCE  is the exchange-

correlation term which includes the rest of the electron-electron repulsion. All of the four 

energy terms in Eq. (13), except for the nucleus-nucleus repulsion, are functions of the 

electron density, )r(ρ . The DFT method determines one function in terms of another 

function, which is basically the meaning of the word functional. The density functional 

obtains the energy for the system from its electron density.  

 The non-classical term in Eq. (13) is the exchange-correlation term, XCE .  The 

XCE  term is approximated by integrals involving mainly the spin densities. The XCE  is 

divided into two parts: 

)()()( CXXC ρρρ EEE +=  . (14) 
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In Eq. (14) )(X ρE  is the exchange functional which corresponds to the same-spin 

electron-electron interaction, while )(C ρE  is the correlation functional which 

corresponds to the mixed-spin electron-electron interaction. There is no exact form for 

the functional. However, there are many forms of several functionals which have been 

developed and implemented to explore the chemical properties of different molecules. 

Some functionals were developed from fundamental quantum mechanics and some were 

developed by fitting them to experimental results. These different types of approaches 

are referred to as ab initio and semiempirical DFT methods, respectively.  

 Examples of developed and commonly used functionals are B3LYP, B3P86, and 

PW91. These functionals have advantages and disadvantages when they are incorporated 

in the calculations. The B3LYP method utilizes a three-term Becke functional [50(b)] 

combined with the Lee, Yang, Parr [50(c),(d)] exchange functional. The B3LYP 

functional is said to be hybrid, which means it includes Hartree-Fock and DFT exchange 

terms in addition to the DFT correlation terms. That is, 

XC
DFTDFT

X
HFHF

XC
hybrid cc EEE +=  , (15) 

where the confinements c’s are constants. The B3LYP hybrid functional is currently the 

most widely used type of DFT calculation, especially for organic molecules.  

 More complicated types of density functionals are those incorporating the 

electron density and their gradients as well. Such methods are known as gradient-

corrected methods. The gradient-corrected methods are usually hybrid. An example of 

gradient-corrected functionals is PW91 (Perdew and Wang 1991) [50(e),(f)].  
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 The DFT method was found to predict the vibrational frequencies in very good 

agreement with experimental results, especially for hydrocarbons. DFT results are not as 

accurate for heavy elements, highly-charged systems, or systems sensitive to electron 

correlation. One technique for improving the efficiency of the density functionals is by 

minimizing the integration grid size of the electron density. Finer grids result in a greater 

number of integration points per unit volume of density, and thus more accurate results 

are obtained. 

 

 5. Basis Sets 

 A basis set is a set of linear combinations of mathematical functions that describe 

the shapes of the orbitals in a molecule. In order to be able to perform an ab initio 

calculation, basis sets must be used. The larger the basis set, the more accurate these 

descriptions are, and the fewer the restrictions imposed on the locations of the electrons 

will be. The basis sets use linear combinations of Gaussian-type functions to form the 

orbitals. Basis sets assign a group of basis functions to each atom within a molecule to 

describe its orbitals. There is a long list of existing basis sets that can be used to perform 

ab initio calculations. The choice of basis sets is a major factor in determining the 

amount of computation time and the degree of accuracy for a specific type of 

calculation. 

 A minimal basis set uses the minimum number of basis functions per atom. This 

has only three Gaussian primitives per basis function (3GTOs). The size of the basis set 

can be increased by incorporating a larger number of basis functions for each atom. For 
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example, instead of using one basis function to describe the 1s orbital for the hydrogen 

atom, two basis functions of different sizes are used. These types of basis sets are known 

as split-valence or sometimes as double-zeta (double-
) basis sets. Examples of split-

valence basis sets are the 3-21G and 6-31G. When three different types of basis 

functions are used to describe each atomic orbital, it is known as triple-split-valence or 

triple-zeta (triple-
) basis sets. An example of a triple-split-valence basis set is the 6-

311G. The basis sets 6-31G or 6-311G are known as the Pople basis sets. Split-valence 

and triple-split-valence basis sets allow the changes not only in the size of the orbitals 

but also in their shape.  

 When an angular momentum function is added to the basis function description, 

it gives the orbital the correct symmetry (s, p, d, etc.), and the basis set is said to be 

polarized. Polarization functions add more accuracy to ab initio results because they give 

the orbitals more flexibility to change their shape. Polarization functions are used to 

predict more accurate geometry and vibrational frequencies. Examples of polarized basis 

sets include the 6-31G(d) and 6-31(d,p). The notation 6-31G(d) implies that a set of d 

primitives has been added to each atom other than hydrogens, whereas the 6-31G(d,p) 

means that a set of d primitives has been added to each atom other than hydrogens and a 

set of p primitives has been added to the hydrogen atoms as well. Extra numbers of sets 

of polarization functions may also be added, depending on the need and the level of 

accuracy being sought. However, polarization functions are generally expensive in terms 

of the required computational time. 
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 Other types of functions used with Pople basis sets are diffuse functions, and 

they are indicated with plus signs, such as 6-31+G(d) and 6-31++G(d) basis sets. Diffuse 

functions are primitives with small exponents and give a better description for the 

wavefunction far from the nucleus. They are helpful in several cases, such as for 

predicting the geometry for anions, for calculations involving molecules with lone pairs 

of electrons, for investigating the types of interactions that occur over long distances, 

and for calculations related to electronic excited states. Adding diffuse functions also 

changes the relative stabilities of different conformations within a molecule. The “plus” 

means a set of diffuse functions is added to nonhydrogen atoms. The additional plus 

implies that another set of diffuse functions is added to hydrogen atoms. In terms of 

computational time, diffuse functions are not as expensive as polarization functions. 

 Other commonly used basis sets are those developed by Dunning, Huzinaga, 

Duijneveldt and others. Two examples of widely used basis functions of the Dunning-

type are VDZ and VTZ which stand for double-zeta valence and triple-zeta valence 

types, respectively. A very commonly used basis set of this type is the cc-pVTZ. The 

“cc” means it is a correlation-consistent basis set. In other words, the basis functions are 

optimized for the best performance with correlated calculations. The letter “p” implies 

the use of polarization functions of a large angular momentum. Dunning made a major 

contribution in developing different types of correlation-consistent basis functions. It has 

been noted that these large correlation-consistent basis sets with high angular-

momentum polarization functions greatly improve the level of accuracy of the 

calculations. 
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 6. Calculation of Vibrational Frequencies 

 Ab initio calculations use the harmonic oscillator approximation to compute the 

vibrational frequencies because the harmonic oscillator approach is more affordable as 

compared to other more accurate methods. Harmonic oscillator calculations are useful 

for predicting the frequencies for the fundamental vibrations.  

 For a diatomic molecule the potential energy, )r(U , from a Taylor series 

expansion truncated after the second order is given by 

2
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where rAB is the distance between the atoms A and B, req is the equilibrium distance at 

the energy minimum, and kAB is the force constant which is defined as 
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 To predict the rotational and vibrational frequencies for a molecule with N 

atoms, the Schrödinger equation in terms of nuclear motions: 
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needs to be solved. Most of the parameters in Eq. (18) have been described above. The 

other terms are q, the nuclear coordinate (a total of 3N vibrational coordinates have to be 

considered), and nucΨ , the nuclear wavefunction expressed in terms of the nuclear 

coordinate. Eq. (18) allows the rotational and vibrational frequencies to be calculated 

within the harmonic oscillator model. In the case of vibrational frequency calculations 
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for a polyatomic molecule of N atoms, Eqs. (16) and (18) lead to the multi-dimensional 

equation: 
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where q represents the mass-dependent spatial coordinate vector and H is the Hessian 

matrix which is defined by 

eqqq
2

2

=∂
∂=

q
H U

 . (20) 

It can be seen that Eq. (19) is 3N-dimensional, but it can be divided into 3N one-

dimensional Schrödinger equations. Each component of the vector q corresponds to a 

molecular vibration which is called a normal mode. For each normal mode, a set of 

harmonic oscillator eigenfunctions and eigenvalues are expressed in terms of square 

roots of force constants in the Hessian matrix and in terms of atomic masses as well. 

 Eq. (19) can be applied to structures other than the minimum conformations. In 

this case, one or more imaginary frequencies will result from the calculations. These 

result from negative force constants of normal modes indicating that the displacements 

of specific molecular vibrations lead to lowering of the energy on the potential energy 

surface. Since the harmonic oscillator vibrational frequencies are computed from the 

square root of the force constants, this gives rise to imaginary, or sometimes called 

negative, frequencies. Thus, vibrational frequency calculations can be used to examine 

the optimized structure whether it is a minimum or a saddle point. In any case, the level 
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of theory and basis set used to compute the vibrational frequencies must not be changed 

from the one used to optimize the geometry for the molecule. 

 

 7. Calculation of Vibrational Infrared and Raman Spectra 

 Infrared and Raman intensities can be calculated from ab initio calculations. The 

IR intensities are proportional to the change in dipole moments as a function of 

vibrational displacements. Ab initio methods compute several properties using mixed 

derivatives originating from the energy expansion, and the infrared intensities can be 

predicted from 
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where � is the electric dipole moment, q is, as defined above, the vibrational normal 

coordinate, R is the change in the nuclear geometry, and F is the external electric field. 

The Raman intensities based on the harmonic oscillator approximation are proportional 

to the polarizability change (αααα) with respect to the vibrational coordinate and can be 

given by 
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Eqs. (21) and (22) show that the infrared intensity is a second-order property while the 

Raman intensity is a third-order property that requires longer time to be computed. 

Computed infrared and Raman intensities are semi-quantitative. The level of accuracy 
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for intensities is not as good as for the vibrational frequencies. However, they are very 

helpful and are found to generally agree with experimental results. 

 

VIBRATIONAL HAMILTONIAN 

 The potential energy surfaces governing the conformational changes in non-rigid 

molecules can be determined from spectroscopic data in conjunction with quantum 

mechanics. Consider the time-independent vibrational Schrödinger equation: 

vibvibvibvib EH Ψ=Ψ
�

 (23) 

where vibH
�

 is the vibrational Hamiltonian operator, vibΨ  is the vibrational 

wavefunction, and vibE  represents the eigenvalues associated with the vibrational 

wavefunction. The vibrational Hamiltonian is defined by 

vibvibvib VTH
���

+=  (24) 

where  vibT
�

 and  vibV
�

 are the kinetic and potential energy operators, respectively. In the 

following section, brief descriptions of the theory of determining these operators will be 

presented. 

 

 1. The Vibrational Kinetic Energy Operator 

 For a molecule having N atoms, the kinetic energy operator, vibT
�

, can be 

expressed as [1] 

( )ttvibT q�
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where � is a three-dimensional angular momentum column vector, q  is the 3N-6 

dimensional vector of momentum conjugate to the vibrational coordinate (q), G is the 

Wilson G matrix [51], and the superscript t denotes the matrix transpose.  

 The Wilson G matrix depends only on the rotational and vibrational motions and 

is defined by 

1−

�
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The elements of I, which is the 3×3 inertial moment tensor matrix, are given by 
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where each element in I is expressed in terms of atomic masses and coordinate vectors. 

The matrix X in Eq. (26) is the 3× (3N-6) rotational-vibrational interaction matrix 

defined by 
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while Y is the (3N-6)× (3N-6) matrix that describes the purely vibrational interactions 

and is given by 
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In Eqs. (28) and (29),  km  is the mass of the k’th atom, kr  is the coordinate vector from 

the k’th atom to the center of mass of the molecule, and q is the vibrational coordinate. 
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In pseudo-four-membered ring molecules, such as γ-crotonolactone and silacyclopent-2-

ene in this study, the ring-puckering vibration is assumed to be uncoupled with the other 

low-frequency vibrations. A complete vibrational analysis of a polyatomic molecule 

would require a multi-dimensional analysis which is difficult to achieve for molecules 

with a large number of atoms. However, the dimensionality of such a problem can be 

reduced by assuming that the vibration of the lowest frequency is separable from the rest 

of the vibrations and, as a result, can be analyzed independently. If the ring-puckering is 

treated as a vibration separable from the other low-frequency vibrations, the Wilson G 

matrix becomes 

1
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After the matrix inversion, the G matrix becomes 
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where ijg  is the reciprocal reduced mass. The ijg  in Eq. (31) with i and j = 1, 2, or 3, 

represent by convention the pure rotational terms. The 4ig  and jg4  terms with i and j = 

1, 2, or 3, represent the rotational-vibrational interactions. The purely vibrational term in 

Eq. (31) is 44g  and this is the reciprocal of the reduced mass. 
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 The reduced mass for small-amplitude motions is nearly constant. For a large-

amplitude motion, where a substantial change of the molecular structure takes place, the 

reduced mass is dependent on the vibrational coordinate (x). The kinetic energy for one 

vibration can be written as a polynomial expansion in terms of the vibrational 

coordinate: 

x)(
1

x)x(
n

1
4444 µ

==�
=

i

i

igg  (32) 

where ig44  are the expansion coefficients and )x(µ  is the coordinate-dependent reduced 

mass. Generally, Eq. (32) is truncated after the sixth-powered term. The odd-powered 

terms are zero for symmetric vibrations which pass through a planar conformation.  

 In order to obtain a proper kinetic energy expansion expression, it is necessary to 

express the position of each atom as a function of the vibrational coordinate in a center-

of-mass system. Vector methods for calculating the kinetic energy expansion terms for 

different molecular types were previously reported by Laane’s research group [52-54]. 

For molecules having significant interactions between the low-frequency, ring-bending 

vibrations that are not separable, two- or three- dimensional analyses are needed. 

 

 2. The Vibrational Potential Energy Operator 

 Describing the large-amplitude ring-puckering vibration by a harmonic potential 

function was shown to be inadequate. In 1945 R. P. Bell predicted that the ring-

puckering vibration for a four-membered ring should be represented by a potential 

energy function with a quartic term [2]. Several years later, spectroscopic studies 



 31 

[3,12,13] showed that the ring-puckering vibrations of four-membered ring molecules 

are more accurately described by a mixed quartic-quadratic potential energy function of 

the form: 

24 xx baV vib +=
�

 (33) 

where a is the force constant primarily related to the ring-angle strain, b is the force 

constant primarily related to the torsional strain, and x is the vibrational coordinate. The 

equilibrium conformation of four- and five-membered ring molecules is determined by a 

competition between these two types of forces. The sign of the parameter b determines 

whether the potential energy function is a single- or double-minimum. For a puckered 

molecule where the planar structure is a maximum point on the potential energy curve, 

the barrier to planarity, B, is given by 

a
b

B
4

2

=  (34) 

and xmin , which is the puckering coordinate at the energy minima, is given by 

a
b

2
xmin ±= . (35) 

Once the potential energy function and the kinetic energy terms have been determined, 

the vibrational energy levels for the ring-puckering vibration can be calculated. In 

addition, a prediction of the theoretical potential energy function can be made based on 

ab initio calculations. The optimized structures and total energies from ab initio 

calculations for the minimum structures and at the saddle points on the potential energy 

surface provide useful information to estimate the puckering potential function for the 
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molecule. For molecules having two large-amplitude vibrations that are strongly 

coupled, a two-dimensional vibrational potential energy analysis is essential.  

 A typical example that was studied very thoroughly using different spectroscopic 

techniques [55-57] is the inversion vibration in the ammonia molecule. Ammonia is 

pyramidal with an inversion coordinate of 0.38Å. The inversion coordinate in ammonia 

is defined as the perpendicular distance between the nitrogen atom and the plane of the 

hydrogen atoms [57]. Since the inversion vibration of ammonia is almost uncoupled with 

the other vibrations, a one-dimensional potential energy function can be constructed in 

terms of the inversion coordinate and is, along with the associated vibrational level, 

shown in Fig. 1. The barrier height of the potential energy curve in Fig. 1 is 2076 cm-1. 

The maximum corresponds to the planar structure of ammonia where the four atoms are 

coplanar. It can also be seen that the inversion vibrational levels below the barrier are 

doubly degenerate and begin spreading apart as they progress above the barrier. For 

phosphine and arsine analogues, the barrier heights were determined from infrared 

spectroscopy to be 6,085 and 11,220 cm-1, respectively [56]. 
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Fig. 1. Double-minimum potential energy function for the inversion 
vibration in ammonia. 
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CHAPTER III 

EXPERIMENTAL METHODS 

 

 

 Several spectroscopic techniques were utilized in this work. In this chapter, these 

techniques will be described in general. The more specific procedures used for 

individual molecules will be discussed in the related chapters. 

 

INFRARED SPECTRA 

 Mid-infrared spectra were recorded on a Biorad FTS-60 equipped with a globar 

source, a KBr beamsplitter, and a triglycerin sulfate detector. Typically, a total of 256 

scans at 1 cm-1 resolution were averaged. The spectra of the sample and background 

were carried out under similar conditions. The spectrum of the sample was then 

subtracted from the spectrum of the background. The liquid-phase infrared spectra were 

taken by placing a drop of the sample between two polished KBr windows that are 25 

mm in diameter by 4 mm in thickness. The solid-phase infrared spectra were obtained by 

dissolving the sample in an appropriate solvent and then applying one drop of the 

solution on a KBr window. The spectrum of the crystals formed on the KBr window was 

then obtained.  
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RAMAN SPECTRA 

 Raman spectra were recorded on a Jobin Yvon U-1000 spectrometer. (Instrument 

S. A., Edison, NJ) with a grating double monochromator using excitation at 5145 Å from 

an Innova I-100 argon-ion laser (Coherent, Santa Clara, Ca). A laser power of 4 to 5 W 

was used for the vapor-phase samples and of 0.15 to 0.5 W for the liquid- and solid-

phase samples. For the vapor-phase experiments, the samples were contained in custom 

designed, heatable glass Raman cells (80 mm long by 15 mm in diameter). The vapor-

phase spectra were carried out for samples heated to approximately 250° C. A liquid-

nitrogen-cooled charge-coupled device (CCD) detector was used. 

 For the spectra of the liquid samples, the samples were contained in a glass tube 

which was 1 to 5 mm in thickness. The glass tube was then evacuated and sealed. To 

obtain the polarized spectra, a polarizing filter was put in front of the collection lens in 

order to deduce the ratio of the parallel to the perpendicular polarization Raman spectra. 

The Raman technique is sensitive to colored samples which absorb the excitation 

frequency. Thus, purification using vacuum transfer was normally carried out prior to 

the experiment.  

 

ELECTRONIC ABSORPTION SPECTRA 

 The electronic absorption spectra of the vapor in the 25000 - 40000 cm-1 spectral 

region were also recorded using a Bomem DA8.02 Fourier-transform spectrophotometer. 

A deuterium lamp source, a quartz beamsplitter, and a silicon detector were used. The 

vapor was contained in a pre-evacuated 25-cm glass cell fitted with quartz windows. 
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Heating the sample was necessary in some cases. Spectral acquisition was done either at 

room temperature or at ambient temperatures. Usually, the spectra were recorded at 0.5 

cm-1 resolution and 10,000 to 15,000 scans were averaged. 

 

LASER-INDUCED FLUORESCENCE (LIF) SPECTRA 

 Two types of LIF techniques were implemented: the fluorescence excitation 

spectroscopy (FES) and single-vibronic level fluorescence (SVLF) spectroscopy. For 

FES spectra the sample that is originally solid was heated to its melting point and was 

then injected into a jet-cooled chamber. Excitation to the electronic excited state was 

accomplished using a tunable UV laser system which consists of a Continuum Powerlite 

9020 Nd:YAG laser which pumps a Continuum Sunlite optical parametric oscillator 

(OPO). Visible output from the Sunlite OPO was frequency doubled using a Continuum 

FX-1 UV extension unit, which produced continuously tunable UV radiation from 355–

225 nm with a resolution of 0.7 cm-1. Dispersed fluorescence (SVLF) spectra were 

recorded on an ISA HR-640 monochromator equipped with a Spex Spectrum One CCD 

detector with a 2000×800 pixel chip. The FES spectral resolution was 1 cm-1, whereas 

the SVLF spectra were taken at ± 2 cm-1 resolution. Argon was used as a backing gas 

with stated purities of 99.99%. Backing gas pressures were selected to obtain the optimal 

spectra and were typically at pressures between 1 and 20 atmospheres. 
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CHAPTER IV 

SPECTROSCOPIC AND COMPUTATIONAL STUDIES  

OF THE INTRAMOLECULAR HYDROGEN BONDING  

OF 2-INDANOL 

 

 

INTRODUCTION 

 Over the past few years, several spectroscopic methods have been utilized to 

investigate the structures, conformations, and potential energy surfaces (PESs) [9] of 

indan (IND) [58] along with the related molecules phthalan (PHT) [59-61], coumaran 

(COU) [62,63], and 1,3-benzodioxole (13BZD) [64,65]. The structures of these 

molecules as well as 2-indanol (IND-ol) are shown below. 

   

O

   

O

  

O

O   

OH

 

        IND                    PHT                   COU                13BZD                IND-ol 

Laser-induced fluorescence (LIF) spectra of the jet-cooled molecules and ultraviolet 

absorption spectroscopy along with infrared and Raman spectroscopy and theoretical 

calculations (ab initio, DFT) have been used to investigate the PESs of these molecules 

in their ground (S0) and first excited S1(�,�*) electronic states [66]. The structural and 
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conformational changes in these two states have provided considerable insight into 

understanding the intramolecular forces and bonding of these molecules. 

 Here the attention has been directed to 2-indanol (IND-ol), which is of special 

interest due to its possibility of intramolecular hydrogen bonding between the OH group 

and the benzene ring. The Chakrabouty laboratory in 2003 reported [15] a combined 

spectroscopic (two-photon ionization and dispersed fluorescence) and quantum 

chemistry calculation study of this molecule. They observed three isomers 

experimentally and their ab initio calculations estimated a hydrogen bond energy of 6.5 

kJ/mole (540 cm-1) for the most stable isomer.  In the present work the infrared and 

Raman spectra of the IND-ol ground state and also the LIF spectra of the S1(�,�*) state 

will be presented. In addition, high level ab initio optimizations for the molecule at 

different values of the ring-puckering and –OH internal rotation coordinates will be 

presented.  From this information, a theoretical two-dimensional surface was constructed 

and this was then related to the experimental data. 

 Another study that has been reported very recently is the work by He and Kong 

[16] who examined the REMPI and ZEKE spectra of this molecule. These workers 

identified three conformers and assigned some vibronic levels to two of these.  They also 

carried out ab initio and DFT calculations in order to obtain theoretical one-dimensional 

potential energy functions for the ground and excited states.  Where appropriate, their 

results will be compared to the ones obtained by this work. Another very recent study 

has been published by Ottaviani, Velino, and Caminati [17]. They reported the rotational 

spectra of 2-indanol and its O-D isotopomer using free jet millimeter-wave absorption 
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spectroscopy. Only the main conformer possessing the intramolecular hydrogen bonding 

was observed. 

 

EXPERIMENTAL 

 2-Indanol was obtained from Aldrich as a white powder with a stated purity of 

99%. Its melting point is approximately 70°C. The sample was further purified by 

vacuum transfer and white crystals were obtained. For the liquid Raman experiment the 

sample was placed into a 1 mm tube, was evacuated, and then sealed.  A metal wire was 

wrapped around the sample tube to heat the solid to 100°C and to melt the sample. A 

Jobin-Yvon U-1000 double monochromator equipped with a charged-coupled device 

(CCD) detector and an Innova I-100 argon ion laser operating at 5145Å with 0.5 watts of 

power were used.  The polarization spectra of the liquid were also obtained under the 

same conditions. The Raman spectra of the solid were recorded using 150 mw of laser 

power.  The infrared spectrum of the solid was obtained by dissolving it in CCl4 and 

depositing it on a KBr window. After evaporation, white crystals were formed on the salt 

window.  The mid-infrared spectrum was recorded using a Biorad FTS-60 equipped with 

a globar source, KBr beam splitter, and a triglycerin sulfate detector.  A total of 256 

scans at 1.0 cm-1 were averaged. 

 Fluorescence excitation spectra (FES) were obtained with a spectral resolution of 

1 cm-1. The detailed experimental setup of the jet-cooled system is given in the previous 

chapter. The dispersed fluorescence (SVLF) spectra from the 0�0 bands for each 

conformer were recorded on an ISA HR-640 monochromator equipped with a Spex 
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Spectrum One CCD detector that is UV anti-reflection coated and back-thinned, making 

it sensitive in the UV. The SVLF spectra were taken at ± 2 cm-1 resolution.  

The electronic absorption spectra of the IND-ol vapor in the 25000 - 40000 cm-1 

region was also recorded using a Bomem DA8.02 Fourier-transform spectrophotometer, 

as described in the previous chapter. Spectral acquisition was carried out at temperatures 

up to 250°C. Beyond that temperature the sample starts to decompose. 15000 scans were 

recorded at 0.5 cm-1 resolution and averaged. However, since solid 2-indanol has a very 

low vapor pressure, only several weak UV bands, mostly in the 0�0 region, were 

observed and these were used to confirm some of the FES bands. 

 

COMPUTATIONS 

 Ab initio calculations on the structure and vibrational frequencies of 2-indanol in 

the electronic ground and excited states have been previously reported [15-17].  The 

energies and structures of the lowest energy forms of the molecules in the S0 electronic 

ground state were previously calculated using the MP2/6-311++G(d,p) level of theory 

[15] which is expected to give a good prediction of the geometry and the stability of the 

molecule. Density functional theory (DFT) has also been used to calculate the structure 

in the electronic ground state [16,17].  One-dimensional potential energy calculations of 

the S0 state in terms of the ring-puckering and internal rotation of the OH group in 2-

indanol were obtained using MP2/6-31G(d,p) [15] and DFT-B3LYP/6-311++G(d,p) [16] 

computations. The calculations of the S1 excited state structures of 2-indanol and their 

relative stabilities were performed at the CIS/6-31+G(d) level of theory [16].  
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 In the present study, additional high level ab initio and DFT computations 

including the triple zeta calculations have been carried out. Fig. 2 shows the four stable 

conformers which were studied. Conformer A with the intramolecular hydrogen bonding 

is the most stable. Fig. 3 shows the calculated structures for conformer A in its electronic 

ground (S0) and electronic excited (S1) states.  During the calculations it was observed 

that when the diffuse functions in the basis sets were not used, the relative energies of 

the other three conformers (B, C, and D) were rearranged as compared to the 6-

311++G(d,p) basis set [15]. Nonetheless, conformer A with the intramolecular hydrogen 

bonding was the most stable in all cases. 

 The cc-pVTZ basis set (triple-
) with the MP2 and DFT-B3LYP theories have 

been employed here to predict the molecular structures and relative energies of the four 

minimum structures shown in Fig. 2, and the planar structure as well, using the Gaussian 

03 program [67]. The relative energies predicted by the MP2 theory with the triple-
 

basis set presented in Table 1 were found to be very similar to those predicted by the 6-

311++G(d,p) basis set [15].  However, the effect of the triple-
 basis set when used with 

the DFT-B3LYP theory (Table 1) gave more reliable predictions of the energies as well 

as the structures when compared to other basis sets [16,17].  

 The structures shown in Fig. 3 indicate that the intramolecular hydrogen bonding 

becomes relatively weaker in the electronic excited state. This can be seen from the 

shorter O-H bond length and the larger ∠ COH angle as compared to the electronic 

ground state values. The magnitude of the electron density of the benzene ring is 

predicted from the calculations to be less when the molecule is in the S1 state.   
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Fig. 2. The four stable conformations of 2-indanol. The intramolecular hydrogen bonding present in the 
most stable conformer (structure A) is represented by a dotted line. 

