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ABSTRACT

Quantum Stabilizer Codes and Beyond. (August 2008)

Pradeep Kiran Sarvepalli, B.Tech., Indian Institute of Technology, Madras;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Andreas Klappenecker

The importance of quantum error correction in paving the wayto build a practical

quantum computer is no longer in doubt. Despite the large body of literature in quantum

coding theory, many important questions, especially thosecentering on the issue of “good

codes” are unresolved. In this dissertation the dominant underlying theme is that of con-

structing good quantum codes. It approaches this problem from three rather different but

not exclusive strategies. Broadly, its contribution to the theory of quantum error correction

is threefold.

Firstly, it extends the framework of an important class of quantum codes – nonbi-

nary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over

quadratic extension fields, provides many new constructions of quantum codes, and devel-

ops further the theory of optimal quantum codes and punctured quantum codes. In partic-

ular it provides many explicit constructions of stabilizercodes, most notably it simplifies

the criteria by which quantum BCH codes can be constructed fromclassical codes.

Secondly, it contributes to the theory of operator quantum error correcting codes also

called as subsystem codes. These codes are expected to have efficient error recovery

schemes than stabilizer codes. Prior to our work however, systematic methods to construct

these codes were few and it was not clear how to fairly comparethem with other classes of

quantum codes. This dissertation develops a framework for study and analysis of subsys-

tem codes using character theoretic methods. In particular, this work established a close

link between subsystem codes and classical codes and it became clear that the subsystem
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codes can be constructed from arbitrary classical codes.

Thirdly, it seeks to exploit the knowledge of noise to designefficient quantum codes

and considers more realistic channels than the commonly studied depolarizing channel.

It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the

asymmetry of errors in certain quantum channels. This approach is based on a Calderbank-

Shor-Steane construction that combines BCH and finite geometry LDPC codes.
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CHAPTER I

INTRODUCTION

A. Motivation

In the 1980s and 1990s, it gradually became apparent that thetheory of information founded

by Claude Shannon was a purely classical theory in that it did not take into account quan-

tum mechanics. This realization crystallized the notion ofquantum information as distinct

from classical information. Despite the success of the abstract formulation of information

by Shannon, it is far more physical∗ than it appears. The representation of informationi.e.,

the mechanism/device used to store does affect its behavior. Two level systems such as a

switches or more realistically transistors can be used to store and manipulate classical bits.

One can also use systems such as photons or electrons. In caseof photons for instance,

information maybe stored on the polarization of the photon.The photon can be vertically

or horizontally polarized. Other quantum mechanical systems such as spin-1
2

systemsi.e.,

systems with two spin states can also be used for representing information. These quantum

mechanical representations give us something more than what we bargained for. Because

they operate in a regime where the quantum mechanical effects can come into play†, in ad-

dition to representing the usual logical states they permitphenomena (such as linear com-

bination of the logical states), which have no classical analogues. These phenomena seem

to confer additional power when it comes to information processing. A far reaching ram-

The journal model isIEEE Transactions on Information Theory.
∗R. Landauer.
†It might be argued that quantum mechanical effects are present even when information

is stored on a transistor (or any other device). That is true,however, when we speak of
quantum mechanical effects we are not so much interested as to how they affect the func-
tioning of the device as much as how they affect the logical state of the device. In so far as
the logical state is considered, the transistor behaves classically.
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ification due to differences between quantum and classical information is that computers

processing quantum information, if they were built, could provide exponential speedups

over computers that process classical information alone. For instance, Shor’s algorithm

for factoring integers provides an exponential speedup over the best known classical algo-

rithms. A little less dramatically, Grover’s search algorithm provides a quadratic speedup

over its classical counterparts. Quantum computers therefore pose a challenge to one of the

central tenets in theoretical computer science – the (modern) Church-Turing thesis which

states:

Any reasonable model of computation can be simulated on a (probabilistic)

Turing machine with at most a polynomial overhead, (see [25,153]).

It must be emphasized that quantum computers cannot solve problems that are not solvable

on classical computers, for the simple reason that a quantumcomputer can be simulated on

a classical computer albeit with exponential slowdown. Quantum computers can potentially

change the landscape of tractable problems. But to realize their promise we have one

important hurdle to cross – which is the central theme of thisdissertation – that of protecting

quantum information.

B. Quantum Error Correction

A quantum computer that can implement something nontrivialand useful as Shor’s algo-

rithm would require the control and manipulation of a large number of sensitive quantum

mechanical systems. Any practical quantum computer would require the ability to protect

quantum information against not only noise but also the inevitable operational (i.e., gate)

errors that accompany its processing. It was initially supposed that it would be impossible

to protect quantum information not only because of the scaleof computation but because

of reasons intrinsic to quantum information. Fortunately,such skepticism was laid to rest
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when Peter Shor [142] and Andrew Steane [144, 145] independently proposed schemes to

protect quantum information from noise and operational errors. Gottesman [61] and in-

dependently Calderbanket al., [35] proposed methods to construct quantum codes from

classical codes. Commonly referred to as “stabilizer codes”, these codes are the most stud-

ied class of quantum codes. Their work was followed with a substantial body of results

related to quantum error correction. More importantly, it was shown that if the overall

error rate was lower than a “threshold”, it was possible to perform an arbitrarily long quan-

tum computation with any desired accuracy with only a polylogarithmic overhead in time

and space [1].

With these fundamental results in place, the focus of quantum coding theory shifted

to the design of good codes, systematic methods for construction, efficient decoding algo-

rithms, passive error correction schemes, optimizing codes for realistic noise processes and

the like. These questions are in some sense interrelated. This dissertation seeks to address

these questions‡ in varying degree as will be elaborated below. It explores various models

and methods of quantum error correction. Broadly, its contribution to the theory of quan-

tum error correction is threefold. Firstly, it extends the framework of nonbinary stabilizer

codes. It clarifies the connections of stabilizer codes to classical codes over quadratic ex-

tension fields, provides many new constructions of quantum codes, and develops further the

theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes

to the theory of operator quantum error correcting codes (also called as subsystem codes).

These codes are expected to have efficient error recovery schemes compared to stabilizer

codes. This dissertation develops a framework for study andanalysis of subsystem codes

using character theoretic methods. The framework has made it possible to study subsystem

codes by translating them into classical codes. Thirdly, itseeks to exploit the knowledge

‡In this dissertation we do not focus so much on fault tolerance.



4

of noise to design efficient quantum codes and considers morerealistic channels than the

commonly studied depolarizing channel. In addition to providing many explicit construc-

tions for quantum codes, it seeks to integrate developmentssuch as low density parity check

(LDPC) codes into quantum coding theory.

C. Outline and Contribution

This dissertation is structured as follows. In Chapter III, we consider the theory of nonbi-

nary stabilizer codes initiated by Rains [126] and Ashikhminand Knill [11]. This work was

motivated in part by the comparatively little attention that codes over nonbinary alphabet

had received. Currently it appears that binary quantum systems are comparatively easier to

control and implement than multi-level quantum systems. However, the growing interest

in nonbinary implementations suggests that nonbinary codes deserve a closer study, espe-

cially as quantum technologies mature. Further, many of thequantum mechanical systems

naturally allow for a multi-dimensional representation ofquantum information. Instead of

simply ignoring them as is often the case, it might be to our benefit to exploit these addi-

tional degrees of freedom. It could for instance lead to implementation of quantum proces-

sors with fewer systems. In fact, there are proposals to exploit these additional modes not

only to implement nonbinary quantum systems [30] but also use them to simplify binary

implementations [51, 130]. It stands to reason that we need asystematic theory to design

good codes for nonbinary implementations. This chapter concerns itself with generalizing

many of the ideas of stabilizer codes to the nonbinary setting. The nonbinary generaliza-

tion turns out to be a nontrivial task and in fact there still remain many open questions with

respect to nonbinary quantum codes. We derive a number of important results with regard

to structure and constructions of nonbinary stabilizer codes.

Armed with the framework of nonbinary stabilizer codes developed in Chapter III, we
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then turn to a more constructive task of designing good quantum codes in Chapter IV. As

in the classical case, quite often, imposing the constraintof linearity on the code structure

substantially simplifies our task. We have more control overthe parameters of the codes

we design and more importantly, imposing the linearity constraint simplifies the encoding

and decoding complexity. Therefore, we focus on the construction of some linear quan-

tum codes bringing into bearing the machinery of the previous chapter. As in the case of

classical codes, optimal codes generate a lot of interest not only because of their optimality,

but because, not infrequently, they possess additional combinatorial structure that leads to

interesting mathematical problems. We also study the quantum MDS codes in this chapter,

establishing some structural results related to them.

While error correcting codes address the problem of protecting quantum information,

there are still certain hurdles to be crossed if we are to build a quantum computer. Unlike

classical case where we can, with good reason, assume that the encoding and decoding

operations are noiseless or at least that they are not as noisy as the channel, quantum infor-

mation processing does not allow us to do so. The process of encoding and decoding can

be as noisy as the channel itself. Codes then have to designed to allow for fault tolerant

computation not merely communication or storage. The theory of fault tolerant quantum

computation was developed to address this challenge. In keeping with this goal of fault

tolerant quantum computation some researchers have been investigating passive forms of

quantum error correction, where information was encoded into subsystems that were im-

mune to noise. Kribset al., [99,100] proposed a generalized framework for understanding

both active and passive forms of quantum error correction. Such codes are called operator

quantum error correcting codes or subsystem codes because in this model information is

protected by encoding into subsystems as against the subspaces. Informally, this amounts to

encoding each logical state into an equivalence class rather a unique state in the codespace.

The equivalence class is actually a subspace and any state inthe subspace is a representa-
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tive of the logical state. This is accomplished through the use of additional qubits called

gauge qubits. This method also generalizes the class of stabilizer codes studied in the

Chapters III, IV. In view of its relevance to fault tolerant quantum computing we devote

Chapter V to the study of operator quantum error correcting codes. Using character the-

oretic methods we establish a connection with classical codes that enables us to construct

these codes systematically. In particular, we relax the constraint of self-orthogonality on

the classical codes used to construct stabilizer codes.

In Chapter VI we extend the theory of operator quantum error correcting codes. The

results are of interest in that they provide insight into thestructure of subsystem codes.

Additionally, they enable us to compare the gains that subsystem codes provide over sta-

bilizer codes. An important question that had been raised when the subsystem codes were

first discovered was the possibility of improving upon optimal stabilizer codes in the sense

of requiring fewer syndrome measurements than them. We demonstrate in this particular

sense the subsystem codes, at least the linear ones, cannot outperform the MDS stabilizer

codes.

The presence of gauge qubits in subsystem codes not only simplifies error correction

procedures, but it can potentially simplify the encoding process. Usually, the complexity

of encoding is not as large as the complexity of decoding and is often neglected. But in the

context of fault tolerant quantum computing, it is useful tohave simpler encoding schemes.

Previous work on subsystem codes contained claims that the encoding could also benefit

due to subsystem coding but the exact circuits and the trade offs involved in achieving these

gains were either absent or not rigorously justified. In Chapter VII we show how subsystem

codes can be encoded, and how to exploit the presence of the gauge qubits to simplify the

encoding process. We contend these simplifications in the encoding circuitry should also

lead to additional benefits for fault tolerant quantum computation.

Much of quantum coding theory followed the same path as the classical coding theory
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did historically. That is it took on an algebraic outlook with great emphasis on the distance

of the code. But modern coding theory has gradually moved awayfrom such a one dimen-

sional characterization of code performance. In the modernpicture instead of requiring

that all errors up to a certain weight be correctable it has shifted the focus to achieving

the capacity of the channel while keeping the complexity of encoding and decoding low.

But these insights have not yet been fully absorbed by quantumcoding theory. The reason

is not that it has not been attempted. Starting with the worksof Postol [119], MacKay

et al., [105], Camaraet al., [37] and more recently Poulin and Chung [122], there have

been attempts to incorporate these modern developments into quantum coding theory. The

difficulty is addressing the conflicting requirements that are posed on the classical codes

from which the quantum codes are constructed. The additional constraints usually imply

that these are bad codes classically and unlikely to lead to good quantum codes. In Chap-

ter VIII, we contribute to the ongoing discussion on quantumLDPC codes by providing

new constructions of algebraic quantum LDPC codes.

In Chapter VIII we also study a problem that has generated a lotof interest lately viz.

the use of realistic noise models in quantum error correction. Much of earlier work often

assumed that the channels are depolarizing channels. The depolarizing channel while being

particularly simple is not necessarily the most accurate noise model which reflects many

of the current quantum technologies. In Chapter VIII we studythe design of codes that are

in some measure optimized to channels that are asymmetric. For these channels we also

address the problem mentioned earlier, how to incorporate the modern developments such

as LDPC codes effectively. We study the theory of codes for asymmetric quantum channels

and also provide systematic constructions of classes of quantum codes for them. While it

remains to be seen if these codes are suitable for quantum computation, they seem most

suited for quantum memories.

In Chapter IX we slightly change tracks to illustrate how the study of quantum codes



8

can shed light on classical codes. In this chapter we show howstudies in quantum codes

led to us to gain additional insight into the properties of BCH codes. Despite the fact these

codes have been known for more than forty years now, there remain open problems with

regard to their properties. We make some contribution to ourunderstanding of these codes

in the context of quantum error correction. We characterizethe dimension and duals of

narrow-sense BCH codes giving simple closed form expressionsfor their dimensions and

simple criteria to identify dual containing BCH codes.

The material in Chapters III and IV is due to a joint work [83] with Andreas Klap-

penecker, Avanti Ketkar, and Santosh Kumar. Part of this material has appeared earlier in

the theses of Avanti Ketkar and Santosh Kumar. Chapters V, VI and VII are in collabo-

ration with Andreas Klappenecker and are based on [90, 91] and [135]. The material in

Chapter VIII is the outcome of a joint work [136] with Martin Rötteler and Andreas Klap-

penecker and was partly performed while at NEC LaboratoriesAmerica, Inc. The results

in Chapter IX are due to a joint work with Andreas Klappeneckerand Salah Aly [8].

To keep the dissertation of a manageable and readable size, Ihave not included my

investigations of algebraic geometric quantum codes (in collaboration with Andreas Klap-

penecker) [133, 134], quantum convolutional codes [3, 9] (together with Andreas Klap-

penecker, Salah Aly, Martin R̈otteler and Markus Grassl), degenerate quantum codes [5],

group algebra duadic codes [7], some additional results on subsystem codes from [6] which

were due to joint work with Andreas Klappenecker and Salah Aly.
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CHAPTER II

BACKGROUND

To make the dissertation self-contained and also to providethe context for the research per-

formed, this section provides a brief review of ideas relevant to quantum error correction.

Because the breadth of the contents precludes any possibility of covering it completely in a

short space, we recommend the lecture notes by Preskill [123] and the textbook by Nielsen

and Chuang [114] for an accessible introduction to quantum computation. Those familiar

with quantum computing can skip this chapter and proceed directly to topics of interest.

While there is a logical progression of ideas, effort has beenmade so that the chapters can

be read independently to some extent.

A. Quantum Computation

1. Qubits

Just as bits are abstractions of classical two level systems, qubits are an abstraction of

two level quantum systems. We denote the basis states in the so-called Dirac notation

where|0〉 (ket zero) and|1〉 (ket one), are simply column vectors[ 1
0 ] and[ 0

1 ] respectively.

This notation also serves to distinguish them from the classical states. The first essential

difference with respect to bits is that the qubits can be in superposition of the basis states

i.e., they can be in any linear combination of the basis states subject to a normalization

constraint. For instance, consider a single qubit. This qubit can be in the state

a |0〉 + b |1〉 , wherea, b ∈ C and|a|2 + |b|2 = 1.

So the state space of a qubit isC
2.

While the qubit can be put in any superposition of the basis states, the observed state
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of the qubit is restricted to be either one of the states. We cannot observe the superposition

itself. Any observation of the qubit “collapses” the state of the qubit to either|0〉 or |1〉

with probability|a|2 and|b|2 respectively. This underscores the second difference between

bits and qubits. Observation of qubits can change their state in general.

If we haven qubits, then the state space is actually a tensor product of the individual

state spaces. We refer to the state space of the system as the Hilbert space and denote it

by H. We haveH ∼= C
2 ⊗ C

2 ⊗ · · · ⊗ C
2 with dimH = 2n. An orthonormal basis for

H is given by|x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉. The basis states are also sometimes denoted as

|x1x2 . . . xn〉 or |x1, x2, . . . , xn〉, where thexi take the values zero or one. We can also

label the basis elements byx ∈ F
n
2 . Then a general state is given by

|ψ〉 =
∑

x∈F
n
2

αx |x〉 ;
∑

x∈F
n
2

|αx|2 = 1. (2.1)

The state of the system is a unit vector of length one inH. The probability of observing

the system in state|x〉 is given by|αx|2. The normalization constraint is due to the fact

on measurement some state will be observed. To describe a general state then, we require

2n − 1 complex numbers. This is in contrast to the classical case where the state space is

only n dimensional. As an example, a two qubit system can be put in the state

a0 |00〉 + a1 |01〉 + a2 |10〉 + a3 |11〉 ,

where|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1. The basis state|00〉 is actually|0〉⊗|0〉 = [ 1
0 ]⊗ [ 1

0 ].

Other basis states are given similarly.

Often we will need to observe only a part of the system. This isa little more involved.

Assume that we have a system ofm + n qubits and we want to observem qubits. An
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arbitrary state of the system is of the form

|ψ〉 =
∑

x∈F
m
2 ,y∈F

n
2

αx,y |x〉 |y〉 ;
∑

x∈F
m
2 ,y∈F

n
2

|αx,y|2 = 1. (2.2)

Let us assume that we want to observe the qubits whose states correspond to|x〉. Then the

probability of observing these qubits in state|x〉 is given by

px =
∑

y∈F
n
2

|αx,y|2.

Assuming that we observed|x〉, the state of the system after observation is given by

1√
px

∑

y∈F
n
2

αx,y |y〉 |x〉 .

Observing quantum systems can be described using the more powerful measurement for-

malism, see for instance [114].

An important consequence of the fact that the qubits can be insuperposition is a phe-

nomenon known as entanglement. Consider the following state. We ignore the normaliza-

tion factors for convenience.

|ψ〉 = |01〉 + |11〉 .

We could also write this state as the product statei.e.,

|ψ〉 = |0〉 ⊗ (|0〉 + |1〉).

When the states of the qubits can be written as product states then we can observe each of

the product states without disturbing the rest of the system. However there are states such

as the following which cannot be written as the product of individual qubit states.

|ψ〉 = |00〉 + |11〉 |ϕ〉 = |01〉 + |10〉 .

Such states are said to be entangled and this phenomenon is called entanglement. When
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qubits are entangled it is not possible to observe the state of one of the entangled qubits

without disturbing the rest of the system. One could view thespeedup provided by quan-

tum computers as being due to entanglement.

We associate to every state|ψ〉 in H a row vector denoted as〈ψ| which is simply the

adjoint of the column vector corresponding to|ψ〉. Two vectors|ψ〉 and|ϕ〉 are said to be

orthogonal if their scalar product denoted as〈ϕ | ψ〉 = 0. This is also called the inner

product of two vectors.

2. Quantum Gates

Just as classical data is manipulated using gates, qubits are also manipulated using quantum

gates. Since the quantum states are unit vectors inC
2n

, we could view the application of

gates on the qubits as matrices onC
2n

. The postulates of quantum mechanics require the

matrices to be unitary,i.e., they must satisfyU−1 = U †, whereU † is the adjoint of the

matrix. We denote the action of a gateU on a state|ψ〉 asU |ψ〉. We denote the inner

product ofU |ψ〉 and|ϕ〉 as〈ϕ|U |ψ〉. Some important operations on a single qubit are the

following.

X =






0 1

1 0




 ; Y =






0 −i

i 0




 ; Z =






1 0

0 −1




 . (2.3)

These operators are also called Pauli errors. We will denotethe group generated by the

Pauli errors byP. OftenY is redefined without thei for convenience in analysis. When

we considern qubits we define the Pauli group of matrices on them as

Pn = {ice1 ⊗ e2 ⊗ · · · ⊗ en | ei ∈ P, c ∈ Z4}, whereZ4 = {0, 1, 2, 3}. (2.4)

In a subsequent chapter we will generalize the notion of Pauli group and use it to define

error operators and construct codes over prime power alphabet.
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Other important single qubit gates are the Hadamard gate,H, the phase gateP and

theπ/8 gate (orT gate) which are defined as

H =






1 1

1 −1




 ; P =






1 0

0 i




 ; T =






1 0

0 eiπ/4




 . (2.5)

Perhaps the most important two qubit gate is the CNOT (controlled-NOT) gate. The action

of the CNOT gate on the basis states is as follows.

|x〉 • |x〉
|y〉 �������� |x⊕ y〉

The top qubit is called the control qubit and the bottom qubitis called the target qubit. A

CNOT gate with control qubiti and target qubitj is denoted as CNOTi,j and acts as follows

on these two qubits:












1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0












. (2.6)

The CNOT gate along withH, P andT gates forms a set of universal gates for quantum

computation. Any arbitrary quantum gate can be realized efficiently using these set of gates

to arbitrary accuracy by the Solovay-Kitaev theorem. A graphic representation of the gates

mentioned so far is given below:

X Y Z H P T •
��������

i) ii) iii) iv) v) vi) vii)

An important point about the quantum gates is that they act linearly. Let us illustrate. The
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X gate acts as follows:

X |0〉 7→ |1〉 andX |1〉 7→ |0〉 ,

so when it acts on an arbirary state such asa |0〉 + b |1〉 we geta |1〉 + b |0〉. Later in

Chapter VII we will have occasion to give encoding and decoding circuits for subsystem

codes. These ideas will be needed then.

3. Density Operators

The state of qubits can be viewed not only as a unit vector in the Hilbert space but also

as operators onH. This approach makes it easy to analyze and study quantum channels.

Given two vectors|ψ〉 and|φ〉 we can define what is known as the outer product of|ψ〉 and

|φ〉 as|φ〉 〈ψ|. For instance if|ψ〉 = |0〉 and|φ〉 = |1〉. Then|1〉 〈0| =






0 0

1 0




. We call

the outer product obtained from|ψ〉 with itself i.e., ρ = |ψ〉 〈ψ| as the density matrix or the

density operator. The density matrix is positive definite,i.e., 〈ψ| ρ |ψ〉 ≥ 0, andTr(ρ) = 1

whereTr is the sum of the diagonal entries. Since the density operators are matrices of size

2n×2n, we can also view the states as being operators on the system Hilbert space. A view

which will be useful when defining quantum channels. More generally if a system can be

found in one of the states|ψi〉 with probability pi, the density operator associated to this

system is given by

ρ =
∑

i

pi |ψi〉 〈ψi| .

A state is pure ifTr(ρ2) = 1 and mixed otherwise. The density operator approach will

be helpful in understanding the motivation behind operatorquantum error correction in

Chapter V and also in Chapter VIII, where we design codes optimized for a given channel.

When a gateU is applied to a state with density matrixρ, it transforms asUρU †.
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4. Quantum Noise

Noise on qubits is very different from the noise that we deal with bits. The noise can be

thought to be arising out of the fact that the information bearing system cannot be com-

pletely isolated from the environment and its interaction with the environment causes its

state to change. Sometimes this phenomenon is also called decoherence.

Since the state of a single qubit is givena |0〉+ b |1〉, wherea, b are complex numbers,

one can expect that errors on quantum information form a continuum unlike the classical

bits where there exist only bit flip errors. In fact, we can view noise on a qubit as a2 × 2

complex matrix and more generally, noise onn qubits is a2n × 2n complex matrix; for this

reason we often refer to errors as error operators.

While we have to protect quantum information from an infinitude of errors, in view

of linearity of quantum mechanics, it suffices to correct foronly a basis of errors. The

importance of the Pauli errors also stems from the fact that they form a basis for the error

operators. Of course, we cannot protect against all errors.We usually make the assumption

that noise on each qubit is independent. Under this assumption we can decompose an error

on the system into a tensor product ofn single qubit errors.

Errors on the quantum states can also arise due to the finite precision with which the

quantum gates are implemented. Fortunately, the same mechanisms that are used to correct

decoherence can also be used to correct for these type of errors [140,142].

5. Quantum Channels

A quantum channel is a linear map on the density operators (onC
2m

) to the set of density

operators (onC2n
); we usually assume that the input and output Hilbert spacesare same

i.e.,m = n. Sometimes quantum channels are also called “superoperators” to indicate that

they act on (density) operators. In this dissertation we will confine ourselves to maps which



16

are completely positive and trace preserving (CPTP) maps. A CPTP mapE is usually given

in terms of its Kraus decomposition.

E(ρ) =
∑

i

EiρE
†
i where

∑

i

E†
iEi = I. (2.7)

The quantum channel view is very convenient to understand errors. For instance if we

assume that the bit flip errors occur with a probabilityp and the rest of the time there are

no errors. We can represent this as the following channel.

E(ρ) = (1 − p)ρ+ pXρX. (2.8)

The Kraus operators are easily identified as
√

1 − pI and
√
pX. The channel often studied

in the context of quantum codes is the depolarizing channel and it parallels the classical

4-ary symmetric channel. This channel acts as

E(ρ) = (1 − 3p)ρ+ pXρX + pY ρY + pZρZ. (2.9)

In this channel, each of the Pauli errorsX, Y or Z act with a probabilityp and with a

probability of 1 − 3p, the state is preserved. The Kraus operators are simply given by
√

1 − 3pI,
√
pX,

√
pY and

√
pZ.

B. Quantum Error Correction

In this section we briefly review the elements of quantum error correction. The reader is

also recommended to [35,61,95] for more details. Additionally, there are many expositions

to the ideas of quantum error correction, see [13, 55, 82, 96,108]. Here we summarize the

main features. We will restrict our attention to additive quantum codes.

A binary quantum code is a linear subspace of the system Hilbert space i.e.,C2n
. The

subspace structure arises due to the fact that we can have superpositions of the encoded



17

states. For instance, let us assume that the logical states are the following:

∣
∣0
〉

= |000〉 ;
∣
∣1
〉

= |111〉 . (2.10)

Since we are allowed to have linear combinations of states, this implies thata |000〉+b |111〉

is also a valid state and belongs to the code. The subspace structure of the quantum code

can be seen to emerge naturally. The typical questions that we have to address when dealing

with error correcting codes classical or otherwise are:

• Construction

• Encoding

• Error correction

• Performance

In the case quantum codes, there is yet another component that plays a much more im-

portant role than in case of classical codes. The codes should be suitable for fault tolerant

computationi.e., we should be able to perform logical operations on the encoded data with-

out having to decode them. The encoded operations must also ensure that the errors must

not propagate catastrophically beyond the error correcting capability of the code. In this

thesis we will not get into the issues of fault tolerance. We shall address the problem of

construction and performance in more detail in the later chapters of this dissertation. Let

us look at the other two aspects.

Since quantum codes are subspaces inC
2n

, constructing quantum codes can be viewed

as packing of subspaces inH. In fact, the original approaches to quantum error correction

were along this route. This geometric picture while intuitive is not very convenient; for-

tunately, we can translate the problem of construction intoone with a lot more algebraic

flavor and more importantly, into a much more familiar language involving construction of
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classical codes. We will have much more to say on this topic ofhow to link the classical

codes and the subspaces inH later in Chapters III and V.

Assume for now that we have some means to choose a subspace to be our quantum

code,Q. Then, from linear algebra we know that we can project onto a subspace by means

of a projector. A projectorP satisfiesP 2 = P . A projector forQ can be easily constructed

by choosing an orthonormal basis of the subspaceQ, say{|α1〉 , . . . , |αK〉}, and forming

the following matrix

P =
K∑

i=1

|αi〉 〈αi| .

The dimension of the subspace is related toP asdimQ = Tr(P ). The subspace induces a

decomposition of the Hilbert space into orthogonal subspaces. Encoding amounts to real-

izing P , though there are important subtleties to be addressed, (such as the nonunitariness

of P ). For instance, the encoding in equation (2.10) can be easily accomplished using the

following circuit.

a |0〉 + b |1〉 • •
|0〉 �������� a |000〉 + b |111〉
|0〉 ��������






We shall study encoding circuits in more detail in Chapter VIIwhen we discuss encoding

of subsystem codes.

When it comes to quantum error correction, there are a few points worth highlight-

ing. Error correction or error recovery implies that we correct the errors on the encoded

information without finding out what was the original information stored. By decoding we

mean the process of extracting the information from the encoded qubits. It presumes that

error correction has already been performed. Classically, we do not have to make such

fine distinction between error correction and decoding because once error correction is per-

formed it is not difficult to obtain the information that was encoded without affecting the

encoded state. In the quantum setting decoding amounts to destroying the encoded state.
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In the context of fault tolerant quantum computation we would not like to decode until the

end of the computation as it would remove the protection afforded by the code. Unless

explicitly mentioned our focus will be on error recovery or correction. We will assume that

the decoding of the encoded information is performed at the end of the computation. In

this dissertation we will be concerned with error correction unless specified otherwise.

Let us look at the error correction process in a little more detail. Assume that we use

the encoding given in equation (2.10). Suppose that there isa bit flip error on the first qubit,

also called anX error. Then we have

a |000〉 + b |111〉 Bit flip7→ a |100〉 + b |011〉 .

We cannot take a majority voting to figure out the error as in the classical case because if

we observed the state we would collapse the state to either|100〉 or |011〉. Although we

maybe able to find that there was an error on the first qubit, we have also damaged the state.

Thus error correction process is a little more complicated in the quantum case. We must not

perform a full measurement of the system. We solve this problem by partial measurements

and the use of additional qubits called ancilla. Let us illustrate this for our running example.

We can compute the parity of the first two qubits and the secondtwo qubits as follows.

Encoding Noise Syndrome Measurement Correction
|ψ〉 • •

N
•

R|0〉 �������� • •
|0〉 �������� •

|0〉 �������� ��������

NM




 •

_ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _

|0〉 �������� ��������

NM




 •

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The state of the qubits changes as follows as we move across the circuit:

a |0〉 + b |1〉 |00〉 |00〉 Encoder7→ (a |000〉 + b |111〉) |00〉 Noise7→ (a |100〉 + b |011〉) |00〉
CNOT1,4

7→ (a |100〉 |1〉 + b |011〉 |0〉) |0〉 CNOT2,4

7→ (a |100〉 |1〉 + b |011〉 |1〉) |0〉

= (a |100〉 + b |011〉) |1〉 |0〉

It will be seen that the first ancilla qubit becomes entangledwith the encoded state briefly

and then becomes unentangled. At this point we can make a measurement of the ancilla

without disturbing the rest of the encoded state. The doublelines indicate classical bits.

We can then perform a correction operation based on the measurement of ancilla qubits.

The value measured is usually called the syndrome.

The important thing to notice is that if we have an error then the codespace is taken to

an orthogonal subspace ofC
2n

, in the example considered it is the space spanned by|100〉

and |011〉. On the other hand consider an error that flips all the qubits.This error takes

|000〉 to |111〉 and vice versa. Its action onQ is to merely permute the basis vectors. Since

it takes valid codevectors to valid codevectors, it cannot be detected. Finally, let us consider

an error which has no classical analogue. If we had aZ error on the first two qubits, then

it would take|000〉 to |000〉 and|111〉 to |111〉. So a nontrivial error can act trivially on the

codespace. We consider such errors to be harmless. This gives us a general principle for an

error to be detectable. We shall make use of this lemma later,especially in Chapters III, V.

Lemma II.1 ( [95]). Given a quantum codeQ, with projectorP , and |α〉 and |β〉 two

orthogonal vectors inQ. An errorE is detectable if and only if〈α|E |β〉 = λE 〈α|E |β〉,

whereλE depends only onE. Alternatively, an error is detectable if and only ifPEP =

λEP .

Given a set of errors{E1, E2, . . . , El} that are detectable byQ, their linear span is also

detectable byQ. The subspaceQ induces a decomposition ofC
2n

. Detectable errors take
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the subspace one of the orthogonal subspaces, while undetectable errors takeQ to itself.

C. Classical Coding Theory

In this section we discuss some of the relevant aspects of classical codes setting the stage

for our work on quantum error correction. In view of vastnessof the subject, the reader

is recommended standard textbooks in the field such as [76,104,107] for a comprehensive

treatment of the field.

Let Fq denote a finite field withq elements; we haveq = pm for some primep. If

x = (x1, . . . , xn) ∈ F
n
q , then we denote the Hamming weight ofx as

wt(x) = |{xi 6= 0}|, (2.11)

i.e., it is the number of nonzero coordinates ofx. We say that a subsetC ⊆ F
n
q is an

additive codeif for any x, y in C, x + y is also inC. Additive codes play an important

role in quantum error correction. If in addition to being additive, C also satisfiesαc ∈ C

for anyα ∈ Fq andc ∈ C, thenC is said to be anFq-linear code. Such codes often have

simpler encoding and decoding schemes while being tractable in terms of construction and

analysis. Theminimum distanceof a setC ⊂ F
n
q is defined as

wt(C) = min
x,y∈C

x 6=y

{wt(x− y)}. (2.12)

The (minimum) distance of a code is indicative of the error correcting capabilities of the

code. IfC is an additive code, its distance is given by

wt(C) = min
06=c∈C

wt(c). (2.13)

A classical(n,K, d)q codeC ⊆ F
n
q is subset ofFn

q of size |C| = K and distance

d = wt(C). If |C| = qk, then we denote it by[n, k, d]q. If C is alsoFq-linear code, then
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C is ak-dimensional subspace ofF
n
q . Linear codes are often described by giving a basis of

codewords in the form a matrix, often called as the generatormatrix. For example, consider

the [7, 4, 3]2 Hamming code with the generator matrix

G =












1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1












.

It consists of all the linear combinations of the rows ofG. When the generator matrix is in

the form[I|P ] we say that it is in the standard form. We define the Euclidean inner product

between two codewordsx, y ∈ F
n
q as

x · y = x1y1 + · · · + xnyn =
n∑

i=1

xiyi. (2.14)

The Euclidean inner product enables us to define a dual code. It is defined as

C⊥ = {x ∈ F
n
q | x · c = 0 for all c ∈ C}. (2.15)

This is also called as the Euclidean dual ofC. The dual code is itself a linear code with its

own generator matrixH. A generator matrix ofC⊥ is also called a parity check matrix for

C. For the example just considered, a parity check matrix is given by

H =









1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1









.

When the generator matrix forC is given in the standard form[Ik|P ], a parity check matrix

is easily obtained as[−P t|In−k]. One important relation between the generator matrix and

the parity check matrix is thatGH t = 0. When a codeC ⊆ C⊥, we say thatC is a self-
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orthogonal code. IfC = C⊥, then we say it is a self-dual code. In the context of quantum

error correcting codes, dual codes and self-orthogonal codes play a much more significant

role than in the classical case. Additionally, we encounterfar more general notions of inner

products.
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CHAPTER III

THEORY OF NONBINARY STABILIZER CODES∗

As mentioned earlier, quantum codes were developed to make fault-tolerant quantum com-

putation possible. The most widely studied class of quantumerror-correcting codes are

binary stabilizer codes, see [14,15,26,34,36,41–44,49,56,60,61,63,64,66,68,69,72,84,

85, 87, 108, 127, 142, 144–147, 151, 154] and, in particular,the seminal works [35, 59]. An

appealing aspect of binary stabilizer codes is that there exist links to classical coding theory

that facilitate the construction of good codes. More recently, some results were generalized

to the case of nonbinary stabilizer codes [1,10,11,28,39,40,53,54,62,71,73,86,102,109,

126,132,137,138], but the theory is not nearly as complete as in the binary case.

One would naturally ask why study nonbinary codes? There areat least three reasons

for our interest in nonbinary codes. The first reason is the generalization is a nontrivial

mathematical problem that is of interest in itself. Results which are considerably easy

to prove in the binary case turn out be much more formidable requiring the use of ele-

gant mathematical techniques to solve the problems. The second reason is a practical one

and motivated by the behavior of classical codes. Many good classical codes like Reed-

Solomon codes are nonbinary codes. Algebraic geometric codes that were the first shown

to beat the Gilbert-Varshamov bound were once again nonbinary codes. Even in the case

LDPC codes it has been shown that increasing the alphabet size improves the performance

albeit at the expense of complexity. As we shall see the closeconnections between the clas-

sical and quantum codes tempt the conclusion that perhaps one would expect to find good

classes of quantum codes over a larger alphabet. Thirdly, quite often many implementations

∗ c©2006 IEEE. Reprinted in part, with permission, from A. Ketkar, A. Klappenecker,
S. Kumar and P. K. Sarvepalli, “Nonbinary stabilizer codes over finite fields”.IEEE Trans.
Inform. Theory, vol. 52, no. 11, pp. 4892–4914, 2006.
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naturally allow for a multilevel quantum system. These extra modes are usually ignored;

but lately they have received interest, see [23,30,46,65,113] and references therein. Addi-

tionally, as shown in [130], if properly exploited, this canlead to efficient implementation

of gates. All these reasons motivate our investigations of nonbinary quantum codes.

This chapter has two primary goals. On one hand we provide a review of the theory

of stabilizer codes and on the other we also extend and generalize many of the results.

This chapter is structured as follows. We recall the basic principles of nonbinary stabilizer

codes over finite fields in Section A. In Section B, we introducea Galois theory for quan-

tum error-correcting codes. The original theory developedby Evariste Galois relates field

extensions to groups. Oystein Ore derived a significantly more general theory for pairs of

lattices [116]. We use this framework and set up a Galois correspondence between quan-

tum error-correcting codes and groups. This theory shows how some properties of general

quantum codes, such as bounds on the minimum distance, can bededuced from results

about stabilizer codes.

In Section C, we recall that stabilizer codes over a finite fieldFq correspond to additive

codes overFq that are self-orthogonal with respect to a trace-symplectic form [11]. We

also establish the correspondence to additive codes overFq2 that are self-orthogonal with

respect to a trace-alternating form; remarkably, this basic construction had been missing in

the literature, in spite of the fact that it is a generalization of the famousF4-codes [35].

The MacWilliams relations for weight enumerators of stabilizer codes are particularly

easy to prove, as we show in Section D. We then derive upper andlower bounds on the min-

imum distance of the best possible stabilizer codes in Section E. Section F details methods

to construct new methods to construct quantum codes from existing quantum codes. Unlike

classical codes, puncturing quantum codes is a relatively complex task. So we include a

generalization of the puncturing theory introduced by Rainsto additive codes that are not

necessarily pure. In a later chapter we show how to apply it.
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Apart from the basics of quantum computing, we recommend [35] and [61] for back-

ground on binary stabilizer codes, in addition to books on classical coding theory, such

as [76,104,107]. The general theory of quantum codes is discussed in [95], and we assume

that the reader is familiar with the notion of a detectable error, as introduced there.

Notations. We assume throughout this chapter thatFq denotes a finite field of char-

acteristicp; in particular,q always denotes a power of a primep. The trace function from

Fqm to Fq is defined astrqm/q(x) =
∑m−1

k=0 x
qk

; we may omit the subscripts ifFq is the

prime field. IfG is a group, then we denote byZ(G) the center ofG. If S ⊆ G, then we

denote byCG(S) the centralizer ofS in G. We writeH ≤ G to express the fact thatH is a

subgroup ofG. The traceTr(M) of a square matrixM is the sum of the diagonal elements

of M .

A. Stabilizer Codes

Let C
q be aq-dimensional complex vector space representing the statesof a quantum me-

chanical system. We denote by|x〉 the vectors of a distinguished orthonormal basis ofC
q,

where the labelsx range over the elements of a finite fieldFq with q elements. A quantum

error-correcting codeQ is aK-dimensional subspace ofC
qn

= C
q ⊗ · · · ⊗ C

q.

We need to select an appropriate error model so that we can measure the performance

of a code. We simplify matters by choosing a basisEn of the vector space of complex

qn × qn matrices to represent a discrete set of errors. A stabilizercode is defined as the

joint eigenspace of a subset ofEn, so the error operators play a crucial role.
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1. Error Bases

Let a andb be elements of the finite fieldFq. We define the unitary operatorsX(a) and

Z(b) onC
q by

X(a) |x〉 = |x+ a〉 , Z(b) |x〉 = ωtr(bx) |x〉 ,

wheretr denotes the trace operation from the extension fieldFq to the prime fieldFp, and

ω = exp(2πi/p) is a primitivepth root of unity.

We form the setE = {X(a)Z(b) | a, b ∈ Fq} of error operators. The setE has some

interesting properties, namely (a) it contains the identity matrix, (b) the product of two

matrices inE is a scalar multiple of another element inE , and (c) the traceTr(A†B) = 0

for distinct elementsA,B of E . A finite set ofq2 unitary matrices that satisfy the properties

(a), (b), and (c) is called anice error basis, see [93].

The setE of error operators forms a basis of the set of complexq × q matrices due to

property (c). We include a proof thatE is a nice error basis, because parts of our argument

will be of independent interest in the subsequent sections.

Lemma III.1. The setE = {X(a)Z(b) | a, b ∈ Fq} is a nice error basis onCq.

Proof. The matrixX(0)Z(0) is the identity matrix, so property (a) holds. We also have

ωtr(ba)X(a)Z(b) = Z(b)X(a), which implies that the product of two error operators is

given by

X(a)Z(b)X(a′)Z(b′) = ωtr(ba′)X(a+ a′)Z(b+ b′). (3.1)

This is a scalar multiple of an operator inE , hence property (b) holds.

Suppose that the error operators are of the formA = X(a)Z(b) andB = X(a)Z(b′)

for somea, b, b′ ∈ Fq. Then

Tr(A†B) = Tr(Z(b′ − b)) =
∑

x∈Fq

ωtr((b′−b)x).
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The mapx 7→ ωtr((b′−b)x) is an additive character ofFq. The sum of all character values is

0 unless the character is trivial; thus,Tr(A†B) = 0 whenb′ 6= b.

On the other hand, ifA = X(a)Z(b) andB = X(a′)Z(b′) are two error operators

satisfyinga 6= a′, then the diagonal elements of the matrixA†B = Z(−b)X(a′ − a)Z(b′)

are 0, which impliesTr(A†B) = 0. Thus, wheneverA andB are distinct element ofE ,

thenTr(A†B) = 0, which proves (c).

Example III.2. We give an explicit construction of a nice error basis withq = 4 levels.

The finite fieldF4 consists of the elementsF4 = {0, 1, α, α}. We denote the four standard

basis vectors of the complex vector spaceC
4 by |0〉 , |1〉 , |α〉 , and |α〉. Let12 denote the

2 × 2 identity matrix,σx = ( 0 1
1 0 ), andσz =

(
1 0
0 −1

)
. Then

X(0) =12 ⊗ 12, X(1) =12 ⊗ σx,

X(α) =σx ⊗ 12, X(α) =σx ⊗ σx,

Z(0) =12 ⊗ 12, Z(1) =σz ⊗ 12,

Z(α) =σz ⊗ σz, Z(α) =12 ⊗ σz.

We see that this nice error basis is obtained by tensoring thePauli basis, a nice error basis

onC
2. The next lemma shows that this is a general design principle for nice error bases.

Lemma III.3. If E1 andE2 are nice error bases, then

E = {E1 ⊗ E2 |E1 ∈ E1, E2 ∈ E2}

is a nice error basis as well.

The proof of this observation follows directly from the definitions.

Let a = (a1, . . . , an) ∈ F
n
q . We writeX(a) = X(a1) ⊗ · · · ⊗ X(an) andZ(a) =

Z(a1) ⊗ · · · ⊗ Z(an) for the tensor products ofn error operators. Our aim is to provide

an error model that conveniently represents errors acting locally on one quantum system.

Using the new notations, we can easily formulate this model.
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Corollary III.4. The setEn = {X(a)Z(b) | a,b ∈ F
n
q } is a nice error basis on the complex

vector spaceCqn
.

Remark.Several authors have used an error basis that is equivalent to our definition

of En, see [11, 54, 86, 109]. We have defined the operatorZ(b) in a slightly different way,

so that the properties relevant for the design of stabilizercodes become more transparent.

In particular, we can avoid an intermediate step that requires tensoringp× p–matrices, and

that allows us to obtain the trace-symplectic form directly, see Lemma III.5.

2. Stabilizer Codes

Let Gn denote the group generated by the matrices of the nice error basisEn. It follows

from equation (3.1) that

Gn = {ωcX(a)Z(b) | a,b ∈ F
n
q , c ∈ Fp}. (3.2)

Note thatGn is a finite group of orderpq2n. We callGn theerror groupassociated with the

nice error basisEn.

