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ABSTRACT 

 

 

Autonomous Robotic Wheelchair with Collision-Avoidance Navigation. 

(August 2008) 

Pin-Chun Hsieh, B.A., National Tsing-Hua University 

Chair of Advisory Committee: Won-jong Kim 

 

 

The objective of this research is to demonstrate a robotic wheelchair moving in an 

unknown environment with collision-avoidance navigation. A real-time path-planning 

algorithm was implemented by detecting the range to obstacles and by tracking specific 

light sources used as beacons. Infrared sensors were used for range sensing, and 

light-sensitive resistors were used to track the lights.  

 

To optimize the motion trajectory, it was necessary to modify the original motor 

controllers of the electrical wheelchair so that it could turn in a minimum turning radius 

of 28.75 cm around its middle point of axle. Then, with these kinematics, the real-time 

path planning algorithm of the robotic wheelchair is simplified. In combination with the 

newly developed wireless Internet-connection capability, the robotic wheelchair will be 

able to navigate in an unknown environment.  

 

The experimental results presented in this thesis include the performance of the control 

system, the motion trajectory of the two driving wheels turning in a minimum radius, and 
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the motion trajectory of the real-time path-planning in a real-life testing environment. 

These experimental results verified that the robotic wheelchair could move successfully 

in an unknown environment with collision-avoidance navigation. 
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CHAPTER I 

INTRODUCTION 

1.1 History 

This thesis is built upon previous research in the Precision Mechatronics Lab:  

Intelligent Pothole Repair Vehicle (IPRV) [1] and Precision Mechatronics Lab Robot 

(PMLR) [2]. Both of IPRV and PMLR are modified electrical wheelchairs, using a laptop 

with a data-acquisition card as the controller. 

 

In the IPRV research, an electrical wheelchair was modified to be an autonomous road 

repair vehicle that would be used to fill potholes. The IPRV is capable of being 

maneuvered remotely over a wireless local-area network (LAN). The limitation of the 

IPRV was that it could only move straight during the autonomous mode. 

 

The PMLR moved in a desired path with better accuracy. It demonstrated an ability to 

travel around 10 m with a combination of its dead-reckoning capability and position 

feedback by Hall-effect sensors. The limitation of PMLR was that it could only travel in a 

predetermined path and had a significantly larger turning radius. 

 

Based on the existing development of the IPRV and PMLR, the modified wheelchair 

already has wireless remote control capability by LAN connection and is controlled with 

the feedback from the Hall-effect sensors. With these capabilities, adding other kinds of 

sensors and modifying the motor controller could make it possible for the wheelchair to 

be operated with real-time path planning and obstacle avoidance. 
                  
This thesis follows the style of IEEE Transactions on Automatic Control. 
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1.2 Objective 

The objective of this research is to demonstrate a robotic wheelchair moving in an 

unknown environment with real-time path planning. The generation of a real-time map 

and a moving path can be implemented by detecting the range from the obstacles, and by 

tracking specific lights sources used as beacons. Infrared sensors are used to detect the 

range form the obstacles and the light-sensitive resistors are used to track the light.  

 

To optimize the motion trajectory, it is necessary to modify the motor controller of the 

wheelchair so that it can turn in a minimum turning radius. Then, with these kinematics, 

the algorithm of the real-time path planning of the robotic wheelchair can be simplified. 

In combination with the newly developed wireless Internet-connection capability, the 

robotic wheelchair will be able to navigate in an unknown environment.  

 

1.3 Contributions 

As described above, this thesis is the advance of the previous research, IPRV and PMLR.  

The specific contributions of this thesis are: 

1. Adding the sensor system to let the wheelchair have the ability to detect obstacles in 

an unknown environment. 

2. Modifying the interface board between the PCMDIO 24-channel data-acquisition 

input/output (I/O) card and the motor controller to let the wheelchair rotate about its 

geometric center. 

3. Having the wheelchair be capable of collision avoidance navigation and tracking a 

beacon. 
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4. Developing a real-time path-planning algorithm by the capability described above. 

With this real-time path-planning algorithm, the wheelchair can become an 

autonomous robot which can move in an unknown or partially known environment. 

   

In this thesis, we continue to use the wheelchair from the IPRV and PMLR projects as the 

main frame. The setting of the PCMDIO data-acquisition input/output (I/O) card has been 

modified.  

  

1.4 Thesis Organization 

Chapter I describes the history of this thesis and its contribution. 

 

Chapter II presents the relevant literature reviewed by the author. The literature review is 

divided into several categories, modeling, sensor implementation, path planning, and 

obstacle avoidance. 

  

Chapter III describes in detail the design of the autonomous robotic wheelchair in three 

steps. The first step involved the design of the main system of the robotic wheelchair. The 

second step involved the sensor system. The final step involved the wireless LAN 

communication. The description of the mechanical design of the robotic wheelchair is 

organized according to the development steps mentioned above. 

 

Chapter IV describes the details of the development of the interface boards. In order to 

operate and control the robotic wheelchair, two interface boards were developed between 
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the laptop and the electronic components of the robotic wheelchair. First, it describes the 

PCMDIO data-acquisition card which is used for all I/O data acquisition. Second, it 

describes the interface circuits between the motor controllers and the laptop. Then, it 

describes the interface circuits between the sensor system and the laptop. 

 

Chapter V describes the dynamics and kinematics of the robotic wheelchair and the 

algorithm of real-time path planning. The dynamics and kinematics of the robotic 

wheelchair are described first. By the analysis of the kinematics, the design of the 

real-time path-planning algorithm is described. The light-tracking capability is described 

next. Then, by implementing this real-time path-planning algorithm and light-tracking 

capability, the robotic wheelchair can become an autonomous robot. 

 

Chapter VI describes the control program of the autonomous robotic wheelchair 

including the real-time path-planning algorithm, hardware control, and networking. This 

chapter describes the software to control the hardware, the real-time path planning 

algorithm, and wireless networking connection. 

 

Chapter VII describes how these designs are integrated together to make the autonomous 

robotic wheelchair move in an unknown environment with collision avoidance navigation. 

It describes a typical operation mode of the autonomous robot with experimental results. 

 

Chapter VIII summarizes the achievements of this thesis. The future work towards further 

development of the autonomous robotic wheelchair is also given.  
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CHAPTER II 

LITERATURE REVIEW 

A usual electronic wheelchair, an assistive device for people with impaired mobility, has 

motor controllers with limited capabilities for perception of their environment. The 

present work related to the development of robotic wheelchairs’ navigation includes 

dynamic and kinematic modeling, path planning, target tracking, obstacle avoidance, 

sensors implementation, and wireless remote control. 

 

2.1 Modeling 

Modeling and control of a fast moving, highly maneuverable wheelchair was 

demonstrated in [3]. This project considered a wheelchair with two independently driven 

front wheels and two castors at the rear, and showed that the system became unstable 

when driven at high speeds. A nonlinear control scheme was proposed to handle this 

problem. 

 

The kinematics and coordinate systems of a robotic wheelchair were given in [4] and [5]. 

In [4], the authors supposed that the wheelchair is move on a planar surface inside a 

“corridor” formed by obstacles, which was approximated by two straight parallel walls. 

They further supposed that appropriate sensors mounted on the wheelchair could detect 

the distance to the walls and derived the non-holonomic constraint on the motion of the 

wheelchair. From this, the instantaneous speed lateral to the moving direction of the 

mobile platform had to be zero. Thus, the employed wheelchair was kinematically 

equivalent to the unicycle-type mobile robot. 
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2.2 Sensor Implementation 

Although sensor technology is continually improving, the cost of sensors is often too high 

for the mass-production of robots. Sensors implemented in robotics systems include 

global positioning system (GPS) receivers, laser range finders, cameras for image 

processing, ultrasonic sensors, and infrared sensors. These sensors can be used for 

navigation and obstacle avoidance. 

 

There are many sensor systems for mobile robots. Sonars, used for distance measurement 

in a preselected critical direction, and a panoramic camera, were equipped in [4]. The 

ultrasonic sensors, used for navigation, were equipped in [5]. In [6], sensors were 

arranged on a circular robot. That paper presented a high-performance ultrasonic sensing 

system for mobile robots. They describe how wide-angle ultrasonic transducers can be 

used to obtain substantial information of the environment. An actuated laser scanner 

mounted on an unmanned aerial vehicle (UAV) [7]. The scanner was mounted on a tilt 

actuator with an encoder. The ultrasonic sensors and stereo cameras were equipped in the 

multi-vehicle platform of [8]. The platform consisted of ten wireless networked robots. 

 

2.3 Path Planning and Obstacle Avoidance 

Robotic wheelchairs and mobile robots explore in an unknown environment require map 

generation of surrounding and path planning for obstacle-avoidance navigation. Since 

early 1980’s, various algorithms and implementations have been developed and available 

for guiding robotic wheelchairs and mobile robots in a two-dimensional (2-D) 

environment. 
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In [4], the robotic wheelchair was capable of obstacle avoidance while moving in the 

middle of free space and following a specified moving target. By processing the color 

sequence of the image from a panoramic camera, the robotic wheelchair could determine 

the orientation of the target with respect to itself. The distance of the wheelchair from the 

target could be measured by several sonars. In order to have certain desired features of 

the control system, the motion-control laws of motion used the sensory data and took into 

account the non-holonomic kinematic constraints of the wheelchair. 

