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ABSTRACT 

Statistical models of energy use in commercial buildings set to identify a model based on the least-squares 
are being increasingly used not only for predicting retrofit principle. The MRA method is relatively simple to 
savings but also for identifying improper operation of understand, easy to implement and quite effective for 
HV AC systems. The conventional approach involves many purposes. However, with intercorrelated regressor 
using multiple regression analysis to identify these parameters, model stability and positive identifIcation of 
models. However, such models tend to suffer from the importance of individual predictors become uncertain. 
physically unreasonable regression coefficients and A technique in statistics which has the potential to 
instability due to the fact that the predictor variables (i.e., overcome these difficulties is Principal Component 
climatic parameters, building internal loads, etc.) are Analysis (PCA). Only recently has PCA been applied to 
intercorrelated. A relatively new approach proposed to whole-building electricity consumption for a grocery store 
circumvent these drawbacks is principal component (Ruch et al., 1990). 
analysis. The objective of this paper is to evaluate the 
multivariate regression and the principal component The main objective of this study is to evaluate and assess 
analysis approaches, using measured whole-building the scope and benefits of adopting PCA vs. MRA using 
energy use data from a large commercial building in measured data from a large commercial building in central 
central Texas. For the types of correlation strengths Texas. Other issues concerning the validity of linear 
among the regressor variables present in our data, we find models of whole-building energy use in commercial 
that there does not seem to be much justification in buildings are explored with data generated synthetically 
selecting the principal component analysis approach. A by a detailed simulation code. 
more careful and elaborate investigation using data sets 
which exhibit a wide range of multicollinearity strengths 
is required in order to ascertain when principal component 
analysis yields predictive models superior to those of a 
multiple regression approach. MATHEMATICAL BACKGROUND 

INTRODUCTION In this section, the mathematical fundamentals of both the 
MRA and PCA approaches will be briefly described. 

The statistical modeling approach for predicting energy 
consumption in commercial buildings has been studied I. MRA Approach 
and used in recent years both for estimating retrofit 
savings and for identifying improper HV AC operation The regular linear MRA model can be expressed as 
(e.g., Haberl and Claridge, 1987, Claridge et al., 1990, (Draper and Smith, 1981): 
Kissock et al., 1992). Conventionally, simple or multiple 
linear regression analysis (MRA)* is applied to the data 

* Many commercial buildings exhibit change point where 
behavior, i.e., a segmented linear model is more 
appropriate than a linear model (Ruch and Claridge, y - dependent or response variable, (e.g., whole­
1991). We shall, however, not address such models in building electricity use, or hot water consumption 
this paper given the preliminary nature of this study. or chilled water consumption), 
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x I ,x2, ... , xn - regressor variables (e.g., ambient 
dry-bulb temperature, humidity, solar radiation, 
internal loads of the building) 

ao,a I, ... an - regression coefficients. 

The following statistical indices are often used to evaluate 
an MRA model (Draper and Smith, 1981): 

(I) Coefficient of determination of the model 
(R square) which is a measure of goodness-of-fit 
of the model to the data; 

(2) Root Mean Square Error (RMSE) which is a 
measure of the mean difference between the model 
and the data; 

(3) Coefficient of Variance (CV) which is the 
normalized RMSE i.e., the RMSE divided by the 
mean value of the dependent variable; 

(4) Standard error. 

MRA is a standard feature in many computer packages 
(for example, SAS 1989) where the above indices and 
others are calculated. Basic MRA without all the detailed 
error diagnostics and statistical indices (except R square) 
can even be done with most spreadsheet programs using 
micro-computers. 

Classical regression analysis assumes the regressor 
variables to be independent of one another. However, 
this is not the case in many physical problems. 
Multicollinearity between response variables results in 
large uncertainty bounds for the regression coefficients 
and also in model uncertainty - which is especially crucial 
when a model identified from a certain data set is used to 
predict future values. 

