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PARTICLES IN SURFACE WATERS: COAGULATION
AND TRANSPORT

Abstract

Conventional water quality assessment and simulation of particles in natural
waters focus on bulk concentrations of the suspended solid phase. These analyses rely
directly or indirectly on a linear, ‘average particle’ approach to describe processes that
are nonlinear and highly size-dependent.

Size-dependent transport and transformation mechanisms were simulated in this
research to identify conditions in which coagulation is important. Explicit finite
difference schemes for two-dimensional, laterally-averaged, unsteady particle transport
were developed to approximate the size-dependent particle transport processes, which
included advection, dispersion, and settling. Coupled exchange of discrete particles
between the water column and sediment bed was modeled using size-dependent particle
sedimentation and resuspension. Simultaneous particle-particle flocculation was
integrated over time in parallel with transport.

Model simulations of systems with idealized morphometry and forcing provided
greater insight to competing processes that drive particie behavior in natural systems.
Application of the model to a real system gave plausible results and suggested

explanations for observed conditions.
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CHAPTER |

INTRODUCTION

1.1 NEED FOR RESEARCH

Suspended solid materials and trace dissolved contaminants are ubiquitous in
natural aquatic environments. The transport, fate, and effects of the dissolved
substances are cach intimately related to the transport and fate of the solid phase.
Models developed to date for the prediction of the solids-associated transport and fate
use simplified representations of the processes controlling both solids transport and
solids-contaminant association. These models give usable approximations for long-term
problems but are unable to simulate the full range of transient system conditions. The
increased attention being given to the fate and effects of contaminants in the aquatic
environment calls for the development of refined tools for predicting solids and solids-
associated contaminant behavior.

Nonpoint sources, i.e., diffuse and indirect sources of pollution such as
stormwater runoff, contribute 95% of the suspended solids loaded into the nation's
waters (USEPA, 1984). Concerning contaminants from nonpoint sources, the National
Urban Runoff Program documented the exceedance of water quality and health criteria
for specific contaminants in the stormwater runoff from each of the nineteen urban
areas studied (USEPA, 1983). Half of the States and six of the ten USEPA regions
identified nonpoint sources as the major reason for the inability to attain water quality
goals (USEPA, 1984). Various independent surveys of environmental managers,
scientists, and engineers led to the conclusion that 75% of all lakes in the U.S. are

seriously affected by nonpoint source pollution (USEPA, 1984).



The diameters of measurable particles in natural water systems span several
orders of magnitude, and yet most water quality analyses treat the suspended solids
phase as a uniform and unchanging commodity. Theoretical and experimental studies
have shown, however, that particle composition, particle transport, and particle-particle
and particle-contaminant interactions are all highly size-dependent. Although
contaminant fate is intimately related to particle fate, no comprehensive transport and
transformation model incorporates present understanding of the size-dependent particle
and particle-contaminant behavior. A model which accounts for the mechanisms and
effects of changes in the particle size distribution and the related nonlinear
consequences would be expected to provide better predictions of solid and contaminant
behavior.

Models in use for predicting solids transport and fate oversimplify the processes
controlling particle transport and interaction. For example, solids sedimentation is
described by a mass-mean particle settling velocity, or at best, a static distribution of
settling velocities. Either approach ignores the dynamic, discrete particle coagulation
mechanisms which profoundly affect the sedimentation of particles and sorbed
contaminants, Models formulated to simulate the coagulation process in natural systems
have typically assumed horizontal uniformity and also ignored interactions between the
sediment bed and water column.

Models for simulating contaminant transport and fate rely on simplifications of
the solid/solute distribution process, describing the association as dependent on sorbent
mass concentration, i.e., independent of sorbent surface area. Again, the influence that

particle size plays in this process has been averaged away. These models are often able



to simulate average solids and contaminant behavior, but only within the limited range

of system conditions described by time- or space-average solids parameters.

1.2 OQOBJECTIVES OF RESEARCH

This research was directed toward a more fundamental study of the role of
particle coagulation in solids transport, the role of surface processes in contaminant
fate, and their interrelationship. Mechanistic models were developed for the simulation
of particle-particle interaction, particle-contaminant interaction, and their transport and
fate in natural systems. To improve the physical foundation and increase the analytical
ability of present sediment-contaminant transport and fate models, this research
included the following objectives:

1) Formulate a two-dimensional, unsteady solids transport model that
conservatively transports multiple classes of discrete size particles;

2) Couple particles in the water column and sediment bed through size-
dependent sedimentation and resuspension transfer functions;

3) Couple to the particle transport model a transformation model of size-
dependent coagulation;

4) By use of the model, evaluate the influence and interaction of coagulation,

sedimentation, and resuspension on the transport and fate of solids in idealized and

‘real’ systems.

1.3 ORGANIZATION OF REPORT
Chapters 2 and 3 are devoted to background material. Chapter 2 is a review of
the literature associated with particle behavior, especially in natural waters. Information

and data pertaining to model study of the ‘real’ system, Town Lake, is given in Chapter



3; data there are summarized in a form consistent with the model formulation.
Development of the particle transport-transformation model is presented in Chapter 4
the rationale for the various decisions made in model formulation is also discussed.

Chapters 5 and 6 contain mode! results and discussion. The model was first
tested and used in ‘idealized’ settings, i.e., systems with uniform rectangular
morphometry, upstream inflow and load only, and steady flow. These simple systems
made testing the sensitivity of model results to the inclusion (or exclusion) of certain
particle phenomena, i.e., coagulation, sedimentation, and resuspension, easier to
interpret. These results, as well as parameter sensitivity studies, are in Chapter 5. The
application to Town Lake, with its more complex morphometry and forcing, is
presented in Chapter 6. Three types of conditions in Town Lake were considered:
annual-average, steady-state forcing; seasonal-average, quasi-steady forcing for each of
four seasons; and short-term, time-variable forcing of storm events. Finally, the results
of the research are summarized in Chapter 7.

Throughout this research, a secondary objective was the formulation of a model
that could be easily extended to include the interaction of soluble contaminants with
particles via sorption mechanisms. Further, it was intended that the extension allow
size-dependent particle-contaminant sorptive associations. Such an extended particle-
contaminant model would account simultaneously for the behavior of the particles, the
particle-bound contaminant, and the dissolved contaminant in a natural system.
Appendix A contains a literature review providing the rationale for the development of
the size-dependent particle-associated contaminant model. The expressions needed to
relate the particle suspension to the equilibrium contaminant phase distribution are also

presented there.



CHAPTERI

REVIEW OF LITERATURE

2.1 INTRODUCTION

A review and analysis of research on solids transport and fate are presented in
this chapter. Relevant aspects include transport modeling of conservative substances
and solids, coagulation theory and application. The review of related research in
particle-associated contaminant transport, fate, adsorption theory, and modeling is

presented in Appendix A.

22 T F P N

The transport of any contaminant is characterized by the motion of the bulk
fluid and the behavior of the contaminant within that fluid. The simplest solids
transport to imagine is that in which the solid particle behaves exactly like a fluid
particle. A close approximation to this conceptualization is the ideal, infinitely dilute
solution of a neutrally buoyant, conservative substance. Conditions necessary for
solids to approach this behavior would include a zero density difference relative to the
fluid, no reaction, gain, or loss, and insignificant inertial effects. The last condition is
satisfied by Stokesian particles (Jobson and Sayre, 1970; Ludwick and Domurat,
1982), i.e., where Re < 0.5. Similarly, particle relaxation times and characteristic
turbulent eddy microtimes were compared by Sheng (1986b) to conclude that
particles of radius less than 200 um (at a particle density of 1.2 g/cm3) would
completely follow the motion of turbulent eddies in estuarine and coastal waters.
Transport of neutrally buoyant solutes is presented, then, as the limiting case of solids

transport.



2.21 Solute transport

The majority of research on contaminant transport in natural systems has
focused on conservative, chemically discrete, neutrally buoyant, dissolved solutes,
although temperature and group parameters such as salinity have certainly been
employed to interpret mixing data. The problem is formulated as a set of
simultaneous partial differential equations. In their most general form, these equations
describe the instantaneous balance of force, conservation of mass (fluid and solute),
and conservation of energy, all at a point.

Separate bodies of literature concerning the representation of relevant
hydrodynamic processes have developed for each type of aquatic system. Marine and
estuarine systems are not the focus of this research; rather, freshwater streams, lakes,
and reservoirs are the concern. Fischer et al. (1979) provided one of the earliest
syntheses of mixing and transport processes for these systems.

For riverine transport, Holley and Jirka (1986) gave an excellent and
comprehensive presentation of the theory and experimental results applicable to initial
and ambient mixing/transport in these systems. Initial mixing is the near field, active
transport of material or energy via jets and/or plumes as fluid is discharged into a
receiving body. It is characterized by the discharge's momentum and buoyancy fluxes
as well as the properties of the receiving system, e.g., boundaries, and density and
flow profiles. Ambient mixing is the far field, passive transport of matter or energy
which occurs after initial mixing. Initial mixing can often be represented as a
diffusive (gradient-type) process. Although the two types of transport are relatively
well represented as individual processes, a smooth and continuous representation of

the transition between the two modes of transport does not currently exist.



Holley and Jirka gave particular attention to the development and applicability
of spatially and temporally averaged representations of the complete instantaneous,
three-dimensional solute transport equation. Theory and measurements from
laboratory and field tests were presented for semi-empirical closure of the turbulence
problem. Sufficient research has been completed to allow prediction of two-
dimensional ambient response to steady input or one-dimensional ambient response to
a pulse input with relatively good accuracy (within a factor of four) in rivers under
certain conditions.

Although the same physics that applies to riverine transport also applies to
lakes and reservoirs, the dynamics are usually quite different and more complex.
These differences are due to the greater significance of meteorological forcing
functions and large scale motions in lakes and reservoirs (Boyce, 1974). The
hydrodynamic and solute transport equations for lakes and reservoirs are presented,
along with simplifications, by many authors (Csanady, 1978; Lam, 1986; Lynch,
1986). Relatively large differences between and among lakes and reservoirs in their
sources of energy influx and efflux, geomorphometry, and time and space scales
result in significant differences in their behavior (Imberger and Hamblin, 1982).
Because of the span in time and space scales, it is not possible to relate mixing to
boundary conditions and flow properties through some universal turbulence closure
scheme, so phenomenological modeling appears to be the best approach (Imberger et
al., 1987; Imberger and Hamblin, 1982). Mean fluid circulation and energy transport
can be described well in certain circumstances (Lam, 1986), but the problem with this

approach is that turbulent mass transport is not well resolved. Reviews of turbulence



closure schemes and laboratory and field measurements pertinent to reservoirs and
lakes have been presented (Blumberg, 1986; Imberger et al., 1987).

Simplification of the continuous partial differential solute transport equations
via a discrete-volume spatial representation reduces the problem to the solution of
ordinary differential equations, albeit with volumetric exchange flows used to
represent the dispersion. This multiple box approach has been used widely in lake
modeling (Kuo and Thomann, 1983; Thomann and Mueller, 1987) and to a lesser
degree in river modeling (Stefan and Demetracopoulos, 1981). Some (Shanahan and
Harleman, 1984; Shanahan and Harleman, 1985) have criticized the discontinuous
box model representations because of their implicit numerical dispersion and because
calibration cannot be tied to the physical lake hydrodynamics. Others (Kuo and
Thomann, 1985) have justified certain applications of compartment modeling as a
practical, necessary, and sufficiently accurate engineering analysis, contingent upon
the appropriate system, dominant processes and scales, and available resources. One-
dimensional box modeling for rivers was criticized (Holley and Jirka, 1986) because
of its discontinuous spatial representation and its neglect of the significant transverse

concentration variations which normally persist for long times (distances) in riverine

settings.

2.2.2 Solids transport

The economic and social effects of erosion and sedimentation in water bodies
have motivated vast research efforts directed toward the prediction of sediment
transport. Recent progress has been presented for rivers (Wang er al., 1986),
reservoirs {Annandale, 1987; Frenette and Julien, 1986), lakes (Hakanson and

Jansson, 1983; Sly, 1978), and estuaries (Partheniades, 1986). Past efforts have



generally treated sediment as a material with bulk properties, neglecting the explicit
transport of solids-associated contaminants. Previous approaches have been highly
empirical but generally adequate for the long term prediction of net sediment flux and
distribution. For the prediction of short term flux and solids-associated contaminant
fate, where the behavior and associations are very particle size-dependent, the
empirical method is probably inadequate.

The sediment transport equation is similar to the conservative solute transport
equation but with the complications of solids sources and sinks. Obvious sources
include inflows and bed erosion, as well as biological production and inorganic
precipitation. Obvious sinks include outflows and deposition, as well as biochemical
reactions and inorganic dissolution. Not so apparent is that sedimentation is normally
represented by the settling velocity of discrete particles, neglecting any particle
interactions. Coagnlation has been shown, however, to be a potentially important
process in lakes (O'Melia and Bowman, 1984), estuaries (Edzwald et al., 1974), and
marine environments (Lerman, 1979; McCave, 1984).

Descriptions of unsteady, noncohesive sediment transport in turbulent fields,
i.e., averaging the instantaneous three-dimensional motion of sediment over time and
space, have been developed for one-dimensional vertical fields (Dobbins, 1943) and
for two-dimensional, laterally-averaged channel flows (Sayre, 1969). The analytical
solution of these transport equations is not possible except for certain conditions, such

as those imposed by Dobbins.

23 COAGULATION
The present theory of coagulation stems from early modern physics (von

Smoluchowski, 1917). Particle-particle interactions are thought to occur via binary
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collisions. The process is generally conceived as comprising two distinct steps,
transport and destabilization (Hahn and Stumm, 1970}, or transport and attachment
(O'Melia, 1972). The transport step brings the two particles towards one another,
within some very small distance of separation. The attachment step provides a stable
or metastable bonding of the two particles that have collided, and it generally requires

the destabilization of the particles to overcome electrostatic or steric repulsion.

2.3.1 Transport

The relative motion between two particles in a fluid can result in their
collision or near collision. Any process that forces the particles to move relative to the
fluid or that forces the fluid parcels to move relative to themselves results in particle
transport in the coagulation sense. Transport mechanisms traditionally considered in
aquatic coagulation analysis include Brownian motion, differential settling, and
laminar or turbulent fluid shear. These are typically the dominant transport
mechanisms in hydrosol flocculation, though any material or energy gradient would
also result in particle transport. Examples of these mechanisms would include
thermophoresis, electrophoresis, osmosis, and electroosmosis. As many as five
transport mechanisms have been considered (McCave, 1984) in the marine
aggregation of particles: the dominant three mentioned above, biogenic aggregation
(via organism filtration, aggregation, and excretion), and turbulent inertial transport,
borrowed from the aerosol literature (i.e., Pruppacher and Klett, 1978). McCave
(1984) showed that turbulent inertial coagulation would only be significant, relative
to turbulent fluid shear, for particles differing in diameter by a half centimeter or

more. Based on organism population densities and filtering rates, he also concluded



11

that biogenic aggregation was responsible for most of the ‘coagulation’ of particles
larger than one micrometer in the upper ocean.

Three general approaches have been taken in modeling coagulation. These are
referred to here as the similarity approach, the empirical approach, and the discrete
particle approach. The methods are discussed in order, but emphasis is given to the
latter since it is the method of choice in the research reported herein.

The similarity approach to coagulation modeling was introduced in studies of
the evolution of aerosol size distributions (Friedlander, 1965). Friedlander presented
the case for a self-similar particle size distribution which would be asymptotically
approached at equilibrium. The key assumption in the similarity approach is that there
is a constant volume flux through the particle size distribution at all times resulting
from a continuous supply of particles and the quasi-equilibrium of coagulation
mechanisms. Statistical moments of the analytical distributions can then be used to
infer the dominant interactions, which Friedlander did for aerosols. The same
approach was used to analyze marine interactions (Hunt, 1980). Others (Farley and
Morel, 1986) have also used the constant volume flux assumption in a dimensional
analysis of the self-preserving particle size distributions established in coagulation
and sedimentation. Farley and Morel used micron-sized copper and goethite (Y-
FeOOH) particles, with concentrations spanning several orders of magnitade, in
experiments designed to calibrate their model.

Coagulation has also been modeled with empirical approaches, ie,asa
process whose discrete dynamics are lumped together and determined experimentally.
Coagulation in river impoundments was modeled using measured distributions of

settling velocity (Hahn et al., 1980; Uchrin and Weber, 1980). Mean settling
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velocities for lake sediments have been derived from laboratory flume
deposition/resuspension studies where concentration and bed shear stress were
independent variables (Lick, 1982). Research on the Great Lakes (Richardson et al.,
1983) produced spatially distributed mean settling velocities for three “size classes”
of solids (i.e., light, heavy, and organic) in Saginaw Bay. Velocities were derived by
calibration between predictions and field data. Modeling of estuarine coagulation,
known to significantly affect particle interactions in that destabilizing environment,
has also relied on empirical settling velocity distributions (Ariathurai and Krone,
1976). Recent work in estuarine sedimentation modeling (Hayter, 1987) employs an

’

“apparent settling velocity,” experimentally determined in the laboratory, as a
function of concentration, salinity, and bed stress.

The discrete particle approach to coagulation modeling approximates the
continuous particle number concentration as an explicit function of discrete size. The
physical and chemical phenomena that govern particle interactions and fate can
therefore be modeled mechanistically. Lawler formulated an unsteady, one-
dimensional (vertical) model for analyzing particle coagulation and sedimentation
(Lawler, 1979; Lawler et al., 1980). The model integrates a set of ordinary differential
equations, each describing the time rate of change in concentration of particles, in a
fixed size range and in a particular vertical layer, due to flocculation (according to

Smoluchowski), as follows:

gal-l»tl‘- = -;-(Ichem 2 B(l,]) njny - Ochem nki B(i,k) n; Q.1

i+j=k i=1
The state variable, ng, is the absolute particle number concentration in

[#/cm3]. In this equation, i, j, and k are integer indices denoting particle size class; ¢ is
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the maximum allowable value of i, j, or k; and t is time. The first term on the right
hand side of the rate equation (2.1) describes the rate of gain of particles of size k by
flocculation of two smaller particles, i and j. The second term describes the loss of
particles of size k by flocculation with particles of size i, forming particles larger than
k.

Ochem 18 the collision efficiency factor, i.e., the fraction of predicted collisions
that result in attachment. This probability of attachment, G¢hem, depends upon
microscopic interactions affected by solution and surface chemistry as well as by
particle steric constraints. B(i,j) is the composite collision frequency function that
quantifies how often particles of sizes i and j do collide, a function of particle-fluid
hydrodynamics with the effect of particle concentration extracted. The frequency
function is a second-order number rate coefficient with dimensions for B(.j)
of [L3T-1].

The total collision frequency function, B(i,j), is the linear sum of the
interparticle frequency functions for the individual transport (collision) mechanisms
considered in this model, i.e., Brownian motion, differential settling, and turbulent
fluid shear:

B(i.j) = Ba:lij) + Bos(ij) + Bsk (i.j). 2.2)

It is assumed that these mechanisms are independent of one another and therefore
linearly additive.

Friedlander’s classic text (1977) presented derivations for the so-called
rectilinear collision frequency functions. These collisions stem from assumed

rectilinear particle trajectories, i.e., when particles do not hydrodynamically affect
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each others’ trajectories. The rectilinear collision frequency functions are presented
below.

Hydrodynamic correction factors derived to convert the rectilinear collision
frequency functions into curvilinear frequency functions have been presented (Han,
1989). Departing slightly from Han’s nomenclature, let the rectilinear collision
frequency kernel for a particular transport mechanism x be denoted as Bx(i,j). Let the
hydrodynamic correction factor needed to reconcile the rectilinear collision frequency
with the curvilinear trajectories be denoted as ¢x(i,j). Han called the curvilinear
correction factor aik(i,j), not to be confused with the chemical collision efficiency
Ochem. Then the actual curvilinear collision frequency function, ¥x(i,j) is the product

of the rectilinear collision frequency kernel and the curvilinear correction factor, i.e.,

V(L) = oxis) - Bxli.j). (2.3)

The three rectilinear collision kernels follow.

Brownian motion;

iy = 2kT(q. oapvflo 1
Badi) = 2 (d; + 4 ( L dj) 2.4)

where k is Boltzmann's constant, p is the absolute viscosity, T is the absolute
temperature, and dj and d;j are the diameters of particles of sizes i and j. Han called
the curvilinear correction factor, i.e., the coefficient to apply to the rectilinear the B of
(2.4), ap,(i,j). He calculated the values by integrating Smoluchowski's rectilinear

diffusion equation with hydrodynamic correction and interparticle forces.

Differential settling:

Bodi,j) = %—i(ps - pe){di + i |d; - dj (2.5)
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where p; is the particle density, p¢ is the fluid density, and g is gravitational
acceleration. Note that the development for differential settling incorporates settling
velocities for the two particles that are assumed to follow Stokes’ solution for
creeping flow around a sphere, Re < 0.5, Han called his curvilinear correction factor

ops(i,j) and tabulated the values from a curvilinear hydrodynamic trajectory analysis.

Laminar fluid shear:

Bsiig) = %i(di +d) (2.6)

where G =%’% , the magnitude of the local velocity gradient, u; is the velocity in

direction 1, and xj is direction 2, normal to direction 1 in the plane of fluid flow. Note

that a two-dimensional laminar shear flow is assumed in (2.6).

Turbulent fluid shear:

Bsn(i.j) = G6—m (d; + djy 2.7

G is a root mean square value of the local velocity gradient, a function of the energy
dissipation rate per volume, i.e., in two dimensions,
1/2

The original derivation of a mean velocity gradient for turbulent fluid shear
(Camp and Stein, 1943) requires the temporal and spatial averaging of the local
energy dissipation rate per mass, €, and hence velocity gradients, too. Both these
properties of the turbulent fluid field are highly variable. A recent review of the Camp
and Stein approach criticized the two-dimensional development as inappropriate for

the actual three-dimensional turbulent fluid field problem (Clark, 1985). The
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frequency function for turbulent fluid shear developed against the meteorological
backdrop (Saffman and Turner, 1956), while still a spatial and temporal average, is

said to better represent the three-dimensional situation (Clark, 1985):
_ : e\
[35},,[ = 0.160 (dl + dj)3 (V) 2.9)

where € is the local average energy dissipation rate per unit mass due to locally

isotropic turbulence and v is the kinematic fluid viscosity. In a practical sense, the
.. . . o
parameter (%) * differs from Gy, only in the theoretical exactness of the derivation

and the practical ability to estimate it.

The original (2.6) rectilinear form for collision by fluid shear, modified for
curvilinear trajectories, is used in this research. Han called the curvilinear correction
factor augn(i,j), and he tabulated the values by interpolation of Adler's (1981) results,

which included hydrodynamic correction and interparticle forces.

2.3.2 Factors affecting transport

As shown above for the rectilinear collision models, the principal variables
affecting coagulation transport are the fluid properties (temperature, viscosity,
density), the particle properties (size, density, concentration), and the fluid field
properties (velocities, energy dissipation). Intrinsic fluid properties are known
reliably, but natural system particle and fluid field properties are not as well defined.

A number of studies have pointed to the uncertain values for discrete particle
settling velocity. For a particle Reynolds number Re < 0.5, the Stokes equation for
creeping flow around a sphere predicts drag accurately within 2% (Happel and
Brenner, 1983) or within 10% for Re < 1 (Panton, 1984) for quiescent settling. Many

researchers have shown experimentally that turbulent shear flows (Jobson and Sayre,
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1970; Sayre, 1969) and oscillating vertical flows (Ludwick and Dormurat, 1982) have
negligible inertial effect on the drag coefficient and settling velocity of Stokes
particles in water. Most particles and aggregates in natural systems satisfy the Stokes
criterion (e.g., dp < 120 pm for pg < 2.5 gfem3 at 20° C),

Unfortunately, the aggregate density is virtually impossible to measure,
resulting in uncertainty concerning the floc settling velocities. In one study, discrete
measurements were made of the individual settling velocities and floc sizes (2 to 100
pum) of 1800 lacustrine and marine aggregates (Chase, 1979). Measured bulk densities
for the aggregates ranged from 1.035 to 1.055 g/cm3. Chase concluded from
theoretical vs. observed velocities that the predictions (Stokes equation)
underestimated settling velocities by as much as an order of magnitude.
Measurements using marine aggregates (Kajihara, 1971; Kawana and Tanimoto,
1976; Kawana and Tanimoto, 1979), estuarine flocs (Gibbs, 1985), gold sols (Weitz
and Oliveria, 1984), and coagulated clay and sludge flocs (Tambo and Watanabe,
1979) have all shown that aggregate densities decrease with increasing floc size. The
size-dependent density variation, not accounted for by Chase (1979), might explain
some of the discrepancies obtained using those relatively small differential densities
(ps - pp) at bulk values. Various empirical relations for floc density as a function of
size were presented in the latter studies.

Fluid field properties can exert an appreciable but uncertain effect on
coagulation transport of particles in natural waters. Measurements of energy
dissipation in lake systems are few (Weilenmann er al., 1989). O'Melia and co-
workers have assumed mean velocity gradients in lakes of 1 to 10 s™! in the well-

mixed epilimnion, 0.1 s°! in the more stable thermocline, and 0.5 to 1 s7! in the
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hypolimnion (O'Melia et al., 1984; Weilenmann et al., 1989). In the latter paper, the
epilimnion velocity gradient for Lake Zurich was estimated as 1 s-! on the basis of
complete dissipation of the wind energy imparted to the lake, using the classic mixing
model (Kraus and Turner, 1967). Most of this dissipation occurs in the viscous layer
at the surface (on the order of 10 cm) in the open ocean, according to Krause and
Turner. Weilenmann et al. (1989) concluded that fluid shear is an insignificant
collision mechanism in Lake Zurich, except possibly during storms. The sensitivity of
particle removal to velocity gradient assumptions was not presented. With the same
mixing model, estimated mean velocity gradients in the ocean epilimnia range from
0.1 to 1 s71 (Lerman, 1979). Dissipation rates in the ocean water column were cited
that translate into turbulent velocity gradients of 0.01 s7! in clear mid-ocean depths,
0.1 s7! in the bottom mixed layer, and 1 s-1 in the surface waters (McCave, 1984).
Away from coastal zones, one could expect dissipation rates in large, deep lakes
(inland oceans) to be similar to the oceanic energy dissipation. In coastal zones and
shallow intand seas (lakes), the dissipation rates would be greater.

Energy dissipation rates in open channel flow (rivers and riverine reservoirs)
can be estimated on the basis of bed shear stress when other energy losses are
relatively small. Bed shear losses can be significant. The parameter estimate of the
average velocity gradient for a long reach of the Rhine in West Germany was 50 s71
(Eppler ez al., 1975).

Experiments on lake sediments were performed in a Couette viscometer to
examine the effects of laminar fluid shear and solids concentration on flocculation
(Tsai et al., 1987). Particle size measurements indicated that increasing bed shear

rates (1, 2, and 4 dyne/cm?) resulted in smaller median diameters and larger floc
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densities at steady-state. Time to approach steady-state was also shorter with larger
bed shear stress. Higher suspension concentrations (50, 100, 400, 800 mg/L) resulted

in smaller mean diameters.

2.3.3 Attachment

Once particles have collided or been brought into near contact, many factors
influence whether a permanent attachment will occur. Repulsive and attractive forces
exist between particles in suspension, and attachment depends on the net energy of
interaction as a function of separation distance. Good overviews of the origins of
these forces, and quantitative descriptions for certain simple representations, are
available (Lyklema, 1978 ; Overbeek, 1977).

Most particles in natural waters are stable, i.e., resistant to attachment. A
reduction in the energy barrier between the particles can be accomplished either by
decreasing the repulsive forces or increasing the attractive forces or a simultaneous
combination of the two, Destabilization is typically effected by reducing the repulsive
forces, those due either to electrostatic repulsion or to steric repulsion.

O'Melia (1972) discussed four specific mechanisms of particie destabilization
and attachment, i.e., double layer compression (decreased repulsion), adsorption-
charge neutralization (decreased repulsion), adsorption-polymer bridging (increased,
albeit mediated, attraction), and precipitate enmeshment (possibly increased,
mediated, attraction). Reviewing experimental and theoretical results on electrostatic
repulsion, Lyklema (1978) concluded that destabilization can occur due to increased
coagulant concentration, increased coagulant valence, or decreased particle radius.
Overbeek (1977) stated, however, that experiments had shown no influence of

particle size on stability. Although the processes causing destabilization in natural
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systems are not under human control, as they are in engineered systems, each of these

mechanisms is operative in natural systems.

2.3.4 Factors affecting attachment

As one measure of particle stability, electrostatic repulsion and stability can be
measured indirectly by microelectrophoretic mobility experiments. A number of
studies have been conducted using natural particles which indicate the qualitative
influence of environmental factors on stability. Electrophoretic mobilities, upy,
measured for suspended particles from four estuaries and the North Sea (Hunter and
Liss, 1979), demonstrated that a) all particles carried a negative surface charge, b) up
became less negative with increasing salinity, and ¢) oceanic particles had a highly
uniform up. In a subsequent analysis, the mobilities were shown to vary almost
linearly with salinity (Hunter and Liss, 1982).

Aging in natural water definitely affects particle surface charge. Four particle
types of divergent surface characteristics were exposed to seawater (Hunter, 1980).
Regardless of the initial particle mobility sign (three of four initially positive) or
magnitude in irradiated (organic free) seawater, subsequent exposure to seawater with
natural dissolved organics caused convergence to similar magnitudes of negative
mobility in all cases. This effect was attributed to adsorption of a tenacious polymeric
film to the particle surfaces, whose ionized carboxylic functional groups established
similar surface charge. Results thus indicated that increased ionic strength was most
responsible for destabilization.

Particles and solution chemistries for 11 southeastern U.S. rivers and lakes
were analyzed for u,, (Gerritsen and Bradley, 1987). Seven of the 11 systems were

softwater, eight were acidic, and eight were high in dissolved organic carbon.
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Regressions showed significant correlations between uy, and specific conductivity
(positive), pH (negative), and dissolved organic carbon (negative). All particles
possessed negative charge, so only increases in conductivity (ionic strength) were
assoctated with destabilizing effects ; conversely, increased pH and DOC were
associated with stabilizing effects.

The discrete particle coagulation models discussed above rely on the use of a
collision efficiency parameter, o, to characterize the extent of particle destabilization
and attachment. This parameter defines the fraction of those collisions predicted by
transport theory which actually result in permanent attachment. A value of & =0
corresponds to perfect stability, whereas a value of oo = 1.0 indicates perfect
instability or destabilization.

The parameter o originated with Smoluchowski. It was defined as the ratio of
particle half life as predicted by the Brownian motion collision frequency function
(Tfast) to the experimental particle half life (Tgjow) (Overbeek, 1977). The concept
presumes that the hydrodynamic collisions (transport) are predicted perfectly and that
o accounts only for the uncertainty in physiochemical interactions. Although o can be
estimated for certain electrostatic phenomena (Hahn and Stumm, 1970; Overbeek,
1977), current theory is inadequate for a theoretical prediction of particle instability in
natural waters.

Values of o for suspended and sedimented particles in natural waters have
been derived experimentally by many researchers, These studies have provided not
only estimates of the field values of o, but the important factors influencing stability

as well. All reported values of a rely on the assumption of perfect hydrodynamic

collision frequency prediction, of course. Hahn and Stumm (1970) presented a
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comparison of theoretically computed and experimentally determined values of o for
different solids and coagulant concentrations. Edzwald er al. (1974) systematically
determined o for three pure clay types and natural estuarine sediments, in buffered
NaCl and synthetic seawater of equivalent ionic strength. For the ranges of salinity
(1.8 to 17.5 ppt, parts per thousand) and ionic strength (36 to 343 meq/L) found in the
estuaries studied, o increased with salinity. As expected, o0 was much more
responsive to seawater of equal salinity but higher ionic strength, because of its
divalent cations.

Collision efficiency results for natural sediments, with and without their
natural organic coatings removed by NaOC]! oxidation, have been published (Gibbs,
1983a). Both an organic-free synthetic seawater as well as a filtered, natural dissolved
organic seawater were used as the suspending fluid. The uncoated particles
coagulated much faster at the lower salinities but approached the same collision
efficiencies as the coated particles at high salinity. The presence of small but
undefined concentrations of natural dissolved organic carbon caused insignificant
differences in coagulation relative to the removal of organic coatings (and any other
surface modifications due to NaOCl) from the solids at the 150 mg/L concentration.

Gibbs’ coating results (1983a) amplify those of Hunter (1980), whose
seawater-exposed particles converged toward a uniform, negative electrophoretic
mobility. The results of both Hunter (1980) and Gibbs (1983a) suggest that different
size fractions of natural sediments do exhibit similar mobility and collision efficiency,
as seen in Gibbs (1983b). For the special case of small, uncoated, charged particles,
such as Gibbs' pure clays (1983b), the decreased stability observed for smaller

particles is predicted by the simple electrostatic theory presented in Lyklema (1978).
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Experimental methods can play an important role in the magnitude of a. A set
of experiments, similar in conditions to those of Edzwald et af. (1974), were
conducted in both blade and Couette reactors (Gibbs, 1983b). Gibbs achieved higher
o values using lower shear rates when using the Couette reactor. He also found
significantly higher o, and at lower salinities, than had Edzwald and his colleagues in
corresponding blade reactor experiments. Gibbs attributed this finding to floc breakup
during pipetting in the former study. Size-segregated, 1 to 2 um, pure clay particles
coagulated faster than 2 to 4 um, pure clay particles; there were, however, no
significant differences in o between the size fractions from the natural sediments.
Since all of the pure clay size fraction experiments were conducted at the same
particle mass concentrations (~150 mg/L), the results are open to debate; the greater
number concentration in the smaller particle Gibbs experiments precludes a judgment
of faster coagulation kinetics on the basis of size alone.

Collision efficiency experiments are not as abundant for natural freshwater
particles. Five model inorganic solids and six organic (bacterial) solids were studied
in both experimental solutions (with variations in concentrations of Na+, Ca2+, humic
acid, fulvic acid, and lignosulfonic acid) and natural waters (Eppler et al., 1975). The
natural water samples were taken from five sites along 700 km of Rhine River, with a
wide range of measured dissolved organic carbon. Results for kaolinite stability in 9
mM [Ca?*] as a function of organic acid concentration (range: 1 to 100 or 1000 mg/L)
were highly dependent on the acid concentration. The collision efficiency for
kaolinite suspended in 9 mM [Ca2+] with no organics was 0.35. Adding humic acid
increased o from 0.35 to 0.45. Increasing fulvic acid concentration from 1 to 100

mg/L resulted in no change in o, but the value remained depressed at about o = (0.2.
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Increasing lignosulfonic acid concentration from 5 to 1000 mg/L decreased o from
0.15 to 0.05. The coagulation studies in filtered Rhine River water showed the
kaolinite o increasing from 0.018 to 0.092 with distance downstream. Dissolved
organic carbon concentrations increased in tandem with ., from 1.6 to 8.3 mg-C/L,
but no other analyses of the river water solution chemistry were given.

Colloidal stability was measured for suspended particles and sediments from a
softwater lake with low organic carbon concentration, Loch Raven Reservoir,
Maryland (Ali et al., 1984). The stability of suspended particles from the water
column, preconcentrated for coagulation experimentation, was measured for samples
taken over several months. Values of «, using the natural lake water (JCa2+] = 0.5
mM, [organic carbon] = 2 mg/L) as solvent, ranged from 0.01 to 0.09; the geometric
mean was (.03,

Suspensions prepared from bed sediments taken near the Loch Raven

Reservoir inflow were also coagulated with various concentrations of added calcium

and/or fulvic acid. As with estuarine sediments, instability increased substantially (o
from 0.035 to 0.39) with added calcium (A[Ca2+] from 0. to 3.3 mM). Unlike others,
(Gibbs, 1983a; Hunter, 1980), o decreased substantially (from 0.035 to 0.006) with
added fulvic acid (A[FA] from 0 to 20 mg TOC/L) in the presence of no added
calcium. With fulvic acid concentrations of 5 mg TOC/L, collision efficiencies were
reduced about 75% compared to the calcium alone values. At these low ionic
strengths, the relative change in organic macromolecule adsorption definitely
inhibited collision efficiency. These observations do, however, parallel other results
(Eppler et al., 1975; Gerritsen and Bradley, 1987), where electrophoretic mobility and

coagulation studies indicated increasing stability with increasing dissolved organic
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carbon. Steric repulsion from the organic macromolecule adsorption is likely the
cause at these lower ionic strengths.

Stability has also been measured in hardwater lakes in Switzerland
(Weilenmann et al., 1989). Collision efficiencies were measured for four lakes of
differing calcium and dissolved organic carbon (DOC) concentrations. Results
showed that oo was dependent on both {Ca2+] and [DOC] concentrations. Moderate
[CaZ*] (= 1.2 mM) and low [DOC] (= 1 mg/L.) gave the largest o value, 0.09. In
another lake with the same [Ca2+] but a high [DOC] (= 4 mg/L), the smallest &
resulted, 0.01. Weaker [Ca2*] (= 0.9 mM) and [DOC] (= 1 mg/L) resulted in
offsetting effects, producing an intermediate o of 0.06. Higher {Ca2+] (= 2 mM) and
[DOC] (= 4 mg/L) also offset each other to result in an intermediate o = 0.05. These
results are consistent with freshwater studies discussed above (Ali ef al., 1984; Eppler

et al., 1975; Gerritsen and Bradley, 1987).

24 ESUSPENSION

Acting in opposition to sedimentation, which transfers particles and particle-
associated contaminants out of the water column and into the bed, resuspension
moves particles and contaminants out of the bed and into the water column. While
sedimentation and erosion of solids have been problems of long-standing in inland
and coastal waterways (Vanoni, 1975), bed resuspension in deeper water was
considered relatively insignificant. Waves and currents are now known to resuspend
particles at water depths of several hundred meters (Santschi, 1986).

The fate of particles in the sediment bed depends macroscopically on the
applied shear stresses within the bed and the shear strength of the bed itself. Shear

stress within the bed is created primarily by fluid motion in the overlying fluid
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boundary layer. The fluid motion itself is the result of waves and currents. Bed shear
strength is determined by microscopic interparticle forces, as influenced by the
particle size distribution, bed porosity, solids density and composition, and interstitial
water chemistry, The shear strength varies with depth and with time, both of which
reflect the degree of compaction or consolidation.

Implicit in the magnitude of the shear strength is the extent and strength of
particle aggregation. Analysis of river sediment transport has traditionally focused on
noncohesive solids, i.e., discrete particles (Lavelle and Mofjeld, 1987; Vanoni, 1975).
This approach has been used for two primary reasons: first, because many of the
problems of sedimentation in rivers have been the result of the mass accumulation of
coarse and relatively non-flocculent solids, and second, because it avoids the
complexity of fine particle flocculent behavior. The results of research on
noncohesive solids resuspension are generally not applicable to this research because
of the former's focus on bulk solids behavior dominated by the larger size fractions.

State of the art estuarine sediment transport modeling (most applicable to the
dynamics of cohesive solids exchange) conceptually divides the cohesive sediment
bed into four layers based on the physical form of the solids and the mode of erosion
from the bed (Hayter, 1987). The four layers (from the bed/water interface down) are
a) mobile suspension, b) stationary suspension, ¢) partially consolidated bed, and d)
settled (or fully consolidated) bed. The first two layers are scoured by what Hayter
termed “redispersion”, a mass erosion of bulk solids from the bed. The deeper,
partially and fully consolidated layers are scoured by what he called “resuspension”, a
surface erosion of discrete particles. Obviously, these deeper layers can only be

eroded after the unconsolidated suspension bed above has been eroded. Though
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resuspension is envisioned as acting on discrete particles, existing bed flux models,
including Hayter’s, describe only bulk solids erosion based on bulk properties. A
discrete particle transport model could be used to overcome this inconsistency.

Hayter (1987) presented an application of cohesive sediment modeling for
estuaries where the bed layers were divided into many sublayers to describe the
highly variable rheological properties of the bed during the tidal cycle. Others
(Bedford and Abdelrhman, 1987) have approached resuspension from the other side
of the interface, i.e., from the fluid boundary layer. These authors show that the time
and length scales in the benthic boundary layer vary over six orders of magnitude,
making analysis very difficult. For simplicity, the approach taken in this research has
a single bed layer interacting with a single fluid layer by mass erosion. The bulk mass
erosion from that uniform bed layer will be termed resuspension in the remainder of
this paper.

The research on resuspension of sediments, notwithstanding the noncohesive
alluvial and coastal work, is scant. Good summaries of the saltwater (Hayter, 1987)
and freshwater (Fukuda and Lick, 1980; Lick, 1982) resuspension experiments exist,
While the qualitative effects of various parameters on entrainment are known,
quantitative prediction of entrainment is not possible without direct experiments.
Research indicates that, other factors being equal, resuspension flux is linearly related
to bed shear stress for consolidated sediments and exponentially related to shear stress
for fresher, stratified sediments. Often the linear flux relation is expressed in terms of
shear stress difference, i.e., the difference between actual bed shear stress and a

critical shear stress for the exposed sediment.
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2.5 MMA

From the research reviewed above, it is clear that particle and particle-particle
behavior in natural waters is poorly understood. Such an understanding is critical,
however, to our knowledge of how particles and adsorbable constituents behave in
such systems. Past modeling of particle behavior has generally been limited to
consideration of single size particles or the use of a few broad size ranges. Also, the
modeling of substances sorbed onto natural particle surfaces (or into surface related
matrices) cannot properly account for any particle size-dependency of such sorption
and subsequent transport. The research reported herein was directed at the first of
these gaps in our current understanding, the particle and particle-particle transport and
fate.

With few exceptions, the research on particle behavior in natural systems has
not accounted for the possibility of flocculation of the particles, and has assumed that
particle sedimentation is a uniform and steady process. Particles can and do, however,
flocculate in natural waters, changing their sedimentation characteristics as a result.
Sedimentation is highly size-dependent. Since the influx of particles to a receiving
system can have very different size characteristics under different conditions (e.g.,
stormwater runoff vs. normal flow conditions), accounting for the size dependence in
sedimentation would be an important advance in our ability to predict behavior under
different conditions. In addition, particle-interaction modifications of the size
distribution will vary with solution conditions such as pH, ionic strength, and organic
macromolecule concentration. The model developed in this research accounts for the

effects that changes in the size distribution have on the fate of particles in space and

time.
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CHAPTER lll

TOWN LAKE APPLICATION BACKGROUND

3.1 INTRODUCTION

One of the major objectives of the research was the application of the particle
transport and reaction model to a natural aquatic system in Texas. Town Lake, a 9.6
km impoundment of the lower Colorado River in Austin, Texas, was chosen for the
application. The purpose of this chapter is to present the estimates of system
conditions developed for that purpose. System-specific information presented
includes characterizations of the watershed, lake morphometry and physiochemical
conditions, particle loadings, and inflows. Much of this information was developed
previously (Culkin, 1986).

In conjunction with characterization of the system’s particle properties,
limited measurements of particle size distributions are also presented. A short general
introduction to the presentation and interpretation of particle size distributions is

given as a preface to the Town Lake data.

3.2 TOWN LAKE WATERSHED

Characterization of the Town Lake watershed is necessary for estimating the
fluid inflows and solids loadings driving the receiving system behavior. This section
describes the watershed, its location, land uses, and tributaries. Conditions existing in
1980 are presented as the basis for simulation.

The immediate Town Lake watershed includes much of metropolitan Austin,
from which several tributaries drain directly into the lake. Figure 3.1 depicts the
general area and individual tributary drainage basins for Town Lake. Town Lake is

the impoundment located between Tom Miller Dam and Longhorn Dam. Individual
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Figure 3.1 Town Lake Drainage Basins
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creeks, as well as ambient water quality monitoring stations in the lake region, are
shown in Figure 3.2.

Although the land adjacent to the Colorado River above Town Lake (and
Austin) contributes substantially to the flow and contaminant loadings to Town Lake,
upstream drainage has been lumped into a boundary condition for Town Lake. The
Tom Miller Dam release thus specifies inflow and concentration at the head of Town
Lake. Austin watersheds with direct discharges to Town Lake, however, are
individually characterized in this section.

The rainfall-runoff coefficient was used in this research as a simple but
effective means of predicting the quantity of runoff for sub-basins of the watershed.
The runoff coefficient is actually the slope of the regression of watershed runoff on
rainfall, and it is considered here to be a function of impervious cover only.
Impervious cover is defined as the fraction of total land area that completely prevents
infiltration of rainfall into the subsurface. An outline of the procedure used to develop
runoff coefficients for each sub-drainage basin of a lake is as follows: estimate the
amount of land in each type of land use within the sub-basin, estimate the equivalent
impervious cover in each type of land use, calculate a weighted average impervious
cover for the sub-basin, and finally, estimate a runoff coefficient for the basin based
upon the runoff coefficient-impervious cover regression model.

Town Lake’s watershed is moderately to heavily urbanized. The City of
Austin Planning Department published demographic and land use data from 1980
(City of Austin, 1982). Tributary watersheds were individually characterized for the

amount of land area in each of several land use types, detailed in Appendix B.
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Impervious cover estimates for different land use types were presented as part
of an urban runoff assessment methodology prepared for use in the state of Texas
(Hydroscience, 1976); these are cited in Appendix B. These impervious cover
fractions were multiplied by land use areas in each tributary basin to estimate a
weighted-average percent impervious cover for each sub-basin of the lake. Drainage
areas and weighted-average impervious cover estimates for each sub-basin are
presented in Table 3.1. The reach numbers correspond to the numerical grids in the
research model, e.g., Reach 1 extends downstream from the head of the lake at Tom
Miller Dam for one-tenth of the total distance down the lake, Reach 2 extends from
one-tenth to two-tenths of the total distance down the lake, etc. The major creeks
draining into each reach, shown in Figures 3.1 and 3.2, are named in Table 3.1.

Estimated impervious cover from the methodology just described were
compared against direct aerial photograph measurements of impervious cover for
three watersheds. The estimated impervious covers were approximately 12% higher
than the aerial survey measurements published (City of Austin, 1984c) for the Barton,
Shoal, and Waller Creek watersheds. A linear regression of the estimated vs.
measured impervious cover (r2 = 0.997 for the three sub-basins) was then applied to
the remaining basins as a calibration for the 1980 conditions. Actual values measured
for the three basins directly measured were retained.

Rainfall-runoff data for Austin area creeks between 1976 and 1983 were
analyzed by the City of Austin as part of a stormwater modeling study (1984c).The
relationship between event-mean runoff coefficients and impervious cover, presented
in that City of Austin report, is reproduced here as Figure 3.3. Actual mean runoff

ratios from the report have been added to the figure as an illustration of
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Table 3.1

SUMMARY OF TOWN LAKE WATERSHED CHARACTERISTICS

n 1980
Sub-basins Area Impervious Runoff
[km?] Cover [%] Coefficient

Reaches 1 -2 )

Lake Austin 238. 5. 0.12

Upper Town Lake 7.8 22. 0.25
Reaches 3 -4

Dry Creek 9.8 13.1 0.15

Johnson Creek 4.4 47 .4 0.33
Reaches 5-6

Barton Creek 324, 7.0 0.12

W. Bouldin Creek 7.8 46.4 0.33

Shoal Creek 40.7 46.4 0.27
Reaches 7 - 8

Woaller Creek 14.2 420 0.34

E. Bouldin Creek 4.9 49.5 0.36

Blunn Creek 3.6 431 0.31
Reaches 9 - 10

Harper's Branch 1.6 51.4 0.38

Tinnin Branch 2.1 447 0.32

Lower Town Lake 6.0 45 (.32

Note: 1.00 km2 =0.386
miZ = 247. ac
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the range of data. Runoff coefficients will vary dramatically from storm to storm for a
given basin (notice the difference between the means for wet and dry antecedent
periods, shown for Barton and Bull Creeks). For a preliminary analysis, such as the
water quality modeling conducted in this study, the relationship for average runoff
coefficient presented in Figure 3.3 was believed to be acceptable.

Detailed watershed characteristics for the years 1980 and 2005 are contained
in Appendix B (the 2005 projections are listed for comparison). Total area, area in
each type of land use, component impervious area from each land use, weighted
impervious cover for the watershed, and resultant runoff coefficient are included for
each of the named tributary watersheds.

Three points concerning the watershed calculations deserve mention. First,
total watershed areas differ between the two sources cited for that data; watershed
areas from the City of Austin Watershed Management Division (City of Austin,
1984a) were used, as the planning report areas (City of Austin, 1982) were intended
primarily to describe water and sewer service areas rather than accurate drainage
basin delineations. Second, the Lake Austin watershed characteristics are only rough
estimates based on limited details in the City of Austin reports (1984a; 1984c¢). Errors
in these estimates have no significant effect on the research reported herein, however.
The effect is negligible because the Lake Austin watershed runoff is only a small
fraction of the total Lake Austin inflow to Town Lake, and the Lake Austin watershed
runoff is not used explicitly in the contaminant loading estimates. Third, 2 minimum
of 9.3 km? of the Town Lake watershed area is not assigned to specific tributaries in
the studies previously cited. Examining Figures 3.1 and 3.2, one sees several areas

with no named streams for drainage. These were lumped into two basins labeled
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“Upper Town Lake” and “Lower Town Lake” for this study, and their impervious

cover and runoff coefficients were assigned based on areas of similar land use.

3.3 TOWN LAKE MORPHOMETRY

Application of the particle transport and transformation model to Town Lake
requires spatial dimensions for the system. Transport processes and overall system
response are dependent on the distribution of fluid, the locations of inflows, and the
morphometry of the impoundment. Morphometric dimensions, e.g., length, depth,
cross-sectional area, surface area, and volume, are normally averaged over some
portion of the physical system and used to represent that piece of the system. The
process of subdividing the system into control volumes that satisfy the field data,
modeling objectives, and computational constraints is known as segmenting the
system. In the case of finite difference models, such as that used in this research, the
process is called discretizing the system. The methods used to characterize
morphometry and discretize Town Lake follow.

Town Lake was created as an impoundment of the lower Colorado River in
1960 by the construction of Longhorn Dam. The volume and surface area of the
impoundment were plotted vs. stage, probably as part of its initial design (City of
Austin, 1984a). These plots are shown in Figure 3.4, At 428 ft MSL, the nominal
operating elevation of Town Lake, the volume and the surface area were reported to
be 3520 ac-ft (4.34 x 106 m3) and 416 ac (1.68 x 106 m2). A lake-average depth of
2.58 m (8.5 ft.) would have been dictated. From 1960 to 1975, a sand and gravel
dredging operation removed a considerable volume of bed material from the lake near

Longhorn Dam. Following this period of dredging, the City of Austin Electric
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Department (City of Austin, 1984b) estimated a new volume of approximately 6000
ac-ft (7.40 x 106 m3) at the nominal operating elevation, a 70% increase over the 1960
impounded volume.

A bathymetric survey by depth soundings was conducted by the U.S. Army
Corps of Engineers (USACE), Ft. Worth District office, ca. 1977. Cross-sectional
areas and top-widths (bank to bank widths at the water line) vs. elevation (at 5 fi
intervals) had been obtained for 39 cross sections in Town Lake. The reduced data
were obtained from the University of Texas Center for Research in Water Resources
(Oljay Unver, personal communication, 1985). The data were generally reported at
elevations other than the nominal 428 ft MSL pool elevation. Therefore, (linear)
interpolation was used to estimate the top width at the nominal pool elevation. For a
concave-down, near-shore bed, linear interpolation would result in overestimation of
both the top-width and the cross-sectional area. A concave-up, near-shore bed would
cause underestimates, Survey cross-section locations were concentrated upstream and
downstream of flow restrictions, i.e., mainly near bridges; these concentrations
probably make little difference in average calculated dimensions because of the
relatively straight shorelines of Town Lake.

The procedures for estimating the dimensions of the segments between
USACE cross-sections were as follows. The volume of a particular segment was
estimated as the product of [the average of the two end cross-sectional areas] and [the
longitudinal distance between the cross-sections]. The (air-water) surface area of a
segment was estimated as the product of [the average of the two end top widths)} and
[the longitudinal distance between the cross-sections]. The average depth of a cross-

section was estimated as the quotient of its cross-sectional area and top width.
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A reduced summary of the lake morphometry data is given in Appendix C.
Compare the increased total volume (6.38 x 10 m3), surface area (1.54 x 100 m2),
and average depth (4.12 m) calculated from the post-dredging survey against the 1960
dimensions. These changes have substantial effects on both real and modeled
transport, residence time, and particle fate within the system. Estimated cross-
sectional areas from the survey measurements, and the cross-sectional average depths
derived from those areas, are shown in Figure 3.5.

The reduced data for the 38 field segments were used in discretizing the 9.6
km reservoir, Ten segments or reaches of equal length (960 m) were actually used in
the modeling. Reach boundary locations are generally set to separate a system into
regions of similar forcing, similar physical or chemical properties, monitoring data
extent, or desired spatial resolution. Load discontinuities such as major tributaries, or
lake regions of significantly different properties, require establishment of spatial
discretization. For example, Reach 3 includes two major creeks in developed
(Johnson Creek) and developing (Dry Creek) areas; it is separated from the relatively
low population density area just below Tom Miller Dam (Reaches 1 and 2). The
Reach 3 segment of the impoundment also marks a transition from swifter, shallower
flow into slower, deeper flow.

The choices for the lower reach boundaries were dictated by the uniform grid
size chosen, but conformed closely to changes in impoundment morphometry, sample
site locations, and watershed characteristics. The discretized cross-sectional areas

used in the numerical application were averages over the appropriate intervals, taken

from Figure 3.5.
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3.4 TOWN LAKE HYDROLOGY

On the average, hydrologic inflow to Town Lake is dominated by releases
from Lake Austin via Tom Miller Dam; however, storm runcoff from immediate
tributaries can become a significant, if not the dominant, inflow during and after
storms (City of Austin, 1984a; City of Austin, 1984c; Espey, 1976). Since it was
believed that these urban runoff events provide significant contaminant loadings on
the system, careful attention was paid to their flowrates. Precipitation drives the
runoff process, so analysis of precipitation records was made. Upstream water supply
withdrawals divert clean water that would normally be flushing Town Lake, thereby
affecting contaminant transport. Therefore, Austin water treatment plant withdrawals
from Town Lake, Lake Austin, and Lake Travis were detailed.

Flowrates from these sources, as well as significant spring flow and rainfall-
evaporation flow, were estimated individually, then combined, on a monthly basis.
Seasonal- and annual-average flowrates, by reach, were then computed. The methods
used in estimating each of the flowrates are described in Appendix D. A summary of
the net inflows to Town Lake, as used in the modeling, is presented in Table 3.2.
More detailed data are tabulated in Appendix D, With the provisos mentioned in
Section 3.2, the estimates of Table 3.2 are believed to be reasonable long-term

seasonally-averaged flowrates.

3.5 CHARACTERIZATION OF PARTICLE SIZE DISTRIBUTIONS

Information is presented in this section concerning particle size distributions.
Methods to mathematically describe the particle size distribution are presented.
Subsequently, particle size distribution data used to describe the Town Lake water

column are presented.
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In discussing a heterodisperse suspension, it is necessary to describe
mathematically the distribution of particles comprising the suspension. The following
explanation was taken from Lawler (1979).

A cumulative size distribution is illustrated in Figure 3.6, where the
cumulative number concentration, N, is plotted as a function of particle size. Particle
size is expressed here in volumetric dimensions (v). N(a) denotes the total number

concentration [#/cm?] of particles that have a volume v S a [um?], ie.,

N(@a) = ] dN(v) | (3.1)

The total number concentration for all particle sizes is shown in the figure as Neo. The
slope of this curve, AN/Av (or dN/dv, as Av — 0), is one of several “particle size
distribution functions” that are actually slopes of the various cumulative number
distributions. In this case, the particle size distribution function is represented as n(v)
and has units of [#/cm3-um3]. By examining small ranges of v, incremental changes
in the number concentration become the focus.

Particle volume is just one of three common measures of particle size. Particle
surface area (s) and characteristic particle diameter (dp) are also often used to
characterize a particle’s size, so that the three common particle size distribution
functions can be defined:

AN dN

AN S av = v [#/cm3-pm3] (3.2)
% ~ % = n(s), [#/cm3-pm?] (3.3)
% - g{lf—p = n(dp), [#om3-um]. (3.4)
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These particle size distribution functions can be used in conceptual and empirical
studies of coagulation, particle transport, and separation processes. They are
particularly useful for normalizing particle size distribution information from
different experimental (particle counters) or simulation (model) studies.

There are other functions useful for analyzing particle size distributions that
rely on distribution properties other than the cumulative number concentration. For
instance, cumulative particle volume concentration, V [um3/cm?3], and cumulative
particle surface area concentration, S [um2/cm3}, are also of great interest in the study
of particle transport and transformation. Total particle volume concentration, Ve, and
total surface area concentration, S.., are used in Chapters 5 and 6 in analyzing
simulation results.

Analysis of the distribution of cumulative particle volume leads to analysis of
the discrete incremental particle volume. A function that normalizes the distribution
of particle volume by the logarithm of particle diameter is called the “volume
distribution.” The volume concentration of all particles in the interval between size 1

and size 2 can be written as

2
Vl-2 = I dV. (3.5)
Dividing and multiplying the right hand side of (3.5) by d(log dp) yields
2
= dv
' [ Tiog dy 4loE &), (3.6)

A plot of the volume distribution, v(dp) = dV/d(log dp), versus log dp is illustrated in

Figure 3.7. The volume concentration associated with all particles in the size interval
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from d; to dj, as described by (3.5) and (3.6), is equal to the integrated (shaded) arca
in Figure 3.7. In preparing such plots from field measurements, it is frequently
assumed that the particles are spherical. This assumption is made in this research.

The definitions of the cumulative number concentration N(v) and the particle

size distribution function (volume basis) dictate that

dV = vn(v)dv. 3.7
Dividing by d(log dp), one obtains the volume distribution,

dav _vnvdv _ vnv)dv  ddp) (3.8)
d(logdp) ~ d(logdp) = d(dp) ddogdp)" :
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Assuming spherical particles, v = 1t dp3/6, then dv = (n dp?/2) d(dp). Substituting
these identities into the volume distribution (3.8) and noting that d(log dp) = d(In

dp)/2.3 = d(dp)/(2.3 dp), one obtains for the volume distribution:

dv 2.3 n2

The volume distribution as expressed in (3.9) contains particle dimensions of
both diameter (dp) and volume (n(v)), and it is often rearranged to include diameter as
the only measure of particle size. Recall that n(v) = dN/dv and, for spherical particles,

dv=(n dp2/2) d(dp). Making these substitutions in (3.9) finally yields the

Yolume distribution:

av_ _23m ,
dlogdy ~ —6 % (dp)- (3.10)

Similar distribution relationships can be derived for the surface area
distribution and the number distribution. The results are
Surface Area distribution:
ds _ 3 dN

Number distribution:
dN__ _ (AN
mp—) =23n dp d(dp) . (3.12)
For a plot of the surface area distribution, dS/d(log dp), versus log dp, that is similar to
Figure 3.7, the integrated area under the resulting curve from log d; to log d; would
represent the total concentration of surface area in the suspension provided by

particles in the size interval from d; to d;. A plot of the number distribution, dN/d(log
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dp), versus log dp would provide analogous information about the total number

concentration in various size ranges.

A very useful means of summarizing the particle size distribution is the log of

the particle size distribution function (number basis), i.e., log(n(dp)) = log(g—gj))

obtained from the log of (3.4). This function is employed for converting from one
dimensional basis to another. In particular, the slope of the plot of log of number
distribution vs. log(dp) is often used to quickly determine how the particle volume,

surface, and number concentrations vary with size (Lawler, 1979).
3.6 TOWN LAKE SUSPENDED SOLIDS

3.6.1 Mass concentrations

Suspended solids exert strong influences on many aspects of water quality,
influencing optical properties by number (thus primary productivity) and benthic
substrates by mass (thus benthic and higher communities). Particle surface
interactions with strongly sorbing contaminants are believed to affect the behavior of
those substances in Town Lake (Culkin, 1986) and many other systems. The presence
of suspended solids concentrations in aquatic systems has generally been keyed to
total mass concentrations. Data were compiled to analyze the spatial trends in
suspended solids mass concentrations measured in Town Lake as total suspended
solids, TSS (Armstrong et al., 1985; TNRIS, 1983).

