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ABSTRACT

Quantum Stabilizer Codes and Beyond. (August 2008)
Pradeep Kiran Sarvepalli, B.Tech., Indian Institute of Testbgy, Madras;
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Andreas Klappenecker

The importance of quantum error correction in paving the weaguild a practical
quantum computer is no longer in doubt. Despite the largey lobditerature in quantum
coding theory, many important questions, especially tloesgering on the issue of “good
codes” are unresolved. In this dissertation the dominaderying theme is that of con-
structing good quantum codes. It approaches this problem three rather different but
not exclusive strategies. Broadly, its contribution to theadry of quantum error correction
is threefold.

Firstly, it extends the framework of an important class o&mfum codes — nonbi-
nary stabilizer codes. It clarifies the connections of $itadyi codes to classical codes over
quadratic extension fields, provides many new construstidrguantum codes, and devel-
ops further the theory of optimal quantum codes and pundtguantum codes. In partic-
ular it provides many explicit constructions of stabiliz&des, most notably it simplifies
the criteria by which quantum BCH codes can be constructed ¢tassical codes.

Secondly, it contributes to the theory of operator quantmoreorrecting codes also
called as subsystem codes. These codes are expected tofficiemteerror recovery
schemes than stabilizer codes. Prior to our work howevstesyatic methods to construct
these codes were few and it was not clear how to fairly comipera with other classes of
quantum codes. This dissertation develops a frameworktfiolysand analysis of subsys-
tem codes using character theoretic methods. In partjchlizrwork established a close

link between subsystem codes and classical codes and inkeedaar that the subsystem



codes can be constructed from arbitrary classical codes.

Thirdly, it seeks to exploit the knowledge of noise to deséfficient quantum codes
and considers more realistic channels than the commonéjestudepolarizing channel.
It gives systematic constructions of asymmetric quantwabikter codes that exploit the
asymmetry of errors in certain quantum channels. This ambres based on a Calderbank-

Shor-Steane construction that combines BCH and finite gegrhBtiPC codes.
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CHAPTER |

INTRODUCTION

A. Motivation

In the 1980s and 1990s, it gradually became apparent thétebey of information founded
by Claude Shannon was a purely classical theory in that it didake into account quan-
tum mechanics. This realization crystallized the notiogudéintum information as distinct
from classical information. Despite the success of therabstormulation of information
by Shannon, it is far more physi¢ahan it appears. The representation of informatien
the mechanism/device used to store does affect its behawiar level systems such as a
switches or more realistically transistors can be usedi@ sthd manipulate classical bits.
One can also use systems such as photons or electrons. Iofgalsetons for instance,
information maybe stored on the polarization of the photbime photon can be vertically
or horizontally polarized. Other quantum mechanical systsuch as spi@-systemsi.e.,
systems with two spin states can also be used for repregentormation. These quantum
mechanical representations give us something more thabhwehbargained for. Because
they operate in a regime where the quantum mechanical effactcome into pldyin ad-
dition to representing the usual logical states they pepm#nomena (such as linear com-
bination of the logical states), which have no classical@nees. These phenomena seem

to confer additional power when it comes to information @ssing. A far reaching ram-

The journal model iSEEE Transactions on Information Theory.

*R. Landauer.

fIt might be argued that quantum mechanical effects are presen when information
is stored on a transistor (or any other device). That is thogever, when we speak of
quantum mechanical effects we are not so much interestexrasit they affect the func-
tioning of the device as much as how they affect the logiaksbf the device. In so far as
the logical state is considered, the transistor behavesicklly.



ification due to differences between quantum and classiatmation is that computers
processing quantum information, if they were built, coutdyide exponential speedups
over computers that process classical information aloree. iistance, Shor’s algorithm
for factoring integers provides an exponential speedup theebest known classical algo-
rithms. A little less dramatically, Grover’s search algion provides a quadratic speedup
over its classical counterparts. Quantum computers tber@iose a challenge to one of the
central tenets in theoretical computer science — the (nmyd&nurch-Turing thesis which

states:

Any reasonable model of computation can be simulated onab§ilistic)

Turing machine with at most a polynomial overhead, (seel28]).

It must be emphasized that quantum computers cannot saltaepns that are not solvable
on classical computers, for the simple reason that a quacdunputer can be simulated on
a classical computer albeit with exponential slowdown. 1Quian computers can potentially
change the landscape of tractable problems. But to realze phomise we have one
important hurdle to cross —which is the central theme ofdlgsertation — that of protecting

quantum information.

B. Quantum Error Correction

A quantum computer that can implement something nontraual useful as Shor’s algo-
rithm would require the control and manipulation of a largenber of sensitive quantum
mechanical systems. Any practical quantum computer waddire the ability to protect
quantum information against not only noise but also theitable operationalife., gate)

errors that accompany its processing. It was initially sigsal that it would be impossible
to protect quantum information not only because of the sca@®mmputation but because

of reasons intrinsic to quantum information. Fortunatelych skepticism was laid to rest



when Peter Shor [142] and Andrew Steane [144, 145] indepelyderoposed schemes to
protect quantum information from noise and operationabrerr Gottesman [61] and in-
dependently Calderbardt al., [35] proposed methods to construct quantum codes from
classical codes. Commonly referred to as “stabilizer cqdbs’se codes are the most stud-
ied class of quantum codes. Their work was followed with astarttial body of results
related to quantum error correction. More importantly, @sashown that if the overall
error rate was lower than a “threshold”, it was possible tdgyen an arbitrarily long quan-
tum computation with any desired accuracy with only a pagithmic overhead in time
and space [1].

With these fundamental results in place, the focus of quartading theory shifted
to the design of good codes, systematic methods for coistnyefficient decoding algo-
rithms, passive error correction schemes, optimizing sdolerealistic noise processes and
the like. These questions are in some sense interrelatesl dilsertation seeks to address
these questiorsn varying degree as will be elaborated below. It explorasous models
and methods of quantum error correction. Broadly, its cbatidn to the theory of quan-
tum error correction is threefold. Firstly, it extends tih@niework of nonbinary stabilizer
codes. It clarifies the connections of stabilizer codesagsital codes over quadratic ex-
tension fields, provides many new constructions of quantuaies, and develops further the
theory of optimal quantum codes and punctured quantum cdskesondly, it contributes
to the theory of operator quantum error correcting codesd(ehlled as subsystem codes).
These codes are expected to have efficient error recovegyrehcompared to stabilizer
codes. This dissertation develops a framework for studyaaradlysis of subsystem codes
using character theoretic methods. The framework has nh@dssible to study subsystem

codes by translating them into classical codes. Thirdlgegks to exploit the knowledge

fIn this dissertation we do not focus so much on fault toleeanc



of noise to design efficient quantum codes and considers meatistic channels than the
commonly studied depolarizing channel. In addition to g many explicit construc-
tions for quantum codes, it seeks to integrate developnsectsas low density parity check

(LDPC) codes into quantum coding theory.

C. Outline and Contribution

This dissertation is structured as follows. In Chapter Ii& eonsider the theory of nonbi-
nary stabilizer codes initiated by Rains [126] and Ashikhamd Knill [11]. This work was
motivated in part by the comparatively little attentionttbades over nonbinary alphabet
had received. Currently it appears that binary quantum systge comparatively easier to
control and implement than multi-level quantum systemsweier, the growing interest
in nonbinary implementations suggests that nonbinary £oéserve a closer study, espe-
cially as quantum technologies mature. Further, many ofjttetum mechanical systems
naturally allow for a multi-dimensional representatiomgofantum information. Instead of
simply ignoring them as is often the case, it might be to ounelfieto exploit these addi-
tional degrees of freedom. It could for instance lead to em@ntation of quantum proces-
sors with fewer systems. In fact, there are proposals tooéxplese additional modes not
only to implement nonbinary quantum systems [30] but alsothem to simplify binary
implementations [51, 130]. It stands to reason that we negdtematic theory to design
good codes for nonbinary implementations. This chapteceors itself with generalizing
many of the ideas of stabilizer codes to the nonbinary ggtfithe nonbinary generaliza-
tion turns out to be a nontrivial task and in fact there séithain many open questions with
respect to nonbinary quantum codes. We derive a number afrtarg results with regard
to structure and constructions of nonbinary stabilizeresod

Armed with the framework of nonbinary stabilizer codes deped in Chapter I, we



then turn to a more constructive task of designing good quarodes in Chapter IV. As

in the classical case, quite often, imposing the constdditibearity on the code structure
substantially simplifies our task. We have more control dlierparameters of the codes
we design and more importantly, imposing the linearity ¢@st simplifies the encoding

and decoding complexity. Therefore, we focus on the coostm of some linear quan-

tum codes bringing into bearing the machinery of the previchapter. As in the case of
classical codes, optimal codes generate a lot of interéstmypbecause of their optimality,

but because, not infrequently, they possess additionabt@torial structure that leads to
interesting mathematical problems. We also study the gunaMDS codes in this chapter,

establishing some structural results related to them.

While error correcting codes address the problem of protgcuantum information,
there are still certain hurdles to be crossed if we are talifjuantum computer. Unlike
classical case where we can, with good reason, assume &ahtoding and decoding
operations are noiseless or at least that they are not asamthe channel, quantum infor-
mation processing does not allow us to do so. The processcoflerg and decoding can
be as noisy as the channel itself. Codes then have to desigradibw for fault tolerant
computation not merely communication or storage. The thebfault tolerant quantum
computation was developed to address this challenge. Ipirkgevith this goal of fault
tolerant quantum computation some researchers have besstigating passive forms of
guantum error correction, where information was encodém snbsystems that were im-
mune to noise. Kribst al,, [99, 100] proposed a generalized framework for understand
both active and passive forms of quantum error correctioch®odes are called operator
guantum error correcting codes or subsystem codes beaatisis model information is
protected by encoding into subsystems as against the stdsspgaformally, this amounts to
encoding each logical state into an equivalence classrratineique state in the codespace.

The equivalence class is actually a subspace and any stidite snubspace is a representa-



tive of the logical state. This is accomplished through tee af additional qubits called
gauge qubits. This method also generalizes the class dfiataltodes studied in the
Chapters Ill, IV. In view of its relevance to fault tolerantamium computing we devote
Chapter V to the study of operator quantum error correctirdpso Using character the-
oretic methods we establish a connection with classicatsdldat enables us to construct
these codes systematically. In particular, we relax thesttaimt of self-orthogonality on
the classical codes used to construct stabilizer codes.

In Chapter VI we extend the theory of operator quantum erraiecting codes. The
results are of interest in that they provide insight into stireicture of subsystem codes.
Additionally, they enable us to compare the gains that sstiesy codes provide over sta-
bilizer codes. An important question that had been raiseehvithe subsystem codes were
first discovered was the possibility of improving upon oglrstabilizer codes in the sense
of requiring fewer syndrome measurements than them. We distnate in this particular
sense the subsystem codes, at least the linear ones, campetform the MDS stabilizer
codes.

The presence of gauge qubits in subsystem codes not onlyifssgrror correction
procedures, but it can potentially simplify the encodinggarss. Usually, the complexity
of encoding is not as large as the complexity of decoding aftén neglected. But in the
context of fault tolerant quantum computing, it is usefuhwe simpler encoding schemes.
Previous work on subsystem codes contained claims thatnttedeng could also benefit
due to subsystem coding but the exact circuits and the trfgl@eolved in achieving these
gains were either absent or not rigorously justified. In Caaytl we show how subsystem
codes can be encoded, and how to exploit the presence of tige gabits to simplify the
encoding process. We contend these simplifications in thed#ng circuitry should also
lead to additional benefits for fault tolerant quantum cotapan.

Much of quantum coding theory followed the same path as tesatal coding theory



did historically. That is it took on an algebraic outlook vgreat emphasis on the distance
of the code. But modern coding theory has gradually moved dmoay such a one dimen-
sional characterization of code performance. In the mogeture instead of requiring
that all errors up to a certain weight be correctable it haiteshthe focus to achieving
the capacity of the channel while keeping the complexityrafcgling and decoding low.
But these insights have not yet been fully absorbed by quanadimg theory. The reason
is not that it has not been attempted. Starting with the wofkBostol [119], MacKay
et al, [105], Camareet al., [37] and more recently Poulin and Chung [122], there have
been attempts to incorporate these modern developmeatguantum coding theory. The
difficulty is addressing the conflicting requirements that posed on the classical codes
from which the quantum codes are constructed. The additcorestraints usually imply
that these are bad codes classically and unlikely to leaddd guantum codes. In Chap-
ter VIII, we contribute to the ongoing discussion on quantiubPC codes by providing
new constructions of algebraic quantum LDPC codes.

In Chapter VIl we also study a problem that has generatedaf ioterest lately viz.
the use of realistic noise models in quantum error corractMuch of earlier work often
assumed that the channels are depolarizing channels. pbé&adeing channel while being
particularly simple is not necessarily the most accuraisenmodel which reflects many
of the current quantum technologies. In Chapter VIII we stilndydesign of codes that are
in some measure optimized to channels that are asymmeuicth€se channels we also
address the problem mentioned earlier, how to incorpohetenodern developments such
as LDPC codes effectively. We study the theory of codes fgmasetric quantum channels
and also provide systematic constructions of classes aftgoacodes for them. While it
remains to be seen if these codes are suitable for quanturputation, they seem most
suited for quantum memories.

In Chapter IX we slightly change tracks to illustrate how thedy of quantum codes



can shed light on classical codes. In this chapter we showdtogies in quantum codes
led to us to gain additional insight into the properties of BQides. Despite the fact these
codes have been known for more than forty years now, theraireapen problems with
regard to their properties. We make some contribution tauoderstanding of these codes
in the context of quantum error correction. We charactettisedimension and duals of
narrow-sense BCH codes giving simple closed form express$wrikeir dimensions and
simple criteria to identify dual containing BCH codes.

The material in Chapters Il and IV is due to a joint work [83]tviAndreas Klap-
penecker, Avanti Ketkar, and Santosh Kumar. Part of thisnadthas appeared earlier in
the theses of Avanti Ketkar and Santosh Kumar. Chapters VndI\Al are in collabo-
ration with Andreas Klappenecker and are based on [90, 4] EB6]. The material in
Chapter VIl is the outcome of a joint work [136] with MartindReler and Andreas Klap-
penecker and was partly performed while at NEC Laboratdkiesrica, Inc. The results
in Chapter IX are due to a joint work with Andreas Klappeneckad Salah Aly [8].

To keep the dissertation of a manageable and readable $izeglnot included my
investigations of algebraic geometric quantum codes (ilalcoration with Andreas Klap-
penecker) [133, 134], quantum convolutional codes [3, 8¢€ther with Andreas Klap-
penecker, Salah Aly, Martin &teler and Markus Grassl), degenerate quantum codes [5],
group algebra duadic codes [7], some additional resultsibsystem codes from [6] which

were due to joint work with Andreas Klappenecker and Salah Al



CHAPTER I

BACKGROUND
To make the dissertation self-contained and also to prdatieleontext for the research per-
formed, this section provides a brief review of ideas raivta quantum error correction.
Because the breadth of the contents precludes any possilfiibvering it completely in a
short space, we recommend the lecture notes by Preskil] fiBthe textbook by Nielsen
and Chuang [114] for an accessible introduction to quantumpcation. Those familiar
with quantum computing can skip this chapter and proceeztlrto topics of interest.
While there is a logical progression of ideas, effort has beade so that the chapters can

be read independently to some extent.

A. Quantum Computation

1. Qubits

Just as bits are abstractions of classical two level systegolsits are an abstraction of
two level quantum systems. We denote the basis states inotballed Dirac notation
where|0) (ket zero) and1) (ket one), are simply column vectord] and[{] respectively.
This notation also serves to distinguish them from the alakstates. The first essential
difference with respect to bits is that the qubits can be pesgposition of the basis states
I.e, they can be in any linear combination of the basis stateesutn a normalization

constraint. For instance, consider a single qubit. Thistaquam be in the state
al0) +b|1), wherea,b € C and|a|® + |b]* = 1.

So the state space of a qubitGs.

While the qubit can be put in any superposition of the basiestshe observed state
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of the qubit is restricted to be either one of the states. Weaaiobserve the superposition
itself. Any observation of the qubit “collapses” the stafethee qubit to either0) or |1)
with probability |a|* and|b|? respectively. This underscores the second differencedestw
bits and qubits. Observation of qubits can change theie stageneral.

If we haven qubits, then the state space is actually a tensor produbeahtlividual
state spaces. We refer to the state space of the system adlibg Bpace and denote it
by H. We haveH = C? ® C? ® --- ® C? with dim’H = 2". An orthonormal basis for
H is given by|z1) ® |22) ® --- ® |x,). The basis states are also sometimes denoted as
|x129 ... 2p) OF |21, 29,...,x,), Where ther; take the values zero or one. We can also
label the basis elements byc F7. Then a general state is given by

) = Yy Y =1 (2.1)
z€F3 z€F3
The state of the system is a unit vector of length on&{inThe probability of observing
the system in statger) is given by|a,|>. The normalization constraint is due to the fact
on measurement some state will be observed. To describecaajjstate then, we require
2" — 1 complex numbers. This is in contrast to the classical casravtine state space is

only n dimensional. As an example, a two qubit system can be pueisttte
ag |00) 4+ aq [01) + as |10) 4 a3 [11) ,

where|ag | + |a1|? + |az|? + |as|* = 1. The basis stat@0) is actually|0) @ [0) = [§]®[}§]-
Other basis states are given similarly.
Often we will need to observe only a part of the system. Thaslile more involved.

Assume that we have a systemaf+ n qubits and we want to observe qubits. An
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arbitrary state of the system is of the form

) = Z gy |) |y) Z ’O‘:v,y|2 =1 (2.2)
2€Fy yeFy z€Fy yeFy

Let us assume that we want to observe the qubits whose statesond tgz). Then the

probability of observing these qubits in state is given by

Assuming that we observed), the state of the system after observation is given by

1
N >y ly) |2) -

T yery
Observing quantum systems can be described using the meesfpbmeasurement for-
malism, see for instance [114].
An important consequence of the fact that the qubits can baperposition is a phe-
nomenon known as entanglement. Consider the following.stséeignore the normaliza-
tion factors for convenience.

) = [01) +[11).
We could also write this state as the product state
[¥) = 10) @ ([0) + 1))

When the states of the qubits can be written as product ste#asse can observe each of
the product states without disturbing the rest of the systdawever there are states such

as the following which cannot be written as the product ofirsial qubit states.
[¥) =100) + [11)  [) = [01) + |10).

Such states are said to be entangled and this phenomendtet eatanglement. When
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qubits are entangled it is not possible to observe the sfatee of the entangled qubits
without disturbing the rest of the system. One could viewspeedup provided by quan-
tum computers as being due to entanglement.

We associate to every stdtg) in H a row vector denoted gg| which is simply the
adjoint of the column vector corresponding|tg. Two vectors|y)) and|p) are said to be
orthogonal if their scalar product denoted(as| ) = 0. This is also called the inner

product of two vectors.

2. Quantum Gates

Just as classical data is manipulated using gates, queitdsar manipulated using quantum
gates. Since the quantum states are unit vectof&'inwe could view the application of
gates on the qubits as matrices@f. The postulates of quantum mechanics require the
matrices to be unitary,e., they must satisff/~! = U, whereU" is the adjoint of the
matrix. We denote the action of a gdteon a statdy) asU |¢). We denote the inner
product ofU |¢) and|y) as{p| U ). Some important operations on a single qubit are the

following.
;Y = ;4= : (2.3)

These operators are also called Pauli errors. We will dethatggroup generated by the
Pauli errors byP. OftenY is redefined without the for convenience in analysis. When

we considern qubits we define the Pauli group of matrices on them as
,={ie1 R e ® - ®Qe, | e €P,ceZs}, whereZy = {0,1,2,3}. (2.4)

In a subsequent chapter we will generalize the notion ofiRgalp and use it to define

error operators and construct codes over prime power agpphab
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Other important single qubit gates are the Hadamard datehe phase gat& and

ther /8 gate (orT’ gate) which are defined as

1 1 10 1 0
H = ;. P= T = . (2.5)
1 —1 0 i 0 eim/4

Perhaps the most important two qubit gate is the CNOT (cdatellOT) gate. The action

of the CNOT gate on the basis states is as follows.

|2) —o— |2)

ly) —b— [z Dy)

The top qubit is called the control qubit and the bottom qigdalled the target qubit. A
CNOQOT gate with control qubitand target qubi is denoted as CNOT and acts as follows

on these two qubits:

(2.6)

0010

The CNOT gate along witlt/, P andT" gates forms a set of universal gates for quantum
computation. Any arbitrary quantum gate can be realizedieffily using these set of gates
to arbitrary accuracy by the Solovay-Kitaev theorem. A grapepresentation of the gates

mentioned so far is given below:

——
i) i) ii) iv) V) vi) vii)

An important point about the quantum gates is that they aetlily. Let us illustrate. The
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X gate acts as follows:

X |0) —|1) andX [1) — |0},

so when it acts on an arbirary state suchu@®) + b|1) we geta|1) + b|0). Later in
Chapter VII we will have occasion to give encoding and deaogdimncuits for subsystem

codes. These ideas will be needed then.

3. Density Operators

The state of qubits can be viewed not only as a unit vectorenHitbert space but also
as operators oft{. This approach makes it easy to analyze and study quantunmelsa

Given two vectorgy) and|¢) we can define what is known as the outer produgtofand

|p) as|¢) (y]. Forinstance ify)) = |0) and|¢) = |1). Then|1) (0| = 0o . We call

10
the outer product obtained fropn) with itselfi.e., p = |1) ()| as the density matrix or the

density operator. The density matrix is positive definit, (¢)| p [¢)) > 0, andTr(p) =1
whereTr is the sum of the diagonal entries. Since the density operate matrices of size
2" x 2™, we can also view the states as being operators on the systeentldpace. A view
which will be useful when defining quantum channels. Moreggalty if a system can be
found in one of the states);) with probability p;, the density operator associated to this
system is given by

P = Zpi |Whi) (Wil -
A state is pure iflr(p?) = 1 and mixed otherwise. The density operator approach will
be helpful in understanding the motivation behind opergtgantum error correction in
Chapter V and also in Chapter VIII, where we design codes optichior a given channel.

When a gaté/ is applied to a state with density matyixit transforms a$/pU.
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4. Quantum Noise

Noise on qubits is very different from the noise that we deigthWwits. The noise can be
thought to be arising out of the fact that the informationriyvgpsystem cannot be com-
pletely isolated from the environment and its interactidthwhe environment causes its
state to change. Sometimes this phenomenon is also caltetieence.

Since the state of a single qubit is givef) + b |1), wherea, b are complex numbers,
one can expect that errors on quantum information form aiwemtn unlike the classical
bits where there exist only bit flip errors. In fact, we canwigoise on a qubit asax 2
complex matrix and more generally, noiseroqubits is &" x 2" complex matrix; for this
reason we often refer to errors as error operators.

While we have to protect quantum information from an infinguaf errors, in view
of linearity of quantum mechanics, it suffices to correct doty a basis of errors. The
importance of the Pauli errors also stems from the fact theyt form a basis for the error
operators. Of course, we cannot protect against all ervdesusually make the assumption
that noise on each qubit is independent. Under this assampe can decompose an error
on the system into a tensor producto$ingle qubit errors.

Errors on the quantum states can also arise due to the fimitéspn with which the
guantum gates are implemented. Fortunately, the same msnoisathat are used to correct

decoherence can also be used to correct for these type of 40, 142].

5. Quantum Channels

A quantum channel is a linear map on the density operator€toi to the set of density
operators (orC?"); we usually assume that the input and output Hilbert spacesame
l.e., m = n. Sometimes quantum channels are also called “superopgr&dandicate that

they act on (density) operators. In this dissertation weaaihfine ourselves to maps which
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are completely positive and trace preserving (CPTP) maps. APGRape is usually given

in terms of its Kraus decomposition.

E(p) = Y EipElwhere) E'E;=1. (2.7)

The quantum channel view is very convenient to understamaser-or instance if we
assume that the bit flip errors occur with a probabilitgnd the rest of the time there are

no errors. We can represent this as the following channel.

E(p) = (1—p)p+pXpX. (2.8)

The Kraus operators are easily identified,a6— pI and,/pX. The channel often studied
in the context of quantum codes is the depolarizing chanmeliaparallels the classical

4-ary symmetric channel. This channel acts as
Elp) = (1=3p)p+pXpX +pYpY +pZpZ. (2.9)

In this channel, each of the Pauli erraxs Y or Z act with a probabilityp and with a

probability of 1 — 3p, the state is preserved. The Kraus operators are simply diye

VI=3pl, X, /BY and,/pZ.

B. Quantum Error Correction

In this section we briefly review the elements of quantumrecmrection. The reader is
also recommended to [35,61,95] for more details. Additiignthere are many expositions
to the ideas of quantum error correction, see [13, 55, 82,4, Here we summarize the
main features. We will restrict our attention to additiveaqtum codes.

A binary quantum code is a linear subspace of the system #idpace i.e.C?". The

subspace structure arises due to the fact that we can haeepssjiions of the encoded
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states. For instance, let us assume that the logical statéiseafollowing:
0) =1000); |T) =[111). (2.10)

Since we are allowed to have linear combinations of stdtesimplies that: |000)+b |111)
is also a valid state and belongs to the code. The subspatusée of the quantum code
can be seen to emerge naturally. The typical questions taewe to address when dealing

with error correcting codes classical or otherwise are:

Construction

Encoding

Error correction

Performance

In the case quantum codes, there is yet another componérmléys a much more im-
portant role than in case of classical codes. The codesdheusuitable for fault tolerant
computation.e., we should be able to perform logical operations on the eedtdédta with-
out having to decode them. The encoded operations must ésweethat the errors must
not propagate catastrophically beyond the error corrgatapability of the code. In this
thesis we will not get into the issues of fault tolerance. \Wallsaddress the problem of
construction and performance in more detail in the latept#ra of this dissertation. Let
us look at the other two aspects.

Since quantum codes are subspacé¥’in constructing quantum codes can be viewed
as packing of subspacesia In fact, the original approaches to quantum error coroecti
were along this route. This geometric picture while inttis not very convenient; for-
tunately, we can translate the problem of construction ame with a lot more algebraic

flavor and more importantly, into a much more familiar lang@@volving construction of
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classical codes. We will have much more to say on this topicowf to link the classical
codes and the subspacegHriater in Chapters Il and V.

Assume for now that we have some means to choose a subspag®to Quantum
code,). Then, from linear algebra we know that we can project ontabsgace by means
of a projector. A projectoP satisfiesP? = P. A projector for() can be easily constructed
by choosing an orthonormal basis of the subspaceay{|«;),...,|ax)}, and forming

the following matrix
K
P=>"a) (ol
=1

The dimension of the subspace is relate@tasdim = Tr(P). The subspace induces a
decomposition of the Hilbert space into orthogonal subspaEncoding amounts to real-
izing P, though there are important subtleties to be addresseth ésithe nonunitariness
of P). For instance, the encoding in equation (2.10) can beyeasdomplished using the

following circuit.

al0) +b]1)

0) —4 }a000>+b111>
0) ——b—

We shall study encoding circuits in more detail in Chapterwtien we discuss encoding

>

of subsystem codes.

When it comes to quantum error correction, there are a fewtpainrth highlight-
ing. Error correction or error recovery implies that we eatrthe errors on the encoded
information without finding out what was the original infoation stored. By decoding we
mean the process of extracting the information from the dedajubits. It presumes that
error correction has already been performed. Classicallydw not have to make such
fine distinction between error correction and decoding bee@ance error correction is per-
formed it is not difficult to obtain the information that wasa®ded without affecting the

encoded state. In the quantum setting decoding amountsstmylimg the encoded state.
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In the context of fault tolerant quantum computation we wiaubt like to decode until the
end of the computation as it would remove the protectionrdéd by the code. Unless
explicitly mentioned our focus will be on error recovery orection. We will assume that
the decoding of the encoded information is performed at titka# the computation. In
this dissertation we will be concerned with error correttimless specified otherwise.
Let us look at the error correction process in a little moreaileAssume that we use
the encoding given in equation (2.10). Suppose that theriisflip error on the first qubit,

also called anX error. Then we have

]000Y + b [111) ®EP 41100 + b |011) .

We cannot take a majority voting to figure out the error as endlassical case because if
we observed the state we would collapse the state to dithéy or |011). Although we
maybe able to find that there was an error on the first qubit,ave hlso damaged the state.
Thus error correction process is a little more complicatetié quantum case. We must not
perform a full measurement of the system. We solve this pralily partial measurements
and the use of additional qubits called ancilla. Let usitat® this for our running example.

We can compute the parity of the first two qubits and the setwodjubits as follows.

" Encodin Noise Syndrome Measurement  Correction
rw M o o1 [~ e — — - - - - - - — | [
| | I |
|0>| D T N f f R —
I I
‘0>:_ — _CJJ \ [ *
I /1 |
10 ® D AT
I v I
’O>L D D /7<_|
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The state of the qubits changes as follows as we move acr@s# thit:

Encoder Noise

a[0) + b 1) [00) [00) E1%%% (4 [000) + b [111)) [00) Y25 (4 [100) + b[011)) [00)
NOT (4 1100) (1) + 5011) [0)) [0) N (@ [100) [1) + b[011) 1) |0)
— (a]100) + b]011)) 1) ]0)

It will be seen that the first ancilla qubit becomes entangléd the encoded state briefly
and then becomes unentangled. At this point we can make aume@asnt of the ancilla
without disturbing the rest of the encoded state. The dolids indicate classical bits.
We can then perform a correction operation based on the megasut of ancilla qubits.
The value measured is usually called the syndrome.

The important thing to notice is that if we have an error thendodespace is taken to
an orthogonal subspace Gf", in the example considered it is the space spannddoy
and|011). On the other hand consider an error that flips all the quiitss error takes
|000) to [111) and vice versa. Its action @p is to merely permute the basis vectors. Since
it takes valid codevectors to valid codevectors, it caneald&tected. Finally, let us consider
an error which has no classical analogue. If we haflexror on the first two qubits, then
it would take|000) to |000) and|111) to [111). So a nontrivial error can act trivially on the
codespace. We consider such errors to be harmless. Thsug\weegeneral principle for an

error to be detectable. We shall make use of this lemma kdpecially in Chapters lll, V.

Lemma I.1 ( [95]). Given a quantum codé), with projector P, and |«) and |3) two
orthogonal vectors ir§). An error E is detectable if and only ifo| E'|3) = A\g (o] E|3),
where\g depends only oy. Alternatively, an error is detectable if and onlyRfE P =

ApP.

Given a setof error§Ey, Es, . .., E; } that are detectable lfy, their linear span is also

detectable by). The subspac€ induces a decomposition 6. Detectable errors take
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the subspace one of the orthogonal subspaces, while utelgdeeerrors také) to itself.

C. Classical Coding Theory

In this section we discuss some of the relevant aspects sdicll codes setting the stage
for our work on quantum error correction. In view of vastnetshe subject, the reader
is recommended standard textbooks in the field such as [46100] for a comprehensive
treatment of the field.

Let F, denote a finite field withy elements; we have = p™ for some primep. If

r = (v1,...,7,) € Fy, then we denote the Hamming weightoés
wt(z) = [{z; # 0}, (2.11)

i.e, it is the number of nonzero coordinatesof We say that a subsét C F is an
additive codef for any x,y in C, xz + y is also inC. Additive codes play an important
role in quantum error correction. If in addition to being de, C also satisfies.c € C
foranya € F, andc € C, thenC is said to be arf,-linear code. Such codes often have
simpler encoding and decoding schemes while being tractalbdérms of construction and

analysis. Theninimum distancef a setC' C I, is defined as

wt(C) = :{r;leré{wt(a: -y} (2.12)

7y
The (minimum) distance of a code is indicative of the errarecting capabilities of the

code. IfC' is an additive code, its distance is given by

wt(C) = or;?cienc wt(c). (2.13)

A classical(n, K,d), codeC' C Fy is subset offy of size|C| = K and distance

d = wt(C). If |C| = ¢*, then we denote it byn, k, d],. If C is alsoF-linear code, then
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C'is ak-dimensional subspace Bf. Linear codes are often described by giving a basis of
codewords in the form a matrix, often called as the generastrix. For example, consider

the[7, 4, 3], Hamming code with the generator matrix

10001 10
01001 01

e}

01 0j0 11
00011 11

It consists of all the linear combinations of the rowsafWhen the generator matrix is in
the form[/| P| we say that it is in the standard form. We define the Euclideaariproduct

between two codewords y € I as

r-y = l’lyl—i""-f-xnynzzxiyi- (2.14)
=1
The Euclidean inner product enables us to define a dual codedéfined as
Ct={z€F,|z-c=0forallce C}. (2.15)

This is also called as the Euclidean duatofThe dual code is itself a linear code with its
own generator matri¥/. A generator matrix o’ is also called a parity check matrix for

C'. For the example just considered, a parity check matrixvergby

110 1|1 0O
H=11011(010
01 11{0 01

When the generator matrix f@r is given in the standard forid,| P], a parity check matrix
is easily obtained as- P*|I,,_;]. One important relation between the generator matrix and

the parity check matrix is thaf 4* = 0. When a cod&” C C*, we say that is a self-
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orthogonal code. 1€ = C*, then we say it is a self-dual code. In the context of quantum
error correcting codes, dual codes and self-orthogona<pthy a much more significant
role than in the classical case. Additionally, we encoufaiemore general notions of inner

products.
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CHAPTER IlI

THEORY OF NONBINARY STABILIZER CODES

As mentioned earlier, quantum codes were developed to naakietblerant quantum com-
putation possible. The most widely studied class of quantaror-correcting codes are
binary stabilizer codes, see [14,15, 26, 34, 36,41-44318( 61,63, 64,66, 68,69, 72,84,
85,87,108,127,142,144-147,151, 154] and, in partictharseminal works [35,59]. An
appealing aspect of binary stabilizer codes is that thast kaxks to classical coding theory
that facilitate the construction of good codes. More regesbme results were generalized
to the case of nonbinary stabilizer codes [1,10,11,28 %3, 54,62,71,73,86,102,109,
126,132,137,138], but the theory is not nearly as compkete the binary case.

One would naturally ask why study nonbinary codes? Theratdesast three reasons
for our interest in nonbinary codes. The first reason is theeg#ization is a nontrivial
mathematical problem that is of interest in itself. Resultdcl are considerably easy
to prove in the binary case turn out be much more formidald@irang the use of ele-
gant mathematical techniques to solve the problems. Thendaeason is a practical one
and motivated by the behavior of classical codes. Many gtaskical codes like Reed-
Solomon codes are nonbinary codes. Algebraic geometriescththt were the first shown
to beat the Gilbert-Varshamov bound were once again nonpowles. Even in the case
LDPC codes it has been shown that increasing the alphalgeinsmoves the performance
albeit at the expense of complexity. As we shall see the dosaections between the clas-
sical and quantum codes tempt the conclusion that perhapwould expect to find good
classes of quantum codes over a larger alphabet. Thirdtg often many implementations

*(©2006 IEEE. Reprinted in part, with permission, from A. Ketkar Klappenecker,

S. Kumar and P. K. Sarvepalli, “Nonbinary stabilizer codesrdinite fields”.IEEE Trans.
Inform. Theoryvol. 52, no. 11, pp. 4892-4914, 2006.
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naturally allow for a multilevel quantum system. These &xtrodes are usually ignored;
but lately they have received interest, see [23, 30, 46,168,4nd references therein. Addi-
tionally, as shown in [130], if properly exploited, this ckead to efficient implementation
of gates. All these reasons motivate our investigation®abmary quantum codes.

This chapter has two primary goals. On one hand we provideiaweof the theory
of stabilizer codes and on the other we also extend and demeeraany of the results.
This chapter is structured as follows. We recall the basiagles of nonbinary stabilizer
codes over finite fields in Section A. In Section B, we introdadgalois theory for quan-
tum error-correcting codes. The original theory developgdvariste Galois relates field
extensions to groups. Oystein Ore derived a significantlyengeneral theory for pairs of
lattices [116]. We use this framework and set up a Galoisespondence between quan-
tum error-correcting codes and groups. This theory showsdumne properties of general
quantum codes, such as bounds on the minimum distance, cdedoeed from results
about stabilizer codes.

In Section C, we recall that stabilizer codes over a finite figldorrespond to additive
codes ovelif', that are self-orthogonal with respect to a trace-symgdotim [11]. We
also establish the correspondence to additive codesyvehat are self-orthogonal with
respect to a trace-alternating form; remarkably, thisdesnstruction had been missing in
the literature, in spite of the fact that it is a generalizatf the famou&',-codes [35].

The MacWilliams relations for weight enumerators of stabil codes are particularly
easy to prove, as we show in Section D. We then derive uppdoamd bounds on the min-
imum distance of the best possible stabilizer codes in @eé&i Section F details methods
to construct new methods to construct quantum codes frostiggiquantum codes. Unlike
classical codes, puncturing quantum codes is a relativalyptex task. So we include a
generalization of the puncturing theory introduced by Rénadditive codes that are not

necessarily pure. In a later chapter we show how to apply it.
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Apart from the basics of quantum computing, we recommenfidB8 [61] for back-
ground on binary stabilizer codes, in addition to books @ssical coding theory, such
as [76,104,107]. The general theory of quantum codes isiskgd in [95], and we assume
that the reader is familiar with the notion of a detectabtereas introduced there.

Notations. We assume throughout this chapter thatdenotes a finite field of char-
acteristicp; in particular,q always denotes a power of a primeThe trace function from
F,~ to F, is defined asr,m/,(r) = >1, «7"; we may omit the subscripts &, is the
prime field. If G is a group, then we denote 8%(G) the center of7. If S C G, then we
denote byC(.S) the centralizer of in G. We write H < G to express the fact tha&f is a
subgroup of5. The tracelr(M ) of a square matrid/ is the sum of the diagonal elements

of M.

A. Stabilizer Codes

Let C? be ag-dimensional complex vector space representing the stheguantum me-
chanical system. We denote hy) the vectors of a distinguished orthonormal basi€f
where the labels range over the elements of a finite fidfg with ¢ elements. A quantum
error-correcting codé) is a K-dimensional subspace 6f" = C? @ - - - ® C4.

We need to select an appropriate error model so that we casungethe performance
of a code. We simplify matters by choosing a ba$jsof the vector space of complex
q" X ¢" matrices to represent a discrete set of errors. A stabitiede is defined as the

joint eigenspace of a subset&f, so the error operators play a crucial role.
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1. Error Bases

Let « andb be elements of the finite fielll,. We define the unitary operato’s(a) and
Z(b) onC? by
X(a)|z) = |z +a),  Z()|x) =" |z),

wheretr denotes the trace operation from the extension figltb the prime fieldF,, and
w = exp(2mi/p) is a primitivepth root of unity.

We form the se€ = {X(a)Z(b)|a,b € F,} of error operators. The s€thas some
interesting properties, namely (a) it contains the idgntatrix, (b) the product of two
matrices in€ is a scalar multiple of another elementdnand (c) the trac8r(A'B) = 0
for distinct elementst, B of £. A finite set of¢? unitary matrices that satisfy the properties
(@), (b), and (c) is called mice error basissee [93].

The seft€ of error operators forms a basis of the set of complexq matrices due to
property (c). We include a proof thétis a nice error basis, because parts of our argument

will be of independent interest in the subsequent sections.
Lemmallll.1. The se€ = {X(a)Z(b)|a,b € F,} is a nice error basis ort“.