 
 
 



 

 

43  

 
 

O
H

H

H

H

H

H

H

H

H

H

1.
39

1

1.396

1.401

1.396

1.083

1.
08

2

1.507

1.537

1.089

1.094

1.422

0.965

1.
08

7
120.5 o

o

o

o

o

o
118.9

120.5

119.6
119.6

120.3

o

o

o

o

120.7

129.8109.7

102.1

oo

o

o o

o

o
108.3

110.3

111.3103.7

105.4

111.0 113.0

o
106.5

O
H

H

H

H

H

H

H

H

H

H

1.
40

9

1.410

1.422

1.418

1.073

1.
07

4

1.497

1.540

1.086

1.094

1.404

0.942

1.
08

1

121.3 o

o

o

o

o

o
117.2

121.4

118.7

119.9

121.2

o

o

o

o

121.5

128.9109.7

103.9

oo

o

o o

o

o
107.0

109.6

112.0104.1

105.0

112.0 113.0

o
110.2

S0 S1  
 

Fig. 3. Bond distances and angles of the most stable structure of 2-indanol for its S0 and S1 states calculated at 
the MP2/cc-pVTZ and UCIS/6-311++G(d,p) levels of theory, respectively. 
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Table 1 
Calculated

a
 structural parameters, energies, puckering angles, OH internal rotation angles, and dipole moments for the 

conformations (A, B, C, and D) and planar structure (P) of 2-indanol in its electronic ground state 
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 A  B  C  D  P 
Bond distances (Å)          
C3–O6 1.422 (1.426)  1.413 (1.416)  1.424 (1.429)  1.417 (1.421)     1.423 (1.425) 
O6–H7 0.965 (0.964)  0.963 (0.963)  0.962 (0.962)  0.962 (0.961)     0.963 (0.963) 
C3–H8 1.087 (1.088)  1.091 (1.091)  1.093 (1.094)  1.096 (1.096)     1.087 (1.088) 

Bond angles (deg)          
C3O6H7   106.5 (108.4)  107.2 (108.5)  107.6 (108.6)  107.8 (108.9)    107.0 (108.4) 
C2C3C4   103.7 (104.1)  103.8 (104.3)  104.4 (104.9)  104.1 (104.7)    106.6 (106.3) 
O6C3H8   105.4 (104.7)  105.2 (104.6)  110.4 (109.7)  110.7 (109.9)    104.0 (103.7) 

Puckering angle (deg)       35.4 (29.7)   -35.1 (-30.4)    31.1 (25.5)   -35.0 (-29.7)        0.0 (0.0) 

Internal rotation angle (deg)       180.0 (180.0)  180.0 (180.0)     66.9 (63.0)    54.5 (52.3)    180.0 (180.0) 

Total energy (Hartrees)  -423.3316818 
(-424.3550792)  

 -423.32948051 
(-424.35422743) 

  -423.3296766 
(-424.3537517) 

  -423.32954458 
(-424.35415258) 

  -423.3257208 
(-424.3520662) 

Relative energy (cm-1)        0.0 (0.0)      483.1 (186.9)    440.1 (291.3)     469.1 (203.4)    1308.3 (661.3) 

Total dipole moments (Debye) 1.59 (1.39)  1.45 (1.36)      1.80 (1.47)       1.46 (1.36)        1.33 (1.25) 

a
MP2/cc-pVTZ theory was used. Results in parentheses are from the DFT-B3LYP/cc-pVTZ calculations. 
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 An energy map has been constructed to enhance our understanding of the 

intramolecular forces governing the structure and interconversion of these four 

conformers. In order to get accurate results from ab initio calculations, the MP2 theory 

was used with a large basis set such as triple-
 or 6-311++G(d,p), and this required a 

large amount of computational time.  It was also noted that the MP2/6-31(d,p) 

calculation resulted in different relative energies of the less stable structures as compared 

to the 6-311++G(d,p) calculation [15]. A basis set which gives more reliable results in 

terms of energy and structure using a reasonable amount of computation time can be 

achieved by adding to the MP2/6-31(d,p) basis set a set of diffuse functions to the atoms 

other than the hydrogens. The role of the diffuse functions is primarily to give more 

flexibility for the description of the molecular orbitals, and they better describe the weak 

intramolecular forces [42-45]. It was found that the results from the MP2/6-31+G(d,p) 

with the diffuse functions reproduced in a satisfactory way the calculations from the 

triple-
 basis  set (Table 2).  The   calculated   ring-puckering angles in the four 

conformers using the 6-31+G(d,p) basis set can be seen to be in excellent agreement 

with those obtained using the high level theory. The structure of 2-indanol was 

optimized at different puckering angles using the MP2/6-31+G(d,p) level of theory.  

 In order to construct the energy surface representing the effect of the internal 

rotation and the ring-puckering in 2-indanol, the OH group was allowed to rotate about 

the C-O bond from a dihedral angle of 0° to 180° at increments of 15°, with the 

puckering angle being fixed and all the carbon atoms, except the one bonded to the 

oxygen atom, lying in the plane of the molecule. The internal rotation angle was defined 
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Table 2 
Comparison of energies and puckering and internal rotation angles from different basis sets for the four conformers and the 
planar structure 

 MP2/cc-pVTZ  MP2/6-31+G(d,p)  DFT-B3LYP/cc-pVTZ 

 
Total energy 

(Hartree) 

Relative 
energy 
(cm-1) 

Puckering 
angle   
(deg.) 

Internal 
rotation 
angle 
(deg.)  

Total energy 
(Hartree) 

Relative 
energy 
(cm-1) 

Puckering 
angle  
(deg.) 

Internal 
rotation 
angle 
(deg.)  

Total energy 
(Hartree) 

Relative 
energy  
(cm-1) 

Puckering 
angle 
(deg.) 

Internal 
rotation 
angle  
(deg.) 

A -423.33168184     0  35.4 180.0  -422.9342967       0   35.4 180.0  -424.35507920         0      29.7   
180.0 

B -423.32948051 483 -35.1 180.0  -422.9317951   549 -35.1 180.0  -424.35422743     187     -30.4   
180.0 

C -423.32967663 440  31.1   66.9  -422.9325933   374   31.5    69.5  -424.35375170     291      25.5          
63.0 

D -423.32954458 469 -35.0   54.5  -422.9322436   451 -34.5    56.2  -424.35415258     203     -29.7     
52.3 

P -423.32572080 1308    0.0 180.0  -422.9279627 1390    0.0  180.0  -424.35206620     661      0.0 180.0 
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to be 180° for conformer A with the maximum amount of hydrogen bonding to the 

benzene ring. Fig. 4 provides descriptions of the ring-puckering and internal rotation 

modes along with those for two other lower frequency modes, the ring-flapping and 

ring-twisting. A computer program was utilized to interpolate the data points along the 

puckering angle axes and the OH internal rotation axes to produce the energy surface 

and contour shown in Figs. 5 and 6. To get even more accurate results at the saddle 

points, the energy and geometry of the transition structures were calculated using the 

triple-zeta basis set and the results are shown in Table 3. The detailed calculated 

structures for the energy map are given in Tables 4 and 5. 

  In addition, DFT with the triple-zeta basis set was used to calculate the 

vibrational frequencies for the four possible conformers of 2-indanol. Approximate 

normal mode assignments were made for each conformer by examining the atom vector 

displacements.  

 

SPECTROSCOPIC RESULTS 

 1. Raman and Infrared Spectra 

 Figs. 7 and 8 compare the experimental liquid Raman spectra of IND-ol at 90° to 

the calculated spectrum of the four conformers.  Under these conditions, a great deal of 

intermolecular hydrogen bonding between neighboring molecules is expected so the       

–OH stretching region as well as other –OH vibrations will reflect these interactions.  

Figs. 7 and 8 are primarily intended to demonstrate that on the whole the DFT 

calculations do a good job of reproducing the spectra. Fig. 9 shows the polarization 
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Fig. 4. The four large-amplitude, low-frequency vibrations in 2-indanol. 
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Fig. 5.  Calculated potential energy surface of 2-indanol in terms of its ring-puckering angle (degrees) 
and the OH internal rotation angle (degrees relative to 180° at the A conformation). 
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                                                          Fig. 6. Topological map equivalent to Fig. 5. 
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Table 3 
Energy barriers between the four conformers, puckering angles, and internal rotation angles of the transition structures in the 
energy map of 2-indanol 

a 
P = planar structure, Sxy = the structure at the saddle point between conformers x and y, bn = the transition structure at the barrier n. 

 

 

 

 

  MP2/cc-pVTZ  DFT-B3LYP/cc-pVTZ 

Structure
a
  

Total energy 
(Hartree)  

Relative 
energy 
(cm-1)  

Puckering 
angle 
(deg.)  

Internal 
rotation 
angle 
(deg.)  

Total energy 
(Hartree)  

Relative 
energy 
(cm-1)  

Puckering 
angle 
(deg.)  

Internal 
rotation 
angle 
(deg.) 

P  -423.32572080    1308      0.0   180.0  -424.35206620       661         0.0     180.0 
SAB  -423.32566750    1320    -2.5   180.0  -424.35203550       668        -2.5  180.0 
SAC  -423.32837524      726     33.1   116.1  -424.35223003       625       28.0     116.8 
SBD  -423.32713990      997   -35.4   118.8  -424.35178396       723      -30.3   117.7 
SCD  -423.32616328    1211     -1.8     57.9  -424.35237695       593        -1.0  55.6 
SCC  -423.32730904      960     32.0       0.0  -424.35181726       716       25.2     0.0 
SDD  -423.32827568      748    -34.8       0.0  -424.35308390       438      -29.8      0.0 
b1  -423.32384930    1719      -0.8   119.6  -424.34979997     1159        -0.4  120.1 
b2  -423.32435871    1607       0.1       0.0  -424.35095479       905         0.1     0.0 
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Table 4 
Total energies (upper) in Hartree and relative energies (lower) in cm-1 calculated from the MP2/6-31+G(d,p) level of theory  
for 2-indanol (for puckering angles from 0.0° to 58.0°) 

 

 

Puckering angle (deg.) 

OH 
Internal 
rotation 
angle 
(deg.) 0.0 3.0 8.0 15.0 25.0 31.5 35.4 40.0 48.0 58.0 

0.0 -422.9269856 -422.9270358 -422.9273997 -422.9283435 -422.9298881 -422.9303966 -422.9302799 -422.9295622 -422.9262654 -422.9169482 
 1605 1594 1514 1307 968 856 882 1039 1763 3120 

15.0 -422.9272735 -422.9273326 -422.9276991 -422.9286405 -422.9301521 -422.9306239 -422.9304843 -422.9297403 -422.9264033 -422.9170325 
 1541 1528 1448 1241 910 806 837 1000 1732 3101 

30.0 -422.9279563 -422.9280316 -422.9284214 -422.9293681 -422.9308148 -422.9312071 -422.9310357 -422.9302072 -422.9267707 -422.9172511 
 1392 1375 1289 1082 764 678 716 898 1652 3053 

45.0 -422.9286146 -422.9287225 -422.9291564 -422.9301444 -422.9315799 -422.9319227 -422.9317184 -422.9308196 -422.9272583 -422.9175079 
 1247 1223 1128 911 596 521 566 763 1545 2997 

60.0 -422.9288314 -422.9289869 -422.9294841 -422.9305676 -422.9321038 -422.9324759 -422.9322311 -422.9313383 -422.9276568 -422.9176422 
 1199 1165 1056 818 481 400 453 649 1457 2967 

75.0 -422.9283827 -422.9285912 -422.9291592 -422.9303762 -422.9320976 -422.9325541 -422.9323369 -422.9314475 -422.9277007 -422.9175125 
 1298 1252 1127 860 483 382 430 625 1448 2996 

90.0 -422.9273774 -422.9276291 -422.9282555 -422.9296029 -422.9315233 -422.9320828 -422.9319133 -422.9310630 -422.9273521 -422.9171875 
 1519 1463 1326 1030 609 486 523 710 1524 3067 

105.0 -422.9262756 -422.9266470 -422.9272004 -422.928633 -422.9307040 -422.9313617 -422.9312546 -422.9304799 -422.9269251 -422.9170170 
 1760 1679 1557 1243 789 644 668 838 1618 3104 

120.0 -422.9256712 -422.9259398 -422.9265920 -422.9280574 -422.9302180 -422.9309649 -422.9309327 -422.9302687 -422.9269731 -422.9174684 
 1893 1834 1691 1369 895 731 738 884 1607 3005 

135.0 -422.9258926 -422.9261534 -422.9268047 -422.9282911 -422.9305400 -422.9313974 -422.9314539 -422.9309186 -422.9278864 -422.9187138 
 1844 1787 1644 1318 825 636 624 741 1407 2732 

150.0 -422.9267322 -422.9269910 -422.9276598 -422.9291838 -422.9315486 -422.9325327 -422.9326688 -422.9322374 -422.9293707 -422.9203479 
 1660 1603 1457 1122 603 387 357 452 1081 2373 

165.0 -422.9276096 -422.9278693 -422.9285610 -422.9301206 -422.9325760 -422.9336500 -422.9338329 -422.9334585 -422.9306635 -422.9216754 
 1468 1411 1259 917 378 142 102 184 797 2082 

180.0 -422.9279627 -422.9281441 -422.9289355 -422.9305048 -422.9329954 -422.9341034 -422.9342967 -422.9339389 -422.9311619 -422.9221752 
  1390 1350 1177 832 286 42 0 79 688 1972 
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Table 5 
Total energies (upper) in Hartree and relative energies (lower) in cm-1 calculated from the MP2/6-31+G(d,p) level of theory  
for 2-indanol (for puckering angles from -8.0° to -58.0°) 

 

 

Puckering angle (deg.) 

OH 
Internal 
rotation 
angle 
(deg.) 

 
-8.0 -15.0 -23.0 -30.0 -35.1 -40.0 -48.0 -58.0 

0.0  -422.9274717 -422.9284890 -422.9298893 -422.9308385 -422.9310614 -422.9306686 -422.9281598 -422.9202525 
  1498 1275 967 759 710 796 1347 3082 

15.0  -422.9277364 -422.9287323 -422.9301090 -422.9310412 -422.9312557 -422.9308587 -422.9283517 -422.9204556 
  1440 1221 919 714 667 755 1305 3038 

30.0  -422.9283565 -422.9292963 -422.9306157 -422.9315077 -422.9317034 -422.9312980 -422.9287989 -422.9209353 
  1304 1097 808 612 569 658 1207 2932 

45.0  -422.9289300 -422.9298047 -422.9310673 -422.9319306 -422.9321174 -422.9317143 -422.9292403 -422.9214274 
  1178 986 709 519 478 567 1110 2824 

60.0  -422.9290583 -422.9298845 -422.9311302 -422.9320107 -422.9322238 -422.9318534 -422.9294381 -422.9216914 
  1150 968 695 502 455 536 1066 2767 

75.0  -422.9285344 -422.9293376 -422.9306034 -422.9315360 -422.9317997 -422.9314827 -422.9291496 -422.9214800 
  1265 1088 811 606 548 618 1130 2813 

90.0  -422.9274902 -422.9282994 -422.9296030 -422.9305847 -422.9308907 -422.9306169 -422.9283493 -422.9207420 
  1494 1316 1030 815 748 808 1305 2975 

105.0  -422.9264036 -422.9272520 -422.9285983 -422.9296037 -422.9299213 -422.9296545 -422.9273947 -422.9197947 
  1732 1546 1251 1030 960 1019 1515 3183 

120.0  -422.9258539 -422.9267622 -422.9281555 -422.929165 -422.9294624 -422.9291646 -422.9268432 -422.9191731 
  1853 1654 1348 1126 1061 1126 1636 3319 

135.0  -422.9261176 -422.9270745 -422.9285084 -422.9295219 -422.9297999 -422.9294688 -422.9270713 -422.9193026 
  1795 1585 1270 1048 987 1060 1586 3291 

150.0  -422.9269561 -422.9279206 -422.9293661 -422.9303847 -422.9306601 -422.9303175 -422.9278866 -422.9200672 
  1611 1399 1082 859 798 873 1407 3123 

165.0  -422.9278080 -422.9287526 -422.9301817 -422.9311959 -422.9314720 -422.9311319 -422.9287001 -422.9208745 
  1424 1217 903 681 620 695 1228 2946 

180.0  -422.9281593 -422.9290917 -422.9305087 -422.9315181 -422.9317951 -422.9314560 -422.9290273 -422.9212046 
  1347 1142 831 610 549 623 1156 2873 
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Fig. 7. Comparison of the low-frequency liquid Raman spectrum of 2-indanol at 
90° C to the computed spectra of its isomers. 
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Fig. 8. Comparison of the liquid Raman spectrum of 2-indanol at 90° C to the 

computed spectra of its isomers for the high-frequency region. 
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Fig. 9. Polarized spectra of the liquid 2-indanol. 
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spectra of the liquid taken under the same conditions.  

 These spectra provide great help in properly assigning the vibrational modes. Fig. 

10 shows the infrared and Raman spectra of the solid-phase 2-indanol, where it can be 

seen that the –OH stretching vibration is shifted to a lower frequency as compared with 

the liquid-phase spectra. From the infrared and Raman spectra as well as the calculated 

spectra of 2-indanol, general vibrational assignments of the normal modes per conformer 

were carried out (Table 6). When examining the experimental and calculated spectra for 

the four conformers, it can be concluded that some vibrations of significant intensities in 

the infrared and Raman spectra have different frequencies. This information will greatly 

help identifying the four conformers, especially when the gas-phase spectra are obtained.  

 

 2. Laser-Induced Fluorescence (LIF) Spectra 

 Fig. 11 shows the fluorescence excitation spectra of IND-ol along with a number 

of the assignments. The presence of the four predicted conformers can be seen in the 

S1(�,�*) excited state.  Not only can the four 0
00  transitions be observed, but a number of 

the low-frequency vibrational assignments are shown in the figure. Table 7 lists the 

excitation  frequencies  ( 0
00 )  for  the  four  conformers  along  with  the  assignments of 

several of these modes.  The dispersed spectra from the 0
00  bands of conformers A, C, 

and D have also been recorded and these provide data for the S0 state levels of these 

molecules.  Table 7 summarizes some of these frequencies.  It can be noted that the ring-

puckering has values of 92, 86, and 90 cm-1 for the S0 states of A, C and D, respectively.  
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Fig. 10. Solid-phase infrared and Raman spectra of 2-indanol. 
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Table 6 
Vibrational assignments for the four conformers of 2-indanol based on experimental and calculated spectra 

  Experimental
b
  Calculated

c
 

Liquid Solid 
 Description

a
 

   IR Raman IR Raman 
          A         B         C          D 

A’ (A) 
ν1 OH stretch 3396 ms 3586 (4)     p 3270 3279 3637  (15,44)    0.1 3646  (17,75)    0.2 3665  (23,113)  0.3 3672  (31,137)  0.3 

ν2 CH sym. stretch 3067 m 3071 (57)   p 3065/3091 3070 3064  (22,288)  0.1 3064  (23,293)  0.1 3063  (24,290)  0.1 3063  (23,293)  0.1 

ν3 CH sym. stretch [3044] m 3045 (95)   p 3041/3016 3047 3040  (2,146)    0.6 3040  (2,146)    0.6 3039  (2,146)    0.6 3039  (2,146)    0.6 

ν4 CH str. (5-m) 2943 m 2946 (70)   p 2953/2970 2953/2971 2972  (47,191)  0.2 2933  (17,53)    0.7 2883* (13,48)    0.2 2864  (32,131)  0.2 

ν5 CH2 antisym. stretch  ---- 2904 (85)   p 2905 2908 2958  (15,116)  0.2 2962  (28,161)  0.1 2964  (11,95)    0.4 2959  (25,108)  0.4 

ν6 CH2 sym. stretch 2839 w 2844 (36)   p 2890 2893 2894  (30,258)  0.1 2869  (52,293)  0.1 2909  (83,357)  0.1 2900  (26,184)  0.1 

ν7 Ring stretch 1585 vw 1586 (11)   d? 1583 1585 1600  (0,50)      0.7 1601  (0,52)      0.7 1603  (1,47)      0.7 1602  (1,62)      0.7 

ν8 Ring stretch 1479 w 1482 (0)     p 1479  1490  (15,1)      0.5 1492  (14,1)      0.7 1494  (17,0)      0.4 1494  (17,1)      0.4 

ν9 CH2 deformation  ---- 1435 (19)   d  --- 1433 1455  (4,51)      0.3 1467  (3,63)      0.3 1455  (1,15)      0.3 1470  (3,78)      0.3 

ν10 O-H (or C-H) in-plane 
wag* 

1399 m 1400 (2)     p 1414 1401/1406 1405  (59,31)    0.6 1405  (69,16)    0.6 1390  (4,16)      0.3 1403  (4,23)      0.4 

ν11 Ring stretch 1320 vw 1320 (10)   p 1321 1323 1333  (1,28)      0.2 1336  (3,29)      0.2 1337  (2,13)      0.2 1336  (2,28)      0.3 

ν12 C-H (or O-H) in-plane 
wag* 

 ---- 1271 (3)     p 1280/1308 1278/1280 1295  (8,21)      0.2 1311  (5,8)        0.4 1249  (44,15)    0.2 1258  (4,49)      0.4 

ν13 CH2 wag 1251 w 1251 (6)     p 1260/1268 1261/1270 1261  (1,43)      0.3 1253* (18,67)    0.2 1284  (1,42)      0.2 1268* (45,47)    0.3 

ν14 �-CH wag (o.p)* 1213 mw 1211 (33)   p 1209 1214 1211  (3,65)      0.1 1214  (2,68)      0.2 1205  (9,56)      0.2 1215  (0,90)      0.2 

ν15 �-CH wag (i.p) 1157 m 1153 (7)     d 1161 1160 1166  (11,20)    0.7 1165  (1,16)      0.5 1164  (0,16)      0.7 1165  (1,21)      0.5 

ν16 CH2 twist  ----   ----  1157 1160* (60,24)    0.4 1145  (1,48)      0.6 1223  (6,38)      0.3 1180  (14,8)      0.7 

ν17 C-O stretch 1037 ms 1038 (3)     p 1036 1037 1041  (60,11)    0.2 1073  (167,41)  0.7 1047  (37,13)    0.6 1070  (116,41)  0.7 

ν18 Benzene breath 1023 m 1024 (100) p 1022 1024 1031  (14,100)  0.1 1033  (13,100)  0.1 1033  (4,100)    0.1 1034  (5,100)    0.1 

ν19 �-CH wag (o.p.)   948 m   949 (2)     d   948   952   948  (3,7)        0.7   937  (1,0)        0.7   948  (20,7)      0.4   937  (1,1)        0.6 

ν20 C OH
 
wag   924 m   926 (2)     p?   928/919   928   918  (4,11)      0.4 1005  (17,6)      0.6   926  (2,26)      0.2 1006  (27,13)    0.2 

ν21 Ring stretch    ----   863 (10)   p 
  779 (19)   p 

  866/872 
 

  861 
 

  840  (17,26)    0.3   778  (2,50)      0.1   844  (2,26)      0.5   781  (2,83)      0.1 

ν22 Ring breath    ----   809 (32)   p 
~857 (6)     p 

  812/852 
 

  815/850 
 

  804  (1,91)      0.0   850  (1,73)      0.1   805  (2,85)      0.1   857  (1,86)      0.1 
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Table 6 
Continued 

  Experimental
b
  Calculated

c
 

Liquid Solid 
 Description

a
 

   IR Raman IR Raman 
          A         B         C          D 

A’ (A) 
ν23 �-CH wag (i.p.)   ----   743 (4)     p?   735/742   743   747  (56,8)      0.1   749  (49,2)      0.1   744  (61,4)      0.1   749  (51,3)      0.1 

ν24 �-Ring bend   720 w 
  621 vw 

  720 (10)   p 
  625 (2)     d 

  720/622 
 

  723 
 

  717  (0,23)      0.1   627  (2,4)        0.6   721  (3,26)      0.1   628  (5,7)        0.7 

ν25 �-Ring bend   542 w   544 (16)   p   542   544   538  (2,40)      0.3   485* (6,25)      0.4   543  (4,38)      0.3   490* (6,34)      0.5 

ν26 CH2 rock*       415 w   419 (4)     p 
  [436] (6)     p 

~420   419   427  (6,1)        0.5   419  (4,12)      0.3   427  (4,2)        0.5   429  (7,21)      0.2 

ν27 �-Ring bend*   ----   385 (4)     p    382   369  (0,9)        0.3   426  (1,22)      0.2   375  (5,7)        0.3   420  (5,9)        0.3 

ν28 Ring flap   ----   244 (7)     d?    231/253   236  (7,12)    ~0.8   252  (6,9)        0.7   230  (10,9)      0.7   247  (2,20)      0.7 

ν29 Ring pucker     92
d
   ----       87  (1,14)    ~0.8     87  (1,17)    ~0.8     80  (1,16)    ~0.8      84  (1,16)    ~0.8 

A” (A)         
ν30 CH antisym. stretch 3044 mw 3041 (9)    d? 3034 3036 3051  (27,63)  0.8 3051  (28,63)  0.8 3050  (30,64)  ~0.8 3050  (29,63)    0.8 

ν31 CH antisym. stretch   ---- 3005 (9)    d 3004 3004 3035  (5,19)    0.8 3035  (5,19)    0.8 3033  (6,21)      0.7 3034  (6,20)      0.7 

ν32 CH2 antisym. stretch  2944 mw 2932          d? 2935 2937 2957  (16,80)  0.8 2957  (28,83)  0.8 2935  (27,93)    0.5 2943  (32,97)    0.5 

ν33 CH2 sym. stretch   ----   ----  2824 2864/282
7 2894  (20,74)  0.8 2869  (16,60)  0.8 2896  (45,115)  0.4 2894  (28,114)  0.2 

ν34 Ring stretch   ---- 1607 (8)    d  1603 1605 1624  (0,62)    0.8 1626  (0,67)    0.8 1625  (1,61)    ~0.8 1626  (1,86)      0.8 

ν35 Ring stretch 1458 ms 1460 (3)    d  1459 1460 1473  (6,2)      0.8 1475  (6,2)      0.8 1473  (5,3)        0.7 1475  (6,2)      ~0.8 

ν36 CH2 deformation 1422 mw 1424 (10)  d  1423 1425 1446  (7,90)    0.8 1455  (3,84)    0.8 1444  (7,84)    ~0.8 1458  (3,111)    0.8 

ν37 �-CH wag (i.p.)   ----   ----  1337 1334 1325  (1,4)      0.8 1313  (1,3)      0.8 1310  (11,4)      0.7 1314  (1,3)        0.7 

ν38 CH wag (5-m) 1303 w   ----   ----    1294/130
1 1293  (0,5)      0.8 1323  (0,4)      0.8 1341  (16,11)    0.7 1343  (20,31)    0.3 

ν39 CH2 wag 1197 m 1199          d?   1195 1197 1209  (8,8)      0.8 1229  (2,14)    0.8 1187  (16,12)    0.5 1223  (7,23)      0.6 

ν40 Ring stretch   ---- [1153] (7)  d   1150 1151 1164  (2,6)      0.8 1174  (0,1)      0.8 1162  (6,18)      0.7 1171  (5,3)        0.7 

ν41 CH2 twist   ---- 1138 (2)    d   1135 1138 1143  (0,13)    0.8 1132  (0,6)      0.8 1146  (5,6)        0.7 1133  (0,8)        0.7 
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Table 6 
Continued 

  Experimental
b
  Calculated

d
 

Liquid Solid 
 Description

a
 

   IR Raman IR Raman 
          A         B         C          D 

A” (A) 
ν42 �-CH wag (o.p.) 1070 m 1074 (1)    d   1081 1085 1090  (1,1)      0.8 1109  (6,2)      0.8 1093  (1,1)        0.7 1103  (3,2)        0.6 

ν43 Ring stretch 1005 mw   ----   1016   ---- 1020  (3,9)      0.8 1039  (3,6)      0.8 1002  (7,11)      0.7 1026  (3,29)      0.2 

ν44 �-CH wag (o.p.)   979 mw   ----   979   981   985  (0,0)      0.8   983  (0,0)      0.8   981  (0,0)      ~0.8   982  (0,0)        0.7 

ν45 CH2 rock   897 w   898 (1)    d   898   904   895  (0,1)      0.8   907  (0,4)      0.8   903  (1,1)        0.7   911  (0,4)        0.7 

ν46 �-CH wag (i.p.)   ----   ----   [866]   [861]   865  (0,4)      0.8   868  (0,1)      0.8   865  (0,2)        0.7   868  (0,2)        0.6 

ν47 �-Ring bend   ----   837 (3)    d   836   837   833  (1,3)      0.8   847  (0,0)      0.8   836  (0,5)        0.7   847  (0,8)        0.7 

ν48 �-Ring bend   ----   ----   701   707   713  (0,1)      0.8   719  (0,0)      0.8   710  (0,0)        0.7   719  (0,0)        0.7 

ν49 �-Ring bend 591 vw   584 (4)    d   590   591   595  (2,14)    0.8   587  (0,21)    0.8   593  (2,14)    ~0.8     588  (1,26)    ~0.8 

ν50 �-Ring bend   ----   491 (4)    d   496   497   503  (0,1)      0.8   512  (0,2)      0.8   501  (0,1)      ~0.8      511  (0,2)        0.7 

ν51 C OH
 
wag   440 m   436 (6)    p   450   451/457   451  (13,4)    0.8   448  (11,1)    0.8   444  (7,3)        0.6   443  (6,4)        0.4 

ν52 �-Ring bend   ----   353 (0)    d    350   348  (0,1)      0.8   313  (68,5) *   0.8   344  (2,1)        0.7   277  (42,4)      0.7 

ν53 OH torsion   ----   ----    296   302  (72,6)    0.8   251  (18,4) *   0.8   273  (113,15)  0.7   255  (71,10)    0.7 
ν54 Skeletal twist   ----   156 (14)  d 

~192 (9)    d      177 
  194 

  155  (0,18)    0.8   184  (1,10)    0.8   155  (1,15)    ~0.8   183  (2,9)        0.8 

a
� = In-plane with respect to the plane of the benzene ring, � = out-of-plane with respect to the plane of the benzene ring, i.p. = in-phase, o.p. = out-of-phase.  

b
Frequencies in brackets are assigned for more than one vibration. 

c
Scaled frequencies from the B3LYP/cc-pVTZ calculations. Numbers in parentheses are infrared and Raman intensities, respectively. The last number for each vibrational 
mode is the depolarization ratio.  

d
From the vapor-phase SVLF experiment. 

*Heavily mixed vibrations. 
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Fig. 11. Laser-induced fluorescence excitation spectrum of 2-indanol. 
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Table 7 

Spectroscopic transitions (cm-1) for the isomers of 2-indanol in its S0 and S1(�,�*) states
a,b

 

                    A                       B                     C                       D 

      S0       S1         S0       S1        S0        S1        S0        S1 

�0 (cm-1)       37008.4    36953.7    36936.9    36961.2 

�29(0-1)      92  (87)     79.7 (81)          (87)    84.5 (81)       86  (87)     77.0 (76)       90  (84)   88.1  (76) 

�29(0-2)     182   157.9       171   154.1     178 174.1 

�29(0-3)       235.7       

�29(0-4)       314.9       

�28             243  (236)   167.7 (136)        (252)           (152)            (230)  166.8 (138)           (247)           (138) 

�27             354  (396)   275.8  (264)        (485)           (256)    366  (338)  273.7 (261)           (490)           (260) 

�54(0-1)     157  (155)              (117)        (184)           (133)             (155)            (116)           (183)           (115) 

�54(0-2)     313   309.2       

�53                         (302)              (305)        (251)           (250)    281  (273)  318.5 (271)           (255) 274.2 (271) 
a
Numbers in parentheses are calculated frequencies. S1 calculated frequencies were obtained from CIS/6-311++G(d,p) level of theory. 

b
S0 values in italics are from the liquid-phase Raman experiment.  
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The calculated value for B is 87 cm-1. In the S1 states the values are 80 (A), 77 (C), 88 

(D), and 85 (B).   