A stabilizer codeQ is a non-zero subspace ofC
qn

that satisfies

Q =
⋂

E∈S

{v ∈ C
qn | Ev = v} (3.3)

for some subgroupS of Gn. In other words,Q is the joint eigenvalue-1 eigenspace of a

subgroupS of the error groupGn.

Remark.A crucial property of a stabilizer code is that it containsall joint eigenvectors

of S with eigenvalue 1, as equation (3.3) indicates. If the code is smaller and does not

exhaust all joint eigenvectors ofS with eigenvalue 1, then it is not a stabilizer code forS.
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3. Minimum Distance

The error correction and detection capabilities of a quantum error-correcting codeQ are

the most crucial aspects of the code. Recall that a quantum codeQ is able to detect an error

E in the unitary groupU(qn) if and only if the condition〈c1|E|c2〉 = λE〈c1|c2〉 holds for

all c1, c2 ∈ Q, see [95].

It turns out that a stabilizer codeQ with stabilizerS can detect all errors inGn that

are scalar multiples of elements inS or that do not commute with some element ofS, see

Lemma III.11. In particular, an error inGn that is not detectable has to commute with all

elements of the stabilizer. Commuting elements inGn are characterized as follows:

Lemma III.5. Two elementsE = ωcX(a)Z(b) andE ′ = ωc′X(a′)Z(b′) of the error

groupGn satisfy the relation

EE ′ = ωtr(b·a′−b′·a)E ′E.

In particular, the elementsE andE ′ commute if and only if the trace symplectic form

tr(b · a′ − b′ · a) vanishes.

Proof. It follows from equation (3.1) thatEE ′ = ωtr(b·a′)X(a + a′)Z(b + b′) andE ′E =

ωtr(b′·a)X(a + a′)Z(b + b′). Therefore, multiplyingE ′E by the scalarωtr(b·a′−b′·a) yields

EE ′, as claimed.

We define thesymplectic weightswt of a vector(a|b) in F
2n
q as

swt((a|b)) = |{ k | (ak, bk) 6= (0, 0)}|.

The weightw(E) of an elementE = ωcX(a)Z(b) in the error groupGn is defined to

be the number of nonidentity tensor components,w(E) = swt((a|b)). In particular, the

weight of a scalar multiple of the identity matrix is by definition zero.
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A quantum codeQ hasminimum distanced if and only if it can detect all errors in

Gn of weight less thand, but cannot detect some error of weightd. We say thatQ is an

((n,K, d))q code if and only ifQ is aK-dimensional subspace ofC
qn

that has minimum

distanced. An ((n, qk, d))q code is also called an[[n, k, d]]q code. We remark that some

authors are more restrictive and use the bracket notation just for stabilizer codes.

We say that a quantum codeQ is pure to t if and only if its stabilizer groupS does

not contain non-scalar matrices of weight less thant. A quantum code is called pure if and

only if it is pure to its minimum distance. As in [35], we always assume that an[[n, 0, d]]q

code has to be pure.

Remarks.(a) If a quantum error-correcting code can detect a setD of errors, then it

can detect all errors in the linear span ofD. (b) A code of minimum distanced can correct

all errors of weightt = ⌊(d− 1)/2⌋ or less.

B. Galois Connection

We want to clarify the relation between stabilizer codes andmore general quantum codes

before we proceed further. Let us denote byQ the set of all subspaces ofC
qn

. The setQ

is partially ordered by the inclusion relation. Any two elements ofQ have a least upper

bound and a greatest lower bound with respect to the inclusion relation, namely

sup{Q,Q′} = Q+Q′ and inf{Q,Q′} = Q ∩Q′.

Therefore,Q is a complete (order) lattice. An element of this lattice is aquantum error-

correcting code or is equal to the vector space{0}.

Let G denote the lattice of subgroups of the error groupGn. We will introduce two

order-reversing maps betweenG andQ that establish a Galois connection. We will see that

stabilizer codes are distinguished elements ofQ that remain the same when mapped to the
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latticeG and back.

Let us define a mapFix from the latticeG of subgroups to the latticeQ of subspaces

that associates to a groupS its joint eigenspace with eigenvalue 1,

Fix(S) =
⋂

E∈S

{v ∈ C
qn |Ev = v}. (3.4)

We define for the reverse direction a mapStab from the latticeQ to the latticeG that

associates to a quantum codeQ its stabilizer groupStab(Q),

Stab(Q) = {E ∈ Gn |Ev = v for all v ∈ Q}. (3.5)

We obtain four direct consequences of the definitions (3.4) and (3.5):

G1. If Q1 ⊆ Q2 are subspaces ofC
qn

, thenStab(Q2) ≤ Stab(Q1).

G2. If S1 ≤ S2 are subgroups ofGn, thenFix(S2) ≤ Fix(S1).

G3. A subspaceQ of C
qn

satisfiesQ ⊆ Fix(Stab(Q)).

G4. A subgroupS of Gn satisfiesS ≤ Stab(Fix(S)).

The first two properties establish thatFix andStab are order-reversing maps. The exten-

sion properties G3 and G4 establish thatFix andStab form a Galois connection, see [29,

page 56]. The general theory of Galois connections establishes, among other results, that

Fix(S) = Fix(Stab(Fix(S))) andStab(Q) = Stab(Fix(Stab(Q))) holds for allS in G

and allQ in Q.

A subspaceQ of the vector spaceCqn
satisfying G3 with equality is called aclosed

subspace, and a subgroupS of the error groupGn satisfying G4 with equality is called

a closed subgroup. We record the main result of abstract Galois theory in the following

proposition.
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Proposition III.6. The closed subspaces of the vector spaceC
qn

form a complete sublattice

Qc of the latticeQ. The closed subgroups ofGn form a complete sublatticeGc of the lattice

G that is dual isomorphic to the latticeQc.

Proof. This result holds for any Galois connection, see Theorem 10 in the book by Birk-

hoff [29, page 56].

We need to characterize the closed subspaces and subgroups to make this proposition

useful. We begin with the closed subspaces because this is easier.

Lemma III.7. A closed subspace is a stabilizer code or is 0-dimensional.

Proof. By definition, a closed subspaceQ satisfies

Q = Fix(Stab(Q)) =
⋂

E∈Stab(Q)

{v ∈ C
qn |Ev = v},

hence is a stabilizer code or{0}.

Lemma III.8. If Q is a nonzero subspace ofC
qn

, then its stabilizerS = Stab(Q) is an

abelian group satisfyingS ∩ Z(Gn) = {1}.

Proof. Suppose thatE andE ′ are non-commuting elements ofS = Stab(Q). By Lemma III.5,

we haveEE ′ = ωkE ′E for someωk 6= 1. A nonzero vectorv in Q would have to satisfy

v = EE ′v = ωkE ′Ev = ωkv, contradiction. Therefore,S is an abelian group. The stabi-

lizer cannot contain any elementωk1, unlessk = 0, which proves the second assertion.

Lemma III.9. Suppose thatS is the stabilizer of a vector spaceQ. An orthogonal projector

onto the joint eigenspaceFix(S) is given by

P =
1

|S|
∑

E∈S

E.
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Proof. A vectorv in Fix(S) satisfiesPv = v, henceFix(S) is contained in the image ofP .

Conversely, note thatEP = P holds for allE in S, hence any vector in the image ofP is an

eigenvector with eigenvalue1 of all error operatorsE in S. Therefore,Fix(S) = imageP .

The operatorP is idempotent, because

P 2 =
1

|S|
∑

E∈S

EP =
1

|S|
∑

E∈S

P = P

holds. The inverseE† of E is contained in the groupS, henceP † = P . Therefore,P is an

orthogonal projector ontoFix(S).

Remark.If S is a nonabelian subgroup of the groupGn, then it necessarily contains

the centerZ(Gn) of Gn; it follows thatP is equal to the all-zero matrix. Note that the

image ofP has dimensionTr(P ) = qn/|S|.

Lemma III.10. A subgroupS of Gn is closed if and only ifS is an abelian subgroup that

satisfiesS ∩ Z(Gn) = {1} or if S is equal toGn.

Proof. Suppose thatS is a closed subgroup ofGn. The vector spaceQ = Fix(S) is, by

definition, either a stabilizer code or a 0-dimensional vector space. We haveStab({0}) =

Gn. Furthermore, ifQ 6= {0}, thenStab(Q) = S is an abelian group satisfyingS ∩

Z(Gn) = {1}, by Lemma III.8.

Conversely, suppose thatS is an abelian subgroup ofGn such thatS trivially intersects

the centerZ(Gn). Let S∗ = Stab(Fix(S)). We haveFix(S∗) = Fix(Stab(Fix(S))) =

Fix(S), because this holds for any pair of maps that form a Galois connection. It follows

from Lemma III.9 that

qn/|S∗| = Tr

(

1

|S∗|
∑

E∈S∗

E

)

= Tr

(

1

|S|
∑

E∈S

E

)

= qn/|S|.

SinceS ≤ S∗, this shows thatS = S∗ = Stab(Fix(S)); hence,S is a closed subgroup of

Gn. We note thatFix(Gn) = {0}, so thatGn = Stab(Fix(Gn)) is closed.
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The stabilizer codes are easier to study than arbitrary quantum codes, as we will see

in the subsequent sections. If we know the error correction capabilities of stabilizer codes,

then we sometimes get a lower bound on the minimum distance ofan arbitrary code by the

following simple observation:

Fact. An arbitrary quantum codeQ is contained in the larger stabilizer code given by

Q∗ = Fix(Stab(Q)). If an errorE can be detected byQ∗, then it can be detected byQ as

well. Therefore, if the stabilizer codeQ∗ has minimum distanced, then the quantum code

Q has at least minimum distanced.

C. Additive Codes

The previous section explored the relation between stabilizer codes and other quantum

codes. We show next how stabilizer codes are related to classical codes (namely, additive

codes overFq or Fq2). The classical codes allow us to characterize the errors inGn that are

detectable by the stabilizer code.

In the binary case, the problem of finding stabilizer codes oflengthn had been trans-

lated into (a) finding binary classical codes of length2n that are self-orthogonal with re-

spect to a symplectic inner product or (b) finding classical codes of lengthn overF4 that are

self-orthogonal with respect to a trace-inner product, see[35]. The approach (a) was gener-

alized to prime alphabets by Rains [126] and to prime-power alphabets by Ashikhmin and

Knill [11]. We simplify the arguments and include a full proof of this connection. There

were many attempts to generalize the approach (b) to nonbinary alphabets, but without

complete success (but see for instance [86, 109, 126] for notable partial solutions). We fill

this gap and introduce a natural generalization of (b). Furthermore, we discuss simpler

constructions for linear codes. Before exploring these connections to classical codes, we

first recall some facts about detectable errors.



36

If S is a subgroup ofGn, thenCGn(S) denotes centralizer ofS in Gn,

CGn(S) = {E ∈ Gn |EF = FE for all F ∈ S},

andSZ(Gn) denotes the group generated byS and the centerZ(Gn). We first recall the

following characterization of detectable errors (see also[11]; the interested reader can find

a more general approach in [88,92]).

Lemma III.11. Suppose thatS ≤ Gn is the stabilizer group of a stabilizer codeQ of

dimensiondimQ > 1. An errorE in Gn is detectable by the quantum codeQ if and only

if eitherE is an element ofSZ(Gn) or E does not belong to the centralizerCGn(S).

Proof. An elementE in SZ(Gn) is a scalar multiple of a stabilizer; thus, it acts by multi-

plication with a scalarλE onQ. It follows thatE is a detectable error.

Suppose now thatE is an error inGn that does not commute with some elementF

of the stabilizerS; it follows thatEF = λFE for some complex numberλ 6= 1, see

Lemma III.5. All vectorsu andv in Q satisfy the condition

〈u|E |v〉 = 〈u|EF |v〉 = λ 〈u|FE |v〉 = λ 〈u|E |v〉 ; (3.6)

hence,〈u|E |v〉 = 0. It follows that the errorE is detectable.

Finally, suppose thatE is an element ofCGn(S) \ SZ(Gn). Seeking a contradiction,

we assume thatE is detectable; this implies that there exists a complex scalar λE such

thatEv = λEv for all v in Q. The scalarλE cannot be zero becauseE commutes with

the elements ofS, soEP = PEP = λEP and clearlyEP 6= 0. Let S∗ denote the

abelian group generated byλ−1
E E and by the elements ofS. The joint eigenspace ofS∗

with eigenvalue 1 has dimensionqn/|S∗| < dimQ = qn/|S|. This implies that not all

vectors inQ remain invariant underλ−1
E E, in contradiction to the detectability ofE.

Corollary III.12. If a stabilizer codeQ has minimum distanced and is pure tot, then all
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errorsE ∈ Gn with 1 ≤ wt(E) < min{t, d} satisfy〈u|E|v〉 = 0 for all u andv in Q.

Proof. By assumption, the weight ofE is less than the minimum distance, so the error is

detectable. However,E is not an element ofZ(Gn)S, since the code is pure tot > wt(E).

Therefore,E does not belong toCGn(S), and the claim follows from equation (3.6).

1. Codes overFq

Lemma III.11 characterizes the error detection capabilities of a stabilizer code with stabi-

lizer groupS in terms of the groupsSZ(Gn) andCGn(S). The phase information of an

element inGn is not relevant for questions concerning the detectability, since an element

E ofGn is detectable if and only ifωE is detectable. Thus, if we associate with an element

ωcX(a)Z(b) of Gn an element(a|b) of F
2n
q , then the groupSZ(Gn) is mapped to the

additive code

C = {(a|b) |ωcX(a)Z(b) ∈ SZ(Gn)} = SZ(Gn)/Z(Gn).

To describe the image of the centralizer, we need the notion of a trace-symplectic form of

two vectors(a|b) and(a′|b′) in F
2n
q ,

〈(a|b) | (a′|b′)〉s = trq/p(b · a′ − b′ · a).

The centralizerCGn(S) contains all elements ofGn that commute with each element ofS;

thus, by Lemma III.5,CGn(S) is mapped onto the trace-symplectic dual codeC⊥s of the

codeC,

C⊥s = {(a|b) |ωcX(a)Z(b) ∈ CGn(S)}.

The connection between these classical codes and the stabilizer code is made precise in the

next theorem. This theorem is essentially contained in [11]and generalizes the well-known

connection to symplectic codes [35,59] of the binary case.
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Theorem III.13. An((n,K, d))q stabilizer code exists if and only if there exists an additive

codeC ≤ F
2n
q of size|C| = qn/K such thatC ≤ C⊥s and swt(C⊥s \ C) = d if K > 1

(andswt(C⊥s) = d if K = 1).

Proof. Suppose that an((n,K, d))q stabilizer codeQ exists. This implies that there ex-

ists a closed subgroupS of Gn of order |S| = qn/K such thatQ = Fix(S). The

groupS is abelian and satisfiesS ∩ Z(Gn) = 1, by Lemma III.10. The quotientC ∼=

SZ(Gn)/Z(Gn) is an additive subgroup ofF2n
q such that|C| = |S| = qn/K. We have

C⊥s = CGn(S)/Z(Gn) by Lemma III.5. SinceS is an abelian group,SZ(Gn) ≤ CGn(S),

henceC ≤ C⊥s. Recall that the weight of an elementωcX(a)Z(b) in Gn is equal to

swt(a|b). If K = 1, thenQ is a pure quantum code, thuswt(CGn(S)) = swt(C⊥s) = d.

If K > 1, then the elements ofCGn(S) \ SZ(Gn) have at least weightd by Lemma III.11,

so thatswt(C⊥s \ C) = d.

Conversely, suppose thatC is an additive subcode ofF2n
q such that|C| = qn/K,

C ≤ C⊥s , andswt(C⊥s \ C) = d if K > 1 (andswt(C⊥s) = d if K = 1). Let

N = {ωcX(a)Z(b) | c ∈ Fp and(a|b) ∈ C}.

Notice thatN is an abelian normal subgroup ofGn, because it is the pre-image ofC =

N/Z(Gn). Choose a characterχ of N such thatχ(ωc1) = ωc. Then

PN =
1

|N |
∑

E∈N

χ(E−1)E

is an orthogonal projector onto a vector spaceQ, becausePN is an idempotent in the group

ring C[Gn], see [88, Theorem 1]. We have

dimQ = TrPN = |Z(Gn)|qn/|N | = qn/|C| = K.

Each coset ofN moduloZ(Gn) contains exactly one matrixE such thatEv = v for all v
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in Q. SetS = {E ∈ N |Ev = v for all v ∈ Q}. ThenS is an abelian subgroup ofGn

of order |S| = |C| = qn/K. We haveQ = Fix(S), becauseQ is clearly a subspace of

Fix(S), butdimQ = qn/|S| = K. An elementωcX(a)Z(b) in CGn(S) \ SZ(Gn) cannot

have weight less thand, because this would imply that(a|b) ∈ C⊥s \ C has weight less

thand, which is impossible. By the same token, ifK = 1, then all nonidentity elements

of the centralizerCGn(S) must have weightd or higher. Therefore,Q is an((n,K, d))q

stabilizer code.

The results of this paragraph were established by Ashikhminand Knill [11]. It is in-

structive to compare the two approaches, since their definition of the error basis is different

(but equivalent).

2. Codes overFq2

A drawback of the codes in the previous paragraph is that the symplectic weight is some-

what unusual. In the binary case, reference [35] provided a remedy by relating binary sta-

bilizer codes to additive codes overF4, allowing the use of the familiar Hamming weight.

Somewhat surprisingly, the corresponding concept was not completely generalized toFq2,

although [86, 109] and [126] paved the way to our approach. After an initial circulation

of the results in this chapter, Gottesman drew our attentionto another interesting approach

that was initiated by Barnum, see [21,22], where a sufficient condition for the existence of

stabilizer codes is established using a symplectic form.

Let (β, βq) denote a normal basis ofFq2 overFq. We define a trace-alternating form

of two vectorsv andw in F
n
q2 by

〈v|w〉a = trq/p

(
v · wq − vq · w
β2q − β2

)

. (3.7)

We note that the argument of the trace is invariant under the Galois automorphismx 7→ xq,



40

so it is indeed an element ofFq, which shows that (3.7) is well-defined.

The trace-alternating form is bi-additive, that is,〈u + v|w〉a = 〈u|w〉a + 〈v|w〉a and

〈u|v + w〉a = 〈u|v〉a + 〈u|w〉a holds for allu, v, w ∈ F
n
q2 . It is Fp-linear, but notFq-linear

unlessq = p and it is alternating in the sense that〈u|u〉a = 0 holds for allu ∈ F
n
q2 . We

write u⊥aw if and only if 〈u|w〉a = 0 holds.

At this point it might be helpful to see the form the trace-alternating form takes in the

binary case. A normal basis forF4 overF2 is given by{ω, ω2}. Sinceω2 + ω + 1 = 0, the

trace-alternating form simplifies to

〈v|w〉a = tr2/2

(
v · w2 + v2 · w

ω4 + ω2

)

= v · wq + vq · w, (3.8)

where we have used the facts thatω3 = 1 andx = −x overF4.

We define a bijective mapφ that takes an element(a|b) of the vector spaceF2n
q to a

vector inFq2 by settingφ((a|b)) = βa + βqb. The mapφ is isometric in the sense that the

symplectic weight of(a|b) is equal to the Hamming weight ofφ((a|b)).

Lemma III.14. Suppose thatc andd are two vectors ofF2n
q . Then

〈c | d〉s = 〈φ(c) |φ(d)〉a.

In particular, c andd are orthogonal with respect to the trace-symplectic form if and only

if φ(c) andφ(d) are orthogonal with respect to the trace-alternating form.

Proof. Let c = (a|b) andd = (a′|b′). We calculate

φ(c) · φ(d)q = βq+1 a · a′ + β2 a · b′ + β2q b·a′ + βq+1 b · b′,

φ(c)q · φ(d) = βq+1 a · a′ + β2q a · b′ + β2 b·a′ + βq+1 b · b′.
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Therefore, the trace-alternating form ofφ(c) andφ(d) is given by

〈φ(c)|φ(d)〉a = trq/p

(
φ(c) · φ(d)q − φ(c)q · φ(d)

β2q − β2

)

,

= trq/p(b · a′ − a · b′),

which is precisely the trace-symplectic form〈c | d〉s.

Theorem III.15. An((n,K, d))q stabilizer code exists if and only if there exists an additive

subcodeD of F
n
q2 of cardinality|D| = qn/K such thatD ≤ D⊥a andwt(D⊥a \D) = d if

K > 1 (andwt(D⊥a) = d if K = 1).

Proof. Theorem III.13 shows that an((n,K, d))q stabilizer code exists if and only if there

exists a codeC ≤ F
2n
q with |C| = qn/K, C ≤ C⊥s, andswt(C⊥s \ C) = d if K > 1 (and

swt(C⊥s) = d if K = 1). We obtain the statement of the theorem by applying the isometry

φ.

We obtain the following convenient condition for the existence of a stabilizer code as

a direct consequence of the previous theorem.

Corollary III.16. If there exists a classical[n, k]q2 additive codeD ≤ Fq2 such thatD ≤

D⊥a andd⊥a = wt(D⊥a), then there exists an[[n, n − 2k,≥ d⊥a ]]q stabilizer code that is

pure tod⊥a.

Remark.It is not necessary to use a normal basis in the definition of the isometryφ and

the trace-alternating form. Alternatively, we could have used a polynomial basis(1, γ) of

F
2
q/Fq. In that case, one can define the isometryφ byφ((a|b)) = a+γb, and a compatible

trace-alternating form by

〈v |w〉a′ = trq/p

(
v · wq − vq · w

γ − γq

)

.

One can check that the statement of Lemma III.14 is satisfied for this choice as well. Other

variations on this theme are possible.
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3. Classical Codes

Self-orthogonal codes with respect to the trace-alternating form are not often studied in

classical coding theory; more common are codes which are self-orthogonal with respect

to a euclidean or hermitian inner product. We relate these concepts of orthogonality as

follows. Consider the hermitian inner productxq · y of two vectorsx andy in F
n
q2 ; we

write x⊥h y if and only if xq · y = 0 holds.

Lemma III.17. If two vectorsx andy in F
n
q2 satisfyx⊥h y, then they satisfyx⊥a y. In

particular, if D ≤ F
n
q2, thenD⊥h ≤ D⊥a.

Proof. It follows from xq · y = 0 thatx · yq = 0 holds, whence

〈x|y〉a = trq/p

(
x · yq − xq · y
β2q − β2

)

= 0,

as claimed.

Therefore, any self-orthogonal code with respect to the hermitian inner product is self-

orthogonal with respect to the trace-alternating form. In general, the two dual spacesD⊥h

andD⊥a are not the same. However, ifD happens to beFq2-linear, then the two dual spaces

coincide.

Lemma III.18. Suppose thatD ≤ F
n
q2 is Fq2-linear, thenD⊥h = D⊥a.

Proof. Let q = pm, p prime. If D is a k-dimensional subspace ofF
n
q2, thenD⊥h is an

(n−k)-dimensional subspace ofF
n
q2 . We can also viewD as a2mk-dimensional subspace

of F
2mn
p , andD⊥a as a2m(n − k)-dimensional subspace ofF

2mn
p . SinceD⊥h ⊆ D⊥a and

the cardinalities ofD⊥a andD⊥h are the same, we can conclude thatD⊥a = D⊥h .

Corollary III.19 (Hermitian Construction). If there exists anFq2-linear [n, k, d]q2 codeB

such thatB⊥h ≤ B, then there exists an[[n, 2k − n,≥ d]]q quantum code that is pure tod.
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Proof. The hermitian inner product is nondegenerate, so the hermitian dual of the code

D := B⊥h is B. The [n, n − k]q2 codeD is Fq2-linear, soD⊥h = D⊥a by Lemma III.18,

and the claim follows from Corollary III.16.

So it suffices to consider hermitian forms in the case ofFq2-linear codes. We have to

use the slightly more cumbersome trace-alternating form inthe case of additive codes that

are not linear overFq2.

An elegant and surprisingly simple construction of quantumcodes was introduced

in 1996 by Calderbank and Shor [36] and by Steane [145]. The CSS code construction

provides perhaps the most direct link to classical coding theory.

Lemma III.20 (CSS Code Construction). LetC1 andC2 denote two classical linear codes

with parameters[n, k1, d1]q and[n, k2, d2]q such thatC⊥
2 ≤ C1. Then there exists a[[n, k1+

k2 −n, d]]q stabilizer code with minimum distanced = min{wt(c) | c ∈ (C1 \C⊥
2 )∪ (C2 \

C⊥
1 )} that is pure tomin{d1, d2}.

Proof. LetC = C⊥
1 × C⊥

2 ≤ F
2n
q . If (c1 | c2) and(c′1 | c′2) are two elements ofC, then we

observe that

tr(c2 · c′1 − c′2 · c1) = tr(0 − 0) = 0.

Therefore,C ≤ C⊥s. Furthermore, the trace-symplectic dual ofC containsC2 × C1,

and a dimensionality argument shows thatC⊥s = C2 × C1. Since the cartesian product

C⊥
1 × C⊥

2 hasq2n−(k1+k2) elements, the stabilizer code has dimensionqk1+k2−n by Theo-

rem III.13. The claim about the minimum distance and purity of the code is obvious from

the construction.

Corollary III.21 (Euclidean Construction). If C is a classical linear[n, k, d]q code con-

taining its dual,C⊥ ≤ C, then there exists an[[n, 2k−n,≥ d]]q stabilizer code that is pure

to d.
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D. Weight Enumerators

The Shor-Laflamme weight enumerators of an arbitrary((n,K))q quantum codeQ with

orthogonal projectorP are defined by the polynomials

n∑

i=0

ASL
i z

i, with ASL
i =

1

K2

∑

E∈Gn
wt(E)=i

Tr(E†P ) Tr(EP ),

and
n∑

i=0

BSL
i z

i, with BSL
i =

1

K

∑

E∈Gn
wt(E)=i

Tr(E†PEP ),

see [141] for the binary case. The definition given here differs from the original definition

by Shor and Laflamme by a normalization factorp, which is due to the sums running

over the full error groupGn. The theory of Shor-Laflamme weight enumerators [141]

was considerably extended by Rains in [124, 125, 128, 129]. Inthis section we give a

simple proof for the relation between these weight enumerators and the symplectic weight

enumerators of the additive codes associated with the stabilizer code.

The weightsASL
i andBSL

i have a nice combinatorial interpretation in the case of sta-

bilizer codes. Indeed, letC ≤ F
2n
q denote the additive code associated with the stabi-

lizer codeQ. Define the symplectic weights ofC andC⊥s respectively byAi = |{c ∈

C | swt(c) = i}| andBi = |{c ∈ C⊥s | swt(c) = i}|. The next lemma belongs to the

folklore of stabilizer codes.

Lemma III.22. The Shor-Laflamme weights of an((n,K))q stabilizer codeQ are multiples

of the symplectic weights of the associated additive codesC andC⊥s; more precisely,

ASL
i = pAi and BSL

i = pBi for 0 ≤ i ≤ n,

wherep is the characteristic of the fieldFq.
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Proof. Recall that

P =
1

|S|
∑

E∈S

S

for the stabilizer groupS ofQ. The traceTr(EP ) is nonzero if and only ifE† is an element

of SZ(Gn). If E† ∈ SZ(Gn), thenTr(E†P ) Tr(EP ) = (qn/|S|)2 = K2. Therefore,ASL
i

counts the elements inSZ(Gn) of weighti, soASL
i = |Z(Gn)| × |{c ∈ C | swt(c) = i}| =

pAi.

If E commutes with all elements inS, thenTr(E†PEP ) = Tr(P 2) = Tr(P ) = K.

If E does not commute with some element ofS, thenE is detectable; more precisely, the

proof of Lemma III.11 shows thatPEP = 0P , henceTr(E†PEP ) = 0. Therefore,BSL
i

counts the elements inCGn(S) of weighti, henceBSL
i = |Z(Gn)| × |{c ∈ C⊥s | swt(c) =

i}| = pBi.

Shor and Laflamme had been aware of the stabilizer case when they introduced their

weight enumerators, so the combinatorial interpretation of the weights does not appear to

be a coincidence. Recall that the Shor-Laflamme enumerators of arbitrary quantum codes

are related by a MacWilliams identity, see [124,141]. For stabilizer codes, we can directly

relate the symplectic weight enumerators ofC andC⊥s ,

A(z) =
n∑

i=0

Aiz
i and B(z) =

n∑

i=0

Biz
i,

using a simple argument that is very much in the spirit of Jessie MacWilliams’ original

proof for euclidean dual codes [106].

Theorem III.23. LetC be an additive subcode ofF
2n
q with symplectic weight enumerator

A(z). Then the symplectic weight enumerator ofC⊥s is given by

B(z) =
(1 + (q2 − 1)z)n

|C| A

(
1 − z

1 + (q2 − 1)z)

)

.

Proof. Let χ be a nontrivial additive character ofFp. We define forb ∈ F
2n
q a characterχb
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of the additive groupC by substituting the trace-symplectic form for the argumentof the

characterχ, such that

χb(c) = χ(〈c|b〉s).

The characterχb is trivial if and only if b is an element ofC⊥s . Therefore, we obtain from

the orthogonality relations of characters that

∑

c∈C

χb(c) =







|C| for b ∈ C⊥s ,

0 otherwise.

The following relation for polynomials is an immediate consequence

∑

c∈C

∑

b∈F2n
q

χb(c)z
swt(b) =

∑

b∈F2n
q

zswt(b)
∑

c∈C

χb(c) = |C|B(z). (3.9)

The right hand side is a multiple of the weight enumerator of the codeC⊥s. Let us have

a closer look at the inner sum of the left-hand side. If we express the vectorc ∈ C in the

form c = (c1, . . . , cn|d1, . . . , dn), and expand the character and its trace-symplectic form,

then we obtain

∑

b∈F2n
q

χb(c)z
swt(b) =

∑

(a1,...,an|b1,...,bn)∈F2n
q

z
Pn

k=1 swt(ak|bk)χ

(
n∑

k=1

tr(dkak − bkck)

)

=
∑

(a1,...,an|b1,...,bn)∈F2n
q

n∏

k=1

zswt(ak|bk)χ (tr(dkak − bkck))

=
n∏

k=1

∑

(ak|bk)∈F2
q

zswt(ak|bk)χ (tr(dkak − bkck)) .

Recall thatχ is a nontrivial character ofFp, hence the map(ak|bk) 7→ χ(tr(dkak − bkck))

is a nontrivial character ofF2
q for all (ck|dk) 6= (0|0). Therefore, we can simplify the inner
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sum to

∑

(ak|bk)∈F2
q

zswt(ak|bk)χ (tr(dkak − bkck)) =







1 + (q2 − 1)z if (ck|dk) = (0, 0),

1 − z if (ck|dk) 6= (0, 0).

It follows that

∑

b∈F2n
q

χb(c)z
swt(b) = (1 − z)swt(c)(1 + (q2 − 1)z)n−swt(c).

Substituting this expression into equation (3.9), we find that

B(z) = |C|−1
∑

c∈C

∑

b∈F2n
q

χb(c)z
swt(b)

=
(1 + (q2 − 1)z)n

|C|
∑

c∈C

(
1 − z

1 + (q2 − 1)z

)swt(c)

=
(1 + (q2 − 1)z)n

|C| A

(
1 − z

1 + (q2 − 1)z

)

,

which proves the claim.

The coefficient ofzj in (1 + (q2 − 1)z)n−x(1 − z)x is given by the Krawtchouk poly-

nomial of degreej in the variablex,

Kj(x) =

j
∑

s=0

(−1)s(q2 − 1)j−s

(
x

s

)(
n− x

j − s

)

.

Corollary III.24. Keeping the notation of the previous theorem, we have

Bj =
1

|C|
n∑

x=0

Kj(x)Ax.

Proof. According to the previous theorem, we have

B(z) =
(1 + (q2 − 1)z)n

|C| A

(
1 − z

1 + (q2 − 1)z)

)

=
1

|C|
n∑

x=0

Ax(1 − z)x(1 + (q2 − 1)z)n−x.

We obtain the result by comparing the coefficients ofzj on both sides.
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The weight enumerators turn out to be very useful in establishing the bounds on quan-

tum codes, as we will see in the next section.

E. Bounds

We need some bounds on the achievable minimum distance of a quantum stabilizer code.

The main results in this section are the generalization of the linear programming bounds

[35], alternative proofs for the nonbinary quantum Singleton bound using a generalization

of the methods given in [12], a proof of the validity of the quantum Hamming bound for

single error-correcting (degenerate) quantum codes (which generalizes an earlier result by

Gottesman [61, Chapter 7]), a simpler nonconstructive prooffor lower bounds on quantum

codes, and an existence proof of a class of optimal quantum codes.

1. Upper Bounds

We shall derive a series of upper bounds for nonbinary stabilizer codes. The first theorem

yields a bound that is well-suited for computer search.

Theorem III.25. If an ((n,K, d))q stabilizer code withK > 1 exists, then there exists a

solution to the optimization problem: minimize
∑d−1

j=1 Aj subject to the constraints

1. A0 = 1 andAj ≥ 0 for all 1 ≤ j ≤ n;

2.
n∑

j=0

Aj = qn/K;

3. Bj =
K

qn

n∑

r=0

Kj(r)Ar holds for allj in the range0 ≤ j ≤ n;

4. Aj = Bj for all j in 0 ≤ j < d andAj ≤ Bj for all d ≤ j ≤ n;

5. (p− 1) dividesAj for all j in the range1 ≤ j ≤ n.
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Proof. If an ((n,K, d))q stabilizer code exists, then the symplectic weight distribution of

the associated additive codeC satisfies conditions 1) and 2). For each nonzero codeword

c in C, αc is again inC for all α in F
∗
p, so 5) holds. Corollary III.24 shows that 3) holds.

Since the quantum code has minimum distanced, it follows that 4) holds.

Remark III.26. If we are interested in bounds forFq2 linear codes, then we can replace

condition 5) in the previous theorem byq2 − 1 dividesAj for 1 ≤ j ≤ n. This will even

help in characteristic 2.

The next bound is more convenient when one wants to find boundsby hand. In par-

ticular, any functionf satisfying the constraints of the next theorem will yield a useful

bound on the dimension of a stabilizer code. This approach was introduced by Delsarte for

classical codes [47]. Binary versions of Theorem III.27 and Corollary III.28 were proved

by Ashikhmin and Litsyn [12], see also [15].

Theorem III.27. LetQ be an((n,K, d))q stabilizer code of dimensionK > 1. Suppose

thatS is a nonempty subset of{0, . . . , d− 1} andN = {0, . . . , n}. Let

f(x) =
n∑

i=0

fiKi(x)

be a polynomial satisfying the conditions

i) fx > 0 for all x in S, andfx ≥ 0 otherwise;

ii) f(x) ≤ 0 for all x in N \ S.

Then

K ≤ 1

qn
max
x∈S

f(x)

fx

.

Proof. Suppose thatC ≤ F
2n
q is the additive code associated with the stabilizer codeQ.

If we apply Corollary III.24 to the trace-symplectic dual codeC⊥s of the codeC, then we
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obtain

Ai =
1

|C⊥s |
n∑

x=0

Ki(x)Bx.

Using this relation, we find that

|C⊥s|
∑

i∈S

fiAi ≤ |C⊥s|
n∑

i=0

fiAi

= |C⊥s|
n∑

i=0

fi

(

1

|C⊥s |
n∑

x=0

Ki(x)Bx

)

=
n∑

x=0

Bx

n∑

i=0

fiKi(x).

By assumption,f(x) =
∑n

i=0 fiKi(x); thus, we can simplify the latter inequality and

obtain

|C⊥s|
∑

i∈S

fiAi ≤
n∑

x=0

Bxf(x) ≤
∑

x∈S

Bxf(x) =
∑

x∈S

Axf(x),

where the last equality follows from the fact that the stabilizer code has minimum distance

d, meaning thatAx = Bx holds for allx in the range0 ≤ x < d. We can conclude that

|C⊥s| ≤
(
∑

x∈S

Axf(x)

)/(
∑

x∈S

fxAx

)

≤ max
x∈S

f(x)

fx

,

which proves the theorem, since|C⊥s | = qnK.

The previous theorem implies the quantum Singleton bound. In general, linear pro-

gramming yields better bounds, but for short lengths one canactually find codes meeting

the quantum Singleton bound.

Corollary III.28 (Quantum Singleton Bound). An ((n,K, d))q stabilizer code withK > 1

satisfies

K ≤ qn−2d+2.

The binary version of the quantum Singleton bound was first proved by Knill and

Laflamme in [95], see also [12,15], and later generalized by Rains using weight enumera-
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tors in [126].

A more interesting application of Theorem III.27 is to derive the quantum Hamming

bound. The quantum Hamming bound states that any pure((n,K, d))q stabilizer code

satisfies

⌊(d−1)/2⌋
∑

i=0

(
n

i

)

(q2 − 1)i ≤ qn/K, (3.10)

see [55, 59]. Several researchers have tried to find impure stabilizer codes that beat the

quantum Hamming bound. However, Gottesman has shown that impure single and double

error-correcting binary quantum codes cannot beat the quantum Hamming bound [61]. In

the same vein, Theorem III.27 allows us to derive the Hammingbound for arbitrary stabi-

lizer codes, at least when the minimum distance is small. We illustrate the method for single

error-correcting codes, and note that the same approach works for double error-correcting

codes as well.

Corollary III.29 (Quantum Hamming Bound). An((n,K, 3))q stabilizer code withK > 1

satisfies

K ≤ qn
/
(n(q2 − 1) + 1).

Proof. Recall that the intersection numberpk
ij of the Hamming association schemeH(n, q2)

is the integerpk
ij = |{z ∈ F

n
q2 | d(x, z) = i, d(y, z) = j}|, wherex andy are two vectors in

F
n
q of Hamming distanced(x, y) = k. The intersection numbers are related to Krawtchouk

polynomials by the expression

pk
ij = q−2n

n∑

u=0

Kn
i (u)Kn

j (u)Kn
u (k),

see [20].

After this preparation, we can proceed to derive the Hammingbound as a consequence
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of Theorem III.27. Let

f(x) =
1∑

j,k=0

n∑

i=0

Kn
j (i)Kn

k (i)Kn
i (x),

= q2n(px
00 + px

10 + px
01 + px

11).

The triangle inequality implies thatpk
ij = 0 if one of the three arguments exceeds the sum

of the other two; hence,f(x) = 0 for x > 2. The coefficients of the Krawtchouk expansion

f(x) =
∑n

i=0 fiKi(x) obviously satisfyfi = (K0(i) + K1(i))
2 ≥ 0. A straightforward

calculation gives

f(0) = q2n(n(q2 − 1) + 1), f0 = (n(q2 − 1) + 1)2,

f(1) = q2n+2, f1 = ((n− 1)(q2 − 1))2,

f(2) = 2q2n, f2 = ((n− 2)(q2 − 1) − 1)2.

It follows that

max{f(0)/f0, f(1)/f1, f(2)/f2} ≤ q2n/(n(q2 − 1) + 1)

holds for alln ≥ 5. Using Theorem III.27, we obtain the claim for alln ≥ 5. For the

lengthsn < 5, we obtain the claim from the quantum Singleton bound.

One real disadvantage of Theorem III.27 is that the number ofterms increase with the

minimum distance and this can lead to cumbersome calculations. However, one can derive

more consequences from Theorem III.27; see, for instance, [12,15,101,110].

2. Lower Bounds

Feng and Ma have recently shown a quantum version of the classical lower bounds by

Gilbert and Varshamov [55]. We conclude this section by giving a simple proof for a

weaker version of this result based on a counting argument. It must be remembered that
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these lower bounds are nonconstructive.

Our first lemma generalizes an idea used by Gottesman in his proof of the binary case.

Lemma III.30. An ((n,K,≥ d))q stabilizer code withK > 1 exists provided that

(qnK − qn/K)
d−1∑

j=1

(
n

j

)

(q2 − 1)j < (q2n − 1)(p− 1) (3.11)

holds.

Proof. LetL denote the multiset

L = {C⊥s \ C |C ≤ C⊥s ≤ F
2n
q with |C| = qn/K}.

The elements of this multiset correspond to stabilizer codes of dimensionK. Note thatL

is nonempty, since there exists a codeC of sizeqn/K that is generated by elements of the

form (a|0); the form of the generators ensures thatC ≤ C⊥s .

All nonzero vectors inF2n
q appear in the same number of sets inL. Indeed, the sym-

plectic group Sp(2n,Fq) acts transitively on the setF2n
q \ {0}, see [74, Proposition 3.2],

which means that for any nonzero vectorsu andv in F
2n
q there existsτ ∈ Sp(2n,Fq) such

that v = τu. Therefore,u is contained inC⊥s \ C if and only if v is contained in the

element(τC)⊥s \ τC of L.

The transitivity argument shows that any nonzero vector inF
2n
q occurs in|L|(qnK −

qn/K)/(q2n − 1) elements ofL. Furthermore, a nonzero vector and itsF
×
p -multiples are

contained in the exact same sets ofL. Thus, if we delete all sets fromL that contain a

nonzero vector with symplectic weight less thand, then we remove at most

∑d−1
j=1

(
n
j

)
(q2 − 1)j

p− 1
|L|(q

nK − qn/K)

q2n − 1

sets fromL. By assumption, this number is less than|L|; hence, there exists an((n,K,≥

d))q stabilizer code.
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The Gilbert-Varshamov bound shows the existence of surprisingly good codes, even

for smaller lengths, when the characteristic of the field is not too small. Ifn ≡ k mod 2,

then we can significantly strengthen the bound.

Lemma III.31. If k ≥ 1, n ≡ k mod 2 and

(qn+k − qn−k)
d−1∑

j=1

(
n

j

)

(q2 − 1)j−1 < (q2n − 1) (3.12)

holds, then there exists anFq2-linear [[n, k, d]]q stabilizer code.

Proof. The proof is almost the same as in the previous lemma, except that we list only

codesC such thatφ(C) is linear, meaning thatφ(C) is a vector space overFq2. We repeat

the previous argument with the multiset

L =







C⊥s \ C
∣
∣
∣
∣
∣

C ≤ C⊥s ≤ F 2n
q , |C| = qn−k,

φ(C) is Fq2-linear







.

It is easy to see thatL is not empty. Note that each setφ(C⊥s) \ φ(C) in L contains

now all F
×
q2-multiples of a nonzero vector, not just theF×

p -multiples, which proves the

statement.

Feng and Ma show that one can extend the previous result to even prove the existence

of pure stabilizer codes, but much more delicate counting arguments are needed in that

case, see [55]. We are not aware of short proofs for this stronger result.

The previous lemma allows us to show the existence of good quantum codes, espe-

cially for larger alphabets. We illustrate this fact by proving the existence of MDS stabilizer

codes, see Section C for more details on such codes.

Corollary III.32. If 2 ≤ d ≤ ⌈n/2⌉ andq2 − 1 ≥
(

n
d

)
, then there exists a linear[[n, n −

2d+ 2, d]]q stabilizer code.
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Proof. The assumptiond ≤ ⌈n/2⌉ implies that
(

n
1

)
≤
(

n
2

)
≤ · · · ≤

(
n
d

)
, so the maximum

value of these binomial coefficients is at mostq2 − 1. Let k = n− 2d+ 2. It follows from

the assumption thatk ≥ 1 andn ≡ k mod 2. It remains to show that (3.12) holds. For the

choicek = n− 2d+ 2, the left hand side of (3.12) equals

(q2n−2d+2−q2d−2)
d−1∑

j=1

(
n

j

)

(q2 − 1)j−1

≤ (q2n−2d+2 − q2d−2)
d−1∑

j=1

(q2 − 1)j

= (q2n−2d+2 − q2d−2)
(q2 − 1)d − (q2 − 1)

q2 − 2
.

We claim that the latter term is less thanq2n − 1. To prove this, it suffices to show that

q2n−2d+2 (q2 − 1)d − (q2 − 1)

q2 − 2
≤ q2n (3.13)

holds. The latter inequality is equivalent to(q2 − 1)d ≤ q2d − 2q2d−2 + q2 − 1, and it is not

hard to see that this inequality holds. Indeed, note that

q2d = ((q2 − 1) + 1)d = (q2 − 1)d +
d−1∑

j=0

(
d

j

)

(q2 − 1)j.