Proof. The matrix X (0)Z(0) is the identity matrix, so property (a) holds. We also have
W) X (a)Z(b) = Z(b)X (a), which implies that the product of two error operators is
given by

X(a)Z(b) X(d)ZV) = ™) X (a + a)Z(b+ V). (3.1)

This is a scalar multiple of an operatordinhence property (b) holds.
Suppose that the error operators are of the fdrm X (a)Z(b) andB = X (a)Z (V)
for somea, b, b’ € F,. Then

Tr(ATB) = Te(Z(V — b)) = Y | w702,

z€F,
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The mapr — (=) js an additive character &,. The sum of all character values is
0 unless the character is trivial; thig;( AT B) = 0 whenb' # b.

On the other hand, il = X (a)Z(b) andB = X (a')Z(V') are two error operators
satisfyinga # o/, then the diagonal elements of the matdxB = Z(—b)X (¢’ — a)Z (V')
are 0, which implieslr(A'B) = 0. Thus, wheneverl and B are distinct element of,

thenTr(A'B) = 0, which proves (c). O

Example 111.2. We give an explicit construction of a nice error basis wjtk= 4 levels.
The finite fieldF, consists of the elements = {0, 1, o, @}. We denote the four standard
basis vectors of the complex vector spé@tieby |0),|1),|«), and|@). Let1, denote the

2 x 2 identity matrix,c, = (9}), ando, = (§ _7). Then

X(O i12®127 X(]. ].Q(X)O'x7

) )
a)=0, 1y, X(a)
Z(1)

)
a)=0,R0,, Z@a)=1®o0,.

Oz Q Oy,

0, ® 12;

We see that this nice error basis is obtained by tensoringPthéi basis, a nice error basis

onC2. The next lemma shows that this is a general design prinaiplei€e error bases.

Lemma lll.3. If £ and&, are nice error bases, then
g:{E1®E2|E1 Egl,EQ 652}

is a nice error basis as well.

The proof of this observation follows directly from the déions.

Leta = (ai,...,a,) € Fy. We write X(a) = X(a1) ® --- ® X(a,) andZ(a) =
Z(a) ® --- ® Z(ay) for the tensor products of error operators. Our aim is to provide
an error model that conveniently represents errors actioglly on one quantum system.

Using the new notations, we can easily formulate this model.
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Corollary 111.4. The set,, = {X(a)Z(b) |a,b € I} } is anice error basis on the complex

vector spac&?".

Remark.Several authors have used an error basis that is equivalentr tdefinition
of &£,, see [11, 54,86, 109]. We have defined the operdtdy in a slightly different way,
so that the properties relevant for the design of stabilibeles become more transparent.
In particular, we can avoid an intermediate step that regugnsoring x p—matrices, and

that allows us to obtain the trace-symplectic form direcge Lemma III.5.

2. Stabilizer Codes

Let &, denote the group generated by the matrices of the nice eaisd,. It follows

from equation (3.1) that
Gn={wX(a)Z(b)|a,beF,,ccF,}. (3.2)

Note thatG,, is a finite group of ordepq®”. We callG,, the error groupassociated with the
nice error basig,.
A stabilizer code) is a non-zero subspace ©f" that satisfies

Q=(){veC”|Ev=0} (3.3)

EeS

for some subgroup’ of G,,. In other words() is the joint eigenvalué-eigenspace of a
subgroups of the error groug,,.

Remark A crucial property of a stabilizer code is that it contaaisjoint eigenvectors
of S with eigenvalue 1, as equation (3.3) indicates. If the cadsmaller and does not

exhaust all joint eigenvectors 6fwith eigenvalue 1, then it is not a stabilizer code $or
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3. Minimum Distance

The error correction and detection capabilities of a quantuaror-correcting codé) are
the most crucial aspects of the code. Recall that a quantuergiglable to detect an error
E in the unitary groug/(¢™) if and only if the condition(c;|E|c;) = Ag{c1|c2) holds for
all c1,¢co € Q, see [95].

It turns out that a stabilizer code with stabilizerS can detect all errors itr,, that
are scalar multiples of elements.$hor that do not commute with some elementSfsee
Lemma Ill.11. In particular, an error i, that is not detectable has to commute with all

elements of the stabilizer. Commuting element&jnare characterized as follows:

Lemma IIl.5. Two elementsy = wX(a)Z(b) and E' = w®X(a’)Z(b’) of the error

groupG,, satisfy the relation
EE/ — wtr(ba’—b’-a)E/E.

In particular, the elementgs and £’ commute if and only if the trace symplectic form

tr(b-a’ — b’ - a) vanishes.

Proof. It follows from equation (3.1) thaB E’ = w"®?) X (a +a')Z(b + b') andE'E =
w(®"2) X (a 4 a’)Z(b + b'). Therefore, multiplyings’ £ by the scalaw' 2 ~?"2) yields

EF’, as claimed. ]

We define thesymplectic weightwt of a vector(a|b) in F." as

swt((a|b)) = [{ k| (ax, br) # (0,0)}].

The weightw(F) of an elementl = w°X(a)Z(b) in the error groups,, is defined to
be the number of nonidentity tensor component&ly) = swt((alb)). In particular, the

weight of a scalar multiple of the identity matrix is by defion zero.
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A quantum code&) hasminimum distancel if and only if it can detect all errors in
G, of weight less thanl, but cannot detect some error of weightWe say that) is an
((n, K, d)), code if and only ifQ is a K-dimensional subspace 6" that has minimum
distanced. An ((n,q",d)), code is also called afin, k, d]], code. We remark that some
authors are more restrictive and use the bracket notatstrigustabilizer codes.

We say that a quantum codgis pure tot if and only if its stabilizer grougs does
not contain non-scalar matrices of weight less thah quantum code is called pure if and
only if it is pure to its minimum distance. As in [35], we alwsagissume that g, 0, d],

code has to be pure.

Remarks.(a) If a quantum error-correcting code can detect asef errors, then it
can detect all errors in the linear sparZaf(b) A code of minimum distancé can correct

all errors of weight = [ (d — 1)/2] or less.

B. Galois Connection

We want to clarify the relation between stabilizer codes aage general quantum codes
before we proceed further. Let us denote®yhe set of all subspaces 6f". The setQ
is partially ordered by the inclusion relation. Any two elemis of Q have a least upper

bound and a greatest lower bound with respect to the inclusiation, namely

sup{Q, Q' =Q+ Q" and inf{Q,Q}=QnNQ".

Therefore,Q is a complete (order) lattice. An element of this lattice iguantum error-
correcting code or is equal to the vector spéte

Let G denote the lattice of subgroups of the error gragp We will introduce two
order-reversing maps betwegrand Q that establish a Galois connection. We will see that

stabilizer codes are distinguished element®dhat remain the same when mapped to the
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lattice G and back.
Let us define a mapix from the latticeG of subgroups to the lattic@ of subspaces
that associates to a growjits joint eigenspace with eigenvalue 1,
Fix(S) = () {v € C""| Ev = v}, (3.4)
EeS
We define for the reverse direction a magmb from the latticeQ to the latticeG that

associates to a quantum cagets stabilizer grouptab(Q),
Stab(Q) = {F € G, | Ev =vforallv € Q}. (3.5)
We obtain four direct consequences of the definitions (31d)(8.5):
G1. If Q; C Q- are subspaces @f", thenStab(Q) < Stab(Q).
G2. If S; < S, are subgroups df,,, thenFix(S;) < Fix(S;).
G3. A subspace) of C?" satisfies) C Fix(Stab(Q)).
G4. A subgroupS of G, satisfiesS < Stab(Fix(5)).

The first two properties establish tHaitk andStab are order-reversing maps. The exten-
sion properties G3 and G4 establish that andStab form a Galois connection, see [29,
page 56]. The general theory of Galois connections estedsjsamong other results, that
Fix(S) = Fix(Stab(Fix(5))) andStab(Q) = Stab(Fix(Stab(Q))) holds for allS in G
and allQ in Q.

A subspace) of the vector spac€¢" satisfying G3 with equality is called @losed
subspaceand a subgroup of the error group’,, satisfying G4 with equality is called
a closed subgroupWe record the main result of abstract Galois theory in thiewang

proposition.
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Proposition 111.6. The closed subspaces of the vector sigzi¢eorm a complete sublattice
Q. of the latticeQ. The closed subgroups 6f,, form a complete sublattigg. of the lattice

G that is dual isomorphic to the lattic@,..

Proof. This result holds for any Galois connection, see Theorerm1e book by Birk-

hoff [29, page 56]. O

We need to characterize the closed subspaces and subgoaup&e this proposition

useful. We begin with the closed subspaces because thisies.ea
Lemmallll.7. A closed subspace is a stabilizer code or is 0-dimensional.

Proof. By definition, a closed subspacéesatisfies
Q =TFix(Stab(Q)) = [ {veC”|Ev=0},
EeStab(Q)

hence is a stabilizer code ¢0}. O

Lemma I11.8. If @ is a nonzero subspace @Ff", then its stabilizerS = Stab(Q) is an

abelian group satisfying N Z(G,,) = {1}.

Proof. Suppose thall andE’ are non-commuting elements®f= Stab((). By Lemmallll.5,
we haveEE' = w*E'E for somew* # 1. A nonzero vector in (Q would have to satisfy
v = EE'v = w*E'Ev = w*v, contradiction. Therefore§ is an abelian group. The stabi-

lizer cannot contain any element1, unless: = 0, which proves the second assertior]

Lemmalll.9. Suppose that is the stabilizer of a vector spacg An orthogonal projector

onto the joint eigenspadgix(S) is given by

1
P:EZE.

EesS
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Proof. A vectorv in Fix(S) satisfiesPv = v, henceFix(S) is contained in the image @f.
Conversely, note thdf P = P holds for allE in S, hence any vector in the image Bfis an
eigenvector with eigenvalueof all error operatorg’ in S. ThereforeFix(S) = image P.
The operatol” is idempotent, because
=15 Z EP = Z P=P
EeS EGS
holds. The invers&' of E is contained in the groug, henceP’ = P. Therefore,P is an

orthogonal projector ontBix(S). O

Remark.If S is a nonabelian subgroup of the groGp, then it necessarily contains
the centerZ(G,,) of G,,; it follows that P is equal to the all-zero matrix. Note that the

image of P has dimensiofir(P) = ¢"/|5]|.

Lemma I11.10. A subgroups of G, is closed if and only i is an abelian subgroup that

satisfiesS N Z(G,,) = {1} orif S'is equal toG,,.

Proof. Suppose that is a closed subgroup @f,. The vector spac€& = Fix(S) is, by
definition, either a stabilizer code or a 0-dimensional @espace. We havétab({0}) =
G,. Furthermore, ifQ # {0}, thenStab(Q) = S is an abelian group satisfying N
Z(G,) = {1}, by Lemma lll.8.

Conversely, suppose théitis an abelian subgroup 6f, such thats trivially intersects
the centerZ(G,). Let S* = Stab(Fix(S5)). We haveFix(S*) = Fix(Stab(Fix(S5))) =
Fix(S), because this holds for any pair of maps that form a Galois ection. It follows

from Lemma [11.9 that

"S*| = Tr
/15" (|5*|

SinceS < S*, this shows that = S* = Stab(Fix(5)); hence,S is a closed subgroup of

> E) Tr <|5| ZE) = ¢"/|S|.

EeS* EcS

G,. We note that'ix(G, ) = {0}, so thatG,, = Stab(Fix(G,,)) is closed. O
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The stabilizer codes are easier to study than arbitrarytgoanodes, as we will see
in the subsequent sections. If we know the error correctagrabilities of stabilizer codes,
then we sometimes get a lower bound on the minimum distanae afbitrary code by the

following simple observation:

Fact. An arbitrary quantum codé€ is contained in the larger stabilizer code given by
Q* = Fix(Stab(Q®)). If an errorE' can be detected b@*, then it can be detected lgy as
well. Therefore, if the stabilizer codg* has minimum distancé, then the quantum code

(@ has at least minimum distande

C. Additive Codes

The previous section explored the relation between stabilcodes and other quantum
codes. We show next how stabilizer codes are related toicédhs®des (namely, additive
codes oveff, or F2). The classical codes allow us to characterize the errat, ithat are
detectable by the stabilizer code.

In the binary case, the problem of finding stabilizer coddengthn had been trans-
lated into (a) finding binary classical codes of lengththat are self-orthogonal with re-
spect to a symplectic inner product or (b) finding classiodes of lengtw overlF, that are
self-orthogonal with respect to a trace-inner product[38f The approach (a) was gener-
alized to prime alphabets by Rains [126] and to prime-powgnabets by Ashikhmin and
Knill [11]. We simplify the arguments and include a full pfoaf this connection. There
were many attempts to generalize the approach (b) to nonbaiphabets, but without
complete success (but see for instance [86, 109, 126] fabte@partial solutions). We fill
this gap and introduce a natural generalization of (b). Harrhore, we discuss simpler
constructions for linear codes. Before exploring these eotions to classical codes, we

first recall some facts about detectable errors.
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If S'is a subgroup of+,,, thenC¢, (S) denotes centralizer & in G,,,
Cq,(S)={E €G,|EFF =FEforall F € S},

andSZ(G,,) denotes the group generated $yand the centeZ (G,,). We first recall the
following characterization of detectable errors (see H4¢; the interested reader can find

a more general approach in [88, 92]).

Lemma Ill.11. Suppose thab < G, is the stabilizer group of a stabilizer codg of
dimensiondim ¢Q > 1. An error E' in GG,, is detectable by the quantum co@ef and only

if either £ is an element o6 Z(G,,) or E does not belong to the centraliz€t;, (5).

Proof. An elementFE in SZ(G,,) is a scalar multiple of a stabilizer; thus, it acts by multi-
plication with a scalahz on Q. It follows that ' is a detectable error.

Suppose now thak is an error inGG,, that does not commute with some elemént
of the stabilizers; it follows that EF' = AF'E for some complex numbex # 1, see

Lemma Il1.5. All vectorsu andv in  satisfy the condition
(ul E|v) = (u| EF |[v) = A (u| FE [v) = A (u| E'|v); (3.6)

hence(u| E'|v) = 0. It follows that the erroi is detectable.

Finally, suppose thak is an element o€, (S) \ SZ(G,). Seeking a contradiction,
we assume thak is detectable; this implies that there exists a complexascal such
that Ev = A\go for all v in Q. The scalar\g cannot be zero becauge commutes with
the elements o, so EP = PEP = A\gP and clearlyEP # 0. Let S* denote the
abelian group generated By' £ and by the elements &f. The joint eigenspace of*
with eigenvalue 1 has dimensiafi/|S*| < dim@ = ¢"/|S|. This implies that not all

vectors inQ remain invariant undex;' £, in contradiction to the detectability ¢f. [

Corollary 111.12. If a stabilizer code?) has minimum distancé and is pure ta, then all
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errors E € G, with 1 < wt(E) < min{t, d} satisfy(u|E|v) = 0 for all v andv in Q.

Proof. By assumption, the weight df is less than the minimum distance, so the error is
detectable. HoweveF; is not an element of (G,,) S, since the code is pure to> wt(E).

Therefore,F does not belong t6’;,, (S), and the claim follows from equation (3.6). [

1. Codes oveF,

Lemma Ill.11 characterizes the error detection capadditf a stabilizer code with stabi-
lizer groupS in terms of the groups'Z(G,,) andCq, (S). The phase information of an
element inGG,, is not relevant for questions concerning the detectapsgityce an element
E of G, is detectable if and only ib £ is detectable. Thus, if we associate with an element
w‘X(a)Z(b) of G, an elementa|b) of F2", then the grougsZ(G,,) is mapped to the

additive code
C ={(alb)|wX(a)Z(b) € SZ(G,)} = SZ(G,)/Z(G,).

To describe the image of the centralizer, we need the nofiartace-symplectic form of

two vectors(a|b) and(a’[b’) in F>",
((afb) [ (a'|b"))s = trg/p(b-a’ — b - a).

The centralizel’;, (S) contains all elements @f,, that commute with each element 8f
thus, by Lemma 1Il.5C¢, (S) is mapped onto the trace-symplectic dual cotfe of the
codeC,

C = {(aPb) |w*X(a)Z(b) € Cq, (5)}.

The connection between these classical codes and theatabibde is made precise in the
next theorem. This theorem is essentially contained in§ht]generalizes the well-known

connection to symplectic codes [35, 59] of the binary case.
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Theorem I11.13. An((n, K, d)), stabilizer code exists if and only if there exists an additiv
codeC < F2" of size|C| = ¢"/K such thatC' < C*+ andswt(C*\ C) = dif K > 1
(andswt(C+s) = dif K = 1).

Proof. Suppose that af(n, K, d)), stabilizer codey exists. This implies that there ex-
ists a closed subgrouf of G, of order|S| = ¢"/K such thatQ) = Fix(S). The
group S is abelian and satisfie$ N Z(G,,) = 1, by Lemma 111.10. The quotient’ =
SZ(Gy)/Z(G,) is an additive subgroup df?" such thalC| = |S| = ¢"/K. We have
Cts = Cg,(5)/Z(G,) by Lemma Ill.5. Sinces is an abelian groug; Z(G,,) < Cg, (S),
henceC < C*+. Recall that the weight of an elementX (a)Z(b) in G, is equal to
swt(a|b). If K = 1, thenq is a pure quantum code, thus(Cg, (S)) = swt(Cts) = d.
If K > 1, then the elements @f, (S) \ SZ(G,,) have at least weight by Lemma Il.11,
so thatswt(C*+ \ C') = d.

Conversely, suppose thét is an additive subcode df?" such that|C| = ¢"/K,

C < C*s, andswt(C+=\ C) =dif K > 1 (andswt(C*) = dif K =1). Let
N = {w*X(a)Z(b)|c € F, and(ab) € C'}.

Notice thatV is an abelian normal subgroup 6f,, because it is the pre-image 6f =

N/Z(G,). Choose a charactgrof N such thaty(w°1l) = w°. Then

1 -1
Py = W ZX(E )E

is an orthogonal projector onto a vector spagdecause’y is an idempotent in the group

ring C[G,,], see [88, Theorem 1]. We have
dim @ = Tr Py = |Z(G,)|¢"/IN| = ¢"/|C| = K.

Each coset ofV moduloZ(G,,) contains exactly one matrik such thatFv = v for all v



39

in@. SetS ={F € N|Ev =vforallv € Q}. ThenS is an abelian subgroup @f,
of order|S| = |C| = ¢"/K. We have = Fix(S), becaus&) is clearly a subspace of
Fix(S), butdim @ = ¢"/|S| = K. An elemenw‘X (a)Z(b) in Cg,(S) \ SZ(G,) cannot
have weight less tha, because this would imply théa|b) € C*: \ C has weight less
thand, which is impossible. By the same tokenAf = 1, then all nonidentity elements
of the centralizelC, (S) must have weight! or higher. Therefore() is an((n, K, d)),

stabilizer code. ]

The results of this paragraph were established by AshikfamthKnill [11]. It is in-
structive to compare the two approaches, since their definif the error basis is different

(but equivalent).

2. Codes oveF

A drawback of the codes in the previous paragraph is thatytmpkectic weight is some-
what unusual. In the binary case, reference [35] providezh@edy by relating binary sta-
bilizer codes to additive codes oV, allowing the use of the familiar Hamming weight.
Somewhat surprisingly, the corresponding concept wasaorptetely generalized tb 2,
although [86, 109] and [126] paved the way to our approactterAdn initial circulation
of the results in this chapter, Gottesman drew our atteritti@nother interesting approach
that was initiated by Barnum, see [21,22], where a sufficientdion for the existence of

stabilizer codes is established using a symplectic form.

Let (3, 57) denote a normal basis &f. overF,. We define a trace-alternating form

of two vectorsy andw in Fe by

(V|w)q = trep ( (3.7)

U.wq_UQ.w)

P =

We note that the argument of the trace is invariant under tdeiSSautomorphism — x4,
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so itis indeed an element &, which shows that (3.7) is well-defined.

The trace-alternating form is bi-additive, that {8, + v|w), = (u|w), + (v|w), and
(ulv +w), = (ulv), + (ufw), holds for allu, v,w € Fp,. Itis F,-linear, but nof,-linear
unlessg = p and it is alternating in the sense thafu), = 0 holds for allu € Fy,. We
write u L ,w if and only if (u|w), = 0 holds.

At this point it might be helpful to see the form the tracesattating form takes in the
binary case. A normal basis fi; overF, is given by{w, w?}. Sincew? + w + 1 = 0, the

trace-alternating form simplifies to

veow? 4+ 0w
wt + w?

(v|w)q = tra)s ( ) =v- w4+ 0! w, (3.8)

where we have used the facts thdt= 1 andz = —z overF,.
We define a bijective map that takes an elemeiia|b) of the vector spacg?:" to a
vector inF . by settingp((alb)) = fa+ (%b. The mapy is isometric in the sense that the

symplectic weight ofa|b) is equal to the Hamming weight gf (a|b)).

Lemma lll.14. Suppose that andd are two vectors oﬂ?g”. Then

(c[d)s = (¢(c)| ¢(d))a-

In particular, c andd are orthogonal with respect to the trace-symplectic fornmid @anly

if ¢(c) andé(d) are orthogonal with respect to the trace-alternating form.
Proof. Letc = (a|b) andd = (a’|b’). We calculate
o(c) - p(d)?=p"""a-a' + 3*a-b' + % ba + b b,

¢(C)q . gb(d) — 6q+1 a-a’ + 62qa b + 62 b-a’ + 6q+1 b-b.
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Therefore, the trace-alternating formqfc) and(d) is given by

(B(O)|o(d))e = trq/p<¢<0>-¢<6;);q—_ gg;)q.qb(d))’

= tryp(b-a’'—a-b'),

which is precisely the trace-symplectic fofm| d). O

Theorem I11.15. An((n, K, d)), stabilizer code exists if and only if there exists an additiv
subcodeD of F7, of cardinality| D| = ¢"/K such thatD < D+ andwt(D*e\ D) = d if

K > 1 (andwt(D+te) = dif K = 1).

Proof. Theorem I11.13 shows that aitn, K, d)), stabilizer code exists if and only if there
exists a cod€' < F2" with |C| = ¢"/K, C < C*+, andswt(C* \ C) = dif K > 1 (and
swt(C+s) = dif K = 1). We obtain the statement of the theorem by applying the étgm
P. O

We obtain the following convenient condition for the existe of a stabilizer code as

a direct consequence of the previous theorem.

Corollary 111.16. If there exists a classicah, k], additive codeD < F . such thatD <
D+e anddte = wt(D*), then there exists afin, n — 2k, > d*]], stabilizer code that is

pure tod*-.

Remarkltis not necessary to use a normal basis in the definitioneoistbmetryy and
the trace-alternating form. Alternatively, we could haged a polynomial basid, ) of
IF2/IF,. In that case, one can define the isometiy ¢((a|b)) = a+~b, and a compatible
trace-alternating form by

(0| W) = try) (

v - wq _ qu . w)
vy = '
One can check that the statement of Lemma 1l1.14 is satisbiethis choice as well. Other

variations on this theme are possible.
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3. Classical Codes

Self-orthogonal codes with respect to the trace-altemgafiorm are not often studied in
classical coding theory; more common are codes which afeodBbgonal with respect
to a euclidean or hermitian inner product. We relate theseeauts of orthogonality as
follows. Consider the hermitian inner product - y of two vectorsx andy in Fle; we

write x |, y if and only if x? - y = 0 holds.

Lemma I11.17. If two vectorsx andy in Fre satisfyx 1, y, then they satisfx L ,y. In

particular, if D <T7,, thenD+» < D+e.

Proof. It follows from x? - y = 0 thatx - y? = 0 holds, whence

X - yq —x9. y
(XIy)a = trgp (W) =0,

as claimed. O

Therefore, any self-orthogonal code with respect to thenktem inner product is self-
orthogonal with respect to the trace-alternating form. éneyal, the two dual spacés*
andD-- are not the same. However [if happens to b& :-linear, then the two dual spaces

coincide.
Lemma IIl.18. Suppose thab < F7, is F.-linear, thenD+» = D+,

Proof. Let ¢ = p™, p prime. If D is a k-dimensional subspace 61;2, then D*» is an
(n — k)-dimensional subspace Bf.. We can also view) as a2mk-dimensional subspace
of F2"", and D+ as a2m(n — k)-dimensional subspace Bf"". SinceD-* C D+« and

the cardinalities oD+ and D+* are the same, we can conclude thet = D1, O

Corollary 111.19 (Hermitian Construction)If there exists aff 2-linear [n, k, d] - codeB

such thatB+» < B, then there exists alfn, 2k — n, > d]], quantum code that is pure tb
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Proof. The hermitian inner product is nondegenerate, so the hamlual of the code
D := B*nis B. The[n,n — k]2 codeD is F.-linear, soD*» = D+ by Lemma I11.18,

and the claim follows from Corollary 111.16. [

So it suffices to consider hermitian forms in the cas& pflinear codes. We have to
use the slightly more cumbersome trace-alternating forthercase of additive codes that
are not linear oveF .

An elegant and surprisingly simple construction of quantodes was introduced
in 1996 by Calderbank and Shor [36] and by Steane [145]. The @88 construction

provides perhaps the most direct link to classical codiegi

Lemmallll.20 (CSS Code Construction)etC; andC5, denote two classical linear codes
with parametersn, ki, d;], and[n, ks, ds], such thatCs- < Cy. Then there exists [, ki +
ko — n, d]], stabilizer code with minimum distande= min{wt(c) | c € (C; \ C5) U (Ca \

C{H)} that is pure tomin{d;, d}.

Proof. LetC = Cf- x O3 < F2". If (¢1 | ¢2) and(c} | ¢,) are two elements af', then we
observe that

tr(cg-c; — ¢y cp) =tr(0—0) =0.

Therefore,C < C*s. Furthermore, the trace-symplectic dual@fcontainsC, x (1,
and a dimensionality argument shows that: = C, x C,. Since the cartesian product
Cit x Cf hasg?—(khi+k2) elements, the stabilizer code has dimensjbiri*2— by Theo-
rem I11.13. The claim about the minimum distance and puritthe code is obvious from

the construction. ]

Corollary 111.21 (Euclidean Construction)if C' is a classical linearn, k, d], code con-
taining its dual,C+ < C, then there exists alfin, 2k —n, > dJ],, stabilizer code that is pure

tod.
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D. Weight Enumerators

The Shor-Laflamme weight enumerators of an arbit@ny £)), quantum code) with

orthogonal projectoP are defined by the polynomials

1
K2

DAL, with AS = > T(E'P)Tx(EP),
1=0

EeGn
wt(E)=1

and

EeGn
wt(E)=1

BS¢ with BS' = — Tr(ETPEP
Z I )

see [141] for the binary case. The definition given here diffeom the original definition
by Shor and Laflamme by a normalization facfgrwhich is due to the sums running
over the full error groug~,,. The theory of Shor-Laflamme weight enumerators [141]
was considerably extended by Rains in [124, 125, 128, 129]thie1section we give a
simple proof for the relation between these weight enurnesatnd the symplectic weight
enumerators of the additive codes associated with thdigeizode.

The weightsA?" and B have a nice combinatorial interpretation in the case of sta-
bilizer codes. Indeed, lef' < ;" denote the additive code associated with the stabi-
lizer code@. Define the symplectic weights ¢f and C++ respectively byA; = |{c €
C|swt(c) = i}| and B; = |{c € C*+|swt(c) = i}|. The next lemma belongs to the

folklore of stabilizer codes.

Lemma lll.22. The Shor-Laflamme weights of gm, X)), stabilizer cod&) are multiples

of the symplectic weights of the associated additive catiasd C*+; more precisely,
APt =pA; and B =pB; for 0<i<n,

wherep is the characteristic of the fielH,.



45

Proof. Recall that
1
pP= B > s

for the stabilizer group of Q. The tracelr(EP) is nonzero if and only if2" is an element
of SZ(G,). If Et € SZ(G,,), thenTr(ETP) Tr(EP) = (¢"/|S])* = K?. Therefore AS*
counts the elements i51Z(G,,) of weighti, SOA?" = |Z(G,)| x [{c € C'| swt(c) =i}| =
PA;.

If £ commutes with all elements ifi, thenTr(ETPEP) = Tr(P?) = Tr(P) = K.
If £ does not commute with some element%fthenE' is detectable; more precisely, the
proof of Lemma 111.11 shows thaPEP = 0P, henceTr(ETPEP) = 0. Therefore, B

counts the elements ifi;, (S) of weighti, henceBSt = |Z(G,,)| x |{c € C*+

swt(c) =

Shor and Laflamme had been aware of the stabilizer case whgintinoduced their
weight enumerators, so the combinatorial interpretatioth® weights does not appear to
be a coincidence. Recall that the Shor-Laflamme enumeratarbitrary quantum codes
are related by a MacWilliams identity, see [124,141]. Fabgizer codes, we can directly

relate the symplectic weight enumeratorgbandC-+,

n

A(z) :iAizi and B(z) = ZBZ-zi,

=0 =0
using a simple argument that is very much in the spirit of ideBwmcWilliams’ original

proof for euclidean dual codes [106].

Theorem 111.23. LetC' be an additive subcode l’ﬂ‘fj" with symplectic weight enumerator

A(z). Then the symplectic weight enumerator’sf is given by

(14 (?-1)2)" 11—z
Bl =" A<1+<q2—1>z>)'

Proof. Let x be a nontrivial additive character Bf. We define foh € F." a charactey,
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of the additive grou”’ by substituting the trace-symplectic form for the argumathe

charactery, such that
xb(c) = x({c[b)s)-
The charactey, is trivial if and only if b is an element of*+. Therefore, we obtain from

the orthogonality relations of characters that

|IC| forbe Cts,

ZXb(C =

ceC 0 otherwise.

The following relation for polynomials is an immediate cegsence

Z Z swt(b Z swt(b) be = |C|B(z). (3.9)

ceC beIF?" be]F2" ceC
The right hand side is a multiple of the weight enumeratohef¢odeCt:. Let us have
a closer look at the inner sum of the left-hand side. If we egpithe vector € C' in the
formc = (cy,...,¢|dy, ..., d,), and expand the character and its trace-symplectic form,
then we obtain

bEFg" (a1 ..... an‘bl ..... bn)Ean k=1

_ Z H stt(ak|bk)X (tr(dkak — bkck>)
k=1

(a1,..., anlbi,..., bn)E]an =

= H 2Vl (tr(dpag — becy)) -

Recall thaty is a nontrivial character df,,, hence the maguy|b,) — x(tr(drar — brck))

is a nontrivial character df’, for all (c,|d,) # (0/0). Therefore, we can simplify the inner
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sum to

1+ (¢* — 1)z if (ex]di) = (0,0),
Z stt(ak|bk)x (tr(dkak B bkck)) _ (q ) | ( k‘ k) ( )
(ak|by)€F2 -z if (ck|dr) # (0,0).
It follows that
Z Xb(c)zswt(b) _ (1 . Z)swt(c)(l + ((]2 N 1)Z)n—swt(c).
beF2n
Substituting this expression into equation (3.9), we firat th

Bz) = O 3 (o=

ceC beF2n

(1+ (¢° — 1)2)" 1—z ™
€] 2 <1+ (¢* - 1)z>

ceC
B 1+ (¢> —1)2)" 1—2
- c] A(l e 1>z) ’

which proves the claim. ]

The coefficient of:7 in (1 + (¢* — 1)2)"*(1 — 2)® is given by the Krawtchouk poly-
nomial of degreeg in the variabler,
J : xz n—x
o =3 - (0) (577)

Corollary 111.24. Keeping the notation of the previous theorem, we have

1 n
| | =0
Proof. According to the previous theorem, we have

I+ (-2 1—=z
PO = g (re-1m)
1

= ngx(l —2)%(1+ (¢ = 1)2)" ™.

We obtain the result by comparing the coefficientsiofn both sides. O
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The weight enumerators turn out to be very useful in estiaiblgsthe bounds on quan-

tum codes, as we will see in the next section.

E. Bounds

We need some bounds on the achievable minimum distance @rdugqu stabilizer code.
The main results in this section are the generalization eflittear programming bounds
[35], alternative proofs for the nonbinary quantum Singtelbound using a generalization
of the methods given in [12], a proof of the validity of the gtiam Hamming bound for
single error-correcting (degenerate) quantum codes (wdgeneralizes an earlier result by
Gottesman [61, Chapter 7]), a simpler nonconstructive piamdbwer bounds on quantum

codes, and an existence proof of a class of optimal quantulesco

1. Upper Bounds

We shall derive a series of upper bounds for nonbinary stabitodes. The first theorem

yields a bound that is well-suited for computer search.

Theorem I11.25. If an ((n, K, d)), stabilizer code with/{ > 1 exists, then there exists a

solution to the optimization problem: minimiZe?;} A, subject to the constraints
1. Ap=1andA; > 0forall 1 <j <n;
2.) Aj=q"/K;
j=0
K< . .
3. Bj=— Y K;(r)A, holds for allj in the ranged < j < n;
qn r=0

4. A;=B,forall jin0<j<dandA; < B;foralld <j <n;

5. (p — 1) dividesA; for all j in the rangel < j <n.
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Proof. If an ((n, K, d)), Sstabilizer code exists, then the symplectic weight distiin of
the associated additive codésatisfies conditions 1) and 2). For each nonzero codeword
cin C, acis again inC for all o in 7, so 5) holds. Corollary 111.24 shows that 3) holds.

Since the quantum code has minimum distafiaefollows that 4) holds. O

Remark 111.26. If we are interested in bounds fdft. linear codes, then we can replace
condition 5) in the previous theorem by — 1 dividesA; for 1 < j < n. This will even

help in characteristic 2.

The next bound is more convenient when one wants to find booytt&ind. In par-
ticular, any functionf satisfying the constraints of the next theorem will yield seful
bound on the dimension of a stabilizer code. This approachinteoduced by Delsarte for
classical codes [47]. Binary versions of Theorem 111.27 ando@ary 111.28 were proved

by Ashikhmin and Litsyn [12], see also [15].

Theorem 111.27. Let() be an((n, K, d)), stabilizer code of dimensioR' > 1. Suppose

that S is a nonempty subset §f,...,d — 1} and N = {0,...,n}. Let
fl) =) fiKi(x)
1=0
be a polynomial satisfying the conditions

1) f.>O0forall zin S, andf, > 0 otherwise;

i) f(z)<Oforallzin N\ S.

Then

1
K < —max f(x)
qr z€S  f,

Proof. Suppose that' < an is the additive code associated with the stabilizer c@de

If we apply Corollary 111.24 to the trace-symplectic dual exd of the codeC, then we
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obtain

1

z=0

Using this relation, we find that

o

Z fidi < |C*

€S

> A

=0

S (w% 3 m(:c)Bx)
=0

=0

= |C+

n

= ZBx Zfsz(lU)

x=0 =0
By assumption,f(z) = Y I, fi[;(z); thus, we can simplify the latter inequality and
obtain

|OL5

Y A< Buf(a) <Y Buf(x) =Y Auf(x),

€S z€eS z€S
where the last equality follows from the fact that the siabil code has minimum distance

d, meaning thatd, = B, holds for allx in the rangeé) < = < d. We can conclude that

z€eS zeS z

o

which proves the theorem, sinf@:| = ¢"K. O

The previous theorem implies the quantum Singleton boundyeheral, linear pro-
gramming Yyields better bounds, but for short lengths oneacamally find codes meeting

the quantum Singleton bound.

Corollary I11.28 (Quantum Singleton BoundAn ((n, K, d)), stabilizer code with > 1
satisfies

K< qn—2d+2

The binary version of the quantum Singleton bound was firsvgut by Knill and

Laflamme in [95], see also [12, 15], and later generalized bpasing weight enumera-
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tors in [126].
A more interesting application of Theorem 111.27 is to derthe quantum Hamming
bound. The quantum Hamming bound states that any furef’, d)), stabilizer code

satisfies
[(d—1)/2]

> (0)ar-1san (3.10)

=0
see [55,59]. Several researchers have tried to find impaf@liger codes that beat the
quantum Hamming bound. However, Gottesman has shown tiparésingle and double
error-correcting binary quantum codes cannot beat thetgomaklamming bound [61]. In
the same vein, Theorem 111.27 allows us to derive the Hamrbimgnd for arbitrary stabi-
lizer codes, at least when the minimum distance is small.IMé&trate the method for single

error-correcting codes, and note that the same approadtsviardouble error-correcting

codes as well.

Corollary I11.29 (Quantum Hamming BoundAn ((n, K, 3)), stabilizer code with > 1
satisfies

K <q"/(n(¢® — 1) +1).

Proof. Recall that the intersection numbgy of the Hamming association schetfién, ¢°)
is the integep}; = [{z € T, [ d(x, 2) = i,d(y, 2) = j}|, wherex andy are two vectors in
Iy of Hamming distancé(x, y) = k. The intersection numbers are related to Krawtchouk

polynomials by the expression

= a7y K () K () K (),

see [20].

After this preparation, we can proceed to derive the Hamrowghd as a consequence
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of Theorem I11.27. Let

@) = 3 Y KOKROK @),

The triangle inequality implies th@fj = 0 if one of the three arguments exceeds the sum
of the other two; hencef,(z) = 0 for z > 2. The coefficients of the Krawtchouk expansion
f(z) = >0, [;Ki(x) obviously satisfyf; = (Ko(i) + K1(i))* > 0. A straightforward

calculation gives
f(0) =¢*(n(¢® — 1) + 1), fo = (n(¢* — 1) + 1),
fQ1) =g+, fi=(n-1(¢-1))
f(2) = 24", fa=((n=2)(¢> —1) - 1)*.

It follows that

max{f(0)/fo, f(1)/ fr, f(2)/ fo} < ¢/ (n(q” = 1) + 1)

holds for alln > 5. Using Theorem I111.27, we obtain the claim for all> 5. For the

lengthsn < 5, we obtain the claim from the quantum Singleton bound. O

One real disadvantage of Theorem I11.27 is that the numbtarais increase with the
minimum distance and this can lead to cumbersome calcofatidowever, one can derive

more consequences from Theorem 111.27; see, for instat@el1p, 101, 110].

2. Lower Bounds

Feng and Ma have recently shown a quantum version of theicddswer bounds by
Gilbert and Varshamov [55]. We conclude this section byrgjva simple proof for a

weaker version of this result based on a counting argumémhust be remembered that
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these lower bounds are nonconstructive.

Our first lemma generalizes an idea used by Gottesman indié pf the binary case.

Lemma ll1.30. An((n, K, > d)), stabilizer code withi > 1 exists provided that

d—1

@K —q/K)Y (7;) (@ - 1) < (@ - D(p—1) (3.11)

Jj=1

holds.

Proof. Let L denote the multiset
L={C™\C|C<C™ <Fwith|C|=q¢"/K}.

The elements of this multiset correspond to stabilizer safedimension/. Note thatL
is nonempty, since there exists a ca@def sizeq" /K that is generated by elements of the
form (a|0); the form of the generators ensures that C*-.

All nonzero vectors iri?f]” appear in the same number of setd.inindeed, the sym-
plectic group Sf2n,F,) acts transitively on the s&" \ {0}, see [74, Proposition 3.2],
which means that for any nonzero vectarandv in F>" there exists- € Sp(2n, F,) such
thatv = 7u. Therefore,u is contained inC*+ \ C if and only if v is contained in the
element(rC)*: \ 7C of L.

The transitivity argument shows that any nonzero vectdi?gihoccurs in|L|(¢"K —
q"/K)/(¢>" — 1) elements ofL.. Furthermore, a nonzero vector andlits-multiples are
contained in the exact same sets/of Thus, if we delete all sets frorh that contain a
nonzero vector with symplectic weight less tharthen we remove at most

Yo (@ =17 (K - ¢"/K)
P

q2n_1

T

sets fromL. By assumption, this number is less thdm, hence, there exists d(n, K, >

d)), stabilizer code. O
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The Gilbert-Varshamov bound shows the existence of sumghsgood codes, even
for smaller lengths, when the characteristic of the fieldastoo small. Ifn = k mod 2,

then we can significantly strengthen the bound.