2. PCA Approach 

The PCA method is a classical multi-variate technique 
which originated with Pearson in 1901 as a means of 
fitting planes by orthogonal least squares. It was later 
used by Hotelling in 1933 for the purpose of analyzing 
covariance and correlation structuring. Since then it has 
become increasingly popular in multi-variate statistical 
theory and can be used to overcome multicollinearity 
effects. In essence, PCA (see any appropriate textbook, 
for example Jolliffer, 1986; Van Rijckevorsel and de 
Leeuw, 1988; FlUry, 1988; Jackson, 1991; Daultrey, 
1976) is a statistical technique useful for describing and 
summarizing data. It takes a group of "n" variables and 
re-expresses them as another set of "n" indices, each of 
which represents a linear combination of the original 
variables. These indices, known as principle components 

(PCs) have several useful properties; they are uncorrelated 
with one another and they are ordered so that the first PC 
explains the largest proportion of the variation of the 
original data, the second PC explains the next largest 
proportion and so on. When the original variables are 
highly correlated, the variance of many of the later PCs 
will be so small that they can be ignored. In our particular 
problem, the advantage of resorting to PCA is not so 
much in its ability to summarize data but rather in being 
able to remove the multicollinearity effects in the 
regressor variables (via the PCs) il.ill!. order them. 

The technique adopted by Ruch et. al (1990) for modeling 
daily whole-building electricity use data was (I) to 
identify the most influential PCs as explained above, 
(2) perform multiple regression of electricity use versus 
these influential PCs, and (3) transform the regression 
coefficients and the influential PCs back in terms of the 
physical regressor variables. Details of this technique 
applied to energy data from buildings, including a detailed 
numerical example, are given in Chen (1991). It is 
obvious that the PCA approach is more demanding in 
time, effort and statistical understanding than the MRA 
technique. Whether these can be justified by increased 
robustness of the models identified for applications 
involving building energy use remains uncertain--an issue 
which this study strives to address. 

The mathematical treatment of PCA is based on 
characteristic roots and vectors of positive definite 
symmetric matrices. PCA regression involves the 
following statistical measures: (a) simple statistics for the 
parameters in the models: mean values and standard 
deviation; (b) a correlation matrix for all parameters in 
the models; (c) eigenvalues of the correlation matrix for 
every principal component: eigenvalues, their differences, 
proportions and cumulatives; (d) eigenvectors showing the 
relationship between principal components and every 
parameter in the model; (e) analysis of variance, R 
square, adjusted R square, root mean square error RMSE, 
coefficient of variance CV; and, (f) parameter estimates 
and probabilities for every parameter in the models and 
for every principal component. 

DESCRIPTION OF THE ENGINEERING CENTER 

The Engineering Center is a 324,400 square foot 
(30,138 m2) building which houses offices, classrooms, 
laboratories and a large central computer facility. It was 
built in early the 1970s and is located on the Texas A&M 
University campus. It is a 4-story rectangular structure 
(plus an unconditioned basement floor) with the long axis 
along the N-E to S-W direction. One of the 
distinguishing features of the building is a large 
centralized, three-story atrium that provides access to the 

156 

ESL-HH-92-05-24

Proceedings of the Eighth Symposium on Improving Building Systems in Hot and Humid Climates, Dallas, TX, May 13-14, 1992 



surrounding classrooms and offices. Approximately 10% 
of the surface is glazed, so solar radiation is not a major 
source of heat load. 

The Engineering Center classrooms and labs are scheduled 
from 7:30 a.m. to 6:30 p.m. weekdays, but labs are in 
use continuously. Chilled water, hot water and electricity 
are provided from the physical plant via an underground 
tunnel. 

There were 12 identical CA V systems with 40 HP fans 
rated at 35,000 cfm and 8 smaller ai r hand lers (27 HP 
average) located around the perimeter of the building 
during the time that the data analyzed in this paper were 
taken. The air intakes provide about 10% outdoor air 
when fully open. 

The Engineering Center has been extensively retrofitted as 
part of the LoanSTAR program (Verdict et aI., 1990). 
Whole-building energy use as well as sub-metered data 
and several climatic parameters are monitored hourly. 
The energy use and the system behavior of this building 
have been extensively reported elsewhere (Bronson et aI., 
1992; Katipamula and Claridge, 1992). In this study, we 
shall limit our investigation to daily data from the period, 
September 1988 to February 1990 - a period of about six 
months for which clean data are available. 