Spatially-distributed average TSS data and statistics for monitoring locations
in Town Lake are presented in Table 3.3. Data from each given site from different

monitoring programs (TNRIS, 1983) were pooled to develop joint means and
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standard deviations. There was considerable variation about each of the means. There
was a moderate trend of increasing concentrations in Town Lake in the downstream
direction.

Figure 3.8 contains the measurements of total suspended solids concentration
as a function of distance down the reservoir. Mean values are indicated by the
symbols, and the error bars indicate values of the mean plus and minus two (2) times
the sample estimates of standard deviation. The ranges bounded by the error bars do
not encompass the entire spans of measured concentrations at any of the sites; there
is, however, approximately a 95% probability that the upper and lower confidence
levels defined by the error bars would contain a normally distributed TSS variable.
Although the TSS concentrations are not likely to be normally distributed, the
confidence limits on the mean are fairly good asymptotic approximations given the
large number of observations at each site.

A caveat on the interpretations of lake monitoring data concerns their
representativeness. Loading data presented below in Section 3.7.2 suggest that the
observed data underestimated the true flow-weighted concentrations. This could have
been caused by under-representation of large storm events, which are difficult to
sample.

An unexpected observation from the monitoring data is the almost 50%
decrease in mean suspended solids concentrations between the upstream (LA-3) and
downstream (Red Bud Trail) sides of Tom Miller Dam. This statement is based on
long-term mean concentrations of Table 3.3. Also, ten of the 16 monthly grab sample
pairs from the Armstrong data (Armstrong et al., 1985) show this decrease (two of the

months had identical upstream/downstream concentrations). Figure 3.9 was
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plotted to illustrate these time-coincident results. Assuming that the two sets of
samples were from different populations with different but unknown variances, the
difference in the means is significant at the 90% confidence level.

Given the confidence that the TSS reductions across the dam were real, two
theories are offered to explain the observation. First, it is possible that one or both of
the sample sets were not representative of the time-average behavior of the spatially-
averaged populations characterizing the two sites. For example, sample locations
might have led to over- or underestimates of representative concentrations. The
second theory is that coagulation in the lake, as described by O’Melia (1985), is
taking place and resulting in lower solids concentrations in the bottom of the water
column than the middle or top. Regardless of explanation, the result is a significant
reduction of the apparent TSS concentration entering Town Lake.

A particle mass concentration of 9.8 mg/L. was an implicit upstream boundary
condition for the Town Lake simulations. Its derivation from a boundary condition on

the inflow particle distribution is discussed in the following section.

3.6.2 Particle size distribution

The initial and upstream boundary conditions on the water column particle
size distributions (PSD) in Town Lake were based on a characteristic PSD from Lake
Austin in Austin, Texas. This 30 km, run of the river impoundment of the Lower
Colorado River is formed by Tom Miller Dam, just upstream of Town Lake. Lake
Austin is mesotrophic and has an annual mean detention time of seven days.

Samples of the water column from lower Lake Austin were taken from the
raw water intake line to the Davis Water Treatment Plant in Austin, Texas in June and

July, 1989 (Robert Cushing, University of Texas-Austin, personal communication).
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The Davis WTP intake is a few kilometers upstream of Tom Miller Dam. Particle size
distributions were analyzed within one day of collection on a Coulter Multisizer using
30 um and 100 pum apertures (Coulter Electronics; Hialeah, Florida) (Cushing, 1990).

Several sets of PSDs were examined for data integrity, and the basic particle
size distributions selected for this research were from samples collected 29 June,
1989. The log of the particle size distribution function (PSDF) from the two apertures
analyzed is presented in Figure 3.10. These treated data were obtained from raw
measurements by a) removing channels of zero particle count and obvious outliers
(e.g., log dp > 1.1), and b) smoothing data by ensemble averaging of concentration
data over each five-class interval, from minus two to plus two neighboring classes. A
single log PSDF was then fitted to the two overlapped PSDF’s of Figure 3.10 to give
a single smooth and continuous function. The volume distribution derived from that
particle size distribution function is shown in Figure 3.11 (the ‘pseudo-peak’ near log
dp = 1.1 was adjusted for the simulations).

Estimates of the particle volume and mass concentrations associated with the
particle size distributions were needed. By numerically integrating the volume
distribution, Figure 3.11, the total particle volume concentration was estimated to be
approximately 1.37 x 106 pm3/cm3, or 1,37 ppmv. A reasonable estimate of
suspended particle density of 1.35 g/cm3 would yield a suspended solids
concentration of 1.85 mg/L.

Lake monitoring data were used to conclude that the lake suspended solids
concentration was about 2 mg/L at the time of sampling. Although the lake particle
mass concentration was not measured for the samples analyzed by Cushing, turbidity

was measured as approximately 1 NTU. The daily average turbidity of lake intake
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composite samples for 29 June, as reported by the Davis Water Treatment Plant
laboratory, was 5.9 NTU, however. Also, on 26 June, the Lower Colorado River
Authority had sampled Lake Austin at a 1' depth at Tom Miller Dam and found TSS
of 2 mg/L and turbidity of 5.7 NTU (John Wedig, LCRA-Austin, personal
communication). Because of the spatial and temporal proximity of the LCRA
sampling and the conformance of results to the WTP turbidity measurements, it was
assumed that the composite water quality in the lake at the time of sampling on 29
June was, approximately, TSS of 2 mg/L. and turbidity of 6 NTU.

Another data set was examined to check the validity of the 2 mg/L
assumption. Sixteen water column samples from lower Lake Austin were taken at two
depths (near-surface and near-bed) from four different sampling stations on two days
during Spring 1989 by the US Geological Survey. The samples were analyzed for
suspended solids and turbidity (Helen Davidson, USGS-Austin, personal
communication). The two days represented both a storm condition and a base flow
condition. Regressions of the USGS suspended solids on turbidity were constructed.
For the base flow event there was substantial scatter at different locations in the lake,
and the regressions could not establish a significant correlation between measured
turbidities and suspended solids concentrations. Therefore the assumption that solids
concentration in the lake was about 2 mg/L was retained.

The log of the particle size distribution function corresponding to the
measured volume distribution shown in Figure 3.11 was adjusted for use in the model
to satisfy numerical and environmental (Town Lake upstream inflow) requirements.
Although the modified distribution generally retained the characteristic shape as

found for Lake Austin, it was modified in three ways. Specifically, the measured
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particle size range was extrapolated, the number of distinct size classes was reduced,
and the total volume concentration was increased.

First, the volume distribution was extrapolated to include smaller and larger
size classes than actually measured. Extension to the left (smaller diameters) allowed
smaller particles, known to be present, to be available as primary particles for
coagulation, This extrapolation also caused the number distribution to approach
closure. The size range was also extended to the right (larger diameters) so that larger
particle size classes would be available for aggregate growth and because such classes
were necessary for flux from boundary sources, e.g., from bed resuspension or storm
loading. The larger sizes did not receive any volume in the case of the Lake Austin
inflow but were available for the reasons as stated.

Second, for computational economy, the number of size classes was
consolidated from the original 100+ classes, over the original size range, to 31 size
classes over the expanded size range. Third, the log PSDF was shifted up such that
the total particle mass concentration was 9.84 mg/L. (assuming aggregate density of
1.35 g/cm3). This TSS concentration is an appropriate long term average at the head
of Town Lake, Austin, Texas,

Table 3.4 was prepared to illustrate some of the properties of the particle size
distribution used as the initial and upstream boundary conditions for this research.
(Time-variable upstream conditions considered in Chapter 6 did have the same
relative PSD shape, but varied in absolute concentrations during the simulation). The
particle model used discrete number concentrations for different size classes of
particles, 31 sizes in this modeling. The absolute discrete number concentration,

AN(k) in [#/cm3], represents how many particles are present with diameters in the
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Table 3.4
INITIAL AND UPSTREAM SIZE DISTRIBUTION FOR TOWN LAKE
Size Mcan Minimum  Maximum  Class log of A N(K)
Class Class Class Class PSDF
Diameter  Diameter  Diameter (psdf in)

k [pm] [um] [pm] [um]  [#fem3um) [#om?]
1 0.398 0.355 0.447 0.092 6.755 523345
2 0.501 0.447 0.562 0.116 6.735 630170
3 0.631 0.562 0.708 0.146 6.705 740206
4 0.794 0.708 0.891 0.183 6.662 840332
5 1.000 0.891 1.122 0.231 6.577 872192
6 1.259 1.122 1.413 0.291 6.352 654475
7 1.585 1.413 1.778 0.366 6.075 434992
8 1.995 1.778 2239 0.460 5.729 246466
9 2512 2.239 2.818 0.580 5.317 120345
10 3.162 2.818 3.548 0.730 4.823 48565
11 3.981 3.548 4467 0.919 4362 21150
12 5.012 4.467 5.623 1.157 3.838 7968
13 6.310 5.623 7.079 1.456 3.286 2813
14 7.943 7.079 8913 1.833 2770 1079
15 10.000 8.913 11.220 2.308 2.129 31
16 12.589 11.220 14.125 2.905 0.000 3
17 15.849 14.125 17.783 3.657 — oo 0
18 19.953 17.783 22.387 4.604 — o0 0
19 25.119 22.387 28.184 5797 — o9 0
20 31.623 28.184 35481 7.298 — o0 0
21 39.811 35.481 44.668 9.187 -0 0
22 50.119 44.668 56.234 11.566 — o0 0
23 63.096 56.234 70.795 14.560 —ea 0
24 79.433 70.795 89.125 18.331 — oo 0
25 100.000 89.125 112.202 23.071 — oo 0
26 125.893 112.202 141.254 29.052 —o° 0
27 158.490 141.254 177.828 36.574 — oo 0
28 199.527 177.828 223.873 46.044 —oo 0
29 251.189 223.873 281.839 57.966 — o0 0
30 316.228 281.839 354.814 72.975 — oo 0
31 398.108 354.814 446.685 91.870 — ©0 0
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range between the lower and upper diameters of class k. This absolute number
concentration is the same concentration referred to in the discrete coagulation rate
expression, Equation (2.1), as nx.

Many problems can arise in interpreting results presented in terms of the
discrete particle number (or volume, surface, mass, etc.) concentration. Obviously, the
value of AN(k) is intimately dependent on the size interval chdsen to represent class
k. For reference, a constant A(log dp) of 0.1 was used throughout this research;
therefore, corresponding Adp’s increased continuously with particle size, as shown in
the fifth column of Table 3.4. A normalized distribution corresponding to AN(k), i.e.,
AN(k)/A(log dp), transmits all of the information contained in the absolute number
concentration, but in a form independent of experimental or model conditions. Other
normalized distributions are used, such as the log of particle size distribution
function, which is shown in the sixth column of Table 3.4. Distributions normalized
by the class size produce numerical and graphical information that can be exchanged
and interpreted freely and unambiguously, without regard to measurement or
modeling conventions. In this study, the simulations were carried out using absolute
discrete number concentrations (such as the last column of Table 3.4), and the results
were presented and interpreted in normalized form.

Integral and statistical properties of the Town Lake PSD are used in later
chapters. The integral concentrations are as follows: total number of 5.144 x 106/cm?3;
total superficial surface area of 2.209 x 106 um2/cm3 or 220.9 cm2/L; and total
volume of 7.286 x 106 um3/cm3 or 7.286 ppmv. The weighted mean diameters are as
follows: number-average diameter of 0.9929 pm; area-average diameter of 1.979 um;

and volume-average diameter of 2.986 um.
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3.7 TOWN LAKE SEDIMENT DATA

Sediment data for Town Lake and Lake Austin (as applicable) are presented in
this section. Sediment properties and behavior are critical factors in the fate and
distribution of solids contaminants in aquatic systems. The modeling framework used
in this study required the estimation of key sediment parameters, namely sediment
bulk solids concentration, particle size distribution, and porosity. Since the existing
sediment data for Town Lake are limited, these parameters were derived using
measured solids concentrations and certain assumptions.

Sediment organic content and percent solids data were presented for Town
Lake and Lake Austin (Wallace, 1986). Four sites in Town Lake and three sites in
Lake Austin were sampled. This information is presented in Table 3.5.

Percent solids is calculated as the quotient of the weight of dry solids and the
weight of wet solids. One expects percent solids to generally decrease with distance
down the length of an impoundment as denser solids will have settled out further
upstream. Except for the segment 1 measurement, this was the case in Wallace’s
(1986) data. The segment 1 sediment sample was taken at site TL-1, Figure 3.2. This
site is just downstream of Red Bud Isle near the headwaters of the lake. Field
personnel reported no success in taking samples in the channels on either side of the
island due to the rocky bottom and were forced to sample between the channels in the
lee of the island.

Sampling from the sediments deposited in the wake of the island is believed to
be the reason for a low solids content at TL-1. Indeed, the rocky bottom through most
of the cross section at TL-1 had a very high solids content. The deep, highly scoured,

small cross-sectional area channels found on the sides of the island near TL-1 might
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not represent the average conditions in the first segment. Large, shallow backwater
areas exist between the dam and the island, and the flow slows considerably after the
side-channels converge at the lee of the island.

The solids content data from the Nationwide Urban Runoff Program study in
Austin (City of Austin and Engineering-Science, 1983), shown in Table 3.5, ran
counter to the Wallace results. In certain years and seasons, however, heavy loads of
channel-eroded sediments might create such a condition. The sediment size sieving
analyses into sand, silt, and clay fractions were the only size distribution data for the
lake sediments, but no consistent spatial trends appeared. The Town Lake bed,
sampled at three points in the lateral cross sections of three locations (City of Austin
and Engineering-Science, Inc., 1983), was composed of approximately 29% clay (dp

<2 pum), 53% silt 2 pm < dp <62 um), and 18% sand (62 pm < dp).

3.8 1D ADI1

The significant solids loading to Town Lake comes from upstream inflows
and urban runoff from the immediate watershed. The upstream boundary conditions
for Town Lake particle modeling are presented in the section above.

Tributary solids loads were calculated as the product of tributary inflow rates
and boundary concentrations. Hydrologic inputs were discussed above. Tributary
solids concentrations have been studied and shown to vary with the particular
watershed and flowrates (City of Austin, 1984c). The solids concentrations were
reported in those studies to vary from 600 to 1700 mg/L for storm events (Culkin,
1986). Given a complete lack of tributary particle size characterizations, however, a
spatially and temporally uniform particle size distribution was used in this research

for steady-state (annual and seasonal) simulations. Time-variable storm events did
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have particle concentrations ramped up and down during the storm response periods.

These considerations are presented in Chapter 6.
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CHAPTER 1V

MODEL DEVELOPMENT

4.1  INTRODUCTION

A mathematical model capable of simulating particle-particle interactions and
behavior in natural aquatic systems was developed in this research. In this chapter the
conceptual framework and numerical methods used in developing and applying the
model are presented. Assumptions and limitations of the approaches taken are
discussed, and an overview of the actual code is provided.

The model simultaneously simulates particle transport and reaction
(coagulation). Size-dependent particle behavior is the focal point of the model. The
transport framework allows unsteady, two-dimensional fluid flow and dispersion
fields to be specified under laterally-averaged conditions. Water column and bed
exchanges couple these dilute and concentrated phases, which enables the analysis of
size-dependent transport processes such as sedimentation and erosion.

Particle-particle interaction is the phenomenon of primary interest in this
research. The schematic presented in Figure 4.1 illustrates the major processes and
behavioral pathways. Subsequent sections of this chapter explain the development of
the particle transport framework and the particle-particle interaction model. An
outline of the simulation code is then presented.

A particle-associated contaminant transport and fate model was also
developed to explore the influence of solids behavior on dissolved, sorbable

contaminants. The development of that mode! is presented and discussed in Appendix

A.
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Figure 4.1 Conceptual Model Framework

4.2 PARTICLE TRANSPORT MODEL
4.2.1 Equations

Time-variable transport and reaction of heterodisperse particles in a
multidimensional system are described mathematically with the conservative form of
the advection-dispersion-reaction equation,

ank 0 ank

d
E— + a—){l(Ul nk) = aXi El_] 5{ + R(nk), (4.1)
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or with the nonconservative form of the advection-dispersion-reaction equation,

o |y O _ g @me
ot + Ui axi a El‘] axiaxJ' * R(nk)' @.2)

Considering only principal components of the dispersion tensor and ignoring

reaction(s), the more familiar (nonconservative) advection-dispersion equation is

—E-)-I}ﬁ+Uia

x _ g 9%ny
ot Xj

ox: i 8—)(,2 . 4.3)

In the transport and transport-reaction equations (4.1) to (4.3) above, the
number concentrations of size class “k” particles, ny, are the state variables. The units
for the absolute discrete particle number concentrations ny are [#/cm3]. In the general
discussion of particle size distribution characterizations (Section 3.5), the absolute
discrete particle number concentrations were denoted symbolically as AN(k). In
subsequent sections of the report, n is used in model equations, and AN(k) (or just
AN) is used for presentation of results.

Equation (4.3) describes particle transport alone. As stated previously, the
spatial domain is two-dimensional (assumed laterally uniform). In the index notation
used in equations (4.1) to (4.3), the index “i” represents both longitudinal or vertical
directions; index “j” represents the direction perpendicular to direction “i.”
Consequently; state-variables and parameters are lateral averages. Distributed
parameters Uj are the directional velocities for the particle, and distributed parameter
Ejj is the turbulent dispersion tensor for the particle. The particle parameters U; and
Ej; might or might not be the same as those for the fluid.

The term R(nk) in equations (4.1) and (4.2) is a source/sink term. In this

research, the term represents the coagulation reaction rate. Other particle production
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and loss processes are ignored, as discussed in Section 2.2.5. To solve the advection-
dispersion-reaction equation (4.2), the processes are numerically decoupled into
independent though simultaneous transport and reaction steps. The validity of this
decoupling is discussed further in Section 4.3 with the reaction model.

Size-dependent particle transport in the water column is readily described by
the transport equation (4.3). As discussed in Chapter 2, Stokesian particles possess
negligible inertia and follow the mean fluid flow. A constant depth was assumed in
the modeling, and therefore mean vertical fluid velocities are zero. Particles are
transported relative to the fluid due to gravity, however, Superimposing the non-zero,
size-dependent, relative particle settling velocity, vk, upon the size-independent
vertical fluid velocity Uz (= 0) resulted in an absolute, size-dependent, vertical
particle velocity Uy k.

Size-dependent bed deposition and resuspension were addressed with a system
of boundary conditions, as described in the next section. The size-dependent transport
approach permits the identity and role of particle classes to remain distinguishable.
This property is important in analyzing two conditions: a) steady-state conditions, in
which the mean particle size and/or concentration (hence, behavior) vary substantially
through space, and b) unsteady loads or perturbations on the system, in which even
‘good’ parameter estimates of mean properties can vary significantly during the
unsteady period. It is also noted that this discrete particle approach will benefit the
analysis of differential horizontal contaminant transport, which is due to the
combination of size-dependent contaminant partitioning and size-dependent

sedimentation (both commonly observed).
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Finite-difference methods were used to numerically integrate the system of
transport and reaction equations at discrete points in space. A two-dimensional
rectangular grid was set up to represent the receiving system domain. The model and
equations are formulated for a rigid lid, constant depth system, The grid is shown in
Figure 4.2. The physical longitudinal dimension, x, is positive in the downstream
direction. The numerical length in x is represented by the integer index “i” or the
fractional system length “X”. The vertical physical dimension, z, is positive down.
The numerical depth in z is represented by the integer index “j” or the fractional
system depth “Z”.

Finite-difference approximations were substituted for the time and transport
derivatives to convert the unsteady advection-diffusion transport equation (4.3) froma
parabolic partial differential equation into an algebraic equation. Finite difference
approximations can be made by any of several differential or integral methods (Jaluria
and Torrance, 1986; Roache, 1982). Taylor series expansions were the primary means
of derivation here, although the control volume approach was needed for the
boundary condition at the bed-water interface. The algebraic solution of the set of
equations resulting from these substitutions is discussed in Section 4.2.3.

The standard forward divided difference approximation has been used for the

time derivative. In one spatial dimension, its finite difference equation (FDE) is

written
on _ nl*l.nl
o = AT 4.4)
t At
Time level “1” is the current time, and time level “14+1” is at the projected time, i.e., at

one time step of At duration after the current time. Subscript “i” denotes the base
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Figure 4.2 Computational Grid and Boundaries

point, where the derivative is being evaluated. The accuracy of the approximation is

first order in time, which is written ® (Av).

The standard central difference approximation for the second derivative, and

the representation used in this model, is

9’n ~ Djyy - 2n; + 1.1 4.5)
ox2 (AX}Z

(1342

Index “i” again marks the node where the derivative is being evaluated, and i+1 and i-

1 are located plus one and minus one space step of Ax, respectively, from the base
point. All terms are understood to be taken at the current time level 1. Taylor series
expansions were used to estimate function values at neighboring points to the desired

accuracy. The standard central difference approximation is obtained by combining the
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expansions for the function values at the base location plus one space step and at the
base location minus one space step. After combining the two expansions to yield the
central difference approximation (4.5), a remainder term is truncated. It consists of
terms with derivatives of fourth order and greater, multiplied by coefficients of Ax2,
Ax4, and so on. The combined remainder (error) term for the FDE is then of ®(Ax2)
we say that the estimate of the curvature has accuracy that is second order in space,
O (Ax2).

Numerical approximations of the advective flux, those terms involving spatial
concentration gradients, typically cause problems in transient finite difference
transport models. These problems arise in advection-dominated flows, i.e., where the
grid Peclet number is greater than one. The dimensionless grid Peclet number is

defined as the ratio of advective to dispersive transport, i.e.,

Pey = 2AX, .6)

for the x direction. The grid Peclet number is obviously conditioned on the
computational structure used in the problem solution, i.e., the step or grid size chosen,
as well as the physics of the transport fields. The grid Peclet number is itself the ratio
of two dimensionless numbers, the Courant number, Cx, and the dispersion number,

Dy. The dimensionless parameters are

Pe, = g_z @.7
where

Cx = Uxﬁ (4.8)
and

D, = E, AL, (4.9)
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The Courant number is the fraction of a complete grid step traversed by advection
during one time step. The dispersion number indicates the fraction of a complete grid
step traversed by dispersion during one time step.

There are several simple approximations available to estimate the advective
concentration gradient in equation (4.3). Backward differencing of the derivative
gives the FDE

on _ nj-nj
x = A (4.10)
Forward differencing gives

on _ njy -
x = A @.11)
Central differencing yields

on ~ Dijy1 -0

= (4.12)
ox 2Ax

Each of these two-point gradient approximations can lead to disastrous results in
accuracy, stability, or computational time for advection-dominated scalar transport
(Leonard, 1979). For example, backward differencing smears the otherwise sharp
front of a step input concentration gradient, whereas central differencing results in
oscillations at the otherwise monotonal front of the step input. There are, of course,
many other possible FDE approximations for the first derivative (Lapidus and Pinder,
1982). Even when bounds on the time step are placed to make explicit solutions more
stable and accurate, however, numerical diffusion introduced by these methods often
requires the use of physical dispersion coefficients which are severely understated in

order to compensate for the numerical dispersion (L.eonard, 1979).
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A gradient approximation was derived to overcome the problematic solutions
discussed above. Combining Taylor series expansions at Xj, Xj-1, Xj-2, and Xj4+1, and
grouping all terms of fourth order and higher derivatives into a single (and truncated)
remainder term, the spatial gradients may be expressed as

dn _ 20j41,i+ 3045 - 6n0i,j + nig,j
_— = 4.13a
ax 6(AX) ( )

or analogously in the vertical as

on _ 2nije1 + 305 - 61 + njjo (4.13b)
dz 6(Az] . |

Having truncated all fourth order and higher derivatives, which carry coefficients of
Ax3 and higher, the gradient approximations (4.13a and 4.13b) are accurate to ®(Ax3)
and ®(Az3). This accuracy can be compared to that of the standard two-point FDEs.
Backward and forward approximations (4.10) and (4.11) are only first-order correct,
and the central approximation (4.12) is only second-order accurate.

A similar but improved four-point gradient approximation was developed
(Leonard, 1979), and it is known as “Leonard’s method.” Both steady-state (QUICK)
and transient response (QUICKEST: Quadratic Upstream Interpolation for
Convective Kinematics - Estimated Streaming Terms) variations were presented.
Leonard's method was derived using the control volume approach rather than by
Taylor series expansion, Scalar (mass, in this case) conservation is thus assured
within the domain. A Taylor series derivation of Leonard's method was shown to be
equivalent to the QUICKEST algorithm (Basco, 1984). Basco converted second- and
third-order time derivatives and space-time cross-derivatives into spatial derivatives,

then incorporated them into the Taylor series expansions, to recover Leonard's FDE.
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A more useful computational form of the one-dimensional FDE was also presented by

Basco (1984):

ni*! = nl (4.14)

+ nly [-%+D+%2+%(1 -c2-6D)]

+ nl [-2D-c2-%(1-02-613)]

+ nl, [Q+D+Q+Q(1 *C2-6D]]

2 276
+nl, [-%(1 -(32-613)]

Equation (4.14) is the basic FDE for one-dimensional transport. It is second-
order accurate in time and third-order accurate in space. Note that the FDE returns
pure grid to grid advection, i.e., nj*! = njl, whenever the Courant number C = 1 and
the dispersion number D = 0, regardless of concentrations nj, ni+1, or nj-2. This result
demonstrates the value (mass conservation) of the control volume approach used in
the original derivation. Useful plots of the regions of stability and phase errors for this
form of Leonard's method were also given by Basco (1984).

Direct substitution of derivative approximations for time (4.4), gradient (4.13),

and curvature (4.5) in the one-dimensional transport equation (4.3) gives

n*l = nl (4.15)
‘il U_Auu}
+ b | Undt 2B A
| 24 {axf
+ o, | Ul B A
| A (axf
+ Illi_z -Ux—Atl
L 6 Ax
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In contrast to Leonard's method (4.14), one does not generally recover step to step
advection with equation (4.15) using Cx = 1 and Dx = 0. Only under the general
condition of uniform concentration at all nodes (zero gradient and curvature), or some
unique concentration distribution, would step to step advection be assured. Mass
conservation in advection-dominated flow, particularly if it is unsteady, is thus
problematic when using (4.15). Also, even although this method is third-order
accurate in space, it is only first-order accurate in time. Leonard's method, with its
third-order accuracy in time, is thus preferred. Nonetheless, the straight forward
Taylor series approach {4.15) has been successfully used in unsteady 3-D petroleum
reservoir transport and phase behavior simulations (Saad, Pope, and Sepehrnoori,
1989), using relatively small Courant (C < 0.05) and grid Peclet (Pea < 50) numbers.

The one-dimensional version of the transport FDE (4.14) was substituted for
the partial differential equation (4.3). The resulting set of algebraic equations was
solved in a one-dimensional test simulation of a step input to a fixed-lid rectangular
reservoir with Dirichlet (constant scalar value) boundary conditions. The first nodes
internal to the domain must use the backward difference FDE (4.10) instead of the
four-point gradient. Comparisons showed excellent agreement between analytical and
numerical solutions,

Saad ez al. (1989) used the same approach to test alternative FDEs for the first
derivative accuracy in finite difference (oil and gas) reservoir simulators. These
authors presented analytical and numerical solutions for the 1-D problem that showed
remarkable agreement between the four point gradient method (4.13) numerical

solutions and analytical solutions, using grid Peclet numbers at least up to 10.
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Solutions using other FD approximations for the gradient departed very noticeably at
smaller grid Peclet numbers.

The transport equation using Leonard's method (4.14) is still subject to
potential instabilities and inaccuracy (Basco, 1984; Hall and Chapman, 1985;
Leonard, 1979). Although the acceptable grid Peclet number illustrated by Saad e al.
(1989) was at least 10, the Courant number used was low (C = 0.05). Values of
Courant number much less than 1 are normally used in surface water transport
(Leonard, 1979), but Basco (1984) presented stability and accuracy guidelines
illustrating potential use up to a Courant number of 2.

The extension of Leonard's method to multiple dimensions can be
straightforward when one-dimensional advection dominates. A simple superposition
of the two (vertical and longitudinal) 1-dimensional transport FDEs using Leonard's
method (4.14) was initially used in the model. The seven point, 2-D computational
stencil used is shown in Figure 4.3, The z-axis orientation, affecting the expression of
the derivative approximation, was chosen positive down, as indicated in Figure 4.2.
Net long term vertical advective flux is assumed toward the bed, which is the case for
lacrustine cases and most instances where coagulation is important.

A simple superposition of two 1-D FDEs (4.14) was employed by Davis and
Moore (1982) in a 2-D simulation of closed channel flow around a rectangular block,
but the authors noted potential errors in ignoring the spatial cross-derivatives. They
concluded that simple superposition was adequate for their work because nearly
unidirectional flow made cross-derivatives negligible. Hall and Chapman (1985)

cautioned against superimposing 1-D finite difference approximations for advective
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Figure 4.3. Computational Stencil for 2-D Differencing

terms in 2-D estuarine modeling, however, because depth-averaged fluid velocities in
longitudinal and lateral directions are comparable, which makes the cross-derivative
terms significant.

Two conditions prohibited the simple superposition of two 1-D FDEs (4.14) in
this research. The first condition was the voiding of 1-D advective dominance when
large particle settling velocities are present, and the second condition was the
treatment needed for lateral averaging,

Advective transport of particles, even those fine particles considered in this
work, is not one-dimensionally dominant under all circumstances. Given the constant
system depth mentioned above, vertical fluid velocity is zero; mean horizontal fluid
flow is thus assured. Larger, denser particles in the water column can have a
significant vertical settling velocity component relative to their fluid-imposed
horizontal velocity, however. Inclusion of cross-derivative corrections to the
superimposed 1-D FDEs is thus needed. The additional terms needed to recover

second-order time accuracy have been given as (Davis, 1984)
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1
% [aax uv 3—‘;) + %(u v 3_2)] , (4.16)

Differences of products must be carefully treated to avoid numerical errors by

noting that the exact expansion

dluv) = udv + vdu (4.17a)

must be converted to the approximation

d(uv) = {(uv)a - (uv) . (4.17b)
As stated by Abbott (1979), “... of the infinity of possible (consistent) difference
approximations to...” (the differential, 4.17b), “...there is, essentially, one and only
one difference equality:”

Ujy1 + 041 Vi+l + Vi

(uv)er - {uv)y = ( 5 )(Vj+1 -vi1) + (—-2—) (Uje1 - uj1)

(4.18a)
Therefore, the finite difference equation becomes
i1 + 15 Vil + Vi
d{uv) = (_&2_4_1_) (Vje1 - V1) + (“"]'il"j""l—l")(u_i+1 -Uj1) - (4.18b)

Abbott (1979) noted that it is not possible to incorporate this particular (4.18b)
FDE approximation for cross-derivatives in most (implicit) numerical schemes. The
explicit approach employed in this model is, however, amenable to the use of (4.18b).
Although the presence of three functions within the derivatives of the cross-derivative
corrections terms (4.16) makes the approximations much lengthier to write and
compute than those of (4.18), the principles are the same. The two-dimensional
version of the transport FDE (4.14), with appropriate terms for cross-derivatives, was

substituted for the model partial differential equation (4.3).
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The constant-depth FDEs, even with cross-derivatives incorporated as just
described, still cannot be applied in systems of variable width. Given the lateral
averaging of concentration and system parameters such as fluid velocities and
dispersion coefficients, each concentration term in the defining transport equations
(4.1 to 4.3} must be multiplied by the cross-sectional width, B. Adjustment of the
algorithms to include the appropriate nodal width factors thus completed the
development of the two-dimensional, laterally-averaged (constant depth), unsteady

transport model. These considerations are discussed at the beginning of Chapter 6.

422 Boundary conditions

Finite-difference approximations for the boundary conditions (BCs) have been
derived and incorporated in the transport equations. A set of unique approximations
for the bed-water interface, describing bed deposition and resuspension, have been
derived. This approach has not been used before, and it provides a way to utilize bulk
mass flux experimental results (those typically reported for flume erosion studies) in
the discrete particle number modeling framework.

Unlike ordinary differential equations (ODE), the nature of boundary and
initial conditions for a partial differential equation (PDE) determines its unique
solution and is thus of dominant computational importance (Roache, 1982). The
transport equation is a second-order PDE in both x and z directions. Two boundary
conditions in each direction are therefore needed for its solution. Specifying both BCs
at the same interface would lead to an ill-posed problem (Jaluria and Torrance, 1986),
so boundary conditions for a given direction are established at opposite interfaces of
the domain. Boundaries considered were depicted in Figure 4.2. Vertical BCs are

discussed first, followed by horizontal BCs,
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In the vertical, a standard zero-flux condition,

ong

2z =0

ving - E; \ 4.19)

is set at the air-water interface. This is a homogeneous, Robbins (or mixed) boundary
condition. The distinctive property of this BC is that it is particle size dependent. The
BC states that a dynamic equilibrium exists at the free surface between positive
(down) particle flux due to gravitational settling and negative flux due to gradient-
type dispersion. This equilibrium is both physically and computationally valid. The
no-flux condition at the interface does not imply zero flux over the control volume or

steady-state at the interface. The particle size-dependent boundary condition (4.19) is

rewritten as
o _ Vi
3 E, ng . @.20)

This form was substituted directly in the transport equation for the air-water interface
nodes. Note that conditions of purely quiescent settling, i.e., E; = 0, are not
computationally possible. Brownian motion (described by a molecular diffusion-like
coefficient, Dy, # 0) prevents this from being of physical or numerical concern in fluid
water, however.

A finite difference form of this boundary condition must be used to extract an
approximation for the curvature in the transport FDE (4.14). Using a backward
difference approximation for the gradient (4.10)

on _ nj-njy

X T Ax
and noting that the vertical (z) transport is at the interface, j = 1,

on _ nj -ng

e @.21)
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Concentration ng is a fictitious concentration at the imaginary node j = 0. The node is
positioned outside the physical domain in order to have a concentration for central
differencing at the interface. Given the explicit constraint on the gradient (4.20), the
utility of the backward difference gradient estimate is in approximating the curvature
(4.5) at the air-water interface. Equating the backward difference approximation

(4.21) with the air-water interface boundary condition (4.20) gives
1- %} . 4.22)
FA

This imaginary concentration estimate can now be used in the central difference

ng = m

approximation to the second derivative at the interface.

At the bottom of the water column, we consider two sediment compartments,
one of which enters into the boundary condition interaction of the water column with
the sediment bed. The sediment layer at the sediment-water interface is conceived as
actively exchanging particles with the overlying water column. Beneath the active
sediment-water interface is an active bed-deep bed interface, shown at the very
bottom of Figure 4.3. For the shorter time-scale problems investigated using this
model, the two compartments are considered isolated; the evolution of the deep bed is
not considered, nor is it allowed to interact with the active bed above it. In a sense,
zero-flux BCs are assumed at the active bed-deep bed interface. Since there is no
change taking place within the deep bed, nor any exchange taking place between the
deep and shallow beds, there is no need to establish a formal mathematical linkage
between the two compartments via boundary conditions.

Given the near total absence of size-dependent experimental erosion data for

fine, cohesive sediments, the boundary condition at the bed-water interface is the
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most difficult to formulate. A general nonequilibrium boundary condition has the
following form:

Deposition Flux - Erosion Flux = Net Deposition Flux to Bed, i.e.,

Jp-Jr=A7T, (4.23)
where the absolute deposition and resuspension fluxes are denoted Jp and Jg,
respectively. This conservation BC could be established on the basis of discrete
particle numbers, total particle mass, or other unique bases. For the size-dependent
particle transport simulated here, the flux at the bed-water column interface is
formulated as the net result of mass deposition and mass erosion.

In integral terms, the deposition mass flux is

2 Vi g k Pl , [M/L2-T] (4.24)

and the resuspension mass flux is

a3
R =Y B g"* a“k,[MM-T], (4.25)
k=1

vk is the appropriate particle settling velocity, and dy and py are the particle diameter
and density. E, is a turbulent dispersion coefficient which must describe the flux due
to turbulent velocity and concentration fluctuations in the near-bed region. Aside from
practical difficulties in characterizing the turbulent flow field, the coefficient must
also account for the physicochemical nature of the interfacial region, i.e., the degree
of sediment cohesiveness. As such, it is not a property of the flow field as depicted,

and it is not a good conceptual model.
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An alternate approach, and the path chosen for this research, is to use
empirical relations derived from bulk resuspension mass flux measurements. One
such expression, a linear relationship based on excess shear stress, is

JR = M- 1.). (4.26)
The bed shear stress, 1p, is the shear stress imposed by the fluid flow on the bed. The
critical bed shear stress, T¢, is the shear stress that causes resuspension of the bed. The
rate coefficient, M [T/L], is the proportionality factor relating the observed mass flux
and excess shear stress. This linear relation (4.26) was found to represent the
resuspension process for deposited, cohesive sediments (Ariathurai and Arulanandan,
1978). Other descriptions have also been used in modeling resuspension from
different cohesive sediment types (Hayter, 1987),

In discrete terms, the deposition mass flux for a single size class is

T
Tox = Ving PR &, M/LA-TY; @.27)

the deposition number flux for a single size class is

jpx = vk ng, [#12-T], (4.28)
The absolute discrete particle or mass deposition fluxes, jpx or Jp, are readily found
by applying the known (assumed) particle properties to the concentration just above
the bed.

Translating the bulk mass resuspension flux into discrete particle fluxes is not
as straightforward as the a priori depositional fluxes. To convert bulk resuspension
mass flux Jg into discrete particle resuspension mass flux Jg x, we define fy as the
fraction of Jr composed of size k particles. Thus,

Tri = fi Jr (4.29)
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This construct can take two different forms, but either form requires three key
assumptions, discussed below.

First, we assume that an active and well-mixed bed exists, i.e., there are no
vertical concentration gradients (for the entire size distribution) through this active
layer. A practical requirement for this assumption to be valid is that size-dependent
deposition mixes vertically through the active layer(s) in a time much less than the
characteristic resuspension time. The assumption is questionable, given current
knowledge of sediment layer dynamics, except under two conditions: a) the layer(s) is
confined to a relatively thin segment, perhaps 1 cm or less, or b) the depositional rate
(sedimentation velocity) is slow.

Second, it is assumed that the aggregates are unconsolidated enough to be
available for independent behavior both before and after resuspension. Thus,
significant post-deposition compaction is not allowed. Again, this assumption is
doubtful unless we consider thin sediment layers, short time periods, weak floc
strength, stable suspensions, or a combination of these factors.

Last, we assume that coagulation ceases in the active bed. This assumption is
made even though it is not necessary for computational purposes and the aggregation
process is sure to proceed by some mechanism(s) over some time scale(s). The
restriction is placed because of the extreme uncertainty about how to specify the
flocculation process in concentrated suspensions, even in controlled laboratory
thickening systems.

Given the premises of a shallow, active, homogeneous layer of stable,
independent particles acting over short time scales, we can make the first-order

assumption: the erosion rate of size k particles from the bed is proportional to the
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concentration of k-size particles in the bed. This is a first approximation. Whether a
mass or number proportionality is assumed establishes two alternative expressions:
a) Assume the resuspension mass fraction, fy == Number concentration of size

k particles in bed, i.e.:

fio= g (4.30a)

Nrot = Total number concentration in bed, [#/L3], i.e., 2 n,

J
or

b) Assume the resuspension mass fraction, fx < Mass concentration of size k

particles in bed, i.e.:

a2
. L pk)vbed

LLL!

fi = = 6
k My, - d? N (4.30b)
20 6 ) Vbed
j
or
ng dy Pk
fo= o —5 (4.30c)
Z l‘lj dj pj
i

If the floc density (p) is independent of size, the mass fraction expression (4.30b)

simplifies to

£ = m p dj oy _ ndim
6p(1-®) 6(1-)

(4.30d)

where @ is the porosity of the bed-water interface.
When solids erode via bulk resuspension, the mass fraction approximation for
fx (4.30d) is the appropriate form of choice. This behavior is commonly observed (and

measured) in the study of freshly deposited cohesive sediments. Not surprisingly, it is
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seen also in the study of turbulent bursting phenomena in the resuspension of
noncohesive sediments. It is apparent from the outset that the assumptions leading to
(4.30) violate conditions which lead to bed armoring, bed layering, and bed
consolidation, phenomena which have been observed over longer time and space
scales.

The discrete resuspension number flux can now be stated as

Rk = _#k _mass-k bulkmass (4.31a)

mass-k bulk mass area-time

or
jrx = —L— f bulkmass - _ M  bulkmass (4.31b)
TP dﬁ area-ime 5 (] . ) arca-time
6

Inventories of bed particle mass and number are maintained over time during
the simulation. Thus, initial conditions establish the maximum potential bed erosion,
This limitation to active or interfacial bed interaction alone would be inadequate for
certain hydrological events such as prolonged and extreme bed shear.

The horizontal boundary conditions on the water column are standard. The
upstream boundary condition is a simple Dirichlet condition, i.e., the concentration is
constant over a given time step. For this application, that boundary concentration is
the tributary inflow concentration. Although this BC is necessarily constant over the
computational time step, it can vary with time. In the unsteady storm simulations
discussed in Section 6.4, the upstream BC is ramped up and down over the course of
the storm.

The downstream boundary condition is a homogeneous Neumann (derivative)

condition stating that dispersive flux across the boundary is zero,
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Ex% =0. (4.32)

Given the zero gradient, the boundary node is specified in terms of the upstream node.
Horizontal transport out of the system is thus limited to advection only. To estimate
the curvature at the downstream boundary with a finite difference approximation, a
derived value for the imaginary node beyond the physical domain is used, as with the
curvature at the air-water interface.

Although it is not discussed in detail here, consistency requires that most of
the boundary-specific BCs extend away from the boundaries and into the
computational domain, This condition is due to the fact that the 4-point Leonard’s
method stencil ‘reaches’ backward and forward to the boundaries and imaginary
nodes. The net result is that, for the relatively small number of computational meshes
used in this research, almost all of the nodes have unique algorithms expressing
concentration at the next time level as a function of neighboring and boundary nodes.
Only the innermost part of the domain actually uses the same algorithm, as unaffected

by boundary influences.

423 Solution method

The solution method is largely dictated by the choice of discretizations chosen
to approximate the transport equation (4.14). Particle number concentration for any
size and space combination at the next time step is expressed explicitly as a function
of neighboring concentrations at the current time step. The technique is a direct
solution since all derivative approximations are explicit in time. Solution of the set of
transport equations (4.14), one equation for each particle size at each grid point, is
accomplished by marching forward in time from the set of initial conditions. For

several reasons, the derived finite difference equations are long, complicated, and
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many: two-dimensional geometry, the use of Leonard's method, multiple size-
dependent boundary conditions, and the numerous terms added to accommodate
cross-derivatives for bidirectional flow,

The advantage of the explicit method is the relative simplicity of its direct
solution. Because of this particular application, i.e., an advection-dominated
(sometimes), two-dimensional system with unusual boundary conditions, simplicity
of solution was the deciding factor in selecting the explicit technique. The
disadvantage of the explicit method is that restrictive time step limits are necessary
for computational stability. Certain multi-dimensional, implicit methods can
overcome the time step limitation; however, even efficient splitting methods such as
A.DI. (alternating direction-implicit) can have their inherent stability advantage
offset by the need for iterative solution of the linear system of equations. Also, time
splitting requires a much more complex discretization (two separate sets of FD
equations, each in a different direction and at a different time level, with different sets
of boundary conditions) and simultaneous system solution technique.

In this research, a uniform Cartesian grid, shown in Figure 4.2, was used to
model the structure of the system. For future model application to real systems with
highly variable depth, there is a need to characterize depth variations. Although this
research does not accommodate depth variations, there are two methods which enable
more realistic finite difference models of varying morphometry (e.g., depth). The first
and more traditional technique uses constant, fixed-size, vertical grids as in Figure
4.2, but staggers them in discontinuous steps to approximate depth variations as a
function of longitudinal distance. Boundary region finite difference equations for

transport must be tailored to specific system geometry, and more care must be
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exercised that local velocities satisfy the continuity equation. As has been noted
(Sheng, 1986a), the general flow field may be well-represented using this approach,
but there is usually insufficient resolution in the near-shore region. More important,
distortion of the bed geometry results in misrepresentation of the the near-bed
velocities and shear stress needed for sediment transport prediction.

A second technique, the fitting of nonorthogonal grids from prototype system
dimensions to Cartesian model coordinates, is available. The basic approach used to
transform prototype equations and dimensions to the vertically-stretched, rectangular
grid system has been outlined (Sheng, 1986b). This method is more general, more

easily extended to complex geometries, and more promising for future research.

43 PARTICLE-PARTICLE REACTION MODEL

The approach taken in this research numerically decouples the advection-
dispersion-reaction process, stated in equation (4.3), into independent though
simultaneous transport and reaction steps. This decoupling approach is strictly valid
only for linear processes. Flocculation is not a linear process; however, the use of
relatively short reaction time steps can satisfy the quasi-linear assumption needed to
superimpose, with acceptable accuracy, the independent integrals of the reaction and
wransport differentials. For the kinetics typical of natural system coagulation, relative
concentration changes due to transport dominate in the determination of numerical
integration time steps, and the time steps taken for reaction are thus sufficiently short

to assume accurate superposition.

4.3.1 Equations
The reaction term R(ng) in the advection-dispersion-reaction equation (4.2)

expresses the kinetics of the coagulation reaction. These kinetics are described in the
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model by the well-known Smoluchowski equation, expressing the Lagrangian rate of
change in particle number concentration. The rate is a function of the particle size,
concentration, and density, as well as the fluid physiochemical properties. In discrete

form, the time rate of change in particle concentration, introduced in Chapter 2, is

Ring) = %’achem Y. Bij)niny - Ochem N 2 Bli,k)n; . (2.1
i+j=k i=1
In the reaction rate equation (2.1), the dependent variable ny is the particle number
concentration.
4.3.2 Initial conditions

The initial conditions for the reaction are the known or assumed number
concentration distributions existing at each discrete point in the ambient receiving
system. The reaction rate is not an explicit function of location but of particle number
concentration, temperature, and system dependent solid/solution parameters affecting
Ochem and B(,j). Integration of the reaction rate equation (2.1) projects a new
concentration from an ‘initial’ condition at each location. Each set of ‘final’
concentration distributions thus becomes the initial condition for the next time step.

For the decoupled transport-reaction system, the initial conditions for the
transport and reaction processes are identical. First, transport is allowed to proceed
over a defined time interval (one time step). Coagulation then proceeds from the same
initial conditions used for transport. The concentration changes due to flocculation are

then added to the final concentrations from the transport step for a total net change.

4.3.3 Assumptions and limitations
Smoluchowski's coagulation equation in its discrete form (2.1) is merely a

statement of mass conservation, albeit with a lot of physics implied in the



92

mechanisms, rate parameters, and methods of quantization. The discretization and
solution of the equation require simplifications, however, which vary in degree of
justifiability. In this section, the assumptions used are identified, and their degree of
uncertainty is estimated.

The foundational assumption in this model is that all particles can be
adequately represented (geometrically, kinematically, and dynamically) as spheres of
constant density. For example, binary coalescence of primary spheres to form
spherical flocs (rather than multiple-body collisions and/or formation of non-
spherical, variable density aggregates) is assumed. These assumptions are
idealizations required by the present state of knowledge in fluid mechanics, that is,
multiple-body hydrodynamic interactions have been solved completely only for the
two-spherical body case. Single body kinematics for more complex particle shapes
are known, but the results are applicable in neither flocculent nor non-dilute
suspensions. The limitation in this case is that experimental observations must be
made in terms of equivalent spherical properties, and that system behavior can be
described using those observations. This has been possible, with calibration, for
certain engineered systems (Lawler and Wilkes, 1984), and suspensions of natural
particles are also expected to respond to this treatment.

In conjunction with the sphericity/density assumptions, size discretization
assumptions are necessary for computational reasons. Particle size classes, finite in
number, are equally spaced on a logarithmic diameter scale to approximate the
continuous distribution of particle properties. Because of constant density,
coalescence of particles of size i and j to form a particle of size k results in a floc of

volume that conserves mass but usually lies somewhere between the discrete sizes of
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the model. A technique for apportioning the volume of resultant floc k into integral
size classes, and the problems it solves, have been described well (Lawler ef al.,
1980). Finite discretization is only a limitation if too gross (e.g., poor representation
of a class property by the midpoint size) or too fine (e.g., computationally difficult or
mnefficient); the log-linear floc volume apportionment devised by Lawler should only
create problems for gross discretization.

The number of solids size classes can be varied depending upon the particle
size distributions of inflow and receiving system water/bed, as well as computational
considerations. A first-order uncertainty analysis was performed using a power law
number distribution of the form

n(dp) = A dp-ﬁ (4.33)
with a variable exponent . For B increasing in a log-linear fashion from a value of 0
at dp = 0.6 pm to a value of 5 at d = 100 um, 20 size classes are sufficient to
represent the distribution with minimal error ( < 0.1 %) in describing the function
n(dp). The desired lower and upper diameter limits for this research were 0.6 pm and

200 pm. For these limits and a log diameter increment of 0.1, i.e.,

log [dk—ﬂ] = 0.1, (4.34)
dk

26 initial size classes would be needed. Two smaller size classes, for number
distribution closure, were appended. Three larger size classes, for negligible growth
control of the particle size distribution, were also appended. A total of 31 discrete size
classes, 0.4 < dp < 400 um, were thus used. Errors in the estimation of actual
coagulation kinetics stemming from the use of large particle size increments is

another issue which must be answered by experience and actual data.
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4.3.4 Solution method

The advection-dispersion-reaction equation (4.2) was decoupled and solved in
separate transport (4.3) and reaction (2.1) steps.

The particle interaction model is based on an existing model for simulating
changes in the particle size distribution during flocculation and sedimentation
processes. Solution of the discrete Smoluchowski equation (2.1) is based on logic
originally developed by Lawler (1980). Significant hydrodynamic modifications to
the original collision frequency functions were made, as described in Section 2.3.1
(Han, 1989). The explicit derivatives for each size class are calculated directly from
the rate equation (2.1). The number concentration derivatives are integrated over time
using a modified (predictor-corrector) Euler method. The method is © (At2) accurate
in time, compared to the Euler method which is ® (At). Lawler (1980) originally
integrated the set of ordinary differential equations in a thickening model by using
Gear's method for stiff systems. The system is certainly stiff, but Lawler (personal
communication) later found that simple Euler integration gave comparable accuracy
with much faster execution, at least for dilute suspension flocculation modeling.
Predictor-corrector methods have been largely supplanted by other methods, except in
the unusual case where “high precision solution of very smooth equations with very
complicated right-hand-sides™ is necessary (Press, Flannery, Teukolsky, and

Vetterling, 1986).

44 PROGRAM OVERVIEW
4.4.1 Code description
The program listing is presented in Appendix E, but a short narrative is given

in this section. The overall computational control, particle transport routines, and I/O



95

functions were written in Fortran. The coagulation routines were written in C and

called by the Fortran routine. These coagulation routines came from a self-contained

coagulation-sedimentation model (Han, 1989); sedimentation and other nonessential

functions were stripped from the code; argument lists and array subscripting were

modified to communicate between the Fortran and C routines. Since most of the

subroutines are commented within their respective listings, the focus here is that of an

overview,

. MAIN.FOR
This routine opens input and output files, initializes arrays and
variables, and calls the subroutines and functions as needed. MAIN
allocates all dynamic storage needed by the Fortran and C codes.

INO Input data are read and echoed by this subroutine.

PARTCL( Based upon the input data, particle properties are assigned by this
subroutine.

CONCIC() Initial conditions for particle number concentrations are calculated by

this subroutine.

. FRCGAM()

This C function is called as a subroutine by the Fortran main only at
time zero. Arrays containing derivative indexing bounds and collision
frequency factors are returned for later use by the COAG() subroutine.

The frcgam.c function serves as a controller in that it calls other C
subfunctions, described below, that make the array assignments. These
functions were excerpted from Han's (1989) model, SEDMOD.C, for
flocculent sedimentation of dilute suspensions. FRCGAMY() shares
dynamic memory for arrays in common with the Fortran main.
FRCGAMO() also opens and closes its own output files.



fraccalc()

gammacalc()

FLOWI()

STABLE()

RAMPQN()

BCNQ

SOURCE()

ERODE()

BEDXCH()

TRANSP()
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This C subfunction calculates the arrays used to discretize the volumes
obtained in particle coagulation. Lawler (1980) developed and
described the logic to make the fundamental calculation, and Han
(1989) generalized the logic to accommodate arbitrary log volume step
size for the particle size distribution.

This C subfunction calculates either rectilinear or curvilinear collision
frequency functions for interparticle transport by Brownian motion,
fluid shear, and differential sedimentation. A curvilinear collision
frequency function is the product of both the rectilinear collision
frequency function and a hydrodynamic correction factor.

Initial fluid velocities and dispersion coefficients are assigned by this
subroutine.

The time step used to achieve numerical stability is calculated by this
subroutine, based upon transport conditions and grid size.

New flows and particle number concentrations are calculated for
tributaries, as needed, by this subroutine.

Boundary conditions for upstream tributary particle number
concentrations are calculated, as needed, by this subroutine.

Source terms due to tributary particle loading are calculated, as
needed, by this subroutine,

Gross potential mass flux of solids from the bed is calculated by this
subroutine.

Net mass flux of solids from the bed to water column is calculated by
this subroutine.

Size-dependent advection and dispersion of particles by fluid flow and
gravitational settling are calculated (without reaction) by this
subroutine.
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. COAG(

euler_pcm()

diffun()

TOTAL()

OUTPT()

4.4.2

This C function is called as a subroutine by the Fortran main.
Smoluchowski's equation (2.1) is integrated over the time step just
used in transport; initial conditions are those concentrations, that
existed at the start of the last transport step. The array returned is the
matrix of concentration changes due to coagulation alone.

The coag.c function serves as a controller in that it monitors time and
calls other C functions, described below, which perform the
integration. COAG() shares dynamic memory for arrays in common
with the Fortran main. COAG() also opens and closes its own output
files.

For a given integration step size received from COAG(), this
subfunction controls the integration of the reaction term (2.1).

The reaction rate at any time is calculated on the basis of particle
concentrations and system parameters.

Computations are made to convert number concentration results to
other forms.

Select results at requested times are written to output files.

Development and application environments

The model codes were developed, tested, and used in several operating and

computing environments. The primary computational platform was the Cray Research

X-MP EA/14 se, located at the Center for High Performance Computing, University

of Texas at Austin. The Cray X-MP is a vectorized, single processor machine, and

used the UNICOS 5.1 operating system. The front-end computer for the Cray was the

Digital Equipment Corporation VAX-8600, with VMS 5.3 operating system. Cray's

standard vectorizing compilers, the CFT-77 Fortran compiler and the SCC C
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compiler, created separate object codes which were subsequently linked by a segment
loader.
The majority of subroutine development was performed on an Apple

Computer Macintosh Plus using DCM Data Product’s Mactran Plus Fortran compiler.

4.4.3 Considerations in linking Fortran and C

Fortran and C have different array storage conventions, regardless of the
operating environment. These considerations and the manner in which they were
addressed are described in this section.

The names of C subroutines called by the Fortran program, as well as the
names of the arguments shared between them, must all be capitalized to be consistent
with the Cray, Inc. Fortran (CFT) implementation. This is because all variables and
arrays passed between the object codes reside in shared memory. All that is actually
“passed” from one to the other is the pointer address for the first element of the shared
variable or array in memory. Shared array dimension sizes in C should be made the
same as those initially declared in Fortran.

For the purpose of linking object codes written in Fortran and C, array storage
is the primary difference between the two languages for this implementation. Fortran
uses column major storage and C uses row major storage. Passing vector arguments
between the languages presents no problem; however, a conflict exists when passing
multidimensional matrix arguments. The simple solution is to reverse subscripts when
passing the arguments. For example, general array A(i,j,k) in Fortran should be
dimensioned and addressed as array A(k,j,i) in C.

Subscript addressing is another difference between the two languages. The

default initial address of a vector (or matrix) is element 1 in Fortran but element 0 in
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C. User-defined subscript definition of arrays is available in Fortran but not in C.
Again, the simple solution is to recognize this and index matrix operations
accordingly. As a simple example, a vector dimensioned for NK elements in Fortran
which has been passed to a C subroutine cannot be dimensioned in C for NK elements
and then addressed for elements 1 to NK. The C routine has allocated NK words of
memory, but the pointer subscripts are from 0 to NK-1. This situation arose in both of
the C subroutines in this research.

For complex index algebra or where index value has a tangible physical
meaning, both true for these codes, it can be preferable to index the elements from 1
rather than 0. In this case, the array must first be dimensioned for NK+1 in both
routines. Second, the array must have all elements shifted up one when entering the C
subroutine from the Fortran main. Third, the array must have all elements shifted back
down one element before leaving the C routine and returning to the Fortran main.
Rewriting the indexing within the C algorithms would be an obvious advantage where
the double reassignments at each subroutine call become too time consuming. Han’s
coding, with algorithms to allow variable A(log dp), is quite complex, and it was left
in its untransformed, original state.

Character strings are much more difficult to transfer between linked

subroutines in the two languages than are numeric values, but this was not required in

this model.
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CHAPTER V

PARTICLE BEHAVIOR IN IDEALIZED SYSTEMS

5.1 INTRODUCTION

This research was conducted to examine the importance of coagulation in
particle and contaminant transport and fate. In conjunction with this aim, identification
of those transport and chemistry conditions which call for the explicit modeling of
particle coagulation was desired. Parametric modeling studies were conducted
numerically, using the model developed in the first phase of the research, to discern
these conditions.

Particle transport and transformation simulations of idealized systems were
conducted, and the results are presented and discussed in this chapter. As discussed
more fully in Chapter 3, the prototype under consideration is Town Lake, Austin,
Texas. The choice of specific values for each parameter in the model is presented first.
A base case analysis of an idealized Town Lake is then presented and discussed. This
base case is reflective of the actual system, but the geometry has been simplified to
facilitate analysis. A more realistic model application to Town Lake is presented in
Chapter 6. The analysis of the base case is presented in two section, one focused on
integral measures of particle concentration, and the other on discrete particle size
distributions. With the base case established as a reference point, the second half of this
chapter focuses on process comparisons and parameter sensitivity analyses.

Variations in system conditions were simulated and analyzed to determine
characteristic particle behavior and interaction in response to alternate system
conditions. First, individual physical processes were numerically turned on and off in

the simulations to examine the relative importance of transport, sedimentation,
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resuspension, and coagulation in the fate of particles. Following the process analyses,
physical system and particle parameters were systematically varied to examine their
effects on particle behavior, Realistic, i.e., naturally occurring, parameter values were

chosen to represent a range of natural systems, responses, and limiting conditions.

5.1.1 Conceptual approach

Natural system behavior is the complex response to the spectra of highly
variable forcing functions and parameters: hydrology, meteorology, chemistry,
biology, and morphometry. For static, idealized systems with simple properties and
limited linear processes, it is possible to obtain transfer functions using systems
analysis techniques. For dynamic natural systems, however, only the grossest scale
behavior can be analyzed in this fashion.

The scaling concept arose from the study of dimensional analysis. The original
purpose, still valid, was to reduce the number of conditions and parameters to be varied
independently in laboratory experiments. The scaling approach is also used where exact
or numerical solutions for a particular system are not possible. In fluid mechanics, for
instance, very few systems exist where exact solution of the equations of motion is
possible. By comparing the magnitudes of characteristic time or length properties (or
their normalized counterparts) for each component of the process, both significant and
insignificant aspects of the problem can be identified. Ignoring less important processes
may result in approximation of the real system with a simplified, but realistic and
solvable problem statement.

While engineers have always sought ways to simplify complex problems to
achieve valid solutions of acceptable accuracy, the formal use of the scaling concept in

mathematical water quality modeling is rather recent. Boyce (1974) and others (e.g.,
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Imboden and Lerman, 1978; Imboden and Schwarzenbach, 1985) have illustrated the
application of scaling in determining model time and length scales. The systematic use
of scaling to evaluate the relative importance of different transport and reaction
mechanisms aids in identifying those processes to retain or eliminate. The scale concept
was used in this research to aid in identifying parameter ranges for sensitivity analysis
and to aid in the identification of dominant and negligible processes.