Lemmalll.31. If k> 1,n =k mod 2 and

d—1

@Y (j) (@~ 1 < (@~ 1) (3.12)

J=1

holds, then there exists dfe-linear [[n, k, d]], stabilizer code.

Proof. The proof is almost the same as in the previous lemma, exbhaptme list only
codesC' such that(C') is linear, meaning that(C') is a vector space ovéf,.. We repeat

the previous argument with the multiset

C S CLS S F2n’ C — qn—k7
L={C*+\C 1]
¢(C) isF-linear
It is easy to see thak is not empty. Note that each sgtC*+) \ ¢(C) in L contains
now all IFqXQ-muItipIes of a nonzero vector, not just tfi -multiples, which proves the

statement. u

Feng and Ma show that one can extend the previous result topgoge the existence
of pure stabilizer codes, but much more delicate countiggiments are needed in that
case, see [55]. We are not aware of short proofs for this gé&noresult.

The previous lemma allows us to show the existence of goodtqomacodes, espe-
cially for larger alphabets. We illustrate this fact by praythe existence of MDS stabilizer

codes, see Section C for more details on such codes.

Corollary 11.32. If 2 < d < [n/2] and¢? — 1 > (7)), then there exists a linedfn,n —

2d + 2, dJ],, stabilizer code.
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Proof. The assumptiod < [n/2] implies that(}) < (5) < --- < (%), so the maximum
value of these binomial coefficients is at mgst- 1. Letk = n — 2d + 2. It follows from

the assumption thdt > 1 andn = k£ mod 2. It remains to show that (3.12) holds. For the

choicek = n — 2d + 2, the left hand side of (3.12) equals

d—1
n— - n j—
(q2 2d+2_q2d 2) Z (])(q2 _ 1)j 1
j=1

-1
S (q2n—2d+2 _ q2d—2) (q2 _ 1)]
7j=1

(q2n 2d+-2 q2d 2) ¢ — 1)d_ (QQ —1)
¢* —2 '

s

We claim that the latter term is less that — 1. To prove this, it suffices to show that

2 d 2
q2 2d+2( ;2 — é ) g q2 (313)

holds. The latter inequality is equivalent(i@® — 1) < ¢*? — 2¢**% 4 ¢> — 1, and it is not

hard to see that this inequality holds. Indeed, note that

= (@ - 1)+ 1) = (g —1d+§()q 1y

J=

Recall that(?) = (9-}) + (*,"); hence,

j=0 .
d—1
d—1 d—1 ,
S-S
=0 J - J /
a(j)=
We havea(j) = —a(d —j) for0 < j < d— 1, anda(j) > 0 for j > d/2. This

shows that all negative terms get canceled by larger pediéikms and we can conclude



56

thatq®? — 24?2 — (¢ — 1)? > 0 for d > 2; this implies inequality (3.13) and consequently
shows that (3.12) holds. O

Example 111.33. Recall that there does not exist[a, 1, 4]]» code, see [35]. In contrast,
the existence of |7, 1, 4], code for all prime powerg > 7 is guaranteed by the preceding
corollary. It also shows that there exi$s, 2, 3], for all prime powers; > 5 and[[7, 3, 3|,

for all prime powers; > 7, which slightly generalizes [53].

F. Code Constructions

Constructing good quantum codes is a difficult task. We needaatgm code for each
parametemn and k in our tables. In this section we collect some simple factsualbhe
construction of codes. Lemmas I11.34-111.36, (see alsoldd)y show how to lengthen,
shorten or reduce the dimension of the stabilizer code. &geseralize and extend the

constructions for binary quantum codes [35, Theorem 6].

Table I. The existence of a pufgr, k, d]], stabilizer code implies the existence of codes
with other parameters.

n/k k—1 k k+1
S > d—1pure > d—1pure d — 1 pure
Lemma 111.36 Lemma 111.36 Lemma I11.35
> d pure d — 1 impure
n - d pure
Lemma 111.36 Lemma Ill.34
> d impure d impure
n+1 - P P
Lemma 111.34 Lemma 111.34

Lemma ll.34. If an [[n, k, d]], stabilizer code exists fdr > 0, then there exists an impure

[[n+ 1, k,d]], stabilizer code.
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Proof. If an{[n, k, d]], stabilizer code exists, then there exists an additive sigaCo< F."

such thalC| = ¢"*, C < C*+, andswt(C++ \ C) = d. Define the additive code
C" = {(aa|b0) | € F,, (alb) € C}.

We have|C’| = ¢"~**1. The definition ensures that’ is self-orthogonal with respect to
the trace-symplectic inner product. Indeed, two arbitelgmentsaa|b0) and (a’o’|b'0)

of C’ satisfy the orthogonality condition
((act]b0)|(a’a'[6'0))s = ((a|b)|(a’[b"))s + tr(c- 0 — &’ - 0) = 0.

A vector in the trace-symplectic dual 6f has to be of the fornjaa|b0) with (a|b) € C*=

anda € F,. Furthermore,
swt(C'* \ ') = min{swt(aa|b0) | a € Fy,a,b € C*\ C},

which coincides withswt(C*= \ C'). Therefore, ar{[n + 1, k, d]], stabilizer code exists
by Theorem I11.13. Ifd > 1, then the code is impure, becauS€-: contains the vector

(0a|00) of symplectic weight 1. O

Lemma llI.35. If a pure([[n, k, d]], stabilizer code exists with > 2 andd > 2, then there

exists a purg[n — 1,k + 1,d — 1]}, stabilizer code.

Proof. If a pure([n, k, d]], stabilizer code exists, then there exists an additive ¢odeF;,
that is self-orthogonal with respect to the trace-alténgaform, so thatD| = ¢"* and
wt(D+e) = d. Let Dy denote the code obtained by puncturing the first coordirfai'e.
Since the minimum distance @« is at least 2, we know thdD;*| = |[Dta| = ¢"**,
and we note that the minimum distancelaf" is d — 1. The dual ofD; consists of all
vectorsu in IFZ;l such thau is contained inD. Furthermore, ifu is an element oD,

thenOu is contained inD; hence,D, is a self-orthogonal additive code. The cadgis of
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size¢~-(+1 because
dim Dy + dim Dy = dim Frt

when we viewD, and its dual a€f,—vector spaces. It follows that there exists a pure

n—1k+1 d— 1]], stabilizer code. ]
I ; 7 g

Lemma ll1.36. If a (pure)|[n, k, d]], stabilizer code exists, with > 2 (k > 1), then there

exists an[n, k — 1, d*]], stabilizer code (pure td) such that/* > d.

Proof. If an [[n, k, d]], stabilizer code exists, then there exists an additive dode F,
such thatD < D+« with wt(D+< \ D) = d and|D| = ¢"~*. Choose an additive code,
of size|D,| = ¢"**! such thatD < D, < D;* < D*«. SinceD < D,, we have
D;* < D*e. The set, = Dy \ D, is a subset oD+« \ D, hence the minimum weight
d* of ¥ is at leastl. This proves the existence of dn, k — 1, d*|] code.

If the code is pure, thewt(D+<) = d; it follows from D;+ < D+ thatwt(D;*) > d,

so the smaller code is pure as well. O]

Corollary 111.37. If a pure [[n, k, d]], stabilizer code withm > 2 andd > 2 exists, then

there exists a purgn — 1, k, > d — 1]], stabilizer code.
Proof. Combine Lemmas 111.35 and 111.36. ]

Lemma 111.38. Suppose that aq(n, K,d)), and an((n’, K’,d’)), stabilizer code exist.

Then there exists afin + n', K K', min(d, d')), stabilizer code.

Proof. Suppose thaP and P’ are the orthogonal projectors onto the stabilizer codethfor
((n,K,d)), and((n’, K',d")), stabilizer codes, respectively. Théhw P’ is an orthogonal
projector onto ak K’-dimensional subspaa@* of C¢, whered = ¢"t". Let S and S’
respectively denote the stabilizer groups of the image® @hd P’. ThenS* = {F ®
E'|E € S, E' € S’} is the stabilizer group af)*.
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If an elementt’ ® F* of G,, ® G,» = G, IS not detectable, theA has to commute
with all elements inS, and £’ has to commute with all elements i1. It is not possible
that both#” € Z(G,,)S andF" € Z(G,,)S" hold, because this would imply th&t @ £’
is detectable. Therefore, eithéror F’ is not detectable, which shows that the weight of

F ® F'is at leastnin(d, d'). O

Lemma I11.39. Let @), and ), be pure stabilizer codes that respectively have parame-
ters|[n, k1, di]], and [[n, k2, ds]]. If Q2 C @1, then there exists d2n, ky + ko, d]], pure

stabilizer code with minimum distande> min{2d,, d; }.

Proof. The hypothesis implies that there exist additive subcddles’ D, of Fy, such that

D,, < Dite, |D,,| = ¢" %, andwt(D.*) = d,, for m = 1,2. The additive code
D ={(u,u+v)|ue Dy,ve Dy} <FZ

is of size|D| = ¢*"~(ki+k2) The trace-alternating dual of the codeis D'« = {(u' +
o', v') |u' € Di,v' € Dy}. Indeed, the vectors on the right hand side are perpendicula

to the vectors inD, because
(u,u+v) | (v +0",0"))e = (uu' + 0" + (u+0v]v)y =0

holds for allu € Dy,v € D, andv’ € Di*,v' € Dy*. We observe thaD is self-
orthogonal,D < D+-. The weight of a vectofu’ + v',v') € D!« \ D is at least

min{2d,, d; }; the claim follows. O

Lemma 111.40. Letq be a power of two. If a purén, k,, d,]], stabilizer code); exists
that has a pure subcod@, C (), with parameters[n, ks, ds]], such thatk; > k,, then a

pure[[2n, k1 — ks, d]], stabilizer code exists such th&t> min {2d;, d.}.

Proof. If an [[n., km, d.]], Stabilizer code exists, then there exists an additive dagde<

F?, such thatD,, < Dy, wt(D,*) = d, and|D,,| = ¢"~*» for m = 1,2. The inclusion
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Q> C @, implies thatD; < D,. Let D denote the additive code consisting of vectors of
the form(u, u + v) such that. € Dy andv € D;.

We claim thatD= consists of vectors of the forfa’, «’ + ') such that/ € D and
v € D,. Indeed, let; = (u,u + v) denote a vector i, and letv, = (v, v’ 4+ v') be a

vector withu’ € Dy andv’ € D,. We have
(V1lva)a = (ulu)q + (ulu)q + (uv')a + (V]u)e + (V[0)a.

The first two terms on the right hand side cancel because taeacteristic of the field
is even; the next two terms vanish since the vectors belomy&b spaces; the last term
vanishes becauseand’ are both contained i,, and D, is self-orthogonal. Therefore,
v; andu, are orthogonal. The sétu/, v’ +v') | v’ € D1, v' € Dy} C D+« has cardinality
g?"tki—k2 g0 it must be equal th++ by a dimension argument.

The Hamming weight of a vectdt/, v’ + ') in D is at leastnin {2d,, d»}, because

u' € Dy andv’ € Dy < Dy°. O

Lemma lll.41. Letq be a power of a prime. If af(n, K, d)),~ stabilizer code exists, then
an ((nm, K, > d)), stabilizer code exists. Conversely, if gmm, K, d)), stabilizer code

exists, then there exists &m, K, > |d/m])),~ stabilizer code.

This lemma is implicitly contained in the paper by Ashikhnaimd Knill [11].

Proof. Let B = {f4,..., 3, } denote a basis &, /F,. If a is an element oF ,~, then
we denote byes(a) the coordinate vector ifi;" given byes(a) = (as,...,an), where
a=3" aib;.

A nondegenerate symmetric form on tRigvector spacé,~ is given bytr,m ,(xy).
It follows that the Gram matrix\/ = (trym,4(3:3;))1<ij<m iS NONsingular. We have

trgm/q(zy) = es(x)' Meg(y) for all z,y in F,m. We define arif,—vector space isomor-
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phismy; from F27:. ontoF>"" by

ve((alb)) = ((ealar), . ., es(an))[(Meg(br), . .., Meg(bn))).

It follows from the fact thatr,m /,(try/,(2)) = trgm /() for all z in Fg» and the definition
of the isomorphisny, that(a|b) L (c|d) holds inF27, if and only if g ((a|b)) L, @s((c|d))
holds inFg2nm.

If an ((n, K, d)),~ exists, then there exists an additive cade< .. of size|C| =
¢"™/K such thatC < C*s, swt(C+\ C) = dif K > 1, andswt(C*+) = dif K =
1. Therefore, the codes(C) over the alphabeF, is of size¢™™ /K, satisfiesps(C) <
@a(C) e < F27", andswi(pg(C) 1 \ @s(C)) = dif K > 1 andswt(pg(C) ') = d if
K =1. Thus, an(nm, K, d)), stabilizer code exists.

The existence of af(nm, K, d)), stabilizer code implies the existence of(@n, K)),m
stabilizer code; the claim about the minimum distance fadiérom the fact thap; * maps

each nonzero block of: symbols to a nonzero symbol if). O

We notice that there exists a bagissuch thatM is the identity matrix if and only if
eitherq is even or bothy andm are odd, see [139]. In that caseg, simply expands each

symbol into coordinates with respectkb

G. Puncturing Stabilizer Codes

If we delete one coordinate in all codewords of a classicdecthen we obtain a shorter
code that is called the punctured code. In general, we cgmoogéed in the same way with
stabilizer codes, since the resulting matrices might notroate if we delete one or more
tensor components.

Rains [126] invented an interesting approach that solvegpdneturing problem for

linear stabilizer codes and, even better, gives a way totamistabilizer codes from arbi-
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trary linear codes. The idea is to associate with a clasknedr code a so-called puncture
code; if the puncture code contains a codeword of weighihen a self-orthogonal code
of lengthr exists and the minimum distance is the same or higher tharoftihe initial
classical code. Further convenient criteria for punctwees are given in [71].

In this section, we generalize puncturing to arbitrary iitedy codes and review some
known facts. Determining a puncture code is a challengisk, tand maynot always pos-
sible to find it in closed form. In the next chapter we show hbes tesults of this section
can be applied to puncture quantum BCH codes.

It will be convenient to denote the the pointwise productved ¥ectorsu andwv in Fy
by uv, that is,uv = (u;v;)j-,. Suppose that’ < F2" is an arbitrary additive code. The

associated puncture cottg(C') C T is defined as
P,(C) = {(braj, — byar)py | (alb), (') € C}. (3.14)

Theorem I11.42. Suppose tha€' is an arbitrary additive subcode @?" of size|C| =
q"/K such thatswt(C+= \ C') = d. If the puncture cod®,(C') contains a codeword of
Hamming weight, then there exists af(r, K*, d*)), stabilizer code withik* > K/q¢"~"
that has minimum distana& > d whenK* > 1. If swt(C*) = d, then the resulting

punctured stabilizer code is pure b

Proof. Let = be a codeword of weight in the P,(C'). Define an additive cod€’, < F."
by
Co = {(albz) | (alb) € C}.

If (a|bx) and(a’|b'z) are arbitrary elements af,, then

((albo) | (@ W) =t (Zwkaz - b;amk) ~0 (3.15)

k=1

by definition ofP,(C); thus,C, < (C,)*=.
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Let C® = {(ax|br)res|(alb) € C,} denote the restriction @, to the supporf of the
vectorz. Since equation (3.15) depends only on the nonzero coeiffscad the vector:, it
follows thatC < (C#)++ holds.

We note thatC| > |CE

; hence, the dimensioR™ of the punctured quantum code is

bounded by
K*>q"/|C > q¢"/|C] = ¢"/(¢"/K) = K/q¢"™".

It remains to show thatwt((C%)*« \ CE) > d. Seeking a contradiction, we suppose
thatu? is a vector i C%)+s \ CF such thatwt(u?) < d. Letu, = (a|b) denote the vector
in (C,)*+ that is zero outside the supportofind coincides with.? when restricted to the
support ofz. It follows that(az|b) is contained irC+:. Howeverswt(az|b) < d, so(az|b)
must be an element @f, sinceswt(C*« \ C') = d. This implies tha{az|bx) is an element
of C, < (C,)*=. Arguing as before, it follows thatz?|bz) is in C and(ax?|bz?) is in C,.
Repeating the process, we obtain that (az?!|bz?!) isin C,, and we note that’~! is
the characteristic vector of the support:ofRestrictingu,. in C,, to the support of yields
uf € CE, contradicting the assumption thaf € (C%)+= \ C~.

Finally, the last statement concerning the purity is eagyrtwe (a direct generaliza-

tion of the argument given in [71] for pure linear codes). O

If the codeC ' is a direct product, as in the case of CSS codes, then the signder

the puncture code simplifies somewhat.

Lemma l11.43. If C'; andC, are two additive subcodes Bf}, then
P,(Cy x Cy) ={ab|a € Cy,b € Cr}" <.

Proof. Since(ab | a € C1,b € Cy) = ((ba’ —b'a) | a,a’ € C1,b,b" € Cy), the claim about

the orthogonal complements of these sets is obvious. O

Since many quantum codes are constructed from self-orttgodes”C < C*, we
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write

P.(C)=P,(C x C)={ab|a,bec C}*. (3.16)

H. Conclusions

In this chapter we have further developed the theory of nuaryistabilizer codes. After
reviewing the basic theory of nonbinary stabilizer codesrdinite fields, we introduced
Galois-theoretic methods to clarify the relation betwdwse and more general quantum
codes. We showed the most general class of codes over guakt@insion fields that can
be used to construct quantum codes are those that are sgelfyonal with respect to the
trace alternating product.

We gave simpler proofs for the existence of nonbinary quartades. We also gen-
eralized the linear programming bounds for the nonbinadeso Following Gottesman’s
lead [61], we were able to show that single and double emwarecting nonbinary stabilizer
codes cannot beat the quantum Hamming bound. We conjebtatrad quantum stabilizer
code can exceed the quantum Hamming bound, but a proofliglssive. We also gave
methods to obtain new quantum codes from existing quantuiesco In particular, we
developed the theory of puncture codes.

There are open questions that the work in this chapter stgyg&fs could for instance
start with a different choice of error basis [93], and one davelop a similar theory for
such stabilizer codes. For example, one choice leads tmdbalhgonal additive subcodes
of Z; x Zy instead of subcodes &f) x[Fy. It would be interesting to know how the stabilizer
codes with respect to different error bases compare. Todkeds our knowledge, such a

comparison has not been made.
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CHAPTER IV

CLASSES OF STABILIZER CODES
In this chapter we shall take a constructive approach to tualysof stabilizer codes giv-
ing explicit constructions for many classes of codes. Muicthe theory we developed in
Chapter Il will be brought to bearing with additional sinfaations for the classes of lin-
ear codes. In case of linear codes, our main methods of catisins will be the Hermitian
construction and the CSS construction (Lemmas 111.19-4)l..2Hence, we need to look
for classical codes that are self-orthogonal with respethé Hermitian or the Euclidean
product or families of nested codes like the BCH codes. Aduitily, we investigate the
structural properties of nontrivial codes that meet thentwra Singleton bound and estab-
lish bounds on the maximal length of such codes. We providearete illustration of the
theory of puncture codes developed in the last chapter bgtptng the quantum BCH

codes.

A. Quantum Cyclic Codes

Cyclic codes are an interesting class of codes which havelsienroding and efficient
decoding algorithms. Consequently, quantum cyclic codes h#so generated interest.
Before we construct quantum cyclic codes we need the follpwasults for identifying
cyclic codes that contain their duals. We have not been ablete the references that
first proved these results, but we note that these conditians been established in various
forms earlier, especially for codes ovéy andF4; see [76, Chapter 4] for general results
concerning classical codes and [35, 70] for results comogininary quantum codes. We
*(©2006 IEEE. Reprinted in part, with permission, from A. Ketkar Klappenecker,

S. Kumar and P. K. Sarvepalli, “Nonbinary stabilizer codesrdinite fields”.IEEE Trans.
Inform. Theoryvol. 52, no. 11, pp. 4892-4914, 2006.
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provide a convenient and unified treatment while giving thebinary equivalents.

Recall that a classical cyclic code with parameterg], is a principal ideal in the ring
F,[z]/(«™ — 1) and can be succinctly described by its generator polynooniids$ defining
set. The polynomiat™ — 1 of IF,[z] has simple roots if and only if andq are coprime. If
the latter condition is satisfied, then there exists a pasititegern such that the field'
contains a primitiveath root of unity 5. In that case, one can describe a cyclic code with
generator polynomiaj(z) in terms of its defining se¥ = {k| g(3*) = 0for 0 < k < n}.
Further details on cyclic codes can be found in any standsitb@ok on coding theory,
see [76] or [107].

In the case of cyclic codes, identifying the self-orthodauales can be translated into
equivalent conditions on the generator polynomial of theecor its defining set. First we
shall consider codes ovét:.. Let o denote the automorphism of the fielg. given by

o(z) = z9. We can define an action efon the polynomial rind 2 [x] by

n

h(z) = g — b7(x) =Y o(hy)a".

k=0
Lemma IV.1. Suppose thabB is a classical cyclign, k, d] . code with generator polyno-
mial g(z) and check polynomial(z) = (2" —1)/g(z). If g(z) divideso (hq)~*x*h? (1/z),

thenB+» C B, and there exists afin, 2k — n, > dJ|, stabilizer code that is pure té.

Proof. If h(x) is the check polynomial aB, thenh?(z) is the check polynomial of (B).
The generator polynomial of the dual codeB)* = B** is given byo(ho) 'a*he (1/z),
the normalized reciprocal polynomial @f (z). Therefore, the condition that the poly-
nomial g(z) divides o(hy)~'2*h°(1/z) is equivalent to the conditiol» C B. The

stabilizer code follows from Corollary 111.19. O

The following Lemma summarizes various equivalent coodgion dual containing

codes in terms of the generator polynomjét) and the defining sef.
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Lemma IV.2. Letged(n,¢?) = 1 andC be a classical cycli¢n, &, d] 2 code whose gener-
ator polynomial isg(z) and defining set i€. Suppose that any of the following equivalent
conditions are satisfied

(i) 2" — 1 =0 mod g(x)g*(z) whereg*(z) = 2" *¢°(1/x);

(i) Z C{—qz|z€ N\ Z};

(i) ZNnZ 1=, whereZ~9={—qz | z € Z}.

ThenC*+ C C and there exists afin, 2k — n, > dJ], stabilizer code that is pure t@.

Proof. Let h(z) = (2" — 1)/g(x) be the check polynomial af'. Thenh?(z) = o((2™ —
1)/g(x)) = (2" — 1)/¢°(x). From Lemma IV.1 we know that' contains its Hermitian
dual if g(x) divideso (hg) ~La*ho (1/z) viz. g(x)|o(ho) (1 — 2™) /(2" *¢°(1/z)), which
impliesz™ — 1 =0 mod g(x)g*(z) which proves (i).

The generator polynomiaj(x) of C' is given byg(z) = [[..,(x — %), hence its
check polynomial is of the form

hz) = (@ = 1)/g(x) = [] (= -5
zEN\Z

Applying the automorphism yieldsh?(z) = HzEN\Z(x — [3%%). Therefore, the generator

polynomial of C» is given by

he(0) ke (1/z) = h7(0) " [Lem (1 - B%2)
[Lenz(@—B87%);
in the last equality, we have used the fact thfgi0) ' = [Lemz(=67%). By LemmalV.1,
B+» C Bifand only if the generator polynomialz) dividesh? (0)~*z*h?(1/z). The lat-
ter condition is equivalent to the fact thatis a subset of —¢z | = € N \ Z} and (ii)
follows. From (ii) we know thatC+» C C'ifand only if Z C {—qz | = € N\ Z}. In other
wordsZ~ 7 C N\ Z. HenceZ N Z~9 = (). An [[n,2k — n, > d]], stabilizer code follows

from Corollary 111.19. [
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Cyclic codes that contain their Euclidean duals can also belyncharacterized in
terms of their generator polynomials and defining sets. Bilewing Lemma is a very
straight forward extension of the binary case and sumnmaspene of the known results
in the nonbinary case as well, but we include it because afsefulness in constructing

cyclic quantum codes.

Lemma IV.3. LetC be an[n, k, d], cyclic code such thajcd(n, ¢) = 1. Let its defining set

Z and generator polynomiaj(z) be such that any of the following equivalent conditions
are satisfied

(i) 2" —1=0 mod g(z)g'(z), whereg'(x) = 2" *g(1/x);

(i) ZC{—=z|ze N\ Z};

(i) ZNnZ ' =0whereZ' ={—2 modn|ze Z}.

ThenC* C C and there exists afin, 2k — n, > dJ], stabilizer code that is pure t@.

Proof. The check polynomial o is given byh(z) = (2™ — 1)/g(x), from which we
obtain the (un-normalized) generator polynomial(6f ashf(x) = z*h(z~!) = (1 —
a) /(2" *g(z7h)) = —(a™ — 1)/g'(x). If C+ C C, theng(z) | h'(z); this means that
g(z) divides(z"™ — 1)/g'(z). In other wordst™ — 1 =0 mod g(z)g'(z).

The defining setof’* is given by{—z mod n | z € N\Z}, whereN = {0,1,...,n—
1}. ThusC+ C CimpliesZ C {—z mod n | N'\ Z}. Since this means that the inverses
of elements inZ are present iV \ Z, this condition can also be written &N Z~! = ().

The existence of quantum cofle, 2k — n, > dJ|, follows from Corollary 111.21. O

Although we have considered purely cyclic codes, a largasscbf cyclic quantum

codes can be derived by considering constacyclic or conjicoyodes as in [35], [154].
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1. Cyclic Hamming Codes

Binary quantum Hamming codes have been studied by variolmis; tsee for instance
[35, 54, 59]. We now derive stabilizer codes from nonbindgssical cyclic Hamming
codes. Letn > 1 be an integer such thgtd(q — 1,m) = 1. A classical cyclic Hamming
codeH,(m) has parametets, n —m, 3|, with lengthn = (¢ —1)/(¢ — 1). Let 3 denote

a primitive nth root of unity inlF,». The generator polynomial df,(m) is given by

gl) = [T (== 5"). (4.)

an element off,[z]. Thus, the code&d,(m) is defined by the cyclotomic cosét, =

{¢’ mod n|i € Z}.

Lemma IV.4. The Hamming cod& . (m) contains its Hermitian dual, that i$/, (m)*» <

Hp(m).

Proof. The statement] :(m)~» < H,(m) is equivalent to the fact that the cyclotomic
coset( satisfies’; C N; = {—¢gzmodn|z € N\ C}, whereN = {0,...,n— 1} and
n = (¢*™ —1)/(¢*> — 1). We note that"; can be expressed in the form
C) = {(1 —n)¢* mod n ‘ ke Z}
4.2)
= {—qzq% mod n ‘ ke Z} ,

wherez = q(¢*™2 — 1)/(¢* — 1). Therefore, the conditiof; C N, holds if and only if
C, C N\ C holds, where”, = {2¢* mod n|j € Z}.

Seeking a contradiction, we assume that the two cyclotonsetsC; andC’, have an
element in common, hence are the same. This means that thetexist a positive integer
k such thay®* = q(¢*™~2—1)/(¢*> — 1). This implies that?*~! dividesq®*™~2 — 1, which
is absurd. Thus, the sef% andC, are disjoint, henc€&’, C N \ (4, which proves the

claim. O
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Theorem IV.5. For each integern > 2 such thatged(m, ¢*> — 1) = 1, there exists a pure

[[n,n — 2m, 3]], stabilizer code of length = (¢*™ — 1)/(¢* — 1).

Proof. If ged(m,¢*> — 1) = 1, then there exists a classidal n — m, 3], Hamming code
H,(m). By Lemma IV.4, we havé]:(m)'* < H,:(m), hence there exists a pufe, n —

2m, 3], stabilizer code by Corollary 111.19. The purity is due to tlaefthat theH 2 (m)**

has minimum distanc¢'™ 2 > 3 for m > 2 [76, Theorem 1.8.3]. O

These quantum Hamming codes are optimal since they at@iguAntum Hamming
bound, see Corollary 111.29. A different approach that adogonstruction of noncyclic
perfect quantum codes can be found in [28]. It is also poss$dtonstruct quantum codes
from Hamming codes that contain their Euclidean duals, kewthese codes do not meet

the quantum Hamming bound.

Lemma IV.6. If gcd(m,q — 1) = 1 andm > 2, then there exists a pui@:, n — 2m, 3]],

quantum code, where = (¢™ — 1)/(q — 1).

Proof. The generating polynomial of am,n — m, 3], Hamming code, with n&g™ —
1)/(¢ — 1) is given by equation (4.1) wherg is an element of order. The code ex-
ists only if gcdm, g — 1) = 1. By Lemma IV.3 a cyclic code contains its duakif —1 = 0
mod g(z)g'(z), whereg'(z) = 2" *g(z~1). If g(x) is not self-reciprocal thep(x)g' ()
dividesz™ — 1 [152]. Since the generating polynomial of the Hamming cadeat self-
reciprocal, the code contains its Euclidean dual. By LemmaWé can construct a quan-
tum code with the parametelfs, n—2m, 3]],. Once again the purity follows due to the fact
the duals of Hamming codes are simplex codes with wejght > 3 for m > 2 [76, The-

orem 1.8.3]. ]
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2. Quantum Quadratic Residue Codes

Another well known family of classical codes are the quadnasidue codes. Rains con-
structed quadratic residue codes for prime alphabet in][126this section we will con-
struct two series of quantum codes based on the classicdtajiaresidue codes over an
arbitrary field using elementary methods.

Let o denote a primitivexth root of unity from some extension field Bf. We denote
by R = {r?modn | r € Zsuchthatt < r < (n — 1)/2} the set of quadratic residues
modulon and by N = {1,...,n — 1} \ R the set of quadratic non-residues modulo

Let Cr andCy denote the cyclic codes of lengththat are respectively generated by
the polynomialgjz(x) andgy (x), where

gr(z) = [[(x—a") and qy(z)=[](z—a").
reR reN
Both codes have parametérs (n + 1)/2, d], with d* > n, see [27, pp. 114-119] or [76].
The codes with generator polynomidls — 1)q¢g(z) and(z — 1)qy(z) are the even-like
subcodes of 'z andC'y respectively and have the parametfersn—1)/2, d'], with &’ > d.

The relevance of these codes will become apparent in theafimify theorems.

Theorem IV.7. Letn be a prime of the form = 3 mod 4, and letq be a power of a
prime that is not divisible by.. If ¢ is a quadratic residue module, then there exists a

pure[[n, 1, d]], stabilizer code with minimum distandesatisfyingd> — d + 1 > n.

Proof. The codeCr has parameteris., (n + 1)/2,d], and ifn = 3 mod 4, the dual code
C5# of Cy is given by the cyclic code generated fay— 1)qr(x), the even-like subcode of
Cg. The minimum distancé is bounded byl> —d+ 1 > n, see, for instance, [27, pp. 114-
119]. Furtherwt(Cg \ C%) = wt(Cg) = d by [76, Theorem 6.6.22]. We can deduce from

Corollary 11.21 that there exists a pufie, (n + 1) — n, d]], stabilizer code. O

For example, the primg = 3 is a quadratic residue modulo = 23. The previous
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proposition guarantees the existence p2a, 1, d||; stabilizer code with minimum distance
d > 6.

If n is an odd prime of the forma = 1 mod 4, then we can also construct quadratic
residue codes, but now we need to employ Lemma 111.20, begag<sloes not contain its

dual.

Theorem IV.8. Letn be a prime of the form. = 1 mod 4. Letq be a power of a prime
that is not divisible byh. If ¢ is a quadratic residue modulo, then there exists a pure

[[n, 1, d]], stabilizer code with minimum distandéounded from below by > /n.

Proof. The dual code of’;; is given by the even-like subcode 6fy; in other words ('
is a cyclic code of length overF, that is generated by the polynomial — 1)gn(z); in
particular,Cs < Cy. Moreoverwt(Cg \ Cy) = wt(Cy \ Cx) = wt(Cgr) = wt(Cy) = d
by [76, Theorem 6.6.22]. Therefore, we obtain a pgiwe(n + 1)/2 + (n+ 1)/2 — n,d)],

code by Lemma I11.20. O

B. Quantum BCH Codes

In this section we consider a popular family of classicalesydhe BCH codes, and con-
struct the associated nonbinary quantum stabilizer cdgieary quantum BCH codes were
studied in [35,43,68,146]. The CSS construction turns obetespecially useful, because
BCH codes form a naturally nested family of codes. In case afipivie BCH codes over
prime fields, the distance of the dual is lower bounded by #émegalized Carlitz-Uchiyama
bound, and this allows us to derive bounds on the minimunaudcs of the resulting quan-

tum codes.
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1. BCH Codes.

Let ¢ be a power of a prime anda positive integer that is coprime 4o Recall that a BCH
codeC of lengthn and designed distandeoverF, is a cyclic code whose defining s&t

is given by a union o — 1 subsequent cyclotomic cosets,

b5-2
Z = U C,, where C,={xq¢" modn|reZr>0}.
r=b

The generator polynomial of the code is of the form

g(@) = [ [ (= - 5,

z2€Z

where 3 is a primitive n-th root of unity of some extension field &,. The definition
ensures thaj(z) generates a cyclie, k, d], code of dimensiott = n — |Z| and minimum
distanced > §. If b = 1, then the code&’ is called a narrow-sense BCH code, and if
n = ¢™ — 1 for somem > 1, then the code is called primitive. More precise statements
can be made about the structure of primitive, narrow-seade<than the other classes of
BCH codes and we will restrict our attention to these in thisgpapore details on BCH

codes can be found in [76, 107].

2. Generalized Carlitz-Uchiyama Bound.

Our first construction derives stabilizer codes from BCH camles prime fields. We use
the Knuth-lverson brackettatement] in the formulation of the Carlitz-Uchiyama bound

that evaluates to 1 Htatement is true and 0 otherwise.

Lemma IV.9 (Generalized Carlitz-Uchiyama Bound)et p be a prime. LetC denote a

narrow-sense BCH code of length= p™ — 1 over[,, of designed distance = 2¢ + 1.
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Then the minimum distanee of its Euclidean dual codé€'* is bounded by

1 d—2—1[0—1=0mod p]
LS = m m/2
dt > (1 p) (p 5 |2p J) . (4.3)
Proof. See [149, Theorem 7]; for further background, see [107, R&G& O

Theorem IV.10. Letp be a prime. LetC be ajp™ — 1, k,> §], narrow-sense BCH code
of designed distancé = 2t + 1 andC* a [p™ — 1, k*, d*], BCH code such that’ C C*.
Then there exists gp™ — 1,k* — k,> min{d*, d*}]], stabilizer code, wheré" is given

by (4.3).

Proof. The result follows from applying Lemma IV.9 @ and Lemma 111.20 to the codes

C andC*. O

Remark IV.11. (i) The Carlitz-Uchiyama bound becomes trivial for largersagm dis-
tances. (ii) In [111, Corollary 2] it was shown that for binary BG¢ddes of design dis-
tanced, the lower bound in equation (4.3) is attained wher= 22%* — 1, whereaq is the
smallest integer such that— 2 | 2* 4+ 1 andb is odd. (iii) For a further tightening of the

Carlitz-Uchiyama bound see [112, Theorem 2].

3. Primitive BCH Codes Containing Their Duals.

We can extend the results of the previous section to BCH codasfiove fields that are
not necessarily prime. In fact, if we restrict ourselvesntaber designed distances, then
we can even achieve significantly sharper results. We watl jeview the results and refer
the reader to our companion paper [4] for the proofs. A gdizateon of the following
results is given in Chapter IX, with a view to demonstrate #na that study of quantum
codes can lead to interesting insights into classical apthirory.

In the BCH code construction, it is in general not obvious hogdathe cyclotomic

cosets will be. However, if the designed distance is sma#ntone can show that the
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cyclotomic cosets all have maximal size.

Lemma IV.12. A narrow-sense, primitive BCH code with design distahees < ¢/™/?1+

1 has parameter§™ — 1,¢™ — 1 —m[(6 — 1)(1 — 1/q)], > 0],
Proof. See [4, Theorem 7]; the binary case was already establish8telane [146]. [

In the case of small designed distances, primitive, nasemse BCH codes contain

their Euclidean duals.

Lemma IV.13. A narrow-sense, primitive BCH code oV} contains its Euclidean dual
if and only if its design distance satisfigs< § < ¢/™/?l — 1 — (¢ — 2)[m odd, where

n=q¢™—1andm > 2.
Proof. See [4, Theorem 2]. O
A simple consequence is the following theorem:

Theorem IV.14. If C'is a narrow-sense primitive BCH code ouvéy with design distance
2 <8< qm? —1—(qg—2)[modd andm > 2, then there exists aiflg™ — 1,¢™ — 1 —

2m[(6 —1)(1 —1/q)|, > d]], stabilizer code that is pure @

Proof. If we combine Lemmas IV.12 and IV.13 and apply the CSS constmucthen we

obtain the claim. See [4] for details about purity. O

One can argue in a similar way for Hermitian duals of pringtimarrow-sense BCH

codes.

Theorem IV.15. If C'is a narrow-sense primitive BCH code O\l with design distance
2 < § < g™ — 1, then there exists alfig®™ — 1,¢°™ — 1 —2m[(§ — 1)(1 — 1/¢*)], > 4],

stabilizer code that is pure t@

Proof. See [4] for detalils. O
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Whenm = 1, the BCH codes are the same as the Reed Solomon codes and this case
has been dealt with in [71]. An alternate perspective usirggRduller codes is considered

in [134].

4. Extending Quantum BCH Codes

It is not always possible to extend a stabilizer code, bex#us corresponding classical
codes are required to be self-orthogonal. We now show tiepdssible to extend narrow-

sense BCH codes of certain lengths.

Lemma IV.16. LetF . be a finite field of characteristig. If C' is a narrow-sensén, k, >
d],2 BCH code such that*» C C'andn = —1 mod p, then there exists aifvn, 2k —n, >
d]], stabilizer code that is pure tdwhich can be extended to gn+1, 2k—n—1, > d+1]|,

stabilizer code that is pure @+ 1.

Proof. SinceC*» C C, Corollary 111.19 implies the existence of dfn, 2k — n,> d]],

guantum code that is pure é#icand being narrow-sense the parity check matrig'dfas the

form
[ 1 a o? a1 ]
1 o2 2@ 2(n=1)
H — )
1 ad-! q20d-1 q(—1(d-1)

whereq is a primitiven' root of unity. This can be extended to give [an+ 1, %, d + 1]
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codeC,, whose parity check matrix is given as

1 1 1 1 1
1 « o> - a0
He = 1 o2 (1/2(2) 062(7171) 0
1 O‘/dfl a2(d71) . a(nfl)(dfl) 0

We show thatC}+ is self-orthogonal. Lef?; be thei'" row in H.. For2 < i < d the
self-orthogonality ofd implies that(R;|R;);, = 0. We need to show thgtr;|1), = 0,
1 <i<d For2 <i<dwehave(R1), = Y7 a" = (& - 1)/(a’ = 1) = 0, as
a" =1anda’ # 1. Fori = 1 we have(1]1), = n+1 mod p, which vanishes because of
the assumption = —1 mod p.