Recall that
(

d
j

)
=
(

d−1
j−1

)
+
(

d−1
j

)
; hence,

q2d − 2q2d−2 − (q2 − 1)d

=
d−1∑

j=0

(
(
d

j

)

− 2

(
d− 1

j

)
)
(q2 − 1)j,

=
d−1∑

j=0

(
(
d− 1

j − 1

)

−
(
d− 1

j

)

︸ ︷︷ ︸

α(j):=

)
(q2 − 1)j.

We haveα(j) = −α(d − j) for 0 ≤ j ≤ d − 1, andα(j) ≥ 0 for j ≥ d/2. This

shows that all negative terms get canceled by larger positive terms and we can conclude
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thatq2d−2q2d−2− (q2−1)d ≥ 0 for d ≥ 2; this implies inequality (3.13) and consequently

shows that (3.12) holds.

Example III.33. Recall that there does not exist a[[7, 1, 4]]2 code, see [35]. In contrast,

the existence of a[[7, 1, 4]]q code for all prime powersq ≥ 7 is guaranteed by the preceding

corollary. It also shows that there exist[[6, 2, 3]]q for all prime powersq ≥ 5 and[[7, 3, 3]]q

for all prime powersq ≥ 7, which slightly generalizes [53].

F. Code Constructions

Constructing good quantum codes is a difficult task. We need a quantum code for each

parametern andk in our tables. In this section we collect some simple facts about the

construction of codes. Lemmas III.34–III.36, (see also Table I), show how to lengthen,

shorten or reduce the dimension of the stabilizer code. These generalize and extend the

constructions for binary quantum codes [35, Theorem 6].

Table I. The existence of a pure[[n, k, d]]q stabilizer code implies the existence of codes

with other parameters.

n/k k − 1 k k + 1

n− 1
≥ d− 1 pure

Lemma III.36

≥ d− 1 pure

Lemma III.36

d− 1 pure

Lemma III.35

n
≥ d pure

Lemma III.36
d pure

d− 1 impure

Lemma III.34

n+ 1
≥ d impure

Lemma III.34

d impure

Lemma III.34

Lemma III.34. If an [[n, k, d]]q stabilizer code exists fork > 0, then there exists an impure

[[n+ 1, k, d]]q stabilizer code.
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Proof. If an [[n, k, d]]q stabilizer code exists, then there exists an additive subcodeC ≤ F
2n
q

such that|C| = qn−k, C ≤ C⊥s , andswt(C⊥s \ C) = d. Define the additive code

C ′ = {(aα|b0) |α ∈ Fq, (a|b) ∈ C}.

We have|C ′| = qn−k+1. The definition ensures thatC ′ is self-orthogonal with respect to

the trace-symplectic inner product. Indeed, two arbitraryelements(aα|b0) and(a′α′|b′0)

of C ′ satisfy the orthogonality condition

〈(aα|b0)|(a′α′|b′0)〉s = 〈(a|b)|(a′|b′)〉s + tr(α · 0 − α′ · 0) = 0.

A vector in the trace-symplectic dual ofC ′ has to be of the form(aα|b0) with (a|b) ∈ C⊥s

andα ∈ Fq. Furthermore,

swt(C ′⊥s \ C ′) = min{swt(aα|b0) |α ∈ Fq, a, b ∈ C⊥s \ C},

which coincides withswt(C⊥s \ C). Therefore, an[[n + 1, k, d]]q stabilizer code exists

by Theorem III.13. Ifd > 1, then the code is impure, becauseC ′⊥s contains the vector

(0α|00) of symplectic weight 1.

Lemma III.35. If a pure[[n, k, d]]q stabilizer code exists withn ≥ 2 andd ≥ 2, then there

exists a pure[[n− 1, k + 1, d− 1]]q stabilizer code.

Proof. If a pure[[n, k, d]]q stabilizer code exists, then there exists an additive codeD ≤ F
n
q2

that is self-orthogonal with respect to the trace-alternating form, so that|D| = qn−k and

wt(D⊥a) = d. LetD⊥a
0 denote the code obtained by puncturing the first coordinate of D⊥a.

Since the minimum distance ofD⊥a is at least 2, we know that|D⊥a
0 | = |D⊥a| = qn+k,

and we note that the minimum distance ofD⊥a
0 is d − 1. The dual ofD⊥a

0 consists of all

vectorsu in F
n−1
q2 such that0u is contained inD. Furthermore, ifu is an element ofD0,

then0u is contained inD; hence,D0 is a self-orthogonal additive code. The codeD0 is of
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sizeq(n−1)−(k+1), because

dimD0 + dimD⊥a
0 = dim F

n−1
q2

when we viewD0 and its dual asFp–vector spaces. It follows that there exists a pure

[[n− 1, k + 1, d− 1]]q stabilizer code.

Lemma III.36. If a (pure) [[n, k, d]]q stabilizer code exists, withk ≥ 2 (k ≥ 1), then there

exists an[[n, k − 1, d∗]]q stabilizer code (pure tod) such thatd∗ ≥ d.

Proof. If an [[n, k, d]]q stabilizer code exists, then there exists an additive codeD ≤ F
n
q2

such thatD ≤ D⊥a with wt(D⊥a \D) = d and|D| = qn−k. Choose an additive codeDb

of size |Db| = qn−k+1 such thatD ≤ Db ≤ D⊥a
b ≤ D⊥a. SinceD ≤ Db, we have

D⊥a
b ≤ D⊥a. The setΣb = D⊥a

b \Db is a subset ofD⊥a \D, hence the minimum weight

d∗ of Σb is at leastd. This proves the existence of an[[n, k − 1, d∗]] code.

If the code is pure, thenwt(D⊥a) = d; it follows fromD⊥a
b ≤ D⊥a thatwt(D⊥a

b ) ≥ d,

so the smaller code is pure as well.

Corollary III.37. If a pure [[n, k, d]]q stabilizer code withn ≥ 2 andd ≥ 2 exists, then

there exists a pure[[n− 1, k,≥ d− 1]]q stabilizer code.

Proof. Combine Lemmas III.35 and III.36.

Lemma III.38. Suppose that an((n,K, d))q and an((n′, K ′, d′))q stabilizer code exist.

Then there exists an((n+ n′, KK ′,min(d, d′))q stabilizer code.

Proof. Suppose thatP andP ′ are the orthogonal projectors onto the stabilizer codes forthe

((n,K, d))q and((n′, K ′, d′))q stabilizer codes, respectively. ThenP ⊗P ′ is an orthogonal

projector onto aKK ′-dimensional subspaceQ∗ of C
d, whered = qn+n′

. Let S andS ′

respectively denote the stabilizer groups of the images ofP andP ′. ThenS∗ = {E ⊗

E ′ |E ∈ S,E ′ ∈ S ′} is the stabilizer group ofQ∗.
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If an elementF ⊗ F ∗ of Gn ⊗Gn′ = Gn+n′ is not detectable, thenF has to commute

with all elements inS, andF ′ has to commute with all elements inS ′. It is not possible

that bothF ∈ Z(Gn)S andF ′ ∈ Z(Gn′)S ′ hold, because this would imply thatF ⊗ F ′

is detectable. Therefore, eitherF or F ′ is not detectable, which shows that the weight of

F ⊗ F ′ is at leastmin(d, d′).

Lemma III.39. Let Q1 andQ2 be pure stabilizer codes that respectively have parame-

ters [[n, k1, d1]]q and [[n, k2, d2]]. If Q2 ⊆ Q1, then there exists a[[2n, k1 + k2, d]]q pure

stabilizer code with minimum distanced ≥ min{2d2, d1}.

Proof. The hypothesis implies that there exist additive subcodesD1 ≤ D2 of F
n
q2 such that

Dm ≤ D⊥a
m , |Dm| = qn−km, andwt(D⊥a

m ) = dm for m = 1, 2. The additive code

D = {(u, u+ v) |u ∈ D1, v ∈ D2} ≤ F
2n
q2

is of size|D| = q2n−(k1+k2). The trace-alternating dual of the codeD is D⊥a = {(u′ +

v′, v′) |u′ ∈ D⊥a
1 , v′ ∈ D⊥a

2 }. Indeed, the vectors on the right hand side are perpendicular

to the vectors inD, because

〈(u, u+ v) | (u′ + v′, v′)〉a = 〈u|u′ + v′〉a + 〈u+ v|v′〉a = 0

holds for allu ∈ D1, v ∈ D2 andu′ ∈ D⊥a
1 , v′ ∈ D⊥a

2 . We observe thatD is self-

orthogonal,D ≤ D⊥a. The weight of a vector(u′ + v′, v′) ∈ D⊥a \ D is at least

min{2d2, d1}; the claim follows.

Lemma III.40. Let q be a power of two. If a pure[[n, k1, d1]]q stabilizer codeQ1 exists

that has a pure subcodeQ2 ⊆ Q1 with parameters[[n, k2, d2]]q such thatk1 > k2, then a

pure [[2n, k1 − k2, d]]q stabilizer code exists such thatd ≥ min {2d1, d2}.

Proof. If an [[nm, km, dm]]q stabilizer code exists, then there exists an additive codeDm ≤

F
n
q2 such thatDm ≤ D⊥a

m , wt(D⊥a
m ) = d, and|Dm| = qn−km for m = 1, 2. The inclusion
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Q2 ⊆ Q1 implies thatD1 ≤ D2. LetD denote the additive code consisting of vectors of

the form(u, u+ v) such thatu ∈ D⊥a
2 andv ∈ D1.

We claim thatD⊥a consists of vectors of the form(u′, u′ + v′) such thatu′ ∈ D⊥a
1 and

v′ ∈ D2. Indeed, letv1 = (u, u + v) denote a vector inD, and letv2 = (u′, u′ + v′) be a

vector withu′ ∈ D⊥a
1 andv′ ∈ D2. We have

〈v1|v2〉a = 〈u|u′〉a + 〈u|u′〉a + 〈u|v′〉a + 〈v|u′〉a + 〈v|v′〉a.

The first two terms on the right hand side cancel because the characteristic of the field

is even; the next two terms vanish since the vectors belong todual spaces; the last term

vanishes becausev andv′ are both contained inD2, andD2 is self-orthogonal. Therefore,

v1 andv2 are orthogonal. The set{(u′, u′ +v′) |u′ ∈ D⊥a
1 , v′ ∈ D2} ⊆ D⊥a has cardinality

q2n+k1−k2, so it must be equal toD⊥a by a dimension argument.

The Hamming weight of a vector(u′, u′+v′) inD⊥a is at leastmin {2d1, d2}, because

u′ ∈ D⊥a
1 andv′ ∈ D2 ≤ D⊥a

2 .

Lemma III.41. Letq be a power of a prime. If an((n,K, d))qm stabilizer code exists, then

an ((nm,K,≥ d))q stabilizer code exists. Conversely, if an((nm,K, d))q stabilizer code

exists, then there exists an((n,K,≥ ⌊d/m⌋))qm stabilizer code.

This lemma is implicitly contained in the paper by Ashikhminand Knill [11].

Proof. Let B = {β1, . . . , βm} denote a basis ofFqm/Fq. If a is an element ofFqm, then

we denote byeB(a) the coordinate vector inFm
q given by eB(a) = (a1, . . . , am), where

a =
∑m

i=1 aiβi.

A nondegenerate symmetric form on theFq-vector spaceFqm is given bytrqm/q(xy).

It follows that the Gram matrixM = (trqm/q(βiβj))1≤i,j≤m is nonsingular. We have

trqm/q(xy) = eB(x)
tMeB(y) for all x, y in Fqm. We define anFp–vector space isomor-
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phismϕB from F
2n
qm ontoF

2nm
q by

ϕB((a|b)) = ((eB(a1), . . . , eB(an))|(MeB(b1), . . . ,MeB(bn))).

It follows from the fact thattrqm/q(trq/p(x)) = trqm/p(x) for all x in Fqm and the definition

of the isomorphismϕB that(a|b)⊥s (c|d) holds inF
2n
qm if and only ifϕB((a|b))⊥s ϕB((c|d))

holds inFq2nm.

If an ((n,K, d))qm exists, then there exists an additive codeC ≤ F
2n
qm of size|C| =

qnm/K such thatC ≤ C⊥s , swt(C⊥s \ C) = d if K > 1, andswt(C⊥s) = d if K =

1. Therefore, the codeϕB(C) over the alphabetFq is of sizeqnm/K, satisfiesϕB(C) ≤

ϕB(C)⊥s ≤ F
2nm
q , andswt(ϕB(C)⊥s \ ϕB(C)) = d if K > 1 andswt(ϕB(C)⊥s) = d if

K = 1. Thus, an((nm,K, d))q stabilizer code exists.

The existence of an((nm,K, d))q stabilizer code implies the existence of an((n,K))qm

stabilizer code; the claim about the minimum distance follows from the fact thatϕ−1
B maps

each nonzero block ofm symbols to a nonzero symbol inFqm.

We notice that there exists a basisB such thatM is the identity matrix if and only if

eitherq is even or bothq andm are odd, see [139]. In that case,ϕB simply expands each

symbol into coordinates with respect toB.

G. Puncturing Stabilizer Codes

If we delete one coordinate in all codewords of a classical code, then we obtain a shorter

code that is called the punctured code. In general, we cannotproceed in the same way with

stabilizer codes, since the resulting matrices might not commute if we delete one or more

tensor components.

Rains [126] invented an interesting approach that solves thepuncturing problem for

linear stabilizer codes and, even better, gives a way to construct stabilizer codes from arbi-
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trary linear codes. The idea is to associate with a classicallinear code a so-called puncture

code; if the puncture code contains a codeword of weightr, then a self-orthogonal code

of lengthr exists and the minimum distance is the same or higher than that of the initial

classical code. Further convenient criteria for puncture codes are given in [71].

In this section, we generalize puncturing to arbitrary stabilizer codes and review some

known facts. Determining a puncture code is a challenging task, and maynot always pos-

sible to find it in closed form. In the next chapter we show how the results of this section

can be applied to puncture quantum BCH codes.

It will be convenient to denote the the pointwise product of two vectorsu andv in F
n
q

by uv, that is,uv = (uivi)
n
i=1. Suppose thatC ≤ F

2n
q is an arbitrary additive code. The

associated puncture codePs(C) ⊆ F
n
q is defined as

Ps(C) = {(bka′k − b′kak)
n
k=1 | (a|b), (a′|b′) ∈ C}⊥ . (3.14)

Theorem III.42. Suppose thatC is an arbitrary additive subcode ofF2n
q of size|C| =

qn/K such thatswt(C⊥s \ C) = d. If the puncture codePs(C) contains a codeword of

Hamming weightr, then there exists an((r,K∗, d∗))q stabilizer code withK∗ ≥ K/qn−r

that has minimum distanced∗ ≥ d whenK∗ > 1. If swt(C⊥s) = d, then the resulting

punctured stabilizer code is pure tod.

Proof. Let x be a codeword of weightr in thePs(C). Define an additive codeCx ≤ F
2n
q

by

Cx = {(a|bx) | (a|b) ∈ C}.

If (a|bx) and(a′|b′x) are arbitrary elements ofCx, then

〈(a|bx) | (a′|b′x)〉s = tr

(
n∑

k=1

(bka
′
k − b′kak)xk

)

= 0 (3.15)

by definition ofPs(C); thus,Cx ≤ (Cx)
⊥s .
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LetCR
x = {(ak|bk)k∈S|(a|b) ∈ Cx} denote the restriction ofCx to the supportS of the

vectorx. Since equation (3.15) depends only on the nonzero coefficients of the vectorx, it

follows thatCR
x ≤ (CR

x )⊥s holds.

We note that|C| ≥ |CR
x |; hence, the dimensionK∗ of the punctured quantum code is

bounded by

K∗ ≥ qr/|CR
x | ≥ qr/|C| = qr/(qn/K) = K/qn−r.

It remains to show thatswt((CR
x )⊥s \ CR

x ) ≥ d. Seeking a contradiction, we suppose

thatuR
x is a vector in(CR

x )⊥s \CR
x such thatswt(uR

x ) < d. Letux = (a|b) denote the vector

in (Cx)
⊥s that is zero outside the support ofx and coincides withuR

x when restricted to the

support ofx. It follows that(ax|b) is contained inC⊥s . Howeverswt(ax|b) < d, so(ax|b)

must be an element ofC, sinceswt(C⊥s \C) = d. This implies that(ax|bx) is an element

of Cx ≤ (Cx)
⊥s . Arguing as before, it follows that(ax2|bx) is inC and(ax2|bx2) is inCx.

Repeating the process, we obtain thatvx = (axq−1|bxq−1) is inCx, and we note thatxq−1 is

the characteristic vector of the support ofx. Restrictingvx in Cx to the support ofx yields

uR
x ∈ CR

x , contradicting the assumption thatuR
x ∈ (CR

x )⊥s \ CR
x .

Finally, the last statement concerning the purity is easy toprove (a direct generaliza-

tion of the argument given in [71] for pure linear codes).

If the codeC is a direct product, as in the case of CSS codes, then the expression for

the puncture code simplifies somewhat.

Lemma III.43. If C1 andC2 are two additive subcodes ofF
n
q , then

Ps(C1 × C2) = {ab | a ∈ C1, b ∈ C2}⊥ ≤ F
n
q .

Proof. Since〈ab | a ∈ C1, b ∈ C2〉 = 〈(ba′ − b′a) | a, a′ ∈ C1, b, b
′ ∈ C2〉, the claim about

the orthogonal complements of these sets is obvious.

Since many quantum codes are constructed from self-orthogonal codesC ≤ C⊥, we
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write

Pe(C) = Ps(C × C) = {ab | a, b ∈ C}⊥. (3.16)

H. Conclusions

In this chapter we have further developed the theory of nonbinary stabilizer codes. After

reviewing the basic theory of nonbinary stabilizer codes over finite fields, we introduced

Galois-theoretic methods to clarify the relation between these and more general quantum

codes. We showed the most general class of codes over quadratic extension fields that can

be used to construct quantum codes are those that are self-orthogonal with respect to the

trace alternating product.

We gave simpler proofs for the existence of nonbinary quantum codes. We also gen-

eralized the linear programming bounds for the nonbinary codes. Following Gottesman’s

lead [61], we were able to show that single and double error-correcting nonbinary stabilizer

codes cannot beat the quantum Hamming bound. We conjecture that no quantum stabilizer

code can exceed the quantum Hamming bound, but a proof is still elusive. We also gave

methods to obtain new quantum codes from existing quantum codes. In particular, we

developed the theory of puncture codes.

There are open questions that the work in this chapter suggests. We could for instance

start with a different choice of error basis [93], and one candevelop a similar theory for

such stabilizer codes. For example, one choice leads to self-orthogonal additive subcodes

of Z
n
q×Z

n
q instead of subcodes ofF

n
q×F

n
q . It would be interesting to know how the stabilizer

codes with respect to different error bases compare. To the best of our knowledge, such a

comparison has not been made.
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CHAPTER IV

CLASSES OF STABILIZER CODES∗

In this chapter we shall take a constructive approach to our study of stabilizer codes giv-

ing explicit constructions for many classes of codes. Much of the theory we developed in

Chapter III will be brought to bearing with additional simplifications for the classes of lin-

ear codes. In case of linear codes, our main methods of constructions will be the Hermitian

construction and the CSS construction (Lemmas III.19–III.21). Hence, we need to look

for classical codes that are self-orthogonal with respect to the Hermitian or the Euclidean

product or families of nested codes like the BCH codes. Additionally, we investigate the

structural properties of nontrivial codes that meet the quantum Singleton bound and estab-

lish bounds on the maximal length of such codes. We provide a concrete illustration of the

theory of puncture codes developed in the last chapter by puncturing the quantum BCH

codes.

A. Quantum Cyclic Codes

Cyclic codes are an interesting class of codes which have simple encoding and efficient

decoding algorithms. Consequently, quantum cyclic codes have also generated interest.

Before we construct quantum cyclic codes we need the following results for identifying

cyclic codes that contain their duals. We have not been able to trace the references that

first proved these results, but we note that these conditionshave been established in various

forms earlier, especially for codes overF2 andF4; see [76, Chapter 4] for general results

concerning classical codes and [35, 70] for results concerning binary quantum codes. We

∗ c©2006 IEEE. Reprinted in part, with permission, from A. Ketkar, A. Klappenecker,
S. Kumar and P. K. Sarvepalli, “Nonbinary stabilizer codes over finite fields”.IEEE Trans.
Inform. Theory, vol. 52, no. 11, pp. 4892–4914, 2006.
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provide a convenient and unified treatment while giving the nonbinary equivalents.

Recall that a classical cyclic code with parameters[n, k]q is a principal ideal in the ring

Fq[x]/(x
n − 1) and can be succinctly described by its generator polynomialor its defining

set. The polynomialxn − 1 of Fq[x] has simple roots if and only ifn andq are coprime. If

the latter condition is satisfied, then there exists a positive integerm such that the fieldFqm

contains a primitiventh root of unityβ. In that case, one can describe a cyclic code with

generator polynomialg(x) in terms of its defining setZ = {k | g(βk) = 0 for 0 ≤ k < n}.

Further details on cyclic codes can be found in any standard textbook on coding theory,

see [76] or [107].

In the case of cyclic codes, identifying the self-orthogonal codes can be translated into

equivalent conditions on the generator polynomial of the code or its defining set. First we

shall consider codes overFq2. Let σ denote the automorphism of the fieldFq2 given by

σ(x) = xq. We can define an action ofσ on the polynomial ringFq2 [x] by

h(x) =
n∑

k=0

hkx
k 7−→ hσ(x) =

n∑

k=0

σ(hk)x
k.

Lemma IV.1. Suppose thatB is a classical cyclic[n, k, d]q2 code with generator polyno-

mial g(x) and check polynomialh(x) = (xn−1)/g(x). If g(x) dividesσ(h0)
−1xkhσ(1/x),

thenB⊥h ⊆ B, and there exists an[[n, 2k − n,≥ d]]q stabilizer code that is pure tod.

Proof. If h(x) is the check polynomial ofB, thenhσ(x) is the check polynomial ofσ(B).

The generator polynomial of the dual codeσ(B)⊥ = B⊥h is given byσ(h0)
−1xkhσ(1/x),

the normalized reciprocal polynomial ofhσ(x). Therefore, the condition that the poly-

nomial g(x) divides σ(h0)
−1xkhσ(1/x) is equivalent to the conditionB⊥h ⊆ B. The

stabilizer code follows from Corollary III.19.

The following Lemma summarizes various equivalent conditions on dual containing

codes in terms of the generator polynomialg(x) and the defining setZ.
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Lemma IV.2. Letgcd(n, q2) = 1 andC be a classical cyclic[n, k, d]q2 code whose gener-

ator polynomial isg(x) and defining set isZ. Suppose that any of the following equivalent

conditions are satisfied

(i) xn − 1 ≡ 0 mod g(x)g∗(x) whereg∗(x) = xn−kgσ(1/x);

(ii) Z ⊆ {−qz | z ∈ N \ Z};

(iii) Z ∩ Z−q = ∅, whereZ−q = {−qz | z ∈ Z}.

ThenC⊥h ⊆ C and there exists an[[n, 2k − n,≥ d]]q stabilizer code that is pure tod.

Proof. Let h(x) = (xn − 1)/g(x) be the check polynomial ofC. Thenhσ(x) = σ((xn −

1)/g(x)) = (xn − 1)/gσ(x). From Lemma IV.1 we know thatC contains its Hermitian

dual if g(x) dividesσ(h0)
−1xkhσ(1/x) viz. g(x)|σ(h0)

−1(1 − xn)/(xn−kgσ(1/x)), which

impliesxn − 1 ≡ 0 mod g(x)g∗(x) which proves (i).

The generator polynomialg(x) of C is given byg(x) =
∏

z∈Z(x − βz), hence its

check polynomial is of the form

h(x) = (xn − 1)/g(x) =
∏

z∈N\Z
(x− βz).

Applying the automorphismσ yieldshσ(x) =
∏

z∈N\Z(x− βqz). Therefore, the generator

polynomial ofC⊥h is given by

hσ(0)−1xkhσ(1/x) = hσ(0)−1
∏

z∈N\Z(1 − βqzx)

=
∏

z∈N\Z(x− β−qz);

in the last equality, we have used the fact thathσ(0)−1 =
∏

z∈N\Z(−β−qz). By Lemma IV.1,

B⊥h ⊆ B if and only if the generator polynomialg(x) divideshσ(0)−1xkhσ(1/x). The lat-

ter condition is equivalent to the fact thatZ is a subset of{−qz | z ∈ N \ Z} and (ii)

follows. From (ii) we know thatC⊥h ⊆ C if and only ifZ ⊆ {−qz | z ∈ N \Z}. In other

wordsZ−q ⊆ N \ Z. HenceZ ∩ Z−q = ∅. An [[n, 2k − n,≥ d]]q stabilizer code follows

from Corollary III.19.
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Cyclic codes that contain their Euclidean duals can also be nicely characterized in

terms of their generator polynomials and defining sets. The following Lemma is a very

straight forward extension of the binary case and summarizes some of the known results

in the nonbinary case as well, but we include it because of itsusefulness in constructing

cyclic quantum codes.

Lemma IV.3. LetC be an[n, k, d]q cyclic code such thatgcd(n, q) = 1. Let its defining set

Z and generator polynomialg(x) be such that any of the following equivalent conditions

are satisfied

(i) xn − 1 ≡ 0 mod g(x)g†(x), whereg†(x) = xn−kg(1/x);

(ii) Z ⊆ {−z | z ∈ N \ Z};

(iii) Z ∩ Z−1 = ∅ whereZ−1 = {−z mod n | z ∈ Z}.

ThenC⊥ ⊆ C and there exists an[[n, 2k − n,≥ d]]q stabilizer code that is pure tod.

Proof. The check polynomial ofC is given byh(x) = (xn − 1)/g(x), from which we

obtain the (un-normalized) generator polynomial ofC⊥ ash†(x) = xkh(x−1) = (1 −

xn)/(xn−kg(x−1)) = −(xn − 1)/g†(x). If C⊥ ⊆ C, theng(x) | h†(x); this means that

g(x) divides(xn − 1)/g†(x). In other wordsxn − 1 ≡ 0 mod g(x)g†(x).

The defining set ofC⊥ is given by{−z mod n | z ∈ N\Z}, whereN = {0, 1, . . . , n−

1}. ThusC⊥ ⊆ C impliesZ ⊆ {−z mod n | N \ Z}. Since this means that the inverses

of elements inZ are present inN \ Z, this condition can also be written asZ ∩ Z−1 = ∅.

The existence of quantum code[[n, 2k − n,≥ d]]q follows from Corollary III.21.

Although we have considered purely cyclic codes, a larger class of cyclic quantum

codes can be derived by considering constacyclic or conjucyclic codes as in [35], [154].
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1. Cyclic Hamming Codes

Binary quantum Hamming codes have been studied by various authors; see for instance

[35, 54, 59]. We now derive stabilizer codes from nonbinary classical cyclic Hamming

codes. Letm > 1 be an integer such thatgcd(q − 1,m) = 1. A classical cyclic Hamming

codeHq(m) has parameters[n, n−m, 3]q with lengthn = (qm − 1)/(q− 1). Letβ denote

a primitiventh root of unity inFqm. The generator polynomial ofHq(m) is given by

g(x) =
m−1∏

i=0

(
x− βqi)

, (4.1)

an element ofFq[x]. Thus, the codeHq(m) is defined by the cyclotomic cosetC1 =

{qi mod n | i ∈ Z}.

Lemma IV.4. The Hamming codeHq2(m) contains its Hermitian dual, that is,Hq2(m)⊥h ≤

Hq2(m).

Proof. The statementHq2(m)⊥h ≤ Hq2(m) is equivalent to the fact that the cyclotomic

cosetC1 satisfiesC1 ⊆ N1 = {−qz mod n | z ∈ N \ C1}, whereN = {0, . . . , n− 1} and

n = (q2m − 1)/(q2 − 1). We note thatC1 can be expressed in the form

C1 =
{

(1 − n)q2k mod n
∣
∣
∣ k ∈ Z

}

=
{

−qzq2k mod n
∣
∣
∣ k ∈ Z

}

,

(4.2)

wherez = q(q2m−2 − 1)/(q2 − 1). Therefore, the conditionC1 ⊆ N1 holds if and only if

Cz ⊆ N \ C1 holds, whereCz = {zq2j mod n | j ∈ Z}.

Seeking a contradiction, we assume that the two cyclotomic cosetsC1 andCz have an

element in common, hence are the same. This means that there must exist a positive integer

k such thatq2k = q(q2m−2 − 1)/(q2 − 1). This implies thatq2k−1 dividesq2m−2 − 1, which

is absurd. Thus, the setsC1 andCz are disjoint, henceCz ⊆ N \ C1, which proves the

claim.
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Theorem IV.5. For each integerm ≥ 2 such thatgcd(m, q2 − 1) = 1, there exists a pure

[[n, n− 2m, 3]]q stabilizer code of lengthn = (q2m − 1)/(q2 − 1).

Proof. If gcd(m, q2 − 1) = 1, then there exists a classical[n, n −m, 3]q2 Hamming code

Hq2(m). By Lemma IV.4, we haveHq2(m)⊥h ≤ Hq2(m), hence there exists a pure[[n, n−

2m, 3]]q stabilizer code by Corollary III.19. The purity is due to the fact that theHq2(m)⊥h

has minimum distanceq2m−2 ≥ 3 for m ≥ 2 [76, Theorem 1.8.3].

These quantum Hamming codes are optimal since they attain the quantum Hamming

bound, see Corollary III.29. A different approach that allows construction of noncyclic

perfect quantum codes can be found in [28]. It is also possible to construct quantum codes

from Hamming codes that contain their Euclidean duals, however these codes do not meet

the quantum Hamming bound.

Lemma IV.6. If gcd(m, q − 1) = 1 andm ≥ 2, then there exists a pure[[n, n − 2m, 3]]q

quantum code, wheren = (qm − 1)/(q − 1).

Proof. The generating polynomial of an[n, n − m, 3]q Hamming code, with n=(qm −

1)/(q − 1) is given by equation (4.1) whereβ is an element of ordern. The code ex-

ists only if gcd(m, q−1) = 1. By Lemma IV.3 a cyclic code contains its dual ifxn−1 ≡ 0

mod g(x)g†(x), whereg†(x) = xn−kg(x−1). If g(x) is not self-reciprocal theng(x)g†(x)

dividesxn − 1 [152]. Since the generating polynomial of the Hamming code is not self-

reciprocal, the code contains its Euclidean dual. By Lemma IV.3 we can construct a quan-

tum code with the parameters[[n, n−2m, 3]]q. Once again the purity follows due to the fact

the duals of Hamming codes are simplex codes with weightqm−1 ≥ 3 for m ≥ 2 [76, The-

orem 1.8.3].
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2. Quantum Quadratic Residue Codes

Another well known family of classical codes are the quadratic residue codes. Rains con-

structed quadratic residue codes for prime alphabet in [126]. In this section we will con-

struct two series of quantum codes based on the classical quadratic residue codes over an

arbitrary field using elementary methods.

Letα denote a primitiventh root of unity from some extension field ofFq. We denote

by R = {r2 mod n | r ∈ Z such that1 ≤ r ≤ (n − 1)/2} the set of quadratic residues

modulon and byN = {1, . . . , n− 1} \R the set of quadratic non-residues modulon.

LetCR andCN denote the cyclic codes of lengthn that are respectively generated by

the polynomialsqR(x) andqN(x), where

qR(x) =
∏

r∈R

(x− αr) and qN(x) =
∏

r∈N

(x− αr).

Both codes have parameters[n, (n + 1)/2, d]q with d2 ≥ n, see [27, pp. 114-119] or [76].

The codes with generator polynomials(x − 1)qR(x) and(x − 1)qN(x) are the even-like

subcodes ofCR andCN respectively and have the parameters[n, (n−1)/2, d′]q with d′ ≥ d.

The relevance of these codes will become apparent in the following theorems.

Theorem IV.7. Let n be a prime of the formn ≡ 3 mod 4, and letq be a power of a

prime that is not divisible byn. If q is a quadratic residue modulon, then there exists a

pure [[n, 1, d]]q stabilizer code with minimum distanced satisfyingd2 − d+ 1 ≥ n.

Proof. The codeCR has parameters[n, (n + 1)/2, d]q and ifn ≡ 3 mod 4, the dual code

C⊥
R of CR is given by the cyclic code generated by(x− 1)qR(x), the even-like subcode of

CR. The minimum distanced is bounded byd2−d+1 ≥ n, see, for instance, [27, pp. 114-

119]. Furtherwt(CR \ C⊥
R ) = wt(CR) = d by [76, Theorem 6.6.22]. We can deduce from

Corollary III.21 that there exists a pure[[n, (n+ 1) − n, d]]q stabilizer code.

For example, the primep = 3 is a quadratic residue modulon = 23. The previous
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proposition guarantees the existence of a[[23, 1, d]]3 stabilizer code with minimum distance

d ≥ 6.

If n is an odd prime of the formn ≡ 1 mod 4, then we can also construct quadratic

residue codes, but now we need to employ Lemma III.20, becauseCR does not contain its

dual.

Theorem IV.8. Letn be a prime of the formn ≡ 1 mod 4. Let q be a power of a prime

that is not divisible byn. If q is a quadratic residue modulon, then there exists a pure

[[n, 1, d]]q stabilizer code with minimum distanced bounded from below byd ≥ √
n.

Proof. The dual code ofCR is given by the even-like subcode ofCN ; in other words,C⊥
R

is a cyclic code of lengthn overFq that is generated by the polynomial(x − 1)qN(x); in

particular,C⊥
R ≤ CN . Moreoverwt(CR \C⊥

N) = wt(CN \C⊥
R ) = wt(CR) = wt(CN) = d

by [76, Theorem 6.6.22]. Therefore, we obtain a pure[[n, (n+ 1)/2 + (n+ 1)/2 − n, d]]q

code by Lemma III.20.

B. Quantum BCH Codes

In this section we consider a popular family of classical codes, the BCH codes, and con-

struct the associated nonbinary quantum stabilizer codes.Binary quantum BCH codes were

studied in [35,43,68,146]. The CSS construction turns out tobe especially useful, because

BCH codes form a naturally nested family of codes. In case of primitive BCH codes over

prime fields, the distance of the dual is lower bounded by the generalized Carlitz-Uchiyama

bound, and this allows us to derive bounds on the minimum distance of the resulting quan-

tum codes.
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1. BCH Codes.

Let q be a power of a prime andn a positive integer that is coprime toq. Recall that a BCH

codeC of lengthn and designed distanceδ overFq is a cyclic code whose defining setZ

is given by a union ofδ − 1 subsequent cyclotomic cosets,

Z =
b+δ−2⋃

x=b

Cx, where Cx = {xqr mod n | r ∈ Z, r ≥ 0}.

The generator polynomial of the code is of the form

g(x) =
∏

z∈Z

(x− βz),

whereβ is a primitiven-th root of unity of some extension field ofFq. The definition

ensures thatg(x) generates a cyclic[n, k, d]q code of dimensionk = n−|Z| and minimum

distanced ≥ δ. If b = 1, then the codeC is called a narrow-sense BCH code, and if

n = qm − 1 for somem ≥ 1, then the code is called primitive. More precise statements

can be made about the structure of primitive, narrow-sense codes than the other classes of

BCH codes and we will restrict our attention to these in this paper. More details on BCH

codes can be found in [76,107].

2. Generalized Carlitz-Uchiyama Bound.

Our first construction derives stabilizer codes from BCH codesover prime fields. We use

the Knuth-Iverson bracket[statement] in the formulation of the Carlitz-Uchiyama bound

that evaluates to 1 ifstatement is true and 0 otherwise.

Lemma IV.9 (Generalized Carlitz-Uchiyama Bound). Let p be a prime. LetC denote a

narrow-sense BCH code of lengthn = pm − 1 overFp, of designed distanceδ = 2t + 1.
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Then the minimum distanced⊥ of its Euclidean dual codeC⊥ is bounded by

d⊥ ≥
(

1 − 1

p

)(

pm − δ − 2 − [δ − 1 ≡ 0 mod p]

2

⌊
2pm/2

⌋
)

. (4.3)

Proof. See [149, Theorem 7]; for further background, see [107, page280].

Theorem IV.10. Let p be a prime. LetC be a[pm − 1, k,≥ δ]p narrow-sense BCH code

of designed distanceδ = 2t + 1 andC∗ a [pm − 1, k∗, d∗]p BCH code such thatC ⊆ C∗.

Then there exists a[[pm − 1, k∗ − k,≥ min{d∗, d⊥}]]p stabilizer code, whered⊥ is given

by (4.3).

Proof. The result follows from applying Lemma IV.9 toC and Lemma III.20 to the codes

C andC∗.

Remark IV.11. (i) The Carlitz-Uchiyama bound becomes trivial for larger design dis-

tances. (ii) In [111, Corollary 2] it was shown that for binary BCHcodes of design dis-

tanced, the lower bound in equation (4.3) is attained whenn = 22ab − 1, wherea is the

smallest integer such thatd − 2 | 2a + 1 andb is odd. (iii) For a further tightening of the

Carlitz-Uchiyama bound see [112, Theorem 2].

3. Primitive BCH Codes Containing Their Duals.

We can extend the results of the previous section to BCH codes over finite fields that are

not necessarily prime. In fact, if we restrict ourselves to smaller designed distances, then

we can even achieve significantly sharper results. We will just review the results and refer

the reader to our companion paper [4] for the proofs. A generalization of the following

results is given in Chapter IX, with a view to demonstrate the fact that study of quantum

codes can lead to interesting insights into classical coding theory.

In the BCH code construction, it is in general not obvious how large the cyclotomic

cosets will be. However, if the designed distance is small, then one can show that the
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cyclotomic cosets all have maximal size.

Lemma IV.12. A narrow-sense, primitive BCH code with design distance2 ≤ δ ≤ q⌈m/2⌉+

1 has parameters[qm − 1, qm − 1 −m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]q.

Proof. See [4, Theorem 7]; the binary case was already established by Steane [146].

In the case of small designed distances, primitive, narrow-sense BCH codes contain

their Euclidean duals.

Lemma IV.13. A narrow-sense, primitive BCH code overF
n
q contains its Euclidean dual

if and only if its design distance satisfies2 ≤ δ ≤ q⌈m/2⌉ − 1 − (q − 2)[m odd], where

n = qm − 1 andm ≥ 2.

Proof. See [4, Theorem 2].

A simple consequence is the following theorem:

Theorem IV.14. If C is a narrow-sense primitive BCH code overFq with design distance

2 ≤ δ ≤ q⌈m/2⌉ − 1 − (q − 2)[m odd] andm ≥ 2, then there exists an[[qm − 1, qm − 1 −

2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]]q stabilizer code that is pure toδ.

Proof. If we combine Lemmas IV.12 and IV.13 and apply the CSS construction, then we

obtain the claim. See [4] for details about purity.

One can argue in a similar way for Hermitian duals of primitive, narrow-sense BCH

codes.

Theorem IV.15. If C is a narrow-sense primitive BCH code overF
n
q2 with design distance

2 ≤ δ ≤ qm − 1, then there exists an[[q2m − 1, q2m − 1 − 2m⌈(δ − 1)(1 − 1/q2)⌉,≥ δ]]q

stabilizer code that is pure toδ.

Proof. See [4] for details.
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Whenm = 1, the BCH codes are the same as the Reed Solomon codes and this case

has been dealt with in [71]. An alternate perspective using Reed-Muller codes is considered

in [134].

4. Extending Quantum BCH Codes

It is not always possible to extend a stabilizer code, because the corresponding classical

codes are required to be self-orthogonal. We now show that itis possible to extend narrow-

sense BCH codes of certain lengths.

Lemma IV.16. Let Fq2 be a finite field of characteristicp. If C is a narrow-sense[n, k,≥

d]q2 BCH code such thatC⊥h ⊆ C andn ≡ −1 mod p, then there exists an[[n, 2k−n,≥

d]]q stabilizer code that is pure todwhich can be extended to an[[n+1, 2k−n−1,≥ d+1]]q

stabilizer code that is pure tod+ 1.

Proof. SinceC⊥h ⊆ C, Corollary III.19 implies the existence of an[[n, 2k − n,≥ d]]q

quantum code that is pure tod and being narrow-sense the parity check matrix ofC has the

form

H =












1 α α2 · · · α(n−1)

1 α2 α2(2) · · · α2(n−1)

...
. . . . .. . . . . . .

1 αd−1 α2(d−1) · · · α(n−1)(d−1)












,

whereα is a primitiventh root of unity. This can be extended to give an[n + 1, k, d + 1]
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codeCe, whose parity check matrix is given as

He =















1 1 1 · · · 1 1

1 α α2 · · · α(n−1) 0

1 α2 α2(2) · · · α2(n−1) 0

...
. . . . .. . . . . . .

...

1 αd−1 α2(d−1) · · · α(n−1)(d−1) 0















.

We show thatC⊥h
e is self-orthogonal. LetRi be theith row in He. For 2 ≤ i ≤ d the

self-orthogonality ofH implies that〈Ri|Rj〉h = 0. We need to show that〈Ri|1〉h = 0,

1 ≤ i ≤ d. For 2 ≤ i ≤ d we have〈Ri|1〉h =
∑n−1

j=0 α
ij = (αin − 1)/(αi − 1) = 0, as

αn = 1 andαi 6= 1. Fori = 1 we have〈1|1〉h = n+ 1 mod p, which vanishes because of

the assumptionn ≡ −1 mod p.

Now we show that the rank ofHe is d, thusCe has a minimum distance of at least

d + 1. Any d columns ofHe excluding the last column form ad × d vandermonde matrix

which is nonsingular, indicating that thed columns are linearly independent. If we consider

any set ofd columns that includes the last column, we can find the determinant of the

corresponding matrix by expanding by the last column. This gives us ad − 1 × d − 1

vandermonde matrix with nonzero determinant. Thus anyd columns ofHe are independent

and the minimum distance ofCe is at leastd + 1. ThereforeCe is an[n + 1, k,≥ d + 1]q2

extended cyclic code such thatC⊥h
e ⊆ Ce. By Corollary III.19 it defines an[[n + 1, 2k −

n− 1,≥ d+ 1]]q quantum code pure tod+ 1.

Corollary IV.17. For all prime powersq, integersm ≥ 1 and all δ in the range2 ≤ δ ≤

qm − 1 there exists an

[[q2m, q2m − 2 − 2m⌈(δ − 1)(1 − 1/q2)⌉,≥ δ + 1]]q

stabilizer code pure toδ + 1.
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Proof. The stabilizer codes from Theorem IV.15 are derived from primitive, narrow-sense

BCH codes. Ifp denotes the characteristic ofFq2 , thenq2m − 1 ≡ −1 mod p, so the

stabilizer codes given in Theorem IV.15 can be extended by Lemma IV.16.

A result similar to Lemma IV.16 can be developed for BCH codes that contain their

Euclidean duals.

5. Puncturing BCH Codes.

In this section, letBCHm
q (δ) denote a primitive, narrow-senseq-ary BCH code of length

n = qm − 1 and designed distanceδ. We illustrate the theory of puncture codes developed

in Chapter III by puncturing such BCH codes. Some knowledge about the puncture code

is necessary for this task, and we show in Theorem IV.19 that acyclic generalized Reed-

Muller code is contained in the puncture code.

First, let us recall some basic facts about cyclic generalized Reed-Muller codes, see [16,

17,80,117] for details. LetLm(ν) denote the subspace ofFq[x1, . . . , xm] consisting of poly-

nomials of degree≤ ν, and let(P0, . . . , Pn−1) be an enumeration of the points inF
m
q where

P0 = 0. Theq-ary cyclic generalized Reed-Muller codeR∗
q(ν,m) of orderν and length

n = qm − 1 is defined as

R∗
q(ν,m) = {ev f | f ∈ Lm(ν)},

where the codewords are evaluations of the polynomials in all but P0 defined byev f =

(f(P1), . . . , f(Pn−1)). The dimensionk∗(ν) of the codeR∗
q(ν,m) is given by the formula

k∗(ν) =
∑m

j=0(−1)j
(

m
j

)(
m+ν−jq

ν−jq

)
and its minimum distanced∗(ν) = (R+1)qQ−1, where

m(q − 1) − ν = (q − 1)Q + R with 0 ≤ R < q − 1. The dual code ofR∗
q(ν,m) can be

characterized by

R∗
q(ν,m)⊥ = {ev f | f ∈ L∗

m(ν⊥)}, (4.4)
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whereν⊥ = m(q − 1) − ν − 1 andL∗
m(ν) is the subspace of all nonconstant polynomials

in Lm(ν);

It is well-known that a primitive, narrow-sense BCH code contains a cyclic generalized

Reed-Muller code, see [80, Theorem 5], and we determine the largest such subcode in our

next lemma.