IDENTIFICATION OF IMPORTANT
 
REGRESSOR VARIABLES
 

There are several factors which affect the air-conditioning 
energy consumption of commercial buildings. Essentially, 
they can be divided into two kind of parameters: weather 
dependent and weather independent. 

Primary weather dependent factors include: (l) ambient 
temperature T; (2) relative humidity RH (alternatively, 
the wet-bulb temperature or the specific humidity SPH); 
(3) air pressure P; (4) enthalpy ENTH which can be 
computed if T and RH are known (Zaikong et al., 1985); 
(5) solar radiation SOL; and, (6) wind speed WIND. 

Weather independent variables include: (l) time 
schedules: regular (weekdays, weekends, holidays) and 
stochastic; (2) lighting loads; (3) occupant loads: sensible 
and latent; (4) internal equipment and appliances, and 
others. The sum of lighting loads and internal equipment 
will be called lights and receptacle load LR. 

Weather dependent parameters are stochastic, i.e., they 
vary randomly from time to time, and cold/hot weather 
fronts strongly affect the regular pattern of the building 
energy consumption models. 

It is statistically unsound and also unnecessary to include 
all the above parameters in regression models for building 
energy consumption. There are a number of ways of 
identifying the parsimonious set of regressor variables 
during multiple regression. The most commonly used 
technique is to use step-wise regression wherein the 
computer code itself decides whether to include a variable 
or not based on an F-Test (Draper and Smith, 1981). 
This technique may pick different sets of variables when 
different data sets are used. In order to overcome this 
limitation, selection of important regressor variables in 
this study has been based simply on the strength of the 
correlation coefficients. 

Table I lists the correlation coefficients of the regressor 
variables enumerated earlier versus chilled water energy 
use, CW (MBtu/h) and hot water energy use, HW 
(MBtu/h). We note that clearly the ambient temperature T 
(OF) is the most important parameter, followed by specific 
humidity SPH (lb.llb.), solar radiation SOL (W/square ft) 
and internal load LR (kWh). 

Table 1.	 Absolute values of the correlation coefficients 
of various regressor variables versus chilled 
water and hot water energy use. 

Parameler CW HW 

T 0.905 0.919 

SPH 0.788 0.690 

SOL 0.321 0.443 

RH 0.304 0.213 

WIND 0.066 0.170 

LR 0.368 0.404 

Time plots of CW and T, and HW and T are shown in 
Figures J and 2 respectively. 
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Figure I. Time plots of daily chilled water use (CW) 
and ambient temperature (T). 
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Figure 2.	 Time plots of daily hot water use (HW) 
and ambient temperature (T). 

Scatter plots of CW and HW versus T and SPH, shown in 
Figure 3-6, illustrate the relationship between these 
variables. 
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Figure 3. Scatter plot of daily chilled water use (CW) 
versus ambient temperature (T). 
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Figure 4.	 Scatter plot of daily hot water use (HW) 
versus ambient temperature (T). 
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Figure 5. Scatter plot of daily chilled water use (CW) 
versus specific humidity (SPH). 
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Figure 6.	 Scatter plot of daily hot water use (HW) 
versus specific humidity (SPH). 

We note that CW use increases with both T and SPH 
while that of HW decreases with both T and SPH. This is 
consistent both with past experience on regressing 
building energy use (for example, Fels, 1986; Kissock et 
al., 1992) and with engineering principles based on our 
physical understanding of the operation of HVAC systems 
in buildings. Thus in the analysis that follows, we shall 
limit our regression models for CW and HW to only the 
following four regressor variables: T, SPH, SOL and LR. 