 

An agent-based robotic wheelchair was developed in [5]. Its controller contains the 

functions of path planning, navigation, and obstacle avoidance. In that work, a fuzzy 

logic was used for obstacle avoidance and smooth wheelchair motion control, and the 

algorithm was used to develop the path planning. Autonomous exploration for UAV was 

presented in [7], In that article, the authors proposed an algorithm suitable for urban 

navigation by combining the model predictive control. The algorithm was based on 

obstacle avoidance with a local obstacle map, which was built by an onboard laser 

scanner. A real-time gradient-search-based optimization let the model-predictive control 

solve for a collision-avoidance trajectory. The tracking control was responsible for 

following through the given trajectory. 

 

The multi-vehicle platform in [8] discussed several coordinated control algorithms. The 

authors implemented the algorithms on cooperative multi-vehicle testbed, with low-level 

robotics vehicles and combining them to generate high-level controllers. The cooperative 

multi-vehicle testbed are based on potential-field control. The authors added 
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motion-coordination algorithms to the library of team controllers, which include 

perimeter estimation and pattern formation, dynamic target tracking, deployment, and 

rendezvous. The authors also explored optimal formation shapes to improve the 

performance of existing motion-coordination algorithms. 

 

Information consensus in multi-vehicle cooperative control was discussed in [9] to 

provide a tutorial overview. Theoretical results regarding consensus-seeking under 

dynamically changing communication topologies was described. This article also 

described several specific applications of consensus algorithms to multi-vehicle 

coordination. 
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CHAPTER III 

ROBOTIC WHEELCHAIR DESIGN 

The robotic wheelchair in Figure 3.1 was designed in three steps. The first step involved 

the design of the main system of the robotic wheelchair. The second step involved the 

sensor system. The final step involved the Wireless internet communication. The 

description of the mechanical design of the robotic wheelchair is organized according to 

these development steps. 

 

 

 

Figure 3.1. Development of the robotic wheelchair. The sensor system is mounted at the 
front, and the laptop for controlling the robotic wheelchair is on the top. 
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3.1 Step I – Main System of the Robotic Wheelchair 

3.1.1 Wheelchair 

This robotic wheelchair is a take-over from the previous project in Precision 

Mechatronics Lab: IPRV and PMLR. It is built upon the base frame of an Invacare 

Ranger TMII electric powered wheelchair. The frame is 70-cm long, 48-cm wide, with a 

height of 55 cm. It is capable of supporting a weight of approximately 100 kg. This 

wheelchair is driven by two independent 12-V DC motors for the front wheels with a 

diameter of 31.75cm with built-in reduction gears that provide a maximum speed of 6 

km/hr. Two Diverse Electronic Company’s modular motor controllers are used for 

motion control and are mounted on the frame. Two 18-cm-diameter caster wheels in the 

rear provide support. 

 

3.1.2 Laptop 

The main control program is operated by a Fujitsu Laptop with an AMD-K6 451-MHz 

processor and with 192 MB RAM. The main operation program is Visual Basic 6.0 in the 

Microsoft Windows XP operating system. 

 

3.1.3 Data-Acquisition Card 

A Superlogics PCMDIO 24-channel digital I/O type II Personal Computer Memory Card 

International Association (PCMCIA) card is installed on the Fujitsu laptop and is used to 

perform all data-acquisition and control functions. A CP-1037 adapter cable is used to 

convert the PCMDIO’s 33-pin 0.8-mm I/O connector to an industry standard D-37 

connector. The PCMDIO has 24 transistor-transistor-logic (TTL) compatible buffered 
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digital-I/O channels individually programmable as either input or output. 

 

3.1.4 Interface Board 

The interface board shown in Figure.3.2 is between the PCMDIO and the Dervise MC-7 

motor controllers. The logic signal from the PCMDIO is directly input to the two 

CD4066 switch chips, and the control voltage from a CD4066 chip is input to the motor 

controller for a certain speed of the wheelchair. A potentiometer is connected to one 

CD4066 chip to adjust the motor speed to ensure the wheelchair to move straight. 

 

 

 

Figure 3.2. Interface board and two motor controllers. Four relays and CD4066 chips are 
connected to the MC-7. The interface board connected to the PCMDIO card with the 

connectors that were modified from IPRV and PMLR. 
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Two relays are connected between an ULN2803 Darlington array chip and two motor 

MC-7 controllers. The logic signal input to the Darlington array chip can select the 

forward mode or backward mode in the motor controllers. By this function the 

wheelchair can turn in a circle at original point. Two 74HC191 counter chips in PMLR 

are also rebuilt on the interface board for counting the pulses generated by the Hall-effect 

sensors. 

 

3.2 Step II – The Sensor System 

3.2.1 Light-Sensitive Resister 

Seven CdS light-sensitive resistors are also referred to as photocells were assembled on 

the sensor bracket. The photocell is PDV-P5001 with a rise time of 55ms and with a 

typical resistance range of 8 kΩ to 16 kΩ at 10 lux at 2856K light. The photocell is 

connected to a 5-V power supply in series with a 1 kΩ resistor, and the voltage across the 

photocell’s terminal is direct connected to an operational-amplifier comparator. 

 

3.2.2 Distance-Measuring Sensor 

Three GP2D15 and two GP2D12 infrared distance-measuring sensors manufactured by 

Sharp as shown in Figure3.3, are used to detect obstacles. The GP2D15 detects an 

obstacle at 24-cm range and the GP2D12, from 12 cm to 80 cm. The sensors generate the 

output voltage signals fed to the analog-to-digital converters on the interface board to the 

PCMDIO card. 
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3.2.3 Hall-Effect Sensors 

Two Hall-effect sensors from IPRV and PMLR were mounted on the rear casing of both 

the motors. A pulse is generated by the Hall-effect sensors on every rotation of the motor 

shaft and fed to a circuit with a 74HC191 counter chip and input to the PCMDIO 

data-acquisition card installed on the laptop. When the wheelchair is moving in a path, 

the distance traversed by it is proportional to the number of rotations of the motor shaft. 

This resolution of the Hall-effect sensors was found to be approximately 1cm in the 

previous IPRV and PMLR research. 

 

 

 

Figure 3.3. Seven light-sensitive resistors and five distance-measuring sensors are 
mounted on the sensor bracket with interface circuit board. 
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3.2.4 Interface Board on the Sensor System 

An interface board connects between the sensor system and the PCMDIO card with the 

electronic components will be given in Section 4 for detailed description. 

 

3.2.5 Operational Amplifiers 

Four TL072ACP and three LM741 operational-amplifiers shown in Figure 3.4 are 

employed to compare the voltage signals from the photocells and the five Infrared 

sensors. 

 

 

 

Figure 3.4. Interface board between the sensor bracket and the PCMDIO. The chips from 
top to bottom are the voltage regulators, operational-amplifiers, and priority encoder. 
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3.2.6 Priority Encoders 

The output signals from operational-amplifier comparator are input to a 74LS148 priority 

encoder that generates a three-bit output signal and directly input to the PCMDIO 

data-acquisition card on the laptop. 

 

3.2.7 Voltage Regulator 

A KA7805 and a KA7905 voltage regulators are used to supply positive and negative 5 V 

to the whole electronic circuit. 

 

3.3 Step III – Wireless Internet 

Remote operability of the mobile robot is provided by use of a wireless LAN card 

installed on the laptop. This capability was developed in the IPRV and PMLR research. 

The wheelchair acts as a server and executes the server-side program. Any remote 

terminal executes the client-side program on the same LAN can be used to remotely 

operate the robot. 
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CHAPTER IV 

INTERFACING 

This chapter describes the details of the development of the interface boards. In order to 

operate and control the robotic wheelchair, two interface boards were developed between 

the laptop and the electronic components of the robotic wheelchair described in the last 

chapter. Section 4.1 describes the PCMDIO data-acquisition card from IPRV and PMLR 

which is used for all I/O data acquisition. Section 4.2 describes the interface circuits 

between the motor controllers and the laptop. Section 4.3 describes the interface circuits 

between the sensor system and the laptop. 

 

4.1 The PCMDIO Data-Acquisition Card  

A Superlogics PCMDIO 24-channel digital I/O type II Personal Computer Memory Card 

International Association (PCMCIA) card is installed on the Fujitsu laptop. It is used to 

perform all data acquisition and control functions. A CP-1037 adapter cable is used to 

convert the PCMDIO’s 33-pin 0.8-mm I/O connector to an industry standard D-37 

connector.  

 

The PCMDIO has 24 TTL compatible buffered digital-I/O channels individually 

programmable as either input or output. These digital-I/O channels are grouped into 

several different ports with each port containing several channels. These ports are 

controlled via the Data Port A, Data Port B, and Data Port C control registers, 

respectively. In all three registers, each bit corresponds to one data line. The eight Port C 

I/O channels may also be configured as interrupt sources. The interrupts may be 
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configured in four ways: level-sensitive active-low interrupt, level-sensitive active-high 

interrupt, high-to-low transition-edge-sensitive interrupt, and low-to-high 

transition-edge-sensitive interrupt. 