The responses of the simulation state variable, discrete particle number
concentration, and its associated distributions were examined with two basic
approaches. Integral analysis was used first, and discrete analysis was then used.

The integral approach was used first to grasp an understanding of system
response over the entire particle size range. Derived response variables thus included
total number, area, and volume concentrations. Integral particle mass concentrations
serve in place of integral particle volume concentrations throughout most of the results
presentations of Chapters 5 and 6. Given the (assumed) size-independent floc density,
the integral mass concentration can be used interchangeable in place of the integral
volume concentration when considering the results. The greater intuitive appeal of the
mass concentration and its importance in contemporary water quality modeling and
assessment both argue for the use of suspended solids concentration as the default
reference for particle volume/mass. It must be clearly understood, however, that
particle volume served as the conservative property in the transformation framework,
and that discrete number concentrations served as the conservative property in the
transport framework.

Discrete analysis, the second approach, is designed to understand the system

response within individual and relative particle size classes. Variables thus include
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discrete number concentrations n(k) [#/cm3], as well as derived particle distributions.
Normalized particle number, area, and volume (or mass) distributions, as well as the

particle size distribution function, are presented and discussed.

5.2 |DEAL SYSTEM CONDITIONS

Ideal systems are the topic of this chapter. As mentioned above, Town Lake is
the prototype. Base case simulation parameters reflect the best estimate of average
conditions present in Town Lake, notwithstanding the inherent idealizations described
below. Parameters used in the process and parameter sensitivity studies use the same
basic system, with controlled changes reflective of natural variations in other systems.

Temporal variations in loads and kinetic parameters were ignored in the base
case. Thus, the simulation was propagated from initial conditions, under steady
(annual-average) forcing, until a steady-state water column response to the boundary
conditions and operative physics was achieved. Spatial irregularity was simplified by
assuming a rectangular parallelepiped morphometry, i.e., the lake was assumed to have
constant depth and width. The rigid lid model dictates a constant system volume. Also,
it was assumed that lateral tributary inflows along the length of the reservoir contribute
negligible fluid and particle loads. These rectangular and tributary restrictions were
relaxed in the application to the prototype, presented in Chapter 6.

System properties to be examined in the idealized transport and coagulation
behavior studies include the fluid transport system (advection, system dimensions,
residence times, and dispersion and turbulence), the particle characteristics, bed

resuspension, and the solution chemistry.
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5.2.1 Fluid transport system

Characteristic fluid transport and system morphometric parameters were varied
to examine their influence on particle transport and fate. Properties included the
receiving system dimensions, fluid velocities and dispersivities, and resulting residence
times.

Receiving water systems considered in this research include rivers, reservoirs,
and lakes. Typical vertical dimensions are in the order of 1 to 100 meters for small,
shallow systems to very large, deep lakes (Boyce, 1974; Imboden and Schwarzenbach,
1985). Typical horizontal dimensions are in the range 0.1 to 100 km for small
reservoirs to very large lakes.The prototypical base case system has the following mean
dimensions: depth of 4.1 m, longitudinal length of 9.6 km, and transverse width of 164
m.

As pointed out by Holley (1969) and Boyce (1974), the distinction between
advective and dispersive flux is arbitrary at all length scales except the molecular.
Advection, then, can be thought of as the transport providing larger scale motion,
whereas dispersion provides the small scale, residual mixing which is superimposed on
the advection. Obviously the time scale is inversely related to the space scale. For larger
dimensions of interest, e.g., the length or width of a lake basin or the length of a river,
advection normally dominates contaminant transport (Imboden and Schwarzenbach,
1985).

The range of magnitudes for surface water advective velocities is quite large.
Lerman (1979) estimates the fluid velocity range in the order of 1 to 100 cmy/s for all
types of surface water systems. For large lakes such as the Great Lakes, Boyce (1974)
characterizes basin-wide and coastal horizontal currents on the order of 10 cny/s. Boyce

also estimated the localized vertical fluid velocities due to upwelling, downwellin g, and
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Langmuir circulation to be on the order of 1 cm/s. Though the model's transport
framework can accommodate a prescribed vertical velocity field, vertical fluid flux is
not included in these analyses.

A vertical distribution of longitudinal velocity was prescribed for the idealized
and actual system shear flows incorporated in the model for the systems of Chapters 5
and 6. The logarithmic velocity profiles were defined by sectional parameters of mean
longitudinal velocity, depth, and friction factor. The prototypical base case system has a
mean longitudinal velocity of 6.54 cm/s and a Darcy-Weisbach bed friction factor of
0.02. Town Lake’s mean Reynolds number of 2.7 x 103 based on depth, coupled with
the chosen friction factor, imply a flow in the transitional region between hydraulically
smooth and fully rough (for turbulent, uniform, open-channel flow).

System fluid residence times are determined by their characteristic length and
velocity scales. Typical whole lake water residence times are on the order of 10! to 104
days (Imboden and Schwarzenbach, 1985). Many small reservoirs (Brune, 1953) and
rivers can have characteristic residence times (i.e., characteristic length/advective
velocity) of a day or less. The prototype system residence time was 1.7 d.

It was mentioned above that the division between dispersion and advection is
arbitrary, defined by the ability to resolve the advective scale, Holley (1969) also
discussed the relatively arbitrary distinction between diffusion and dispersion as being
solely related to spatial and temporal averaging scales, except at the molecular level.

For large scale simulations, the gradient type dispersion inherent in the model
transport equation (3.3) has proven adequate, if not ideal, for horizontal lake mixing
(Blumberg, 1986). The dispersion coefficient Ex is then typically in the range of 103 to

10° cm?/s. Representations of both longitudinal and lateral components are available,
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but further progress requires that improved representations be related to mean flow and
turbulence parameters. For vertical lake mixing, Blumberg (1986) and Imberger ef al.
(1987) have suggested, however, that the small time and space scale processes
responsible for vertical mixing in open waters cannot be parameterized by the empirical
eddy viscosity concept. When used, the vertical dispersion coefficient E; is typically in
the range of 10-! to 103 cm?2/s (Imboden and Schwarzenbach, 1985). Three-, two-, and
one- dimensional mixing analyses for smaller scale (in the vertical) rivers were
examined theoretically and experimentally by Holley and Jirka (1986). Dispersion
coefficients presented for riverine mixing were dependent on river velocity, depth,
width, and roughness. In contrast to lake dispersion, rather satisfactory
parameterizations of vertical and transverse riverine mixing are available. Despite its
name, Town Lake has many riverine characteristics. Default dispersion coefficients
used for the prototype system were 103 cm?/s for longitudinal mixing and 8.9 cm?/s for
vertical mixing.

Energy dissipation is an important measure of fluid turbulence, reflecting both
passive particle and contaminant dispersion as well as dynamic interparticle collision
contacts by fluid shear. Values of energy dissipation can be expressed in several
alternate forms, but the most useful for this work is the mean velocity gradient, G. The
range of G in natural systems is typically 0.01 to 10 s-! (Lerman, 1979; Sheng, 1986b;
Weilenmann et al., 1989) for deep ‘stagnant’ hypolimnia to coastal areas and open
water storm events, respectively. Greater shear takes place in some rivers, e.g., the

Rhine’s 50 s-! (Hahn ez al., 1980). The mean velocity gradient chosen for the prototype

system was 10 s1.
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is normally used to relate shear stress at the bed to the fluid velocity at the turbulent
boundary layer, ug. The dimensionless skin friction factor f; is typically on the order of
0.004 (Sheng, 1986a).

For vertically averaged flows, where uy is the vertically-averaged horizontal
velocity, an alternate quadratic stress law parameterization is often used for geostrophic

flows:

T = Cap 2. (5.3)
The dimensionless drag coefficient Cyq is typically on the order of 0.003 to 0.004. The
relation between the boundary layer (5.2) and vertically-averaged (5.3) expressions for
shear stress is obvious. Stratified flows (of either type) require modification of the
basic form to account for the suppressed momentum transport.

Bedford and Abdelrhman (1987) cited average values of 10-2dyne/cm? for bed
shear stresses in Lake Erie (calm) and the deep ocean and values of 1 dyne/cm? for bed
shear stresses in Lake Erie (storm) and on the continental shelf. Periodically, shear
stresses can be much greater in shallow depths, however. Sheng and Lick (1979) and
Sheng (1986b) reported current and wave induced bed shear stresses in Lake Erie
shallows and Mississippi Sound shallows of 14 and 15 dyne/cm?2, respectively.

In open channel flow, characteristic of rivers and many reservoirs and estuaries,
the turbulent bed shear stress is normally parameterized as

To = Pr us, (5.4)

where u, is the shear velocity or friction velocity. Specification of the shear velocity

(and thus the bed shear stress) is based upon the cross-sectionally averaged longitudinal

fluid velocity uy and the dimensionless Darcy-Weisbach bed friction factor f
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Ux = Uy

L. (5.5)
The mean longitudinal fluid velocity is readily estimated, and the open channel types of
flow being examined in this research ailow the use of this approach. A typical value for
the bed friction factor under a wide range of turbulent flows is 0.02. This value was
used for the prototype system. Very high Reynolds numbers or small roughness
elements result in smaller friction factors; smaller Reynolds numbers or relatively rough
beds result in larger friction factors. The friction factors examined in the parameter
sensitivity studies included 0.015 and 0.025, corresponding to hydraulically smooth
and fully rough turbulent flows.

Critical shear stress for fine cohesive bed sediments is on the order of 1
dyne/cm2, with values generally in the range 0.2 to 20 dynefcm? (Sheng, 1986b).
Sheng presented experimental erosion results for Mississippi Sound deposits that had a
critical shear stress of 0.9 dyne/cm?2. Raggio and Jirka (1988) reported a critical shear
stress of 10 dyne/ecm? (1 Pa) for cohesive sediments taken from the bed of the Buffalo
River in Buffalo, New York. A review was provided by (Hayter, 1987) of the
experiments conducted to determine cohesive sediment shear strength (and density) as a
function of the depth in the bed, the bed shear rate at the time of deposition, the time
since deposition, and the solution salinity. Shear strength throughout the depth of flow-
deposited kaolinite beds were in the same relative range as for the surface layers,
though the magnitude increased with depth. The prototype system’s critical shear stress
was set at 1 dyne/cm?2,

For the resuspension flux parameterization suggested by (5.1), the rate constant
M (g/cm?2-s) can be experimentally determined along with the critical shear stress.

(Ariathurai and Arulanandan, 1978) conducted erosion tests of more than 200 samples
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of compacted sediments of natural and pure clay. These authors found virtually all
values of the rate constant in the range of 5 x 105 <M < 5 x 104 g/cm?-s.
Instead of normalizing the excess shear stress, as in the parameterization of

(5.2), the flux can be expressed equivalently as

I, =M (10- 7o) . (5.6)
The modified rate constant M' is obtained by dividing the original rate constant by the
critical shear stress, i.e., M' = M/t . The rate constant M' is on the order of 1 x 10-6 to
2 x 10°5 s/em (Sheng, 1986b). In accord with the large critical shear stress cited above
for the Buffalo River bed, Raggio and Jirka (1988) reported a small rate constant
(determined by model calibration) of only 5 x 10-7 s/cm. The rate constant M used for
the prototype system was 1 x 10-6 s/cm . Values of 0.0, 1.0 x 107, and 1.0 x 105

s/cm were examined in parametric studies.

5.3 A ASE: INTEGRA LID ASE BEHAVI

The base case idealizations were made to better isolate the influences of
individual processes on particle behavior. Temporal variations in loads and kinetic
parameters were ignored in the base case. Thus, the simulation was propagated from
initial conditions, under steady (annual-average) forcing, until a steady-state water
column response to the boundary conditions and operative physics was achieved.
Spatial irregularity was simplified by assuming a 3-dimensional rectangular
morphometry, i.e., the lake was assumed to have constant depth and width. Also, it
was assumed that lateral tributary inflows along the length of the reservoir contribute
negligible fluid and particle loads. These restrictions were relaxed in the application to

the prototype, presented in Chapter 6.
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It is useful to begin the base case analysis with an inspection of the integral
behavior of the particle distribution because the results clearly show the overall
behavior of the solid phase. Total (i.e., summed over the entire size distribution)
particle concentrations of mass, number, and superficial surface area are presented in
this section. Initial conditions within the water column domain were equivalent to the
upstream boundary condition, Results given are steady-state responses for the water
column, i.e., at a time of three mean system residence times (evidence is given below to
justify this assertion). Changes from the initial condition can be attributed to the parallel
processes of advection, dispersion, sedimentation, resuspension, and coagulation.

Because concentrations in the system vary in both longitudinal and vertical
directions, a display of the two-dimensional, spatially-distributed concentrations at
steady-state is valuable for analyzing the integral results. As an example of the integral
contour plots to be discussed in this section, consider Figure 5.1. The isopleths present
the steady-state contours of constant total particle number concentration, as a function
of longitudinal and vertical location in the water column. Given the 2-D modeling
framework, this longitudinal/vertical slice of the water column represents laterally-
averaged system response. Contours were constructed by linear or cubic interpolation
from the discrete nodal concentrations at the 55 spatial mesh points (11 longitudinal by
5 vertical). This grid, corresponding to the generic grid presented in Figure 4.2, was
used for all simulations in the research. The 55 mesh points are also shown in Figure
5.1

Transport equations were written in dimensional form, but nondimensional
distances are used to present the simulation results. The following conventions were

used for physical and numerical spatial dimensions. The upstream system boundary, at
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a physical distance x = 0.0 km, corresponds to the left boundary of the computational
domain; the corresponding dimensionless longitudinal distance, X, is 0. The
dimensionless longitudinal distance is just the fractional downstream distance, X = x/L,
where L is the length of the reservoir. The right boundary of the computational domain
(X = 1.0) corresponds to the downstream system boundary (x = L = 9.6 km); fluid
flow is from left to right.

In the vertical, the air-water interface defines the vertical physical origin,
z = 0.0 m. The upper boundary of the computational domain shown in the figure
(dimensionless depth Z = 0.0) is the vertical computational origin. The bottom
boundary of the computational domain that is revealed represents the deepest water
column grid (Z = 0.8, depth z = 3.3 m). Dimensionless depth is just the fractional
depth, Z = z/H, where H is the water column depth to the bed-water interface (4.1 m).

The bed-water interface (at Z = 1.0) behaves as a separate phase from the water

column.

5.3.1 Total number

Total particle number concentration behavior is presented first. Referring again
to Figure 5.1, the steady-state response isopleths represented a simulation time of three
mean residence times. The initial condition for the domain, as well as the upstream
boundary condition for the entire simulation, was a total number concentration N
(analogous to N in Figure 3.6) of 5.14 x 109 [particles/cm?3].

One of the more distinctive features of the response for this system was the
nearly homogeneous vertical distribution of total number. The system appeared to
display 1-dimensional behavior: vertically uniform, with longitudinal variation only.

Factors which could cause this uniformity are those which promote vertical mixing. In
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this system these included the relatively shallow water column of 4.1 m and the
moderately high vertical dispersion coefficient of 8.9 cm?/s. Recall that the Stokesian
particles considered in this research possess the same turbulent mixing coefficient(s) as
the fluid itself, i.e., the vertical mixing is size-independent. Size-dependent processes
affecting the vertical distribution, e.g., sedimentation and coagulation, did not appear to
exert a dominating influence on the vertical number distribution. The characteristic
vertical mixing time, T4, = H2/E;, was only 5.2 hr, small relative to the mean lake
detention time of 41 hr. Since only the integral behavior is shown in Figure 5.1, it is
probable that large numbers of small particles, which can be readily mixed from top to
bottom, obscured any vertical stratification of the larger particles.

A second distinctive feature of the total number response was the substantial
reduction in total particle number down the length of the reservoir. A continuous
decrease in number concentration with distance is clearly evident in Figure 5.1. A plot
of number concentration as a function of longitudinal distance, at constant depth
(Z = 0.4), is presented in Figure 5.2. Approximately 60% of the total number of
particles entering the system was lost from the water column before reaching the
outflow boundary of the system.

It should be noted that, for the ideal system of constant flowrate and cross
section, i.e., constant velocity, differences in longitudinal distance are synonymous
with travel time. This makes the overall kinetics directly apparent from the longitudinal
response.

Potential number sinks included coagulation and sedimentation. Either one of
the processes could have produced the observed number reduction independently, i.e.,

without the other. In the absence of mass concentration results, presented further



116

ale1S-Apeals 1B uonenualuo0y) 1IequINN asen aseg 1o aljoid [euipniibuoT

[-] X ‘eourysig jeuipniibuo ssajuoisuawiq

870

9'0

¥o

Z0

v 1

0Lt

0Lz

OLE

oLv

gO+S

019

[(wo/#] ‘uonesiuaduo) 1aquinN |el10L

Z's ainbi4



17

below, one cannot determine whether the number decrease was due to coagulation,
sedimentation, or a combination.

The kinetics of the changing number concentration can be qualitatively and
quantitatively examined using the simulation results. For example, the rate of
concentration change was obviously decreasing with time; the concentration isopleths
spreading out with distance, seen in Figure 5.1, demonstrate this. The familiar
exponential decay curve appearing in Figure 5.2 suggests an overall first-order loss of
particle number concentration. Exponential loss is the basis for most water quality
modeling of sedimentation and resuspension: a net rate constant (the net sum of all rate
constants) applicable to all particle sizes over a vertically mixed water column. The
standard variable in water quality modeling is mass concentration, however.

The sudden drop in number concentration at the downstream boundary (X =
1.0) was unexpected. Given the numerically consistent formulation of downstream
boundary conditions, the reason for the concentration drop at the boundary is not
known. The drop does have a small direct influence (causes some decrease in
concentration) at the node upstream of the boundary; much smaller indirect influences
are propagated upstream.

The number decay rate can be quantitatively assessed. For simple first-order
kinetics, and acknowledging the direct relation between travel time and distance (x =
t/Uy) in the ideal system, a linearized plot of total number concentration,

N _ .
In No kt, (5.7)
would plot as a straight line. Since coagulation dynamics are generally acknowledged to

be second-order in particle number concentration, a second-order rate expression for

the loss of particle number could also be considered. The linearized response is
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1_1 _y 5.8
N Ng t, (5.8)

where Ny is the initial total number concentration.

Linear regression plots of both the first-order and second-order decay models
were examined, and both fit the results quite well at dimensionless depth Z = 0.4.
Excluding the outflow boundary concentrations, both model regressions gave
correlation coefficients of 0.998, with insignificant difference between the two models.
On the basis of these results, one cannot dismiss the traditional, overall first-order
decay model as a means for describing total number concentration response. It would
be desirable to use a lumped first-order decay model in place of the full
transport/coagulation model, with its complex and expensive reaction kinetics.
Unfortunately, the comparison between 15t - and 2nd _grder models was only possible
because of the mechanistic coagulation modeling. Since there is no a priori means of
determining the net 15t -order rate coefficient, this modeling analysis could only be used
after field study or full coagulation modeling. These potential uses of the 15! -order
particle model could be invalidated if other conditions upset the net balance of
processes, such as those that appear to be present in the base case. These conditions
could include a shift in process dominance towards coagulation, for example, or spatial
or temporal inhomogeneities in system parameters of forcing.

Because all of the computational analyses required time-variable evolution to a
steady-state, it was important to judge the simulation time needed to reach numerical
and physical steady-state response. The total number concentration response after 3
residence times of simulation was compared to the response after 2 residence times of

simulation to judge the numerical convergence to a steady-state response.
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The comparative simulation began from a uniform initial particle number
distribution everywhere throughout the water column domain, with a total concentration
of 5.14 x 108/cm3. The Dirichlet condition at the upstream boundary (X = 0) was
maintained at this concentration for the entire duration of the simulation. Number
concentrations at the end of simulation for the two cases (two vs. three mean residence
times) were identical, to five significant figures; total suspended solids concentration
comparisons of the two simulation times had equivalent agreement. The domain
approached the steady-state distributions between one and two mean residence times,
i.e., significant changes took place between one and two mean residence times,
particularly in the downstream end of the system.

The simulation time needed to propagate boundary conditions throughout the
domain to achieve steady-state distributions depends not only on boundary conditions,
but on transport and kinetic rates within the domain. Recall from above that the
characteristic vertical cross-mixing time (fluid transport only) is a short 5 hr. The
system considered is highly advective (longitudinally), and the characteristic advection
time is one mean residence time: T3 = Ly/Uyx is 1.7 d or 41 hr. Thus, steady-state
boundary conditions can propagate longitudinally in approximately 41 hr and vertically
in approximately 5 hr.

To propagate, by transport, the sum of steady horizontal and vertical fluid
fluxes through the domain should take approximately 46 hr. total (41 plus 5). This is a
little over one residence time, as seen in the simulation results just discussed. The
reason for the series-like response rather than a parallel-like response is because the
transport is in two different directions, i.e., longitudinally and vertically. Following

propagation of a perturbation through one dimension, this new perturbation must be
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propagated through the other dimension. In reality, the propagations take place
simultaneously, and the time needed to reach an effective (near-) steady-state can be
somewhat less than the sum of the independent process time scales.

It is not possible to deduce directly from simulation results the estimates of the
individual characteristic times for the source and sink processes and fluxes that
influence vertical transport (i.e., coagulation, resuspension, and sedimentation);
however, the kinetics of total number reduction give some idea of these time scales.

Although we cannot deduce from the total number results the individual time
scales for the heterodisperse suspension in two-dimensional space, it is possible to
determine an overall response time. To analyze the characteristic time scale of source
and sink processes, assume that coagulation, resuspension, and sedimentation can be
represented by independent (i.e., parallel) rate expressions which are each first-order in
total number concentration. Then an overall rate expression is the sum of the linearly
additive first-order expressions, so that an equivalent overall rate coefficient is the sum
of the individual first-order rate coefficients. An estimate of the characteristic time Tgss
for the lumped, first-order, source/sink decay process is

Tes = B (5.9)

ot
The partial derivative of total number in (5.9) can be estimated from the slope of the
linear regression of the first-order expression for longitudinal decay of total number
concentration (5.7). Using conditions at the upstream boundary to evaluate the
concentration and its derivative, the characteristic time Ty is approximately 1.5 d or 36

hr. This time scale is valid at steady-state at one point in the field.
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In general, the characteristic time varies in space because both the concentration
and the time derivative of concentration are functions of space. For the case of a first-
order process, however, both the concentration and its derivative change at the same
rate. Therefore, the characteristic time remains constant throughout the system.

For a system subject to unidirectional parallel processes, such as

k;
A->B
ks

A B (5.10)

the overall rate of decrease of A and increase of B will be at least as fast as the fastest
individual process (the largest k; and smallest characteristic time) will allow. In

contrast, for a system subject to bi-directional parallel processes, such as

ki
A—>B

k2
A—>B (5.11)

ks
A« B

it is not true in general that the overall rates of change of A and of B are at least as fast
as the fastest individual process allows. It cannot even be said whether the overall
conversion is forward, backward, or at equilibrium.

The important conclusion from the preceding discussion concerns scale.
Although resuspension acts to increase total number concentration in the water column,
coagulation and sedimentation act counter to that effect, and the overall process is one
of net number reduction. It can be concluded that, for the ideal system just discussed,

coagulation and sedimentation reduce particle number concentration faster than erosion
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can add. It is also concluded that a simulation time of two residence times is sufficient
to achieve steady-state system response for the typical conditions tested. For the
remaining steady-state results in Chapters 5 and 6, the results are presented after two

residence times of simulation unless otherwise noted.

5.3.2 Total mass

As mentioned at the beginning of the chapter, particle volume and mass are
directly related by particle density and are used interchangeably in this study. The
integral mass concentration is commonly referred to as total suspended solids,
abbreviated TSS, with conventional units of {mg/L]. In this section the integral particle
mass concentration response of the base case simulation is examined.

Steady-state total mass concentration (TSS) isopleths, shown in Figure 5.3,
were derived from the number distributions. Simulations began from a uniform initial
condition of particle number distribution, throughout the water column domain, which
was equivalent to a total particle mass concentration of 9.84 mg/L. This concentration
was maintained as a Dirichlet condition at the upstream boundary (X = 0).

Compared to the number response illustrated by Figure 5.1, it is obvious that
TSS behavior was qualitatively different than total number behavior. Two differences
can be seen. First, the spatial variation of TSS response was not uniform in the
longitudinal or vertical directions. Second, mass concentration generally increased in
the downstream direction, whereas the number concentrations decreased.

The increase in the mass concentrations in the downstream direction is
illustrated along a single grid at mid-depth (Z = 0.4) in Figure 5.4. The overall increase
in suspension concentration was approximately 4% between inflow and outflow. Mass

concentration appeared to asymptotically increase down the length of the system,
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approaching an equilibrium value. The minor concentration decrease near the
downstream boundary was caused by the accelerated rate of number concentration
decrease at the boundary, as discussed above.

Assume a first-order increase in concentration as suggested in Figure 5.4,
increasing from the boundary value at x = 0.0 km to a value approaching equilibrium,

At constant depth, we have

TSS(x) = TSS(0.0) + [TSSequil - TSS(0.0)] [1 - exp(-k x)] , (5.12)
where

TSS5(0.0) = the boundary concentration

TSSequil = the equilibrium concentration

k = a lumped first-order rate constant .

The exponential increase suggested in Figure 5.4 and equation (5.12) is the response of
a one-dimensional system subject to a (longitudinally) distributed source. Linearization
of (5.12) results in

_ TSS(x) - TSS0.0) | _

“In|1 -
"\ TSSequn - TSS(0.0)

kx; {5.13)

the simulation results and linear regression line are plotted in Figure 5.5. From Figure
5.4, the magnitude of the apparent equilibrium concentration was estimated to be 10.3
mg/L. Overall, there was reasonable conformance of the assumed one-dimensional
(longitudinal) first-order mass concentration increase at a constant depth (5.13) to the
observed simulation results,

As with the longitudinal behavior, the two-dimensional steady-state isopleths of
mass concentration response revealed interesting and direct contrasts between the
vertical number and mass responses; compare Figures 5.1 and 5.3. Unlike the

isoconcentration lines of total number, which were vertical, the isoconcentration lines
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of total mass appeared to bend downstream, tracin g out a path that appeared to traverse
from the bed-water interface to the air-water interface.

At any given longitudinal coordinate of Figure 5.3, the mass concentration
decreased from the bed up. To illustrate this, a vertical profile of the mass concentration
at mid-lake (X = 0.4) is presented in Figure 5.6, Again, an exponential distribution of
mass appeared evident. In steady two-dimensional flow, with homogeneous vertical
dispersion (as modeled in this research) and homogeneous particles of uniform (mass-
average) settling velocity, the steady-state vertical balance between sedimentation and

vertical dispersion is described by equating the two fluxes,

TSS(z)m+EZaT—aS§(~Q -0, (5.14)

where Vs, is the mass-average settling velocity, With a vertical boundary condition of
TSS(z @ a) = TSSg near the bed (i.e., at a distance of ‘a’ above the bed), the solution

to {5.14) is (Vanoni, 1975)

[TTSSSéZa)] = e"P{' %}i (z- a)} - (5.15)

Z

A linearization of the vertical profile (5.15) is

InTSS(z) = InTSS, + %z—a i (%&)z (5.16)
A plot of linear regression indicated a reasonable fit of the simulation results to the
suggested first-order vertical response.

One cannot infer the two bed boundary condition parameters (location-height
and concentration) from the single correlation fitted to the solution (5.16). It is possible

1o isolate and estimate the coefficient (—vs/E,) from the regression slope, however, The
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slope was —5.92 x 10-5 cmr1, The vertical dispersion coefficient for the base case
simulation was a constant 8.94 cm?2/s. An estimate of the mass-average settling velocity
is the product of the regression slope and the dispersion coefficient, or 5.30 x 104
cm/s. The mass-average Stokesian particle diameter from the regression, corresponding
to this Stokes velocity, would be 1.24 um,

Mass-average particle diameters calculated from the simulation output particle
size distributions for each depth at X = 0.4 did not, however, agree well with the mass-
average diameter estimated from the regression. The mass-average particle diameters
from simulation increased from 3.64 um at the air-water interface (Z = 0.0) to 3.76 um
near the bed-water interface (Z = 0.8), a modest 3.4% increase. These mass-average
diameters were much larger than predicted from the regression. (For comparison, the
number-average diameters increased from 1,097 um at the air-water interface to 1.099
Hm near the bed-water interface, a minute 0.18% increase.)

Two possible physical explanations for the lack of agreement between mass-
average regression and simulation diameters are () the vertical distribution was not at
equilibrium and (b) the integral behavior of the heterodisperse particles is not accurately
describable by a single, lumped, mass-average settling velocity.

Concerning the first explanation, the vertical distribution at mid-lake (X=04)
was clearly not at equilibrium. This fact can be seen in the mass concentration isopleths
(Figure 5.3), where isoconcentration lines were not yet parallel to the flux boundary
(the bed). Nonequilibrium was even more evident in Figure 5.4, where the beginning
of the horizontal isoconcentration line at mid-depth (Z = 0.4) was not approached until

near the downstream end of the lake (X = 0.9).
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The reason for the underestimated mass-average settling velocity from the
regression slope is easily explained by referring to the original differential equation for
flux (5.14) and to the mass concentration isopleths (Figure 5.3). First, the mathematical
sedimentation flux is forced to equal the mathematical dispersive flux by the assumption
of the ODE (5.14) and its solution (5.15). When physical dispersion dominates in a
nonequilibrium situation, an underestimated mathematical settling velocity will result
given a fixed dispersion. As shown in Figure 5.3, the isoconcentration lines at mid-lake
were rising with distance, relative to the bed; this could only result from dispersion
domination over sedimentation.

A ratio of particle dispersive to sedimentation mass fluxes can be estimated by
the ratio of the actual velocity to the forced (regression) velocity. This ratio can be
estimated from the square of the actual to regressed mass-average diameters. In the base
case at X = 0.4, the ratio indicates that the dispersive flux is approximately 8.9 times
the sedimentation flux. The dispersive:sedimentation mass flux ratio will approach
unity as vertical equilibrium is approached, i.e., near the downstream end of the
system. Note also that the number flux ratio has no direct relationship to the mass flux
ratio, since particle sedimentation is strictly and strongly size-dependent.

Concerning the second explanation, which is the possible inability of a
mathematically lumped settling velocity to describe the distributed mass behavior, a
definitive answer cannot be given at this point. In general, a lumped velocity would be
fine for integral mass analysis if the size distribution was unchanging. That condition
was not met in the base case, as evidenced by the substantial loss of number
concentration and simultaneous increase in mass concentration. Coagulation and

sedimentation in conjunction with resuspension is the only combination of processes
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that can explain both observations. Simulations presented in the latter sections of this

chapter examine the explicit effects of each of these processes.

5.3.3 Bed mass

The integral behavior of the bed mass amplifies the above conclusions
concerning resuspension and attainment of equilibrium. Active bed mass [g/cm?] as a
function of longitudinal distance, at a simulation time of three mean residence times, is
presented in Figure 5.7. The simulation had began with a uniform active bed mass
down the length of the system. After three mean residence times, the bed was
degrading with time, while the water column had reached steady-state.

In response to the steady and uniform bed shear stress, which exceeded the
critical bed shear strength, bed mass was continuously resuspended into the water
column. Except for the upstream boundary (X = 0), all nodes lost the same absolute
amount of bed mass during the period of the simulation, based strictly on excess shear
stress. The upstream boundary bed mass was fixed so that no resuspension could occur
to affect the overlying (Dirichlet) water column boundary concentrations, Despite
identical absolute mass resuspension fluxes from each node, the net mass flux varied
noticeably and consistently down length of the bed, as less net loss of bed mass from
downstream nodes.

Bed mass response shown in Figure 5.7 is the cumulative response to all
positive and negative fluxes. Greater bed mass in succeeding downstream bed nodes is
not a reflection of smaller resuspension flux but a demonstration of greater
sedimentation flux. Fundamentally, the (number) sedimentation flux is merely the
product of (number) concentration and discrete settling velocity. Given that discrete

settling velocities are not a function of distance, the increasing near-bed water column
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concentrations present at downstream locations had to be responsible for the larger
downstream sedimentation fluxes to the bed.

As discussed above in conjunction with the water column number and mass
concentration isopleths (Figures 5.1 and 5.3), mass concentrations increased with
downstream distance, but number concentrations displayed the opposite behavior.
Resuspension, coupled with an imbalance between sedimentation and dispersion (i.e.,
the net flux up), serves to increase mass concentrations in the near-bed fluid. These
relatively small longitudinal gradients in mass concentration provided the longitudinally
increasing sedimentation fluxes that are apparent. Given enough distance, a balance
between absolute fluxes will be achieved such that the net bed flux is zero, neither
aggrading nor degrading.

It is interesting to note that resuspension cannot be considered one of the
parallel vertical flux processes operating on the water column suspension, despite the
contrary assumptions discussed above. Resuspension is a boundary flux. As such, it
operates in series with the water column processes. Particles from the bed must be
transferred from the inventory of bed solids into the water column before they are
available for coagulation and sedimentation.

For processes in series, the slowest one determines the overall rate of progress.
The mass concentration isopleths (Figure 5.3) clearly show that resuspension was not
rate determining in this system. Bed mass that eroded into the near-bed water column
accumulated there faster than it could be mixed away by dispersion. This was
evidenced in two ways: first, by the increasing concentration with distance in the near-

bed region (an accumulation), and second, by the ‘trajectories’ or isoconcentration lines
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leaving the bed and sweeping eventually up to the air-water interface. Both results
demonstrate that resuspension was faster than vertical mixing.

The 2-dimensional simulation also highlighted interaction between the vertical
processes. Based upon the system parameters defined a priori, it was stated above that
the characteristic vertical mixing time of H2/E, was only 5.2 hr, or approximately 0.13
mean residence times. It is interesting that this characteristic time can also be observed
in the simulation results, despite the potential confusion of interpreting the results from
competing series/parallel, forward/backward, and longitudinal/vertical processes.

Specifically, the characteristic vertical mixing time can be inferred from Figure
5.3 in the region where vertical dispersion flux dominated sedimentation flux. This
region extended between fractional longitudinal distances X = 0.1 and X = 0.3,
spanning the region of initial resuspension and dispersive dominance. Thus the travel
time taken for the first developed isoconcentration line (9.9 mg/L) to travel from the
near-bed to the air-water interface was equal to the characteristic vertical mixing time.
Further downstream, the apparent speed of vertical mixing was offset by the increased
sedimentation flux; travel time for isoconcentration lines to traverse the water column
depth increased. Beyond the point of established vertical flux equilibrium (horizontal

isoconcentration lines), vertical particle mixing would not be discernible via the

concentration isopleths.

5.3.4 Total surface area
Steady-state total particle surface area concentration isopleths, shown in Figure
5.8, were also derived from the number concentrations. It is assumed that the

superficial surface area of the spheres gives a representative idea of the potential
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same sign. The illusion is caused by the relative opposition of their longitudinal

gradients.

5.3.5 Integral summary

A review of integral particle behavior results reveals the important strengths and
limitations of the integral approach. The major strength is that each individual integral
measure provides some indication of (net) processes taking place. For example, the
total mass concentration isopleths clearly demonstrate the dominance of resuspension.
This strength is based, however, upon the integration of the discrete particle
distributions, a procedure unavailable to traditional water quality modelers.

The weakness of the integral approach is that a single integral measure, taken
alone, cannot enable conclusions differentiating the simultaneous process influences.
For example, the surface area concentration isopleths cannot differentiate coagulation
effects, which are driven by number concentrations, from sedimentation and
resuspension effects, which are driven by mass concentrations. This limitation is true
for any single integral property of a dynamic and heterogeneous particle size
distribution.

Without information about the particle size distribution, one cannot determine
relative process influences, Without a deterministic knowledge of cause and effect,
based upon process insight and mechanistic description, system modeling is hopelessly
confined to case by case calibration. Discrete particle modeling offers the ability to

assess competing process influences.
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sorptive media available. This use of the particle distribution is a key element in the
particle-associated contaminant model presented in Appendix A.

Recall that the simulation was initialized with the default particle size
distribution, uniform throughout the water column domain. The total particle surface
area concentration was 221 cm?/L. The initial particle size distribution, with the
assumptions of sphericity and effective density, has a specific (superficial) surface area
of 2.24 m%/g.

Comparing the surface area isopleths of Figure 5.8 with number and mass
isopleths (Figures 5.1 and 5.3), it can be observed that total surface area response was
qualitatively intermediate between the number and mass behavior. Particular likenesses
and differences existed between area and number as well as between area and mass.

As did the total number concentration, the total surface area concentration
decreased in the longitudinal direction. The decrease was approximately 32% between
inflow and outflow. The surface area loss was expected, given the relatively large
number concentration decreases (60%) and the relatively small mass concentration
increases (4%). Because of the small mass concentration increase in conjunction with
loss of surface area, the specific area reduction was slightly more than the surface area
concentration reduction; the specific surface area was decreased approximately 34% to
1.47 m?/g,

A vertical gradient of surface area concentration is noticeable in the isopleths of
Figure 5.8. This behavior is similar to that of the total mass concentration, Although the
vertical gradients of the surface area isoconcentration lines appear to be opposite to

those of the mass isoconcentration lines (Figure 5.3), both sets of gradients have the
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5.4 DBASE CASE; DISCRETE PARTYICLE BEHAVIOR

Following completion of the integral analysis of the base case in the previous
section, analysis of the discrete behavior of the particle distribution can now provide
further amplification, Viewed from the more fundamental particle level, the steady-state
system response under base case conditions can be more completely understood.

Elements of particle size distribution description were introduced in Section 3.6.

5.4.1 Discrete number

Absolute discrete number concentrations served as state variables in the
transport-transformation model and were used to derive the integral particle measures
presented in Section 5.3. This absolute, discrete particle number concentration (AN(k)
in Section 3.6 notation and this chapter, or ng in Chapter 4 notation) is a function of
four independent dimensions, i.e., time level (1), particle size class (k), longitudinal
node (i), and vertical node (j). At a fixed time, the two spatial dimensions and one
particle concentration dimension form a three-dimensional array. Presentation of these
3-D arrays cannot be easily accomplished in two dimensions. Therefore, all size
distributions are presented here either at a point or as a function of one spatial
dimension,

The dynamics of base case particle behavior are fully discussed below, but the
mechanics of the size distribution are illustrated first. The curves in Figure 5.9
represent three “number distributions”. These number distributions normalize the
absolute number concentrations discretized in modeling and experimental analyses.
Lawler (1987) has argued that the absolute discrete (i.e., finite size range class) particle

concentrations of whatever measure (number, volume, mass, or surface area) must be
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normalized by the diameter increment of the discrete size class. As an example, the
(state variable) absolute number concentration for each size class is normalized by the
log diameter increment for that size class. The symbolic magnitude of the number
distribution for a size class k, at a point, is AN(k)/A(log dp). The number distributions
of Figure 5.9 were obtained by such normalization.

Normalization performs two useful functions (Lawler, 1987). First, since these
distributions are normally presented as a function of equally spaced intervals of log
diameter, the distribution may be more easily integrated to give incremental,
cumulative, and total concentrations. This normalization allows convenient visual
integration. A second and more important reason is that normalization makes the
function independent of the specific value of the log diameter interval that is used. The
A(log dp) available in certain experimental particle size counters is fixed, although in
modeling and the other particle size counters it is adjustable. Without the normalization
by A(log dp), function values are relative measures rather than true absolutes, which
limits the utility of the work to others. In the modeling performed in this research, the
A(log dp) used was 0.1.

The three number distributions in Figure 5.9 correspond to the three standard
longitudinal locations at inflow, mid-lake, and outflow (X = 0.0, 0.4, 1.0), all at the
standard mid-depth (Z = 0.4). Two facts are apparent. The first is the obvious loss of
particle number, i.e., the integral of the number distributions. Integrating under the
inflow and outflow curves, the same 60% loss cited in the integral analysis is found.
The second and more telling observation is that the relative loss of particles was much
greater in the small sizes than in the larger sizes. Coagulation is the only mechanism

that could accomplish both; subsequent analysis will examine process competition.
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Number concentrations decreased with distance for all but the larger particle
sizes, log(dp) 2 0.5. Although not demonstrated well by number distributions, the
number concentrations increased for the largest particles, and accounts for the
increasing total mass concentrations, discussed in the integral analysis section.

On the arithmetic ordinate scale of Figure 5.9, all of the concentrations at the
larger sizes appear to be zero; this is a problem, but there is a solution. A log ordinate
scale is the customary remedy for this problem. The functional normalization is
accomplished in a slightly different manner, i.e., by Adp instead of by A(log dp). The
log of the “particle size distribution function,” or log PSDF, is calculated as
log(AN(k)/A dp). The log PSDF corresponding to Figure 5.9 is plotted in Figure 5.10.

The log PSDFs in Figure 5.10 express the conditions at the three standard
longitudinal locations at mid-depth. Particle number reductions occurred during travel
between the upstream boundary and mid-lake for particles smaller than 2.5 um (log dp
< 0.4); for larger diameters, concentrations increased during travel. The number
concentration also were reduced between mid-lake and the downstream boundary for
particles smaller than 3 um (log dp < 0.5); for larger diameters, concentrations
increased.

The log PSDFs in Figure 5.10 conclusively demonstrate that coagulation was
taking place. Consider the potential mechanisms causing the net loss in particle number
concentration (flocculation, sedimentation, and resuspension/dispersion). Bed
resuspension was not responsible for the substantial number loss because it obviously
would have acted counter to the decrease. Sedimentation was not responsible for the
number loss: the settling velocities of those particles actually lost (dp < 2.5 Lm) were

insufficient to cause observable sedimentation loss. Only flocculation could have
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produced the loss of particle number concentration, evidenced in the smaller diameters,
as shown in the upstream vs. downstream comparisons of Figure 5,10, The cause for
the loss of total number accompanied by a gain of total mass, which could only be
guessed with the integral results, is revealed by discrete particle analysis.

The PSDFs in Figure 5.10 illustrate some other interesting effects, probably
due to bed resuspension. Erosion is suggested by the appearance of inflection points in
the PSDFs, as well as by the new concave-up regions that span the several largest size
classes; this behavior was present between the mid-lake and downstream outflow
locations. It seems that the particles that a) were small enough to be dispersed
(vertically) faster than they settled and b) existed in concentrations large enough in the
bed to supply the process, caused this unusual behavior (diameters of 1.1 < log dp =
1.5). This behavior resembles the superposition of two different parent particle size
distributions, which it actually is. This behavior has not been reported in previous
modeling and experimental studies (e.g., Lawler and Wilkes, 1984; O'Melia and
Bowman, 1984; Weilenmann et al., 1989), The clear distinction is that those studies

incorporated only a single size distribution inflow, e.g., no bed-water boundary fluxes.

5.4.2 Discrete volume

Volume distributions of the base case simulation are presented in this section.
These distributions are analogous to the number distributions of the previous section in
their origin and normalization.

Evolution of the volume distribution is shown for the standard longitudinal
profile in Figure 5.11. Virtually every longitudinal response presented in the integral
and discrete analyses is dramatically evident in this figure. First, the loss of the smaller

particle volumes with distance confirms the coagulation conclusion. At the log dp = 0.
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size class, for example, approximately two thirds of the particle volume present at
inflow has been removed. Second, volume in the larger size classes increased with
distance. At the log dp = 0.7 size class, for example, the particle volume present at
inflow has almost doubled due to coagulation and perhaps resuspension. Third, the
peak of the volume distribution (the volume modal diameter) shifts markedly to larger
sizes as one progresses down the lake. The inflow peak is increased from log dp = 0.3
to log dp = 0.6 at the outflow. The shift in peak is again indicative of coagulation and
perhaps resuspension. Last, the total volumes (the integrated areas under the
distributions), proportional to the total mass, are almost constant with distance, as
indicated previously.

The slight increase of total mass (volume) occurred by the introduction of large
particles (log dp = 1.1) that were not initially present. By shifting the mode, the
addition of larger particles via resuspension also resulted in pronounced skewing of the

distribution, from positive to negative.

5.4.3 Discrete surface area

Surface area distributions, shown for the standard longitudinal profile in Figure
5.12, displayed the intermediate behavior expected from the previous analyses. Total
superficial surface area concentrations, equal to the integrated area under the area
distributions, decreased down the length of the system. The decrease of total area
occurred by the loss of small and intermediate size particles (log dp < 0.3) by
flocculation, The absolute surface area concentration of larger particles increased with
distance due to resuspension. The combination of area gain and loss increased the

modal diameter of the area concentration distribution from log dp = 0.2 at the upstream
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boundary to log dp = 0.4 at the downstream boundary. By shifting the mode,

coagulation and resuspension resulted in a reduced skewness of the distribution.

5.4.4 Discrete vertical response

The two number distributions in Figure 5.13 correspond to two vertical
locations in the mid-lake (X = 0.4) water column, at the air-water interface (Z = 0.0)
and near the bed (Z = 0.8). There is no discernible difference between the two number
distributions. Visually integrating the number distributions qualitatively confirms the
vertical uniformity of total number concentration, as discussed in Section 5.3 on
integral behavior. Because of the near identity of the two distributions at larger sizes,
and the lack of resolution there, the larger mass concentrations near the bed cannot be
detected using the number distributions.

Examination of the PSDFs does, however, provide the sensitivity to detect the
relatively small vertical differences in the number concentrations. Figures 5.14 (a) and
(b) contain the near-surface and near-bed PSDFs at mid-lake and at the downstream
boundary, respectively. Larger number concentrations of the larger particles (log dp >
1.1) were apparent near the bed as compared to the air-water interface. These particle
size distributions provide a size-dependent demonstration of how an exponential mass
distribution (Figure 5.6) is generated, especially for a heterogeneous suspension, and
exactly which particles are vertically segregated by the gravitational and dispersion
forces, i.e., only the larger particles. The vertical differences were greater at mid-lake
than at the downstream boundary. These longitudinal changes are another indication of
the vertical nonequilibrium between resuspension and sedimentation which was seen in
the integral mass analysis. With size-dependent information, the reason for and extent

of the nonequilibrium is more explicit with discrete particle distributions.
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5.4.5 Discrete response summary

A review of discrete particle analyses reveals the important advantages of the
discrete approach. First, the discrete approach provides all of the information obtainable
from integral analysis. The advantage presented by the discrete approach is that it goes
beyond integral analysis to provide size-dependent distributions of the suspension. It is
these data that provide the platform for understanding the explicit processes, with
different time scales, competing to change the overall size distribution of the
suspension. Some might argue that, if mechanisms can be lumped into a composite
process, the discrete distributions provide more information that one needs. This might
be true in situations where conditions are unchanging, or when only a single integral
parameter is of interest. However, the use of discrete analysis is actually more efficient
than constructing a new model for new conditions; discrete analysis avoids constructing
and then trying to link (non-mechanistically) three individual models for the three

individual integral responses of particle volume (mass), number, and surface area.

5.5 PROCESS INFLUENCES

The processes involved in changing the particle size distribution within a control
volume advected in a Lagrangian reference frame are coagulation, bed resuspension,
and sedimentation. The effects upon the size distribution due to combination of these
three principal processes (in conjunction with fluid transport) were examined in the
previous section, the base case. In this section, the effects that the individual processes
have upon integral and discrete behavior are examined. Process intercomparisons are

presented, and the base case results serve as a point of reference.
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The effect of an individual process upon the spatially varying PSD is of central
concern. Although the typical solids modeling approach ignores coagulation and often
lumps settling and resuspension into a net, depth-averaged, first-order process, the
three mechanisms actually operate in an independent and nonlinear manner. The overall
nonlinear response is the result of processes (gravitational settling and reaction kinetics)
which are nonlinear, with respect to discrete particle size particle size, acting on a
heterodisperse suspension. Traditional mass-based modeling schemes cannot capture
these nonlinearities with a linear approach. Isolation of individual process influences
thus provides insight concerning their particular significance.

System responses were simulated, process by process, assuming either the sole
presence or the total absence of that individual process. Comparisons of results, a) with
the process operating (either the base condition or as the sole process) vs. b) without
the process operating, are presented and analyzed. A summary of the integral behavior
is given in Table 5.1, and this table is referenced in conjunction with the discrete
particle discussions in the process subsections below. System responses to relative
degrees or rates (parameter sensitivity, Section 5.6) is the topic of the next section.

Integral results summarized in Table 5.1 are for the six process conditions
which are discussed in this section. Two other conditions are also presented for
reference, i.e., the base case and the fluid-transport-only case. Response of the system
was measured in three integral parameters, dealing with total particle number, volume,
and area concentrations. These parameters are the ratios of the concentrations at mid-
depth at the outflow boundary (an approximation for the outflow concentration

averaged over the depth) to their respective concentrations at the inflow. Ratios
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represent the average fractions remaining, although values can be greater than 1.0 due

to boundary fluxes.

5.5.1 Coagulation

The influence of particle coagulation was examined by isolating coagulation (in
conjunction with transport) as the only operative process, as well as by eliminating
coagulation from the simulation. Isolation of coagulation was accomplished in the
simulation by numerically forcing sedimentation and resuspension fluxes to zero.
Sedimentation fluxes were forced to zero by setting the Iparticle - fluidl density
difference to zero; resuspension fluxes were forced to zero by setting the erosion rate
constant to zero. Excluding coagulation was accomplished by two equivalent
approaches. The first method was to make the particles completely stable, i.e., by
setting the chemical collision efficiency Ochem to 0.0. Thus the actual collisions
between particles (collisions which are known to occur via the thermal, gravitational,
and turbulent mechanisms discussed in Chapter 2) were still simulated, but attachment
and changes in the size distribution were suppressed. As a check, the coagulation
process could be completely bypassed in test simulations, and this was done to verify
that the same results were achieved with either method.

The effects of coagulation on the particle size distributions were substantial.
These consequences are illustrated most dramatically by comparing plots of the
evolution of the size distribution resulting from sedimentation and resuspension only
(i.e., without coagulation) with the base case evolution. Comparisons with simulations
including coagulation only then follow.

First, in the absence of coagulation, relatively small changes in the PSDs over

space were observed. Longitudinal PSD evolution plots are presented in Figure 5.15.
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As shown in Figure 5.15(a), particle volume was essentially constant with distance for
the smaller sizes, those smaller than the distribution mode (log dp £ 0.3). For all sizes
larger than the distribution mode, volume was added to the PSD with distance. The
relative increases of particle volume were substantial only in the largest sizes (dp>10
Hm). Because the integrated volume distribution increased rather than decreased with
distance, one can conclude that the net changes were due to bed resuspension
outweighing sedimentation. The mode of the volume PSD remained unchanged with
distance, however, and the volume-mean diameter was affected little.

The longitudinal profiles of the log of the particle size distribution function
(Figure 5.15b) confirmed that insignificant changes in the number distribution occurred
throughout most of the distribution (log dp £ 1.0, or dp < 10 pm). Plots of log PSDF
accentuate the arrival of the larger particles from the bed and their subsequently
increasing concentration, with distance, in the water column. Also, the inflection points
in the log PSDFs at log dp = 1.1 signal the initial discontinuity, as well as the gradual
approach to equilibrium, between the original bed and water column PSDs.

Integral results for the no-coagulation case, presented in Table 5.1, provide an
additional perspective on the particle behavior. The total number concentration change
from system inflow to outflow was only +1.2% (c.f. the base case change of -59.8%);
comparatively large resuspension-induced increases in the PSDF at the large end of the
size spectrum were actually small relative to the concentrations of small particles, The
modest total volume increase, +8.1%, is important in that it was twice as large as the
base case volume increase of +4.2%. By not flocculating small particles into larger
particles that could be settled more easily, the conditions enabled more mass to remain

in suspension at small sizes. The longitudinal total area concentration increase of 0.9%
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was smaller than either the number or volume increases. That the area concentration
results did not fall intermediate between the number and volume results was contrary to
the coagulation-sedimentation expectation based on size-dependent physics.
Resuspension caused this seeming contradiction.

The converse situation, coagulation operating alone, provides the
complementary perspective to the no-coagulation scenario discussed above. The
coagulation-alone volume distribution was compared with both the no-coagulation case
and the base case results. In Figure 5.16, results at the downstream boundary for the
three cases are shown. The plot labeled ‘Base’ represents all three mechanisms
operative (C - coagulation, § - sedimentation, and R - resuspension), the case
discussed in Sections 5.3 and 5.4. The plot labeled ‘No C’ represented no coagulation
but sedimentation and resuspension operative. The plot labeled ‘C only’ represents
conditions of no sedimentation or resuspension but coagulation occurring. Recognize
that the ‘coagulation-only’ case was achieved in part by suppressing sedimentation,
i.e., by setting particle density equal to fluid density. Interparticle collisions by
differential sedimentation were also suppressed. Thus, specific coagulation rates for
this case were smaller than in the base case.

With coagulation alone, the entire volume distribution was shifted to larger
sizes, just as in the base case. Minor differences between the coagulation-alone case
and base case distributions in Figure 5.16(a) substantiated that most of the volume
distribution shifting observed in the base case was the result of coagulation rather than
bed-water exchange. Superimposing the effect of net resuspension flux on top of the
coagulation-only response revealed that perceptible amounts of volume were added to

the distribution (comparing Figure 5.16(a) coagulation-only vs. base). These increases
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took place only at particle sizes larger than the distribution mode. As in the no-
coagulation case, relatively large volume distribution increases occurred only at the very
largest particle sizes.

The interesting difference between the volume PSDs in the coagulation-only and
coagulation-absent cases was that the modal diameters were separated by three discrete
size classes. This separation was very large: the factor of 2 in the diameter mode
difference would be a factor of 8 in the equivalent volume/mass mode difference. The
lack of shift in the volume PSD for the case without coagulation (but resuspension)
reflected the potential contribution of the bed mass eroded and mixed vertically through
the water column. The probable reason that perceptible increases in the volume PSD of
the no-coagulation case did not occur at diameters smaller than the boundary
distribution mode (log dp = 0.3) was that these particles were not transferred from the
bed fast enough to produce such a change. A plausible explanation for the fact that
perceptible differences were not detected between the coagulation-alone volume PSD
and the coagulation plus resuspension (base case) volume PSD in the small size (-04 <
log dp < 0.6) range is this: the resuspended particles that were smaller than the volume
distribution mode became quickly consumed by coagulation and transferred up the
distribution, so that no accumulation appears.

The particle size distribution functions (Figure 5.16b) confirmed the effects
observed above concerning the volume PSD. An observation is suggested by the
intersection of the coagulation-only and coagulation-absent log PSDFs at the particle
size log dp = 1.1. This point marked the diameter at which resuspension and
coagulation resulted in equivalent modifications of the PSDs. In general, it is not

correct to say that at that point the two different processes in the two different cases
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were exerting the same effect on that size particle, much less the two entire PSDFs.
Rather, the process equivalence would have to be interpreted in the context of integrated
or cumulative effects, as the diameter of PSDF equivalence would change in space.

The integral responses for the coagulation-only case were nearly the same as
those of the base case, as shown in Table 5.1. With no resuspension or sedimentation
acting to remove particles from the water column, the simulated fractional volume
remaining result of 0.9999 was essentially equivalent to the value of 1.0000
theoretically expected for volume conservation. The slight difference was due to
numerical error. Smaller integral volume for the coagulation-only case, relative to the
base case, was expected because of the net erosion in the base case. The larger (relative
to the base case) integral number for the coagulation-only case might not be expected,
given its absence of net erosion, but two factors could explain it. Most likely, the lack
of collisions by differential sedimentation maintained higher number concentrations.
Alternately, the lack of fine particle flux from the bed could have slowed the

coagulation kinetics.

5.5.2 Bed resuspension

Resuspension of bed mass into the water column also had substantial effects
upon the water column PSDs. The magnitude of the process’s impacts on the PSD was
estimated by simulating and comparing two conditions: no resuspension (i.e.,
coagulation and sedimentation) and resuspension alone. For engineered systems, ideal
sedimentation tank analysis typifies the first case, and natural system conditions of no
significant gross (as opposed to net) resuspension are physically plausible. In the
second case of resuspension alone, it is doubtful that natural systems exist at steady-

state with resuspension but no settling or coagulation, The comparisons are valuable for
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process insight, though, so the volume distribution evolution resulting from the two
cases are contrasted in Figures 5.17 (a) and (b).

The longitudinal evolution of the volume distribution without resuspension
(Figure 5.17a) bears both similarities and dissimilarities to the base case results. The
primary similarity to the base case is the shifting of the volume PSD to larger diameters.
In the absence of resuspension, this shift was surely the result of coagulation. The
modal diameter increased three size classes, just as the base case had.

There were more dissimilarities than similarities, however, between the case of
no resuspension and the base case. An obvious deviation from the base case volume
PSD evolution was that particle settling, no longer offset by resuspension flux, resulted
in net sedimentation and the loss of mass from the water column. The final average
diameter was smaller than in the base case due to the absence of the largest particles
supplied by the bed. Another difference from the base case was the increased skew of
the outflow volume distribution; the inflow volume PSD was positively skewed, and
both outflow volume PSDs were negatively skewed, but suppression of resuspension
accentuated the skewness.

The integral behavior of the no-resuspension case is summarized in Table 5.1.
Integral number and area reductions across the System were similar to those of the base
case. Coagulation and sedimentation (rather than resuspension), which were operating
in both scenarios, certainly dictated reduction of number and area. Integral volume
behavior was markedly different from the base case, however. Small numbers of large
particles, with relatively small surface area, were entrained in the water column by base
case resuspension, and these large particles added the volume not seen in the no-

resuspension case,



[

Volume Distribution
AV/A(log d ), [um®/em®]

Volume Distribution
av/flog d ), [um®/cm®]

Figure 5.17

1.2

1.0

8.0

8.0

4.0

2.0

1.2

1.0

8.0

6.0

4.0

2.0

161

ke

.o [ @ No Resuspension . —O— X=00

-1 -0.5 4] 0.5 1 1.5 2
log Diameter, [dp in pm]

Effect of Resuspension on Longitudinal Evolution of
Particle Size Distributions



162

How great an impact resuspension itself has on the PSD can only be inferred by
eliminating the processes competing with it. System response with resuspension alone
was also simulated. With direct competition from sedimentation removed, and without
the PSD modifications caused by coagulation, resuspension can be seen to cause
considerable change in the volume PSD, as shown in Figure 5.17(b).

The longitudinal evolution of the volume PSDs with resuspension alone
clarifies the role of bulk resuspension in water column response. Substantial mass was
added to the water column by resuspension; approximately 33% more was suspended
in the outflow than in the inflow to the system. The peak volume concentration
increased marginally. The increases in the volume distribution, confined almost
exclusively to sizes equal to and larger than the mode of the water column volume
distribution, were determined by the mass fraction in the bed for each dp. Thus,
although the outflow’s discrete volume distribution modal diameter remained constant,
resuspension increased the volume in larger size classes substantially.

Particle size distributions at the system outflow, shown in Figure 5.18,
illustrate two resuspension effects more clearly. First, resuspension did not influence
the concentrations of small particles to any appreciable degree. Concentrations were
essentially the same with or without resuspension, provided that coagulation took
place. Both the volume PSDs (Figure 5.18a) and the PSDFs (Figure 5.18b) illustrate
these small particle effects. Second, resuspension greatly increased the concentrations
of the larger particles, i.e., those larger than the bed volume peak. Actually, the
resuspension-induced increase is seen at log dp = 1.1, and the assumed bed volume

peak was a plateau that spanned three size classes, 0.8 < log dp < 1.0. The marked
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abundance of the largest particles concentrations due to resuspension is particularly
clear in the log PSDF.

The particle process mix in the resuspension-alone simulation influenced the
integral responses as would be expected. As shown in Table 5.1, total particle number,
area, and volume concentrations each increased across the system, more than the base

case and substantially more than the no-resuspension case.