Now we show that the rank of., is d, thusC. has a minimum distance of at least
d + 1. Any d columns ofH, excluding the last column form@&x d vandermonde matrix
which is nonsingular, indicating that tidkecolumns are linearly independent. If we consider
any set ofd columns that includes the last column, we can find the detemtiof the
corresponding matrix by expanding by the last column. Thieggus ad — 1 x d — 1
vandermonde matrix with nonzero determinant. Thusd&ogiumns ofH, are independent
and the minimum distance df. is at least/ + 1. ThereforeC, is anjn + 1,k, > d + 1]
extended cyclic code such that-» C C.. By Corollary 111.19 it defines anfn + 1,2k —

n —1,> d + 1]], quantum code pure 0+ 1. ]

Corollary IV.17. For all prime powersy, integersm > 1 and all § in the range2 < § <

q"™ — 1 there exists an
[la*™ ¢*™ =2 =2m[(0 — 1)(1 = 1/¢°)],> & + 1],

stabilizer code pure té + 1.
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Proof. The stabilizer codes from Theorem IV.15 are derived frommpive, narrow-sense
BCH codes. Ifp denotes the characteristic Bf:, then¢®™ — 1 = —1 mod p, so the

stabilizer codes given in Theorem IV.15 can be extended loyrha 1V.16. O

A result similar to Lemma 1V.16 can be developed for BCH codes tontain their

Euclidean duals.

5. Puncturing BCH Codes.

In this section, leBCH]"(0) denote a primitive, narrow-sengeary BCH code of length

n = ¢™ — 1 and designed distanée We illustrate the theory of puncture codes developed
in Chapter Ill by puncturing such BCH codes. Some knowledge tatbeupuncture code

is necessary for this task, and we show in Theorem IV.19 tlegchc generalized Reed-
Muller code is contained in the puncture code.

First, let us recall some basic facts about cyclic genexdlReed-Muller codes, see [16,
17,80,117] for details. Let,, () denote the subspacelbf(z1, . . ., z,,] consisting of poly-
nomials of degre& v, and let(F, . . ., P,_1) be an enumeration of the pointslﬁ}j;1 where
Py, = 0. Theg-ary cyclic generalized Reed-Muller cod® (v, m) of orderv and length

n = ¢™ — 1is defined as

Ry(v,m) ={ev f|f € Ln(v)},

where the codewords are evaluations of the polynomialslibul P, defined byev f =
(f(P1),..., f(Pu-1)). The dimensiork*(v) of the codeR; (v, m) is given by the formula
ke (v) = S0, (=17 () (™2 79) and its minimum distancé (v) = (R+1)¢% — 1, where

m(qg—1)—v=(¢—-1)Q + Rwith0 < R < ¢ — 1. The dual code oR; (v, m) can be

characterized by

Ry(v,m)t = {ev fIf € Ly, (v)}, (4.4)

q
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wherevt = m(q — 1) — v — 1 andL?,(v) is the subspace of all nonconstant polynomials
in L,,(v);

Itis well-known that a primitive, narrow-sense BCH code corga cyclic generalized
Reed-Muller code, see [80, Theorem 5], and we determine thedasuch subcode in our

next lemma.

LemmaV.18. Letr = (m—Q)(¢—1)—R, with@ = [log,(6+1)] andR = [(6+1)/¢%]—
1, thenR;(v,m) C BCH;'(6). Also for all orders/’ > v, we haveRr (v/,m) € BCH.'(6).

Proof. First, we show tha®R;(v,m) C BCH;'(6). Recall that the minimum distance
d*(v) = (R+1)¢% — 1, wherem(q — 1) —v = (¢ — 1)Q + Rwith0 < R < ¢ — 1.
By [80, Theorem 5], we hav&®’(v,m) C BCH'((R + 1)¢? — 1). Notice that(R +
1)g? —1=[(6+1)/¢%]¢® —1 > ¢, s0BCH]'((R + 1)¢? — 1) € BCH]'(4). Therefore,
R;(v,m) € BCH['(d), as claimed.

For the second claim, it suffices to show thaf(v + 1,m) is not a subcode of
BCH'(d). We prove this by showing that the minimum distantér + 1) < 4. No-

tice that
(¢—1)Q+R—1, R>1,

(-D@Q@-1)+q¢—-2 R=0

with R andQ as given in the hypothesis. Therefore, the distafi¢e + 1) of R} (v +1,m)

m(g—1)—(v+1) =

is given by
d+1)/¢9] —1)¢® —1 for R >1,
Fr1) = (16 +1)/¢%T = 1)q
(q—1)g9 ' —1 for R = 0.
In both cases, it is straightforward to verify thé{r + 1) < 6. O

Explicitly determining the puncture code is a challengiagkt For the duals of BCH

codes, we are able to determine large subcodes of the parcide.
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Theorem IV.19. If § < ¢l™/2 — 1, thenR; (1, m) C P.(BCH]'(6)*) for all orders y.
in the ranged < p < m(q —1) —2(R+ (¢ — 1)Q) + 1 with Q@ = |log,(6 + 1)] and
R=[(6+1)/¢%] - 1.

Proof. By Lemma IV.18, we hav&R; (v, m) € BCH'(d) forv = (m — Q)(¢ — 1) — R;
hence BCH]'(d)" C R;(v,m)*. It follows from the definition of the puncture code that

P.(BCH'(0)") 2 P.(R; (v, m)"). However,

P.(R(v,m)Y) = {evf-evg| fige L (r)}h,
> {evf | f € L, (2r )},

= Ry((2v1)"m),

where the last equality follows from equation (4.4). Thisisaningful only if(2v4+)+ > 0
or, equivalently, ifv > (m(q — 1) — 1)/2. Sinced < ¢l"™/2 — 1, it follows thatQ <

|m/2] — 1, and the order satisfies

v = (m=Q)¢-1)—-R=[m/2+1](¢-1)- R
> [m/2[(g=1)+ 1= (m(¢g—1)—1)/2,
as required. Sinc& (i, m) C R;((2v+)*,m)for0 < p < (2v)*, we haveR} (1, m) C

P.(BCH!(5)"). O

Unfortunately, the weight distribution of generalized loy&keed-Muller codes is not
known, see [38]. However, we know that the puncture codB((‘_)Hg“(cS)L contains the
codesR;(0,m) C R;(1,m) C--- CRi(m(q—1) —2(R+ (¢—1)Q)+1,m), so it must

contain codewords of the respective minimum distances.

Corollary IV.20. If § and . are integers in the range < ¢ < ¢™/?l — 1 and0 < p <
m(qg—1) —2(R+ (¢ — 1)Q) + 1, whereQ = |log,(6 + 1)] andR = [(6 + 1)/¢?] — 1,
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then there exists a

[d" (), = d*(1) = 2m[(6 = 1)(1 = 1/q)], = d]l,

stabilizer code of length*(1) = (p+ 1)¢” — 1, whereo and p satisfy the relationsi(q —

1)—p=(¢—1)oc+pandd <p<q—1.

Proof. If 2 < ¢ < ¢l™/? — 1, then from Theorem IV.14 we know that there exists an
[¢"—1,¢" —1—=2m[(6 —1)(1 —1/q)], > d]], quantum code. From Lemma IV.19 we
know thatP.(BCH'(6)*) 2 Ri(u, m), whered <y < m(q—1)—2(¢q—1)Q—2R+1. By
Theorem I11.42, if there exists a vector of weighin P.(BCH;'(6)"), the corresponding
quantum code can be punctured to gie> r — 2m[(6 — 1)(1 — 1/¢)]),d > §]],. The
minimum distance oR; (u, m) isd*(u) = (p+1)¢”—1, whered < p < ¢—1[80, Theorem
5]. Hence, itis always possible to puncture the quantum tofde* (1), > d*(u)—2m/[(6—
(1 - 1/q)]. 2 8], m

It is also possible to puncture quantum codes constructedlaissical codes self-
orthogonal with respect to the Hermitian inner product. lagkes of such puncturing can

be found in [71] and [134].

C. MDS Codes

A quantum code that attains the quantum Singleton boundledca quantum Maximum
Distance Separable code or quantum MDS code for short. Témdes have received
much attention, but many aspects have not yet been explordteiquantum case (but
see [71,126]). In this section we study the maximal lengtMDBIS stabilizer codes.

An interesting result concerning the purity of quantum MDOfl€s was derived by

Rains [126, Theorem 2]:

Lemma V.21 (Rains) An[[n, k, d]], quantum MDS code with > 1 is pure up tor—d+2.
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Corollary 1V.22. All quantum MDS codes are pure.

Proof. An [[n, k, d]], quantum MDS code witlk = 0 is pure by definition; ift > 1 then
it is pure up ton — d + 2. By the quantum Singleton bound— 2d + 2 = k > 0; thus,

n —d+ 2 > d, which means that the code is pure. O

Lemma IV.23. For any|[n,n—2d+2, d]], quantum MDS stabilizer code with—2d+2 >

0, the corresponding classical codésC C+- are also MDS.

Proof. If an [[n,n — 2d + 2, d]], stabilizer code exists, then Theorem II1.15 implies the
existence of an additivie, d — 1],,2 codeC such thaC' C C+=. Corollary IV.22 shows that
C*+ has minimum distancé, soC*= is an[n,n—d+1, d] . MDS code. By Lemma V.21,

the minimum distance daf' is > n —d+2, soC'isanin,d—1,n—d+2], MDS code. [

A classicaljn, k, d], MDS code is said to be trivial it < 1 ork > n — 1. A trivial
MDS code can have arbitrary length, but a nontrivial one ocanihe next lemma is a

straightforward generalization from linear to additive MDodes.

Lemma IV.24. Assume that there exists a classical additives”, d), MDS codeC'.
(i) If the code is trivial, then it can have arbitrary length.
(i) If the code is nontrivial, then its code parameters mbstin the range2 < k£ <

min{n —2,¢q—1}andn < g+ k—1<2q¢—2.

Proof. The first statement is obvious. For (ii), we note that the Wedjstribution of the
code(C and its dual are related by the MacWilliams relations. Thaopgiven in [107,
p. 320-321] for linear codes applies without change, andfords that the number of

codewords of weight — k£ + 2 in C'is given by

Aa= (") (@ = Dlg=n+ k-1

SinceA, .o must be a nonnegative number, we obtain the claim. O



83

We say that a quanturin, k, d]], MDS code is trivial if and only if its minimum
distancel < 2. The length of trivial quantum MDS codes is not bounded, baténgth of

nontrivial ones is, as the next lemma shows.

Theorem V.25 (Maximal Length of MDS Stabilizer Codesi nontrivial [[n, k, d]], MDS
stabilizer code satisfies the following constraints:
i) its lengthn isintheranget <n < ¢* +d — 2 < 2¢*> — 2;

ii) its minimum distance satisfiesax{3,n — ¢* + 2} < d < min{n — 1, ¢*}.

Proof. By definition, a quantum MDS code attains the Singleton bosad, — 2d + 2 =
k > 0; hence,n > 2d — 2. Therefore, a nontrivial quantum MDS code satisfies
2d — 2 > 4.

By Lemma 1V.23, the existence of dn,n — 2d + 2, d]], stabilizer code implies
the existence of classical MDS codésandC+ with parameter$n,d — 1,n — d + 2],
and[n,n — d + 1,d],, respectively. If the quantum code is a nontrivial MDS catien
the associated classical codes are nontrivial classicab M@des. Indeed, for > 4 the
quantum Singleton bound impligs< (n+2)/2 < (2n—2)/2 = n—1, soC'is a nontrivial
classical MDS code.

By Lemma IV.24, the dimension @ satisfies the constrain®s< d — 1 < min{n —
2,q%> — 1}, or equivalently3 < d < min{n — 1,¢*}. Similarly, the length of C satisfies

n < ¢@+(d—1)—1 < 2¢*>—2. If we combine these inequalities then we get our claifml

Example 1V.26. The length of a nontrivial binary MDS stabilizer code canextee®q* —
2 = 6. In [35] the nontrivial MDS stabilizer codes far = 2 were found to bé[5, 1, 3]]-

and[[6, 0, 4]]», so there cannot exist further nontrivial MDS stabilizedes.

In [71], the question of the maximal length of MDS codes wase@ All MDS

stabilizer codes provided in that reference had a lengthf afr less; this prompted us
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to look at the following famous conjecture for classical esdcf. [76, Theorem 7.4.5]

or [107, pages 327-328]).

MDS Conjecture. If there is a nontrivialjn, k], MDS code, them < ¢ + 1 except when

gisevenand = 3 or k = ¢ — 1inwhich caser < g+ 2.

If the MDS conjecture is true (and much supporting evidesdenobwn), then we can

improve upon the result of Theorem IV.25.

Corollary 1V.27. If the classical MDS conjecture holds, then there are no naat MDS
stabilizer codes of lengths exceediffg+ 1 except when is even andl = 4 or d = ¢* in

which casen < ¢? + 2.

D. Conclusions

In this chapter we applied the theory developed in Chapteo ldlerive classes of quantum
codes. This work has also led to the construction of many rfarelies of codes. The
interested reader can find the details in [8]. Table Il giveaerview and summarizes
the main parameters of these families. We also illustratedtheory of puncture codes
by deriving new codes from quantum BCH codes. One central thergaantum error-
correction is the construction of codes that have a largenmuim distance. We were able
to show that the length of an MDS stabilizer code dégcannot exceed? + 1, exceptin a
few sporadic cases, assuming that the classical MDS caingeloblds. An open problem is
whether the length of ag-ary quantum MDS code is bounded i 1 for all but finitely
manyn. Another related problem is to construct analytically quamMDS codes between

lengthsg andq?. Currently, constructions are known only for a few lengththis range.



Table Il. A compilation of known families of quantum codes

Family | [[n, k, d]], Purity Parameter Ranges and References
Short MDS [[n,n —2d +2,d]], pure 2<d<[n/2],¢¢-1> ()
Hermitian Hamming [[n,n —2m, 3]], purel m>2,ged(m,¢® —1)=1,n=(¢°" —1)/(¢> — 1)
Euclidean Hamming [[n,n —2m,3]], pure m>2,ged(m,g—1)=1,n=(¢"-1)/(¢—1)
Quadratic Residue|| [[n,1,d]]q pure nprime,n =3 mod 4,¢# 0 modn
¢ is a quadratic residue modutgd®> —d+1>n
Quadratic Residuel|ll [[n,1,d]], pure nprime,n =1 mod 4,q¢ %0 mod n
q is a quadratic residue modulg d > /n
Melas [[n,n —4m,> 3]|, pure qevenn = ¢ — 1, Pure to 3
Euclidean BCH [[n,n —2m[(6 — 1)(1 —1/q)],> 6], pure 2<8<q™?T—1—(qg—2)[modd
tod n=q"—1andm > 2
Punctured BCH ([d* (1), > d*(p) — 2m[(6 — 1)(1 — 1/q)],> 8]}, |pure? § < qlm/?1 — 1, See Corollary V.20
Hermitian BCH [[n,n—2m[(6 —1)(1 —1/¢%)],> 4], pure 2<6<qm—1,n=¢"" —1,Pureto
Extended BCH [[n+1,n—2m[(§ —1)(1—1/¢*)] —1,> § + 1]}, | pure Pure tos + 1
Trivial MDS [[n,n—2,2]], pure n=0 mod p
[[n,n,1]]4 pure n>1
Character [[n, k(r2) — k(r1), min{2m "2 2n+1], pure] n=2",q0dd,0 <7 <r2 <m,k(r)=3"_(7)
CSS GRM [[q™, k(v2) — k(v1), min{d(v2), d(vi)}]], pure| k(v) = 27:0(—1)3 (T) (mjyjq”), vh=m(g—1)—v—1
0<r<wry<m(g—1)-1 vE+1=(¢g—1)Q+R,d(v) = (R+1)¢?

Punctured GRM [[d(p), > k(v2) — k(v1) — (n—d(p)),> d]]q pure? d > min{d(v2),d(vi")},0 < pu < vy — vy; [134]

Hermitian GRM [[¢®™, ¢*™ — 2k(v),d(v1)]], purek(v) = Z o(—1)7 (T;‘) (mjyj_qij), vt =m(g® — 1) —v—1
0<v<m(g—1)—1 v +1—(q2—1)Q+Rd(V) (R+1)¢?

Punctured GRM [[d(pt), > d(ut) — 2k(v), > d(vh)]], pure? (v+1)g<p<m(¢g®—1)—1;[134]

Punctured MDS [[q2—qa,qz—qa—Zu—ZV—l—QHq pure 0<v<qg—2,0<a<qg—v-—1;[134]

Euclidean MDS [[n,n—2d+ 2,d]], pure 3<n<gq,1<d<n/2+1,;[73]

Hermitian MDS [[¢> — s,¢° — s — 2d + 2, d]], pure 1<d<gqs=0,1;[73]

Twisted [[¢* +1,¢° — 3,3]], pure? [28]

Extended Twisted lg",q" —r— 2, 3]lq pure r > 2;[28]

[[n,n—r—2,3]], pure n=(g"-¢/(¢®>—1),r>1,rodd; [28]
Perfect [[n,n—r—2,3], pure n=(q""-1)/(¢°—1),r > 2,r even; [28]

G8
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CHAPTER V

SUBSYSTEM CODES — BEYOND STABILIZER CODES
In this chapter we study a recent generalization of quantum codes that unifies many ap-
parently disparate notions of quantum error correction. This generalization called operator
quantum error correction gathers within its framework both passive and active error correc-
tion schemes, among them decoherence free subspaces (DFS), noiseless subsystems (NS),
and standard quantum error-correcting codes (including stabilizer codes which formed the
main theme of the last two chapters). Our main contribution in this chapter is to provide
a natural construction of such codes in terms of Clifford codes, an elegant generalization
of stabilizer codes due to Knill. Character-theoretic methods are used to derive a simple
method to construct operator quantum error-correcting codes from any classical additive
code over a finite field, which obviates the need for self-orthogonal codes. In view of
its importance and also to better appreciate our contribution we shall spend a little time
reviewing operator quantum error correction. The following review summarizes the key
points of [99, 100] relevant for our discussion. A quick word about the nomenclature.
These codes were originally studied in the context of operator algebras and hence, were
named operator quantum error correcting codes. We shall often use the descriptive term

subsystem codes in view of brevity. Both will be used interchangeably.

Notation.If IV is a group, the (V) denotes the center &f. We denote byrr(NV) the set of
irreducible characters 6f. If y andy are characters df, then(x, v)y = [N|7' Y, cp x(n)(n™1)
defines a scalar product on the vector space of class functions, amdIrr(V) is an orthonor-
mal basis of this space. We denotedwpp(x) = {n € N|x(n) # 0}. If x € Irr(N), then
Z(x) = {n € N|x(1) = |x(n)|} denotes the quasikernel gf Suppose that: is a group that

“Part of the material in this chapter has been submitted to IEEE and currently under
review. Copyright may be transferred to IEEE.
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containsN as a subgroup. b € Irr(G), theng denotes the restriction of this characterNo

If z,y € N, then[z,y] = =1y tzy is the commutator. IfA and B are subgroups of a group,
then[A, B] = ([a,b]|a,€ A andb € B) is the commutator subgroup of and B. In particular,
N’ =[N, N] denotes the derived subgroup/éf The reader can find background material on finite
groups in [131] and on character theory in [78]. As usuaHdbe the system Hilbert space under

consideration. LeB(H) denote bounded linear operatorsn

A. Review of Operator Quantum Error Correction

The class of codes which we considered in the last two chaptene within the framework
of a model often called the standard model. Mathematichilymodel is defined as a triple
(R, E&,C), where€ is the quantum channel,a subspace dft andR a recovery operation.
Additionally, we define a projecta?P onto the codespac® thusC = PH. For any density

operatorp supported by i.e. p in B(C) or equivalentlyp = PpP, the triple satisfies the

following relation:
(Ro&)(p) = pforall p= PpP. (5.1)

As we can see the standard model assumes a recovery opéRationgeneralR is
nontrivial which in turn implies some form of active monitag of the encoded quantum
information in order to detect and correct the errors thauacAn alternative approach is
to rely on passive error correction mechanisms, exemplifyjedecoherence free subspaces
and noiseless subsystems.

If we want to avoid performing active error correction, we aaturally led to the idea
that the encoded states should not be affected by the chalmether words, we must

encode intd'ix(&), the fixed points of where

Fix(€) = {p € B(H) | £(p) = p}.
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These fixed points can be nicely characterized for a cerfass®f quantum channels.
Given a quantum channél, we can write the channel in terms of its Kraus operators as

follows
E(p) = > EipE]. (5.2)

Because of this decomposition we often write the cha#inel { E;, E/ }. When the quan-

tum channels satisfy the condition

Y EE =1 (5.3)

we have a convenient way to characterize the fixed points. @arsatisfying equa-
tion (5.3) are called unital channels. Lek; = FE;p for any E;. Then under the unital

assumption all such are fixed points of as
E(p) = Y EipEl=p> EE!=p. (5.4)

We denote by4, the matrix polynomials generated by;, E}} I.e., the algebra generated
by {E;, E]}. This is called thénteraction algebrin the literature. Theoise communtant

A’ is defined as
A = {p € B(H) | pE = EpforanyE € {E,, Ej}} . (5.5)

From equation (5.4), it follows that’ C Fix(&). In fact, for unital channels it was shown
thatFix(£) = A’. Using results orC* algebras, Kribst al., showed that the interaction
algebra has a representation of the form

A= Pk, @ BH?) = P Ix, @ Mg, (5.6)
. .

J

where Mg, is R;-dimensional matrix algebra (ovér). This representation induces the
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following structure orH
H=PH o H, (5.7)

wheredim HA K; anddim HB R;. Since€ (and.A) act trivially onH the subsys-
temsH;.4 are called noiseless subsystems. To simplify matters wallysencode into only

one subsystem, which gives us the following decomposition
H = Coct=H'@HP)aCt, (5.8)

whereC+ is the complement &f. Letdim H* = K anddim H? = R. ThendimC = KR
anddimCt = dim’H — KR. Let us denote operators B(+“) and B(H?) asp” and
p? respectively. The (standard) noiseless subsystem giveh dynsists of operators in
B(H* ® HP) that are of the formB(H*) ® I in other wordsp” ® Ix. In this case
the co-subsysten® is in the maximally mixed state. The codespé&ces an algebra of
operators. Decoherence free subspaces are noiselessteatsyith the dimension of the
co-subsystem equal to one. In this case the codespaca subspace df.

One of the insights of [99] was that we can relax the constthat the co-subsystem
B should be in the maximally mixed state. This led to the idegagferalized noiseless
subsystems. In this case the noiseless subsystem coderisigithe operators i8(H)
that are of the fornjp” ® p?). Comparing with equation (5.6) we can see that in this case
we are not always encoding into the fixed points€of The codespace instead of being
an algebra of operators is now a morioaf operators of the form“ ® p?. Given a

decomposition of{ = H* ® H” @ C* and orthonormal base$a;) };-,, and{|3;) } -, for

fIn [99], they refer taC as a semigroup even thoughs equipped with identity.
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HA andH? respectively, we define a projector ortte= H4 @ H? = PH as
P = 1" =101 = O |ai) (i) @ O 18)) (Bi])- (5.9)
i j

The action ofP on p is defined as’pP. Then a generalized noiseless subsystem is defined

as follows, see [99, Lemma 2].

Lemma V.1 (Generalized noiseless subsystems [9&jiven a fixed decomposition Bf =
HA ® HP @ C*+ and a CPTP mag, defineC = {p € B(H) | p = p* ® p®}. Then the
following conditions are equivalent and define a generalizeideless subsysteht'.

) E(p* @ pP) = p* @ 0B, forall p* @ p? € C and somer”,

i) E(p* @ 1Ip) = p* @B, forall p* @ Iz € C and somer®.
i)y (TraoPo&)(p) = Tra(p),forall peC.

Kribs et al, [99, 100] generalized these ideas further by incorpogatiative error
correction also on the subsystetn As in the standard model we now define a recovery

operationR, that restores the subsysteprafter the error. The definition is as follows.

Lemma V.2 (Operator quantum error correcting codes [99)jven a fixed decomposition
of H = H* ® H? @ K and a CPTP mag, defineC = {p € B(H) | p = p* ® p®}. Then
the following conditions are equivalent and define an opergt@antum error correcting
codeC with recovery operatiorR.

) Ro&(pA® pP) = p? @ P, forall p* ® p? € C and somer?

i) Ro&(p?®Ip) = pt ®oP, forall p* @ I € C and somer”®
i) (TraoPoRo&)(p)=Tra(p),forall peC.

We are often more interested in a simple condition that ilestcorrectable errors for
a given channdf = {E,, £} or equivalently, the detectable errors for a given subsjyace
H. Recall that if a code corrects the set of error&lin= { £, }, it detects all the errors in

the algebr&p = {EE, | E,, E, € ¥}
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Theorem V.3 ( [99, 115]) LetH = HA ® HP @ K and P = 1 ® 17 be a projector
ontoC = HA ® HP? = PH. Then an errorE is detectable by the operator quantum error

correcting code’ if and only if
PEP = 1% @ p for somep? € B(HP). (5.10)

Now that we have reviewed the salient ideas of operator guamrror correction,
we will address a very important question — how do we systieadt construct these
codes? Two important contributions in this direction were introduction of a stabilizer
formalism and the notion of a gauge group by Poulin [120], eodstruction of a class
of subsystem codes capable of encoding one qubit by Bacon H8vever the bigger
question of systematic construction of good subsystemscstl remained open. Our
work addresses this problem in more detail. Subsequenttpublication of this work,
Bacon and Cassacino independently proposed a class of seiinsysties [19]; these codes
can be viewed as a special case of the codes constructed ichidapter. More details on
these codes will be given in Chapter VI.

Our approach is based on an elegant formalism to constracttgon error-correcting
codes that has been introduced in 1996 by Knill as a genatializ of the stabilizer code
concept. At the heart of this quantum code construction an@ofis theorem by Clifford
concerning the restriction of irreducible representation finite groups to normal sub-
groups, so these codes were termed as “Clifford codes” irB@8although “Knill codes”
is perhaps a more appropriate name. Unexpectedly, it twaethat Clifford codes are in
many cases stabilizer codes, so this construction did reatrbe as widely known.

In our approach, we construct a Clifford codeand give conditions that ensure that
this code decomposes into a tensor product A ® B. The Clifford codes allow us to
control the dimensions of and B, and we get a simple characterization of the detectable

errors of the operator quantum error-correcting code. eSinere may exist many different
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ways to construct the same Clifford codg we should note that these constructions can
lead to different tensor product decompositions. In fagenef one is just interested in the
tensor decomposition of a stabilizer cadethen the Clifford codes can provide a natural

way to induce an operator quantum error-correcting codé€'.on

B. A Detour Through Clifford Codes

As we have seen in the previous sections and in Chapter llisttigy of quantum codes
is related to the operators acting on the system Hilbertesp@&a simplify matters we can
restrict our attention to a basis of these operators and ringpggenerated by that basis,
called the error group. In the binary case we deal with thalfanPauli matrices and the
group generated by them anqubits. Knill generalized this concept by introducing the
notion of nice error bases and abstract error groups whiohrgéze the Pauli error group.
We have already seen one application of this generalizati@napter Ill, where we dealt
with the generalization of the Pauli group to nonbinary alpgt. The benefit of the abstract
approach is that it will free us from having to deal with cumdmeme matrix operators but
instead work with groups. The representations of the grdump$() will bring us back

to the concrete world of operators. In this chapter, we ghattue this abstract approach
permitting different error groups other than the Pauli egroup. We say that a finite group
E is an abstract error group if it has a faithful irreduciblétary representatiop of degree

d = |E : Z(FE)|'/2. The irreducibility of the representation ensures that cane express
any error acting oi? as a linear combination of the matriceg), with ¢ € E. The fact
that the representation is faithful and has the largestilplessegree ensures that the set of
matrices{p(g) | g € T}, whereT is a set of representatives 8/ Z(E), forms abasisof
the vector space af x d matrices.

A Clifford code is constructed with the help of a normal sulhugprd/ of the error group
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E and an irreducible charactgof N. Let ¢ denote the irreducible character corresponding
to the representatignof the groupF, thatis,¢(g) = Tr p(g) for g € E. Suppose thaV is

a normal subgroup of and thaty is an irreducible character of such tha{x, o)y > 0.

Definition V.4 (Clifford codes) A Clifford codeC' corresponding tq E, p, N, x) is defined
as the image of the orthogonal projector

o % S x(nY)p(n),

neN

see [88, Theorem 1].

We emphasize that if we refer to a Clifford code with data p, N, x), then it is
assumed thaty, ¢n) > 0, as this condition ensures thditn C' > 0. Recall that an error
e in E is detectable by the (Clifford) quantum co@ef and only if Pp(e)P = A\, P holds
for some)\, € C.

The image ofP is the homogeneous component that consists of the direco$ath
irreducibleC N-submodules with charactgrthat are contained in the restrictionofo N.
The elements in E that satisfyp(e)C' = C form a group known as the inertia group
Ie(x) = {9 € F|x(grg™') = x(z)forallz € N}. We note thatC is an irreducible

Cl[Ig(x)]-module. Let) be the irreducible character corresponding to this module.

Fact V.5. LetC be a Clifford code with dataF, p, N, x). Then the dimension of the code
is given bydim C = | Z(E) N N||E : Z(E)|"?x(1)?/|N|. An errore in E can be detected
byCifand only ifeisin E — (Ig(x) — Z(19)).

For a proof of this fact see [88] and for more background onf@lif codes see [89]

and the seminal papers [92,93].
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C. Constructing Operator Quantum Error-Correcting Codes

We are now concerned with the construction of a decomposiidhe Hilbert spacé{ in
the form

H=(A®B)® C~.

Put differently, we seek a decomposition of the Clifford cddas a tensor product ® B.
The next theorem gives a construction of operator quantunr-eorrecting codes
when one can express the inertia grdy) as a central produdtz(y) = LN, whereL

is a subgroup of’ such thaf, N] = 1.

Theorem V.6. Suppose that' is a Clifford code with dat&~, p, N, x). If the inertia group
Ig(x) is of the form/g(x) = LN, whereL is a subgroup of’ such that L, N| = 1, then
C'is an operator quantum error-correcting codé= A ® B such that

) dimA = |Z(E)NN||E: Z(E)|"?x(1)/|N

i) dim B = x(1).
The subsyster is an irreducibleC L-module with charactex 4 € Irr(L). Anerrorein £

is detectable by subsystetrif and only ife is contained in the set — (Iz(x) — Z(xa)N).

Proof. Since the Clifford cod€’ is an irreducibleC[/z(x)]-module and z(x) = LN, with
[L,N] = 1, there exists an irreducibl€ L-module A and an irreducibleC N-module B
such thatC' = A® B, see [57, Proposition 9.14]. f4 € Irr(L) is the character associated
with the moduleA, x5 € Irr(V) the character associated with andy € Irr(/g(x)) the
character associated with, then is of the formvd(¢n) = xa(¢)xg(n) with ¢ € L and

n € N.

As the restriction of”' to aC/N-module contains an irreducib{&N-modulelV with
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charactery, we must have

1 1 1 -1
(In, X)v = | Y 9L x(n) = i > xa(l)xs(nx(n)

neN
= xa()(xz: x)n > 0.
Sincelrr(N) forms an orthonormal basis with respect to - ) 5, we can conclude that the
irreducible characteyz must be equal tg. It follows thatC' = A @ W.

The dimension of// = Bis x(1), and by Fact V.5 the dimension 6fis given by
Tr P = |Z(E) N N||E : Z(E)['?x(1)*/|N].

The dimension o3 follows from the formuladim C' = dim A dim B.

Note that the projector fo€ acts asl“? = 14 ® 1% on C. By [88, Theorem 1],
an errore € E — Ig(x) mapsC to an orthogonal complement, 8® and P project onto
orthogonal subspaces and we h&eP = 0; by equation (5.10) the erreris detectable
An errore in Z(x4)N acts by scalar multiplication oA and arbitrarily onB, soeP =
14 ® pP for somep? € B(B). ThusPeP = 1“4 ® B(B); again by equation (5.10)
these errors are detectable (harmless would be a better).wditerefore, all errors in
E — (Ig(x) — Z(xa)N) are detectable. Conversely, an edn /5 (y) — Z(xa)N cannot
be detectable, sineedoes not act by scalar multiplication egh We haveeP # 14 ® p”.

ThereforePeP # 14 ® pP and thus: is an undetectable error. O

The data given in the previous theorem can be easily compasgcially with the
help of a computer algebra system such as GAP or MAGMA.
We will now consider some important special cases. Recadllrtiust abstract error
groups that are used in the literature satisfy the constfdirc Z(E) (put differently, the
tAlternatively by Fact V.5, the erraris detectable when we vie@ as a Clifford code.

When viewed as an operator quantum error correcting codenaasle only into a subspace
of C, thereforee still remains detectable.
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quotient groupF /Z(E) is abelian). In that case, we are able to obtain a charaatenivzof
the resulting operator quantum error-correcting codesdbas not depend on the choice

of the charactey.

Theorem V.7. Suppose thak’ is an abstract error group such thdi’ C Z(E). Suppose
that C' is a Clifford code with datd £, p, N, x). In this case, the inertia group is given by
Ig(x) = Cg(Z(N)). If Cg(Z(N)) = LN for some subgroup of E such thafZ, N] = 1,
thenC'is an operator quantum error-correcting code= A ® B such that

i) dimA = |Z(E)NN||E: Z(E)|'"?IN : Z(N)['?/|N],

i) dim B =|N : Z(N)|'/2,
An error e in E is detectable by subsystefnif and only ife is contained in the sel —

(Cu(Z(N)) = Z(L)N).

Proof. Since the abstract error groipsatisfies the conditioh” C Z(F), the inertia group
of the charactex in £ can be fully determined; it is given By := Ix(x) = Cr(Z(N)),
see [88, Lemma 5].

Suppose that
1
= % S x(n)p(n)

neN

is the orthogonal projector ontd. The assumptiods’ C Z(E) implies that there exists a

linear charactep of Irr(Z(N)) such that

satisfiesP, = P,, see [88, Theorem 6].

Let ¢ be the character of the representatigtthat is,¢(g) = Trp(g) for g € E. We
haveTr P, = x(1)%?¢(1)|N N Z(E)|/|[N| andTr P, = ¢(1)|N N Z(E)|/|Z(N)|. Since
P, = P, project onto the codespacg anddim C' > 0, we haveTr P,/ Tr P, = 1, which

impliesx(1)? = |N: Z(N)|. Therefore, the claims i) and ii) follow from Theorem V.6.
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Lety € Irr(T') be the character associated with tBg’|-moduleC’; put differently,
¥ is the unique character inr(7") that satisfiesdy, x)y > 0 and(¢7,9)r > 0. Since
Z(E) < T and(¢r,9)r > 0, it follows from Lemma V.18 thatupp(d) = Z(T).

Since the inertia grouff’ is a central product given bY = LN with [L, N] = 1,
there exist characterg, € Irr(L) andxg = x € Irr(N) such that)(¢n) = xa(¢)x(n)
for ¢ € L andn € N. By Lemma V.19, we have/ (T) = Z(L)Z(N); thus,supp(d) =
Z(L)Z(N). This implies thatsupp(xa) = L N Z(L)Z(N) = Z(L); henceZ(xa) =
Z(L). The characterization of the detectable errors is obtayesubstituting these facts

in Theorem V.6. O

In the previous theorem, we still need to check whettigZ (/N)) decomposes into
a central product ofV and some groug.. In the case of extraspecigigroups (which is
arguably the most popular choice of abstract error groupesgiecomposition of the inertia
group into a central product is always guaranteed, as westhdlv next.

Recall that a finite grouy’ whose order is a power of a prinpas called extraspecial
if its derived subgroug’ and its cente’(E) coincide and have order An extraspecial
p-group is an abstract error group. The quotient gréug E/Z(E) is the direct product
of two isomorphic elementary abeliangroups. Therefore, one can regdrdas a vector
spacef>" over the finite fieldr,,.

Let ¢ be a fixed generator of the cyclic grodpg ). As the commutatolr, y] depends
only on the cosets = xZ(£) andy = yZ(E), one can determine a well-defined function
s: Ex E — F,by[r,y] = ¢¢*@9). The functions is a nondegenerate symplectic form. We
note that two elementsandy in £ commute if and only i&(zZ,7) = 0. We writez L, 7 if
and only ifs(z,y) = 0.

For a subgrou: of £, we will useG to denoteG//Z(E).

Lemma V.8. If £'is an extraspecigh-group andN a normal subgroup of/, thenCr(Z(N)) =
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NCu(N).

Proof. SinceZ(E) < NCg(N) < Cg(Z(N)), it suffices to show that the dimensions of

thelF,-linear vector spaces

NCx(N) and Cu(Z(N))

are the same. Suppose that dim Z(N) andk = dim N. Then

dimNCz(N) = dim(N+N ") =dimN +dim N~ —dim(NAN ")

— dim N + dim N " — dim(Z(N))

= k+©2n—k)—z=2n-—z,

which coincides withlim Cg(Z(N)) = dim Z(N)LS = 2n — z, and this proves our claim.

]

The next theorem shows that it suffices to choose a normalrsupgv of the ex-
traspecialp-group E, and this choice determines the parameters of an operaamtwmu

error-correcting code provided by a Clifford code

Theorem V.9. Suppose thak is an extraspeciab-group. IfC' is a Clifford code with data
(E,p,N,x),with N # 1, thenC' is an operator quantum error-correcting code= A® B
such that

) dim A =|Z(E) N N||E: Z(E)|'?|N : Z(N)[?/|N],

i) dimB = |N : Z(N)|'/2.
An error e in E is detectable by subsyste#nif and only ife is contained in the selbl —

(NCg(N) = N).

Proof. The inertia groupl, (£) = Cg(Z(N)), sinceE’ C Z(FE), see [88, Lemma 5].
By Lemma V.8, we havég(x) = LN = NL with L = Cg(N). Thus,C is an opera-

tor quantum error-correcting code and the statements ijipfallow from Theorem V.7.
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Furthermore, Theorem V.7 shows that an ewan FE is detectable if and only i €
E — (NCg(N) — Z(L)N). SinceFE is ap-group andN # 1, we haveN N Z(E) # 1,
henceZ(E) < N. We note thatZ(L) € ZNL " = N°NN C N; therefore,
N C Z(L)N C Z(N)N = N, forcing Z(L)N = N. O

The normal subgroupy used in the construction of subsystem codes will henceforth
be called as thgauge group This definition coincides with the definition of the gauge

group in [120].

D. Subsystem Codes from Classical Codes

We conclude this chapter by showing how the previous resaltsbe related to classical
coding theory. Let: andb be elements of the finite fielfl, of characteristip. Recall that

in Section 1 we defined the unitary operatdi&:) andZ(b) on C? by
X(a)|z) =z +a)y,  Z(b)|z) =" |z),

wheretr denotes the trace operation from the extension figltb the prime fieldF,, and
w = exp(2mi/p) is a primitive pth root of unity. Leta = (a,...,a,) € Fy. We write
X(a)=X(a1)® -+ ® X(a,)andZ(a) = Z(a1) ® --- @ Z(a,,) for the tensor products

of n error operators. One readily checks that the group
E=(X(a),Z()|a,beFy)

is an extraspecial-group of ordempg®”. As a representatiop, we can take the identity
map onE. We haveE /Z(E) = F2".

We need to introduce a notion of weights of errors. Recall éima¢rror inE can be
expressed in the formX (a)Z(b) for some nonzero scalar. The weight ofa X (a)Z(b)

is defined a${i |1 < i <mn,a; # 0o0rb; # 0}, that is, as the number of quantum systems
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that are affected by the error. Similarly, we can introdueeegyht on vectors o]FZ” by
swt(alb) ={i|1 <i<m,a; #00rb; #0}|

fora,b € IFy.
Theorem V.9 suggests the following approach to construetaipr quantum error-

correcting codes.

Theorem V.10. Let X be a classical additive subcode Bf" such thatX # {0} and let
Y denote its subcodg = X N X . If z = | X| andy = |Y|, then there exists an operator
quantum error-correcting codé = A ® B such that

) dim A = ¢"/(zy)/?,

i) dim B = (x/y)"2.
The minimum distance of subsystdris given byd = swt((X + X ) — X) = swt(Y s —
X). Thus, the subsysterhcan detect all errors irt’ of weight less thad, and can correct

all errors in E of weight< |(d — 1)/2].