  

4.2 Interfacing the Motor Controllers  

The interface board shown in Figure 4.1 is between the PCMDIO and the Dervise MC-7 

motor controllers. The logic signal from the PCMDIO is directly input to the two 

CD4066 switch chips and two relays, and the control voltage from the relays input to the 

motor controller for certain speed of the wheelchair. A potentiometer is connected to one 

CD4066 chip and one relay to adjusting the motor speed for ensuring the wheelchair 

moving near straight without feedback. 

 

 

 

Figure 4.1. MC-7 motor controller and the interface board. 
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Two relays are connected between an ULN2803 Darlington array chip and two motor 

MC-7 controllers. The logic signal input to the Darlington array chips can select the 

forward mode or backward mode in the motor controllers. By this function the 

wheelchair can turn in a circle at original point. Two 74HC191 counter chips design in 

PMLR are also rebuilt on the interface board for counting the pulse generated by the 

Hall-effect sensors. 

 

4.2.1 Speeding Control 

The MC-7 motor controller is manufactured by Diverse Electronics and is used to power 

a DC motor by producing a pulse width modulation (PWM) power supply voltage. It has 

a power output range from 12 V to 36 V and can accept the control signal input. The 

range of voltage of the input signal is 1V to 3V, where 1V indicates the minimum speed 

and 3V indicates the maximum speed. In order to provide this control signal to the motor 

controller, we select the voltage as 1.66 V, which is easy to design the circuit and 

provides the proper speed for the robotic wheelchair. The circuit between the MC-7 

motor controllers and the PCMDIO data acquisition card is shown in Figure 4.3. Two 

relays connect to pin T13 of the MC-7 motor controllers and ULN2803 Darlington array 

chip. This circuit provides the switch function as stop and start. Two CD 4066 switch 

chips provide the function of selecting speed if we need different speed. 

 

4.2.2 Forward and Backward Control 

The MC-7 controller will drive an electric motor in both the forward and backward 

directions. Two relays are connected between an ULN2803 Darlington-array chip and 
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two MC-7 motor controllers. The logic signal input to the Darlington-array chips can 

select the forward mode or backward mode in the motor controllers. By this function the 

wheelchair can turn in a circle at an original point with one wheel moving forward and 

the other moving backward. This tight-rotation function is very important in real-time 

path planning. The circuit for this function is shown in Figure 4.2. 

 

 

 

 

Figure 4.2. Dervise MC-7 motor controllers. 

 

In Figure 4.3, we can see that two relays connect to pin T13 of the MC-7 motor controller, 
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which provide the function of the speeding control. Two relays connect to pins T3, T4, 

and T5 of the MC-7 motor controller, which provide the forward and backward control 

ability. 

 

 

Figure 4.3.Circuit for speeding, forward, and backward control. 

 

4.2.3 Movement Measurement 

Two 74HC191 decade counter chips shown in Figure 4.4 from IPRV and PMLR are also 
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included on the interface board to count the pulses generated by the Hall-effect sensors. 

By this function, it has the ability to measure the moving distance of the robotic 

wheelchair. Referred to [10] for the details.  

 

 

Figure 4.4. Interface board that contains four relays, two CD4066 chips, one 
Darlington-array chip, and two 74HC191 counters. 
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4.3 Interfacing the Sensor System  

The PCMDIO is a TTL-comparable I/O card. It can also take the digital input signal. It is 

necessary to build an interface circuit as an ADC function between the sensor system and 

the PCMDIO. Interface board for the sensor system is shown in Figure 4.5.  

 

 

 

Figure 4.5. Interface board for the sensor system. 

 

4.3.1 Interfacing the Light-Sensitive Resistors 

Seven CdS light-sensitive resistors are also known as photocells were assembled on the 

sensor bracket. The photocell is PDV-P5001 with a rise time of 55 ms and with a typical 

resistance range of 8 kΩ to 16 kΩ at 10 lux at 2856K light. The photocell is connected to 

a 5-V power supply in series with a 1 kΩ resistor, and the voltage across the photocell’s 
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terminal is direct connected to an operational-amplifier comparator. The 

operational-amplifier is design as voltage comparators. By selecting the reference voltage, 

the comparator provides the 5-V output while the light is darker than the desired 

brightness, and provides 0-V output while the light is brighter than the desired brightness. 

This function can also refer as an ADC the PCMDIO. For describing this function, we 

analysis the voltage comparator designed by operational- amplifier shown in Figure 4.6. 

 

1R

1R

2R

 

 

Figure 4.6. Voltage comparator. 

 

The reference voltage is set as 1
ref 

1 2

RV = 5 
R +R

. In this project, we select 1R  = 220 Ω  

and 2R  = 1 kΩ . Then, if the voltage generated by the photocell drops below 0.41 V, the 

output voltage of the operational amplifier becomes 0-V. This can also be referred as a 

logic-low level signal to the 74LS148 priority encoder. Figure 4.7 shows the entire 

circuits between the seven photocells and the PCMDIO card. 
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Figure 4.7. Circuit between photocells and PCMDIO. 
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4.3.2 Interfacing the Distance-Measuring Sensor 

Three Sharp GP2D15 and two GP2D12 distance-measuring sensors also known as 

infrared sensors are used to detect obstacles. The GP2D15 detects an obstacle at a 24 cm 

range and the GP2D12 detects an obstacle at the range from 12 cm to 80 cm. From the 

datasheet of the GP2D15, for generating a 5-V output signal, it is necessary to connect to 

a 12 kΩ resister. The GP2D12 is an analog sensor, we can set the ADC outputs 5-V 

signal to the PCMDIO while the GP2D12 detects the obstacle at the range of 70 cm.  
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CHAPTER V  

KINEMATICS AND PATH PLANNING  

This chapter describes the kinematics and dynamics of the robotic wheelchair and the 

algorithm of the real-time path planning. The analysis of the kinematics and dynamics for 

the robotic wheelchair is described in Section 5.1 and 5.2. By the analysis of the 

kinematics for the robotic wheelchair, the design of the real-time path planning algorithm 

is described in Section 5.3. The light tracking capability is described in Section 5.4. In 

Section 5.5 by implementing this real-time path planning algorithm and light tracking 

ability, the robotic wheelchair can become as an autonomous robot. 

 

5.1 Dynamics of the Wheelchair 

The dynamics of the two driving wheel vehicle can be written as an equation below: 
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,                                  (5.1)      

where 1V  and 2V  are the velocities of two driving wheels, x  and y  are the positions 

of the axle middle point of two driving wheels in the two dimension reference frame, and 

θ  is the turning angle of the vehicle [11]. 

 

By setting  
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From the dynamics equation (5.3) and [11], we can see that the middle point of axle can 

be fixed at an original point if 1 2V V= − . Thus, for designing the path-planning algorithm 

of the two-driving-wheel vehicle, we do not have to consider the turning radius of the 

axle middle point of the vehicle, but consider the size of the vehicle. 

 

5.2 Kinematics of the Wheelchair 

By experiments and measurement, we can see that if we let the wheelchair turning at an 

original point, which is the vertical axis on the center of the wheelchair axle. The 

maximum turning radius OA  of the wheelchair to prevent collision is approximately 60 

cm. Figure 5.1 shows the robotic wheelchair turns in an original point and the detecting 

range of five infrared sensors. We select the detecting range of the two GP2D12 infrared 

sensors as 70 cm. 

 

In Figure 5.1, we can see that the circle is the turning trajectory of the wheelchair turning 

at an original point. The detecting range of two GP2D12 and three GP2D15 infrared 
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sensors are indicated as dash lines. The robotics wheelchair could avoid any obstacles 

outside the turning trajectory, and it will be much easier to design a real-time 

path-planning. The algorithm of the real-time path-planning can be simplified if the 

motion trajectory of the robotic wheelchair turning around the axle middle point is a 

circle. 

 

 

 

Figure 5.1. The robotic wheelchair turns in an original point and the detecting range of 
five infrared sensors. 

 

5.3 Algorithm of the Real-Time Path Planning Guided by Infrared Sensors 

To design the algorithm of the real-time path-planning, we can set the reaction of the 

robotic wheelchair to let it turns left, turns right, moving forward, or stop, according to 
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each condition of the infrared sensors’ signal. From some experiments and testing, we set 

the reaction of the robotic wheelchair in Table 5.1. 

 

There are five infrared sensors assembled on the sensor bracket. Two Sharp GP2D12 

infrared sensors assembled on the right and left sides as Figure 5.1. We set the detecting 

range as 70 cm. Three GP2D15 sensors have the detecting range at 25 cm. One GP2D15 

infrared sensor was mounted at the front. Two GP2D15 infrared sensors assembled on the 

left and right side just behind the GP2D12 sensors. These two GP2D15 sensors are used 

to eliminate the dead zone. Since the GP2D12 and GP2D15 sensors detect different 

distance to obstacles, it can prevents some dead zone and detects the parallel obstacles.  

 

With these sensors arrangement, there are 32 conditions distinct of the signal from these 

five sensors. In Table 5.1, the H means the infrared sensor generates logic-high level 

signal to the PCMDIO, and L means a logic-low level signal.  