5.5.3 Sedimentation

Sedimentation of particles from the water column produced substantial effects
upon the water column PSD responses, just as its companion processes had. The
magnitude of the process’s impacts on the PSD were estimated by simulating
conditions of sedimentation alone vs. coagulation and resuspension alone, Conditions
of negligible (net) sedimentation are present in many turbulent flows of fine particle
suspensions; however, silt and sand sized particles do have consequential settling
velocities, and a flocculating, eroding system with no sedimentation is not physically
probable. Cases of steady-state sedimentation alone, i.e., with negligible resuspension
and coagulation, would be more likely than the converse.

The general form of the longitudinal evolution of the volume distribution
without sedimentation (Figure 5.19a) appears as an exaggeration of the base case
results. There was the same characteristic shift of the volume PSD to larger diameters,
As in the base case, the shift was primarily due to coagulation. The modal diameter
shifted an additional size class (four compared to three), however, since sedimentation
did not act to counter the largest particles emanating from the bed.

One can see from Figure 5.19(a) that the total volume increased substantially in

the absence of sedimentation. As reported in Table 5. 1, the integral volume increased
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approximately 33% between inflow and outflow, even while total number decreased
58%. Since coagulation does not produce added volume, the volume increase was due
strictly to resuspension, and this case produces the same volume response as the
resuspension-only case in Section 5.5.2. Thus, the total volume increase with no
sedimentation was identical to the total volume increase under resuspension only.
Because coagulation was present in one case and absent in the other, the forms of the
volume distributions and the total number concentrations obviously differed.

The plots of volume distribution results for sedimentation without resuspension
or coagulation (Figure 5.19b) are most similar to those for sedimentation and
resuspension without coagulation (Figure 5.15a). Their common feature is that neither
case has coagulation to bring about particle growth. In both cases, small particle (dp<
mode) values of the two sets of volume PSDs remain constant through space. For
larger sizes in the former case (with sedimentation alone), the volume distribution
gradually decreased due to net sedimentation flux. For larger sizes in the latter case
(with resuspension), the volume distribution gradually increased due to the net
resuspension flux. Without coagulation and resuspension, the sedimentation-only
conditions did not result in the appearance of any very large particles, i.e., particles

larger than those present in the inflow distribution.

5.6 |DEAL SYSTEM PARAMETER SENSITIVITY

Varying degrees of state variable response can be elicited (mathematically and
physically) from different systems subject to different forcing functions and system
conditions. In the last section, the ideal rectangular system was examined in the context
of absolute process influences. Steady-state system responses to size-dependent particle

transport and reaction processes were analyzed. The method used was to consider the
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effects of on-off process combinations. For this section, all three processes remained
active. Analysis was of steady-state system response to relative variations in the
conditions controlling process action. In other words, the model was subjected to a
sensitivity analysis. Conditions included key process parameters and system

descriptors.

5.6.1 Sensitivity analysis approach

Sensitivity analysis allows the identification of the parameters which have
significant impact in the simulated response of a state variable. This analysis is of great
value in aiding the decisions of when or where to allocate resources in parameter
measurement, estimation, or experimentation; occasionally, sensitivity analysis can aid
in the identification of significant vs. insignificant processes. In water quality
modeling, the state variable is usually a contaminant species concentration. The
parameters are coefficients which describe quantitatively the process kinetics and the
system structure. The parameters can be lumped or distributed in space as well as
constant or variable in time. The modeling framework employed for this and previous
sections has used lumped and steady-state parameters.

The sensitivity coefficient measures the normalized change in state variable
response relative to the normalized parameter change. The approach of Beck (1983) has
been used in this analysis. The standard response and parameter values are those
embodied in the base case, which was described above. In defining the sensitivity

coefficient S;; for response variable ‘i’ to parameter ‘j,” the following notation is used:

Sy = & (5.17)
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where
C = Standard (base case) system response of state variable i
G = Non-standard (test case) system response of state variable i
AC, = C -G
Ej = Value of standard (base case) parameter j
B; = Value of non-standard (test case) parameter j
ABj = B - B

The magnitude of the sensitivity coefficient indicates the importance of
accurately estimating a particular parameter. For parameters causing a linear system
response, the sensitivity coefficient would have a value of 1.0. For example, doubling
the standard parameter value would result in a doubling of the standard state variable
system response. A small value of the sensitivity coefficient, i.e., a value much less
than unity, indicates either little difference in system response (when using the alternate
vs. the standard parameter value), very large relative parameter change, or both.

Note that individual process significance cannot, in general, be ruled out solely
on the basis of a small magnitude sensitivity coefficient for that process. The coefficient
is based upon the response of the overall system, and a significant process could
produce a component response that is exactly offset by the component response from a
competing process. If, however, the parameter sensitivity coefficient value is very
small given a (physically conceivable) parameter value that corresponds to an
inoperative process, then the process can be judged to have negligible effect on system
response.

Equation (5.17) can be rearranged and expressed as the product of a constant,

positive fraction and a variable, positive or negative slope, i.e.,
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AC,
AB;

This expression reveals that the sensitivity coefficient will vary if the system response

S = [ﬁ . (5.18)

G

is nonlinear, i.e., when AC/AB; is not constant. An example of this behavior is given
in Figure 5.20, which shows the nonlinear variation of the response/parameter slope
with different parameter values. At smaller values of parameter Bj, the sensitivity
appears to be of great (negative) magnitude, but at larger values of Bj the sensitivity
appears to be of small (negative) magnitude. The sensitivity in the neighborhood of the
standard parameter value, indicated by the solid tangent line, is in between the two
extremes. Approximating the standard case sensitivity (i.e., as ABj — 0) using the
lower and upper parameters yields underestimates and overestimates, respectively,

using the two-point estimates of (5.17).

Figure 5.20 Variation in Sensitivity Coefficient with Parameter

Value.
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Any of the integral or discrete measures of particle concentration that have been
previously presented could be selected as the state variable to represent steady-state
system response. The integral particle number, surface area, and volume (mass)
concentrations were chosen for this study. Each of these concentrations represents a
different aspect of particle behavior that bears on particle and particle-associated
behavior. In addition, the point in space chosen for comparison purposes was the mid-
depth, downstream outflow node (X = 1.0, Z = 0.4) used in sections above. This
location is well-suited to use in the sensitivity analysis for its ability to reflect the
cumulative system response.

Parameters considered for sensitivity analysis are discussed in four groups:
fluid properties affecting coagulation kinetics, particle properties affecting both
coagulation and transport, transport system properties, and bed-water transport

coupling properties.

5.6.2 Fluid properties

Many of the model parameters indirectly affect coagulation, but this section
focuses on fluid properties that directly affect the kinetics of flocculation. These
parameters describe physical and chemical properties of the fluid or the flow field that
determine either the interparticle transport or the attachment probability. This group of
parameters includes solid-solution interfacial chemistry (particle collision efficiency),
fluid temperature, and velocity gradient. The particle collision efficiency is determined
by both the solution chemistry and the surface chemistry so could be considered either a
“fluid property” or a “suspension property;” it was decided to include this parameter on

this section on fluid properties. Table 5.2 includes the results for this first group.
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Particle collision efficiency effects have already been addressed in the on/off
approach of Section 5.5; considered here is the relative sensitivity to the parameter
Olchems the collision efficiency coefficient. This coefficient has a theoretical range of 0.0
(no collisions produce attachment) to 1.0 (where every predicted collision produces
attachment). The base case parameter value used was 0.2, a magnitude whose selection
was discussed in sections above.

The sensitivity of the system total number concentration response to O¢hem Was
of the type illustrated in Figure 5.20, i.e., both nonlinear and negative. System
response was very sensitive in the low range of parameter values, as reflected in the
sensitivity coefficient of -1.571, confirming the results reviewed in Section 5.5 for
coagulation turned off. By virtue of the two-point estimate, the coefficient was actally
underestimated. The coefficient reported had the largest (albeit negative) magnitude of
any of the total number concentration/parameter sensitivity coefficients in this study.
The system response was not as sensitive to values of the parameter chosen from the
upper end of the feasible range, with Sjj of -0.188. It is believed that a monotonal
system response exists and that in the mid-range (values of O¢hem near the base case),
the system response is moderately sensitive to the parameter value.

By the nature of the particle size distribution, the sensitivity of the total area and
mass (derived from volume) concentration responses t0 (¢hem Was less than for the
total number concentration. Changing the collision efficiency value had obvious
impacts on the absolute area and mass concentrations as noted in Table 5.2. This
simulation illustrates that small sensitivity coefficients do not necessarily mean that
system response changes are also small. Surface area concentrations were modified

substantially in response t0 O¢chem changes. Mass concentrations did not change
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substantially in the absence of coagulation because of resuspension dominance, which
was discussed in Section 5.5. Conditions producing perfect attachment, however,
reversed the net vertical flux such that mass concentrations were reduced absolutely
(with longitudinal distance) as well as relative to the base case.

In both absolute and relative terms, i.e., in absolute system concentration
responses as well as in sensitivity coefficients, variations in the velocity gradient
parameter G did not produce as much influence as had Olchem. A reduced G of 1.0 !
represents an average condition in the upper water column of a lake or marine system.
The conditions represented by a velocity gradient of 50 s-1 could be encountered in a
turbulent coastal environment, a shallow lake during a storm, or a large, swift river.

Reduction of G from 10.0 s- to 1.0 571 caused substantially less coagulation to
occur; the resulting number, surface area, and mass concentration system responses
were thus all greater than in the base case. Sensitivity of the number concentration was
again the most responsive to the parameter change. The effect of reduced velocity
gradient on the mass concentration was relatively weak, while the effect on surface area
concentration was moderate.

Compared against the decreased velocity gradient outcomes, the increased
velocity gradient caused larger absolute changes in concentration responses but smaller
relative changes in sensitivity coefficients. Enhanced coagulation reduced the number
concentrations seen in the base case. Larger flocs which were created were also able to
settle out of the system to a greater extent. The surface area associated with the larger,
remaining particles was also reduced.

Simulations conducted with temperature as the controlling parameter were

actually influenced by several kinetic and transport characteristics and rate expressions.
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As noted in Table 5.2, included among the fluid properties are the density py, absolute
(dynamic) viscosity p, and kinematic viscosity v. These fluid properties directly affect
settling velocities as well as collision frequencies due to Brownian motion and
differential sedimentation. Because of the predominance of fluid transport effects,
kinematic viscosity was treated as the model parameter. In the environmental
temperature range examined, 4° to 30° C, the viscosity v undergoes a much greater
relative change than the absolute temperature.

The most interesting observation associated with the temperature responses and
sensitivity coefficients concerns the mass concentrations. Although the absolute TSS
responses did not change substantiaily from the base case, the sensitivity of TSS to
viscosity was larger than its sensitivity 10 Ochem OF G, as can be seen in Table 5.2. It is
noted that the relative changes in the viscosity parameter were small, at least in
comparison to the relative collision efficiency and velocity gradient changes discussed
above. In this case, the product of a small relative parameter change and a large

sensitivity coefficient yielded a small relative system response.

5.6.3 Particle and suspension properties

Properties describing the particle and suspension include the effective particle
density (pp) and the initial particle size distribution (PSD). The floc density is a strict
parameter, and its effect on system response was indirectly examined in the no-
sedimentation (pp = pf) process analysis in Section 5.5. Initial PSD is not a process or
system parameter, but an initial condition for the propagation or evolution of the PSD in
the system, Development of the base case particle density and initial PSD from field

information was presented above.



175

Integral concentration and sensitivity analysis results for the density and PSD
simulations are presented in Table 5.3, and the density findings are discussed first. All
density cases used the same PSD at the upstream boundary as their initial condition, so
their number, area, and volume PSDs were identical at the boundary. Differences
among the particle densities in the four simulations (including the base case) yielded
different initial mass concentrations, which are reported in Table 5.3.

Special treatment was needed for the mass response analysis. The absolute
integral mass concentration responses could be directly compared, if desired, as long as
normalization for density is made. Alternately, the fractional loss (gain) through the
system (upstream to downstream) for each case could be compared directly using the
individual values given for TSS initial conditions and TSS responses. The adjustment
for density must be made for a legitimate sensitivity analysis of “TSS” response. These
normalizations of the “TSS” response were made to arrive at the TSS sensitivity
coefficients reported in the table. The TSS sensitivity coefficients presented actually
correspond to total volume concentration responses, which is a more rational test of the
density influence.

Sensitivity analyses for the densest particle case, pp = 2.0, showed the negative
coefficients expected for the integral responses. As density increased, all integral
concentrations decreased. Although the absolute number concentration decreased for
the denser solids, the change was relatively small. The change was likely the result of
greater net sedimentation rather than substantially enhanced flocculation by differential
sedimentation. This statement is made because of the much larger sensitivity coefficient
obtained for TSS (volume). The ‘normal’ relationship between the sensitivity

coefficients (most cases have Spyym, j > Stss, ;) Is reversed in the dense particle case,
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and this reversal can only arise from the significantly enhanced net sedimentation from
the water column. Enhanced sedimentation does not mean reduced coagulation or even
diminished importance of coagulation, which could only be established with a
simulation of dense, stable particles.

Although the very low density, no-sedimentation case (pp = pr = 0.998) was
analyzed in Section 5.5.3, it was not done in the context of parameter sensitivity.
Again, the expected sensitivities (negative) were found; a reduction in density produced
larger system responses. Like the greater density case above, the mass (volume)
sensitivity was larger than the number sensitivity. Total collision frequencies were not
changed so markedly by the absence of differential sedimentation as to cause strong
modification of the base case total number concentration. The relative system mass
response was very sensitive to the density reduction, however, with a sensitivity
coefficient magnitude greater than unity.

The intermediate density simulation (pp = 1.06) produced interesting, yet
seemingly contradictory results. The absolute mass concentration increased through the
system as expected, due primarily to net resuspension dominance. The total number
and area concentrations both decreased substantially, however. Obviously, the smallest
particles were flocculating to a considerable degree to reduce number and area, while
resuspension was adding mass that could not be effectively removed by sedimentation.
These distinctions, when compared with the no-density difference case just reviewed,
call for a revised interpretation that identifies a much greater importance on collision by

differential sedimentation. Though the absolute density difference between the two

- - 1 1:
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and this reversal can only arise from the significantly enhanced net sedimentation from
the water column. Enhanced sedimentation does not mean reduced coagulation or even
diminished importance of coagulation, which could only be established with a
simulation of dense, stable particles.

Although the very low density, no-sedimentation case (pp = pr = 0.998) was
analyzed in Section 5.5.3, it was not done in the context of parameter sensitivity.
Again, the expected sensitivities (negative) were found; a reduction in density produced
larger system responses. Like the greater density case above, the mass (volume)
sensitivity was larger than the number sensitivity. Total collision frequencies were not
changed so markedly by the absence of differential sedimentation as to cause strong
modification of the base case total number concentration. The relative system mass
response was very sensitive to the density reduction, however, with a sensitivity
coefficient magnitude greater than unity.

The intermediate density simulation (pp = 1.06) produced interesting, yet
seemingly contradictory results. The absolute mass concentration increased through the
system as expected, due primarily to net resuspension dominance. The total number
and area concentrations both decreased substantially, however. Obviously, the smallest
particles were flocculating to a considerable degree to reduce number and area, while
resuspension was adding mass that could not be effectively removed by sedimentation.
These distinctions, when compared with the no-density difference case just reviewed,
call for a revised interpretation that identifies a much greater importance on collision by
differential sedimentation. Though the absolute density difference between the two
cases (Den-2 and Den-3) was small, substantially much more flocculation occurred in

the Den-2 case (pp = 1.06) as evidenced by the differences in the number and area
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concentrations; coagulation by differential sedimentation was the lone process capable
of causing the differences between these two cases.

The initial condition PSD was also examined in a simple way to determine its
influence on state variable response sensitivity. Using the same relative size
distributions that have been used in all simulations and discussions to this point, their
absolute concentrations were adjusted in two simulations. A ‘high’ initial condition
PSD was obtained by multiplying all discrete, base case concentrations by a factor of
10, and a ‘low’ initial condition PSD was obtained by dividing the base case
concentrations by a factor of 10. The actual initial integral mass concentrations for the
two cases are shown in Table 5.3. These two conditions could correspond to a very
concentrated suspension inflow and a very dilute suspension inflow.

Absolute concentration responses due to modifications of initial PSD are readily
analyzed, following the approach discussed in the density cases above. All initial
concentrations would be 10 (or 1/10) times the base case initial concentrations. Because
the PSD modifications were not modifications of a strict parameter value, but an initial
condition, sensitivity coefficient analysis followed a different approach than in the
density cases. The relative change in initial conditions (PSD) was treated as a relative
change in a system perturbation, and this perturbation performs the same function as a
process parameter in (5.17).

In the ‘high’ concentration case, the relative perturbation change (for each of the

three system response concentrations) was a factor of nine, as in

AC,-/%i

APSD PSD

Sij =

or
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In the ‘low’ concentration case, the analogous relative perturbation change was a factor
of -0.9, as seen in

AC/éi

Sij = (0—1“_—'171

The coagulation reaction is a second-order reaction. The consequences of this
second-order nature, manifest in the results for higher and lower initial concentrations,
were that the fractional removals through the system changed as compared to the base
case. For the higher initial PSD case, the accelerated kinetics increased fractional
removals for all integral concentrations. For the lower initial PSD case, the slower
kinetics decreased fractional removals for all integral concentrations.

Sensitivities to the PSD changes were generally as anticipated, i.e., the
coefficients were positive in all cases. Magnitudes of the low PSD coefficients were all
greater than their high PSD counterparts, which resulted because of its smaller
normalized perturbation. As with the largest and smallest (but not the intermediate)
density cases, the mass responses for the modified PSD were generally more sensitive
than the number and area responses. Again, the direct connection of the modified PSD
to the sedimentation flux, on top of the flocculation influence, reversed the sensitivity

order which had been seen in the primarily coagulation-dominant sensitivity simulations

for collision efficiency, velocity gradient, and temperature.
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5.6.4 Fluid transport properties

Parameters considered to be properties of the fluid transport system include
mean longitudinal advective velocity, dispersion coefficients, and system depth. These
properties are discussed in this section. Longitudinal advection and dispersion are
presented first, followed by vertical depth and dispersion.

Changes in the longitudinal advective velocity yielded pronounced changes in
the integral particle concentrations. Table 5.4 contains a summary of the relevant
parameter values, system responses, and sensitivity coefficients. All parameters listed
in the table are mean values. The vertical profile of longitudinal velocity actually used in
the transport model (Uy) had the logarithmic distribution characteristic of open channel
flow. As a result of the logarithmic velocity profile in open channel flow, the vertical
mixing coefficient (E;) should also be vertically distributed, but in a parabolic profile,
symmetric about the mid-depth, H/2. Due to numerical difficulties, however, a
constant, depth-averaged value of the vertical mixing coefficient was used in the
transport model. The mean vertical mixing coefficient is, for a constant channel depth,
linearly related to the mean longitudinal velocity. For purposes of discussing the effects
of velocity on system responses, it can be noted here that the small changes in vertical
mixing coefficient would have insignificant effect on system responses.

Reducing the fluid velocity to one-half of the base case value produced marked
decreases in all system concentrations. In response to the low mean velocity, the
induced shear stress at the bed was less than the empirically set critical bed shear stress,
the threshold for bed resuspension. A no-resuspension case was thus the result of
reduced velocity. System response sensitivities were all substantial, decreasing in

magnitude from number to area to mass. For conditions such as the cessation of



181

uonRIIUIUOY) SSE ([B10]) [eIdag] = SSL
UONENUIOUC)) LAY ([eIOL) RI8a] = VHYV.L ("1%21 Ul paUTJIP SINIWEIRJ)
uonenuUaOuo)) Iquiny (jelol) ey = WANL HE) |
0000 100°0 LSO'Y LyS'0 [-] SSL-'S
0000 2000 €00 1590 [1 |vaavi-%s
0000 S000°0 L960 61870 -] WNNL - 'S
{*a} {*a} {*n} *n) {<=s1seq} TATISIES
sT01 §201 88'IS ISY'L 9¢01 [1/3uw] SSIL
fA8Y! 88°051 L'Esy 6’101 | Iy | [1/7w9) vHavl
93 GLOT R 690°C 92 190Y 9 0TT1 99990°C [0/ NNNL
FI0aATY
6'8 768 88°L1 vy 76’8 [s/zwo] g
000°01 01 001 001 "001 [s/zwo] |
o1y oty oy o1y oy [wo] H
128 143 80°¢1 LTE v$9 (/w3 i
I | TPWeRy
(R [ | XN 1-X01 ase) aseq

(%0 0’1} = [Z “X] “smorpmo pdap-prur 12 suonenu20uod asuodsar wisisds 3uts)
"LHOJSNYHL AINT4 TYNIANLIDNOT 10 SISATYNY ALIALLISNIS




182

resuspension and an increased residence time in the system, this trend indicates that
flocculation’s influence in system response increased more than sedimentation’s
influence,

Increasing the system fluid velocity to double the base case velocity caused even
greater absolute and relative concentration changes than halving the velocity had. The
system area and mass concentration sensitivities of 2.0 and 4.0 were the largest seen in
all of the sensitivity analyses. The bed shear stress is proportional to the square of the
fluid velocity. Since the higher velocity produced greater bed shear stress and enhanced
the resuspension flux, the mass-based flux would be expected to create strong response
in mass concentration.

Longitudinal mixing coefficient, Ey, had virtually no effect on the (absolute and
relative) system responses. This was expected. In this system, at steady-state and with
gradual particle fluxes and reaction rates, only small longitudinal concentration
gradients existed. The product of the longitudinal concentration gradient and the
longitudinal mixing coefficient must be large, however, for a substantial dispersive
flux. Given the small longitudinal concentration gradients, even radical changes in
longitudinal mixing coefficient produced physically and numerically insignificant
differences in the two-dimensional behavior of the particles.

The depth, H, and vertical mixing coefficient, E;, parameters were varied to
examine their influence on system response. Simulation parameters and results are
presented in Table 5.5. In order to compare results on an equivalent travel time basis,
the mean longitudinal velocity was identical in all cases, equal to the base case velocity.

As mentioned above, the vertical mixing coefficients used in the transport simulations
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were vertical averages. The open channel relation between velocity and vertical mixing
was bypassed in the model for this sensitivity analysis.

Because of the competing effect of depth and vertical mixing on the rate of
vertical transport, a composite parameter was used to relate the system conditions to
responses. The characteristic vertical mixing time, noted in the table amongst the
parameters as H2/E,, is indicative of the time required for fluid turbulence to mix mass
from the air-water boundary to the bed-water boundary or vice versa. For comparison,
the characteristic time for longitudinal fluid/particle advection through the system,
L/Ux, was 1.47 x 103 [s].

The two depth cases provided a good illustration of the important factors
influencing vertical particle behavior. Their respective depths, dispersion coefficients,
and mixing times were twice and half those of the base case. For these parameter
values, the absolute concentration changes were only in the 1% range, and the
sensitivity coefficients were only in the 0.1 to 3% range. Greater depth, with its
correspondingly larger open channel flow vertical mixing coefficient, showed
concentration decreases in all responses. Having a greater depth to dilute the
resuspension flux (constant for all cases) would explain the decreases. Taking a longer
time to vertically mix from the bed through the water column would also be an
explanation. The shallower depth case, with a reduced mixing coefficient but also a
reduced time for vertical mixing, produced larger concentrations. The greatest
sensitivity was in the mass concentration response, and this would support either of the
two bed flux related arguments.

Five combinations of depth and (velocity-independent) vertical mixing

coefficient were used to focus on the vertical mixing process; the characteristic vertical
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mixing time is treated as the model parameter. All cases possessed negative sensitivity
coefficients for all responses. As with the depth cases, larger characteristic mixing
times produced concentration reductions, and shorter characteristic mixing times
produced concentration increases, The key determinant in system response appeared to
be the characteristic time to disperse bed mass up rather than the depth or the mixing
coefficient.

Simulations of deep conditions, cases Ez-4 and Ez-5, produced the smallest
number and area concentration responses; these cases thus represented the greatest
reductions of the upstream boundary concentration. The deep water column depths and
small vertical mixing coefficients established very long characteristic vertical mixing
times, time scales that were orders of magnitude longer than the system residence time
(i.e., the longitudinal advective time scale). Such large mixing times limited the
influence of bed resuspension on the overlying water column. The clearing from the
water column of large fractions of smaller particles, evidenced in the small number and
area concentration responses at the mid-depth outflow, was certainly assisted by the
insufficient time to achieve vertical mixing to that depth.

An integral mass isoconcentration plot of results for case Ez-5, which had the
longest vertical mixing time, is presented in Figure 5.21(a). Comparison with the
isoconcentration contours for the base case (Figure 5.3) illustrates three important
effects for the deep reservoir. First, the base case behavior of net resuspension flux
progressing up through the entire water column (via vertical mixing), within the system
residence time, did not happen in the deep reservoir of limited mixing. Given the

balance of sedimentation and vertical dispersion acting on the particle size distribution
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in the near bed region, the large vertical gradient of mass concentration would be
expected to continue in a reservoir that was extended longitudinally.

A second effect in the deep reservoir, suggested by the mid-depth region of
small vertical concentration gradient, was that of stratified flow. Although the uniform
vertical dispersion coefficient resulted in a uniform rate of vertical fluid dispersion,
conditions in the system actually established a stratified-particle system. The boundary
particle flux normal to the fluid flowfield and the counter-dispersive force of gravity on
the particles both served to stratify the particles. The water column mid-depth also
became a buffer region between regions of net particle mass loss (upper water column)
and net particle mass gain (lower water column). In this zone of dynamic equilibrium,
loss of mass due to coagulation and sedimentation was offset by sedimentation flux
from above and (limited) dispersive resuspension flux from below. Despite the nearly
constant mass concentration in the buffer region, the particle size distribution was
significantly modified; as mentioned above, the particle number and area concentrations
were substantially reduced from inflow to outflow.

The apparent buildup of particle mass in the lower depths of the water column
of the deep reservoir with small vertical mixing was not expected, and this raises
questions about the influence of coagulation. Although the simulation was specifically
designed to evaluate parameter sensitivity, the behavior in such physical systems was
also of interest. Lake coagulation modeling results (O'Melia and Bowman, 1984;
Weilenmann ez al., 1989) have demonstrated reduced particle mass concentrations at
depth, in conformance with many field observations. Both of those simulations had
incorporated particle production in the epilimnion, however, via implicit or explicit

(phytoplankton photosynthesis and death, precipitation, and tributary inflow) source
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terms. Both simulations were steady-state solutions, and neither framework included
bed resuspension. These are appropriate approaches for evaluating the long-term
behavior of most lakes, which function as sediment traps.

The apparent buildup of mass in the deep reservoir was due to resuspension;
insufficient vertically mixing time allowed the apparent particle accumulation in the
lower depths. This conclusion was confirmed with a numerical simulation of the same
system without resuspension, as shown in Figure 5.21(b). The simulation isocontours
in the upper half of the water column remained the same as those resulting from
resuspension. In the lower half of the water column, however, the bed flux influence
was gone and mass concentration was relatively homogeneous. The contours had even
begun inverting, as expected for a flocculent sedimentation system. Given sufficient
residence time, an upper water column particle source(s), and limited resuspension, it is
expected that a decreasing concentration gradient from top to bottom would be realized,
as found by others (O'Melia and Bowman, 1984; Weilenmann et al., 1989).

Table 5.5 also includes values of the vertical, mass-mean particle Peclet
numbers. The nondimensional Peclet number is commonly used in physical (e.g.,
reactor transport analysis) and computational (e.g., finite difference solution of
advection-dispersion equation) studies to characterize the relative ratio of advection to
dispersion. This vertical Peclet number, Pe, has the form

= vs H
P, = ;512 , (5.19)

where the settling velocity is is the Stokes velocity for the mass-mean diameter and
other terms are as previously described.

The Peclet number can also be expressed as
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H2/
E, _ Tdisp

= —, (5.20)
H-

P. =
Tset

where the numerators of the fractions are the characteristic time for vertical mixing and
the denominators are the characteristic time for particle settling. Obviously there is a
Peclet number for each particle size and, given orders of magnitude difference in the
heterogeneous particle settling velocities, these discrete Peclet numbers will also vary
by orders of magnitude.

For Pe << 1, mass-average particle behavior will be dispersion-dominated and
will tend to be vertically well-mixed. When Pe >> 1, mass-average particle behavior
will be advection-dominated (settling-dominated), and particles will tend to settle out.
The deep reservoirs of Ez-4 and Ez-5 were the only simulations of moderate to large

Pe. As expected, then, these advection-dominated cases had the smallest total number

and area concentration responses.

5.6.5 Bed resuspension

Parameters characteristic of bed resuspension include the resuspension rate
coefficient and the bed friction factor. The influence of these parameters on system
response is presented in this section.

As described in Section 5.2.3 by the bulk mass resuspension flux equation
(5.6), the mass flux is assumed to be linearly proportional to the excess shear stress,
ie.,

R =M(t-1). (5.6)
The flux is zero for a non-positive excess shear stress. A rate coefficient of M' = 0.0
[s/cm} was used for a simulation discussed in Section 5.4 to evaluate the effect of

resuspension on the base case system. Vartations in the rate coefficient are examined in
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this section, as are the indirect effects of friction factor (through the shear velocity) on
resuspension flux. Results are summarized in Table 5.6.

Variations in the resuspension rate coefficient produced system responses as
expected. Number concentrations, as measured by both integral responses and
sensitivity coefficients, were influenced little. As the resuspension flux is modeled as a
mass phenomenon, integral number concentration changes are secondary effects. This
would indicate that changes in resuspension would produce only small changes in
coagulation itself. Of course, sensitivity would be significant in the particular (large
diameter) particle classes most affected by resuspension, and the relative dominance of
collision mechanisms (particularly differential sedimentation) would be affected.

As mentioned before, all of the results discussed in this chapter represented
steady-state responses in the water column, while the sediment bed was not, in general,
at steady-state. Net resuspension cases continuously depleted the bed particle
inventory, and net sedimentation cases continuously added to the bed inventory. The
quantities of all size particles in the bed were so abundant that the relatively insignificant
numbers added by sedimentation were ineffective in changing the size distribution.
Indeed, the log PSDF of the bed remained constant for the length of all the simulations
conducted for this chapter.

The sediment bed particle size distribution effectively represented a Dirichlet
(constant function value) boundary condition, and its initial specification thus
determined in large part the system response to resuspension, Recall that the bed PSD
was assumed, and established, to have larger diameter particles than the normal

tributary inflows. A system with a finer bed PSD would thus have a greater impact on
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number concentrations than did these cases. This system with finer solids in the bed
would thus establish a closer link between coagulation and resuspension,

Surface area concentration responses were relatively minor in the cases of zero
or low rate coefficient. Surface area concentration response did increase substantially in
the high rate case, however, reflecting the increased presence of larger particles.

Mass concentration responses were similar to, but larger than, area
concentration responses. The system mass response to the small rate coefficient was
not easily distinguished from the case with no resuspension at all. In contrast, the high
rate coefficient resulted in a more than doubling of the base case response.

The dimensionless bed friction coefficient, f, determines the magnitude of the
shear velocity, the bed shear stress, the resulting vertical profile of longitudinal
velocity, and the vertical mixing coefficient. The smaller value of f used, corresponding
to a hydraulically smooth bed, yielded a bed shear stress smaller than the critical shear
stress. The lack of bed flux into the water column, in conjunction with a reduced
vertical dispersion coefficient, gave high positive sensitivities in all integral particle
concentrations. With reduced mixing, the system responses were smaller than with no
resuspension.

Interestingly, the larger friction factor yielded negative sensitivities and
produced smaller system responses than the base case, despite the larger shear stress
and faster vertical mixing generated. The effect of the friction factor on the velocity
profile is believed to be the cause of this anomaly. Greater friction decreases the near-
bed fluid velocities while increasing the near-surface velocities; the mean velocity and

volumetric flowrate remain the same regardless of the friction factor (in the rigid-lid
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model). With smaller near-bed velocities and larger gross bed fluxes, larger

concentrations of particles would be expected to accumulate in the near-bed region.

5.7 SUMMARY OF PARTICLE BEHAVIOR IN |DEAL SYSTEMS

Variations on the idealized prototype allowed several different steady-state
analyses to be conducted using the particle transport-transformation model. Following
is a summary of the general findings.

Integral analysis of the system particle response can be accomplished, given the
spatially distributed particle size distribution. The integral properties of the size
distributions allow insight concerning the overall behavior of the suspended and bed
solid phases. In certain cases, lumped concentration results appear to follow simple
first-order transport-transformation models. The qualitative effects of competing
processes that are acting upon the discrete particles can be inferred in certain integral
analyses, but quantitative influences due to individual mechanisms cannot be fully
determined.

Discrete analyses expose the full power of the discrete particle modeling
approach. Size-dependent, mechanistic descriptions of particle behavior lead to
deterministic solutions that are best suited to size-dependent analyses. Simple
longitudinal and vertical profiles can characterize the important behavior over the
domain, as well as the interactions within the suspension and between the bulk water
column and bed phases.

Process analyses provided a test of the model itself, as well as the
reasonableness of system responses under certain extreme scenarios. Given the ability
to turn on or off the primary transport and transformation mechanisms within the

model, the model can be applied with greater confidence in divergent types of systems,
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where particular mechanisms may be absent. Coagulation, a size-dependent process,
was seen to be important in system response in virtually all scenarios.

Parametric studies of the model allowed identification of those parameters
whose definition appears most critical in the application of the model. These parameters
included the influent size distribution, the collision efficiency and velocity gradient, and
the resuspension-related parameters, i.e., the shear velocity (as expressed by friction
factor), the critical shear stress, and the bed mass flux rate coefficient. Given these
sensitivities, available data can be used with a greater appreciation of its limitations, and
process and field studies to support water quality research and management efforts can

be planned in a more optimal manner.,
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CHAPTER VI
MODEL APPLICATION TO REAL SYSTEMS

6.1 INTRODUCTION

The simulations discussed in Chapter 5 were instructional in allowing careful
discrimination of individual process effects. Idealized systems of uniform and
rectangular cross-section, with only a single, steady inflow, were the basis for those
analyses. Those ideal lakes also received boundary particle fluxes at the bed-water
interface. In addition to upstream inflow and loading, however, real lakes are subject to
the following conditions:

. longitudinal variation of the lake width and depth

° longitudinal spatial distribution of tributary inflow and loading
. temporal variation of upstream and tributary forcing
. inflows enter the system in confined vertical layer.

These additional complexities in geometry and forcing result in significant
differences compared to the ideal systems of the previous chapter. The variable
morphometry results in acceleration and deceleration of flows. Lateral tributary inflows
and loading result in longitudinal concentration responses not seen from simple
upstream inflows. Almost regardless of how the lateral boundary tributary loads are
distributed over the water column depth, there are vertical concentration responses
different from thos_e in the ideal lake considered in Chapter 5. Temporal variations in
inflows and loading result in time-variable system accumulation and depletion of mass.

In this chapter, results of the application of a revised model to a real lake are
discussed. The lake, Town Lake, is the run-of-the-river impoundment of the Colorado

River in Austin, Texas. Town Lake, its watershed, and its hydrologic and particle
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conditions and forcing were described in Chapter 3. The simulation results examined in
this chapter include lake responses to variable cross-section, longitudinally distributed
suspension inflows, quasi-steady annual and seasonal forcing, and unsteady storm

flows.

6.2 APPROACH AND CONDITIONS

As for the idealized, uniform, rectangular systems simulated in the previous
chapter, ten equally-spaced longitudinal segments were used for the model applications
to Town Lake. The cross-sectional areas used for these simulations approximated the
variations in the real lake; data are presented in Appendix C and discussed in Section
3.3. The system depth was represented by the lake-average hydraulic depth, as in the
uniform cross-section cases. Inflows of fluid and particles were added as source terms
at alternating grids, approximating the distribution of the actual major tributaries to the
reservoir. Given the very shallow depths of the tributaries, the particle source terms
were distributed over the top 30% of the water column.

In the vertical dimension, a rigid lid model was assumed, i.e., the depth was
not spatially-variable; lake volume was also considered to be constant in time. Variable
system depth was not incorporated for two reasons: first, the bed slopes are relatively
mild over the domain, and second, the construction of a new 2-D mesh and difference
equations would have been required. Laterally-uniform, logarithmic, vertically-
distributed profiles of longitudinal velocity were specified on the basis of the individual
cross-sectional average velocities.

Although concentrations were still assumed transversely uniform, modification
of the transport equations was required to accommodate the transverse dimension

variations. Revised finite difference equations, written for conservation in a prismatic
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6.3 ANNUAL-AVERAGE BEHAVIOR

6.3.1 Integral annual response

Steady-state integral response to the steady, annual-average conditions in Town
Lake are presented and discussed in this section. As presented in Chapter 4, annual
steady-state inflows to Town Lake were estimated on the basis of annual upstream
releases, annual precipitation, tributary drainage areas, and watershed runoff
coefficients. The mean longitudinal velocity varied, generally decreasing with distance,
as shown in Figure 6.2(a). For comparison, the mean velocity corresponding to the
uniform cross-section of the ideal rectangular system is also indicated. Incremental
travel times through each section are inversely related to the velocities, as the sections
are equally spaced. Higher than average velocities in the upper half of the reservoir
leads to lower than average detention in that half of the system.

A critical measure of perturbation on the system, as demonstrated in Chapter 5,
is the bed shear stress, 1. As described by a spatially-uniform (lumped) bed friction
factor, the local shear velocity is linearly related to the local mean longitudinal velocity.
The bed shear stress, however, is proportional to the square of the shear velocity. As
shown in Figure 6.2(b), the bed shear stress thus exhibited a greater longitudinal
variation than did the mean velocity,

For comparison, the constant shear stress corresponding to the uniform cross-
section of the ideal rectangular system is also indicated in Figure 6.2(b). Note that the
uniform system bed shear stress was 0.1067 dyne/cm? (g/cm-s). Because of the value
chosen for the critical bed shear stress 1, set at a spatially-uniform 0.1 dyne/cm?2, the

normalized excess shear stress (Tq - Tc)/tc was always small in the uniform cross-
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section system. In the “real” system, with spatially variable cross sections and bed
shear stress, the excess shear stress was highly variable. Lower segments of the lake
produced no resuspension at all under the annual-average conditions, due to negative
(zero) excess shear stress. Upper segments of the lake produced considerably more
erosional flux in response to greater excess stress than under a uniform flow
environment. Because of its location at the fixed concentration (upstream) boundary,
neither erosional nor depositional fluxes were allowed at the computational node at
X=0.

Mass concentration response to the spatially varying bed shear stress was quite
different than for the rectangular base cases. System responses at mid-depth, under
conditions of standard coagulation and zero coagulation, are presented in Figure 6.3. In
the upper sections of the lake, where relatively large excess shear and relatively small
travel times existed, concentrations increased with distance, and the effects of
coagulation were not apparent. In the lower sections of the lake, where relatively zero
excess shear and relatively long travel times existed, concentrations decreased with
distance, and the effects of coagulation were apparent.

Fluid and particle inflows and Town Lake responses are summarized in Table
6.1 for all of the steady-state simulations. Volumetric inflow rates are given for Lake
Austin (Qnead) and the aggregate tributaries (Qyrihg)- The suspended solids inflow rates
are given for the combined Lake Austin (Mp) and aggregate tributaries (M;). Ratios of
main stem to tributary fluid and particle inflows are also presented. Mean hydraulic
residence times for the lake, t4, are also noted for annual and seasonal conditions. Note
that the annual-average residence time is not the arithmetic or time average of the

seasonal residence times, but a volumetric average for the year.
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For the annual-average conditions presented in Table 6.1, the effects of
coagulation were marked in the mid-depth outflow integral concentrations. Despite the
relatively short detention time in the reservoir, flocculation produced substantial
reductions of number and area concentration when compared to sedimentation alone.
Between the two conditions, the small numbers of larger particles remaining in the
water column at the outflow led to relatively small differences in mass concentration.
As a measure of influence on the particle size distribution, the number-, area-, and
volume-average particle diameters in the flocculating system were considerably larger at
the mid-depth outflow than their nonflocculative counterparts (25%, 55%, and 42%,
respectively).

The two-dimensional isocontours of mass concentration for transport with
coagulation vs, transport without coagulation are shown in Figure 6.4. As expected,
both simulations indicated net sedimentation in the lower reaches of the system, with
coagulation enhancing the kinetics of removal. There appeared to be a region (0.3 <X
< 0.4) of significant flux(es) entering the system. In fact, substantial bed flux and
tributary sources were both added at X = 0.4, the fifth computational node. This
location corresponds to i) a narrowed cross-section of the reservoir (Figure 3.5) with
higher velocity, shear velocity, bed shear stress, and resuspension mass flux and ii) the
reach receiving inflows from the two major tributaries (large particle sources) to the
lake, Barton Creek and Shoal Creek (Figures 3.1 and 3.2).

A comment concerning the finite difference approximations and contour
construction is appropriate. Recall that contours fitted to simulation results for the
discrete points were interpolated from discrete, nodal output. The dense gradients

developed between 0.3 £ X 0.4 are really artifacts of that interpolation. Although the
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bed flux might increase in a continuous fashion in this region, we actually expect a
discontinuous step response due to the tributary source. The apparent discrepancy is
recognized as an artifact of the output treatment, and the results can be viewed
appropriately. More on this interpolation is presented in Section 6.5.2.

As noted above, the tributary source terms were distributed over the top 30% of
the water column (0 € Z < 0.3) at the longitudinal tributary grids, X = [0.0, 0.2, 0.4,
0.6, 0.8, 1.0]. Fluxes from both top and bottom boundaries thus resulted in more rapid
achievement of vertical uniformity than if flux from one boundary had been distributed
by vertical dispersion alone, as in the Chapter 5 simulations. The large mass-average
particle settling velocities for the tributary inflows served to accelerate the rate of

vertical homogenization compared to vertical bed-flux dispersion alone.

6.3.2 Discrete annual response

Examination of the particle size distribution responses in Town Lake to the
annual-average conditions provides insight that is not available from the integral
analyses. Longitudinal plots of the volume distribution, number distribution, and log
particle size distribution function, shown in Figure 6.5, are discussed in this section.

The volume distributions (Figure 6.5a) illuminate the integral behavior
discussed in the previous section. The upstream boundary (X =0.0) volume
distribution was almost the same as the assumed distribution for Lake Austin. A small
inflow of runoff from the first drainage basin of Town Lake was combined in the
model with the Lake Austin inflow, over the entire depth of the inflow water column, to
produce the distribution seen. Despite the relatively small inflow fraction attributed to

runoff, the volume distribution was modified to an extended, bimodal form.
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Volume distribution modifications at mid-lake, X = 0.4, are obvious in Figure
6.5(b). The composite effects of adding small flows of the larger tributary distribution
to the large flows of the smaller inflow distribution (cf. Figure 6.1a) are quite
interesting. A detectable but minor reduction in the concentration of small (log dp < 0.3)
inflow particle volume occurred during the travel to mid-lake. At the same time, large
particles were appearing from the tributary inflows and the bed resuspension. The two
influences can be distinguished by the modal diameters appearing in the distribution.
The mode apparent at log dp of 1.5 was surely due to the tributaries, which possessed
the same mode. Tt is doubtful that the mode at log dp of 0.6 could be the result of
growth due to coagulation alone; in the ideal case simulation volume distributions (¢f.
Figure 5.11) the growth of the small-particle-rich distribution in the slower (upstream)
lake was only from log dp of 0.3 to 0.4 in the same distance and longer time.
Resuspension can be identified, by elimination, as the source for the mid-sized particle
(0.4 <log dp < 1.1) mound seen in the volume distribution.

The loss of particle mass from mid-lake to outflow, discussed in relation to the
integral Figures 6.3 and 6.4, can be explicitly assigned to various mechanisms using
Figure 6.5(a). Slower velocities in the lower half of the lake, with accompanying
increase in residence time and decrease in resuspension, were expected to increase
sedimentation. This downstream sedimentation would be expected in virtually any
reservoir, and the sedimentation of particles log dp 2 1.1 (dp 2 12.6 um) was
substantial. (An interesting observation, probably not coincidental, is that the largest
particle found in the Lake Austin samples was also in the 12 um size range.)

Coagulation in the lower half of the lake also helped to remove a large amount

of particle volume by sedimentation. Most of the particle mass transferred out of the
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March, and relatively shorter residence times occurred from April to September. For
comparison with first-order removal rate coefficients, the inverse residence time (the
renewal, or flushing, rate coefficient) was also calculated. Shown in Figure 6.6(b), the
renewal rate provides another perspective on the seasonal time-variability of the
transport regime.

As presented in Chapter 3, the Austin area has a bimodal rainfall distribution of
heavy spring and moderate fall rains (see Table 3.3). There is also the distribution of
residence times ranging from relatively ‘short’ to relatively ‘long,’ as shown in Figure
6.6(a). Four combinations of stormwater flowrates and residence time in the receiving
system exist. These combinations are a) small absolute but large relative tributary
inflow combined with long residence time, January through March, b) large absolute
but small relative tributary inflow combined with short residence time, April through
June, ¢) moderate absolute but small relative tributary inflow combined with short
residence time, July through September, and d) moderate absolute but large relative
tributary inflow combined with long residence, October through December. For this
study, January through March is called “winter,” April through June is called “spring,”
July through September is called “summer,” and October through December is called
“fall.”

Referring to Table 6.1, the relative inflow contributions from the upstream
reservoir vs. the immediate runoff sources is apparent. Urban runoff comprises greater
than 10% of the total lake hydraulic inflow in two seasons, the winter and fall. The
solids loading contribution from urban runoff is much greater, however, with the

minimum seasonal runoff contribution in excess of 50% of the total.
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season. These tributary sources are apparent in Figure 6.8 in the concentration jumps at
X =0.2 and especially at X = 0.4.

Overall travel time through the system for the winter, labeled tq in Table 6.1,
was the second longest of any season, 3.2 d, and almost twice the annual average. The
longer travel times allowed greater sedimentation, reducing system concentrations. It
should be noted that longer detention in the winter resulted in decreases in all integral
concentrations reported at mid-depth outflow, in comparison to the annual average
responses, as shown in Table 6.1.

An interesting aspect revealed in the 2-D isocontour plot of winter TSS
response (Figure 6.9a) concerns the tributary sources. Upstream boundary (X = 0.0)
TSS concentrations were approximately 10 mg/L throughout the vertical; all of the
seasons began with similar, though not identical, upstream boundary concentrations
(see Figure 6.8). The major tributary surface source can be inferred from the
isocontours in Figure 6.9(a); a substantial tributary source is seen in the upper water
column at X = 0.4. The near-bed (Z = 0.8) concentration beneath that major tributary
source was less than the water column concentration above it, despite the active

resuspension immediately below at that location.

Spring

As noted in the discussion of Figure 6.7, upstream releases and storm runoff in
spring produced the highest velocities, shear stresses, and resuspension of any season.
Positive excess shear existed in every segment of the lake. The elevated mass
concentrations, generally increasing with distance as seen in Figure 6.8, were thus

expected. Because of the small relative tributary inflow contributions, and the relatively
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small tributary load contribution, the perturbations of the system were dictated primarily
by resuspension.

The resuspension-dominated regime present in the upper lake did, however,
give way to a sedimentation-dominated region in the last three segments of the lake.
This trend was evident in Figure 6.8, but the isocontour gradients in Figure 6.9(b)
make the transition more visible. What was unique in this season’s transition to a net
sedimentation regime was that it was the only case thus far where sedimentation
dominated at the same time that resuspension was occurring. Net sedimentation seen in
the idealized base case and in the annual Town Lake case simulations only occurred in
the absence of resuspension (i.e., where T < 1¢). Net sedimentation in the lower lake
during the spring season, represents a condition where the concentration of the water
column suspension exceeds the carrying capacity of the fluid. Given that the vertical
dispersion coefficient was assumed constant in the longitudinal and vertical directions
for all seasons, this really means that a large sedimentation bed flux (due to large
concentrations of fast-settling large particles resuspended from upstream locations)
outbalanced a smaller resuspension bed flux (due to smaller excess bed shear stress).

Given the considerable resuspension taking place during spring, all of the
integral concentration responses present at the mid-depth outflow, shown in Table 6.1,
were maximums for the seasonal results. The particle size distributions at outflow were
likewise shifted the most to the right (larger sizes), given the extensive contributions
from the bed. This seasonal particle size distributions are presented in the next section.
The short detention time in spring served more to advect existing particles out rather

than flocculate them into larger flocs. The volume-average diameter of 8.8 pum would



220

have a Stokes velocity of 1.3 m/d, offering small chance to settle particles out of the

4.1 m deep lake during the 0.84 d mean detention time.

Summer

The summer conditions possessed the combination of high system velocities,
high shear stress, and large resuspension, all primarily due to upstream inflow, as well
as moderate tributary loadings. Excess shear stress, thus resuspension, existed in all
but the lower two reaches of the lake. Relatively large mass concentrations at mid-depth
were maintained throughout the mid- to lower lake, beginning at the narrow segment of
the lake (X - 0.4), as shown in Figure 6.8. Because of the large flux of particles into
the water column at the narrows, and despite the continuing resuspension in the
following three segments, net sedimentation took place in the entire lower half of the
lake. The rationale follows that discussed above for the spring results. The
displacement of the net sedimentation region up the lake, compared with the spring
behavior, was quite apparent in the mass isocontours of Figure 6.9(c). The intermediate
position of the summer conditions produced unremarkable results for both the integral

concentrations as shown in Table 6.1, as well as PSD-derived results.

Fall

The fall conditions produced both the largest and the smallest mid-depth
responses in the system, as seen in Figure 6.8. Recall that resuspension did not occur
in any section of the lake during the fall (Figure 6.7), due to inadequate bed shear
stress. Referring to Table 6.1, the lake received minimum seasonal upstream inflow

and overall loads. The travel time through the system was over 6 d.
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Paradoxically, the low autumn velocities led to both low and high local particle
mass concentrations. Lower velocities in the lake meant smaller dilution for the
significant tributary load at mid-lake (X = 0.4). Concentration there jumped to over 50
mg/L. At the same time, longer travel times also allowed greater coagulation and
sedimentation, reflected in rapidly decreasing concentrations in both the upper
(TSS = 4 mg/L) and the mid- to lower lake. The nearly vertical mass isocontours for
the fall (Figure 6.9d) demonstrate the insignificance of resuspension flux. The tn'butary’
source is evident at X = 0.4 via the accumulation of mass near the surface. The absence
of resuspension and the relatively long residence time enabled settling of most of the

large particles added by the tributary; the volume- (mass) average diameter at the

outflow was only 5.2 um.

6.4.2 Discrete seasonal response

The particle size distributions at the mid-depth outflow of Town Lake under
quasi-steady seasonal forcing conditions are presented in Figure 6.10. As shown in
Figure 6.5 and discussed in Section 6.3.2, the size distributions are a strong function
of time and space, due to the spatial variation of internal and external loads and the
kinetics of coagulation and sedimentation. Focusing on just the single point in the lake,
however, does allow composite comparisons of net seasonal effects.

Integrating the volume distributions (Figure 6.10a) results in the same order of
seasons as shown in the integral mass plots of Figure 6.8. The spring and summer
conditions of greater resuspension and faster flow through the lake cause larger
numbers of all size particles, as shown in Figure 6.10(b). The minimal residence times
in the lake during these two seasons prevented relatively large particles from settling out

of the water column. Modal diameters for the volume distributions ranged from the
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minimum log dp of 0.8 for the fall and winter to a maximum log dp of 1.0 for the
spring and summer. The magnitudes of the volume integrals and modal diameters, and
their sequential orders, were positively related to the residence times (Table 6.1) and
excess shear stresses (Figure 6.7). One is led to conclude that the relative resuspension
loads were more of a determinant in the large particle presence than the relative tributary
loads.

All of the seasonal outflow distributions were nonintersecting, with a single
exception that was visible in two of the three distributions. The number distributions
and the particle size distribution functions for the winter and fall clearly crossed each
other at a log dp value of -0.1 (intersection in the volume distribution was not resolved
at smaller particles sizes). The fall distribution had a greater number of small particles
and a lesser number of larger particles. As shown in Figure 6.7(c), resuspension was
minimal in the winter and nonexistent under fall conditions. Since the fall residence
time was nearly 90% longer than the winter residence time, one expects coagulation to
bring about a greater reduction in small particle number concentrations. That the
number concentrations of smaller particles were not less in the fall compared to the
winter is a reflection, then, of two factors that can be derived from Table 6.1: the fall’s
absolute tributary solids loading was 10% larger than the winter’s, and the fall’s
relative tributary/total solids contribution was approximately 15% larger. Despite the
larger number of small particles present in the fall outflow, the larger particles were

effectively removed by extended coagulation and sedimentation.
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6.5 TIME-VARIABLE BEHAVIOR

6.5.1 Choice of conditions for storm event

All model simulations to this point have considered systems that have achieved
steady-state concentration distributions in the water column. As previously implied,
however, all of the simulation bed particle inventories were unsteady, due to net bed
flux. In this section, simulation results are presented of time-variable system response
to time-variable storm event forcing.

Conditions simulated for the storm event were based upon analysis of historical
records. Although the Town Lake watershed is annually subject to approximately 80
storms with precipitation greater than or equal to 0.01 inches, appreciable runoff events
only occur on the order of every 10 days. The ratio of the individual gauged tributary
storm flowrates to their base flowrates is on the order of 100 to 300. Simplifying the
hydrographs for the significant storms to a straight ramping up and ramping down with
time, the rising limb lasts on the order of 2 to 10 hours, and the falling limb lasts on the
order of 3 to 30 hours.

From the data just cited, conditions for the storm simulation were chosen. All
tributaries were assumed to have a triangular hydrograph, with a rising limb duration of
6 hours and a falling limb duration of 18 hours. The simulated peak tributary flowrates
were set at 221 times their annual average flowrates. An exception was the segment that
included the Barton Creek watershed. Because of its (relatively) large, spring-fed base
flow, its peaking factor was only 45 times. Localized storm conditions were envisioned
to affect only the Town Lake watershed; flowrates into Town Lake from the upstream

impoundment, Lake Austin, remained constant before, during, and after the storm.
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This assumption is not critical for a ‘typical’ storm, since the storm flows and loads are
dominated by the watershed runoff.

Changes in the inflow particle size distributions occur over the duration of a
storm event. The typical watershed contaminant export résponse to a significant runoff
event is a) greater number concentrations of all particle sizes compared to those
originally present in the watershed outflow, b) appearance of particles with sizes larger
than those originally present, and ¢) some nonlinear relationship as well as phase lags
between the hydrologic and contaminant responses.

Stormwater concentration response of a watershed to excess precipitation might
exhibit advanced and accelerated rising and falling relative to the stormwater flowrate
response. This type of behavior, known as the “first-flush effect,” was not modeled.
Instead, it was assumed for simplicity that the hydrologic and contaminant responses
follow similar time paths. Specifically, the rising and falling of the inflow number
concentrations begin and end at the same times as the rising and falling of the tributary
hydrographs. The scaling factor chosen for tributary storm concentrations was 2.0 for
all particle sizes. The inflow size distribution was neither shifted nor extended to larger
sizes because it was based upon a measured urban stormwater PSD.

An algorithm was developed to enable time- and space-dependent calculation of
flowrates and inflow concentrations for each reach of the lake. As noted above, particle
concentration scaling factors were set equal to 2.0 for each of the tributaries to the
system, including the upstream inflow release from Tom Miller Dam. The hydrologic
scaling factor was 221 for all tributaries, except the Barton Creek segment (45) and the
dam release (1.0). The scaling subroutine was called only during the periods in which

flow and concentration were ramping up and down.
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The typical (i.e., all except Barton/Shoal reach) tributary hydrologic flowrate
ramp and particle flowrate load are shown in Figure 6.11. Both functions are presented
as ratios of instantaneous to annual-average flowrate values. The tributary volumetric
flowrate ramping was linear, as mentioned above. The particle flowrate function,
however, had a second-order polynomial form because it was the product of the two
first-order time functions for volumetric discharge and particle concentration.

The storm event began after a simulation of two detention times (3.40 d) of
steady forcing on the system. The functions of Figure 6.11 have values of unity (not
visible at the ordinate scale) except during the storm event. The initial period of two
detention times allowed a physical and numerical steady-state response to develop in the
water column. At the end of this numerical ‘warm start,” i.e., at the start of the storm,
the system response was identical to the annual-average, steady-state results seen

previously.

6.5.2 Integral storm response

As discussed with regard to Figure 6.11, the enormous flowrate and mass
loading increases during storm events cause the in-lake flowrates and velocities to
increase substantially during storms. Velocities in Town Lake at the time of peak storm
inflows are presented in Figure 6.12. The actual velocities at peak inflow are compared
to the annual-average velocities in Figure 6.12(a); the corresponding relative velocities,
i.e., storm velocities normalized to annual-average velocities, are shown in Figure
6.10(b). Recall that tributary inflows were placed at even distances X of [0.0,0.2, 0.4,
0.6, 0.8, 1.0]; as such, the velocity differences seen in Figure 6.12(a) at the odd

distances were not visible when put on a normalized scale in Figure 6.12(b).



227

soley Buipeo (o)o1ed) SSBW PuUR SIJRIMO| 19)eMWI0)S 10} suojloung Buidwey

[p] ‘ewny uonenuig

‘MOPUI e

D ‘mopul ping4

00t

00e

ooe

oot

0o0s

(1)Ne(1)D Jo oney

bae
Ne ©O

] , Bae

L9 eunbig

1 <*“o: Mo j0 oney



228

50 v ' . r v r . Y

a. ~—&— Annual Average

—5— Peak of Storm _

40

x

Mean Velocity, U [cm/s]

—o— Peak/Average Vealocltles I

Ratio of Peak Storm Velocity
to Annual-Average Velocity, [-]

Fractional Distance, X [-]

Figure 6.12 Spatial Variation of In-Lake Velocities under Steady
Seasonal Forcing, Average vs. Storm. a) Absolute and

b) Relative
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Three points can be made regarding the in-lake velocities. First, recall that bed
shear stresses stemming from average longitudinal velocities greater than approximately
6 cmys produced resuspension. At the time of peak storm inflow, the tributary inflows
served to maintain erosive velocities (bed shear stresses) throughout the entire lake
according to Figure 6.10(a). Second, the relative sedimentation and resuspension
fluxes were modified most in the downstream half of Town Lake. For the constant
depth lake, substantially decreased residence times from mid-lake to the outflow would
result in substantially less sedimentation flux to the bed. At the same time, the increased
velocities would result in substantially larger (quadratic) bed shear stress and
resuspension. Third, local effects can be expected in response to fluid acceleration and
deceleration: acceleration should resuspend bed mass which can later be deposited
downstream in a region of deceleration.

The first response to time-variable storm forcing was captured after six hours of
increasing storm inflows and mass loading. Following the numerical ‘warm start’ of
two residence times, as shown in Figure 6.9, the peak flows occurred at 6 hr or 0.25 d.
At that time there were peak conditions of tributary flowrates, tributary particle
concentrations, and thus tributary particle flowrates. The flowrates in the lake itself
were also at a peak, producing peak velocities, peak bed shear stress, and minimum
travel times, as discussed above.

Figure 6.13 contains the two-dimensional integral mass concentration isopleths
at selected times during and after the simulated storm event. For reference, the system
response at the onset of the storm event is shown in Figure 6.13(a), duplicating the
annual steady-state response seen in Figure 6.3(a). The resultant system response at the

time of peak inflow is shown in Figure 6.13(b). The in-lake mass concentrations
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distances X = [0.0, 0.2, 0.4, 0.6, and 0.8]. The large tributary particles (mass-average
diameter of 19 um) settled quickly, and removal rates were high.

Eighteen hours after the peak storm inflows, the tributaries had been ramped
back down to their original pre-storm flowrates and concentrations. The system mass
concentration response isopleths are shown in Figure 6.13(c). High concentrations in
the water column were still present in the lower half of the lake; the large storm-induced
tributary and bed resuspension loads that had heavily impacted the upstream half of the
lake had not yet been advected out of the system. Since currents in the downstream half
of the lake during the non-storm periods caused no resuspension (cf. Figure 6.10a), net
sedimentation was evident in that region.

