

AUTONOMOUS ROBOTIC WHEELCHAIR

WITH COLLISION-AVOIDANCE NAVIGATION

A Thesis

by

PIN-CHUN HSIEH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Mechanical Engineering

AUTONOMOUS ROBOTIC WHEELCHAIR

WITH COLLISION-AVOIDANCE NAVIGATION

A Thesis

by

PIN-CHUN HSIEH

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:
Chair of Committee, Won-jong Kim
Committee Members, Chii-Der Suh
 Yoonsuck Choe
Head of Department, Dennis O’Neal

August 2008

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Autonomous Robotic Wheelchair with Collision-Avoidance Navigation.

(August 2008)

Pin-Chun Hsieh, B.A., National Tsing-Hua University

Chair of Advisory Committee: Won-jong Kim

The objective of this research is to demonstrate a robotic wheelchair moving in an

unknown environment with collision-avoidance navigation. A real-time path-planning

algorithm was implemented by detecting the range to obstacles and by tracking specific

light sources used as beacons. Infrared sensors were used for range sensing, and

light-sensitive resistors were used to track the lights.

To optimize the motion trajectory, it was necessary to modify the original motor

controllers of the electrical wheelchair so that it could turn in a minimum turning radius

of 28.75 cm around its middle point of axle. Then, with these kinematics, the real-time

path planning algorithm of the robotic wheelchair is simplified. In combination with the

newly developed wireless Internet-connection capability, the robotic wheelchair will be

able to navigate in an unknown environment.

The experimental results presented in this thesis include the performance of the control

system, the motion trajectory of the two driving wheels turning in a minimum radius, and

 iv

the motion trajectory of the real-time path-planning in a real-life testing environment.

These experimental results verified that the robotic wheelchair could move successfully

in an unknown environment with collision-avoidance navigation.

 v

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude to my advisor, Dr.

Won-jong Kim. I would also like to thank him for the invaluable time and guidance that I

received from him throughout this thesis research.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT……………………………………………………………………...

iii

ACKNOWLEDGMENTS………………………………………………………..

v

TABLE OF CONTENTS…………………………………………………….…..

vi

LIST OF FIGURES…………………………………………………………..…..

ix

LIST OF TABLES…………………………………………………………….….

xv

CHAPTER

I INTRODUCTION……………………………………………… 1

 1.1 History………………………….…………………………. 1
 1.2 Objective………………………………………………….. 2
 1.3 Contributions……………………………………………… 2
 1.4 Thesis Organization………………………………………. 3

II LITERATURE REVIEW……………………………………….. 5

 2.1 Modeling………………………………………………….. 5
 2.2 Sensor Implementation…………………………………… 6
 2.3 Path Planning and Obstacle Avoidance…………………... 6

III ROBOTIC WHEELCHAIR DESIGN…………………………..

 9

 3.1 Step I – Main System of the Robotic
Wheelchair………………………………………………...

10

 3.1.1 Wheelchair………………………………………….. 10
 3.1.2 Laptop…………………………………………......... 10
 3.1.3 Data-Acquisition Card…………………………….... 10
 3.1.4 Interface Board……………………………………... 11
 3.2 Step II – The Sensor System……………………………… 12
 3.2.1 Light-Sensitive Resister…………………………….. 12
 3.2.2 Distance-Measuring Sensor………………………… 12
 3.2.3 Hall-Effect Sensors……………………………......... 13
 3.2.4 Interface Board on the Sensor System……………… 14
 3.2.5 Operational Amplifiers……………………………... 14
 3.2.6 Priority Encoders…………………………………… 15
 3.2.7 Voltage Regulator…………………………………... 15
 3.3 Stage III –Wireless Internet ……………………………… 15

 vii

CHAPTER

 Page

IV INTERFACING………………………………………………… 16

 4.1 The PCMDIO Data-Acquisition Card………………......... 16
 4.2 Interfacing the Motor Controllers………………………… 17
 4.2.1 Speeding Control…………………………………… 18
 4.2.2 Forward and Backward Control…………………….. 18
 4.2.3 Movement Measurement…………………………… 20
 4.3 Interfacing the Sensor System………….………………… 22
 4.3.1 Interfacing the Light-Sensitive Resistors…………… 22
 4.3.2 Interfacing the Distance-Measuring Sensor………… 25

V KINEMATICS AND PATH PLANNING………………………. 26

 5.1 Dynamics of the Wheelchair……………………………… 26
 5.2 Kinematics of the Wheelchair…………………………….. 27
 5.3 Algorithm of the Real-Time Path Planning Guided by

Infrared Sensors…………………………………………...

28
 5.4 Light Tracking………………………………………......... 47

VI SOFTWARE DESIGN…………………………………………... 49

 6.1 Programming Language…………………………………... 49
 6.1.1 PCMDRIVE Configuration Utility……………......... 50
 6.1.2 Performing Data Acquisition……………………….. 51
 6.2 Hardware Control……………………………………......... 52
 6.3 Operation of the Robotic Wheelchair..………………......... 53
 6.4 Remote Control...……………………………………......... 56

VII CONTROL SYSTEM DESIGN……………………………........ 59

 7.1 The Structure of the Control System……………………… 59
 7.2 The Sensor in the Control System………………………… 60
 7.3 Controlling the Wheel Speed……………………………... 62

VIII

OPERATION AND TESTING…………………………………... 68

 8.1 Operation………………………………………………….. 68
 8.1.1 Autonomous Mode………………………………….. 68
 8.1.2 Manual Mode……………………………………….. 69
 8.2 Experiments and Testing………………………………….. 69
 8.2.1 Recording the Motion Trajectory…………………… 69
 8.2.2 Robotic Wheelchair Rotating around the Axle

Middle Point………………………………………...

71

 viii

CHAPTER

Page

 8.2.3 Motion Trajectory of the Robotic Wheelchair in an
Unknown Environment……………………………...

73

IX CONCLUSIONS AND SUGGESTED FUTURE WORK……… 80

 9.1 Conclusions……………………………………………….. 80
 9.2 Limitations…………………………………………..……. 81
 9.3 Suggested Future Work…………..……………………...... 82

REFERENCES………………………………………………………………...... 83

APPENDIX A OPERATING PROGRAM……………………………..…….. 85

APPENDIX B CLIENT SIDE PROGRAM………………………………..… 116

VITA………………………………………………………………………..…... 119

 ix

LIST OF FIGURES

FIGURE Page

3.1 Development of the robotic wheelchair. The sensor system is
mounted at the front, and the laptop for controlling the robotic
wheelchair is on the top……………………………………….........

 9

3.2 Interface board and two motor controllers. Four relays and
CD4066 chips are connected to the MC-7. The interface board
connected to the PCMDIO card with the connectors that were
modified from IPRV and PMLR…………………………………...

11

3.3 Seven light-sensitive resistors and five distance-measuring sensors
are mounted on the sensor bracket with interface circuit
board………………………………………………………………..

13

3.4 Interface board between the sensor bracket and the PCMDIO. The
chips from top to bottom are the voltage regulators,
operational-amplifiers, and priority encoder………………….........

14

4.1 MC-7 motor controller and the interface board……………………

17

4.2 Dervise MC-7 motor controller………………………………........

19

4.3 Circuit for speeding, forward, and backward control………………

20

4.4 Interface board that contains four relays, two CD4066 chips, one
Darlington-array chip, and two 74HC191 counters………………..

21

4.5 Interface board for the sensor system………………………………

22

4.6 Voltage comparator…………………………………………………

23

4.7 Circuit between photocells and PCMDIO…………………….........

24

5.1

The robotic wheelchair turns in an original point and the detecting
range of five infrared sensors………………………………………

28

5.2 The first condition. The robotic wheelchair detects the obstacle to
the right. It turns counter-clockwise until it detects no
obstacle……………………………………………………………..

31

5.3

The second condition.The robotic wheelchair detects the obstacle
to the right and in the front. It turns counter-clockwise left until it

 x

FIGURE

 Page

detects no obstacle…………………………………………………. 31

5.4

The third condition. The robotic wheelchair detects the obstacle to
the right and front. It turns counter-clockwise until it detects no
obstacle…………………………………………..............................

32

5.5. The fourth condition. The robotic wheelchair detects the obstacle
to the right and in the front. It turns counter-clockwise until it
detects no obstacle…………………………………….....................

32

5.6 The fifth condition. The robotic wheelchair detects the obstacle to
the right. It turns counter-clockwise until it detects no
obstacle………………………………………………………..........

33

5.7 The sixth condition. The robotic wheelchair detects the obstacle to
the right and in the front. It turns counter-clockwise until it detects
no obstacle…………………………………….................................

33

5.8 The seventh condition. The robotic wheelchair detects the obstacle
to the left. It turns clockwise until it detects no
obstacle…………………………..

34

5.9 The eighth condition. The robotic wheelchair detects the obstacle
to the left and in the front. It turns clockwise until it detects no
obstacle……………………………………………..........................

34

5.10 The ninth condition. The robotic wheelchair detects the obstacle to
the left and right. It keeps moving forward until it detects an
obstacle……………………………………………………………..

35

5.11 The tenth condition. The robotic wheelchair detects the obstacle to
the left, right, and in the front. This is an unpredictable situation
and it stops………………………………………………………….

35

5.12 The eleventh condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle…………………………………………….........

36

5.13 The twelfth condition. The robotic wheelchair detects the obstacle
to the left, right, and in the front. This is an unpredictable situation
and it stops………………………………………………………….

36

5.14

The thirteenth condition. The robotic wheelchair detects the

 xi

FIGURE Page

obstacle to the left and right. It keeps moving forward until it
detects an obstacle…….……………………………………………

37

5.15 The fourteenth condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

37

5.16

The fifteenth condition. The robotic wheelchair detects the
obstacle to the left. It turns clockwise until it detects no obstacle…

38

5.17 The sixteenth condition. The robotic wheelchair detects the
obstacle to the left and in the front. It turns clockwise until it
detects no obstacle…………………………………………….........

38

5.18 The seventeenth condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle…………………………………………….........

39

5.19 The eighteenth condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

39

5.20 The nineteenth condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle………………………………………………….

40

5.21 The twentieth condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

40

5.22 The twenty-first condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle…………………………………………….........

41

5.23 The twenty-second condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

41

5.24 The twenty-third condition. The robotic wheelchair detects the
obstacle to the left. It turns clockwise until it detects no
obstacle……………………………………………………………..

42

5.25

The twenty-fourth condition. The robotic wheelchair detects the
obstacle to the left and front. It turns clockwise until it detects no

 xii

FIGURE

 Page

obstacle…………………………………………….......................... 42

5.26 The twenty-fifth condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle…………………………………………….........

43

5.27 The twenty-sixth condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

43

5.28

The twenty-seventh condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle………………………………………………….

44

5.29 The twenty-eighth condition. The robotic wheelchair detects the
obstacle to the left, right, and in the front. This is an unpredictable
situation and it stops………………………………………………..

44

5.30 The twenty-ninth condition. The robotic wheelchair detects the
obstacle to the left and right. It keeps moving forward until it
detects an obstacle…………………………………………….........

45

5.31 The thirtieth condition. The robotic wheelchair detects the obstacle
to the left, right, and in the front. This is an unpredictable situation
and it stops………………………………………………………….