 

While the robotic wheelchair running in autonomous mode, it will keep moving forward 

if there is no signal from any of the five infrared sensors. If there are signals from those 

five infrared sensors, it will response according to each of these 32 conditions. It may 

turn right, turn left, keep moving forward, or stop. The schematic diagrams of the 

response of the robotic wheelchair in the autonomous mode after it detects the obstacles 

are given in Tables 5.1 to 5.33 and Figures 5.2 to 5.33. The details of the autonomous 

mode algorithm will be described in Chapter VI.  
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Table 5.1. Response of the robotic wheelchair for each condition. 

 

Logic Signal from Infrared Sensors Response of Robot 

Left 

GP2D12 

Left 

GP2D15 

Right 

GP2D12 

Right 

GP2D15 

Front GP2D15’s 

signal is L 

Front GP2D15’s 

signal is H  

L L L H Left turn Left turn 

L L H L Left turn Left turn 

L L H H Left turn Left turn 

L H L L Right turn Right turn 

L H L H Forward Stop 

L H H L Forward Stop 

L H H H Left turn Stop 

H L L L Right turn Right turn 

H L L H Forward Stop 

H L H L Forward Stop 

H L H H Forward Stop 

H H L L Right turn Right turn 

H H L H Forward Stop 

H H H L Right turn Stop 

H H H H Forward Stop 

L L L L Forward Stop 
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Table 5.2. Response to the first condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L L H Left turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.2. The first condition. The robotic wheelchair detects the obstacle to the right. It 
turns counter-clockwise until it detects no obstacle. 

 
 

Table 5.3. Response to the second condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L L H Left turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.3. The second condition. The robotic wheelchair detects the obstacle to the right 
and in the front. It turns counter-clockwise left until it detects no obstacle. 
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Table 5.4. Response to the third condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L H L Left turn 

 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.4. The third condition The robotic wheelchair detects the obstacle to the right 
and front. It turns counter-clockwise until it detects no obstacle. 

 
 

Table 5.5. Response to the fourth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L H L Left turn 

 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.5. The fourth condition. The robotic wheelchair detects the obstacle to the right 
and in the front. It turns counter-clockwise until it detects no obstacle. 
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Table 5.6. Response to the fifth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L H H Left turn 

 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.6. The fifth condition. The robotic wheelchair detects the obstacle to the right. It 
turns counter-clockwise until it detects no obstacle. 

 
 

Table 5.7. Response to the sixth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L L H H Left turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.7. The sixth condition. The robotic wheelchair detects the obstacle to the right 
and in the front. It turns counter-clockwise until it detects no obstacle. 
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Table 5.8. Response to the seventh condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H L L Right turn 

 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.8. The seventh condition. The robotic wheelchair detects the obstacle to the left. 
It turns clockwise until it detects no obstacle. 

 
 

Table 5.9. Response to the eighth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H L L Right turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.9. The eighth condition. The robotic wheelchair detects the obstacle to the left 
and in the front. It turns clockwise until it detects no obstacle. 
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Table 5.10. Response to the ninth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H L H Forward 

 
 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.10. The ninth condition.The robotic wheelchair detects the obstacle to the left 
and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.11. Response to the tenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H L H Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.11. The tenth condition The robotic wheelchair detects the obstacle to the left, 
right, and in the front. This is an unpredictable situation and it stops. 



 

 

36

Table 5.12. Response to the eleventh condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H H L Forward 

 

 
Detecting obstacle     Robot after response 

 
 

Figure 5.12. The eleventh condition. The robotic wheelchair detects the obstacle to the 
left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.13. Response to the twelfth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H H L Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.13. The twelfth condition The robotic wheelchair detects the obstacle to the left, 
right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.14. Response to the thirteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L H H H Left turn 

 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.14. The thirteenth condition The robotic wheelchair detects the obstacle to the 
left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.15. Response to the fourteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
L H H H Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.15. The fourteenth condition. The robotic wheelchair detects the obstacle to the 
left, right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.16. Response to the fifteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L L L Right turn 

 
 
 

  
Detecting obstacle     Robot after response 

 
 
 

Figure 5.16. The fifteenth condition.The robotic wheelchair detects the obstacle to the left. 
It turns clockwise until it detects no obstacle. 

 
 

Table 5.17. Response to the sixteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L L L Right turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.17. The sixteenth condition. The robotic wheelchair detects the obstacle to the 
left and in the front. It turns clockwise until it detects no obstacle. 
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Table 5.18. Response to the seventeenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L L H Forward 

 
 
 

  
Detecting obstacle     Robot after response 

 
 
 

Figure 5.18. The seventeenth condition. The robotic wheelchair detects the obstacle to the 
left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.19. Response to the eighteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L L H Stop 

 
 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.19. The eighteenth condition. The robotic wheelchair detects the obstacle to the 
left, right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.20. Response to the nineteenth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L H L Forward 

 
 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.20. The robotic wheelchair detects the obstacle to the left and right. It keeps 
moving forward until it detects an obstacle. 
 
 

Table 5.21. Response to the twentieth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L H L Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.21. The robotic wheelchair detects the obstacle to the left, right, and in the front. 
This is an unpredictable situation and it stops. 
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Table 5.22. Response to the twenty-first condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H L H H Forward 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.22. The twenty-first condition. The robotic wheelchair detects the obstacle to the 
left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.23. Response to the twenty-second condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H L H H Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.23. The twenty-second condition. The robotic wheelchair detects the obstacle to 
the left, right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.24. Response to the twenty-third condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H L L Right turn 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.24. The twenty-third condition. The robotic wheelchair detects the obstacle to 
the left. It turns clockwise until it detects no obstacle. 

 
 

Table 5.25. Response to the twenty-fourth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H L L Right turn 

 
 
 

 
 

Unpredictable situation, stop. 
 
 
 

Figure 5.25. The twenty-fourth condition. The robotic wheelchair detects the obstacle to 
the left and front. It turns clockwise until it detects no obstacle. 
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Table 5.26. Response to the twenty-fifth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H L H Forward 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.26. The twenty-fifth condition. The robotic wheelchair detects the obstacle to the 
left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.27. Response to the twenty-sixth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H L H Stop 

 
 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.27. The twenty-sixth condition.The robotic wheelchair detects the obstacle to the 
left, right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.28. Response to the twenty-seventh condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H H L Forward 

 
 
 

  
Detecting obstacle     Robot after response 

 
 
 

Figure 5.28. The twenty-seventh condition. The robotic wheelchair detects the obstacle to 
the left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.29. Response to the twenty-eighth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H L Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.29. The twenty-seventh condition.The robotic wheelchair detects the obstacle to 
the left, right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.30. Response to the twenty-ninth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
H H H H Forward 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.30. The twenty-ninth condition. The robotic wheelchair detects the obstacle to 
the left and right. It keeps moving forward until it detects an obstacle. 

 
 

Table 5.31. Response to the thirtieth condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H H Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.31. The thirtieth condition. The robotic wheelchair detects the obstacle to the left, 
right, and in the front. This is an unpredictable situation and it stops. 
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Table 5.32. Response to the thirty-first condition. 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is L
L L L L Forward 

 
 
 

 
Detecting obstacle     Robot after response 

 
 
 

Figure 5.32. The thirty-first condition.The robotic wheelchair detects no obstacle and it 
keeps moving forward. 

 
 

Table 5.33. Response to the thirty-second condition. 
 
 
 

Left GP2D12 Left GP2D15 Right GP2D12 Right GP2D15 Front GP2D15’s signal is H
H H H H Stop 

 
 
 

 
Unpredictable situation, stop. 

 
 
 

Figure 5.33. The thirty-second condition. The robotic wheelchair detects the obstacle in 
the front. This is an unpredictable situation and it stops. 
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5.4 Light Tracking 

The robotic wheelchair has the capability of tracking a motion trajectory defined with a 

light with the seven photocells mounted on the sensor bracket. The algorithm of this 

tracking capability is: If any of the three photocells on the left detects the light, then the 

wheelchair turns counter-clockwise until the front photocell detects the light. If any of the 

three photocells on the right detect the light, the wheelchair turns clockwise until the front 

photocells detect the light. The diagrams to illustrate this light-tracking capability are 

shown in Figure 5.34 and 5.35. 

 

22.5θ = o

22.5θ = o

22.5θ = o22.5θ = o

22.5θ = o

22.5θ = o

 

Figure 5.34. Sensing directions of the photocells are indicated as dashed lines.  
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      Step 1                                Step 2 

 

Step 3 

 

Figure 5.35. Steps of the robotic wheelchair track a specific light. 

 

Step 1: The left photocells detect the light.  

Step 2: The wheelchair turns to the counter-clockwise until the front photocell detects the 

light.  

Step 3: After the front photocell detects the light, the wheelchair moves to the target and 

stops at 25 cm away. 
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CHAPTER VI  

SOFTWARE DESIGN 

The control program of the autonomous robotic wheelchair includes real-time path 

planning, hardware control, and networking. This chapter describes each program. 

Section 6.1, it describes the programming and software being used. Section 6.2 describes 

the software to control the hardware. Section 6.3 describes the real-time path planning 

algorithm. Section 6.4 describes the wireless networking connection. 