Lemma IV.18. Letν = (m−Q)(q−1)−R, withQ = ⌊logq(δ+1)⌋ andR = ⌈(δ+1)/qQ⌉−

1, thenR∗
q(ν,m) ⊆ BCHm

q (δ). Also for all ordersν ′ > ν, we haveR∗
q(ν

′,m) 6⊆ BCHm
q (δ).

Proof. First, we show thatR∗
q(ν,m) ⊆ BCHm

q (δ). Recall that the minimum distance

d∗(ν) = (R + 1)qQ − 1, wherem(q − 1) − ν = (q − 1)Q + R with 0 ≤ R < q − 1.

By [80, Theorem 5], we haveR∗
q(ν,m) ⊆ BCHm

q ((R + 1)qQ − 1). Notice that(R +

1)qQ − 1 = ⌈(δ + 1)/qQ⌉qQ − 1 ≥ δ, soBCHm
q ((R+ 1)qQ − 1) ⊆ BCHm

q (δ). Therefore,

R∗
q(ν,m) ⊆ BCHm

q (δ), as claimed.

For the second claim, it suffices to show thatR∗
q(ν + 1,m) is not a subcode of

BCHm
q (δ). We prove this by showing that the minimum distanced∗(ν + 1) < δ. No-

tice that

m(q − 1) − (ν + 1) =







(q − 1)Q+R− 1, R ≥ 1,

(q − 1)(Q− 1) + q − 2, R = 0

with R andQ as given in the hypothesis. Therefore, the distanced∗(ν+1) of R∗
q(ν+1,m)

is given by

d∗(ν + 1) =







(⌈(δ + 1)/qQ⌉ − 1)qQ − 1 for R ≥ 1,

(q − 1)qQ−1 − 1 for R = 0.

In both cases, it is straightforward to verify thatd∗(ν + 1) < δ.

Explicitly determining the puncture code is a challenging task. For the duals of BCH

codes, we are able to determine large subcodes of the puncture code.
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Theorem IV.19. If δ < q⌊m/2⌋ − 1, thenR∗
q(µ,m) ⊆ Pe(BCHm

q (δ)⊥) for all orders µ

in the range0 ≤ µ ≤ m(q − 1) − 2(R + (q − 1)Q) + 1 with Q = ⌊logq(δ + 1)⌋ and

R = ⌈(δ + 1)/qQ⌉ − 1.

Proof. By Lemma IV.18, we haveR∗
q(ν,m) ⊆ BCHm

q (δ) for ν = (m − Q)(q − 1) − R;

hence,BCHm
q (δ)⊥ ⊆ R∗

q(ν,m)⊥. It follows from the definition of the puncture code that

Pe(BCHm
q (δ)⊥) ⊇ Pe(R∗

q(ν,m)⊥). However,

Pe(R∗
q(ν,m)⊥) = {evf · ev g | f, g ∈ L∗

m(ν⊥)}⊥,

⊇ {evf | f ∈ L∗
m(2ν⊥)}⊥,

= R∗
q((2ν

⊥)⊥,m),

where the last equality follows from equation (4.4). This ismeaningful only if(2ν⊥)⊥ ≥ 0

or, equivalently, ifν ≥ (m(q − 1) − 1)/2. Sinceδ < q⌊m/2⌋ − 1, it follows thatQ ≤

⌊m/2⌋ − 1, and the orderν satisfies

ν = (m−Q)(q − 1) −R ≥ ⌈m/2 + 1⌉(q − 1) −R

≥ ⌈m/2⌉(q − 1) + 1 ≥ (m(q − 1) − 1)/2,

as required. SinceR∗
q(µ,m) ⊆ R∗

q((2ν
⊥)⊥,m) for 0 ≤ µ ≤ (2ν⊥)⊥, we haveR∗

q(µ,m) ⊆

Pe(BCHm
q (δ)⊥).

Unfortunately, the weight distribution of generalized cyclic Reed-Muller codes is not

known, see [38]. However, we know that the puncture code ofBCHm
q (δ)⊥ contains the

codesR∗
q(0,m) ⊆ R∗

q(1,m) ⊆ · · · ⊆ R∗
q(m(q− 1)− 2(R+ (q− 1)Q) + 1,m), so it must

contain codewords of the respective minimum distances.

Corollary IV.20. If δ andµ are integers in the range2 ≤ δ < q⌊m/2⌋ − 1 and0 ≤ µ ≤

m(q − 1) − 2(R + (q − 1)Q) + 1, whereQ = ⌊logq(δ + 1)⌋ andR = ⌈(δ + 1)/qQ⌉ − 1,
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then there exists a

[[d∗(µ),≥ d∗(µ) − 2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]]q

stabilizer code of lengthd∗(µ) = (ρ+ 1)qσ − 1, whereσ andρ satisfy the relationsm(q −

1) − µ = (q − 1)σ + ρ and0 ≤ ρ < q − 1.

Proof. If 2 ≤ δ < q⌊m/2⌋ − 1, then from Theorem IV.14 we know that there exists an

[[qm − 1, qm − 1 − 2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]]q quantum code. From Lemma IV.19 we

know thatPe(BCHm
q (δ)⊥) ⊇ R∗

q(µ,m), where0 ≤ µ ≤ m(q−1)−2(q−1)Q−2R+1. By

Theorem III.42, if there exists a vector of weightr in Pe(BCHm
q (δ)⊥), the corresponding

quantum code can be punctured to give[[r,≥ r − 2m⌈(δ − 1)(1 − 1/q)⌉), d ≥ δ]]q. The

minimum distance ofR∗
q(µ,m) isd∗(µ) = (ρ+1)qσ−1, where0 ≤ ρ < q−1 [80, Theorem

5]. Hence, it is always possible to puncture the quantum codeto [[d∗(µ),≥ d∗(µ)−2m⌈(δ−

1)(1 − 1/q)⌉,≥ δ]]q.

It is also possible to puncture quantum codes constructed via classical codes self-

orthogonal with respect to the Hermitian inner product. Examples of such puncturing can

be found in [71] and [134].

C. MDS Codes

A quantum code that attains the quantum Singleton bound is called a quantum Maximum

Distance Separable code or quantum MDS code for short. Thesecodes have received

much attention, but many aspects have not yet been explored in the quantum case (but

see [71,126]). In this section we study the maximal length ofMDS stabilizer codes.

An interesting result concerning the purity of quantum MDS codes was derived by

Rains [126, Theorem 2]:

Lemma IV.21 (Rains). An [[n, k, d]]q quantum MDS code withk ≥ 1 is pure up ton−d+2.
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Corollary IV.22. All quantum MDS codes are pure.

Proof. An [[n, k, d]]q quantum MDS code withk = 0 is pure by definition; ifk ≥ 1 then

it is pure up ton − d + 2. By the quantum Singleton boundn − 2d + 2 = k ≥ 0; thus,

n− d+ 2 ≥ d, which means that the code is pure.

Lemma IV.23. For any[[n, n−2d+2, d]]q quantum MDS stabilizer code withn−2d+2 >

0, the corresponding classical codesC ⊆ C⊥a are also MDS.

Proof. If an [[n, n − 2d + 2, d]]q stabilizer code exists, then Theorem III.15 implies the

existence of an additive[n, d−1]q2 codeC such thatC ⊆ C⊥a. Corollary IV.22 shows that

C⊥a has minimum distanced, soC⊥a is an[n, n−d+1, d]q2 MDS code. By Lemma IV.21,

the minimum distance ofC is≥ n−d+2, soC is an[n, d−1, n−d+2]q2 MDS code.

A classical[n, k, d]q MDS code is said to be trivial ifk ≤ 1 or k ≥ n − 1. A trivial

MDS code can have arbitrary length, but a nontrivial one cannot. The next lemma is a

straightforward generalization from linear to additive MDS codes.

Lemma IV.24. Assume that there exists a classical additive(n, qk, d)q MDS codeC.

(i) If the code is trivial, then it can have arbitrary length.

(ii) If the code is nontrivial, then its code parameters mustbe in the range2 ≤ k ≤

min{n− 2, q − 1} andn ≤ q + k − 1 ≤ 2q − 2.

Proof. The first statement is obvious. For (ii), we note that the weight distribution of the

codeC and its dual are related by the MacWilliams relations. The proof given in [107,

p. 320-321] for linear codes applies without change, and onefinds that the number of

codewords of weightn− k + 2 in C is given by

An−k+2 =

(
n

k − 2

)

(q − 1)(q − n+ k − 1).

SinceAn−k+2 must be a nonnegative number, we obtain the claim.
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We say that a quantum[[n, k, d]]q MDS code is trivial if and only if its minimum

distanced ≤ 2. The length of trivial quantum MDS codes is not bounded, but the length of

nontrivial ones is, as the next lemma shows.

Theorem IV.25 (Maximal Length of MDS Stabilizer Codes). A nontrivial [[n, k, d]]q MDS

stabilizer code satisfies the following constraints:

i) its lengthn is in the range4 ≤ n ≤ q2 + d− 2 ≤ 2q2 − 2;

ii) its minimum distance satisfiesmax{3, n− q2 + 2} ≤ d ≤ min{n− 1, q2}.

Proof. By definition, a quantum MDS code attains the Singleton bound,son − 2d + 2 =

k ≥ 0; hence,n ≥ 2d − 2. Therefore, a nontrivial quantum MDS code satisfiesn ≥

2d− 2 ≥ 4.

By Lemma IV.23, the existence of an[[n, n − 2d + 2, d]]q stabilizer code implies

the existence of classical MDS codesC andC⊥a with parameters[n, d − 1, n − d + 2]q2

and[n, n − d + 1, d]q2 , respectively. If the quantum code is a nontrivial MDS code,then

the associated classical codes are nontrivial classical MDS codes. Indeed, forn ≥ 4 the

quantum Singleton bound impliesd ≤ (n+2)/2 ≤ (2n−2)/2 = n−1, soC is a nontrivial

classical MDS code.

By Lemma IV.24, the dimension ofC satisfies the constraints2 ≤ d− 1 ≤ min{n−

2, q2 − 1}, or equivalently3 ≤ d ≤ min{n − 1, q2}. Similarly, the lengthn of C satisfies

n ≤ q2+(d−1)−1 ≤ 2q2−2. If we combine these inequalities then we get our claim.

Example IV.26. The length of a nontrivial binary MDS stabilizer code cannotexceed2q2−

2 = 6. In [35] the nontrivial MDS stabilizer codes forq = 2 were found to be[[5, 1, 3]]2

and [[6, 0, 4]]2, so there cannot exist further nontrivial MDS stabilizer codes.

In [71], the question of the maximal length of MDS codes was raised. All MDS

stabilizer codes provided in that reference had a length ofq2 or less; this prompted us
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to look at the following famous conjecture for classical codes (cf. [76, Theorem 7.4.5]

or [107, pages 327-328]).

MDS Conjecture. If there is a nontrivial[n, k]q MDS code, thenn ≤ q + 1 except when

q is even andk = 3 or k = q − 1 in which casen ≤ q + 2.

If the MDS conjecture is true (and much supporting evidence is known), then we can

improve upon the result of Theorem IV.25.

Corollary IV.27. If the classical MDS conjecture holds, then there are no nontrivial MDS

stabilizer codes of lengths exceedingq2 + 1 except whenq is even andd = 4 or d = q2 in

which casen ≤ q2 + 2.

D. Conclusions

In this chapter we applied the theory developed in Chapter IIIto derive classes of quantum

codes. This work has also led to the construction of many morefamilies of codes. The

interested reader can find the details in [8]. Table II gives an overview and summarizes

the main parameters of these families. We also illustrated the theory of puncture codes

by deriving new codes from quantum BCH codes. One central themein quantum error-

correction is the construction of codes that have a large minimum distance. We were able

to show that the length of an MDS stabilizer code overFq cannot exceedq2 +1, except in a

few sporadic cases, assuming that the classical MDS conjecture holds. An open problem is

whether the lengthn of aq-ary quantum MDS code is bounded byq2 +1 for all but finitely

manyn. Another related problem is to construct analytically quantum MDS codes between

lengthsq andq2. Currently, constructions are known only for a few lengths inthis range.
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Table II. A compilation of known families of quantum codes

Family [[n, k, d]]q Purity Parameter Ranges and References

Short MDS [[n, n− 2d+ 2, d]]q pure 2 ≤ d ≤ ⌈n/2⌉, q2 − 1 ≥
(
n
d

)

Hermitian Hamming [[n, n− 2m, 3]]q pure m ≥ 2, gcd(m, q2 − 1) = 1, n = (q2m − 1)/(q2 − 1)

Euclidean Hamming [[n, n− 2m, 3]]q pure m ≥ 2, gcd(m, q − 1) = 1, n = (qm − 1)/(q − 1)

Quadratic Residue I [[n, 1, d]]q pure n prime,n ≡ 3 mod 4, q 6≡ 0 mod n
q is a quadratic residue modulon, d2 − d+ 1 ≥ n

Quadratic Residue II [[n, 1, d]]q pure n prime,n ≡ 1 mod 4, q 6≡ 0 mod n
q is a quadratic residue modulon, d ≥ √

n

Melas [[n, n− 4m,≥ 3]]q pure q even,n = q2m − 1, Pure to 3
Euclidean BCH [[n, n− 2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]]q pure 2 ≤ δ ≤ q⌈m/2⌉ − 1 − (q − 2)[m odd]

to δ n = qm − 1 andm ≥ 2

Punctured BCH [[d∗(µ),≥ d∗(µ) − 2m⌈(δ − 1)(1 − 1/q)⌋,≥ δ]]q pure? δ < q⌊m/2⌉ − 1, See Corollary IV.20
Hermitian BCH [[n, n− 2m⌈(δ − 1)(1 − 1/q2)⌉,≥ δ]]q pure 2 ≤ δ ≤ qm − 1, n = q2m − 1, Pure toδ
Extended BCH [[n+ 1, n− 2m⌈(δ − 1)(1 − 1/q2)⌉ − 1,≥ δ + 1]]q pure Pure toδ + 1

Trivial MDS [[n, n− 2, 2]]q pure n ≡ 0 mod p
[[n, n, 1]]q pure n ≥ 1

Character [[n, k(r2) − k(r1),min{2m−r2 , 2r1+1}]]q pure n = 2m, q odd,0 ≤ r1 < r2 ≤ m, k(r) =
∑r

j=0

(
m
j

)

CSS GRM [[qm, k(ν2) − k(ν1),min{d(ν2), d(ν
⊥
1 )}]]q pure k(ν) =

∑m
j=0(−1)j

(
m
j

)(
m+ν−jq

ν−jq

)
, ν⊥ = m(q − 1) − ν − 1

0 ≤ ν1 ≤ ν2 ≤ m(q − 1) − 1 ν⊥ + 1 = (q − 1)Q+R, d(ν) = (R+ 1)qQ

Punctured GRM [[d(µ),≥ k(ν2) − k(ν1) − (n− d(µ)),≥ d]]q pure? d ≥ min{d(ν2), d(ν
⊥
1 )}, 0 ≤ µ ≤ ν2 − ν1; [134]

Hermitian GRM [[q2m, q2m − 2k(ν), d(ν⊥)]]q purek(ν) =
∑m

j=0(−1)j
(
m
j

)(m+ν−jq2

ν−jq2

)
, ν⊥ = m(q2 − 1) − ν − 1

0 ≤ ν ≤ m(q − 1) − 1 ν⊥ + 1 = (q2 − 1)Q+R, d(ν) = (R+ 1)q2Q

Punctured GRM [[d(µ⊥),≥ d(µ⊥) − 2k(ν),≥ d(ν⊥)]]q pure? (ν + 1)q ≤ µ ≤ m(q2 − 1) − 1; [134]
Punctured MDS [[q2 − qα, q2 − qα− 2ν − 2, ν + 2]]q pure 0 ≤ ν ≤ q − 2, 0 ≤ α ≤ q − ν − 1; [134]
Euclidean MDS [[n, n− 2d+ 2, d]]q pure 3 ≤ n ≤ q, 1 ≤ d ≤ n/2 + 1; [73]
Hermitian MDS [[q2 − s, q2 − s− 2d+ 2, d]]q pure 1 ≤ d ≤ q, s = 0, 1; [73]
Twisted [[q2 + 1, q2 − 3, 3]]q pure? [28]
Extended Twisted [[qr, qr − r − 2, 3]]q pure r ≥ 2; [28]

[[n, n− r − 2, 3]]q pure n = (qr+2 − q3)/(q2 − 1), r ≥ 1, r odd; [28]
Perfect [[n, n− r − 2, 3]]q pure n = (qr+2 − 1)/(q2 − 1), r ≥ 2, r even; [28]



86

CHAPTER V

SUBSYSTEM CODES – BEYOND STABILIZER CODES∗

In this chapter we study a recent generalization of quantum codes that unifies many ap-

parently disparate notions of quantum error correction. This generalization called operator

quantum error correction gathers within its framework both passive and active error correc-

tion schemes, among them decoherence free subspaces (DFS), noiseless subsystems (NS),

and standard quantum error-correcting codes (including stabilizer codes which formed the

main theme of the last two chapters). Our main contribution in this chapter is to provide

a natural construction of such codes in terms of Clifford codes, an elegant generalization

of stabilizer codes due to Knill. Character-theoretic methods are used to derive a simple

method to construct operator quantum error-correcting codes from any classical additive

code over a finite field, which obviates the need for self-orthogonal codes. In view of

its importance and also to better appreciate our contribution we shall spend a little time

reviewing operator quantum error correction. The following review summarizes the key

points of [99, 100] relevant for our discussion. A quick word about the nomenclature.

These codes were originally studied in the context of operator algebras and hence, were

named operator quantum error correcting codes. We shall often use the descriptive term

subsystem codes in view of brevity. Both will be used interchangeably.

Notation.If N is a group, thenZ(N) denotes the center ofN . We denote byIrr(N) the set of

irreducible characters ofN . If χ andψ are characters ofN , then(χ, ψ)N = |N |−1
∑

n∈N χ(n)ψ(n−1)

defines a scalar product on the vector space of class functions onN , andIrr(N) is an orthonor-

mal basis of this space. We denote bysupp(χ) = {n ∈ N |χ(n) 6= 0}. If χ ∈ Irr(N), then

Z(χ) = {n ∈ N |χ(1) = |χ(n)|} denotes the quasikernel ofχ. Suppose thatG is a group that

∗Part of the material in this chapter has been submitted to IEEE and currently under
review. Copyright may be transferred to IEEE.
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containsN as a subgroup. Ifφ ∈ Irr(G), thenφN denotes the restriction of this character toN .

If x, y ∈ N , then[x, y] = x−1y−1xy is the commutator. IfA andB are subgroups of a group,

then [A,B] = 〈[a, b] | a,∈ A andb ∈ B〉 is the commutator subgroup ofA andB. In particular,

N ′ = [N,N ] denotes the derived subgroup ofN . The reader can find background material on finite

groups in [131] and on character theory in [78]. As usual letH be the system Hilbert space under

consideration. LetB(H) denote bounded linear operators onH.

A. Review of Operator Quantum Error Correction

The class of codes which we considered in the last two chapters come within the framework

of a model often called the standard model. Mathematically,this model is defined as a triple

(R, E , C), whereE is the quantum channel,C a subspace ofH andR a recovery operation.

Additionally, we define a projectorP onto the codespaceC, thusC = PH. For any density

operatorρ supported byC i.e. ρ in B(C) or equivalentlyρ = PρP , the triple satisfies the

following relation:

(R ◦ E)(ρ) = ρ for all ρ = PρP. (5.1)

As we can see the standard model assumes a recovery operationR. In generalR is

nontrivial which in turn implies some form of active monitoring of the encoded quantum

information in order to detect and correct the errors that occur. An alternative approach is

to rely on passive error correction mechanisms, exemplifiedby decoherence free subspaces

and noiseless subsystems.

If we want to avoid performing active error correction, we are naturally led to the idea

that the encoded states should not be affected by the channel. In other words, we must

encode intoFix(E), the fixed points ofE where

Fix(E) = {ρ ∈ B(H) | E(ρ) = ρ}.
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These fixed points can be nicely characterized for a certain class of quantum channels.

Given a quantum channelE , we can write the channel in terms of its Kraus operators as

follows

E(ρ) =
∑

i

EiρE
†
i . (5.2)

Because of this decomposition we often write the channelE = {Ei, E
†
i }. When the quan-

tum channels satisfy the condition

∑

i

EiE
†
i = I, (5.3)

we have a convenient way to characterize the fixed points. Channels satisfying equa-

tion (5.3) are called unital channels. LetρEi = Eiρ for anyEi. Then under the unital

assumption all suchρ are fixed points ofE as

E(ρ) =
∑

i

EiρE
†
i = ρ

∑

i

EiE
†
i = ρ. (5.4)

We denote byA, the matrix polynomials generated by{Ei, E
†
i } i.e., the algebra generated

by {Ei, E
†
i }. This is called theinteraction algebrain the literature. Thenoise communtant

A′ is defined as

A′ =
{

ρ ∈ B(H) | ρE = Eρ for anyE ∈ {Ei, E
†
i }
}

. (5.5)

From equation (5.4), it follows thatA′ ⊆ Fix(E). In fact, for unital channels it was shown

thatFix(E) = A′. Using results onC∗ algebras, Kribset al., showed that the interaction

algebra has a representation of the form

A ∼=
⊕

j

IKj
⊗ B(HB

j ) ∼=
⊕

j

IKj
⊗MRj

, (5.6)

whereMRj
is Rj-dimensional matrix algebra (overC). This representation induces the
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following structure onH

H ∼=
⊕

j

HA
j ⊗HB

j , (5.7)

wheredimHA
j = Kj anddimHB

j = Rj. SinceE (andA) act trivially onHA
j , the subsys-

temsHA
j are called noiseless subsystems. To simplify matters we usually encode into only

one subsystem, which gives us the following decomposition

H = C ⊕ C⊥ = (HA ⊗HB) ⊕ C⊥, (5.8)

whereC⊥ is the complement ofC. LetdimHA = K anddimHB = R. Thendim C = KR

anddim C⊥ = dimH − KR. Let us denote operators inB(HA) andB(HB) asρA and

ρB respectively. The (standard) noiseless subsystem given byC consists of operators in

B(HA ⊗ HB) that are of the formB(HA) ⊗ IR in other wordsρA ⊗ IR. In this case

the co-subsystemB is in the maximally mixed state. The codespaceC is an algebra of

operators. Decoherence free subspaces are noiseless subsystems with the dimension of the

co-subsystem equal to one. In this case the codespaceC is a subspace ofH.

One of the insights of [99] was that we can relax the constraint that the co-subsystem

B should be in the maximally mixed state. This led to the idea ofgeneralized noiseless

subsystems. In this case the noiseless subsystem code is given by the operators inB(H)

that are of the form(ρA ⊗ ρB). Comparing with equation (5.6) we can see that in this case

we are not always encoding into the fixed points ofE . The codespace instead of being

an algebra of operators is now a monoid† of operators of the formρA ⊗ ρB. Given a

decomposition ofH = HA⊗HB ⊕C⊥ and orthonormal bases{|αi〉}n
i=1, and{|βj〉}m

j=1 for

†In [99], they refer toC as a semigroup even thoughC is equipped with identity.
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HA andHB respectively, we define a projector ontoC = HA ⊗HB = PH as

P = 1AB = 1A ⊗ 1B = (
∑

i

|αi〉 〈αi|) ⊗ (
∑

j

|βj〉 〈βj|). (5.9)

The action ofP onρ is defined asPρP . Then a generalized noiseless subsystem is defined

as follows, see [99, Lemma 2].

Lemma V.1 (Generalized noiseless subsystems [99]). Given a fixed decomposition ofH =

HA ⊗ HB ⊕ C⊥ and a CPTP mapE , defineC = {ρ ∈ B(H) | ρ = ρA ⊗ ρB}. Then the

following conditions are equivalent and define a generalizednoiseless subsystemHA.

i) E(ρA ⊗ ρB) = ρA ⊗ σB, for all ρA ⊗ ρB ∈ C and someσB.

ii) E(ρA ⊗ IB) = ρA ⊗ σB, for all ρA ⊗ IB ∈ C and someσB.

iii) (TrA ◦P ◦ E)(ρ) = TrA(ρ), for all ρ ∈ C.

Kribs et al., [99, 100] generalized these ideas further by incorporating active error

correction also on the subsystemA. As in the standard model we now define a recovery

operationR, that restores the subsystemB after the error. The definition is as follows.

Lemma V.2 (Operator quantum error correcting codes [99]). Given a fixed decomposition

of H = HA ⊗HB ⊕K and a CPTP mapE , defineC = {ρ ∈ B(H) | ρ = ρA ⊗ ρB}. Then

the following conditions are equivalent and define an operator quantum error correcting

codeC with recovery operationR.

i) R ◦ E(ρA ⊗ ρB) = ρA ⊗ σB, for all ρA ⊗ ρB ∈ C and someσB

ii) R ◦ E(ρA ⊗ IB) = ρA ⊗ σB, for all ρA ⊗ IB ∈ C and someσB

iii) (TrA ◦P ◦ R ◦ E)(ρ) = TrA(ρ), for all ρ ∈ C.

We are often more interested in a simple condition that identifies correctable errors for

a given channelE = {Ea, E
†
a} or equivalently, the detectable errors for a given subspacein

H. Recall that if a code corrects the set of errors inΣ = {Ea}, it detects all the errors in

the algebraΣD = {E†
aEb | Ea, Eb ∈ Σ}.
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Theorem V.3 ( [99, 115]). Let H = HA ⊗ HB ⊕ K andP = 1A ⊗ 1B be a projector

ontoC = HA ⊗HB = PH. Then an errorE is detectable by the operator quantum error

correcting codeC if and only if

PEP = 1A ⊗ ρB
E for someρB

E ∈ B(HB). (5.10)

Now that we have reviewed the salient ideas of operator quantum error correction,

we will address a very important question – how do we systematically construct these

codes? Two important contributions in this direction were the introduction of a stabilizer

formalism and the notion of a gauge group by Poulin [120], andconstruction of a class

of subsystem codes capable of encoding one qubit by Bacon [18]. However the bigger

question of systematic construction of good subsystem codes still remained open. Our

work addresses this problem in more detail. Subsequent to the publication of this work,

Bacon and Cassacino independently proposed a class of subsystem codes [19]; these codes

can be viewed as a special case of the codes constructed in this chapter. More details on

these codes will be given in Chapter VI.

Our approach is based on an elegant formalism to construct quantum error-correcting

codes that has been introduced in 1996 by Knill as a generalization of the stabilizer code

concept. At the heart of this quantum code construction is a famous theorem by Clifford

concerning the restriction of irreducible representations of finite groups to normal sub-

groups, so these codes were termed as “Clifford codes” in [88,89], although “Knill codes”

is perhaps a more appropriate name. Unexpectedly, it turnedout that Clifford codes are in

many cases stabilizer codes, so this construction did not become as widely known.

In our approach, we construct a Clifford codeC and give conditions that ensure that

this code decomposes into a tensor productC = A ⊗ B. The Clifford codes allow us to

control the dimensions ofA andB, and we get a simple characterization of the detectable

errors of the operator quantum error-correcting code. Since there may exist many different
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ways to construct the same Clifford codeC, we should note that these constructions can

lead to different tensor product decompositions. In fact, even if one is just interested in the

tensor decomposition of a stabilizer codeC, then the Clifford codes can provide a natural

way to induce an operator quantum error-correcting code onC.

B. A Detour Through Clifford Codes

As we have seen in the previous sections and in Chapter III, thestudy of quantum codes

is related to the operators acting on the system Hilbert space. To simplify matters we can

restrict our attention to a basis of these operators and the group generated by that basis,

called the error group. In the binary case we deal with the familiar Pauli matrices and the

group generated by them onn qubits. Knill generalized this concept by introducing the

notion of nice error bases and abstract error groups which generalize the Pauli error group.

We have already seen one application of this generalizationin Chapter III, where we dealt

with the generalization of the Pauli group to nonbinary alphabet. The benefit of the abstract

approach is that it will free us from having to deal with cumbersome matrix operators but

instead work with groups. The representations of the groups(in H) will bring us back

to the concrete world of operators. In this chapter, we shallpursue this abstract approach

permitting different error groups other than the Pauli error group. We say that a finite group

E is an abstract error group if it has a faithful irreducible unitary representationρ of degree

d = |E : Z(E)|1/2. The irreducibility of the representation ensures that onecan express

any error acting onCd as a linear combination of the matricesρ(g), with g ∈ E. The fact

that the representation is faithful and has the largest possible degree ensures that the set of

matrices{ρ(g) | g ∈ T}, whereT is a set of representatives ofE/Z(E), forms abasisof

the vector space ofd× d matrices.

A Clifford code is constructed with the help of a normal subgroupN of the error group
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E and an irreducible characterχ ofN . Letφ denote the irreducible character corresponding

to the representationρ of the groupE, that is,φ(g) = Tr ρ(g) for g ∈ E. Suppose thatN is

a normal subgroup ofE and thatχ is an irreducible character ofN such that(χ, φN)N > 0.

Definition V.4 (Clifford codes). A Clifford codeC corresponding to(E, ρ,N, χ) is defined

as the image of the orthogonal projector

P =
χ(1)

|N |
∑

n∈N

χ(n−1)ρ(n),

see [88, Theorem 1].

We emphasize that if we refer to a Clifford code with data(E, ρ,N, χ), then it is

assumed that(χ, φN) > 0, as this condition ensures thatdimC > 0. Recall that an error

e in E is detectable by the (Clifford) quantum codeC if and only if Pρ(e)P = λeP holds

for someλe ∈ C.

The image ofP is the homogeneous component that consists of the direct sumof all

irreducibleCN -submodules with characterχ that are contained in the restriction ofρ toN .

The elementse in E that satisfyρ(e)C = C form a group known as the inertia group

IE(χ) = {g ∈ E |χ(gxg−1) = χ(x) for all x ∈ N}. We note thatC is an irreducible

C[IE(χ)]-module. Letϑ be the irreducible character corresponding to this module.

Fact V.5. LetC be a Clifford code with data(E, ρ,N, χ). Then the dimension of the code

is given bydimC = |Z(E) ∩N ||E : Z(E)|1/2χ(1)2/|N |. An errore in E can be detected

byC if and only ife is inE − (IE(χ) − Z(ϑ)).

For a proof of this fact see [88] and for more background on Clifford codes see [89]

and the seminal papers [92,93].
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C. Constructing Operator Quantum Error-Correcting Codes

We are now concerned with the construction of a decomposition of the Hilbert spaceH in

the form

H = (A⊗B) ⊕ C⊥.

Put differently, we seek a decomposition of the Clifford codeC as a tensor productA⊗B.

The next theorem gives a construction of operator quantum error-correcting codes

when one can express the inertia groupIE(χ) as a central productIE(χ) = LN , whereL

is a subgroup ofE such that[L,N ] = 1.

Theorem V.6. Suppose thatC is a Clifford code with data(E, ρ,N, χ). If the inertia group

IE(χ) is of the formIE(χ) = LN , whereL is a subgroup ofE such that[L,N ] = 1, then

C is an operator quantum error-correcting codeC = A⊗B such that

i) dimA = |Z(E) ∩N ||E : Z(E)|1/2χ(1)/|N |,

ii) dimB = χ(1).

The subsystemA is an irreducibleCL-module with characterχA ∈ Irr(L). An errore in E

is detectable by subsystemA if and only ife is contained in the setE− (IE(χ)−Z(χA)N).

Proof. Since the Clifford codeC is an irreducibleC[IE(χ)]-module andIE(χ) = LN , with

[L,N ] = 1, there exists an irreducibleCL-moduleA and an irreducibleCN -moduleB

such thatC ∼= A⊗B, see [57, Proposition 9.14]. IfχA ∈ Irr(L) is the character associated

with the moduleA, χB ∈ Irr(N) the character associated withB, andϑ ∈ Irr(IE(χ)) the

character associated withC, thenϑ is of the formϑ(ℓn) = χA(ℓ)χB(n) with ℓ ∈ L and

n ∈ N .

As the restriction ofC to aCN -module contains an irreducibleCN -moduleW with
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characterχ, we must have

(ϑN , χ)N =
1

|N |
∑

n∈N

ϑ(1, n−1)χ(n) =
1

|N |
∑

n∈N

χA(1)χB(n−1)χ(n)

= χA(1)(χB, χ)N > 0.

SinceIrr(N) forms an orthonormal basis with respect to( · , · )N , we can conclude that the

irreducible characterχB must be equal toχ. It follows thatC ∼= A⊗W .

The dimension ofW ∼= B is χ(1), and by Fact V.5 the dimension ofC is given by

TrP = |Z(E) ∩N ||E : Z(E)|1/2χ(1)2/|N |.

The dimension ofB follows from the formuladimC = dimA dimB.

Note that the projector forC acts as1AB = 1A ⊗ 1B on C. By [88, Theorem 1],

an errore ∈ E − IE(χ) mapsC to an orthogonal complement, soeP andP project onto

orthogonal subspaces and we havePeP = 0; by equation (5.10) the errore is detectable‡

An error e in Z(χA)N acts by scalar multiplication onA and arbitrarily onB, soeP =

1A ⊗ ρB for someρB ∈ B(B). ThusPeP = 1A ⊗ B(B); again by equation (5.10)

these errors are detectable (harmless would be a better word). Therefore, all errors in

E − (IE(χ)−Z(χA)N) are detectable. Conversely, an errore in IE(χ)−Z(χA)N cannot

be detectable, sincee does not act by scalar multiplication onA. We haveeP 6= 1A ⊗ ρB.

ThereforePeP 6= 1A ⊗ ρB and thuse is an undetectable error.

The data given in the previous theorem can be easily computed, especially with the

help of a computer algebra system such as GAP or MAGMA.

We will now consider some important special cases. Recall that most abstract error

groups that are used in the literature satisfy the constraint E ′ ⊆ Z(E) (put differently, the

‡Alternatively by Fact V.5, the errore is detectable when we viewC as a Clifford code.
When viewed as an operator quantum error correcting code, we encode only into a subspace
of C, thereforee still remains detectable.
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quotient groupE/Z(E) is abelian). In that case, we are able to obtain a characterization of

the resulting operator quantum error-correcting codes that does not depend on the choice

of the characterχ.

Theorem V.7. Suppose thatE is an abstract error group such thatE ′ ⊆ Z(E). Suppose

thatC is a Clifford code with data(E, ρ,N, χ). In this case, the inertia group is given by

IE(χ) = CE(Z(N)). If CE(Z(N)) = LN for some subgroupL ofE such that[L,N ] = 1,

thenC is an operator quantum error-correcting codeC = A⊗B such that

i) dimA = |Z(E) ∩N ||E : Z(E)|1/2|N : Z(N)|1/2/|N |,

ii) dimB = |N : Z(N)|1/2.

An error e in E is detectable by subsystemA if and only ife is contained in the setE −

(CE(Z(N)) − Z(L)N).

Proof. Since the abstract error groupE satisfies the conditionE ′ ⊆ Z(E), the inertia group

of the characterχ in E can be fully determined; it is given byT := IE(χ) = CE(Z(N)),

see [88, Lemma 5].

Suppose that

P1 =
χ(1)

|N |
∑

n∈N

χ(n−1)ρ(n)

is the orthogonal projector ontoC. The assumptionE ′ ⊆ Z(E) implies that there exists a

linear characterϕ of Irr(Z(N)) such that

P2 =
1

|Z(N)|
∑

n∈Z(N)

ϕ(n−1)ρ(n)

satisfiesP1 = P2, see [88, Theorem 6].

Let φ be the character of the representationρ, that is,φ(g) = Tr ρ(g) for g ∈ E. We

haveTrP1 = χ(1)2φ(1)|N ∩ Z(E)|/|N | andTrP2 = φ(1)|N ∩ Z(E)|/|Z(N)|. Since

P1 = P2 project onto the codespaceC, anddimC > 0, we haveTrP1/TrP2 = 1, which

impliesχ(1)2 = |N : Z(N)|. Therefore, the claims i) and ii) follow from Theorem V.6.
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Let ϑ ∈ Irr(T ) be the character associated with theC[T ]-moduleC; put differently,

ϑ is the unique character inIrr(T ) that satisfies(ϑN , χ)N > 0 and(φT , ϑ)T > 0. Since

Z(E) ≤ T and(φT , ϑ)T > 0, it follows from Lemma V.18 thatsupp(ϑ) = Z(T ).

Since the inertia groupT is a central product given byT = LN with [L,N ] = 1,

there exist charactersχA ∈ Irr(L) andχB = χ ∈ Irr(N) such thatϑ(ℓn) = χA(ℓ)χ(n)

for ℓ ∈ L andn ∈ N . By Lemma V.19, we haveZ(T ) = Z(L)Z(N); thus,supp(ϑ) =

Z(L)Z(N). This implies thatsupp(χA) = L ∩ Z(L)Z(N) = Z(L); henceZ(χA) =

Z(L). The characterization of the detectable errors is obtainedby substituting these facts

in Theorem V.6.

In the previous theorem, we still need to check whetherCE(Z(N)) decomposes into

a central product ofN and some groupL. In the case of extraspecialp-groups (which is

arguably the most popular choice of abstract error groups) the decomposition of the inertia

group into a central product is always guaranteed, as we willshow next.

Recall that a finite groupE whose order is a power of a primep is called extraspecial

if its derived subgroupE ′ and its centerZ(E) coincide and have orderp. An extraspecial

p-group is an abstract error group. The quotient groupE = E/Z(E) is the direct product

of two isomorphic elementary abelianp-groups. Therefore, one can regardE as a vector

spaceF2n
p over the finite fieldFp.

Let ζ be a fixed generator of the cyclic groupZ(E). As the commutator[x, y] depends

only on the cosetsx = xZ(E) andy = yZ(E), one can determine a well-defined function

s : E×E → Fp by [x, y] = ζs(x,y). The functions is a nondegenerate symplectic form. We

note that two elementsx andy in E commute if and only ifs(x, y) = 0. We writex⊥s y if

and only ifs(x, y) = 0.

For a subgroupG of E, we will useG to denoteG/Z(E).

Lemma V.8. If E is an extraspecialp-group andN a normal subgroup ofE, thenCE(Z(N)) =
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NCE(N).

Proof. SinceZ(E) ≤ NCE(N) ≤ CE(Z(N)), it suffices to show that the dimensions of

theFp-linear vector spaces

NCE(N) and CE(Z(N))

are the same. Suppose thatz = dimZ(N) andk = dimN . Then

dimNCE(N) = dim(N +N
⊥s

) = dimN + dimN
⊥s − dim(N ∩N⊥s

)

= dimN + dimN
⊥s − dim(Z(N))

= k + (2n− k) − z = 2n− z,

which coincides withdimCE(Z(N)) = dimZ(N)
⊥s

= 2n− z, and this proves our claim.

The next theorem shows that it suffices to choose a normal subgroupN of the ex-

traspecialp-groupE, and this choice determines the parameters of an operator quantum

error-correcting code provided by a Clifford codeC.

Theorem V.9. Suppose thatE is an extraspecialp-group. IfC is a Clifford code with data

(E, ρ,N, χ), withN 6= 1, thenC is an operator quantum error-correcting codeC = A⊗B

such that

i) dimA = |Z(E) ∩N ||E : Z(E)|1/2|N : Z(N)|1/2/|N |,

ii) dimB = |N : Z(N)|1/2.

An error e in E is detectable by subsystemA if and only ife is contained in the setE −

(NCE(N) −N).

Proof. The inertia groupIχ(E) = CE(Z(N)), sinceE ′ ⊆ Z(E), see [88, Lemma 5].

By Lemma V.8, we haveIE(χ) = LN = NL with L = CE(N). Thus,C is an opera-

tor quantum error-correcting code and the statements i) andii) follow from Theorem V.7.
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Furthermore, Theorem V.7 shows that an errore in E is detectable if and only ife ∈

E − (NCE(N) − Z(L)N). SinceE is ap-group andN 6= 1, we haveN ∩ Z(E) 6= 1;

henceZ(E) ≤ N . We note thatZ(L) ⊆ L ∩ L
⊥s

= N
⊥s ∩ N ⊆ N ; therefore,

N ⊆ Z(L)N ⊆ Z(N)N = N , forcingZ(L)N = N .

The normal subgroupN used in the construction of subsystem codes will henceforth

be called as thegauge group. This definition coincides with the definition of the gauge

group in [120].

D. Subsystem Codes from Classical Codes

We conclude this chapter by showing how the previous resultscan be related to classical

coding theory. Leta andb be elements of the finite fieldFq of characteristicp. Recall that

in Section 1 we defined the unitary operatorsX(a) andZ(b) onC
q by

X(a) |x〉 = |x+ a〉 , Z(b) |x〉 = ωtr(bx) |x〉 ,

wheretr denotes the trace operation from the extension fieldFq to the prime fieldFp, and

ω = exp(2πi/p) is a primitivepth root of unity. Leta = (a1, . . . , an) ∈ F
n
q . We write

X(a) = X(a1) ⊗ · · · ⊗X(an) andZ(a) = Z(a1) ⊗ · · · ⊗ Z(an) for the tensor products

of n error operators. One readily checks that the group

E = 〈X(a), Z(b) | a, b ∈ F
n
q 〉

is an extraspecialp-group of orderpq2n. As a representationρ, we can take the identity

map onE. We haveE/Z(E) ∼= F
2n
q .

We need to introduce a notion of weights of errors. Recall thatan error inE can be

expressed in the formαX(a)Z(b) for some nonzero scalarα. The weight ofαX(a)Z(b)

is defined as|{i | 1 ≤ i ≤ n, ai 6= 0 or bi 6= 0}|, that is, as the number of quantum systems
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that are affected by the error. Similarly, we can introduce aweight on vectors ofF2n
q by

swt(a|b) = {i | 1 ≤ i ≤ n, ai 6= 0 or bi 6= 0}|

for a, b ∈ F
n
q .

Theorem V.9 suggests the following approach to construct operator quantum error-

correcting codes.

Theorem V.10. LetX be a classical additive subcode ofF
2n
q such thatX 6= {0} and let

Y denote its subcodeY = X ∩X⊥s . If x = |X| andy = |Y |, then there exists an operator

quantum error-correcting codeC = A⊗B such that

i) dimA = qn/(xy)1/2,

ii) dimB = (x/y)1/2.

The minimum distance of subsystemA is given byd = swt((X+X⊥s)−X) = swt(Y ⊥s −

X). Thus, the subsystemA can detect all errors inE of weight less thand, and can correct

all errors inE of weight≤ ⌊(d− 1)/2⌋.

Proof. Let E be the extraspecialp-group of orderpq2n, and letN be the full preimage of

N = X inE under the canonical quotient map. Therefore, we can apply Theorem V.9. The

remainder of the proof justifies how the parameters given in Theorem V.9 can be expressed

in terms of the code sizesx andy.

ThenZ(N) = X∩X⊥s = Y . By definition,N containsZ(E); hence,Z(E) ≤ Z(N).

It follows that |N : Z(N)| = |N : Z(N)| = x/y, so ii) follows from Theorem V.9. For

the claim i), we remark thatx = |X| = |N |/p, which implies thatdimA = (p/|N |)|E :

Z(E)|1/2|N : Z(N)|1/2 = qn(x/y)1/2/x.

The minimum distance of subsystemA is the weight of the smallest nondetectable

error, so it is the minimum weight of an error in the setNCE(N) − N = CE(Z(N)) −

N . Since the quotient mapE → E maps an errore of weightw onto a vectore such
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thatw = swt e, the claim about the minimum distance follows from the observations that

NCE(N) −N = (X +X⊥s) −X andCE(Z(N)) −N = Y ⊥s −X.

Remark V.11. As in the case of stabilizer codes, the most general symplectic form we can

choose is〈u|v〉s = trq/p(a
′ · b − a · b′), whereu = (a|b) andv = (a′|b′) are in F

2n
q . We

define the trace symplectic dual asC⊥s = {x ∈ F
2n
q | 〈x|y〉s = 0, for all y ∈ C}. In

case ofFq-linear codes, the trace symplectic form〈(a|b)|(a′|b′)〉s vanishes if and only if

a′ · b− a · b′ vanishes. The trace symplectic dual for anFq-linear code therefore coincides

with its symplectic dual. So when dealing withFq-linear codes we indulge in an abuse of

notation and denotea′ · b− a · b′ also by〈(a|b)|(a′|b′)〉s and the duals with respect to both

forms asC⊥s .