 Table 7 also shows some of the higher quantum states for the ring-puckering and 

lists values for the flapping (ν28), ring angle bending (ν27), ring twisting (ν54) and the OH 

internal rotation (ν53).  He and Kang [16] also reported a few of the values that are 

shown in Table 7 for the A and C isomers in their S1 states. For A they reported the 0
00  

band at 37017 cm-1 with a puckering frequency of 80 cm-1 (82 cm-1 calculated).  In this 

work the 0
00  is at 37008 cm-1 and the puckering at 79.7 cm-1.  For C their 0

00  origin is 

reported to be at 36948 and the puckering levels at 75 cm-1  (81 cm-1 calculated) and 146 

cm-1 for the 0-1 and 0-2 transitions.  In this work the 0
00  band is at 36937 cm-1 and the 

puckering levels at 77.0 and 154.1 cm-1. Fig. 12 shows the single vibronic laser 

dispersed spectra from the 0
00  bands of conformers A, C and D compared with the 

calculated Raman spectra. The agreement can be seen to be very well. 

 Based on the intensities of the 0
00  bands, which are all expected to have very 

similar transition moments, the distribution of conformers in the S0 state can be 

calculated.  The distribution can also be calculated based on the theoretical calculations 

of the energies of the four conformers and based on the assumption that the molecules 

have not had a chance to equilibrate upon jet-cooling. Table 8 presents these results.  

The sample before jet-cooling was heated to 90° C, and at this temperature the MP2/6-

311++G(d,p) computation leads to a distribution of 70% (A), 8% (B), 13% (C), and 9% 

(D) versus experimental values of 82, 3, 11, and 5%, respectively.  Although the relative  
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Fig. 12. Dispersed fluorescence spectra from the 0
00  lines for conformers A, C and D 

compared with the calculated Raman spectra for each conformer. 
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Table 8 
Populations (in %) of A, B, C, and D conformers of 2-indanol in the electronic ground 
state 

 Calc. 
MP2/cc-pVTZ  Calc. 

MP2/6-311++G(d,p) 

 
Exp. 

25ºC 90ºC 25ºC 90ºC 

A 81 76 67 77 70 

B 3.1 7.4 10 5.3 7.7 

C 11 9.0 12 11 13 

D 4.5 7.9 11 6.3 8.9 
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energies from the calculations can only be approximate, they do suggest that there has 

been some sample equilibration upon cooling since experimentally  more  molecules  are 

observed for the lowest energy conformer A.  More importantly, the agreement between 

the experimental and computational results is highly satisfactory. 

 

CONCLUSION 

 Detailed computations have been carried out in order to produce a                   

two-dimensional energy map of 2-indanol in terms of its ring-puckering and –OH 

internal rotation coordinates.  The isomer with intramolecular hydrogen bonding to the 

benzene ring is calculated to be about 1.1 to 1.5 kcal/mol lower in energy than the three 

other conformers, which have similar conformational energies.  The LIF spectra support 

these calculations and show evidence of all four isomers.  Several of the vibronic bands, 

including those for the ring-puckering and –OH torsion, have been observed for the 

different isomers. The distribution of isomers calculated from the FES spectra and the ab 

initio calculations are in satisfactory agreement. 
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CHAPTER V 

AB INITIO AND DFT STUDIES ON THE RING-PUCKERING 

VIBRATION AND INTRAMOLECULAR HYDROGEN BONDING 

OF 3-CYCLOPENTEN-1-OL 

 

 

INTRODUCTION 

 Intramolecular hydrogen bonding plays an important role in determining the 

stability and structures for many chemical and biochemical molecules. Examples of 

chemical groups undergoing weak intramolecular bonding with hydrogen atoms include 

amine groups, carboxylic acids, aromatic rings and C=C double bonds. In the previous 

chapter, detailed computational and spectroscopic studies of 2-indanol in its electronic 

ground and excited states were presented. These studies showed that 2-indanol has four 

possible conformations, with the conformer undergoing the intramolecular hydrogen 

bonding being the most stable.  

 The weak intramolecular hydrogen bonding in 3-buten-1-ol has been the subject 

of several previous infrared spectroscopic investigations [18,68-70]. The –OH stretching 

region in 3-buten-1-ol shows that there are two bands present and they are approximately 

40 cm-1 apart, corresponding to structures with and without a weak -O-H...�-electron 

interaction. Other infrared investigations were also carried out for similar cyclic 
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molecules, including 2-cyclopenten-1-ol [19] and 3-cyclopenten-1-ol [18,20]. As was 

the case for 2-indanol, 3-cyclopenten-1-ol exists in four possible conformations. In its 

infrared spectra the splitting in the OH stretching region has a smaller frequency 

difference (~25 cm-1) than the noncyclic 3-buten-1-ol (~40 cm-1). The presence of more 

than one isomer for 3-cyclopenten-1-ol was also confirmed in a 1H NMR experiment 

[18]. The puckering angle of the conformer with the bonding between the alcoholic 

hydrogen and the �-electrons of the C=C double bond was estimated from the 1H NMR 

experiment to be 40°. In each of these studies, only two conformations of 3-cyclopenten-

1-ol were observed. 

 This chapter presents results from high-level ab inito and DFT calculations. The 

work performed concentrates on determining the geometries of the four different 

conformations of 3-cyclopenten-1-ol and their energy differences. The calculated 

frequencies of several of the low-frequency vibrations will also be presented.  

 

AB INITIO COMPUTATIONS 

 The structure and conformations of 3-cyclopenten-1-ol were studied at high 

levels of theories using the Gaussian 03 program [67]. For 2-indanol discussed in the 

previous chapter, very good agreement between the experimental and calculated results 

was found for both the structures and vibrational frequencies. This provided motivation 

for studying 3-cyclopenten-1-ol in its electronic ground state (S0). The 3-cyclopenten-1-

ol molecule has fewer atoms than 2-indanol and, as a result, higher levels of calculations 

were more readily carried out. The cc-pVTZ (triple-
) basis set was used with Hartree-
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Fock (HF), second-order Møller-Plesset (MP2) and density functional theory (DFT) 

methods to calculate the energies and to compute the geometries for each of the four 

conformers. The coupled cluster theory with single and double excitations (CCSD) using 

the 6-311++G(d,p) basis set was used to obtain more accurate results for the geometry 

and conformations of the molecule. 

 The vibrational frequencies for the four conformations were computed using the 

DFT method by utilizing the B3LYP hybrid functional. These frequencies were scaled 

using a scaling factor of 0.961 for the spectral region above 1800 cm-1, and 0.985 for the 

region below 1800 cm-1. These theoretical results were compared with the previously 

reported experimental results of 3-cyclopenten-1-ol and 2-indanol where appropriate. 

 The conformational changes associated with the ring-puckering vibration and the 

-OH group internal rotation were analyzed by constructing a two-dimensional potential 

energy scan in terms of these two low-frequency motions. For this purpose, the MP2/6-

31+G(d,p) level of computation was used. The procedure utilized here is similar to the 

one used for 2-indanol [71]. 

 

RESULTS AND DISCUSSION 

 The four conformations calculated for 3-cyclopenten-1-ol are shown in Fig. 13. 

Conformer A is the only conformer that can undergo the intramolecular hydrogen 

bonding which is represented with a dotted line. Both conformers A and B have Cs 

symmetry with the plane of symmetry bisecting the molecule through the C-O-H bond. 

The calculated structures from the CCSD/6-311++G(d,p) level of theory for A and B are 
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A B 

  
C D 

Fig. 13. Structures and labels of the four stable conformers of 3-cyclopenten-1-ol. The dotted 
line in A represents the intramolecular hydrogen bonding. 
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given in Fig. 14. The bond distances and angles of the molecule do not vary much with 

or without the presence of the hydrogen bonding. The potential energy function in terms 

of the ring-puckering angle was calculated and is shown in Fig. 15 for the MP2 and 

B3LYP calculations using the triple-
 basis set. This function characterizes the 

interchange between conformers A (right side) and B (left). 

 The relative stabilities and puckering angles of the four conformers were also 

computed at different levels of theories and the results are given in Table 9. These 

calculations confirm that there exist four stable isomers for 3-cyclopenten-1-ol, and they 

show that the conformer with the intramolecular hydrogen bonding is the most stable. 

Fig. 15 also shows that the transition structure located at the ring-puckering pathway 

between conformers A and B is not completely planar (approximately 60 cm-1 higher in 

energy than the planar structure), but is slightly puckered towards the direction of the B 

isomer. This suggests that the molecule retains some magnitude of the weak interaction 

between the hydroxyl hydrogen and the C=C double bond at the planar geometry. 

Another interesting result is that for conformer A the puckering angle was calculated to 

be about 5° greater than that for conformer C. This indicates that the contribution of the 

intramolecular hydrogen bonding in A causes a slight increase in the puckering angle so 

that the –OH group can move closer to the C=C double bond. The high-level 

computational results of the puckering angle of A listed in Table 9 are significantly 

lower than the previously reported experimental value of 40° from the proton NMR 

experiment [18]. Moreover, the computed energies predicted that conformers A and C 

with the alcoholic group in the axial position are predominant over the other two 
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Fig. 14. Structures for the four conformers of 3-cyclopenten-1-ol as determined from 

CCSD/6-311++G(d,p) calculations. 
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Fig. 15. The ring-puckering potential energy function for 3-cyclopenten-1-ol calculated 
by MP2/cc-pVTZ and B3LYP/cc-pVTZ. 
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Table 9 
Relative energies

a
 (�E) and puckering angles (φ) of the stable conformers and the planar structure (P) for 3-cyclopenten-1-ol 

O
HH

 

O
H

H

 

O
H

H

 

O
H

H

 H

O

H

 

 

A 

 

B 

 

C 

 

D 

 

   Pb
 

 
�E 

(cm-1) 
φ 

(deg.) 
�E 

(cm-1) 
φ 

(deg.) 
�E 

(cm-1) 
φ 

(deg.) 
�E 

(cm-1) 
φ 

(deg.) 
�E 

(cm-1) 

HF/cc-pVTZ 0 24.9 200 -25.1 180 19.0 147 -24.4 401 
B3LYP/cc-pVTZ 0 24.3 353 -23.5 226 17.2 325 -20.6 388 
B3LYP/6-311++G(2d,2pd) 0 23.8 337 -22.8 146 17.0 284 -19.7 348 
MP2/6-31+G(d,p) 0 30.1 530 -31.0 294 24.5 443 -29.8 896 
MP2/cc-pVTZ 0 30.2 564 -30.6 401 24.3 560 -29.5 871 
CCSD/6-311++G(d,p) 0 28.5 420 -29.0 274 23.5 409 -27.9 693 

a
Relative energies were calculated with respect to the total energy of A. 

b
Planar structure was optimized at a 0° puckering angle. 
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conformers. The MP2/6-31+G(d,p) theory was used to produce a set of optimized 

energies for 3-cyclopenten-1-ol by changing the ring-puckering angle from -50° to 

50°and the hydroxyl group internal rotation angle from 0° to 180°. These energies were 

subtracted from the energy of the most stable conformer (Tables 10 and 11). A program 

was then used to construct two-dimensional energy maps (Figs. 16 and 17) in terms of 

the puckering angle and –OH internal rotation. 

 The vibrational frequencies for the four conformers in the S0 electronic ground 

state have been calculated using the B3LYP/cc-pVTZ and B3LYP/6-311++G(2d,2pd) 

levels of theories. Only the frequencies of the lowest three large-amplitude motions and 

the –OH stretching vibration are shown in Table 12. These values are also compared to 

the ones observed and calculated for 2-indanol [71]. The –OH stretching frequency for A 

was calculated to be 25 cm-1 lower than those for C and D, in excellent agreement with 

experimental values [18,20]. Ab initio and DFT results (Tables 9 and 12) suggested that 

the two –OH stretching bands observed in the infrared experiments are due to the most 

stable conformers (A and C) with minor contributions from the other two conformers. 

Unlike 2-indanol, the ring-puckering frequencies in 3-cyclopenten-1-ol were predicted 

from DFT calculations to spread over a wider spectral region (from 60 to 120 cm-1). This 

indicates that the puckering vibrations could be experimentally resolved from one 

conformer to another and be analyzed independently. 

 

CONCLUSION 

 The conformations and vibrational frequencies of 3-cyclopenen-1-ol were
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Table 10 
Total energies (upper) in Hartree and relative energies (lower) in cm-1 calculated from the MP2/6-31+G(d,p) level of theory for 
3-cyclopenten-1-ol (for puckering angles from 0.0° to 50.0°) 

Puckering angle (deg.)   OH internal 
rotation angle 

(deg.) 0.0 5.0 10.0 17.0 24.5 30.1 35.0 43.0 50.0 

0.0 -269.7284151 -269.7286169 -269.7290019 -269.729655 -269.7300949 -269.7299054 -269.7291348 -269.7261289 -269.7210546 
 1124 1079 995 852 755 797 966 1625 2739 

15.0 -269.7286940 -269.7289015 -269.7292867 -269.7299288 -269.7303412 -269.7301225 -269.7293227 -269.7262652 -269.7211412 
 1062 1017 932 791 701 749 924 1596 2720 

30.0 -269.7293580 -269.7295845 -269.7299764 -269.7305997 -269.7309525 -269.7306671 -269.7297984 -269.7266148 -269.7213623 
 917 867 781 644 567 629 820 1519 2672 

45.0 -269.7300116 -269.7302767 -269.7306966 -269.7313312 -269.7316507 -269.7313103 -269.7303735 -269.7270434 -269.7216181 
 773 715 623 484 414 488 694 1425 2615 

60.0 -269.730264 -269.7305897 -269.7310701 -269.7317747 -269.7321309 -269.7317817 -269.7308077 -269.7273532 -269.7217511 
 718 646 541 386 308 385 599 1357 2586 

75.0 -269.7298815 -269.7302770 -269.7308378 -269.7316568 -269.7321108 -269.7318017 -269.7308332 -269.727323 -269.7216092 
 802 715 592 412 313 380 593 1363 2617 

90.0 -269.7289367 -269.7293867 -269.730021 -269.7309605 -269.7315404 -269.7313081 -269.7303906 -269.7269269 -269.721222 
 1009 910 771 565 438 489 690 1450 2702 

105.0 -269.7278596 -269.7283292 -269.7290057 -269.7300343 -269.7307325 -269.7305961 -269.7297662 -269.7264535 -269.7208916 
  1246 1143 994 768 615 645 827 1554 2775 

120.0 -269.7272353 -269.7276930 -269.7283791 -269.7294568 -269.7302533 -269.7302226 -269.7295091 -269.7264319 -269.721112 
  1383 1282 1132 895 720 727 884 1559 2727 

135.0 -269.7274166 -269.7278639 -269.7285574 -269.7296827 -269.7305878 -269.7306804 -269.7301032 -269.7272903 -269.7222203 
  1343 1245 1092 845 647 627 753 1371 2483 

150.0 -269.7282286 -269.7286891 -269.7294111 -269.7306092 -269.7316416 -269.7318606 -269.7314106 -269.7288188 -269.7239382 
  1165 1064 905 642 416 367 466 1035 2106 

165.0 -269.7290915 -269.7295777 -269.7303344 -269.7316016 -269.7327367 -269.7330481 -269.7326853 -269.7302373 -269.7254759 
  975 869 702 424 175 107 186 724 1769 

180.0 -269.7294513 -269.7299500 -269.7307218 -269.7320166 -269.7331902 -269.733535 -269.7332032 -269.7308055 -269.7260859 

    896 787 617 333 76 0 73 599 1635 

 

 



 

 

78  

 
Table 11 
Total energies (upper) in Hartree and relative energies (lower) in cm-1 calculated from the MP2/6-31+G(d,p) level 
of theory for 3-cyclopenten-1-ol (for puckering angles from -10.0° to -50.0°) 

Puckering angle (deg) OH internal 
rotation 

 angle (deg) -10.0 -15.0 -23.0 -29.7 -31.0 -35.0 -43.0 -50.0 

0.0 -269.7287032 -269.7291289 -269.7298935 -269.7302401 -269.7302368 -269.7300216 -269.7282616 -269.724582 
 1060 967 799 723 724 771 1157 1965 

15.0 -269.7289611 -269.7293742 -269.7301184 -269.7304496 -269.7304441 -269.7302223 -269.7284546 -269.7247741 
 1004 913 750 677 678 727 1115 1923 

30.0 -269.7295661 -269.7299458 -269.7306407 -269.7309361 -269.7309254 -269.7306888 -269.7289042 -269.7252231 
 871 788 635 570 573 625 1016 1824 

45.0 -269.7301335 -269.7304741 -269.7311186 -269.7313872 -269.7313733 -269.7311287 -269.7293417 -269.7256716 
 747 672 530 471 474 528 920 1726 

60.0 -269.7302866 -269.7305958 -269.7312198 -269.7314976 -269.7314872 -269.7312589 -269.7295156 -269.725888 
 713 645 508 447 449 500 882 1678 

75.0 -269.729815 -269.7301073 -269.7307414 -269.7310584 -269.731057 -269.7308615 -269.7291959 -269.7256334 
 816 752 613 544 544 587 952 1734 

90.0 -269.7288247 -269.7291213 -269.7297864 -269.7301455 -269.7301525 -269.7299882 -269.7283848 -269.7248746 
 1034 969 823 744 742 778 1130 1901 

105.0 -269.7277702 -269.7280945 -269.728805 -269.7291934 -269.729204 -269.7290489 -269.7274577 -269.7239541 
 1265 1194 1038 953 951 985 1334 2103 

120.0 -269.727221 -269.7275919 -269.7283581 -269.7287605 -269.7287701 -269.7286048 -269.7269701 -269.7234179 
 1386 1304 1136 1048 1046 1082 1441 2220 

135.0 -269.7274669 -269.727879 -269.7286976 -269.7291151 -269.729124 -269.728949 -269.7272664 -269.7236541 
 1332 1241 1062 970 968 1007 1376 2169 

150.0 -269.7282808 -269.7287041 -269.7295451 -269.7299769 -269.7299872 -269.7298144 -269.7281224 -269.7244901 
 1153 1060 876 781 779 817 1188 1985 

165.0 -269.7291081 -269.7295197 -269.7303521 -269.7307862 -269.7307976 -269.7306294 -269.7289486 -269.7253247 
 972 881 699 603 601 638 1007 1802 

180.0 -269.7294482 -269.7298517 -269.7306751 -269.7311069 -269.7311185 -269.7309518 -269.7292771 -269.7256598 
  897 808 628 533 530 567 935 1728 
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Fig. 16. Calculated potential energy surface of 3-cyclopenten-1-ol in terms of the ring-puckering 
angle and internal rotation angle of the -OH group. 
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Puckering angle (deg.)  

 

Fig. 17. Contour of the energy map shown in Fig. 16. 
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Table 12 
Vibrational frequencies

a
 of the –OH stretching and the lowest three large-amplitude motions for 3-cyclopenten-1-ol and      

2-indanol calculated at the B3LYP/cc-pVTZ level  
 3-Cyclopenten-1-ol

b
  2-Indanol

c
 

 A B C D  A B C D 

–OH stretching 3640 
3661 

3646 
3666 

3665 
3682 

3670 
3688 

 3637 
  (3586)

R 
3646 3665 3672 

–OH torsion 322 
307 

255 
250 

277 
273 

275 
271 

 302 
    (296)

DF 
  251   273   255 

Ring twisting 376 
371 

395 
392 

363 
359 

391 
388 

   155 
    (156)

R
 

  184 
    (192)

R
 

  155   183 

Ring puckering 119 
115 

93 
87 

104 
99 

72 
66 

     87 
       (92)

DF
 

   87 
 

    80 
        (86)

DF
 

    84 
       (90)

DF
 

a
Scaled. 

b
Frequencies in italics are calculated using the 6-311++G(2d,2pd) basis set. 

c
Ref. [71]. Frequencies in parentheses are from liquid-phase Raman (R) and dispersed fluorescence (DF) experiments.  
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studied by different levels of ab initio and DFT calculations. Agreements between the 

calculations presented in this study and available experimental results are very good.  

Conformer A with the intramolecular hydrogen bonding between the hydroxyl hydrogen 

and the �-electron density of the C=C double bond is the most stable one. CCSD/6-

311++G(d,p) and MP2/cc-pVTZ levels of calculations predicted the stabilities of the 

four conformers in the order A > C > D > B, with the planar structure being 700 cm-1 

higher in energy than A with its hydrogen bonding. One important result from the high-

level DFT-B3LYP calculations is that the frequencies of the ring-puckering vibrations of 

the four isomers in 3-cyclpenten-1-ol are spread apart in the far-infrared region, which 

indicates that this vibration can be characterized independently for each conformer. 
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CHAPTER VI 

VIBRATIONAL SPECTRA, AB INITIO CALCULATIONS, AND 

RING-PUCKERING POTENTIAL ENERGY FUNCTION  

FOR �-CROTONOLACTONE 

 

 

INTRODUCTION 

 �-Crotonolactone is similar in structure to 2-cyclopenten-1-one which has been 

investigated in its ground and excited states using several spectroscopic and 

computational techniques. The infrared and Raman vibrational spectra [72-75] as well as 

density functional theory (DFT) [76] have shown 2-cyclopenten-1-one to be strictly 

planar in its S0 electronic ground state and to be governed by a stiff single-minima 

potential energy function [75,76]. This is the result of conjugation involving both the 

C=C and C=O double bonds.  

 The studies on the structure of 2-cyclopenten-1-one have been carried out for its 

singlet (S1) and triplet (T1 and T2) electronic excited states [77-80]. Cheatham and Laane 

used fluorescence excitation spectroscopy (FES) to investigate the S1(n,�*) state and 

showed that the molecule retains its planar structure in the S1(n,�*) excited state but 

becomes much less rigid as compared to the ground state [77]. DFT calculations agreed 

very well with the FES results and confirmed the planar conformation of 2-cyclopenten-
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1-one in its S1(n,�*) excited state [76]. The T1(n,�*) triplet state for 2-cyclopenten-1-one 

was later studied using cavity ringdown (CRD) absorption spectroscopy [78] along with 

several theoretical calculations [76,79,80]. It was concluded from CRD that the molecule 

is slightly puckered in the T1(n,�*) state with a barrier to planarity of 43 cm-1 [78]. The 

calculated barrier for the T2(�,�*) triplet state was calculated using DFT-B3LYP/6-

311+G(d,p) to be 999 cm-1 [76]. 

 �-Crotonolactone differs from 2-cyclopenten-1-one in that it has an oxygen atom 

instead of a carbon atom across the ring from the C=C double bond. However, as in the 

case of 2-cyclopenten-1-one, �-crotonolactone has also been shown from microwave 

studies [21,22] to be planar and to possess the Cs symmetry in the electronic ground 

state. It was also suggested [22] that the ring-puckering vibration can be described by an 

essentially quadratic potential energy function.  

 As with 2-cyclopenten-1-one, an interesting feature of �-crotonolactone is the 

conjugation between the C=C and C=O groups. This feature has been of particular 

interest in several infrared and Raman studies of some unsaturated monocyclic lactones 

in various solvents [23-25]. Considerable attention in these studies was directed to the 

spectral region just below 1800 cm-1 which includes the C=O stretching vibration. In 

general, lactones in the liquid phase show two significant peaks related to the C=O 

stretching motion. The interpretation of such a phenomenon has been ascribed to the 

Fermi resonance between the carbonyl stretching vibration and the overtones or 

combinations of other low-frequency vibrations [23-25]. Nyquist et al. presented a 

mathematical model for calculating the approximate unperturbed C=O stretching 
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vibration for several cyclic five- and six-membered ring lactones in CCl4 and CHCl3 

solvents [25]. A different study on the integrated intensities of the carbonyl stretching 

bands of several unsaturated five-membered cyclic �-lactones in acetonitrile solution 

concluded that the presence of the conjugation between the –O–C= group and the C=C 

bond moderately inhances the intensity of the carbonyl stretching band as compared to 

the no conjugation case [81]. No detailed vibrational assignments or gas-phase 

vibrational studies, however, have been carried out on �-crotonolactone. For its excited 

state structure, the partially overlapping �-�* and n-�* transitions in the UV spectra of 

the liquid have been reported [82].  

 

EXPERIMENTAL 

 �-Crotonolactone was obtained from Aldrich with a stated purity of 98%. It is a 

colorless liquid with a very slightly pinkish color in the commercial sample that 

disappeared with further purification under vacuum. Its melting point and boiling point 

are 3ºC and 214ºC, respectively.  

 The vapor and liquid Raman spectra of �-crotonolactone were recorded using a 

JobinYvon U-1000 double monochromator equipped with a CCD detector and an Innova 

I-100 argon ion laser operating at 5145 Å. For the vapor-phase Raman spectra, the 

sample was transferred under vacuum into a custom designed, thermally controlled glass 

Raman cell previously described [83,84]. The sample was heated to approximately 

240ºC. The Raman spectra of the liquid �-crotonolactone were recorded for a sample in 

an evacuated 1mm glass tube at room temperature. The polarization spectra of the liquid 
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were also recorded to help in the assignments. Laser powers of 0.2 W for the liquid-

phase spectra and 4.5 W for the vapor-phase spectra were used.  

 The infrared spectrum of a drop of �-crotonolactone liquid between two KBr 

windows was recorded using a Biorad FTS-60 spectrometer equipped with a globar 

source, KBr beamsplitter, and a triglycerin sulfate detector.  A total of 256 scans at 1.0 

cm-1 resolution were averaged. The background spectrum taken under same conditions 

was subtracted from the �-crotonolactone spectrum in order to obtain the transmittance 

spectrum.  

 

COMPUTATIONS 

 Density functional theory (DFT) with the B3LYP hybrid functional, ab initio 

second-order Moller-Plesset (MP2) and Hartree-Fock (HF) calculations using the 

Gaussian 03 program [67] were carried out for �-crotonolactone in its electronic ground 

state. In this work the coupled-cluster treatment was used to predict the geometry of the 

most stable structure as well as the structure of 2-cyclopenten-1-one, and the DFT-

B3LYP with the cc-pVTZ (triple-
) basis set was used to calculate the vibrational 

frequencies, infrared and Raman intensities, and depolarization ratios.  

 The one dimensional single-minimum puckering potential function for               

�-crotonolactone was calculated by varying the puckering angle from –30° to 30° by 

increments of 5° at the MP2, DFT-B3LYP, and HF theories using the triple-
 basis set. 

The optimized structure from the CCSD/6-311++G(d,p) calculation was used to 

determine the kinetic energy expansion terms for �-crotonolactone using a program 
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previously described [53]. These kinetic energy terms and the potential function from ab 

initio computations were used to calculate the puckering quantum transitions. 

 

VIBRATIONAL SPECTRA 

 The high-level ab initio calculations predicted �-crotonolactone to be planar in its 

minimum energy structure, in agreement with previous experimental results from 

microwave studies [21,22]. Fig. 18 shows the calculated Cs planar structure of                 

�-crotonolactone from the CCSD/6-311++G(d,p) calculation and compares it to the 

structure of 2-cyclopenten-1-one. From Fig. 18 it can be seen for both molecules that as 

a result of conjugation the C-C single bond connecting the carbonyl carbon atom to the 

C=C group is shorter in length than the other C-C single bonds. For �-crotonolactone this 

is 1.493Å vs. 1.507Å while for 2-cyclopenten-1-one it is 1.491Å vs. values in the 1.518 

to 1.544Å range. 