 

6.1 Programming Language  

The Microsoft®
 Windows®

 Visual Basic 6.0 for Windows development environment is 

being used for the programming requirements of the robotic wheelchair. It provided a 

single platform to write programs for all the applications of the robotic wheelchair. In the 

IPRV development, the Microsoft Windows application programming interface (API) was 

utilized to develop the application to control the PCMDIO digital-I/O card [1]. It use of 

the Windows API provides direct access to the dynamic-link-library (DLL) files to 

operate the PCMDIO card. This development is also need in this thesis research. 

 

The PCMDIO digital-I/O data-acquisition card is used for all data acquisition and output 

control signal to operate the robotic wheelchair. The vendor of the PCMDIO card also 

provides the PCMDRIVE® data acquisition software. The software includes the following 

components. For the details of the PCMDRIVE software can be found in [12] and [13]. 
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6.1.1 PCMDRIVE Configuration Utility  

This software was specifically designed to support the PCMDIO data acquisition adapter 

function. It is easy to use the application that allows the user to graphically acquire and 

display real-time data. This software is used to edit the PCMDIO hardware configuration 

file. This file contains the setup of the 24 individual I/O channels of the PCMDIO card 

into logical channels. Using the configuration software, each logical channel can be set as 

single-bit or multiple-bit channels. Once all the logical channels have been set, each 

channel may be configured as an input channel or an output channel. The PCMDRIVE 

configuration utility with the 24 data I/O lines is shown in Figure 6.1. For the 

autonomous robotic wheelchair, the PCMDIO was configured to have 8 logical channels 

because of some limitation from the PMLR’s development. The detail of the channel 

configuration is shown in Table 6.1. 

 
 

 

 

Figure 6.1. PCMDRIVE configuration utility [13]. 
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Table 6.1. PCMDIO channel configuration. 
 
 
 

Logical 

Channel  

Number 

of bits 
Channel type Function 

CH 0 4 Input Signal from left hall effect sensor. 

CH 1 4 Input Signal from right hall effect sensor. 

CH 2 1 Input Signal from left GP2D15.  

CH 3 2 Input Signal from right GP2D15 and GP2D12. 

CH 4 4 Output Control the left wheel. 

CH 5 1 Input Signal from left GP2D12. 

CH 6 4 Output Control the right wheel. 

CH 7 1 Input Signal from front GP2D15 

CH 8 3 Input Signal from 74LS148 encoder. 

 

 

6.1.2 Performing Data Acquisition 

PCMDRIVE uses a data-defined interface, and each data-acquisition operation is defined 

by a series of configuration parameters. These parameters are contained in a data 

structure and are collectively referred to as a request or a request structure. From the 

IPRV development , in order to perform an input or output operation using the PCMDIO, 

it requires the following sequence of steps [1]:  

1. Define the hardware configuration.  

2. Open the hardware device.  
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3. Allocate the request structure and data buffers.  

4. Define the request structure and data buffers.  

5. Request the operation.  

6. Write data to the locked data buffer.  

7. Arm the request.  

8. Trigger the request.  

9. Wait for completion.  

10. Read data from the locked data buffer.  

11. Release the configuration.  

12. Close the hardware device. 

There are five functions were specially created in order to simplify the use of the 

PCMDIO for digital I/O operations. The functions are  

1. Function openDevice  

2. Function singleDigitalInput  

3. Function multipleDigitalInput  

4. Function singleDigitalOutput  

5. Function multipleDigitalOutput. 

The detail of those twelve sequences and five functions can be found in [1]. 

 

6.2 Hardware Control 

To equip the autonomous robotic wheelchair with feedback control ability, we set the 

logical channels, input and output data lines, and the bits number per logic channel of the 

PCMDIO I/O card as Table 6.1. The six input channels take 16 bits of the input data lines. 
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These are for the signals from two GP2D12 infrared sensors, three GP2D15 infrared 

sensors, the 71HC191 counters count the signal from the right and the left Hall-effect 

sensors, and the 74LS148 priority encoder to encode the signals from seven photocells. In 

thisr research, these two channels are used to control the speed of the wheelchair and to 

generate the forward and backward motion.  

 

6.3 Operation of the Robotic Wheelchair 

The real-time path-planning algorithm was described in Section 5.3 and 5.4. To program 

this algorithm in Visual Basic 6.0, the operation interface with the user was designed in 

Visual Basic 6.0 as Figure 6.2. 

 

The interface for the user includes the “manual mode” and “autonomous mode” for the 

user operating the robotic wheelchair. If the user presses the manual mode button, the 

wheelchair can be controlled by the user manually. This function includes front, right, left, 

stop, and back motions of the wheelchair. If the user presses the autonomous mode button, 

the program will run the algorithm shown in Figure 6.3.  

 

In this autonomous mode, we set the sampling time interval from the input data lines of 

the PCMDIO as 100 ms, and the output control signals are 100 ms interval.  
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Figure 6.2 Operating interface with the user in Visual Basic 6.0. 
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Figure 6.3 Algorithm for the “autonomous” mode of the robotic wheelchair. 
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6.4 Remote Control 

Remote operability of the robotic wheelchair is provided by interfacing with a LAN using 

a wireless USB LAN card installed on the laptop. In the development of the PMLR, it 

used an “ad-hoc” technique to equip the PMLR with remote control ability [2]. This 

ad-hoc technique can only be controlled by the client computer in the same network, and 

there was only a 10-meter effective range to control the PMLR. 

 

With the newly developed technique by Cheng-Yeh Hsu in Precision Mechatronics Lab, 

the autonomous robotic wheelchair could be controlled by any computer connected to the 

Internet while the robotic wheelchair moving in the environment with a Wi-Fi access. We 

used the Tamulink system, which is a Wi-Fi access provided by Texas A&M University 

almost everywhere on its campus. 

 

The transport layer protocol used for sending and receiving data is the Transmission 

Control Protocol (TCP). The Microsoft Winsock Control 6.0 ActiveX control is used for 

the implementation of the TCP sockets within Visual Basic 6.0 [Appendix B]. While the 

client computer has the IP address of the laptop on the wheelchair, the user on the 

client-side computer could control the robotic wheelchair with the client-side program. 

 

A schematic of the control system is shown in Figure 6.4 and 6.5. It can be seen that the 

commands from the client computer send through the Tamulink wireless Internet system. 

The controller will have response according to the commands from client computer and 

the sensor system. The interface of the client-side program is shown in Figure 6.6. 
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Figure 6.4 Remote control through Internet. 
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 Figure 6.5 Schematic of remote control through the Internet. 

 

 

 

 

Figure 6.6. Interface of the client side program. 
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CHAPTER VII 

CONTROL SYSTEM DESIGN 

A key remaining issue of the autonomous robotic wheelchair is developing the control 

system. The design of the control system includes the sensor system and the speeds of 

two motors.  Section 7.1 describes the main structure of the control system. Section 7.2 

describes how the sensor system interacts with the control system. In Section 7.3, the 

speed control of the speeds of two motors is described. 

 

7.1 The Structure of the Control System 

The structure of the control system is shown in Figure 7.1. The client-side computer 

sends the command signals to the control program running on the laptop on the robotic 

wheelchair. The signals from the seven photocells and the five infrared sensors are input 

to the laptop through the six input channels of the PCMDIO data-acquisition card with a 

10 Hz sampling frequency. The control program generates the output signals to the MC-7 

motor controllers through the output channels of the PCMDIO data-acquisition card and 

the interface circuits. The MC-7 motor controllers generate pulse-width-modulation 

(PWM) signals to the left-side and right-side motors. The Hall-effect sensors generate the 

pulses by the rotations of the two motors, which are feedback to the control program 

through the input channels of PCMDIO data-acquisition card.  
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Figure 7.1. Structure of the control system. 
 

 

7.2 The Sensor in the Control System 

As described in section 7.1, there are three kinds of sensors in the sensor system: infrared 

sensors, photocells, and Hall-effect sensors. How these sensors are interfeced with the 

control system is described below. 

 

Figure 7.2 shows the infrared sensors in the control system. The signals from the five 

infrared sensors are input to the control program through the input channels of the 

PCMDIO data-acquisition card. The sample time interval for the signals from the infrared 

sensors in the control program was set as 100 ms. It can also be referred as a 10 Hz 

zero-order holder (ZOH) to the control system. 
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Figure 7.2. Interfacing infrared sensors with the control system. 

 

Figure 7.3 shows how the photocells are interfaced with the control system. The signals 

from the seven photocells are encoded to three-bit data by a 74LS148 priority encoder. 

The signal from this priority encoder is input to the control program through channel 8 of 

the PCMDIO data-acquisition card. The sampling interval for the signals for the 

photocells is set as 100 ms as well. 

 

 
 
 
 

Figure 7.3. Interfacing photocells with the control system. 
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Figure 7.4 shows how the Hall-effect sensors are interfaced with the control system. The 

control program generates the output signals to the left- and right-side MC-7 motor 

controllers through the output channels of the PCMDIO data-acquisition card and the 

interface circuits. The MC-7 motor controllers generate the PWM signals to the left and 

right side motors. The Hall-effect sensors mounted on the left- and right-side motors 

generate the pulses by the rotations of the two motors. The pulses are input to the control 

program through the input channels of the PCMDIO data-acquisition card. The pulses 

from the two Hall-effect sensors can be used to record the motion path of the robotic 

wheelchair and to adjust the speeds of the two driving wheels. 
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Figure 7.4 Interfacing Hall-effect sensors with the control system. 
 