In the above the theorem we had been able to define the distancein terms of the

classical codes. Having made choice of the error group we canalso go back and recast the

distance in terms of the gauge group as aswt(CE(Z(N)) − N). In addition, we can also

extend the notion of purity to subsystem codes also in a straightforward manner.

Definition V.12 (Pure and impure subsystem codes). LetN be the gauge group of a sub-

system codeQ with distanced = wt(CE(Z(N)) −N). We say thatQ is pure tod′ if there

is no error of weight less thand′ in N . The code is said to be exactly pure tod′ if wt(N)

is d′ and it is said to pure ifd′ ≥ d . The code is said to be impure if it is exactly pure to

d′ < d.

This refinement to the notion of purity was made in recognition of certain subtleties

that had to addressed when constructing other subsystem codes from existing subsystem

codes, see [6] for details.

An operator quantum error-correcting code with parameters((n,K,R, d))q is a sub-

spaceC = A ⊗ B of a qn-dimensional Hilbert spaceH such thatK = dimA, R =

dimB, and the subsystemA has minimum distanced. The above theorem constructs
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an ((n, qn/(xy)1/2, (x/y)1/2, d))q operator quantum error-correcting code given a classi-

cal (n, x)q codeX and its(n, y)q subcodeY = X ∩ X⊥s . We write [[n, k, r, d]]q for an

((n, qk, qr, d))q operator quantum error-correcting code.

A further simplification of the above construction is possible which takes any pair of

classical codes to give a subsystem code.

Corollary V.13 (Euclidean Construction). Let Xi ⊆ F
n
q , be [n, ki]q linear codes where

i ∈ {1, 2}. Then there exists an[[n, k, r, d]]q Clifford subsystem code with

• k = n− (k1 + k2 + k′)/2,

• r = (k1 + k2 − k′)/2, and

• d = min{wt((X⊥
1 ∩X2)

⊥ \X1),wt((X⊥
2 ∩X1)

⊥ \X2)},

wherek′ = dimFq(X1 ∩X⊥
2 ) × (X⊥

1 ∩X2).

The result follows from Theorem V.9 by definingC = X1 × X2; it follows that

C⊥s = X⊥
2 ×X⊥

1 andD = C ∩ C⊥s = (X1 ∩X⊥
2 )× (X2 ∩X⊥

1 ), and the parameters are

easily obtained from these definitions, see [6] for a detailed proof.

The notions of purity can be defined in terms of classical codes as well. LetC be an ad-

ditive subcode ofF2n
q andD = C ∩C⊥s. By theorem V.9, we can obtain an((n,K,R, d))q

subsystem codeQ fromC that has minimum distanced = swt(D⊥s −C). If d′ ≤ swt(C),

then we say that the associated operator quantum error correcting code ispure tod′.

Extending the ideas of purity to subsystem codes is useful because it facilitates the

analysis of the parameters of the subsystem codes, as will become clear when we derive

bounds in the next chapter.

As in the case of stabilizer codes we would like one would liketo characterize the min-

imum distance in terms of the familiar Hamming weight. For this purpose, we reformulate

the above result in terms of codes of lengthn overFq2.

Let (β, βq) be a fixed normal basis ofFq2 overFq. We can define a bijectionφ from
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F
2n
q ontoF

n
q2 by setting

φ((a|b)) = βa+ βqb for (a|b) ∈ F
2n
q .

The map is chosen such that a vector(a|b) of symplectic weightx is mapped to a vector

φ((a|b)) of Hamming weightx. Recall the trace-alternating form〈v|w〉a for vectorsv and

w in F
n
q2 given in equation (3.7)

〈v|w〉a = trq/p

(
v · wq − vq · w
β2q − βq

)

.

It is easy to show that〈c|d〉s = 〈φ(c)|φ(d)〉a holds for allc, d ∈ F
2n
q , see Lemma III.14.

Specifically, we havec⊥s d if and only if φ(c)⊥a φ(d). Therefore, the previous theorem

can be reformulated terms of codes of lengthn overFq2 as follows:

Theorem V.14. LetX be a classical additive subcode ofF
n
q2 such thatX 6= {0} and letY

denote its subcodeY = X ∩X⊥a . If x = |X| andy = |Y |, then there exists an operator

quantum error-correcting codeC = A⊗B such that

i) dimA = qn/(xy)1/2,

ii) dimB = (x/y)1/2.

The minimum distance of subsystemA is given by

d = wt((X +X⊥a) −X) = wt(Y ⊥a −X),

wherewt denotes the Hamming weight. Thus, the subsystemA can detect all errors in

E of Hamming weight less thand, and can correct all errors inE of Hamming weight

⌊(d− 1)/2⌋ or less.

Proof. This follows from Theorem V.10 and the definition of the isometry φ.

The above connections of Clifford operator quantum error-correcting codes to classi-

cal codes allow one to explore a plethora of code constructions. Henceforth codes con-
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structed by using Theorems V.10,V.14 will be referred to asClifford subsystem codes

or just subsystem codes. We shall give an example to illustrate the idea. For simplicity

we shall consider binary codes derived from codes overF4 whose elements are given by

{0, 1, ω, ω2}, whereω2 +ω+1 = 0. Further, choosingβ = ω, the trace alternating product

simplifies as〈v|w〉a = v · w2 + v2 · w. Note that ifw = (w1, . . . , wn), then we denote

w2 = (w2
1, . . . , w

2
n).

Example V.15. LetX be the additive code given by the following generator matrix.

GX =












1 1 0 0

0 0 1 1

ω 0 ω 0

0 ω 0 ω












Then it can be verified thatX⊥a is generated by

GX⊥a =












ω ω 0 0

0 0 ω ω

1 0 1 0

0 1 0 1












.

Further,Y = X ∩X⊥a is generated by

GY =






1 1 1 1

ω ω ω ω




 .

We see that|X| = 24, while |Y | = 22. Thus by Theorem V.14 we have a((4, K,R, d))2

Clifford subsystem code whereK = 24/
√

24 · 22 = 1 andR =
√

24/22 = 2. The distance

of the code is2 because theY ⊥a \X contains(0, 1, 0, 1) among other weight two elements.

Thus we obtain a((4, 2, 2, 2))2 i.e. a [[4, 1, 1, 2]]2 code. This code is not a Clifford code.

The associated Clifford code is a[[4, 2, 2]]2 code. Incidentally, this code is the smallest
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error detecting subsystem code with nontrivial dimensions for the subsystems.

Often linear codes are of more interest than the additive codes. So we shall consider a

linear operator quantum error-correcting code. In this case we can look at Hermitian duals

instead of the trace-alternating duals. Letx, y ∈ F
n
4 . Then we define the Hermitian inner

product〈x|y〉h =
∑n

i xiy
2
i . LetC ⊆ F

n
4 be anF4-linear code. The Hermitian dual ofC is

defined asC⊥h = {x ∈ F
n
4 | 〈x|c〉h = 0 for all c ∈ C}. From Lemma III.18, we know that

C⊥a = C⊥h . So we can use Hermitian duals in Theorem V.14.

Example V.16.LetX ⊆ F
15
4 be a narrowsense BCH code of design distance 6. This code is

neither self-orthogonal nor does it contain its (Hermitian) dual. The generator polynomial

ofX is given by

g(x) = x7 + x6 + ωx4 + x2 + ω2x+ ω2.

ThusX is an [15, 8,≥ 6]4 code. A generator matrix for this code is obtained as

G =

























1 1 0 ω 0 1 ω2 ω2 0 0 0 0 0 0 0

0 1 1 0 ω 0 1 ω2 ω2 0 0 0 0 0 0

0 0 1 1 0 ω 0 1 ω2 ω2 0 0 0 0 0

0 0 0 1 1 0 ω 0 1 ω2 ω2 0 0 0 0

0 0 0 0 1 1 0 ω 0 1 ω2 ω2 0 0 0

0 0 0 0 0 1 1 0 ω 0 1 ω2 ω2 0 0

0 0 0 0 0 0 1 1 0 ω 0 1 ω2 ω2 0

0 0 0 0 0 0 0 1 1 0 ω 0 1 ω2 ω2

























.

The gauge group is the (full) preimage ofG under the isometryφ. The generator polynomial

of its Hermitian dual is given by

x8 + x7 + ωx6 + x5 + ωx4 + ω2x3 + ωx2 + ωx+ ω.
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The generator polynomial ofY = C ∩ C⊥h is given by

h(x) = x9 + ωx8 + x7 + x5 + ωx4 + ω2x2 + ω2x+ 1.

We see thatY ⊥h is a [15, 9]4 code. Again using Theorem V.14 we can compute the dimen-

sions of the subsystemsA andB as215/
√

48 · 46 = 2 and
√

48/46 = 4 respectively. The

codeY ⊥h has minimum weight5 (computed using MAGMA). Sincewt(X) ≥ 6, it follows

thatwt(Y ⊥h \X) = 5. Thus,X defines a((15, 2, 4, 5))2 code. But note that the associated

Clifford code has the parameters((15, 8, 5))2.

Further simplifications of Theorem V.14 for constructing operator quantum error-

correcting codes can be found in [6]. The reader can also find examples of Clifford sub-

sytem codes derived from BCH codes, Reed-Solomon codes therein. Interested readers can

also refer to [19] for a novel method to construct subsystem codes from a pair of classical

codes.

E. Conclusions

We have introduced a method for constructing operator quantum error-correcting codes.

We have seen that a Clifford codesC offers naturally a tensor-product decompositionC =

A⊗B, where the dimensions of the subsystems are controlled by the choice of the normal

subgroupN and its characterχ.

Our construction in terms of classical codes is fairly simple: Any classical (additive)

code over a finite field can be used to construct an operator quantum error-correcting code.

In particular, we do not require any self-orthogonality conditions as in the case of stabilizer

code constructions.

The most prominent open problem concerning operator quantum error-correcting codes

is whether one can achieve better error correction that by means of a quantum error-
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correcting code. The construction given in Theorem V.10 allows one to compare the para-

meters of Clifford codes with the parameters of stabilizer codes. One should note that a fair

comparison should be made between[[n− r, k, d]] stabilizer codes and[[n, k, r, d]] Clifford

subsystem codes. In subsequent chapters we shall establishbounds on the parameters of

subsystem codes and make a fair comparison of the subsystem codes and stabilizer codes.

Additionally, we shall also look into other aspects which wehave not considered here such

as encoding subsystem codes, the gains in encoding and decoding.

F. Appendix

In this appendix, we prove some simple technical results on groups and characters.

Lemma V.17. LetE be a finite group such thatE ′ ⊆ Z(E), and letH be a subgroup of

E. If χ ∈ Irr(H) satisfiesZ(E) ∩ kerχ = {1}, thensuppχ = Z(H).

Proof. Let h ∈ supp(χ). Seeking a contradiction, we assume thath ∈ H − Z(H). Since

E ′ ⊆ Z(E), there exists an elementg ∈ H such thatghg−1 = zh with z ∈ Z(E) such that

z 6= 1. Sincezh ∈ H andh ∈ H, we havez ∈ H ∩Z(E). Asχ is irreducible, the element

z ∈ H ∩ Z(E) is represented byωI for someω ∈ C by Schur’s lemma; furthermore,

ω 6= 1, sinceZ(E) ∩ kerχ = {1}. We note thatχ(h) = χ(ghg−1) = χ(zh) = ωχ(h),

with ω 6= 1, forcingχ(h) = 0, contradiction.

The elements ofZ(H) belong to the support ofχ, since they are represented by scalar

invertible matrices.

Lemma V.18. Let E be a finite group such thatE ′ ⊆ Z(E), and letφ ∈ Irr(E) be a

faithful character of degreeφ(1) = |E : Z(E)|1/2. Let T be a subgroup ofE such that

Z(E) ≤ T . If ϑ ∈ Irr(T ) and(φT , ϑ)T > 0, thensupp(ϑ) = Z(T ).

Proof. Let Z = Z(E). We havesupp(φ) = Z by [78, Lemma 2.29]. Since the support of
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φ equalsZ, it follows from the definitions that

0 < (φT , ϑ)T =
1

|T : Z|(φZ , ϑZ)Z .

Clearly, φZ = φ(1)ϕ and ϑZ = ϑ(1)θ for some linear charactersϕ and θ of Z. As

(φZ , ϑZ)Z = φ(1)ϑ(1)(ϕ, θ)Z > 0, we must haveθ = ϕ. Sinceφ is faithful, it follows that

ϕ = θ is faithful; hence,kerϑ ∩ Z(E) = {1}. Thus,suppϑ = Z(T ) by Lemma V.17.

Lemma V.19. Suppose thatT is a group with subgroupsL andN such thatT = LN and

[L,N ] = 1. ThenZ(T ) = Z(L)Z(N).

Proof. SinceT = LN , an arbitrary elementz of Z(T ) can be expressed in the formz = ln

for somel ∈ L andn ∈ N . For n′ in N , we havelnn′ = n′ln = ln′n, where the

latter equality follows from[L,N ] = 1. Consequently,nn′ = n′n for all n′ in N , son

is an element ofZ(N). Similarly, l must be an element ofZ(L). It follows thatZ(T ) =

Z(L)Z(N).
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CHAPTER VI

SUBSYSTEM CODES – BOUNDS AND CONSTRUCTIONS∗

In this chapter we extend the theory of subsystem codes. One of our goals is to clarify

the benefits that can be gained from the use of subsystem codeswith respect to stabilizer

codes. In this context we derive bounds on the parameters of subsystem codes. These

bounds help in comparing the performance of subsystem codeswith respect to stabilizer

codes. Of course subsystem codes subsume stabilizer and in that sense every stabilizer

code is a subsystem code. However, we use the term subsystem code to mean a code

with nontrivial dimension of the gauge subsystem. We generalize the quantum Singleton

bound toFq-linear subsystem codes. It follows that no subsystem code over a prime field

can beat the quantum Singleton bound. On the other hand, we show the remarkable fact that

there exist impure subsystem codes beating the quantum Hamming bound. A number of

open problems concern the comparison in performance of stabilizer and subsystem codes.

One of the open problems suggested by Poulin’s work asks whether a subsystem code can

use fewer syndrome measurements than an optimalFq-linear MDS stabilizer code while

encoding the same number of qudits and having the same distance. We prove that linear

subsystem codes cannot offer such an improvement under complete decoding.

One of the promises of subsystem codes is their potential forsimplifying error recov-

ery. Perhaps the benefits of subsystem codes are best understood by an example. Consider

the first quantum error correcting code proposed by [142], which encodes one qubit into

nine qubits. This code which is capable of correcting a single error on any of the qubits

requires the measurement of eight syndrome qubits. The Bacon-Shor subsystem code [18]

∗ c©2007. Part of the material in this chapter is reprinted from A. Klappenecker and P.
K. Sarvepalli, “On subsystem codes beating the quantum Hamming or Singleton bound”,
Proc. Royal Society London A, vol 463, pp. 2887-2905, 2007.
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on the other hand, also encodes one qubit into nine but it requires only four syndrome

measurements, giving a simpler error recovery scheme.

In this context it becomes crucial to identify when subsystem codes provide gains

over the stabilizer codes. It also becomes necessary to compare the stabilizer codes and

the subsystem codes fairly and with meaningful criteria. For instance, once again consider

the [[9, 1, 3]]2 Shor code requiringn − k = 9 − 1 = 8 syndrome measurements. The

[[9, 1, 4, 3]]2 Bacon-Shor code on the other hand requiresn − k − r = 9 − 1 − 4 = 4

syndrome measurements. Clearly, this code is better than theShor’s code. But the optimal

single error correcting binary quantum code that encodes one qubit is the[[5, 1, 3]]2 code,

which also requires only5 − 1 = 4 syndrome measurements. So it is apparent that while a

given subsystem code can be superior to some stabilizer codes, it is not at all obvious that

it is better than the best stabilizer code for the same function,viz., encodingk qubits with a

distanced.

The first part of our chapter seeks to address this issue forFq-linear Clifford subsystem

codes which might perhaps be the most useful class of subsystem codes. In this chapter we

generalize the quantum Singleton bound toFq-linear Clifford subsystem codes. It follows

that no Clifford subsystem code over a prime field can beat the quantum Singleton bound.

We then show how the quantum Singleton bound can be applied tomake the comparison

between stabilizer and subsystem codes (focusing on stabilizer codes that are optimal in

the sense that they meet the quantum Singleton bound). This bound makes it possible to

quantify the gains that subsystem codes can provide in errorrecovery. In particular, our

results show that these gains involve a trade off between thedistance of the subsystem

code and the number of information and the gauge qudits. We show that if there exists

anFq-linear MDS stabilizer code,i.e., a code meeting the quantum Singleton bound, then

no Fq-linear subsystem code can outperform it in the sense of requiring fewer syndrome

measurements for error correction.
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Then we shift our attention to a class of subsystem codes on lattices. Bacon and Casac-

cino [19] obtain a subsystem code from two classical codes. We show that this method is a

special case of the Euclidean construction for subsystem codes proposed in [6] and give a

coding theoretic analysis of these codes.

Since the early works on quantum error-correcting codes, ithas been suspected that

impure codes should somehow perform better than the pure codes. However, it was shown

that the quantum Singleton bound holds true for both pure andimpure stabilizer codes. But

it was not so clear with respect to the quantum Hamming bound.In fact, it was often con-

jectured that there might exist impure quantum error-correcting codes beating the quantum

Hamming bound, but a proof remained elusive. At least in the case of binary stabilizer

codes there exists some evidence that the conjecture might not be true, as [12] showed

that asymptotically the quantum Hamming bound was obeyed byimpure codes as well,

and [61] showed that no single error correcting binary stabilizer code can beat the quan-

tum Hamming bound. In this context it is not surprising that questions were raised [18] if

subsystem codes are any different. In [6] we proved the quantum Hamming bound for pure

subsystem codes. We show here that impure subsystem codes can indeed beat the quantum

Hamming bound for pure subsystem codes. For example, we demonstrate that the lattice

subsystem codes can provide examples of impure subsystem codes that beat the quantum

Hamming bound.

The chapter is structured as follows. We assume that the reader is familiar with the

notion of subsystem code introduced in the last chapter. We prove the quantum Singleton

bound for subsystem codes in Section A. The lattice subsystem codes are focus of attention

in Section C and Section D, wherein it is shown that there exist impure subsystem codes that

beat the quantum Hamming bound. We conclude with a few open questions on subsystem

codes.
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A. Quantum Singleton Bound forFq-linear Subsystem Codes

Recall that the quantum Singleton bound states that an[[n, k, d]]q quantum code satisfies

2d ≤ n− k + 2, [95,126]. In this context it is natural to ask if subsystem codes also obey

a similar relation. The usefulness of such a bound is obvious. Apart from establishing

the bounds for optimal subsystem codes, they also make it possible to compare stabilizer

and subsystem codes, as we shall see subsequently. We prove that theFq-linear subsystem

codes with the parameters[[n, k, r, d]]q satisfy a quantum Singleton like boundviz.,k+r ≤

n− 2d+2. It will be seen that this reduces to the quantum Singleton bound if r = 0. More

interestingly, this reveals that there is a trade off in the size of subsystemA and the gauge

subsystem. One pays a price for the gains in error recovery. The cost is the reduction in the

information to be stored.

Our proof for this result is quite straightforward, though the intermediate details are a

little involved. First we show that a linear[[n, k, r > 0, d]]q subsystem code that is exactly

pure to 1 can be punctured to an[[n − 1, k, r − 1, d]]q code which retains the relationship

betweenn, k, r, d. If d = 2 by repeated puncturing we either arrive at a pure code or

a stabilizer code, both of which have upper bounds. Ford > 2, two cases can arise, if

the code is exactly pure to 1, we simply puncture it to get a smaller code as ind = 2

case. Otherwise, we puncture it to get an[[n − 1, k, r + 1, d − 1]]q code. By repeatedly

shortening we either get a stabilizer code or a distance 2 code both of which have an upper

bound. Keeping track of the change in the parameters will give us an upper bound on the

parameters of the original code.

Letw = (a1, a2, . . . , an|b1, b2, . . . , bn) ∈ F
2n
q . We denote byρ(w) ∈ F

2n−2
q , the vector

obtained by deleting the first and then+ 1th coordinates ofw. Thus we have

ρ(w) = (a2, . . . , an|b2, . . . , bn) ∈ F
2n−2
q .
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Similarly, given a classical codeC ⊆ F
2n
q we denote the puncturing of a codeword or code

in the first andn+ 1 coordinates byρ(C).

In Theorem V.10 subsystem codes are constructed using a trace symplectic prod-

uct. Following Remark V.11 forFq-linear codes instead of considering the trace sym-

plectic inner product we can consider the relatively simpler symplectic product. Recall

that the symplectic product ofu = (a|b) andv = (a′|b′) in F
2n
q is defined as〈u|v〉s =

〈(a|b)|(a′|b′)〉s = a′ · b − a · b′. The symplectic dual of a codeC ⊆ F
2n
q is defined as

C⊥s = {x ∈ F
2n
q | 〈x|y〉s = 0, for all y ∈ C}. As we shall be concerned withFq-linear

codes in this chapter, we will focus only on the symplectic inner product in the rest of the

chapter.

Lemma VI.1. LetC ⊆ F
2n
q be anFq-linear code. ThenC has anFq-linear basis of the

form

B = {z1, . . . , zk, zk+1, xk+1, zk+2, xk+2, . . . , zk+r, xk+r}

where〈xi|xj〉s = 0 = 〈zi|zj〉s and〈xi|zj〉s = δi,j.

Proof. First we choose a basisB = {z1, . . . , zk, zk+1, . . . , zk+r} for a maximal isotropic

subspaceC0 of C. If C0 6= C, then we can choose a codewordxk+1 in C that is orthog-

onal to all of thezi except one, sayzk+1 (renumbering if necessary). We can scalexk+1

by an element inF×
q so that〈zk+1|xk+1〉s = 1. If 〈C0, xk+1〉 6= C, then we repeat the

process by choosing another codewordxk+i that is orthogonal to all the previously chosen

{xk+1, . . . , xk+i−1} and allzi exceptzk+i, until we have a basis of the desired form.

For the remainder of the section, we fix the following notation. By Theorem V.10, we

can associate with anFq-linear [[n, k, r, d]]q subsystem code two classicalFq-linear codes

C,D ⊆ F
2n
q such thatD = C ∩C⊥s , |C| = qn−k+r, |D| = qn−k−r andswt(D⊥s \C) = d.
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By lemma VI.1, we can also assume thatC is generated by

C = 〈z1, . . . , zs, zs+1, xs+1, . . . , zs+r, xs+r〉,

wheres = n−k−r and the vectorsxi, zi in F
2n
q satisfy the relations〈xi|xj〉s = 0 = 〈zi|zj〉s

and〈xi|zj〉s = δi,j. These relations onxi, zi imply that

C⊥s = 〈z1, . . . , zs, zs+r+1, xs+r+1, . . . , zs+r+k, xs+r+k〉,

D = C ∩ C⊥s = 〈z1, . . . , zs〉,

D⊥s = 〈z1, . . . , zs, zs+1, xs+1, . . . , zn, xn〉.

Lemma VI.2. An Fq-linear [[n, k, r > 0, d ≥ 2]]q Clifford subsystem code exactly pure to

1 can be punctured to anFq-linear [[n− 1, k, r − 1,≥ d]]q code.

Proof. As mentioned above, we can associate to the subsystem code two classical codes

C,D ⊆ F
2n
q . Two cases arise depending onswt(D).

a) If swt(D) = 1, then without loss of generality we can assume thatswt(z1) = 1. Further,

z1 can be taken to be of the form(1, 0, . . . , 0|a, 0, . . . , 0). And for i 6= 1, because ofFq-

linearity of the codes we can pick allxi, zi to be of the form(0, a2, . . . , an|b1, b2, . . . , bn).

Further, asxi, zi must satisfy the orthogonality relations withz1 viz., 〈z1|zi〉s = 0 =

〈z1|xi〉s, for i > 1 we can choosexi, zi to be of the form(0, a2, . . . , an|0, b2, . . . , bn). It

follows that because of the form ofxi andzi puncturing the first andn+ 1th coordinate

will not alter these orthogonality relations, in particular 〈ρ(xi)|ρ(zi)〉s 6= 0 for s+ 1 ≤

i ≤ n.

Letting ρ(xi) = x′i, ρ(zi) = z′i and observing thatρ(z1) = (0, . . . , 0|0, . . . , 0), we

see that the codeρ(C) = 〈z′2, . . . , z′s, z′s+1, x
′
s+1, . . . , z

′
s+r, x

′
s+r〉. Denoting byDp =

ρ(C) ∩ ρ(C)⊥s it is immediate thatDp is generated by{z′2, . . . , z′s} while D⊥s
p =

〈z′2, . . . , z′s, z′s+1, x
′
s+1, . . . , z

′
n, x

′
n〉. Henceρ(C) defines an[[n−1, k, r, swt(D⊥s

p \ρ(C))]]q
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code.

Next we show thatswt(D⊥s
p \ ρ(C)) ≥ d. Let u = (a2, . . . , an|b2, . . . , bn) be inD⊥s

p \

ρ(C), then we can easily verify that(0, a2, . . . , an|0, b2, . . . , bn) is orthogonal to allzi,

1 ≤ i ≤ s and hence it is inD⊥s. It cannot be inC as that would imply thatu is in ρ(C).

But swt(D⊥s \C) ≥ d. Thereforeswt(u) ≥ d. andρ(C) defines an[[n− 1, k, r,≥ d]]q

code. By choosingC ′ = 〈z′2, . . . , z′s, z′s+1, z
′
s+2, x

′
s+2, . . . , z

′
s+r, x

′
s+r〉 we can conclude

that there exists an[[n−, k, r − 1, d]]q code. Alternatively, apply Theorem 16 in [6].

b) If swt(D) > 1, then we can assume thatswt(zs+1) = 1 and form the codeC ′ =

〈z1, . . . , zs, zs+1, zs+2, xs+2, . . . , zs+r, xs+r〉. It is clear thatC ′ defines an[[n, k, r −

1, d]]q code that is pure to1 with swt(C ′ ∩ C ′⊥s) = 1. But this is just the previous

case, from which we can conclude that there exists an[[n− 1, k, r − 1,≥ d]]q code.

Lemma VI.2 allows us to establish a bound for distance 2 codeswhich can then be

used to prove the bound for arbitrary distances.

Lemma VI.3. An impureFq-linear [[n, k, r, d = 2]]q Clifford subsystem code satisfies

k + r ≤ n− 2d+ 2.

Proof. Suppose that there exists anFq-linear[[n, k, r, d = 2]]q impure subsystem code such

thatk + r > n− 2d+ 2; in particular, this code must be pure to1. By Lemma VI.2 it can

be punctured to give an[[n − 1, k, r − 1,≥ d]]2 subsystem code. If this code is pure, then

k+ r−1 ≤ n−1−2d+2 holds, contradicting our assumptionk+ r > n−2d+2; hence,

the resulting code is once again impure and pure to 1.

Now we repeatedly apply Lemma VI.2 to puncture the shortenedcodes until we get

an [[n − r, k, 0,≥ d]]q subsystem code. But this is a stabilizer code which must obey the

Singleton boundk ≤ n−r−2d+2, contradicting our initial assumptionk+r > n−2d+2.
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Therefore, we can conclude thatk + r ≤ n− 2d+ 2.

If the codes are of distance greater than 2, then we puncture the code until it either

has distance 2 or it is a pure code. The following result tellsus how the parameters of the

subsystem codes vary on puncturing.

Lemma VI.4. An impureFq-linear [[n, k, r, d ≥ 3]]q Clifford subsystem code exactly pure

to d′ ≥ 2 implies the existence of anFq-linear [[n− 1, k, r+ 1,≥ d− 1]]q subsystem code.

Proof. Recall that the existence of an[[n, k, r, d ≥ 3]]q subsystem code implies the exis-

tence ofFq-linear codesC andD such that

C = 〈z1, . . . , zs, zs+1, xs+1, . . . , zs+r, xs+r〉,

with s = n− k − r, andD = C ∩ C⊥s , see above.

The stabilizer code defined byD satisfiesk+r = n−s ≤ n−2d′ +2, or equivalently

s ≥ 2d − 2; it follows that s ≥ 2, sinced′ ≥ 2. Without loss of generality, we can

takez1 to be of the form(1, a2, . . . , an|b1, b2 . . . , bn) for if no such codeword exists inD,

then(0, 0, . . . , 0|1, 0, . . . , 0) is contained inD⊥s, contradicting the fact thatswt(D⊥s) ≥ 2.

Consequently, we can choosez2 inD to be of the form(0, c2, . . . , cn|1, d2, . . . , dn), and we

may further assume thatb1 = 0 in z1. The form ofz1 andz2 allows us to assume that any

remaining generator ofC is of the form(0, u2, . . . , un|0, v2, . . . , vn).

Let ρ be the map defined by puncturing the first and(n+1)th coordinate of a vector in

C. Define for alli the punctured vectorsx′i = ρ(xi) andz′i = ρ(zi). Then one easily checks

that〈ρ(xi) | ρ(xj)〉s = 0 = 〈ρ(zi) | ρ(zj)〉s for all indicesi andj, and〈ρ(xi) | ρ(zj)〉s =

δi,j if i ≥ s+ 1 or j ≥ 3, and that〈ρ(z1) | ρ(z2)〉s = −1.

Let us look at the punctured codeρ(C),

ρ(C) = 〈z′3, . . . , z′s, z′s+1, x
′
s+1, . . . , z

′
s+r, x

′
s+r, z

′
1, z

′
2〉.



117

Since〈ρ(z1) | ρ(z2)〉s = −1 we haveDp = ρ(C) ∩ ρ(C)⊥s = 〈z′3, . . . , z′s〉, whence

|Dp| = |D|/q2. As swt(C) ≥ 2, it follows that |ρ(C)| = |C|. Thusρ(C) defines an

[[n− 1, k, r + 1, swt(D⊥s
p \ ρ(C))]]q subsystem code.

Recall that the codeD is generated bys ≥ 2 vectors; we will show next that our

assumptions actually forces ≥ 3. Indeed, ifs = 2, then|D| = q2 and |D⊥s| = q2n−2.

Under the assumptionswt(D⊥s) ≥ 2, it follows that |ρ(D⊥s)| = |D⊥s | = q2n−2. But as

ρ(D⊥s) ⊆ F
2n−2
q this implies thatρ(D⊥s) = F

2n−2
q . SinceF

2n−2
q has2n − 2 independent

codewords of symplectic weight one,D⊥s must have2n − 2 independent codewords of

symplectic weight two. However, this contradicts our assumptions on the minimum dis-

tance of the subsystem code:

(a) If C is a proper subspace ofD⊥s , then the minimum distanced is given byd =

swt(D⊥s \ C) ≥ 3; thus, the weight 2 vectors must all be contained inC, which

shows that|C| = q2n−2 = |D|, contradicting|C| < |D⊥s |.

(b) If C = D⊥s , then the minimum distance is given byd = swt(D⊥s) = 2, contradicting

our assumption thatd ≥ 3.

Thus, from now on, we can assume thats ≥ 3.

Before bounding the minimum distance of the punctured subsystem code, we are go-

ing to show thatD⊥s
p = ρ(D⊥s). Let w = (u1, u2, . . . , un|v1, v2, . . . , vn) be a vector in

D⊥s . For 3 ≤ i ≤ s, the vectorszi are of the form(0, a2, . . . , an|0, b2, . . . , bn); thus,

it follows from 〈w|zi〉s = 0 that 〈ρ(w)|z′i〉s = 0. Henceρ(w) is in D⊥s
p , which implies

ρ(D⊥s) ⊆ D⊥s
p . We have|D⊥s

p | = q2n−2/|Dp| = q2n/|D| = |D⊥s|, and we note that

|D⊥s | = |ρ(D⊥s)|, becauseswt(D⊥s) ≥ 2; hence,D⊥s
p = ρ(D⊥s).

Let w′ = (u2, . . . , un|v2, . . . , vn) be an arbitrary vector inρ(D⊥s) \ ρ(C). It follows

that there exist someα, β in Fq such thatw = (α, u2, . . . , un|β, v2, . . . , vn) is inD⊥s ; it is

clear thatw cannot be inC, since thenρ(w) = w′ would be inρ(C); hence,swt(w) ≥ d. It

immediately follows thatswt(D⊥s
p \ρ(C)) ≥ d−1. Henceρ(C) defines an[[n−1, k, r+1,≥



118

d− 1]]q subsystem code.

Now we are ready the prove the upper bound for an arbitrary subsystem code. Essen-

tially we reduce it to a pure code or distance two code by repeated puncturing and bound

the parameters by carefully tracing the changes.

Theorem VI.5. AnFq-linear [[n, k, r, d ≥ 2]]q Clifford subsystem code satisfies

k + r ≤ n− 2d+ 2. (6.1)

Proof. The bound holds for all pure codes, see [6]. So assume that thecode is impure. If

d = 2, then the relation holds by Lemma VI.3; so letd ≥ 3. If the code is exactly pure to

1, then it can be punctured using Lemma VI.2 to give an[[n − 1, k, r − 1, d′ = d]]q code,

otherwise it can be punctured using Lemma VI.4 to obtain an[[n−1, k, r+1, d′ ≥ d−1]]q

code. If the punctured code is pure, then it follows that eitherk+ r−1 ≤ n−1−2d+2 or

k+ r+ 1 ≤ n− 1− 2d′ + 2 ≤ n− 1− 2(d− 1) + 2 holds; in both cases, these inequalities

imply thatk + r ≤ n− 2d+ 2.

If the resulting code is impure, then if it is exactly pure to1 we puncture the code

again using Lemma VI.2, if not we puncture using Lemma VI.4, until we get a pure code

or a code with distance two. Assume that we puncturedi times using Lemma VI.2 andj

times using Lemma VI.4, then the resulting code is an[[n− i− j, k, r+ j− i, d′ ≥ d− j]]q

subsystem code. Since pure subsystem codes and distance 2 subsystem codes satisfy

k + r + j − i ≤ n− i− j − 2d′ + 2 ≤ n− i− j − 2(d− j) + 2,

it follows thatk + r ≤ n− 2d+ 2 holds.

When the subsystem codes are over a prime alphabet, this boundholds for all codes

over that alphabet. In the more general case where the code isnot linear, numerical evidence

indicates that it is unlikely that the additive subsystem codes have a different bound. We
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have shown that a large class of impure codes already satisfythis bound. This prompts the

following conjecture.

Conjecture VI.6. Any [[n, k, r, d]]q Clifford subsystem code satisfiesk + r ≤ n− 2d+ 2.

B. Comparing Subsystem Codes with Stabilizer Codes

In this section, we compare stabilizer codes with subsystemcodes. We first need to es-

tablish the criteria for the comparison, since subsystem codes cannot be universally better

than stabilizer codes. For example, it is known that a subsystem code can be converted to

a stabilizer code [100, 120]. See also Lemma 10 in [6] for a simple proof to convert an

[[n, k, r, d]]q code to an[[n, k, d]]q code. This implies that no[[n, k, r, d]]q subsystem code

can beat an optimal[[n, k, d′]]q stabilizer code in terms of minimum distance, asd′ ≥ d.

One of the attractive features of subsystem codes is a potential reduction of the number of

syndrome measurements, and we use this criterion as the basis for our comparison.

First, we must highlight a subtle point on the required number of syndrome bits for an

Fq-linear [n, k, d]q code. A complete decoder, will requiren− k syndrome bits. Complete

decoders are also optimal decoders. A bounded distance decoder on the other hand can

potentially decode with fewer syndrome bits. Bounded distance decoders typically decode

up to ⌊(d− 1)/2⌋. However, to the best of our knowledge, except for the lookuptable

decoding method, all bounded distance decoders also requiren− k syndrome bits. As the

complexity of decoding using a lookup table increases exponentially in n − k it is highly

impractical for long lengths. We therefore assume that for practical purposes, that we need

n− k syndrome bits.

Similarly, for anFq-linear [[n, k, r, d]]q subsystem code, a complete decoder will re-

quiren−k−r syndrome measurements, as is shown in E. We are not aware of any quantum

code, stabilizer or subsystem, for which there exists a bounded distance decoder that uses
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less thann − k − r syndrome measurements to perform bounded distance decoding. The

work by Poulin [120] prompts the following question: Given an optimal[[k+2d−2, k, d]]q

MDS stabilizer code, is it possible to find an[[n, k, r, d]]q subsystem code that uses fewer

syndrome measurements?

There exist numerous known examples of subsystem codes thatimprove upon nonop-

timal stabilizer codes. The fact that the stabilizer code isassumed to be optimal makes this

question interesting. The Singleton boundk + r ≤ n− 2d+ 2 of anFq-linear[[n, k, r, d]]q

subsystem code implies that the numbern− k − r of syndrome measurements is bounded

byn−k− r ≥ 2d− 2; thus, for fixed minimum distanced, there exists a trade off between

the dimensionk and the differencen− r between length and number of gauge qudits.

Corollary VI.7. Under complete decoding anFq-linear [[n, k, r, d ≥ 2]]q Clifford subsys-

tem code cannot use fewer syndrome measurements than anFq-linear [[k + 2d− 2, k, d]]q

stabilizer code.

Proof. Seeking a contradiction, we assume that there exists an[[n, k, r, d]]q subsystem code

that requires fewer syndrome measurements that the optimal[[k + 2d − 2, k, d]]q MDS

stabilizer code. In other words, the number of syndrome measurement yield the inequality

k+2d− 2− k > n− k− r, which is equivalent tok+ r > n− 2d+2, but this contradicts

the Singleton bound.

Poulin [120] showed by exhaustive computer search that there does not exist an[[5, 1, r >

0, 3]]2 subsystem code. The above result confirms his computer search and shows fur-

ther that not even allowing longer lengths and more gauge qudits can help in reducing the

number of syndrome measurements. In fact, we conjecture that corollary VI.7 holds for

bounded distance decoders also.

We wish to caution the reader that gains in error recovery cannot be quantified purely

by the number of syndrome measurements. In practice, more complex measures such as
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the simplicity of the decoding algorithm or the resulting threshold in fault-tolerant quantum

computing are more relevant. The drawback is that the comparison of large classes of codes

becomes unwieldy when such complex criteria are used.

C. Subsystem Codes on a Lattice

Bacon gave the first family of subsystem codes generalizing the ideas of Shor’s[[9, 1, 3]]2

code [18]. Recently, he and Casaccino gave another construction which generalizes this

further by considering a pair of classical codes [19]. We show that this method is a special

case of Theorem V.13. Since this construction is not limitedto binary codes and our proofs

remain essentially the same, we will immediately discuss a generalization to nonbinary

alphabets.

Theorem VI.8. For i ∈ {1, 2}, let Ci ⊆ F
ni
q be Fq-linear codes with the parameters

[ni, ki, di]q. Then there exists a Clifford subsystem code with the parameters

[[n1n2, k1k2, (n1 − k1)(n2 − k2),min{d1, d2}]]q

that is pure todp = min{d⊥1 , d⊥2 }, whered⊥i denotes the minimum distance ofC⊥
i .

Proof. Let C be the classical linear code given byC = (Fn1
q ⊗ C⊥

2 ) × (C⊥
1 ⊗ F

n2
q ). Then

dimC = n1(n2 − k2) + n2(n1 − k1) andswt(C \ {0}) ≥ min{d⊥1 , d⊥2 }. The symplectic

dual ofC is given by

C⊥s = (C⊥
1 ⊗ F

n2
q )⊥ × (Fn1

q ⊗ C⊥
2 )⊥

= (C1 ⊗ F
n2
q ) × (Fn1

q ⊗ C2).
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We havedimC⊥s = k1n2 + n1k2. The codeD = C ∩ C⊥s is given by

D =
(
(Fn1

q ⊗ C⊥
2 ) × (C⊥

1 ⊗ F
n2
q )
)
∩
(
(C1 ⊗ F

n2
q ) × (Fn1

q ⊗ C2)
)

=
(
(Fn1

q ⊗ C⊥
2 ) ∩ (C1 ⊗ F

n2
q )
)
×
(
(C⊥

1 ⊗ F
n2
q ) ∩ (Fn1

q ⊗ C2)
)

= (C1 ⊗ C⊥
2 ) × (C⊥

1 ⊗ C2),

anddimD = k1(n2−k2)+k2(n1−k1). It follows thatdimC−dimD = 2(n1−k1)(n2−k2)

anddimC⊥s − dimD = 2k1k2. Using corollary V.13, we can get a subsystem code with

the parameters

[[n1n2, k1k2, (n1 − k1)(n2 − k2), d = swt(D⊥s \ C)]]q

that is pure todp = min{d⊥1 , d⊥2 }. It remains to show thatd = min{d1, d2}.

SinceD = (C1 ⊗ C⊥
2 ) × (C⊥

1 ⊗ C2), we have

D⊥s = (C⊥
1 ⊗ C2)

⊥ × (C1 ⊗ C⊥
2 )⊥

=
(
(C1 ⊗ F

n2
q ) + (Fn1

q ⊗ C⊥
2 )
)
×
(
(Fn1

q ⊗ C2) + (C⊥
1 ⊗ F

n2
q )
)
.

In the last equality, we used the fact that vectorsu1 ⊗ u2 andv1 ⊗ v2 are orthogonal if and

only if u1 ⊥ v1 or u2 ⊥ v2.

For i ∈ {1, 2}, letGi andHi respectively denote the generator and parity check matrix

of the codeCi. Without loss of generality, we may assume that these matrices are in

standard form

Hi =

[

Ini−ki
Pi

]

andGi =

[

−P t
i Iki

]

,

whereP t
i is the transpose ofPi. LetHc

i =

[

0 Iki

]

. Using these notations, the generator
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matrices ofC andD⊥s can be written as

GC =






In1 ⊗H2 0

0 H1 ⊗ In2




 and GD⊥s =












G1 ⊗Hc
2 0

In1 ⊗H2 0

0 Hc
1 ⊗G2

0 H1 ⊗ In2












.

It follows that the minimum distanced is given by

swt(D⊥s \ C) = min







wt






〈

G1 ⊗Hc
2

In1 ⊗H2

〉

\
〈

In1 ⊗H2

〉




 ,

wt






〈

Hc
1 ⊗G2

H1 ⊗ In2

〉

\
〈

H1 ⊗ In2

〉












.

Let us compute

wt






〈

Hc
1 ⊗G2

H1 ⊗ In2

〉

\
〈

H1 ⊗ In2

〉




 .

If minimum weight codeword is present inD⊥s \ C, it must be expressed as linear combi-

nation of at least one row from[Hc
1 ⊗G2] otherwise the codeword is entirely inC. Recall

thatH1 = [ In1−k1 P1 ] andHc
1 = [ 0 Ik1

]. LettingP1 = (pij), we can write






Hc
1 ⊗G2

H1 ⊗ In2




 =


























0 0 . . . 0 G2 0

0 0 . . . 0 0 G2 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 . . . . . . G2

In2 0 . . . 0 p11In2 . . . . . . p1k1In2

0 In2 . . . . . . p21In2 . . . . . . p2k1In2

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . In2 p(n1−k1)1In2 . . . . . . p(n1−k1)k1In2


























.
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Now observe that any row below the line in the above matrix canhas a weight of only one

in each of the lastk1 blocks of sizen2. And any linear combination of them involving less

thand2 and at least one generator from the rows above must have a weight ≥ d2. If on the

other hand there are more thand2 rows involved, then the firstn2(n1 − k1) columns will

have a weight≥ d2. Thus in either case the weight of an element that involves a generator

from [Hc
1 ⊗G2] must have a weight≥ d2. On the other hand, the minimum weight of the

span of[Hc
1 ⊗G2] is wt(C2) = d2, from which we can conclude that

wt






〈

Hc
1 ⊗G2

H1 ⊗ In2

〉

\
〈

H1 ⊗ In2

〉




 = d2.

Because of the symmetry in the code we can argue that

wt






〈

G1 ⊗Hc
2

In1 ⊗H2

〉

\
〈

In1 ⊗H2

〉




 = d1

and consequentlyd = min{d1, d2}, which proves the theorem.

1. Bacon-Shor Codes

Bacon [18] proposed one of the first families of subsystem codes based on square lattices.

A trivial modification using rectangular lattices instead of square ones gives the following

codes, see also [19]. The relevance of these codes will be seen later in Section D. Using

the same notation as in Theorem VI.8, letGi = [1, . . . , 1]1×i andHi be the matrix defined
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as

Hi =















1 1

1 1

.. .

1 1

1 1















i−1×i

andC, the additive code generated by the following matrix.