At one-half detention time after the end of storm inflows (Figure 6.13d) the
upper lake (X < 0.4) had returned to pre-storm mass concentration profiles. Particles
present in the lower half of the lake had not yet had adequate time to be advected or
settled out of the water column. The interesting aspect of this profile was the positive
longitudinal concentration gradient, particularly obvious in the lower third of the lake.
The post-storm travel times were identical for the front and back of this cloud. Since the
cloud had just passed over a non-resuspending bed, the particles present at the outflow
represent the particles remaining (after coagulation and sedimentation) that were in
suspension at one-half detention time upstream, at the end of the storm. Despite its
being the most conducive region for sedimentation, the downstream outflow region had
‘elevated’ concentration relative to the primary tributary and bed impact areas.

After one detention time of post-storm reaction (Figure 6.13e) the system had
nearly returned to the pre-storm initial condition (Figure 6.13a) for total mass

concentration. The profiles are essentially identical for X < 0.7. At the downstream
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outflow (X > 0.9), the concentrations were still somewhat elevated, compared to the
initial conditions. The lagging of the storm displacement was likely caused by the last
remnants of storm suspension; recall that fractional distance X does not correspond to

fractional detention time in the nonrectangular lake.

6.5.3 Discrete storm response

Storm response of the lake can be judged in terms of time-variable and space-
variable particle size distributions. The time-variable volume distributions at the mid-
depth outflow location (1.0, 0.4) are presented in Figure 6.14. As the storm
progressed, the volume distribution at the outflow was composed of both greater
numbers of particles and larger sized particles. Following the storm, the outflow
volume distributions and integral volumes returned to pre-storm values. As noted
above, the outflow total volume was approaching the initial concentration after one
detention time. Not shown in Figure 6.14 is the outflow volume distribution at 1.5
residence times after the storm, which was nearly indistinguishable, at all sizes, from
the initial distribution.

The longitudinal profile of the volume distribution at mid-depth as the storm
was ending is shown in Figure 6.15. At X = 0.4, the tributary inflow rates had already
receded to their pre-storm magnitudes; the bimodal volume distribution there was the
relic of the storm fluxes from the inflows that were upstream of mid-lake. The outflow

distribution was largely composed of tributary storm particles.

6.5.4 Storm bed response
Presentation of the bed response to the storm event, expressed in terms of bulk

bed volume per unit area of bed-water interface, is given in Figure 6.16. These units of
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measurement can be translated as the active bed depth; a spatially uniform and
temporally constant bed porosity is assumed, so the bed depth is also proportional to
the particle mass in the bed. Recall that at the start of simulation, a uniform initial
condition of 1.0 cm active bed depth is assumed for all sediment segments. After the
numerical ‘'warm start,' the bed results at the beginning of the storm were identical to
those from the annual average Town Lake simulation, as required. Given the boundary
nature assigned to the numerical grid at X = 0.0, no resuspension flux or settling/
sedimentation fluxes were allowed at that grid. The bed depth therefore remained
constant at the upstream boundary.

Consider first the bed depth just as the storm began. The time was two annual-
average detention times, or 3.40 d, after the simulation began from uniform bed
conditions. The bed depth was in response to the spatially varied bed shear stress; the
relative bed shear stress and potential resuspension flux were indicated in Figure
6.7(c). Relatively small excess shear stresses at distances 0.1 € X < 0.3 produced a
relatively small scouring of the bed in the initial period. The increasing bed shear stress
in the region 0.3 < X < 0.5, which can also be thought of as a region of accelerating
flow (velocity), resulted in larger amounts of net bed resuspension, evidenced by the
deeper scouring of the bed. The scouring in the accelerating flow region was offset
somewhat by larger sedimentation fluxes due to the resuspended particle mass in the
water column, present from the upstream 0.1 £ X < 0.3 region.

The decelerating flow region had received net bed deposition, relative to the
initial condition. This flow regime, which possessed no excess bed shear stress, was
essentially the remainder of the system, 0.5 € X < 1.0. The greatest net deposition was

between 0.5 < X < 0.6. As the first of the post-accelerating, erosive segments, this
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decelerating flow segment was exposed to the largest water column concentrations,
those concentrations (Figure 6.3) resulting from upstream resuspension and tributary
loading. Thus the first decelerating region received the greatest relative deposition.
Succeeding segments received smaller net deposition.

During the storm, regions of accelerating and decelerating flows were modified
somewhat, altering the net particle deposition and scour. By the time the peak storm
flows were entering the system (only six hours following the beginning of the storm),
the bed profile changes had been fairly minor, as seen in Figure 6.16. Given the large,
near-bed concentrations present throughout the lake (Figure 6.13b), sedimentation flux
to the bed was substantially greater than at the start of the storm, The only changes in
net sedimentation direction (positive, negative, neutral) were in segments 0.7 < X <
1.0. Between 0.7 < X < 0.9 resuspension over the period was just balanced by
deposition, with essentially zero net sedimentation the result. In the region 0.9 < X <
1.0, however, the accelerated in-lake storm flows, shown in Figure 6.12(a), caused a
small net resuspension from the bed.

The recovery period following the storm produced dramatic changes in the bed
profiles. At the time the storm inflows had ended, one day had elapsed since the start of
the storm. Despite its accelerating conditions, the 0.2 < X < 0.3 segment experienced
substantial deposition as the result of increased upstream (Lake Austin) and tributary
loadings. Erosion continued in the region 0.3 £ X < 0.5. The doubling of the bed
inventory proceeding from X = 0.4 to X = 0.5 was in response to the joint conditions
of upstream resuspension being advected downstream and substantial mass export from
the Barton and Shoal Creek watersheds. Notice the gradual decline in the rate of net

deposition proceeding downstream in 0.6 < X < 1.0 as upstream mass was deposited
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to the bed. Note also that the difference between the spatial integrals of net scour
regions and net deposition regions reflects the boundary (upstream, tributary, and
downstream) mass inflows and outflows.

The bed inventory continued to change after the bulk of the storm influences
had advected through the system. These changes are seen in Figure 6.12 at times of
one-half and one detention time after storm cessation. Changes to the longitudinal bed
profile evidenced the same processes as at the beginning of the storm due to the
identical in-lake hydraulic conditions and tributary loads. The depositional rates in the
lower lake during the first half of the post-storm period reflected considerably greater
net sedimentation than during non-storm periods, and can safely be attributed to the
high near-bed concentrations just following the storm, as shown in Figures 6.13 (c)
and (d). Given continuing base flow and base load conditions, one would expect the
temporal changes in bed inventory along the lake to exactly follow the directions and
rates demonstrated in the profile generated prior to the storm (modified slightly for the
resuspension rate enhancement at the start of the simulation; this was caused by the

uniform and ‘under-saturated’ initial condition assumed for the water column),

6.6 DISCUSSION

This section supplements the discussions accompanying the results of Chapter
6. It exists to address the more general questions concerning the mode! and its
application that were not explicitly addressed as part of the simulation analyses. There
are two general areas of interest. First is the reasonableness of the model and,
specifically, its application to Town Lake. Second is the balance between strengths and

limitations inherent in the model.
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6.6.1 Reasonableness of model and application

The questions of model reasonableness can only be satisfactorily answered by a
three prong approach: extensive testing and documentation of the model’s theoretical
and computational framework, comprehensive experiments designed to estimate
process parameters, and field observations for model calibration and verification.,
Concerning the first task, this report documents the development, testing, and analysis
of the physics and computations underlying the model. Very limited data exist,
however, to estimate critical parameters for the Town Lake system; calibration data are
even more limited.

The simulation results raise questions about the model application and the
modeling approach itself. Given the ad hoc parameter estimation necessary for most of
the particle and sediment related parameters, one wonders about the reasonableness of
the model-predicted results.

The basic question concerning the simulations, specifically those termed
‘steady-state’ water column responses, might be ‘If the bed is not at steady-state, how
can the water column be?” This question addresses the fundamental question of
modeling, i.e., for what time and length scales are these approximations valid? The
most direct answer, applicable to this research, is that the water column had achieved a
response that balanced all fluxes; the water column had attained the time-invariant
response to the forcing conditions, i.e., the steady-state. The bed is coupled to the
water column but is not at steady-state because fluxes over the bed are not in balance.

If the bed becomes devoid of solids due to its unsteady net loss by
resuspension, then the water column fluxes would no longer be in balance. The water

column response would again evolve through an unsteady phase of adjustment to the
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boundary conditions and forces. The steady-state applicability of the water column
results presented in Chapters 5 and 6 (given steady flows and parameters) begins at the
time of initial flux balance in the water column (estimated to be somewhat larger than
one detention time for the entire lake) and ends when the bed flux chan ges. Steady-state
in the bed will only exist when there is a balance of fluxes over the bed-water interface.

Based upon the annual, seasonal, and storm results presented for the Town
Lake sediment inventories, it is implied that certain seasons, i.e., combinations of flow
and mass loading conditions, can erode all solids from the bed. Bed inventories for the
annual and seasonal conditions in Town Lake, after simulation of two annual-average
detention times (3.4 d), are shown in Figure 6.17. Given the parameter suite chosen,
the bed at X = 0.4 had been stripped of sediment in less than three and a half days
during ‘spring” conditions. Is that reasonable? Based on field reconnaissance of that
reach, which is rather shallow and narrow, it is possible that the bed would have
difficulty retaining solids. The same could be said of the first reach in Town Lake,
which although it is not allowed to aggrade or degrade in this model (as a Dirichlet
boundary), does have a rocky bottom.

There might be concern about whether the simulations, by ending prior to
complete bed depletion, implicitly contain or endorse an ‘infinite bed source’ approach.
The simulator establishes the current bed inventory as an explicit limit, however, on the
allowable bed resuspension mass flux over any time step. As mentioned above, the
spring results did contain the mid-lake bed segment that was essentially depleted (bed
volume essentially constant over the final 1.7 d at 3 x 104 cm3/cm?). In this case it is
apparent that this bed mass (3 x 104 cm3/cm?2) was resuspended over each time step,

with a fresh sediment layer deposited during the same time step by sedimentation; the
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potential resuspension flux (determined using equation 5.1 or 5.6) was greater than the
actual mass flux, which was limited by the available mass in the bed.

Figure 6.7(c) contains a clear indication of which segments, in which seasons,
can be expected to erode, based upon excess shear stress only. Excess shear stress
conditions at the bed do not, however, dictate net resuspension of the entire bed. For
example, despite substantial excess shear stress between 0.5 £ X £ 0.7 during the
summer, those segments experienced net sedimentation over the time scale of the
simulation, as shown in Figure 6.17. A similar example is the net deposition in the
eroding segment X = 0.8 during the spring.

Over the time scale of two mean detention times of steady flow, followed by the
one day storm, and then by 1.5 mean detention times, there was not a perceptible
change in the size distribution of the active bed particles. These observations were made
for the bed PSD at X = 0.5 and were based on an output summary precision of five
significant figures. That bed segment was the location of greatest storm and post-storm
particle inventory change. Longer term simulations, with different size distributions and
with greater precision in output, will be needed to analyze the interaction of bed and
water column.

Although sufficient field observations from Town Lake are not available to
calibrate the particle transport-transformation model, limited observations are available.
Long-term water quality monitoring observations of suspension concentration
measurements are given in Table 3.5 and Figure 3.8. These data, unstratified by season
or antecedent storm conditions, can only be used to assess long-term predictions of the
model, i.e., the annual-average results. Given the rather extreme variance and limited

resolution of the field data, one can say that a rough qualitative agreement exists



246

between the observations and predictions of Figures 3.8 and 6.3 and Tables 3.5 and
6.1.

The only possible test of field vs, model correlation at present is to consider the
mean TSS concentration increases down the lake, observed (Figure 3.8 and Table 3.5)
vs. predicted (Figure 6.3 and Table 6.1). Near the upstream boundary, the observed
mean TSS concentration was 8.4 mg/L. (1 standard deviation of + 4.2 mg/L) at the Red
Bud Trail bridge, or 12.7 mg/L (1 standard deviation of + 25.2 mg/L) at the station TL-
1, just downstream of Red Bud Isle. The estimated upstream model boundary condition
was 10.26 mg/L. This correspondence was essentially predetermined, given two
parameter estimates. First was the particle density, specified to match the observed
particle volume distribution to the estimated mass concentration in Lake Austin. Second
was the town Lake upstream inflow particle size distribution, specified (given particle
density) to match the expected upstream mass concentration.

Outflow boundary concentrations reflect a marked evolution of the inflow
particle size distribution, and observations and predictions there were not expected to
match as closely as they do. At the downstream boundary, station TL-4 at Longhorn
Dam, the mean TSS concentration was 17.0 mg/L (1 standard deviation of + 24.9
mg/L). Remarkably, the estimated mid-depth outflow concentration was 16.98 mg/L.
The agreement between outflow observations and predictions is excellent, but perhaps
coincidental,

Given the many choices for parameters and no efforts at model calibration, there
is certainly some degree of coincidence in the close agreement between outflow
observations and predictions. For application of the particle transport-transformation

model in engineering design or decision-making analysis, better definition of system
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forcing is needed, especially particle and inflow rates. Site-specific influent and bed
particle size distributions should be measured and characterized. Process rate data,
particularly collision efficiencies of influent suspensions and sediment resuspension

rate parameters, are needed.

6.6.2 Strengths and limitations of the model

The power of the model is vested in the ability to simulate size-dependent
particle transport and fate, given specified flow fields. Both integral and discrete
particle response of the system can be extracted using this approach. The discrete
approach is expected to provide more accurate particle simulations than the traditional
lumped mass approach under many conditions, but especially whenever the size
distribution varies in space or when perturbations are forced on the system. It is
expected that the particle model will provide a linkage to size-dependent particle-
associated contaminants not currently available.

Regardless of the time frame (annual, season, storm), it is clear from Figures
6.16 and 6.17 that sediment transport down the lake by erosion and subsequent
deposition was being simulated. The ability to see this process taking place, and to
quantitadvely analyze the competing mechanisms that lead to it, makes an entire class of
sediment and particle-associated contaminant problems amenable to the analysis of size-
dependent, differential transport.

At present, the capabilities of the model in analyzing Town Lake are limited by
several factors. First, the model has not been adequately field-verified. Second, there is
the requirement for a large amount of data and number of distributed parameters; many
reasonable parameter estimates do exist for the lake, however. Third, the long-term

simulation capabilities of the model, important in particle-associated fate studies, have
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not been demonstrated. Fourth, computational expenses are significant, and
improvements can and must be made to reduce these costs.

The limitations of the model for analyzing other natural systems include those
factors mentioned for Town Lake, as well as two others. First, the model was built to
stmulate a rigid-lid, laterally-averaged, prismatic system of constant depth. Second, the
capabilities of the model to handle transport in stratified or oscillatory flows has not
been demonstrated.

On balance, the size-dependent framework developed for simulatin g particle fate
is promising. It has been demonstrated to yield important insights not possible with
other approaches. These insights are likely to be necessary in future studies where the
complex behavior of the solid phase is important. The uncertainties and limitations that

exist in the model all appear solvable and await research,
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CHAPTER VII

SUMMARY AND RECOMMENDATIONS

7.1 SUMMARY

The behavior of particles in natural systems has traditionally been modeled as a
lumped solid phase (total suspended solids) using first-order (linear) terms for
sedimentation and resuspension. It has long been recognized, however, that discrete
particle dynamics also includes coagulation, which is nonlinear and highly size-
dependent. The contradiction between these two paradigms inspired this research.

In this study, a numerical model was developed for the purpose of evaluating
the size-dependent processes that transport and transform discrete particles in natural
systems. A finite difference representation of the laterally-averaged, two-dimensional,
unsteady transport provided the model framework, Processes affecting particle
transport and fate within the water column included advection and dispersion by the
flow field, coagulation, and settling. Coupled exchange of discrete particles between
the water column and the sediment bed by sedimentation and resuspension also was
incorporated into the model. Particle-particle flocculation was treated as an independent
process, acting in parallel with transport over small time steps. Explicit, numerically-
integrated concentration changes due to transport and coagulation were superimposed
for the combined system response.

The model was used to test the advantages of discrete particle modeling and the
significance of size-dependent processes, coagulation in particular. Model development
and initial use were accomplished using an idealized representation of Town Lake, an

urban impoundment of the lower Colorado River in Austin, Texas. The idealized
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system was characterized by a simple, uniform morphometry with steady, upstream
loading only. Its use was for developmental purposes and fundamental studies. With
this idealized system, the significance of various processes was examined, and
sensitivity analyses of model parameters were conducted.

Prototype application of the model to Town Lake allowed more realistic
analyses to be made of the lake and particle processes. Spatially-variable morphometry
and spatially-distributed inflows and particle loading brought the simulation much
closer to reality. Both steady (annual-average and seasonal-average) and unsteady

(storm) conditions were assessed in Town Lake simulations.

7.2 CONCLUSIONS

The following conclusions have been drawn from the research conducted, as

analyzed and reported above,

1. A general simulation model of discrete, size-dependent, particle transport and fate
was developed, tested, and then applied to ideal and specific systems of interest.
The model structure was two-dimensional (laterally-averaged) and unsteady,
allowing spatially-distributed inflows and enabling the size-dependent coupling of

the sediment bed and water column.

2. Mechanistic modeling of discrete, size-dependent, particle transport and fate
demonstrated that competing processes significantly modified influent size

distributions in all conditions examined.
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Integral results, derived from discrete model simulations, enable insights
concerning overall response to be gained. In certain cases, lumped concentration

results appear to follow simple first-order transport/transformation models.

Modification of influent size distributions can be seen in both integral and discrete

results, but the integral results are limited in usefulness for three reasons:

a) integral results cannot be obtained without discrete particle modeling

b) integral modeling cannot mechanistically preserve or reconcile the suspended
phase volume, number, and surface area information available from the discrete
distribution

¢) integral results provide little insight to the competing processes that determine

particle behavior.

Process simulations were used to test the significance of size-dependency in the
mechanisms of coagulation, sedimentation, and resuspension, alone and in
combination. Although these tests were performed on the idealized system, the
results are representative of the more realistic application to Town Lake and other
similar natural systems. The importance of size-dependent modeling was
demonstrated for all processes, e.g., in
» Coagulation

Without coagulation, total inflow number and area concentrations remained

essentially constant, but volume (mass) concentration increased almost 10%
due to resuspension being greater than sedimentation.

With only coagulation, total inflow volume concentration remained constant,
but number and area concentrations were significantly reduced
(approximately 60% and 30%, respectively).
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* Resuspension
Without resuspension, total inflow number, area, and volume (mass)
concentrations were all reduced (approximately 60%, 40%, and 10%,
respectively).

With only resuspension, total inflow number concentration remained
essentially constant, but volume and area concentrations were significantly
increased (approximately 30% and 10%, respectively).

+ Sedimentation
Without sedimentation, total inflow volume (mass) concentration increased
more than 30%, but number and surface concentrations were reduced
significantly (approximately 60% and 25%, respectively).

With only sedimentation, total inflow number concentration remained
essentially constant, but volume and area concentrations both experienced
small reductions.

Certain parameters emerged from the sensitivity analysis as critical to the predicted
particle behavior. These included the influent size distribution, the collision
efficiency and velocity gradient, and the resuspension-related parameters, i.e., the

shear velocity, the critical bed shear stress, and the mass flux rate constant.

Idealized and realistic conditions in Town Lake resulted in demonstrable particle
coagulation. In the idealized system simulation, coagulation reduced the inflow
particle number concentration by almost 60%, while the mass concentration
changed little due to the offsetting effects of sedimentation and resuspension, In
the realistic application to Town Lake, a simple upstream inflow vs. outflow

comparison is neither possible nor applicable because of lateral tributary inflows;
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substantial evidence of coagulation was clearly demonstrated, however, in the

particle size distribution responses of all conditions tested.

8. Sediment transport down the lake by erosion and subsequent deposition has been
simulated. The ability to analyze quantitatively the competing mechanisms and
responses will make a class of sediment and particle-associated contaminant

problems amenable to the analysis of size-dependent, differential transport,

9. The framework to link the particle model to a size-dependent, particle-associated

contaminant transport and fate model has been outlined.

7.2.1 Generalizations

The model developed and the research conducted enabled simulation and
analysis of a wide variety of potential systems. On the basis of the literature reviewed
and the extensive simulations conducted, it is believed that the conclusions stated above
serve to illustrate two principle generalizations, as indicated below.

First, coagulation is an important fate process for natural system particles under
the following conditions:

a) Whenever unstable particles are present in the water column, (e.g., in hard

water, in water of low dissolved organic carbon, or in saline waters) AND

b) when the interparticle collision frequency is substantial (e.g., a high

concentration of particles, a size distribution of very small particles, a very

broad size distribution of dense particles, or systems with large power input)

AND

¢) concentration changes due to flocculation are not overwhelmed by other

processes.
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The quantitative criterion that these three conditions are met in a given system is
that the characteristic time for coagulation is comparable to or less than the characteristic
times of competing processes. These time scales can be estimated even before explicit
simulation.

Second, explicit modeling of discrete particle transport and coagulation should
be used in simulating suspended solid phase behavior under the following conditions:

a) Whenever nonlinear particle behavior cannot be accurately described (in

space or in time) by lumped (mass-average) linear behavior. Examples of these

conditions include
i) large particle fluxes at a boundary, e.g., high bed resuspension flux
and in the vicinity of tributaries,
ii) whenever the size distribution, especially the volume distribution,
changes substantially in the horizontal or vertical,
iii) conditions leading to unsteady forcing or unsteady kinetics.
b) When the lumped mass concentration cannot provide the information needed,
such as
i) when the interest is in a number-related phenomenon such as light
transmission or light scattering
ii) when the interest is in a surface-related phenomenon such as

sorption.

7.3 BECOMMENDATIONS

In this research, new techniques developed to simulate the transport and
transformation of discrete particles in natural aquatic systems have provided preliminary

analyses of significant processes in ideal and prototype reservoirs. There remain
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questions relevant to these processes that were not considered or that were revealed

during the research. These questions relate to particle model testing and refinement,

process experiments, and particle-associated model extensions.

Based upon the experiences and conclusions of this study, the following

research could answer the outstanding questions:

*

Extensive particle size distribution measurements in a lake and its tributaries

under a variety of loading conditions are necessary for an adequate test of the
model. The research reported herein was limited by a severe lack of data.

Particle process experiments should be conducted to provide basic data on
collision efficiencies. The collision efficiency tests would be done in standard
coagulation/particle sizing experiments, but would extract the parameter
using curvilinear trajectory hydrodynamics.

Particle process experiments should be conducted to provide basic data on sizg-
dependent resuspension kinetics. The flux experiments could be done in
standard, small scale annular flumes, but would extract the parameters using
time-dependent particle size measurements from bed and water column.

The particle model should be applied to estuaries. Significant coagulation is
known to occur in estuaries, and virtually all estuaries are experiencing
sediment shoaling (navigation) and contaminant accumulation
(environmental) problems.

imizati icl i i could be conducted to make
the model more efficient. The coagulation computations comprised
approximately 90% of the total computational time, so the effort would begin

there.
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*  Incorporation of a particle-contaminant mode] into the particle transport and

transformation model developed in this research should be completed and
tested. Size-dependent sorption studies should be conducted simultaneously

to develop parameter estimates.
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APPENDIX A

Size-Dependent, Particle-Associated,

Contaminant Transport Model
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A.1. LITERATURE REVIEW

A.1.1 General Solute Sorption

Sorption is the sum of the interfacial (adsorption) and interphase (absorption)
accumulation of a solute (Weber, 1972). In the context of aquatic surface phenomena,
Westall (1987) distinguished between two-dimensional (interfacial) and three-
dimensional (interphase) adsorption processes. Three-dimensional adsorption is
envisioned as a solute-surface interaction, albeit within a three-dimensional surface
matrix. Accumulations occur as the result of three types of interactions involving the
solute: chemical reactions at the solid surface (a specific interaction such as surface
hydrolysis, complexation, or ligand exchange), electrical interactions (nonspecific
electrostatic or polarization effects), and solvent interactions (also nonspecific). Westall
proposed both two- and three-dimensional models of adsorption for three classes of
solutes: nonpolar organics, ionizable organics, and inorganics. The adsorption
mechanism for nonpolar organics is hydrophobic repulsion rather than some force of
attraction. Ionizable organics can interact by attraction/reaction as well as by
hydrophobic repulsion. Inorganics interact primarily by attraction to the surface.

An important aspect of this research concerns the description of solute/sorbent
distribution as a two-dimensional process. Certainly sorption also occurs in a three-
dimensional manner, as mentioned above. Westall (1987) pointed out that a
phenomenological test of the dimensionality of the solute/sorbent interaction is the
response of the system to changes in ionic strength. If colloidal sorptive behavior
changes with ionic strength, then a two-dimensional interaction between counterions

and surface is evident. If the interaction of the solute is with a three-dimensional solid
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phase, however, the interaction will be shielded from counterion effects by the solid
matrix. An example where this concept is accepted is in the interpretation of
electrophoretic mobilities; changes in electrophoretic mobility with ionic strength (or
pH) do reflect a change in the surface potential (or charge) of the solid matrix.

The experimental representation of sorption as a partitioning or distribution
between phases results in a distribution coefficient which is strictly phenomenological,
and the partition coefficient is said to be conditional because it depends on the sorption
conditions used during its determination. The porosity-corrected partition coefficient
(Thomann and Mueller, 1987) used to describe the distribution of matter between solid
and solution phases is normally expressed

Kp (A.1)

= L,

Ca
The sorbate concentration, r, is the mass sorbate/mass sorbent, [M/M], and the solute
concentration, Cy, is the mass solute/volume suspension, [M/L3]. This distribution
relation is valid at any time and for any interaction between solute, solution, and solid.
Values of K, are normally reported as conditional equilibrium constants. The same
definition is used to describe the sorption of both organics and inorganics. The
interpretation and application of results from partitioning experiments are not as clear as
the definition might indicate, however.

Development of reliable sorption models has been hampered by experimental
difficulties in measuring sorbate concentration (which relies on the successful
application of operationally defined phase separation) and in measuring the free solute
concentration in equilibrium with the solid (with errors caused by solid/liquid

separation difficulties, complexation of solute, loss of solute on experimental

apparatus, and nonequilibrium measurements). The experimental difficulties arising in
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sorption studies were summarized by Honeyman and Santschi (1988). Most
applications rely on assumptions of local and reversible equilibrium. These
assumptions further complicate the modeling of systems which are either not at
equilibrium or are not completely reversible. Heterogeneous surface sites and

competitive adsorption also confound the analysis.

A1.2 Organic Solute Sorption

Deterministic sorption modeling from fundamental principles is not as
complicated for organic sorption as it is for inorganic sorption. Westall (1987) stated
that hydrophobic organic sorption is the most basic type of organic sorption to
generalize and describe conceptually. This type of behavior is characterized by
solute/solvent repulsion rather than solute/surface attraction. Many studies have related
the extent of hydrophobic organic sorption to the organic content of the solid phase
(Karickhoff, 1984). When sorption data have been normalized to the organic fraction of
the solid, foc, it is generally found (Karickhoff, 1984) that a good empirical
representation of behavior is

Kp = foc Koc » (A.2)
where K, is the conditional partition coefficient and K, is the organic carbon based
partition coefficient.

A priori values of K, have been reported for hydrophobic organics as functions
of solute aqueous solubility or solute octanol/water partition coefficient (Karickhoff,
1984). While results were presented as regression relations, Karickhoff argued that there
does exist a thermodynamic basis for the relations, and data suggest a general
applicability in the relations for uncharged hydrophobic organics of limited (< 10-3 M)

solubility. Karickhoff also presented data relating sorption to the relative ratio of swelling
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clay to organic matter, indicating the increased importance of sorption by the mineral
substrate when the relative organic content of the solid phase is very low.

The hydrophobic sorption process, with its direct relation to the mass of organic
matter, can be conceived as a three-dimensional process if organic mass is independent
of solid surface area. Analysis of data in Baccinni ez al. (1982) shows, however, that
the mass of organic matter sorbed onto natural particles can be dependent on the
absolute surface area. In that study, the adsorption surface density of organic matter
(mass organic carbon/surface area) on size-fractionated (silt and clay) samples of
suspended lake particles was constant, within 50%. Thus, the organic mass sorbed was
almost directly related to superficial surface area of the solid phase. This must be
viewed in the light of a tenfold difference in the size fractions’ mass mean diameter (5
pm vs. 0.5 pm), a threefold difference in the mass density of organic matter (mass
organic matter/mass sorbent, i.e., f,;), a fourfold difference in the measured particle
specific surface area Ag (surface area/mass sorbent), and the unknown effect of particle
porosity. Thus, a two-dimensional surface sorption approach may be appropriate even
for the mass (three-dimensional phase) sorption of organics by hydrophobic repulsion.

Partitioning of ionizable hydrophobic organics requires different treatment due
to the surface binding of both nonpolar hydrophobic functional groups as well as polar
ionic groups on the organic (Westall, 1987). Different approaches have related
partitioning to the degree of organic solute ionization and charge, via pKj3 and pH, and
to solution/surface electrostatic effects, via ionic strength (Schellenberg, Leuenberger,
& Schwarzenbach, 1985; Westall, Leuenberger, & Schwarzenbach, 1985).

Partitioning of hydrophobic ionic organic compounds is dependent on both

hydrophobic and ionic functional groups, as for the ionizable organics above. In this



case, however, the charge on the organic is not related to pH. Westall (1987) presented
sorption isotherms for an organic surfactant (linear alkylbenzenesulfonate) on metal
oxide (alumina) which demonstrated that electrostatic interactions a) were stronger than
hydrophobic repulsion, and b) controlled adsorption. Westall suggested that for natural
surfaces, nonspecific hydrophobic effects would contribute much more to the total
interaction than they did for the metal oxide surface.

It will be argued subsequently that specific chemical and electrostatic
interactions can be described as two-dimensional surface phenomena. Thus, both the
non-hydrophobic and hydrophobic interactions between surfaces and ionic or ionizable

organics could be described, under certain conditions, by two-dimensional models.

A.1.3 Inorganic Solute Sorption

The sorption of inorganics to surfaces has been studied extensively, both
through theoretical and experimental approaches. Since the inorganic solute/surface
interaction is typically quite specific and dependent on several factors, the
characterization is quite complex (Westall, 1987). Chemical equilibrium models
describing sorption as a series of surface coordination reactions, analogous to
thermodynamic solution complexation models, have been developed (Westall and
Hohl, 1980). These models must include a representation of the electrostatic
interactions between solute, surface, and solution, which accounts for the major
differences between models. The combined physical/chemical model is called a surface
complexation (or ionization) model (Dzombak and Morel, 1987a). The present status of
these models is thoroughly reviewed for adsorption to hydrous metal oxide surfaces
(Dzombak and Morel, 1987a; Westall, 1987) and for metal adsorption in general

(Honeyman and Santschi, 1988). Adsorption to hydrous metal oxide surfaces has



received the most extensive treatment because these oxides are prevalent as coatings on
all types of natural particles, have very high specific surface areas, and have very high
affinities for ions due to their charged and reactive surface sites (Dzombak and Morel,
1987a).

Honeyman and Santschi (1988) noted that the success of surface complexation
models in describing the effects of adsorbent site density and acidity, solute/surface
affinity, complexing ligand interactions, ionic strength, and (sometimes) solute
competition on metal/oxide surface binding has made them the reigning aquatic
chemistry paradigm. On the other hand, Westall and Hohl (1980) showed that any of
several different models could fit experimental data equally well, since they all rely
heavily on experimentally determined parameters. Since each surface complexation
model requires model-specific parameters, there is not a comprehensive thermodynamic
data base for surface complexation analogous to that for solution complexation
(Dzombak and Morel, 1987a). A simple yet widely applicable two-layer model was
used as the framework for developing a thermodynamic data base of parameters for
inorganic sorption on iron and aluminum oxides (Dzombak and Morel, 1987b).

Honeyman and Santschi (1988) identified several types of behavior which are
not accurately predicted by surface complexation models. The anomalous effects are
primarily related to solids concentration, solids aggregation, and surface site

heterogeneity.

A.1.4 Sorption as a Surface Phenomenon
It has often been observed that sorption isotherms are linecar at low
concentrations. Karickhoff (1984) suggested that hydrophobic organics exhibit linear

isotherms when the equilibrium dissolved solute concentration is < 10-5 M and less



than one half the aqueous solubility. Ionizable and polar organics experience solution
and surface interactions which preclude such simple generalization (Karickhoff, 1984).
Dzombak and Morel (1987a) suggested that inorganic sorption to hydrous oxides is, in
general, linear when the equilibrium dissolved solute concentration is < 107 M. The
concentration limit varies with solute and sorbent, as indicated below, The existence
and applicability of such a linear sorption range simplify analysis considerably.

Although several models have been used to conceptually or empirically describe
adsorption isotherms (Voice and Weber, 1983), and each of them can be reduced to
linear behavior under certain conditions, the Langmuir isotherm is often chosen to
describe linear sorption. The model is:

KC,

F=TIy——,
1+ch

(A.3)
where

mass sorbate
unit surface area’

I' = surface density,

mass sorbate
unit surface area’

I'm = maximum surface density,

K = ratio of adsorption to desorption rate constants; and

mass solute
* volume solution *

C, = solute concentration

The Langmuir isotherm is based on assumptions of noninteracting surface sites
of homogeneous size, character, and energy, with a maximum surface density
corresponding to complete monolayer coverage. At low solute concentrations I is
proportional to Cg, while at high solute concentration I' approaches I'm. I'm can be
thought of as a measure of the number of binding sites, and K is related to the enthalpy

of adsorption, a measure of binding strength (Voice and Weber, 1983).



Observations in the nonlinear (higher) solute and sorbate concentration range
frequently are not described by the Langmuir equation. Benjamin and Leckie (1981)
proposed a multiple site model which could describe observed adsorption across a wide
concentration range. At low concentrations (and surface densities), when all types of
sites are in great excess, the model reduces to the Langmuir isotherm. Others have
proposed surface precipitation mechanisms and models to explain observed solute
behavior at high concentrations (e.g., Farley, er al., 1985). At present, no consensus
exists as to which approach is more correct (Honeyman and Santschi, 1988).

At low concentrations, the Langmuir equation will be linear and of the form

T =(TnK)C;. (A.4)
Log-log plots of I" vs. C; will also be linear, have a slope of one, and follow

logT" = log C +log(In K} . (A.5)

The particular definition of the upper limit of validity for the linear Langmuir
equation varies substantially with adsorbate and adsorbent. Benjamin and Leckie
(1981) presented experimental results for cation sorption onto amorphous iron
hydroxide that delineated both linear and nonlinear ranges for copper, cadmium, zinc,
lead, and mercury (Hg from others). The adsorbent concentration was large relative to
environmental suspensions, 10-2 M (am)Fe;O3 or 1600 mg/L.. At the upper limit of
linear behavior, the maximum linear surface density, r*, ranged from 10-5 to 10-2-4
mol Me/mol Fe, where “Me” is an abbreviation for the metal solute/sorbate. The
corresponding maximum solute concentration for linear adsorption behavior, Cq*, was
less than 10-5 mol/L for each metal,

In an earlier study, Benjamin and Leckie (1980) examined other hydrous oxide

metal adsorbents. They found that the surface density at the point of nonlinearity can be
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extremely small, e.g., as small as one molecule adsorbed per 10+7-7 potential sites.
That conclusion presumes that every molecule of the crystalline solid is a potential site,

however. The validity of the approximation depends on the crystal structure.

A.1.5 Solid Surface Area

The availability of solid surface area for adsorptive uptake is critical to the rate
and extent of solute adsorption. For nonporous adsorbents, Weber (1972) stated that
both the rate and extent of adsorption are inversely proportional to particle diameter.
For porous adsorbents, Weber stated that rate would be inversely proportional to
diameter when adsorption is controlled by diffusive film transport, and inversely
proportional to diameter raised to a power greater than one when controlled by diffusive
intraparticle pore transport. Finally, Weber said that the adsorption capacity of porous
adsorbents could be inversely proportional to diameter if the solids were broken open to
expose internal surfaces. For highly porous solids, the capacity would be independent
of particle diameter.

The surface area of small particles is an elusive property to measure, and
measured values are ambiguous. A characteristic measure of total (internal + external)
surface area may be inferred from indirect measurements such as gas adsorption. The
calculated value varies with the gas used (Mikhail and Brunauer, 1975) and the
preparation of the solid (Jones and Bowser, 1978). Such areas do not necessarily
represent the actual reactive surface areas of the particles (Lerman, 1979). In a similar
vein, the geometric external surface areas of discrete particles can be estimated by
transmission electron micrograph analysis (Nadeau, 1987), but accessible interior
surfaces cannot be accounted for directly. Weiler and Mills (1965) compared total

surface areas of marine sediments inferred from gas adsorption measurements with
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those calculated from geometrical considerations, Particle size distributions were
determined for selectively treated sediments using sieves, sedimentation tubes, and an
early Coulter counter. Assuming spherical shape and complete closure of the
distribution, and neglecting particle area due to particles removed by sieving, the
surface areas calculated from geometrical considerations were one to two orders of
magnitude lower than the values determined from gas measurements.

The specific surface area Ag of a solid is defined as the surface area per unit
mass of adsorbent, typically reported in [m2/g]. The values of Ag measured by gas
adsorption for fine particle sorbents of natural and synthetic origin vary within some
three orders of magnitude, Surface areas reported from gas or solute sorption studies
range from 7 to 800 m?%/g for various clays (Ahlrichs, 1972; Jones and Bowser, 1978);
10 to 1500 m?/g for various aluminosilicates (Ahlrichs, 1972; Kabata-Pendias and
Pendios, 1984), 3 to 500 nﬁ/g for various hydrous metal oxides (Ahlrichs, 1972;
Benjamin and Leckie, 1980; Chang, et al., 1987; Sigg, 1987), and 3 to 150 m?/g for
various marine clay and ooze sediments (Weiler and Mills, 1965).

For nonporous particles, the surface area is simply the geometrical surface area.
Regular geometric shapes yield simple estimates of surface area based on a small
number of characteristic dimensions. The sphere is the most often assumed shape for
small particles, and has a specific surface area of Ag = 6/p.dp, where d; is the diameter
and s is the density. Since a sphere has the smallest area to volume ratio possible for
any solid, estimates of specific surface area made using measured or inferred particle
diameter and the above relation will thus underestimate Ag for nonspherical particles.

Likewise, if the solid is porous and its assumed density is overestimated, its true Ag
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will again be underestimated. Similar relations between surface area and characteristic

particle dimensions can be made for other geometries.

A1.6 Sorption as a Function of Surface Area

Many studies of sorption as a function of specific surface area have been
reported, Most of these studies have been laboratory investigations using a single
homogeneous solid phase. Experiments discussed above with cation adsorption on
hydrous metal oxide surfaces were of this type, e.g., Dzombak and Morel (1987a) and
Benjamin and Leckie (1980; 1981).

Langmuir behavior seems to offer an appropriate empirical model for the
partitioning of solute to solid provided that small (system specific) adsorption densities
exist, as discussed above. Linear partitioning and constant partition coefficients result
when adsorbate concentration is directly related to solute concentration at equilibrium.
Such relationships have been exhibited by cations on hydrous metal oxides, as
presented above, as well as by hydrophobic ionic organics on prepared metal oxides
(for example, by Westall, 1987).

Studies of ambient environmental sediment adsorbate vs. specific surface area
are less abundant than studies of controlled laboratory adsorption. Sorption isotherms,
predominantly linear, were presented by Hiraizumi et al. (1979) for PCB on a number
of biotic and abiotic natural solids. Plots of BET specific surface area vs. reciprocal
particle diameter dp, (based on sieve diameter) were linear only down to about 60 pum,
indicating that floc, porous solids, or separation problems caused a departure from the
strict geometrical relation between Ag and dp for silt particles between 60 and 50 pm
(the lower limit sieve of data presented). A log-log plot of the bulk properties of Ag and

reciprocal number-mean diameter did, however, indicate a linear relationship with a
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slope of unity, as would be expected. More to the point, though, is that a log-log plot
of mass-based partition coefficient had a linear relation to specific surface area. As
discussed below, this argues for a surface-based partition coefficient.

Other analyses of field samples for surface density vs. specific surface area
have also supported a surface-based partition coefficient. Oliver (1973) analyzed bulk
river sediments for metal adsorbate concentrations and specific surface areas and
presented data showing linear relationships between adsorbate and surface area in the
lower ranges of concentration and surface area.

Baccini et al. (1982) analyzed the adsorption of dissolved organic carbon
(DOC) on particles as a function of particle concentration, size fraction, and specific
surface area. Laboratory isotherms indicated that log-log plots of surface density vs.
particle concentration of synthetic particles (y-AlpO3) and bulk lake sediments resulted
in linear plots of similar slope. Increasing the DOC concentration while holding
constant the bulk lake particle concentration resulted in a slight increase in surface
density, although the differences were not significant given the confidence intervals for
the measurements. As mentioned above, one of the most relevant results found by
Baccini ez al. was that the sorbate surface density was nearly constant for the bulk and
size-fractionated lake sediments, despite a threefold difference in organic mass fraction,
a fourfold difference in specific surface areas, and a tenfold difference in mass-mean
diameters. This shows that for a heterogeneous sediment exposed to a steady-state
DOC concentration, it is the surface area which is controlling surface density. Baccini ez
al. also estimated from steric considerations that (for an assumed [DOC] =2 mg/L) the
solids would be saturated (complete monolayer coverage) at any suspended solids

concentration less than 8 mg/L. The authors demonstrated competition between DOC,
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anions, and metals for sorption. Given the last two results, low suspended solids
concentrations might acquire multiple layer DOC adsorption and result in reduced

inorganic sorption,

A1.7 Particle Concentration Effects on Sorption

The assumptions of a linear adsorption isotherm and local (reversible and
instantaneous) equilibrium result in a constant partition coefficient. This accepted
concept was challenged by O'Connor and Connolly (1980), who proposed a solids
concentration-dependent partition coefficient based on analysis of data from several
studies. O'Connor and Connolly (1980) provided no mechanistic explanation for their
model.

Since then, the solids effect, as it is called, has received considerable attention,
A good summary of the experimental results for hydrophobic organics was given by Di
Toro (1985). Hypotheses given to explain the phenomenon generally attribute the effect
to either experimental artifact(s) or to particle-particle interaction.

The most popular rationalization advanced for the solids effect is not a new
mechanism but the existence of experimental artifact. Voice et al. (1983) and Voice and
Weber (1985) related the partition coefficient to nonseparable (third phase) dissolved
organic matter. The latter paper (Voice and Weber, 1985) hypothesized that
nonseparable, macromolecular organic matter complexed hydrophobic organics such
that solid sorbents could sorb either the free hydrophobe, the complex, or both.
Gschwend and Wu (1985) and Morel and Gschwend (1987) attributed the noted effect
to incomplete separation of colloidal particles or organic complexes. The former
(Gschwend and Wu, 1985) used laboratory experiments with sequential centrifugation

and washing to show that nonseparable solids (as measured by dissolved solids,
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turbidity, and DOC) are: (a) present in higher proportion to total solids at higher solids
concentrations and (b) seemingly generated by resuspending large size fractions. Both
Gschwend articles presented calculations to argue that a constant, mass-based partition
coefficient exists, i.e., the apparent solids effect could be explained as experimental
artifact, provided that accurate accounting of nonseparable as well as separable solids is
done. Baker et al. (1986) presented PCB distribution coefficients derived from an
extensive field data set, along with suspended solids and DOC concentrations, to
support a three phase model akin to the Gschwend approach. In another approach, Curl
and Keoleian (1984) hypothesized that competitive adsorption between solute and an
implicit adsorbate (unknown and unmeasured; present before the solids were exposed
to quantitative solute) could also explain the effect.

The particle-particle interaction hypothesis has been offered by several
researchers to explain the solids phenomenon. The most comprehensive and successful
treatment of this sort is the empirical modeling of Di Toro and co-workers (1985;
1986). D1 Toro (1985) proposed a “particle interaction model” which mathematically
reproduced the solids effect (over the solids concentration range of 100 to 10,000
mg/L), as well as the adsorption/desorption hysteresis effect, for a very wide range of
hydrophobic organics. The foundation for the model is a rate law describing particles
(bare sites) combining with adsorbate (filled sites) to form free solute plus two bare
particles sites. This adsorbate release effect is significant only at higher solids
concentrations. The authors offered no physiochemical mechanism to explain the rate
law; however, a traditional coagulation collision frequency analysis would provide
exactly the effect proposed by Di Toro, i.e., higher rates of particle-particle collisions at

higher particle concentrations.
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Chang et al. (1987) studied zinc adsorption using very low solids
concentrations ([TiOz} = 2 to 50 mg/L) and suggested that it was the degree of solid
dispersion (aggregation) that caused the solids effect rather than the solids
concentration, per se. The authors suggested that solids were more dispersed at lower
concentrations, resulting in smaller particles with greater specific surface area and more
available surface binding sites, hence greater adsorption on a sorbent mass basis. In a
series of elegant adsorption and coagulation studies using phosphate and goethite (y-
FeOOH), Anderson et al. (1985) demonstrated that adsorption of PQ43- resulted in
measurable changes in goethite aggregate size (larger), form (more ordered), and
specific surface area (smaller). Anderson et al. concluded from data that greater
coagulation at higher solids concentrations could explain their observations of lower,
mass-based adsorption densities at those higher solids concentrations.

Since coagulation is a second order reaction (with respect to particle
concentration) that results in somewhat less specific surface area and binding site
density, and since two-dimensional sorption is dependent to some degree on binding
site density, it is reasonable to expect coagulation to decrease adsorption. Honeyman
(1984) showed with mixed sorbent experiments, however, that certain model binary
sorbent systems resulted in adsorption densities that were greater than the sum of the
individual adsorption densities (Honeyman also observed decreased densities with
certain mixed sorbents). For the observations of increased densities, it was suggested
(Honeyman and Santschi, 1988) that the increased sorption could have been due to a)
surface modification of the weaker sorbent by the stronger sorbent or b) enhanced

sorption of solute in the interfacial regions created during mixed-solid coagulation.
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A.1.8 Contaminant Transport and Fate Modeling

Dissolved and sorbed contaminants are subject to a number of transfer and
transformation processes which control the materials’ fate and distribution. Discussions
of the solution phase reaction and transfer processes typically incorporated in
contaminant modeling are contained in Mills ez al. (1985) and Mabey ez al. (1982).

As illustrated by Imboden and Schwarzenbach (1985), appropriate contaminant
modeling requires that only those processes important at the time and space scales of
interest be modeled. Compilations of transfer and transformation rate coefficients (or
methods for their estimation) for the USEPA's priority pollutants are available (Mabey,
et al., 1982; Mills, et al., 1985; Schnoor, et al., 1987). Hydrodynamic transport is
system specific and must be characterized by studies of the river/lake under study.

As an important class of contaminant models, toxicant transport and fate models
have been differentiated according to their spatial and temporal resolution as being one
of three types (Di Toro, ez al., 1982). Partitioning models can only simulate steady-
state equilibrium between spatially homogeneous compartments of the environment.
Simplified fate models can simulate steady-state spatial variations in chemical
concentration. Detailed fate models can simulate spatial as well as temporal variations in
concentration, Increased data are needed for calibrating and testing the more detailed
models. Succinct reviews of toxicant modeling were given by O'Connor (1988a;
1988b; 1988c) and Ambrose et al. (1988). A collection of short descriptions of publicly

available toxicant models has been prepared (Versar, 1984).

A.1.9 Summary
The transport and transformation of the solid phase is dependent on the size of

the particles comprising the solid phase. The sorption of contaminants onto particles is
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also highly dependent on particle size. This dependency has been recognized in
laboratory and field experiments by many investigators but has not been incorporated
well into mathematical models for natural systems. The somewhat controversial solids
effect on adsorption is also partially explainable by the size distributions, since
adsorption is controlled primarily by the available surface area rather than mass. More
realistic modeling of particle-associated contaminants is possible with a model which

accounts for particle size distributions and their changes in time and space.

A.2. CONTAMINANT TRANSPORT AND FATE MODEL

A.2.1 Equations
The contaminant fate and transport model is based on the same framework as

patticle transport and reaction, Equation (4.3), viz.,

aCr oCr _ _'aZCT

xl
The state variable modeled is the total bulk contaminant concentration, Ct. The total
contaminant concentration is the sum of two conceptually separable phases of
contaminant, i.e.,
CT=Cd+Cp_ {(A.T)

C4 is the bulk dissolved contaminant concentration [mass of solute per volume of
suspension], and Cp, is the bulk particulate contaminant concentration [mass of sorbate
per volume of suspension]. A third phase of nonseparable (colloidal) solids associated
contaminant is operationally excluded. Bulk concentration dimensions are [mass

contaminant/ bulk volume of suspension].
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Contaminant transport and reaction are modeled in the same basic manner that
was used for particles. The approach for the contaminant is modified, however, to
allow for different forcing functions and transformation mechanisms for the two
systems, i.e., particles and particle-associated contaminant. Contaminant transport is
linked to particle transport by a particle-contaminant interaction model. Contaminant
removal by reaction acts in parallel with transport, just as coagulation did with particle
transport. Obviously, particle reaction and contaminant reaction are not directly related.

Contaminant solute-sorbate speciation is determined by assuming linear and
instantaneous adsorption equilibrium between dissolved contaminant and available
particle surface area. The linear and instantaneous assumptions are valid when
contaminant concentrations are low and the time scale of the adsorption/desorption
reaction is much less than the time scale of the transport and decay processes; both
conditions generally exist, though nonequilibrium situations do occur in natural
systems (Honeyman and Santschi, 1988; Wu and Gschwend, 1986). The assumption
of functional sorption dependence upon available surface area is the hypothesis
advanced in this research, although the more traditional mass-based approach can also
examined. The framework developed for coupling particle surface area and
contaminants follows.

For any solid/sorbate/solute system there exists a condition of thermodynamic
equilibrium. Equilibrium condition is described by the sorbent concentration [surface
area of sorbent/volume of suspension], the sorbate concentration, I' [mass of sorbed
contaminant/available solid surface area], and the corresponding dissolved contaminant
concentration, Cy' [mass of dissolved contaminant/solution volume]. Both I" and C; are

intrinsic properties of the system. At dilute concentrations, there is a linear relation
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between solute and sorbate, analogous to the mass-based distribution approach of

Equation (A.1), that is defined by the relation

=L, (A.8)

Ca

Q" is a conditional surface-based partition coefficient with dimensions of
[(M/L2/(M/L3)].

To relate this partition coefficient to the bulk (suspension) dissolved
contaminant concentration Cg, we must make an adjustment for the suspension
porosity, @. Porosity @ (volume solution/ bulk volume suspension) must be used to
correct the dissolved concentration for the suspension volume occupied by solids. The
correction is significant only for concentrated suspensions, say @ < (.95. These
suspension concentrations will occur only in the bed and the bed-water interface. The
relation between the solution dissolved concentration and the suspension dissolved

concentration is

c, =9 (A.9)

A situation of zero porosity would only occur for a solid of no fluid void space, a
condition of no interest in solid-solution exchange. Substituting the solution-
suspension relation (A.9) for the dissolved concentration in the partition coefficient

expression (A.8), we have another version of the partition coefficient,
Q = @I (A.10)

A porosity-corrected partition coefficient (termed €2) is often preferred. The

porosity-adjusted partition coefficient is fundamentally defined by
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Q (A.11)

I
Cs
The porosity-adjusted (modeling) partition coefficient is related to the (experimental)

partition coefficient in the following way:

(A.12)

It is necessary to note that experimental isotherms usually rely on measurement of the
thermodynamically correct C4' and thus result in estimates of Q', while modeling is
most often conducted with C, as a state variable. The two views are related but not

identical, Their parallel relationship is depicted in Figure A.1.

A A

r r
Q Q
0 - 0 >
0 Cc; 0 C,
Figure A.1 Linear Surface Partition Coefficients

The newly defined surface-based distribution coefficient Q is analogous to the
conditional mass-based partition coefficient, Kp. In the traditional approach, Kp is
defined as the quotient of the mass sorption density, r [mass of sorbate per mass of

sorbent], and the suspension dissolved contaminant concentration, Cy:

Kp = & (A.1)
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Kp has dimensions of [(M/M)/(M/L3)]. As with the surface-based form (A.11), this
partition coefficient is porosity-adjusted.

The analogies and differences between the mass density and surface density
partition coefficients may be seen by comparing their definitions, equations (A.1) and

(A.11). Sorbate mass density, r, is often expressed as
r = -2 (A.13)

or C, = M, where M is the mass of sorbent (particles) per bulk volume, i.e., the
suspension solids mass concentration. The limiting case of no sorbent (M = 0) is of no
interest.

An analogous expression for the surface-based sorbate surface density, I'

3

relates the sorbate density to the suspension solids surface area concentration S [particle

surface area per bulk suspension volume]. Thus we have

r= _C..B (A.14)
S ?

or C, = I'S. A plot of mass density sorbate (r) vs. either C4 or C,; would have the same
appearance as the areal density sorbate (I') vs. solute graphs of Figure A.l.
Corresponding slopes of the mass-based isotherms would be Kp and K,,, respectively.
The relationship between the mass-based and surface-based partition
coefficients is obtained by equating the expressions relating Coto I, S, 1, and M, then
substituting partition coefficients for I’ and r. Then the mass-average partition

coefficient is

Kp = &5 (A.15)

One may recognize the ratio of bulk surface area to bulk mass as the average

specific surface area,
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S - (A.16)

For a suspension with particles of spherical geometry and uniform density, the average

specific surface area is

_ Z‘ nin(diF/Z n; 6 Z ni(di)z
- z.'ninp(di)s/ﬁzn- - pzi,ni(t:ii)3 ’

S

(A.17)

where n;j is the number concentration [#/cm3] of particles with size ‘i.” The specific

surface area can be characterized by a mean particle size such that
& = == . (A . 1 8)

The mean particle size for the specific surface area approximation (A.18) is neither the
number-, area-, nor mass-average diameter; it is a nonlinear ratio of the area-average
and mass-average diameters. It is apparent from (A.18), however, that average specific
surface area is inversely related to mean particle size. If expressions (A.15), (A.16),

and (A.18) are combined, then the bulk mass-based partition coefficient

K = Q(p—g_:) (A.19)

is also inversely related to mean particle size.

When the particle size distribution shifts (in space or time), the bulk partition
coefficient shifts in response to the shift in specific surface area, as reflected in the
mean particle size. This indicates that the mass-based partition coefficient is itself a
function of particle diameter. On a discrete size basis, the size-dependent mass-based

partition coefficient is

- 0-6
ka dek . (A.20)
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Assuming the surface-based partition coefficient € is independent of size,
equations (A.19) and (A.20) would indicate that the typical mass-based partition
coefficient is a function of particle size. This would explain the size-dependent mass
adsorption densities often observed, as reviewed in section A.1.4. Another frequent
observation, the dependence of the mass-based partition coefficient on adsorbent or
solids mass concentration, the so-called solids concentration effect, is described by this
model in equation (A.15), provided the volumetric concentration of sorbent surface area
is not linearly related to the volumetric concentration of sorbent mass. Recall that the
variation between S and M is the coagulation premise of Anderson ez al. (1985) and
Chang et al. (1987), and indirectly, the peptization premise of Morel and Gschwend
(1987).

Assuming a local equilibrium between solute and sorbate allows expression of
the contaminant speciation in terms of the conditional partition coefficients. By relating
the dissolved and particulate contaminant concentrations to the total contaminant
concentration, one can reduce the number of state variables to be modeled from two or

three to just one. The bulk dissolved and particulate mass or mole fractions are just

=G - % 21
fo= ¢ and =g (A.21)
Surface-based partitioning leads to expressions for the fractions of
fg=—1 -_ @ (A.22)
1+Q8S ©+Q'S
and  f, = —£.S 'S (A.23)

1+Q8 @+Q°'S

Conventional mass-based partitioning results in fractions of
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fy = 1 _ D (A.24)

1+K, M ® +Kp,M

and £, = Kﬂl = Kp__l\il . (A.25)
1+K; M ®+K, M

From the definition of Cr as the sum of dissolved and particulate species {A.7), the
sum of the mass fractions f4 and fp is unity.

Total contaminant transport is conceptually driven by the fluid flow field as well
as by the particle-associated contaminant transport relative to the fluid flow field. The

articulate fraction £y, is used to modify the total contaminant transport equation,
P p Y =

daCr + UiaCT = E; aZCT

= £ 0 (A.26)

We note at this point that total contaminant is partitioned between two species, enabling
an expansion of any derivative of total concentration. For example, the time derivative
can take any of the forms

aCT dCy  9Cp,  ofsCr of ,Cr

—(Cd *G) = 55t = 5 (A.27)

Recall that for the fine particles considered, inertial effects are insignificant, so
both the dissolved and particulate contaminant species follow the fluid flow. In addition
to the flow field transport, particulate contaminant species transport due to particle
fluxes must be superimposed on the total contaminant transport. Away from boundary
fluxes, only the advective terms of the transport equation (A.26) are affected.

Expanding the advective terms only we obtain

dCy , 9Cp (cd 9C, 0Cq BC)
U(axl Fro Y e RS e (A.28)
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Uy is the total vertical contaminant velocity, i.e., the sum of fluid flow and contaminant
motion relative to the fluid. Expanding the vertical advective transport terms alone, and

distinguishing between which velocities apply to which species,

dCq . 0G| 0Cq4 aC,
B ot ERUE Sk (429

A simple rearrangement of the right hand side reveals that

0y G\ dCp _ . oCr  ofCr
az+az) W T Uy ey (4.30)

- LIz

Therefore, total contaminant is transported in exactly the same manner as a neutrally
buoyant tracer, with the superposition of a size-dependent settling term.,

Use of the mass fraction fp does enable a simplified calculation of total
contaminant transport, but not to the extent expected. Because of its relation to sorbent
surface concentration (A.23) or mass concentration (A.25), f;, is a function of two-
dimensions in space. There is, at any point in space, an integral or total value of f, due
to the sum contribution of surface area or mass from all size particles. Because of its
multiplication by size-dependent settling velocity vk in (A.30), a size-dependent value

of f, at each point in space must also be considered.

A.2.2 Boundary Conditions and Solution

The boundary conditions and the solution method for the contaminant transport
equation (A.26) parallel those used for the particles. The flux balance at the bed-water
interface over short time scales during active sedimentation and resuspension might not
require the inclusion of diffusive solute transfer.

The algorithms developed to describe size-dependent particle association and
size-dependent, particle-associated contaminant transport are contained in subroutines

DISTRB() and TRANSC(), respectively. The particle model is discussed in Chapter 3
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and presented in Appendix E. These contaminant speciation and transport routines are

presently bypassed in the particle transport and transformation model.

A.3 APPENDIX A REFERENCES

Ahlrichs, IL (1972). “The Soil Environment.” In C.A.L. Goring and J.W. Hamaker

(Ed.), Organic Chemicals in the Soil Environment (pp. 3-46). New York: Marcel
Dekker.

Ambrose, R.B., Jr., Connolly, I.P,, Southerland, E., Barnwell, T.O., It, & Schnoor,
J.L. (1988). “Waste Allocation Simulation Models.” Journal Water Pollution
Control Federation, 60(9), 1646-1655.

Anderson, M.A., Tejedor-Tejedor, M.L, & Stanforth, R.R. (1985). “Influence of
Aggregation on the Uptake Kinetics of Phosphate by Goethite.” Environmental
Science and Technology, 19(7), 632-637.

Baccinni, P., Greider, E., Steirli, R., & Goldberg, S. (1982). “The Influence of
Natural Organic Matter on the Adsorption Properties of Mineral Particles in Lake
Water.” Schweizerische Zeitschrift fur Hydrologie, 44(1), 99-116.

Baker, I.E., Capel, P.D., & Eisenreich, S.J. (1986). “Influence of Colloids on
Sediment-Water Partition Coefficients of Polychlorobiphenyl Congeners in Natural
Waters.” Environmental Science and Technology, 20(11), 1135-1143.

Benjamin, M.M. and Leckie, J.O. (1980). “Adsorption of Metals at Oxide Interfaces:
Effects of the Concentrations of Adsorbate and Competing Metals.” In R.A. Baker
(Ed.), Contamin iments: Analysis, Chemi Biol (pp. 305-322).
Ann Arbor, MI: Ann Arbor Science.