 �-Crotonolactone, as previously discussed, is planar with the ring atoms and the 

carbonyl oxygen lying in the symmetry plane. Its vibrational spectra are expected to be 

governed by Cs symmetry. �-Crotonolactone possesses 24 vibrations with symmetry 

species 16A’ + 8A”. These vibrations were studied by recording the spectra for both the 

vapor and liquid phases. Fig. 19 shows the Raman spectra (vapor, liquid, and 

calculated), while Fig. 20 presents the polarized Raman spectra of the liquid. The liquid 

and calculated mid-infrared spectra are given in Fig. 21. Based on the vibrational spectra 

in Figs. 19-21, complete assignments of the vibrational modes were made, and they are 

shown in Table 13. The computed  frequencies  and  depolarization ratios from the  DFT  
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Fig. 18. Ground-state structures of �-crotonolactone and 2-cyclopenten-1-one from the CCSD/6-311++G(d,p) calculations. 
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Fig. 19. Vapor-phase, liquid-phase, and calculated Raman spectra for �-crotonolactone. 
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Fig. 20. Polarized Raman spectra of the �-crotonolactone liquid. 
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Fig. 21. Liquid-phase and calculated infrared spectra of �-crotonolactone. 
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Table 13 
Vibrational assignments for �-Crotonolactone 

Experimental  Calculated
b
 

Vapor  Liquid  B3LYP/cc-pVTZ 

 

Description Raman  IR
a
 Raman  Scaled Intensities

c
    �

d
 

A’ �1 CH str. 3123 (47) ~3113 m 3116  p 3123 (1,286) 0.2 
 �2 CH str. 3097 (80)   3098 ms 3100  p 3086 (5,247) 0.4 
 �3 CH2 sym. str. 2885 (233)   2868 m 2872  p 2907 (50,577) 0.1 
 �4 C=O str. 1809 (100)   1739/1773 vs 1737/1772  p 1822 (1000,100) 0.4 
 �5 C=C str. 1609 (77)   1599 ms 1600  p 1636 (18,72) 0.1 
 �6 CH2 def. 1462 (46)   1447 ms 1448  p 1469 (16,67) 0.5 
 �7 CH2 wag 1358 (5)   1347 ms 1349  p? 1349 (15,13) 0.7 
 �8 CH in-plane bend 1328 (8)   1333 ms 1334  p 1337 (22,8) 0.2 
 �9 Ring str. 1140 (19)   1158 s 1159  p 1132 (135,32) 0.4 
 �10 CH in-plane bend  1095 (25)   1094 s 1094  p 1095 (162,16) 0.6 
 �11 Ring str. (C-O str.) 1043 (37)   1034 s 1032  p 1040 (118,14) 0.2 
 �12 Ring breath   939 (40)     940 m   941  p 934 (1,15) 0.2 
 �13 Ring def.   865 (45)     881 ms   883  p 860 (93,12) 0.1 
 �14 Ring def.   804 (9)     786 m   787  d 782 (5,6) 0.7 
 �15 Ring mode   683 (55)     692 ms   693  p 686 (7,15) 0.3 
 �16 C=O in-plane bend   490 (8)     497 m   498  p 488 (5,2) 0.7 
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Table 13 
Continued 

Experimental  Calculated
b
 

Vapor  Liquid  B3LYP/cc-pVTZ 

 

Description Raman  IR
a
 Raman     Scaled Intensities

c
    �

d
 

A” �17 CH2 antisym. str. 2947 (134) ~2961  w 2963  d? 2933 (25,299) 0.8 
 �18 CH2 twist 1153 (8) ~1187  m 1189  d 1189 (0,14) 0.8 
 �19 CH2 rock   998 (1)   1008  m 1006  d 1017 (14,5) 0.8 
 �20 CH out-of-plane bend   973 (4)     977  vw   ---- 963 (11,0) 0.8 
 �21 C=O out-of-plane bend   830 (4)     810  s   813  d 814 (91,5) 0.8 
 �22 CH out-of-plane bend   663 (5)     673  m   677  ? 666 (14,4) 0.8 
 �23 C=C twist ~366 (0)             ----   362  d 356 (13,2) 0.8 
 �24 Ring puckering   208 (1)             ----   226  d 206 (1,2) 0.8 

a
IR intensities: v=very, s=strong, m=medium, w=weak. 

b
Scaled. 

c
Infrared and Raman intensities, respectively. 

d
Depolarization ratio. 
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calculations are also listed in Table 13 and these are in good agreement with the 

experimental results. Several combination bands and overtones were also observed in the 

infrared and Raman spectra of the vapor, but these are not present in the calculated 

spectra. In several cases there are significant frequency shifts between the liquid and 

vapor spectra indicating that there are fairly strong intermolecular interactions in the 

liquid state. In addition, extra bands of some intensity indicate the presence of Fermi 

resonance.  

 The puckering frequency was found from the vapor-phase Raman spectra to be 

208 cm-1 with no observable side bands indicating that �-crotonolactone is rigidly planar 

with a nearly harmonic potential function. The more intense bands in the Raman vapor 

of �-crotonolactone were for the most part assigned with the help of the polarization 

measurement and the calculated frequencies to the A’ modes. The C=O stretching 

vibration can be readily assigned to the most intense peaks in the infrared and Raman 

spectra. In the liquid-phase experiment these peaks are doublets in agreement with the 

previous studies on other unsaturated lactones [23-25]. In the vapor phase the C=O 

vibration is only a singlet of a higher frequency (1809 cm-1), which is in good agreement 

with the calculated value of 1822 cm-1 (Table 13). 

 

KINETIC AND POTENTIAL ENERGY FUNCTIONS 

 In order to predict the quantum states associated with the ring-puckering 

vibration, the potential energy function was generated by calculating the energy as a 

function of coordinates using MP2/cc-pVTZ calculations. The CCSD/6-311++G(d,p) 
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level of theory was used to determine the kinetic energy expansion terms [53] to the 

sixth power. Fig. 22 shows the definitions for the puckering angle (φ) and puckering 

coordinate (x). Table 14 lists the relative energies for �-crotonolactone obtained from 

varying φ from -30° to 30° in steps of 5° and fixing the four carbon atoms in the plane of 

the molecule. Fig. 23 shows the potential functions of the puckering motion in terms of 

the dihedral angle (φ) from different levels of theory. As can be seen from the figure, all 

four calculations predict a planar structure for the molecule and a stiff potential function, 

in good correlation with the experimental. 

 When the MP2/cc-pVTZ results are used to calculate the potential function 

curve, this can be fitted with 

44241 x1090.45x1008.10)cm( ×+×=−V     (36) 

where x is the puckering coordinate in Å. The calculated kinetic energy expression is 

g
44(x) =  0.00473872 – 0.0394847 x2 + 0.114150 x4 – 0.198735 x6 .    (37) 

 When these functions are utilized to calculate the quantum levels, the spacings 

shown in Table 15 result. As is evident, the vibration is almost totally harmonic with a 

calculated frequency of 181 cm-1, in excellent agreement with the experimentally 

observed value of 208 cm-1. It should be noted that although the quartic term in Eq. (36) 

appears significant, it only makes a minor contribution as the value of x only ranges 

from – 0.1Å to + 0.1Å, while the dihedral angle goes from - 30° to + 30°. Here, the x4 

contribution for x values in this range is more than 100 times less that the x2 

contribution. The ab initio potential function in terms of the puckering coordinate is 
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Fig. 22. Definitions of the puckering coordinate (x) and puckering angle (φ) for γ-crotonolactone. 
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Table 14  
Total (Hartree) and relative (cm-1) energies for γ-crotonoloctone from ab initio calculations 

MP2 
HF/cc-pVTZ  

cc-pVTZ  6-311+G(d,p) 
 B3LYP/cc-pVTZ 

  

Puckering  
angle, 

φ 

(deg.) 
Total 

 energy 
Rel.  

energy 
Total 

 energy 
Rel.  

energy 
Total 

 energy 
Rel.  

energy 
Total 

 energy 
Rel.  

energy 

0 -303.6319823 0 -304.7161657 0 -304.5352194 0 -305.3814126 0 

3 -303.6318828 22 -304.7160743 20 -304.5351428 17 -305.3813142 22 

5 -303.6317046 61 -304.7159109 56 -304.5350068 47 -305.3811374 60 

7 -303.6314368 120 -304.7156648 110 -304.5348016 92 -305.3808707 119 

10 -303.6308647 245 -304.7151384 226 -304.5343588 189 -305.3803019 244 

15 -303.6294418 558 -304.7138318 512 -304.5332407 434 -305.3788918 553 

20 -303.6274027 885 -304.7119630 812 -304.5316023 794 -305.3768764 996 

25 -303.6247001 1479 -304.7094896 1355 -304.5293804 1282 -305.3742084 1581 

30 -303.6212686 2232 -304.7063587 2042 -304.5264995 1914 -305.3708277 2323 
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Fig. 23. Ring-puckering potential energy function from different levels of calculations. 
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Table 15  
Ring-puckering vibrational levels for �-crotonolactone as determined from ab initio results 

Levels Frequency (cm-1) Relative intensity 

0–1 180.6 1.0 

1–2 181.6 0.8 

2–3 182.7 0.5 

3–4 183.7 0.3 

4–5 184.7 0.2 

5–6 185.7 0.07 

6–7 186.7 0.04 

7–8 187.7 0.02 
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shown in Fig. 24. The figure also shows the quantum transitions determined from ab 

initio calculations and compares this potential function of �-crotonolactone with the one 

previously reported for 2-cyclopenten-1-one [75]. The greater ring rigidity in                 

�-crotonolactone as compared to 2-cyclopenten-1-one can be explained in terms of the 

higher angle strain in the case of �-crotonolactone. The bending force constant for the C-

O-C angle is greater than that for a C-C-C angle, and the former also prefers to have a 

smaller value than the latter. 

 

CONCLUSION 

 �-Crotonolactone was confirmed to be planar in its ground state from its 

vibrational spectra and theoretical calculations. Unlike 2-cyclopenten-1-one, the ring-

puckering vibration in �-crotonolactone is governed by a stiff potential energy function 

whose quadratic term is predominant. Ab initio calculations predicted the vibrational 

spectra and energies for �-crotonolactone to be in very good agreement with the 

experiment. The vibrational analysis was carried out on the basis of infrared, Raman, 

and calculated spectra.  
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Fig. 24. Potential energy function for the ring-puckering vibration as determined 
from ab initio calculations using the MP2/cc-pVTZ level of theory. The 
ring-puckering potential function for 2-cyclopenten-1-one is shown with 
dotted lines. 
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CHAPTER VII 

RAMAN AND INFRARED SPECTRA, AB INITIO AND DFT 

CALCULATIONS, AND VIBRATIONAL ASSIGNMENTS FOR 

 2,3-CYCLOPENTENOPYRIDINE  

 

 

INTRODUCTION 

 2,3-Cyclopentenopyridine (also known as pyrindan) is identical in structure to 

indan except that its five-membered ring is attached to a pyridine ring instead of a 

benzene ring. Several spectroscopic techniques have been previously utilized to 

investigate the potential energy surfaces which govern the conformational changes for 

the indan family in electronic ground and excited states [9,58-66,71]. For pyrindan the 

nitrogen atom in the aromatic ring lowers the symmetry of the molecule to Cs for the 

planar structure and to C1 for its puckered structure. Indan itself has C2v symmetry for its 

planar form.  

 A microwave investigation of pyrindan was reported by Fantoni and Caminati 

[26], and the rotational spectra of the ground state and some of the lower energy 

vibrational excited states were assigned. The barrier to planarity was reported to be 390 

cm-1 [26]. The ultraviolet spectra of pyrindan in 95% ethanol have also been reported 

[27,28]. Absorption bands were observed at 35,971, 36,496, 37,037, and 37,736 cm-1. In 
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the present study, infrared, Raman, and UV absorption spectroscopy have been used to 

investigate the conformational properties of pyrindan and to carry out the vibrational 

analysis. High-level ab initio calculations have also been used to confirm these results. 

 

EXPERIMENTAL 

 Pyrindan was obtained from Aldrich with a stated purity of 98%. It was purified 

using vacuum transfer. The original sample was a light, yellow-brownish liquid but 

became clear and colorless after purification. Pyrindan has a molecular weight of 119.16 

g/mol, density of 1.081 g/ml, and a boiling point of 212˚C. 

 The Raman spectra of the vapor and liquid were recorded using a Jobin Yvon U-

1000 double monochromator equipped with a charge-coupled device (CCD) detector. 

The pyrindan sample was observed to absorb laser radiation of the 5145Å wavelength 

and to reemit it as fluorescence, causing the spectra to be obscured by a broad 

fluorescence band. This problem is fairly common in Raman spectroscopy and can be 

caused by impurities in the sample or by the sample itself [85,86]. In order to decrease 

the magnitude of the fluorescent effect, the excitation laser beam was tuned to a different 

wavelength. In this experiment an Innova I-100 argon ion laser operating at 4889Å was 

used to excite the sample. The vapor sample of pyrindan was transferred under vacuum 

into a custom designed, thermally controlled glass Raman cell of a cylindrical shape that 

is 80 mm long and 15 mm in diameter [83,84]. The sample was heated to slightly above 

260°C. The Raman spectra of the liquid were recorded for a pyrindan sample in an 

evacuated 10-mm glass tube at room temperature. The polarized spectra were also 
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recorded. Laser powers of 4.5W and 0.2W were used for the vapor-phase and liquid-

phase experiments, respectively. 

 The infrared spectrum was recorded by placing a drop of the pyrindan sample 

between KBr windows. A Biorad FTS-60 spectrometer equipped with a globar source, 

KBr beamsplitter, and a triglycerin sulfate detector was used. A total of 256 scans at 1.0 

cm-1 resolution were averaged and subtracted from a background spectrum taken under 

same conditions. 

 The electronic absorption spectra of the vapor using a Bomem DA8.02 Fourier-

transform spectrophotometer have also been recorded in the 25000 - 40000 cm-1 region. 

A deuterium lamp source, a quartz beamsplitter, and a silicon detector were used. The 

vapor was contained in a 25 cm glass cell with quartz windows. Spectral acquisition was 

done at room temperature. Pyrindan, however, showed only very weak absorptions 

which could not conclusively be used to determine the vibronic levels of the first 

electronic excited state. 

 

AB INITIO CALCULATIONS 

 The Gaussian 03 program [67] was used to carry out the quantum-chemical 

second-order Møller-Plesset (MP2) and density functional theory (DFT) calculations 

using several basis sets. The geometry of the stable structure and the conformational 

energies for pyrindan were predicted using the MP2 theory. The vibrational frequencies, 

infrared and Raman intensities, and the polarization ratios for the planar (Cs) and 

puckered (C1) structures of the molecule were calculated from the DFT with the B3LYP 
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hybrid functional. The double-minima potential energy functions in terms of the 

puckering coordinate were also calculated based on ab initio structures and energies. 

 

RESULTS AND DISCUSSION 

 1. Molecular Structure  

 Pyrindan was previously shown from a microwave study [26] to be puckered 

with an inversion barrier of 390 cm-1. In its puckered structure the molecule has C1 

symmetry. But because it is a non-rigid molecule, its vibrations can be assigned on the 

basis of a planar structure of Cs symmetry, where all of the ring atoms are lying in the 

plane of symmetry. Its forty-eight vibrational modes are then represented by symmetry 

species 30A’ + 18A”.  

 The calculated structure of pyrindan from ab initio calculation is shown in Fig. 

25. The figure also shows the calculated structure of the indan molecule. The energies of 

the planar transition structure and the most stable puckered structure of pyrindan were 

optimized using the MP2 and DFT-B3LYP theories to determine the barrier of inversion 

and dihedral angle for the molecule. These ab initio values are listed in Table 16 and 

were used to obtain the potential energy function in terms of the puckering coordinate 

(x). Fig. 26 shows the definition of the puckering coordinate (x) and the puckering angle 

(φ). Fig. 27 shows the ring-puckering potential energy function determined from the 

MP2 and DFT-B3LYP with the 6-31G and cc-pVTZ basis sets. Table 16 and Fig. 27 

show clearly the improvement of the calculated energy barriers when the polarization 

and diffusion functions are included in the basis sets. It should also be noted that the
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Fig. 25. Structures of pyrindan and indan molecules as determined from the MP2/6-311++G(d,p) calculation. 
 

 



 

 

107 

 

 

Table 16 
Puckering barrier (cm-1) and puckering angle (deg.) for 
pyrindan by different levels of theory 

Theory 
Puckering 
angle (φ) 

Puckering 
barrier 

DFT-B3LYP/3-21G 27 319 
DFT-B3LYP/6-31G 24 186 
DFT-B3LYP/6-31+G(d) 27 298 
DFT-B3LYP/6-311++G(d,p) 26 286 
DFT-B3LYP/cc-pVDZ 28 369 
DFT-B3LYP/cc-pVTZ 26 276 
   

MP2/3-21G 28 283 
MP2/6-31G 24 179 
MP2/6-31+G(d) 31 595 
MP2/6-311++G(d,p) 32 631 
MP2/cc-pVDZ 33 717 
MP2/cc-pVTZ 32 587 
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Fig. 26. Definitions of the ring-puckering angle (φ) and the ring-puckering coordinate (x) utilized 
to predict the ring-puckering potential energy function from ab initio calculations. 
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Fig. 27. Theoretical potential energy functions in terms of the ring-puckering coordinate 
for pyrindan as determined from MP2 and DFT-B3LYP calculations. 
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barriers predicted by DFT are smaller as compared with those computed using the MP2 

theory.   

 It can also be seen from Fig. 25 that the presence of the nitrogen atom in the six-

membered ring has almost no effect on the bond lengths and angles of the five-

membered ring as compared to the indan molecule. This suggests that the ring-puckering 

barrier and angle in pyrindan should not differ much from those previously determined 

for indan [58]. Even though the experimental values for the ring-puckering angle and 

barrier from one side of the five-membered ring to the other are not available, the ab 

initio values of pyrindan are very close to the experimental values obtained for indan. 

The two-dimensional potential energy function determined for indan gave a puckering 

barrier of 488 cm-1 and a puckering angle of 30° [58] as compared to the calculated 

values of 587 cm-1 and 31° for pyrindan.  

 

 2. Raman and Infrared Spectra 

 Fig. 28 shows the Raman spectra of pyrindan vapor compared to the calculated 

spectra of the Cs planar and C1 puckered structures of pyrindan. The agreement is quite 

good between the experimental and theoretical spectra. The experimental vapor-phase 

Raman spectrum can be seen to be well-represented by the calculated spectrum of the 

puckered molecule. Nonetheless, in most cases, the calculated Raman spectrum of the 

planar structure also shows reasonably good agreement with the experimental spectrum. 

Long acquisition and integration times were used to collect the vapor-phase Raman 

spectra because the vapor Raman bands are quite weak.  
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Fig. 28. Raman spectra of the vapor pyrindan compared to the theoretical spectra 
calculated at the B3LYP/6-311++G(d,p) level of theory. 
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 The polarized spectra of pyrindan were also recorded and the spectral region 

below 1800 cm-1 is shown in Fig. 29. Theoretically, none of the Raman bands are 

depolarized since the molecule holds the lowest symmetry species C1 in its ground state. 

However, some Raman bands, especially those of A” symmetry for the Cs conformation 

are expected to be nearly depolarized and thus can be more accurately assigned to the 

appropriate vibrational modes when the depolarization ratios are utilized. Fig. 29 shows 

also that DFT calculations can predict the depolarization ratios of the vibrational modes 

in very good agreement with the experimental ones. This provides a great help in 

assigning the vibrational spectra of such molecules which do not possess much 

symmetry. 

 The infrared spectra of the liquid sample were also recorded and are shown in 

Fig. 30 compared to the calculated infrared spectra of the puckered and planar 

molecules. The agreement in terms of calculated frequencies is very good, but the 

agreement between the experimental and calculated intensities, as is typical, is not as 

good. Based on the vapor- and liquid-phase Raman, polarized Raman, and liquid-phase 

infrared spectra, the complete vibrational assignments were carried out and are presented 

in Table 17 based on the higher symmetry structure, the planar Cs. The calculated 

frequencies of the fundamentals, infrared and Raman intensities, and depolarization 

ratios for the C1 and Cs conformations were also used to confirm these assignments and 

are listed in Table 17. For the purpose of comparison, the vibrational frequencies 

previously reported for indan [58] are listed in Table 17 to show that for most of the 



 

 

113  

 

 

 
 

Fig. 29. Polarized spectra of pyrindan. Depolarization ratios were calculated using the B3LYP/6-311++G(d,p) 
level of theory. Calculated depolarization ratios in parentheses are for the planar Cs structure. 
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Fig. 30. Liquid-phase infrared spectra of pyrindan compared to the theoretical spectra 
calculated at the B3LYP/6-311++G(d,p) level of theory. 
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Table 17 
Vibrational assignments for pyrindan based on experimental and calculated spectra 

 Raman       IR  Calculated
a
  DFT-B3LYP/6-311++G(d,p) 

 Vibrational assignments 
Vapor Liquid Liquid  C1 Cs 

Indan
b
 

(vapor) 

A’ ν1 CH str. 3076 (216) 3063 3060  m  3063 (20,221) 0.2 3063 (20,202) 0.2 3075 
 ν2 CH str. 3046 (37) 3040 3041  m  3037 (15,85)   0.6 3037 (15,84)   0.6 3042 
 ν3 CH str. 3002 (11) 2997 3000  m  3026 (14,118) 0.4 3025 (15,118) 0.4 3035 
 ν4 CH2 sym. str. 2905 (123) 2895 2897  w  2946 (35,142) 0.2 2943 (50,244) 0.0 2902 
 ν5 CH2 sym. str. 2884 (31) 2872 2870  m  2897 (22,167) 0.2 2920 (23,149) 0.2 2885 
 ν6 CH2 sym. str. 2857 (170) 2843 2841  s  2890 (29,214) 0.1 2906 (32,175) 0.1 ----- 
 ν7 Pyridine-ring str. 1589 (12) 1587 1588  m  1607 (18,60)   0.7 1628 (19,54)   0.7 1610 
 ν8 Pyridine-ring str. 1575 (16) 1576 1576  s  1589 (18,64)   0.4 1590 (19,58)   0.4 1589 
 ν9 CH2 def. 1487 (7) 1483 1468  vvw  1483 (3,37)     0.3 1492 (3,45)     0.4 1474 
 ν10 CH in-plane-bend 1473 (12) 1471 1472  vw  1471 (5,9)       0.2 1470 (5,7)       0.2 1467 
 ν11 CH2 def. 1466 (13) 1465 1465  m  1464 (4,55)     0.6 1465 (3,60)     0.7 1460 
 ν12 CH2 def. 1444 (14) 1457 1456  w  1457 (5,83)     0.7 1461 (6,49)     0.6 1445 
 ν13 Pyridine-ring str. 1421 (11) 1420 1419  vs  1429 (57,17)   0.4 1434 (64,23)   0.4 1431 
 ν14 CH2 wag 1329 (4) 1317 -----  1327 (1,64)     0.2 1327 (1,53)     0.2 1318 
 ν15 CH2 wag 1314 (24) 1312     1311  w  1321 (1,50)     0.2 1322 (2,32)     0.2 1316 
 ν16 CH2 wag ------ ----- 1302  sh  1302 (3,9)       0.3 1284 (2,7)       0.1  1302

c
 

 ν17 Pyridine-ring str. 1293 (4) 1292 1291  w  1272 (1,9)       0.4 1256 (3,5)       0.7  1271 
 ν18 Pyridine-ring str. 1243 (17) 1244 1246  m  1228 (9,41)     0.1 1236 (7,40)     0.1  1213 
 ν19 CH in-plane-bend 1214 (14) 1216 1215  vw  1214 (1,28)     0.7 1215 (0,18)     0.3  1205 
 ν20 Ring mode 1147 (2) 1151 1151  w  1154 (3,15)     0.6 1163 (3,8)       0.7  1158 
 ν21 CH in-plane-bend 1085 (6) 1088 1088  s  1093 (10,4)     0.3 1103 (10,2)     0.5  1069 
 ν22 Pyridine-ring breath 1043 (100) 1044 -----  1050 (1,100)   0.0 1051 (0,100)   0.0  1025 
 ν23 5-mem.-ring C-C str.   997 (1)   996   996   vw    992 (0,21)     0.7 1001 (0,11)     0.7    971 
 ν24 5-mem.-ring C-C str.   890 (2)   ----   884   vw    887 (0,1)       0.7   896 (1,14)      0.2    856 
 ν25 Ring def.   847 (24)   847   849    850 (0,60)     0.4   858 (1,8)       0.7    831 
 ν26 5-Mem.-ring breath   838 (18)   ----   ----    843 (2,78)     0.1   790 (1,94)     0.1    787 
 ν27 Ring def.   611 (1)   607   617   m    619 (2,1)       0.6   676 (3,2)       0.1    610 
 ν28 Ring bend   594 (5)   594   593   w    598 (1,13)     0.7   600 (1,11)     0.7    570 
 ν29 Pyridine-ring bend   525 (35)   526   526   w    523 (1,46)     0.3   529 (1,41)     0.3    515 
 ν30 Skeletal bend   393 (1)   396   ----    394 (3,1)       0.7   392 (3,1)       0.6    372 
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Table 17 
Continued 

 Raman  IR  Calculated
a
 DFT-B3LYP/6-311++G(d,p) 

 Vibrational assignments 
Vapor Liquid Liquid  C1 Cs 

Indan
b
 

(vapor) 

A” ν31 CH2 antisym. str. 2970 (215) 2957 2959  s  2974 (38,121)  0.7  2977 (39,106)  0.8    2971 
 ν32 CH2 antisym. str. 2939 (29) ----- -----  2964 (32,150)  0.2 2945 (2,89)      0.8 2949 
 ν33 CH2 antisym. str. 2920 (26) -----  ~2921 w  2921 (24,75)    0.3 2927 (11,59)    0.8 ----- 
 ν34 CH2 twist 1263 (2) 1259 1260  w  1255 (0,14)      0.2 1254 (0,12)      0.8 1264 
 ν35 CH2 twist 1186 (2) 1185 1184  w  1189 (1,16)      0.6 1210 (0,19)      0.8 1151

c
 

 ν36 CH2 twist ----- 1133 1134  w  1137 (0,3)        0.5 1150 (0,1)        0.8 1128
c
 

 ν37 CH2 rock 1056 (9) ----- 1034  m  1042 (2,23)      0.1 1036 (1,2)        0.8 1041 
 ν38 CH out-of-plane bend   973 (1)   973   969  vw    969 (0,1)        0.7   968 (0,1)        0.8 ----- 
 ν39 CH out-of-plane bend   937 (1)   ----   938  vw     943 (0,0)        0.6   844 (0,0)        0.8   947 
 ν40 CH2 rock   903 (10)   905   905  m    899 (1,14)      0.4   899 (0,2)        0.8   908 
 ν41 CH out-of-plane bend   ----   789   786  s    787 (35,5)      0.3   789 (38,3)      0.8  ----- 
 ν42 CH2 rock   737 (45)   739   739  m    741 (2,46)      0.1   739 (1,3)        0.8   750 
 ν43 Pyridine-ring bend   725 (12)   726   722  s    728 (8,8)        0.1   717 (6,1)        0.8   737 
 ν44 Pyridine-ring bend   503 (6)   ----   501  w    503 (1,1)        0.7   494 (0,1)        0.8   499

c
 

 ν45 Pyridine-ring bend ~410 (0)   416   419  w    423 (0,1)        0.5   425 (0,0)        0.8   412 
 ν46 Ring flap   227 (2)   261   ----    255 (6,6)        0.7   225 (0,15)      0.8   248 
 ν47 Skeletal twist   172 (3)   188   ----    172 (1,3)        0.7   160 (0,3)        0.8   178 
 ν48 Ring puckering   ----   ----   ----    139 (0,10)      0.7     i d -------      ----   143 

a
Scaled frequencies. Numbers in parentheses are infrared and Raman intensities. Numbers in italics are depolarization ratios. 

b
From Ref. [58]. 

c
Frequencies from liquid-phase experiments. 

d
Imaginary frequency associated to the higher energy structure. 
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vibrations, including the low-lying large-amplitude motions, the frequencies are shown 

to be almost identical.   

 Fig. 31 shows the vapor-phase Raman spectrum for the 150 – 450 cm-1 region 

that was taken at an elevated temperature using a higher concentration of the sample and 

employing a greater number of acquisitions and longer integration times. The B-type 

Raman band at 172 cm-1 resembling a B-type infrared band was assigned to the skeletal-

twisting vibration (�47). The ring-flapping vibration (�46) was observed to be lower in 

frequency than expected from both the calculated value and the observed frequency for 

indan (Table 17). However, its observed frequency (227 cm-1) agrees very well with the 

calculated value for the planar Cs structure (226 cm-1). No side bands other than the 

fundamentals were observed in the vapor-Raman spectrum for pyrindan. 

 The investigation of the electronic excited state (S1) for pyrindan has been also 

attempted. The UV absorption spectra for pyrindan were recorded at room temperature 

and are shown in Fig. 32. The molecule showed very weak UV transitions that can not 

be fully interpreted. The UV spectrum is presented and shows that the 0
0ν  is located in 

the region near 36,300 cm-1. Running the UV spectra at higher temperatures and higher 

vapor pressure could possibly improve these results. The molecule also had very weak 

fluorescence in the jet-cooled chamber in a trial investigation for collecting the laser 

induced fluorescence (LIF) spectra. The UV and LIF spectra did not provide the usual 

complementary information that is helpful for studying the structure and vibronic levels 

in the electronic excited state. 
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Fig. 31. Ring-twisting (�47), ring-flapping(�46), and skeletal-bending vibrations(�30) from the vapor-phase 
Raman experiment. 
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       Fig. 32. UV spectra of pyrindan vapor taken at room temperature. 
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CONCLUSION 

 2,3-Cyclopentenopyridine (pyrindan) was investigated by means of several 

vibrational spectroscopic techniques. Substituting the carbon atom adjacent to the 

cyclopentene ring with a nitrogen atom seems to have a very small effect on the 

vibrational frequencies and inversion barrier in comparison to indan. An inversion 

barrier of 587 cm-1, a puckering angle of 31°, and a puckering frequency of 139 cm-1 

were predicted from ab initio calculations. The agreement between experiment and 

calculation for the vibrational spectra and energy barrier of the ring inversion is quite 

satisfactory.  
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CHAPTER VIII 

AB INITIO AND DFT CALCULATIONS FOR THE STRUCTURE 

AND VIBRATIONAL SPECTRA OF CYCLOPENTENE AND ITS 

ISOTOPOMERS 

 

 

INTRODUCTION 

 1. Ab initio and DFT Calculations versus Experiments 

 Ab initio and density functional theory (DFT) calculations are used to predict the 

structures and vibrational spectra of organic molecules. Three decades ago, when these 

types of computations were not possible, vibrational assignments were assisted by force 

constant calculations. A considerable number of comprehensive assignments and normal 

coordinate calculations for a variety of molecules has been previously reported. In some 

recent studies [87-91], where the experimental infrared and Raman data were compared 

with calculated results, spectroscopists have been very impressed how well the DFT 

computations do in calculating the frequencies and how well ab initio calculations do in 

predicting structures. In this study the structure and vibrational spectra of cyclopentene 

and its 1-d1, 1,2,3,4-d4, and d8 isotopomers have been reinvestigated. The structures of 

the four molecules and their symmetry species are shown in Table 18.  
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Table 18 
Point groups, symmetry species, and structures for cyclopentene-d0 and its isotopomers 
  

 
 
 
 
 
 
 

 

Isotopomer   

Point group:   

               planar C2v Cs 

               puckered Cs C1 

Symmetry species 11A1 + 6A2 + 9B1 + 7B2 20A’ + 13A” 
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 2. Spectroscopic and Computational Studies on Cyclopentenes 

 The ring-puckering potential energy function of cyclopentene-d0 was reported by 

Laane and Lord [10] in 1967. They determined the one-dimensional ring-puckering 

potential in its reduced form to be  ( )241 z18.6z3.24)cm( −=−V . An inversion barrier of 

232 cm-1 (0.66 kcal/mol) and a puckering angle of 23˚ ± 1˚ were proposed from the one-

dimensional ring-puckering potential energy function [10]. The two-dimensional 

potential energy surface associated with the ring-puckering and ring-twisting vibrations 

was later determined [29]. It reflected the fact that the ring-twisting tends to hinder the 

puckering process. The two-dimensional analysis showed that the puckering angle for 

cyclopentene is 26˚ (compared to 23˚ for the one-dimensional analysis).  