45

5.32 The thirty-first condition. The robotic wheelchair detects no
obstacle and it keeps moving forward……………………………...

46

5.33 The thirty-second condition. The robotic wheelchair detects the
obstacle in the front. This is an unpredictable situation and it
stops………………………………………………………………...

46

5.34 Sensing directions of the photocells are indicated as dashed
lines………………………………………………………………...

47

5.35 Steps of the robotic wheelchair track a specific light………………

48

6.1 PCMDRIVE configuration utility…………………………….........

50

6.2 Operating interface to the user in Visual Basic program…………...

54

6.3

Algorithm for the “autonomous” mode of the robotic
wheelchair…………………………………………………….........

55

 xiii

FIGURE

 Page

6.4 Remote control through Internet………………………………...…

57

6.5 Schematic of remote control through the Internet………………….

58

6.6 Interface of the client side program………………………………...

58

7.1 Structure of the control system…………………………..................

60

7.2 Interfacing infrared sensors with the control system……………....

61

7.3 Interfacing photocells with the control system……………….........

61

7.4 Interfacing Hall-effect sensors with the control system……………

62

7.5

Statistic chart of the control voltage and duty-ratio………………..

65

7.6 An experimental path of the robotic wheelchair moving two
meters………………………………………………………………

67

8.1 Recording the motion trajectory……………………………………

70

8.2 Recording the motion trajectory while one of the driving wheels
are moving forward and the other are moving backward at time i…

72

8.3 Motion trajectory of the two driving wheels………………….........

72

8.4 The robotic wheelchair moves in different basis coordinates in the
xy-plane…………………………………………………………….

74

8.5 Motion trajectory of robotic wheelchair turned clockwise for
approximately140o …………………………………………………

75

8.6 Motion trajectory of the robotic wheelchair tracking a specific
light…………………………………………………………………

75

8.7 Motion trajectory of the robotic wheelchair recorded by
long-term-exposure photography technique………………………..

76

8.8 Motion trajectory of the robotic wheelchair moving in a real-life
testing environment………………………………….......................

77

8.9 The robotic wheelchair starts at point (0,840)……………………...

78

8.10 The robotic wheelchair turned at point (148,842)……………......... 79

 xiv

FIGURE Page

8.11 The robotic wheelchair turned at point (160,806).............................

79

 xv

LIST OF TABLES

TABLE

 Page

5.1 Response of the robotic wheelchair for each condition………….........

30

5.2 Response to the first condition…………………………………….......

31

5.3 Response to the second condition……... …………………………......

31

5.4 Response to the third condition………... …………………………......

32

5.5 Response to the fourth condition………………………………….......

32

5.6 Response to the fifth condition……….. ………………………….......

33

5.7 Response to the sixth condition……….. …………………………......

33

5.8 Response to the seventh condition……………………………….........

34

5.9 Response to the eighth condition………………………………….......

34

5.10 Response to the ninth condition………………………………….........

35

5.11 Response to the tenth condition……………………………......……...

35

5.12 Response to the eleventh condition…………………………......…..… 36

5.13 Response to the twelfth condition………………………......……..…..

36

5.14 Response to the thirteenth condition………………………......………

37

5.15 Response to the fourteenth condition…………….………………........

37

5.16 Response to the fifteenth condition…………………………......…….. 38

5.17

Response to the sixteenth condition………………………......……… 38

5.18 Response to the seventeenth condition..

39

5.19 Response to the eighteenth condition……………………......…….…..

39

5.20 Response to the nineteenth condition……………………….…......…..

40

5.21 Response to the twentieth condition…………………………......…… 40

 xvi

TABLE

 Page

5.22 Response to the twenty-first condition...

41

5.23

Response to the twenty-second condition………….............................. 41

5.24

Response to the twenty-third condition... 42

5.25 Response to the twenty-fourth condition……………………………...

42

5.26 Response to the twenty-fifth condition..

43

5.27 Response to the twenty-sixth condition………………………….........

43

5.28 Response to the twenty-seventh condition……………………….........

44

5.29 Response to the twenty-eighth condition……………………………...

44

5.30 Response to the twenty-ninth condition………………………….........

45

5.31 Response to the thirtieth condition……………………………….........

45

5.32 Response to the thirty-first condition…………………………….........

46

5.33 Response to the thirty-second condition………………………………

46

6.1 PCMDIO channel configuration………………………………………

51

7.1 Duty-ratio of the PWM signals generated from two MC-7 motor
controllers……………………………………………………………...

64

7.2 Experimental data for the two driving wheels……………….……….. 66

1

CHAPTER I

INTRODUCTION

1.1 History

This thesis is built upon previous research in the Precision Mechatronics Lab:

Intelligent Pothole Repair Vehicle (IPRV) [1] and Precision Mechatronics Lab Robot

(PMLR) [2]. Both of IPRV and PMLR are modified electrical wheelchairs, using a laptop

with a data-acquisition card as the controller.

In the IPRV research, an electrical wheelchair was modified to be an autonomous road

repair vehicle that would be used to fill potholes. The IPRV is capable of being

maneuvered remotely over a wireless local-area network (LAN). The limitation of the

IPRV was that it could only move straight during the autonomous mode.

The PMLR moved in a desired path with better accuracy. It demonstrated an ability to

travel around 10 m with a combination of its dead-reckoning capability and position

feedback by Hall-effect sensors. The limitation of PMLR was that it could only travel in a

predetermined path and had a significantly larger turning radius.

Based on the existing development of the IPRV and PMLR, the modified wheelchair

already has wireless remote control capability by LAN connection and is controlled with

the feedback from the Hall-effect sensors. With these capabilities, adding other kinds of

sensors and modifying the motor controller could make it possible for the wheelchair to

be operated with real-time path planning and obstacle avoidance.

This thesis follows the style of IEEE Transactions on Automatic Control.

2

1.2 Objective

The objective of this research is to demonstrate a robotic wheelchair moving in an

unknown environment with real-time path planning. The generation of a real-time map

and a moving path can be implemented by detecting the range from the obstacles, and by

tracking specific lights sources used as beacons. Infrared sensors are used to detect the

range form the obstacles and the light-sensitive resistors are used to track the light.

To optimize the motion trajectory, it is necessary to modify the motor controller of the

wheelchair so that it can turn in a minimum turning radius. Then, with these kinematics,

the algorithm of the real-time path planning of the robotic wheelchair can be simplified.

In combination with the newly developed wireless Internet-connection capability, the

robotic wheelchair will be able to navigate in an unknown environment.

1.3 Contributions

As described above, this thesis is the advance of the previous research, IPRV and PMLR.

The specific contributions of this thesis are:

1. Adding the sensor system to let the wheelchair have the ability to detect obstacles in

an unknown environment.

2. Modifying the interface board between the PCMDIO 24-channel data-acquisition

input/output (I/O) card and the motor controller to let the wheelchair rotate about its

geometric center.

3. Having the wheelchair be capable of collision avoidance navigation and tracking a

beacon.

3

4. Developing a real-time path-planning algorithm by the capability described above.

With this real-time path-planning algorithm, the wheelchair can become an

autonomous robot which can move in an unknown or partially known environment.

In this thesis, we continue to use the wheelchair from the IPRV and PMLR projects as the

main frame. The setting of the PCMDIO data-acquisition input/output (I/O) card has been

modified.

1.4 Thesis Organization

Chapter I describes the history of this thesis and its contribution.

Chapter II presents the relevant literature reviewed by the author. The literature review is

divided into several categories, modeling, sensor implementation, path planning, and

obstacle avoidance.

Chapter III describes in detail the design of the autonomous robotic wheelchair in three

steps. The first step involved the design of the main system of the robotic wheelchair. The

second step involved the sensor system. The final step involved the wireless LAN

communication. The description of the mechanical design of the robotic wheelchair is

organized according to the development steps mentioned above.

Chapter IV describes the details of the development of the interface boards. In order to

operate and control the robotic wheelchair, two interface boards were developed between

4

the laptop and the electronic components of the robotic wheelchair. First, it describes the

PCMDIO data-acquisition card which is used for all I/O data acquisition. Second, it

describes the interface circuits between the motor controllers and the laptop. Then, it

describes the interface circuits between the sensor system and the laptop.

Chapter V describes the dynamics and kinematics of the robotic wheelchair and the

algorithm of real-time path planning. The dynamics and kinematics of the robotic

wheelchair are described first. By the analysis of the kinematics, the design of the

real-time path-planning algorithm is described. The light-tracking capability is described

next. Then, by implementing this real-time path-planning algorithm and light-tracking

capability, the robotic wheelchair can become an autonomous robot.

Chapter VI describes the control program of the autonomous robotic wheelchair

including the real-time path-planning algorithm, hardware control, and networking. This

chapter describes the software to control the hardware, the real-time path planning

algorithm, and wireless networking connection.

Chapter VII describes how these designs are integrated together to make the autonomous

robotic wheelchair move in an unknown environment with collision avoidance navigation.

It describes a typical operation mode of the autonomous robot with experimental results.

Chapter VIII summarizes the achievements of this thesis. The future work towards further

development of the autonomous robotic wheelchair is also given.

5

CHAPTER II

LITERATURE REVIEW

A usual electronic wheelchair, an assistive device for people with impaired mobility, has

motor controllers with limited capabilities for perception of their environment. The

present work related to the development of robotic wheelchairs’ navigation includes

dynamic and kinematic modeling, path planning, target tracking, obstacle avoidance,

sensors implementation, and wireless remote control.

2.1 Modeling

Modeling and control of a fast moving, highly maneuverable wheelchair was

demonstrated in [3]. This project considered a wheelchair with two independently driven

front wheels and two castors at the rear, and showed that the system became unstable

when driven at high speeds. A nonlinear control scheme was proposed to handle this

problem.

The kinematics and coordinate systems of a robotic wheelchair were given in [4] and [5].

In [4], the authors supposed that the wheelchair is move on a planar surface inside a

“corridor” formed by obstacles, which was approximated by two straight parallel walls.

They further supposed that appropriate sensors mounted on the wheelchair could detect

the distance to the walls and derived the non-holonomic constraint on the motion of the

wheelchair. From this, the instantaneous speed lateral to the moving direction of the

mobile platform had to be zero. Thus, the employed wheelchair was kinematically

equivalent to the unicycle-type mobile robot.

6

2.2 Sensor Implementation

Although sensor technology is continually improving, the cost of sensors is often too high

for the mass-production of robots. Sensors implemented in robotics systems include

global positioning system (GPS) receivers, laser range finders, cameras for image

processing, ultrasonic sensors, and infrared sensors. These sensors can be used for

navigation and obstacle avoidance.

There are many sensor systems for mobile robots. Sonars, used for distance measurement

in a preselected critical direction, and a panoramic camera, were equipped in [4]. The

ultrasonic sensors, used for navigation, were equipped in [5]. In [6], sensors were

arranged on a circular robot. That paper presented a high-performance ultrasonic sensing

system for mobile robots. They describe how wide-angle ultrasonic transducers can be

used to obtain substantial information of the environment. An actuated laser scanner

mounted on an unmanned aerial vehicle (UAV) [7]. The scanner was mounted on a tilt

actuator with an encoder. The ultrasonic sensors and stereo cameras were equipped in the

multi-vehicle platform of [8]. The platform consisted of ten wireless networked robots.

2.3 Path Planning and Obstacle Avoidance

Robotic wheelchairs and mobile robots explore in an unknown environment require map

generation of surrounding and path planning for obstacle-avoidance navigation. Since

early 1980’s, various algorithms and implementations have been developed and available

for guiding robotic wheelchairs and mobile robots in a two-dimensional (2-D)

environment.