Benjamin, M.M. and Leckie, J.O. (1981). “Multiple-Site Adsorption of Cd, Cu, Zn,
and Pb on Amorphous Iron Oxyhydroxide.” Journal of Colloid and Interface
Science, 79(1), 209-221,



285

Chang, C.C.Y., Davis, J.A., & Kuwabara, J.S. (1987). “A Study of Metal Ion
Adsorption at Low Suspended-solid Concentrations.” Estuarine, Coastal and Shelf
Science, 24, 419-424.

Curl, R.L. and Keoleian, G.A. (1984). “Implicit-Adsorbate Model for Apparent
Anomalies with Organic Adsorption on Natural Adsorbents.” Environmental
Science and Technology, 18(12), 916-922,

Di Toro, D.M. (1985). “A Particle Interaction Model of Reversible Organic Chemical
Sorption.” Chemosphere, 14(10), 1503-1538.

Di Tore, D.M., Donigan, A.S., Games, L .M., Lassiter, R.R., & Matsuoka, Y.
(1982)., “Synopsis of Discussion Session: Validation and Appraisal Testing.” In

K.L. Dickson, A.W. Maki, & J. Cairns Jr. (Ed.), Modeling the Fate of Chemicals
in the Aquatic Environment (pp. 387-396). Ann Arbor, MI: Ann Arbor Science.

Di Toro, D.M., Mahony, J.D., Kirchgraber, P.R., O'Byrne, A.L., Pasquale, L.R., &
Piccirilli, D.D. (1986). “Effects of Nonreversibility, Particle Concentration, and
Ionic Strength on Heavy Metal Sorption.” Environmental Science and Technology,
20(1), 55-61.

Dzombak, D.A. and Morel, FM.M. (1987a). “Adsorption of Inorganic Pollutants in
Aquatic Systems.” Journal of Hydraulic Engineering, 113(4), 430-475.

Dzombak, D.A. and Morel, FM.M. (1987b). “Development of a Data Base for
Modelling Adsorption of Inorganics on Iron and Aluminum Oxides.”
Environmental Progress, 6(2), 133-137.

Farley, K.I., Dzombak, D.A., & Morel, EM.M. (1985). “A Surface Precipitation
Model for the Sorption of Cations on Metal Oxides.” Journal of Colloid Interface
Science, 112, 588-598.

Gschwend, P.M. and Wu, S. (1985). “On the Constancy of Sediment-Water Partition
Coefficients of Hydrophobic Organic Pollutants.” Environmental Science &
Technology, 19(1), 90-96.



286

Hiraizumi, Y., Takahashi, M., & Nishimura, H. (1979). “Adsorption of
Polychlorinated Biphenyl onto Sea Bed Sediment, Marine Plankton, and Other
Adsorbing Agents.” Environmental Science and Technology, 13(5), 580-584.

Honeyman, B.D. (1984). Cation and Anion Adsorption at the Oxide/Solution Interface

m ining Bi f A nts: An I igation
Concept of Adsorptive Additivity. Unpublished doctoral dissertation, Stanford
University.

Honeyman, B.D. and Santschi, P.H. (1988). “Metals in Aquatic Systems.”
Environmental Science and Technology, 22(8), 862-871.

Imboden, D.M. and Schwarzenbach, R.P. (1985). “Spatial and Temporal Distribution
of Chemical Substances in Lakes: Modeling Concepts.” In W. Stumm (Ed.),
Chemical Processes in Lakes New York: John Wiley.

Jones, B.F. and Bowser, C.J. (1978). “The Mineralogy and Related Chemistry of

Lake Sediments.” In A. Lerman (Ed.), Lakes; Chemistry. Geology, Physics (pp.
179-236). New York: Springer-Verlag.

Kabata-Pendias, A. and Pendios, H. (1984). Trace Elements in Soils and Plants . CRC

Press.

Karickhoff, S.W. (1984). “Organic Pollutant Sorption in Aquatic Systems.” Journal of
Hydraulic Engineering, 110(6), 707-735.

Lerman, A. (1979). Geochemical Processes: Water and Sediment Environments . New
York: John Wiley & Sons.

Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.-W.,
Gates, J., Partridge, I.W., Jaber, H., & Vandenberg, D. (1982). Aquatic Fate

Process Data for Organic Priority Pollutants (EPA-440/4-81- 014). USEPA.

Mikhail, R.S. and Brunauer, S. (1975). “Surface Area Measurements by Nitrogen and
Argon Adsorption.” Journal of Colloid and Interface Science, 52(3), 572-577.



287

Mills, W.B., Porcella, D.B., Ungs, M.J., Gherini, S.A., Summers, K.V., Mok, L.,
Rupp, G.L., Bowie, G.L., & Haith, D.A. (1985). Water Quality Assessment: A

reening Pr nvention nts in Surf nd Ground Water
Parts 1 and 2 (EPA-600/6-85-002 a,b). USEPA.

Morel, F.M.M. and Gschwend, P.M. (1987). “The Role of Colloids in the Partitioning

of Solutes in Natural Waters.” In W. Stumm (Ed.), Aguatic Surface Chemistry (pp.
405-422). New York: John Wiley & Sons.

Nadeau, P.H. (1987). “Relationships between the Mean Area, Volume and Thickness
for Dispersed Particles of Kaolinites and Micaceous Clays and their Application to
Surface Area and Jon Exchange Properties.” Clay Minerals, 22(3), 351-356.

O'Connor, D.J. (1988a). “Models of Sorptive Toxic Substances in Freshwater

Systems. I: Basic Equations.” Journal of Environmental Engineering, 114(3), 507-
532.

O'Connor, D.J. (1988b). “Models of Sorptive Toxic Substances in Freshwater

Systems. II: Lakes and Reservoirs.” Journal of Environmental Engineering,
114(3), 533-551.

O'Connor, D.J. (1988c). “Models of Sorptive Toxic Substances in Freshwater

Systems, III: Streams and Rivers.” Journal of Environmental Engineering, 114(3),
552-574.

O'Connor, D.J. and Connolly, J.P. (1980). “The Effect of Concentration of Adsorbing
Solids on the Partition Coefficient.” Water Research, 14, 1517-1523.

Oliver, B.G. (1973). “Heavy Metal Levels of Ottawa and Rideau River Sediments.”
Environmental Science & Technology, 7(2), 135-137.

Schellenberg, K., Leuenberger, C., & Schwarzenbach, R.P. (1985). “Sorption of
Phenols by Natural Sediments and Aquifer Materials.” Environmental Science &
Technology, 18(9), 652-657.



288

Schnoor, J.L., Sato, C., McKechnie, D., & Sahoo, D. (1987). Processes.
fici r Si i Xi i nd Heavy Metals in

Surface Waters (EPA/600/3-87/015). USEPA.

Sigg, L. (1987). “Surface Chemical Aspects of the Distribution and Fate of Metal Ions

in Lakes.” In W. Stumm (Ed.), Aquatic Surface Chemistry (pp. 319-346). New
York: John Wiley & Sons.

Thomann, R.V. and Mueller, J.A. (1987). Principles of Surface Water Quality
Modeling and Control . New York: Harper & Row.

Versar, 1. (1984). 1 f Allocation Models for Toxi mpoun

in Technical Guidance Manual for Performing Waste Load Allocations. Book 2,
Streams and Rivers, Chapter 3. Toxic Substances. (EPA 440/4-84-022). USEPA.,

Voice, T.C., Rice, C.P., & Weber, W.J., Jr. (1983). “Effects of Solids Concentration
on the Sorptive Partitioning of Hydrophobic Pollutants in Aquatic Systems.”
Environmental Science and Technology, 17(9), 513-518.

Voice, T.C. and Weber, W.I., Jr. (1983). “Sorption of Hydrophobic Compounds by
Sediments, Soils and Suspended Solids - I: Theory and Background.” Water
Research, 17(10), 1433-1441.

Voice, T.C. and Weber, W.J., Jr. (1985). “Sorbent Concentration Effects in

Liquid/Solid Partitioning.” Environmental Science and Technology, 19(9), 789-
796.

Weber, W.J., Jr. (1972). “Adsorption.” In W.J. Weber Jr. (Ed.), Physiochemical
Processes for Water Quality Control (pp. 199-260). New York: Wiley-Interscience.

Weiler, R.R. and Mills, A.A. (1965). “Surface Properties and Pore Structure of Marine
Sediments.” Deep-Sea Research, 12, 511-529.

Westall, J. and Hohl, H. (1980). “A Comparison of Electrostatic Models for the
Oxide/Solution Interface.” Journal Colloid and Interface Science, 12, 265-294.



289

Westall, J.C. (1987). “Adsorption Mechanisms in Aquatic Surface Chemistry.” In W,

Stumm (Ed.), Aquatic Surface Chemistry (pp. 3-31). New York: John Wiley &
Sons.

Westall, J.C., Leuenberger, C., & Schwarzenbach, R.P. (1985). “Influence of pH and

Ionic Strength on the Aqueous-Nonaqueous Distribution of Chlorinated Phenols.”
Environmental Science & Technology, 19(2), 193-198.

Wu, S.-¢. and Gschwend, P.M. (1986). “Sorption Kinetics of Hydrophobic Organic
Compounds to Natural Sediments and Soils.” Environmental Science and
Technology, 20(7), 717-725.



2N

APPENDIX B

Town Lake Watershed Areas



293

g-gIRTIIIB00

£ 1o SE0 £e'0 610 sI'0 Jjoury

#¥i%)

88 0L 6 Ly Tee I'tl 140D snotaraduy

(0) gegary

A €5zl L1 Ll 8¢ $E "AK(J PRUSISTBM

() yeary

€518 £5°IS SL'1 vL'l e L't ‘N Sumreld

0TI 00T Z86°TE 66 00T 786'CE LS po1  1TI1 8°6¢ 001 STH1 ¥'8C 001 8LtT 69 001 8BLET UISES] TEOL

6’9 98 v6+'8T L 9't6 798°0¢ 0 o 0 LAt gy €5 £ 887 89 Qg 869 0991 8 padoreaapur)

90 0T ¥L9 S0 81 009 9 TSI oLl N4 ovl 991 £ET 9L 181 £1 (4 001 0g atqng

1 FAR G 14 4 Lo L0 8T ze6l 6l §1T I'61 1’61 £it Lo L0l S5T vy L& S01 001 leang

0 0 0 0 o 0 ¥l €T 92 vl €T 9 0 0 9 o0 0 9 0L0& [EMsRpU]

£0 o brl 906’0 600 O0Of 81 8'Z 47 sl €T 9T gt e 8%l Lt 9T 9 08-0¢ TETUUIWIOT)
(6926 {z9cn) 6L (1e9) vz (spv) (Eol)
- - - - - - Lzl T80 ¥0C 611 0Ll 681 - - - - - - oL w-OmA
- - - - - - 9g 9 9 vE  9S €9 - - - - - - 1] Y3H
0z 0's  SE91 80 67T 1£9 SvI £9¢ LW 9'¢l 0OvE 6LE - - - - - - o¥ e
01 s sesl ¥Q 61 19 0 ¢ 0 0 0o 0 #'6 gLy PTIl Le L8  Stp oz w07

[ERUSPTSIY

(%) (B 6V @B (@ oV @ @ 6V (m ) 6w @ (% O (@ (@) 0V (L% 1981 pUE']

andup vy way  abdw] vy ealy o aRduy  waly ey alduf  eary ety adw] eIy eAy atadu] saly ®AY  snolasdug B A -PASITEM,

S00T - 33 uoeg 0861 - 1D uoreq SQQT - 1) uosuyor 086 - 13 uosugop 00T - 1 &g 0861 - 1D A

SINHIDIAIF00 LIONNA ANV “YFAQD SOOIAITINT ‘INFWJOTHATA IHSYILY M



294

g¢TRRYISCT

LEO PED 5820 LT0 £9¢€°0 £€°0 Joumy

3v{%)

9Ly 90'TH 8y o'oY 9°05 v'ov 1207 stotareduy

(7w} geceary

§'s {9 Lzl Lzl 0t 0¢ "AlJ PIYSIORM,

(7o) yeary

L6 L6 88l 39°€1 we 0TE "aY] Suprel]

19 00T 698 LIS 00T 698¢ 995 001 ¥888 LTS 001 888  §65 0OL 88IZ  LvS 001 6HOT used [EI0L

0 61 oIl 't SEl 06L vo Ly 8IF 'l L€l 0Tl 0 o 0 80 001 $02 8 padofaaspun

gt 091 LE6 6  O0El £9L €y €l LI ge 9T W 9T 88 €6l 7T TL 8wl 0g stland

961 61 6FII S6l  S6I LPIT rgr I'8T 9091 081 081 1091 L'l TLI L€ 08T O8I 69€ 001 rang

vy TL 9T 0y 99 98¢ 67 6% g£th g7 L¥  6IF §1 ¢T 8 91 LT 58 0L-0§ TewsTpug

£ '8 LLb €v 99 o8¢ 1L 601 06 gs 06 66L 6L 1Tl $9¢ 0L 801 I 08-0S [FIRumo)
oL (960 (181¥) (ozLe) {00ED) {1so1) (ol
0'F 85 8EE S s 26 6 0Pl LTI g €71 OIL  §TL $LI D6 §01 #SI SIE oL W) B
¢E ®C REE 0°€ [/ 74 AN I 414 vz I't 69 9¢ 65 Ofl 0Tz I's sol 09 Y3y
€¥l  LSE v60Z  vIl  IE  TISI TII  1'ST s6bC 001 O'ST 61TC €%l 95E 08L €Tl %0E 1£9 ob umIpI
0 0 0 0 0 0 900 €0 1'ST 00 TO TIT O 0 0 0 0 0 0z mo]

TeruapIsay

(%) (% oV @ (@ O (% (w V) (%) (%) V) () (@ 6v) () (% ©v) %)= 195 pUe]

nedu] vy sy andw] ey vy ARdwp ey ey Adw]  waly wary AR Pary ey Adw] ealy By snolassdug Tea -PAUSIIE M

S00T - 1D I9TeAY

0861 - 3 32TeM

€007 - 1) Teous

0861 - 1D [eoUs

$00T - ulp[nod "y

0861 - UTPMog "M

(pauumucs) g xpuaddy



gIBLIs0)

80 SLED SE0 1€°0 9¢0 £5€°0 Jyoumy
2v(%)
| 9’15 ¥18 Tob M54 L6 S 6F 13407y snotasadiy
(7w} ggBAY
90 90 ¥l ¥l 61 61 “AI(] POUSIATEM
(zm) peary
oL 190 881 LL1 £5°T 90’7 “wiQl Jurairel]
909 001 6k 09 001 16€ gLc 001 O00ZI 605 00T €ETI ¥4 001 LIST T8 001 9IEl ursed €101,
0 0 0 T0 £Z 6 0 0 0 €1 +'91 981 0 0 0 €0 FE S 3 padofasspur)
o 80 A A 60 e 2 gv 191 €61 € ¥l 191 6T 86 651 6T L6 LTl 0f onand
¥ 691 691 9L vl F6l 9L 79I T9L 561 Lol L9l 681 191 191 097 €61  E61 ¥ST 001 wang
0 c 0 0 0 0 $€E €9 9L 0t L9 9L 07 £f €5 L1 67 8¢ 0L0$ [etmsnpuy
£6 THl ¥9 9L §11 9F 8L 0zl #F1 ¥'s ¥g S6 19 tv6 I81 ¥ 89 68 08-05 s iinile)

{L6T) (8D} (Z65) (ozi) (£66) (€90) (L)

gel ¥6l L8 €€l 06l bL p01  gF1 BLI 6L £11 821 620 80 86T FArA R A G 7 4 oL TN -FOA

o'y L9 0f 8¢ ¥o sT o€ 6% 65 £T $c £ L'E 19 66 ¢ 8§ €9 09 YsH

091  T'Ov 081 TSI ['SE 6v1 Il 96T SEE 06 97T 957 Lvl 69€ 965 &€l 8PE 8k o wnips

0 0 0 0 0 0 0 ] 0 0 0 o0 0 0 0 0 o 0 0z MO
TRIUOPISAY
(35) @ OV (%) (% OV @) ® v (% () V) (%) (%) (V) (%) (%) (ov) (%) 80D 19500 U]
ardwoy ey way  adup eary vay  amdu Y BV adw]  wary ety adwy valy ey Ando] vay ey snotaraduy Te3 X -PASISME M

5007 - 1§ spadiey QRG] - g stedmey $00Z - 13 tumIg 0861 - 1D Mg S00T - Wprog q 0861 - WIPIOH “H

(penunuoo) g xpusddy




296

"Apms ST} UT pIsn SINBA

‘paptpaxdpamseaw 0861 01 apuonzodory

(qre61 ‘unsny jo LI1)) pAmSEIy

‘(apg61) unsny jo A1) ur pemuesaud

UOTIR[AI IESHJ300 [JOURIIIAC) SOOIARAWL uo paseq
“(qpg61) wmsny Jo A

10] 10402 snopazadur (sojoyd eLize) parmseaws 'sa parorpoxd

JO UCTSSAUSAI PauT] WOIJ PaTefnafes 100 snolatsdu]

(epR61) wmsny Jo AL

*sad 1 pUe] [eTHSTIPUL PUE [BEUSUIMIOD JO] PASN SISUEL Jo 382194y
(9L61) "ou ‘SouemseIpAH WAl (qyg6[) UNsAY Jo A0
(Z861) unsny Jo A1) WOLT SEAre PUe SISSE[D 250 pUeT]

(8)
)
©

)
(e

@
$)

SION

FGIRRII20D)

980 780 Jjoury

w.vS@v

8'6¥ L'y 19407 snowaradwy

(7 gegeaTy

- - *AI( PRUSISTEM

(z1w) pary

1370 1870 *AK] SumElg

98¢ 00l 9IS LT 001 9is urseq (€10,

zZ0 6T 01 €1 €91 8 8 padoaspur)

0T 99 ¥t €1 £€f T 0¢ anqnd

oLt oLl 88 tsi L9l 98 (9] ang

0 0 0 0 0 0 0405 Temsnpuy

L 0Tl LS 99 101 TS 08-05 jusiciilive}
(Lzs) (TLo) {01}
€€l 061 86 I'tT 651 8 oL M -mnN
8¢ ¥9 &t re Ts (LT 09 43y
TSI 0'8€ 961 971 9IE €91 o WP
0 0 0 0 0o 0 174 mo]

enuspsIY

(%) (%) OV (%) (%) (ov) (%) 1m0 19501 PU¥]

amdu] wary vy atedwy valy  eary  snotaraduf Tea X -PUSIaTe

§00T - 1 U], (861 - J§f UTLIIL],

{penunuoo) g xwpuaddy



297

APPENDIX C

Town Lake Morphometry
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MIRPHCMETRY FOR TOAN LAKE
(USACE SURVEY, 1977)

X-SECTICN DOWNSTREAM X-SECTION X-SECTICN  SEGMENT SEGMENT
DLSTANCE AREA WIDTH AT DEPTH VOLWMVME
SURFACE
(km) (m?) {m) (m) (m*)
1 .161 69 7 1.19 20,652
2 .193 187 139 1.36 6,029
E .209 187 139 1.47 2,0 0
241 189 118 1.47 ,061
5 821 18 139 2.15 178,19
6 2.092 L2 148 2.67 754,393
g 2.655 759 176 A2 3“7,733
2.6 476 124 3.84 15,31
g 2.726 476 124 3.83 22,306
10 2.768 H]ik:} 17 3.83 14,871
1 .718 476 124 3.79 449,662
12 LUz 41 126 2.53 2132, 783
i 4,474 202 140 1,44 , 49
1 4,506 202 14O 1.44 6,498
15 4,651 202 140 .90 38,898
16 4,683 335 142 2.36 10,790
1 4,699 335 142 2.26 5,051
1 4,73 3 136 2.26 10,109
19 5.311 335 142 2.59 305,813
20 £.343 720 266 2.1 23,190
21 5.359 720 266 2.85 10,773
22 5.375 618 204 2.85 10,773
2 5.407 720 266 2.71 » 23,190
2 5.617 T20 266 327 154,902
2 5.649 760 187 .06 24,47
2 5.665 760 187 3.09 9,47
2 5.681 W7 194 3.09 9,474
2 5.713 760 187 .06 24,473
29 b.212 760 187 Hgg 420,092
30 7.178 924 202 b, 761,776
3 7,210 654 152 4.30 21,052
30 7.226 654 152 4.3 10,355
3 7.242 633 146 4,32 10,181
3 7.258 682 146 H.EB 10, 451
3 7.290 6 150 y. 4y 21,435
3 3.532 666 150 5.19 202,9%
.580 1,016 174 6.51 1,83%,685
9,552 1,174 162 6.14 1,086,862
39 .000 872 17
AVG ABEA AVG WIDTH AVG DEPTH TOTAL VCLLAE TOTAL AREA
(m?) (m®) (m) (m*) (m?)
541 163 4,12 6374000 1548000,
(f£2) {ft?) (re) (£t?) t2)
5826 534 13.51 225100000 16660000

ac-ft)
¢ 5168

(ac)

382.5
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APPENDIX D

Town Lake Hydrologic Inflows
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In this appendix, the methods used to develop the hydrologic inflow rates for
modeling Town Lake are described. Table 3.2 summarizes these results. References are

provided at the end of the report.

D.1 Upstream Inflows

Releases from Lake Austin are dictated largely by the release schedule at
Mansfield Dam, the outlet for Lake Travis. The flowrate measurements for the Lake
Austin release from Tom Miller Dam were suspected of being inaccurate by the Lower
Colorado River Authority (LCRA) at the time of this study, so the LCRA relies on
flowrates from the Mansfield release for its Lake Austin release estimates (Robbins,
1985). Other inflows to and outflows from Lake Austin were added to the Travis
release to close the water balance for the lake and estimate the upstream inflow to Town
Lake.

The Lake Travis releases used in this study were prorated, 30-year monthly
averages, developed as follows. The 30-year annual-average release from Lake Travis
for 1952-1982 was 46.1 m3/s (1,628 cfs), calculated from data provided by the LCRA
(USGS, 1984). Average monthly release rates from LCRA for the 10-year period
1975-1984 (USGS; 1976-1984) were determined. During that period, the annual-
average flowrate was 40.3 m3/s, The 10-year monthly-average flowrates were then
prorated (muitiplied by the ratio of the 30-year to 10-year averages) to yield adjusted
monthly-average release rates for the 30-year span.

Runoff from the Lake Austin watershed contributes to the inflow of water that
eventually enters Town Lake. The methods for runoff estimation described in Section

D.2 were applied for these monthly calculations.
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As described in Section D.3, withdrawals for water supply from Lake Travis
were expected to begin in 1989. These, combined with the increasing water supply
withdrawals from Lake Austin, were subtracted from the Lake Austin inflows, as
appropriate for the 2005 estimated outflows.

Rainfall directly onto the lake surface, minus the gross evaporation from the
surface, produced monthly-average atmospheric inflows which were sometimes
negative (net evaporation). These estimates are presented in Section D.4.

All of the monthly flowrates were combined to yield a net outflow from Lake
Austin to Town Lake. The results for Lake Austin and other tributary inflows to Town

Lake are contained in Table 3.2.

D.2 Tributaries Inflows

The methods used to estimate areas of and average rainfall-runoff coefficients
for each sub-basin of the Town Lake watershed were discussed in Section 3.2. These
data were used in combination with the monthly-average precipitation data shown in
Table D.1 (see table for references and comparisons) to produce monthly-average
flowrates for each basin. The rainfall data were taken from a long-term record of
National Weather Service data from the station located in central Austin. Although
different rainfall series were available, the period of record chosen for this study was

1951-1980, which corresponds closely to the period for the Travis release estimates.

D.3 Withdrawals
Water supply withdrawals represent a sizable diversion of clean water around
Austin and Town Lake. These withdrawals reduce the flowrate through the lake so that

contaminants remain in the system longer than they otherwise would.
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The capacities of water treatment plants at Lake Austin, Town Lake, and Lake
Travis, from 1980 through 2005, were obtained from the City of Austin (Benoit,
1985). A planning study (Metcalf & Eddy, 1985) provided the estimated annual-
average withdrawal rates, i.e., demand, for the total system in 1980 and 2005. The
average percent of rated capacity for the total system was applied uniformly to each
individual plant’s rated capacity as a simplified expectation of the flowrate each was
expected to withdraw. A summary of the rated, operating, and modeled withdrawal
rates is given in Table D.2.

Annual-average withdrawal rates were apportioned into monthly-average
withdrawal rates. Monthly-average rates for the period from May 1, 1984 to September
30, 1985 were obtained and examined for the two Lake Austin WTPs, The fraction of
the total annual-average rate for the two plants was then determined for each month.
These fractions were then applied to the estimated annual-average withdrawal rates for
each individual plant in 1980 and 2005.

Annual-average diversions of Colorado river flow around Town Lake were
estimated to be 5.8% in 1980 and 13.7% in 2005. As is now known, the Lake Travis
water treatment plant has not materialized. The plant had been planned to meet
municipal demands in the anticipated expansion of Austin’s northwest corridor.
Population growth in the metropolitan service region is likely to require additional
withdrawals upstream of Town Lake, regardless of whether the Lake Travis plant is
built. The long-term success of water conservation efforts in the city is unknown at this
time. The uncertainty of the Lake Travis plant is somewhat academic, since the

historical 1980 water supply withdrawal rates were used for modeling purposes.
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D.4 Direct Rainfall and Evaporation

The last components of the water balance are the direct rainfall to and
evaporation from the surface of Town Lake and Lake Austin. Multiplication of the
monthly precipitation by the segment surface areas (Appendix C) gives the gross inflow
rates to the segments. The monthly precipitation data used are presented in Table D.1.
Reported pan evaporation rates for the area were reduced by the standard 30% to
account for reservoir cooling effects. The adjusted gross evaporation rates, summarized
in the same table, were also multiplied by segment surface areas to yield gross outflow

rates from the surface of each segment.

D.5 Springs Flows
There are several springs in the drainage basin of Town Lake, but only the most
significant has been quantified for flow and loading purposes. Barton Springs drains
into Barton Creek and provides significant base flow. During dry periods, and when no
water is being released from Tom Miller Dam, this can be the only flow into the lake.
The long-term average (1894-1982) flowrate for Barton Springs was 1.42 m?/s
(USGS, 1984). Monthly-average flowrates were estimated on the basis of monthly-

average flowrates in 1982 (USGS, 1984) as:

Q11=Qlax%’ (D.1)

where
Qy; = long-term average flowrate for month i

Qy; = long-term annual-average flowrate
Q,; = 1982 average flowrate for month i

Qua = 1982 annual-average flowrate.
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Table D.2
SUMMARY OF WATER TREATMENT PLANT WITHDRAWAL RATES

I. WATER TREATMENT PLANT CAPACITIES!?

1980 1985 1986 1987 1989 2005 Lltimate

Town Lake

1. Green WTP [mgd] 33 45 45 45 45 45 45
Lake Austin

2. Davis WIP [mgd]} 90 90 120 120 120 120 120
3. Ullrich WTP [mgd] 33 33 33 140 140 140 140
Lake Travisd

4. WTP #4 [mgd] 0 0 0 0 60 100 300
Total [mgd] 156 168 198 305 365 405 605

II. ANNUAL AVERAGE WITHDRAWALS FOR WATER SUPPLY?

1980 1982-83 1995 2005
Withdrawal [mgd] 76.4 77.5 132.3 160.4
Average Capacity [%] 49.0 494 32.7 39.6

III. ANNUAL AVERAGE WITHDRAWALS BY TREATMENT PLANTS
USED IN THIS STUDY

Year Capacity Capacity Average
Withdrawal
[mgd] (%] [mgd]
1. Town Lake 1980 33 49.0 16.2
2005 45 39.6 17.8
2. Lake Austin 1980 123 490 60.3
2005 260 39.6 103.0
3. Lake Travis3 1980 0 -- -
2005 100 39.6 39.6

1 Benoit (1985)
2 Metcalf and Eddy (1985)
3 Note: WTP #4 not operational (1991)
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APPENDIX E

Transport Source Code (Fortran)

303



onaoaann

311

PROGRRM TOWN
This is code for Town Lake particle sims w/ lateral ioads, with or w/o
flow or load ramping: final version.
Latest veraion:

Based on

- 1 apr 1991 2005. removed all the BCN{) writes in output
TOWNFIN.FQR (12/90), Based on TOWN7.FOR Baged on (BASE.FCR, 7/27/30}

oo aa

0o

aa

nnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnnqnnn

IRTEGER  DIMNK,NK, NX, N2, R
PARAMETER (DIMNK= 32, NK= 31, NX= 11, NZ= 6, NM= 10)

INTEGER TTER,BANDL{10),BAND3(10),MAXFR], MAXFR3, IBR, ISH, IDS
INTEGER ICOAG, INFLAG, INRAMP, IQRAMP, IDISPEZ, NOUT

Real arrays used in both Fortran and C codes:

REAL
REAL

N1 {DIMNK,NX,NZ), DP{DIMNK)
DELN1 {DIMNK,NX, N2)

Real parameters used in both Fortran and C codes:

REAL

DELT, LV1ST, LVSTEF, TIME, GRAV,VISCOS, RHOW, RHOF

Real arrays used in Fortran code only:

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

REAL
REAL
REAL
REAL
REAL
REAL

N2 (DIMNK, NX,N2) , NSOURC {NK, NX,N2)

NTRIB (NK, NX), NITRIB(NK) , NIMAIN (NK) , NMATIN (NK)}

TDNDD1 {NK} , LDNDD2 {NK) , LDNDD3 {N¥K) , LDNDD4 (NX) , LDNDD (NK,NX, N2}
CT1 (NX,NZ), CT2(NX,NZ), FF{NK,NX, NZ), TOTFP (NX, NE)

NUMIN (NK, NX) , NUMOUT {N¥, NX} , NUMNET {NK,NX) , TRNSFR{NK)

TS5 {NX, N2}, DELTAD{NK), V(NK)}, TAREA(NX,NZ), TNUM{NX,NZ)
RFLUX (NX), BEDMAS (NX), BEDVOL(NX), POROS(NX), AREA (NX),B(NX)
MASSIN (NX), MASOUT{NX), CUTIME (NM)

UX{NX,NZ), UZ(NX,NZ}, EX(NX,NZ), B2 (NX,NZ}

UXMEAN (NX), USTAR{NX), STRESB{NX)

Q(O:NX), QITRIB{0:NX), QTRIB({D:NX}

QSCALE (0 :NX}, NSCALE(0:NX)

CX{NX,N2), CZ{NX,N2), CZV(NK), DX(NX,NZ),6 DZ(NX NZ)
TERMX {NX,NZ}, TERMZ (NX,NZ)

Real parameters used in Fortran code only:

REAL
REAL
REAL
REAL

DELX, DELZ, FRACT, DELA, TMAX

STRESC, RATEM, UXMAX, EXMEAN, EZMEAN, PI

CTW, CTB, KPH, KPA

TNRAMB, TNRAMU , TNRRMD , TQRAMB, TQRAMU, TQRAMD, TRMIN, TRMAX

Real arrays and parameteys used in C routines only:

REAL
REAL

FRAC (4,DIMNK), GAMMA(531), Y(DIMNK)
HMAX, TEMP, G, ALPHA

CHARACTER*S50 FILNAM

COMMON/ERQOSON/ STRESC, RATEM

COMMON/FLOC/ ALPHA, G, IBR, ISH, IDS

COMMON /MEANS/ EXMEAN,EZMEAN, FRIC, IDISPZ, DEPTH

COMMON/PART/  RHOP, RHOW, VISCOS, TEMP, GRAV, LV1ST, LVSTEP, PI

COMMON /RAMP/  TNRAMB, TNRAMU, TNRAMD, TQRAMB, TQRAMU, TORAMD, INRAMP,
$

TORAMP

COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX, NOUT, ITER
COMMON/TAMNIT/ CTW,CTB, KPM, KPA

PURPOSE!

AUTHOR :

This program simulates particle and contaminant 2-D Eransport
and fate. In additlon to Fertran subroutines, it calls twe
coagulation subroutines in C.

Jerry Culkin
Department of Civil Engineering
University of Texas at Austin

PRECISION: Single.

LANGUAGE: FORTRAN 77 except for FRCGAM{) and COAG(), which are in C.

REFERENCES: See subroutines.

VARIABLE/PARAMETER DEFINITIONS:

ALPHA
CONAL

CONAZ
CONM1
CONM2
CONSTV

COURNT
CROSS
CTB
CTW
cav
DELA
CELCT
DELNO

DELT
DELX
DELZ
DEPTH
DILUT

- Chemlcal collision efficiency facter, [-]

- Local converalon factor to convert proportional area in
[um~2/em*3] to [em~2/L]

- Local conversion factor to convert propertlonal area-
partition fraction to actual area-partition fraction

- Local convwersien factor to convert prapertlonal volume

in {um*3/cm~3] to absolute mass in [mg/L]

- Local conversion factor to convert proportional masa-
partition fraction to actual mass=-partition fraction

- Local converaion facter to Stokes settling velocity

in [cm/s]

Courant Number, [=]

Corrective term for 2-D FDE cross derivatives, [#-m/cm*3]

tnitial total contaminant conc in bed, {ug/L}

Initial total centaminant conc in water, (ug/L]

vertical settling Courant Number, [-}

Fraction of DELZ for vertical node at bed-water interface

Local Inctemental Cp flux calculatisn, jug/L-s]

Locil change in number concentration at bed interface,
[#/em~3]

- Time step slze for numerical stabllity, [sec]

- longitudinal grid spacing, (uniform), {em)

- vertical grid spacing, (uniform), [cm]

- Average total water cclumn depth, (cml

- pilution facter for tributary concentrationik,i)

[ I T N I I I |
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DIMNK
DISPX
DISPZ

DP HAF
ENGDIS
EXJ

ICOAG
ips

IDISPE
INFLAG
INRAMP
IQRAMP
I18H

ITER
KARMAN
KPA

KEM

K2, K3
LDSTEP
LV1sT
IVSTEP
M

MAAFRL
MAXFR3
NK

NM
NOYT

UxJ
UXMAX
UZMAX
VISCOos
VOLMAS
VMAX
ZhoT

2INT
2LOCAL
Z5YSTM
ZTCP
{ARER}
(B}
(BAND1}
{BAND3}
{BEDMAS}

{BEDVOL }

L I I |

t 1

FEL Vet | I T T T N R T N )
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WK + 1 to accomodate element shifts in € codes

Local dispersion compenent in X direction, [=]

Local dispersion component in 2 directien, [-]

Local diameter at half log step below current slze, [um]

Local diameter at half log step above current aize, [um]

Local energy dissipation, [em*2/8%3)

Local longltudinal dispersion coefficlent ac depth J,
[em~2/3!

Local vertical dispersion ccafficient at depth j, [cm~2/s)

Maximam longltudinal dispersion coefficlent, [cm~2/s)

Maximum vertical dispersion coefficlent, [em*2/s]

Mean longltudinal dispersion coefficient, [cm~2/s]

Mean vertical dispersion coefficlent, [cm*2/s)

Local Ratlo of adjacent particle diameters, (-]

Local Ratic of diameter half step above current to current
slze

Safety facter used to set stable DELT, [ < 0.8]

Local Darcy-welsbach friction factor asaigned, [-]

Fluld velocity gradlent, [1/5]

Acceleratlon due to gravity, [cm/s"2]

Maximum allowable time step in COAG, (8]

Local Indices for X node, Z node, and particle size,
respectively

switch definlng Brownlan collision mechanism and trajectory
type

Flag for coagulatlon routine calls {l=on)

switch definlng differential sedimentation collislen
mechanism and trajectory type

Switch for using uniform prescribed Ez (l-on)

switeh for homogenecus number concentration as I.C. (l=on)

Switch for ramping trib number concentratlons {l=on)

switech for ramping trib flowrates (l=on)

sSwitch defining fluld shear cellision mechanism and
trajectery type

Number of iterations already taken

local von Karman's constant, [-]

Surface—based, porosity-corrected partition coefficlient,
[L/cm~2]

Maga-based, porosity-corrected partition coefflcient,
[L/kgl

Local indices of size

log of ratio of adjacent particle diameters, {-]
log(Volume of lat particle slze), vel in [um~3]
pelta log{Vp), log{Vik+l)/Vik))

cutput index for OUTIME():

Maximwm value of any element in FRAC(1,DIMNK}, [-

Maximum value ¢f any element in FRAC(3,DIMNK), [~

Number of particle slze classes

Maximum number of output times allowed after time zero

Number of actual outpnt times after time zero output

Number of longitudinal {X) grids

Number of vertlcal (2) grids

The universal constant 3.1415%2

Local Leongitudinal Grid Peclet number, [-]

Local Vertical Grid Peclet number, [-]

Erosion rate constant, [s/cm]

Remainder of ITER/1000. REMAIN=0D. for every 10G0 ITER.

Effective bulk density of flec, [g/fam*3]

Density of fluld, [g/cm~3]

local Cp flux accumulator, jug/L-3)

Local Bed shear stress, [dyne/cm~2] = (g/cm-3“2]

Local Critical shear stress for erosion, [dyne/cm*2]

Local Particle surface area conc accumulator for loop,
[um~2/cm*3]

Local Particle mass conc accumulator for loop, [um*3/cm~3]
Local Partlcle humber conc accumulator for loop, [4/omt3]

Maximum length of simulation, [s]

Temperature, (K]

Elapsed time of simulation, [s]

Time to begin ramp up of inflow number concentrations, [sa]

Time to ramp down of inflow numbwer concentrations, [s)

]
1

- Time to ramp up of inflow number concentratlions, [s]

[ I I |

E I T T T B |

Time to begin ramp up of inflow flowrate, [s]

Time to ramp down of inflow flowrate, [s]

Time to ramp up of inflow flowrate, {sa]

Final time of ramp down of flowrate or trib conca, [s]
Initial time of ramp up of flowrate or trib concs, [s)
Average velocity between top and bottom nodes where load ls
distributed, [om/z]

Local Longitudinal velocity at depth 3, [cm/s]

Max longitudinal velocity {n vertical fleld, [cm/fs]

Max vertical velocity in fleld, [cm/s}

Molecular viscosity of suspensien, [g/cm-s]

spherical volume to mass conversion factor

Maximum settling velocity of floc, [cm/s]

Bottom depth where load {s distributed, measured from bed,
[em]

Vertlcal interval where load is distributed, [cm]

Depth measured from bed, [cm]

Depth measured from surface, [cm]

Top depth where load is distributed, measured from bed, [cm)
Average cross-sectional area at grid, [m*2]

dverage wldth of cross-section at grid, [m)

Total mass of solids in the interface layer per unilt area
at node I, [g/am~2]

Bulk voelume of the interface layer per unit area at node
I, L.e., DEPTH{I), [cm"3/cm"2]
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{CZV} -
{DELTAD} -

{DP)

{ GAMMA )

{LDNDD2]

{LDNDD1} -

{LDNDD3 }
{LDNDD4} -
{NIMAIN) -

(NITRIB} -

{NMAIN] ~—
{NSCALE} -

{POROS }

(Q}

[QSCALE)
{QITRIB}
{RFLUX}

{5TRESB}
{ TRNSFR}
{USTAR}

{UXMEAN }

v}
1Y}

[CT1]

[cT2
[CX]
[Cz]

[DELN1]

[DX]
[DZ]
[EX]
{EZ)
[FP]

[ I I A B |

1

FRAC] -

N1)
N2]

l
[LDKDD] -
[

[NSOURC] -

[NTRIB] =~
[NUMIN] -

[NUMNET] -~

[NUMOUT] -

{TAREA] -

[ TERMX]
[TERMZ )
[ THUM]
[TSS]

[ux]
[UZ]

REQUIRED
In Fortran:

In Cs

LI I I |

BEDXCH
CONCIC
DISTRB
ERODE
FLOWI
N
QUTPT
PARTCL
RAMPOQN
SQURCE
STABLE
TOTAL
TRANSC
TRANSP

COAG
FRCGAM
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settling Courant No. for alze K particle, [-]

Delta diameter about each floc sirze, [um]

Equivalent spherical diameter of size k floc, elements

shifted in ¢ code, [um]

Collision frequency function for 3 mechanisms, [ ]

Vector of initial PSD for water column, leg{[#/cm*3=um])

vector of initial PSD for bed, log({[#/cm~3-um])

Vector of initlal PSD for main inflew, log{[#/cm*3-um})

Vector of initial PSD for tributary, log{[#/cm*3-um])

Initial number concentration distr¥bution for main inflow,

from [DNDD3, [#/cm”3]

Initial number concentratjon distribution for tributaries,

from LDNDD4, [#/cm*3]

Number concentration distribution for main inflow, [#/cm”3)

Factcr, peak tributary number concentratlions divided by

initial tributary number concentraticns, [-)

Bulk porosity of interface layer, [cm~3/cm*3]

Total flowrate, [m~3/s)

Factor, peak flowrate divided by inltlal flowrate, [-}

Initial tributary flowrate, [m~3/s)

Total potential vertical bed mass flux at node I due
to resuspension; positive for flux out of ked.
subject to bed mass avallabllity. [g/cm~2-3]

Local Bed gheay stress, [dynefcm~2] = [(gfcm-s"2]

Bulk resuspension transfer veloclty, [am/s]

local Shear velacity, [om/3]

Mean lengitudinal veloclty, [cm/a)

Settling velocity of size class k, [cm/s]

Working vector for concentration in €, overwritten for
each different (x,2) lecation, [#/cm”3]

Total contaminant concentration befors transport, [ug/L]

Total contaminant concentration after transport, [ug/Ll

Courant Number in X, times width, [m]

Courant Number in 2, times width, [m]

Change in number conc. due to coagulatlen over time step,

[#/cm~3]

Dispersion Number in X, times wildth, [m]

Dispersicn Number in 2, times width, [m]

Dispersion coefficient in X, [am*2/s]

Dispersion coefficient in 2, [cm~2/s!

fraction of total contaminant sorbed to sclid of size Xk,

(-1

Fraction of particle floc in integer partlele classes, [-]

Matrix of P5D, 1.e., LdNdD, log{(#/cm"3-um]]

Number concentration throughout water column & bed, [#/cm”3]

Nuwber concentration after transport but before
coagulation [#/cm*3)

Concentration source at (1,3}) due to tributary aource,

[#/cm~3)

Number concentration for tributaries, [#/em~3]

Number of slze k¥ flocs (per unit area) enterlng bed at
node I during DELT, [#/cm”~2]

Net number of size k floca {per unit area) entering
interface at node I during DELT, [#/em~2)

Number of size x flocs (per unit azea) leaving
bed at node I during DELT, [#/am~2)

Total superflcial surface area concentration of suspended
solids, [cm*2/L]

Longitudinal combinatlion of ¢L & Di, times width, {m)

Vertical combination of €1 & Di, times width, [m)

Total number concentration of suspended solids, [#/cm*3]

Total suspended solid mass concentratien, {mg/L]

Fluld velocity in X, [cm/s]

Fluld velocity in 2, [cm/s]

ROUTINES:

The only external librarjes explicitly called are those included by
the C subroutines.

OPEN (UNIT = 5, ERR=98)
OPEN (UNIT = 10, ERR=99)
OPEN (UNIT = 11, ERR=99)
OPEN (UNIT = 12, ERR=59)
OPEK (UNIT = 13, ERR=99)
OPEN (UNIT = 14, ERR-39)
FI = 3,141592

ITER =

0
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M -1

C M is an cutput counter for OQUTIME({):
[

CALL IN (NK,NX,NZ,DIMNK,NM,QITRIB,AREA, NSCALE, QSCALE, LDNDD1,
5 LDNDD2, LDNDD3, LONDD4 , BEDVOL, OUT IME, TCOAG, INFLAG, FILNAM}

[ ! Read and acho input data
C
CALL PARTCL (NK,NX,NZ,DIMNK, LDNDD1, LDNDD2, LDNDD3, LDNDD4, DP, DELTAD,
$ V', VMAX, N1, NITRIB, NIMALN)
C ! particle properties and key nodal ICs
TIME = 0.
C
CALL CONCIC {NK,NX,N2,DIMNK,V,N1, NITRIB,NTRIB, NIMAIN, NMAIN,DEIN],
] INFLAG,CT1)
c i Ccalc inltlal concentrations at BC and in domain
C
cT CALL DISTRB (NK,NX,NZ,DIMNK, N1,DP, TSS, TAREA,FP, TOTFP)
cT ! Contaminant diss/part fractions based on TAREA,XPA
[
IF {ICOAG .EQ. 1} TEEN
CALL FRCGAM {NK,LVSTEE, TEMP,VISCOS,DP, G, GRAV, RHOP, RHOW, IBR,
15H, IDS, FRAC, BAND1, BAND3, MAXFR], MAXFR3, GAMMA)
ENDIF
[ ! C subroutine=- assign frac[] and gamma{]
[
CALL FLOWI {NX,NZ,Q,QITRIB,QTRIB,AREA, UXMEAN, USTAR, UX UZ,EX,E2,
E STRESB,B)
c ! Inmlitial flow and dispersion fields
c
CALL STABLE (MNK,NX,NZ,UX,UZ,QSCALE,EX,EZ,CX,C2,DX,DZ, TERMX, TERMZ,
VMAX,V,CZV,B)
c ! Time step for stabllity
c
CALL BCN [NK,NX,NZ,DIMNK, N1, NMATN, NTRIB,Q, QTRIB)
c ! Initial upstream BC for concs
Cc
CALL SOURCE {NK,NX,N2,NTRIB,NSOURC,QTRIB,AREA)
t Initial Trib leading source terms
CALL TOTAL (NK,KNX,N2,DIMNK,N1,DP,DELTAD, BEDVOL, BEDMAS, PORCS, TSS,
$ TAREA, TNUM, LDNDD, TIME)
< { Galc total mass,area,number from [N1j
c
CALL OUTPT (NK,NX,NZ,DIMNK,N1, TIME, BEDMAS, BEDVOL, TSS, TAREA, TNUM,
& 1DNDD,POROS, CT1, FB, TOTFP, FILNAM, NSQURC, QTRIB, NTRIB)
[ { Prints Initial conditions
Cc
TRMIN = AMIN1 {TNRAMB, TQRAMB}
TRMAX = AMAX1 {TNRAMD, TQRRMD})
o
¢ Begln/contiInue time loop:
DO 1000 ITER = 1,100000
TIME = TIME + DELT
o]
c Check for status time. Write every 100C lteratlons:
REALIT = REAL({ITER)/ 1000.
REMAIN = AMOD{REALIT,1.)
IF (REMAIN .LT. 0.001) THEN
WRITE {10,*) 'ITER/TIME - 4, ITER,' / *,TIME
ENDIF
o
C Call ramping routines i1f unsteady tributary flow or conc ramps:
IF (INRAMP .EQ. 0 .AND, ICRAMP .EQ. 0) GOTO 180
IF {TIME .GT. TRMIN .AND. TIME .LE, TRMAX) THEN
CALL RAMPQN {NK,NX,NZ DIMNK, NITRIB,NTRIB,NIMAIN, NMAIN,
$ Q,QITRIB, QTRIB,QSCALE ,NSCALE , AREA, UXMEAN, USTAR,
H UX,U2,EX, EZ,CX, CZ, DX, DZ, TERMX, TERMZ, B)
c ! Rampa Q, Qtrib, Ntrih, and flow field
[
CALL BCN (NK, NX,NZ, DIMNK,N1, NMAIN, NTRIB, Q,QTRIB)
C { New upstream BC for concs w/ new trib QxN
ENDIF
JEHY) CONTINUE
C
CALL SOURCE (NK, NX,NZ,NTRIB,NSCURC,QTRIB, AREA)
c ! Trib leading source terms
[+
CALL ERCDE (NX,RHOW, USTAR,RFLUX, STRESB)
c ! Potentlal bed resuspension mass flux
o3
CALL BEDXCH {NK,NX,NZ,DIMNX,N1,DF,V,RFLUX, BEDMAS, N2, BEDVOL,
8 TSS, NUMIN, NUMOUT, NUMKET , MASSIN, MASOUT, TRNSFR)
[of { Number and Mass lnventories & exchange at bed interface
C
CALL TRANSP (NK,NX,NEZ,DIMNK,Nl, N2,V , UX,6UZ EX, E2,CX,CZ,
s DX, DZ, TERMX, TERMZ, CZV, NUMKET, B}
C ! Particle transport
c
T CALL TRANSC (NK,N,WNZ,CTl,CT2,V,FP,UX,UZ,EX,EE,CX,C2, DX, DE,
cT 5 TERMX, TERMZ, CEZV, BEDVOL, NUMIN, NUMCUT, TRNSFR, B)
cT | Contaminant transport/reaction
C
IF {ICOAG .EQ. 1} THEN
CALL CORG (NK,NX,NZ,N1, AMAX,DELT, FRAC, BAND1, BANDI, MAXFR1,
s MAXFR3I, GAMMA, ALPHA,DELN], Y)
ENDIF
c ! Coagulation in parallel with transpert & source
[
[ Reset initial condition concs for next time step as the final
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c conce & FPs from last time step. Any lateral trib sources are
[ added here in parallel with transport:
pd h
DO 400 J = 1, NZ-1
DO 300 I = 2, NX
DC 200 X - 1, NX
N1{K,I,J) = N2i{K,I,J)+ NSOURC(X,I,J)
IF {N1(X,I,J} .LT. 0.0) N1(K,I,J) = 0.9
200 CONTINUE
aco CONTINUE
400 CONTINUE
C
[ Add coagulatlon conc changes, if applicable, to the concs
C resulting from transport and lateral trib source:
IF (ICOAG .EQ., 1} THEN
DO 700 J = 1, NE-1
DO 600 I = 2, NX
DO 500 K =1, NK
N1(K,I,J} = N1(K,I,J} + DELNI{K,I,J)
IF (N1{K,I,J) .LT. 0.0) NL(K,I,J) = 0.0
500 CONTINVE
600 CONTIRUE
700 CONTINUE
ENDIF
c
CcT DO %00 I = 2, NX
cT Do BOO J = 1, NZ-1
CcT CTL{I,J) = CTZ{I,J)
T IF (CT1{I,J} .LT. 0.6) CTU{I,J) = 0.0
cT 800 CONTINUE
CT  30e CONTINUE
v
cT CALL TOTAL {(NK,NX,N2,DIMNK,N1,DP,DELTAD, BEDVOL, BEDMAS,
cT L] POROS, TSS, TAREA, TNUM, LDNDD, TIME)
CT CALL DISTRB (NK,NX,NZ,DIMNK,N1,DP,TSS, TAREA,FP,TOTFP)
c
c SUTEUT CCONTROL

¢ Check for Initlal (debugglng) iterations:
< IF {ITER .LE. 3) THEN

< WRITE (10,*) 'ITER/TIME = ', ITER,' / ', TIME

c WRITE {10,*) "wikeatansnsusannassennanssnses QUTPUT Mark',
c 3 A WA R AR RNk A RN R SR RA R b

[ WRITE {10,*)

c CALL TOTAL (NK,NX, NZ,DIMNK,6N1,DPF,DELTAD, BEDVOL, BEDMAS,
C $ POROS, 7SS, TAREA, TNUM, LDNDD, TTME)

c CALL OUTPT (NX,NX,NZ,DIMNK,N1,TIME,BEDMAS, BEDVOL, TSS,

c TAREA, THUM, LDNDD, POROS,CT1,FF, TOTFP,FILNAM,
c NSOURC, QTRIB, NTRIB)

c

C

C

i

ENDIF

check for filnal time and output times:
IF {TIME .GE. TMAX} THEN
GOTO 1100
ENDIF

IF (ABS{TIME ~ OUTIME(M)) .LE, DELT) THEN
WRITE {10,%) '*aaaasaxszasdsssxaiut ke ¥ v x0AGUTPYUT Matk',
s ler!'t.itﬁﬁl’t!ittlt!!ttitlli.ﬁ.!
WRITE (10,*)
WRITE (il,%)
WRITE {10,%) *ITER - !, ITER
CALL TOTAL (NK, NX,NZ,DIMNK,N1, DP, DELTAD, BEDVOL, BEDMAS,
[ PORDS, TSS, TAREA, TNUM, LDNDD, T IME)
CALL CUTPT (NK,NX,NZ,DIMNK,N1,TIME, BEDMAS, BEDVOL, TSS,
TAREA, THUM, L.DNDD, POROS, CT1,FP, TOTFP , FILNAM,
NSOURC, QTRIB, NTRIB)

e

M=M+ 1
ENDIF

C
1000 CONTINUE
(o}

1100 CONTINUE
o

CLOSE(10}

CLOSE(11}

CIQSE({12}

CILOSE {13}

CLOSE(14)

STOP
98 WRITE (*,*) ‘'ERRCR opening file for DATAIN'
99 WRITE (*,*) ‘'ERROR opening file for DATAQUT'

STOP
END

ML LI R R L L L]

SUBROUTINE IN (NK,NX,NZ,DIMNK,NM, QITRIB, ARER, NSCALE, GSCALE, LDNDD1,
LDNDDZ, LDNDD3, LDNDDY , BEDVOL, QUTIME, ICCAG, INFLAG,

$ FILNAM)
c
INTEGER NE,NX,NZ,DIMNK,NM, IBR, ISH, IDS, ICOAG, INFLAG, INRAMP,
IQRAMP , IDISPZ , NSURF, NOUT
c

REAL BEDVOL({NX) ,LDNDD1 (NK), LDNCDZ {NX}, LDNDD3 {NK) , LDNDD4 (NE)
REAL QITRIB({D:NX),AREA(NX), NSCALE {0:NX) ,QSCALE {0:NX} , OUTIME (NM)
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REAL DELX,DELZ,DELA, DELT, TIME, TMAX, HMAX

REAL RHOP, RATEM, FRIC, RHOW, VISCOS, TEMP, GRAV
REAL LV1ST, LVSTEP, ALPHA,G

REAL CTW,CTB, KPM, KPA

REAL TNRAMB, TNRAMU, THRAMD, TQRAME, TQRAMU, TORAMD

CHARACTER*50  FILNAM

COMMON/ERCSON/ STRESC, RATEM

COMMON/FLOC/  ALPHA,G, IBR, ISH,IDS

COMMON/MEANS/ EXMEAN,EZMEAN, FRIC, IDISPZ,DEPTH

COMMON/PART/  RHOP, RHOW, VISCOS, TEMP , GRAV, LVLST, LVSTEFR,PI

COMMON/RAMP/  TNRAMB, TNRAMU, TNRAMD, TQRAMB, TQRAMU , TQRAMD , INRAME,
IQRAMP

COMMON /STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX, NOUT, ITER

COMMON /TAMNIT/ CTW,CTB, KPM, KPA

PURPOSE: This subroutine reads conditions for the simulatien and echos
their values.

INPUT PARAMETERS: DIMNK,NK,NX,NZ,NM are passed from MAIN
All other variables are read in here.