Proof. Let E be the extraspeciakgroup of ordempg®”, and letN be the full preimage of
N = X in E under the canonical quotient map. Therefore, we can apppEm V.9. The
remainder of the proof justifies how the parameters giverhiaofem V.9 can be expressed
in terms of the code sizesandy.

ThenZ(N) = XNX* =Y. By definition, N containsZ (E); hence Z(E) < Z(N).
It follows that|N : Z(N)| = [N : Z(N)| = x/y, so ii) follows from Theorem V.9. For
the claim i), we remark that = |X| = |N|/p, which implies thatlim A = (p/|N|)|E :
Z(E)P2IN : Z(N)|Y2 = q"(x/y)?a,

The minimum distance of subsystemis the weight of the smallest nondetectable
error, so it is the minimum weight of an error in the $é€'x(N) — N = Cg(Z(N)) —

N. Since the quotient mapg — E maps an error of weightw onto a vector such
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thatw = swte, the claim about the minimum distance follows from the otaggons that

NCp(N) =N = (X +X*) - XandCp(Z(N)) - N =Y+ - X. u

Remark V.11. As in the case of stabilizer codes, the most general synipfecin we can
choose is(u|v); = try/,(a’ - b —a - V'), whereu = (alb) andv = (a'|V') are inF2". We
define the trace symplectic dual &5+ = {z € F;" | (z|y), = 0, forally € C}. In
case offF,-linear codes, the trace symplectic forftu|b)|(a’|b'))s vanishes if and only if
a'-b—a -V vanishes. The trace symplectic dual forlgnlinear code therefore coincides
with its symplectic dual. So when dealing witjtlinear codes we indulge in an abuse of
notation and denote’ - b — a - b’ also by((a|b)|(a'|V’))s and the duals with respect to both

forms asCts.

In the above the theorem we had been able to define the distarteems of the
classical codes. Having made choice of the error group welsango back and recast the
distance in terms of the gauge group asva€'z(Z(N)) — N). In addition, we can also

extend the notion of purity to subsystem codes also in agstti@rward manner.

Definition V.12 (Pure and impure subsystem codds3t N be the gauge group of a sub-
system codé with distancel = wt(Cg(Z(N)) — N). We say that) is pure tod’ if there

is no error of weight less thad in N. The code is said to be exactly puredaf wt(N)

is d and it is said to pure i’ > d . The code is said to be impure if it is exactly pure to

d < d.

This refinement to the notion of purity was made in recognitib certain subtleties
that had to addressed when constructing other subsystees ¢an existing subsystem
codes, see [6] for detalils.

An operator quantum error-correcting code with parametersk’, R, d)), is a sub-
spaceC’ = A ® B of a ¢"-dimensional Hilbert spacé such thatX' = dim A, R =

dim B, and the subsystem has minimum distancd. The above theorem constructs
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an ((n,q"/(zy)*?, (z/y)'/?,d)), operator quantum error-correcting code given a classi-
cal (n,z), codeX and its(n,y), subcodeY” = X N X+:. We write [[n, k,,d]], for an
((n,q", q",d)), operator quantum error-correcting code.

A further simplification of the above construction is po$siwhich takes any pair of

classical codes to give a subsystem code.

Corollary V.13 (Euclidean Construction)Let X; C F7, be [n, k], linear codes where
i € {1,2}. Then there exists afn, k, r, d]], Clifford subsystem code with

o k=n— (ki +ka+k)/2,

o r=(ki+ky—k)/2,and

o d = min{wt((X{" N X2)" \ X0), wh((X3 N X0)E\ X)),

wherek’ = dimy, (X; N X3") x (Xi- N Xy).

The result follows from Theorem V.9 by defining = X; x Xj; it follows that
Ct = Xy x XitandD = C N C*+ = (X; N X3) x (XoN Xi), and the parameters are
easily obtained from these definitions, see [6] for a dedgii®of.

The notions of purity can be defined in terms of classical s@davell. LeC' be an ad-
ditive subcode oF2" andD = C'N C*+. By theorem V.9, we can obtain &m, K, R, d)),
subsystem cod@ from C that has minimum distaneé= swt(D++ — C). If &’ < swt(C),
then we say that the associated operator quantum erroctageode igure tod'.

Extending the ideas of purity to subsystem codes is useftduzse it facilitates the
analysis of the parameters of the subsystem codes, as wdhie clear when we derive
bounds in the next chapter.

As in the case of stabilizer codes we would like one wouldteharacterize the min-
imum distance in terms of the familiar Hamming weight. Fas purpose, we reformulate
the above result in terms of codes of lengthverF ..

Let (3, 57) be a fixed normal basis @, overF,. We can define a bijection from
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F>" ontoF7, by setting
¢((alp)) = Ba+ % for (afp) € Fy".

The map is chosen such that a vediolb) of symplectic weightr is mapped to a vector
o((a]b)) of Hamming weight:. Recall the trace-alternating forfa|w),, for vectorsv and

w in Fe given in equation (3.7)

U.wq_rUQ.w)

B =

It is easy to show thafc|d), = (¢(c)|¢(d)), holds for allc,d € F.*, see Lemma lIl.14.

(lu)a =t

Specifically, we have L d if and only if ¢(c) L, ¢(d). Therefore, the previous theorem

can be reformulated terms of codes of lengtbver[F . as follows:

Theorem V.14. Let X be a classical additive subcode Bf, such thatX # {0} and letY’
denote its subcod¥ = X N X1«. If x = | X| andy = |Y|, then there exists an operator
guantum error-correcting codé€' = A ® B such that

i) dim A = q¢"/(zy)"/?,

i) dim B = (z/y)"/2.

The minimum distance of subsystdrs given by
d=wt((X + X)) - X) = wt(Y ™ — X),

wherewt denotes the Hamming weight. Thus, the subsysteran detect all errors in
E of Hamming weight less thad#y and can correct all errors inE of Hamming weight

|(d—1)/2] orless.
Proof. This follows from Theorem V.10 and the definition of the isdres. O

The above connections of Clifford operator quantum errereming codes to classi-

cal codes allow one to explore a plethora of code constmstidHenceforth codes con-
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structed by using Theorems V.10,V.14 will be referred toGlg&ford subsystem codes
or just subsystem codes. We shall give an example to illiesthee idea. For simplicity
we shall consider binary codes derived from codes @yewhose elements are given by

{0,1,w,w?}, wherew? +w+1 = 0. Further, choosing = w, the trace alternating product

simplifies as(v|w), = v - w? + v* - w. Note that ifw = (wy,...,w,), then we denote
w? = (w?, ..., w?k).

Example V.15. Let X be the additive code given by the following generator matrix.

1 1 .0 0
0 0 1 1

Then it can be verified that -« is generated by

w w 0 0
0 0 w w
GXLa —
1 0 1 0
0 1 0 1
Further,Y = X N X« is generated by
1 1 1 1

Gy =
Wwow w w

We see thatX| = 24, while |Y| = 22. Thus by Theorem V.14 we havé(d, K, R, d)),
Clifford subsystem code wheké = 2¢/1/24.22 = 1 and R = ,/24/22 = 2. The distance
of the code i€ because th& 1« \ X contains(0, 1, 0, 1) among other weight two elements.
Thus we obtain d(4,2,2,2)), i.e. a[[4,1, 1,2]]s code. This code is not a Clifford code.

The associated Clifford code is[@, 2, 2]], code. Incidentally, this code is the smallest
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error detecting subsystem code with nontrivial dimensionghfe subsystems.

Often linear codes are of more interest than the additiveso80o we shall consider a
linear operator quantum error-correcting code. In thig e@s can look at Hermitian duals
instead of the trace-alternating duals. key € F}. Then we define the Hermitian inner
product(z|y), = >} x;y7. LetC C F} be anF,-linear code. The Hermitian dual 6f is
defined ag®*» = {z € F} | {x|c), = 0 for all c € C}. From Lemma 111.18, we know that

C+« = C1r, So we can use Hermitian duals in Theorem V.14.

Example V.16.Let X C F}® be a narrowsense BCH code of design distance 6. This code is
neither self-orthogonal nor does it contain its (Hermitjatual. The generator polynomial
of X is given by

g(r) = 2" + 2% + wrt + 2 + Wl + W

ThusX is an[15,8, > 6], code. A generator matrix for this code is obtained as

(110w 0 1]e?2w? 0|0 0 0|0 0 0]
01 1/0 w 0|1 w? w0 0 00 0 0
00110 w0 1 w20 00 0 0
B O
00001 1/0 w 01 w0 0 0
00000 1|1 0 w|0 1 «?l® 0 0
0000001 1 0lw 0 1| w? 0
(000[000[0 1 1[0 w 0[1 w w?|

The gauge group is the (full) preimage@ilnder the isometrg. The generator polynomial

of its Hermitian dual is given by

x8+x7+wx6+x5+wx4+w2x3+wx2+wx+w.
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The generator polynomial af = C' N C*» is given by
h(z) = 2% + wa® + 27 + 2° + wrt + Wi + Wl + 1

We see that’*+ is a[15, 9], code. Again using Theorem V.14 we can compute the dimen-
sions of the subsystemsand B as2'%/v/48 - 46 = 2 and \/48/45 = 4 respectively. The
codeY !+ has minimum weight (computed using MAGMA). Sinee (X) > 6, it follows
thatwt(Y+» \ X) = 5. Thus,X defines &(15,2, 4, 5)), code. But note that the associated
Clifford code has the paramete(§l5, 8, 5))s.

Further simplifications of Theorem V.14 for constructingeggtor quantum error-
correcting codes can be found in [6]. The reader can also #achples of Clifford sub-
sytem codes derived from BCH codes, Reed-Solomon codes thier@rested readers can
also refer to [19] for a novel method to construct subsystedes from a pair of classical

codes.

E. Conclusions

We have introduced a method for constructing operator gquargrror-correcting codes.
We have seen that a Clifford cod€soffers naturally a tensor-product decomposition=
A ® B, where the dimensions of the subsystems are controlledebgttbice of the normal
subgroupV and its charactey.

Our construction in terms of classical codes is fairly simphny classical (additive)
code over a finite field can be used to construct an operatmtagpneerror-correcting code.
In particular, we do not require any self-orthogonality dibions as in the case of stabilizer
code constructions.

The most prominent open problem concerning operator quaettor-correcting codes

is whether one can achieve better error correction that bgnsi@f a quantum error-
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correcting code. The construction given in Theorem V.10vedl one to compare the para-
meters of Clifford codes with the parameters of stabilizeteso One should note that a fair
comparison should be made betwéen- r, k, d]] stabilizer codes anldn, &, r, d|] Clifford

subsystem codes. In subsequent chapters we shall esthbliskds on the parameters of
subsystem codes and make a fair comparison of the subsyettas and stabilizer codes.
Additionally, we shall also look into other aspects whichhae not considered here such

as encoding subsystem codes, the gains in encoding andidgcod

F.  Appendix

In this appendix, we prove some simple technical resultsronpgs and characters.

Lemma V.17. Let E be a finite group such that’ C Z(F), and letH be a subgroup of
E. If x € Irr(H) satisfiesZ(E) Nker x = {1}, thensupp x = Z(H).

Proof. Let h € supp(x). Seeking a contradiction, we assume that H — Z(H). Since
E' C Z(E), there exists an elemegte H such thayhg~' = zh with 2 € Z(E) such that
z # 1. Sincezh € H andh € H, we havez: € HN Z(E). As x is irreducible, the element
z € HN Z(E) is represented by! for somew € C by Schur’s lemma; furthermore,
w # 1, sinceZ(E) Nkery = {1}. We note thaty(h) = x(ghg™') = x(zh) = wx(h),
with w # 1, forcing x(h) = 0, contradiction.

The elements of/ (H) belong to the support of, since they are represented by scalar

invertible matrices. ]

Lemma V.18. Let E be a finite group such thak’ C Z(FE), and let¢ € Irr(F) be a
faithful character of degree(1) = |E : Z(E)|'/?. LetT be a subgroup of? such that
Z(E)<T.Ifv e rr(T) and (¢r,9)r > 0, thensupp(d) = Z(T).

Proof. Let Z = Z(FE). We havesupp(¢) = Z by [78, Lemma 2.29]. Since the support of
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¢ equalsZ, it follows from the definitions that

1

0 < (¢r,0)r = m(

(bZ;ﬁZ)Z-

Clearly, ¢, = ¢(1)p andd, = 9(1)0 for some linear characters and ¢ of Z. As
(pz,92)z = &(1)0(1)(p,8)z > 0, we must havé = ¢. Sinceg is faithful, it follows that
¢ = 0 is faithful; hencekerv N Z(E) = {1}. Thus,suppd = Z(7T') by Lemma V.17. [

Lemma V.19. Suppose thdt’ is a group with subgroups and N such thatl’ = LN and
[L,N] =1. ThenZ(T) = Z(L)Z(N).

Proof. SinceT' = LN, an arbitrary elementof Z(7") can be expressed in the form= In
for somel € L andn € N. Forn' in N, we havelnn’ = n'ln = In'n, where the
latter equality follows from L, N] = 1. Consequentlypn’ = n'n for all n’ in N, son
is an element ofZ (V). Similarly, [ must be an element &f(L). It follows thatZ(T") =

Z(L)Z(N). O



109

CHAPTER VI

SUBSYSTEM CODES — BOUNDS AND CONSTRUCTIONS
In this chapter we extend the theory of subsystem codes. ©oargoals is to clarify
the benefits that can be gained from the use of subsystem wdgttesespect to stabilizer
codes. In this context we derive bounds on the parameterabsystem codes. These
bounds help in comparing the performance of subsystem ceilesespect to stabilizer
codes. Of course subsystem codes subsume stabilizer ahdtisense every stabilizer
code is a subsystem code. However, we use the term subsystimta@ mean a code
with nontrivial dimension of the gauge subsystem. We gdizeréhe quantum Singleton
bound toF,-linear subsystem codes. It follows that no subsystem cedeaprime field
can beat the quantum Singleton bound. On the other hand,awethl remarkable fact that
there exist impure subsystem codes beating the quantum kenbound. A number of
open problems concern the comparison in performance afig&aland subsystem codes.
One of the open problems suggested by Poulin’s work asksh&@hatsubsystem code can
use fewer syndrome measurements than an opfiipéihear MDS stabilizer code while
encoding the same number of qudits and having the same clstalle prove that linear
subsystem codes cannot offer such an improvement underetnecoding.

One of the promises of subsystem codes is their potentigirfigplifying error recov-
ery. Perhaps the benefits of subsystem codes are best wudlogtan example. Consider
the first quantum error correcting code proposed by [142]clwkencodes one qubit into
nine qubits. This code which is capable of correcting a sirggtor on any of the qubits
requires the measurement of eight syndrome qubits. The B&honsubsystem code [18]

*(©2007. Part of the material in this chapter is reprinted fronkKkRappenecker and P.

K. Sarvepalli, “On subsystem codes beating the quantum Hagior Singleton bound”,
Proc. Royal Society London #ol 463, pp. 2887-2905, 2007.
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on the other hand, also encodes one qubit into nine but itinexyonly four syndrome
measurements, giving a simpler error recovery scheme.

In this context it becomes crucial to identify when subsystdes provide gains
over the stabilizer codes. It also becomes necessary toarentipe stabilizer codes and
the subsystem codes fairly and with meaningful criteria.ifstance, once again consider
the [[9, 1, 3]]> Shor code requiring — k = 9 — 1 = 8 syndrome measurements. The
[[9, 1,4, 3]], Bacon-Shor code on the other hand requites k —r = 9 — 1 — 4 = 4
syndrome measurements. Clearly, this code is better theBhbes code. But the optimal
single error correcting binary quantum code that encodesgoibit is thel[5, 1, 3]}, code,
which also requires only — 1 = 4 syndrome measurements. So it is apparent that while a
given subsystem code can be superior to some stabilizescide not at all obvious that
it is better than the best stabilizer code for the same fangtiz., encoding: qubits with a
distanced.

The first part of our chapter seeks to address this issug, fnear Clifford subsystem
codes which might perhaps be the most useful class of s@msysides. In this chapter we
generalize the quantum Singleton boundrtelinear Clifford subsystem codes. It follows
that no Clifford subsystem code over a prime field can beat tiamigm Singleton bound.
We then show how the quantum Singleton bound can be appliethke the comparison
between stabilizer and subsystem codes (focusing on ig&bdodes that are optimal in
the sense that they meet the quantum Singleton bound). ®hisdomakes it possible to
quantify the gains that subsystem codes can provide in ezomvery. In particular, our
results show that these gains involve a trade off betweernliftance of the subsystem
code and the number of information and the gauge qudits. \&e shat if there exists
anF,-linear MDS stabilizer code,e., a code meeting the quantum Singleton bound, then
no IF,-linear subsystem code can outperform it in the sense ofinegufewer syndrome

measurements for error correction.
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Then we shift our attention to a class of subsystem codedticelss Bacon and Casac-
cino [19] obtain a subsystem code from two classical codessNéw that this method is a
special case of the Euclidean construction for subsystetascproposed in [6] and give a
coding theoretic analysis of these codes.

Since the early works on quantum error-correcting coddsastbeen suspected that
impure codes should somehow perform better than the purscétbwever, it was shown
that the quantum Singleton bound holds true for both purarapdre stabilizer codes. But
it was not so clear with respect to the quantum Hamming bolmfact, it was often con-
jectured that there might exist impure quantum error-aimg codes beating the quantum
Hamming bound, but a proof remained elusive. At least in @meof binary stabilizer
codes there exists some evidence that the conjecture mighientrue, as [12] showed
that asymptotically the quantum Hamming bound was obeyennipyire codes as well,
and [61] showed that no single error correcting binary $itadyi code can beat the quan-
tum Hamming bound. In this context it is not surprising thaéstions were raised [18] if
subsystem codes are any different. In [6] we proved the guaktamming bound for pure
subsystem codes. We show here that impure subsystem codieslead beat the quantum
Hamming bound for pure subsystem codes. For example, wermdg#mte that the lattice
subsystem codes can provide examples of impure subsystes toat beat the quantum
Hamming bound

The chapter is structured as follows. We assume that theresadamiliar with the
notion of subsystem code introduced in the last chapter. Meepghe quantum Singleton
bound for subsystem codes in Section A. The lattice subsysteles are focus of attention
in Section C and Section D, wherein itis shown that there @xisure subsystem codes that
beat the quantum Hamming bound. We conclude with a few opestiuns on subsystem

codes.
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A. Quantum Singleton Bound fd#,-linear Subsystem Codes

Recall that the quantum Singleton bound states that-at, d]|, quantum code satisfies
2d < n —k+2,[95,126]. In this context it is natural to ask if subsystemdes also obey
a similar relation. The usefulness of such a bound is obvidysart from establishing
the bounds for optimal subsystem codes, they also make silgeso compare stabilizer
and subsystem codes, as we shall see subsequently. We Ipadtlecl -linear subsystem
codes with the parametelfs, &, r, d]], satisfy a quantum Singleton like bouwnid.,k +r <

n — 2d + 2. It will be seen that this reduces to the quantum Singletamtdaf » = 0. More
interestingly, this reveals that there is a trade off in tize sf subsystem and the gauge
subsystem. One pays a price for the gains in error recovéey cdst is the reduction in the
information to be stored.

Our proof for this result is quite straightforward, thoudje intermediate details are a
little involved. First we show that a linedn, &, » > 0, d]|, subsystem code that is exactly
pure to 1 can be punctured to gn — 1, k,r — 1, d]], code which retains the relationship
betweenn, k,r,d. If d = 2 by repeated puncturing we either arrive at a pure code or
a stabilizer code, both of which have upper bounds. dor 2, two cases can arise, if
the code is exactly pure to 1, we simply puncture it to get allemeode as ind = 2
case. Otherwise, we puncture it to getjan— 1,k,r + 1,d — 1]], code. By repeatedly
shortening we either get a stabilizer code or a distance € both of which have an upper
bound. Keeping track of the change in the parameters wié g&an upper bound on the
parameters of the original code.

Letw = (a1, as, ..., an|b1, b, ..., by) € F2". We denote by(w) € F."~2, the vector

obtained by deleting the first and ther 1** coordinates ofv. Thus we have

p(w) - (a2’ e ’a”|b27 s 7bn) € an_Q.
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Similarly, given a classical codé C ]F?I” we denote the puncturing of a codeword or code
in the first andr + 1 coordinates by(C').

In Theorem V.10 subsystem codes are constructed using @ $saaplectic prod-
uct. Following Remark V.11 foif,-linear codes instead of considering the trace sym-
plectic inner product we can consider the relatively simghmplectic product. Recall
that the symplectic product af = (a|b) andv = (a'|t') in F." is defined agulv), =
((alb)|(a']t'))s = ' - b —a- V. The symplectic dual of a code C F2" is defined as
Cts = {x e F2" | (z|y)s = 0, forally € C'}. As we shall be concerned wifh-linear
codes in this chapter, we will focus only on the symplectieeinproduct in the rest of the

chapter.

Lemma VI.1. LetC C F2* be anF,-linear code. TherC' has anfF,-linear basis of the

form

B — {Zla vy Rl Zk‘-i—la xk‘-i—la zk+27 xk‘-i—?v ce. 7Zk’+7“7 'rk-‘r’l‘}

Where<x,»|xj>s =0= <Zi|zj>s and <ZE¢’Z]‘>S = 62‘,]‘.

Proof. First we choose a basB = {z,..., 2k, 2k11, - - -, k1 } fOr @ maximal isotropic
subspace&’y of C. If Cy # C, then we can choose a codeward, ; in C that is orthog-
onal to all of thez; except one, say,.; (renumbering if necessary). We can scaje;

by an element irF so that(zy1|si1)s = 1. If (Co,211) # C, then we repeat the
process by choosing another codewofd; that is orthogonal to all the previously chosen

{Tks1, ..., Trri 1} and allz; exceptz,,,;, until we have a basis of the desired form. [J

For the remainder of the section, we fix the following notatiBy Theorem V.10, we
can associate with aR,-linear[[n, k, r, d]|, subsystem code two classidg/-linear codes

C,D CF" suchthatD = CNC*, [C| = ¢" ", |D| = ¢"* " andswt(D++ \ C) = d.
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By lemma VI.1, we can also assume tldats generated by

C= <Zl7 R Z IR TN PRUFEE PR ZS+T7xS+7‘>7

wheres = n—k—r and the vectors;, z; in ;" satisfy the relationgz;|z;), = 0 = (z]2;)s

and(z;|z;)s = ¢; ;. These relations om;, z; imply that

1s
C - <Zl7 <y Ry Rstrdly Lsdrtly -+« 5 Bstrtk ws—i—r—i—k)a
D=CnCH = ( )
- - Rly«-+yRs)s

1
D~ = <Zl7"'7Z8725+17$S+17"'aznaxn>'

Lemma VI.2. AnF-linear [[n, k,r > 0,d > 2]], Clifford subsystem code exactly pure to

1 can be punctured to afi,-linear [[n — 1, k,r — 1, > d]], code.

Proof. As mentioned above, we can associate to the subsystem coddassical codes

C,D C F;*. Two cases arise dependingant (D).

a) Ifswt(D) = 1, then without loss of generality we can assume ¢hatz,) = 1. Further,
z; can be taken to be of the forfm, 0, ...,0]a,0,...,0). And for: # 1, because of -
linearity of the codes we can pick all, z; to be of the form(0, as, . . ., a,|b1, b2, ..., by).
Further, asz;, z; must satisfy the orthogonality relations with viz., (z1|z;)s = 0 =
(z1|7;)s, fori > 1 we can choose;, z; to be of the form(0, as, . .., a,|0,bs, ..., b,). It
follows that because of the form of andz; puncturing the first and + 1* coordinate
will not alter these orthogonality relations, in partiau{a(z;)|p(z;))s # 0for s+ 1 <
1 <n.

Letting p(z;) = z}, p(z;)) = 2z, and observing thap(z;) = (0,...,0/0,...,0), we
see that the code(C) = (25, ...,25, 201, Thps - -5 %oy Tsy,). DeNOting byD,, =
p(C) N p(C)* it is immediate thatD, is generated by{z), ..., 2.} while D+ =

(2 2l 2y Ty s - 20, 1) Hencep(C') defines ajn—1, k, r, swt(D,\p(C))]],

’n? n
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code.
Next we show thagwt (D, \ p(C)) > d. Letu = (ag, ..., an|bs, ..., b,) beinDy <\
p(C), then we can easily verify th&0, as, ..., a,|0,bs, ..., b,) is orthogonal to alk;,
1 <i < sandhenceitisiD*:. It cannot be irC as that would imply that is in p(C).
Butswt(DL:\ C) > d. Thereforeswt(u) > d. andp(C) defines arijn — 1, k, 7, > d]|,
code. By choosing”’ = (25,..., 2., 24,1, Zey0: Thigs - Zesr, Tuyr) WE CAN conclude
that there exists ajfin—, k, r — 1, d]], code. Alternatively, apply Theorem 16 in [6].
b) If swt(D) > 1, then we can assume thatt(z,,1) = 1 and form the code’ =
(21, vy Zsy Zsi1s 2542y Tst2y - - 5 Zsiry Tsir).  |U IS Clear thatC’ defines an([n, k,r —
1,d]], code that is pure ta with swt(C’ N C"*+) = 1. But this is just the previous
case, from which we can conclude that there exist$ran 1, k,r — 1, > dJ], code.

O

Lemma VI.2 allows us to establish a bound for distance 2 cedesh can then be

used to prove the bound for arbitrary distances.

Lemma VI.3. AnimpureF -linear [[n, k, r, d = 2]], Clifford subsystem code satisfies
k+r<n-—2d+2.

Proof. Suppose that there exists Bplinear|[n, k, r, d = 2]], impure subsystem code such
thatk +r > n — 2d + 2; in particular, this code must be puretoBy Lemma VI.2 it can
be punctured to give aifin — 1, k, 7 — 1, > d]], subsystem code. If this code is pure, then
k+r—1<mn-—1-2d+ 2 holds, contradicting our assumptién-r > n — 2d + 2; hence,
the resulting code is once again impure and pure to 1.

Now we repeatedly apply Lemma VI.2 to puncture the shortermetbs until we get
an|[n —rk,0,> d]|, subsystem code. But this is a stabilizer code which must diey t

Singleton bound < n—r—2d+2, contradicting our initial assumptidry-r > n—2d+2.
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Therefore, we can conclude that- r < n — 2d + 2. ]

If the codes are of distance greater than 2, then we pundteredde until it either
has distance 2 or it is a pure code. The following result t&lsiow the parameters of the

subsystem codes vary on puncturing.

Lemma VI.4. An impureF,-linear [[n, k,r,d > 3]], Clifford subsystem code exactly pure

to d’ > 2 implies the existence of df)-linear [[n — 1, k,r + 1, > d — 1]], subsystem code.

Proof. Recall that the existence of dm, k,r,d > 3]], subsystem code implies the exis-

tence off,-linear codes” and D such that

C = (21, oy Zsy Zs41y Tstly -« s Zstrs Totr)s

with s =n — k —r,andD = C N C*+, see above.

The stabilizer code defined ly satisfiesk +r = n —s < n—2d’ + 2, or equivalently
s > 2d — 2; it follows thats > 2, sinced’ > 2. Without loss of generality, we can
take z; to be of the form(1, as, ..., a,|b1,bs ..., b,) for if no such codeword exists if,
then(0,0,...,0|1,0,...,0) is contained inD+, contradicting the fact thatvt(D+) > 2.
Consequently, we can choosgin D to be of the form(0, co, ..., ¢,|1,da, ..., d,), and we
may further assume that = 0 in z;. The form ofz; andz, allows us to assume that any
remaining generator af is of the form(0, us, ..., u,|0,vq, ..., v,).

Let p be the map defined by puncturing the first @nd- 1)** coordinate of a vector in
C'. Define for alli the punctured vectors = p(z;) andz, = p(z;). Then one easily checks
that (p(z;) | pl(z;))s = 0 = (p(2;) | p(2;)), for all indicesi andj, and(p(x:) | p(z))s =
9 ifi>s+1orj>3,andthatp(z) | p(22))s = —1.

Let us look at the punctured cogéC),

_ / / / / / / / /
P(C) = (25, oy 2y Zei s Tyt - ey By Ty 215 Z0)-
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Since (p(z1) | p(z2))s = —1 we haveD, = p(C) N p(C)*s = (z,...,z.), whence
|D,| = |D|/q*. Asswt(C) > 2, it follows that |p(C)| = |C|. Thusp(C) defines an
[[n— 1,k r+1,swt(Dy* \ p(C))]], subsystem code.

Recall that the codé is generated by > 2 vectors; we will show next that our

assumptions actually force > 3. Indeed, ifs = 2, then|D| = ¢*> and|D*:| = ¢*" 2.

Under the assumptioswt(D++) > 2, it follows that|p(D++)| = |D++| = ¢*>"~2. But as

p(D*+) C F2*~2 this implies thatp(D*+) = F2"~2. SinceF." > has2n — 2 independent

codewords of symplectic weight on®*s must have2n — 2 independent codewords of

symplectic weight two. However, this contradicts our asstioms on the minimum dis-

tance of the subsystem code:

(a) If C is a proper subspace db*=, then the minimum distancé is given byd =
swt(D+s \ C) > 3; thus, the weight 2 vectors must all be contained’inwhich

shows thatC| = ¢°"~2 = | D|, contradictingC| < |D*+

(b) If C = D++, then the minimum distance is given By= swt(D++) = 2, contradicting

our assumption that > 3.

Thus, from now on, we can assume that 3.

Before bounding the minimum distance of the punctured suésysode, we are go-
ing to show thatD,+ = p(D+*). Letw = (u1,us, ..., un|v1, v, ..., v,) be a vector in
Dts. For3 < i < s, the vectorsy; are of the form(0, as, .. ., a,|0, bo, ..., b,); thus,
it follows from (w|z;), = 0 that (p(w)|z])s = 0. Hencep(w) is in D,+, which implies
p(D*++) C Dy=. We have|D,

= ¢*%/|D,| = ¢**/|D| = |D*+|, and we note that

|D*¢| = |p(D*)|, becausewt(D++) > 2; hence,D,* = p(D**).
Letw' = (ug, ..., uylve, ..., v,) be an arbitrary vector ip(D+<) \ p(C). It follows
that there exist some, 3 in F, such thatv = (o, ug, ..., u,|5,va, . .., v,) isin Dt it is

clear thatw cannot be irC', since therp(w) = w’ would be inp(C'); henceswt(w) > d. It

immediately follows thaswt(D,+\p(C)) > d—1. Hencep(C) defines af[n—1, k, r+1, >
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d — 1]}, subsystem code. O

Now we are ready the prove the upper bound for an arbitrargymiém code. Essen-
tially we reduce it to a pure code or distance two code by replepuncturing and bound

the parameters by carefully tracing the changes.

Theorem VI.5. AnF-linear [[n, k,r, d > 2]], Clifford subsystem code satisfies
E+r<n-—2d+2. (6.1)

Proof. The bound holds for all pure codes, see [6]. So assume thabtheis impure. If
d = 2, then the relation holds by Lemma VI.3; so tet> 3. If the code is exactly pure to
1, then it can be punctured using Lemma V1.2 to givdjan— 1, k,r — 1,d’ = dJ|, code,
otherwise it can be punctured using Lemma V1.4 to obtaifjan 1, k,r+1,d > d—1]],
code. If the punctured code is pure, then it follows thategith+-r—1 <n—1—2d+2 or
E+r+1<n—-1-2d'+2<n-1-2(d—1)+2holds; in both cases, these inequalities
imply thatk +r < n — 2d + 2.

If the resulting code is impure, then if it is exactly pureltave puncture the code
again using Lemma V1.2, if not we puncture using Lemma VIdtjlwe get a pure code
or a code with distance two. Assume that we puncturighes using Lemma V1.2 ang
times using Lemma V1.4, then the resulting code igfan-i — j, k,r +j —i,d’" > d — jl],

subsystem code. Since pure subsystem codes and distanogy2tem codes satisfy
k+r+j—i<n—i—j—2d+2<n—i—j—2(d—j)+2,
it follows thatk + » < n — 2d + 2 holds. O

When the subsystem codes are over a prime alphabet, this holohsifor all codes
over that alphabet. In the more general case where the codtlisear, numerical evidence

indicates that it is unlikely that the additive subsysterdeohave a different bound. We
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have shown that a large class of impure codes already s#tisfigound. This prompts the

following conjecture.

Conijecture VI.6. Any([n, k,, d]], Clifford subsystem code satisfies- » < n — 2d + 2.

B. Comparing Subsystem Codes with Stabilizer Codes

In this section, we compare stabilizer codes with subsystedes. We first need to es-
tablish the criteria for the comparison, since subsystedes@annot be universally better
than stabilizer codes. For example, it is known that a subsysode can be converted to
a stabilizer code [100, 120]. See also Lemma 10 in [6] for gotenproof to convert an
[[n, k,r,d]], code to af[n, k, d]], code. This implies that nfin, k, r, d]], subsystem code
can beat an optimd|n, k, d']], stabilizer code in terms of minimum distance,d&s> d.
One of the attractive features of subsystem codes is a paitezduction of the number of
syndrome measurements, and we use this criterion as trefbasur comparison.

First, we must highlight a subtle point on the required nundéeyndrome bits for an
F,-linear[n, k, d], code. A complete decoder, will require— k£ syndrome bits. Complete
decoders are also optimal decoders. A bounded distanceleleon the other hand can
potentially decode with fewer syndrome bits. Bounded distadecoders typically decode
up to [(d — 1)/2]. However, to the best of our knowledge, except for the lootaipge
decoding method, all bounded distance decoders also eaquirk syndrome bits. As the
complexity of decoding using a lookup table increases egpbally inn — £ it is highly
impractical for long lengths. We therefore assume that factical purposes, that we need
n — k syndrome bits.

Similarly, for anF-linear [[n, k, r, d]], subsystem code, a complete decoder will re-
quiren—k—r syndrome measurements, as is shown in E. We are not awarg @dantum

code, stabilizer or subsystem, for which there exists a dedmlistance decoder that uses
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less tham — k& — r syndrome measurements to perform bounded distance decdide
work by Poulin [120] prompts the following question: Givemaptimal|[k +2d —2, k, d]|,
MDS stabilizer code, is it possible to find dn, &, r, d]], subsystem code that uses fewer
syndrome measurements?

There exist numerous known examples of subsystem codestpiaive upon nonop-
timal stabilizer codes. The fact that the stabilizer codessumed to be optimal makes this
question interesting. The Singleton bound r < n — 2d + 2 of anF-linear|[n, k, 7, d]|,
subsystem code implies that the numhber k£ — r of syndrome measurements is bounded
byn —k—r > 2d — 2; thus, for fixed minimum distancg there exists a trade off between

the dimensiork and the difference — r between length and number of gauge qudits.

Corollary VI.7. Under complete decoding dh-linear [[n, k,r,d > 2]|, Clifford subsys-
tem code cannot use fewer syndrome measurements tHaplaear [k + 2d — 2, k, d]],

stabilizer code.

Proof. Seeking a contradiction, we assume that there exigigah r, d, subsystem code
that requires fewer syndrome measurements that the optimal 2d — 2, k, d]], MDS

stabilizer code. In other words, the number of syndrome areasent yield the inequality
k+2d—2—k >n—k—r,whichis equivalent t& + » > n — 2d + 2, but this contradicts

the Singleton bound. [

Poulin [120] showed by exhaustive computer search thae thees not exist ab, 1, r >
0, 3]], subsystem code. The above result confirms his computerhseart shows fur-
ther that not even allowing longer lengths and more gaugésjodn help in reducing the
number of syndrome measurements. In fact, we conjectutectinallary VI.7 holds for
bounded distance decoders also.

We wish to caution the reader that gains in error recoverynatine quantified purely

by the number of syndrome measurements. In practice, mon@lea measures such as
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the simplicity of the decoding algorithm or the resultingsgshold in fault-tolerant quantum
computing are more relevant. The drawback is that the casgaof large classes of codes

becomes unwieldy when such complex criteria are used.

C. Subsystem Codes on a Lattice

Bacon gave the first family of subsystem codes generaliziagdias of Shor'§[9, 1, 3],

code [18]. Recently, he and Casaccino gave another consmmustiich generalizes this
further by considering a pair of classical codes [19]. Wesstiat this method is a special
case of Theorem V.13. Since this construction is not limitebinary codes and our proofs
remain essentially the same, we will immediately discus&megnlization to nonbinary

alphabets.

Theorem VI.8. For i € {1,2}, letC; C F}: be F,-linear codes with the parameters

[ni, ki, di],. Then there exists a Clifford subsystem code with the parasnete
[[n1n2, k1ks, (n1 - kl)(n2 - k?2)7 min{dl, dZ}Hq
that is pure tod, = min{dy, d5 }, whered;- denotes the minimum distancef.

Proof. Let C be the classical linear code given by= (F* ® Cy) x (Cf- ® F2). Then
dim C' = ny(ny — kz) + na(ny — k) andswt(C' \ {0}) > min{di, d5 }. The symplectic

dual of C'is given by

Ct = (CroFp2)" x (Fp' @ Cy)*
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We havedim C*s = kiny + ni1ko. The codeD = C' N C*= is given by

D= ((Fy ®Cy) x (Cf ®F;) 0 ((C1 @ Fy) x (Fy @ C)

(F @ CHN(CLeFR)) x ((Cf @ F2*) N (F* @ Cy))

= (01 ® Cy) x (Cf ® Cy),
anddim D = ky(ny—ks)+ko(ny—ky). Itfollows thatdim C'—dim D = 2(n;—ky)(no—ko)
anddim C*s — dim D = 2k, k,. Using corollary V.13, we can get a subsystem code with

the parameters
[[n1na, krka, (n1 — k1) (ng — ka), d = swt(D\ C)]],

that is pure tal, = min{d;, dy }. It remains to show that = min{d;, d»}.

SinceD = (C, ® Cy) x (Ci+ @ Cy), we have

DY = (Cf ®@Cy)* x (Cr®Cy)t

= (CL@F2) + (F* ® Cy)) x ((Fi* ® Cy) + (Cf @ F?)) .

In the last equality, we used the fact that vectorso u, andv; ® vy are orthogonal if and
only if u; L vy oruy L wvs.

Fori € {1,2}, letG; andH, respectively denote the generator and parity check matrix
of the codeC;. Without loss of generality, we may assume that these negtraaze in

standard form

H; = |: [m—ki PZ :| andGi - |: _Pit [k’z :| ’

whereP! is the transpose d?,. Let Hf = { 0 I } Using these notations, the generator
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matrices ofC' and D1+ can be written as

Gy ® H 0
Inl ® H2 O ]nl ® H2 0
GC = and GDJ_S —
0 H, ® I, 0 HE® Gy
0 H,® 1,

It follows that the minimum distancéis given by

N ' G ® HS
swt(D—*\ C') = min ¢ wt \( I,, ® H, )
]77,1 X H2

Let us compute

Hf ® Gy
wt \( H ® I,
H,®1,,

If minimum weight codeword is present in+« \ C, it must be expressed as linear combi-
nation of at least one row froff/{ ® G| otherwise the codeword is entirely @i Recall
thatH, = | Ly, P JandH{ = o I, |. Letting P, = (p;;), we can write

0O o0 ... 0 G 0
0 0 ... 0 0 Gy 0
He ® Gy 0 0 ... 0 0 Gy
H1 ® In2 ]n2 0 O p11]n2 . . plkllng
0 [n2 el e p21[n2 Ce Ce p2k1]n2
O 0 e In2 p(nl—ku)l]m . e p(n1—k1)k’1[n2
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Now observe that any row below the line in the above matrixtesa weight of only one
in each of the last; blocks of sizen,. And any linear combination of them involving less
thand, and at least one generator from the rows above must have ateeig,. If on the
other hand there are more thdnrows involved, then the firsiy(n; — k1) columns will
have a weight> d,. Thus in either case the weight of an element that involvesneigtor
from [H{ ® G| must have a weight d,. On the other hand, the minimum weight of the

span oflH{ ® G5 iswt(Cy) = dy, from which we can conclude that

Hf ® G
wt \( H,®1, = ds.
H® I,

Because of the symmetry in the code we can argue that

G1® H§
[nl ® HZ
and consequently = min{d;, d»}, which proves the theorem. O

1. Bacon-Shor Codes

Bacon [18] proposed one of the first families of subsystem stdsed on square lattices.
A trivial modification using rectangular lattices insteddsquare ones gives the following
codes, see also [19]. The relevance of these codes will belaes in Section D. Using

the same notation as in Theorem VI1.8,det= [1,. .., 1];; and H; be the matrix defined
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as

11

- —i—1xi
andC, the additive code generated by the following matrix.
I, ® H,, 0

0 H, &1,

Observe tha€; generates afi, 1, 7], code with distancé. By Theorem VI.8G,,, andG,,,

will give us the following family of codes

Corollary VI.9. There exisf[ninz, 1, (n; — 1)(ne — 1), min{ny, n, }||, Clifford subsystem

codes.