7

In [4], the robotic wheelchair was capable of obstacle avoidance while moving in the

middle of free space and following a specified moving target. By processing the color

sequence of the image from a panoramic camera, the robotic wheelchair could determine

the orientation of the target with respect to itself. The distance of the wheelchair from the

target could be measured by several sonars. In order to have certain desired features of

the control system, the motion-control laws of motion used the sensory data and took into

account the non-holonomic kinematic constraints of the wheelchair.

An agent-based robotic wheelchair was developed in [5]. Its controller contains the

functions of path planning, navigation, and obstacle avoidance. In that work, a fuzzy

logic was used for obstacle avoidance and smooth wheelchair motion control, and the

algorithm was used to develop the path planning. Autonomous exploration for UAV was

presented in [7], In that article, the authors proposed an algorithm suitable for urban

navigation by combining the model predictive control. The algorithm was based on

obstacle avoidance with a local obstacle map, which was built by an onboard laser

scanner. A real-time gradient-search-based optimization let the model-predictive control

solve for a collision-avoidance trajectory. The tracking control was responsible for

following through the given trajectory.

The multi-vehicle platform in [8] discussed several coordinated control algorithms. The

authors implemented the algorithms on cooperative multi-vehicle testbed, with low-level

robotics vehicles and combining them to generate high-level controllers. The cooperative

multi-vehicle testbed are based on potential-field control. The authors added

8

motion-coordination algorithms to the library of team controllers, which include

perimeter estimation and pattern formation, dynamic target tracking, deployment, and

rendezvous. The authors also explored optimal formation shapes to improve the

performance of existing motion-coordination algorithms.

Information consensus in multi-vehicle cooperative control was discussed in [9] to

provide a tutorial overview. Theoretical results regarding consensus-seeking under

dynamically changing communication topologies was described. This article also

described several specific applications of consensus algorithms to multi-vehicle

coordination.

9

CHAPTER III

ROBOTIC WHEELCHAIR DESIGN

The robotic wheelchair in Figure 3.1 was designed in three steps. The first step involved

the design of the main system of the robotic wheelchair. The second step involved the

sensor system. The final step involved the Wireless internet communication. The

description of the mechanical design of the robotic wheelchair is organized according to

these development steps.

Figure 3.1. Development of the robotic wheelchair. The sensor system is mounted at the
front, and the laptop for controlling the robotic wheelchair is on the top.

10

3.1 Step I – Main System of the Robotic Wheelchair

3.1.1 Wheelchair

This robotic wheelchair is a take-over from the previous project in Precision

Mechatronics Lab: IPRV and PMLR. It is built upon the base frame of an Invacare

Ranger TMII electric powered wheelchair. The frame is 70-cm long, 48-cm wide, with a

height of 55 cm. It is capable of supporting a weight of approximately 100 kg. This

wheelchair is driven by two independent 12-V DC motors for the front wheels with a

diameter of 31.75cm with built-in reduction gears that provide a maximum speed of 6

km/hr. Two Diverse Electronic Company’s modular motor controllers are used for

motion control and are mounted on the frame. Two 18-cm-diameter caster wheels in the

rear provide support.

3.1.2 Laptop

The main control program is operated by a Fujitsu Laptop with an AMD-K6 451-MHz

processor and with 192 MB RAM. The main operation program is Visual Basic 6.0 in the

Microsoft Windows XP operating system.

3.1.3 Data-Acquisition Card

A Superlogics PCMDIO 24-channel digital I/O type II Personal Computer Memory Card

International Association (PCMCIA) card is installed on the Fujitsu laptop and is used to

perform all data-acquisition and control functions. A CP-1037 adapter cable is used to

convert the PCMDIO’s 33-pin 0.8-mm I/O connector to an industry standard D-37

connector. The PCMDIO has 24 transistor-transistor-logic (TTL) compatible buffered

11

digital-I/O channels individually programmable as either input or output.

3.1.4 Interface Board

The interface board shown in Figure.3.2 is between the PCMDIO and the Dervise MC-7

motor controllers. The logic signal from the PCMDIO is directly input to the two

CD4066 switch chips, and the control voltage from a CD4066 chip is input to the motor

controller for a certain speed of the wheelchair. A potentiometer is connected to one

CD4066 chip to adjust the motor speed to ensure the wheelchair to move straight.

Figure 3.2. Interface board and two motor controllers. Four relays and CD4066 chips are
connected to the MC-7. The interface board connected to the PCMDIO card with the

connectors that were modified from IPRV and PMLR.

12

Two relays are connected between an ULN2803 Darlington array chip and two motor

MC-7 controllers. The logic signal input to the Darlington array chip can select the

forward mode or backward mode in the motor controllers. By this function the

wheelchair can turn in a circle at original point. Two 74HC191 counter chips in PMLR

are also rebuilt on the interface board for counting the pulses generated by the Hall-effect

sensors.

3.2 Step II – The Sensor System

3.2.1 Light-Sensitive Resister

Seven CdS light-sensitive resistors are also referred to as photocells were assembled on

the sensor bracket. The photocell is PDV-P5001 with a rise time of 55ms and with a

typical resistance range of 8 kΩ to 16 kΩ at 10 lux at 2856K light. The photocell is

connected to a 5-V power supply in series with a 1 kΩ resistor, and the voltage across the

photocell’s terminal is direct connected to an operational-amplifier comparator.

3.2.2 Distance-Measuring Sensor

Three GP2D15 and two GP2D12 infrared distance-measuring sensors manufactured by

Sharp as shown in Figure3.3, are used to detect obstacles. The GP2D15 detects an

obstacle at 24-cm range and the GP2D12, from 12 cm to 80 cm. The sensors generate the

output voltage signals fed to the analog-to-digital converters on the interface board to the

PCMDIO card.

13

3.2.3 Hall-Effect Sensors

Two Hall-effect sensors from IPRV and PMLR were mounted on the rear casing of both

the motors. A pulse is generated by the Hall-effect sensors on every rotation of the motor

shaft and fed to a circuit with a 74HC191 counter chip and input to the PCMDIO

data-acquisition card installed on the laptop. When the wheelchair is moving in a path,

the distance traversed by it is proportional to the number of rotations of the motor shaft.

This resolution of the Hall-effect sensors was found to be approximately 1cm in the

previous IPRV and PMLR research.

Figure 3.3. Seven light-sensitive resistors and five distance-measuring sensors are
mounted on the sensor bracket with interface circuit board.

14

3.2.4 Interface Board on the Sensor System

An interface board connects between the sensor system and the PCMDIO card with the

electronic components will be given in Section 4 for detailed description.

3.2.5 Operational Amplifiers

Four TL072ACP and three LM741 operational-amplifiers shown in Figure 3.4 are

employed to compare the voltage signals from the photocells and the five Infrared

sensors.

Figure 3.4. Interface board between the sensor bracket and the PCMDIO. The chips from
top to bottom are the voltage regulators, operational-amplifiers, and priority encoder.

15

3.2.6 Priority Encoders

The output signals from operational-amplifier comparator are input to a 74LS148 priority

encoder that generates a three-bit output signal and directly input to the PCMDIO

data-acquisition card on the laptop.

3.2.7 Voltage Regulator

A KA7805 and a KA7905 voltage regulators are used to supply positive and negative 5 V

to the whole electronic circuit.

3.3 Step III – Wireless Internet

Remote operability of the mobile robot is provided by use of a wireless LAN card

installed on the laptop. This capability was developed in the IPRV and PMLR research.

The wheelchair acts as a server and executes the server-side program. Any remote

terminal executes the client-side program on the same LAN can be used to remotely

operate the robot.

16

CHAPTER IV

INTERFACING

This chapter describes the details of the development of the interface boards. In order to

operate and control the robotic wheelchair, two interface boards were developed between

the laptop and the electronic components of the robotic wheelchair described in the last

chapter. Section 4.1 describes the PCMDIO data-acquisition card from IPRV and PMLR

which is used for all I/O data acquisition. Section 4.2 describes the interface circuits

between the motor controllers and the laptop. Section 4.3 describes the interface circuits

between the sensor system and the laptop.

4.1 The PCMDIO Data-Acquisition Card

A Superlogics PCMDIO 24-channel digital I/O type II Personal Computer Memory Card

International Association (PCMCIA) card is installed on the Fujitsu laptop. It is used to

perform all data acquisition and control functions. A CP-1037 adapter cable is used to

convert the PCMDIO’s 33-pin 0.8-mm I/O connector to an industry standard D-37

connector.

The PCMDIO has 24 TTL compatible buffered digital-I/O channels individually

programmable as either input or output. These digital-I/O channels are grouped into

several different ports with each port containing several channels. These ports are

controlled via the Data Port A, Data Port B, and Data Port C control registers,

respectively. In all three registers, each bit corresponds to one data line. The eight Port C

I/O channels may also be configured as interrupt sources. The interrupts may be

17

configured in four ways: level-sensitive active-low interrupt, level-sensitive active-high

interrupt, high-to-low transition-edge-sensitive interrupt, and low-to-high

transition-edge-sensitive interrupt.

4.2 Interfacing the Motor Controllers

The interface board shown in Figure 4.1 is between the PCMDIO and the Dervise MC-7

motor controllers. The logic signal from the PCMDIO is directly input to the two

CD4066 switch chips and two relays, and the control voltage from the relays input to the

motor controller for certain speed of the wheelchair. A potentiometer is connected to one

CD4066 chip and one relay to adjusting the motor speed for ensuring the wheelchair

moving near straight without feedback.

Figure 4.1. MC-7 motor controller and the interface board.

18

Two relays are connected between an ULN2803 Darlington array chip and two motor

MC-7 controllers. The logic signal input to the Darlington array chips can select the

forward mode or backward mode in the motor controllers. By this function the

wheelchair can turn in a circle at original point. Two 74HC191 counter chips design in

PMLR are also rebuilt on the interface board for counting the pulse generated by the

Hall-effect sensors.

4.2.1 Speeding Control

The MC-7 motor controller is manufactured by Diverse Electronics and is used to power

a DC motor by producing a pulse width modulation (PWM) power supply voltage. It has

a power output range from 12 V to 36 V and can accept the control signal input. The

range of voltage of the input signal is 1V to 3V, where 1V indicates the minimum speed

and 3V indicates the maximum speed. In order to provide this control signal to the motor

controller, we select the voltage as 1.66 V, which is easy to design the circuit and

provides the proper speed for the robotic wheelchair. The circuit between the MC-7

motor controllers and the PCMDIO data acquisition card is shown in Figure 4.3. Two

relays connect to pin T13 of the MC-7 motor controllers and ULN2803 Darlington array

chip. This circuit provides the switch function as stop and start. Two CD 4066 switch

chips provide the function of selecting speed if we need different speed.

4.2.2 Forward and Backward Control

The MC-7 controller will drive an electric motor in both the forward and backward

directions. Two relays are connected between an ULN2803 Darlington-array chip and

19

two MC-7 motor controllers. The logic signal input to the Darlington-array chips can

select the forward mode or backward mode in the motor controllers. By this function the

wheelchair can turn in a circle at an original point with one wheel moving forward and

the other moving backward. This tight-rotation function is very important in real-time

path planning. The circuit for this function is shown in Figure 4.2.

Figure 4.2. Dervise MC-7 motor controllers.