VALIDITY OF LINEAR MODELS 

A fundamental premise in the development of statistical 
models for CW and HW is that these quantities are 
linearly affected by the regressor variables selected. Other 
than the simplest case of energy consumption in 
residences (Fels, 1986) where concurrent heating and 
cooling does not occur as it does in commercial buildings, 
it is difticult to prove this linearity from physical or 
engineering considerations. Most studies to date presume 
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such a relationship, a concept which has gained credibility 
due to the fact that most energy use models for 
commercial buildings have high R square values when 
linear regression is applied to the measured data (Kissock 
et al., 1992). In this subsection we shall briefly describe 
and illustrate a way by which such linearity can be 
investigated . 

The conventional way of studying system behavior or 
response to certain forcing functions is to perform 
controlled experiments where one parameter is varied 
while keeping other parameters constant. From this, the 
effect of that particular parameter on the system behavior 
can be deduced. Such controlled experiments have been 
done in residences with good results (e.g., Sonderegger, 
1978 and Subbarao, 1988). However, it is difficult if not 
impossible, to perform such experiments on large 
commercial buildings. Use of synthetic data looks like the 
most promising approach to this problem. 

Synthetic data is generated using a computer, not obtained 
from experimental measurements. We have chosen a 
detailed simulation code, namely DOE-2 (LBL, 1981) 
which permits hourly energy consumption values of 
commercial buildings to be predicted from a physical 
description of the building and of the HVAC system, from 
climatic parameters and from schedules of internal loads 
and building operation. Hourly simulation codes are 
effective tools for design purposes, and most recently, 
have been used to evaluate retrofits in existing buildings 
as well (Bronson et aI., 1992). However, for the 
evaluation to be meaningful, agreement between measured 
and simulated data must be verified, for which an iterative 
process called "calibration" of the input data to the 
simulated code is required. Such a calibration run (called 
Run I) was performed for the Engineering Center using 
climatic and energy use data from September, 1989 to 
February, 1990 by Bronson et al. (1992). We used the 
same calibrated input deck as the baseline simulation for 
this study. Figures 7 and 8 illustrate how the simulation 
values of daily CW and HW compare with the measured 
values. We note very good agreement between simulated 
and measured values, a fact also supported by the high R 
square values between both these sets of values. 

Once the input parameters of the simulation code have 
been calibrated to represent realistic building and HV AC 
system behavior, the effect of specific parameters on CW 
and HW use can be studied. For example, another run 
(say Run 2) can be performed with the specifiC parameter 
removed (i.e., the system is no longer subject to that 
particular forcing function) with all other parameters left 
unaltered. A linear relationship between the "extra" 
energy consumption, i.e., the difference in energy use of 
Run I and Run 2, and the specific parameter would be an 
indirect justification of selecting a linear regression model 
between energy use and that particular parameter. 

4 5 
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Figure 7.	 Cross plots of daily chilled water use 
illustrating how well synthetic data generated 
by DOE-2 predicts measured use 
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Figure 8.	 Cross plots of daily hot water use illustrating 
how well the synthetic data generated by 
DOE-2 predicts measured use 

A procedure as described above was performed with our 
calibrated DOE-2 simulation code for the Engineering 
Center with the entire solar radiation SOL data set to 
zero. How the simulated values of (Run I - Run 2) for 
CW and HW vary with solar radiation are shown in 
Figures 9 and 10. We detect strong linearity between the 
"extra" CW and SOL (R square = 0.724) while that 
between the "extra" HW and SOL is less strong, but still 
distinct (R square = 00405). 

159 

ESL-HH-92-05-24

Proceedings of the Eighth Symposium on Improving Building Systems in Hot and Humid Climates, Dallas, TX, May 13-14, 1992 



3.5 

N 
C 2 

4 
§ 1.5 

'" 
~ I 

0.5 

o 

. 
R square:: .724 I . --. ..~ 

,IK 
. . ~~~.~ P ..·

.. 
• . .. ,,~ f.~~ .... . . . ~. ;..~. .. • .•• 

..'-~ . 
~. .,­

.,; . 

o 50 100 150 200 250 300 
SOLAR (W/SqJt) 

Figure 9.	 Scatter plot of the "extra" daily chilled water 
use versus daily solar radiation using synthetic 
data. A fairly strong linear correlation can be 
seen. 
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Figure 10. Scatter plot of the "extra" daily hot water use 
versus daily solar radiation using synthetic 
data. A less obvious but nevertheless distinct 
li near correlation can be detected. 