 In 1972 the vapor-phase Raman spectra were reported by Chao and Laane [30]. 

These spectra were used to confirm the assignments. In that study a series of lines 

between 109 and 256 cm-1 corresponding to 2=∆ν  transitions of the ring-puckering 

were observed. This was one of the pioneer studies that implemented low-frequency 

vapor-phase Raman spectroscopy to confirm the form of the ring-puckering potential 

energy function previously determined from the far-infrared experiment [6,29]. Also, in 

the work reported by Chao and Laane [30], a set of difference and combination bands 

corresponding to the ring-puckering vibration, with the 3070 cm-1 line as a reference, 

were observed in the C-H spectral region of cyclopentene-d0.  

 The structure of cyclopentene-d0 was also investigated by other spectroscopic 

techniques. The puckering angle determined from the two-dimensional far-infrared 

analysis (26°) [29] was somewhat higher than the microwave value [31,32].  A study of 
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the near-infrared band progressions, which only indirectly provide the energies of the 

puckering levels, obtained a barrier to planarity of 244 cm-1  for cyclopentene-d0 [33]. 

Gas-phase electron diffraction work [34], which is generally not as accurate for these 

floppy molecules, reported a value of 28.8°. 

 The studied of the ring-puckering potential energy functions and the vibrational 

frequencies were later extended to the 1-d1, 1,2,3,4-d4, and d8 isotopomers of 

cyclopentene [29,35-37]. The barrier to planarity in cyclopentene-d8 was found to be 17 

cm-1 less than the barrier in the undeuterated cyclopentene. The lowering in the barrier 

for the d8 molecule is attributed to the mixing between the ring-puckering vibration and 

the other low-frequency vibrations. One-dimensional potential energy functions were 

found for cyclpentene-1-d1 and cyclopentene-1,2,3,3-d4, and a regular decrease in the 

barrier heights in going from the d0 molecule (233 cm-1) to the d1 molecule (231 cm-1) to 

the d4 molecule (224 cm-1) to the d8 molecule (215 cm-1) occurs. Full vibrational 

assignments of the four molecules were also reported [37]. 

 In 1992, Allen, Csaszar, and Haner [92] carried out some comprehensive ab 

initio calculations on cyclopentene and its isotopomers and computed a puckering angle 

of 23.4° and a barrier to planarity of 235 ± 20 cm-1.  In our view this paper represented a 

major breakthrough in computations as it did an excellent job in matching the 

experimental data for each of the isotopic species. In addition to Allen’s work [92], 

several other ab initio investigations of the structure of cyclopentene-d0 are found in the 

literature [93-96]. In the work presented in this chapter, a basic target is to evaluate how 

well standard basis sets from the Gaussian 03 package [67] do in computing the structure 
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and vibrational spectra of this molecule using methodology applicable by experimental 

research groups. The accuracy of previous vibrational assignments and correcting these 

where necessary will also be assessed. 

 

EXPERIMENTAL 

 The high quality infrared and Raman spectra of cyclopentene and its deuterated 

isotopomers have been previously published by Villarreal et al. [37]. For the present 

work only the infrared and Raman spectra of the liquid phase were recorded so a direct 

comparison between observed and calculated spectra could be shown. 

 Cyclopentene (Aldrich-99%) was used without further purification. The liquid 

infrared spectrum of a drop of sample between two KBr windows was recorded using a 

Biorad FTS-60 equipped with a globar source, KBr beamsplitter, and a triglycerin 

sulfate detector.  A total of 256 scans at 1.0 cm-1 resolution were averaged. The Raman 

spectra of the liquid cyclopentene were recorded for a sample in a 1mm glass tube.  A 

JobinYvon U-1000 double monochromator equipped with a CCD detector and an Innova 

I-100 argon ion laser operating at 5145 Å with 1 watt of power were used. 

 

COMPUTATIONAL METHODS 

 Density functional theory (DFT) with the B3LYP hybrid functional and ab initio 

second-order Moller-Plesset (MP2) calculations using the Gaussian 03 program [67] 

were carried out for the four isotopomers of cyclopentene.  Four basis sets, 6-31+G(d), 

6-311++G(d,p), cc-pVDZ (double-
) and cc-pVTZ (triple-
) were all used. The 



 

 

126 

vibrational frequencies of the four molecules were calculated for the puckered and 

planar forms.  The total energies were also calculated. 

 

MOLECULAR STRUCTURE 

 Fig. 33 shows the calculated Cs and C2v structures for cyclopentene-d0 using the 

MP2/cc-pVTZ and MP2/6-311++G(d,p) levels of theory, compared to the structure from 

the gas-phase electron diffraction experiment [34]. Fig. 33 shows that calculations using 

the triple-
 and 6-311++G(d,p) basis sets predicted the bond lengths and angles to be 

very nearly the same. Table 19 compares several geometric parameters from our 

calculations to previous experimental and theoretical work. As can be seen, when the 

triple-
 basis set was utilized in the MP2 calculations, it agrees very well with the 

experimental puckering angle (26°), and the calculated barrier of 247 cm-1 differs only 

slightly from the experimental value of 232 cm-1. From the results shown in Table 19, 

the importance of electron correlation and its affect on the accuracy of the predicted 

structure and energy can be seen. The calculated DFT structure can be seen to slightly 

underestimate the puckering angle (19° vs. 26° experimental) but greatly underestimates 

the inversion barrier (42 vs. 232 cm-1) in cyclopentene. 

 

MOLECULAR VIBRATIONS 

 Fig. 34 compares the computed infrared spectrum (both for the puckered Cs and 

planar C2v structures) of cyclopentene to the experimental liquid-phase spectrum. Fig. 35 

similarly compares the computed and experimental liquid Raman spectra.  Tables  20-23 
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Fig. 33. Calculated planar (on the left) and puckered (on the right) structures of 
cyclopentene. Values in parentheses are from the gas-phase electron diffraction 
experiment in Ref. [34]. 
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Table 19 
Puckering angles (deg.), CH out-of-plane angles (deg.), and barriers to planarity  
(cm-1) in cyclopentene-d0 from various experimental and theoretical methods 

  

    

Puckering 
angle

a
 

(�) 

CH 
out-of-plane 

angle
a
 (
) 

Barrier  
to  

planarity  
Ref.

b 

Expt. Gas-phase diffraction      28.8˚   34 
 Microwave      22.2˚        230 32 
 Far-IR one-dimensional study      23.3˚        233 10 
 Far-IR two-dimensional study      26˚        232 29 
 Near-IR      22.1˚        244 33 
      
Calc. MM2 method      23˚   97 

 HF/DZ      13.6˚   94 
 HF/6-31+G(d)      20.0˚          2.1˚         90  

 HF/6-311++G(d,p)      20.2˚          2.2˚         94  

 MP2/DZ      23.4˚          2.3˚       177 92 
 MP2(full)/6-31G(d)      26.3˚        289 96 
 MP2/6-31+G(d)      25.4˚          2.8˚       284  
 MP2/6-311++G(d,p)      27.1˚          3.0˚       298  
 MP2/cc-pVDZ      24.7˚          2.6˚       323  

 MP2/cc-pVTZ      26.1˚          3.1˚       247  

 DFT-B3LYP/6-31+G(d)      19.7˚          2.4˚         73  
 DFT-B3LYP/6-311++G(d,p)      20.0˚          2.3˚         60  
 DFT-B3LYP/cc-pVDZ      19.0˚          2.1˚         78  
  DFT-B3LYP/cc-pVTZ      19.3˚          2.1˚         42  

a
These are defined below 

 

H

φ

τ

 
 
b
Results not referenced indicate this work. 



 

 

129  

 

Liquid

Calculated

Calculated

Cs

6001000140028003200

C2v

 

 

Fig. 34. Liquid and calculated (using the DFT-B3LYP/cc-pVTZ level of theory) mid-infrared spectra of cyclopentene-d0. 
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Fig. 35. Liquid and calculated (using the DFT-B3LYP/cc-pVTZ level of theory) Raman spectra of cyclopenetene-d0. 
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Table 20

†
 

Reassignments of vibrational spectra of cyclopentene-d0 
 

Reassignments
a,b

  Calculated
c  

(DFT-B3LYP/cc-pVTZ) 
 This work  

(liquid) 
 

Description 

       IR        Raman Cs C2v IR Raman 

A1, A’ ν1   CH  sym. str.  3078 s  3070  (140) p 3068 (23,186) 3066 (24,187)    3062 
 ν2   �-CH2 sym. str.  2903 s  2900  (7) p 2937 (56,173) 2942 (44,154)  2897  m   2903 
 ν3   �-CH2 sym. str. (i.p.)  2860 s  2857  (153) p 2881 (31,218) 2896 (2,267)  2848  vs   2849 
 ν4   C=C str.  1623 m  1617  (91) p 1649 (2,143) 1657 (3,125)  1610  m   1614 
 ν5   �-CH2 def.  1471 vw  1473  (16) p 1481 (2,57) 1486 (3,56)  1463  m   1467 
 ν6   �-CH2 def. (i.p.)  1445 m  1448  (23) p 1459 (1,143) 1459 (0,138)  1444  m   1442 
 ν7   �-CH2 wag (i.p.)  1290 m  1302  (10) p 1303 (1,21) 1306 (1,19)  1295  m   1297 
 ν8   CH in-plane bend (i.p.)  1101 m  1109  (66) p 1111 (0,129) 1112 (0,119)  1108  vw   1107 
 ν9   Ring str.    962 w    962  (55) p 955 (1,50) 958 (1,31)    963  m     965 
 ν10  Ring breathing    900 m    896  (100) p 885 (0,100) 875 (0,100)    903  s     898 
 ν11  Ring def.    593* m    600  (1) p? 608 (12,7) 691 (0,11)    603  m     605 
            
A2, A” ν12  �-CH2 antisym. str. (o.p.)  2955* s  2938  (54)  2924 (37,120) 2913 (0,184)    2949 
 ν13  �-CH2 twist (o.p.)  1268* m  1279* (1) [sol] 1287 (2,7) 1253 (0,25)  1279  w   1290 
 ν14  �-CH2 twist  1140* w  1134  (1) [sol] 1132 (1,0) 1140 (0,3)   
 ν15  CH out-of-plane bend (o.p.)    933* w [sol]    933* (2) d 961 (0,7) 965 (0,5)       938 
 ν16  �-CH2 rock (o.p.)    878* m [sol]    879  (1)  875 (4,7) 893 (0,3)       875 
 ν17  Ring twist      390  (2) d 387 (0,21) 374 (0,11)       385 
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Table 20

†
 

Continued 
 

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 This work  

(liquid) 
 

Description 

          IR        Raman Cs C2v IR Raman 

B1, A’ ν18  CH antisym. str.  3068 s  3062  (18)  3044 (8,87) 3043 (8,87)  3055  s    3053 
 ν19  �-CH2 sym. str. (o.p.)  2873 s  2882  (57) p 2883 (54,75) 2896 (95,33)  2866  s    2870 
 ν20  �-CH2 def. (o.p.)  1438 vw   1463 (2,71) 1466 (2,56)      1451 
 ν21  CH in-plane bend (o.p.)  1353 m  1354  (1) [sol] 1358 (2,0) 1360 (1,3)  1350  vw    1352 
 ν22  �-CH2 wag (o.p.)    1297  (1) [sol] 1296 (0,7) 1295 (1,0)   
 ν23  �-CH2 wag  1207* m   1205 (0,29) 1247 (1,19)  1167  vw  
 ν24  Ring str.  1037 w  1030  (1)  1015 (2,29) 1071 (2,18)  1025  w    1026 
 ν25  Ring str.    906* m   900 (7,0) 891 (11,5)    
 ν26  Ring def.    796* vw    800* (1)  771 (0,7) 776 (1,4)    770  vw      771 
            
B2, A” ν27  �-CH2 antisym. str. (i.p.)  2933* s  2929* [sol] 2918 (4,61) 2910 (35,2)  2925  s    2915 
 ν28  �-CH2 antisym. str.  2963* s  2973* (39)  2970 (43,84) 2973 (43,74)  2949  s    2929 
 ν29  �-CH2 twist (i.p.)  1211* m (c-type)  1209* (2) d 1209 (2,43) 1204 (2,38)  1205  m    1207 
 ν30  �-CH2 rock (i.p.)  1047 s  (c-type)  1047  (1)   1052 (7,7) 1048 (8,3)  1043  s    1044 
 ν31  CH out-of-plane bend (i.p.)    695 s  (c-type)    690* (1) d 702 (31,21) 663 (37,16)    696  s      700 
 ν32  �-CH2 rock    793* w    783* (1) d 803 (1,7) 770 (7,11)    803  vw      817 
 ν33  Ring puckering    127.1     128.5  130 (0,7)          id    

a Vapor-phase vibrational spectra from Ref. [37], unless otherwise indicated. Frequencies given in italics are from Ref. [98]. 
b [sol]=solid state, d=depolarized, p=polarized, reassigned frequencies are marked with (*). 
c Scaled frequencies, values in parentheses are infrared and Raman intensities. 
d
Imaginary frequency calculated for higher energy structure. 

†
The footnotes above also apply for the Tables 21-23 that follow. 
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Table 21

†
 

Reassignments of vibrational spectra of cyclopentene-d8 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 
             IR  Raman  Cs  C2v 

A1, A’ ν1   CD  sym. str.   2310 s  2305  (68) p  2315 (9,78)  2314 (10,78) 
 ν2   �-CD2 sym. str.   2153 w  2145  (100) p  2160 (18,67)  2168 (22,77) 
 ν3   �-CD2 sym. str. (i.p.)     2100  (136) p  2128 (10,132)  2135 (1,134) 
 ν4   C=C str.   1580 m  1577  (50) p  1600 (4,143)  1609 (5,123) 
 ν5   �-CD2 def.  1070*   m  1072* (2) p  1071 (1,19)  1072 (0,18) 
 ν6   �-CD2 def. (i.p.)  1110*   w  1113* (7) p  1110 (1,14)  1110 (1,11) 
 ν7   �-CD2 wag (i.p.)    750* w    750* (7) p  744 (1,13)  750 (0,14) 
 ν8   CD in-plane bend (i.p.)    792* vw    790* (7) p?  785 (0,38)  781 (0,33) 
 ν9   Ring str.  1150* vw [sol]  1158* (2) d  1149 (1,4)  1148 (0,6) 
 ν10  Ring breathing     878 m    878* (100) p  871 (2,100)  865 (0,100) 
 ν11  Ring def.     696* w    693* (1) d  681 (0,3)  645 (0,6) 
              
A2, A” ν12  �-CD2 antisym. str. (o.p.)  2180* w  2202  (15) d  2190 (7,79)  2186 (0,96) 
 ν13  �-CD2 twist (o.p.)    882* w   [sol]    887* (1)   890 (1,19)  891 (0,16) 
 ν14  �-CD2 twist    926* w   [sol]    930* (1) p  929 (0,4)  930 (0,2) 
 ν15  CD out-of-plane bend (o.p.)    716* w    720* (1) d   [liq]  728 (1,3)  733 (0,4) 
 ν16  �-CD2 rock (o.p.)    660* w   [sol]    667  (1)      [sol]  661 (0,0)  673 (0,0) 
 ν17  Ring twist       317  (2) d  320 (2,9)  308 (0,7) 
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Table 21

†
 

Continued 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 
             IR  Raman  Cs  C2v 

B1, A’ ν18  CD antisym. str.   2276 m  2268  (15) d  2270 (3,44)  2268 (3,44) 
 ν19  �-CD2 sym. str. (o.p.)   2138 m  2132  (20) p  2128 (38,24)  2133 (46,19) 
 ν20  �-CD2 def. (o.p.)   1062 m     1062 (2,14)  1059 (1,9) 
 ν21  CD in-plane bend (o.p.)   1024* vw     1027 (1,0)  1029 (1,0) 
 ν22  �-CD2 wag (o.p.)     724* m    725* (1)      [sol]  707 (6,2)  706 (8,2) 
 ν23  �-CD2 wag        790* (7) p?  788 (0,20)  804 (0,14) 
 ν24  Ring str.   1128* vw [sol]  1130* (1) p? [liq]  1122 (1,3)  1113 (1,6) 
 ν25  Ring str.     1190* (1) d  1195 (0,10)  1198 (1,9) 
 ν26  Ring def.     750* w   [sol]     757 (1,0)  760 (1,3) 
              
B2, A” ν27  �-CH2 antisym. str. (i.p.)   2200* s   (c-type)  2235* (30) p  2192 (23,31)  2186 (24,2) 
 ν28  �-CH2 antisym. str.   2230* s   (c-type)  2202* (15)   2230 (22,40)  2233 (20,37) 
 ν29  �-CH2 twist (i.p.)     849* s   (c-type)    850* (7) d?  852 (5,29)  857 (8,9) 
 ν30  �-CH2 rock (i.p.)     954* w   [sol]    950* (1) d  954 (0,8)  943 (0,5) 
 ν31  CH out-of-plane bend (i.p.)     465* s   (c-type)    460* (1) d  464 (13,3)  483 (19,6) 
 ν32  �-CH2 rock     543* s    550* (1) d  549 (10,8)  574 (4,4) 
 ν33  Ring puckering     108.2      103 (0,1)          id   

†
See footnotes for Table 20. 
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Table 22
†
 

Reassignments of vibrational spectra of cyclopentene-1-d1 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 

 IR  Raman  C1  Cs 
A’, A ν1   CH str.  3065 m  3066  (188) p  3056 (16,138)  3054 (16,139) 
 ν2   �-CH2 sym. str.  2903   s  2904  (122) p  2937 (54,178)  2943 (43,157) 
 ν3   �-CH2 sym. str.  2865   s  2879  (105) p  2882 (53,74)  2897 (12,246) 
 ν4   �-CH2 sym. str  2859   s  2859  (224) p  2881 (31,220)  2896 (85,57) 
 ν5   =C-D str.  2294   m  2290  (37) p  2293 (7,55)  2291 (7,56) 
 ν6   C=C str.  1600   m  1597  (79) p  1628 (3,23)  1637 (4,153) 
 ν7   �-CH2 def.  1470   m  1472  (22) p  1481 (2,8)  1486 (3,66) 
 ν8   �-CH2 def.  1446   m  1448  (32) p  1464 (2,10)  1466 (2,60) 
 ν9   �-CH2 def.  1435   w     1458 (1,20)  1459 (0,153) 
 ν10  CH in-plane bend  1261* m  [liq]  1257* (3) p  1263 (1,2)  1266 (1,14) 
 ν11  �-CH2 wag  1300* w  1298* (10) p  1303 (1,2)  1305 (1,13) 
 ν12  �-CH2 wag  1322* m  [liq]  1327* (5) p  1329 (2,1)  1330 (2,9) 
 ν13  �-CH2 wag  1284* m  [sol]     1288 (2,2)  1242 (0,21) 
 ν14  Ring str.  1033 m  1029  (8) p  1020 (3,5)  1023 (3,31) 
 ν15  CD in-plane bend    988 w    978  (65) p  971 (2,11)  967 (2,64) 
 ν16  Ring str.    966 w    952  (33) p  946 (2,5)  950 (1,33) 
 ν17  Ring breathing    900* w    899  (100) p  886 (2,13)  877 (1,100) 
 ν18  Ring str.    750 w    750  (1) d  747 (3,2)  751 (3,13) 
 ν19  Ring def.    770* m  [sol]    779* (1) p  774 (1,1)  800 (3,10) 
 ν20  Ring def.    634* s    630* (1) d  642 (4,1)  683 (0,6) 
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Table 22

†
 

Continued 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 
             IR           Raman  C1  Cs 

A”, A ν21  �-CH2 antisym. str.  2939 s  2939  (126)   2925 (38,117)  2913 (0,184) 
 ν22  �-CH2 antisym. str.  2939  s  2924  (126)   2918 (4,61)  2910 (35,2) 
 ν23  �-CH2 antisym. str.  2962 s  2969  (60)   2969 (43,84)  2973 (43,74) 
 ν24  �-CH2 twist  1211 s  1209  (2) d  1208 (2,43)  1203 (1,41) 
 ν25  �-CH2 twist  1116* w  1121* (1) d  1133 (1,2)  1140 (0,3) 
 ν26  �-CH2 twist  1207* w     1199 (0,38)  1253 (0,27) 
 ν27  �-CH2 rock  1044 s   (c-type)  1045   m      [sol]  1048 (6,5)  1044 (6,5) 
 ν28  CH out-of-plane bend    893* w     902 (2,17)  915 (1,13) 
 ν29  �-CH2 rock    855 s   (c-type)    855  (1) d  864 (3,18)  866 (4,10) 
 ν30  �-CH2 rock    807* s   [liq]    802* (1) d  813 (3,6)  747 (0,4) 
 ν31  CD out-of-plane bend    565 s   (c-type)    565  (1) d  567 (25,15)  579 (30,12) 
 ν32  Ring twist    369 w    369  (3) d  372 (0,10)  359 (0,12) 
 ν33  Ring puckering    126.0      129 (0,4)         id  

†
See footnotes for Table 20. 
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Table 23

†
 

Reassignments of vibrational spectra of cyclopentene-1,2,3,3-d4 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 

 IR  Raman  C1  Cs 
A’, A ν1   CD sym. str.  2310 m  2313  (13) p  2315 (11,71)  2314 (11,72) 
 ν2   �-CH2 sym. str.  2904 s  2905  (20) p  2934 (52,156)  2941 (41,134) 
 ν3   �-CD2 sym. str.  2110 s  2100  (51) p  2128 (24,87)  2135 (24,89) 
 ν4   �-CH2 sym. str  2854  s  2861  (46) p  2882 (41,152)  2897 (48,156) 
 ν5   CD antisym. str.  2277  m  2265  (5) d  2270 (3,44)  2268 (3,44) 
 ν6   C=C str.  1560  m  1580  (51) p  1604 (4,141)  1613 (5,132) 
 ν7   �-CH2 def.  1460  m  1467  (4) p  1477 (1,27)  1483 (2,30) 
 ν8   �-CH2 def.  1449  m  1452  (7) p  1459 (1,82)  1461 (1,77) 
 ν9   �-CD2 def.  1081  vw  1085  (4) p  1084 (0,20)  1085 (0,22) 
 ν10  CD in-plane bend    800* w    802* (3) d  798 (0,28)  793 (0,32) 
 ν11  �-CH2 wag  1286 w  1290  (1) p?  1286 (1,10)  1272 (1,18) 
 ν12  �-CD2 wag    821* m    825* (7) p  815 (1,22)  823 (1,27) 
 ν13  �-CH2 wag  1308* w  1310* (1) ?  1314 (1,8)  1315 (1,2) 
 ν14  Ring str.  1107* m   (c-type)  1100* (1) d  1104 (2,6)  1102 (2,8) 
 ν15  CD in-plane bend    715* vw    719*      [sol]  715 (2,4)  719 (7,4) 
 ν16  Ring str.  1143* w  1156*      [sol]  1153 (0,7)  1167 (1,9) 
 ν17  Ring breathing    910 m    910  (100) p  903 (1,100)  897 (1,100) 
 ν18  Ring str.    985* vw    985* (2)    974 (0,20)  978 (0,14) 
 ν19  Ring def.    771* w    774* (1) d   [liq]  769 (1,9)  771 (2,3) 
 ν20  Ring def.    604 m    604  (1) d  607 (4,5)  664 (0,4) 

 

 
 
 
 
 
 



 

 

138  

 
 
 
Table 23

†
 

Continued 
  

Reassignments
a,b

  Calculated
c
  

(DFT-B3LYP/cc-pVTZ) 
 

Description 
             IR           Raman  C1  Cs 

A”, A ν21  �-CH2 antisym. str.  2941 s  2941  (20)      [sol]  2920 (17,74)  2913 (18,90) 
 ν22  �-CD2 antisym. str.  2200 s  2194  (10) d  2191 (16,53)  2187 (15,51) 
 ν23  �-CH2 antisym. str.  2964 s  2969  (30)   2969 (36,84)  2971 (33,72) 
 ν24  �-CH2 twist  1163* vw  1160* (1) d  1166 (1,15)  1162 (0,14) 
 ν25  �-CD2 twist    872* s    (c-type)    875* (4) d  875 (3,24)  878 (3,11) 
 ν26  �-CH2 twist  1226* m   [sol]  1211* (1) d  1229 (0,15)  1240 (0,19) 
 ν27  �-CH2 rock  1035* w   (c-type)  1045* (1) d  1042 (2,4)  1037 (1,3) 
 ν28  CH out-of-plane bend    735* w    726* (1) ?  736 (3,4)  729 (1,3) 
 ν29  �-CD2 rock    700* m     706 (2,2)  669 (0,1) 
 ν30  �-CH2 rock    858* m    860* (3) ?  849 (1,8)  844 (0,2) 
 ν31  CD out-of-plane bend    502* s     (c-type)    500* (1) d  506 (23,8)  514 (26,12) 
 ν32  Ring twist    337* w       338* (2) d  338 (0,6)  327 (0,7) 
 ν33  Ring puckering    120.0      120 (0,2)         id  

†
See footnotes for Table 20. 
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list the calculated (scaled) vibrational frequencies and infrared and Raman intensities 

and compare these to previously reported experimental results [37]. Table 24 compares 

the experimental and calculated ring-puckering (�33) and ring-twisting (�17) frequencies 

for the d0, d1, d4, and d8 isotopes utilizing three different basis sets. The scaling factors 

used are 0.961, 0.973, and 0.985 for the regions where � > 2800 cm-1, 2800 > � > 1800 

cm-1, and � < 1800 cm-1, respectively. Although these vibrations are slightly anharmonic, 

the agreement is very good. Tables 20 to 23 show that most of the previous assignments 

in Ref. [37] were made correctly. However, the DFT calculations do allow several of the 

less clear assignments to be reassigned. It is highly satisfactory to see how well the 

computations do in predicting the experimental values. In order to provide a bit more 

insight into the cyclopentene isotopomer vibrations, Table 25 shows the experimental 

and calculated frequencies of the nine ring vibrations of these molecules. Fig. 36 shows 

how frequencies of these specific modes change for the different isotopomers. 

 

VIBRATIONAL REASSIGNMENTS 

 Several vibrational reassignments in cyclopentene and its isotopomers were made 

based on the calculated frequencies and the original data from the dissertation of J. R. 

Villarreal [98], and the reassigned values are shown in Tables 20 to 23. The original 

definitions of the vibrational modes used by Villarreal et al. [37] were retained in this 

work for easier comparison. Scaled vibrational frequencies, infrared and Raman 

intensities, and depolarization ratios from the triple-
 calculations were all used to attain 

better reassignments for the four molecules.  
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Table 24 
Experimental and calculated frequencies of the ring-puckering and ring-twisting vibrations for cyclopentene and its 
isotopomers 

 
 
 
 
 
 
 
 
 

a
Ref. [10]. 

b
Ref. [35]. 

c
Ref. [36]. 

d
Ref. [30]. 

e
Ref. [37]. 