In Figure 4.3, we can see that two relays connect to pin T13 of the MC-7 motor controller,

20

which provide the function of the speeding control. Two relays connect to pins T3, T4,

and T5 of the MC-7 motor controller, which provide the forward and backward control

ability.

Figure 4.3.Circuit for speeding, forward, and backward control.

4.2.3 Movement Measurement

Two 74HC191 decade counter chips shown in Figure 4.4 from IPRV and PMLR are also

21

included on the interface board to count the pulses generated by the Hall-effect sensors.

By this function, it has the ability to measure the moving distance of the robotic

wheelchair. Referred to [10] for the details.

Figure 4.4. Interface board that contains four relays, two CD4066 chips, one
Darlington-array chip, and two 74HC191 counters.

22

4.3 Interfacing the Sensor System

The PCMDIO is a TTL-comparable I/O card. It can also take the digital input signal. It is

necessary to build an interface circuit as an ADC function between the sensor system and

the PCMDIO. Interface board for the sensor system is shown in Figure 4.5.

Figure 4.5. Interface board for the sensor system.

4.3.1 Interfacing the Light-Sensitive Resistors

Seven CdS light-sensitive resistors are also known as photocells were assembled on the

sensor bracket. The photocell is PDV-P5001 with a rise time of 55 ms and with a typical

resistance range of 8 kΩ to 16 kΩ at 10 lux at 2856K light. The photocell is connected to

a 5-V power supply in series with a 1 kΩ resistor, and the voltage across the photocell’s

23

terminal is direct connected to an operational-amplifier comparator. The

operational-amplifier is design as voltage comparators. By selecting the reference voltage,

the comparator provides the 5-V output while the light is darker than the desired

brightness, and provides 0-V output while the light is brighter than the desired brightness.

This function can also refer as an ADC the PCMDIO. For describing this function, we

analysis the voltage comparator designed by operational- amplifier shown in Figure 4.6.

1R

1R

2R

Figure 4.6. Voltage comparator.

The reference voltage is set as 1
ref

1 2

RV = 5
R +R

. In this project, we select 1R = 220 Ω

and 2R = 1 kΩ . Then, if the voltage generated by the photocell drops below 0.41 V, the

output voltage of the operational amplifier becomes 0-V. This can also be referred as a

logic-low level signal to the 74LS148 priority encoder. Figure 4.7 shows the entire

circuits between the seven photocells and the PCMDIO card.

24

A1

A2

A3

A4

B1

B2

B3

A5

A6

A7

DC

DC

5V

-5V

74LS148
8:3

Encoder

A1

A2

A3

PCMDIO

OP
AMP

OP
AMP

OP
AMP

OP
AMP

OP
AMP

OP
AMP

OP
AMP

Seven
PhotoCells

Figure 4.7. Circuit between photocells and PCMDIO.

25

4.3.2 Interfacing the Distance-Measuring Sensor

Three Sharp GP2D15 and two GP2D12 distance-measuring sensors also known as

infrared sensors are used to detect obstacles. The GP2D15 detects an obstacle at a 24 cm

range and the GP2D12 detects an obstacle at the range from 12 cm to 80 cm. From the

datasheet of the GP2D15, for generating a 5-V output signal, it is necessary to connect to

a 12 kΩ resister. The GP2D12 is an analog sensor, we can set the ADC outputs 5-V

signal to the PCMDIO while the GP2D12 detects the obstacle at the range of 70 cm.

26

CHAPTER V

KINEMATICS AND PATH PLANNING

This chapter describes the kinematics and dynamics of the robotic wheelchair and the

algorithm of the real-time path planning. The analysis of the kinematics and dynamics for

the robotic wheelchair is described in Section 5.1 and 5.2. By the analysis of the

kinematics for the robotic wheelchair, the design of the real-time path planning algorithm

is described in Section 5.3. The light tracking capability is described in Section 5.4. In

Section 5.5 by implementing this real-time path planning algorithm and light tracking

ability, the robotic wheelchair can become as an autonomous robot.

5.1 Dynamics of the Wheelchair

The dynamics of the two driving wheel vehicle can be written as an equation below:

1 2

1 2

1 2

1 21

2

1 ()cos
2 0 0
1 0 0()sin
2

+0 01 (-) 1 02
0 10

0

V V
x
y V V

u u
V VV

V

θ

θ
θ

⎡ ⎤+⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

&

&

&

&

&

, (5.1)

where 1V and 2V are the velocities of two driving wheels, x and y are the positions

of the axle middle point of two driving wheels in the two dimension reference frame, and

θ is the turning angle of the vehicle [11].

By setting

27

1 2

1 2

1 ()
2
1()

V V V

V V
l

ω

= +

= −
 (5.2)

We can get

cos 0
sin 0

0 1

x
y V

θ
θ ω

θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

&

&
 (5.3)

From the dynamics equation (5.3) and [11], we can see that the middle point of axle can

be fixed at an original point if 1 2V V= − . Thus, for designing the path-planning algorithm

of the two-driving-wheel vehicle, we do not have to consider the turning radius of the

axle middle point of the vehicle, but consider the size of the vehicle.

5.2 Kinematics of the Wheelchair

By experiments and measurement, we can see that if we let the wheelchair turning at an

original point, which is the vertical axis on the center of the wheelchair axle. The

maximum turning radius OA of the wheelchair to prevent collision is approximately 60

cm. Figure 5.1 shows the robotic wheelchair turns in an original point and the detecting

range of five infrared sensors. We select the detecting range of the two GP2D12 infrared

sensors as 70 cm.

In Figure 5.1, we can see that the circle is the turning trajectory of the wheelchair turning

at an original point. The detecting range of two GP2D12 and three GP2D15 infrared

28

sensors are indicated as dash lines. The robotics wheelchair could avoid any obstacles

outside the turning trajectory, and it will be much easier to design a real-time

path-planning. The algorithm of the real-time path-planning can be simplified if the

motion trajectory of the robotic wheelchair turning around the axle middle point is a

circle.

Figure 5.1. The robotic wheelchair turns in an original point and the detecting range of
five infrared sensors.

5.3 Algorithm of the Real-Time Path Planning Guided by Infrared Sensors

To design the algorithm of the real-time path-planning, we can set the reaction of the

robotic wheelchair to let it turns left, turns right, moving forward, or stop, according to

29

each condition of the infrared sensors’ signal. From some experiments and testing, we set

the reaction of the robotic wheelchair in Table 5.1.

There are five infrared sensors assembled on the sensor bracket. Two Sharp GP2D12

infrared sensors assembled on the right and left sides as Figure 5.1. We set the detecting

range as 70 cm. Three GP2D15 sensors have the detecting range at 25 cm. One GP2D15

infrared sensor was mounted at the front. Two GP2D15 infrared sensors assembled on the

left and right side just behind the GP2D12 sensors. These two GP2D15 sensors are used

to eliminate the dead zone. Since the GP2D12 and GP2D15 sensors detect different

distance to obstacles, it can prevents some dead zone and detects the parallel obstacles.

With these sensors arrangement, there are 32 conditions distinct of the signal from these

five sensors. In Table 5.1, the H means the infrared sensor generates logic-high level

signal to the PCMDIO, and L means a logic-low level signal.

While the robotic wheelchair running in autonomous mode, it will keep moving forward

if there is no signal from any of the five infrared sensors. If there are signals from those

five infrared sensors, it will response according to each of these 32 conditions. It may

turn right, turn left, keep moving forward, or stop. The schematic diagrams of the

response of the robotic wheelchair in the autonomous mode after it detects the obstacles

are given in Tables 5.1 to 5.33 and Figures 5.2 to 5.33. The details of the autonomous

mode algorithm will be described in Chapter VI.

30

Table 5.1. Response of the robotic wheelchair for each condition.

Logic Signal from Infrared Sensors Response of Robot

Left

GP2D12

Left

GP2D15

Right

GP2D12

Right

GP2D15

Front GP2D15’s

signal is L

Front GP2D15’s

signal is H

L L L H Left turn Left turn

L L H L Left turn Left turn

L L H H Left turn Left turn

L H L L Right turn Right turn

L H L H Forward Stop

L H H L Forward Stop

L H H H Left turn Stop

H L L L Right turn Right turn

H L L H Forward Stop

H L H L Forward Stop

H L H H Forward Stop

H H L L Right turn Right turn

H H L H Forward Stop

H H H L Right turn Stop

H H H H Forward Stop

L L L L Forward Stop

31

Table 5.2. Response to the first condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L L H Left turn

Detecting obstacle Robot after response

Figure 5.2. The first condition. The robotic wheelchair detects the obstacle to the right. It
turns counter-clockwise until it detects no obstacle.

Table 5.3. Response to the second condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L L H Left turn

Detecting obstacle Robot after response

Figure 5.3. The second condition. The robotic wheelchair detects the obstacle to the right
and in the front. It turns counter-clockwise left until it detects no obstacle.

32

Table 5.4. Response to the third condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L H L Left turn

Detecting obstacle Robot after response

Figure 5.4. The third condition The robotic wheelchair detects the obstacle to the right
and front. It turns counter-clockwise until it detects no obstacle.

Table 5.5. Response to the fourth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L H L Left turn

Detecting obstacle Robot after response

Figure 5.5. The fourth condition. The robotic wheelchair detects the obstacle to the right
and in the front. It turns counter-clockwise until it detects no obstacle.

33

Table 5.6. Response to the fifth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L H H Left turn

Detecting obstacle Robot after response

Figure 5.6. The fifth condition. The robotic wheelchair detects the obstacle to the right. It
turns counter-clockwise until it detects no obstacle.

Table 5.7. Response to the sixth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L H H Left turn

Detecting obstacle Robot after response

Figure 5.7. The sixth condition. The robotic wheelchair detects the obstacle to the right
and in the front. It turns counter-clockwise until it detects no obstacle.

34

Table 5.8. Response to the seventh condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H L L Right turn

Detecting obstacle Robot after response

Figure 5.8. The seventh condition. The robotic wheelchair detects the obstacle to the left.
It turns clockwise until it detects no obstacle.

Table 5.9. Response to the eighth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H L L Right turn

Detecting obstacle Robot after response

Figure 5.9. The eighth condition. The robotic wheelchair detects the obstacle to the left
and in the front. It turns clockwise until it detects no obstacle.

35

Table 5.10. Response to the ninth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H L H Forward

Detecting obstacle Robot after response

Figure 5.10. The ninth condition.The robotic wheelchair detects the obstacle to the left
and right. It keeps moving forward until it detects an obstacle.

Table 5.11. Response to the tenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H L H Stop

Unpredictable situation, stop.

Figure 5.11. The tenth condition The robotic wheelchair detects the obstacle to the left,
right, and in the front. This is an unpredictable situation and it stops.

36

Table 5.12. Response to the eleventh condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H H L Forward

Detecting obstacle Robot after response

Figure 5.12. The eleventh condition. The robotic wheelchair detects the obstacle to the
left and right. It keeps moving forward until it detects an obstacle.

Table 5.13. Response to the twelfth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H H L Stop

Unpredictable situation, stop.

Figure 5.13. The twelfth condition The robotic wheelchair detects the obstacle to the left,
right, and in the front. This is an unpredictable situation and it stops.

37

Table 5.14. Response to the thirteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H H H Left turn

Detecting obstacle Robot after response

Figure 5.14. The thirteenth condition The robotic wheelchair detects the obstacle to the
left and right. It keeps moving forward until it detects an obstacle.