The above procedure of verifying the validity of using 
linear models for CW and HW use in commercial 
buildings needs to be extended to include the effect of 
parameters other than SOL, something which is less 
straight-forward. This approach is currently being 
investigated and is presented here more as a conceptual 
approach for ascertaining the validity of ~ functions 
for the statistical models. 

EVALUATION OF THE STATISTICAL APPROACHES 

The final objective of the statistical regression approach is 
a sound predictive model for daily whole-building energy 
use. Therefore, our model must first provide a good fit to 
the current data, and secondly, be a reliable predictor of 
future consumption, provided of course that the operation 

and scheduling of the building are unaltered. How the
 
MRA and PCA approaches compare with each other in
 
both these aspects will be investigated in the following
 
section.
 

Before proceeding to do so, we should, however,
 
ascertain the extent to which the selected regression
 
variable in our data set are intercorrelated. If no
 
colJinearity exists, a meaningful evaluation of MRA and
 
PCA approach would not be possible. Table 2 presents
 
the correlation coefficients between the four variables T,
 
SPH, SOL, and LR for the entire six months of data.
 
We note that T and SPH are strongly correlated, that T
 
and SOL are moderately so, and that the others show little
 
or no correlation. A rule of thumb (Draper and Smith,
 
1981) states that multicollinearity is likel y to be a problem
 
if the simple correlation between two variables is larger
 
than the correlation of one or either variable with the
 
dependent variable. By this token, collinearity between
 
say, T and SPH, and T and LR, may not be a problem if
 
MRA is used. (See Tables I and 2) .
 

Table 2.	 Correlation coefficients between the regressor 
variables using six months daily data. 

T SOL SPH LR 
T LOO 0.423 0.737 0.245 

SOL LOO -D. 107 0.084 
SPH LOO 0.150 
LR LOO 

The entire data set of daily measurements for the 
Engineering Center during the period from September, 
1989 to February, 1990 was used to perform an MRA. 
The regression coefficients and the corresponding standard 
errors are given in Table 3 while the pertinent statistical 
indices are shown in Table 4. We note that the R square 
values are close to 0.9, indicating that the models fit the 
data very well. We also note that all the regression 
coefficients are physically consistent in sign and that the 
standard errors, except for SPH in the CW model, are 
generally low. 

Table 3.	 Regression coefficients and their standard 
errors for all six months of data using MRA. 
Standard errors are expressed as fractional 
values of the corresponding coefficient. 

CW HW 
Variable Coefficient Std. Error Coefficient Std. Error 
Intercent 16.262 0.33 212.765 0.Q3 

T 0.9900 0.11 -L5660 0.08 
SPH 1749.06 0.51 -931.48 0.39 
SOL 0.02780 0.18 -0.0448 0.37 
LE 0.00173 0.18 0.00276 0.13 
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Table 4. Statistical indices of regression models Table 7. Variation of model goodness-of-fit i.e., 

using the entire six months of daily data. adjusted R square values with variable number 
of PCs. 

MRA PCA (3 PCs) 
CW HW CW HW 

Adi. - RZ 0.855 0.876 0.853 0.864 
RSME 
IMBtu/dl 9.59 11.31 9.65 11.86 
CV(%) 7.98 18.58 8.03 19.50 
RE(%) 0.704 4.795 0.800 4.237 

CW HW 
PCI 0.850 0.860 
PCI PC2 0.853 0.864 
PCI PC2 PCJ 0.854 0.864 
All 4 PCs 0.855 0.876 

One of the important purposes of using PCA and model 
optimization is to arrive at the minimum number of 
principal components (PCs) which satisfactorily account 
for or explain the variance in the data set of regressor 
values. A PC with a sufficiently low variance rank can be 
eliminated without undue loss of information. This 
elimination will result in increased model stability, albeit 
at the expense of a slight reduction in goodness-of-fit to 
the measured data. 

Table 5 presents the eigenvalues of the four PCs along 
with their rank. We note that three PCs explain 97% of 
the variance and so retaining these three PCs may be a 
logical choice. 