 

7.3 Controlling the Wheel Speed 

To control the speeds of the two driving wheels of the robotic wheelchair, the MC-7 
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motor controllers are used to generate the PWM signals to the two motors. However, the 

PWM signals from the MC-7 motor controllers are not exactly the same while the same 

control voltage connected to the pins T13 of the MC-7 controllers. The distance of the 

two driving wheels is 57.5 cm and the diameter of the wheel is 31.75 cm.  Although the 

speed difference of the two driving wheels is only 5%, the wheelchair will move 

approximately 16o  to one side while it only moving for three meters.  The 16o  error is 

too large to implement the real-time path-planning. It is necessary to make the robotic 

wheelchair move as straight as possible. The development in the PMLR is used the 

Hall-effect sensors’ signals to design a feedback controller to let the wheelchair move 

near straight. However, the resolution of the Hall-effect sensor is120o . Although feedback 

controller in the PMLR can work, the wheelchair would have a significant vibration and 

the moving trajectory in not smooth [2]. 

 

To adjust the speed of the two driving wheels, it is necessary to measure the duty-ratio of 

the PWM signals generated from the two MC-7 motor controllers with various control 

voltage to pins T13. Figure 7.5 and Table 7.1 show the results of the duty-ratio of the 

PWM signals generated by the two MC-7 motor controllers measured by an oscilloscope. 

 

From Table 7.1 and Figure 7.5, we can see that the difference in the duty-ratios of the two 

MC-7 motor controllers is approximately 1.2%. For the better resolution in the duty-ratio, 

it can be seen that the control voltage should be adjusted below 0.01 V. However, it is 

practically impossible to adjust the control voltage below 0.01 V precisely. 
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Table 7.1. Duty-ratio of the PWM signals generated from two MC-7 motor controllers.  
 

 

Control voltage to pin T13 of 

MC-7 motor controllers 

Duty-ration of the left 

MC-7 motor controller 

Duty-ration of the right 

MC-7 motor controller 

1.55V 24.9% 23.7% 

1.56V 25.2% 24.1% 

1.57V 25.6% 24.4% 

1.58V 25.9% 24.7% 

1.59V 26.1% 25.2% 

1.60V 26.7% 25.4% 

1.61V 27.0% 25.9% 

1.62V 27.4% 26.1% 

1.63V 27.9% 26.5% 

1.64V 28.3% 26.9% 

1.65V 28.6% 27.3% 

1.66V 29.1% 27.7% 

1.67V 29.5% 28.1% 

1.68V 29.9% 28.5% 

1.69V 30.4% 28.9% 

1.70V 30.9% 29.3% 

1.71V 31.2% 29.6% 

1.72V 31.7% 30.1% 

1.73V 32.1% 30.5% 

1.74V 32.5% 30.9% 

1.75V 33.0% 31.2% 

 

 

The method to making the autonomous robotic wheelchair move in a near straight and 
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smooth path is adding a 10 ~200Ω Ω  potentiometer on the interface board. This 

potentiometer can adjust the control voltage to the-left side MC-7 motor controller from 

1.60 V to 1.69 V. From the experiments result, by adjusting the left control voltage to 

1.62 V, the difference of the two wheels can be reduced to approximately 1%. The 

experimental data are shown in Table 7.2. 
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Figure 7.5. Statistic chart of the control voltage and duty-ratio. 
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Table 7.2. Experimental data for the two driving wheels. 
 
 
 

Control voltage to 

pin T13 of the right 

MC-7 motor 

controller 

Control voltage to 

pin T13 of the left 

MC-7 motor 

controllers 

Pulses counted by 

the right Hall-effect 

sensor in one 

minute 

Pulse counted by 

the left Hall-effect 

sensor in one 

minute 

1.66 V 1.61 V 1228 1202 

1.66 V 1.62 V 1284 1302 

1.66 V 1.63 V 1324 1380 

1.66V 1.64V 1412 1482 

 

 

In this thesis research, the control voltage to the left wheel was set as 1.62 V and the right 

wheel is set as 1.66 V. From Table 7.2, the velocity V of the center between the two 

driving wheels can be obtained as 1284 1302 1293
2
+

=  cm/min = 0.21 m/s from Table 

7.2. An experimental path of the robotic wheelchair moving for two meters recorded by 

the pulses counted by the Hall-effect sensors is shown in Figure 7.6. It can be seen that 

the robotic wheelchair were moving in a near straight path. The experimental method will 

be described in the next chapter. 
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Figure 7.6. An experimental path of the robotic wheelchair moving two meters. 
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CHAPTER VIII 

OPERATION AND TESTING 

This autonomous robotic wheelchair research contains three major design components: 

hardware design, interface design, and real-time path-planning algorithm design. This 

chapter describes how these three design components are combined together to make the 

autonomous robotic wheelchair move in an unknown environment with 

collision-avoidance navigation. Section 8.1 describes the typical autonomous and manual 

operation modes. Section 8.2 describes the experiments and testing results of the motion 

trajectory with real-time path-planning. 

 

8.1 Operation 

As described in Chapter VI, the control software provides two modes (autonomous and 

manual) of the robotic wheelchair. When the user turns on the robotic wheelchair, it runs 

in the autonomous mode by default unless the user switches to the manual mode.  

 

8.1.1 Autonomous Mode 

While the robotic wheelchair running in the autonomous mode, it keeps moving forward 

until an obstacle is detected by the any of five infrared sensors or a specific light is 

detected by any of the seven photocells. The algorithm of the autonomous mode can be 

referred to Figure 6.3. If there is any obstacle detected by any of the infrared sensors, the 

robotic wheelchair will react according to the Table 5.1. This function allows the robotic 

wheelchair to perform the collision-avoidance navigation. If the robotic wheelchair 

detects the specific light by any of the seven photocells, it moves toward the specific light, 
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and stops there. The specific light is considered as the final target. According to the real 

time path-planning algorithm, all the trajectories are generated in real time by the 

path-planning algorithm described in Figure 6.3 without any predefined route.  

 

8.1.2 Manual Mode 

The manual mode allows the user to control the robotic wheelchair manually. It provides 

five functions: front, back, right, left, and stop. Those functions allows the user to control 

the robotic wheelchair to move forward, move backward, turn left (counter-clockwise), 

turn right (clockwise), and stop any time. The manual mode also allows the user to 

control the robotic wheelchair manually when it stops in a dead zone. While the user 

operating the robotic wheelchair in the manual mode, the autonomous mode is disabled. 

 

8.2 Experiments and Testing 

To implement the real-time path-planning algorithm, it is necessary to ensure that the 

motion trajectory of the robotic wheelchair turning around the middle point of its axle be 

a perfect circle. This motion trajectory can be recorded by the Hall-effect sensors and 

converted to a two-dimensional trajectory in the xy-plane.  

 

8.2.1 Recording the Motion Trajectory  

The motion trajectory can be recorded by the Hall-effect sensors and converted to an 

xy-plane coordinate system. The gear-ratio of the driving wheel is found as 32:1 and the 

resolution of the Hall-effect sensor is 120o , so that there are 96 pulses for one revolution. 

The circumference of the driving wheel is approximately 100 cm, and one pulse 
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represents closely 1 cm of the wheel moving on the ground if there is no skid. The 

difference of pulses counted by the left- and right-side Hall-effect sensors represents 

closely 1o  of the turning angle of the robotic wheelchair in PMLR’s research [2].  

 

Assume that the robotic wheelchair starts at the 0 0( , ) (0,0)x y =  point in the xy-plane. 

Then, set the sampling interval as 100 ms for the pulses counted by the Hall-effect 

sensors. Defined the pulse counted by the left-side Hall-effect sensor at the sampling 

period i is iLH , and that counted by the right-side Hall-effect sensor is iRH , where 

1,........,i n= . The displacement id of the robotic wheelchair from 1 1( , )i ix y− −  to ( , )i ix y  

is 1 1

2 2
i i i iLH RH LH RH− −+ +

−  cm and the turning angle is ( )i i iLH RHθ = − o . In the 

xy-plane, the position of the robotic wheelchair is 1 sini i i ix x d θ−= + , 1 cosi i i iy y d θ−= + . 

An illustration of the motion path recording method is shown in Figure 8.1.  

iLH iRH

1iθ +

iθ

1iθ −

iθ

1 1( , )i ix y− −

( , )i ix y

1 1( , )i ix y+ +

id

1id +

1id −

( )i i iLH RHθ = − o

1 1

2 2
i i i i

i
LH RH LH RHd − −+ +

= −

 
 

Figure 8.1. Recording the motion trajectory. 
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8.2.2 Robotic Wheelchair Rotating around the Axle Middle Point 

Theoretically, if one of the driving wheels moves forward and the other moves backwards 

at the same speed, the robotic wheelchair will turn around the middle point of its axle. 

The motion trajectory is a circle when it turns360o , and the diameter of this circle is the 

distance of the two wheels, which is 57.5 cm. The circumference of the circle is 

57.5 2 361.28π× =  cm. However, the speeds of the two driving wheels are not exactly 

the same and the driving wheels may skid on the ground, therefore the position of the 

middle point of the axel will not be fixed and the motion trajectory is not a perfect circle.  