G =






In1 ⊗Hn2 0

0 Hn1 ⊗ In2




 .

Observe thatGi generates an[i, 1, i]q code with distancei. By Theorem VI.8,Gn1 andGn2

will give us the following family of codes

Corollary VI.9. There exist[[n1n2, 1, (n1 − 1)(n2 − 1),min{n1, n2}]]q Clifford subsystem

codes.

D. Subsystem Codes and Packing

We investigate whether subsystem codes lead to better codesbecause of the decomposition

of the code space. Since the early days of quantum codes, it has recognized that the degen-

eracy of quantum codes could lead to a more efficient quantum code and allow for a much

more compact packing of the subspaces in the Hilbert space. But so far it has not been

shown for stabilizer codes. We can derive similar bound for subsystem codes. [6] showed

the following theorem for pure subsystem codes.

Theorem VI.10. A pure((n,K,R, d))q Clifford subsystem code satisfies

⌊(d−1)/2⌋
∑

j=0

(
n

j

)

(q2 − 1)j ≤ qn/KR. (6.2)
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It is natural to ask if impure subsystem codes also satisfy this bound. We show that

they do not by giving an explicit counterexample. This counter example comes from the

codes proposed by [18]. Recall the Bacon-Shor codes are[[n2, 1, (n − 1)2, n]]2 subsystem

codes. The[[9, 1, 4, 3]]2 is an interesting code. We can check that it satisfies the Singleton

bound for subsystem codes as

k + r = 1 + 4 = n− 2d+ 2 = 9 − 6 + 2.

So it is an optimal code. More interestingly, substituting the parameters of the[[9, 1, 4, 3]]2

Bacon-Shor code in the above inequality we get

1∑

j=0

(
9

j

)

3j = 28 > 29−5 = 16.

Therefore the[[9, 1, 4, 3]]2 Bacon-Shor code beats the quantum Hamming bound for the

pure subsystem codes proving the following result.

Theorem VI.11. There exist impure((n,K,R, d))q Clifford subsystem codes that do not

satisfy
⌊(d−1)/2⌋
∑

j=0

(
n

j

)

(q2 − 1)j ≤ qn/KR.

An obvious question is why impure codes can potentially packmore efficiently than

the pure codes. Let us understand this by looking at the[[9, 1, 4, 3]]2 code a little more

closely. This code encodes information into a subspace,Q wheredimQ = 2k+r = 25.

As it is a subsystem codeQ can be decomposed asQ = A ⊗ B, with dimA = 2k = 2

anddimB = 2r = 24. In a pure single error correcting code all single errors must take

the code space into orthogonal subspaces. In an impure code this is not required two or

more distinct errors can take the code space to the same orthogonal space. In the Bacon-

Shor code a phase flip error on any of the first three qubits willtake the code space to

same orthogonal subspace and because of this we cannot distinguish between these errors.
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However, it is not a problem because we can restore the code space with respect toA even

though we cannot restoreB. Thus instead of requiring9 orthogonal subspaces as in a pure

code, we only require 3 orthogonal subspaces to correct for any single phase flip error.

Considering the bit flip errors and the combinations we need only 9 orthogonal subspaces.

Thus with the original code space this means we need to pack ten 25-dimensional subspaces

in the2n = 29 dimensional ambient space, which is achievable as10 · 25 < 29.

More generally, in a sense degeneracy allows distinct errors to share the same orthog-

onal subspace and thus pack more efficiently. It must be pointed out though that this better

packing is attained at the cost ofr gauge qudits compared to a stabilizer code.

In fact there exists another code among the Bacon-Shor codes which also beats the

Hamming bound for the subsystem codes. This is the[[25, 1, 16, 5]]2 code. The family of

codes given in corollary VI.9 provides us with[[12, 1, 6, 3]]2, yet another example of a code

that beats the quantum Hamming bound like the[[9, 1, 4, 3]]2 code. We can check that

1∑

j=0

(
12

j

)

3j = 37 > 212−1−6 = 25 = 32.

But note that unlike[[9, 1, 4, 3]]2 this code does not meet the Singleton bound for pure

subsystem codes as6 + 1 < 12 − 6 + 2. Naturally we can ask if there is a systematic

method to construct codes that beat the quantum Hamming bound. Ashikhmin and Litsyn

showed that all binary stabilizer codes – pure or impure – of sufficiently large length obey

the quantum Hamming bound, ruling out the possibility that impure codes of large length

can outperform pure codes with respect to sphere packing. Incontrast we show that impure

subsystem codes do not obey the quantum Hamming bound for pure subsystem codes,

not even asymptotically. We show that there exist arbitrarily long Bacon-Shor codes that

violate the quantum Hamming bound.

Degenerate quantum error-correcting codes pose many interesting questions in the
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theory of quantum error-correction. The early discovery ofthe phenomenon of degeneracy

raised the question whether degenerate quantum codes can perform better than nondegen-

erate quantum codes. One of the unresolved questions to thisday in the theory of stabilizer

codes is whether the bounds that hold for nondegenerate codes also hold for degenerate

codes. Some bounds like the quantum Singleton bound do. But for others, like quantum

Hamming bound, an answer remains elusive. Partial answers were provided by Gottes-

man [61] for single error-correcting and double error-correcting codes. Ashikhmin and

Litsyn [12] showed that asymptotically degenerate codes cannot beat the quantum Ham-

ming bound.This leaves only a small range of degenerate binary stabilizer codes of mod-

erate length that can potentially beat the quantum Hamming bound, but we conjecture that

no such examples can be found.

We show that the situation is markedly different in the case of subsystem codes (also

known as operator quantum error-correcting codes [94, 99, 100]). The quantum Hamming

for pure subsystem codes was derived in [6]. We have already shown that there exist

impure subsystem codes that beat the quantum Hamming bound for pure subsystem codes.

Now we address the question whether impure subsystem codes asymptotically obey the

quantum Hamming bound, as in the case of binary stabilizer codes. We show that there

exist impure subsystem codes of arbitrarily large length that beat the quantum Hamming

(or sphere-packing) bound.

For the binary cases the quantum Hamming bound for subsystemcodes states that a

pure[[n, k, r, d]] subsystem code satisfies

2n−k−r ≥
⌊(d−1)/2⌋
∑

j=0

(
n

j

)

3j. (6.3)

We claim that all the Bacon-Shor codes [18,19] of odd lengthsi.e., [[(2t+1)2, 1, 4t2, 2t+1]]
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violate the quantum Hamming bound, namely that

2(2t+1)2−1−4t2 = 24t 6≥
t∑

j=0

(
(2t+ 1)2

j

)

3j

holds for all positive integerst. It suffices to show that

24t <

(
(2t+ 1)2

t

)

3t (6.4)

holds for all positive integerst. Since0 < 4(t− 1/6)2 + 8/9 = 4t2 − 4t/3 + 1, we have

16t

3
< 4t2 + 1 + 4t

for all t > 0. Multiplying both sides by3/t and raising to thetth power yields

24t <
3t(2t+ 1)2t

tt
,

which proves the inequality (6.4), as
(

n
k

)
≥ ntk−t. Thus, we can conclude that the Bacon-

Shor codes of odd length do not obey the quantum Hamming bound.

Theorem VI.12. Asymptotically, the quantum Hamming bound (6.3) does not hold for

impure subsystem codes.

It is remarkable that there exist such families of subsystemcodes that can pack more

densely than any pure subsystem code. Further examples of such densely packing sub-

system codes can be found among the family with parameters[[n1n2, 1, (n1 − 1)(n2 −

1),min{n1, n2}]], which contains for instance a[[12, 1, 6, 3]] subsystem code.

E. Conclusions

We have proved that anyFq-linear [[n, k, r, d]]q Clifford subsystem code obeys the Single-

ton boundk + r ≤ n − 2d + 2. Furthermore, we have shown earlier that pure Clifford

subsystem codes satisfy this bound as well. Our results provide much evidence for the
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conjecture that the Singleton bound holds for arbitrary subsystem codes. Proving this for

all additive subsystem codes will be an interesting problem.

Pure Clifford subsystem codes obey the Hamming (or sphere packing) bound. In

this chapter, we have shown the amazing fact that there existimpure Clifford subsystem

codes beating the Hamming bound. This is the first illustration of a case when impure

codes pack more efficiently than their pure counterparts. One example of a code beating

the Hamming bound is provided by the[[9, 1, 4, 3]]2 Bacon-Shor code; this remarkable

example also illustrates the following noteworthy facts:

a) The[[9, 1, 4, 3]]2 code requires9 − 1 − 4 = 4 syndrome measurements just like the

perfect[[5, 1, 3]]2 code.

b) Sincek + r ≤ n − 2d + 2 for all prime alphabet codes,[[9, 1, 4, 3]]2 code is also an

optimal subsystem code. This is interesting because the underlying classical codes are

not MDS. In MDS stabilizer codes, the underlying classical codes are required to be

MDS codes.

c) The Bacon-Shor code is also impure. So unlike MDS stabilizer codes which must be

pure, MDS subsystem codes can be impure.

d) The maximal length of aq-ary stabilizer MDS code is2q2 − 2, see Theorem IV.25

whereas for subsystem codes it is larger as the[[9, 1, 4, 3]]2 code indicates.

The implication of b)–d) is that optimal subsystem codes canbe derived from suboptimal

classical codes, unlike stabilizer codes. It would be an interesting problem to determine

what are the conditions under which a non-MDS classical codewill lead to an MDS sub-

system code.
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CHAPTER VII

ENCODING AND DECODING OF SUBSYSTEM CODES

A. Introduction

In this chapter we investigate encoding and to some extent decoding of subsystem codes.

Our main result is that encoding of a subsystem code can be reduced to the encoding of

a related stabilizer code, thereby making use of the previous theory on encoding stabilizer

codes [42,61,73]. We shall prove this in two steps. First, weshall show that Clifford codes

can be encoded using the same methods used for stabilizer codes. Secondly, we shall show

how these methods can be adapted to encode Clifford subsystemcodes. Since subsys-

tem codes subsume stabilizer codes, noiseless subsystems and decoherence free subspaces,

these results imply that we can essentially use the same methods to encode all these codes.

In fact, while the exact details were not provided it was suggested in [121] that encoding

of subsystem codes can be achieved by Clifford unitaries. Ourtreatment is comprehensive

and gives proofs for all the claims.

Subsystem codes can potentially lead to simpler error recovery schemes. In a similar

vein, they can also simplify the encoding process, though perhaps not as dramatically∗.

These simplifications have not been investigated thoroughly, neither have the gains in en-

coding been fully characterized. Essentially, these gainsare in two forms. In the encoded

state there need not exist a one to one correspondence between the gauge qubits and the

physical qubits. However, prior to encoding such a correspondence exists. We can exploit

this identification between the virtual qubits and the physical qubits before encoding to

tolerate errors on the gauge qubits, a fact which was recognized in [121]. Alternatively,

∗In general, decoding is usually of greater complexity than encoding and for this reason
it is often neglected in comparison. This parallels the classical case where also the decoding
is studied much more extensively than encoding.
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we can optimize the encoding circuits by eliminating certain encoding operations. The en-

coding operations that are saved correspond to the encoded operators on the gauge qubits.

This is a slightly subtle point and will be elaborated at length subsequently. We argue that

optimizing the encoding circuit for the latter is much more beneficial than simply allowing

for random initialization of gauge qubits.

Notation. The inner product of two characters of a groupN , sayχ andθ, is defined

as(χ, θ)N = 1/|N |∑n∈N χ(n)θ(n−1). We shall denote the center of a groupN byZ(N).

Given a subgroupN ≤ E, we shall denote the centralizer ofN in E by CE(N). Given a

matrixA, we consider another matrixB obtained fromA by column permutationπ as being

equivalent and denote this byB =π A. Often we shall represent the basis of a group by the

rows of a matrix. In this case we will regard another basis obtained by any row operations

or permutations as being equivalent and by a slight abuse of notation continue to denote

B =π A. The commutator of two operatorsA,B is defined as[A,B] = AB−BA. This can

potentially conflict with our definition of commutator in Chapter V as[x, y] = xyx−1y−1.

However, in this chapter we will not have occasion to use thisdefinition.

B. Encoding Stabilizer Codes – A Review

Recall the Pauli matrix operators†,

X =






0 1

1 0




 , Z =






1 0

0 −1




 , Y =






0 −1

1 0




 = XZ. (7.1)

Let Pn be the Pauli group onn qubits. An element elemente = (−1)cXa1Zb1 ⊗ · · · ⊗

XanZbn in Pn, can be mapped toF2n
2 by τ : Pn → F

2n
2 as

τ(e) = (a1, . . . , an|b1, . . . , bn). (7.2)

†We consider the real version of the Pauli group in this chapter.
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Given an[[n, k, d]]2 code with stabilizerS, we can associate toS (and therefore the

code), a matrix inF(n−k)×2n
2 obtained by taking the image of any set of its generators under

the mappingτ . We shall refer to this matrix as thestabilizer matrix. We shall refer to

the stabilizer as well as any set of generators as the stabilizer. Additionally, because of

the mappingτ , we shall refer to the stabilizer matrix or any matrix obtained from it by

row reduction or column permutations also as the stabilizer. The stabilizer matrix can be

put in the so-called “standard form”, see [42, 61]. This formalso allows us to compute

the encoded operators for the stabilizer code. Recall that the encoded operators allow us

to perform computations on the encoded data without having to decode the data and then

compute.

Definition VII.1 (Encoded operators). Given a[[n, k, d]]2 stabilizer code with stabilizerS,

letX i,Zi for 1 ≤ i ≤ k be a set of2k linearly independent operators inCPn(S)\SZ(Pn).

The operatorsX i, Zi are said to be encoded operators for the code if they satisfy the

following requirements.

i) [X i, Xj] = 0

ii) [Zi, Zj] = 0

iii) [X i, Zj] = 2δijX iZi

The operatorsX i andZj are referred to as encoded or logicalX andZ operators

on the ith andjth logical qubits, respectively. The choice of which of the2k linearly

independent elements ofCPn(S) \ SZ(Pn) we choose to call encodedX operators andZ

operators is arbitrary; as long as the generators satisfy the conditions above, any choice

is valid. Different choices lead to different sets of encoded logical states; alternatively, a

different orthonormal basis for the codespace.

Lemma VII.2 (Standard form of stabilizer matrix [42, 61]). Up to a permutationπ, the
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stabilizer matrix of an[[n, k, d]]2 code can be put in the following form,

S =π






Is′ A1 A2 B 0 C

0 0 0 D In−k−s′ E




 , (7.3)

while the associated encoded operators can be derived as





Z

X




 =π






0 0 0 At
2 0 Ik

0 Et Ik Ct 0 0




 . (7.4)

Remark VII.3. Encoding using essentially same ideas is possible even if the identity ma-

trices Is′ in the stabilizer matrix orIk in the encoded operators are replaced by upper

triangular matrices.

The standard form of the stabilizer matrix prompts us to distinguish between two types

of the generators for the stabilizer as they affect the encoding in different ways (although it

can be shown that they are of equivalent complexity).

Definition VII.4 (Primary generators). A generatorGi = (a1, . . . , an|b1, . . . , bn) with at

least one nonzeroai is called a primary generator.

In other words, primary generators contain at least oneX orY operator on some qubit.

The primary generators determine to a large extent the complexity of the encoding circuit

along with the encodedX operators. The operatorsX are also called seed generators and

they also figure in the encoding circuit. The encodedZ operators do not.

Definition VII.5 (Secondary generators). A generator of the form(0, . . . , 0|b1, . . . , bn) is

called secondary generator.

In the standard form encoding, the complexity of the encodedX operators is deter-

mined by the secondary generators. Therefore they indirectly contribute‡ to the complexity

‡Indirect because the submatrixE, figures in both the secondary generators, see equa-
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of encoding. We mentioned earlier that different choices ofthe encoded operators

amounts to choosing different orthonormal basis for the codespace. However, the choice in

Lemma VII.2 is particularly suitable for encoding. We can represent our input in the form

|0〉⊗n−k |α1 . . . αk〉 which allows us to make the identification that|0〉⊗n

is mapped to
∣
∣0
〉
,

the logical all zero code word. This state is precisely the state stabilized by the stabilizer

generators and logicalZ operators, (which in Lemma VII.2 can be seen to be consisting

of only Z operators). Given the stabilizer matrix in the standard form and the encoded

operators as in Lemma VII.2, the encoding circuit is given asfollows.

Lemma VII.6 (Standard form encoding stabilizer codes [42, 61]). Let S be the stabilizer

matrix of an[[n, k, d]] stabilizer code in the standard formi.e., as in equation (7.3). Let

Gi denote theith primary generator ofS andXj denote thejth encodedX operator as in

equation (7.4). Then these operators are in the form§

Gi = (0, 0, . . . , 1, ai+1, . . . , an|b1, . . . , bs′ , 0, . . . , 0, bn−k+1, . . . , bn),

Xj = (0, . . . , 0, cs′+1, . . . , cn−k0, . . . , 0, 1 = cn−k+j, 0, . . . , 0|d1, . . . , ds′ , 0, . . . , 0).

To encode the stabilizer code we implement the following circuits corresponding to each of

the primary generators and the encoded operators. The generatorGi is implemented after

Gi+1. The encoded operators precede the primary generators in their implementation but

tion (7.3), and also the encodedX operators, see equation (7.4).
§We allow some freedom in the primary generators, in that instead of Is′ in equa-

tion (7.3), we allow it be an upper triangular matrix also.
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we can implementXj before or afterXj+1.

|0〉1 . . .

...
. . .

|0〉i . . . H •

|0〉i+1
. . . Xai+1Zbi+1

...
. . . ...

|0〉s′ . . . Xas′Zbs′

|0〉s′+1 Xcs′+1 . . . Xas′+1Zbs′+1

...
...

. . . ...

|0〉n−k Xcn−k . . . Xan−kZbn−k

|ψ1〉 . . . Xan−k+1Zbn−k+1

...
. . . ...

|ψj〉 • . . . Xan−k+jZbn−k+j

...
. . . ...

_ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _

|ψk〉 . . . XanZbn

︸ ︷︷ ︸Xj Gi

To encode a stabilizer code, we first put the stabilizer matrix in the standard form,

then implement the seed generators i.e., the encodedX operators, followed by the primary

generatorsi = s′ to i = 1 as per Lemma VII.6. The complexity of encoding theith primary

generator is at mostn− i two qubit gates and oneH gate. The complexity of encoding an

encoded operator is at mostn−k−s′ CNOT gates. This means the complexity of standard

form encoding is upper bounded by(2n− 1−k− s′)s′/2 two qubit gates ands′ Hadamard

gates;O(n(n − k)) gates. A minor modification ( [66]) must be incorporated whenY is

defined asY = [ 0 −i
i 0 ] as the following example illustrates. See [67] for more examples.
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Example VII.7. Consider the[[5, 1, 3]] code with following stabilizer, withY = [ 0 −i
i 0 ].

S =












X I X X X

I X Z X Y

Z I Z Z Z

I Z Y Z X












The associated stabilizer matrix is given by

S =












1 0 1 1 1 0 0 0 0 0

0 1 0 1 1 0 0 1 0 1

0 0 0 0 0 1 0 1 1 1

0 0 1 0 1 0 1 1 1 0












Writing S in standard form we get

S =












1 0 0 1 0 1 1 0 0 1

0 1 0 1 1 0 0 1 0 1

0 0 1 0 1 1 1 0 0 1

0 0 0 0 0 1 0 1 1 1












=












Y Z I X Z

I X Z X Y

Z Z X I Y

Z I Z Z Z












=












G1

G2

G3

G4












.

The encoded operators for this code are





Z

X




 =






0 0 0 0 0 0 1 1 0 1

0 0 0 1 1 1 1 1 0 0




 .

In addition to following the procedure described in Lemma VII.6, one must throw in aP

gate, for everyY on the diagonal of the stabilizer (in standard form). The encoding circuit
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is given by

|0〉 H • P

|0〉 H • Z

|0〉 H • Z

|0〉 X X X

|ψ〉 • Y Y Z

X

_ _ _�
�
�
�

�
�
�
�

_ _ _

G3

︸ ︷︷ ︸

G2

︸ ︷︷ ︸

G1

︸ ︷︷ ︸

C. Encoding Clifford Codes

In this section, we show that a Clifford code can be encoded using its stabilizer and there-

fore the methods used for encoding stabilizer codes are applicable. So that this chapter

can be read independently of Chapter V, we briefly recapitulate some facts about Clifford

subsystem codes. LetE be an abstract error groupi.e., it is a finite group with a faithful

irreducible unitary representationρ of degree|E : Z(E)|1/2. Denote byφ, the irreducible

character afforded byρ. LetN be a normal subgroup ofE. Further, letχ be an irreducible

characterχ of N such that(φN , χ)N > 0. Then the Clifford code defined by(E, ρ,N, χ)

is the image of the orthogonal projector

P =
χ(1)

|N |
∑

n∈N

χ(n−1)ρ(n). (7.5)

Under certain conditions we can construct a subsystem code from the Clifford code,

in particular whenE is the extraspecialp-group, the Clifford codeC has a tensor product

decomposition¶ asC = A⊗B, whereB is an irreducibleCN -module,A is an irreducible

CL-module andL = CE(N). In this case we can encode information only into the sub-

systemA, while the co-subsystemB provides additional protection. When encoded this

way we sayC is a Clifford subsystem code. The normal subgroupN consists of all errors

¶Strictly speaking the equality should be replaced by an isomorphism.
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in E that act trivially onA. It is also called the gauge group of the subsystem code. Our

main goal will be to show how to encode into the subsystemA. Therefore, our interest will

center on the projectors for the Clifford code and the subsystem code and not so much on

the parameters of the codes themselves.

An alternate projector for a Clifford code with data(E, ρ,N, χ) can be defined in

terms ofZ(N), the center ofN . The proof of this can be found in [88, Theorem 6]. This

projector is given as

P ′ =
1

|Z(N)|
∑

n∈Z(N)

ϕ(n−1)ρ(n), (7.6)

whereϕ is an irreducible character ofZ(N), that satisfies(χ ↓ Z(N))(x) = χ(1)ϕ(x). In

this caseQ can be thought of as a stabilizer code in the sense of [35] i.e.

ρ(m) |ψ〉 = ϕ(m) |ψ〉 for anym in Z(N). (7.7)

In addition to the assumption that the error group is an extraspecialp-group we also assume

thatZ(E) ≤ N . The inclusion of the center ofE does not change the code but helps in

analysis. Thus we have the following lemma.

Lemma VII.8. Let(E, ρ,N, χ) be the data of a Clifford code andϕ an irreducible charac-

ter ofZ(N), the center ofN , satisfying(χ ↓ Z(N))(x) = χ(1)ϕ(x). If E is an extraspe-

cial p-group, then for alln in Z(N), ϕ(n) ∈ {ζk | ζ = ej2πk/p, 0 ≤ k < p}. Further, if

Z(E) ≤ N , then for anyn ∈ Z(N), we haveϕ(n−1)ρ(n) ∈ ρ(Z(N)).

Proof. First we note that the irreducibilty ofρ implies that for anyz in Z(E) we have

ρ(z) = ωI for someω ∈ C by Schur’s lemma. The assumption thatE is an extraspecial

p-group forcesω ∈ {ζk | 0 ≤ k < p} whereζ = ej2π/p. This is because|Z(E)| = p for

extraspecialp-groups. Secondly, we observe thatϕ is an irreducible additive character of

Z(N) (an abelian subgroup of an extraspecialp-group) which implies that we must have
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ϕ(n) = ζ l for some0 ≤ l < p, [103]. Together these observations imply that we can

assumeϕ(n−1)I = ζ lI = ρ(z) for some0 ≤ l ≤ p andz ∈ Z(E). SinceZ(E) ≤ N , it

follows thatZ(E) ≤ Z(N) andϕ(n−1)ρ(n) is in ρ(Z(N)).

Our goal is to use the stabilizer ofQ for encoding and as a first step we will show that

it can be computed fromZ(N). The usefulness of such a projector is that it obviates the

need to know the characterϕ. Let S ≤ ρ(E) be the stabilizer ofQ. Then we claim thatS

is given as

S = {ϕ(n−1)ρ(n) | n ∈ Z(N)}.

We claim thatS can be used for encoding the associated Clifford code. Then wewill show

how the encoding circuit of the Clifford code is to be modified so that we can encode the

subsystem code derived from the Clifford code.

Theorem VII.9. LetQ be a Clifford code with the data(E, ρ,N, χ) andϕ a constituent of

the restriction ofχ toZ = Z(N). LetE be an extraspecialp-group andZ(E) ≤ N and

S =
{
ϕ(n−1)ρ(n) | n ∈ Z(N)

}
and P =

1

|S|
∑

s∈S

s. (7.8)

ThenS is the stabilizer ofQ and ImP = Q.

Proof. We will show this in a series of steps.

1) First we will show thatS ≤ ρ(Z). By Lemma VII.8 we know thatϕ(n−1)ρ(n) is

in ρ(Z), thereforeS ⊆ ρ(Z). For any two elementsn1, n2 ∈ Z, we haves1 =

ϕ(n−1
1 )ρ(n1), s2 = ϕ(n−1

2 )ρ(n2) ∈ S and we can easily verify thats−1
1 s2 = ϕ(n1)ρ(n

−1
1 )

ϕ(n−1
2 )ρ(n2) = ϕ(n−1

2 n1)ρ(n
−1
1 n2) ∈ S, asρ(n−1

1 n2) is in ρ(Z). HenceS ≤ ρ(Z).

2) Now we show thatS fixesQ. Let s ∈ S and|ψ〉 ∈ Q. Thens = ϕ(n−1)ρ(n) for some

n ∈ Z. The action ofs on |ψ〉 is given ass |ψ〉 = ϕ(n−1)ρ(n) |ψ〉 = ϕ(n−1)ϕ(n) |ψ〉 =

|ψ〉, in other wordsS fixesQ.
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3) Next, we show that|S| = |Z|/|Z(E)|. If two elementsn1 andn2 in Z map to the same

element inS, thenϕ(n−1
1 )ρ(n1) = ϕ(n−1

2 )ρ(n2), that isρ(n2) = ϕ(n−1
1 n2)ρ(n1). From

Lemma VII.8 it follows thatρ(n2) = ζ lρ(n1) for some0 ≤ l < p. Sinceρ(Z(E)) =

{ej2πk/pI | 0 ≤ k < p}, we must haven2 = zn1 for somez ∈ Z(E). Thus,|S| =

|Z|/|Z(E)|.

4) LetT be a traversal ofZ(E) in Z, then every element inZ can be written aszt for some

z ∈ Z(E) andt ∈ T . From step 3) we can see that all elements in a coset ofZ(E) in Z

map to the same element inS, therefore,

S = {ϕ(t−1)ρ(t) | t ∈ T}.

Recall that a projector forQ is given by

P ′ =
1

|Z|
∑

n∈Z

ϕ(n−1)ρ(n),

=
1

|Z|
∑

t∈T

∑

z∈Z(E)

ϕ((zt)−1)ρ(zt).

But we know from step 3) that ifz ∈ Z(E), thenϕ(n−1)ρ(n) = ϕ((zn)−1)ρ(zn). So

we can simplifyP ′ as

P ′ =
1

|Z|
∑

t∈T

∑

z∈Z(E)

ϕ(t−1)ρ(t),

=
|Z(E)|
|Z|

∑

t∈T

ϕ(t−1)ρ(t)

=
1

|S|
∑

s∈S

s = P.

Thus the projector defined byS is precisely the same asP ′ andP is also a projector for

Q.

From step 3) it is clear thatS ∩ Z(E) = {1} and by Lemma III.10,S is a closed subgroup
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of E. By Lemma III.9, ImP = Q is a stabilizer code. HenceS is the stabilizer ofQ.

Corollary VII.10. LetQ be an[[n, k, r, d]] Clifford subsystem code andS its stabilizer.

Let

P =
1

|S|
∑

s∈S

s. (7.9)

ThenP is a projector for the subsystem code ı.e.Q = Im P .

Proof. By [90, Theorem 4], we know that an[[n, k, r, d]] Clifford subsystem code is de-

rived from a Clifford code with data(E, ρ,N, χ). This construction assumes thatE is an

extraspecialp-group andZ(E) ≤ N E E. Since as subspaces the Clifford code and sub-

system code are identical, by Theorem VII.9 we conclude thatthe projector defined from

the stabilizer of the subspace is also a projector for the subsystem code.

Theorem VII.9 shows that any Clifford code can be encoded using its stabilizer. As

to a subsystem code, while Corollary VII.10 shows that there exists a projector that can

be defined from its stabilizer, it is not clear how to use it so that one respects the subsys-

tem structure during encoding. More precisely, how do we usethe projector defined in

Corollary VII.10 to encode into the information carrying subsystemA and not the gauge

subsystem. This will be the focus of the next section.

D. Encoding Subsystem Codes

For ease of presentation and clarity henceforth we will focus on binary codes, though the

results can be extended to nonbinary alphabet using methodssimilar to stabilizer codes,

see [73]. Theorem VII.9 shows that in order to encode Cliffordcodes we can use a projector

derived from the underlying stabilizer to project onto the codespace. But in case of Clifford

subsystem codes we know thatQ = A⊗B and the information is to be actually encoded in
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A. Hence, it is not sufficient to merely project ontoQ, we must also show that we encode

intoA when we encode using the projector defined in Corollary VII.10.

Let us clarify what we mean by encoding the information inA and not inB. Suppose

thatP maps|0〉 to |ψ〉A ⊗ |0〉B and|1〉 to |ψ〉A ⊗ |1〉B. Then the information is actually

encoded intoB. Since the gauge group acts nontrivially onB, this particular encoding does

not protect information. Of course a subsystem code should not encode (only) intoB, but

we have to show that the projector defined byP in equation 7.9 does not do that.

We need the following result on the structure of the gauge group and the encoded

operators of a subsystem code. Poulin [120] proved a useful result on the structure of the

gauge group and the encoded operators of the subsystem code.But first a little notation. A

basis forPn isXi, Zi, 1 ≤ i ≤ n, whereXi andZi are given as

Xi =
n⊗

j=1

Xδij and Zi =
n⊗

j=1

Zδij .

They satisfy the relations[Xi, Xj] = 0 = [Zi, Zj]; [Xi, Zj] = 2δijXiZj. However, we can

choose other generating sets{xi, zi | 1 ≤ i ≤ n} for Pn that satisfy similar commutation

relationsi.e., [xi, xj] = 0 = [zi, zj] and [xi, zj] = 2δijxizj. These operators may act

nontrivially on many qubits. Given an[[n, k, r, d]] code we could view the state space of the

physicaln qubits as that ofn virtual qubits on which thesexi, zi act asX andZ operators.

In particulark of these virtual qubits are the logical qubits andr of them gauge qubits. The

usefulness of these operators is that we can specify the structure of the stabilizer, the gauge

group and the encoded operators. The following lemma makes this specification precise.

Lemma VII.11. LetQ be an[[n, k, r, d]]2 subsystem code with gauge group,G and sta-

bilizer S. Denote the encoded operators byX i, Z i, 1 ≤ i ≤ k, where[X i, Xj] = 0 =

[Zi, Zj]; [X i, Zj] = 2δijX iZj. Then there exist operators{xi, zi ∈ Pn | 1 ≤ i ≤ n} such

that
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i) S = 〈z1, z2, . . . , zs〉,

ii) G = 〈S, zs+1, xs+1, . . . , zs+r, xs+r, Z(Pn)〉,

iii) CPn(S) = 〈G,X1, Z1, . . . , . . . , Xk, Zk〉,

iv) X i = xs+r+i andZi = zs+r+i, 1 ≤ i ≤ k,

where[zi, zj] = [xi, xj] = 0; [xi, zi] = 2δijxizi. Further,S defines an[[n, k + r]] stabilizer

code encoding into the same space as the subsystem code and its encoded operators are

given by{xs+1, zs+1, . . . , xs+r, zs+r, X1, Z1, . . . , Xk, Zk}

Proof. See [120] for proof on the structure of the groups. LetQ = A⊗B, thendimA = 2k

anddimB = 2r. From Corollary VII.10 we know that the projector defined byS also

projects ontoQ (which is2k+r-dimensional) and therefore it defines an[[n, k+r]] stabilizer

code. From the definition of the operatorsxi, zi andX i, Z i and the fact that

CPn(S) = 〈S, xs+1, zs+1, . . . , xs+r, zs+rX1, Z1, . . . , Xk, Zk, Z(Pn)〉

we see thatxi, zi, for s + 1 ≤ i ≤ r act like encoded operators on the gauge qubits,

whileX i, Z i continue to be the encoded operators on the information qubits. Together they

exhaust the set of2(k + r) encoded operators of the[[n, k + r]] stabilizer code.

We observe that the logical operators of the subsystem code are also logical operators

for the underlying stabilizer code. so if the stabilizer code and the subsystem code have

the same logical all zero state, then Lemma VII.11 suggests that in order to encode the

subsystem code, we can treat it as stabilizer code and use thesame techniques to encode.

If the logical all zero code word was the same for both the codes, then because they have

the same logical operators we can encode any given input to the same logical state in both

cases. Using linearity we could then encode any arbitrary state. Encoding the all zero state

seems to be the key. Now, even in the case of the stabilizer codes, there is no unique all

zero logical state. There are many possible choices. The reader can refer to the appendix
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for examples. Given the encoded operators it is easy to definethe logical all zero state as

the following definition shows:

Definition VII.12. A logical all zero state of an[[n, k, r, d]] subsystem code is any state

that is fixed by its stabilizer andk logicalZ operators.

This definition is valid in case of stabilizer codes also. This definition might appear a

little circular. After all, we seem to have assumed the definition of the logicalZ operators.

Actually, this is a legitimate definition because, depending on the choice of our logical op-

erators, we can have many choices of the logical all zero state. In case of the subsystem

codes, this definition implies that the logical all zero state is fixed byn− r operators, con-

sequently it can be any state in that2r-dimensional subspace. If we consider the[[n, k+ r]]

stabilizer code that is associated to the subsystem code, then its logical zero is additionally

fixed byr more operators. So any logical zero of the stabilizer code isalso a logical all zero

state of the subsystem code. It follows that if we know how to encode the stabilizer code’s

logical all zero, we know how to encode the subsystem code. Weare interested in more

than merely encoding the subsystem code of course. We also want to leverage the gauge

qubits to simplify and/or make the encoding process more robust. Perhaps a few examples

will clarify the ideas.
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1. Illustrative Examples

Consider the following[[4, 1, 1, 2]]2 subsystem code, with the gauge groupG, stabilizerS

and encoded operators given byL.

S =






X X X X

Z Z Z Z




 =






z1

z2




 ,

G =












X X X X

Z Z Z Z

I X I X

I I Z Z












=












z1

z2

x3

z3












.

The encoded operators of this code are given by

L =






I I X X

I Z I Z




 =






X1

Z1




 .

The associated[[4, 2]] stabilizer code has the following encoded operators.

T =












I X I X

I I X X

I I Z Z

I Z I Z












=












x3

X1

z3

Z1












.

It will be observed that the encodedX operators of[[4, 2]] are in a form convenient for

encoding. We treat the[[4, 1, 1, 2]] code as[[4, 2]] code and encode it as in Figure 1. The

gauge qubits are permitted to be in any state.

Assumingg = a |0〉 + b |1〉, the logical states up to a normalizing constant are

∣
∣0
〉

= a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉),
∣
∣1
〉

= a(|0011〉 + |1100〉) + b(|0110〉 + |1001〉).
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|0〉 H •
|g〉 • ��������

|ψ〉 • ��������

|0〉 �������� �������� ��������

Fig. 1. Encoding the[[4, 1, 1, 2]] code (Gauge qubits can be in any state)

It can be easily verified thatS stabilizes the above state and while the gauge group acts

in a nontrivial fashion, the resulting states are still orthogonal. In this example we have

encoded as if we were encoding the[[4, 2]] code. Prior to encoding the gauge qubits can be

identified with physical qubits. After the encoding howeversuch a correspondence between

the physical qubits and gauge qubits does not necessarily exist in a nontrivial subsystem

code. Since the encoded operators of the subsystem code are also encoded operators for

the stabilizer code, we are guaranteed that the informationis not encoded into the gauge

subsystem.

As the state of gauge qubits is of no consequence, we can initialize them to any state.

Alternatively, if we initialized them to zero, we can simplify the circuit as shown in Fig-

ure 2.

|0〉 H •
|0〉 ��������

|ψ〉 • ��������

|0〉 �������� ��������

Fig. 2. Encoding the[[4, 1, 1, 2]] code (Gauge qubits initialized to zero)
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The encoded states in this case are (again, the normalization factors are ignored)

∣
∣0
〉

= |0000〉 + |1111〉 ,
∣
∣1
〉

= |0011〉 + |1100〉 .

The benefit with respect to the previous version is that at thecost of initializing the gauge

qubits, we have been able to get rid of all the encoded operators associated with them.

This seems to be a better option than randomly initializing the gauge qubits. Because it is

certainly easier to prepare them in a known state like|0〉, rather than implement a series of

controlled gates depending on the encoded operators associated with those qubits.

At this point we might ask if it is possible to get both the benefits of random initial-

ization of the gauge qubits as well as avoid implementing theencoded operators associated

with them. To answer this question let us look a little more closely at the previous two

encoding circuits for the subsystem codes. We can see from them that it will not work in

general. Let us see why. If we initialize the gauge qubit to|1〉 instead of|0〉 in the encoding

given in Figure 2, then the encoded state is

∣
∣0
〉

= |0100〉 + |1011〉 ,
∣
∣1
〉

= |0111〉 + |1000〉 .

Both these states are not stabilized byS, indicating that these states are not in the code

space.

In general, an encoding circuit where it is simultaneously possible initialize the gauge

qubits to random states and also avoid the encoded operatorsis likely to be having more

complex primary generators. For instance, let us consider the following [[4, 1, 1, 2]] sub-
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system code:

S =






X Z Z X

Z X X Z




 =






z1

z2




 ,

G =












X Z Z X

Z X X Z

Z I X I

I Z Z I












=












z1

z2

x3

z3












.

The encoded operators of this code are given by

L =






I Z I X

Z I I Z




 =






X1

Z1




 .

The associated[[4, 2]] stabilizer code has the following encoded operators.

T =












Z I X I

I Z I X

I Z Z I

Z I I Z












=












x3

X1

z3

Z1












.

The encoding circuit for this code is given in Figure 3.

|0〉 H •
|0〉 H • Z

|g〉 X Z

|ψ〉 Z X

Fig. 3. Encoding[[4, 1, 1, 2]] code (Encoded operators for the gauge qubits are trivial and

gauge qubits can be initialized to random states)

In this particular case, the gauge qubits (as well as the information qubits) do not
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require any additional encoding circuitry. In this case we can initialize the gauge qubits to

any state we want. But, the reader would have observed we did not altogether end up with

a simpler circuit. The primary generators are two as againstone and the complexity of the

encoded operators has been shifted to them. So even though wewere able to get rid of the

encoded operator on the gauge qubit and also get the benefit ofinitializing it to a random

state, this is still more complex compared to either of encoders in Figures 1 and 2. Our

contention is that it is better to initialize the gague qubits to zero state and not implement

the encoded operators associated to them.

2. Encoding Subsystem Codes by Standard Form Method

The previous two examples might lead us to conclude that we can take the stabilizer of

the given subsystem code and form the encoded operators by reducing the stablizer to its

standard form and encode as if it were a stabilizer code. However, there are certain subtle

points to be kept in mind. When we form the encoded operators weget k + r encoded

operators; we cannot from the stabilizer alone conclude which are the encoded operators

on the information qubits and which on the gauge qubits. Put differently, these operators

belong to the spaceCPn(S) \ S = GCPn(G) \ SZ(Pn). It is not guaranteed that they

are entirely inCPn(G) i.e., we cannot say if they act as encoded operators on the logical

qubits. This implies that in general all these operators actnontrivially on bothA andB.

Consequently, we must be careful in choosing the encoded operators and the gauge group

must be taken into account. We give two slightly different methods for encoding subsystem

codes. The difference between the two methods is subtle. Bothmethods require the gauge

qubits to be initialized to zero. In the second method (see Algorithm 2) however, we can

avoid the encoded operators associated to them. Under certain circumstances, we can also

permit initialization to random states.

Correctness of Algorithm 1. Since stabilizerSA ≥ S, the space stabilized bySA is a
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Algorithm 1 ENCODING SUBSYSTEM CODES– STANDARD FORM METHOD 1

Require: Gauge group,G = 〈S, xs+1, zs+1, . . . , xs+r, zs+r,±I〉 and stabilizer,S =

〈z1, . . . , zn−k−r〉 of the[[n, k, r, d]] subsystem code.

Ensure: [xi, xj] = [zi, zj] = 0; [xi, zj] = 2xiziδij

1: FormSA = 〈S, zs+1, . . . , zs+r〉, wheres = n− k − r

2: Compute the standard form ofSA as per Lemma VII.2

SA =π






Is′ A1 A2 B 0 C

0 0 0 D Is+r−s′ E






3: Compute the encoded operatorsX1, . . . , Xk as





Z

X




 =π






0 0 0 At
2 0 Ik

0 Et Ik Ct 0 0






4: Encode using the primary generators ofSA and X i as encoded operators, see

Lemma VII.6; all the other(n− k) qubits are initialized to|0〉.

subspace of theA ⊗ B, the subspace stabilized byS. As |SA|/|S| = 2r, the dimension of

the subspace stabilized bySA is 2k+r/2r = 2k. Additionally, the generatorszs+1, . . . , zs+r

act trivially onA. The encoded operators as computed in the algorithm act nontrivially on

A and give2k orthogonal states; thus we are assured that the informationis encoded into

A.

Let us encode the[[9, 1, 4, 3]] Bacon-Shor code using the method just proposed. The
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stabilizer and the gauge group are given by

S =












X X X I I I X X X

I I I X X X X X X

Z I Z Z I Z Z I Z

I Z Z I Z Z I Z Z












,

G =







































X X X I I I X X X

I I I X X X X X X

Z I Z Z I Z Z I Z

I Z Z I Z Z I Z Z

I X I I X I I I I

I I X I I X I I I

I I I I I X I I X

X X X X X X I I I

Z I Z I I I I I I

I I I Z I Z I I I

I Z Z I I I I I I

I I I I Z Z I I I







































=









S

Gx

Gz









.
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Let us formSA by augmentingS with Gz. Then

SA =


























X X X I I I X X X

I I I X X X X X X

Z I Z Z I Z Z I Z

I Z Z I Z Z I Z Z

Z I Z I I I I I I

I I I Z I Z I I I

I Z Z I I I I I I

I I I I Z Z I I I


























.

The encodedX andZ operators areX7X8X9 andZ1Z4Z7, respectively. After puttingSA

in the standard form, and encoder for this code is given in Figure 4.

|0〉 H •
|0〉 ��������

|0〉 ��������

|0〉 H •
|0〉 ��������

|0〉 ��������

|0〉 �������� �������� ��������

|0〉 �������� �������� ��������

|ψ〉 • �������� ��������

Fig. 4. Encoder for the[[9, 1, 4, 3]] code. This is also an encoder for the[[9, 1, 3]] code.

If on the other hand we had formedSA by addingGx instead, thenSA would have
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been

SA =

























X I I I I I X I I

I X I I X I I X I

I I X I I X I I X

I I I X I I X I I

I I I I X I I X I

I I I I I X I I X

Z I Z Z I Z Z I Z

I Z Z I Z Z I Z Z

























.

The encoded operators remain the same. In this case the encoding circuit is given in Fig-

ure 5. This circuit has fewer CNOT gates, though the number of single qubit gates has

|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 H •
|0〉 �������� �������� ��������

|0〉 �������� �������� ��������

|ψ〉 • �������� ��������

Fig. 5. Encoder for the[[9, 1, 4, 3]] code with fewer CNOT gates.

increased. Since we expect the implementation of the CNOT gate to be more complex than

theH gate, this might be a better choice. In any case, this demonstrates that by exploiting

the gauge qubits one can find ways to reduce the complexity of encoding circuit.

The gauge qubits provide a great degree of freedom in encoding. We consider the
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following variant on standard form encoding, where we try tominimize the the number

of primary generators. This is not guaranteed to reduce the overall complexity, since that

is determined by both the primary generators and the encodedoperators. Fewer primary

generators might usually imply encoded operators with larger complexity. In fact we have

already seen, that in the case of[[9, 1, 4, 3]]2 code that a larger number of primary generators

does not necessarily imply higher complexity. However, it has the potential for lower

complexity.