D. Subsystem Codes and Packing

We investigate whether subsystem codes lead to better bedasise of the decomposition
of the code space. Since the early days of quantum codes, iebagnized that the degen-
eracy of quantum codes could lead to a more efficient quantute and allow for a much
more compact packing of the subspaces in the Hilbert spaces®far it has not been
shown for stabilizer codes. We can derive similar bound tdrsystem codes. [6] showed

the following theorem for pure subsystem codes.

Theorem VI1.10. A pure((n, K, R, d)), Clifford subsystem code satisfies

@=0/2) |
3 ( j) (¢* 1) < ¢"/KR. (6.2)

J=0



126

It is natural to ask if impure subsystem codes also satisylitbund. We show that
they do not by giving an explicit counterexample. This cenrgxample comes from the
codes proposed by [18]. Recall the Bacon-Shor codefiael, (n — 1)2, n]], subsystem
codes. The|9, 1,4, 3]]» is an interesting code. We can check that it satisfies thee&omy

bound for subsystem codes as
k+r=144=n—-2d+2=9—-6+2.

So itis an optimal code. More interestingly, substituting parameters of tH§9, 1, 4, 3]]»

Bacon-Shor code in the above inequality we get

1

Z (9) 37 =928 > 2975 — 16.
J

j=0
Therefore the[9, 1, 4, 3]], Bacon-Shor code beats the quantum Hamming bound for the

pure subsystem codes proving the following result.

Theorem VI.11. There exist impur¢(n, K, R, d)), Clifford subsystem codes that do not

satisfy
l@-v/2 '
( .)(q2 -1 <¢"/KR.
j=0 J
An obvious question is why impure codes can potentially padke efficiently than
the pure codes. Let us understand this by looking af/[thé, 4, 3]], code a little more
closely. This code encodes information into a subsp@ceheredim Q = 2+ = 25,
As it is a subsystem cod@ can be decomposed 5= A ® B, with dim A = 2F = 2
anddim B = 2" = 2*. In a pure single error correcting code all single errors tnaise
the code space into orthogonal subspaces. In an impure bdis hot required two or
more distinct errors can take the code space to the samegortabspace. In the Bacon-

Shor code a phase flip error on any of the first three qubitstekié the code space to

same orthogonal subspace and because of this we cannogdisti between these errors.
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However, it is not a problem because we can restore the c@de spth respect tal even
though we cannot restoig. Thus instead of requiring orthogonal subspaces as in a pure
code, we only require 3 orthogonal subspaces to correctriprsangle phase flip error.
Considering the bit flip errors and the combinations we nedyl ®@orthogonal subspaces.
Thus with the original code space this means we need to pagkdimensional subspaces
in the2” = 22 dimensional ambient space, which is achievabléla2’® < 2°.

More generally, in a sense degeneracy allows distinctetooshare the same orthog-
onal subspace and thus pack more efficiently. It must be gaioait though that this better
packing is attained at the costofjauge qudits compared to a stabilizer code.

In fact there exists another code among the Bacon-Shor coldiet also beats the
Hamming bound for the subsystem codes. This ig[fttie 1, 16, 5]]» code. The family of
codes given in corollary VI.9 provides us with2, 1, 6, 3]]», yet another example of a code
that beats the quantum Hamming bound like[tBel, 4, 3]]» code. We can check that

1

> <12> 3 =37>2"7170 =20 =32,

=0 \J
But note that unlike][9, 1,4, 3]]» this code does not meet the Singleton bound for pure
subsystem codes &s+ 1 < 12 — 6 + 2. Naturally we can ask if there is a systematic
method to construct codes that beat the quantum Hammingdb@shikhmin and Litsyn
showed that all binary stabilizer codes — pure or impure -ufifcsently large length obey
the quantum Hamming bound, ruling out the possibility tmapure codes of large length
can outperform pure codes with respect to sphere packingpritrast we show that impure
subsystem codes do not obey the quantum Hamming bound fergulosystem codes,
not even asymptotically. We show that there exist arblyrdong Bacon-Shor codes that
violate the quantum Hamming bound.

Degenerate quantum error-correcting codes pose manyestitey questions in the
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theory of quantum error-correction. The early discoverthefphenomenon of degeneracy
raised the question whether degenerate quantum codes idampbetter than nondegen-
erate quantum codes. One of the unresolved questions teyis the theory of stabilizer
codes is whether the bounds that hold for nondegenerates @sle hold for degenerate
codes. Some bounds like the quantum Singleton bound do. Buotliers, like quantum
Hamming bound, an answer remains elusive. Partial answers provided by Gottes-
man [61] for single error-correcting and double error-eoting codes. Ashikhmin and
Litsyn [12] showed that asymptotically degenerate codesiabbeat the quantum Ham-
ming bound.This leaves only a small range of degenerate binary staitodes of mod-
erate length that can potentially beat the quantum Hammigni, but we conjecture that
no such examples can be found.

We show that the situation is markedly different in the cassubsystem codes (also
known as operator quantum error-correcting codes [94,8%)1The quantum Hamming
for pure subsystem codes was derived in [6]. We have alrelhdyrs that there exist
impure subsystem codes that beat the quantum Hamming boupdre subsystem codes.
Now we address the question whether impure subsystem csgagptotically obey the
guantum Hamming bound, as in the case of binary stabilizéesoWe show that there
exist impure subsystem codes of arbitrarily large lengtt beat the quantum Hamming
(or sphere-packing) bound.

For the binary cases the quantum Hamming bound for subsysteles states that a

pure|[n, k, r, d]] subsystem code satisfies

=2, o\
A Y (j)?ﬂ. (6.3)
=0

We claim that all the Bacon-Shor codes [18,19] of odd lengéhg[(2t+1)2, 1, 4¢%, 2t +1]]
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violate the quantum Hamming bound, namely that

t
2(2t+1)27174t2 _ ot ?f Z ((Qt + 1)2> 37
=\
holds for all positive integers It suffices to show that

2 < ((% j 1)2) 3! 6.4)

holds for all positive integers Since0 < 4(t — 1/6)? + 8/9 = 4t* — 4t/3 + 1, we have

16t
?<4t2—|—1+4t

for all t > 0. Multiplying both sides by /¢ and raising to the'" power yields

312t + 1)*

4t

27 < t—t,

which proves the inequality (6.4), 3) > n'k~". Thus, we can conclude that the Bacon-

Shor codes of odd length do not obey the quantum Hamming bound

Theorem VI.12. Asymptotically, the quantum Hamming bound (6.3) does niut fow

impure subsystem codes.

It is remarkable that there exist such families of subsystedes that can pack more
densely than any pure subsystem code. Further exampleslofdsmnsely packing sub-
system codes can be found among the family with paraméters,, 1, (n; — 1)(ns —

1), min{n4, ny }|], which contains for instance[d 2, 1, 6, 3]] subsystem code.

E. Conclusions

We have proved that ariy,-linear|[n, k, r, d]], Clifford subsystem code obeys the Single-
ton boundk + r < n — 2d + 2. Furthermore, we have shown earlier that pure Clifford

subsystem codes satisfy this bound as well. Our resultsggavnuch evidence for the
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conjecture that the Singleton bound holds for arbitrarysgatem codes. Proving this for
all additive subsystem codes will be an interesting problem

Pure Clifford subsystem codes obey the Hamming (or spherkinggcbound. In
this chapter, we have shown the amazing fact that there iexmire Clifford subsystem
codes beating the Hamming bound. This is the first illusirabf a case when impure
codes pack more efficiently than their pure counterpartse €ample of a code beating
the Hamming bound is provided by thi, 1,4, 3]]» Bacon-Shor code; this remarkable
example also illustrates the following noteworthy facts:

a) The[[9,1,4, 3]], code require® — 1 — 4 = 4 syndrome measurements just like the
perfect[[5, 1, 3]]» code.

b) Sincek +r < n — 2d + 2 for all prime alphabet code§9, 1, 4, 3]], code is also an
optimal subsystem code. This is interesting because therlyinty classical codes are
not MDS. In MDS stabilizer codes, the underlying classicades are required to be
MDS codes.

c) The Bacon-Shor code is also impure. So unlike MDS stalbitbees which must be
pure, MDS subsystem codes can be impure.

d) The maximal length of g-ary stabilizer MDS code i€¢> — 2, see Theorem IV.25
whereas for subsystem codes it is larger ag[the, 4, 3]}, code indicates.

The implication of b)—d) is that optimal subsystem codeslzanerived from suboptimal

classical codes, unlike stabilizer codes. It would be aer@sting problem to determine

what are the conditions under which a non-MDS classical edtldead to an MDS sub-

system code.
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CHAPTER VI

ENCODING AND DECODING OF SUBSYSTEM CODES

A. Introduction

In this chapter we investigate encoding and to some extartddiieg of subsystem codes.
Our main result is that encoding of a subsystem code can heeddo the encoding of
a related stabilizer code, thereby making use of the previogiory on encoding stabilizer
codes [42,61,73]. We shall prove this in two steps. Firstsial show that Clifford codes
can be encoded using the same methods used for stabilizes.cedcondly, we shall show
how these methods can be adapted to encode Clifford subsystées. Since subsys-
tem codes subsume stabilizer codes, noiseless subsystdrde@herence free subspaces,
these results imply that we can essentially use the sameod®eth encode all these codes.
In fact, while the exact details were not provided it was ssggd in [121] that encoding
of subsystem codes can be achieved by Clifford unitaries.ti®@atment is comprehensive
and gives proofs for all the claims.

Subsystem codes can potentially lead to simpler error exgaschemes. In a similar
vein, they can also simplify the encoding process, thoughgps not as dramaticatly
These simplifications have not been investigated thorgugleither have the gains in en-
coding been fully characterized. Essentially, these gaiasn two forms. In the encoded
state there need not exist a one to one correspondence betiweegauge qubits and the
physical qubits. However, prior to encoding such a corredpace exists. We can exploit
this identification between the virtual qubits and the pbgisgubits before encoding to
tolerate errors on the gauge qubits, a fact which was regednn [121]. Alternatively,

*In general, decoding is usually of greater complexity thacoeling and for this reason

it is often neglected in comparison. This parallels thesitad case where also the decoding
is studied much more extensively than encoding.
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we can optimize the encoding circuits by eliminating ceremcoding operations. The en-
coding operations that are saved correspond to the encqaedtors on the gauge qubits.
This is a slightly subtle point and will be elaborated at ngubsequently. We argue that
optimizing the encoding circuit for the latter is much mosmbficial than simply allowing
for random initialization of gauge qubits.

Notation. The inner product of two characters of a gradp sayy andé, is defined
as(x,0)n = 1/|N| > ,.cy x(n)0(n~"). We shall denote the center of a grodipby Z(N).
Given a subgrougv < E, we shall denote the centralizer 8fin £ by Cg(N). Given a
matrix A, we consider another matri obtained fromA by column permutation as being
equivalent and denote this By =, A. Often we shall represent the basis of a group by the
rows of a matrix. In this case we will regard another basisioled by any row operations
or permutations as being equivalent and by a slight abusetation continue to denote
B =, A. The commutator of two operators B is defined agA, B] = AB—BA. This can
potentially conflict with our definition of commutator in ChepV as[z,y| = zyx~ty~L.

However, in this chapter we will not have occasion to usedbkiition.

B. Encoding Stabilizer Codes — A Review

Recall the Pauli matrix operatdrs
. Y = = XZ. (7.1)

Let P,, be the Pauli group on qubits. An element element= (—-1)°X“7" @ --- ®

X 7% in P, can be mapped ®" by 7 : P, — F3" as
7(e) = (a1,...,anlby,. .., by). (7.2)

fWe consider the real version of the Pauli group in this chapte
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Given an|[n, k, d]], code with stabilizelS, we can associate t8 (and therefore the
code), a matrix irFé”_kW” obtained by taking the image of any set of its generatorsmunde
the mappingr. We shall refer to this matrix as th&abilizer matrix We shall refer to
the stabilizer as well as any set of generators as the g@biliAdditionally, because of
the mappingr, we shall refer to the stabilizer matrix or any matrix ob&rfrom it by
row reduction or column permutations also as the stabiliZée stabilizer matrix can be
put in the so-called “standard form”, see [42,61]. This faateo allows us to compute
the encoded operators for the stabilizer code. Recall tiea¢ticoded operators allow us

to perform computations on the encoded data without hawrdgtode the data and then

compute.

Definition VII.1 (Encoded operatorsisiven a[[n, k, d]], stabilizer code with stabilizes,
let X;, Z; for 1 < i < k be a set ok linearly independent operators iy, (S)\ SZ(P,).
The operatorsX;, Z; are said to be encoded operators for the code if they satisfy t

following requirements.

The operatorsY; and Z; are referred to as encoded or logicéland Z operators
on theidth andjth logical qubits, respectively. The choice of which of tke linearly
independent elements 6, (S) \ SZ(P,) we choose to call encoded operators and
operators is arbitrary; as long as the generators satisfgdnditions above, any choice
is valid. Different choices lead to different sets of enabttggical states; alternatively, a

different orthonormal basis for the codespace.

Lemma VII.2 (Standard form of stabilizer matrix [42, 61]Yp to a permutationr, the
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stabilizer matrix of arj[n, k, d||» code can be put in the following form,

I, A, Ay | B 0 C
S = , (7.3)
0O 0 O0|D I, FE

while the associated encoded operators can be derived as

7 0 0 0]|A, 0 I

™

(7.4)

>

0 E* I,]C* 0 0
Remark VII.3. Encoding using essentially same ideas is possible evea ifléntity ma-
trices I, in the stabilizer matrix orl; in the encoded operators are replaced by upper

triangular matrices.

The standard form of the stabilizer matrix prompts us tamgstish between two types
of the generators for the stabilizer as they affect the eingad different ways (although it

can be shown that they are of equivalent complexity).

Definition VII.4 (Primary generators)A generatorG; = (ay,...,a,|b1,...,b,) with at

least one nonzero; is called a primary generator.

In other words, primary generators contain at leastdreg Y operator on some qubit.
The primary generators determine to a large extent the @atylof the encoding circuit
along with the encoded operators. The operatop$ are also called seed generators and

they also figure in the encoding circuit. The encodedperators do not.

Definition VII.5 (Secondary generatorsh generator of the fornf0, ..., 0]by,...,b,) is

called secondary generator.

In the standard form encoding, the complexity of the encalledperators is deter-

mined by the secondary generators. Therefore they intireantributé to the complexity

fIndirect because the submatiix figures in both the secondary generators, see equa-



135

of encoding. We mentioned earlier that different choiceshefencoded operators
amounts to choosing different orthonormal basis for theespdce. However, the choice in
Lemma VII.2 is particularly suitable for encoding. We capnesent our input in the form
100" |a . .. a;) which allows us to make the identification tat®" is mapped td0),

the logical all zero code word. This state is precisely tlagesstabilized by the stabilizer
generators and logicaél operators, (which in Lemma VII.2 can be seen to be consisting
of only Z operators). Given the stabilizer matrix in the standardnfand the encoded

operators as in Lemma VI1.2, the encoding circuit is givefodsws.

Lemma VII.6 (Standard form encoding stabilizer codes [42,61Pt S be the stabilizer
matrix of an[[n, k, d]] stabilizer code in the standard forire., as in equation (7.3). Let
G, denote theth primary generator off and X; denote thejth encodedX operator as in

equation (7.4). Then these operators are in the form

Gi = (0,0,...,1,ai+1,...,an|b1,...,bSI,O,...,O,bn_k+1,...,bn),

Xj = (0,...,O,CSI_H,...,Cn_k07...,0,1:Cn_k+j,0,...,0|d1,...,d5/,0,...,0).

To encode the stabilizer code we implement the following iksrcorresponding to each of
the primary generators and the encoded operators. The g#oretr; is implemented after

G;+1. The encoded operators precede the primary generatorsein ifmplementation but

tion (7.3), and also the encodédoperators, see equation (7.4).

SWe allow some freedom in the primary generators, in thateamstof 7, in equa-
tion (7.3), we allow it be an upper triangular matrix also.
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we can implemenk ; before or afterX ;, ;.

X @it1 Zbit1

|¢n)

X G y

J N\~

To encode a stabilizer code, we first put the stabilizer matrithe standard form,

then implement the seed generators i.e., the encadeperators, followed by the primary
generators = s'to: = 1 as per Lemma VII.6. The complexity of encoding the primary
generator is at most — i two qubit gates and on# gate. The complexity of encoding an
encoded operator is at most- £ — s’ CNOT gates. This means the complexity of standard
form encoding is upper bounded Bn — 1 — k — s’)s’/2 two qubit gates and Hadamard
gates;O(n(n — k)) gates. A minor modification ( [66]) must be incorporated wheis

defined ag” = [? ] as the following example illustrates. See [67] for more eplas.
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Example VII.7. Consider th€][5, 1, 3]] code with following stabilizer, with™ = [? 7]

X I X X X

I X Z XY
S =

Z 1 Z Z Z

I 7Y Z X

The associated stabilizer matrix is given by

o O
o =
o O
o =
o =
=
o O
—_ =
= O
—_ =

]
]
—_
@]
—_
(@]
—_
—_
—_
]

Writing S in standard form we get

[ 100101 1 001 ] [ Y Z I X Z ] [ G4 ]
g 01 011|000 101 I X Z XY Gs
- 0010111001 N Z Z X 1Y - G
I 000O0O0O|1L O1T11 | I z I Z Z Z | I Gy |
The encoded operators for this code are
Z 00000O0[01 101

>

000111 1100

In addition to following the procedure described in Lemma/Ilbne must throw in &

gate, for everyy” on the diagonal of the stabilizer (in standard form). Theaahng circuit
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is given by

C. Encoding Clifford Codes

In this section, we show that a Clifford code can be encodetuts stabilizer and there-
fore the methods used for encoding stabilizer codes aracapfg. So that this chapter
can be read independently of Chapter V, we briefly recapédame facts about Clifford
subsystem codes. Léf be an abstract error groue., it is a finite group with a faithful
irreducible unitary representatignof degreg 2 : Z(E)|'/2. Denote bygp, the irreducible
character afforded by. Let N be a normal subgroup @&. Further, lety be an irreducible
charactery of N such that ¢y, x)y > 0. Then the Clifford code defined iy, p, N, x)

is the image of the orthogonal projector

p=X 5 ()m) (7.5)

- W neN
Under certain conditions we can construct a subsystem codethe Clifford code,
in particular whenF is the extraspecial-group, the Clifford cod&€’ has a tensor product
decompositiofiasC = A ® B, whereB is an irreducibleC N-module,A is an irreducible
CL-module andL = Cg(N). In this case we can encode information only into the sub-
systemA, while the co-subsyster® provides additional protection. When encoded this

way we sayC' is a Clifford subsystem code. The normal subgrduponsists of all errors

Strictly speaking the equality should be replaced by an @pitism.
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in F that act trivially onA. It is also called the gauge group of the subsystem code. Our
main goal will be to show how to encode into the subsystenitherefore, our interest will
center on the projectors for the Clifford code and the sulesystode and not so much on
the parameters of the codes themselves.

An alternate projector for a Clifford code with dat&’, p, N, x) can be defined in
terms of Z(N), the center ofV. The proof of this can be found in [88, Theorem 6]. This

projector is given as

S e pn), (7.6)

wherey is an irreducible character &f(V), that satisfie$y | Z(N))(x) = x(1)¢(z). In

this case) can be thought of as a stabilizer code in the sense of [35] i.e.

p(m) [4) = @(m) [¢) foranymin Z(N). (7.7)

In addition to the assumption that the error group is an sgraialp-group we also assume
that Z(E) < N. The inclusion of the center df does not change the code but helps in

analysis. Thus we have the following lemma.

Lemma VII.8. Let(E, p, N, x) be the data of a Clifford code andan irreducible charac-
ter of Z(INV), the center ofV, satisfying(x | Z(N))(z) = x(1)e(z). If E is an extraspe-
cial p-group, then for alln in Z(N), p(n) € {¢* | ¢ = &¥™*/? 0 < k < p}. Further, if

Z(E) < N, then for anyn € Z(N), we havep(n=')p(n) € p(Z(N)).

Proof. First we note that the irreducibilty gf implies that for anyz in Z(E) we have
p(z) = wl for somew € C by Schur’s lemma. The assumption thais an extraspecial
p-group forcesv € {¢* | 0 < k < p} where( = ¢/2™/P. This is becausgZ (E)| = p for
extraspeciap-groups. Secondly, we observe thats an irreducible additive character of

Z(N) (an abelian subgroup of an extraspegiaroup) which implies that we must have
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o(n) = ¢! for some0 < | < p, [103]. Together these observations imply that we can
assumep(n~1)I = ¢'I = p(z) for some0d < | < pandz € Z(E). SinceZ(E) < N, it
follows thatZ(FE) < Z(N) ande(n')p(n) isin p(Z(N)). O

Our goal is to use the stabilizer @ffor encoding and as a first step we will show that
it can be computed fror@ (V). The usefulness of such a projector is that it obviates the
need to know the character Let.S < p(E) be the stabilizer o). Then we claim that
IS given as

S={pn ")p(n) | ne Z(N)}.

We claim thatS can be used for encoding the associated Clifford code. Themilhvghow
how the encoding circuit of the Clifford code is to be modifiedtlsat we can encode the

subsystem code derived from the Clifford code.

Theorem VI1.9. Let(@ be a Clifford code with the datgs, p, N, x) andy a constituent of
the restriction ofy to Z = Z(N). Let E be an extraspecial-group andZ(E) < N and

S={pn Mp(n)|nezZN)} and P= |—;| Zs. (7.8)

seS

ThensS is the stabilizer ofp and ImP = Q.

Proof. We will show this in a series of steps.

1) First we will show thatS < p(Z). By Lemma VII.8 we know thatp(n')p(n) is
in p(Z), thereforeS C p(Z). For any two elements,,n, € Z, we haves; =
o(nyHp(n1), s2 = p(ny')p(ng) € S and we can easily verify thaf 's, = ¢(ny)p(n; ")
p(ny")p(nz) = p(ny 'n1)p(ny 'na) € S, asp(ny 'nz) is in p(Z). Hences < p(Z).

2) Now we show that fixesQ. Lets € S and|¢) € Q. Thens = ¢(n!)p(n) for some

n € Z. The action of on [¢) is given ass [¢) = p(n~1)p(n) |¥) = o(n He(n) [v) =
|4), in other wordsS fixes ().
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3) Next, we show thaitS| = |Z|/|Z(FE)|. If two elements:; andn, in Z map to the same
element inS, thenp(n;)p(n1) = w(ny ') p(ny), thatisp(ng) = w(ny *ny)p(ny). From
Lemma VI1.8 it follows thatp(ny) = ¢'p(n,) for some0 < I < p. Sincep(Z(E)) =
{e??™k/P[ | 0 < k < p}, we must haven, = zn; for somez € Z(E). Thus,|S| =
1Z1/1Z(E)].

4) LetT be atraversal of (F) in Z, then every element if can be written ast for some
z € Z(F)andt € T. From step 3) we can see that all elements in a cos&t af) in Z

map to the same element i therefore,

S={p(t)p(t) [t €T}

Recall that a projector fap) is given by
/ 1 -1

- ﬁZ S (=) p(zt).

teT zeZ(E)

But we know from step 3) that if € Z(E), thenp(n™)p(n) = ¢((2n)')p(zn). So

we can simplifyP’ as

P o= %Z S (),

teT zeZ(F)

Thus the projector defined kfyis precisely the same d% andP is also a projector for
Q.

From step 3) itis clear that N Z(E£) = {1} and by Lemma I11.10S is a closed subgroup
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of £. By Lemmal lll.9, ImP = () is a stabilizer code. Henceis the stabilizer of). [J

Corollary VII.10. Let@ be an([n, k,r, d]] Clifford subsystem code anfl its stabilizer.
Let

P= % > s (7.9)

ThenP is a projector for the subsystem code (&= Im P.

Proof. By [90, Theorem 4], we know that dfn, k, r, d]] Clifford subsystem code is de-
rived from a Clifford code with datéF, p, N, x). This construction assumes thatis an
extraspeciap-group andZ(F) < N < E. Since as subspaces the Clifford code and sub-
system code are identical, by Theorem VII.9 we concludetti@projector defined from

the stabilizer of the subspace is also a projector for theysibm code. O

Theorem VI1.9 shows that any Clifford code can be encodedgusinstabilizer. As
to a subsystem code, while Corollary VII.10 shows that therst® a projector that can
be defined from its stabilizer, it is not clear how to use ittsat tone respects the subsys-
tem structure during encoding. More precisely, how do wethseprojector defined in
Corollary VI1.10 to encode into the information carrying sybtemA and not the gauge

subsystem. This will be the focus of the next section.

D. Encoding Subsystem Codes

For ease of presentation and clarity henceforth we will $oen binary codes, though the
results can be extended to nonbinary alphabet using mesiotlar to stabilizer codes,

see [73]. Theorem VI11.9 shows that in order to encode Cliffaydes we can use a projector
derived from the underlying stabilizer to project onto theespace. But in case of Clifford

subsystem codes we know that= A ® B and the information is to be actually encoded in
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A. Hence, it is not sufficient to merely project orifo we must also show that we encode
into A when we encode using the projector defined in Corollary VII.10

Let us clarify what we mean by encoding the informatiomiand not inB. Suppose
that P maps|0) to |¢) , ® |0) 5 and|1) to |¢) , ® |1) 5. Then the information is actually
encoded intd3. Since the gauge group acts nontrivially 8nthis particular encoding does
not protect information. Of course a subsystem code shantl@émcode (only) intd3, but
we have to show that the projector definediyn equation 7.9 does not do that.

We need the following result on the structure of the gaugeigrand the encoded
operators of a subsystem code. Poulin [120] proved a usefultron the structure of the
gauge group and the encoded operators of the subsystemBuaidest a little notation. A
basis forpP, is X;, Z;, 1 < i < n, whereX; andZ; are given as

X; = é) X% and Z; = é) 7%,

j=1 i=1

They satisfy the relationsX;, X;| = 0 = [Z;, Z;]; [Xi, Z;] = 26,;X,;Z;. However, we can
choose other generating séts, z; | 1 < i < n} for P, that satisfy similar commutation
relationsi.e., [z;,z;] = 0 = [%,2;] and [z;, 2;] = 2§;;x;2;. These operators may act
nontrivially on many qubits. Given dfn, k, r, d]] code we could view the state space of the
physicaln qubits as that of. virtual qubits on which these;, z; act asX andZ operators.
In particulark of these virtual qubits are the logical qubits anof them gauge qubits. The
usefulness of these operators is that we can specify thetsteuof the stabilizer, the gauge

group and the encoded operators. The following lemma makespecification precise.

Lemma VII.11. LetQ be an[[n, k,r, d]], subsystem code with gauge grodpand sta-

bilizer S. Denote the encoded operators By, Z;, 1 < i < k, where[X;, X,] = 0 =
[Z:, Z;); X4, Z;] = 20;X:Z ;. Then there exist operatofs:;, z; € P, | 1 < i < n} such

that
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) S=(z1,22,...,2s),
“) G = <57 Zs1y Ls41y -« vy Zstry Lstr, Z(Pn)>y

iV) yz = Tsrti and?i = Zstrti 1<e <Kk,
wherez;, z;] = [z;, z;] = 0; [z;, z;] = 20;;x;2;. Further, S defines ani[n, k + r|] stabilizer
code encoding into the same space as the subsystem codes @mtatded operators are

given by{xs 1, 2511, -+ Toiry Zsir, X1, L1, oy Xby Zi

Proof. See [120] for proof on the structure of the groups. Qet A® B, thendim A = 2*
anddim B = 2". From Corollary VII.10 we know that the projector defined Byalso
projects ontdy (which is2**"-dimensional) and therefore it defines[an k +r]] stabilizer

code. From the definition of the operatatsz; andX,, Z; and the fact that
Cpn(S) = <S7 Ts41yRs+1y -5 Lstry ZS+T717717 B 77]{?77167 Z(Pn»

we see that;, z;, for s + 1 < i < r act like encoded operators on the gauge qubits,
while X;, Z; continue to be the encoded operators on the informationgjufidgether they

exhaust the set &f(k + ) encoded operators of thie, k& + ]| stabilizer code. O

We observe that the logical operators of the subsystem gedsso logical operators
for the underlying stabilizer code. so if the stabilizer eahd the subsystem code have
the same logical all zero state, then Lemma VII.11 suggésisih order to encode the
subsystem code, we can treat it as stabilizer code and usathe techniques to encode.
If the logical all zero code word was the same for both the sptteen because they have
the same logical operators we can encode any given inpuétsaime logical state in both
cases. Using linearity we could then encode any arbitratg SEncoding the all zero state
seems to be the key. Now, even in the case of the stabilizerscdldere is no unique all

zero logical state. There are many possible choices. Thierean refer to the appendix
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for examples. Given the encoded operators it is easy to défekgical all zero state as

the following definition shows:

Definition VII.12. A logical all zero state of aifin, k, r, d]] subsystem code is any state

that is fixed by its stabilizer ankllogical Z operators.

This definition is valid in case of stabilizer codes also.sTdefinition might appear a
little circular. After all, we seem to have assumed the didiniof the logicalZ operators.
Actually, this is a legitimate definition because, depegdin the choice of our logical op-
erators, we can have many choices of the logical all zere.statcase of the subsystem
codes, this definition implies that the logical all zero statfixed byn — r operators, con-
sequently it can be any state in tlRatdimensional subspace. If we consider the k + ||
stabilizer code that is associated to the subsystem coelejtthlogical zero is additionally
fixed byr more operators. So any logical zero of the stabilizer codésisa logical all zero
state of the subsystem code. It follows that if we know howrtoagle the stabilizer code’s
logical all zero, we know how to encode the subsystem code ai&enterested in more
than merely encoding the subsystem code of course. We alsbtavéeverage the gauge
qubits to simplify and/or make the encoding process morasbliPerhaps a few examples

will clarify the ideas.
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1. lllustrative Examples

Consider the following[4, 1, 1, 2]}, subsystem code, with the gauge grdkipstabilizerS

and encoded operators given by

21

S p— = y

Z 4 Z Z 29

X X X X 21

Z 4 Z Z 29
G — =

I X I X T3

I I Z Z 23

The encoded operators of this code are given by

I I X X X,
L = g o

1 Z I Z Z4

The associatefl4, 2] stabilizer code has the following encoded operators.

I X I X T3
I I X X X,
T: —
I 1 7 Z 23
I 7 I Z 7

It will be observed that the encoded operators of/[4, 2]] are in a form convenient for
encoding. We treat thg4, 1, 1, 2]] code ag[4, 2]] code and encode it as in Figure 1. The
gauge qubits are permitted to be in any state.

Assumingg = a |0) + b1), the logical states up to a normalizing constant are

[0) = a(]0000) +|1111)) + b(|0101) + |1010)),

IT) = a(|0011) +]1100)) + b(|0110) + |1001)).
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0) ——Hf——
9)

%)

|0) S—b—4

Fig. 1. Encoding thé¢{4, 1, 1, 2]] code (Gauge qubits can be in any state)

It can be easily verified that stabilizes the above state and while the gauge group acts
in a nontrivial fashion, the resulting states are still ogbnal. In this example we have
encoded as if we were encoding tle 2|] code. Prior to encoding the gauge qubits can be
identified with physical qubits. After the encoding howesech a correspondence between
the physical qubits and gauge qubits does not necessardiyiexa nontrivial subsystem
code. Since the encoded operators of the subsystem codsarenaoded operators for
the stabilizer code, we are guaranteed that the informadimot encoded into the gauge
subsystem.

As the state of gauge qubits is of no consequence, we caalirgtithem to any state.
Alternatively, if we initialized them to zero, we can sinfglthe circuit as shown in Fig-

ure 2.

|0
|0
¥
|0

»7

)
)
)
)

N
U

fany

Fig. 2. Encoding thé¢[4, 1, 1, 2]] code (Gauge qubits initialized to zero)
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The encoded states in this case are (again, the normatiZatitors are ignored)

|

) = [0000) + [1111),

=
~
Il

10011) + [1100) .

The benefit with respect to the previous version is that attse of initializing the gauge
qubits, we have been able to get rid of all the encoded opsratsociated with them.
This seems to be a better option than randomly initializhmgdauge qubits. Because it is
certainly easier to prepare them in a known state|likerather than implement a series of
controlled gates depending on the encoded operators as=eiith those qubits.

At this point we might ask if it is possible to get both the bitiseof random initial-
ization of the gauge qubits as well as avoid implementingetieded operators associated
with them. To answer this question let us look a little moresely at the previous two
encoding circuits for the subsystem codes. We can see frem that it will not work in
general. Let us see why. If we initialize the gauge qubjt janstead of0) in the encoding

given in Figure 2, then the encoded state is

0100) + [1011) ,

ol
=
I

|

) = [0111) + [1000) .

Both these states are not stabilized $iyindicating that these states are not in the code
space.

In general, an encoding circuit where it is simultaneousigsible initialize the gauge
gubits to random states and also avoid the encoded operatidsly to be having more

complex primary generators. For instance, let us conshuefdllowing [[4, 1, 1, 2]] sub-
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system code:

Z 7 21

S pu— = y

Z X X Z 29

X 7 7Z X 2

Z X X Z 29
G — =

Z I X 1 T3

I Z Z 1 23

The encoded operators of this code are given by

I 7 I X X,
L = = o

Z 1 1 Z Z

The associatefl4, 2|] stabilizer code has the following encoded operators.

Z I X I T3
I 7 I X X,
T: —
I 7 7 1 23
Z I I Z 7

The encoding circuit for this code is given in Figure 3.

Fig. 3. Encoding[4, 1, 1, 2]] code (Encoded operators for the gauge qubits are trivial and
gauge qubits can be initialized to random states)

In this particular case, the gauge qubits (as well as thenmdton qubits) do not
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require any additional encoding circuitry. In this case \aa mitialize the gauge qubits to
any state we want. But, the reader would have observed we tialtogether end up with
a simpler circuit. The primary generators are two as agaimstand the complexity of the
encoded operators has been shifted to them. So even thougkneable to get rid of the
encoded operator on the gauge qubit and also get the bengfitiaiizing it to a random
state, this is still more complex compared to either of eec®dh Figures 1 and 2. Our
contention is that it is better to initialize the gague gsilhit zero state and not implement

the encoded operators associated to them.

2. Encoding Subsystem Codes by Standard Form Method

The previous two examples might lead us to conclude that wetalee the stabilizer of
the given subsystem code and form the encoded operatorslbging the stablizer to its
standard form and encode as if it were a stabilizer code. Menvéhere are certain subtle
points to be kept in mind. When we form the encoded operatorgeté + » encoded
operators; we cannot from the stabilizer alone concludekvhre the encoded operators
on the information qubits and which on the gauge qubits. Rigrdntly, these operators
belong to the spac€’p, (S) \ S = GCp,(G) \ SZ(P,). Itis not guaranteed that they
are entirely inC», (G) i.e., we cannot say if they act as encoded operators on the logical
qgubits. This implies that in general all these operatorshaatrivially on bothA and B.
Consequently, we must be careful in choosing the encodeditmpsrand the gauge group
must be taken into account. We give two slightly differentmoels for encoding subsystem
codes. The difference between the two methods is subtle. Bethods require the gauge
qubits to be initialized to zero. In the second method (segiihm 2) however, we can
avoid the encoded operators associated to them. Undenceinzumstances, we can also
permit initialization to random states.

Correctness of Algorithm 1. Since stabilizeS, > S, the space stabilized l#y, is a
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Algorithm 1 ENCODING SUBSYSTEM CODES- STANDARD FORM METHOD 1

Require: Gauge group,G = (S, Tsi1, 2541, -, Tser, 251, £1) and stabilizer,S =
(z1,..., Zn_k_r) OF the[n, k, r, d]] subsystem code.

Ensure: [(Ei,flfj] = [thj'} =0; [ZEth} = 21’22’15”

1: FormSy = (S, 2541, -, Zs1r), Wheres =n — k —r

2. Compute the standard form 8f; as per Lemma VII.2

I, A, Ay, | B 0 C
SA =
0 0 0D Iy E

3: Compute the encoded operatdfs, ..., X, as

Z 0 0 0]|A, 0 I

X 0 E' I

cCt 0 0

4: Encode using the primary generators $f and X, as encoded operators, see

Lemma VII.6; all the othefn — k) qubits are initialized td0).

subspace of thd @ B, the subspace stabilized By As |S4|/|S| = 27, the dimension of
the subspace stabilized 8y, is 27 /2" = 2k, Additionally, the generators,, 1, ..., 2.,
act trivially on A. The encoded operators as computed in the algorithm activiatly on
A and give2* orthogonal states; thus we are assured that the informiatiencoded into
A.

Let us encode thg9, 1, 4, 3]] Bacon-Shor code using the method just proposed. The



stabilizer and the gauge group are given by

—XXX I I 1 X X
I I 1|X X X|X
z 1 zZ\|\zZz I Z\|Z 1
_I Z Z\|\1I Z Z|I Z
X X X|I I T|X X X
I I 11X X X|X X X
Zz I Z\zZz I Z\|Z I Z
! zZ Z\|\1 Z Z\|I1I Z Z
I X 1|1 X I |I I I
I I X1 I X|I I I
[ 1 1|1 I X|I I X
X X X|X X X|I I 1
z 1 zZ\|I I I |1 I I
[ 1 1\ 2z I Z\|I I I
[ 7 Z\|\1I I I |I I I
[ 1 1\1 zZ Z\|I I I

152
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Let us formS 4 by augmentings with GG.. Then

X X X|I I T|X X X
I I 11X X X|X X X
z 1 zZ\zZ I Z\|Z I Z
g, — I zZ zZz\|\1 Z Z\|1I Z Z
z I zZ\|\1I I I |I I I
[ 1 1\ 7z I Z\|I I I
[ 7 Z\|\1I I I |I I I
[ 1 1\1 zZz Z\|I I 1

The encoded\ andZ operators are&; X3 Xy and 7, Z, 7, respectively. After putting 4

in the standard form, and encoder for this code is given inrfeid.

0
|

7 —

=}

=)

=)

=

=)

=)

|
0

¢

Fig. 4. Encoder for th9, 1, 4, 3]] code. This is also an encoder for tf® 1, 3]] code.