Table 5.15. Response to the fourteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H H H Stop

Unpredictable situation, stop.

Figure 5.15. The fourteenth condition. The robotic wheelchair detects the obstacle to the
left, right, and in the front. This is an unpredictable situation and it stops.

38

Table 5.16. Response to the fifteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L L L Right turn

Detecting obstacle Robot after response

Figure 5.16. The fifteenth condition.The robotic wheelchair detects the obstacle to the left.
It turns clockwise until it detects no obstacle.

Table 5.17. Response to the sixteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L L L Right turn

Detecting obstacle Robot after response

Figure 5.17. The sixteenth condition. The robotic wheelchair detects the obstacle to the
left and in the front. It turns clockwise until it detects no obstacle.

39

Table 5.18. Response to the seventeenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L L H Forward

Detecting obstacle Robot after response

Figure 5.18. The seventeenth condition. The robotic wheelchair detects the obstacle to the
left and right. It keeps moving forward until it detects an obstacle.

Table 5.19. Response to the eighteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L L H Stop

Unpredictable situation, stop.

Figure 5.19. The eighteenth condition. The robotic wheelchair detects the obstacle to the
left, right, and in the front. This is an unpredictable situation and it stops.

40

Table 5.20. Response to the nineteenth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L H L Forward

Detecting obstacle Robot after response

Figure 5.20. The robotic wheelchair detects the obstacle to the left and right. It keeps
moving forward until it detects an obstacle.

Table 5.21. Response to the twentieth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L H L Stop

Unpredictable situation, stop.

Figure 5.21. The robotic wheelchair detects the obstacle to the left, right, and in the front.
This is an unpredictable situation and it stops.

41

Table 5.22. Response to the twenty-first condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L H H Forward

Detecting obstacle Robot after response

Figure 5.22. The twenty-first condition. The robotic wheelchair detects the obstacle to the
left and right. It keeps moving forward until it detects an obstacle.

Table 5.23. Response to the twenty-second condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L H H Stop

Unpredictable situation, stop.

Figure 5.23. The twenty-second condition. The robotic wheelchair detects the obstacle to
the left, right, and in the front. This is an unpredictable situation and it stops.

42

Table 5.24. Response to the twenty-third condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H L L Right turn

Detecting obstacle Robot after response

Figure 5.24. The twenty-third condition. The robotic wheelchair detects the obstacle to
the left. It turns clockwise until it detects no obstacle.

Table 5.25. Response to the twenty-fourth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H L L Right turn

Unpredictable situation, stop.

Figure 5.25. The twenty-fourth condition. The robotic wheelchair detects the obstacle to
the left and front. It turns clockwise until it detects no obstacle.

43

Table 5.26. Response to the twenty-fifth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H L H Forward

Detecting obstacle Robot after response

Figure 5.26. The twenty-fifth condition. The robotic wheelchair detects the obstacle to the
left and right. It keeps moving forward until it detects an obstacle.

Table 5.27. Response to the twenty-sixth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H L H Stop

Unpredictable situation, stop.

Figure 5.27. The twenty-sixth condition.The robotic wheelchair detects the obstacle to the
left, right, and in the front. This is an unpredictable situation and it stops.

44

Table 5.28. Response to the twenty-seventh condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H H L Forward

Detecting obstacle Robot after response

Figure 5.28. The twenty-seventh condition. The robotic wheelchair detects the obstacle to
the left and right. It keeps moving forward until it detects an obstacle.

Table 5.29. Response to the twenty-eighth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H L Stop

Unpredictable situation, stop.

Figure 5.29. The twenty-seventh condition.The robotic wheelchair detects the obstacle to
the left, right, and in the front. This is an unpredictable situation and it stops.

45

Table 5.30. Response to the twenty-ninth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H H H Forward

Detecting obstacle Robot after response

Figure 5.30. The twenty-ninth condition. The robotic wheelchair detects the obstacle to
the left and right. It keeps moving forward until it detects an obstacle.

Table 5.31. Response to the thirtieth condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H H Stop

Unpredictable situation, stop.

Figure 5.31. The thirtieth condition. The robotic wheelchair detects the obstacle to the left,
right, and in the front. This is an unpredictable situation and it stops.

46

Table 5.32. Response to the thirty-first condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L L L Forward

Detecting obstacle Robot after response

Figure 5.32. The thirty-first condition.The robotic wheelchair detects no obstacle and it
keeps moving forward.

Table 5.33. Response to the thirty-second condition.

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H H Stop

Unpredictable situation, stop.

Figure 5.33. The thirty-second condition. The robotic wheelchair detects the obstacle in
the front. This is an unpredictable situation and it stops.

47

5.4 Light Tracking

The robotic wheelchair has the capability of tracking a motion trajectory defined with a

light with the seven photocells mounted on the sensor bracket. The algorithm of this

tracking capability is: If any of the three photocells on the left detects the light, then the

wheelchair turns counter-clockwise until the front photocell detects the light. If any of the

three photocells on the right detect the light, the wheelchair turns clockwise until the front

photocells detect the light. The diagrams to illustrate this light-tracking capability are

shown in Figure 5.34 and 5.35.

22.5θ = o

22.5θ = o

22.5θ = o22.5θ = o

22.5θ = o

22.5θ = o

Figure 5.34. Sensing directions of the photocells are indicated as dashed lines.

48

 Step 1 Step 2

Step 3

Figure 5.35. Steps of the robotic wheelchair track a specific light.

Step 1: The left photocells detect the light.

Step 2: The wheelchair turns to the counter-clockwise until the front photocell detects the

light.

Step 3: After the front photocell detects the light, the wheelchair moves to the target and

stops at 25 cm away.

49

CHAPTER VI

SOFTWARE DESIGN

The control program of the autonomous robotic wheelchair includes real-time path

planning, hardware control, and networking. This chapter describes each program.

Section 6.1, it describes the programming and software being used. Section 6.2 describes

the software to control the hardware. Section 6.3 describes the real-time path planning

algorithm. Section 6.4 describes the wireless networking connection.

6.1 Programming Language

The Microsoft®
 Windows®

 Visual Basic 6.0 for Windows development environment is

being used for the programming requirements of the robotic wheelchair. It provided a

single platform to write programs for all the applications of the robotic wheelchair. In the

IPRV development, the Microsoft Windows application programming interface (API) was

utilized to develop the application to control the PCMDIO digital-I/O card [1]. It use of

the Windows API provides direct access to the dynamic-link-library (DLL) files to

operate the PCMDIO card. This development is also need in this thesis research.

The PCMDIO digital-I/O data-acquisition card is used for all data acquisition and output

control signal to operate the robotic wheelchair. The vendor of the PCMDIO card also

provides the PCMDRIVE® data acquisition software. The software includes the following

components. For the details of the PCMDRIVE software can be found in [12] and [13].

50

6.1.1 PCMDRIVE Configuration Utility

This software was specifically designed to support the PCMDIO data acquisition adapter

function. It is easy to use the application that allows the user to graphically acquire and

display real-time data. This software is used to edit the PCMDIO hardware configuration

file. This file contains the setup of the 24 individual I/O channels of the PCMDIO card

into logical channels. Using the configuration software, each logical channel can be set as

single-bit or multiple-bit channels. Once all the logical channels have been set, each

channel may be configured as an input channel or an output channel. The PCMDRIVE

configuration utility with the 24 data I/O lines is shown in Figure 6.1. For the

autonomous robotic wheelchair, the PCMDIO was configured to have 8 logical channels

because of some limitation from the PMLR’s development. The detail of the channel

configuration is shown in Table 6.1.

Figure 6.1. PCMDRIVE configuration utility [13].

51

Table 6.1. PCMDIO channel configuration.

Logical

Channel

Number

of bits
Channel type Function

CH 0 4 Input Signal from left hall effect sensor.

CH 1 4 Input Signal from right hall effect sensor.

CH 2 1 Input Signal from left GP2D15.

CH 3 2 Input Signal from right GP2D15 and GP2D12.

CH 4 4 Output Control the left wheel.

CH 5 1 Input Signal from left GP2D12.

CH 6 4 Output Control the right wheel.

CH 7 1 Input Signal from front GP2D15

CH 8 3 Input Signal from 74LS148 encoder.

6.1.2 Performing Data Acquisition

PCMDRIVE uses a data-defined interface, and each data-acquisition operation is defined

by a series of configuration parameters. These parameters are contained in a data

structure and are collectively referred to as a request or a request structure. From the

IPRV development , in order to perform an input or output operation using the PCMDIO,

it requires the following sequence of steps [1]:

1. Define the hardware configuration.

2. Open the hardware device.

52

3. Allocate the request structure and data buffers.

4. Define the request structure and data buffers.

5. Request the operation.

6. Write data to the locked data buffer.

7. Arm the request.

8. Trigger the request.

9. Wait for completion.

10. Read data from the locked data buffer.

11. Release the configuration.

12. Close the hardware device.

There are five functions were specially created in order to simplify the use of the

PCMDIO for digital I/O operations. The functions are

1. Function openDevice

2. Function singleDigitalInput

3. Function multipleDigitalInput

4. Function singleDigitalOutput

5. Function multipleDigitalOutput.

The detail of those twelve sequences and five functions can be found in [1].

6.2 Hardware Control

To equip the autonomous robotic wheelchair with feedback control ability, we set the

logical channels, input and output data lines, and the bits number per logic channel of the

PCMDIO I/O card as Table 6.1. The six input channels take 16 bits of the input data lines.

53

These are for the signals from two GP2D12 infrared sensors, three GP2D15 infrared

sensors, the 71HC191 counters count the signal from the right and the left Hall-effect

sensors, and the 74LS148 priority encoder to encode the signals from seven photocells. In

thisr research, these two channels are used to control the speed of the wheelchair and to

generate the forward and backward motion.

6.3 Operation of the Robotic Wheelchair

The real-time path-planning algorithm was described in Section 5.3 and 5.4. To program

this algorithm in Visual Basic 6.0, the operation interface with the user was designed in

Visual Basic 6.0 as Figure 6.2.

The interface for the user includes the “manual mode” and “autonomous mode” for the

user operating the robotic wheelchair. If the user presses the manual mode button, the

wheelchair can be controlled by the user manually. This function includes front, right, left,

stop, and back motions of the wheelchair. If the user presses the autonomous mode button,

the program will run the algorithm shown in Figure 6.3.

In this autonomous mode, we set the sampling time interval from the input data lines of

the PCMDIO as 100 ms, and the output control signals are 100 ms interval.

54

Figure 6.2 Operating interface with the user in Visual Basic 6.0.

55

Figure 6.3 Algorithm for the “autonomous” mode of the robotic wheelchair.

56

6.4 Remote Control

Remote operability of the robotic wheelchair is provided by interfacing with a LAN using

a wireless USB LAN card installed on the laptop. In the development of the PMLR, it

used an “ad-hoc” technique to equip the PMLR with remote control ability [2]. This

ad-hoc technique can only be controlled by the client computer in the same network, and

there was only a 10-meter effective range to control the PMLR.

With the newly developed technique by Cheng-Yeh Hsu in Precision Mechatronics Lab,

the autonomous robotic wheelchair could be controlled by any computer connected to the

Internet while the robotic wheelchair moving in the environment with a Wi-Fi access. We

used the Tamulink system, which is a Wi-Fi access provided by Texas A&M University

almost everywhere on its campus.