Algorithm 2 ENCODING SUBSYSTEM CODES– STANDARD FORM METHOD 2

Require: Gauge group,G = 〈S, xs+1, zs+1, . . . , xs+r, zs+r,±I〉 and stabilizer,S =

〈z1, . . . , zn−k−r〉 of the[[n, k, r, d]] subsystem code.

Ensure: [xi, xj] = [zi, zj] = 0; [xi, zj] = 2xiziδij

1: Compute the standard form ofS as per Lemma VII.2

S =π1






Is′ A1 A2 B 0 C

0 0 0 D Is−s′ E






2: FormSA = 〈S, zs+1, . . . , zs+r〉, wheres = n− k − r

3: Compute the standard form ofSA as per Lemma VII.2

SA =π2






Il F1 F2 G1 0 G2

0 0 0 D′ Is+r−l H






4: Compute the encoded operatorsX1, . . . , Xk as





Z

X




 =π2






0 0 0 F t
2 0 Ik

0 H t Ik Gt
2 0 0






5: Encode using the primary generators ofS andX i as encoded operators, accounting for

π1 andπ2, see Lemma VII.6; all the other(n− k) qubits are initialized to|0〉.
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The main difference in the second method comes in lines 1 and 5. We encode using

the primary generators of the stabilizer of the subsystem code instead of the augmented

stabilizer. The encoded operators however remain the same as before.

Correctness of Algorithm 2. The correctness of this method lies in the observation

we made earlier (see discussion following Definition VII.12), that any logical all zero state

of the stabilizer code is also a logical all zero of the subsystem code and the fact that both

share the encoded operators on the encoded qubits.

The encoded operators are given modulo the elements of the gauge group as in Algo-

rithm 1, which implies that the their action might be nontrivial on the gauge qubits. The

benefit of the second method is whenS andSA have different number of primary genera-

tors. The following aspects of both the methods are worth highlighting.

1) The gauge qubits must be initialized to|0〉 in both methods.

2) In Algorithm 1, the number of primary generators ofS andSA can be different leading

to a potential increase in complexity compared to encoding with S.

3) In both methods, the encoded operators as computed are moduloSA. Consequently, the

encoded operators might act nontrivially on the gauge qubits.

3. Encoding Subsystem Codes by Conjugation Method

The other benefit of subsystem codes is the random initialization of the gauge qubits. We

now give circuits where we can encode the subsystem codes to realize this benefit. But

instead of using the standard form method we will use the conjugation method proposed by

Grasslet al., [73] for stabilizer codes. After briefly reviewing this method we shall show

how it can be modified for encoding subsystem codes.

The conjugation encoding method can be understood as follows. It is based on the idea

that the Clifford group acts transitively on the Pauli error group. It is possible to transform

the stabilizer matrix of any[[n, k, d]] stabilizer code into the matrix(00|In−k0). For a code
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with this stabilizer matrix the encoding is trivial. We simply map |ψ〉 to |0〉⊗n−k |ψ〉. The

associated encodedX andZ operators are given by(0Ik|00) and (00|0Ik) respectively.

Here we give a sketch of the method for the binary case, the reader can refer to [73] for

details. Assume that the stabilizer matrix is given byS. Then we shall transform it into

(00|In−k0) using the following sequence of operations.

(X|Z) 7→ (In−k0|0) 7→ (00|In−k0). (7.10)

This can be accomplished through the action ofH = [ 1 1
1 −1 ], P = [ 1 0

0 i ] and CNOT gates on

the Pauli group under conjugation. The action ofH on theith qubit of(a1, . . . , an|b1, . . . , bn)

transforms it as

(a1, . . . , an|b1, . . . , bn)
Hi7→ (a1, . . . ,bi, . . . , an|b1, . . . , ai, . . . , bn). (7.11)

These modified entries have been highlighted for convenience. The phase gateP on theith

qubit transforms(a1, . . . , an|b1, . . . , bn) as

(a1, . . . , an|b1, . . . , bn)
Pi7→ (a1, . . . , ai, . . . , an|b1, . . . , ai + bi, . . . , bn). (7.12)

We denote the CNOT gate with the control on theith qubit and the target on thejth qubit

by CNOTi,j. The action of the CNOTi,j gate on(a1, . . . , an|b1, . . . , bn) is to transform it to

(a1, . . . , aj−1, aj + ai, aj+1 . . . , an|b1, . . . , bi−1,bi + bj, bi+1, . . . , an). (7.13)

Note that thejth entry is changed in theX part while theith entry is changed in theZ part.

For example, consider

(1, 0, 0, 1, 0|0, 1, 1, 0, 0)
CNOT1,4

7→ (1, 0, 0,0, 0|0, 1, 1, 0, 0),

(1, 0, 0, 1, 0|0, 1, 1, 1, 0)
CNOT1,4

7→ (1, 0, 0,0, 0|1, 1, 1, 1, 0).
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Based on the action of these three gates we have the following lemmas to transform error

operators.

Lemma VII.13. Assume that we have a error operator of the form(a1, . . . , an|b1, . . . , bn).

Then we apply the following gates on theith qubit to transform the stabilizer, transforming

(ai, bi) to (α, β) as per the following table.

(ai, bi) Gate (α, β)

(0,0) I (0,0)

(0,1) H (1,0)

(1,0) I (1,0)

(1,1) P (1,0)

Let x̄ denote1 + x, then the transformation to(a1, . . . , an|0, . . . , 0) is achieved by

n⊗

i=1

H āibiP aibi .

For example, consider the following generator(1, 0, 0, 1, 0|0, 1, 1, 1, 0). This can be

transformed to(1, 1, 1, 1, 0|0, 0, 0, 0, 0) by the application ofI ⊗H ⊗H ⊗ P ⊗ I.

Lemma VII.14. Let e be an error operator of the form(a1, . . . , ai = 1, . . . , an|0, . . . , 0).

Thene can be transformed to(0, . . . , 0, ai = 1, 0, . . . , 0|0, . . . , 0) by

n∏

j=1,i6=j

[
CNOTi,j

]aj .

As an example(1, 1, 1, 1, 0|0, 0, 0, 0, 0) can be transformed to(0, 1, 0, 0, 0|0, 0, 0, 0, 0)

by

CNOT2,1 · CNOT2,3 · CNOT2,4.

The first step involves making theZ portion of the stabilizer matrix all zeros. This is

achieved by single qubit operations consisting ofH andP performed on each row one by

one.



159

Note that we must also modify the other rows of the stabilizermatrix according to the

action of the gates applied.

Once we have a row of stabilizer matrix in the form(a|0), wherea is nonozero we can

transform it to the form(0, . . . , 0, ai = 1, 0, . . . , 0|0) by using CNOT gates. Thus it is easy

to transform(X|Z) to (In−k0|0) using CNOT,P andH gates. The final transformation

to (0|In−k0) is achieved by usingH gates on the firstn − k qubits. At this point the

stabilizer matrix has been transformed to a trivial stabilizer matrix which stabilizes the

state|0〉⊗n−k |ψ〉. The encoded operators are(0Ik|0) and(0|0Ik). Let T be the sequence

of gates applied to transform the stabilizer matrix to the trivial stabilizer matrix. ThenT

applied in the reverse order to|0〉⊗n−k |ψ〉 gives the encoding circuit for the stabilizer code.

Now we shall use this method to encode the subsystem codes. The main difference is

that instead of considering just the stabilizer we need to consider the entire gauge group.

Let the gauge group beG = 〈S,GZ , GX〉, whereGZ = 〈zs+1, . . . , zs+r〉, andGX =

〈xs+1, . . . , xs+r〉. The idea is to transform the gauge group as follows.

G =









S

GZ

GX









7→









0 0 0 Is 0 0

0 0 0 0 Ir 0

0 Ir 0 0 0 0









. (7.14)

At this point the gauge group has been transformed to a group with trivial stabilizer and

trivial encoded operators for the gauge qubits and the encoded qubits. The sequence of

gates required to achieve this transformation in the reverse order will encode the state

|0〉⊗s |φ〉 |ψ〉. The state|φ〉 corresponds to the gauge qubits and it can be initialized to

any state, while|ψ〉 corresponds to the input.
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Algorithm 3 ENCODING SUBSYSTEM CODES– CONJUGATION METHOD

Require: Gauge group,G = 〈S,GZ , GX〉, whereGZ = 〈zs+1, . . . , zs+r〉, andGX =

〈xs+1, . . . , xs+r〉 and stabilizer,S = 〈z1, . . . , zn−k−r〉 of the [[n, k, r, d]] subsystem

code.

Ensure: [xi, xj] = [zi, zj] = 0; [xi, zj] = 2xiziδij

1: Assume thatG is the following form

G =









S

GZ

GX









2: for all i = 1 to s+ r do

3: Transformzi to z′i = (a1, . . . , an|0, . . . , 0) using Lemma VII.13

4: Transformz′i to (0, . . . , ai = 1, . . . , 0|0) using Lemma VII.14

5: Perform Gaussian elimination on columni for rowsj > i

6: end for

7: ApplyH gate on each qubiti = 1 to i = s+ r

8: for all i = s+ 1 to s+ r do

9: Transformxi to x′i = (a1, . . . , an|0, . . . , 0) using Lemma VII.13

10: Transformx′i to (0, . . . , ai = 1, . . . , 0|0) using Lemma VII.14

11: Perform Gaussian elimination on columni for rowsj > i

12: end for

In the above algorithm, we assume that whenever a row is transformed according to

Lemma VII.13 or VII.14, all the other rows are also transformed according to the transfor-

mation applied.

Correctness of Algorithm 3. The correctness of the algorithm is straightforward. As

G has full rank ofn− k + r, for each row ofG, we will be able to find some nonzero pair



161

(a, b) so that the the transformation in lines 2–6 can be achieved. WhenS andGZ are in

the form(0|Is+r0), the rows inGX are in the form

[

0 A B 0 0 D

]

.

The zero columns ofGX are consequence of the requirement to satsify the commutation

relations with (transformed)S andGZ . For instance, The firstn−k−r are all zero because

they must commute with(0|Is0), the elements of the transformed stabilizer. The submatrix

A must have rankr, otherwise at this point one of the rows ofGX commutes with all the

rows ofGZ and the condition that we have there arer hyperbolic pairs is violated. It is

possible therefore to transformA to the form(0Ir0|0). It cannot be any other form because

then we would not have ther hyperbolic pairs. The applied transformations transformG to

the form given in equation (7.14). The encoded operators forthis gauge group are clearly

(0Ik|0) and(0|0Ik). We conclude with a simple example that illustrates the process.

Example VII.15. To compare with the standard form method, we consider the[[4, 1, 1, 2]]

code again. Let the gauge groupG, stabilizerS and encoded operators given byL.

S =






X X X X

Z Z Z Z




 =






z1

z2




 ,

G =












X X X X

Z Z Z Z

I I Z Z

I X I X












=












z1

z2

x3

z3












.
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In matrix formG can be written as

G =












1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 1 0 1 0 0 0 0












.

The transformations consisting ofT1 = CNOT1,2CNOT1,3CNOT1,4 followed byT2 = I ⊗

H ⊗H ⊗H mapsG to

T17→












1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1

0 1 0 1 0 0 0 0












T27→












1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 1 0 1












.

Now transform the second row usingT3 = CNOT2,3CNOT2,4. Then transform usingT4 =

CNOT4,3. We get

T37→












1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1












T47→












1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1












.

ApplyingT5 = H ⊗H ⊗ I ⊗H gives us

T57→












0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1












.

We could have chosenT5 = H ⊗ H ⊗ I ⊗ I, since the effect ofH on the fourth qubit is
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trivial. The complete circuit is given in Figure 6.

|0〉 H •

|0〉 H • H ��������

|ψ〉 �������� �������� H ��������

|g〉 H • �������� H ��������

Fig. 6. Encoding[[4, 1, 1, 2]] code by conjugation method

By switching the target and control qubits of the CNOT gates inT3 and T4 we can

show that this circuit is equivalent to the circuit shown in Figure 7.

|0〉 H •

|0〉 �������� �������� ��������

|ψ〉 H • • ��������

|g〉 �������� • ��������

_ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _

Fig. 7. Encoding[[4, 1, 1, 2]] code by conjugation method

It is instructive to compare this circuit with the one given earlier in Figure 1. The

dotted lines show the additional circuitry. Since the gaugequbit can be initialized to any

state, we can initialize|g〉 to |0〉, which then gives the following logical states for the code.

∣
∣0
〉

= |0000〉 + |1111〉 + |0011〉 + |1100〉 , (7.15)

∣
∣1
〉

= |0000〉 + |1111〉 − |0011〉 − |1100〉 . (7.16)

It will be observed thatIIXX acts as the logicalZ operator whileIZIZ acts as the

logicalX operator. We could flip these logical operators by absorbingtheH gate into|ψ〉.
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If we additionally initialize|g〉 to |0〉, we will see that the two CNOT gates on the second

qubit can be removed. The simplified circuit is shown in Figure8.

|0〉 H •

|0〉 ��������

|ψ〉 • ��������

|0〉 �������� ��������

Fig. 8. Encoding[[4, 1, 1, 2]] code by conjugation method – optimized

This is precisely, the same circuit that we had arrived earlier in Figure 2 using the

standard form method.

The preceding example provides additional evidence in the direction that it is better to

initialize the gauge qubits to zero and avoid the encoding operators on them.

E. Syndrome Measurement for NonbinaryFq-linear Codes

Decoding of nonbinary quantum codes has not been studied as well as binary codes. En-

coding ofFq-linear nonbinary quantum codes was investigated in [73]. The authors suggest

that the decoder is simply the encoder running backwards. Inthis context one important

task is that measuring the syndrome so that appropriate error correction maybe performed.

While binary codes have been well studied in this regard similar efforts have not been

invested in the nonbinary case. Here we give a method that allows us to measure the syn-

drome forFq-linear nonbinary quantum codes. We also show that anFq-linear[[n, k, r, d]]q

code requiresn − k − r syndrome measurements. But first we need the definition of the

following nonbinary gates, see [73].

i) X(a) |x〉 = |x+ a〉

ii) Z(b) |x〉 = ωtrq/p(bx) |x〉, ω = ej2π/p



165

iii) M(c) |x〉 = |cx〉 , c ∈ F
×
q

iv) F |x〉 = 1√
q

∑

y∈Fq
ωtrq/p(xy) |y〉

v) A |x〉 |y〉 = |x〉 |x+ y〉

Graphically, these gates are represented below.

X(a) Z(b) c F •
��������

i) ii) iii) iv) v)

Consider the following circuit.

|a〉 • |a〉
|y〉 g−1

x
�������� gx |y + agx〉

Alternatively, this circuit maps|a〉 |x〉 to |a〉X(agx) |y〉. Observe that this circuit effectively

appliesX(agx) on the second qudit. Using the linearity, we can analyze the following

circuit.

|0〉 F •

|y〉 g−1
x

�������� gx

∑

α∈Fq
|α〉 |y + αgx〉

The above circuit maps|0〉 |y〉 to
∑

α∈Fq
|α〉X(αgx) |y〉. Using the fact thatFX(b)F † =

Z(b), we can show that the following circuit maps|b〉 |y〉 to |b〉Z(bgz) |y〉.

|b〉 • |b〉
|y〉 F † g−1

z
�������� gz F Z(bgz) |y〉

If we wanted to apply a general operatorX(agx)Z(agz) to the second qudit conditioned on

the first one, then we can combine the previous circuits as follows.

|a〉 • • |a〉
|y〉 F † g−1

z
�������� gz F g−1

x
�������� gx X(agx)Z(agz) |y〉
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The above implementation is not optimal in terms of gates, but it will suffice for our pur-

poses. Consider an[[n, k, r, d]]q code. LetE be an error inGn, (see 3.2). IfE is detectable,

thenE does not commute with some element(s) in the stabilizer of the code. Let

g = (gx|gz) = (0, . . . , 0, aj, . . . , an|0, . . . , 0, bj, . . . , bn) ∈ F
2n
q ,

where(aj, bj) 6= (0, 0), be a generator of the stabilizer. Then for all detectable errors

that do not commute with a multiple ofg, the following circuit gives a nonzero value on

measurement.

|0〉 F • • F †
NM






|x1〉 . . . . . . . . .

|xj〉 F † b−1
j

�������� bj F a−1
j

�������� aj

. . . . . . . . .

|xn〉 F † b−1
n

�������� bn F a−1
n

�������� an

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Note that whenever(ai, bi) = (0, 0), then we leave that qudit alone. Similarly ifai or bi

are zero, then we do not implement the corresponding portion. Let the input to the above

circuit beE |ψ〉, where|ψ〉 is an encoded state. It can be easily verified that the above

circuit maps the state|0〉E |ψ〉 to

∑

α∈Fq

F † |α〉X(αgx)Z(αgz)E |ψ〉 .

Let X(gx)Z(gz)E = ωtrq/p(t)EX(gx)Z(gz), whereX(gx)Z(gz) is corresponding matrix

representation ofg. By Lemma III.5. we haveX(αgx)Z(αgz)E = ωtrq/p(αt)EX(gx)Z(gz).
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Thus we can write

∑

α∈Fq

|α〉X(αgx)Z(αgz)E |ψ〉 =
∑

α∈Fq

|α〉ωtrq/p(αt)EX(αgx)Z(αgz) |ψ〉 ,

=




∑

α∈Fq

|α〉ωtrq/p(αt)



E |ψ〉 ,

where we have made use of the fact thatX(αgx)Z(αgz) |ψ〉 = |ψ〉 asX(αgx)Z(αgz) is in

the stabilizer. The final state is given by

∑

α∈Fq

F † |α〉X(αgx)Z(αgz)E |ψ〉 =
∑

α∈Fq

F † |α〉ωtrq/p(αt)E |ψ〉 ,

=
∑

α∈Fq

∑

β∈Fq

ω− trq/p(αβ) |β〉ωtrq/p(αt)E |ψ〉 ,

=
∑

β∈Fq

|β〉
∑

α∈Fq

ωtrq/p(αt−αβ)E |ψ〉 ,

=
∑

β∈Fq

|β〉
∑

α∈Fq

ωtrq/p(αt−αβ)E |ψ〉 ,

= |t〉E |ψ〉 ,

where the last equality follows from the property of the characters ofFq. Next we ob-

serve that the errorαE, whereα ∈ Fq gives |αt〉 on measurement. Strictly speaking we

refer to the preimage ofαE in Gn. Hence the syndrome qudit can takeq different values.

Since every detectable error does not commute with someFq-multiple of a stabilizer gen-

erator, we have the following lemma on the necessary and sufficient number of syndrome

measurements.

Lemma VII.16. Given anFq-linear [[n, k, r, d]]q Clifford subsystem code,n − k − r syn-

drome measurements are required for decoding it completely.

Proof. Let g be a generator of the stabilizer of the subsystem code. By Theorem V.10 and

Lemma VI.1, for every generatorg there exists at least one detectable error that does not

commute withg but commutes with all the other generators. This error can bedetected only
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by measuringg. Thus we need to measure all the generators of the stabilizer, equivalently

n− k − r syndrome measurements must be performed.

Every correctable error takes the code space into aqk+r-dimensional orthogonal sub-

space in theqn-dimensional ambient space. Each of these errors will give adistinct syn-

drome. This implies that we can haveqn−k−r distinct syndromes. Since each syndrome

measurement can haveq possible outcomes and there aren− k− r generators, these mea-

surements are sufficient for performing error correction.

This parallels the classical case where an[n, k, d]q code requiresn− k syndrome bits.

A subtle caveat must be issued to the reader. If we choose to perform bounded distance

decoding, then it maybe possible that the set of correctableerrors can be distinguished by

a smaller number of syndrome measurements. But even in the case of (classical) bounded

distance decoding it is often the case that we need to measureall the syndrome bits.

F. Conclusions

In this paper, we have demonstrated that the subsystem codescan be encoded using the

techniques used for stabilizer codes. In particular, we have considered two methods for en-

coding stabilizer codes – the standard form method and the conjugation method. While the

standard form method explored here required us to initialize the gauge qubits to zero, it ad-

mits two two variants and seems to have the potential for lower complexity; the exact gains

being determined by the actual codes under consideration. The conjugation method allows

us to initialize the gauge qubits to any state. The disadvantage seems to be the increased

complexity of encoding. It must be emphasized that the standard form method is equiv-

alent to the conjugation method and it is certainly possibleto use this method to encode

subsystem codes so that the gauge qubits can be initialized to arbitrary states. However, it

appears to be a little more cumbersome and for this reason we have not investigated this in
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this chapter. There is yet another method for encoding stabilizer codes based on the tele-

portation due to Knill. We expect that gauge qubits can be exploited even in this method to

reduce its complexity. It would be interesting to investigate fault tolerant encoding schemes

for subsystem codes and how gauge qubits can be used to improve fault tolerant thresholds.

Finally, we mention that it is still open how to leverage the subsystem coding in the one

way quantum computer model.

G. Appendix

The logical states of a stabilizer code. We assume that our basis input states are of the

form |0〉⊗n−k |α1 . . . αk〉, whereαi ∈ {0, 1}. Clearly, we have freedom in the choice of the

states into which each of these states are encoded to. Additionally, we have freedom in

the choice of the encoded operators though they are not entirely unrelated. Perhaps, this is

best illustrated through an example. Let us consider Shor’s[[9, 1, 3]]2 code. A choice of the

logical states for this code is

∣
∣0
〉

= (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉),
∣
∣1
〉

= (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉).

For this choice of the encoded states the logicalZ operator isX⊗9
and the logicalX

operator isZ⊗9
. On the other hand, let us see what happens if we choose the logical states

as follows

∣
∣0
〉

= |000000000〉 + |000111111〉 + |111000111〉 + |111111000〉 ,
∣
∣1
〉

= |111111111〉 + |111000000〉 + |000111000〉 + |000000111〉 .

In this case the encodedX operator isX⊗9
and encodedZ operator isZ⊗9

; they are flipped

with respect to the previous choice!
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So it becomes apparent that the assignment of the encoded operators as logicalZ or

X is flexible and it seems to depend on the choice of the logical states. But are we free

to choose any basis of the codespace as the encoded logical states. We can show that this

cannot be. For instance let us choose the logical zero state to be a superposition of the

previous two assignments. Then we have

∣
∣0
〉

= (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)

+ |000000000〉 + |000111111〉 + |111000111〉

+ |111111000〉 .

The possibilities for the logicalZ operator‖ are±X⊗9
, ±Z⊗9

, ±X⊗9
Z⊗9

. But for

none of these operators we haveZ
∣
∣0
〉

=
∣
∣0
〉
. As these are the only possible encoded

operators (modulo the stabilizer which acts trivially in any case), this is not a valid choice

for
∣
∣0
〉
. This raises the question what are all the possible valid choices for the logical states.

Let us look at yet another choice of logical states.

∣
∣0
〉

= (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉),
∣
∣1
〉

= (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉).

In this case, the encodedZ andX operators are−X⊗9
andZ⊗9

respectively. This gives

us a clue as to the possible logical all zero states for a givenstabilizer code. The all zero

logical state is the state in the code space that is fixed by thestabilizer and the logicalZ

operators. Assuming thatS is the stabilizer andCPn(S), its centralizer, we can can pick

anyk independent commuting generators inCPn(S) \ SZ(Pn) asZ operators. Hence, we

have the following lemma.

Lemma VII.17. LetS be the stabilizer of an[[n, k, d]]2 stabilizer code. IfL ≤ CPn(S) is

‖Including scalar multiples ofi will not change our conclusions.
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any subgroup generated byn commuting generators such thatL ∩ Z(Pn) = I andS ≤ L,

then the state stabilized byL is a valid logical all zero state for the stabilizer code defined

byS.

The implicit choice of
∣
∣0
〉

made in Lemma VII.2 (by picking the encodedZ operators,

at least the representatives) is convenient in the sense it allows us to speak of a canonical
∣
∣0
〉

without ambiguity. This
∣
∣0
〉

can be conveniently identified with the stateP |0〉⊗n

, where it

will be recalled thatP is the projector for the stabilizer code given as

P =
1

|S|
∑

M∈S

M. (7.17)
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CHAPTER VIII

QUANTUM LDPC CODES FOR ASYMMETRIC CHANNELS∗

Recently, quantum error-correcting codes were proposed that capitalize on the fact that

many physical error models lead to a significant asymmetry between the probabilities for

bit flip and phase flip errors. An example for a channel which exhibits such asymmetry

is the combined amplitude damping and dephasing channel, where the probabilities of bit

flips and phase flips can be related to relaxation and dephasing time, respectively. We give

systematic constructions of asymmetric quantum stabilizer codes that exploit this asymme-

try. Our approach is based on a CSS construction that combinesBCH and finite geometry

LDPC codes.

In many quantum mechanical systems the mechanisms for the occurrence of bit flip

and phase flip errors are quite different. In a recent paper Ioffe and Mézard [77] postulated

that quantum error-correction should take into account this asymmetry. The main argument

given in [77] is that most of the known quantum computing devices have relaxation times

(T1) that are around1−2 orders of magnitude larger than the corresponding dephasing times

(T2). In general, relaxation leads to both bit flip and phase flip errors, whereas dephasing

only leads to phase flip errors. This large asymmetry betweenT1 andT2 suggests that

bit flip errors occur less frequently than phase flip errors and a well designed quantum

code would exploit this asymmetry of errors to provide better performance. In fact, this

observation and its consequences for quantum error correction, especially quantum fault

tolerance, have prompted investigations from various other researchers [2,52,148].

Our goal will be as in [77] to construct asymmetric quantum codes for quantum mem-

∗ c©2008 IEEE. Reprinted from, P. K. Sarvepalli, M. Rötteler, and A. Klappenecker.
“Asymmetric quantum LDPC codes”. InProc. 2008 IEEE Intl. Symposium on Inform.
Theory, Toronto, Canada, Jul 6–11, pp. , 2008.
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ories and at present we do not consider the issue of fault tolerance. We first quantitatively

justify how noise processes, characterized in terms ofT1 andT2, lead to an asymmetry in

the bit flip and phase flip errors. As a concrete illustration of this we consider the amplitude

damping and dephasing channel. For this channel we can compute the probabilities of bit

flip and phase flips in closed form. In particular, by giving explicit expressions for the ratio

of these probabilities in terms of the ratioT1/T2, we show how the channel asymmetry

arises.

After providing the necessary background, we give two systematic constructions of

asymmetric quantum codes based on BCH and LDPC codes, as an alternative to the ran-

domized construction of [77].

A. Background

Recall that a quantum channel that maps a stateρ to

(1 − px − py − pz)ρ+ pxXρX + pyY ρY + pzZρZ, (8.1)

with I = [ 1 0
0 1 ], X = [ 0 1

1 0 ], Y = [ 0 −i
i 0 ], Z = [ 1 0

0 −1 ] is called aPauli channel. For a Pauli

channel, one can respectively determine the probabilitiespx, py, pz that an input qubit in

stateρ is subjected to a PauliX, Y , orZ error.

A combinedamplitude damping and dephasing channelE with relaxation timeT1 and

dephasing timeT2 that acts on a qubit with density matrixρ = (ρij)i,j∈{0,1} for a timet

yields the density matrix

E(ρ) =






1 − ρ11e
−t/T1 ρ01e

−t/T2

ρ10e
−t/T2 ρ11e

−t/T1




 .

This channel is interesting as it models common decoherenceprocesses fairly well. We

would like to determine the probabilitypx, py, andpz such that anX, Y , orZ error occurs
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in a combined amplitude damping and dephasing channel. However, it turns out that this

question is not well-posed, sinceE is not a Pauli channel, that is, it cannot be written in

the form (8.1). However, we can obtain a Pauli channelET by a technique called twirling

[45, 50]. In our case, the twirling consists of conjugating the channelE by Pauli matrices

and averaging over the results. The resulting channelET is called the Pauli-twirl ofE and

is explicitly given by

ET (ρ) =
1

4

∑

A∈{I,X,Y,Z}
A†E(AρA†)A.

Theorem VIII.1. Given a combined amplitude damping and dephasing channelE as

above, the associated Pauli-twirled channel is of the form

ET (ρ) = (1 − px − py − pz)ρ+ pxXρX + pyY ρY + pzZρZ,

wherepx = py = (1 − e−t/T1)/4 andpz = 1/2 − px − 1
2
e−t/T2 . In particular,

pz

px

= 1 + 2
1 − et/T1(1−T1/T2)

et/T1 − 1
.

If t≪ T1, then we can approximate this ratio as2T1/T2 − 1.

Proof. The Kraus operator decomposition [114] ofE is

E(ρ) =
2∑

k=0

AkρA
†
k, (8.2)

whereA0 =
[

1 0
0
√

1−λ−γ

]
;A1 =

[
0 0
0
√

λ

]
;A2 =

[
0
√

γ
0 0

]
, and

√
1 − γ − λ = e−t/T2, 1− γ =

e−t/T1. We can rewrite the Kraus operatorsAi as

A0 =
1 +

√
1 − λ− γ

2
I +

1 −√
1 − λ− γ

2
Z,

A1 =

√
λ

2
I −

√
λ

2
Z, A2 =

√
γ

2
X −

√
γ

2i
Y.
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RewritingE(ρ) in terms of Pauli matrices yields

E(ρ) =
2 − γ + 2

√
1 − λ− γ

4
ρ+

γ

4
XρX +

γ

4
Y ρY

+
2 − γ − 2

√
1 − λ− γ

4
ZρZ

− γ

4
IρZ − γ

4
ZρI +

γ

4i
XρY − γ

4i
Y ρX. (8.3)

It follows that the Pauli-twirl channelET is of the claimed form, see [45, Lemma 2]. Com-

puting the ratiopz/px we get

pz

px

=
2 − γ − 2

√
1 − λ− γ

γ
=

1 + e−t/T1 − 2e−t/T2

1 − e−t/T1
,

= 1 + 2
e−t/T1 − e−t/T2

1 − e−t/T1
= 1 + 2

1 − et/T1−t/T2

et/T1 − 1

= 1 + 2
1 − et/T1(1−T1/T2)

et/T1 − 1
.

If t≪ T1, then we can approximate the ratio as2T1/T2 − 1, as claimed.

Thus, an asymmetry in theT1 andT2 times does translate to an asymmetry in the

occurrence of bit flip and phase flip errors. Note thatpx = py indicating that theY errors

are as unlikely as theX errors. We shall refer to the ratiopz/px as the channel asymmetry

and denote this parameter byA.

Asymmetric quantum codes use the fact that the phase flip errors are much more likely

than the bit flip errors or the combined bit-phase flip errors.Therefore the code has different

error correcting capability for handling different type oferrors. We require the code to

correct many phase flip errors but it is not required to handlethe same number of bit flip

errors. If we assume a CSS code [35], then we can meaningfully speak ofX-distance and

Z-distance. A CSS stabilizer code that can detect allX errors up to weightdx − 1 is said

to have anX-distance ofdx. Similarly if it can detect allZ errors upto weightdz − 1,

then it is said to have aZ-distance ofdz. We shall denote such a code by[[n, k, dx/dz]]q
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to indicate it is an asymmetric code, see also [145] who was the first to use a notation

that allowed to distinguish betweenX- andZ-distances. We could also view this code as

an [[n, k,min{dx, dz}]]q stabilizer code. Further extension of these metrics to an additive

non-CSS code is an interesting problem, but we will not go intothe details here.

Recall that in the CSS construction a pair of codes are used, onefor correcting the bit

flip errors and the other for correcting the phase flip errors.Our choice of these codes will

be such that the code for correcting the phase flip errors has alarger distance than the code

for correcting the bit flip errors. We restate the CSS construction in a form convenient for

asymmetric stabilizer codes.

Lemma VIII.2 (CSS Construction [35]). LetCx, Cz be linear codes overFn
q with the para-

meters[n, kx]q, and[n, kz]q respectively. LetC⊥
x ⊆ Cz. Then there exists an[[n, kx + kz −

n, dx/dz]]q asymmetric quantum code, wheredx = wt(Cx \ C⊥
z ) anddz = wt(Cz \ C⊥

x ).

If in the above constructiondx = wt(Cx) anddz = wt(Cz), then we say that the code

is pure.

In the theorem above and elsewhere in this paperFq denotes a finite field withq ele-

ments. We also denote aq-ary narrow-sense primitive BCH code of lengthn = qm − 1 and

design distanceδ asBCH(δ).

B. Asymmetric Quantum Codes from LDPC Codes

In [77], Ioffe and Ḿezard used a combination of BCH and LDPC codes to construct asym-

metric codes. The intuition being that the stronger LDPC code should be used for correct-

ing the phase flip errors and the BCH code can be used for the infrequent bit flips. This

essentially reduces to finding a good LDPC code such that the dual of the LDPC code is

contained in the BCH code. They solve this problem by randomly choosing codewords in

the BCH code which are of low weight (so that they can be used for the parity check ma-
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trix of the LDPC code). However, this method leaves open how good the resulting LDPC

code is. For instance, the degree profiles of the resulting code are not regular and there is

little control over the final degree profiles of the code. Furthermore, it is not apparent what

ensemble or degree profiles one will use to analyze the code.

We propose an alternate scheme that uses LDPC codes to construct asymmetric stabi-

lizer codes. We propose two families of quantum codes based on LDPC codes. In the first

case we use LDPC codes for both theX andZ channel while in the second construction we

will use a combination of BCH and LDPC codes. But first, we will need the following facts

about generalized Reed-Muller codes, ( [80]) and finite geometry LDPC codes, ( [98,150]).

1. Finite Geometry LDPC Codes

Let us denote by EG(m, ps) the Euclidean finite geometry overFps consisting ofpms points.

For our purposes it suffices to use the fact that this geometryis equivalent to the vector

spaceFm
ps. A µ-dimensional subspace ofF

m
ps or its coset is called aµ-flat. Assume that

0 ≤ µ1 < µ2 ≤ m. Then we denote byNEG(µ2, µ1, s, p) the number ofµ1-flats in aµ2-flat

and byAEG(m,µ2, µ1, s, p), the number ofµ2-flats that contain a givenµ1-flat. These are

given by (see [150])

NEG(µ2, µ1, s, p) = q(µ2−µ1)

µ1∏

i=1

qµ2−i+1 − 1

qµ1−i+1 − 1
, (8.4)

AEG(m,µ2, µ1, s, p) =

µ2∏

i=µ1+1

qm−i+1 − 1

qµ2−i+1 − 1
, (8.5)

whereq = ps. Index all theµ1-flats fromi = 1 to n = NEG(m,µ1, s, p) asFi. LetF be a

µ2-flat in EG(m, ps). Then we can associate an incidence vector toF with respect to the
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µ1 flats as follows.

iF =







ij |
ij = 1 if Fj is contained inF

ij = 0 otherwise.







.

Index theµ2-flats from j = 1 to J = NEG(m,µ2, s, p). Construct theJ × n matrix

H
(1)
EG(m,µ2, µ1, s, p) whose rows are the incidence vectors of all theµ2-flats with respect

to theµ1-flats. This matrix is also referred to as the incidence matrix. Then the type-I

Euclidean geometry code fromµ2-flats andµ1-flats is defined to be the null space, i. e.,

Euclidean dual code) of theFp-linear span ofH(1)
EG(m,µ2, µ1, s, p). This is denoted as

C
(1)
EG(m,µ2, µ1, s, p). LetH(2)

EG(m,µ2, µ1, s, p) = H
(1)
EG(m,µ2, µ1, s, p)

t. The type-II Euclid-

ean geometry codeC(2)
EG(m,µ2, µ1, s, p) is defined as the null space ofH(2)

EG(m,µ2, µ1, s, p).

Let us now consider theµ2-flats andµ1-flats that do not contain the origin of EG(m, ps).

Now form the incidence matrix of theµ2-flats with respect to theµ1-flats not containing

the origin. The null space of this incidence matrix gives us aquasi-cyclic code in general,

which we denote byC(1)
EG,c(m,µ2, µ1, s, p), see [150].

2. Generalized Reed-Muller Codes

Let α be a primitive element inFqm. The cyclic generalized Reed-Muller code of length

qm − 1 and orderν is defined as the cyclic code with the generator polynomial whose roots

αj satisfy0 < j ≤ m(q − 1) − ν − 1. The generalized Reed-Muller code is the singly

extended code of lengthqm. It is denoted as GRMq(ν,m). The dual of a GRM code is also

a GRM code [17,31,80]. It is known that

GRMq(ν,m)⊥ = GRMq(ν
⊥,m), (8.6)

whereν⊥ = m(q − 1) − 1 − ν.

LetC be a linear code overFn
qs. Then we defineC|Fq , thesubfield subcodeof C over



179

F
n
q as the codewords ofC which are entirely inFn

q , (see [76, pages 116-120]). Formally

this can be expressed as

C|Fq = {c ∈ C | c ∈ F
n
q }. (8.7)

LetC ⊆ F
n
ql. The thetrace codeof C overFq is defined as

trql/q(C) = {trql/q(c) | c ∈ C}. (8.8)

There are interesting relations between the trace code and the subfield subcode. One of

which is the following result which we will need later.

Lemma VIII.3. Let C ⊆ F
n
ql . ThenC|Fq , the subfield subcode ofC is contained in

trql/q(C), the trace code ofC. In other words

C|Fq ⊆ trql/q(C).

Proof. Let c ∈ C|Fq ⊆ F
n
q andα ∈ Fql. Thentrql/q(αc) = c trql/q(α) asc ∈ F

n
q . Since

trace is a surjective form, there exists someα ∈ Fql, such thattrql/q(α) = 1. This implies

thatc ∈ trql/q(C). Sincec is an arbitrary element inC|Fq it follows thatC|Fq ⊆ trql/q(C).

Let q = ps, then the Euclidean geometry code of orderr over EG(m, ps) is defined as

the dual of the subfield subcode of GRMq((q−1)(m−r−1),m), [31, page 448]. The type-

I LDPC codeC(1)
EG(m,µ, 0, s, p) code is an Euclidean geometry code of orderµ − 1 over

EG(m, ps), see [150]. Hence its dual is the subfield subcode of GRMq((q− 1)(m−µ),m)

code. In other words,

C
(1)
EG(m,µ, 0, s, p)⊥ = GRMq((q − 1)(m− µ),m)|Fp . (8.9)
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Further, Delsarte’s theorem [48] tells us that

C
(1)
EG(m,µ, 0, s, p) = GRMq((q − 1)(m− µ),m)|⊥

Fp
,

= trq/p

(
GRMq((q − 1)(m− µ),m)⊥

)

= trq/p(GRMq(µ(q − 1) − 1,m)).

Hence,C(1)
EG(m,µ, 0, s, p) code can also be related to GRMq(µ(q − 1) − 1,m) as

C
(1)
EG(m,µ, 0, s, p) = trq/p(GRMq(µ(q − 1) − 1),m). (8.10)

3. New Families of Asymmetric Quantum Codes

With the previous preparation we are now ready to construct asymmetric quantum codes

from finite geometry LDPC codes.

Theorem VIII.4 (Asymmetric EG LDPC Codes). Let p be a prime, withq = ps and

s ≥ 1,m ≥ 2. Let1 < µz < m andm− µz + 1 ≤ µx < m. Then there exists an

[[pms, kx + kz − pms, dx/dz]]p

asymmetric EG LDPC code, where

kx = dimC
(1)
EG(m,µx, 0, s, p); kz = dimC

(1)
EG(m,µz, 0, s, p).

For the distancesdx ≥ AEG(m,µx, µx − 1, s, p) + 1 anddz ≥ AEG(m,µz, µz − 1, s, p) + 1

hold.

Proof. LetCz = C
(1)
EG(m,µz, 0, s, p). Then from equation (8.10) we have

Cz = trq/p(GRMq(µz(q − 1) − 1,m).
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By Lemma VIII.3 we know that

Cz ⊇ GRMq(µz(q − 1) − 1,m)|Fp ,

Cz ⊇ GRMq((q − 1)(m− (m− µz + 1)),m)|Fp ,

where the last inclusion follows from the nesting property of the generalized Reed-Muller

codes. For any orderµx such thatm − µz + 1 ≤ µx < m, let Cx = C
(1)
EG(m,µx, 0, s, p).

ThenCx is an LDPC code whose dualC⊥
x = GRMq((q − 1)(m − µx),m)|Fp is contained

in Cz. Thus we can use Lemma VIII.2 to form an asymmetric code with the parameters

[[pms, kx + kz − pms, dx/dz]]p

The distance ofCz andCx are at lower bounded asdx ≥ AEG(m,µx, µx − 1, s, p) + 1 and

dz ≥ AEG(m,µz, µz − 1, s, p) + 1 (see [150]).

In the construction just proposed, we should chooseCz to be a stronger code compared

toCx. We have given the construction over a nonbinary alphabet even though the casep = 2

might be of particular interest.

We briefly turn our attention back to the depolarizing channel. The LDPC codes de-

signed for the asymmetric channels will not in general perform well on the depolarizing

channel. In fact constructing good quantum LDPC codes for the depolarizing channel re-

mains a difficult problem and a satisfactory solution is yet to be advanced. We contribute

to the ongoing discussion in this topic by drawing upon the finite geometry LDPC codes as

we did for the asymmetric codes. The codes presented in Theorem VIII.4 can under certain

conditions lead to LDPC codes that are suitable for use on thedepolarizing channel.

Corollary VIII.5 (EG LDPC Codes for Depolaring Channel). Let p be a prime, withq =

ps and s ≥ 1,m ≥ 2. Let ⌈(m+ 1)/2⌉ ≤ µ < m. Then there exists an[[pms, 2k −

pms, d]]p symmetric EG LDPC code, wherek = dimC
(1)
EG(m,µ, 0, s, p). For the distance
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d ≥ AEG(m,µ, µ− 1, s, p) + 1 holds.

Our next construction makes use of the cyclic finite geometrycodes. Our goal will be

to find a small BCH code whose dual is contained in a cyclic Euclidean geometry LDPC

code. For solving this problem we need to know the cyclic structure ofC(1)
EG,c(m,µ, 0, s, p).

Let α be a primitive element inFpms . Then the roots of the generator polynomial of

C
(1)
EG,c(m,µ, 0, s, p) are given by [79, Theorem 6], see also [81,104]. Now,

Z = {αh | 0 < max
0≤l<s

Wps(hpl) ≤ (ps − 1)(m− µ)},

whereWq(h) is theq-ary weight ofh = h0 + h1q + · · · + hkq
k−1, i. e.,Wq(h) =

∑
hi.

The finite geometry codeC(1)
EG,c(m,µ, 0, s, p) is actually an(µ− 1, ps) Euclidean geometry

code. The roots of the generator polynomial of the dual code are given by

Z⊥ = {αh | min
0≤l<s

Wps(hpl) < µ(ps − 1)}.

In fact, the dual code is the even-like subcode of a primitivepolynomial code of length

pms − 1 overFp and orderm − µ, whose generator polynomial, by [81, Theorem 6], has

the roots

Zp = {αh | 0 < min
0≤l<s

Wps(hpl) < µ(ps − 1)}.

ThusZ⊥ = Zp∪{0}. Now by [81, Theorem 11],Zp and thereforeZ⊥ contain the sequence

of consecutive roots,α, α2, . . . , αδ0−1, whereδ0 = (R+ 1)pQs − 1 andm(ps − 1)− (m−

µ)(ps−1) = Q(ps−1)+R. Simplifying, we see thatR = 0 andQ = µ giving δ0 = pµs−1.

It follows that

C
(1)
EG,c(m,µ, 0, s, p)

⊥ = GRMq(m, (q − 1)(m− µ))|Fp

⊆ BCH(δ0).

Thus we have solved the problem of construction of the asymmetric stabilizer codes in
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a dual fashion to that of [77]. Instead of finding an LDPC code whose parity check matrix

is contained in a given BCH code, we have found a BCH code whose parity check matrix

is contained in a given finite geometry LDPC code. This gives us the following result.

Theorem VIII.6 (Asymmetric BCH-LDPC stabilizer codes). LetCz = C
(1)
EG,c(m,µ, 0, s, p)

andδ ≤ δ0 = pµs − 1. Letn = pms − 1 andCx = BCH(δ) ⊆ F
n
p . Then there exists an

[[n, kx + kz − n, dx/dz]]p

asymmetric stabilizer code wheredz ≥ AEG(m,µ, µ − 1, s, p), dx ≥ δ andkx = dimCx,

kz = dimCz.

Perhaps an example will be helpful at this juncture.