 

 

+ _

_ +  

 
 

+

_ _

+ +  

Ring-twisting (�17)  Ring-puckering (�33) 

  Calculated (DFT-B3LYP) 

 
Experimental 

 6-31+G(d)  6-311++G(d,p)  cc-pVTZ 

 �33  �17
 e    

 

 IR  Raman  IR  Raman  
�33 �17  

�33 �17  
�33 �17 

d0  127
a  128.5

d
    390  140 384  135 385  130 387 

d1  126
b
    369  369  142 370  134 370  129 372 

d4  120
c
    337  338  132 338  128 337  120 338 

d8   108
c
           317   111 319   109 318   103 320 
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Table 25 
Frequencies shifts (cm-1) in ring fundamentals of cyclopentene and its isotopomers 

Experimental IR
b
  Calculated

c
 B3LYP/6-311++G(d,p) 

 Ring mode
a 

   d0 d1 d4  d8     d0      d1          d4    d8 
A1(A’) ν4 (ν6) C=C str. 1623 1600 1560 1580  1672

(1682)
1650

(1660)
1626

(1636)
1622

(1633)

       

B1(A’) ν24 (ν14) 
 

1037
 

1033 
 

1027 1024
 

1034
(1038)

988
(984)

1122
(1187)

1146
(1136)

      

A1(A’) ν9 (ν18) 
 

 962
 

 750 
 

 800  750
 

972
(976)

963
(968)

992
(998)

1170
(1171)

      

B1(A’) ν25 (ν16) 
 

933
 

966 
 

872 724
 

916
(908)

1039
(1043)

1173
(1120)

1214
(1218)

      

A1(A’) ν10 (ν17) 

 
900

 
 

893 

 
 

910 878

 

902
(892)

903
(893)

918
(911)

886
(880)

      

B1(A’) ν26 (ν19) 

 

695
 

698 
 

715 709
 

783
(788)

759
(762)

782
(784)

769
(773)

      

A1(A’) ν11 (ν20) 

 
608

 
 

600 

 
 

604 574

 

616
(702)

650
(693)

615
(674)

695
(655)

      

A2(A”) ν17 (ν32) 
 

390
 

369 
 

337 317
 

392
(377)

377
(362)

344
(329)

324
(311)

      

B2(A”) ν33 (ν33) 

 

127.1 126.0 120.0 108.2
 

133 131 122 105

a
Wavenumbers in parentheses refer to descriptions of the d1 and d4 isotopes. 

b
As assigned in Ref. [37] 

c
Frequencies in parentheses are for the planar structure. Ring puckering frequencies are those calculated with the cc-pVTZ basis set. 
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Fig. 36. Correlation diagrams for the ring modes in cyclopentene and its isotopomers as 
determined from the original assignments and from DFT-B3LYP/cc-pVTZ 
calculations. 
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 In the case of cyclopentene-d0 most of the original assignments were shown to be 

reliable but a few were reassigned. For example, the medium-intensity band at 593 cm-1 

in the IR spectrum was reassigned to �11 (ring deformation). Calculations showed such a 

vibration considerably changes its intensity as the molecule changes from the planar to 

the puckered structure (Table 20). The �11 vibration was also observed to be partially 

depolarized, and this was confirmed by the depolarization ratio value (0.7) from the DFT 

calculation. One interesting result from the calculations is that the vapor-phase c-type 

bands originally observed in the cyclopentene infrared spectrum [37,98] were confirmed 

to be of B2 (A”) symmetry, and several were reassigned based on the frequencies and 

infrared band intensities calculated in this work as shown in Table 20. It was shown 

from the calculation that when the molecule changes its conformation from the planar 

C2v structure to the puckered Cs structure, some of the A2 vibrations, such as �12 and �16 , 

would become infrared active. Therefore, some weak and medium-intensity IR bands 

were reassigned to some of the A2-symmetry vibrations.  

 As can be seen from Table 21, more reassignments were made in the case of 

cyclopenetene-d8 as compared to the d0 molecule. DFT frequency calculations predicted 

strong coupling in the vibrational spectra of cyclopentene-d8 which led to unexpected 

frequency changes due to isotope shifts. Fig. 36 shows the correlation diagram of the 

ring modes in the d8 molecule. The diagram shows the changes of frequencies of the ring 

modes as a result of the coupling with other CH2 and CD2 modes, such as the case for �9 

and �25. For more clarification, Figs. 37 and 38 were also done based on the 

reassignments made in this work to  compare  the  changes  in  frequencies  for  the  CH2 
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Fig. 37. Reassigned vibrational frequencies of the CH2 (CD2) bending motions for 
various isotopic structures of cyclopentene. Frequencies from DFT-B3LYP/cc-
pVTZ calculations are given in parentheses. 
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Fig. 38. Reassigned vibrational frequencies of the =C-H (=C-D) bending modes for 
cyclopentene and its isotopomers. Frequencies from DFT-B3LYP/cc-pVTZ 
calculations are given in parentheses. 
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(CD2) and =C-H (=C-D) motions. While the out-of-plane =C-H (or =C-D) bending 

vibrations do not show any evidence of coupling with other vibrations in cyclopentene 

and its isotopomers, the in-plane =C-D bending for d4 is expected to couple with other 

vibrations causing their frequencies to shift to lower wavenumbers.  

 Tables 22 and 23 show the reassignments for the other two less symmetric 

isotopomers, cyclopentene-1-d1 and cyclopentene-1,2,3,3-d4. Most of the reassignments 

made were related to the CH2 bending vibrations below 1300 cm-1. Calculated 

frequencies of the in-plane and out-of-plane CD bendings agree very well with the 

experiment, and this gave us confidence in the DFT calculated frequencies in predicting 

frequency changes due to isotopic shifts. In the case of the d4 molecule, quite a large 

number of reassignments had to be made from the original work of Villarreal [37] as 

shown in Table 23.  

 

CONCLUSION 

 The calculations carried out here demonstrated how well density functional 

theory calculations can reproduce vibrational frequencies of organic molecules such as 

cyclopentene. The DFT calculations also predict the shifts in frequency due to isotopic 

substitutions in very good agreement with the experiment. DFT calculations have also 

allowed a more definitive set of assignments to be made for cyclopentene and its 

isotopomers.  The triple zeta ab initio calculation, when a minimal amount of electron 

correlation is included by using the second order Møller-Plesset perturbation theory, was 
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also shown to do an excellent job of predicting the barrier to inversion and the dihedral 

angles. 
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CHAPTER IX 

MOLECULAR STRUCTURES, VIBRATIONAL SPECTRA, RING-

PUCKERING POTENTIAL ENERGY FUNCTIONS, AND AB 

INITIO AND DFT STUDIES OF SILACYCLOBUTANES 

 

  

INTRODUCTION 

 In 1967 J. Laane reported the first preparation of silacyclobutane and some of its 

derivatives [38]. Later, the far-infrared studies of silacyclobutane and silacyclobutane-

1,1-d2 were reported [13]. Full vibrational assignments of the infrared and Raman 

spectra and normal coordinate analyses for silacyclobutane and its 1,1-d2 as well as 1,1-

difluorosilacyclobutane and 1,1-dichlorosilacyclobutane were reported [39]. These 

spectroscopic studies concluded that the ring is puckered due to the CH2-CH2 and CH2-

SiH2 torsional interactions, and a dihedral angle of approximately 36º with a barrier 

height of 440 ± 3 cm-1 was determined from a one-dimensional analysis [13].  

 The structures of silacyclobutane and its 1,1-difluoro and 1,1-dichloro derivatives 

have also been investigated by means of other experimental techniques [99-106]. A 

microwave study on silacyclobutane using several assumed geometrical parameters was 

carried out, from which a puckering angle of 28º and a barrier of 441 cm-1 were 

determined [101]. Electron diffraction (ED) analyses of silacyclobutane [102,106] gave 
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slightly smaller puckering angles as compared to the far-IR results [13]. The first 

electron-diffraction study in 1975 reported a puckering angle of 33.6º [102]. A second 

gas-phase ED study combined with detailed ab initio calculations of the structure and 

puckering potential function of silacyclobutane was recently published [106]. The 

puckering angle (33.5º) reported is also close to the far-IR value (36º), but gave a 

considerably lower barrier (286 cm-1) as compared to the far-IR value (440 cm-1) [13]. 

Since ED studies average over many vibrational states, they do not typically yield 

reliable barrier values. 

 1,1-Difluorosilacyclobutane and 1,1-dichlorosilacyclobutane have also been 

studied by gas-phase electron diffraction experiments [103-105]. A dihedral angle of 25º 

and a barrier height of 418 cm-1, with a large uncertainty, were determined for 1,1-

difluorosilacyclobutane [104]. Other gas-phase ED studies showed that the puckering 

angle and the inversion barrier in 1,1-dichlorosilacyclobutane are slightly higher than the 

values for the difluoro compound but are lower as compared to silacyclobutane 

[103,105]. 

 In addition, several ab initio investigations of the structures, energetic behavior, 

and vibrational frequencies of silacyclobutane and its derivatives can be found in the 

literature [104-115]. A few molecular mechanics MM2 [97,116] and MM3 [117] force 

field studies on the structure of silacyclobutane have also been carried out. The MM2 

method predicted the barrier to inversion between the two planar forms to be 462 cm-1 

[116] with a puckering angle of 32º [97], while the extended MM3 method predicted a 

barrier of 395 cm-1 [117].  
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 The vibrational frequencies of silacyclobutane were computed using the 

restricted Hartree-Fock self-consistent field (HF-SCF) calculations [108] and density 

functional theory (DFT-B3LYP) utilizing the 6-311G(d,p) basis set [113]. In these two 

studies [108,113], the vibrational assignments were made based on the unscaled 

frequencies and the infrared intensities with comparison to the previously reported 

vibrational spectral data [39]. In the theoretical work on 1,3-disilacyclobutane, E. T. 

Seidl et al. [108] made a few vibrational reassignments on the basis of the HF calculated 

frequencies and the observed vibrational spectra [118]. In another recent work, the 

calculated frequencies from DFT-B3LYP treatment have been more thoroughly used to 

reassign the infrared and Raman spectra of 1,3-disilacyclobutane and its d4 isotopomer 

[119].  

 While the results of the present study were being completed, a combined study of 

a gas-phase ED experiment and ab initio calculations on the structure of silacyclobutane 

has been very recently published by Navikov, Dakkouri and Vilkov [106] (abbreviated 

as NDV herein). In the NDV work, Hartree-Fock, second-order Møller-Plesset and DFT-

B3LYP theories were implemented using different basis sets. It can clearly be seen from 

that work that the effect of including electron correlations yields better predictions of 

structures and barriers. Comparisons between the present work and NDV paper [106] are 

presented later in this chapter. 
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AB INITIO AND DFT CALCULATIONS 

 Silacyclobutane has Cs symmetry for its puckered structure but closely follows 

C2v planar structure selection rules since it is a non-rigid molecule. The structures, the 

inversion barriers, and the vibrational frequencies of silacyclobutane, 1,1-

difluorosilacyclobutane, and 1,1-dichlorosilacyclobutane were studied in this work using 

high-level density functional theory (DFT) with the B3LYP hybrid functional and 

second-order Møller-Plesset (MP2) calculations using the Gaussian 03 program [67]. 

The vibrational frequencies of silacyclobutane-1,1-d2 were also calculated. Different 

basis sets including the cc-pVTZ (triple-
) were used to compute the geometry of the 

planar and puckered structures of silacyclobutane. The triple-
 basis set was used to 

calculate the structures of the dihalo derivatives. Barriers to interconversion in 

silacyclobutane and the difluoro and dichloro derivatives were calculated and were zero-

point corrected. The vibrational frequencies, infrared and Raman peak intensities, and 

depolarization ratios for the four molecules were calculated using the DFT-B3LYP/cc-

pVTZ level of theory and by implementing the appropriate scaling factors.  

 

MOLECULAR STRUCTURES 

 Fig. 39 shows the structure, atom labeling, and the puckering angle definition for 

these molecules, where X can be H, F, or Cl for silacyclobutane, 1,1-

difluorosilacyclobutane and 1,1-dichlorosilacyclobutane, respectively. The bond lengths, 

bond angles, and puckering angles for the puckered Cs and planar C2v structures of 



 

 

152  

 

 

Si

α

β

 

 

Fig. 39. Structure, puckering angle and atom labels for silacyclobutane and its derivatives. (X could be H, D, F, or Cl). 
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silacyclobutane and its difluoro and dichloro derivatives are given in Tables 26-28 and 

are   compared   to   observed  structures  from  different  experimental   techniques.  The 

calculated C-H bond distances for the dihalo derivatives were predicted to be shorter as 

compared to silacyclobutane, which indicates stronger C-H bonds in the case of the 

difluoro and dichloro molecules. This result is consistent with the observed vibrational 

frequencies for these molecules in the C-H stretching region [39]. 

 In the case of silacyclobutane, different basis sets at the MP2 and DFT theories 

were used. Table 29 shows the calculated inversion barrier and puckering angle in 

silacyclobutane. It can be noted that a relatively small basis set such as the 6-31G gave a 

better prediction of the barrier to planarity (489 cm-1) as compared to larger basis sets. 

Implementing smaller basis sets means there are more restrictions in describing the 

molecular orbitals of the system because of the lower number of basis functions 

employed in the calculations. In addition, the 6-31G includes neither diffuse functions 

nor polarization functions which are responsible for giving more flexibility to the 

description of the orbitals involved [42-45]. However, the calculated puckering angle 

from the triple-
 basis set (34.5º) was the closest to the experimental value (Table 29). 

The barriers and puckering angles calculated by the Hartree-Fock and DFT methods 

were found to be considerably lower than the experimental values for the 

silacyclobutane molecule and its difluoro and dichloro derivatives (Tables 29 and 30). 

The underestimation of the inversion barriers and dihedral angles by the DFT method for 

different cyclic molecules as compared to experimental values, including the ones being 

studied in this work, has been noted in several cases [88-90,120].  
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Table 26 
Structural parameters of silacyclobutane from different experiments and from ab initio calculations 

  MP2
a
  DFT-B3LYP

a
  Experimental 

  6-311++G(2d,p)  cc-pVTZ  6-311++G(2d,p)  cc-pVTZ  Far-IR
b
 MW

c ED (NVD work)
d
 

Bond lengths (Å)           
Si�C   1.892 (1.894) 1.893 (1.895)  1.860 (1.897)  1.900 (1.895)  1.870      1.91 1.895(2) 
C�C  1.561 (1.569) 1.558 (1.565)  1.565 (1.571)  1.563 (1.565)  1.550  1.571(3) 
C��Ha  1.089 (1.090) 1.086 (1.088)  1.089 (1.090)  1.087 (1.088)  
C��Hb  1.093 (1.090) 1.090 (1.088)  1.093 (1.090)  1.091 (1.088)  
C��Ha  1.094 (1.091) 1.091 (1.088)  1.092 (1.091)  1.091 (1.088)  
C��Hb  1.092 (1.091) 1.089 (1.088)  1.093 (1.091)  1.091 (1.088)  

1.090  1.100(3) 

Si�Ha  1.478 (1.479) 1.483 (1.483)  1.485 (1.486)  1.488 (1.483)  1.467(96) 
Si�Hb  1.479 (1.479) 1.483 (1.483)  1.486 (1.486)  1.489 (1.483)  1.480  1.468(96) 

Bond angles (º)           

∠ CSiC    78.3   (80.5)    78.2   (80.5)   79.0   (80.5)    78.8   (80.5)    80.2    77.2(9) 
∠ SiCC    86.0   (88.4)    85.9   (88.3)   86.9   (88.5)    86.9   (88.3)    88.9    87.9(12) 
∠ CCC    99.8 (102.6)  100.0 (102.9) 100.8 (102.6)  100.9 (102.9)  102    97.0(15) 
∠ HSiH  109.0 (108.0)  108.6 (107.6) 108.2 (107.5)  108.0 (107.6)    108.3 
∠ HC�H  109.1 (108.1)  109.1 (108.0) 108.4 (107.8)  108.4 (108.0)  114   
∠ HC�H  107.7 (107.3)  107.8 (107.3) 107.3 (107.1)  107.3 (107.3)  111  107.7 

∠ C�C�Ha  116.5 (113.5)  116.6 (113.6) 116.0 (113.7)  116.0 (113.6)    118.4(24) 
∠ C�C�Hb  110.1 (113.5)  110.1 (113.6) 111.2 (113.7)  111.3 (113.6)  112.9  112.3(24) 

∠ C�C�Ha  109.5 (111.8)  109.5 (111.7) 109.4 (111.8)  109.8 (111.7)    
∠ C�C�Hb  115.1 (111.8)  114.9 (111.7) 114.5 (111.8)  114.4 (111.7)  110.9   

∠ SiCHa  122.7 (116.2)  122.6 (116.2) 121.3 (116.2)  121.3 (116.2)   123.5(16) 
∠ SiCHb  110.5 (116.2)  110.5 (116.2) 111.6 (116.2)  111.6 (116.2)  112.9  111.9(16) 

∠ CSiHa  112.2 (116.6)  112.3 (116.8) 113.7 (116.8)  113.8 (116.8)    
∠ CSiHb  121.1 (116.6)  121.4 (116.8) 120.0 (116.8)  120.1 (116.8)  114.3   
� (º)   34.3     (0.0)    34.5     (0.0)    27.4     (0.0)    27.6     (0.0)       35.9 ± 2      28   33.5 ± 2.7 

a
Calculated values in parentheses are for the planar structure. 

b
Ref. [13]. 

c
Ref. [101]. 

d
Ref. [106]. 
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Table 27 
Structural parameters of 1,1-difluorosilacyclobutane 

  MP2/cc-pVTZ
a
  DFT-B3LYP/ cc-pVTZ

 a
  ED

b
 

Bond lengths (Å)     

Si�C   1.859 (1.860)  1.865 (1.865)  1.836(3) 
C�C  1.567 (1.572)  1.574 (1.577)  1.574(8) 

C��Ha  1.085 (1.087)  1.087 (1.088)  
C��Hb  1.089 (1.087)  1.090 (1.088)  
C��Ha  1.088 (1.086)  1.089 (1.088)  
C��Hb  1.087 (1.086)  1.088 (1.088)  

1.099(6) 

Si�Fa  1.601 (1.600)  1.607 (1.606)  
Si�Fb  1.597 (1.600)  1.605 (1.606)  1.574(3) 

Bond angles (º)     

∠ CSiC    81.7   (83.2)    82.3   (83.1)    82.7(6) 
∠ SiCC    84.9   (86.6)    86.0   (86.8)    86.8(8) 
∠ CCC  101.7 (103.6)  102.5 (103.3)  100.6(8) 
∠ FSiF  105.6 (105.5)  105.2 (105.2)  106.9(5) 
∠ HC�H  109.3 (108.6)  108.5 (108.3)  111.3(34) 
∠ HC�H  108.4 (108.1)  108.0 (107.8)  111.3(34) 

∠ C�C�Ha  116.0 (113.5)  115.3 (113.7)   

∠ C�C�Hb  110.6 (113.5)  112.0 (113.7)   

∠ C�C�Ha  109.7 (111.3)  110.2 (111.4)   
∠ C�C�Hb  113.6 (111.3)  113.0 (111.4)   

∠ SiCHa  122.1 (116.6)  120.4 (116.6)   
∠ SiCHb  111.8 (116.6)  113.2 (116.6)   

∠ CSiFa  113.6 (116.9)  115.1 (117.0)   
∠ CSiFb  120.7 (116.9)  119.3 (117.0)   

�  (º)   28.7     (0.0)    19.4     (0.0)    25(2) 
a
Calculated values in parentheses are for the planar structure. 

b
Ref. [104]. 
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Table 28 
Structural parameters of 1,1-dichlorosilacyclobutane  

   ED 
  MP2/cc-pVTZ

a
 

 
DFT-B3LYP/  

cc-pVTZ
 a
 Vilkov

b
 Cyvin

c
 Novikov

d 

Bond lengths (Å)      

Si�C   1.868 (1.870)  1.877 (1.878) 1.88(2) 1.886(4) 1.860(3) 
C�C  1.564 (1.570)  1.569 (1.573) 1.59(3) 1.544(6) 1.557(4) 

C��Ha  1.085 (1.087)  1.087 (1.088)  
C��Hb  1.090 (1.087)  1.090 (1.088)  
C��Ha  1.089 (1.087)  1.089 (1.088)  
C��Hb  1.088 (1.087)  1.089 (1.088)  

1.091(7) 1.091(8) 

Si�Cla  2.058 (2.057)  2.080 (2.078) 2.043(2) 
Si�Clb  2.053 (2.057)  2.074 (2.078) 2.05(1) 2.032(2) 2.038(2) 

Bond angles (º)      

∠ CSiC    80.6   (82.5)    81.1   (82.2)   80(2)   84.0(6)   81.1(10) 
∠ SiCC    85.1   (87.0)    86.3   (87.2)    79.0(6)   85.7(12) 
∠ CCC  101.2 (103.5)  102.2 (103.3)  110.7(9) 102.0(15) 
∠ ClSiCl  107.9 (107.7)  107.5 (107.4) 105(1) 105.1(3) 105.2(8) 

∠ HC�H  109.7 (109.0)  108.9 (108.5)  125.7(91) 
∠ HC�H  108.4 (108.0)  107.9 (107.8)  111.1(1) 108.0 

∠ C�C�Ha  116.6 (113.9)  116.0 (114.0)   105.3(63) 
∠ C�C�Hb  110.7 (113.9)  112.0 (114.0)   100.9(63) 

∠ C�C�Ha  109.8 (111.3)  110.1 (111.4)   110.0 
∠ C�C�Hb  113.7 (111.3)  113.2 (111.4)   113.4 

∠ SiCHa  121.7 (116.0)  120.4 (116.0)   118.9(54) 
∠ SiCHb  110.9 (116.0)  111.9 (116.0)   109.7(54) 

∠ CSiCla  112.4 (116.3)  114.2 (116.5)   114.7(4) 
∠ CSiClb  120.8 (116.3)  119.2 (116.5)   120.2(4) 

� (º)   31.1     (0.0)    22.6     (0.0)   30(5)  31.7(10)   25.9(26) 
a
Calculated values in parentheses are for the planar structure. 

b
Ref. [99]. 

c
Ref. [103]. 

d
Ref. [105]. 
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Table 29 
Barriers to planarity and puckering angle for silacyclobutane from different experimental and ab initio methods 

Puckered (Cs)  Planar (C2v) 

Method 
 

Etot 
(Hart.) 

Zero-point 
correction (Hart.) 

Etot 
(Hart.) 

Zero-point 
correction (Hart.) 

Barrier 
(cm-1) 

Zero-point 
corrected 

barrier (cm-1) 

Puckering 
angle 
(deg.) 

MP2/6-31G  -407.3854310 0.100865 -407.3832035 0.100199 489 343 30.2 
MP2/6-31+G(d)  -407.6282517 0.101581 -407.6252320 0.100904 663 514 32.9 
MP2/6-311++G(d,p)  -407.7591071 0.100600 -407.7556352 0.099677 762 559 34.2 
MP2/6-311++G(2d,p)  -407.7875089 0.100237 -407.7842642 0.099324 712 512 34.3 

MP2/6-311+G(df,pd) a      786  35.0 
MP2/cc-pVTZ   -407.8671832 0.100217 -407.8642028 0.099618 654 523 34.5 
B3LYP/6-31G  -408.5441521 0.099544 -408.5436369 0.099252 113   49 22.9 
B3LYP/6-31+G(d)  -408.6105168 0.099214 -408.6094226 0.098835 240 157 27.0 
B3LYP/6-311++G(d,p)  -408.6663936 0.098595 -408.6652839 0.098213 243 160 27.2 
B3LYP/6-311++G(2d,p) -408.6718241 0.098663 -408.6706503 0.098257 257 169 27.4 

B3LYP/6-311++G(df,pd) a     276  27.9 
B3LYP/cc-pVTZ  -408.6818994 0.098616 -408.6803682 0.098213 336 248 27.7 

Far-infrared b      440  35.9 

Microwave c      441  28  

Early ED d        33.6(21) 

Recent ED (NVD work) a     286  33.5(18) 
a
Ref. [106]. 

b
Ref. [13]. 

c
Ref. [101]. 

d
Ref. [102]. 
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Table 30 
Barriers to planarity and puckering angles for 1,1-difluorosilacyclobutane and 1,1-dichlorosilacyclobutane from 
different methods of calculations 

Puckered (Cs) Planar (C2v) 

Method 
 

Etot 
(Hart.) 

Zero-point 
correction (Hart.) 

 
Etot 

(Hart.) 
Zero-point 

correction (Hart.) 
Barrier  
(cm-1) 

Zero-point 
corrected 

barrier 
 (cm-1) 

Puckering 
angle 
(deg.) 

1,1-Difluoro-1-silacyclobutane        
MP2/6-31G  -605.4296905 0.090779  -605.4284190 -0.090123 279 135 25.2 
MP2/6-311++G(d,p) -606.0734321 0.089729  -606.0718945 0.089014 338 181 28.1 
MP2/cc-pVTZ   -606.2981788 0.089689  -606.2968243 0.089182 297 186 28.7 
B3LYP/cc-pVTZ  -607.3909500 0.088362  -607.3906877 0.088048   58  -11 19.4 
ED a       418  25 

1,1-Dichloro-1-silacyclobutane        
MP2/6-31G -1325.3370857 0.088343  -1325.3353188 0.087698 388 246 27.8 
MP2/6-311++G(d,p) -1325.9898424 0.087814  -1325.9867646 0.086892 676 473 30.6 
MP2/cc-pVTZ -1326.2281801 0.087359  -1326.2261154 0.086860 453 344 31.1 
B3LYP/cc-pVTZ -1328.0675080 0.086144  -1328.0670690 0.085832   96   28 22.6 
ED (Vilkov) b          30(5) 
ED (Cyvin) c          31.7(10)  
ED (Novikov) d       199  25.9(26) 

a
Ref. [104]. 

b
Ref. [99]. 

c
Ref. [103]. 

d
Ref. [105]. 
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 The theoretical puckering vibration potential energy functions of the type           

V = ax4 – bx2 from the optimized structures and calculated barrier heights of 

silacyclobutane using different quantum chemical theories were determined and are 

shown in Figs. 40 and 41 and Table 31. Fig. 40 compares the barriers calculated from the 

MP2 and DFT theories, and how these barriers compare to the experimental one for such 

a strained molecule. Fig. 41 shows the effect of different basis sets using MP2 

calculations. As has been mentioned above and as can be seen from Fig. 41 and Table 

29, the larger the basis set, the better is the predicted puckering angle and the higher is 

the barrier to planarity as compared to the experimental one.  

 

VIBRATIONAL REASSIGNMENTS 

 Figs. 42-45 show the experimental vapor-phase infrared spectra reproduced from 

Refs. [39,121] and the calculated IR spectra for the four molecules. Similarly, Figs. 46-

49 compare the experimental frequencies and intensities of the Raman spectra with those 

computed from the DFT-B3LYP level of theory. Vibrational spectra from the DFT-

B3LYP/cc-pVTZ calculations for silacyclobutane, its 1,1-d2, the 1,1-difluoro and the 

1,1-dichloro derivatives show very good agreement with the experimental ones as can be 

seen from these figures. Tables 32 to 35 give the detail of the reassigned frequencies 

carried out in this work for the four molecules. The descriptions of the vibrational 

fundamentals from the original study [39] were followed here for easier comparison. The 

vibrational frequencies of both the Cs and C2v structures were calculated. Except for a 

few cases the frequencies calculated for the two structures in the four molecules are 
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Fig. 40. Puckering-angle potential energy functions for silacyclobutane from MP2/cc-pVTZ and 
B3LYP/cc-pVTZ levels of theory compared to far-infrared experimental values. 
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Fig. 41. Effect of basis sets in predicting the puckering barrier and puckering angle in silacyclobutane.  
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Table 31  
Puckering coordinates and theoretical potential energy function parameters based on ab initio calculations 

    
241 xx)cm( baV −=−  

Method  
Puckering angle 

∠� (deg.) ∠ � (deg.) x (Å) a (Å
-4

)  b (Å
-2

) 

MP2/6-31G  30.24 13.89 0.182 3.008×105  19.84×105 
MP2/6-31+G(d)  32.91 11.92 0.162 3.548×105  18.63×105 
MP2/6-311++G(d,p) 34.21 13.23 0.173 3.689×105  22.11×105 
MP2/cc-pVTZ  34.50 13.82 0.181 3.572×105  23.32×105 
B3LYP/cc-pVTZ  27.67 11.13 0.144 3.867×105  16.12×105 

Experimental
a
  36  0.184 3.852×105  26.06×103 

a 
Ref [13,97]. 

bDefinitions of the parameters �, � and x are shown below 
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Fig. 42. Vapor-phase (Ref. [121]) and calculated (DFT-B3LYP/cc-pVTZ) infrared spectra of silacyclobutane. 
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Fig. 43. Vapor-phase (Ref. [121]) and calculated (DFT-B3LYP/cc-pVTZ) infrared spectra of silacyclobutane-1,1-d2. 
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Fig. 44. Vapor-phase (Ref. [121]) and calculated (DFT-B3LYP/cc-pVTZ) infrared spectra of 1,1-difluorosilacyclobutane. 
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Fig. 45. Vapor-phase (Ref. [121]) and calculated (DFT-B3LYP/cc-pVTZ) infrared spectra of 1,1-dichlorosilacyclobutane. 
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Fig. 46. Calculated (DFT-B3LYP/cc-pVTZ ) Raman spectra for silacyclobutane compared with the line spectra of the 

frequencies and intensities of the vapor-phase Raman spectra reported in Refs. [39,121]. Line marked with (*) 
indicates a peak with reduced intensity. 
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Fig. 47. Calculated (DFT-B3LYP/cc-pVTZ ) Raman spectra for silacyclobutane-1,1-d2 compared with the line spectra of the 

frequencies and intensities of the vapor-phase Raman spectra reported in Refs. [39,121]. Lines marked with (*) 
indicate peaks with reduced intensities. 