Table 5. Eigenvalues of the principal components. 

Eil!envalues Proportion Cumulative 
PCI 1.904 0.476 0.476 
PC2 1.093 0.273 0.749 
PO 0.904 0.226 0.975 
PC4 0.099 0.025 1.000 

From Table 6, which lists the eigenvectors of all four 
PCs, we note that the second and third PCs are essentially 
the SOL and LR parameters respectively. PC I has a more 
equitable weight, though T and SPH are definitely more 
important. 

Table 6. Eigenvectors of the principal components. 

PCI PC2 PCJ PC4 
T 0.694 0.046 -0.194 -0.692 

SOL 0.284 0.857 ·0.178 0.392 
SPH 0.584 -0.509 -0.187 0.604 
LR 0.311 0.070 0.946 0.051 

Another criteria for choosing the relevant PCs is to look 
at how the model R square varies when the PCs are 
successively dropped from the model. From Table 7 
which presents the results of such an approach, we note 
that dropping PC3 may be another choice. How the 
regression model R square varies when a different number 
of PCs are chosen is shown in Table 7. 

We observe a slight decrease in the R square values as the 
number of PCs in the model is decreased. Even with only 
one PC, the R square values have decreased by less than 2 
percentage points. As born out by statistical theory, we 
note that with all 4 PCs present in the model, the R square 
values of CW and HW models are identical to those of the 
MRA models. 

The regression coefficients and the corresponding standard 
errors of the PCA using all 4 PCs are shown in Table 8. 
Because the PCs are uncorrelated, the PCs with little 
predictive power and low variance rank can be dropped 
from the regression equation without changing the 
regression coefficients of the remaining PCs. Hence, these 
coefficients are unaltered if either PC3 or PC4 is omitted. 

We note that the standard errors of the first three PCs are 
lower than those of MRA (see Table 3) while PC3 has 
very large standard errors. A logical choice would thus be 
to drop PC3 (though based on the rank variance criteria, 
PC4 would be the PC to discard from the model). 

Table 8. Regression coefficients and their standard 
errors for all six months of data using PCA 
with all four PCs present. Standard errors are 
expressed as fractional values of the 
corresponding coefficient. 

CW HW 

Variable Coefficient Std. Error Coel1icient Std. Error 

Intercept 120.22 0.00 60.842 0.01 

PCI 16.8536 0.03 -21.617 0.03 

PC2 1.4272 0.48 -2.227 0.36 

PO -0.9206 0.82 -0.2211 4.02 

PC4 -4.052 0.56 11.639 0.23 

From Table 4, which enables comparison of the statistical 
indices describing the MRA and PCA modeling 
approaches, we note that PCA has sacrificed a little in 
terms of goodness-of-fit hoping that this will lead to 
enhanced model stability. Tn order to evaluate the latter, 
we have decided to proceed as follows: 

(a) choose only the first two months of daily data and 
identify appropriate CW and HW models following the 
MRA and PCA approaches as described above; 
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(b) use these models to predict daily energy consumption 
data over the next four months; 
(c) compute and compare the RMSE and CV values of
 
both these modeling approaches.
 

Table 9.	 Comparison of the MRA and PCA approaches 
as predictive tools. Regression models were 
identified from two months of daily energy 
data and were used to compare daily energy 
consumption predictions over the next four 
months for which measured data were 
available. 

RMSE (MBtu/d) CV(%) 

CW HW CW HW 
MRA 11.86 23.84 10.81 30.72 
PCA 
(with 
3 Pes) 

12.55 25.37 11.43 32.69 

Table 9 presents the RMSE and CV values for the MRA 
and PCA approaches (using 3 PCs only) during the four 
months from November, 1989 to February, 1990. 
We note that, surprisingly, MRA is still superior to the 
PCA despite multicollinearity effects being present in our 
regressor data set (the correlation coefficients for the two­
month data set are akin to those for the entire data set 
which are shown in Table 2). There does not seem to be 
any justification in selecting PCA over MRA. This rather 
negative result highlights the fact that collinearity among 
variables may not be an important issue unless the 
strengths of the correlation are relatively high. A more 
careful and elaborate investigation using data sets which 
exhibit a wide range of correlation strengths among the 
regressor variable is required in order to ascertain the 
exact magnitude of these correlation coefficients beyond 
which better predictive models can be identified using 
PCA rather than MRA. 