 

To record the motion trajectory, the Hall-effect sensors can be used. Set the sampling 

interval as 100 ms for the pulses counted by the Hall-effect sensors. In Figure 8.2, the 

position of the axle middle point ,( )i i iO x y  at the sampling period i  in xy-plane can be 

found by the method described in Section 8.2.1. Notice that 

1 1

2 2
i i i i

i
LH RH LH RHd − −− + − +

= −  if it turns counter-clockwise and 

1 1

2 2
i i i i

i
LH RH LH RHd − −− −

= −  if it turns clockwise. At the sampling period i, while one 

of the driving wheels is moving forward and the other moving backward, the turning 

angle iα  from the wheel to the axle middle point can also be found by the pulse iLH  

and iRH . While the robotic wheelchair is turning 360o  around the middle point of the 

axle, the circumference of the motion trajectory circle is 361.28 cm. Since one pulse 

represents 1 cm of the motion of the wheel, the turning angle can be represented as 

( )i i iLH RHα = + o , and the radius 28.75r =  (cm) is the distance from the driving wheel 
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to the axle middle point. The point ( , )i ix y  represents the position of the driving wheel 

at the sampling period i  may be defined as cosi i ix x r α= + , sini i iy y r α= + . 

 

 

 
 

Figure 8.2. Recording the motion trajectory while one of the driving wheels are moving 
forward and the other are moving backward at time i. 
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Figure 8.3. Motion trajectory of the two driving wheels. 
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The experimental measurement of the motion trajectory of the two driving wheels while 

the robotic wheelchair is turning 360o  is shown in Figure 8.3. It can be seen that the 

motion trajectory of the two driving wheels is nearly a circle. Therefore it is 

approximated that the robotic wheelchair turns around the middle point of its axle.  

 

8.2.3 Motion Trajectory of the Robotic Wheelchair in an Unknown Environment 

The robotic wheelchair can move in an unknown environment with real-time 

path-planning with collision avoidance navigation. While the robotic wheelchair is 

turning clockwise or counter-clockwise by an angle α  around the middle point of its 

axle, the body-fixed coordinate system in the xy-plane also rotates by an angleα . Figure 

8.4 shows the robotic wheelchair moving to point ,0, ,0( )n nx y , turning clockwise for an 

angle 1α ,  the basis coordinate rotates to 1 1( , )x y% % , the sampling period i resets to 0, 

and moves to the point ,1 ,1( , )i ix y . At the sampling period i , the point ,1 ,1( , )i ix y  relation 

to the basis coordinate 0 0( , )x y% %  can be found as ,1 1,1 ,1 1,0 1 ,1

,1 1,1 ,1 1,0 1 ,1

sin( )
cos( )

i i i i

i i i i

x x d
y y d

θ α θ
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−

−

= + + +⎧
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n
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,1 2 2

i i i i
i

LH RH LH RH
d − −+ +

= − , ,1 ,1 ,1( )i i iLH RHθ = − o , 

1,........,i n= , i N∈ . Furthermore, if the robotic wheelchair moves to the basis 

coordinate ( , )j jx y% % , the position , ,( , )i j i jx y can be found as 

1
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, , 1, 1,
, 2 2

i j i j i j i j
i j

LH RH LH RH
d − −+ +

= − , 1,........,i n= , 0,........,j m= , ,i j N∈ . Where 

, ,( , )i j i jx y represents the position to the basis coordinate 0 0( , )x y% % . At the sampling period 

i  in the basis coordinate ( , )j jx y% % , ,i jθ , ,i jd , ,i jLH , ,i jRH  represent the small turning 

angle, small displacement from the last position, and pulses counted from the Hall-effect 

sensors in the basis coordinate ( , )j jx y% % . , 1 , 1( , )n j n jx y− −  represents the last position in the 

basis coordinate 1 1( , )j jx y− −% % , , 1n jθ −  represents , 11

, 1

tan n j

n j

x
y

−−

−

, and jα  represents the total 

turning angle around its axle middle point at , 1 , 1( , )n j n jx y− − , jα  can be measured by the 

method described in Section 8.2.2. The illustration of this motion path recording method 

is shown in Figure 8.4.  
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Figure 8.4. The robotic wheelchair moves in different basis coordinates in the xy-plane. 
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Figure 8.5. Motion trajectory of robotic wheelchair turned clockwise for approximately 
140o . 
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Figure 8.6. Motion trajectory of the robotic wheelchair tracking a specific light.  
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By this motion trajectory recording method, the real-time path-planning can be recorded 

as Figures 8.5, 8.6. Figure 8.5 shows the motion trajectory of robotic wheelchair moved 

forward for approximately 120 cm and turned clockwise for approximately140o . Figure 

8.6 shows the motion trajectory while it tracking a specific light which was described in 

Section 5.4. The robotic wheelchair detected the light on the right side, it turned 

clockwise to the right, and turned counter-clockwise after approximately 45 cm to correct 

the error automatically. Figure 8.7 shows the motion trajectory of the robotic wheelchair 

moving in real-life testing environment with collision-avoidance navigation recorded by 

the long-term-exposure photography technique. A lamp was mounted on the robotic 

wheelchair. Figure 8.8 shows the same motion trajectory of the robotic wheelchair as 

Figure 8.7.  

 

 
 
 
 

Figure 8.7. Motion trajectory of the robotic wheelchair recorded by the 
long-term-exposure photography technique. 
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Figure 8.8. Motion trajectory of the robotic wheelchair moving in a real-life testing 
environment. 
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From Figure 8.7 and 8.8, it can be seen that the motion trajectory recorded by the 

Hall-effect sensor is very close to the long-term-exposure photograph. It can be seen that 

the motion trajectory on Figure 8.7 is a smoother path. A possible reason is that the 

speeds of the two driving wheels were not exactly the same and there was skidding.  

 

The testing environment for this research is in the ground-floor hallway and Precision 

Mechatronics Lab inside the Zachery Engineering Center of Texas A&M University. This 

testing result demonstrates that the robotic wheelchair can move in an unknown 

environment located in a normal building. Figures 8.9-8.11 shows sequence photos of the 

robotic wheelchair during testing. 

 
 
 

 
 
 
 

Figure 8.9. The robotic wheelchair starts at point (0,840). 
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Figure 8.10. The robotic wheelchair turned at point (148,842). 
 
 

 

 
 
 
 

Figure 8.11. The robotic wheelchair turned at point (160,806). 
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CHAPTER IX 

CONCLUSIONS AND SUGGESTED FUTURE WORK 

The autonomous robotic wheelchair was successfully constructed and met the objective. 

Section 9.1 summarizes the accomplishments of the thesis. Section 9.2 discusses the 

current limitations of the autonomous robotic wheelchair. In Section 9.3, future work is 

proposed to enhance the functionality of the autonomous robotic wheelchair and 

overcome the current limitations. 

9.1 Conclusions 

The autonomous robotic wheelchair has met the objectives. The robotic wheelchair could 

move in an unknown environment with real-time path planning. The generation of a 

real-time path was implemented by detecting the range from the obstacles, and by 

tracking specific lights sources which is used as a beacon. The infrared sensors were used 

to detect the distance to the obstacles, and the light-variance resistors were used to track 

the specific light source.  

 

To optimize the motion trajectory, the circuits to the motor controller were modified to 

ensure the wheelchair can turns in a minimum turning radius. The robotic wheelchair 

could turn around the center point of the axle. The algorithm of the real-time path 

planning of the robotic wheelchair was simplified. Combined with the newly developed 

of Internet-connection capability, the robotic wheelchair could move in an unknown 

environment with collision avoidance navigation. 
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9.2 Limitations 

The autonomous robotic wheelchair in its current form has the following limitations. 

 

1. The speeds of two driving wheels are not exactly the same and the autonomous robotic 

wheelchair cannot move in a straight line. Even using the feedback controller by the 

pulses from the Hall-effect sensors, it is impossible to adjust the control voltage to the 

motor controllers precisely. 

 

2. The main limitation of the robotic wheelchair is that the PCMDIO data-acquisition 

card has digital I/O capability alone. All signals from the sensors need to be converted to 

digital signal through ADCs. The GP2D12 infrared sensor generates different analog 

signals according to the distance from the obstacle. Without the analog I/O capability, the 

robotic wheelchair can only detect the obstacles in a fixed range. It cannot measure the 

precise distance from the obstacles. The control program and real-time path-planning 

algorithm can only be designed by this digital input signals. Other control laws such as 

optimal controller to ensure the robotic wheelchair to move in an optimal path cannot be 

implemented.    

 

3. The laptop tends to overheat, which causes it unstable. The wireless adapter does not 

have good performance in receiving Wi-Fi signal. 

 

4. The robotic wheelchair has no sensor at backside, while it moving to the dead zone it 
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can only set to stop and cannot moving backward.   

 

9.3 Suggested Future Work 

The following are proposed as future work to enhance the functionality of the 

autonomous robotic wheelchair and overcome the current limitations. 