 



 

 

169  

 
 

 3000  2600  2200  1800  1400  1000  600  200

cm-1

*

Calculated

Vapor

 
 
Fig. 48. Calculated (DFT-B3LYP/cc-pVTZ ) Raman spectra for 1,1-difluorosilacyclobutane compared with the line spectra of 

the frequencies and intensities of the vapor-phase Raman spectra reported in Refs. [39,121]. Line marked with (*) 
indicates a peak with reduced intensity. 
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Fig. 49. Calculated (DFT-B3LYP/cc-pVTZ ) Raman spectra for 1,1-dichlorosilacyclobutane compared with the line spectra of 

the frequencies and intensities of the vapor-phase Raman spectra reported in Refs. [39,121]. Lines marked with (*) 
indicate peaks with reduced intensities. 
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Table 32 
Reassignments of vibrational spectra of silacyclobutane 

  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

Scaled Intensity 
Dep. 
ratio 

 
Scaled Intensity 

Dep. 
ratio 

A1, A’ �1   �-CH2 sym. str. 2935 m  2927  (756) p  2914 (32,602) 0.2  2925 (275,410) 0.3 
 �2   �-CH2 sym. str. (i.p.) 2873 m  2858  (90) p  2933 (1,989) 0.2  2948 (37,1284) 0.3 
 �3   SiH2 sym. str. 2145 vvvs  2137  (1000) p  2130 (100,1000) 0.1  2127 (1000,1000) 0.1 
 �4   �-CH2 deform. (i.p.) 1422* m  1414* (67) d  1443 (2,56) 0.7  1435 (3,66) 0.7 
 �5   �-CH2 deform. 1458* vvw  1450* (29) d  1476 (1,20) 0.7  1471 (4,15) 0.7 
 �6   �-CH2 wag. (i.p.) 1127 s  1123  (84) p  1141 (11,20) 0.2  1137 (113,18) 0.1 
 �7   SiH2 deform.   962 vvs    948  (75) d  952 (73,40) 0.7  954 (760,39) 0.7 
 �8   C–C sym. str.   877* s    876* (169) p  873 (7,73) 0.1  874 (1,87) 0.1 
 �9   Si–C sym. str.      817* (60) p  819 (4,28) 0.1  763 (0,70) 0.1 
 �10  Ring deform.   532 m    539  (130) p  531 (13,34) 0.2  507 (86,46) 0.2 
 

 
             

A2, A” �11  �-CH2 antisym. str.   
(o.p.) 

2992* vs  2980* (378) d  2992 (11,410) 0.8  2987 (0,633) 0.8 

 �12  �-CH2 twist. (o.p.)       969 (0,5) 0.8  976 (0,3) 0.8 
 �13  �-CH2 twist. 1211* vw  1214* (28) d  1232 (1,27) 0.8  1238 (0,18) 0.8 
 �14  �-CH2 rock. (o.p.)   736 m    740  (21) d  737 (11,21) 0.8  751 (0,25) 0.8 
 �15  SiH2 twist   514 w    517  (50) d  508 (1,23) 0.8  484 (0,22) 0.8 
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Table 32 
Continued 
  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

Scaled Intensity 
Dep. 
ratio 

 
Scaled Intensity 

Dep. 
ratio 

B1, A’ �16  �-CH2 sym. str. (o.p.) 2888 m  2876  (220) p  2935 (16,71) 0.8  2945 (260,32) 0.8 
 �17  �-CH2 deform. (o.p.) 1401 m     1426 (3,14) 0.8  1426 (48,1) 0.8 
 �18  �-CH2 wag (o.p.)       1074 (1,3) 0.8  1102 (1,0) 0.8 
 �19  �-CH2 wag 1255* vw [sol.] 1250*

 (7) d  1277 (1,4) 0.8  1271 (16,9) 0.8 
 �20  C–C antisym. str.   927 s    932  (60) d  928 (11,19) 0.8  937 (110,18) 0.8 
 �21  Si–C antisym. str.   653 m   [sol.]   652  (194) d  633 (2,56) 0.8  640 (20,55) 0.8 
 �22  SiH2 wag   814 vs     803 (71,7) 0.8  799 (886,5) 0.8 
 

 
             

B2, A” �23  �-CH2 antisym. str. 2953* vs     2954 (17,491) 0.4  2957 (33,198) 0.8 
 �24  �-CH2 antisym. str. 

(i.p.) 
2992* vs  2980* (378) d  2994 (16,418) 0.2  2993 (255,163) 0.8 

 �25  SiH2 antisym. str. 2145 vvvs  2150   w d  2138 (92,424) 0.7  2132 (984,421) 0.8 
 �26  �-CH2 twist. (i.p.) 1191 mw  1191  (16) d  1202 (1,12) 0.4  1191 (22,9) 0.8 
 �27  �-CH2 rock. (i.p.)  906* ms    903  (58) p  908 (16,26) 0.2  879 (248,5) 0.8 
 �28  �-CH2 rock   673 ms    671  (141) p  665 (9,42) 0.1  712 (75,0) 0.8 
 �29  SiH2 rock   409 mw    418  (34) d  409 (4,9) 0.3  427 (81,3) 0.8 
 �30  Ring puckering  158c      147 (0,1) 0.4  i d   

a
Reassigned frequencies are labeled with (*). 

b
Vapor-phase experiments from Ref. [39], [sol.] = solid state. 

c
Ref. [13]. 

dImaginary frequencies for the higher energy structure. This also applies for the notation i that appears in Tables 33-35. 
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Table 33 
Reassignments of vibrational spectra of silacyclobutane-1,1-d2 

  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

Scaled   Intensity 
Dep. 
ratio 

 
Scaled   Intensity 

Dep. 
ratio 

A1, A’ �1   �-CH2 sym. str. 2935 m  2925   (570) p  2914 (55,1269) 0.2  2925 (45,874) 0.3 
 �2   �-CH2 sym. str. (i.p.) 2873 m  2857   (70) p  2933 (75,2087) 0.2  2948 (6,2732) 0.1 
 �3   SiD2 sym. str. 1554 vvvs  1548   (1000) p  1545 (100,1000) 0.1  1542 (100,1000) 0.1 
 �4   �-CH2 deform. (i.p.) 1422* m  1416   (89) d  1442 (4,127) 0.8  1435 (0,145) 0.7 
 �5   �-CH2 deform. 1458* vw  1450   (53) d  1475 (1,40) 0.7  1470 (0,35) 0.7 
 �6   �-CH2 wag. (i.p.) 1128 ms  1123   (84) p  1140 (14,50) 0.2  1136 (14,46) 0.1 
 �7   SiD2 deform.   712 vvs    700   (80) p  698 (84,27) 0.2  686 (68,43) 0.6 
 �8   C–C sym. str.   867* m    867*  (107) p  867 (16,119) 0.1  875 (1,191) 0.1 
 �9   Si–C sym. str.   821* w    819*  (58) p  819 (3,48) 0.0  768 (9,129) 0.0 
 �10  Ring deform.   496 mw    499   (204) p  494 (13,86) 0.3  489 (8,109) 0.2 

 
             

A2, A” �11  �-CH2 antisym. str. 
(o.p.) 

2992* vs  2980*  (260) d  2992 (20,866) 0.8  2987 (0,1352) 0.8 

 �12  �-CH2 twist. (o.p.)       960 (0,4) 0.8  968 (0,1) 0.8 
 �13  �-CH2 twist. 1216* vw  1210*  (29) d  1231 (0,62) 0.8  1238 (0,39) 0.8 
 �14  �-CH2 rock. (o.p.)   669* ms    669*  (30) d  664 (34,19) 0.8  677 (0,14) 0.8 
 �15  SiD2 twist   410 vvw    417   (78) d  405 (0,44) 0.8  393 (0,45) 0.8 
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Table 33 
Continued 
  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

  Scaled   Intensity 
Dep. 
ratio 

 
Scaled  Intensity 

Dep. 
ratio 

B1, A’ �16  �-CH2 sym. str. (o.p.) 2885 ms  2874   (152) p  2935 (28,150) 0.8  2945 (43,68) 0.8 
 �17  �-CH2 deform. (o.p.) 1404 m     1426 (6,31) 0.8  1426 (8,3) 0.8 
 �18  �-CH2 wag (o.p.)       1074 (1,5) 0.8  1102 (0,0) 0.8 
 �19  �-CH2 wag 1271* vvw     1277 (0,10) 0.8  1270 (1,22) 0.8 
 �20 C–C antisym. str.   925 m    927   (49) d  925 (9,32) 0.8  934 (8,28) 0.8 
 �21 Si–C antisym. str.   720* m    716   (78) d  715 (53,21) 0.8  696 (91,27) 0.8 
 �22  SiD2 wag   550* m    550*  (107)   d  537 (18,71) 0.8  544 (18,71) 0.8 

 
             

B2, A” �23  �-CH2 antisym. str. 2935* m  2934*  (230) p  2954 (30,1037) 0.2  2957 (6,419) 0.8 
 �24  �-CH2 antisym. str. 

(i.p.) 
2953 vs     

2994 (27,885) 0.4 
 

2993 (41,353) 0.8 
 �25  SiD2 antisym. str. 1566 vvvs  1564   (100) d  1564 (95,428) 0.7  1561 (95,440) 0.8 
 �26  �-CH2 twist. (i.p.) 1193 w  1193   (13) d  1201 (1,27) 0.4  1190 (3,20) 0.8 
 �27  �-CH2 rock. (i.p.)   902* ms    898*  (209) p  899 (12,109) 0.1  857 (27,10) 0.8 
 �28  �-CH2 rock   656 ms    660   (156) p  650 (9,92) 0.2  698 (11,1) 0.8 
 �29  SiD2 rock   352 mw    358   (36) d  347 (6,10) 0.5  338 (9,8) 0.8 
 �30  Ring puckering   150c      139 (0,1) 0.4        i   

a
Reassigned frequencies are labeled with (*). Frequencies given in italics are from Ref. [121]. 

b
Vapor-phase experiments from Ref. [39].  

c
Ref. [13]. 
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Table 34 
Reassignments of vibrational spectra of 1,1-difluorosilacyclobutane 

  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

  Scaled   Intensity 
Dep. 
ratio 

 
Scaled   Intensity 

Dep. 
ratio 

A1, A’ �1   �-CH2 sym. str. 2885* ms  2883*  (92) p  2939 (20,329) 0.3  2943 (18,232) 0.4 
 �2   �-CH2 sym. str. (i.p.) 2955* s  2950*  (1000) p  2949 (1,1000) 0.1  2958 (1,1000) 0.0 
 �3   SiF2 sym. str.   934* vs    925*  (277) p  912 (83,46) 0.1  908 (80,41) 0.1 
 �4   �-CH2 deform. (i.p.) 1400* ms  1409*  (111) d  1430 (3,46) 0.7  1425 (2,44) 0.7 
 �5   �-CH2 deform. 1460* ms  1452*  (32) d  1471 (1,13) 0.7  1468 (1,9) 0.7 
 �6   �-CH2 wag. (i.p.) 1135 vs  1135   (25) p  1144 (38,4) 0.2  1141 (38,2) 0.0 
 �7   SiF2 deform.   293* m    291*  (65) p  277 (8,3) 0.5  273 (7,2) 0.5 
 �8   C–C sym. str.   862* s    855*  (123) p  854 (17,22) 0.1  843 (25,24) 0.0 
 �9   Si–C sym. str.   796* ms    797*  (138) p  790 (29,25) 0.1  753 (25,34) 0.0 
 �10  Ring deform.   489* s    488*  (315) p  478 (10,24) 0.1  484 (10,22) 0.1 

 
       

  
 

  
A2, A” �11  �-CH2 antisym. str. 

(o.p.) 
      3004 (4,411) 0.8  3000 (0,442) 0.8 

 �12  �-CH2 twist. (o.p.)       945 (0,0) 0.8  949 (0,0) 0.8 
 �13  �-CH2 twist. 1222* w [sol.] 1222*  (42) d  1230 (1,14) 0.8  1232 (0,14) 0.8 
 �14  �-CH2 rock. (o.p.)       620 (0,0) 0.8  607 (0,0) 0.8 
 �15  SiF2 twist      203   (54) d  182 (0,4) 0.8  181 (0,3) 0.8 
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Table 34 
Continued 
  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

  Scaled   Intensity 
Dep. 
ratio 

 
Scaled  Intensity 

Dep. 
ratio 

B1, A’ �16  �-CH2 sym. str. (o.p.) 2850* m [sol.]    2948 (8,46) 0.8  2955 (10,12) 0.8 
 �17  �-CH2 deform. (o.p.)       1418 (9,8) 0.8  1416 (10,1) 0.8 
 �18  �-CH2 wag (o.p.)    1064*  (19) d  1075 (0,7) 0.8  1092 (0,4) 0.8 
 �19  �-CH2 wag 1242* w     1266 (1,3) 0.8  1260 (3,1) 0.8 
 �20  C–C antisym. str.   913 m    912   (92) d  908 (11,13) 0.8  908 (10,10) 0.8 
 �21  Si–C antisym. str.   742 vs    743   (111) d  724 (55,11) 0.8  725 (54,9) 0.8 
 �22  SiF2 wag   328 s    331   (42) d  314 (17,4) 0.8  314 (17,3) 0.8 

 
       

   
  

  
B2, A” �23  �-CH2 antisym. str. 2995 s  2998   (385) d  2980 (6,339) 0.3  2979 (1,122) 0.8 
 �24  �-CH2 antisym. str. 

(i.p.) 
2970 mw [liq.] 2970   (77) ?  3008 (12,242) 0.5  3007 (15,117) 0.8 

 �25  SiF2 antisym. str.   962 vs    945    vw ?  940 (100,4) 0.1  935 (100,0) 0.8 
 �26  �-CH2 twist. (i.p.) 1185   1184   (42) d  1192 (3,9) 0.6  1184 (4,8) 0.8 
 �27  �-CH2 rock. (i.p.)   805     809   (100) ?  810 (23,17) 0.2  807 (7,8) 0.8 
 �28  �-CH2 rock   665     666   (38) p  660 (2,16) 0.1  690 (1,1) 0.8 
 �29  SiF2 rock   228*     229*  (12) d  215 (1,2) 0.7  188 (1,2) 0.8 
 �30  Ring puckering     63c      77 (0,1)     i   

a
Reassigned frequencies are labeled with (*). Frequencies given in italics are from Ref. [121]. 

b
Vapor-phase experiments from Ref. [39]. [sol.] = solid state, [liq.] = liquid phase. 

c
Ref. [13]. 
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Table 35 
Reassignments of vibrational spectra of 1,1-dichlorosilacyclobutane 
  Calculated DFT-B3LYP 
 Reassignments

a
  Cs  C2v 

 
Description         IRb        Ramanb 

 
 Scaled  Intensity 

Dep. 
ratio 

 
Scaled  Intensity 

Dep. 
ratio 

A1, A’ �1   �-CH2 sym. str. 2952 ms  2941   (748) p  2936 (20,690) 0.1  2942 (21,536) 0.0 
 �2   �-CH2 sym. str. (i.p.) 2887 mw  2878   (141) p  2948 (1,1282) 0.3  2960 (2,1512) 0.3 
 �3   SiCl2 sym. str.   376 m    379   (1000) p  364 (3,100) 0.1  365 (4,100) 0.1 
 �4   �-CH2 deform. (i.p.) 1414* mw  1410*  (115) d  1433 (3,67) 0.7  1427 (2,79) 0.7 
 �5   �-CH2 deform. 1463* w  1452*  (31) d  1472 (1,18) 0.7  1469 (0,13) 0.7 
 �6   �-CH2 wag. (i.p.) 1130 ms  1127   (66) p  1141 (16,18) 0.2  1139 (18,15) 0.1 
 �7   SiCl2 deform.   168 w    167   (44) d  165 (2,14) 0.8  164 (2,15) 0.7 
 �8   C–C sym. str.   893 m    893   (243) p  890 (16,70) 0.1  873 (5,104) 0.1 
 �9   Si–C sym. str.   824* w    826*  (54) p  817 (7,23) 0.1  783 (10,46) 0.1 
 �10  Ring deform.   601 vs    592   (51) p  583 (100,12) 0.2  585 (100,7) 0.0 

 
       

    
 

  
A2, A” �11  �-CH2 antisym. str. 

(o.p.) 
2952 ms  2952   (50) ?  3010 (4,492) 0.8  3004 (0,677) 0.8 

 �12  �-CH2 twist. (o.p.)       946 (0,0) 0.8  953 (0,0) 0.8 
 �13  �-CH2 twist. 1212* w  1211*  (41) d  1226 (0,30) 0.8  1233 (0,21) 0.8 
 �14  �-CH2 rock. (o.p.)   653* m     633 (2,0) 0.8  623 (0,0) 0.8 
 �15  SiCl2 twist   174 mw    177   (130) d  154 (0,10) 0.8  153 (0,11) 0.8 
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Table 35 
Continued 
  Calculated DFT-B3LYP 
 Reassignmentsa  Cs  C2v 
 

Description         IRb        Ramanb 
 

  Scaled   Intensity 
Dep. 
ratio 

 
Scaled  Intensity 

Dep. 
ratio 

B1, A’ �16  �-CH2 sym. str. (o.p.) 2891 mw     2947 (7,117) 0.8  2957 (10,64) 0.8 
 �17  �-CH2 deform. (o.p.) 1395 m  1385   (12) d  1419 (9,16) 0.8  1418 (12,4) 0.8 
 �18  �-CH2 wag (o.p.)       1071 (0,4) 0.8  1093 (0,0) 0.8 
 �19  �-CH2 wag 1260* vw  1248*  (11) ?  1271 (0,7) 0.8  1261 (0,14) 0.8 
 �20  C–C antisym. str.   914 m    914   (12) d  915 (4,11) 0.8  916 (4,10) 0.8 
 �21  Si–C antisym. str.   723 s    725   (123) d  704 (25,22) 0.8  702 (31,23) 0.8 
 �22  SiCl2 wag  240* mw    241*  (49) d  231 (5,1) 0.8  231 (5,11) 0.8 

 
       

    
 

  
B2, A” �23  �-CH2 antisym. str. 2972* m  2972*  (175) p?  2979 (7,516) 0.4  2980 (3,197) 0.8 
 �24  �-CH2 antisym. str. 

(i.p.) 
3002* m  2999*  (379) p  

3011 (7,431) 0.5 
 

3010 (12,277) 0.8 
 �25  SiCl2 antisym. str.   533 s    523   (71) p  509 (56,24) 0.5  517 (80,23) 0.8 
 �26  �-CH2 twist. (i.p.) 1183 w  1181   (13) p  1190 (2,11) 0.4  1181 (3,8) 0.8 
 �27  �-CH2 rock. (i.p.)   857* s    863*

  (32) p  860 (27,47) 0.1  854 (48,1) 0.8 
 �28  �-CH2 rock   696* s    693*  (18) d  687 (46,11) 0.2  705 (28,1) 0.8 
 �29  SiCl2 rock      212*  (18) d  208 (1,9) 0.7  168 (1,14) 0.8 
 �30  Ring puckering       81 (0,7) 0.7           i     

a
Reassigned frequencies are labeled with (*).  

b
Vapor-phase experiments from Ref. [39].  
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within 10 cm-1 of each other. This greatly helps in the reassignment of some of the 

vibrational modes which are coupled with other modes, especially for the less symmetric 

Cs structure. In addition, since the predicted frequencies do not vary much between the 

puckered and planar structures, the vibrational analysis can be carried out on the basis of 

the higher symmetry (C2v) for an easier comparison. 

 The calculated frequencies in the C-H stretching region for silacyclobutane and 

its dihalo derivatives were not found to have the same trend that was originally proposed 

[39]. Previously, the C-H vibrational frequencies appeared to be slightly lower for the 

difluoro and dichloro derivatives, which indicates stiffer C-H bonds and hence shorter  

C-H bond distances as compared to silacyclobutane. However, it can be seen from the 

calculated Raman spectra in Figs. 46-49 that the calculated frequencies of the C-H 

vibrations are lower for silacyclobutane than for the dihalo derivatives. 

 The strongest band in the Raman spectra for the four molecules, except for the 

difluoro derivative, was the SiX2 symmetric stretching (�12) as determined from the 

experiment and calculations. That peak intensity was set to be the maximum in the scale 

of the relative intensities, and the rest of the calculated peak intensities were readjusted 

accordingly. The depolarization ratios were also recorded and these agree very well with 

the previously determined Raman polarization spectra, which provides confidence in the 

reassignments.  

 From the calculations it can be seen that most of the original assignments were 

made correctly, especially frequencies located in the region above 1000 cm-1 and those 

related to the SiX2 stretching and bending motions. However, some of the original 
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assignments needed to be revised. Most of the reassigned frequencies are those of the 

CH2 twisting and wagging vibrations, which generally have very weak intensities in the 

infrared and Raman spectra and, as a result, had previously been hard to assign.   

 The DFT calculations predicted the frequencies of the two CH2 deformation 

motions of the A1 symmetry to be switched as compared with the original assignments 

that were based on the normal coordinate analysis for the four molecules (Tables 32-35). 

Their predicted depolarization ratios are 0.7 which agrees with the fact that these two 

vibrations are nearly depolarized in the Raman spectra�even though they belong to the 

most symmetric species. 

 Calculated frequencies of the symmetric ring stretching vibrations (�8 and �9) 

were predicted to be lower than the originally assigned experimental values. These two 

vibrations were also shown to have some contribution from the in-phase CH2 rocking 

vibration of the B2-type. In silacyclobutane, for instance, the change in frequency in the 

case of the Si-C symmetry stretching motion from 819 cm-1 for the puckered form 

(where mixing with in-phase CH2 rocking is present) to 763 cm-1 for the planar form 

demonstrates the fact that some contribution comes from the B2 species vibration (Table 

32). That observation suggested some reassignments were to be made. On the other 

hand, the antisymmetric ring stretching modes (�20 and �21) are less difficult to assign, 

since they are among the few strongly depolarized Raman in the region between 700  

cm-1 to 950 cm-1 for the four molecules. 

 The SiX2 stretching and bending vibrations and the shift in their vibrational 

frequencies calculated for the four molecules agree very well with the experiment, and 



 

 

181 

only a few reassignments were needed for such types of motions, mostly in the case of 

the dihalo derivatives as shown in Tables 34 and 35. In the case for 1,1-

dichlorosilacyclobutane, a strong coupling between the A1 symmetric SiCl2 stretch (�3) 

and the A1 ring deformation (�10) were observed and confirmed by normal coordinate 

analysis [39]. DFT calculations very interestingly reproduced that strong coupling in the 

vibrational spectra of the dichloro derivative as shown in Table 35.   

 Tables 32-35 also show that several frequencies were reassigned to different 

vibrational modes of the A2 symmetry. Being infrared active for such modes is evidence 

for the puckered structure that the four molecules have in their ground states. However, 

in the case of the 1,1-difluoro-1-silacyclobutane, it was noted from the reassignments 

that the A2 type motions are almost inactive (Table 34) as compared to the hydride, 

deuteride and dichloro derivatives. This could be evidence that the 1,1-

difluorosilacyclobutane ring is less puckered in the minimum structure of the molecule 

than silacyclobutane and 1,1-dichlorosilacyclobutane. The MP2/cc-pVTZ optimized-

structure puckering angles listed in Tables 28-30 show that the puckering angle for the 

difluoro molecule is 28.7° as compared to 34.5° and 31.1° for silacyclobutane and the 

dichloro derivative, respectively. 

 One unusual result noticed while the reassignments have been carried out was 

that the frequencies of the out-of-phase CH2 twisting (�12) and the out-of-phase CH2 

wagging (�18) from the DFT calculations are much lower as compared to the original 

assignments [39] and are much lower than where these would be normally expected 

[122]. The difficult part in experimentally determining these two A2-type vibrations is 
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that they are of the weakest intensities among the fundamentals for the four molecules. 

Several studies [123-126] have employed DFT calculations to predict the vibrational 

frequencies and to compare them with previous experimental results for some non-cyclic 

silicon-containing molecules [127,128], such as dimethylsilane [125,127], 

trimethylsilane [124,127], disilylmethane [126,128], and ethylsilane [123]. These studies 

used the calculated frequencies as supporting tools to restudy some of the unclear 

aspects in the vibrational spectra obtained years ago, but none of these studies pointed 

out specifically why such a discrepancy between the experimental and calculated 

frequencies for these CH2 out-of-plane modes would happen. Nevertheless, one 

conclusion drawn from these studies is that the effect of having silicon atoms in the 

structure of the molecule does not affect the accuracy of the vibrational frequencies 

reproduced by the DFT method. Moreover, in the case of disilylmethane (CH3SiH2CH3), 

the CH2 twisting vibration was predicted using the B3LYP/6-311G(d,p) level of theory 

[126] to be at 1043 cm-1, which is somewhat lower than what it had been assigned to 

before (1101 cm-1) [128].  

 A recent ab initio study on 1,3-disilacyclobutane [119] suggested that there is an 

electrostatic interaction between the electronegative silicon atoms and the electropositive 

hydrogen atoms of the CH2 groups. The hydrogen atoms were calculated to have a 

somewhat larger partial positive charge than normal, causing the CH2 out-of-phase 

frequencies to be shifted to lower frequencies below 1000 cm-1. This trend was noticed 

also in the case of the deuterated isotopomers [119]. In silacyclobutane, as shown in 

Table 32, the out-of-phase CH2 twisting (�12) and the out-of-phase CH2 wagging (�18) 
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frequencies were calculated to be 969 cm-1 and 1074 cm-1, respectively. In the case of 

the difluoro and dichloro derivatives (Tables 34 and 35), the frequency of the �12 mode 

was calculated to be even lower (946 cm-1). This result also supported the explanation 

[119] that the electrostatic interaction between the hydrogen atoms of the SiH2 and CH2 

groups caused that unusual shift in the CH2 bending frequencies to take place. For the 

dichloro and difluoro derivatives, the silicon atom becomes more electropositive as can 

be seen in Table 36. The reassignments for the �18 mode were made based on the 

observed Raman bands as well, since that mode is normally of a noticeable intensity in 

the Raman spectra. 

 One additional feature of the spectra of all these molecules is that they have a 

characteristic frequency near 1130 cm-1. This was recognized long ago [39] as being a 

valid identifier for the silacyclobutane ring. All the molecules in this present study 

possess this type of fingerprint band. It is confirmed from DFT results in Tables 32-35 

that it is primarily the in-phase �-CH2 wagging motion coupled to symmetric stretchings 

of the C-C and Si-C bonds. Fig. 50 shows this vibration which is very similar for each of 

these molecules. 

 

CONCLUSION 

 In this chapter detailed reassignments of silacyclobutane and three of its 

derivatives were presented. Detailed ab inito and DFT calculations of the structures, 

inversion barriers, and infrared and Raman spectra were presented. Calculated spectra of 

silacyclobutane agree very well with the experiment. The DFT method gives highly  
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Table 36 
Calculated atomic charges for silacyclobutane, 1,1-difluorosilacyclobutane, and 
1,1-dichlorosilacyclobutane from the DFT-B3LYP/cc-pVTZ level of theory

a
  

 
Silacyclobutane 

(X=H) 

1,1-Difluoro-
silacyclobutane 

(X=F) 

1,1-Dichloro-
silacyclobutane 

(X=Cl) 

Si   0.27   0.77   0.59 

Xa - 0.05 - 0.29 - 0.24 

Xb - 0.05 - 0.29 - 0.24 

C� - 0.29 - 0.32 - 0.29 

Ha
(C
�

)   0.10   0.11   0.11 

Hb
(C
�

)
   0.10   0.10   0.10 

C� -0.16 -0.17 -0.17 

Ha
(C
�

)
   0.09   0.10   0.11 

Hb
(C
�

)
   0.09   0.10   0.11 

a
See Fig. 39 for atom labels. 
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Fig. 50. Vector displacement representations of the in-phase �-CH2 wagging vibration (ν6) in silacyclobutane. 
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satisfactory results, even though it has implemented here to study the vibrational 

frequencies of highly strained four-membered ring molecules containing second-row 

elements. This has given us motivation to extend this study in the next chapter to some 

five-membered-ring silanes, namely silacyclopent-2-ene and silacyclopent-2-ene and a 

number of their derivatives.  
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CHAPTER X 

REINVESTIGATION OF THE STRUCTURE AND RING-

PUCKERING POTENTIAL ENERGY FUNCTIONS FOR 

SILACYCLOPENT-2-ENE AND RELATED MOLECULES 

 

 

INTRODUCTION 

 Laane and Lord showed in 1967 that five-membered ring molecules containing a 

double bond can be thought of as pseudo-four-membered ring molecules [10,11]. As a 

result, the ring-puckering vibration could be described with the potential function of the 

form V (cm-1) = ax4 + bx2. The quartic term in this function primarily affects the angle 

strain within the ring, while the quadratic term has contributions from both angle strain 

and torsional energy. For rings containing one or two silicon atoms, and under normal 

circumstances, the torsional interaction between the CH2 and SiH2 groups is 

considerably lower, and the ring has less inclination to be distorted from the planar form.  

 A series of ring molecules previously studied by infrared techniques include 

silacyclopent-2-ene, silacyclopent-2-ene-1,1-d2, 1,1-difluorosilacyclopent-2-ene, and 

1,1-dichlorosilacyclopenet-2-ene [40,129,130]. The far-infrared studies of silacyclopent-

2-ene concluded that it is planar and unusually rigid [40], as is its 1,1-d2 isotopomer 

[130]. The planar structure of the molecule was rationalized on the basis of an unusual 
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interaction between the d orbitals of the silicon atom and the �-electrons of the C=C 

double bond. The fact that the C=C stretching vibration in silacyclopent-2-ene shifts to a 

lower frequency was used to support that conclusion [40]. Standard MM2 calculations, 

however, predicted a double-minimum potential function characteristic of a nonplanar 

molecule [130]. 