ACCURACY OF "MRA" MODEL PREDICTION 

In this section, we shall illustrate how model prediction 
accuracy varies from month to month. An MRA model 
was identified from one month's daily data and then used 
to predict daily values over the remaining five months. 
How well the model-predicted values compare with actual 
measured values has been quantified in terms of the CV 
computed on a month-by-month basis. This procedure has 
been repeated five times, choosing a different monthly set 
to identify the MRA model. 

The CV values thus obtained for daily chilled water 
energy use are given in Table 10 and also shown in Figure 
II. As expected, the CV values are lowest for the month 
used to identify the model (these values are shown 
underlined in Table 10). 

Table 10	 Predictive accuracy expressed as CV values 
(%) of a model identified by MRA using one 
month's data. 

Month lL~ed for Prediction 
Month used 
for model 
identification Sept. Oct. Nov. Dec. Jan. Feb. 

Sept. 2.35 6.22 10.61 15.98 15.80 14.57 
Oct. 6.54 3.35 8.23 17.90 7.62 7.34 
Nov. 11.42 5.71 5.33 9.94 10.94 11.02 
Dec. 18.07 13.11 8.67 5.74 16.73 17.94 
Jan. 8.10 4.42 11.29 22.91 6.96 6.06 
Feb. 8.08 8.86 11.85 20.37 8.45 4.22 
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Figure II. Histograms showing how values of the 
Coefficient of Variance vary from month to 
month when one month's chilled water data is 
used to identify a linear model from MRA and 
then using this model to predict energy use for 
the other months. Each of the six histograms 
for each month represents one month. 

There is a large month-to-month variation in these values. 
For example, the September model which has a CV of 
2.35%, predicts December values to a CV of about 16% 
only. Most models seem to predict the December values 
poorly, probably because this is the coldest month coupled 
with long abnormal building operation due to holiday 
schedules. 

Figure 12 graphically depicts the tracking ability of the 
September model vis-a-vis future values. 
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Figure 12. A time plot to illustrate how well a chilled 
water model identified using September daily 
data predicts use during the next five months. 
The corresponding residual time plot is also 
shown. 

Even for December, the model does not seem to do too 
poorly. Part of the redson why the CV values for 
December are high (Figure II) is that the mean values of 
CW are low for this month, which incredses the CV 
values even when the RMSE are the same. However, if 
this month were not considered, CV values for CW are 
always less than 15 % and mostly between 5-10%. This 
range of uncertainty values is quite satisfactory for most 
engineering applications. 

CONCLUDING REMARKS 

The primary objective of this paper was to evaluate MRA 
and PCA approaches as statistical means of identifying 
robust and accurate statistical linear models for predicting 
daily chilled water and hot water use in commercial 
buildings. Despite multicollinearity among the regressor 
variables and contrary to a recent study, we conclude, 
based on six months of measure data from a large 
engineering center located in central Texas, that a model 
identified by MRA has a slightly higher predictive power 
than one identified by PCA. Though there was no 
advantage in resorting to PCA over MRA, based on the 
data used, we argue that a more careful and elaborate 
investigation (than was considered necessary previously) 
using multiple data sets exhibiting a wide range of 
multicollinearity strengths is required in order to 
satisfactorily resolve this issue. 

The paper also illustrates a procedure, based on 
generating synthetic building energy use data from a large 
simulation code, whereby one could ascertain whether 
influence of a particular variable on energy use was linear 
or not. This issue is fundamental to our approach of using 
linear regression for statistical model identification. 

Finally, the predictive power of a regression model 
identified from one month's data has been evaluated by 
noting how well it fits for the remaining five months. The 
difference between model-predicted and medsured values 
has been quantified in terms of monthly coefficient of 
variation values. These values have been found to be less 
than 10% for chilled water models. 
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