OUTPUT PARAMETERS: All varlables read for slmulation returned to MAIN;
exception is NSURF, the number ¢f 2-D concentration
surfaces (output times) to be plotted from files
12, 13 & 14 for 155(1,7), TNUM{i,4) and TAREA(1, 1)

AUTHOR.: Jerry Culkin

Department of Civll Engineering
University of Texas at Auatin
IAST REVISED: 3 August 1990
PRECISION: Single
LANGUAGE: FORTRAN 77
REFERENCES: Noneg

REQUIRED RQUTINES: None

2]

READ (5,' (A)',ERR=311,END=381) FILNAM
{ Input file name and info
DELX, DELZ, DELA, FRACT, TMAX, HMAX, NOUT
LV15T, LVSTEP, RHOP
RHOW, VISCOS, TEMP, GRAV
STRESC,RATEM, EXMEAN, EZMEAN, FRIC

READ
READ
READ
READ

{5, %, ERR=312, END=382)
{5, *,ERR=313, END=383)
{5, *,ERR=314, END=3B4)
(5, *,ERR~315, END=385)

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

CLOSE

(5, *, ERR=31T, END=387)
{5, *, ERR=317, END=387)
(5, *, ERR=318, END=388)
{5, *,ERA=319, END=3B9)
(5, *, ERR=321, END=3%1})
{5, *, ERR=322, END=392)
(S, %, ERR=123, END=153}
(S, *,ERR=323, END=193)
(5, *,ERR—324, END=394)
{5, *,ERR=324, END=334)
{5, *, ERR=324 ,END~3394)
{5, *, ERR=326, END=396)
{5, *, ERR=326, END=396)
(S, %, ERR=~325, END=395)
(5, %, BRR=324 , END=354)

{3}

(QITRIB(I},I = 0,NX)
(AREA(I},I =~ 1,NX)

{BEDVOL{I},T = 1,NX)
ALPHA, G, IBR, I5H, IDS
{LDNDD1 (K), X = 1,NK)
(LDNDD2 [K) , K = 1,NK)
(LDNDDJ {K),K = },NK)
(LDNDDA4 (K) K = 1,KK)

1COMG, INFLAG, INRAMP , IQRAMP, ID1SP2

TNRAME, TNRAMU, THRAMD
TQRAME, TGRAMU , TORAMD
(NSCALE(I),I = D,NX)
(QSCALE{I),I =~ 0,NX)
{OUTIME (M} ,M = 1,NOUT)
KPM,KPA,CTHW, CTB

Echo input values to be used in computation:

WRITE
WRITE
WRITE
WRITE

Define NSURF, the number of “layers”, i.e., the # of output times (plus
1 for time zere) of contour data, needed in Mac app *NSURF':

NSURF
WRITE
WRITE
WRITE

WRITE

15 FORMAT ('ECHC Dimensions HardWlred in MAIN
NZ

50

{10,*)

111, *)

- NOUT + 1
{12,*) NSURF
{13,*} NSURF
(14,*} NSURF

(10,15)

MK NX

*Input file info:

'Input file info:

', FILNAM

', FILNAM

LA

DIMNK NM:')

WRITE (10,25) NK,NX,NZ, DIMNK,HNM

25 FORMAT

WRITE
WRITE

35 FORMAT (/,
DELX

5

{5{TR5,I2))

(18,35)
110, 45, ERR=581)

DELZ

$'NOUT”, /,

5

[
45 FORMAT (2F10.0,2F1

WRITE
WRITE

[cm]

{10, 55)
{10, 65,ERR=582)

cm}
0.2,E11.4,2X,F7.1,16)

DEIX, DELZ, DELA, FRACT, TMAX, HMAX, NQUT
'"ECHO Parameters:

'/,

DELA FRACT TMAX

[s]

LV1ST, LVSTEP, RHOP

55 FORMAT (/,'ECHO Parameters: ',/,
5 LV1ST LVSTEP RHO®', /,
’ [um*3] fum"3] {g/cm*3]1)

%5 FORMAT

(aF12.4)
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WRITE (1G,75)

WRITE (10,65,ERR=583) RHOW, VISCOS, TEMP, GRAV
75 FORMAT (/,'BECHO Parameters: ',/,

! RHOW vISCos TEMP GRAV', /.
§' fg/em3] lg/em-s] [X] [em/fa~2]'}

WRITE (10,85)
WRITE (10,95,ERR=5B84) STRESC, RATEM,EXMEAN, EZMEAN,FRIC
g5 FORMAT (/,'ECHO Parameters: *,/,
5t STRESC RATEM EXMEAN EZMEAN FRIC',/,
$' [dyne/em~2) [sfcm) [em*2/a] fem~2/s] =1"
9% FORMAT (3El12.3)

WRITE {10,103}
WRITE {(10,115,ERR=586) (QITRIB(I),I = 0,¥X)
103 FORMAT (/, 'ECHO Initial Trib Flowrate, QTRIB(I), [m*3/s]:')

WRITE (10,104)
WRITE (10,115,ERR=586) (AREA(I}, I = 1,NX)
104 FORMAT (/, 'ECHO Average Area, Area(I), [m"2]:'}

WRITE (10,105)

WRITE {10,115, ERR=S87) {BEDVOL{I),I = 1,NX,2)
105 FORMAT (/, 'ECHO INITIAL VALUES OF BEDVOL(I-odd}, fem*3/am*2]:")
115 FORMAT (5(E1l.5,TR3))

Echo coagulation (only) parameters:

WRITE (10,125)

WRITE (10,135,ERR=588) ALPHA, G, IBR, ISH, ID3
125 FORMAT (/,'ECHO Coagulatlon Parameters: ‘,/,

' ALPHA G IBR ISH IDS',/,

5t -] [1/4]) -1 I-1 (=19
135 FORMAT (2F12.2,31I5)

Write initial PsDs for water, bed, and trib:
WRITE {10,*})
WRITE (10,145}

145 FORMAT (/,'ECHO IC Water Column LDNDD1{K), {(#/cm*3-um] :')
WRITE (10,175,ERR~589) (LDNDD1{X), K = 1,NK)
WRITE (10, 15%5)

155 FORMAT (/, "ECHO IC Bed LDNDD2 (XK}, {#/cm"3-um] :')
WRITE (10,175,ERR=591) (LDNDDZ(K), K = 1,NK}
WRITE (1B, 165)

165 FORMAT (/,*ECHO IC Main Flow LDNDD3{K), [#/cm"3-am] :')
WRITE {10,175,ERR=592) (LDNDD3(K}, K = 1,NK}

175 FORMAT (S(F11.5,TR2))
WRITE (10, 177)

177 FORMAT (/,'PCHO Tributary IC LDNDD4{K}, [#/em~3-um] :')
WRITE (10,175,ERR=592) {(LDNDD4{K), K = 1,NX)

Echo COAGULATION SWITCH:
WRITE (10,185,ERR=553) ICOAG
185 FORMAT {/,*ECHC Coagulation Switch (1= on): ',I3)

Echo CONC DISTRIBUTICN SWITCH:
WRITE {10,195, ERR=593) INFLAG
195 FORMAT (/,'ECHO Conc Distribution Switch {1= uniform): *, I3}

Echc BC Conc RAMP SWITCH:
WRITE (10,205,ERR=~593) INRAMP
205 FORMAT (/,'ECHO BC Cone Ramp Switch (1= on): *,I%)

Echo Flow RAMP SWITCH:
WRITE (10,207,ERR=593} IQRAMP
207 FORMAT {/,'ECHC Flow Ramp Switch (1- on): °',I5)

Echo Ez SWITCH:
WRITE {10,215,ERR=-593) IDISPZ
215 FORMAT (/, 'ECHO Mean Ez Cverride Switch {(1- on): ', 15)

Echo Contaminant Ramping scale coefficient and times:
WRITE (10,245)
WRITE (10, 255,ERR~594) TNRAMB, TNRAMU, TNRAMD
245 FORMAT (/,'ECHO Contaminant Ramping times®,/,
& TNRAMB TNRAMU TRRAMD®, /,
5t [a] [a] (51"
255 FORMAT (3F13.0)

Eche Flow Ramping scale coefficient and times:
WRITE (10,265)
WRITE {1C,275,ERR=594) TQRAMB, TORAMU, TORAMD
265 FORMAT (/,'ECHO Flow Ramping times',/,
s TORAMB TQRAMU TORAMD', /,
5 [s] [s] [s]1'})
275 FORMAT {3F13.0)

WRITE (10,277)
WRITE {10,115,ERR=-596) {NSCALE(I),i1 = 0,NX}
277 FORMAT {/,'ECHC Conc Scale Factors, [~]:'}

WRITE (10,279)
WRITE {10,115,ERR=596) (QSCALE(I),I = 0,NX)
279 FORMAT (/,'ECHEO Flowrate Scale Factors, [=]:'})

WRITE (10,285)
285 FCRMAT (/,'ECHO OUTIME (M) :')

WRITE {10,295,ERR=595) {OUTIME (M), M = 1, NM)
295 FORMAT (6(F11.0,TR2))
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Echo Contaminant Partition coefficlents and ICa:
WRITE (10,225}
WRITE (10,235,ERR=594} KPM,KPA,CTW,CTB
225 FORMAT (/,'ECHO Contaminant Partition Coefficlents ',/,
50 KPM KPA CTW cTe',/,
5 {L/kqg] {L/cm~2} [ug/L] {ug/L] "'}
235 FORMAT (4E13.4)

WRITE (10,*)

RETURN

I/0 Error messages:

311 WRITE (*,*) VINPUT READ-ERROR READING FILENAME'

312 :;?I;‘E {*,*) ‘INPUT READ~ERROR READING STEPS'

313 z;?iE {*,*) ‘INPUT READ-ERROR READING /PART-1"'

314 'ﬁsig?zE {*,*) 'INPUT READ-ERROR READING /PART-2*

315 EIRT?E'E (*,*) "INPUT READ-ERROR READING ERCSON'

a1z :;(In':‘E {*,*) 'INPUT READ-ERRCR READING [Velocitles} or [Areas}'

318 :g(;gE {*,%) "INPUT READ-ERROR READING {BEDVOL}'

319 :;?gE {*, " 'INPUT READ-ERROR READING COAG'

321 :;?;E {*,*] 'INPUT READ-ERRCR READING {LdNdD}1'

322 Usigcl,iE (S VINPUT READ-ERRCR READTNG {LdNdD}2'

323 :;cx)ﬁ'm {*,*) YINPUT READ=-ERROR READING {1dNdD}3 or {LdNdD}4'

324 ;;:?E'E (*,*) { INPUT READ-ERROR READING Flags or Contams or Ramps'
BTO

325 WRITE (*,*} 'INPUT READ-ERROR READING {QUTIME}:'
WRITE {(*,*) "M = ', M

326 :R’D(IjiE {*, %) *INPUT READ-ERROR READING Scale Factors'

38l :‘R'I‘CI,;E {*,*) ‘No input flle present ¢¥ EOF whlle reading filename"
382 DSOHT?:E {*, ") 'END OF FILE ENCOUNTERED WHILE READING STEPS*

ae3 Uslg?iE (=, =) VEND OF FILE ENCOUNTERED WHILE READING /PART=1"'

384 Us?:?iE {*,*) 'END OF FILFE ENCOUNTERED WHILE READING /PART-2"

3B5 :;?;E (™. *) 'END COF FILE ENCOUNTERED WHILE READING ERQSCN'

aa7 :EI]EE (", ¥} 'END OF FILE ENCOUNTERED WHILE READING Veloc/Area’
388 EIRT?EE. {(*,*) 'END OF FILE ENCOUNTERED WHILE READING BEDVOL'

389 :R’?;E {*,*) ‘FND OF FILE ENCOUNTERED WHILE READING COAG'

391 SFRTCI);E {#*,*] 'END OF FILE ENCOUNTERED WHILE READING INITIAL PSD1*
as2 :;?:‘E {*,*) 'END OF FILE ENCOUNTERED WHILE READING INITIAL PsSD2*
393 :‘:?5‘3 {*, %) 'END OF FILE ENCOUNTERED WHILE READING INITIAL P5D34°*
394 ::?51?- {*,*) ‘'END OF FILE ENCOUNTERED WHILE READING Flags/Ct/Ramp'
395 Usﬂl;?;E (>, *) 'END OF FILE ENCOUNTERED WHILE READING Out Times'
396 :ggiE (*,*} P'END OF FILE ENCOUNTERED WHILE READING Scale Factors'
581 Fsﬂ!'!?iE [P} 'ECHO WRITE-ERROR WHILE WRITING STEPS'

582 :’R“I);E {*,*) 'ECHO WRITE-ERRCR WHILE WRITING /PART-1"'

SB3 :‘:(I);E [%*,*) 'ECHO WRITE~-ERROR WHILE WRITING /PART-2*

584 :’;‘252 (*,*) VECHO WRITE-ERRCR WHILE WRITING EROSON'

586 ;:cl)iE {*,*) 'ECHO WRITE-ERROR WHILE WRITING Veloclties/Areas®

587 ;:?;E {*,*) 'ECHO WRITE-ERROR WHILE WRITING BEDVOL'

568 ;:?5‘}1 (*,*} 'ECHO WRITE-ERROR WHILE WRITING CCAG'

589 EIRT(T);E (=, ") "ECHO WRITE-ERROR WHILE WRITING INITIAL PSD1*

591 WSWRTOI;E {* ") *"ECHO WRITE-ERROR WHILE WRITING INITIAL PSD2*

592 :’;{?E‘E (*,*} 'ECHQ WRITE-ERROR WHILE WRITING INITIAL PSD3 or PSD4*
593 USV:??E {*,*) *ECHO WRITE-ERROR WHILE WRITING Flags'

594 min {*,*) ‘ECHC WRITE-FRROR WHILE WRITING Contam’'

595 ER::I:EE [ } VECHO WRITE-ERROR WHILE WRITING Out Times!®

596 WRITE (*,*) 'ECHO WRITE-ERROR WHILE WRITING Scale Factors'
STOP
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END
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SUBROUTINE PARTCL (NK,NX,NZ,DIMNK,LDNDD1,LDNDDZ, LONDD3, LDNDD4,DP,
5 DELTAD, V, VMAX, N1, NITRIB, NTMAIN)

¢
INTEGER NK, NX,NZ, DIMNK
c
REAL DP [DIMNK) ,V (NK) ,DELTAD {NK) , K1 (DIMNK, NX, NZ) ,NITRIB (NK)
REAL NIMAIN(NK),LDNDDI (NX), LDNDD2 {NK), LDNED32 {NK} , LDNDD4 (NX)
c
REAL RHOP, RHOW,VISCOS, TEMP, GRAV, P
REAL LV15T,LVSTEP,LDSTEP, FDFULL, FDHALF, DKHAF , DPHAF , VMAX
c

COMMCN /PART/ RHOP , RHOW, VISCOS, TEMF, GRAV, LV1ST, LWSTEP, P1

PURPOSE: This reoutine assigns partilcle propertles for each FLOC:
- floc dlameter (equlvalent apherical)
-~ flee settling velocity (equivalent spherical)
- delta diameter around floc
- initial bed concentrations based on lnput bed PSD
- {density ~ constant for now}

INPUT PARAMETERS:

INFLAG - Switch for homogeneous number concentration as I.C. (l=on)
LV15T - log(Initial particle volume), [um*3]

LVSTEP - Delta log({vp), [um*3]

RHOP - Effective bulk density of floe, ig/cm*1]

RHOW - Effective denuit{ of water, [g/cm”3] {consistent w/
VISCOS - Molecular viscoslty of fluid, [g/cm-3) the temp etc}
GRAV - Gravitational acceleration, [cm/s~2]

NK - Number of particle size clasaes

DIMNK NK + 1: accomodates array shift in C codes

{LDNDD1} Yactor of initial PSD for water ¢olumn, log(#/cm~3-um]}

{LDNDD2} - Vector of initial PSD for bed, log{[#/cm*3~um]}
{LDNDD3] - Vector of initial PSD for main inflow, log{{#/cm*3-um])
{LDNDD4] - Vector of initlal PSD for tributary, log{{#/cm~3-um]}
OUTPUT PARAMETERS:
VHAX - Maximum settling velocity, [(cm/s]
{DELTAD} =~ Delta diamater arcund k floc, f{um]
{DP} - Equivalent spherical diameter of slze k floc, elements
shifted in € code, [um]
{NIMAIN)} ~ Initial number concentration distribution for main inflow,
from IDNDD3 or uniform, [#/cm*3)
(NITRIB} - Initial number concentration distribution for tributaries,
from LDNDD4 or uniform, [#/cm*3]
v} - settling velocity for size k floc, [cm/a]
[N13 - Initial concentration in domain, [#/cm~3)

AUTHOR : Jerry Culkin
Department of Civil Engineering
University of Texaa at Austin
LAST REVISED: 31 Jul 1990 1135
PRECISION: Single
LANGUAGE : FORTRAN 77
REFERENCES: None

REQUIRED RQUTINES: None
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WRITE (10,%)
WRITE {10,%) '#**##aaaswhhuaasusdraannanxa kAQUTPYT PARTCL***unnnt,
Nrr kA kA A A AT kAR AR ARAAR AN RN
WRITE (11,*)
¢ Define constants to simplify and convert LdNdD() to N1{}:
LDSTEP = LVSTEP/ 3.
c I log {(DP{k+1)/DP(k))
FDFULL = 10** (LDSTEPR)

c ! DP increment Factor,full step
FDHALF = 10** (LDSTEP/2.)
c ! pP increment Factor,half step
CONSTV = GRAV/(1&.% VISCOS)* (RHOP- RHCW)* 1.E-%
< ! 3tokes settling velocity factor for result in {cm/s]
C
¢ calc first elements for the array of diameters, settling velocitles
C [assume Stokes settling}, and bed no. concentrations:
C
K=1
DP{X} = {(6./ PI* 10**LV1ST)**D.333333
c ! Initital pp, [um]

V{K) = CONSTV* DP(K)**2
DMHAF = DP (K} FDHALF

[ ! Dp minue half leg dp, [um]
DPHAF = DP {K}* FDHALF

o ! Dp plus half log dp, {um]
DELTAD(K) = [(DPHAF- DMHAF)

c
N1{X,2,1} = 10**LDNDD1{K)* DELTAD(K)
W1{X,1,N2) = 10**LDNDDZ{K)* DELTAD(K}
NIMAIN{K) = 10%*LDNDD3(K)* DELTAD(K)
NITRIB(X) = 10+*LDNDD4 (K)* DELTAD(K)

o

IF (N1{X,2,1) .LT. 1.0) Nl(K,2,1) =20.C
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IF {N1{(K,1,NZ) .LT. 1.0} Kl(K,1,N2) = 0.0

IF {NIMAIN{XK} .LT. 1.0) NIMAIN(K) = 0.0

IF (NITRIB(K} .LT. 1.0} NITRIB(X) = 0.0
Continue with particle loop through the PSD from size 2 thru NK to
caleulate diameters and velocitles, as well as initlal concentrations.
Note: Loop iimit of WK on LDNDD() results in nonzero initial
concentrations for N1 (NK-3,MNK] :

DO 100 K = 2,NK

DP (K) = DP{K-1)* FDFULL

naan

VIK) = CONSTV* DP(K)**2
DMHAF = DP(K)/ FDHALF
DPHAF — DP(K)* FDHALF
DELTAD (K} = (DPHAF- DMHAF)
C
N1(K,2,1) = 10**LDNDD]({K)* DELTAD {K)
N1 (K,1,NZ) = 10**LDNDDZ{K}* DELTAD (K}
NIMAIN{K) = 10**LDNDD3(K)* DELTAD (K}
NITRIB(K) = 10**LDNDD4{K)* DELTAD({K)
c

IF (N1{K,2,1} .LT. 1.0) Nl1(K, 2,1
IF (NIIK,1,NZ)} .LT. 1.0) N1(K,1,N2)
IF (NIMAIN(K) LLT. 1.0) NIMAIN(K)
IF (NITRIB(K) .LT. 1.0) NITRIB{K)
100 CONTINUE

LI I I |
ooaoo
oocoo

[+
C Define max Vi{k} for stability routine:
VMAX = V{NK-3)

WRITE (10,%) 'VMAX = ' VMAX, ' V(NK-3) = ', V(NK-3)
o
WRITE (10,*)
WRITE (14,5}
S FORMAT (' K',T5,'Dplum)*,T12,'DelDpium]', T22, 'Vk [cm/s]*, T34,
5*Nwat (k} Nbed (&} Kmain (k) ¥trivik), [(#/cm3]")
c
DO 200 K = 1,NK
WRITE (11,25) DP{X), DELTAD(K)
WRITE(10,15) K,DP(K},DELTAD (X),V{K) N1{K,2,1},N1(K,1,N2},
5 NIMAIN{K),NITRIB(K}
200 CONTINUE
1S FORMAT (I2,TR1,F6é.2,TR1,F8.3,TR1,E10.3,TR1,E11.4,TR]l,E11.4,TR],
$E11.4,TR1,Ell.4)
25 FORMAT (F10.2,TR5,F10.3)
C
RETURN
END

O A h kR AR AN KA AN AR AN R R AN N A RAN AR KR NN R AR r bR arh kb A AR AR N EAr

SUBROUTINE CONCIC {NK,NX,NZ, DIMNK,V,N1,NITRIB,NTRIB, NIMAIN, NMAIN,
-1 DELN1, INFLAG,CT1)

[
INTEGER NK,NX,NZ2,DIMNK, INFLAG
¢
REAL N1 ({DIMNK, NX,NZ}, NITRIB({NK), NTRIB(NK, NX), NIMAIN{NK}
REAL NMATN (NK),DELN1 (DIMKK, NX, N2) ,CT1 (NX,N2)
c
REAL CTHW,CTB
c

COMMON/TAMNIT/ CTW,CTB, KPM, KFA

PURPOSE: This routine assigns initial domain, bed, U/$, and tributary
number and contaminant coneentrations.

INPUT PARAMETERS:
INFLAG - Flag to aset uniform concentrations {l=on)
NK Number of particle size classes

NX,NZ -~ Number of longitudinal and vertical grids

CTB - Initial total contaminant conc in bed, (ug/L]

CTW - Initial total contaminant conc in water, [ug/L}

DIMNK = NK + 1; accomodates array 8shift in C codes

(NIMAIN} - Initial number concentratlon distribution for main inflow,
{#/cm~3}]

32 - settling veloclty, [cm/s]

[cT1l - Initlal total contaminant cancs, [ug/L]

[NITRIB] = Initial number concentration for tributaries, [#/cm*3]

QUTPUT PARAMETERS:

{NMAIN} = Number concentration distribution for main inflow, [#/cm*3]

[DELN1] - Initiallze concentration changes (due tTo COAG in water
ceolumn) to zero, [#/em=3)

[N1] - Initial concentration throughout water column & bed,
{#/em~3]

INTRIB] = Number concentratlon for tributariles, {#/cm~3]

AUTHOR ! Jerry Culkin

Department of Civil Engineering
University of Texas at Austin

LAST REVISED: 1 August 1990 1225 - new tribs
27 Sept 1430 = new NMAIN

PRECISICH: Single
LANGUAGE: FORTRAN 77

REFERENCES: None

nnnnnﬂnnnnonnnnnnnnnnnnnnnnnnnnnnnnnnnn

REQUIRED RQUTINES: None
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c

cc WRITE (10.%)

cc WRITE (10,*) '**swétekmmannsmsstunstisnsanasqUTpUT CONCICH*anmhn1
cC PR AR R ARANKR Rk RN RN AR RN RARD

cc WRITE {10,*)

c

1f flag for uniform (homogeneous) PSD on, then overwrite conca from

classes.

<

¢ PARTCL. Note: manually set concentrations to 0.0 for last three alze
[

C

100

o0

300
400
500

ann

6C0C
700

(s el

1200

0N

1300
1400

o0

1500
1600
1700

a a6

pR-THH
1800

2000

(e Ne

2100
2200
2300

IF (INFLAG .EQ. 1) THEN
DO 100 K = 1,NX-3
NIMAIN(X) = 1.
NITRIB(X) = 1.
K1(X,2,1) = 1,
CONTINUE
DO 200 X = 1,NK-3
NL(K,1,NZ) = 10. ! Bed IC
CONTINUE
ENDIF

Main flow IC
Trib flow IC
Domain IC

Assign IC partlcle concsik,x,z) through DOMAIN:
Do 500 J = 1, NZ-1
DO 400 I = 2,NX
DO 300 K = 1,NR~3
N1{K,I,J) = N1{K,2,1})
CONTINUE
CONTINUE
CONTINUE

Assign IC particle concs(k,x,2) through BED:
DO 700 I = 2,NX
DO 600 X = 1,NK=3
N1{X,I,NZ) = Nl(K,1,NZ)
CONTINUE
CONTINUE

Assign IC particle concs(k,x,z) for U/s flow:
DO 1200 K = 1,NK=3

NMAIN(K) = NIMAIN({K)
CONTINUE

Assign IC particle concs(k,x,z} through tributaries:
DO 1400 I = 1, WX
po 1300 K = 1, NK
NTRIB(K,I) = NITRIB{K)
CONTINUE
CONTINUE

Zero the IC particle concs{k,x,z) in all 3 floc growth classes:
DO 1700 J = 1,N2
DO 1600 I = 1,NX
DO 1500 K = NX-2,NK
N1{K,T,J) = 0.
CONTINUE
CONTINUE
CONTINUE

assign IC contaminant concs(x,z) uniformly through domain equal
to initial trib BC:
Do 1800 J = 1, NZ-1
DO 1800 T = 1,NX
CTL(I,J) = CTW
CONTINUE
CONTINUE

DO 2000 I = 1,KX
CT1(I,NZ) = CTB
CORTIKUE

Zero the IC coagulation array:
Do 2300 J = 1,N2
DO 2200 I = 1,NX
DO 2100 K = L,NK
DELNL (K, I,J) = 0.

CONTINUE
CONTINUE
CONTINUE
RETURN
END

Cmmo.nunauanwtttt-nnnnttttntnnuu*wttttn-nntttaannnnrnw*tttt..ntn--t:nxut

SUBROUTINE FLOWI (NX,N2,0Q,QITRIB,QTRIB,AREA, UXMEAN,USTAR, UX, U2, EX,
EZ, STRESE, B}

INTEGER KX,NZ,IDISPZ

REAL UX(NX,NZ), UZ(NX,NZ}, USTAR(NKX}, UXMEAN{NX)

REAL EX (NX,NZ), EZ(NX,NZ}, AREA(NX), B(NX)

REAL Q{0:NX), QITRIB{0:NX), QTRIB{Q:NX), STRESB (NX)

REAL FRIC,DELZ,DEPTH, KARMAN, ZLOCAL, Z3YSTH, EXMEAN, EZMEAN, RHOW
COMMON /MEANS/ EXMEAN,EZMEAN,FATC, IDISPZ,DEPTH

COMMON/PART/ RHOP , RHOW, VISCOS, TEMP , GRAV, LVLST, LVSTEP,PT
COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX, NOUT, TTER
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PURPOSE: Thls routine assigns fluid velocity and dispersion fleld
values, based on input magnitudes and distributions

INPUT PARMMETERS:

IDISPZ - Switch for using uniform prescribed Ez (l=on)

EXMEAN - Mean longitudinal fluid dlspersion coef, [em*2/3)

EZAVG ~ Average vertical fluid dispersion coef calc at I, [em~2/s]
EZMEAN =~ Mean vertical fluid dispersion coef imposed at I, [cm"2/s]
FRIC - parcy frictien factor, [-]

RECW - Denslty of fluild, [g/om~3]

2LOCAL = Depth measured from bed interface, (cm)

ZSYSTEM - Depth measured from surface, l.e., conslatent w/ positive

z axis downward orientation, [cm]
{AREA} - Average cross-sectlonal area in reach, [m"2]
(QITRIB} - Initlal tributary flowrate, [m*3/s]

OUTPUT PARAMETERS:
KARMAN von Karman constant

DEPTH = Total water column depth, [cm)

{B} - Average width at cross-section, [m]

1Q} - Total flowrate, [m*3/s]

{QTRIBE} - Tributary flowrate, [m*3/s]

{STRESB} = Local Bed shear stress, [dyne/cm~2] - [g/cm-3"2]
{USTAR} - Shear veloclty, [cm/s]

[UXMEAN} — Mean longltudinal fiuld velocity, [cm/=]

[EX] - Longitudgnal £luid dispersion coefficient, {cm*2/s}
[EZ] - Average vertliecal fluid dispersion coefficlent, [cm*2/3]
[UX] - Longitudlnal fluid velecity, [cm/s)

[uz) - vertical fluid veloclty, [em/s]

AUTHOR : Jerry Culkin
Department of Civil Engineering
University of Texas at Austin

LAST REVIS$ED: 3 aug, 1990 1620. for new Q nethods
1 oct, 1990 1745. for width calc

PRECISION: Single
LANGUAGE: FORTRAN 77
REFERENCES: None

REQUIRED ROUTINES: None

WRITE (10,*)
WRITE {10,*) "#tsvvssaexwsbnnnkhssiisnces GUTPUT FLOWL () *ewnnart,
GINNNENNRARKR AN RN R kR

Make initial parameters assignments. Set friction or shear velocity
based on log velocity profile for fully developed turbulent [low.
Initialize local and system depth scales with origlns at bed and at
surface.

ERRMAN = 0.40

DEPTH = (N2 - 2 + DELA) * DELZ

DO 111 I = 0, NX
QTRIB(I) = QITRIB(I}
111 CONTINVE

velocity and dispersion coefficients for cpen channel shear flow w/
log velocity profile in defect form:

Q{0) =~ QTRIB(D)
DO 200 I = 1, NX
B{I) = AREA(I)/ DEPTH* 1040.
QI ~ Q{I-1) + QIRIB(I}
UXMEAN (I} = Q{1)/ AREA{I)* 10C.
USTAR{I) = UXMEAN{I)* SORT(FRIC/8.)
STRESB{I} = RHOW* USTAR{T}**2
ZLOCAL = DELA* DELZ
Z3YSTM = DEPTH- ZLOCAL
EZAVG = DEPTH* USTAR(I}/ 15.
DO 100 J = N2-1, 1, -1
UX{I,J) ~ UXMEAN(I)+ USTAR{I}/ KARMAN® (1.t
§ 146G {ZLOCAL/ DEPTH))
IF (UX(I,J} .LT. 0.0 ) UX(LJ) = 0.02% UXMEAN(T}
Uz{I,Jy = 0.0
EZ(I,J) = EZAVG
EX(I,J} = EXMEAN
ZLOCAL = ZLOCAL + DELZ
ZSYSTM = DEPTH- LLOCAL
100 CONTINUE
200 CONTINUE

iF {(IDISPZ .EQ.1) THEN
DO 40C J = 1,NZ-1
DO 300 I = 1, NX
EZ({I,J) = EIMEAN
300 CONTINVE
400 CONTINUE
ENDIF

Write the initial tributary flowrates:
WRITE (10,*}
WRITE {10,*) 'Initial trib flowrates (I=0:NX), [m~3/sec]:’
WRITE {10,115} {QTRIB(T},I = O,NX)




a

wWrite the inltlal system flowrates:
WRITE {10,*)
WRITE {10,*) 'Initial system flowrates (I-0:NX), [m*3/3ec]:*
WRITE (10,115) (QID),I = 0,NX)

an

Write the initlal mean veloclty fleld:
WRITE (10,%)
WRITE (10,%) 'Initial mean veloclty fleld [T), [cw/secl:’
WRITE (10,115) {(UXMEAN{I),TI = 1,NX}

a0

Write the initial shear velocity fleld:
WRITE (10,%)
WRITE (10,%) 'Initlal Shear velocity field {I), [cm/sec]:'
WRITE (10,115) (USTAR(I}),I -~ 1,NX}

o0

Write the inltlal shear stress fleld:
WRITE (19,%*})
WRITE (10,*) 'Initial Bed Shear stress, {dyne/cm*2] = [g/em-s~2]:"
WRITE (10,115) {(STRESB{I},I = 1,NX]

0oa

Write the initlal longltudinal veloclity field:
WRITE (10,*)
WRITE (10,*) 'Tnitial X-velocity field (I odd), [cm/sec):'

Z
WRITE (10,115) (UX{I,3},I = 1,N%,2)
500 CONTINUE

aa

Write the lengitudinal dispersion fleld:
WRITE (1C,%)
WRITE {10,*) 'X-dispersion field (I odd), [cm*Z/sec]:'
DO 600 J = 1,NB
WRITE {10,115} (E¥tI,J3),I = 1,NX,2)
600 CONTINUE

(g X+

Write the initlal vertical dispersion fleld:
WRITE (10,*)
WRITE {10,*) "Initial 2~-dispersion fleld (I cdd}, [cm"2/sec]:'
Do 700 J = 1,NZ
WRITE (10,115) {(EZ(I,J),I = 1,NX,2)
700 CONTINUE

WRITE (10,7)
115 FORMAT (6(F10.4,TR3))

RETURN
END

cvmw**t*twt:tntttn-tttnnnuuw**wtt-a-n;-ttttaannnwnn‘natttttnn---tttlnc*w

SUBRQUTINE STABLE (NK,NX,NZ,UX,UZ,QSCALE, EX,EZ,CX, CZ,DX, D2,
$ TERMX, TERMZ, VMAX, V,C2ZV, B}

c
INTEGER WX, NZ, IQRAMP

c
REAL UX(NX,NZ),UZ{NX,N2),EX(NX,N2),EZ2 (NX, N2}, TERMX (NX, NZ)
REAL TERMZ (NX, NZ),CX{NX,NZ),CZ (NX,NE)},DX(NX, N2),D2 (NX, NZ)
REAL QSCALE (0:NX),V({NK), CZV{(NK),B(NX)

c
REAL VMAX, DELX,DELZ, DELA, DELT, EXMAX, E2MAX, FRACT
REAL UXMAX, UZMAX, COURNT,CZVMAX,DISPX, DI$PZ,PEX,PE2

c

COMMON / RAMP / TNRAMB, TNRAMU, TNRAMD , TQRAMP, TQRAMU, TORAMD, INRAMF,
s TCQRAMP
COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX , HMAX, NOUT, ITER
PURPCSE: This subroutine determines the time step for hecessary for
stable nymerical solutien {von Neumann sense) of the
transport {not including reaction} eguations.

INEUT PARAMETERS:
IGRAMP- Switch for ramplng trib flowrates (l=on)

NX - No. grids nodes in X

N2 - No. grids nodes in 2

DELX - Unlform mesh size in X, [em)

DELZ - Uniform mesh size in 2, [om]

FRACT $afety factor used to set stable DELT, [ < 0.8

QSCALE- Factor, peak flowrate divided by initlal flowrate, [-]
VMAX = Maximum settling veloclty of floc, [cm/s]
{B} - Average width of cross-section at grid, [m]

a]

vy - sSettling velocity of size class k, [em/

[EX] = Dispersion coefficlent in X, {cm~2/a]

[E2] - Disperslon coefficlent in 2, [ecm~2/s]

[UX] - Fluid velocity in X, [cm/s)

[uzl] - Fluid veloclty in 2, [cm/s}

OUTPUT PARAMETERS:

DELT ~ Time step size for numerical stability, [sec]
{cav} - Settling Courant No. for size K particle, [-]
[cx) - Courant Number in X, times width, [m]

[cz}l - Courant Number in 2z, times width, {m]

(DX] - Dispersion Number in X, times width, (m]

[DZ] - Dispersion Namber in 2, times width, [m]}

AUTHOR: Jerry Culkin
Department of Civil Engineering
University of Texas at Austin

nnnnnnnnnnnnnnnnnnnnnonnnqﬁnnnnnnn

{TERMX)- Combination of Courant & Dispersion Numbers in X, times width, [m]
[TERMZ]~ Combination of Courant & Dispersion Numbers in z, times width, [m}
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LAST REVISED: 28 july, 1990 for flowrate adjustments
1 oct, 1990 to multiply (C, B, Term) by width

PRECISION: Single

LANGUAGE: FORTRAN 77

REFERENCES: None

REQUIRED ROQUTINES: Wone

na

[sNzN e

WRITE (10,*}
WRITE (10,7*)

WRITE (10,*)

AR RR R R AR ARk R AN A kAR TUNAAROUTPUT STABLE*#3rkkkl

PR R R R R AN RN A AU NN AR

WRITE (10,*)

Set minimum values to use Iln stabllity determinations:
EXMAX = 1,

EZMAX

UZMAX
{

- 0.0001

UXMAX = 0.01
= VMAX

Greatest particle settling velocity

Find maximum values of dispersion and velocity in their flelds:
DO 200 § = 1,NZ-1
DO 100 T = 1,NX
EXMAX = AMAX1 (EX{I,J),EXMAX}
EZMAX = AMAX1(EZ{I,J),EZMAX)
UXMAX = AMAXI (UXA{I,J), UXMAX)

Coc

[2X ¢

aon

a0

na

an

an

200 CONTINUE

UZMAX = AMAXL (UZ{I,J), UZMAX)
1o0e CONTINUE

Conservative correcticn for ramped flow:
IF (IQRAMP .EQ.
UXMAX = QSCALE(0)* UXMAX

EZMAX = QSCALE(0)* EZMAX

ENDIF

Find *stable'

DELT:

1) THEN

DELT - FRACT/ {(EXMAX/DELX**2 + EZMAX/DELE**2}/2.0
4+ UXMAX/DELX + UZMAX/{DELA*DELZ}}

§

Calc Max Courant No.

in X:

COURNT = UXMAX* DELT/ DELX
Cale Courant No. for fastest settling particle in bottam fluid layer:
CZVMAX = VMAX* DELT/ (DEL2* DELA)

talc relative indlicators of dispersion:
DISPX = EXMAX* DELT /DELX"*2
DISPZ = EEMAX* DELT /{DELZ)**Z
PEX - COURNT/ DISPX
PE2 = CZVMAX/ DISPZ

Calc dimensionless Courant & Dispersion Nos, and TERM comblnatlons:
DO 400 I - 1,NX
DO 300 J = 1,KZ-1

X (I, J) - UX(I,J}" DELT/ DELX * B{(I)
CE(I,T) = UZ{I,J)* DELT/ DELZ * B({I)
DX(I,J) = EX(I,J)* DELT/ DELX**2 * B(T)
DZ(I,J) = Ez{I,J)* DELT/ DELZ**2 * B(I)
TERMX(I,J) = {B(I) - CX(I,J)**2/ B{I) - 6.* DX(I,J))
TERMZ (I,J) = {B{I}) - C2(I,J)**2/ B(I) - 6.* DZ(I,J})
300 CONTINUE

400 CONTINUE

Set settling Courant No. for particle using current time step slze:
po 500 X = 1,NK
CIV{K) = V(K)* DELT/ DELZ

500 CONTINVE

IF ([TIME
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

WRITE
WRITE

WRITE
WRITE
ENDIF

.EQ. 0.0) THEN

(10, *)
(10, ™)
{10, *)
(10, *)
(10,*)
{10, *}
{10, *}
{10, %)
(10, *}
(10, *}
(10, %}

g,

‘Calculated stable time-step - ',DELT,*[sec]’

‘Max Courant No. in X ="', COURNT
‘Max Dispersion Wo. in X =',DISPX
‘Grid Peclet No. in X =-',PEX

‘Max Settling veloclty =',VMAX,' (cm/s)!
'Max Courant Ne. in 2 =1, CZVMAX

*Max Disperaion No. in 2 =',DISPZ

*Grid Peclet No. in 2 -',PE2

1GIVEN the following parameters:*

{10,105) DELX,DELZ,DELA
105 FORMAT {' DelX = ',F10.2,* & DelZ = ',F10.2,' [cm] & DELA = ',
$ F10.3}

(10, *)
10, %)

WRITE (10,%)

RETURN
END

"Max Ux = ',UXMAX,' & Max Uz = ',UZMAX,' [cm/s]’
‘Max Ex = ',EXMAX,' & Max Ez = ' EZMAX,' [cm*2/s8]"'
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SUBROUTINE RAMPQN (NK,NX,NZ,DIMNK,NITRIB,NTRIB, NTMAIN, NMAIN,
Q, QITRIB, QTRIB, QSCALE, NSCALE,, AREA, UXMEAN, USTAR,
$ U%x,v2,FX,E2, CX, C2, DX, D2, TERMX, TERMZ, B)

INTEGER NK,NX,NZ, DIMNK, IDISPZ, INRAMP, IQRAMP

REAL NITRIB(NK), NTRIB (NK, NX) ,NIMAIN (NK) , NMAIN (N¥)

REAL UX (NX,NE2), USTAR(NX), UXMEAN (NX), UZ(NX,NZ) +EX{NX,NZ)
REAL EZ{NX,NZ},CX (¥X,NZ), CZ{NX N2), DX(NX, N2}, DZ (NX, N2)
REAL TERMX (NX,NZ}, TERMZ [NX,NZ)

REAL Q(0:NX), QITRIB(O:NX), QTRIB(0:NX), AREA(NX), B(NX)
REAL OSCALE {0 :NX), NSCALE [0:NX}

REAL DELX, DELZ, DELR, DELT, DEPTH, EZMEAN, FRIC, TIME , KARMAN

COMMON/MEANS/ EXMEAN,E2MEAN,FRIC,IDISPZ,DEPTH
COMMON / RAME / TNRAMB, TNRAMU , TNRAMD , TQRAMB, TQRAMU, TORAMD, INRAMP,

$ IQRAMP
COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX,NOUT, ITER

PURPDSE: Compute the tributary flowrates, aystem flowrates, longltudinal
veloclties, vertical dispersivities & their dimenaionless
transport parameters.

Compute the main flow and tributary conca.

noaoonana

INPUT PARAMETERS:

IDISPZ - switch for wsing uniform prescribed Ez (1-on)

INRAMP - Switch for ramping trib number concentrations (1=on)

TQRAMP - Switch for ramping trib flowrates (l=on}

i1 - Number of partlicle slze classes

NX - Ko. grids nodes in X

NZ - Nu, grids nodes in Z

DELT - Time step size for numerical stabllity, [sec]

DELX - Uniform mesh size in X, [em]

DELZ - Uniform mesh size in Z, (cm]

DEPTH - Total water cclumn depth, [om]

EZMEAN - Mean vertical fluld éisperslon coef, {em*2/s]

FRIC - Darcy frlction facter, [+]

KARMAN = von Karman constant

TIME - simulation Time, [s5]

THRAME - Time to begin ramp up of inflow number concentrations, [s3]

TNRAMD - Time to ramp down of inflow number concentrations, [a8]

TNRAMU -~ Time to ramp up of inflow number cencentrations, [s]

TORAME - Time to begin ramp up of inflow flowrate, [s]

TQRAMD - Time to ramp down of inflow flowrate, [s]

TQRAMU - Time to ramp up of inflow flowrate, [s)

{AREA} - Average cross-sectlonal area in reach, [rm~2]

{B} - Average width of cross-section at grid, [m]

{NIMAIN} - Ini?ial number cohcentration distribution for main inflew,
{#/cm~3}

{NITRIB] - Inltial number concentration distribution for tributarles,
[#/cm*3]

[NSCALE} - Factor, peak tributary number concentrations divided by
{nitial triputary number concentrations, [=]

[QSCALE} - Factor, peak flowrate divided hy initial flowrate, [-]

{QITRIB} -~ Initial tributary flowrate, [m~3/s]

[EX] - Longitudinal fluid dispersien coefficient, [cm"2/s]
vzl - vertical fluld velocity, [cm/s]
CUTPUT PARAMETERS ¢
{NMAIN]} = Number concentratioh dlatribution for main Inflow, {#/cm*3]
Q) - Total flowrate, [m~3/a]

{QTRIB} - Tributary flowrate, (m"/s]
{UsTaR} - shear veloclity, {cm/s]
{UXMEAN] - Mean leongitudinal fluid velocity, [em/s]

[CX] - Courant Number in X, times width, (m]

(C2]) - Courant Number in 2, times width, [m]

IDX] - Digpersion Number in X, times width, [m]

[pz] - Dispersion Number in 2, tlmes width, [m]

B2} — Average vertical fluid dispersion coefficlent, (cm*2/8s)

[TERMX] = Combination of Courant & plspersion Numbers in X, times width, [m]
[TERMZ] ~ Comblnatlon of Courant & Dispersion Numbers in Z, times width, [m]
[Ux] - Longltudinal fluld velocity, [cm/s]

AUTHOR: Jerry Culkin
pDepartment of Civil Englneering
University of Texas at Austin

LAST REVISED: 31 fuly 1990 . New ramping routine.
1 OCT 1990 . Multiply {(C, D, Term) by width.

PRECISION: Single
LANGUAGE: FORTRAN 77
REFERENCES: None

REQUIRED ROUTINES: None

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnonnnnnnnnnnnnnnnnnnqnnnnnnqnn

KARMAN = 0,40
For RAMPED FLOWS, reset longitudinal flowrates & velocitlies and
vertlcal dispersion fields:
IF (IQRAMP .EQ. 0) THEN
GOTC $00
ELSE
DO 100 T = 0, NX
IF {TIME .GT. TQRAMB .AND. TIME .LE. TQRAMU) THEN

na
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GQTRIB(I) = QITRIB(I}* (l.+ {QSCALE{I})- l.)*

3 (TIME= TQRAMB}/ (TURAMU-TQRAMB) )
ELSEIF (TIME .GT. TQRAMU ,AND. TIME .LE. TORAMD) THEN

QTRIB(I) = QITRIB{I}* {l.- (1.~ QSCALE{I)}*

$ (TQRAMD— TIME}/ (TQRAMD-TQRAMU))

E
QOTRIB(I} = QITRIB(I)
ENDIF
160 CONTINUE

Velocity and dispersion coefficients for open channel shear
flow w/ log veloclty profile in defect form:

ao0an

Q(0) = QTRIB(0)
DO 300 I = 1,
Q{I} = Q{I-1) + OTRIB({I}
UXMEAN (I) = Q(I}/ AREA(I)* 100,
USTAR (I) UXMEAN {1} * SQRT (FRIC/8.)
ZLOCAL DELA* DEL2
ZSYSTH DEPTH- ZLOCAL
po 200 3 - N2-1, 1, -1
UX{I,J) « UXMEAN (I)+ USTAR{I)/ MARMAN* {1.+
$ L0G (ZLOCAL/ DEPTH))
DX(I,7) - EX{I,J)* DELT/ DELA**2 * B(I)
IF (UX{I,J)} .LT. 0.0 ) UX{I,d = 0.02" UXMEAN(TI)
CX(I,J) = UX{(I,J)* DELT/ DELX* B({T)
TERMX (I,J) = (B{I) = CX(I,J)**2/ B{I} - €.* DX(I,J))
21OCAL = ELOCAL + DEL2
2ZSYSTM = DEPTH- ZLOCAL
200 CONTINUE
300 CONTINUE

E

[ |

IF {IDISPZ .EQ.1l) THEN
DO 500 J = 1,NZ-1
DO 400 I = 1, NX

CZ{I, = UZ{I,J)* DELT/ DELZ* B(I)
EZ(I,J) = EZMEAN
Da(I,J) - EZ(1,J}* DELT/ DELZ**2* B(I)
TERMZ (I,J) = (B{I) - CE(I,J1**2f B{I) - 6.
& * DZLI,TN)
LT CONTINUE

500 CONTINUE

E
DC 700 J = 1,NZ-1
DO 600 I = 1, NX

czi{I,J) = yz{I,J)* DELT/ DELZ* B(I)
EZ(I, 3 — DEPTH* USTAR(I)/ 15.
DZ(I,J) = EZ{I,J)* DELT/ DELZ**2* B({I)
TERMEZ ({I,J) = (B{I} - CE(I,J)**2/ B(I) - 6.
§ * DZ{T,J}}
600 CONTINUE
700 CONTINUE
ENDIF
ENDIF

BD0 CONTINUE

C
C For RAMPED CONCENTRBATIONS, reset trib concs and U/s cancs:
IF {INRAMP ,EQ. D) THEN
GOTD 1900
ELSE
c Tributary concs:
DO 1200 I = 1, NX
IF (TIME .GT. TNRAMB .AND. TIME .LE. TNRAMU) THEN
FACTN = 1.+ {NSCALE(I)= 1.}* (TIME— TNRAMB)/
S (TNRAMU~TNRAMB)
DO 900 K = 1, HK
NTRIB(X,I) = NITRIB(K)* FACTN
900 CONTINUE
ELSEIF (TIME .GT. THNRAMU ,AND. TIME .LE. TNRAMD) THEN
FACTK = 1.~ {1.— NSCALE({I))* (TNRAMD- TIME) /
§ { TNRAMD -TNRAMU)
DO 1000 K = 1, NK
NTRIB(K,I) = NITRIB(K)* FACTN

1000 CONTINUE
ELSE
FACTN = 1.
DO 1100 K = 1, KK
NTRIB(K,I) = NITRIB(K)
1100 CONTINUE
ENDIF
1200 CONTINUE
C
[ U/S concs (before tributary 1 load contributien added in BCN):

IF (TIME .GT. THRAMB .AND. TIME .LE., TNRAMU) THEN
FAGTN = 1.+ (NSCALE{0)- 1.)* (TIME- TKRAMB)/
$ {TNRAMU-TNRAMB)
DO 1300 K = 1, NK
NMAIN (K) = NIMAIR({K}* FACTN
1300 CONTINUE
ELSEIF {TIME .GT. TNRAMU .AND. TIME .LE. TNRAMD) THEN
FACTN = 1.~ (1.- NSCALE(0))* (TNRAMD- TIME)/
$ { TNRAMD-TNRAMU)
PO 1500 K = 1, WK
NMATHN (K} = NIMAIN(K)* FACTN
1500 CONTINUE
ELSE

FACTN = 1.
DO 1700 K = 1, NK
NMAIN (K) = NIMAIN (K)
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1700 CONTINUE
ENDIF
ENDIF
1900 CONTINUE
[
RETURN
END
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SUBROUTINE BCN (NX,NX,NZ,DIMNK,N1,NMAIN, NTRIB,Q, QTRIB}

C
INTEGER NK, NX,NZ, DIMNK
c
REAL N1 ({DIMNK,NX,NZ}, NTRIB{NK, NX) ,NMATN (NK)
REAL Q{O0:NX), QTRIB({0:NX)
C
REAL TIME
c

COMMON/STEPS/ DELX,DELZ,DELA,DELT, FRACT, TIME, TMAX, HMAX, NOUT, ITER

PURPOSE: Compute the upstream BC concentraticns at time zero and
subgequent calls 1f flow or conc ramping.

INPUT PARAMETERS:
DIMNK ~ Number of particle size classes + 1
NK « Number of particle size clamges

NX No. grids nodes in X

Nz No. grids nodes in 2

TIME - Slmulation time, [#£]

(NMAIN] - Number concentration distribution for main inflow, [#/cm*3]
{Q} = Total flowrate, (m*3/s]

{QTRIB} - Tributary flowrate, [m*3/s]
QUTPUT PARAMETERS:

[N1} - y/s5 boundary concentration for water column domain, [#/cm*3]
AUTHOR : Jerry Culkin

Department of Civil Engineering
University of Texas at Austin

LAST REVISED: 27 SEPTEMBER 1990 1510. New BC routine for U/5 concs.
28 SEPTEMBER 1990 2043 TIME write added

PRECISION: Single

LANGUAGE: FORTRAN 77

REFERENCES: None

REQUTIRED ROUTINES: None

WRITE (10,115) TIME
115 FORMAT {/, 'BCN() called at Time = *,F10.2,' [s]',/)
I =1
J=1
DO 100 K = 1,NK
NL1(K,1,1) = (Q(0}* NMAIN{K} + QTRIB(1)* NTRIB(K, 1))}/ Q{1)
100 COMTINUE
DG 30C J - 2,NZ-1
PO 200 K = 1,NK
Ni(X,1,7) = NliK,1,1)
200 CONTINUE
300 CONTINUE

nooononoaoonaaoanNnnNaaoonaoaoonaannoaan

RETURN
END

R e e e R L

SUBROUTINE SOURCE (NK NX,NZ, NTRIE,NSOQURC, QTRIB, AREA)

C
TNTEGER NK,NX,NZ, JNUM
C
REAL NSOURC {NK,NX,NZ) ,NTRIB(NK, NX)
REAL QTRIB(0:NX}, AREA (NX)
[
REAL  DELT,DELX,DELZ,DEPTH
o
COMMON/MEANS/ EXMEAN, EZMEAN,FRIC,IDISPZ,DEPTH
COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX, NOUT, ITER
c
C PURPCSE: Compute the source strengths due to lateral tributary
c particle inflows {flowrates x concentratlions)., The sources
c are actually used in MAIN. Source changes of main inflow,
c yielding U/s BC (i.e., at l-1) are found in BCN{).
[of
C INPUT PARAMETERS:
C NK - Number of particle size classes
C NX - No. grids nodes in X
C N2 - No. grids nodes in 2
C DELT - Time step, (s]
¢ DELX — Unilform mesh size in X, [cm]
C DELZ = Uniform mesh size in 2, [em]
C DEPTH - Average total water column depth, [cm]
€ {AREA} = Cross sectional area, [m"~2]
c Q) - Total flowrate, [m"3/s)
¢ {QOTRIB} = Tributary flowrate, [m"3/s]
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OUTPUT PARAMETERS:

FACT1 - Constant factor for fractlonal depth load zone, i-1

FACTZ - Constant for each longitudinal grid, (-]

[NSOURC]- Concentration source at (k,1i,]) dwe to tributary source,
[#/cm”3]

AUTHOR: Jerry Culkin
Department of Civil Engineering
University of Texas at Austin
LAST REVISED: 2B sept 1930 2000. - new CV logic-§
uses {(Delt*Qtrin/Volume)* Ntrib
results in Courant-type No. ln source
PRECISION: S5ingle
LANGUAGE: FORTRAN 77
REFERENCES: None

REQUIRED ROUTINES: None

nnnnnoonnnnnnnnnnnnnnnnnnnnnnnn

Wote that tributary contributions Ior i=1 are necessarlly separate as
boundary conditions. They sre computed in BCN{).

specify volume of 2.5* DELZ depth for spreading the lcad over top 3
grids. Put the 300 loop's bottom index at JNUM-3.

Note that tributary contributions for i=1 are necessarily separate as
boundary conditions:

INUM = 3
RNUM = FLOAT{JNUM)
FACT1 = DEPTH/ {{RNUM- ©,5)* DELZ)* DELT/DELX* 100.
DO 300 I = 2, NX
FACT2 = FACT1* QTRIB{I)/ AREA(I)
Do 200 J = 1, JNUM
DO 100 X =~ 1, NK
NSOURC (K, I, J)} = FACTZ2* NTRIB(K,I)
100 CONTINUE
200 CONTINUE
300 CONTINUE

RETURN
END
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C

C

2]

0
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SUBROUTINE ERODE (NX,RHOW,USTAR,RFLUX, $TRESB)

INTEGER NX
REAL RFLUX {NX) , STRESB (NX) , USTAR (NX)
REAL STRESC, RATEM, RHOW

COMMON/ERCSON/ STRESC, RATEM
PURPOSE: This subroutine calculates POTENTIAL gross vertical mass flux
of particles due te resuspension at bed interface at each X
node.,

INPUT PARAMETERS:

NX - Number of longltudinal grids

RATEM - Erosion rate constant, [s/cm}

RHOW - Water density, [g/cm”3]

STRESC - Critical shear stress for erosion, [dyne/cm*2]
(USTAR) - Shear velocity, [cm/s]

QUTPUT PARAMETERS!

{RFLUX} =- Total POTENTIAL vertical bed mass flux at node I due
to resuspension, positive for flux out of bed.
subject to bed mass avallabllity. [g/cm*2-8]

{STRESB} - Local Bed shear stress, [dyne/cm*2] = [g/cm-58"2)

AUTHOR : Jerry gulkin

Department of Civil Englneering
University of Texas at Austin

LAST REVISED: 1 AUG, 1990.

PRECISION: Single

LANGUAGE: FORTRAN 77

REFERENCES: None

REQUIRED ROUTINES: None

WRITE {10,%*)
WRITE {10,%) "FRmmmekswxaan kb hxaAXAN 4N &2 42QUTPUT ERQDE**#**whd1
SrRRRRANL LRk AN IIANARRA ]

DO 100 I - 2,NX
STRESB (I) =~ RHOW* USTAR(I)**2
IF {(STRESB{(I) - STRES$C) .LE. 0.0) THEN
a) Zero or Negative effective shear stress:
RFLUX(I} = €.0
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ELSE
[of b} Positive effective shear stress:
RFLUX (I) = RATEM* {STRESB(I} - STRESC}
ENDIF
100 CONTINUE
[of
RETURN

END

R T e T L)
SUBROUTINE DISTRB (NK,NX, NZ,6 DIMNK,N1,DP,TSS, TAREA, FF, TOTFP)

c
INTEGER WK, NX,NZ,DIMNK
c
REAL FP(NK,NX,N2),T5S (NX, N2), TAREA (NX, N2) , N1 {DIMNK, NX, N2}
REAL TOTFP (NX,N2) ,DP {DIMNK)
REAL KPM, KPA, CONM1,CONA1, CONA2, PARTM, PARTA, RHOP, P T
¢

COMMON /PART/ RHCP , RHCW, VISCOS, TEMP, GRAV, LV1ST, LVSTEP, PI
COMMON/TAMNIT/ CTW,CTB, KPM, KPA

PURPOSE: This subreutine caleulates the fraction of contaminant sorbed
to solid relative to taotal contaminant.

INPUT PARAMETERS:
MK Number of particle sizes

fraction teo actual mass-partition fraction
AUTHOR: Jerry Culkin
Department of Civil Engineering
University of Texas at Austin
LAST REVISED: 22 June 1990 2250

PRECISION: Single

[

Cc

c

c

c

c -

C DIMNK - Numbetr of particle sizes + 1

C KX - Number of longitudinal grids

c N2 = Number of vertical grids

c [N1] - Particle number concentration, [(#/cm~3]

c [Ts8] - Suspended sollds mass concentrations at TIME, [mg/L]

C [TAREA] - Total superficial surface area concentration of suspended
c solids, [am"2/L]

¢ {DP) = Equivalent spherlcal flec diameter, (um)

C RHOP - Bulk floc density, [g/cm*3)

C KPa - Surface-based, poresity-corrected partitien coefficient,
c [L/em*~2]

C KPM - Mass-based, porasity-corrected partition coefficlent,

c [L/%g]

C

C OUTPUT PARAMETERS:

c [FP) - fraction of total contaminant sorbed to sclid of slze X,
c [-1

C CONAL - Conversion factor to convert proporticnal area in

C {um~2/cm*3] to jam~2/L]

¢ CONAZ = Conversion factor to convert proportional area-partition
c fraction te actual area-partition fraction

C CONML - Converslon factor to convert proporticnal volume in

[ [um~3/cm”3] to abselute mass in [mg/L)

C CONM2 - Conversion factor to convert proportional mass-partition
C

C

c

|4

c

o4

v

o)

c

o

C LANGUAGE: FORTRAN 77

c

C REFERENCES: Nona

c

C REQUIRED ROUTINES: TOTAL

o)
c
c WRITE {10,*)
[ WRITE (10'*’ Trkmubkkawwrhkkwrhnehak b ndnd ke GUTPUT DISTRBttttit.lr
c SRR R A A KRN K AR
< WRITE (10,*)
C The surface area version:
CONAl = PI* 1.E-5
[
DO 300 J =1, N2
DO 200 I = 1, NX
CONA2 = KPR/ {1.+ KPA* TAREA(T,J))
TOTFP (I,J) ~ 0.
DO 100 X = 1, NK
PARTA = NLl(X,I,d)* DP{K)**2 * CONAl
FP{K,I,J) = DPARTA* CONAZ
TOTFP(I,J) = TOTFP({I,J} + FP(X,I,J)
100 CONTINUVE
200 CONTINUE
300 CONTINUE
[
CM The mass veraion:
CM CONM1 = PI* RHOP/ 6.* 1.E-6
CM
cM Firat adjuat KPM units te matceh TS5 unita:
fos. | KPM = XKPM/1.Eé
cM
CM DO 600 J - 1, NZ
] DO 500 T = 1, NX
CH CONM2 = KPM/ (1.+ KPM* TSSI(I,J))
CHM TOTFP (I,J) = 0.

CH DO 400 X = 1, NK
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CM PARTH = N1l(K,I,J)* DP{K)**3 * CONM1
CM FP(K,I,J) = PARTM* QONMZ

CH TOTFP(I,J) = TOTFP(I,J) + FPIK, I, J)}

cM 400 CONTINUE

CcM 500 CONT INUE

CM 600 CONTINUE

RETURN
EKD
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SUBROUTINE BEDXCH {NK,NX,NZ, DIMNK,N1,DP,V,RFLUX, BEDMAS, N2, BEDVCL,
&

TS5, NUMIN, NUMOUT, NUMNET , MASS LN, MASOUT, TRNSFR)

INTEGER NK, NX,NZ, DIMNK

REAL N1 ({DIMNK, NX,NZ),N2 (DIMNK, NX,NZ),V{NK) , DP {DIMNK)
REAL  RFLUX(NX) ,BEDMAS (NX) , BEDVOL [NX)

REAL  NUMIN{NK,NX) , NUMOUT (NK, NX} , NUMNET (NX, NX) , TRNSFR {NX)}
REAL  MASSIN(NX}, MASGUT(NX), TSS(NX,NZ)

REAL DELNQ, MASNET, SUMNUM, VOLMAS, LV1ST, LVSTEP, PT

COMMON/PART/  RHOP,RHOW, VISCOS, TEMP, GRAV, LV1ST, [VSTFP,P1
COMMON/STEPS/ DELX, DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX , NOUT, TTER

INPUT PARAMETERS:

RHOP - Particle

unit area

node I, 1

QUTPUT PARAMETERS :
nede I, 1
unit area

[NUMIN) - Number of

bed at

{NUMOUT] - Number of

bed at

interface

LAST REVISED:

PRECISICN: Single

REFERENCES: Noneg

noooNoOnNOacoooOnNanNoanNnNAanNnNoOanNOONNOnNNoOoOGocoaonnonoaaoonnaonnn

PURPOSE: Thls subroutine calculates particle deposition, bed inventory,
and vertical number cencentratlion gradjent for each size
at each X node.

DIMNK - NK + 1 to accomcdate element shifts in C codes
floc, [um)

NK - Number of particle size classes

NX - Number of longltudinal grids

NZ - Number of vertical grids

interface layer at node I, J = NZ, t = t, (#/cm"3]

bulk density, [g/am~3]

DELT - Time step, {s)
{BEDMAS}- Total! mass of solids in the interface layer per

at node I, [g/om"2]

{BEDVCL}- Bulk volume of the interface layer per unit area at

.., DEPTH{I}, [em*3/cm 2]

{DP} - Bquivalent spherical diameter of size class k

{RFLUX} = Total potential vertical bed mass [lux at node
{I,NZ) due tc resuspension, subject to bed mass
avallability, [g/cm"2-8]

{v} = Settling velecity of size class k, [cm/s]
[K1] - Bulk number concentration of size class k in the
[TS§} - Total suspended sclid mass eoncentration, [mg/L)

{BEDVOL}- Bulk volume of the interface layer per unit area at

.e., BED DEPTH(I) [cm*3/cm*2]

{BEDMAS}- Total mass of solids in the interface layer per

at node I, tg/em*2]

{TRNSFR}- Pulk resuspensicn transfer velocity, [cm/s]

size k flocs (per unit area) entering
node I during DELT, [#/cm*2]
gize k flocs (per unit area) leaving
node I during DELT, [#/cm*2)

[NUMNET)- Net number of size k flocs (per unit area) entering

at node I during DELT, [4#/cm”2]

[82) - Bulk number concentratlon of size class k particles at
t = t + DELT {calculated here for interface layer
only, [#/cm"3]

AUTHOR:  Jarry Culkin
Department of Civil Englneering
University of Texas at Austin

LANGUAGE: FORTRAN 77

REQUIRED ROUTINES: KNone.

cB WRITE (10,%)

cn HRITE (10,%) 'A*e ks s axARsdaeaa4hke &k x kAN + $OUTPUT BEXCHHA#® ##was?
cB GURRANAR RN R R AR A Rk kA kD

CB WRITE {(10,%)

CB WRITE (10,*) ' I MASSIN (g] MASCUT (g]°*

c

€ Volume tc mass conversion factor:
VOLMAS = PI* RHOP/ €.* 1.E-12

DO 200 I = 2,HX

MASSIN(I) = 0.0
MASOUT (1) = ©.0
TRNSFR{I) = RFLUX(I}/ TSS(I,NZ)* 1.E6
DO 100 K = 1,NK
BEDNUM = Nl (K,I,Nz)* BEDVOL{I}
c
NUMIN{K, T} = DELT* V{K)* N1{K, I, NZ-1)
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NUMOUT (K, I) = DELT* TRNSFR[I)* N1 (K,I,NZ}
IF (NUMOUT(K,I) .GT. BEDNUM] THEN
NUMOUT(K,I) = N1(K,I,NZ)* BEDVOL{I}

ENDIF
[
NUMNET (K, I)= NUMIN{K,I}- NUMOUT (K, I)
N2(K,I,NZ) = N1{K,I,NZ)+ NUMNET{X,I}/ BEDVOL{I)
c { 1a thia N2 caleulatlon irrelevant- is it filxed by
c constant PCROS and TSS{i,NZ) ?}
C

MASSIN[I) = MASSIN(I) + NUMIN{K,I}* DP(K)**3
MASOUT (I) = MASOUT(I) + NUMOUTI(K,I)* DP{K)**3
100 CONTINUE

o}
C Convert net deposition [vol/cm~2] tc [gfcm~2].
C Integrate mass flux for total sclids mass in lnterface per unit area
C at time t + DELT (after deposition & resuspension).
C Calc tctal bulk volume of interface per unlt area (DEPTH) at time
C t + DELT:

MASSIN{I) — HASSIN(I)* VOLMAS

MASQUT {I) = MASQUT(I)* VOIMAS

BEDMAS (I) = BEDMAS {I) + MASSIN(I)- MASOUT(I)

c
IF (BEDMAS(I) .LT. 1.E-6) THEN
BEDMAS (T} = (.0
ENDIF
o

BEDVCL (I) = BEDMAS(I)/ TSS(I,N2)* 1.E6
CB WRITE (10,*) I, MASSIN{I}, MASOUT(I)
200 CONTINUE
C

RETURN
END

Dokt kR R R KRR R R A KA R R R AR AR bt
SUBROUTINE TRANSP (NK,NX,NZ,DIMNK,N1,N2,V,UX,UZ,EX,EZ,
$ CX,C2, DX, D2, TERMX, TERMZ, CZV, NUMNET, B)

Cc
INTEGER NK, NX,NZ, DIMNK, ITER
C
REAL N1I(DIMNK,NK,NZ),N2Z (DIMNX,NX,NZ)
REAL NUMNET (NK, NX)
C
REAL UX(NX,NZ),UZ(NX,NZ) ,EX{NX,N2),EZ(NX,N2),V(NK), CZV(NK)
REAL CX({NX,6NZ),C2 (NX,6N2) DX{NX, N2}, DZ (NX, N2) ,B{NX)
REAL TERMX{(NX,NZ)}, TERMZ (NX, NZ)
[
REAL DELX,DELZ,DELA,DELT
[

COMMON/STEPS/ DELX,DELZ,DELA, DELT,FRACT, TIME, TMAX, HMAX, NOUT, ITER

PURPOSE: This subroutine integrates the advection-dispersion equation
te find the number concentrations of particles glven a
specified fluld flow/dispersion field. The parabolic PDE la
approximated by finite-difference eguatlons in 2 dimensions,
with appropriate 2-peint backward, 3-point central, and
4-point Leonard's method discretization of apatlal deriva-
tives. The sclution method is explicit. Boundary conditions
for UfS, D/S, alr-water, & bed-water interfaces are written
inte the discretizations.