A A
N %

)
)
)
)
)
)
)
)
)

If on the other hand we had forme%), by addingG, instead, thert, would have



been

Sa =

~ N~~~ N~ e

N ~ ~ ~ ~ ~ X~

N ~ ~ ~ > ~ ~

Z

~ N~ N X~~~

N ~ ~ X o~ o~ X~

N N X~ N~ X~ o~

~ N~ o~ X~~~
N ~ ~ X N~ X~

N N X~ o~ X~ N
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The encoded operators remain the same. In this case theiegaactuit is given in Fig-

ure 5. This circuit has fewer CNOT gates, though the numbeingfles qubit gates has

@—4

771
L ]

7]
Eil

=

=

=

D

a

N
U

A
|V

D
v

Fig. 5. Encoder for th9, 1, 4, 3]] code with fewer CNOT gates.

increased. Since we expect the implementation of the CNQtgdie more complex than

the H gate, this might be a better choice. In any case, this dematastthat by exploiting

the gauge qubits one can find ways to reduce the complexityaufdéng circuit.

The gauge qubits provide a great degree of freedom in engodive consider the
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following variant on standard form encoding, where we tryrtimimize the the number
of primary generators. This is not guaranteed to reduce\tbeat complexity, since that
is determined by both the primary generators and the encogerhtors. Fewer primary
generators might usually imply encoded operators withelacgmplexity. In fact we have
already seen, that in the casg6f 1, 4, 3]]» code that a larger number of primary generators
does not necessarily imply higher complexity. However, ds the potential for lower

complexity.

Algorithm 2 ENCODING SUBSYSTEM CODES- STANDARD FORM METHOD 2
Require: Gauge group,G = (S, 51,2511, -+, Tsir, 2540, 1) @nd stabilizer,S =

(z1,..., 2Zn_k—r) Of the|[n, k, r, d]| subsystem code.

Ensure: [ZIJZ‘,JIj] = [Zi,Zj} =0; [Ii,Zj} = QIiZiéij
1: Compute the standard form Sfas per Lemma VII.2

Is’ Al A2 B 0 C
S =

0O 0 O0|D I,y E

2: FormSy = (S, zs11, - - -, Zssr), Wheres =n — k —r

3: Compute the standard form 6f; as per Lemma VII.2

[l F1 F2 G1 0 GQ
SA )

00 0|D I, H
4: Compute the encoded operatofs, ..., X as

Z 0 0 O|F 0 I

2

>

0 H' I,|G, 0 0

5: Encode using the primary generatorssaind.X; as encoded operators, accounting for

m andm,, see Lemma VI1.6; all the othén — k) qubits are initialized td0).
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The main difference in the second method comes in lines 1 aMiesencode using
the primary generators of the stabilizer of the subsystede éostead of the augmented
stabilizer. The encoded operators however remain the satefare.

Correctness of Algorithm 2. The correctness of this method lies in the observation
we made earlier (see discussion following Definition VI),lthat any logical all zero state
of the stabilizer code is also a logical all zero of the sutesyscode and the fact that both
share the encoded operators on the encoded qubits.

The encoded operators are given modulo the elements of tigeegaoup as in Algo-
rithm 1, which implies that the their action might be nontalvon the gauge qubits. The
benefit of the second method is wh&rand S, have different number of primary genera-
tors. The following aspects of both the methods are worthligbting.

1) The gauge qubits must be initialized|€ in both methods.

2) In Algorithm 1, the number of primary generatorsoéndS 4 can be different leading
to a potential increase in complexity compared to encodiitiy

3) In both methods, the encoded operators as computed ardotyd Consequently, the

encoded operators might act nontrivially on the gauge qubit

3. Encoding Subsystem Codes by Conjugation Method

The other benefit of subsystem codes is the random inittadizaf the gauge qubits. We
now give circuits where we can encode the subsystem codesliae this benefit. But
instead of using the standard form method we will use theugatjon method proposed by
Grasslet al,, [73] for stabilizer codes. After briefly reviewing this rhed we shall show
how it can be modified for encoding subsystem codes.

The conjugation encoding method can be understood as fllitve based on the idea
that the Clifford group acts transitively on the Pauli erravup. It is possible to transform

the stabilizer matrix of anyjn, &, d]] stabilizer code into the matri¢00|Z,,_0). For a code



157

with this stabilizer matrix the encoding is trivial. We silppnap |¢) to \O)®"7k |v). The
associated encodeld and Z operators are given b§0,|00) and (00/01;) respectively.
Here we give a sketch of the method for the binary case, thderezan refer to [73] for
details. Assume that the stabilizer matrix is given$iy Then we shall transform it into

(00]7,,—x0) using the following sequence of operations.
(X|Z) +— (I,,-10]0) + (00|],,_40). (7.10)

This can be accomplished through the actiotfof-= [{ !, ], P = [} Y] and CNOT gates on
the Pauli group under conjugation. The actiofodn theith qubit of (a1, ..., a,|b1, ..., b,)

transforms it as
(@, anlbi, ... b)) & (a1, .. by anlbr, ... &y, ... by). (7.11)
These modified entries have been highlighted for convesiehlse phase gate on theith

qubit transformga,, ..., a,|b1,...,b,) as

(@, anlbi, ... bo) 5 (a1, a4, . anlbr, .. 85+ biy. .. by). (7.12)

We denote the CNOT gate with the control on tliequbit and the target on theh qubit

by CNOT. The action of the CNOT gate on(as, . .., ay|bi, ..., b,) is to transform it to
(al, sy @1, 4y -+ Aj, Aj41 - - - ,an|bl, R 7bi717 bi -+ bj, bi+1, ce 7CLn). (713)

Note that thejth entry is changed in th& part while theith entry is changed in thg part.

For example, consider

(1,0,0,1,0[0,1,1,0,0) %" (1,0,0,0,00,1,1,0,0),

(1,0,0,1,000,1,1,1,0) %" (1,0,0,0,01,1,1, 1,0).
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Based on the action of these three gates we have the follo@mmmés to transform error

operators.

Lemma VII.13. Assume that we have a error operator of the fgrm . .., a,|b1, ..., by,).
Then we apply the following gates on thie qubit to transform the stabilizer, transforming

(ai, b;) to (o, B) as per the following table.

(CLZ‘, bl) Gate (O[, 6)

(0,0) I (0,0)
©0,1) | H | (1,0
(1,0) I (1,0)

(1,2) P (1,0)

Letz denotel + x, then the transformation tQu, . . ., a, |0, ..., 0) is achieved by

n
® Hﬁibi Paibi
=1

For example, consider the following generatoro, 0, 1,0/0,1,1,1,0). This can be
transformed td1, 1, 1,1,0|0,0, 0,0, 0) by the applicationof ® H ® H ® P® I.

Lemma VII.14. Lete be an error operator of the forrfuy,...,a; = 1,...,a,[0,...,0).

Thene can be transformed t@,...,0,a; = 1,0,...,0(0,...,0) by

f[ [CNOT*/]™ .

J=1,i#j
As an examplél,1,1,1,0]0,0,0,0,0) can be transformed t®, 1, 0, 0, 0|0, 0,0, 0, 0)
by
CNOT*! . CNOT** . CNOT**,
The first step involves making the portion of the stabilizer matrix all zeros. This is
achieved by single qubit operations consistingfoand P performed on each row one by

one.
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Note that we must also modify the other rows of the stabilmatrix according to the
action of the gates applied.

Once we have a row of stabilizer matrix in the fofm0), wherea is nonozero we can
transform it to the form{0, ...,0,a; = 1,0,...,0|0) by using CNOT gates. Thus it is easy
to transform(X'|Z) to (1,-,0]0) using CNOT,P and H gates. The final transformation
to (0|7,_x0) is achieved by using? gates on the first — k£ qubits. At this point the
stabilizer matrix has been transformed to a trivial stabilimatrix which stabilizes the
state\0)®n_k |v). The encoded operators &i@,|0) and(0|0,). LetT be the sequence
of gates applied to transform the stabilizer matrix to tivaal stabilizer matrix. Therl”
applied in the reverse order |l@)>®n7k |1) gives the encoding circuit for the stabilizer code.

Now we shall use this method to encode the subsystem codesnaim difference is
that instead of considering just the stabilizer we need tesider the entire gauge group.
Let the gauge group b& = (S,Gz,Gx), whereG; = (z541,...,251r), ANAGx =

(Tst1,...,Ts4r). The ideais to transform the gauge group as follows.

S 0 0 0|, 0 0
G=|Gz |—|0 0 0/0 I 0]- (7.14)
Gy 01 0/0 0 0

At this point the gauge group has been transformed to a grotptsvial stabilizer and
trivial encoded operators for the gauge qubits and the esttodbits. The sequence of
gates required to achieve this transformation in the reversler will encode the state

10)®”

¢) [v). The statelp) corresponds to the gauge qubits and it can be initialized to

any state, while:) corresponds to the input.
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Algorithm 3 ENCODING SUBSYSTEM CODES- CONJUGATION METHOD
Require: Gauge groupG = (S,Gz,Gx), whereGy = (z411,..., 2s10), aNdGx =

(Tsi1,...,Tss,r) and stabilizer,S = (z,...,z, ) Of the [[n, k,r, d]] subsystem
code.
Ensure: [ZEZ',ZL']‘] = [ZZ‘,ZJ‘} =0; [JZZ‘,Z]‘} = QJ]ZZZ(SZ]

1: Assume that; is the following form

: forall i =1tos+rdo
Transformz; to 2} = (ay, . .., a,|0,...,0) using Lemma VI1.13

Transformz; to (0,...,a; = 1,...,0/0) using Lemma VII.14

2
3
4
5. Perform Gaussian elimination on colurmfor rows; > ¢
6: end for

7. Apply H gate on each qubit=1to: = s+ r

8: forall i=s+1tos+rdo

9:  Transformz; to 2, = (a4, ...,a,|0,...,0) using Lemma VII.13
10:  Transforme} to (0,...,a; = 1,...,0/0) using Lemma VII.14
11. Perform Gaussian elimination on columior rows; > i

12: end for

In the above algorithm, we assume that whenever a row isftianed according to
Lemma VII.13 or VII.14, all the other rows are also transfedraccording to the transfor-
mation applied.

Correctness of Algorithm 3. The correctness of the algorithm is straightforward. As

G has full rank ofn — k + r, for each row ofz, we will be able to find some nonzero pair
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(a,b) so that the the transformation in lines 2—6 can be achievecerWWhrandG ; are in

the form(0|,,..0), the rows inG' x are in the form
{ 0 A B|0O O D } .

The zero columns of7x are consequence of the requirement to satsify the comrontati
relations with (transformedj andG ;. For instance, The first— k£ —r are all zero because
they must commute witt0|7,0), the elements of the transformed stabilizer. The submatrix
A must have rank, otherwise at this point one of the rows Gfy commutes with all the
rows of G and the condition that we have there arbyperbolic pairs is violated. It is
possible therefore to transformto the form(07,0(0). It cannot be any other form because
then we would not have thehyperbolic pairs. The applied transformations transféf o

the form given in equation (7.14). The encoded operatorghiergauge group are clearly

(01;]0) and(0]|0I;). We conclude with a simple example that illustrates the ggsc

Example VII1.15. To compare with the standard form method, we considef[thé, 1, 2]]

code again. Let the gauge grodp stabilizerS and encoded operators given by

g X X X X 21
4 Z Z Z 29
X X X X 21
4 Z Z Z 29
G - =
I I Z Z T3
I X I X 23
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In matrix formG can be written as

01 01{00O0O

The transformations consisting 8 = CNOT">*CNOT"*CNOT"* followed by, = I ®

H ® H ® H mapsG to

1 00 0[{0 000 100 0[{0 000
n 10000011 11,4]10111{0000
— —

000O0(00T1T71 001 1{0 000

010 1{0 000 000O0(01O01

Now transform the second row usifi = CNOT**CNOT**. Then transform usin@, =

CNOT*®. We get

000O0(00¢O0T1 000O0(00¢O01

Applying7; = H® H ® I ® H gives us

000O0[1O0

o O
o O

0 00O0(01

15

0001(00O0O0

00 0O0(0O0O01

We could have chosély = H ® H ® I ® I, since the effect off on the fourth qubit is
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trivial. The complete circuit is given in Figure 6.

T

N N
L N

=] [=] =

S
g

Fig. 6. Encoding[4, 1, 1, 2]] code by conjugation method

By switching the target and control qubits of the CNOT gate%sirand 7, we can

show that this circuit is equivalent to the circuit shown igtie 7.

(=)
~
N>

o
~
.
|
|
>
[
P
N

Fig. 7. Encoding[4, 1, 1, 2]] code by conjugation method

It is instructive to compare this circuit with the one giverrlea in Figure 1. The
dotted lines show the additional circuitry. Since the gaqgbit can be initialized to any

state, we can initializéy) to |0), which then gives the following logical states for the code.

0) = [0000) + [1111) + [0011) + |1100) (7.15)

IT) = ]0000) + |1111) —[0011) — [1100). (7.16)

It will be observed that/ 1 X X acts as the logicalZ operator while/Z1Z acts as the

logical X operator. We could flip these logical operators by absortifreg/ gate into|q)).
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If we additionally initialize|g) to |0), we will see that the two CNOT gates on the second

qubit can be removed. The simplified circuit is shown in Figlire

0) —{#]

0)

1)

|0) 4 b

Fig. 8. Encodind|[4, 1, 1, 2]] code by conjugation method — optimized

This is precisely, the same circuit that we had arrived earieFigure 2 using the

standard form method.

The preceding example provides additional evidence initteetibn that it is better to

initialize the gauge qubits to zero and avoid the encodiregatprs on them.

E. Syndrome Measurement for Nonbindfylinear Codes

Decoding of nonbinary quantum codes has not been studie@laaswinary codes. En-
coding ofFF-linear nonbinary quantum codes was investigated in [7Bg duthors suggest
that the decoder is simply the encoder running backwardshisncontext one important
task is that measuring the syndrome so that appropriate@rcection maybe performed.
While binary codes have been well studied in this regard amefforts have not been
invested in the nonbinary case. Here we give a method tlavsllis to measure the syn-
drome forF,-linear nonbinary quantum codes. We also show thédt aimear|[n, k, 7, d]|,
code requires — k£ — r syndrome measurements. But first we need the definition of the
following nonbinary gates, see [73].

) X(a)|z) = [z +a)

i) Z(b) |z) = wrar® |, w = e27/P



i) M(c)|z) = |cx),c € Fy
V) Flo) = 23,5, w0 [y)

v) Alz)ly) = |z) |z +y)

Graphically, these gates are represented below.

— X(a) = —Z()

i) i)

Consider the following circuit.

ii)

— Al P
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T

—

iv) V)

ly) —

9"

a

9z |

|a)

ly + agaz)

Alternatively, this circuit mapg:) |z) to |a) X (ag.) |y). Observe that this circuit effectively

appliesX (ag,) on the second qudit. Using the linearity, we can analyze tfleviing

circuit.

0)

ly) —

9

a

p————

D @ ZaE]Fq |&> |y + aga:>

The above circuit map®) [y) t0 >, |o) X(g.) |y). Using the fact that" X (b)) FT =

Z(b), we can show that the following circuit mafis |y) to |b) Z(bg.) |y).

g

N

[P

1)
Z(bg:) ly)

If we wanted to apply a general operafSfag,)Z(ag.) to the second qudit conditioned on

the first one, then we can combine the previous circuits da/isl

@)

o

ly) 9!

9=

9z

oD
g
8
Ja
e
N
8
~—
N
—~
IS
Q
0
~—
=3
~
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The above implementation is not optimal in terms of gatesjthwill suffice for our pur-
poses. Consider dfn, k, r, d]], code. LetE be an error irG,,, (see 3.2). If£' is detectable,

then E' does not commute with some element(s) in the stabilizereotdue. Let
g =1(9s19:) = (0,...,0,a;,...,a,[0,...,0,b;,...,b,) € Fg”,

where (a;,b;) # (0,0), be a generator of the stabilizer. Then for all detectablerer
that do not commute with a multiple gf the following circuit gives a nonzero value on

measurement.

A

Note that whenevefa;, b;) = (0,0), then we leave that qudit alone. Similarlydif or b;

are zero, then we do not implement the corresponding portiehthe input to the above
circuit be E'|¢), where|y) is an encoded state. It can be easily verified that the above
circuit maps the stat®) £ |¢) to

> Flla) X(ag.)Z(ag.)E [4) .

aclFy

Let X(g.)Z(g.)E = w™»WEX(g,)Z(g.), whereX (g,)Z(g.) is corresponding matrix

representation of. By Lemma l11.5. we haveX (ag,)Z(ag.)E = w» D EX (g,)Z(g.).
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Thus we can write

> o) X(ag)Z(ag)E ) = > Ja)w v VEX (ag,)Z(ag.) [v),

a€ly a€lfg

= | Y layetse | By,

a€lFy

where we have made use of the fact thdtvg, ) Z(ag.) |¥) = |¢) asX (ag.)Z(ag,) is in
the stabilizer. The final state is given by

Y Flla) X(ag,)Z(ag)E) = Y Flla)w o ®Ey),

a€ly a€lq

S 3y

aclq Bely

= > 18) > Wl AE ),

BeF, a€lfg

= 218 > I B ),

BEF, a€l,
= [ EY),
where the last equality follows from the property of the clwaers ofF,. Next we ob-
serve that the errar £, wherea € F, gives|at) on measurement. Strictly speaking we
refer to the preimage ofE in G,,. Hence the syndrome qudit can takeifferent values.
Since every detectable error does not commute with sSBjyraultiple of a stabilizer gen-
erator, we have the following lemma on the necessary anacwuftinumber of syndrome

measurements.

Lemma VII.16. Given anF-linear [[n, k,r, d]], Clifford subsystem code,— k — r syn-

drome measurements are required for decoding it completely

Proof. Let g be a generator of the stabilizer of the subsystem code. Byréhew.10 and
Lemma VI.1, for every generatgrthere exists at least one detectable error that does not

commute withy but commutes with all the other generators. This error catetected only
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by measuring;. Thus we need to measure all the generators of the stabiigeivalently
n — k — r syndrome measurements must be performed.

Every correctable error takes the code space info &dimensional orthogonal sub-
space in the/"-dimensional ambient space. Each of these errors will gigesinct syn-
drome. This implies that we can hay& %~ distinct syndromes. Since each syndrome
measurement can haygossible outcomes and there are k& — r generators, these mea-

surements are sufficient for performing error correction. O]

This parallels the classical case whergmark, d], code requires. — k syndrome bits.
A subtle caveat must be issued to the reader. If we choosertorpebounded distance
decoding, then it maybe possible that the set of correctiptes can be distinguished by
a smaller number of syndrome measurements. But even in teeo€éslassical) bounded

distance decoding it is often the case that we need to meabtine syndrome bits.

F. Conclusions

In this paper, we have demonstrated that the subsystem cadelse encoded using the
techniques used for stabilizer codes. In particular, we ltansidered two methods for en-
coding stabilizer codes — the standard form method and thieigation method. While the
standard form method explored here required us to inigdhe gauge qubits to zero, it ad-
mits two two variants and seems to have the potential forl@emplexity; the exact gains
being determined by the actual codes under consideratioe cdnjugation method allows
us to initialize the gauge qubits to any state. The disadgnseems to be the increased
complexity of encoding. It must be emphasized that the stahtbrm method is equiv-
alent to the conjugation method and it is certainly possiblase this method to encode
subsystem codes so that the gauge qubits can be initiabzadbitrary states. However, it

appears to be a little more cumbersome and for this reasoraweeriot investigated this in
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this chapter. There is yet another method for encodinglstabicodes based on the tele-
portation due to Knill. We expect that gauge qubits can béogbgal even in this method to
reduce its complexity. It would be interesting to investagiault tolerant encoding schemes
for subsystem codes and how gauge qubits can be used to iejardt/tolerant thresholds.
Finally, we mention that it is still open how to leverage thsystem coding in the one

way quantum computer model.

G. Appendix

The logical states of a stabilizer code. We assume that ais bgut states are of the
form |0)®H lay ... ag), wherea; € {0,1}. Clearly, we have freedom in the choice of the
states into which each of these states are encoded to. éwilily, we have freedom in
the choice of the encoded operators though they are noebntinrelated. Perhaps, this is
best illustrated through an example. Let us consider SHér’s, 3], code. A choice of the

logical states for this code is

For this choice of the encoded states the logi¢abperator isX®’ and the logicalX

=]

Y = (]000) + 111))(]000) + [111))(]000) + |111)),

|

) = (/000) — |111))(]000) — |111))(]000) — [111)).

operator isZ®’. On the other hand, let us see what happens if we choose ticallstates

as follows

0) = |000000000) + [000111111) + [111000111) + 111111000},

IT) = [111111111) + [111000000) + [000111000) + [000000111) .

In this case the encode¥ operator isX®’ and encoded operator isZ®’; they are flipped

with respect to the previous choice!
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So it becomes apparent that the assignment of the encodeatangeas logicall or
X is flexible and it seems to depend on the choice of the logiets. But are we free
to choose any basis of the codespace as the encoded logites. SéVe can show that this
cannot be. For instance let us choose the logical zero sidie o superposition of the

previous two assignments. Then we have

\6} = (]000) 4 [111))(]000) + |111))(|000) + |111))
+ |000000000) + |000111111) + |111000111)

+ |111111000) .

The possibilities for the logicaZ operatof are+X®°, +7%° +Xx®°Z%°  But for
none of these operators we ha#g0) = |0). As these are the only possible encoded
operators (modulo the stabilizer which acts trivially iryarase), this is not a valid choice
for |6> This raises the question what are all the possible valitcelsdor the logical states.

Let us look at yet another choice of logical states.

0) = (l000) —[111))(|000) — [111))(]000) — [111)),

T) = (/000) + [111))(]000) + [111))(]000) + [111)).

In this case, the encodefiand X operators are- X®° and Z®’ respectively. This gives
us a clue as to the possible logical all zero states for a gitenilizer code. The all zero
logical state is the state in the code space that is fixed bgttiglizer and the logical

operators. Assuming that is the stabilizer and’», (5), its centralizer, we can can pick
any k independent commuting generatorsiip, (S) \ SZ(P,) asZ operators. Hence, we

have the following lemma.

Lemma VII.17. Let S be the stabilizer of afin, k, d]], stabilizer code. I. < Cp,(S) is

lincluding scalar multiples afwill not change our conclusions.
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any subgroup generated bycommuting generators such thath Z(P,,) = I andS < L,
then the state stabilized Wyis a valid logical all zero state for the stabilizer code defin

by S.

The implicit choice 0116> made in Lemma VI1.2 (by picking the encod&dperators,
at least the representatives) is convenient in the sendmmsaus to speak of a canoniqﬁb
without ambiguity. Thi#ﬁ} can be conveniently identified with the std—’f¢0>®n, where it
will be recalled thatP is the projector for the stabilizer code given as

P - %ZM. (7.17)

MeS
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CHAPTER VIII

QUANTUM LDPC CODES FOR ASYMMETRIC CHANNELS

Recently, quantum error-correcting codes were proposedctptalize on the fact that
many physical error models lead to a significant asymmettydxen the probabilities for

bit flip and phase flip errors. An example for a channel whichilgixs such asymmetry

is the combined amplitude damping and dephasing channekenthe probabilities of bit

flips and phase flips can be related to relaxation and deph#sie, respectively. We give
systematic constructions of asymmetric quantum stabitiades that exploit this asymme-
try. Our approach is based on a CSS construction that comBi@ekand finite geometry

LDPC codes.

In many quantum mechanical systems the mechanisms for thereace of bit flip
and phase flip errors are quite different. In a recent pagtr &amd Mezard [77] postulated
that quantum error-correction should take into accoustaeymmetry. The main argument
given in [77] is that most of the known quantum computing desihave relaxation times
(T7) that are aroundl—2 orders of magnitude larger than the corresponding dephésies
(T3). In general, relaxation leads to both bit flip and phase fliprer whereas dephasing
only leads to phase flip errors. This large asymmetry betvigeand 75 suggests that
bit flip errors occur less frequently than phase flip errord arwell designed quantum
code would exploit this asymmetry of errors to provide bepterformance. In fact, this
observation and its consequences for quantum error camne@specially quantum fault
tolerance, have prompted investigations from variousratsearchers [2,52, 148].

Our goal will be as in [77] to construct asymmetric quanturdesfor quantum mem-

*(©2008 IEEE. Reprinted from, P. K. Sarvepalli, Moteler, and A. Klappenecker.

“Asymmetric quantum LDPC codes”. IRroc. 2008 IEEE Intl. Symposium on Inform.
Theory, Toronto, Canadaul 6-11, pp., 2008.
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ories and at present we do not consider the issue of fautbetode. We first quantitatively
justify how noise processes, characterized in ternis, afnd 75, lead to an asymmetry in
the bit flip and phase flip errors. As a concrete illustratibtins we consider the amplitude
damping and dephasing channel. For this channel we can ¢ertipuprobabilities of bit
flip and phase flips in closed form. In particular, by givingp kit expressions for the ratio
of these probabilities in terms of the ratig /75, we show how the channel asymmetry
arises.

After providing the necessary background, we give two syate& constructions of
asymmetric quantum codes based on BCH and LDPC codes, as mratleto the ran-

domized construction of [77].

A. Background
Recall that a quantum channel that maps a state
(L= pe —py — p2)p + puXpX +p,YpY +p.ZpZ, (8.1)

withT = [§0], X = [9¢],Y = [%9,'], Z = [§ %] is called aPauli channel For a Pauli
channel, one can respectively determine the probabilities,, p. that an input qubit in
statep is subjected to a Paul(, Y, or Z error.

A combinedamplitude damping and dephasing chanfielith relaxation timel; and
dephasing timd? that acts on a qubit with density matrix= (p;;); jcf0,1} for a timet

yields the density matrix

t/Th t/Ts

L — pue” Por€

Elp) =
ploeft/T2 plleit/Tl

This channel is interesting as it models common decoherpramesses fairly well. We

would like to determine the probability,, p,, andp. such that anX, Y, or Z error occurs
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in a combined amplitude damping and dephasing channel. Yoy turns out that this
question is not well-posed, sinéeis not a Pauli channel, that is, it cannot be written in
the form (8.1). However, we can obtain a Pauli charfieby a technique called twirling
[45,50]. In our case, the twirling consists of conjugatihg thannef by Pauli matrices
and averaging over the results. The resulting chafine$ called the Pauli-twirl o€ and
is explicitly given by

Er(p) = i > ATg(ApAT)A.

Ae{L,X,Y,Z}

Theorem VIII.1. Given a combined amplitude damping and dephasing chafines$

above, the associated Pauli-twirled channel is of the form

Er(p) = (1 —po —py —p2)p + P XpX +p,YpY +p.ZpZ,

wherep, = p, = (1 — e /™) /4 andp, = 1/2 — p, — e=/"2. In particular,

» 1 . t/Tl(l*Tl/TQ)
LERN N
Dz et/Tl —1

If t < T, then we can approximate this ratio 8% /7> — 1.

Proof. The Kraus operator decomposition [114]&fs
2
p) =2 AwpAl, (8.2)
k=0

WhereA(): [(1)\/1,()?} 7A1 = [8\%] ,AQZ [8\?} ,andvl—’y—)\:e_t/TQ,l—’y:

e/t We can rewrite the Kraus operatotsas
1+ m | ey p——
AO = ]I + 2 Z7
Alz\/__]l_£2 A, = ﬂx_ﬂy

2 2 21
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Rewriting£(p) in terms of Pauli matrices yields

2442/ T3=7 1 )
Elp) = 4 p+ ZXpX—i— ZY'OY
2y —2/T=A—7
+ =7 y T 707
0 o o vy
= Tpz — Tz Txpy - Lypx. 8.3
g P T AP e T e 83)

It follows that the Pauli-twirl channel; is of the claimed form, see [45, Lemma 2]. Com-

puting the rati, /p, we get

p. 2=y =2/T=X=7 1+e N 24T

Dz v 1- eit/Tl ’
e—t/Tl - e—t/TQ 1— et/Tl—t/TQ
= 1420 = 1+ 22—
1 — et/T1(1=T1/T)
= 142
If ¢ < T}, then we can approximate the ratio2ds /7, — 1, as claimed. O

Thus, an asymmetry in th&; and7; times does translate to an asymmetry in the
occurrence of bit flip and phase flip errors. Note that= p, indicating that th&” errors
are as unlikely as th& errors. We shall refer to the ratjg /p, as the channel asymmetry
and denote this parameter By

Asymmetric quantum codes use the fact that the phase flipsaare much more likely
than the bit flip errors or the combined bit-phase flip errdtserefore the code has different
error correcting capability for handling different type efrors. We require the code to
correct many phase flip errors but it is not required to hattidesame number of bit flip
errors. If we assume a CSS code [35], then we can meaningheigksof X -distance and
Z-distance. A CSS stabilizer code that can detecKa#irrors up to weight/, — 1 is said
to have anX-distance ofd,. Similarly if it can detect allZ errors upto weightl, — 1,

then it is said to have Z-distance of/,. We shall denote such a code Iy, k, d,/d.]],
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to indicate it is an asymmetric code, see also [145] who wadfitet to use a notation
that allowed to distinguish betweeti- and Z-distances. We could also view this code as
an|[n, k, min{d,, d, }]], stabilizer code. Further extension of these metrics to alitiae
non-CSS code is an interesting problem, but we will not go théodetails here.

Recall that in the CSS construction a pair of codes are usedpogerrecting the bit
flip errors and the other for correcting the phase flip err@ust choice of these codes will
be such that the code for correcting the phase flip errors laager distance than the code
for correcting the bit flip errors. We restate the CSS consittmén a form convenient for

asymmetric stabilizer codes.

Lemma VIII.2 (CSS Construction [35])LetC,, C. be linear codes ovefr; with the para-
metersin, k.|,, and[n, k.], respectively. Le€;- C C,. Then there exists av, k, + k. —

n,d,/d.]], asymmetric quantum code, whete= wt(C, \ C+) andd, = wt(C, \ C).

If in the above constructiod, = wt(C,) andd, = wt(C,), then we say that the code
is pure.

In the theorem above and elsewhere in this pdfetenotes a finite field with ele-
ments. We also denotejaary narrow-sense primitive BCH code of length= ¢™ — 1 and

design distancé asBCH(0).

B. Asymmetric Quantum Codes from LDPC Codes

In [77], loffe and Mezard used a combination of BCH and LDPC codes to construct-asym
metric codes. The intuition being that the stronger LDPCecslibuld be used for correct-
ing the phase flip errors and the BCH code can be used for theyuere bit flips. This
essentially reduces to finding a good LDPC code such thatubeal the LDPC code is
contained in the BCH code. They solve this problem by randoindosing codewords in

the BCH code which are of low weight (so that they can be usechoparity check ma-
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trix of the LDPC code). However, this method leaves open hoadghe resulting LDPC
code is. For instance, the degree profiles of the resulting eme not regular and there is
little control over the final degree profiles of the code. Rartnore, it is not apparent what
ensemble or degree profiles one will use to analyze the code.

We propose an alternate scheme that uses LDPC codes toum@stymmetric stabi-
lizer codes. We propose two families of quantum codes baséd&C codes. In the first
case we use LDPC codes for both tieandZ channel while in the second construction we
will use a combination of BCH and LDPC codes. But first, we will thélee following facts

about generalized Reed-Muller codes, ([80]) and finite geon@®PC codes, ([98,150]).

1. Finite Geometry LDPC Codes

Let us denote by EGn, p*) the Euclidean finite geometry ovEy. consisting op™* points.
For our purposes it suffices to use the fact that this geometeguivalent to the vector
spacelF;:. A p-dimensional subspace &% or its coset is called a-flat Assume that
0 < 11 < gy < m. Then we denote bWeg(pe, 111, s, p) the number ofi; -flats in agu,-flat
and by Agg(m, ua, 11, s, p), the number of,-flats that contain a givep,-flat. These are
given by (see [150])

K1 quz—i-H ]

Neo(pa, i, ,p) = ¢#> ] P (8.4)
=1
H2 qm—i+1 -1
Aee(m, p, i, 5,p) =[] Py (8.5)
—— -

whereq = p°. Index all theu,-flats fromi = 1 ton = Negg(m, i1, s,p) ask;. Let F be a

peo-flat in EG(m, p®). Then we can associate an incidence vectar twith respect to the
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1 flats as follows.

] ~i; =1 if Fj;is contained inf’
ir =<1
i; = 0 otherwise.

Index thepus-flats fromj = 1to J = Ngg(m, s, s,p). Construct theJ x n matrix
Hég (m, pa, 11, s, p) Whose rows are the incidence vectors of all theflats with respect
to the iy -flats. This matrix is also referred to as the incidence matiihen the type-I
Euclidean geometry code frop,-flats andyu;-flats is defined to be the null space, i.e.,
Euclidean dual code) of thE,-linear span ofHég (m, pa, 11, 8, p). This is denoted as
Cég(m,ug, [, S, D). LetHéQG) (m, po, f1, 8, p) = HélG)(m,/LQ,/Jq, s,p). The type-Il Euclid-
ean geometry coo@é@(m, 2, i1, s, p) is defined as the null spaceHé@(m, W2, 1, S, D).
Let us now consider thg,-flats andu;-flats that do not contain the origin of E@, p®).
Now form the incidence matrix of thg,-flats with respect to thg;-flats not containing

the origin. The null space of this incidence matrix gives wgiasi-cyclic code in general,

which we denote bﬁégc(m, e, 41, S, p), See [150].

2. Generalized Reed-Muller Codes

Let o be a primitive element idf,~. The cyclic generalized Reed-Muller code of length
¢™ — 1 and ordew is defined as the cyclic code with the generator polynomialsetroots
o’ satisfy0 < j < m(q — 1) — v — 1. The generalized Reed-Muller code is the singly
extended code of lengift". It is denoted as GRMv, m). The dual of a GRM code is also
a GRM code [17, 31, 80]. It is known that

GRM, (v, m)* = GRM, (v, m), (8.6)

wherevt =m(qg—1) -1 —v.

Let C' be a linear code ovéiy.. Then we defing’ |r,» the subfield subcodef C' over
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[F; as the codewords df' which are entirely infy, (see [76, pages 116-120]). Formally

this can be expressed as
Clg, ={ce C|ceF}. (8.7)
LetC C IF;‘,. The thetrace codeof C overF, is defined as
trg/(C) = {trg 4(c) | c € C}. (8.8)

There are interesting relations between the trace codetendubfield subcode. One of

which is the following result which we will need later.

Lemma VIII.3. Let C C ng- ThenCl|g,, the subfield subcode @f is contained in

trq/4(C), the trace code of . In other words
C|]Fq g tl"ql/q(C).

Proof. Letc € Clp, C F; anda € Fy. Thentry ,(ac) = ctry,(a) asc € F}. Since
trace is a surjective form, there exists some F, such thatr, (o) = 1. This implies
thatc € tr, /,(C). Sincec is an arbitrary element i6/|, it follows thatC|r, C trg /,(C).

q

]

Let ¢ = p®, then the Euclidean geometry code of ordever EGm, p*) is defined as
the dual of the subfield subcode of GR\y —1)(m—r—1),m), [31, page 448]. The type-
| LDPC code(]ég (m, 11,0, s,p) code is an Euclidean geometry code of order 1 over
EG(m, p*), see [150]. Hence its dual is the subfield subcode of GRM- 1)(m — ), m)

code. In other words,

CL(m, 1,0, 5,p)* = GRM,((q — 1)(m — ), m)]s,. (8.9)
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Further, Delsarte’s theorem [48] tells us that

Ced(m, 11,0,5,p) = GRM,((q — 1)(m — 1), m)z.
= tresp (GRMq<(q —1)(m —p), m)l)

trg/p(GRM,(p(q — 1) — 1,m)).
Hence,CSc_%(m, i, 0, s, p) code can also be related to GRM(¢ — 1) — 1,m) as

CL(m, 1,0, 5, p) = trg»(GRM,(1u(q — 1) — 1), m). (8.10)

3. New Families of Asymmetric Quantum Codes

With the previous preparation we are now ready to constrsgmanetric quantum codes

from finite geometry LDPC codes.

Theorem VIII.4 (Asymmetric EG LDPC Codes)Let p be a prime, withy = p* and

s>1,m> 2. Letl < u, <mandm — pu, +1 < u, < m. Then there exists an
[P, kx + ke — p™, dp /d.]]
asymmetric EG LDPC code, where
k, = dim Cég(m, te, 0,8,p); k., =dim Cl(zg(m, =, 0,8,p).

For the distanced, > Agg(m, iz, iz — 1, 8,p) + L andd, > Agg(m, pi, p. — 1,8,p) + 1
hold.

Proof. Let C. = CL2(m, -, 0, s, p). Then from equation (8.10) we have

C. = tryp(GRMy(u:(q — 1) — 1,m).
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By Lemma VII1.3 we know that

Cz 2 GRMq<,LLz<q - 1) - ]‘7m>’Fp7

C. 2 GRM,((g —1)(m — (m — p. +1)),m)l,,

where the last inclusion follows from the nesting propefityh@ generalized Reed-Muller
codes. For any order, such thatn — p, +1 < pu, < m, letC, = Cég(m,ux, 0,s,p).
ThenC, is an LDPC code whose du&@t- = GRM,((q — 1)(m — ), m)|r, is contained

in C,. Thus we can use Lemma VIII.2 to form an asymmetric code Vinghpgarameters
Hpms’ k:r + kz - pms’ dz/dzﬂp

The distance of’, andC,, are at lower bounded as > Agc(m, iy, e — 1,8, p) + 1 and

d. > Aga(m, pi, p. — 1, 5,p) + 1 (see [150]). O

In the construction just proposed, we should cha@st be a stronger code compared
to C,. We have given the construction over a nonbinary alphalest though the cage= 2
might be of particular interest.

We briefly turn our attention back to the depolarizing chanmée LDPC codes de-
signed for the asymmetric channels will not in general penfavell on the depolarizing
channel. In fact constructing good quantum LDPC codes f@d#polarizing channel re-
mains a difficult problem and a satisfactory solution is yebé advanced. We contribute
to the ongoing discussion in this topic by drawing upon thigfigeometry LDPC codes as
we did for the asymmetric codes. The codes presented in &redill.4 can under certain

conditions lead to LDPC codes that are suitable for use odepelarizing channel.

Corollary VIII.5 (EG LDPC Codes for Depolaring Channebet p be a prime, withy =
p*ands > 1,m > 2. Let[(m+1)/2] < p < m. Then there exists afip™*, 2k —

p™*., d]], symmetric EG LDPC code, wheke= dim Cég (m, 1,0, s,p). For the distance
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d > Agc(m, p, p —1,s,p) + 1 holds.

Our next construction makes use of the cyclic finite geomaddes. Our goal will be
to find a small BCH code whose dual is contained in a cyclic Eeelidgeometry LDPC
code. For solving this problem we need to know the cycliccitme ofCéac(m, @, 0,8, p).
Let o be a primitive element ifF,~.. Then the roots of the generator polynomial of

Oégyc(m, u,0,s,p) are given by [79, Theorem 6], see also [81, 104]. Now,
Z ={a" | 0 < max W, (hp) < (p* = 1)(m — p)},
<i<s

whereW, (h) is theg-ary weight ofh = hg + hyiq + -+ + hxg* ', i.e., W, (h) = > h,.
The finite geometry cod@égvc(m, i, 0, s,p) is actually an(x — 1, p®) Euclidean geometry

code. The roots of the generator polynomial of the dual codgizen by
L _ 5. h : [ s
Z= ={a" | min Wpe (hp') < p(p” — 1)}

In fact, the dual code is the even-like subcode of a primigeé/nomial code of length
p™® — 1 overF, and ordem — 1, whose generator polynomial, by [81, Theorem 6], has
the roots

- h : ) l s
Zp =10 | 0 < min Wps (hp') < pu(p” — 1)}

ThusZ+ = Z,u{0}. Now by [81, Theorem 11}7, and thereforeZ* contain the sequence
of consecutive rootsy, o?, ..., a% =1, whered, = (R + 1)p% — 1 andm(p* — 1) — (m —
w)(p*—1) = Q(p°—1)+ R. Simplifying, we see thak = 0 and@ = p giving 9 = p"*—1.