The transport layer protocol used for sending and receiving data is the Transmission

Control Protocol (TCP). The Microsoft Winsock Control 6.0 ActiveX control is used for

the implementation of the TCP sockets within Visual Basic 6.0 [Appendix B]. While the

client computer has the IP address of the laptop on the wheelchair, the user on the

client-side computer could control the robotic wheelchair with the client-side program.

A schematic of the control system is shown in Figure 6.4 and 6.5. It can be seen that the

commands from the client computer send through the Tamulink wireless Internet system.

The controller will have response according to the commands from client computer and

the sensor system. The interface of the client-side program is shown in Figure 6.6.

57

Figure 6.4 Remote control through Internet.

58

 Figure 6.5 Schematic of remote control through the Internet.

Figure 6.6. Interface of the client side program.

59

CHAPTER VII

CONTROL SYSTEM DESIGN

A key remaining issue of the autonomous robotic wheelchair is developing the control

system. The design of the control system includes the sensor system and the speeds of

two motors. Section 7.1 describes the main structure of the control system. Section 7.2

describes how the sensor system interacts with the control system. In Section 7.3, the

speed control of the speeds of two motors is described.

7.1 The Structure of the Control System

The structure of the control system is shown in Figure 7.1. The client-side computer

sends the command signals to the control program running on the laptop on the robotic

wheelchair. The signals from the seven photocells and the five infrared sensors are input

to the laptop through the six input channels of the PCMDIO data-acquisition card with a

10 Hz sampling frequency. The control program generates the output signals to the MC-7

motor controllers through the output channels of the PCMDIO data-acquisition card and

the interface circuits. The MC-7 motor controllers generate pulse-width-modulation

(PWM) signals to the left-side and right-side motors. The Hall-effect sensors generate the

pulses by the rotations of the two motors, which are feedback to the control program

through the input channels of PCMDIO data-acquisition card.

60

Client
Computer

Control
Program

PCMDIO
 Channel
4 and 6

Interface
Circuits

Two MC-7
Motor

Controllers
Two Motors

Hall-effect
Sensors

PCMDIO
 Channel
0 and 1

PCMDIO
 Channel

2, 3, 5, and 7

PCMDIO
 Channel 8

Infrared
Sensors

PhotoCells

10 Hz ZOH

10 Hz ZOH

-
+

Figure 7.1. Structure of the control system.

7.2 The Sensor in the Control System

As described in section 7.1, there are three kinds of sensors in the sensor system: infrared

sensors, photocells, and Hall-effect sensors. How these sensors are interfeced with the

control system is described below.

Figure 7.2 shows the infrared sensors in the control system. The signals from the five

infrared sensors are input to the control program through the input channels of the

PCMDIO data-acquisition card. The sample time interval for the signals from the infrared

sensors in the control program was set as 100 ms. It can also be referred as a 10 Hz

zero-order holder (ZOH) to the control system.

61

Figure 7.2. Interfacing infrared sensors with the control system.

Figure 7.3 shows how the photocells are interfaced with the control system. The signals

from the seven photocells are encoded to three-bit data by a 74LS148 priority encoder.

The signal from this priority encoder is input to the control program through channel 8 of

the PCMDIO data-acquisition card. The sampling interval for the signals for the

photocells is set as 100 ms as well.

Figure 7.3. Interfacing photocells with the control system.

62

Figure 7.4 shows how the Hall-effect sensors are interfaced with the control system. The

control program generates the output signals to the left- and right-side MC-7 motor

controllers through the output channels of the PCMDIO data-acquisition card and the

interface circuits. The MC-7 motor controllers generate the PWM signals to the left and

right side motors. The Hall-effect sensors mounted on the left- and right-side motors

generate the pulses by the rotations of the two motors. The pulses are input to the control

program through the input channels of the PCMDIO data-acquisition card. The pulses

from the two Hall-effect sensors can be used to record the motion path of the robotic

wheelchair and to adjust the speeds of the two driving wheels.

Control
Program

PCMDIO
 Channel 4

Interface
Circuits

Left MC-7
Motor

Controller
Left Motors

Left Hall-
effect Sensor

PCMDIO
 Channel 0

Right MC-7
Motor

Controller
Right Motor

PCMDIO
 Channel 1

Right Hall-
effect Sensor

PCMDIO
 Channel 6

Interface
Circuits

-

-

Figure 7.4 Interfacing Hall-effect sensors with the control system.

7.3 Controlling the Wheel Speed

To control the speeds of the two driving wheels of the robotic wheelchair, the MC-7

63

motor controllers are used to generate the PWM signals to the two motors. However, the

PWM signals from the MC-7 motor controllers are not exactly the same while the same

control voltage connected to the pins T13 of the MC-7 controllers. The distance of the

two driving wheels is 57.5 cm and the diameter of the wheel is 31.75 cm. Although the

speed difference of the two driving wheels is only 5%, the wheelchair will move

approximately 16o to one side while it only moving for three meters. The 16o error is

too large to implement the real-time path-planning. It is necessary to make the robotic

wheelchair move as straight as possible. The development in the PMLR is used the

Hall-effect sensors’ signals to design a feedback controller to let the wheelchair move

near straight. However, the resolution of the Hall-effect sensor is120o . Although feedback

controller in the PMLR can work, the wheelchair would have a significant vibration and

the moving trajectory in not smooth [2].

To adjust the speed of the two driving wheels, it is necessary to measure the duty-ratio of

the PWM signals generated from the two MC-7 motor controllers with various control

voltage to pins T13. Figure 7.5 and Table 7.1 show the results of the duty-ratio of the

PWM signals generated by the two MC-7 motor controllers measured by an oscilloscope.

From Table 7.1 and Figure 7.5, we can see that the difference in the duty-ratios of the two

MC-7 motor controllers is approximately 1.2%. For the better resolution in the duty-ratio,

it can be seen that the control voltage should be adjusted below 0.01 V. However, it is

practically impossible to adjust the control voltage below 0.01 V precisely.

64

Table 7.1. Duty-ratio of the PWM signals generated from two MC-7 motor controllers.

Control voltage to pin T13 of

MC-7 motor controllers

Duty-ration of the left

MC-7 motor controller

Duty-ration of the right

MC-7 motor controller

1.55V 24.9% 23.7%

1.56V 25.2% 24.1%

1.57V 25.6% 24.4%

1.58V 25.9% 24.7%

1.59V 26.1% 25.2%

1.60V 26.7% 25.4%

1.61V 27.0% 25.9%

1.62V 27.4% 26.1%

1.63V 27.9% 26.5%

1.64V 28.3% 26.9%

1.65V 28.6% 27.3%

1.66V 29.1% 27.7%

1.67V 29.5% 28.1%

1.68V 29.9% 28.5%

1.69V 30.4% 28.9%

1.70V 30.9% 29.3%

1.71V 31.2% 29.6%

1.72V 31.7% 30.1%

1.73V 32.1% 30.5%

1.74V 32.5% 30.9%

1.75V 33.0% 31.2%

The method to making the autonomous robotic wheelchair move in a near straight and

65

smooth path is adding a 10 ~200Ω Ω potentiometer on the interface board. This

potentiometer can adjust the control voltage to the-left side MC-7 motor controller from

1.60 V to 1.69 V. From the experiments result, by adjusting the left control voltage to

1.62 V, the difference of the two wheels can be reduced to approximately 1%. The

experimental data are shown in Table 7.2.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1.55 1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.73 1.75

Control voltage to pins T13

D
ut

y-
ra

ti
o

Left

Right

Figure 7.5. Statistic chart of the control voltage and duty-ratio.

66

Table 7.2. Experimental data for the two driving wheels.

Control voltage to

pin T13 of the right

MC-7 motor

controller

Control voltage to

pin T13 of the left

MC-7 motor

controllers

Pulses counted by

the right Hall-effect

sensor in one

minute

Pulse counted by

the left Hall-effect

sensor in one

minute

1.66 V 1.61 V 1228 1202

1.66 V 1.62 V 1284 1302

1.66 V 1.63 V 1324 1380

1.66V 1.64V 1412 1482

In this thesis research, the control voltage to the left wheel was set as 1.62 V and the right

wheel is set as 1.66 V. From Table 7.2, the velocity V of the center between the two

driving wheels can be obtained as 1284 1302 1293
2
+

= cm/min = 0.21 m/s from Table

7.2. An experimental path of the robotic wheelchair moving for two meters recorded by

the pulses counted by the Hall-effect sensors is shown in Figure 7.6. It can be seen that

the robotic wheelchair were moving in a near straight path. The experimental method will

be described in the next chapter.

67

0

50

100

150

200

250

-100 -50 0 50 100

x(cm)

y(
cm

)

Figure 7.6. An experimental path of the robotic wheelchair moving two meters.

68

CHAPTER VIII

OPERATION AND TESTING

This autonomous robotic wheelchair research contains three major design components:

hardware design, interface design, and real-time path-planning algorithm design. This

chapter describes how these three design components are combined together to make the

autonomous robotic wheelchair move in an unknown environment with

collision-avoidance navigation. Section 8.1 describes the typical autonomous and manual

operation modes. Section 8.2 describes the experiments and testing results of the motion

trajectory with real-time path-planning.

8.1 Operation

As described in Chapter VI, the control software provides two modes (autonomous and

manual) of the robotic wheelchair. When the user turns on the robotic wheelchair, it runs

in the autonomous mode by default unless the user switches to the manual mode.

8.1.1 Autonomous Mode

While the robotic wheelchair running in the autonomous mode, it keeps moving forward

until an obstacle is detected by the any of five infrared sensors or a specific light is

detected by any of the seven photocells. The algorithm of the autonomous mode can be

referred to Figure 6.3. If there is any obstacle detected by any of the infrared sensors, the

robotic wheelchair will react according to the Table 5.1. This function allows the robotic

wheelchair to perform the collision-avoidance navigation. If the robotic wheelchair

detects the specific light by any of the seven photocells, it moves toward the specific light,

69

and stops there. The specific light is considered as the final target. According to the real

time path-planning algorithm, all the trajectories are generated in real time by the

path-planning algorithm described in Figure 6.3 without any predefined route.

8.1.2 Manual Mode

The manual mode allows the user to control the robotic wheelchair manually. It provides

five functions: front, back, right, left, and stop. Those functions allows the user to control

the robotic wheelchair to move forward, move backward, turn left (counter-clockwise),

turn right (clockwise), and stop any time. The manual mode also allows the user to

control the robotic wheelchair manually when it stops in a dead zone. While the user

operating the robotic wheelchair in the manual mode, the autonomous mode is disabled.

8.2 Experiments and Testing

To implement the real-time path-planning algorithm, it is necessary to ensure that the

motion trajectory of the robotic wheelchair turning around the middle point of its axle be

a perfect circle. This motion trajectory can be recorded by the Hall-effect sensors and

converted to a two-dimensional trajectory in the xy-plane.

8.2.1 Recording the Motion Trajectory

The motion trajectory can be recorded by the Hall-effect sensors and converted to an

xy-plane coordinate system. The gear-ratio of the driving wheel is found as 32:1 and the

resolution of the Hall-effect sensor is 120o , so that there are 96 pulses for one revolution.

The circumference of the driving wheel is approximately 100 cm, and one pulse

70

represents closely 1 cm of the wheel moving on the ground if there is no skid. The

difference of pulses counted by the left- and right-side Hall-effect sensors represents

closely 1o of the turning angle of the robotic wheelchair in PMLR’s research [2].