 The availability of high-level quantum mechanical calculation methods that have 

given reliable results for silicon-containing ring molecules has motivated us to restudy 

the conformation and vibrational spectra of silacyclopent-2-ene and its 1,1-d2 

isotopomer. The structures of 1,1-difluorosilacyclopent-2-ene and 1,1-

dichlorosilacyclopent-2-ene have been also investigated. The results of this work are 

presented in this chapter. 

 

COMPUTATIONS 

 Ab initio second-order Møller-Plesset (MP2) and coupled cluster theory with 

single and double excitation (CCSD) calculations using the Gaussian 03 program [67] 

were employed to study the structure of silacyclopent-2-ene in its planar and nonplanar 

forms. The structures of the difluoro and dichloro derivatives were optimized at the MP2 

level, and their frequencies were calculated. The vibrational frequencies of the four 

molecules were computed using density functional theory (DFT) with the B3LYP hybrid 

functional using different basis sets. Because changing the basis sets used for the DFT 

treatments produced different results for the stable configurations of silacyclopent-2-ene, 

the 6-311++G(d,p) basis set, which predicted a slightly puckered structure for 
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silacyclopent-2-ene, was used to calculate the vibrational frequencies for the difluoro 

and dichloro derivatives. 

 New kinetic energy expressions for the 2-ene and its 1,1-d2 isotopomer were 

calculated based on the optimized structure of the planar conformation determined from 

the CCSD/6-311++G(d,p) calculation. A program previously described [53] was used to 

generate the kinetic energy terms. These were then used to obtain the revised potential 

energy functions in terms of the ring-puckering coordinates for the two molecules.  

 

RESULTS AND DISCUSSION 

 Previously, the observed far-infrared ring-puckering spectra of silacyclopent-2-

ene were analyzed in terms of a rigid potential energy function characteristic of a planar 

molecule [40]. In the work presented here the MP2 theory using different basis sets was 

utilized to locate the stable conformation of silacyclopent-2-ene and the results are 

shown in Table 37. Smaller basis sets, which lack the diffuse and polarization functions, 

predicted the molecule to be totally planar. A barrier of about 50 cm-1, however, was 

predicted when larger basis sets were used. On the other hand, the triple-zeta basis set 

when employed with the DFT calculations predicted a planar structure for silacyclopent-

2-ene (Table 37). Thus, a higher level of quantum mechanical computation was needed 

to verify the nonplanar configuration of the molecule that was determined by the MP2 

calculations.  

 The CCSD/6-311++G(d,p) calculations, which should in principle give more 

reliable results, confirmed that silacyclopent-2-ene is nonplanar with a puckering angle
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Table 37 
Calculated energies, barriers, and puckering frequencies for silacyclopent-2-ene and its 1,1-d2 isotopomer

a
 using different 

levels of theories 

Total energies (Hartree)  

Theory Puckered Planar  

Puckering 
angle 
(deg.) 

Puckering 
frequencyb  

(cm-1) 
Barrier 
(cm-1) 

MP2/3-21G      0º     9    ---- 
MP2/6-31G      0º   27    ---- 
MP2/6-31+G(d) -445.6285629 -445.6282456  19º   99    70 
MP2/6-311++G(d,p) -445.7689100 -445.7685439  20º 102    80 
MP2/cc-pVTZ -445.8977514 -445.8975197  18º   91    51 
CCSD/6-311++G(d,p) -445.8251234 -445.8249104  17º         ----    47 
        

DFT-B3LYP/3-21G      0º 47    ---- 
DFT-B3LYP/6-31G      0º 53    ---- 
DFT-B3LYP/6-31+G(d) -446.7245222 -446.7245127    8.8º 45 (46)      2.1 
DFT-B3LYP/6-311++G(d,p) -446.7880437 -446.7880384    7.6º 38 (36)      1.2 
DFT-B3LYP/cc-pVTZ      0º 19 (17)      ---- 
DFT-B3LYP/6-311++G(3d2f,2pd)         0º 13      ---- 
       

Experimental
c
        13º± 1º  59 (52)   26 (31) 

a
Values in parentheses are for the 1,1-d2 isotopomer. 

b
Scaling factors of 0.985 and 0.920 used to scale the frequencies obtained from DFT-B3LYP and MP2 calculations, respectively. 

c
As determined from this work.
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of 17° and an inversion barrier of 47 cm-1. Fig. 51 shows the optimized structure of 

silacyclopent-2-ene from the coupled cluster theory. Table 37 also shows the calculated 

isotope shift for the 1,1-d2 molecule from the DFT calculations. 

 

REASSIGNMENTS OF THE FAR-INFARED SPECTRA 

 The ab initio results showed the need to reassign the far-infrared spectra of 

silacyclopent-2-ene and its 1,1-d2 isotopomer. In addition, the kinetic energy terms have 

also been calculated from coupled cluster calculations. The ring-puckering coordinate-

dependent kinetic energy calculated for silacyclopent-2-ene with the rocking parameter 

R=0 is 

)x(2H
44g  =  0.0069801 – 0.0168419 x2 – 0.0646870 x4 + 0.2331390 x6    (38) 

and for silacyclopent-2-ene-1,1-d2 with R=0 is 

)x(2D
44g  =  0.0061189 – 0.0118251 x2 – 0.0582123 x4 + 0.1487240 x6 ,    (39) 

where x is the ring-puckering coordinate. Reassignments of the ring-puckering far-

infrared spectra for silacyclopent-2-ene and its isotopomer were made and are listed in 

Table 38. Two possible calculations for the ring-puckering potential energy functions 

have been proposed. With these calculations, some of the far-infrared lines that were not 

fully interpreted in the previous work could be explained [40,130]. These calculations 

also accounted for the puckered structure of the two molecules. In Calculation I, a line of 

a moderate intensity at 107 cm-1, which was not reported in the previous far-infrared 

experiment [40], was assigned to the 1-2 transition. The next lines were then assigned to 

higher transitions. Table 38 also shows another set of assignments based  on  Calculation   
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Fig. 51. Structure of silacyclopent-2-ene optimized from the coupled cluster theory with 

single and double excitation calculations (CCSD) using the 6-311++G(d,p) basis 
set. 
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Table 38 
Reassignments of the ring-puckering frequencies (cm-1) for silacyclopent-2-ene and 
silacyclopent-2-ene-1,1-d2 

 Silacyclopent-2-ene  Silacyclopent-2-ene-1,1-d2 

 Frequency  Relative 
intensity  Frequency  Relative 

intensity 

Transition Obs.   Calc.    �
a Obs. Calc.      Obs. Calc. �

a Obs. Calc. 

Calculation I 
0–1    59.4   ---   0.4    52.3   ---     0.4 

1–2   107.0
b
 107.1 - 0.1         1.0  100.4   ---     0.9 

2–3   123.7 124.4 - 0.7      1.0       1.0 116.7 116.2    0.5     0.9    1.0 
3–4   139.3 140.9 - 1.6      0.9  0.8 131.2 132.3 - 1.1     1.0    0.8 
4–5   155.6 154.2   1.4      0.8  0.5 145.9 145.2    0.7     1.0    0.6 
5–6   167.6 165.7   1.9      0.7  0.3 156.8 156.2    0.6     0.8    0.4 
6–7   177.4 175.8   1.4      0.5  0.2 165.0 166.0 - 1.0     0.7    0.2 
7–8   184.9 184.9   0.0      0.4  0.1 172.9 174.8 - 1.9     0.6    0.1 
8–9   192.1 193.1 - 1.0      0.2  0.04 184.9 182.8    2.1    0.1 
9–10   199.2 200.8 - 1.6      0.1  0.02  190.2      0.02 

Barrier (cm-1) 26   31   

Calculation II 
0–1    60.0   ---  0.4    57.1  ---  0.4 
1–2   123.7 122.4   1.3      1.0      1.0 116.7 115.2 1.5     0.9 1.0 
2–3   139.3 140.6 -1.3      0.9 0.9 131.2 132.6 -1.4     1.0 1.0 
3–4   155.6 160.9 -5.3      0.8 0.7 145.9 151.6 -5.7     1.0 0.7 
4–5   167.6 176.7 -9.1      0.7 0.4 156.8 166.6 -9.8     0.8 0.5 
5–6   177.4 190.4 -13.0      0.5 0.3 165.0 179.5 -14.5     0.7 0.3 

0–2   183.0
c
   182.4 0.6 0.3 0.2 172.9 172.3 0.6  0.2 

Barrier (cm-1) 46     36    

a
� = obs. – calc. 

b
Not reported in Ref. [40]. 

c
Not assigned in Ref. [40]. 
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II. In the latter calculation the 123.7 cm-1 line of the d0 and the 116.2 cm-1 line of the d2 

molecules were reassigned to the 1-2 transition. Both sets of new assignments are based 

on the assumption that a weak lower frequency band was previously not observed. That 

would not be surprising since the sample studies contained some of the silacyclopent-3-

ene isomer which has a series of bands at lower frequencies. 

 The reassigned puckering-vibration transitions based on calculation I for the d0 

molecule can be fitted with a double-minimum potential function given by 

2HV (cm-1) = 27.74×105x4 – 16.91×103x2 (40) 

where x is in Å. Similarly, for the d2 isotopomer, the new potential function in terms of 

puckering coordinate becomes 

2DV (cm-1) = 28.82×105x4 – 18.91×103x2 (41) 

 The fits of the ring-puckering vibrational levels are shown in Figs. 52 and 53. As 

can be seen from Table 32, the agreement between the experimental and calculated 

puckering transitions is fairly satisfactory for Calculation I, considering the asymmetric 

structure of the molecule. The barriers to planarity for the d0 and d2 molecules were 

determined from Eqs. (40) and (41) to be 26 cm-1 for the former and 31 cm-1 for the 

latter. The slightly higher barrier in the case of the d2 molecule could be a result of a 

different amount of coupling between the low-lying vibrational modes. 

 Calculation II was also used to fit the lowest few transitions of the puckering 

vibration in the two molecules with the potential energy functions 
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Fig. 52. Ring-puckering potential energy function of silacyclopent-2-ene from 
Calculation I. 
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Fig. 53. Ring-puckering potential energy function of silacyclopent-2-ene-1,1-d2 
from Calculation I. 
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2HV (cm-1) = 48.76×105x4 – 29.97×103x2 (42) 

for the hydride molecule and  

2DV (cm-1) = 49.47×105x4 – 26.56×103x2 (43) 

for the deuteride molecule. From these assignments the barriers were determined to be 

46 cm-1 for the d0 and 36 cm-1 for the d2 molecules, while the  puckering  frequency  was 

calculated to be 60 cm-1 for the former and 57 cm-1 for the latter.  

 The CCSD/6-311++G(d,p) calculations predicted a barrier of 47 cm-1 for 

silacyclopent-2-ene. Generally, for molecules with very low barriers, such as 

silacyclopent-2-ene, the barriers to planarity predicted by ab initio calculations, even 

with high-level ones, tend to deviate more from the experimental values. The puckering 

frequencies determined from the new fits are in reasonably good agreement with the 

values from DFT calculations (45 cm-1 for the d0 and 46 cm-1 for the d2 molecules) with 

the 6-31+G(d) basis set.  

 Table 39 shows that DFT calculations using different basis sets predict planar 

structures for 1,1-difluoro- and 1,1-dichlorosilacyclopent-2-ene. The MP2 theory with 

the triple-
 basis set, however, predicts the dichloro derivative to be slightly puckered 

with a low barrier (16 cm-1) and predicts the difluoro to be planar. The calculated ground 

state structures of the dihalo derivatives were confirmed by calculating their vibrational 

frequencies. 

 

VIBRATIONAL FREQUENCIES 

 Table 40 lists the selected vibrational frequencies from the B3LYP/6-311++(d,p) 
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Table 39  
Calculated barriers and puckering frequencies

a
 (cm-1) of 1,1-difluoro- and 1,1-

dichlorosilacyclopent-2-ene 

1,1-Difluoro- 
silacyclopent-2-ene  1,1-Dichloro- 

silacyclopent-2-ene 

  
Puckering 

angle 
Puckering 
frequency   Barrier 

Puckering 
angle 

Puckering 
frequency Barrier 

MP2/cc-pVTZ 0º   13 0º   16º  13 
        

DFT-B3LYP/6-31+G(d) 0º   57 0º     0º 20   0 

DFT-B3LYP/6-311++G(d,p) 0º   56 0º     0º 20   0 

DFT-B3LYP/cc-pVTZ 0º   57 0º     0º     31   0 
a
Scaled frequencies. 
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Table 40  
Assignments of some characteristic frequencies

a,b
 in the mid-infrared spectra of silacyclopent-2-ene and its   

1,1-difluoro and 1,1-dichloro derivatives 

       

SiH2

 

 

         

SiF2

 

 

            

SiCl2

 

 

 Exp.  calc.  exp.  calc.  exp.  calc. Assignments 

2990 2993 (16) 3020 3005 (16) 3020 3006 (15) CH str.  

2900 2892 (22) 2940 2905 (17) 2930 2905 (19) CH2 sym. str. 

1560 1595 (17) 1570 1590 (30) 1560 1592 (26) C=C str. 

1440 1461 (6) 1440 1457 (15) 1440 1456 (11) CH2 def. 

1320 1324 (4) 1320 1331 (19) 1320 1324 (8) CH wag (o.p.) 

1140 1162 (8) 1160 1169 (25) 1150 1169 (15) CH2 wag 

1100 1108 (2) 1100 1111 (8) 1100 1108 (1) CH wag (i.p.) 

  990   971 (65)     SiH2 rock 

  990   983 (16) 990   983 (10) Ring mode 

  870   868 (47) 840   858 (100) 830   821 (29) Ring mode 

  700   715 (34) 710   687 (10) 760   732 (40) Ring mode 
a
Experimental frequencies are within ±5 cm-1 uncertainty taken from Refs. [129,131]. Calculated frequencies were computed at the 
B3LYP/6-311++G(d,p) level of theory and were scaled.  

b
Numbers in parentheses are calculated infrared intensities relative to the intensities of the strongest infrared band for each molecule. 
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calculations and compares them with corresponding experimental ones for silacyclopent-

2-ene and its difluoro and dichloro derivatives. Approximate vibrational assignments 

were made for these frequencies. The observed shifts in the frequency of the C=C 

stretching vibration were reproduced by DFT calculations with fair agreement.  

 

SILACYCLOPENT-3-ENES 

 The structures and vibrational spectra of silacyclopent-3-ene, as well as its 

deuterated, difluoro, and dichloro derivatives, were previously investigated. The one-

dimensional potential energy function [132] which was refined a few years later with a 

two-dimensional analysis [133] and vibrational infrared and Raman spectra [134] were 

reported. These studies showed that silacyclopent-3-ene, silacyclopent-3-ene-1,1-d2, 1,1-

difluorosilacyclopent-3-ene, and 1,1-dichlorosilacyclopent-3-ene are planar with the four 

carbon atoms and the silicon atom lying in the plane of the ring. Such a structure is 

unusual for a five-membered ring because the CH2-SiH2 torsional interactions can be 

expected to distort the ring structure from planarity. Silacyclopent-3-ene in its lowest 

energy structure was confirmed from far-infrared analyses [132,133] to possess the 

planar C2v symmetry. In the present study, preliminary ab initio results for this molecule 

as well as the silacyclopent-3-ene-1,1-d2, 1,1-difluorosilacyclopent-3-ene, and 1,1-

dichloro-silacyclopent-3-ene molecules will be presented. 

 The Gaussian 03 program [67] was used to carry out different levels of 

calculations on silacyclopent-3-ene and its derivatives. Density functional calculations 

(DFT-B3LYP) with the use of different basis sets predicted silacyclopent-3-ene to be 
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planar, as shown in Table 41. When second-order Møller-Plesset calculations were used 

with 6-311++G(d,p) and cc-pVTZ basis sets, the molecule came out to be slightly 

nonplanar with a very low barrier of 3 to 5 cm-1 (Table 41). When employing a more 

accurate quantum treatment, which is in this case the coupled cluster theory, the 

molecule was optimized at minima to be planar, in agreement with the experimental 

results. This demonstrates that for molecules where more than one type of intramolecular 

forces is affecting the structures, a higher level calculation is strongly recommended in 

order to attain more reliable results. For more details, the calculated structures from 

CCSD/6-311++G(d,p)  and MP2/cc-pVTZ calculations are shown in Fig. 54.  

 Triple-zeta calculations of the DFT were used to compute the vibrational 

frequencies for the four molecules in their planar structures. The detailed vibrational 

reassignments of the infrared and Raman spectra based on the calculated DFT 

frequencies, intensities and depolarization ratios, are to be carried out in the future. For 

the time being, however, the calculated vibrational frequencies of CH2 bending modes 

for different silicon-containing cyclic rings, and for cyclobutane and cyclopentene as 

well, are presented in Table 42. The table shows that a decrease in the frequencies for 

these bending vibrations is proportional to the number of silicon atoms in the ring. In the 

case of silacyclopent-2-ene, the frequencies of the bending vibrations of the CH2 group 

next to the SiH2 group are expected from DFT calculations to differ more as compared to 

those of the bending vibrations of the other CH2 group. The results shown above 

correlate between the presence of silicon atoms in the ring and the shifts in these  
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Table 41  
Calculated energies, barriers, and puckering frequencies for silacyclopent-3-ene from 
different levels of theories 

  

Puckering 
angle 

Puckering 
frequencya   

(cm-1) 
Barrier 
(cm-1) 

MP2/3-21G 0.0º   73 0.0 
MP2/6-31G 0.0º   78 0.0 
MP2/6-31+G(d) 9.8º   38 2.9 
MP2/6-311++G(d,p) 11.1º   45 3.0 
MP2/cc-pVTZ 11.7º   41 5.0 
CCSD/6-311++G(d,p) 0.0º  0.0 
     

DFT-B3LYP/3-21G 0.0º 86 0.0 
DFT-B3LYP/6-31G 0.0º 95 0.0 
DFT-B3LYP/6-31+G(d) 0.0º 67 0.0 
DFT-B3LYP/6-311++G(d,p) 0.0º 60 0.0 
DFT-B3LYP/cc-pVTZ 0.0º 61 0.0 
DFT-B3LYP/6-311++G(3d2f,2pd) 0.0º 52 0.0 

a
Scaled with scaling factors of 0.985 and 0.920 for the DFT-B3LYP and MP2 puckering frequencies,  

  respectively. 
 



 

 

203 

 
 

 

Si

H

H

HH

HH

H

H

1.902

1.522

1.346

1.098

1.481

1.090

119.2
o

121.1
o

102.7
o

112.9
o

106.7
o

96.2
o

113.1
o

108.2
o

(1.898)

(1.342)

(1.510)

(1.083)

(1.090)

(1.092)

(1.483)(1.482)

(96.2 )
o

(108.2 )
o

(111.9 )
o

(113.2 )
o

(111.8 )
o(106.7 )

o

(119.4 )
o

(120.5 )
o

 

 
 
Fig. 54. Structure of silacyclopent-3-ene calculated at CCSD/6-

311++G(d,p) and MP2/cc-pVTZ (in parentheses) levels 
of theory. 
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Table 42 
Vibrational frequencies (cm-1) for the CH2 ring bending motions as determined from the DFT-B3LYP/cc-pVTZ level of theory 
in different cyclic silanes and in cyclobutane and cyclopentene 

Vibrational Mode  
Si

  

Si

 

Si
*

**

 Si

Si

 

SiSi

 

CH2 deformation (i.p.) 1501, 1472 1443 1459 1430 1463 1393 

CH2 deformation (o.p.) 1463 (E) 1426 1463 1431 1437 1379 1394 

CH2 wag (i.p.) 1270 (E) 1141 1303 1224 1313**   964 

CH2 wag (o.p.) 1245, 1152 1074 1296 1187 1160*   924 1013 

CH2 twist (i.p.) 1230 (E) 1202 1209 1123 1235   978 

CH2 twist (o.p.) 1240, 950   969 1287 1122 1132   967 978 

CH2 rock (i.p.) 1161, 630   908 1052   845   909**   788 

CH2 rock (o.p.)   744 (E)   737   875   833   779*   464 
752 
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frequencies. This supports the conclusion that electrostatic interactions play a major role 

for these shifts. Quantitatively, Fig. 55 compares the calculated atomic charges for these 

molecules to the molecules that do not contain silicon atoms. The difference in the 

magnitudes of charges on the hydrogen atoms of the CH2 groups involved in these 

bending vibrations can be seen. 

 

CONCLUSION 

 By utilizing high-level ab initio computations and reinvestigating the far-infrared 

spectra of silacyclopent-2-ene, the molecule was shown to be slightly puckered (17° 

from ab initio results) with a small barrier (26 cm-1 from Calculation I and 46 cm-1 from 

calculation II compared to 47 cm-1 from ab initio results). Reassignments were also 

made on the far-infrared spectra of the 1,1-d2 isotopomer. Recalculated kinetic energy 

expressions were utilized in this work. For silacyclopent-3-ene, CCSD calculations 

confirmed the planar conformation of the molecule in agreement with the experiment. 

The vibrational frequencies of the 2-ene and 3-ene and their derivatives as well were 

calculated and some of them were presented. A consistent trend in the frequency shift for 

the CH2 bending vibrations was predicted from the calculated harmonic frequencies 

using the DFT-B3LYP theory. It was shown that the inclusion of silicon atoms in the 

cyclobutane and cyclopentene rings greatly affects the frequencies of these vibrations. 
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Fig. 55. Calculated atomic charges (MP2/cc-pVTZ) for some cyclic molecules.
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Fig. 55. Continued.
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CHAPTER XI 

CONCLUSION 

 

 

 In this dissertation, several spectroscopic techniques and ab initio calculations 

were used to investigate the conformational properties and vibrational spectra of several 

cyclic and bicyclic molecules. 2-Indanol in its most stable form is stabilized by internal 

hydrogen bonding which exists between the alcoholic hydrogen atom and the electron �-

cloud of the benzene ring.  A comprehensive ab initio calculation using the MP2/cc-

pVTZ level of theory showed that 2-indanol can exist in four possible conformations, 

which can interchange through the ring-puckering vibration and the internal rotation of 

the OH group on the five-membered ring. A potential energy surface in terms of these 

two vibrational coordinates was calculated from the MP2 results. Density functional 

theory calculations were used to predict the vibrational frequencies and to help in normal 

mode assignments.  

 Fluorescence excitation spectra of 2-indanol confirmed the presence of the four 

conformers in the electronic ground and excited states. Several assignments of the low-

frequency ring vibrations in the electronic ground (S0) and excited (S1) states were 

presented. For the conformer with the intramolecular hydrogen bonding, the 0
00  origin 

was detected at 37008 cm-1 and the puckering frequencies at 92 cm-1 for the S0 state and  
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79.7 cm-1 for the S1 state. For the next stable conformer with no hydrogen bonding, the 

0
00  band was observed at 36937 cm-1 and the puckering frequencies at 86 cm-1 for the S0 

state and 77.0 cm-1 for the S1 state. In general the puckering frequencies for the four 

isomers were shown from experiment and ab initio calculations to be within 7 cm-1 from 

each other in each electronic state. The spectral intensities indicate that 82% of the 

molecules exist in the most stable form with the intramolecular hydrogen bonding.  The 

other isomers are present at approximately 11, 5, and 3%. The MP2/6-311++G(d,p) 

calculation predicts a distribution of 70, 13, 9, and 8% at 90°C which is the experimental 

sample temperature. 

 3-Cyclopenten-1-ol also undergoes intramolecular hydrogen bonding and exists 

in four possible conformations. Ab initio calculations showed that the conformation with 

the intramolecular molecular hydrogen bonding with the C=C double bonds is 693 cm-1 

below the planar conformation. A two-dimensional potential energy surface in terms of 

the ring-puckering angle and the hydroxyl group internal rotation angle was constructed 

by utilizing the MP2/6-31+G(d,p) level of theory. DFT calculated frequencies were 

obtained for the four conformers and predicted two bands in the OH spectral region that 

are approximately 25 cm-1 apart, in very good agreement with the previously reported 

experimental infrared spectra. In addition, DFT calculations predicted that the puckering 

frequencies of the four conformers of 3-cyclopenten-1-ol are spread over a broad far-

infrared region (70 cm-1 – 120 cm-1), in contrast with the experimental values determined 

for 2-indanol. These theoretical calculations should provide a good basis for future 

experimental investigations on this molecule. 
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 Infrared and Raman spectra were also collected for �-crotonolactone. Ab initio 

calculations and vibrational assignments of the vapor-phase Raman spectra concluded 

that the molecule is rigidly planar in the electronic ground state. This conclusion agrees 

with the previously reported microwave studies and is attributed to the conjugation 

between the C=C and C=O double bonds of the ring. The potential energy function in 

terms of the puckering coordinate (x) was predicted from ab initio calculations to be 

nearly harmonic and is given by 

V(cm-1) = 10.08×104 x2 + 45.90×104 x4 .    (44) 

The vibrational levels associated with this potential function were computed using the 

kinetic energy expression 

g
44(x) =  0.00473872 – 0.0394847 x2 + 0.114150 x4 – 0.198735 x6    (45) 

and they are in very good agreement with the experimental value of 208 cm-1. The 

harmonic frequency from DFT calculations is 203 cm-1.  

 The vapor-phase Raman spectra were recorded for 2,3-cyclopentenopyridine 

(known as pyrindan). Even though the sample gave very weak Raman spectra, detailed 

vibrational analysis was carried out based on the infrared, and Raman (including 

polarization), with the help of DFT-B3LYP calculated frequencies for the C1 puckered 

and Cs planar conformations. The calculated structure of pyrindan in the electronic 

ground state shows little difference from that of indan. The theoretically determined 

ring-puckering potential energy function from the MP2/cc-pVTZ calculation predicted a 

barrier of 587 cm-1 and a puckering angle of 32° as compared to a 488 cm-1 barrier and a 

30° puckering angle for indan. The puckering frequency for pyrindan was calculated 
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using the B3LYP hybrid functional to be 139 cm-1, and this is very close to the 

experimental value for indan (143 cm-1). 

 In addition, detailed ab initio and DFT calculations were carried out for several 

molecules whose structures and vibrational spectra were previously characterized. Thus 

several cyclopentenes, silacyclobutanes, and silacyclopent-2-enes were reinvestigated. 

The results indicated a need for several revisions of the vibrational assignments for these 

molecules. In almost all the cases considered in this work, DFT calculations, when the 

B3LYP hybrid functional is utilized with either the cc-pVTZ or 6-311++G(d,p) basis 

sets, very reliably reproduced the observed vibrational infrared and Raman spectra. Also, 

the MP2 calculations, and the CCSD calculations for the more complicated cases, 

resulted in conformational and structural conclusions that agree very well with the 

previously reported experimental conclusions.  

 Ab initio calculations using the MP2/cc-pVTZ basis set do an excellent job of 

predicting the inversion barrier (247 vs. 232 cm-1) and dihedral angle (26°) of 

cyclopentene. DFT calculations also do an excellent job of predicting the vibrational 

frequencies of the d0, d1, d4, and d8 isotopomers. These computations have also allowed 

the reassignments of several of the vibrational frequencies. The calculations showed that 

the vibrational assignments for the d4 and d8 isotopomers are not straightforward, and 

strong interactions in their vibrational spectra have to be taken into account. The ring 

puckering frequencies of d0, d1, d4, and d8 isotopomers were predicted form the 

B3LYP/cc-pVTZ calculations to be 133, 131, 122, and 105 cm-1, respectively. The 

corresponding experimental values are 127, 126, 120, and 108 cm-1. 
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 The presence of the silicon and chlorine atoms in small, highly strained rings, 

such as silacyclobutane and its derivatives, did not prevent the DFT calculations from 

providing excellent agreement with experiments. Changing the basis sets utilized to run 

the MP2 calculations of the ring-puckering potential energy function for silacyclobutane 

resulted in a noticeable difference in the inversion barriers and puckering angles (from a 

489 cm-1 barrier and 30° puckering angle for the 6-31G basis set to a 762 cm-1 barrier 

and 34° puckering angle for the 6-311++G(d,p) basis set). The calculated frequencies 

from DFT showed that frequency adjustments of about 300 cm-1 in magnitude were 

needed for some previous CH2 bending vibrations. Similar reassignments were also 

noted from the DFT frequencies for other silicon-containing four- and five-membered 

rings as compared to cyclobutane and cyclopentene. The electrostatic charges on the 

hydrogen atoms of these CH2 groups and those of the SiH2 groups account for that 

considerable decrease in the calculated vibrational frequencies. 

 High-level ab initio calculations showed that silacyclopente-2-ene is slightly 

puckered with a small barrier to interconversion. The molecule was thought from 

previous far-infrared studies to be rigid and planar. These results have shown the need 

for reinvestigating the far-infrared spectra of silacyclpent-2-ene and its -1,1-d2 

isotopomer. Using existing data, two possible ring-puckering potential energy functions 

with small barriers were proposed. The revised potential functions for the two molecules 

(Calculation I) are 

2HV (cm-1) = 48.76×105x4 – 29.97×103x2 (46) 

and  
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2DV (cm-1) = 49.47×105x4 – 26.56×103x2 (47) 

where x is the ring-puckering coordinate. The transition frequencies of the ring-

puckering vibration for the two molecules fit very well with the two potential functions 

shown above. The barrier and puckering angle of silacyclopent-2-ene from Eq. (46) are 

26 cm-1 and 13°. The ab initio barrier and puckering angle for silacyclopent-2-ene as 

determined from coupled cluster calculations were 47 cm-1 and 17°, respectively. 
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