It follows that

CLa.(m, 11,0,5,p)t = GRM,(m, (¢ — 1)(m — p))|r,

C BCH(5).

Thus we have solved the problem of construction of the asyinnmsabilizer codes in
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a dual fashion to that of [77]. Instead of finding an LDPC cod®se parity check matrix
is contained in a given BCH code, we have found a BCH code whosty phgck matrix

is contained in a given finite geometry LDPC code. This givethe following result.

Theorem VIII.6 (Asymmetric BCH-LDPC stabilizer coded)etC, = Oégc(m, 1, 0,8, p)

andj < o = p** — 1. Letn = p™* — 1 andC, = BCH(J) C F,. Then there exists an
[[n, ks + ks, —n,d,/d.]],

asymmetric stabilizer code whetle > Agg(m, u, u — 1,s,p), d, > § andk, = dim C,,

k, = dim C.,.
Perhaps an example will be helpful at this juncture.

Example VIII.7. Letm =s=p=2andu = 1. Then(]égyc(Q, 1,0,2,2) is a cyclic code

whose generator polynomial has roots given by

Z = {a"0 < max Wy (2'h) < (m — p)(p® — 1) = 3}
0<i<?2

_ {a17a2’&37&47a67a8’ag’am}

As there are 4 consecutive roots aif] = 8, it defines g15, 7, > 5] code. The roots of the

generator polynomial of the dual code are given by

L _ h : L(OLh) < S _ 1) = (92 _
75 = {a"|0 < min We(2'h) < p(p’ —1) = (2* ~ 1)}

= {a%a',a? at e’ a® o'’}

We see thaf+ has two consecutive roots excludingherefore the dual code is contained
in a narrowsense BCH code with design distance 3. Noteyftat- 1 = 3. Thus we can
chooseC, = BCH(3) andC, = CSC_)"C(Z 1,0,2,2) and apply Lemma VII1.2 to construct a

[[15, 3, 3/5]], asymmetric code.
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We can also state the above construction as in [77], thatvenga primitive BCH
code of design distancg find an LDPC code whose dual is contained in it. It must be
pointed out that in case of asymmetric codes derived fromC[R@Bdes, the asymmetry
factord, /d. is not as indicative of the code performance as in the casewfded distance

decoders. Fom = p = 2, we can derive explicit relations for the parameters of thaes.

Corollary VIII.8. LetC = Cégyc(z, 1,0,s,2) andé = 2t + 1 < 2° — 1. Then there exists
an

[[228 - 17 2% — 3 — 8(5 o 1)7 5/23 + 1]]2
asymmetric stabilizer code.

Proof. The parameters @f are[2?° — 1,225 — 3% 25+ 1],, see [104]. Sinc€ is contained
in a BCH code of length2?* — 1 whose design distande< 2° — 1, we can compute the
dimension of the BCH code &8 — 1 —s(d — 1), see [107, Corollary 8]. By Lemma VIII.2
the quantum code has the dimens@h— 3° — s(§ — 1). O

Example VIII.9. Form = p = 2 ands = 4 we can obtain @55, 175, 17] LDPC code. We
can choose any BCH code with design distahee2*—1 = 15 to construct an asymmetric

code. Table Ill lists possible codes.

C. Performance Results

We now study the performance of the codes constructed in tdqus section. We
assume that the overall probability of error in the chansdiven byp, while the indi-
vidual probabilities ofX, Y, and Z errors arep, = p/(A + 2), p, = p/(A + 2) and
p. = pA/(A+2) respectively. The exact performance would require us talsita at-ary
channel and also account for the fact that some errors caatiea¢ed modulo the stabi-

lizer. However, we do not account for this and in that seneedhresults provide an upper
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Table Ill. Asymmetric BCH-LDPC stabilizer codes

s| 6 Code Asymmetry| Rate
([0, k. do/d.]]2 | d./dy
4115/ [[255,119,15/17]]5 | ~ 1 0.467
4|13 [[255,127,13/17]), | = 1.25 0.498
4|11 [[255,135,11/17]), | ~ 1.5 0.529
4| 9 | [[255,143,9/17)], | ~ 2 0.561
4| 7 | [[255,151,7/17]]y | =~ 2.5 0.592
4|5 | [[255,159,5/17]] | ~ 3 0.624
4| 3| [[255,167,3/17]]y | ~6 0.655

bound on the actual error rates. The 4-ary channel can beletbéds two binary sym-
metric channels — one modeling the bit flip channel and therdtire phase flip channel.

For exact performance, these two channels should be depighdgever, a good approx-
imation is to model the channel as two independent BSCs withscover probabilities

Ps + Py = 2p/(A+ 2) andp, + p, = p(A + 1)/(A+ 2). In this case the overall error rate

in the quantum channel is the sum of the error rates in the tw@sBS8Vhile this approach

is going to slightly overestimate the error rates, nonetelt is useful and has been used
before [105]. Since th&'-channel uses a BCH code and decoded using a bounded distance
decoder, we can just compui the X error rate, in closed form. The error rate in the Z

channel,P? is obtained through simulations. The overall error rate is

P.=1-(1-P)(1—-P)=P'+P’—P'P’~ P+ P~

Decoding LDPC Codes. The LDPC code was decoded using the aitlatg similar to

the hard decision bit flipping algorithm given in [98]. Thssan instance of the bit flipping
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algorithm originally given by Gallager. The maximum numbgéiterations for decoding

is set to 50. A small modification had to be made to accommaiti@epecial situation

of quantum syndrome decoding. By measuring the generatdaheditabilizer group, we
obtain a classical syndrome, which due to the fact that arlyeigenspaces occur in all
of the generators, is hard information. We use the syndrosnghawn in Figure 9 and
initialize all the bit nodes witl) at the start of the algorithm. Then the algorithm proceeds
in the usual fashion as in [98]. We implemented this alganiind ran several simulations
which are described next.

In figure 10 we see the performance[@65, 159, 5/17]] as the channel asymmetry is
varied from 1 to 100. We see that as we increase the asymrhetpotle starts to perform
better. As the asymmetry is increased eventually the pedaoce of the quantum code
approaches the performance of the classical LDPC code.

Tolerating a little rate loss improves the performance ashmaseen from figure 11.

If we increase the distance of the BCH code the code becomestaterant to variations

in channel asymmetry as can be seen by the performar({z56f143,9/17]] in figure 12.
This plot also illustrates an important point. Our channebdel assumes that as we vary
the channel asymmetry we keep the total probability of eimahe channel fixed. This
implies that while the probability ok errors goes down, the probability gferrors tends

to p, the total probability of error. Hence, the reduction iroemate in theX channel must
more than compensate for the increaseiarror rate. If on the other hand, we had fixed
the probability of error in theZ channel and varied the channel asymmetry then we would
observe a monotonic improvement in the error rate becausmermand theZ error rate
does not change but the error rate does. We note that with larger lengths we can get an
even steep drop in the error rate as is apparent from therpaafwe of[1023, 731, 11/33]]
code shown in Figure 13.

The question naturally raises how do these codes compahethgtcodes proposed
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in [77]. Strictly speaking both constructions have regimé®re they can perform better
than the other. But it appears that the algebraically cootdiasymmetric codes have the

following benefits with respect to the randomly construaiads of [77].
e They give comparable performance and higher data ratessWvdtter lengths.

e The benefits of classical algebraic LDPC codes are inhemfiethg for instance lower

error floors compared to the random constructions.
e The code construction is systematic.

Our codes also offer flexibility in the rate and performant¢he code because we can
choose many possible BCH codes for a given finite geometry LD&I@ or vice versa.

The flip side however is that the codes given here have higimtaplkexity of decoding.
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Fig. 9. Modification of the iterative message passing atborito the quantum case. The
initialization step is different from the classical casenassoft information from the
channel is available but rather only hard information alibatmeasured syndrome
is available. The algorithms begins with initializing ait hodes to0 and the check
nodes with the syndrome. From then on, any classically knowthod for iterative
decoding can be applied. In the figure this principle is shéwvrthe example of a
classical [7,4,3] Hamming code. Application to the quantase is straightforward
as the decoding algorithm only works with classical infotimato compute the most
likely error.
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CHAPTER IX

NEW RESULTS ON BCH CODES
The Bose-Chaudhuri-Hocquenghem (BCH) codes [32, 33, 58, 74 aml-studied class
of cyclic codes that have found numerous applications issital and more recently in
quantum information processing. Recall that a cyclic codemdthn over a finite fieldF,
with ¢ elements, andcd(n, q) = 1, is called aBCH code with designed distanédf its
generator polynomial is of the form

g(x) = H(x—az), Z=0CyU---UChys5_9,

z2€Z
whereC, = {x¢* mod n|k € Z,k > 0} denotes the-ary cyclotomic coset of mod-
ulo n, « is a primitive element of ., andm = ord,(q) is the multiplicative order of
modulon. Such a code is called primitiveqif = ¢ — 1, and narrow-sense bf= 1.

An attractive feature of a (narrow-sense) BCH code is that anelerive many struc-
tural properties of the code from the knowledge of the patarse, ¢, andj alone. Perhaps
the most well-known facts are that such a code has minimutardied > § and dimen-
sionk > n — (6§ — 1)ord,(q). In this chapter, we will show that a necessary condition for
a narrow-sense BCH code which contains its Euclidean dual isatiat its designed dis-
tanced = O(qn'/?). We also derive a sufficient condition for dual containing BQides.
Moreover, if the codes are primitive, these conditions arees These results allow us to
derive families of quantum stabilizer codes. Along the wegfind new results concerning
the minimum distance and dimension of classical BCH codes.

To put our results into context, we give a brief overview dated work. This chapter

*(©2007 IEEE. Reprinted with permission from S. A. Aly, A. Klapeeker and P. K.

Sarvepalli, “On quantum and classical BCH codd&EE Trans. Inform. Theoryol 53,
no. 3, pp. 1183-1188, 2007.
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was motivated by problems concerning quantum BCH codes; fagadly, our goal was
to derive the parameters of the quantum codes as a functidimeoflesign parameters.
Examples of certain binary quantum BCH codes have been givemay authors, see, for
example, [35, 68, 69, 145]. Steane [146] gave a simple mitdo decide when a binary
narrow-sense primitive BCH code contains its dual, given #eégh distance and the length
of the code. We generalize Steane’s result in various waygaiticular, to narrow-sense
(not necessarily primitive) BCH codes over arbitrary finitédsewith respect to Euclidean
and Hermitian duality. These results allow one to derivenum BCH codes; however, it
remains to determine the dimension, purity, and minimurtadise of such quantum codes.

The dimension of a classical BCH code can be bounded by margretitf standard
methods, see [24, 76, 107] and the references therein. Aeruggund on the dimension
was given by Shparlinski [143], see also [97, Chapter 17]. évlecently, the dimension
of primitive narrow-sense BCH codes of designed distaneeg™/?! + 1 was apparently
determined by Yue and Hu [156], according to reference [19% generalize their result
and determine the dimension of narrow-sense BCH codes thabanecessarily primitive
for a certain range of designed distances. As desired, ¢lsigltrallows us to explicitly
obtain the dimension of the quantum codes without compmurtadf cyclotomic cosets.

The purity and minimum distance of a quantum BCH code depenti@minimum
distance and dual distance of the associated classical codgeneral, it is a difficult
problem to determine the true minimum distance of BCH codes[3%]. A lower bound
on the dual distance can be given by the Carlitz-Uchiyama-bgunds when the number
of field elements is prime, see, for example, [107, page 280][a49]. Many authors
have determined the true minimum distance of BCH codes in apeases, see, for in-
stance, [118], [155].

This chapter also extends our previous worlpamitive narrow-sense BCH codes [4],

simplifies some of the proofs and generalizes many of thdtsetsuthe nonprimitive case.
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Notation. We denote the ring of integers #/and the finite field withy elements by
F,. We use the bracket notation of Iverson and Knuth that asgeto[statement the
value 1 ifstatemenis true, and 0 otherwise. For instance, we higvever] = £ — 1 mod 2
and[k odd = k mod 2 for an integer:. The Euclidean dual cod&" of a codeC' C F}' is
given byC+ = {y € F? |« -y = O forall z € C}, while the Hermitian dual o€ C Fr
is defined ag"* = {y € Fl,|y? -2 = Oforallz € C}. We denote a narrow-sense
BCH code of lengtm overF, with designed distanc&by BCH(n, ¢; §), and we omit the

parametey if the finite field is clear from the context.

A. Euclidean Dual Codes

Recall that one can construct quantum stabilizer codes usisgical codes that contain
their duals. In this section, our goal is to find such clagsicdes. Steane showed that a
primitive, narrow-sense, binary BCH code of length — 1 contains its dual if and only

if its designed distancé satisfiess < 2/"/21 — 1, see [146]. We generalize this result in

various ways.

LemmalX.1. LetC be a cyclic code of lengthover the finite field, such thagcd(n, q) =
1, and letZ be the defining set @f. The code”' contains its Euclidean dual code if and

onlyif Zn Z=! =, whereZ~! denotes the séf ! = {—z mod n | z € Z}.
Proof. See [70, Theorem 2]. See also [76, Theorem 4.4.11]. O]

Let us first consider narrow-sense BCH codes of lemgskich that the multiplicative
order of¢ modulon equals 1; for example, Reed-Solomon codes belong to this ofas
codes. We can avoid some special cases in our subsequemteaniglby treating this case
separately. Furthermore, the next lemma nicely illussrétbe proof technique that will be

used throughout this section, so it can serve as a warm-upisge
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Lemma 1X.2. Suppose thaj is a power of a prime and is a positive integer such that
q = 1 mod n. We haveBCH(n, ¢; §)* € BCH(n, ¢; §) if and only if the designed distance
disintherange < § < dpax = (0 +1)/2].

Proof. The defining setZ of BCH(n, ¢;¢) is given byZ = {1,...,§ — 1}, sinceq has
multiplicative order 1 modul@, and therefore all cyclotomic cosets are singleton sets. If
BCH(n,q;0)* € BCH(n,q;d), then by Lemma IX.1Z2 N Z! = (. If z € Z, then
n—ax ¢ Zandn —x > z; hencejn.. < [(n+ 1)/2]. Conversely, it < |[(n+1)/2],
thenminZ!' = min{n —1,....n—0+1}=n—-356+1>n—[(n+1)/2] +1 =
[(n+1)/2] > dmax; hence,Z N Z~1 = () and Lemma IX.1 implies thaBCH(n, ¢; §)* C
BCH(n, g; 6).

If the multiplicative ordern of ¢ modulon is larger than 1, then the defining set of
the code has a more intricate structure, so proofs become imarlved. The next theorem
gives a sufficient condition on the designed distances fachvine dual code of a narrow-

sense BCH code is self-orthogonal.

Theorem IX.3. Suppose thatn = ord,(q). If the designed distanc&is in the range

2 <6 < Opmax = | k], Where

(¢ —1— (¢ —2)[modd), (9.1)

thenBCH(n, ¢; §)* € BCH(n, ¢; ).

Proof. It suffices to show thaBCH (7, ¢; dmax )~ € BCH(n, ¢; dmax) holds, sincéBCH(n, ¢; §)
containsBCH(n, ¢; dmax ), @and the claim follows from these two facts.

Seeking a contradiction, we assume tB&tH(n, ¢; d...x) does not contain its dual.
Let Z = C1 U--- U s, 1 be the defining set dBCH(n, ¢; 0max). By Lemma IX.1,

ZNZ~t 0, which means that there exist two elementg € {1,. .., . — 1} Such that
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y = —x¢’ mod n for somej € {0,1,...,m — 1}, wherem is the multiplicative order of
g modulon. Sinceged(q,n) = 1 andg™ = 1 mod n, we also have: = —y¢™ 7 mod n.
Thus, exchanging andy if necessary, we can even assume thigtin the range) < j <

|m/2]. It follows from (9.1) that

1 S 9qu < <5max - 1)q]

<

< n,

for all j in the range) < j < |m/2]. Sincel < z¢/ < nandl < y < n, we can infer

fromy = —x¢’ mod n thaty = n — x¢?. But this implies

y > n—zgm?
Z n- qmn— 1 (™ — g — g2l (g — 2)[m odd)) + ¢"/*!
_ qmn_ : (g"/2 =1 + ¢/ (¢ — 2)[m odd)
fqlm/2
> Omax ;
contradicting the fact that < d,x. U

Now we will derive a necessary condition on the design dstanf narrow-sense,

nonprimitive BCH codes that contain their duals.

Theorem IX.4. Suppose thatn = ord,(q). If the designed distancé exceed9),,., =
[gn'/?|, thenBCH(n, ¢; 0)* € BCH(n, ¢; 6).

Proof. Letn = ng+ni1qg+-- - +nqg_1¢%"', whered < n; < ¢—1andd > 6. + 1. Then
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the defining seZ 2 {1, ..., |qgn'/?]}. We will show thatZ N Z~! # (). Let,

i=|d/2]
d—1
s < (g—1) Y gl = gl g o gl
i=d/2]

Sinceq?™! < n < ¢%, we havey*V/2 < gn'/? < ¢(4+2/2_If dis even therfd/2] < (d +
1)/2 andifd is odd, ther{d/2] < (d+1)/2. Hence we have < ¢[4/?1 < ¢4+1)/2 < ¢n1/2,
Therefores € Z. Now consider,

d—1 d—1

i=0 i=|d/2]

ld/2—1]
= Y g < g
=0

< q(d+1)/2 <qn1/2.

Hences’ € Z and by definitions’ € Z~!, which impliesZ N Z~! # (; by Lemma IX.1 it
follows thatBCH(n, ¢; §)* € BCH(n, ¢; §). ]

The condition we just derived can be strengthened under sesiréctions. Especially,
if the constant in equation (9.1) is integral, then we can derive a necessadysufficient

condition as shown below:

Theorem 1X.5. We keep the notation of Theorem IX.4. Supposextimintegral, and that
m > 2. We havéBCH(n, ¢; 6)* € BCH(n, ¢;d) if and only if the designed distandas in

the range2 < 0 < dpax = K.

Proof. Suppose thaBCH(n, ¢;6)* € BCH(n, ¢; ). Seeking a contradiction, we assume

thatd > Opayx; thus,dm.y is contained in the defining seét of BCH(n, ¢;4). If m is even,
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then

nglm/2)

mf2) — ™™ °° _ . "
P B s YT

_(5maxq -

Omax  (mod n),

hencepna € ZNZ71 # (. If mis odd, then

_(5maqu'm/2J = _n(qm - q]—m/?\ + ql_m/QJ)/<qm - 1)
= (g™ — g —1)/(¢" - 1)

= s (mod n).

By definition,s € Z~!; furthermores < dyax, SOs € ZN Z~1 # (. In both casesy even
and odd, we found that N Z~! is not empty, s8CH(n, ¢; §) cannot contain its Euclidean

dual code, contradiction. The converse follows from TheolX.3. ]

As a consequence of Theorem IX.5 we have the following tagpfionitive narrow-

sense BCH codes that contain their duals.

Corollary 1X.6. A primitive narrow-sense BCH code of length= ¢ — 1, m > 2, over
the finite field[F, contains its Euclidean dual code if and only if its designéstathce)
satisfies

2 <8 < Omax = ¢™?1 =1 — (¢ — 2)[m odd.

We observe that a narrow-sense BCH code containing its Eadidaal code must
have a small designed distanée=€ O(/n)), when the multiplicative order af modulo
n is greater than one. This raises the question whether onaltam larger designed
distances by considering non-narrow-sense BCH codes. Ouresxt shows that this is

not possible, at least in the case of primitive codes.

Theorem IX.7. Let C' be a primitive (not necessarily narrow-sense) BCH code oftleng
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n = ¢™ — 1 overF, with designed distance If m > 1 andé exceeds

5 g2 —1, m = 0 mod 2,

2(qmH/2 — g 41), m=1mod 2,

thenC cannot contain its Euclidean dual.

Proof. Let the defining setof be Z = C, U Cy 1 U - - - U Cyy5_2. We will show that if
§ > Omax thenZ N Z= 1 £ 0. 1f 0 € Z,then0 € Z71,s0Z N Z~1 +# (). Therefore, we can

henceforth assume thatZz 7, which impliesb > 1 andb+ 6 — 2 < n.

1. Suppose that: is even; thusg,.. = ¢"™/> — 1. If § > ... then the defining sef

contains an element of the forsn= ad,,.., for some integex.. However,

—sq™? = —a(q™? = 1)¢"? = a(¢"? - 1)

= s (modn).

Hences e ZNZ~1 #0.

2. Suppose that: > 1 is odd; thus,0,. = 2¢MD/2 —2¢ + 2. If § > 6max then
there exists an integer such that two multiples o' = 0,,../2 are contained in the
rangeb < (o — 1)d < ad’ < b+ 06 — 2. Sinceb > 1 andad’ < n, it follows that
2 << qgm1/2
The defining setZ of the code contains the element= «d’. The numbers’ =
afqmH/2 — ¢m=1/2 _ 1) lies in the range < s’ < s and satisfies-sq¢™ /2 =
s’ mod n, sos’ € Z1.

Suppose that < s’. Thens’' € Z, which impliesZ N Z~! # ().
Suppose that’ < b. Sinceb < (a — 1)¢’, we obtain the inequality’ < (a — 1)d;
solving fora shows thaty > ¢; thus,q < o < ¢ V72, Lett’ = (a — 1)(¢™+D/2 —

1) + ¢1/2 — 1; it is easy to check that is in the rangdo — 1)0’ < t' < ad’ when
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a > q; thus,t’ € Z. Further, lett = s — (o — ¢ + 1); sincet > s — §’, we havel € Z

as well. Since-t¢™Y/2 = ' mod n, we can conclude thate Z N Z~! +# (.

Therefore, we can conclude that if the designed distanc€ wf greater tham,,,.., then

Z N Z~1 0, which proves the claim thanks to Lemma IX.1. O

B. Dimension and Minimum Distance

While the results in the previous section are sufficient tbuslwhen we can construct
quantum BCH codes, they are still unsatisfactory because wetdknow the dimension
of these codes. To this end, we determine the dimension odweasense BCH codes of
lengthn with minimum distancel = O(n'/2). It turns out that these results on dimension
also allow us to sharpen the estimates of the true distansenoé BCH codes.

First, we make some simple observations about cyclotonsetsdhat are essential in

our proof.

Lemma IX.8. Letn be a positive integer anglbe a power of a prime such thgtd(n, ¢) =
1andql™? < n < ¢™—1, wherem = ord,(q). The cyclotomic cosét, = {x¢’ mod n |

0 < j < m} has cardinalitym for all z in the rangel < 2 < ng/™/21 /(g™ — 1).

Proof. If m = 1, then|C,| = 1 for all x and the statement is trivially true. Therefore, we
can assume that > 1. Seeking a contradiction, we suppose tldaf < m, meaning that
there exists a divisof of m such thatr¢’” = x mod n, or, equivalently, that(¢’ — 1) =

0 mod n holds.

Suppose thatn is even. The diviso of m must be in the rangé < j; < m/2.
However,z(¢’ — 1) < ng™?(¢™? — 1)/(¢™ — 1) < n; hencez(¢’ — 1) # 0 mod n,
contradicting the assumptiad@’,| < m.

Suppose that: is odd. The divisoy of m must be in the rangé < ;7 < m/3. Since

qmtO2 < @3 for m > 3, we havex(¢? — 1) < ng™V2(g™3 — 1) /(g™ — 1) <
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ng®/3 (g™ — 1)/(¢™ — 1) < n. Therefore,z(¢” — 1) # 0 mod n, contradicting the

assumptionC,| < m. O
The following observation tells us when some cyclotomicatesre disjoint.

Lemma IX.9. Letn > 1 be an integer ang be a power of a prime such thgtd(n, ¢) = 1
andql™/?l < n < ¢™ — 1, wherem = ord, (q). If z andy are distinct integers in the range
1 <,y <min{|[ng™?/(¢™ — 1) —1],n — 1} such thatr, y # 0 mod ¢, then theg-ary

cyclotomic cosets of andy modulon are distinct.

Proof. If m = 1, then clearlyC, = {z}, C, = {y} and distinctz, y implies thatC,
andC, are disjoint. Ifm > 1, thenz,y < [ng/™?1/(¢™ — 1) — 1] < n — 1. The set

S = {z¢’ mod n,yq¢’ mod n|0 < j < |m/2|} contain2(|m/2|+1) > m+1 elements,
sinceql™ x |ngl™/?1/(¢g™ — 1) — 1] < n and, thus, no two elements are identified
modulon. If we assume that’, = C,, then the preceding observation would imply that
|Cx| = |Cy| > |S| > m + 1, which is impossible since the maximal size of a cyclotomic

coset isn. Hence, the cyclotomic cosets andC, must be disjoint. [

With these results in hand, we can now derive the dimensiamaobw-sense BCH

codes.

Theorem 1X.10. Let g be a prime power andcd(n,q) = 1 with ord,(q) = m. Then a
narrow-sense BCH code of lengif*/2! < n < ¢™ — 1 overF, with designed distancé

in the range2 < § < min{|ng/™/?!/(¢™ —1)|,n} has dimension
k=n—m[(d—1)(1-1/q)]. (9.2)

Proof. Let the defining set dBCH(n, ¢;6) beZ = C; Uy - - - U Cs_y; a union of at most
0 — 1 consecutive cyclotomic cosets. However, whed x < § — 1 is a multiple ofg, then

Cy/q = C,. Therefore, the number of cosets is reduced@dy- 1)/¢|. By Lemma IX.9, if
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z,y # 0 mod ¢ andz # y, then the coset§’, andC, are disjoint. Thus/ is the union of
(6—1)—|(0—=1)/q] = [(6 —1)(1 —1/q)] distinct cyclotomic cosets. By Lemma IX.8,
all these cosets have cardinality. Therefore, the degree of the generator polynomial is

m[(6 —1)(1 — 1/q)], which proves our claim about the dimension of the code. [J

As a consequence of the dimension result, we can tighteroiineds on the minimum

distance of narrow-sense BCH codes generalizing a resulodeart, see [107, p. 259].

Corollary IX.11. ABCH(n,¢;J) code

) with length in the rangg ™2 < n < ¢™ — 1, m = ord,(q),

i) and designed distance in the range< § < min{|ng™/?! /(¢™ — 1)],n}
i) such that

L(6+1)/2]

n .
3 (Z) (q—1) > gnE-D0a-1/] (9.3)

1=0
has minimum distancé= 6 or § + 1; if 6 = 0 mod ¢, thend = § + 1.
Proof. Seeking a contradiction, we assume that the minimum distérd the code sat-
isfiesd > § + 2. We know from Theorem [X.10 that the dimension of the code is
k=n—m[(6d—1)(1 —1/q)]|. If we substitute this value of into the sphere-packing

boundg® S=H4D2L (M) (g —1)7 < ¢, then we obtain

(e sy (e

=0
< qu(é—l)(l—l/qﬂ’
but this contradicts condition (9.3); henée< d < § + 1.
If 6 = 0 mod ¢, then the cyclotomic cosét; is contained in the defining set of the
code becaus€; = Cj/,. Thus, the BCH bound implies that the minimum distance must

be at least + 1. n



202

We conclude this section with a minor result on the dual distaof BCH codes which

will be needed later for determining the purity of quanturdes

Lemma IX.12. Suppose thaC' is a narrow-sense BCH code of lengthover I, with
designed distanc® < § < Gpax = [2(¢™/? =1 — (¢ — 2)[m odd) /(¢™ — 1)], then the

dual distancel* > §,,.x + 1.

Proof. Let N = {0,1,...,n — 1} andZ; be the defining set af’. We know thatZs_. O
Zs > {1,...,6 — 1}. ThereforeN \ Zs_.. C N\ Z;. Further, we knowthat N Z~! =)
if 2 < < dpax from Lemma IX.1 and Theorem 1X.3. Thereforﬁg"}ax CN\Z,.. C

N\ Zs.

Let T; be the defining set of the dual code. THBn= (N \ Z5)~! D Zs Moreover

max "

{0} € N\ Zs and therefor&’;. Thus there are at lea&t,.., consecutive roots iffs. Thus

the dual distancé* > 6., + 1. O

C. Hermitian Dual Codes

Suppose that’ is a linear code of length over[F .. Recall that its Hermitian dual code is
defined byC*» = {y € F, |y? - = = 0forallz € C}, wherey? = (yf,...,y?) denotes

the conjugate of the vectar= (y1,...,yn).

Lemma IX.13. Assume thatcd(n, ¢) = 1. A cyclic code of length overF . with defining
setZ contains its Hermitian dual code if and onlyain Z—¢ = (), whereZ =7 = {—¢z mod

n|zeZ}.

Proof. Let N = {0,1,...,n — 1}. If g(z) = ][, (= — o) is the generator polynomial
of a cyclic codeC, thenh'(z) = [Lenz(z — a™%) is the generator polynomial ofr.
Thus,C*» C C if and only if g(z) dividesh'(z). The latter condition is equivalent to

Z C{—qz|z € N\ Z}, which can also be expressedas 77 = (). O
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Now similar to Theorem IX.3 we will derive a sufficient condit for BCH codes that

contain their Hermitian duals.

Theorem 1X.14. Suppose that: = ord, (¢*). If the designed distancgesatisfie < § <

Omax, Where

n Vi
o = | " 1 (- D over)

thenBCH(n, ¢%; §)t» C BCH(n, ¢%9).

Proof. SinceBCH(n, ¢%; §) containsBCH(n, ¢%; dmax), it Suffices to show that the relation
BCH(n, ¢%; max) " € BCH(n, ¢%; d1max) holds.

Seeking a contradiction, we assume tBatH (n, ¢%; d,..x) does not contain its dual.
Let Z = CLUC,U---UCs,,. 1 be the defining set @BCH (n, ¢%; dmax ). By Lemma 1X.13,
Z N Z~1 # (), which means that there exist two elementy € {1, ..., 0.« — 1} such
thaty = —z¢**! mod n for somej € {0,1,...,m — 1}, wherem = ord,(q). Since
ged(g,n) = 1 and¢®™ = 1 mod n, we also havey = —z¢*" %~! mod n, So we can
assume without loss of generality thaies in the rang® < j < [(m — 1)/2]. It follows
that

2t < (Spax — 1)g¥ ™!
2j+1

_ I e 1 (g2 — ) ever) — ¢+
q mo__

< n

holds for allj in the range) < j < [(m — 1)/2].

Sincel < z¢¥*! < n, the congruence = —x¢¥*! mod n implies thaty = n —
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rq¥*. Thereforey > n — (Smax — 1)g2Lm~1/21+1 'which is equivalent to

ng2lm=1/21+1

vz - g

(¢ — 2)[m ever) + 2L D/,

m+[meve 1

If m is odd, this yields

<
v
S
|

Similarly, if m is even, then

<
v

2 6max .

Both cases contradict the assumptidor< y < d,.¢x. Therefore, we can conclude that

BCH(n, ¢; dmax) CONtains its Hermitian dual code. O

Arguing as in Theorem IX.4 we can show that a BCH code must hawdesigned
distancey = O(¢?n'/?) if it contains its Hermitian dual. As the arguments are vémyilar

we illustrate it for a simpler case as shown below:

Lemma IX.15. LetC' C F. be a nonnarrow-sense, nonprimitive BCH code of length
n = 0 mod ¢™ + 1, wherem = ord,(¢*). If its design distancé > ..., = n/(¢™ + 1),

thenC cannot contain its Hermitian dual.

Proof. The defining sef = C, U...UCy 52 contains{b, ..., b+ —2}. If 6 > dppax =
n/(¢™+ 1), then there exists an element adn.x € Z for some positive integet. Then
—qs(¢g®)m= Y2 = —ang™/(¢™+1) = an/(¢™+1) = s mod n. Therefore ZNZ~9 # {;

hence (' cannot contain its Hermitian dual code. O
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Finally, we conclude this section on Hermitian duals by jprgwvas in the Euclidean
case nonnarrow-sense BCH codes that contain their Hermitials dannot have too large

design distances.

Theorem IX.16. LetC' C I, be a primitive (not necessarily narrow-sense) BCH code of

lengthn = ¢*™ — 1, m = ord,(q), and designed distance If § exceeds

qgm —1 if misodd

2(¢" — > +1) if m#2iseven
thenC cannot contain its Hermitian dual code.

Proof. Suppose that the defining set ©fis given by”Z = C, U --- U Cyy5_2, Where
C, = {z¢¥ mod n|j € Z}, and thaty > ... Seeking a contradiction, we assume that
C*r C C, whichmeansthat nZ—7 = . It follows that0 ¢ Z, for otherwise) € ZNZ ¢,
thereforep > 1andb+ 6 — 2 < n.

If m is odd, then there exists an integesuch thab < ad,.« < b+ 0 — 2. We have
—q0max @™ = (1 —¢™)q™ = a(q™ — 1) = adpmax mod n; thus,adm., € ZNZ71 # ().

If m > 2isevenand > d,., = 2¢™" — 2¢* + 2, then there exists an integersuch
that two multiples ob’ = 4,,,./2 are contained in the range< (a—1)d" < ad’ < b+5—2.
Sinceb > 1 andad’ < n, it follows that2 < a < ¢™! (which holds only ifm > 2).

Clearlys = ad’ € Z. Lets = —¢sq™ 2?modn, sos’ € Z749, thenl < s =
a(gmtt — g™t —1) < sform > 2.

Suppose that < s’. Thens’ € Z, which impliesZ N Z~7 = ().

Suppose that’ < b. Sinceb < (a — 1)¢’, we obtain the inequality’ < (o — 1)J’;
solving fora shows thatr > ¢?; thus,¢?> < a < ¢™ L Lett = (a — 1)(¢™™ — 1) +
q™~Y/2 —1; itis easy to check that is in the rangda — 1)0' < ¢’ < ad’ whena > ¢%;
thus,t’ € Z. Further, lett = s — (a — ¢* + 1); sincet > s — ¢, we havet € Z as

well. Since—gtg™ 2 = ' mod n, we can conclude that € Z N Z=9 # (. Hence, by
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Lemma 1X.13 we conclude th&t cannot contain its Hermitian dual if its design distance

exceed9,, .« O

D. Families of Quantum BCH Codes

In this section we shall study the construction of (nonbyhguantum BCH codes. Calder-
bank, Shor, Rains and Sloane outlined the construction arpiquantum BCH codes

in [35]. Grassl, Beth and Pellizari developed the theoryheirby formulating a nice condi-

tion for determining which BCH codes can be used for constngauantum codes [68,70].
The dimension and the purity of the quantum codes constiwetee determined by numer-
ical computations. Steane simplified it further for the sglecase of binary narrow-sense
primitive BCH codes [146] and gave a very simple criterion blae the design distance
alone. Very little was done with respect to the nonprimitiwvel nonbinary quantum BCH
codes.

In this section we show how the results we have developedeirpthvious sections
help us to generalize the previous work on quantum codesigad/gry simple conditions
based on design distance alone. Further, we give preciselgitnension and tighten re-
sults on the purity of the quantum codes. The reader can t@f€hapters Ill and IV for

constructions on stabilizer codes.
Theorem IX.17. Letm = ord,(q) > 2, whereq is a power of a prime and, J, are
integers such tha < §; < 6y < dpax Where

5max = qmn_ 1 (qu/ﬂ —-1- (q - 2)[m OdCﬂ),

then there exists a quantum code with parameters

[[n,m(d2 = 01 = [(02 = 1) /q] + [(02 = 1) /q]), = ]l



207

pure tods.

Proof. By Theorem 1X.10, there exist BCH codB§'H(n, ¢; d;) with the parameteris, n—
m(6; — 1) +m|(6; —1)/q|,> &], fori € {1,2}. FurtherBCH(n, ¢; §2) C BCH(n, g; 61).

Hence by the CSS construction there exists a quantum code¢heifrarameters

[[n, m(82 — 01 — [ (02 = 1) /q] + [(61 = 1) /q]), = d1]],-

The purity follows due to the fact thag > §; and Lemma 1X.12 by which the dual distance

of either BCH code i$ . + 1 > 05. O

When the BCH codes contain their duals, then we can derive ttevioly codes.
Note that these cannot be obtained as a consequence of hetder.

Theorem IX.18. Letm = ord,(q) wheregq is a power of a prime ant < § < dyax, With

Sunae = qm"_ (¢ =1~ (¢~ 2)[m odd),

then there exists a quantum code with parameters
[[n,n = 2m[(6 —1)(1 = 1/q)], = d]]4
pure t0d,.x + 1

Proof. Theorems 1X.3 and 1X.10 imply that there exists a classical BfoHe with para-
metergn,n—m[(d—1)(1—1/q)], > 4], which contains its dual code. By Corollary 111.21
an(n, k, d|, code that contains its dual code implies the existence ajtla@tum code with
parameterg[n, 2k — n, > dJ],. The purity follows from Lemma 1X.12 by which the dual

distance> dyax + 1 > 0. O

Before we can construct quantum codes via the Hermitian agoigin, we will need

the following lemma.
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Lemma 1X.19. Suppose that’ is a primitive, narrow-sense BCH code of length=
¢*™ — 1 overF . with designed distanc2 < § < . = |n(¢™ — 1)/(¢*™ — 1) ], then the

dual distancelt > §,,.. + 1.

Proof. The proof is analogous to the one of Lemma IX.12; just keep indnthat the

defining setZ; is invariant under multiplication by> modulon. O

Theorem 1X.20. Letm = ord,(¢*) > 2 whereq is a power of a prime an@ < § <

Omax = |n(¢™ — 1)/(¢*™ — 1) ], then there exists a quantum code with parameters
([, —2m[(6 — (1 = 1/¢°)1, > 0],
that is pure up t@,,.x + 1.

Proof. It follows from Theorems 1X.10 and 1X.14 that there existsranitive, narrow-

sensén,n—1—m[(6 —1)(1 —1/¢*], > ¢], BCH code that contains its Hermitian dual
code. By Corollary 111.19 a classicat, &, d| 2 code that contains its Hermitian dual code
implies the existence of dfn, 2k —n, > dJ|, quantum code. By Lemma IX.19 the quantum

code is pure t@,,., + 1. O

In the above theorem, quantum codes can also be construbtedtte design distance
exceeds the given value &f..., however we do not have exact knowledge of the dimension
in all those cases, hence we have not included them to keebebeem precise.

These are not the only possible families of quantum codescrabe derived from
BCH codes. As pointed out in [68], we can expand BCH codes Byeto get codes over
F,. Once again the dimension and duality results of BCH codes snidtkeery easy to
specify such codes. We will just give one example in the Eleeln case. Similar results

can be derived for the Hermitian case.
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Theorem IX.21. Letm = ord,(¢') wheregq is a power of a prime and < § < §,,.,, With

n
qlm_l

(g™ =1 — (¢" — 2)[m odd),

Omax =
then there exists a quantum code with parameters
[[in, In = 2im[ (6 — 1)(1 = 1/4¢")1, = d]],
that is pure up ta.

Proof. By Theorem 1X.18 there exists a quantum BCH code with paraméiers —
2m[(0 — 1)(1 — 1/¢")],> é]]4. An [[n, k,d]], quantum code implies the existence of the

quantum code with parametegfs., [k, > d]], by Lemma I1.41 and the code follows. [

E. Conclusions

In this chapter we have identified the classes of BCH codes trdaim their Euclidean
(Hermitian) duals by a careful analysis of the cyclotomisets. In the process we have
been able to shed more light on the structure of dual com@giBiICH codes. We were
able to derive a formula for the dimension of narrow-sense BGides when the designed
distance is small. These results allowed us to identifyleagiich classical BCH codes
can be used for construct quantum codes. Further, the ptenwd these quantum codes

are easily specified in terms of the design distance.
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