Example VIII.7. Letm = s = p = 2 andµ = 1. ThenC(1)
EG,c(2, 1, 0, 2, 2) is a cyclic code

whose generator polynomial has roots given by

Z = {αh|0 < max
0≤l<2

W22(2lh) ≤ (m− µ)(ps − 1) = 3}

= {α1, α2, α3, α4, α6, α8, α9, α12}.

As there are 4 consecutive roots and|Z| = 8, it defines a[15, 7,≥ 5] code. The roots of the

generator polynomial of the dual code are given by

Z⊥ = {αh|0 < min
0≤l<2

W22(2lh) ≤ µ(ps − 1) = (22 − 1)}

= {α0, α1, α2, α4, α5, α8, α10}.

We see thatZ⊥ has two consecutive roots excluding1, therefore the dual code is contained

in a narrowsense BCH code with design distance 3. Note thatpµs − 1 = 3. Thus we can

chooseCx = BCH(3) andCz = C
(1)
EG,c(2, 1, 0, 2, 2) and apply Lemma VIII.2 to construct a

[[15, 3, 3/5]]2 asymmetric code.
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We can also state the above construction as in [77], that is given a primitive BCH

code of design distanceδ, find an LDPC code whose dual is contained in it. It must be

pointed out that in case of asymmetric codes derived from LDPC codes, the asymmetry

factordx/dz is not as indicative of the code performance as in the case of bounded distance

decoders. Form = p = 2, we can derive explicit relations for the parameters of the codes.

Corollary VIII.8. LetC = C
(1)
EG,c(2, 1, 0, s, 2) andδ = 2t + 1 ≤ 2s − 1. Then there exists

an

[[22s − 1, 22s − 3s − s(δ − 1), δ/2s + 1]]2

asymmetric stabilizer code.

Proof. The parameters ofC are[22s−1, 22s−3s, 2s +1]2, see [104]. SinceC⊥ is contained

in a BCH code of length22s − 1 whose design distanceδ ≤ 2s − 1, we can compute the

dimension of the BCH code as22s−1−s(δ−1), see [107, Corollary 8]. By Lemma VIII.2

the quantum code has the dimension22s − 3s − s(δ − 1).

Example VIII.9. Form = p = 2 ands = 4 we can obtain a[255, 175, 17] LDPC code. We

can choose any BCH code with design distanceδ ≤ 24−1 = 15 to construct an asymmetric

code. Table III lists possible codes.

C. Performance Results

We now study the performance of the codes constructed in the previous section. We

assume that the overall probability of error in the channel is given byp, while the indi-

vidual probabilities ofX, Y , andZ errors arepx = p/(A + 2), py = p/(A + 2) and

pz = pA/(A+2) respectively. The exact performance would require us to simulate a4-ary

channel and also account for the fact that some errors can be estimated modulo the stabi-

lizer. However, we do not account for this and in that sense these results provide an upper
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Table III. Asymmetric BCH-LDPC stabilizer codes

s δ Code Asymmetry Rate

[[n, k, dx/dz]]2 dz/dx

4 15 [[255, 119, 15/17]]2 ≈ 1 0.467

4 13 [[255, 127, 13/17]]2 ≈ 1.25 0.498

4 11 [[255, 135, 11/17]]2 ≈ 1.5 0.529

4 9 [[255, 143, 9/17]]2 ≈ 2 0.561

4 7 [[255, 151, 7/17]]2 ≈ 2.5 0.592

4 5 [[255, 159, 5/17]]2 ≈ 3 0.624

4 3 [[255, 167, 3/17]]2 ≈ 6 0.655

bound on the actual error rates. The 4-ary channel can be modeled as two binary sym-

metric channels – one modeling the bit flip channel and the other the phase flip channel.

For exact performance, these two channels should be dependent, however, a good approx-

imation is to model the channel as two independent BSCs with cross over probabilities

px + py = 2p/(A+ 2) andpy + pz = p(A+ 1)/(A+ 2). In this case the overall error rate

in the quantum channel is the sum of the error rates in the two BSCs. While this approach

is going to slightly overestimate the error rates, nonetheless it is useful and has been used

before [105]. Since theX-channel uses a BCH code and decoded using a bounded distance

decoder, we can just computeP x
e theX error rate, in closed form. The error rate in the Z

channel,P z
e is obtained through simulations. The overall error rate is

Pe = 1 − (1 − P x
e )(1 − P z

e ) = P x
e + P z

e − P x
e P

z
e ≈ P x

e + P z
e .

Decoding LDPC Codes. The LDPC code was decoded using the an algorithm similar to

the hard decision bit flipping algorithm given in [98]. This is an instance of the bit flipping
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algorithm originally given by Gallager. The maximum numberof iterations for decoding

is set to 50. A small modification had to be made to accommodatethe special situation

of quantum syndrome decoding. By measuring the generators ofthe stabilizer group, we

obtain a classical syndrome, which due to the fact that only±1 eigenspaces occur in all

of the generators, is hard information. We use the syndrome as shown in Figure 9 and

initialize all the bit nodes with0 at the start of the algorithm. Then the algorithm proceeds

in the usual fashion as in [98]. We implemented this algorithm and ran several simulations

which are described next.

In figure 10 we see the performance of[[255, 159, 5/17]] as the channel asymmetry is

varied from 1 to 100. We see that as we increase the asymmetry the code starts to perform

better. As the asymmetry is increased eventually the performance of the quantum code

approaches the performance of the classical LDPC code.

Tolerating a little rate loss improves the performance as can be seen from figure 11.

If we increase the distance of the BCH code the code becomes moretolerant to variations

in channel asymmetry as can be seen by the performance of[[255, 143, 9/17]] in figure 12.

This plot also illustrates an important point. Our channel model assumes that as we vary

the channel asymmetry we keep the total probability of errorin the channel fixed. This

implies that while the probability ofX errors goes down, the probability ofZ errors tends

to p, the total probability of error. Hence, the reduction in error rate in theX channel must

more than compensate for the increase inZ error rate. If on the other hand, we had fixed

the probability of error in theZ channel and varied the channel asymmetry then we would

observe a monotonic improvement in the error rate because onone hand theZ error rate

does not change but theX error rate does. We note that with larger lengths we can get an

even steep drop in the error rate as is apparent from the performance of[[1023, 731, 11/33]]

code shown in Figure 13.

The question naturally raises how do these codes compare with the codes proposed
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in [77]. Strictly speaking both constructions have regimeswhere they can perform better

than the other. But it appears that the algebraically constructed asymmetric codes have the

following benefits with respect to the randomly constructedones of [77].

• They give comparable performance and higher data rates withshorter lengths.

• The benefits of classical algebraic LDPC codes are inherited, giving for instance lower

error floors compared to the random constructions.

• The code construction is systematic.

Our codes also offer flexibility in the rate and performance of the code because we can

choose many possible BCH codes for a given finite geometry LDPC code or vice versa.

The flip side however is that the codes given here have higher complexity of decoding.
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Fig. 9. Modification of the iterative message passing algorithm to the quantum case. The

initialization step is different from the classical case asno soft information from the

channel is available but rather only hard information aboutthe measured syndrome

is available. The algorithms begins with initializing all bit nodes to0 and the check

nodes with the syndrome. From then on, any classically knownmethod for iterative

decoding can be applied. In the figure this principle is shownfor the example of a

classical [7,4,3] Hamming code. Application to the quantumcase is straightforward

as the decoding algorithm only works with classical information to compute the most

likely error.
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Fig. 10. Performance of a[[255, 159, 5/17]] code described in the text for choices

A = 1, 10, 100 of the channel asymmetry.
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Fig. 11. Performance of a[[255, 151, 7/17]] code described in the text for choices

A = 1, 10, 100 of the channel asymmetry.
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Fig. 12. Performance of a[[255, 143, 9/17]] code described in the text for choices

A = 1, 10, 100 of the channel asymmetry.
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Fig. 13. Performance of[[1023, 731, 11/33]] code forA = 100.
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CHAPTER IX

NEW RESULTS ON BCH CODES∗

The Bose-Chaudhuri-Hocquenghem (BCH) codes [32, 33, 58, 75] area well-studied class

of cyclic codes that have found numerous applications in classical and more recently in

quantum information processing. Recall that a cyclic code oflengthn over a finite fieldFq

with q elements, andgcd(n, q) = 1, is called aBCH code with designed distanceδ if its

generator polynomial is of the form

g(x) =
∏

z∈Z

(x− αz), Z = Cb ∪ · · · ∪ Cb+δ−2,

whereCx = {xqk mod n | k ∈ Z, k ≥ 0 } denotes theq-ary cyclotomic coset ofx mod-

ulo n, α is a primitive element ofFqm, andm = ordn(q) is the multiplicative order ofq

modulon. Such a code is called primitive ifn = qm − 1, and narrow-sense ifb = 1.

An attractive feature of a (narrow-sense) BCH code is that one can derive many struc-

tural properties of the code from the knowledge of the parametersn, q, andδ alone. Perhaps

the most well-known facts are that such a code has minimum distanced ≥ δ and dimen-

sionk ≥ n − (δ − 1)ordn(q). In this chapter, we will show that a necessary condition for

a narrow-sense BCH code which contains its Euclidean dual codeis that its designed dis-

tanceδ = O(qn1/2). We also derive a sufficient condition for dual containing BCH codes.

Moreover, if the codes are primitive, these conditions are same. These results allow us to

derive families of quantum stabilizer codes. Along the way,we find new results concerning

the minimum distance and dimension of classical BCH codes.

To put our results into context, we give a brief overview of related work. This chapter

∗ c©2007 IEEE. Reprinted with permission from S. A. Aly, A. Klappenecker and P. K.
Sarvepalli, “On quantum and classical BCH codes”.IEEE Trans. Inform. Theory, vol 53,
no. 3, pp. 1183–1188, 2007.
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was motivated by problems concerning quantum BCH codes; specifically, our goal was

to derive the parameters of the quantum codes as a function ofthe design parameters.

Examples of certain binary quantum BCH codes have been given bymany authors, see, for

example, [35, 68, 69, 145]. Steane [146] gave a simple criterion to decide when a binary

narrow-sense primitive BCH code contains its dual, given the design distance and the length

of the code. We generalize Steane’s result in various ways, in particular, to narrow-sense

(not necessarily primitive) BCH codes over arbitrary finite fields with respect to Euclidean

and Hermitian duality. These results allow one to derive quantum BCH codes; however, it

remains to determine the dimension, purity, and minimum distance of such quantum codes.

The dimension of a classical BCH code can be bounded by many different standard

methods, see [24, 76, 107] and the references therein. An upper bound on the dimension

was given by Shparlinski [143], see also [97, Chapter 17]. More recently, the dimension

of primitive narrow-sense BCH codes of designed distanceδ < q⌈m/2⌉ + 1 was apparently

determined by Yue and Hu [156], according to reference [155]. We generalize their result

and determine the dimension of narrow-sense BCH codes that arenot necessarily primitive

for a certain range of designed distances. As desired, this result allows us to explicitly

obtain the dimension of the quantum codes without computation of cyclotomic cosets.

The purity and minimum distance of a quantum BCH code depend on the minimum

distance and dual distance of the associated classical code. In general, it is a difficult

problem to determine the true minimum distance of BCH codes, see [38]. A lower bound

on the dual distance can be given by the Carlitz-Uchiyama-type bounds when the number

of field elements is prime, see, for example, [107, page 280] and [149]. Many authors

have determined the true minimum distance of BCH codes in special cases, see, for in-

stance, [118], [155].

This chapter also extends our previous work onprimitivenarrow-sense BCH codes [4],

simplifies some of the proofs and generalizes many of the results to the nonprimitive case.
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Notation. We denote the ring of integers byZ and the finite field withq elements by

Fq. We use the bracket notation of Iverson and Knuth that associates to[statement] the

value 1 ifstatementis true, and 0 otherwise. For instance, we have[k even] = k−1 mod 2

and[k odd] = k mod 2 for an integerk. The Euclidean dual codeC⊥ of a codeC ⊆ F
n
q is

given byC⊥ = {y ∈ F
n
q |x · y = 0 for all x ∈ C}, while the Hermitian dual ofC ⊆ F

n
q2

is defined asC⊥h = {y ∈ F
n
q2 | yq · x = 0 for all x ∈ C}. We denote a narrow-sense

BCH code of lengthn overFq with designed distanceδ by BCH(n, q; δ), and we omit the

parameterq if the finite field is clear from the context.

A. Euclidean Dual Codes

Recall that one can construct quantum stabilizer codes usingclassical codes that contain

their duals. In this section, our goal is to find such classical codes. Steane showed that a

primitive, narrow-sense, binary BCH code of length2m − 1 contains its dual if and only

if its designed distanceδ satisfiesδ ≤ 2⌈m/2⌉ − 1, see [146]. We generalize this result in

various ways.

Lemma IX.1. LetC be a cyclic code of lengthn over the finite fieldFq such thatgcd(n, q) =

1, and letZ be the defining set ofC. The codeC contains its Euclidean dual code if and

only ifZ ∩ Z−1 = ∅, whereZ−1 denotes the setZ−1 = {−z mod n | z ∈ Z}.

Proof. See [70, Theorem 2]. See also [76, Theorem 4.4.11].

Let us first consider narrow-sense BCH codes of lengthn such that the multiplicative

order ofq modulon equals 1; for example, Reed-Solomon codes belong to this class of

codes. We can avoid some special cases in our subsequent arguments by treating this case

separately. Furthermore, the next lemma nicely illustrates the proof technique that will be

used throughout this section, so it can serve as a warm-up exercise.
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Lemma IX.2. Suppose thatq is a power of a prime andn is a positive integer such that

q ≡ 1 mod n. We haveBCH(n, q; δ)⊥ ⊆ BCH(n, q; δ) if and only if the designed distance

δ is in the range2 ≤ δ ≤ δmax = ⌊(n+ 1)/2⌋.

Proof. The defining setZ of BCH(n, q; δ) is given byZ = {1, . . . , δ − 1}, sinceq has

multiplicative order 1 modulon, and therefore all cyclotomic cosets are singleton sets. If

BCH(n, q; δ)⊥ ⊆ BCH(n, q; δ), then by Lemma IX.1,Z ∩ Z−1 = ∅. If x ∈ Z, then

n − x 6∈ Z andn − x > x; hence,δmax ≤ ⌊(n + 1)/2⌋. Conversely, ifδ ≤ ⌊(n + 1)/2⌋,

thenminZ−1 = min{n − 1, . . . , n − δ + 1} = n − δ + 1 ≥ n − ⌊(n + 1)/2⌋ + 1 =

⌈(n + 1)/2⌉ ≥ δmax; hence,Z ∩ Z−1 = ∅ and Lemma IX.1 implies thatBCH(n, q; δ)⊥ ⊆

BCH(n, q; δ).

If the multiplicative orderm of q modulon is larger than 1, then the defining set of

the code has a more intricate structure, so proofs become more involved. The next theorem

gives a sufficient condition on the designed distances for which the dual code of a narrow-

sense BCH code is self-orthogonal.

Theorem IX.3. Suppose thatm = ordn(q). If the designed distanceδ is in the range

2 ≤ δ ≤ δmax = ⌊κ⌋, where

κ =
n

qm − 1
(q⌈m/2⌉ − 1 − (q − 2)[m odd]), (9.1)

thenBCH(n, q; δ)⊥ ⊆ BCH(n, q; δ).

Proof. It suffices to show thatBCH(n, q; δmax)
⊥ ⊆ BCH(n, q; δmax) holds, sinceBCH(n, q; δ)

containsBCH(n, q; δmax), and the claim follows from these two facts.

Seeking a contradiction, we assume thatBCH(n, q; δmax) does not contain its dual.

Let Z = C1 ∪ · · · ∪ Cδmax−1 be the defining set ofBCH(n, q; δmax). By Lemma IX.1,

Z∩Z−1 6= ∅, which means that there exist two elementsx, y ∈ {1, . . . , δmax−1} such that
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y ≡ −xqj mod n for somej ∈ {0, 1, . . . ,m − 1}, wherem is the multiplicative order of

q modulon. Sincegcd(q, n) = 1 andqm ≡ 1 mod n, we also havex ≡ −yqm−j mod n.

Thus, exchangingx andy if necessary, we can even assume thatj is in the range0 ≤ j ≤

⌊m/2⌋. It follows from (9.1) that

1 ≤ xqj ≤ (δmax − 1)qj

≤ n

qm − 1
(qm − qj − qj(q − 2)[m odd]) − qj

< n,

for all j in the range0 ≤ j ≤ ⌊m/2⌋. Since1 ≤ xqj < n and1 ≤ y < n, we can infer

from y ≡ −xqj mod n thaty = n− xqj. But this implies

y ≥ n− xq⌊m/2⌋

≥ n− n

qm − 1
(qm − q⌊m/2⌋ − q⌊m/2⌋(q − 2)[m odd]) + q⌊m/2⌋

=
n

qm − 1
(q⌊m/2⌋ − 1 + q⌊m/2⌋(q − 2)[m odd])

+q⌊m/2⌋

≥ δmax ,

contradicting the fact thaty < δmax.

Now we will derive a necessary condition on the design distance of narrow-sense,

nonprimitive BCH codes that contain their duals.

Theorem IX.4. Suppose thatm = ordn(q). If the designed distanceδ exceedsδmax =
⌊
qn1/2

⌋
, thenBCH(n, q; δ)⊥ 6⊆ BCH(n, q; δ).

Proof. Let n = n0 + n1q+ · · ·+ nd−1q
d−1, where0 ≤ ni ≤ q− 1 andδ ≥ δmax + 1. Then
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the defining setZ ⊇ {1, . . . , ⌊qn1/2⌋}. We will show thatZ ∩ Z−1 6= ∅. Let,

s =
d−1∑

i=⌊d/2⌋
niq

i−⌊d/2⌋,

s ≤ (q − 1)
d−1∑

i=⌊d/2⌋
qi−⌊d/2⌋ = q⌈d/2⌉ − 1 < q⌈d/2⌉.

Sinceqd−1 < n < qd, we haveq(d+1)/2 < qn1/2 < q(d+2)/2. If d is even then⌈d/2⌉ < (d+

1)/2 and ifd is odd, then⌈d/2⌉ ≤ (d+1)/2. Hence we haves < q⌈d/2⌉ ≤ q(d+1)/2 < qn1/2.

Therefores ∈ Z. Now consider,

s′ = n− sq⌊d/2⌋ =
d−1∑

i=0

niq
i − q⌊d/2⌋

d−1∑

i=⌊d/2⌋
niq

i−⌊d/2⌋,

=

⌊d/2−1⌋
∑

i=0

niq
i < q⌊d/2⌋

< q(d+1)/2 < qn1/2.

Hences′ ∈ Z and by definitions′ ∈ Z−1, which impliesZ ∩ Z−1 6= ∅; by Lemma IX.1 it

follows thatBCH(n, q; δ)⊥ 6⊆ BCH(n, q; δ).

The condition we just derived can be strengthened under somerestrictions. Especially,

if the constantκ in equation (9.1) is integral, then we can derive a necessaryand sufficient

condition as shown below:

Theorem IX.5. We keep the notation of Theorem IX.4. Suppose thatκ is integral, and that

m ≥ 2. We haveBCH(n, q; δ)⊥ ⊆ BCH(n, q; δ) if and only if the designed distanceδ is in

the range2 ≤ δ ≤ δmax = κ.

Proof. Suppose thatBCH(n, q; δ)⊥ ⊆ BCH(n, q; δ). Seeking a contradiction, we assume

thatδ > δmax; thus,δmax is contained in the defining setZ of BCH(n, q; δ). If m is even,
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then

−δmaxq
⌊m/2⌋ ≡ − nq⌊m/2⌋

q⌊m/2⌋ + 1
≡ −n+

n

q⌊m/2⌋ + 1

≡ δmax (mod n),

hence,δmax ∈ Z ∩ Z−1 6= ∅. If m is odd, then

−δmaxq
⌊m/2⌋ ≡ −n(qm − q⌈m/2⌉ + q⌊m/2⌋)/(qm − 1)

≡ n(q⌈m/2⌉ − q⌊m/2⌋ − 1)/(qm − 1)

≡ s (mod n).

By definition,s ∈ Z−1; furthermore,s < δmax, sos ∈ Z ∩Z−1 6= ∅. In both cases,m even

and odd, we found thatZ ∩Z−1 is not empty, soBCH(n, q; δ) cannot contain its Euclidean

dual code, contradiction. The converse follows from Theorem IX.3.

As a consequence of Theorem IX.5 we have the following test for primitive narrow-

sense BCH codes that contain their duals.

Corollary IX.6. A primitive narrow-sense BCH code of lengthn = qm − 1, m ≥ 2, over

the finite fieldFq contains its Euclidean dual code if and only if its designed distanceδ

satisfies

2 ≤ δ ≤ δmax = q⌈m/2⌉ − 1 − (q − 2)[m odd].

We observe that a narrow-sense BCH code containing its Euclidean dual code must

have a small designed distance (δ = O(
√
n)), when the multiplicative order ofq modulo

n is greater than one. This raises the question whether one canallow larger designed

distances by considering non-narrow-sense BCH codes. Our next result shows that this is

not possible, at least in the case of primitive codes.

Theorem IX.7. LetC be a primitive (not necessarily narrow-sense) BCH code of length
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n = qm − 1 overFq with designed distanceδ. If m > 1 andδ exceeds

δmax =







qm/2 − 1, m ≡ 0 mod 2,

2(q(m+1)/2 − q + 1), m ≡ 1 mod 2,

thenC cannot contain its Euclidean dual.

Proof. Let the defining set ofC beZ = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2. We will show that if

δ > δmax thenZ ∩ Z−1 6= ∅. If 0 ∈ Z, then0 ∈ Z−1, soZ ∩ Z−1 6= ∅. Therefore, we can

henceforth assume that0 6∈ Z, which impliesb ≥ 1 andb+ δ − 2 < n.

1. Suppose thatm is even; thus,δmax = qm/2 − 1. If δ > δmax then the defining setZ

contains an element of the forms = αδmax for some integerα. However,

−sqm/2 ≡ −α(qm/2 − 1)qm/2 ≡ α(qm/2 − 1)

≡ s (mod n).

Hence,s ∈ Z ∩ Z−1 6= ∅.

2. Suppose thatm > 1 is odd; thus,δmax = 2q(m+1)/2 − 2q + 2. If δ > δmax then

there exists an integerα such that two multiples ofδ′ = δmax/2 are contained in the

rangeb ≤ (α − 1)δ′ < αδ′ ≤ b + δ − 2. Sinceb ≥ 1 andαδ′ < n, it follows that

2 ≤ α ≤ q(m−1)/2.

The defining setZ of the code contains the elements = αδ′. The numbers′ =

α(q(m+1)/2 − q(m−1)/2 − 1) lies in the range0 ≤ s′ ≤ s and satisfies−sq(m−1)/2 ≡

s′ mod n, sos′ ∈ Z−1.

Suppose thatb ≤ s′. Thens′ ∈ Z, which impliesZ ∩ Z−1 6= ∅.

Suppose thats′ < b. Sinceb ≤ (α − 1)δ′, we obtain the inequalitys′ < (α − 1)δ′;

solving forα shows thatα ≥ q; thus,q ≤ α ≤ q(m−1)/2. Let t′ = (α − 1)(q(m+1)/2 −

1) + q(m−1)/2 − 1; it is easy to check thatt′ is in the range(α − 1)δ′ ≤ t′ ≤ αδ′ when
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α ≥ q; thus,t′ ∈ Z. Further, lett = s − (α − q + 1); sincet ≥ s − δ′, we havet ∈ Z

as well. Since−tq(m−1)/2 ≡ t′ mod n, we can conclude thatt′ ∈ Z ∩ Z−1 6= ∅.

Therefore, we can conclude that if the designed distance ofC is greater thanδmax, then

Z ∩ Z−1 6= ∅, which proves the claim thanks to Lemma IX.1.

B. Dimension and Minimum Distance

While the results in the previous section are sufficient to tell us when we can construct

quantum BCH codes, they are still unsatisfactory because we donot know the dimension

of these codes. To this end, we determine the dimension of narrow-sense BCH codes of

lengthn with minimum distanced = O(n1/2). It turns out that these results on dimension

also allow us to sharpen the estimates of the true distance ofsome BCH codes.

First, we make some simple observations about cyclotomic cosets that are essential in

our proof.

Lemma IX.8. Letn be a positive integer andq be a power of a prime such thatgcd(n, q) =

1 andq⌊m/2⌋ < n ≤ qm−1, wherem = ordn(q). The cyclotomic cosetCx = {xqj mod n |

0 ≤ j < m} has cardinalitym for all x in the range1 ≤ x ≤ nq⌈m/2⌉/(qm − 1).

Proof. If m = 1, then|Cx| = 1 for all x and the statement is trivially true. Therefore, we

can assume thatm > 1. Seeking a contradiction, we suppose that|Cx| < m, meaning that

there exists a divisorj of m such thatxqj ≡ x mod n, or, equivalently, thatx(qj − 1) ≡

0 mod n holds.

Suppose thatm is even. The divisorj of m must be in the range1 ≤ j ≤ m/2.

However,x(qj − 1) ≤ nqm/2(qm/2 − 1)/(qm − 1) < n; hencex(qj − 1) 6≡ 0 mod n,

contradicting the assumption|Cx| < m.

Suppose thatm is odd. The divisorj of m must be in the range1 ≤ j ≤ m/3. Since

q(m+1)/2 ≤ q2m/3 for m ≥ 3, we havex(qj − 1) ≤ nq(m+1)/2(qm/3 − 1)/(qm − 1) ≤
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nq2m/3(qm/3 − 1)/(qm − 1) < n. Therefore,x(qj − 1) 6≡ 0 mod n, contradicting the

assumption|Cx| < m.

The following observation tells us when some cyclotomic cosets are disjoint.

Lemma IX.9. Letn ≥ 1 be an integer andq be a power of a prime such thatgcd(n, q) = 1

andq⌊m/2⌋ < n ≤ qm − 1, wherem = ordn(q). If x andy are distinct integers in the range

1 ≤ x, y ≤ min{⌊nq⌈m/2⌉/(qm − 1)− 1⌋, n− 1} such thatx, y 6≡ 0 mod q, then theq-ary

cyclotomic cosets ofx andy modulon are distinct.

Proof. If m = 1, then clearlyCx = {x}, Cy = {y} and distinctx, y implies thatCx

andCy are disjoint. Ifm > 1, thenx, y ≤ ⌊nq⌈m/2⌉/(qm − 1) − 1⌋ < n − 1. The set

S = {xqj mod n, yqj mod n | 0 ≤ j ≤ ⌊m/2⌋} contains2(⌊m/2⌋+1) ≥ m+1 elements,

sinceq⌊m/2⌋ × ⌊nq⌈m/2⌉/(qm − 1) − 1⌋ < n and, thus, no two elements are identified

modulon. If we assume thatCx = Cy, then the preceding observation would imply that

|Cx| = |Cy| ≥ |S| ≥ m + 1, which is impossible since the maximal size of a cyclotomic

coset ism. Hence, the cyclotomic cosetsCx andCy must be disjoint.

With these results in hand, we can now derive the dimension ofnarrow-sense BCH

codes.

Theorem IX.10. Let q be a prime power andgcd(n, q) = 1 with ordn(q) = m. Then a

narrow-sense BCH code of lengthq⌊m/2⌋ < n ≤ qm − 1 overFq with designed distanceδ

in the range2 ≤ δ ≤ min{⌊nq⌈m/2⌉/(qm − 1)⌋, n} has dimension

k = n−m⌈(δ − 1)(1 − 1/q)⌉. (9.2)

Proof. Let the defining set ofBCH(n, q; δ) beZ = C1 ∪C2 · · · ∪Cδ−1; a union of at most

δ− 1 consecutive cyclotomic cosets. However, when1 ≤ x ≤ δ− 1 is a multiple ofq, then

Cx/q = Cx. Therefore, the number of cosets is reduced by⌊(δ− 1)/q⌋. By Lemma IX.9, if
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x, y 6≡ 0 mod q andx 6= y, then the cosetsCx andCy are disjoint. Thus,Z is the union of

(δ − 1) − ⌊(δ − 1)/q⌋ = ⌈(δ − 1)(1 − 1/q)⌉ distinct cyclotomic cosets. By Lemma IX.8,

all these cosets have cardinalitym. Therefore, the degree of the generator polynomial is

m⌈(δ − 1)(1 − 1/q)⌉, which proves our claim about the dimension of the code.

As a consequence of the dimension result, we can tighten the bounds on the minimum

distance of narrow-sense BCH codes generalizing a result due to Farr, see [107, p. 259].

Corollary IX.11. A BCH(n, q; δ) code

i) with length in the rangeq⌊m/2⌋ < n ≤ qm − 1,m = ordn(q),

ii) and designed distance in the range2 ≤ δ ≤ min{⌊nq⌈m/2⌉/(qm − 1)⌋, n}

iii) such that

⌊(δ+1)/2⌋
∑

i=0

(
n

i

)

(q − 1)i > qm⌈(δ−1)(1−1/q)⌉, (9.3)

has minimum distanced = δ or δ + 1; if δ ≡ 0 mod q, thend = δ + 1.

Proof. Seeking a contradiction, we assume that the minimum distance d of the code sat-

isfies d ≥ δ + 2. We know from Theorem IX.10 that the dimension of the code is

k = n − m⌈(δ − 1)(1 − 1/q)⌉. If we substitute this value ofk into the sphere-packing

boundqk
∑⌊(d−1)/2⌋

i=0

(
n
i

)
(q − 1)i ≤ qn, then we obtain

⌊(δ+1)/2⌋
∑

i=0

(
n

i

)

(q − 1)i ≤
⌊(d−1)/2⌋
∑

i=0

(
n

i

)

(q − 1)i

≤ qm⌈(δ−1)(1−1/q)⌉,

but this contradicts condition (9.3); hence,δ ≤ d ≤ δ + 1.

If δ ≡ 0 mod q, then the cyclotomic cosetCδ is contained in the defining setZ of the

code becauseCδ = Cδ/q. Thus, the BCH bound implies that the minimum distance must

be at leastδ + 1.
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We conclude this section with a minor result on the dual distance of BCH codes which

will be needed later for determining the purity of quantum codes.

Lemma IX.12. Suppose thatC is a narrow-sense BCH code of lengthn over Fq with

designed distance2 ≤ δ ≤ δmax = ⌊n(q⌈m/2⌉ − 1 − (q − 2)[m odd])/(qm − 1)⌋, then the

dual distanced⊥ ≥ δmax + 1.

Proof. LetN = {0, 1, . . . , n− 1} andZδ be the defining set ofC. We know thatZδmax ⊇

Zδ ⊃ {1, . . . , δ − 1}. ThereforeN \ Zδmax ⊆ N \ Zδ. Further, we know thatZ ∩ Z−1 = ∅

if 2 ≤ δ ≤ δmax from Lemma IX.1 and Theorem IX.3. Therefore,Z−1
δmax

⊆ N \ Zδmax ⊆

N \ Zδ.

Let Tδ be the defining set of the dual code. ThenTδ = (N \Zδ)
−1 ⊇ Zδmax . Moreover

{0} ∈ N \ Zδ and thereforeTδ. Thus there are at leastδmax consecutive roots inTδ. Thus

the dual distanced⊥ ≥ δmax + 1.

C. Hermitian Dual Codes

Suppose thatC is a linear code of lengthn overFq2 . Recall that its Hermitian dual code is

defined byC⊥h = {y ∈ F
n
q2 | yq · x = 0 for all x ∈ C}, whereyq = (yq

1, . . . , y
q
n) denotes

the conjugate of the vectory = (y1, . . . , yn).

Lemma IX.13. Assume thatgcd(n, q) = 1. A cyclic code of lengthn overFq2 with defining

setZ contains its Hermitian dual code if and only ifZ∩Z−q = ∅, whereZ−q = {−qz mod

n | z ∈ Z}.

Proof. Let N = {0, 1, . . . , n − 1}. If g(x) =
∏

z∈Z(x − αz) is the generator polynomial

of a cyclic codeC, thenh†(x) =
∏

z∈N\Z(x − α−qz) is the generator polynomial ofC⊥h .

Thus,C⊥h ⊆ C if and only if g(x) dividesh†(x). The latter condition is equivalent to

Z ⊆ {−qz | z ∈ N \ Z}, which can also be expressed asZ ∩ Z−q = ∅.
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Now similar to Theorem IX.3 we will derive a sufficient condition for BCH codes that

contain their Hermitian duals.

Theorem IX.14. Suppose thatm = ordn(q2). If the designed distanceδ satisfies2 ≤ δ ≤

δmax, where

δmax =

⌊
n

q2m − 1
(qm+[m even] − 1 − (q2 − 2)[m even])

⌋

,

thenBCH(n, q2; δ)⊥h ⊆ BCH(n, q2; δ).

Proof. SinceBCH(n, q2; δ) containsBCH(n, q2; δmax), it suffices to show that the relation

BCH(n, q2; δmax)
⊥h ⊆ BCH(n, q2; δmax) holds.

Seeking a contradiction, we assume thatBCH(n, q2; δmax) does not contain its dual.

LetZ = C1∪C2∪· · ·∪Cδmax−1 be the defining set ofBCH(n, q2; δmax). By Lemma IX.13,

Z ∩ Z−q 6= ∅, which means that there exist two elementsx, y ∈ {1, ..., δmax − 1} such

that y = −xq2j+1 mod n for somej ∈ {0, 1, ...,m − 1}, wherem = ordn(q). Since

gcd(q, n) = 1 and q2m ≡ 1 mod n, we also havey ≡ −xq2m−2j−1 mod n, so we can

assume without loss of generality thatj lies in the range0 ≤ j ≤ ⌊(m− 1)/2⌋. It follows

that

xq2j+1 ≤ (δmax − 1)q2j+1

=
nq2j+1

q2m − 1
(qm+[m even] − 1 − (q2 − 2)[m even]) − q2j+1

< n

holds for allj in the range0 ≤ j ≤ ⌊(m− 1)/2⌋.

Since1 ≤ xq2j+1 < n, the congruencey ≡ −xq2j+1 mod n implies thaty = n −
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xq2j+1. Therefore,y ≥ n− (δmax − 1)q2⌊(m−1)/2⌋+1, which is equivalent to

y ≥ n− nq2⌊(m−1)/2⌋+1

q2m − 1
(qm+[m even] − 1

−(q2 − 2)[m even]) + q2⌊(m−1)/2⌋+1.

If m is odd, this yields

y ≥ n− nqm

q2m − 1
(qm − 1) + qm

=
n

q2m−1
(qm − 1) + qm ≥ δmax .

Similarly, if m is even, then

y ≥ n

q2m − 1
(qm+1 − qm−1 − 1) + qm−1

≥ δmax.

Both cases contradict the assumption0 ≤ y < δmax. Therefore, we can conclude that

BCH(n, q; δmax) contains its Hermitian dual code.

Arguing as in Theorem IX.4 we can show that a BCH code must have its designed

distanceδ = O(q2n1/2) if it contains its Hermitian dual. As the arguments are very similar

we illustrate it for a simpler case as shown below:

Lemma IX.15. Let C ⊆ F
n
q2 be a nonnarrow-sense, nonprimitive BCH code of length

n ≡ 0 mod qm + 1, wherem = ordn(q2). If its design distanceδ ≥ δmax = n/(qm + 1),

thenC cannot contain its Hermitian dual.

Proof. The defining setZ = Cb ∪ . . . ∪Cb+δ−2 contains{b, . . . , b+ δ − 2}. If δ > δmax =

n/(qm + 1), then there exists an elements = αδmax ∈ Z for some positive integerα. Then

−qs(q2)(m−1)/2 ≡ −αnqm/(qm+1) ≡ αn/(qm+1) ≡ s mod n. Therefore,Z∩Z−q 6= ∅;

hence,C cannot contain its Hermitian dual code.
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Finally, we conclude this section on Hermitian duals by proving as in the Euclidean

case nonnarrow-sense BCH codes that contain their Hermitian duals cannot have too large

design distances.

Theorem IX.16. LetC ⊆ F
n
q2 be a primitive (not necessarily narrow-sense) BCH code of

lengthn = q2m − 1,m = ordn(q), and designed distanceδ. If δ exceeds

δmax =







qm − 1 if m is odd,

2(qm+1 − q2 + 1) if m 6= 2 is even,

thenC cannot contain its Hermitian dual code.

Proof. Suppose that the defining set ofC is given byZ = Cb ∪ · · · ∪ Cb+δ−2, where

Cx = {xq2j mod n | j ∈ Z}, and thatδ > δmax. Seeking a contradiction, we assume that

C⊥h ⊆ C, which means thatZ∩Z−q = ∅. It follows that0 6∈ Z, for otherwise0 ∈ Z∩Z−q;

therefore,b ≥ 1 andb+ δ − 2 < n.

If m is odd, then there exists an integerα such thatb ≤ αδmax ≤ b + δ − 2. We have

−qαδmaxq
m−1 ≡ α(1−qm)qm ≡ α(qm−1) ≡ αδmax mod n; thus,αδmax ∈ Z ∩Z−q 6= ∅.

If m > 2 is even andδ > δmax = 2qm+1 − 2q2 + 2, then there exists an integerα such

that two multiples ofδ′ = δmax/2 are contained in the rangeb ≤ (α−1)δ′ < αδ′ ≤ b+δ−2.

Sinceb ≥ 1 andαδ′ < n, it follows that2 ≤ α ≤ qm−1 (which holds only ifm > 2).

Clearly s = αδ′ ∈ Z. Let s′ ≡ −qsqm−2 mod n, so s′ ∈ Z−q, then1 ≤ s′ =

α(qm+1 − qm−1 − 1) ≤ s for m > 2.

Suppose thatb ≤ s′. Thens′ ∈ Z, which impliesZ ∩ Z−q 6= ∅.

Suppose thats′ < b. Sinceb ≤ (α − 1)δ′, we obtain the inequalitys′ < (α − 1)δ′;

solving forα shows thatα ≥ q2; thus,q2 ≤ α ≤ qm−1. Let t′ = (α − 1)(qm+1 − 1) +

q(m−1)/2 − 1; it is easy to check thatt′ is in the range(α − 1)δ′ ≤ t′ ≤ αδ′ whenα ≥ q2;

thus, t′ ∈ Z. Further, lett = s − (α − q2 + 1); sincet ≥ s − δ′, we havet ∈ Z as

well. Since−qtqm−2 ≡ t′ mod n, we can conclude thatt′ ∈ Z ∩ Z−q 6= ∅. Hence, by
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Lemma IX.13 we conclude thatC cannot contain its Hermitian dual if its design distance

exceedsδmax

D. Families of Quantum BCH Codes

In this section we shall study the construction of (nonbinary) quantum BCH codes. Calder-

bank, Shor, Rains and Sloane outlined the construction of binary quantum BCH codes

in [35]. Grassl, Beth and Pellizari developed the theory further by formulating a nice condi-

tion for determining which BCH codes can be used for constructing quantum codes [68,70].

The dimension and the purity of the quantum codes constructed were determined by numer-

ical computations. Steane simplified it further for the special case of binary narrow-sense

primitive BCH codes [146] and gave a very simple criterion based on the design distance

alone. Very little was done with respect to the nonprimitiveand nonbinary quantum BCH

codes.

In this section we show how the results we have developed in the previous sections

help us to generalize the previous work on quantum codes and give very simple conditions

based on design distance alone. Further, we give precisely the dimension and tighten re-

sults on the purity of the quantum codes. The reader can referto Chapters III and IV for

constructions on stabilizer codes.

Theorem IX.17. Let m = ordn(q) ≥ 2, whereq is a power of a prime andδ1, δ2 are

integers such that2 ≤ δ1 < δ2 ≤ δmax where

δmax =
n

qm − 1
(q⌈m/2⌉ − 1 − (q − 2)[m odd]),

then there exists a quantum code with parameters

[[n,m(δ2 − δ1 − ⌊(δ2 − 1)/q⌋ + ⌊(δ1 − 1)/q⌋),≥ δ1]]q
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pure toδ2.

Proof. By Theorem IX.10, there exist BCH codesBCH(n, q; δi) with the parameters[n, n−

m(δi − 1) +m⌊(δi − 1)/q⌋,≥ δi]q for i ∈ {1, 2}. Further,BCH(n, q; δ2) ⊂ BCH(n, q; δ1).

Hence by the CSS construction there exists a quantum code withthe parameters

[[n,m(δ2 − δ1 − ⌊(δ2 − 1)/q⌋ + ⌊(δ1 − 1)/q⌋),≥ δ1]]q.

The purity follows due to the fact thatδ2 > δ1 and Lemma IX.12 by which the dual distance

of either BCH code is≥ δmax + 1 > δ2.

When the BCH codes contain their duals, then we can derive the following codes.

Note that these cannot be obtained as a consequence of Theorem IX.17.

Theorem IX.18. Letm = ordn(q) whereq is a power of a prime and2 ≤ δ ≤ δmax, with

δmax =
n

qm − 1
(q⌈m/2⌉ − 1 − (q − 2)[m odd]),

then there exists a quantum code with parameters

[[n, n− 2m⌈(δ − 1)(1 − 1/q)⌉,≥ δ]]q

pure toδmax + 1

Proof. Theorems IX.3 and IX.10 imply that there exists a classical BCHcode with para-

meters[n, n−m⌈(δ−1)(1−1/q)⌉,≥ δ]q which contains its dual code. By Corollary III.21

an[n, k, d]q code that contains its dual code implies the existence of thequantum code with

parameters[[n, 2k − n,≥ d]]q. The purity follows from Lemma IX.12 by which the dual

distance≥ δmax + 1 > δ.

Before we can construct quantum codes via the Hermitian construction, we will need

the following lemma.
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Lemma IX.19. Suppose thatC is a primitive, narrow-sense BCH code of lengthn =

q2m − 1 overFq2 with designed distance2 ≤ δ ≤ δmax = ⌊n(qm − 1)/(q2m − 1)⌋, then the

dual distanced⊥ ≥ δmax + 1.

Proof. The proof is analogous to the one of Lemma IX.12; just keep in mind that the

defining setZδ is invariant under multiplication byq2 modulon.

Theorem IX.20. Let m = ordn(q2) ≥ 2 whereq is a power of a prime and2 ≤ δ ≤

δmax = ⌊n(qm − 1)/(q2m − 1)⌋, then there exists a quantum code with parameters

[[n, n− 2m⌈(δ − 1)(1 − 1/q2)⌉,≥ δ]]q

that is pure up toδmax + 1.

Proof. It follows from Theorems IX.10 and IX.14 that there exists a primitive, narrow-

sense[n, n− 1−m⌈(δ− 1)(1− 1/q2)⌉,≥ δ]q2 BCH code that contains its Hermitian dual

code. By Corollary III.19 a classical[n, k, d]q2 code that contains its Hermitian dual code

implies the existence of an[[n, 2k−n,≥ d]]q quantum code. By Lemma IX.19 the quantum

code is pure toδmax + 1.

In the above theorem, quantum codes can also be constructed when the design distance

exceeds the given value ofδmax, however we do not have exact knowledge of the dimension

in all those cases, hence we have not included them to keep thetheorem precise.

These are not the only possible families of quantum codes that can be derived from

BCH codes. As pointed out in [68], we can expand BCH codes overFql to get codes over

Fq. Once again the dimension and duality results of BCH codes makes it very easy to

specify such codes. We will just give one example in the Euclidean case. Similar results

can be derived for the Hermitian case.
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Theorem IX.21. Letm = ordn(ql) whereq is a power of a prime and2 ≤ δ ≤ δmax, with

δmax =
n

qlm − 1
(ql⌈m/2⌉ − 1 − (ql − 2)[m odd]),

then there exists a quantum code with parameters

[[ln, ln− 2lm⌈(δ − 1)(1 − 1/ql)⌉,≥ δ]]q

that is pure up toδ.

Proof. By Theorem IX.18 there exists a quantum BCH code with parameters[[n, n −

2m⌈(δ − 1)(1 − 1/ql)⌉,≥ δ]]ql. An [[n, k, d]]ql quantum code implies the existence of the

quantum code with parameters[[ln, lk,≥ d]]q by Lemma III.41 and the code follows.

E. Conclusions

In this chapter we have identified the classes of BCH codes that contain their Euclidean

(Hermitian) duals by a careful analysis of the cyclotomic cosets. In the process we have

been able to shed more light on the structure of dual containing BCH codes. We were

able to derive a formula for the dimension of narrow-sense BCH codes when the designed

distance is small. These results allowed us to identify easily which classical BCH codes

can be used for construct quantum codes. Further, the parameters of these quantum codes

are easily specified in terms of the design distance.
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