 

1. Use of the controller with analog I/O capability, such as digital-signal-processor (DSP) 

board. With the analog I/O capability, we could implement other real-time path-planning 

algorithms which might have better performance. The PWM signals could be directly 

generated from the DSP, and we could adjust the duty-ratio at the same.    

 

2. Adding the optical encoders on the two driving wheels instead of the Hall-effect 

sensors. The optical encoders have much better resolution than the Hall-effect sensors. By 

the signal from the optical encoders, a better feedback controller can be designed to 

ensure the robotic wheelchair to move in a straight line. 
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APPENDIX A 

OPERATING PROGRAM 

 

Dim IFR As Byte 

Dim LIFR As Byte 

Dim RIFR As Byte 

Dim LIFRS As Byte 

Dim PCL As Byte 

Dim mintStatus As Integer 

 

Dim bytRippleLeft As Integer 

Dim bytRippleRight As Integer 

Dim bytHallLeft As Byte 

Dim bytHallRight As Byte 

Dim blnRipCntLeft As Boolean 

Dim blnRipCntRight As Boolean 

Dim mintStatus1 As Integer 

Dim mintStatus2 As Integer 

Dim PrePulseR As Boolean 

Dim PrePulseL As Boolean 

Dim ActDist As Single 

Dim StopTime As Single 

Dim CarryDeg As Integer 
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Dim NeutralMC As Byte 

 

 

Dim R_Hall As Integer 

Dim L_Hall As Integer 

Dim i As Integer 

Dim blnRun As Boolean 

 

Public Sub Initialize() 

 Timer1.Enabled = True 

 Timer2.Enabled = True 

 Timer3.Enabled = True 

 Timer4.Enabled = False 

  blnRun = True 

  StopTime = 10000000 

 

  intStatus = 0 

  OldDist = 0 

  RbytRipple = 0 

  RbytRipple = 0 

  Text1.Text = 0 

  Text2.Text = 0 
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End Sub 

 

 

Public Sub HallsRead() 

    Do 

    DoEvents 

     

      mintStatus1 = singleDigitalInput(gintlogicaldevice, 0, bytHallLeft) 

      If mintStatus1 <> 0 Then 

            Call errorMessage(mintStatus1) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

         

        mintStatus2 = singleDigitalInput(gintlogicaldevice, 1, bytHallRight) 

        If mintStatus2 <> 0 Then 

            Call errorMessage(mintStatus2) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

 

    If bytHallLeft > 0 And bytHallLeft < 8 Then 

      If blnRipCntLeft = True Then 
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      bytRippleLeft = bytRippleLeft + 1 

      End If 

      blnRipCntLeft = False 

      Else 

      blnRipCntLeft = True 

    End If 

 

      If bytHallRight > 0 And bytHallRight < 8 Then 

      If blnRipCntRight = True Then 

        bytRippleRight = bytRippleRight + 1 

      End If 

      blnRipCntRight = False 

    Else 

      blnRipCntRight = True 

    End If 

 

    Text1.Text = bytRippleLeft * 15 

    Text2.Text = bytRippleRight * 15 

Loop 

End Sub 

 

Public Sub SensorRead() 
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mintStatus = singleDigitalInput(gintlogicaldevice, 7, IFR) 

        If mintStatus <> 0 Then 

            Call errorMessage(mintStatus) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

Text3.Text = IFR 

 

mintStatus = singleDigitalInput(gintlogicaldevice, 8, PCL) 

        If mintStatus <> 0 Then 

            Call errorMessage(mintStatus) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

         

Text4.Text = PCL 

 

mintStatus = singleDigitalInput(gintlogicaldevice, 2, LIFR) 

        If mintStatus <> 0 Then 

            Call errorMessage(mintStatus) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 
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Text5.Text = LIFR 

 

mintStatus = singleDigitalInput(gintlogicaldevice, 3, RIFR) 

        If mintStatus <> 0 Then 

            Call errorMessage(mintStatus) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

Text6.Text = RIFR 

 

mintStatus = singleDigitalInput(gintlogicaldevice, 5, LIFRS) 

        If mintStatus <> 0 Then 

            Call errorMessage(mintStatus) 

            Call PCMCloseDeviceVB(gintlogicaldevice) 

            End 

        End If 

Text7.Text = LIFRS 

 

 

End Sub 

 

Private Sub AUTO_Click(Index As Integer) 
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Timer1.Enabled = True 

Timer2.Enabled = True 

Call SensorRead 

Call HallsRead 

End Sub 

 

Private Sub MANUAL_Click(Index As Integer) 

Timer1.Enabled = False 

Timer3.Enabled = False 

Timer4.Enabled = False 

blnRun = False 

       intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End Sub 

 

Private Sub front_Click(Index As Integer) 

Timer1.Enabled = False 
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Timer3.Enabled = False 

Timer4.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

             

If IFR = 1 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

Call HallsRead 

Call SensorRead 
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End Sub 

 

 

 

Private Sub left_Click(Index As Integer) 

 Timer1.Enabled = False 

 Timer3.Enabled = False 

 Timer4.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

 If IFR = 1 Then 

       intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 
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                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

Call HallsRead 

Call SensorRead 

End Sub 

 

 

 

 

Private Sub right_Click(Index As Integer) 

Timer1.Enabled = False 

Timer3.Enabled = False 

Timer4.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

If IFR = 1 Then 
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       intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

 

Call HallsRead 

End Sub 

 

Private Sub back_Click() 

Timer1.Enabled = False 

Timer3.Enabled = False 

Timer4.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 
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            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

             

 Call HallsRead 

 

End Sub 

Private Sub stop_Click(Index As Integer) 

Timer1.Enabled = False 

Timer3.Enabled = False 

Timer4.Enabled = False 

blnRun = False 

Call Neutral 

 

End Sub 

 

 

 

Private Sub Form_Load() 

Close #1 

gintlogicaldevice = openDevice() 

    Call Initialize 

    Call SensorRead 
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End Sub 

Private Sub Form_Unload(Cancel As Integer) 

    Call Neutral 

    waitTime (100) 

    Close #1 

     End 

 End Sub 

 

Public Sub Neutral() 

  intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

  If intStatus <> 0 Then 

    Call pcmdioError(gintlogicaldevice, intStatus) 

  End If 

 

  intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

  If intStatus <> 0 Then 

    Call pcmdioError(gintlogicaldevice, intStatus) 

  End If 

   

End Sub 

 

Private Sub Timer1_Timer() 

If LIFR = 0 And LIFRS = 0 And RIFR = 0 And IFR = 0 And PCL = 7 Then 
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      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 1 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 
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            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 3 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 0 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 
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                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 1 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 
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            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 3 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 0 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 
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      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 2 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 1 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 
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            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 3 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 0 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 
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                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 2 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 1 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 
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            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 3 And IFR = 0 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 0 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 
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End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 0 And RIFR = 1 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 
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If LIFR = 0 And LIFRS = 0 And RIFR = 3 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 0 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 
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If LIFR = 0 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 1 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 0 And LIFRS = 1 And RIFR = 3 And IFR = 1 And PCL = 7 Then 
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      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 0 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 2 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 
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            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 1 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 0 And RIFR = 3 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 
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                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 0 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 2 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 
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            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 1 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If LIFR = 1 And LIFRS = 1 And RIFR = 3 And IFR = 1 And PCL = 7 Then 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 
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      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

 

End Sub 

 

Private Sub Timer2_Timer() 

Call SensorRead 

End Sub 

 

Private Sub Timer3_Timer() 

If PCL = 0 Then 

Timer1.Enabled = False 

 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 
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                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If PCL = 1 Or PCL = 2 Or PCL = 3 Then 

Timer1.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 5) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If PCL = 4 Or PCL = 5 Or PCL = 6 Then 

Timer1.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 6) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 5) 
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            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If PCL = 0 And IFR = 1 Then 

Timer1.Enabled = False 

      intStatus = singleDigitalOutput(gintlogicaldevice, 4, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

      intStatus = singleDigitalOutput(gintlogicaldevice, 6, 0) 

            If intStatus <> 0 Then 

                Call pcmdioError(gintlogicaldevice, intStatus) 

            End If 

End If 

 

If PCL = 7 Then 

Timer1.Enabled = True 

End If 

 

End Sub 
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APPENDIX B 

CLIENT SIDE PROGRAM 

This Program is a development from Cheng-Yeh Hsu who is a member in Precision 

Mechatronics Lab 

 

Dim sendData As String 

Private Sub AUTO_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "auto" 

    sock.sendData sendData 

    sock.Close 

End Sub 

 

Private Sub MANUAL_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "manual" 

    sock.sendData sendData 

    sock.Close 

End Sub 
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Private Sub front_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "auto" 

    sock.sendData sendData 

    sock.Close 

End Sub 

 

Private Sub left_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "left" 

    sock.sendData sendData 

    sock.Close 

End Sub 

 

Private Sub right_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 
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    sendData = "right" 

    sock.sendData sendData 

    sock.Close 

End Sub 

 

Private Sub back_Click() 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "back" 

    sock.sendData sendData 

    sock.Close 

End Sub 

Private Sub stop_Click(Index As Integer) 

    sock.RemoteHost = txtIP.Text 

    sock.RemotePort = "4400" 

    sock.Connect 

    sendData = "stop" 

    sock.sendData sendData 

    sock.Close 

End Sub 
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