Assume that the robotic wheelchair starts at the 0 0(,) (0,0)x y = point in the xy-plane.

Then, set the sampling interval as 100 ms for the pulses counted by the Hall-effect

sensors. Defined the pulse counted by the left-side Hall-effect sensor at the sampling

period i is iLH , and that counted by the right-side Hall-effect sensor is iRH , where

1,........,i n= . The displacement id of the robotic wheelchair from 1 1(,)i ix y− − to (,)i ix y

is 1 1

2 2
i i i iLH RH LH RH− −+ +

− cm and the turning angle is ()i i iLH RHθ = − o . In the

xy-plane, the position of the robotic wheelchair is 1 sini i i ix x d θ−= + , 1 cosi i i iy y d θ−= + .

An illustration of the motion path recording method is shown in Figure 8.1.

iLH iRH

1iθ +

iθ

1iθ −

iθ

1 1(,)i ix y− −

(,)i ix y

1 1(,)i ix y+ +

id

1id +

1id −

()i i iLH RHθ = − o

1 1

2 2
i i i i

i
LH RH LH RHd − −+ +

= −

Figure 8.1. Recording the motion trajectory.

71

8.2.2 Robotic Wheelchair Rotating around the Axle Middle Point

Theoretically, if one of the driving wheels moves forward and the other moves backwards

at the same speed, the robotic wheelchair will turn around the middle point of its axle.

The motion trajectory is a circle when it turns360o , and the diameter of this circle is the

distance of the two wheels, which is 57.5 cm. The circumference of the circle is

57.5 2 361.28π× = cm. However, the speeds of the two driving wheels are not exactly

the same and the driving wheels may skid on the ground, therefore the position of the

middle point of the axel will not be fixed and the motion trajectory is not a perfect circle.

To record the motion trajectory, the Hall-effect sensors can be used. Set the sampling

interval as 100 ms for the pulses counted by the Hall-effect sensors. In Figure 8.2, the

position of the axle middle point ,()i i iO x y at the sampling period i in xy-plane can be

found by the method described in Section 8.2.1. Notice that

1 1

2 2
i i i i

i
LH RH LH RHd − −− + − +

= − if it turns counter-clockwise and

1 1

2 2
i i i i

i
LH RH LH RHd − −− −

= − if it turns clockwise. At the sampling period i, while one

of the driving wheels is moving forward and the other moving backward, the turning

angle iα from the wheel to the axle middle point can also be found by the pulse iLH

and iRH . While the robotic wheelchair is turning 360o around the middle point of the

axle, the circumference of the motion trajectory circle is 361.28 cm. Since one pulse

represents 1 cm of the motion of the wheel, the turning angle can be represented as

()i i iLH RHα = + o , and the radius 28.75r = (cm) is the distance from the driving wheel

72

to the axle middle point. The point (,)i ix y represents the position of the driving wheel

at the sampling period i may be defined as cosi i ix x r α= + , sini i iy y r α= + .

Figure 8.2. Recording the motion trajectory while one of the driving wheels are moving
forward and the other are moving backward at time i.

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40

x (cm)

y
(c

m
)

Figure 8.3. Motion trajectory of the two driving wheels.

73

The experimental measurement of the motion trajectory of the two driving wheels while

the robotic wheelchair is turning 360o is shown in Figure 8.3. It can be seen that the

motion trajectory of the two driving wheels is nearly a circle. Therefore it is

approximated that the robotic wheelchair turns around the middle point of its axle.

8.2.3 Motion Trajectory of the Robotic Wheelchair in an Unknown Environment

The robotic wheelchair can move in an unknown environment with real-time

path-planning with collision avoidance navigation. While the robotic wheelchair is

turning clockwise or counter-clockwise by an angle α around the middle point of its

axle, the body-fixed coordinate system in the xy-plane also rotates by an angleα . Figure

8.4 shows the robotic wheelchair moving to point ,0, ,0()n nx y , turning clockwise for an

angle 1α , the basis coordinate rotates to 1 1(,)x y% % , the sampling period i resets to 0,

and moves to the point ,1 ,1(,)i ix y . At the sampling period i , the point ,1 ,1(,)i ix y relation

to the basis coordinate 0 0(,)x y% % can be found as ,1 1,1 ,1 1,0 1 ,1

,1 1,1 ,1 1,0 1 ,1

sin()
cos()

i i i i

i i i i

x x d
y y d

θ α θ
θ α θ

−

−

= + + +⎧
⎨ = + + +⎩

,

,0 0,1

,0 0,1

n

n

x x
y x

=⎧
⎨ =⎩

where ,1 ,1 1,1 1,1
,1 2 2

i i i i
i

LH RH LH RH
d − −+ +

= − , ,1 ,1 ,1()i i iLH RHθ = − o ,

1,........,i n= , i N∈ . Furthermore, if the robotic wheelchair moves to the basis

coordinate (,)j jx y% % , the position , ,(,)i j i jx y can be found as

1

, 1, , , ,
0 0

1

, 1, , , ,
0 0

sin()

cos()

j j

i j i j i j n p q i j
p q

j j

i j i j i j n p q i j
p q

x x d

y y d

θ α θ

θ α θ

−

−
= =

−

−
= =

⎧
= + + +⎪

⎪
⎨
⎪ = + + +⎪⎩

∑ ∑

∑ ∑
, , 1 0,

, 1 0,

n j j

n j j

x x
y x

−

−

=⎧
⎨ =⎩

, , , ,()i j i j i jLH RHθ = − o ,

74

, , 1, 1,
, 2 2

i j i j i j i j
i j

LH RH LH RH
d − −+ +

= − , 1,........,i n= , 0,........,j m= , ,i j N∈ . Where

, ,(,)i j i jx y represents the position to the basis coordinate 0 0(,)x y% % . At the sampling period

i in the basis coordinate (,)j jx y% % , ,i jθ , ,i jd , ,i jLH , ,i jRH represent the small turning

angle, small displacement from the last position, and pulses counted from the Hall-effect

sensors in the basis coordinate (,)j jx y% % . , 1 , 1(,)n j n jx y− − represents the last position in the

basis coordinate 1 1(,)j jx y− −% % , , 1n jθ − represents , 11

, 1

tan n j

n j

x
y

−−

−

, and jα represents the total

turning angle around its axle middle point at , 1 , 1(,)n j n jx y− − , jα can be measured by the

method described in Section 8.2.2. The illustration of this motion path recording method

is shown in Figure 8.4.

0x%

0y%

,0, ,0()n nx y

,0nθ

(0,0)

1x%

1y%

,0nθ

1θ

,1 ,1(,)i ix y1,1iθ −

1,1id +

,1iθ

,1id

1,1 1,1(,)i ix y− −

1,1id −
1,1iθ +

1,1 1,1(,)i ix y+ +

Figure 8.4. The robotic wheelchair moves in different basis coordinates in the xy-plane.

75

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

x (cm)

y
 (

cm
)

Figure 8.5. Motion trajectory of robotic wheelchair turned clockwise for approximately
140o .

0

40

80

120

160

0 40 80 120 160

x (cm)

y
 (

cm
)

Figure 8.6. Motion trajectory of the robotic wheelchair tracking a specific light.

76

By this motion trajectory recording method, the real-time path-planning can be recorded

as Figures 8.5, 8.6. Figure 8.5 shows the motion trajectory of robotic wheelchair moved

forward for approximately 120 cm and turned clockwise for approximately140o . Figure

8.6 shows the motion trajectory while it tracking a specific light which was described in

Section 5.4. The robotic wheelchair detected the light on the right side, it turned

clockwise to the right, and turned counter-clockwise after approximately 45 cm to correct

the error automatically. Figure 8.7 shows the motion trajectory of the robotic wheelchair

moving in real-life testing environment with collision-avoidance navigation recorded by

the long-term-exposure photography technique. A lamp was mounted on the robotic

wheelchair. Figure 8.8 shows the same motion trajectory of the robotic wheelchair as

Figure 8.7.

Figure 8.7. Motion trajectory of the robotic wheelchair recorded by the
long-term-exposure photography technique.

77

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

0 50 100 150 200 250

x (cm)

y
 (

cm
)

Figure 8.8. Motion trajectory of the robotic wheelchair moving in a real-life testing
environment.

78

From Figure 8.7 and 8.8, it can be seen that the motion trajectory recorded by the

Hall-effect sensor is very close to the long-term-exposure photograph. It can be seen that

the motion trajectory on Figure 8.7 is a smoother path. A possible reason is that the

speeds of the two driving wheels were not exactly the same and there was skidding.

The testing environment for this research is in the ground-floor hallway and Precision

Mechatronics Lab inside the Zachery Engineering Center of Texas A&M University. This

testing result demonstrates that the robotic wheelchair can move in an unknown

environment located in a normal building. Figures 8.9-8.11 shows sequence photos of the

robotic wheelchair during testing.

Figure 8.9. The robotic wheelchair starts at point (0,840).

79

Figure 8.10. The robotic wheelchair turned at point (148,842).

Figure 8.11. The robotic wheelchair turned at point (160,806).

80

CHAPTER IX

CONCLUSIONS AND SUGGESTED FUTURE WORK

The autonomous robotic wheelchair was successfully constructed and met the objective.

Section 9.1 summarizes the accomplishments of the thesis. Section 9.2 discusses the

current limitations of the autonomous robotic wheelchair. In Section 9.3, future work is

proposed to enhance the functionality of the autonomous robotic wheelchair and

overcome the current limitations.

9.1 Conclusions

The autonomous robotic wheelchair has met the objectives. The robotic wheelchair could

move in an unknown environment with real-time path planning. The generation of a

real-time path was implemented by detecting the range from the obstacles, and by

tracking specific lights sources which is used as a beacon. The infrared sensors were used

to detect the distance to the obstacles, and the light-variance resistors were used to track

the specific light source.

To optimize the motion trajectory, the circuits to the motor controller were modified to

ensure the wheelchair can turns in a minimum turning radius. The robotic wheelchair

could turn around the center point of the axle. The algorithm of the real-time path

planning of the robotic wheelchair was simplified. Combined with the newly developed

of Internet-connection capability, the robotic wheelchair could move in an unknown

environment with collision avoidance navigation.

81

9.2 Limitations

The autonomous robotic wheelchair in its current form has the following limitations.

1. The speeds of two driving wheels are not exactly the same and the autonomous robotic

wheelchair cannot move in a straight line. Even using the feedback controller by the

pulses from the Hall-effect sensors, it is impossible to adjust the control voltage to the

motor controllers precisely.

2. The main limitation of the robotic wheelchair is that the PCMDIO data-acquisition

card has digital I/O capability alone. All signals from the sensors need to be converted to

digital signal through ADCs. The GP2D12 infrared sensor generates different analog

signals according to the distance from the obstacle. Without the analog I/O capability, the

robotic wheelchair can only detect the obstacles in a fixed range. It cannot measure the

precise distance from the obstacles. The control program and real-time path-planning

algorithm can only be designed by this digital input signals. Other control laws such as

optimal controller to ensure the robotic wheelchair to move in an optimal path cannot be

implemented.

3. The laptop tends to overheat, which causes it unstable. The wireless adapter does not

have good performance in receiving Wi-Fi signal.

4. The robotic wheelchair has no sensor at backside, while it moving to the dead zone it

82

can only set to stop and cannot moving backward.

9.3 Suggested Future Work

The following are proposed as future work to enhance the functionality of the

autonomous robotic wheelchair and overcome the current limitations.

1. Use of the controller with analog I/O capability, such as digital-signal-processor (DSP)

board. With the analog I/O capability, we could implement other real-time path-planning

algorithms which might have better performance. The PWM signals could be directly

generated from the DSP, and we could adjust the duty-ratio at the same.

2. Adding the optical encoders on the two driving wheels instead of the Hall-effect

sensors. The optical encoders have much better resolution than the Hall-effect sensors. By

the signal from the optical encoders, a better feedback controller can be designed to

ensure the robotic wheelchair to move in a straight line.

83

REFERENCES

[1] R. Homji, Intelligent Pothole Repair Vehicle, M.S. thesis, Texas A&M University,

2005.

[2] A. Rogers, Precision Mechatronics Lab Robot Development, M.S. thesis, Texas

A&M University, 2007.

[3] T. J. A. de Vries, C. v. Heteren, and L. Huttenhuis, “Modeling and Control of a Fast

Moving, Highly Maneuverable Wheelchair,” in Proceedings of the International

Biomechatronics Workshop, pp. 110−115, Apr. 1999.

[4] A. Argyros, P. Georgiadis, P. Trahanias, and D. Tsakiris, “Semi-Autonomous

Navigation of a Robotic Wheelchair,” Journal of Intelligent and Robotic Systems,

vol. 34, no. 3, pp. 315−329, 2002.

[5] C. H. Kuo, H. L. Huang, and M. Y. Lee, “Development of Agent-Based

Autonomous Robotic Wheelchair Control Systems,” Journal of Biomedical

Engineering - Applications, Basis, Communications, vol. 15, no. 6, pp. 12−23, Dec.

2003.

[6] D. Bank, “A High-Performance Ultrasonic Sensing System for Mobile Robots,” in

ROBOTIK 2002: Leistungsstand, Anwendungen, Visionen, Trends. VDI-Berichte Nr.

1679, pp. 557−564, Jun. 2002.

[7] D. H. Shim, H. Chung, and S. S. Sastry, “Conflict-Free Navigation in Unknown

Urban Environments,” IEEE Robotics & Automation Magazine, vol. 13, pp. 27−33,

Sep. 2006.

[8] D. Cruz, J. McClintock, B. Perteet, O. A. A. Orqueda, Y. Cao, and R. Fierro,

“Decentralized Cooperative Control - A Multivehicle Platform for Research in

84

Networked Embedded Systems,” IEEE Control Systems Magazine, vol. 27, no. 3,

pp. 58−78, Jun. 2007.

[9] W. Ren, R. W. Beard, and E. M. Atkins, “Information Consensus in Multivehicle

Cooperative Control,” IEEE Control Systems Magazine, vol. 27, no. 2, pp. 71−82,

Apr. 2007.

[10] H. Şahin and L. Gűvenc, “Household Robotics: Autonomous Devices for

Vacuuming and Lawn Mowing,” IEEE Control Systems Magazine, vol. 27, no. 2,

pp. 20−96, Apr. 2007.

[11] J. Laumond, “Robot Motion Planning and Control,” Lecture Notes in Control and

Information Science 229. Berlin: Springer.

[12] Superlogics PCMDIO Users Manual. Available at SuperLogics, Inc. 300 Third

Avenue, Waltham, MA 02451, USA.

[13] Superlogics PCMDRIVE® Data Acquisition Software User’s Manual. Available at

SuperLogics, Inc. 300 Third Avenue, Waltham, MA 02451, USA.

85

APPENDIX A

OPERATING PROGRAM

Dim IFR As Byte

Dim LIFR As Byte

Dim RIFR As Byte

Dim LIFRS As Byte

Dim PCL As Byte

Dim mintStatus As Integer

Dim bytRippleLeft As Integer

Dim bytRippleRight As Integer

Dim bytHallLeft As Byte

Dim bytHallRight As Byte

Dim blnRipCntLeft As Boolean

Dim blnRipCntRight As Boolean

Dim mintStatus1 As Integer

Dim mintStatus2 As Integer

Dim PrePulseR As Boolean

Dim PrePulseL As Boolean

Dim ActDist As Single

Dim StopTime As Single

Dim CarryDeg As Integer

86

Dim NeutralMC As Byte

Dim R_Hall As Integer

Dim L_Hall As Integer

Dim i As Integer

Dim blnRun As Boolean

Public Sub Initialize()

 Timer1.Enabled = True

 Timer2.Enabled = True

 Timer3.Enabled = True

 Timer4.Enabled = False

 blnRun = True

 StopTime = 10000000

 intStatus = 0

 OldDist = 0

 RbytRipple = 0

 RbytRipple = 0

 Text1.Text = 0

 Text2.Text = 0

87

End Sub

Public Sub HallsRead()

 Do

 DoEvents

 mintStatus1 = singleDigitalInput(gintlogicaldevice, 0, bytHallLeft)

 If mintStatus1 <> 0 Then

 Call errorMessage(mintStatus1)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

 mintStatus2 = singleDigitalInput(gintlogicaldevice, 1, bytHallRight)

 If mintStatus2 <> 0 Then

 Call errorMessage(mintStatus2)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

 If bytHallLeft > 0 And bytHallLeft < 8 Then

 If blnRipCntLeft = True Then

88

 bytRippleLeft = bytRippleLeft + 1

 End If

 blnRipCntLeft = False

 Else

 blnRipCntLeft = True

 End If

 If bytHallRight > 0 And bytHallRight < 8 Then

 If blnRipCntRight = True Then

 bytRippleRight = bytRippleRight + 1

 End If

 blnRipCntRight = False

 Else

 blnRipCntRight = True

 End If

 Text1.Text = bytRippleLeft * 15

 Text2.Text = bytRippleRight * 15

Loop

End Sub

Public Sub SensorRead()

89

mintStatus = singleDigitalInput(gintlogicaldevice, 7, IFR)

 If mintStatus <> 0 Then

 Call errorMessage(mintStatus)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

Text3.Text = IFR

mintStatus = singleDigitalInput(gintlogicaldevice, 8, PCL)

 If mintStatus <> 0 Then

 Call errorMessage(mintStatus)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

Text4.Text = PCL

mintStatus = singleDigitalInput(gintlogicaldevice, 2, LIFR)

 If mintStatus <> 0 Then

 Call errorMessage(mintStatus)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

90

Text5.Text = LIFR

mintStatus = singleDigitalInput(gintlogicaldevice, 3, RIFR)

 If mintStatus <> 0 Then

 Call errorMessage(mintStatus)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

Text6.Text = RIFR

mintStatus = singleDigitalInput(gintlogicaldevice, 5, LIFRS)

 If mintStatus <> 0 Then

 Call errorMessage(mintStatus)

 Call PCMCloseDeviceVB(gintlogicaldevice)

 End

 End If

Text7.Text = LIFRS

End Sub

Private Sub AUTO_Click(Index As Integer)

91

Timer1.Enabled = True

Timer2.Enabled = True

Call SensorRead

Call HallsRead

End Sub

Private Sub MANUAL_Click(Index As Integer)

Timer1.Enabled = False

Timer3.Enabled = False

Timer4.Enabled = False

blnRun = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End Sub

Private Sub front_Click(Index As Integer)

Timer1.Enabled = False

92

Timer3.Enabled = False

Timer4.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

If IFR = 1 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

Call HallsRead

Call SensorRead

93

End Sub

Private Sub left_Click(Index As Integer)

 Timer1.Enabled = False

 Timer3.Enabled = False

 Timer4.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 If IFR = 1 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

94

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

Call HallsRead

Call SensorRead

End Sub

Private Sub right_Click(Index As Integer)

Timer1.Enabled = False

Timer3.Enabled = False

Timer4.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

If IFR = 1 Then

95

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

Call HallsRead

End Sub

Private Sub back_Click()

Timer1.Enabled = False

Timer3.Enabled = False

Timer4.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

96

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 Call HallsRead

End Sub

Private Sub stop_Click(Index As Integer)

Timer1.Enabled = False

Timer3.Enabled = False

Timer4.Enabled = False

blnRun = False

Call Neutral

End Sub

Private Sub Form_Load()

Close #1

gintlogicaldevice = openDevice()

 Call Initialize

 Call SensorRead

97

End Sub

Private Sub Form_Unload(Cancel As Integer)

 Call Neutral

 waitTime (100)

 Close #1

 End

 End Sub

Public Sub Neutral()

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End Sub

Private Sub Timer1_Timer()

If LIFR = 0 And LIFRS = 0 And RIFR = 0 And IFR = 0 And PCL = 7 Then

98

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 1 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

99

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 3 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 0 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

100

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 1 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

101

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 3 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 0 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

102

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 1 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

103

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 3 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 0 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

104

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 2 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 1 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

105

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 3 And IFR = 0 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 0 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

106

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 0 And RIFR = 1 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

107

If LIFR = 0 And LIFRS = 0 And RIFR = 3 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 0 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

108

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 1 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 0 And LIFRS = 1 And RIFR = 3 And IFR = 1 And PCL = 7 Then

109

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 0 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

110

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 1 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 0 And RIFR = 3 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

111

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 0 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 2 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

112

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 1 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If LIFR = 1 And LIFRS = 1 And RIFR = 3 And IFR = 1 And PCL = 7 Then

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

113

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

End Sub

Private Sub Timer2_Timer()

Call SensorRead

End Sub

Private Sub Timer3_Timer()

If PCL = 0 Then

Timer1.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

114

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If PCL = 1 Or PCL = 2 Or PCL = 3 Then

Timer1.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If PCL = 4 Or PCL = 5 Or PCL = 6 Then

Timer1.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5)

115

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If PCL = 0 And IFR = 1 Then

Timer1.Enabled = False

 intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

 intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0)

 If intStatus <> 0 Then

 Call pcmdioError(gintlogicaldevice, intStatus)

 End If

End If

If PCL = 7 Then

Timer1.Enabled = True

End If

End Sub

116

APPENDIX B

CLIENT SIDE PROGRAM

This Program is a development from Cheng-Yeh Hsu who is a member in Precision

Mechatronics Lab

Dim sendData As String

Private Sub AUTO_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "auto"

 sock.sendData sendData

 sock.Close

End Sub

Private Sub MANUAL_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "manual"

 sock.sendData sendData

 sock.Close

End Sub

117

Private Sub front_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "auto"

 sock.sendData sendData

 sock.Close

End Sub

Private Sub left_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "left"

 sock.sendData sendData

 sock.Close

End Sub

Private Sub right_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

118

 sendData = "right"

 sock.sendData sendData

 sock.Close

End Sub

Private Sub back_Click()

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "back"

 sock.sendData sendData

 sock.Close

End Sub

Private Sub stop_Click(Index As Integer)

 sock.RemoteHost = txtIP.Text

 sock.RemotePort = "4400"

 sock.Connect

 sendData = "stop"

 sock.sendData sendData

 sock.Close

End Sub

119

VITA

Name: Pin-Chun Hsieh

Address: 1F 8-1 Ln 26 Gangqian Rd, Taipei, Taiwan

Email: ryanhsieh@seed.net.tw

Education:

B.S: Power Mechanical Engineering, National Tsing-Hua University, 2004

M.S: Mechanical Engineering, Texas A&M University, 2008

	Cover
	Cover1
	Final Thesis