STATE VARIABIES:
N{K,I,J} - Number concentration of size k at longitudinal
I and vertlcal J at time t.

INBEUT PARAMETERS:
NE - Number of particle size classes

DIMNK - NK + 1 to accomodate element shifts in C cedes

NX - Number of longitudinal grids

NZ - Number of vertlcal grids

DELT - Time step, (8}

DELX - Longitudinal grid spacing, {cm]

DELZ - Vertical grld spacing, [em]

DELA - Vertical grid spacing at bed-water interface [cm]

{B} - Average width of cross-section at grid, [m]

{czv) ~ $Settling Courant No. for size K particle, (-]

v} - Settling velocity of size K particle, [cm/s}

{N1] - Initital number concentration, [#/cm*3)

[NUMNET] - Wet number of slze k floca (per unit area) entering
interface at node I durlng DELT, (#/cm~2]

[N2] - Bulk number cencentratlon of size class k particles at
t = t + DELT (calculated here for interface layer only,
[#/cm~3]

[uX], [U2] - Longitudinal and vertical velocitlea, [cm/s)

[EX], [E2Z] - Longitudinal and vertical dispersion coefficients,
[cm*2/8}

[€X], [D2Z] - Longitudinal and vertical Courant No., times width, (m]

[DX], [D2] - Loagitudinal and vertical Dispersion Ko., times width, [m}

[TERMX/Z] ~ Longitudinal and vertical combination of ci & Di, [-]

OUTPUT PARAMETERS:

CROSS - Corrective term for 2-D FDE cross derivatives, [#-m/cm"3)

IN2) - Number concentration after transport but before
coagulation {#/cm~3]

aAoAcOOOOONONOOaONaOanNAGOaOoaOaOoNaoonaoaoonOGnonoOanofaa

AUTHOR: Jerry Culkin
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Department of Clvil Engineering
University of Texas at Austin

REVISED: 1 Oct - new logic w/ (B} width
27 Sept - removed [NSOURC] for trlbutary loads; now in
MAIN
1 Oct = new legic w/ [B) width
2 Oct - correct {B} problems in core

PRECISION: Single
LANGUAGE : FORTRAN 77
REFERENCES: None

REQUIRED ROUTINES: None

9]

Air-water Interface (tep, horlzontal water-column grld):

Upstream boundary:

DO 200 K = 1,NK

N2(K,I,J) =~ NL{K,I,J)

200 CONTINUE
I =2

DO 300 K = 1,NK

$
1
$
$
&
$
E

N2{X,I,J} = NLIK,I,J) +
(NL{K, T41,3)* (=CX(I+1,J)/2., + {CX(T+1,J)%*2/2, + CX(I+1,J)
/6. * TERMX(I+1,J))/B{I+1) + DX{I+1,J))

+ NL{K,I,J)* {{-CX{I,J)**2/B({I}-7./12.* CX{I,Z7}* TERMXI(I,J)}}/B{I)

= 2.%*DX{I,J)~ DELT* V{K)**2* B(I}/ EZ(I,J)- (CZ(I,J)1+ CEZV(K)
*B(I})} - DE{I,J)}

+ NL(K,I-1,J)* (CX(I-1,J)/2. + (CN{(I=1,J}**2/2.+ 5./12.
*A{T=1,J) * TERMX(I-1,7))/B(I-1) + DX{I-1,J))

+ K1(E,I,J+1)* DZ{I,J+1))/ B(I)

300 CONTINUE

[

DO 500 I = 3,NX-1

LT R RN N )

400
500
c

DO 400 K = 1,NK
NZ{K,I,J) = N1(K,I,J} +

{NL{K, T+1,3)* (=CX(T+1,7}/2. + (CX(I+1,Q)**2/2,
+ CX{I+1,0)/6.* TERMX{I+1,J)}/ B(I+1) + DX{I+1,J))

+ NL{E, I, J)* ((-CN{I,J)**2 - CX(I,J) *TERMX(I,N/2.}/BII)- 2,
* DX{I,J)= DELT* V(K)**2* B{I)/ EZ{I,J)- {CZ(I,J)+ CEV(K)*B{I))
-~ D2(I,IN

+ NL{K, T-1,3) % {CX(I=1,J)/2, + {CK{I-1,0)%*2/2, + CX{I-1,J}/2.
* TERMX(I-1,7))/ B(I~1) + DX{I-1,J))

+ NL{K,I=2,J) % {=CX({I=2,J)* TERMX(I-2,J)/6.)/ B{I-2}

+ N1{K,I,J+1}* DZ{I,J+1})/ B{I)
CONTINVE

CONTINUE

I = KX

Do e00 K - 1, NX

A R g1 P B

NZIK,I,J) = NI(K, 1,7} +

(N1 (K, I, T}t ({-CX{I,J}**2 - CX{I,J)*TERMX(I,J}/2.}/ B(I)
= 2.%*DX(I,J) - DELT* V(K)**2* B(I)/ EZ({],T)= (C2{1,J)+ CZV(K)}
*B(I)) = DE(I,J))

+ NL(K,I-1,J)% ((CX{I~1,J)**2+ 2./3.*CX{I-1,J)* TERMX(I-1,J))
/B(I) + 2. * DX(I-1,J})

+ NL{K,I-2,J)* {-CX(I-2,J)* TERMX(I-2,J)/6.)/ B{I-2}

+ NL{K,I,J+1)* D2(I,J+1})/ B(I}

600 CONTINUE

C Second herizontal watér Solimn grid;
J =2

C Upstream boundary:
I=1
DO 700 K = 1,NK

NZ{K, 1,3} = N1(X,I,7}

700 CONTINUE

[of

I =2

DO 800 K = 1,RK

A A A O AR A AR

N2 (K,I,J) = N1{K,I,J) +
(NL(K, I+1,J)% (-CX{I+1,d)/2. + (CX(I+1,J}**2/2. + CA(I+1,J)/6.
* TERMX(I+1,J7))/ B(I+l) + DX(I+1,J})
+ NL(K,I,J)* {(-CX(I,J)==2- 7./12.*CX{I,J)* TERMX(I,J))/ B(I)
= 2.*DX{I,J)- (CZ{I,J)+ CEZV(K}*B(I}} - 2.*DZII,J})
+ NL1(K, I=1,J}* (CX{I-1,0)/2. + (CX({I-1,J)**2/2. + 5./12.
* CX(I-1,J)* TERMX(I-1,J))/ B{I-1) + DX(I-1,d))
+ N1(K,I,J+1}* DZ(I,J+1)
+ NLIK, T,J0~1}* (CZ{I,Jd-1) + CZV(K)*B(I) + DEZ(I,J-1))} / B(I)

800 CONTINVE

C

DO 1000 I = 3,NX~1

LR R R Y R R

DO 900 K = 1,NK
N2(X,I,J) = N1(X,I,J7) +

{N1(K, T+1,3)* (=CX{I+1,J)/2. + (CX{I+1,J)**2/2. + CX{I+1,J)/6.
* TERMX(I+1,J))/ B{I+1) + DX(I+1,J))

+ NL{X,I,J)* {(-CX(I,J)**2 - CX(I,J)*TERMX(I,J)/2.)/ B{I}
-2.*DX(I,J) - (CZ{I,J}+ CRV(K}*B{I)) = 2.*D2(I,J))

+ N1i{K, I-1,J)* (CX(T=1,J}/2., + (CX(I-1,0}**2/2, + CX{I-1,J0)/2.
* TERMX{I=1,J%)/ B(I-1) + DX{I-1,J))

+ NL(K,I-2,J)* {-CX{I-2,7)* TERMX(I-2,J}/6.)/ B{1-2)

+ N1(K,I,J+1)* D2{I,J+1)

+ N1{K,I,J-1)* (CZ({I,J-1} + CEZV(K}*B{I} + D2(I,J-1))) / B{I)
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CONTINUE

1000 CONTINUE

C

T = NX
DC 1100 X = 1,NK

WAL B A <

NZ{K,I,J) = N1{K,I,J) +

(NL(K, I, 3% {{=~CX(I,D)%*2 = €X{I,J)*TERMX(T,J)/2.)/ B(I)
~ 2.%DK(I,J) - (CZ(I,J)+ CZV{(K)*B(I)) =~ 2.*DZ{I,J))

+ N1{K, I-1,0) % {{CX(I-1,J}**2 + 2./3.*CX(I-1,J)* TERMX(I-1,T))
/B{I-1) + 2. * DX(I-1,J))

+ N1{K,I-2,J)* {-CX(I-2,J}" TERMX(I-2,J)/6.)/ B{I-2})

+ N1{K,I,J+1)* (Dz(I,J+1))

+ N1(K,I,J-1)* {CE{I,J-1) + CEV(K}*B{I) + Dz (I,J=1))) / B(I)

1100 CONTINUE

C Core

cf water column domain:

DO 1700 J = 3,NZ-2

1200

wmwmEenmanrBnihen o

1300

AR e I dn R AN A R O

aaaaan

Need

$

5
§
s
$
$
3
$
$
$
§

1=1
DO 1200 K = 1,NK

N2 (K,TI,J) = NL(K,I,J}
CONTINUE

T =2

DO 1300 X = 1,NK

N2(K, I,J) = K1(K,I,J) +

(N1({K,I+1,J)% [-CX{I+1,J)/2.+ (CX{I+1,J)**2/2.+ CX{I+1,J)/6.

* TERMX{I+1,J))/ B{I+1) + DX(I+1,J})

1K, T,Jb* {{-CX{T,J)**2~ (CZ{T,J}+ CEVIK}*B{I)}**2

- 7./12. * CX{I,J)* TERMX(I,J) - (CZ(I,J) + CEZVI(K)*B(I))

* (TERMZ(I,J)- 2.*CZ{I,J)*C2ZV(K)- CZV({K)*"*2* B(I})/2.}/ BII)

- 2.*DX{I,J} - 2Z.*DI{I,J))

+ N1(K,I-1,J)*% (CX(I~1,d)/2. + (CH{I=1,J}**2/2. + 5./12.

* CX(I-1,J)* TERMX(I-1,J))/ B{I-1) + DX{I-1,J))

N1(K,I,J41)% {-{CZ(I,J+1) + CEIVIK}I*B{I})/2. + ({CE{I,J+1)

+ CZV(K}*B(I))**2/2, + (CZ(I,J+1) + CZV(K)*B(I))* (TERMZ(I,J+1)
- 2. ACTZ{I,J+1)*CEV(K) - CEV(K)"*2*B(I}}/6.)/ B{I) + DZ{I,J+1))
W1{K,I,J-1)* {(CE(I,J-1) + CIZV(K)* B{I))/2. + {{CE(I,T-1)

+ CEV{K)* B{I})**2/2. + (CZ(I,J-1} + CEZV{E)* B(I))

* {TERME (I,J-1)~ 2,*CZ{I,J=1)*CEV(K)= C2V(K)**2* B(I})/2.)/BIT)
+ DZ{I,J-1))

MUK, I,J=20* [{-{C2(T,J-2) + CIV{KI* B{T))* (TERMZ(I,J-2)

= 2.*CZ(I,J-2)*CEV(K) - CZV(K)*"2* B{I)}/6.)/B(I1)])) / B(D

CONT INUE

+

+

+

+

DO 1500 I = 3,NX-1
DO 1400 K = 1,NK

N2 (K,I,J) = NI{K,I,J) +
(NL(E, I+1,d)% (=CX{I+1,3) /2. + {CR{I+1,J)%*2/2, + CX{I+1,J)/6.

* TERMX({I+1,J))/ B(I+1) + DX(I+l,J))
+ NL(K,TI,J0*% ((-CX(I,J)**2- (CZ(I,J) + CEV{K)*B{I})**2 -CX(I,J}
f2.% TERMX(I,J) - {CE(I,J) + CEV(K)* B(I))* (TERMZ(I,J)= 2.
¥ C2{I,3)*% CIZV(K) - CZV{K)**24B{I})f2.)/ B(I) - 2.*DX({I,J)
- 2.4%D2{1,J))
N1(K, I-1,J)* (CX{I=1,J)/2. t (CX{I=1,J)%*2/2. + CXI(I=1,3}/2,
* TERMX(I-1,J))/ B(I-1} + DX(I-1,J})
N1 (K, TI-2,J}* ((-CX{I-2,J)* TERMX(I-2,J)/6.}/ B{I-2))
NL(K, T, J+1)% (=(C2(I,J+1) + CEVIK)* B(I))/2.+ {(C2{I,T+1}
+ CEZV(K)» B{I))**2/2. + (CEZ(I,J+1)+ CZV(K)*B{(I})* {TERMZ(I,J+1)
- 2.*C2{I,J+1)* CZV{K) =~ CIZV(K)**2* B{I))/6.}/ B(I)
+ D2AT,T+1))
N1(X,I,J-1)* {{CE(I,J-1)+ CEV(K)* B(I))/2.+ {{CZ(I,J-1)}+ C2V{K)
* B{I})**2/ 2.+ [C2(I,J-1)+ CEZV{K)* B{I))* (TERMZ({I,J-1)- 2.
A CZ{I,J-1)*CEZV(K)- CEZV(K)**2=% B(I))/2.)/ B(I}+ Dz(I,J-1))
N1(K,I,J-2)* ({-(CR{I,J-2} + CZIV(K)*B{I)}* {(TERMZ(I,J-2) - 2.
* CZ{I,J-2)*% CZV(K) — CEV{K)**2*B{I))/ &6.)/ B(1)))/ B(1)

+

+ +

+

+

CROSS terms below added for cross derivatives:; I elimlnated two
terms of 1+2 and two terms of j+2 te fit entire area. Each palr
was composed &f both + and =~ components.

to separate from calc above due to contlinuation line limits

CROSE = CZV{K) /96,

*(CK{I+41,T)% (3.*N1(K, I+1,J-2)
- 19.*N1(K,T+1,J-1) + 7.*N1(K,T+1,J) + 9.*N1(K,I+1,J+1)
+ N1(K,I,J} - NL(K,I,J-1)}
- CX{I-1,J)* {3.*N1(K,I-1,J-2) - 19.*Ni(K, I-1,J-1)
+ T ANT(K,I-1,J) + 9.*N1(K,T-1,J+1) + N1(K,T1,J} + N1(K,I-2,J)
- N1{K, I,J-1) - N1{K,I-2,J-1))
+ CX{I,J+1}* (3.*N1(K,I-2,J+1} - 19.*N1{K, I-1,J+1)
+ T.ANL(K,T,J+1) + 9.*N1(K, I+1,J+41) + N1(X,I,J) - N1{(K,I-1,J))
- CX{I,J-1}* (3.*N1(K,I-2,J-1} ~ 19.*N1(K,I~1,J~1)
+ T.ONL{K, I,J3-1) + 9.*NL{K, I+1,J-1) + N1{K,I,J} + N1(X,I,J-2}
-~ N1(K,I=1,J} = N1{X,I-1,J=2}}}/ B{(I)

N2IiK,I,J) = MN2(K,T,J) + CROSS

1400
1s00
C

$

5
&
&
$
[
$
§
&

CONTINUE
CONTINUE
I = NX

DO 1600 K = 1,NK

N2(K,I,J) = N1{X,I,J) +

(N1{K,I,J)}* ({-CX({I,J)**2 - {(CE(I,J)+ CZV(K)* B(I))**2- CX({I,J)
/ 2.% TERMX{I,J)} = {(CZ(I,J) + CZV(K)* B(I)}/2.* (TERMZ(I,J)
- 2.%CZ{I,J)* CZV{K) =~ CZV{K)**2*% B(I)))/ B{I) = 2.*DX(I,J)
- 2.%DzZ{1,J))

+ NI(K,I-1,J)*% {(CX{I-1,J)**2 + 2./3.*CX(I-1,J)" TERMX({I-1,J))
/ B(I-1)+ 2.*DX{I-1,3))

+ NL(K, 1=2,J)*% (=CX{I=2,3)* TERMX{T-2,3}/6.)/ B(I-2)

+ NL{K,I,J+1)* {(=(CE{I,J+1)+ CEV{K)* B(I))/ 2.+ ({CZ(],T+1)
+ CZVIK)I *B{T))1**2/ 2.+ (CZ(I,J+1)+ CZV(K)* B(I)}* (TERMZ(I,J+1)
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- 2.* CZ(I,J+1)*C2V{K)- CZV(K) **2* B{I)}/6.)/ B(I)+ DZ(I,J+1)}
+ WN1(K,I,J-1)% ({(CZ(I,J-1) + CEV{(K)* B{I})}/f2.+ {(C2(I,J-1}
+ C2V(K)* B{I))*¥2/ 2. + (C2{I,J-1) + CEZV{K)* B(I))/2.
* (TERMZ (T, J=1)= 2.%C2(I,J=1)* CZV(K) =CZV{K)**2* B(I)}}/ B{I)
+ DZ(I,J-1))
+ N1{K,I,J=-2)* ({=(CZ{I,J-2}+ CZV(K)* B(I}}/6.%(TERMZ(T,J-2)
= 2.%C2{I,I=2)*CEVIK} = CZV{K)*~2))/ B{I)))/ B(I)
1600 CONTINUE
1700 CONTINUE

LR N N

C
C Eottom horlzontal water ceolumn grid:
J = NZ-1
I =1
DO 1&00 K = 1,NK
N2{K, 1,3} = N1(K,I,T)
1800 CONTINUE
o4

I=-2
DO 1900 K = 1,NK
H2(K,1,J3) = N1(K,T,J)=- NUMNET(K,I)/ (DELA*DELZ)
S 4+ (NL{K,I+1,J)% {(-CX{I+1,J)/2. + (CX{I+1,J)**2/2. + CX{I+1,7)/6.
§ % TERMX(I+1,J))/ B(I+l) + DX{I+l,3))
§ + HI{E,I,J)* ((-CX{T,J)y**2= 7,/12.%CH(I,J)% TERMX(I,J)}/ B{I}
& - 2.%DX(I,J)- DZ({I,J))
$ + NL{K, I-1,0)* {CX(I-1,J)/2. + {CX(I-1,J1%%2/2. + 5./12.
5 " CX{I-1,J)* TERMX(I-1,J))/ B(I-1) + DX(I-1,J)}
$ 4 NL{K,I,J-1)* (D2(I,J-1)+ CZ(I,J-1)+ CZV(X)* B(I)}}/ B(D)
1908 CONTINUE
c
DO 2100 T = 3, NX=1
DO 2000 K = 1,NX
N2(K,1,J) - NLIX,I,J)- NUMNET{K,1)/ {(DELA*DELZ)}
+ (NL(K,I+1,J)* [~CX{I+1,J)/2.+ {CX{I+1,}**2/2. + CX(I+1,J) /6.
* TERMX{I+1,J))/ B(I+1) + DX{I+1,J))
+ NL(K,I,J)* ((-CX[I,J)**2 - CX{1,J)*TERMX{I,J)/2.)/ B(T)
- 2.* DX{I,J) - DZI(I,J)}
+ NL(K, I-1,0b*% (CX{I-1,3)/2. + [CH(I-1,J1%*2/2. + CX[I-1,J)/2.
* TERMX(I-1,J))/ B(I-1) + DX(I-1,J])
+ NlI(K,I-2,J}% ((-CX(I-2,J)* TERMX(I-2,J)/6.}/ B{I-2))
+ N1(K,I,J3-1}* (D2{I,J-1)+ CZ{I,J=1)+ CEV{K}* B{I}})/ B{I)
2000 CONTINUE
2100 CONTINUE
c

10 47 L N B <0 e

I = NX
DO 2200 K = 1,NK
M2(K,I,J) = N1{K,I,J}- NUMNET(K,I)/ (DELA®DELZ)
+ (NL{K,I,J)* ((~CX(I,J)**2 -CX(I,J}* TERMX(I,J)/2.)/ B{I)
- 2.*DX(I,J)- DZ(I,J))
+ NL(K, I=1,J0* ((CK(I=«1,J)**2 + 2,/3.7CX{I-1,J)* TERMX(I-1,J})
/ B{I-1) + 2.*DX{I-1,7)}
+ N1{X,I-2,J)* ((-CX(I-2,J)* TERMX(I-2,3)/6.)/ B({I~-2})
+ NL(K,I,J-1}* (D2{I,J-1)+ CE(I,J=1}+ CEV(K}* B(I)}))/ B{I}
2200 CONTINUE
c

A Ap A

C Sediment-water Interface, J = NZ.

C Note that N2(k,i,NZ} was determined explicitly from mass flux
C considerations in Subrountine BEXCHK.

[of

RETURN
END

Chkkk dok ke Rk bk kA N ko kb b R R AR A AR IR R AR R A AN R R R AN AN AR SN TAART AN KRR AL
SUBROUTINE TRANSC (NK,NX,NZ,CT1,CTZ2,V, FP,UX,UZ, EX, EZ,CX,CZ,
DX,DZ, TERMX, TERMZ, CZV, BEDVOL, NUMIN, NUMOUT,
5 NUMNET, TRNSFR)

INTEGER NK, NX,NZ

REAL CT1(NX,N2),CTZ (NX,NZ} ,FP [NK,NX,NZ)

REAL V{NK),CZV (NK)

REAL NUMIN({NK,NX}, NUMOUT (NK, NX} , NUMNET {NK, NX) , TRRSFR (NX}
REAL BEDVOL(NX)

REAL UX (NX, NZ) , UZ (NX,NZ) ,EX (NX,NZ) , EZ (NX, NZ)

REAL CX(NX, NZ),CZ (NX,NZ} ,DX(NX, N2}, D2 (NX, N2}

REAL TERMX{NX,N2), TERMZ (NX, NZ)

REAL DELX, DELZ ,DELA, DELT

[+]

COMMON/STEPS/ DELX,DELZ,DELA, DELT, FRACT, TIME, TMAX, HMAX , NOUT, ITER

PURPOSE: This subroutine integrates the advection-dispersion equation
to find the total contaminant concentration given a specified
fluid flow/dispersion fleld. Particle-assoclated flux is
superimposed on the advective and dispersive fluld fluxes.

STATE VARIABIES:
CT(1,7) - Contaminant concentration at lengitudinal I and
vertical J at time t.

INPUT PARAMETERS:

X ~ Number of longitudinal grids

Number of vertical grids

Local Incremental Cp flux calculatlon, [ug/L-s]
Time step, [s]

longltudinal grid spacing, (cm]

Vertical grid spacing, (cm)

Vertical grid spacing at bed-water interface [cml
Local Cp flux accumulatoer, (ug/L-a]

NZ
DELCT
DELT
DELX
DELZ
DELA
suMce

nOoananNnonoonanoacannn
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(cTl] - Initital Contaminant concentration, [ug/L]
[NUMIN] - Number of size k flocs (per unlt atea) entering
bed at node I during DELT, [#/cm~2]
[NUMOUT] =~ Number of size k flocs {per unit area) leaving
bed at node I during DELT, [#/cm*2)
[NUMNET] =~ Net number of size k flocs (per unit area) entering
interface at node I during DELT, [#/ecm~2)
[UX],[UZ] - Lengltudinal and vertical velocities at node
(I,J), (cm/s]
[EX}, [EZ] - Longitudinal and vertical dlispersion coefficients
at node (I,J), [cm~2/s]
[€X], [DZ] - lLongitudinal and vertical Courant No. at node
I,
{DX], [DZ] - Longitudinal and vertical Dispersion No.
at node (I,J)
[TERMX/Z] -~ Longitudinal and vertical combination of Ci & D1
at node {I,J)

{TRNSFR} - Bulk resuspension transfer velocity, [om/s)
{czv} - Settling Courant No. for slize K particle
v} - Settling velocity of size K particle, [cm/s]

CUTPUT PARAMETERS:
[(cT2] - Final Contaminant concentratien, [ug/L]

AUTHOR & Jerry Culkin
Department of Clvil Engineering
Unlversity of Texas at Austin

LAST REVISED: 19 JUR 2030. remove CEZV(K) in CT2({NX,NZ-1)!
11 JUN 2330. TYPE BEDVOL.
S June 1050, New bed exchange loglc

24 MAY, 1990 1030. Convert TRANSP for contaminant
PRECISION: Single
LANGUAGE : FORTRAN 77
REFERENCES: Ncne

REQUIRED ROUTINES: Ncne

anaonnaoonNnNaooocnaoooaaaaoaonooONaanaaaanNnoaoaaonoana

a

Beglh node by node calculatlons:

Alr-water interface (top, horizantal water=column grid):
J =1

Upstream boundary:
I =1

CcT2{I,J) = CTl{1l,3)
I =2

CTZ(I,J) = CT1(I,d)
+ CTL(I+1,0)% (=CX(I+1,J)/2. + CX(I+1,J)**2/2, + CX(I+1,J)/6.
* TERMX{I+1,J) + DX{I+1,J})
+ CT1(T,J)* (~CX{I,J}**2~ 7./12.*% CX(I,J)* TERMX(I,J)- 2.*DX(I,J)
- €2{1,J) - DZ(I,J}}
+ CT1(I-1,J)* {CX(I~1,J)/2. + CX{I-1,J)**2/2.+ 5./12.+CX(I-1,J)
* TERMX(I-1,J) + DX{I-1,J})
+ CT1(Z,J+1)* D2(I,J+1)
SUMCP = D.
DO 200 K - 1,NK
DELCT = FP{K,T,J)*CT1(I,J}* {-DELT* V{K)**2/ EZ(I,J)- CZV(K))
SUMCP = SUMCP + DELCT
200 CONTINUR
CT2{I,J) = CT2(I,J) + SUMCP

W n B A An

DO 400 I = 3,NX-1
CT24{I,J}) = CTI{I,J}

§ 4+ CTL(T+1, 3% {-CX(T+1,J)/2. + CX(I+1,T)%*2/2. + CX(I+1,J) /6.
§ * TERMX(I+1,J) + DX(I+1,J)}

§ 4+ CTI{I,J}* (-CX{I,J}**2- CX{I,J) *TERMX{I,J)}/2.~ 2.%* DX{I,J}
& - CZ(I,J) - DE(I,J))

§  + CTL{I-1,J}* (CK(I-1,J)/2. + CX(I-1,J)**2/2. + CX{I-1,J}/2.
§ * TERMX(I=-1,J) + LX(I-1,J))

$ 4+ CTL(I-2,J)* (-CX{I-2,J)* TERMX{I-2,J)/6.)

$ 4+ CTL(I,J+1)* D2{I,J+1)

SUMCP =~ 0,
DO 300 K = 1,8K
DELCT = FP (K,I,J)* CT1(I,J)% (~DELT* V({K)**2/E2Z{I,J)~-CZV{K]}
SUMCP = SUMCP + DELCT
300 CONTINUE
CT2(I,J) = CT2(I,J) + SUMCP
400 CONTINUE

I = NX
CT2(I,J) = CTL(I,T)
§ + CTI(I,J)* (~CX(I,J)*%2 — CX({I,J)*TERMX(I,J)}/2.- 2.*DX(I,J)
& o~ Ccz(I,J) = D2{I,J)
$ 4 CTL(I-1,3)* {CX(I-1,J}**2+ 2,/3.%CX(I-1,J}* TERMX(I-1,J) + 2.
$ % DX{I-1,I1
§ + CT1(I-2,7)* (-CX(I-2,J7}* TERMX{I-2,J)/6.}
§ + CT1(I,J+1)* DZ(I,J+1)

SUMCP = 0.
DC 500 K = 1,NK
DELCT = FP(K,I,J)* CT1{I,J}* (- DELT* V(K)**2f E2{I,J)~= CZV(K})
SUMCP ~ SUMCF + DELCT
500 CONTINUE
CT2(L,J} = CT2{I,J} + SUMCP
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C
C Second horlzontal water column gria:
J =2
C Upstream boundary:
I =1
CTZ(I J) = CT1(1,J)
I -
CTZ(I, 1 = CTI(I,J)
$ + CTI(I+1, 00" (-CX{I+1,J)/2. + CX{I+1,J)**2/2. + CX({I+1,J)/6.
* TERMX{I+1,J) + DX{I+1,J))
+ CTL{I,J)* (-CX(I,J)**2- 7./12.%CX{I,J)* TERMX(I,J)}~ 2.*DX{I,J)
- CZ2{I,J)- 2.*DE{I,J))
+ CT1{I=1,J3* (CX(I=1,J1/2. + CX(I-1,J)%*2/2. + 5./12,
* CX(I-1,0)% TERMX{I-1,J) + DX({I-1,J})
+ CT1{I,J+1)* DE{I, J+1)
+ CTL(I,J-1)* {C2(I,J-1}+ DZ{(I,3-1)}

I A A B A 0

SUMCF = 0.
DO 600 K = 1,NK
DELCT = FP{K,I,J)* CT1(I,J)* (= CZV{K))
L + FP(K,L,J-1)" CTi(I,J-1)}* CEV(K)
SUMCP = SUMCP + DELCT
600 CONTINUE
CT2(I,J} = CTZ{I,J) + SUMCP

DO 800 I = 3,NX-1
CT2(I,J) = CT1(I,J)
+ CT1(I+1,J)% (-CX(I+1,J)/2. + CX(I+1,J)**2/2. + CX(I+1,J}/6.
* TERMX{I+1,J) + DX(I+1,J})
CTI(I,J)* (-CX(I,J)**2 = CX{I,J)*TERMX(I,J)/2. -2.*DX(L,J)
- CZ(I,J)= 2.*D2(I,J))
+ CTYI{I-1,J)* (CX{I-1,J}/2. + CX({I=-1,J)**2/2. + CX{I-1,J}/2.
* TERMX{I-1,J) + DX{I-1,J})
+ CT1{I=2,J}* (=CX({1=2,J)* TERMX(I-2,J)/6.}
TT1(I,J+1)* DZ(I,J+1)
+ CTI(I,J-1)* (CZ{I,J-1)+ DZ(I,J-1)}

+

@ in G bt o
+

SUMCP = O,
DO 700 K « 1,NK
DELCT = FP(K,I,J}* CTI{I,J}* {= CZV{K})
] + FP{K,I,J-1)* CTI{I,J-1)* CEV(K}
SUMCP =~ SUMCP + DELCT
700 CONTINUE
CT2(I,J} = CT2{I,J) + SUMCF
400 CONTINUE
c
1 = NX
CTZ(I J) = CT1{I,J)
+ CTI{I,Jy* {=CX{I,J}**2 — CX(I,J)*TERMX(I,J)/2.- 2.*DX(I,])
- CZ(I,J}=- 2.%D2(I,J)}
CT1{I-1,J)* (CX{I~1,J)**2 + 2./3.*CX(I~1,J)*% TERMX(I-1,J)
+ 2,% DX(I-1,J))
+ CT1{I-2,J}* {-CX{I-2,J)* TERMX(I-2,J)/6.)
+ CT1{I,J+1}* (D2{I,J+1))
+ CT1(I,J=~1)* {CEZ{I,J-1)+ DZ{I,J-1))

A Ay A Y A S A
+

SUMCP = 0.
DO 360 K = 1,NK
DELCT = FPIK,I,J)* CTi{L,J)* (- CZIV{(K})
& + FP(K,I,J-1)* CT1(I,J-1}* CZV(K)
SUMCP = SUMCP + DELCT
900 COHTINUE
CT2(I,J) = CT2{I,J} + SUMCF
[
¢ Core of water column domaln:
DO 1400 J = 3,N2-2
I =1
CT2(I,J9} = CT1{1, D)
I =2
CT2{I,J) = CTL{I,)

$ 4 CTL{I+1,J)% {-CX({I+1,J3)/2.% CR{I+1,J)**2/2.+ CX{I+1,3)/6.
5 & TERMX{I+l,J) + DX{I+1l,J))
§ + CTU{I,J)* (=CXI(I,J)**2~ CE(I,J}**2 - 7./12.* CX{I,J)
§ * TERMX(I,J)- CZ{I,J)* TERMZ{I,J)/2.- 2.*DX{I,J}- 2.*DZ(I,J)}
§ + CTU{I-1,1* {CX(T~1,T)/2, + CX{I~1,J)**2/2, + 5./12.
$  * CX{I- 1 J)* TERHJ((I—I J) + DX(I-1,T))
§ + CT1(I,J+1}* (-CZtI,J+1)/2.+ CZ{I,J+1)**2/2 .+ CZ(I,J+1})
& * TERMZ(T,J+1}/6.+ D&(I,J+1))
$ + CT1(I,J-1)% (CZ(I,J-1)/2. + CZ{I,J-1}**2/2.+ CE(I,J-1}
& * TERMZ(I,J-1}/2.+ DEZ{I,J-1)}
§ + CTI(I,J-2)* (-CZ{I,J=2}* TERMZ{(I,J~2)/6.)
c
SUMCP - 0.
DO 1000 K = 1,NK
DELCT = FP(K,I,J}% CT1(I,J)* {-CEZV(Kj**2- CEV(K)*(TERMZ{I,.J}
& - 2.7CEUI,J)*CEV(K)- CEV(K)**2)/2.)
4 + FE(K,I,J+1)*% CTI{I,J+1)* (-CZV{K)/2.+ CEV(K)**2/2,
& + CEV(E}* (TERMZ({I,J+1)= 2.*CZ{I,J+1)*C2ZV(K)
& - CZV{K)**2}/6.)
3 + FP{K,I,J-1}* CT1{I,J-1)* (CEZV{K}/2.+ CZV(K)**2/2.
& + CZV(K)* (TERMZ{I,J-1)- 2.*CZ(I,J-1)*CZV(K)
& - CZVIK)**2)/2.)
& + FP(K,I,J-2)*% CT1{I,J-2)* {-CZV(K)* (TERMZ({I,J-2)
I - 2.*CR(I,J-2)*C2V(K} = C2V(X)**2}/6.)
e

SUMCP =~ SUMCP + DELCT
1000 CONTINUE
CT2{I,J) = CTZ2(I,J) + SUMCP
C
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Do 1200 I = 3,NX-1
CT24{I,J} = CTL{I,J)
+

S CTL(T+1,J0* (=CX(I+1,J)/2.+ CX(I+1,J0)**2/2, + CX{I+1,J}/6.
5 * TERMX(I+1,J) + DX{(I+1,J)}
E + CTU{I, 3 * {(~CX{I,J)**2= CZ{I,J1**2 =CX{I,J}/2.* TERMX(I,J)
£ - C2{I,J)* TERMZ(I,J}/2. - 2.%DX{I,J)= Z.*DZ(I,J))
5 + CTL{I-1,J3* (CX{I-1,3)/2. + CX{I~1,J)**2/2, + CX{I=1,J}/2.
5 * TERMX{I-1,J) + DX({I-1,J)}
5 + CT1{I-2,J}* {(-CX{I-2,J)/6.% TERMX{I-2,J})
5 + CTU{I, JH41)* {~C2{T,J+1)/2. + CZ{I,J+1)**2/2.+ CE(I,J+1)
& * TERMZ{I,J+1)/6.+ DZ{I,J+1))
5 + CTL{I,J-1)* (CZ(I,J-1)/2. + CZ(I,J-1)**2/ 2.+ CZ(I,J-1)
& * TERM2{I,J-1)/2.+ DZ{1,J~1))
$ + CT1{I,J-2)* (-C2{I,J-2)}* TERMZ{I,J-2)}/ 6.)
c
SUMCP = 0.
DO 1100 K = 1,NK
DELCT = FP({K,I,J)* CT1{I,J)* {(~CZV(K)**2= C2VIK)
§ *{TERMZ(I,J)- 2.% CZ(I,J)* CIV(K)- CZV(K)**2)/2,
& + CZV(K)/96.% (CX({I+1,J)= CX{I-1,J)+ CX(I,J+1)~-
& cx{I1,J-1)1))
& + FP{K,I,J+1)* CTL{I,J+1)* (-CZVI(K)/2.+ CZV(E)**2/2.
[ + CZV{K)* ([TERMZ({I,J+1l)- 2.*CZ(I,J+1)* CZV(K)
& - CIV(K)**2}/6.)
& + FP{K,I,J-1)* CTL{I,J-1)* (CEZV{K)/2.+ CZV(K)**2/2.
) + CEV{K)* (TERMZ(I,J~1)~ 2.*CZ(I,J-1)* CEV(K)
& - CIVIK}**2)/2. + CEV{K}/96. *(CX(I-1,T)- 7.
& *CX{I,J-1)))
& + FPIK,I,J3-2)* CTLII,J=2)* {=CZV(K)* (TERMZ(I,J=2)
& - 2.7C2(I,J-2)* CZV(K)~- CZV{K)*%2)/6.- CZV{K}/96.
& * CX(I,J-1)1)
C

C Cross derlvative terms for nodes not included in DELCT:
CROSS = CZV(K)/96. *
{CXA{TI+1,T) * {3.* FP(K,I+1l,J-2)* CT1(I+1,J-2)
- 19.2FP (K, I+1,F-1)* CT1(I+1,J=1}+ T.* FP(K,I+1,J)
* CTI{I+1,J)+ 9.% FP(K,I+1,J+1)* CT1{I+1,J+1))
- CX(I=1,J)* (3.* FPI(K,I-1,J=2)* CTl(I-1,J-2)- 19,
* FP{¥,I-1,J-1)* CT1({I-1,J-1)+ 7.%* FP{K,I-1,.)
* CTL{I-1,J)+ 9.% FP(K,I-1,J+1)* CT1{I-1,J+1)
+ FP(X,1-2,J)* CT1(I=2,J)= FP(K,I~2,J-1)* CTl (I-2,J-1})
+ CX{I,J+1)* (3.* FP{K,I-2,J+1)* CT1{I-2,3+1)~ 19,
* FP(X,I-1,J+1}* CT1{I-1,J+1)+ 7.* FP(K,I,J+1}
* CTI{I,J+1)+ 9.*% FP(K,T+1,J+1)* CTL{I+1,J+1)
= FP(X,I=1l, I * CT1(I-1,J))
- CX(I,J-1) (3.* FP(K,I-2,J-1)* CT1{I-2,J-1)- 19,
* FP(K,I-1,J-1)*% CT1{I-1,J-1)+ 9.*FP{K,I+1,J-1)
* CT1(I+1,J-1)- FP(K,I-1,0)* CT1({I=1,J}= FPI(K,I=1,J=2)
* CT1(I-1,J-2))}

R A A N N

SUMCP = SUMCP + DELCT + CROSS
1100 CONTINUE
CT24{I,J} = CT2{I,J) + SUMCF

c
1200 CONTINUE
C

I = NX

CT2(I,J) = CT1(I,J) +

CTL(I,J)* (-CX{I,J)**2 - €2(1,J})**2= CX{I,J) /2.* TERMX(I,J)
- CZ{I,J)* TERMZ(I,J)/2.- 2.*DX(I,J) - 2.*DZ{I,J))

+ CTL{I-1,J)* {CX{I-1,J)**2 + 2./3.+CX{T-1,J)* TERMX{I-1,J)
+ 2,4DX(1I-1, 7))

CT1(I-2,J)* (-CX(I-2,J)* TERMX{I-2,J}/€.)

CTL(I,J+1}* (-CE{I,J+1)/ 2.+ CR{I,J+1)**2/ 2.+ CZ(I,J+1)
* TERME (I,J+1)/6.+ DZ{I,J+1))

+ CTL(I,J-1}% (CZ{I,J-1}/2. + CZ(I,J-1)**2/ 2. + CB(I,J-1}

* TERMZ (I,J-1)/2.+ DZ(I,J-1))

+ CT1(I,J-2)* (-CZ(T,J-2)/6.* TERMZ{I,J=2)})

a4 0 B b
+ +

C
SUMCE - 0.
DO 1300 K = 1,KK
DELCT = FP{K,I,J)* CTL(I,J)* (-CZV(K)""2- CZV{K}
& * (TERMZ (I, J)- 2.*CZ{I,J) *C2V(K])- CIV(K)**2)/2.)
3 + FP{K,I,J+1)* CT1{I,J+1)}* (-CZV(K)/2.+ CEV{K)**2/2.
1 + CIZV(K}* (TERMZ (I,J+1)- 2.*CE(I,J+1)*CZV(K)
5 - CRVIK)**2)/6.)
1 + FP(K,I,J-1)* CT1(I,J-1)* (CEZV(K)/2.+ CIV{(K}**2/2.
E + CZV(K)* (TERMZ {I,J-1)- 2.*CE(I,J-1)*C2V(K)
3 - CIV(K)=2)/2.)
& + FP{K,I1,J-2)* CTI{I,J-2)* (-CZV{K)* (TERMZ{I,J-2)
[ = 2,%C2(I,I=2) *CEZVIK) - CZV{K)**2)/6.}
c

SUMCE = SUMCP + DELCT
1300 CONTINUE
CT2{I,J} = CT2{I,J) + SUMCP

C
1400 CONTIKNUE

o)

C Bottom horlzontal water column grid:
J = NZ-1
I =1
CT2{Y,J} = CTI(I,d)

=2

CT2(I,J) = CTL(I,J}

$ + CTI(I+1, I * {-CX({I+1,J}/2. + CX{I+]1,J)**2/2, + CX{I+1,J)/6.

& * TERMX(I+1,J) + DX{I+l,0))

$ + CTI(I,J)* (-CX(I,J)**2- 7./12.*CX{I,J)* TERMX{I,J)- Z."DX(I,J)
& - DE(I,J}h)
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$ + CTI(I-1,J)* (CX{I-1,J)/2, + CX{I=1,J)**2/2, + 5./12.
$ * CX{I-1,J}* TERMX(I-1,J) + DX(I-1,J))
$ + CT1{I,J=-1)* ({DZ{I,J-1}+ C2(I,J-1})

¢
sumMce = 0.
DO 1500 K = 1,NK
DELCT = FP({K,I,J)* CT1(I,J}* (-CZV(K)/DELA}
& + FPAK,I,J=11% CT1(I,J=1)*% CaV{K)
& + FP{K,I,J+1)% CT1{I,J+1)* TRNSFR{I}/ DELA
c

SUMCP = SUMCP + DELCT
1500 CONTINUE
CT2(I,J} = CT2{I,J) + SUMCP
C
DO 1700 I = 3,NX~1
€T2(I,J) =~ CT1(I,J)
+ CTL{I+1,J)* {~CX{I+1,0}/2. + CX(I+1,J)*=2/2.
+ CX{I+1,J)/6.* TERMX{I+1,J) + DX{I+1,J))
+ CTU{I,J)* (~CXA{T, NN**2 = CX(I,N*TERMX{I,J)/2.
~2,%*DX{I,J)~ DZ{L,J})
+ CT1{I-1,7)* (CX{I-1,J)/2. + CX(I-1,J)**2/2. + CX(I~1,J}/2.
* TERMX({I-1,J) + DX(I-1,J}}
+ CT1(I=2, N * (=CX({I=2,0* TERMX(I1-2,J)/6.)
+ CTL1(I,J-1)* {DZ(I,J-1)+ C2{I,J-1)}

40 4 4 40 A o dn A

SUMCP = 0.
DO 160 K = 1,NK

DELCT = FPIK,I,J)% CT1{I,J)* (-CZV(K)/DELA)

+ FR(K,I,J-1)* CT1(I,d~1)* GZV(K)
& + FP{K,I,J+1)* CTL{I,J+1)* TRNSFR(I}/ DELA
SUMCP =~ SUMCP + DELCT
1600 CONTINUE
CT2{I,J) = CTZ2{I,J) + SUMCP

m

[of
1700 CONTINUVE
[of

T - WX
CT2(I,J) = CT1{I,J}
3 + CT1(I,J)* {-CX{I,J)**2 -CX{I,J}* TERMX{I, J)/2.- 2.*DX{I,J}
& - DZ(I,aN
3 + CTL{I-1,J)* {CX(I-1,J)%*2 + 2./3.%CX{I-1,J)*% TERMX(I-1,J)
5 + 2.4%DX(I-1,J))
$ + CT1{I~2,J)*% (=CX{I-2,J)* TERMX(I-2,J}/6.)
5 + CT1{I,J-1)* (DZ2{I,J-1)+ CZ(I,Jd-1}]

SUMCP = ©.
DO 1800 K = 1,NK
DELCT = FP(K,I,J)* CT1(I,J)* (—CZV(K)/DELA)
& + FR{K,I,J-1)* CTI{I,J=1)* C2V(X)
& + FPIK,I,J+1)* CT1(I,J+1)* TRNSFR({I)/ DELA
[
SUMCP = SUMCP + DELCT
1B00 CONTINUE
CT2(I,J) = CT2{I,J) + SUMCP

C
[
C Sediment-water interface:

J = N2

I=1

CT2(I,J) = CTI{I,J)

I =2
SUMCP = 0.
DO 1900 K = 1,NK
DELCT = FP(K,I,J)* CT1(I,J)* (-TRNSFR{I)/ BEDVOL{I}}
i + FP(K,I,J-1)* CT1{I,J-1)* CZV(K)/ BEDVOL(I)
SUMCP = SUMCP + DELCT
1900 CONTINUE
CT2(I,J) = CI1(I,J) + SUMCP
c
DO 2100 I = 3,NX-1
SUMCP = D.
DO 2000 K =~ 1,NK
DELCT = FP(K,T,2)* ¢T1(I,J)* (=TRNSFR(I}/ BEDVOLI(I))
& + FP(K,I,J-1)*% CTL(I,J-1)* CZV(K)/ BEDVOL(I)
SUMCP = SUMCP + DELCT
2000 CONTINUE
CT2(I,J) = CT1(I,J} + SUMCP
2100 CONTINUE
C

I = NX
SUMCE = 0.
DO 2200 X = 1,NK
DELCT - FP(K,I,d}* CT1(I,J)* (~TRNSFR(I)/ BEDVOL{I)}
& + FP{K,I,J-1)* CTI{I,J-1)* CEV(K)/ BEDVOL{I)
SUMCP = SUMCP + DELCT
2200 CONTINUE
CT24I,J) = CT1(I,J) + SUMCP
c
RETURN
END

R L e T e R e
SUBROUTINE TOTAL {NK,NX,NZ, DIMNK, N1, DP,DELTAD, BEDVCL,BEDMAS,
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PORQS, TSS, TAREA, TNUM, LDNDD, TIME)

INTEGER NX, NX,NZ,DIMNK

REAL
REAL
REAL

REAL

N1{DIMNK, NX,NZ), DP {DIMNK) , CELTAD (NK}
TSS{NX,NZ} , TAREA (NX,N2), TNUM(NX,NZ), LDNDD (NK,NX,N2)
BEDVOL {NX) , BEDMAS {NX} , PORCS (NX}

RHOP, CONAL, CONM]1, SUMMAS, SUMARA, SUMNUM, PT

COMMON /FART/ RHOP, REOW, VISCOS, TEMP , GRAV, LV1ST, LVSTEP,PI

PURPOSE: This routine derives integral property values for solids at

each node from heterogensous number concentrations:
- total mass concentration

total surface area concentratlon

total number concentration

PSD initial concentrations based on input PSD
bad porosity

bed volume

INPUT PARAMETERS:
NK

NX

NK

DIMNKE

PI

RHOP

TIME
{DF}
{DELTAD}
{BEDVOL}

[N1]

[ I |

Number of particle size classes

Number longitudinal grlds nodes

Number vertical grids nodes

NK + 1; accomodates array shift in C codes
Value of pi

Effective bulk density of floc, [gfcm"3]
Elapsed time, (8}

equivalent spherical floc diameter, [um]
delta diameter around floc, [um]

Bulk volume of the interface layer per unit area at
node I, i.e., Depth(I), [cm~3/cm~2]

- Number concentration of slze k, [#/cm~3]

OUTPUT PARAMETERS:
CONAl - Conversion factor to convert proportional area in

CONMI =
SUMARA -
SUMMAS -
{POROS} -
{BEDMAS } -

[T58] -
[TAREA] -

ITHUM] -
[LDKRD] -

AUTHOR :

[um*2/cm~3] to [em~2/L]
conversion factor to convert proporticnal volume in
[um*2d/cm*3] to absolute mass in [mg/L)
Particle surface area conc accumulator for loop, [um~2/cm™3]
pParticle mass conc accumulator for loop, [um~3/cm”~3]

Volume of volds per total volume in the interface layer

at node I, [em*3/cm*3]

Total mass of scllds in the interface layer per unit area
at node I, [g/cm~2}

Total suspended sclid mass concentration, [mg/L]

Total superficlal surface area concentratlion of suspendecd
sollds, [cm*2/L]

Total initial number concentration of suspended solids,
[#/cm*3]

Matrix of PSD, LdNdD, log([#/cm”~3-um])

Jerry Culkin
Department of Civil Engineering
University of Texas at Austin

LAST REVISED: 15 Jun 1930 1430

PRECISION: Single

LANGUAGE: FOHRTRAN 77

REFERENCES: None

REQUIRED ROUTINES: None

oo OOcONNAanNoNOoOaoononNONaONOonNaOoNonNanNnoQonNnaooaoonoonaoaanaoanNnon

nao
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a0

an

Define constant To simplify and convert:

CONM1
CONAL

= PI* RHOP/ €.* 1.E-§
= PI* 1.E-5

Calculate initial number and proportional mass concentrations for bed:
DO 300 J = 1,NZ

D

0 200 I = 1,NX

Initlalize mass and number counters for each (1,3):

1co

SUMMAS = 0.0

SUMARA = 0.0

SUMNUM = 0.0

DO 100 X = 1,NK
SUMMAS = SUMMAS + N1{(K,I,J)* DP(K)**3
SUMARA = SUMARA + N1{K,I,J)* DP(K)*+2
SUMNUM = SUMNUM + N1{K,I,J,

CONTINUE

Convert the surrogates to actual mass, area, and number concs:

TSS(1,J) = SUMMAS ~ CONM1
TAREA{I,J) = SUMARA * CONAl
THUM(T,J) = SUMNUM

200 CONTINUE
300 CONTINUE

Calculate PSDs:
DO 600 J = 1,NZ
DO 800 I = 1,NX

DO 400 K = 1,NK
IF (N1(K,1,J) .LT. 0.25) THEN
LDNDD (K, I, T} = =10.0
ELSE
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LDNDD (K, I,J) = LOGlO{ N1(K,I,J}/ DELTAD(K]}}

ENDIF
400 CONTINUE
300 CONTINUE
600 CONTINUE

C Calculate bed porosity from bad TS5 (BEDVOL is from IN, then BEDXCH) .
C Calc bed mass, [g/cm*2]: thls 1s redundant (BEDXCH) extept at time 0!
IF (TIME .LE. 1.E-6) THEN
DO 700 I = 1,NX
POROS{I) = 1. = (T35(I,NZ}/ RROP * 1.E—€)
BEDMAS{I) = BEDVOL(I}* RHOP* (1. — POROS(I})
100 CONTINVE
ENDIF

RETURN
END

[ R L Rl L T Y T T L L L e

SUBROUTINE QUTET ({NK, NX,NZ,DIMNK, N1,TIME, BEDMAS, BEDVOL, TSS, TAREA,

5 TNUM, LDNDD, POROS, CT1,FP, TOTFP, FILNAM, NSOURC,
5 QTRIB, NTRIB)
c
INTEGER NX, NX, NZ,DIMNK, TMID, JHID
¢
REAL N1 (DIMNK,NX,N2),CTL1(NX,NZ), LDNDD (NK, NX, N2} , NSOURC {NK, NX, N2 )
REAL TSS{NX,NZ), TAREA({NX,NZ), TNUM{NX,NZ), NTRIB{NK, NX)
REAL BEDMAS (NX), BEDVOL (NX),FP (NK,NX,NZ}, TOTFP (NX,N2), POROS (NX)
REAL QTRIB{0:NX)
c
REAL TIME
c

CHARACTER* 50 FILNAM

FURFOSE: This subroutine writes the values of indicated parameters
{at the end of simylatlon) to the open output file,

INPUT PARAMETERS:

NK,NX,NZ- Number of nodes

RHOP - Bulk floc density, [g/cm"~3)

TIME ~ Elapsed time of simulation, [s]

{BEDMAS} - Total mass of sclide in the interface layer per unit area
at node I, [g/cm"2]

[BEDVOL} - Bulk volume of the interface layer per unit area at node
I, 1.e., DEPTH(I), [cm~3/cm"2}

{DELTAD} - Delta diameter about each floc aize, [um]

{DP} ~ Equivalent spherical diameter of size k floc, [um]

{POROS} - Volume of voids per total volume in the interface layer
at node I, {cm~3/cm"~3)

[CT1) - Total contaminant concentratlon, [ug/L]

[NL1] - The set of particle concentratlons after transport AND
coagulation at TIME, [#/cm~3]

[NSQURC] — Ccn?encration source at (1,J) due to tributary sourcs,
[#/cm”3)

{TAREA] -~ Suspended sollds area concentrations at TIME, [cm~2/L]

[TNUM] ~ Suspended solida number concentrations at TIME, [#/cm*3)

[TsS] - Suspended solids mass concentrations at TIME, [(mg/L]

CUTPUT PARAMETERS:
All output is passed through, not modified.

AUTHOR: Jerry Culkin
Department of Civil Englneering
Unlversity of Texas at Austin

Last Revision: 12 Jul 1990 TNUM({) writes added
14 sept 1990 even writes added
& dec 1990 TAREA output added

PRECISION: Single
LANGUAGE: FORTRAN 77
REFERENCES: None

REQUIRED ROUTINES: None

anocaoagnnoanNoanNaonoanNOooocaonaooNOanNnaNNnNaanNaonNnana

WRITE (10, *)

WRITE {10,5,ERR=99) TIME

WRITE {11, *)

WRITE {11,5,ERR=97) TIME
5 FORMAT ('*tassansddakiswnnwrsds OUTPUT at TIME = 'L,F11.0," lsec]',
sl launﬁtiﬁﬁ*iﬁttttt"l]

WRITE (12,*) FILNAM, ' TSS at Time =',TIME

WRITE (13,*) FILNAM, ' TNUM at Time =', TIME

WRITE (14,*) FILNAM, ' TAREA at Time =', TIME

Cutput the vertieal proflles of number concentrations and PSDs at
mid-domain, Nodes B mid-domain are:

IMID = (NX+1)/ 2 - 1

JMID = N2f 2

{if odd NZ: JMID = {KZ+1}/ 2 - 1)

aonn

noa

Output the longitudinal profile of mid-depth PSDs for odd I:
WRITE (10, *)
WRITE (10,2C1l}) IMID
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201 FORMAT ('VERTICAL profile of Conc/PSD B Mld-domain, (K,',12,',2°,
§'1:0)

Write concentrations for each size class at surface at mid-domain:
J =1
WRITE (10, *})
WRITE (10,205) IMID,J
WRITE (10,315, ERR=98) (N1(K,IMID,J), X = 1,NK)
205 FORMAT ('Mid-domaln No. Concs B Surface, N{K,',I2,','.12,"),',
5 [#/cm3) %)
Write PSD at surface at mid-domain:
WRITE (10,215) IMID,J
WRITE (10,125,ERR=99} (LDNDD{K,IMID,1)}, K = 1,NK)
215 FORMAT ('Mid-domain PSD @ Surface, LDNDD{K,"',I2,',',I2,')"'}
Write to PRN file the PSD at surface at mid-domain:
WRITE {11,22%) IMID,J
DO 100 K = 1,NK
WRITE (11,227,ERR=97) LDNDD (K, IMID,J)
100 CONTINUE
225 FORMAT ('LDNDD{K,',I2,*,',12,)")
227 FORMAT (El4.5)

Write concentrations for each size class at mid-depth at mid-domain:
WRITE {10,229} IMID,JMID
WRITE (10,115, ERR=99) (N1{K,TIMID,JMID], K = 1,NK)
22% FORMAT (/, 'Mid=domaln No. Concs B MidDepth, N(K,*,I2,%,°',12,'},°,
5 {(#/cm~3] 4
Write PSD at middepth at mid-domaln:
WRITE (10,231) IMID,JMID
WRITE (10,125,ERR=-99) (LDNDD (K, IMID,JMID), K = 1,NK)
231 FORMAT ('Mid-domaln No. PSD @ MidDepth, LDNDD(K,',I2,',',I2,')*%)
Write to PRN file the P5D at mid-depth at mid-domain:
WRITE (11,225) IMID,JMID
DO 200 K = 1,NK
WRITE (11,227,ERR-97] LDNDD(K, IMID, JMID)
200 CONTINUE

Write concentrations for each size class above bed lnterface at
mid-domain:
J = NZ-1
WRITE (10,235) IMID,J
WRITE (10,115,ERR=99} {(N1(K,IMID,J), K = 1,NK}
235 FORMAT (/,'Mid-domain above Bed Interface, N(K,',I2,',',I2,'),°,
5 [#/emt3] M)
Write PSD above bed Interface at mid-domain:
WRITE (10,237} IMID,J
WRITE (10,125,ERR~99) (LDNDD(K, IMID,J), X = 1,NK)
237 FORMAT('Mid-domain PSD above B Interface, LDNDDI(K,',I2,',',I2,")")
Write to PRN flle the PSD above bed interface at mid-doemain:
WRITE (1l,225) IMID,J
DO 300 K - 1,NK
WRITE (11,227,ERR~97) LDNDD({K, IMID,J)
300 CONTINUE

Write concentrations for each slze class at bed interface at
mid-domain:
J = NE
WRITE {10,245} IMID,NZ
WRITE (10,115, ERR=99) {Nl{X,IMID,NZ), K = 1,NK)
245 FORMAT ({/,'Mid-domain Nc. Concs & Interface, N(K,',I2,',',I2,'),°,
$' [#/em*3] ')
Write PSD at bed interface at mid-domain:
WRITE {10,247) IMID,NZ
WRITF {18,125, ERR=93) (LDNDD{K,TMID,N2}, K = 1,NK}
247 FORMAT (‘'Mid-domain PSD P Interface, IDNDD(K,',12,',',I2,"}')
Write to PRN flle the PSD at bed Interface at mld-domain:
WRITE {11,225} IMID,KZ
DO 400 X = 1,NK
WRITE (11,227,ERR-97) LDNDD(K, IMID, NZ)
400 CCNTINUE

Output the longitudinal prefile of mid-depth PSDs for odd I:
WRITE (10,%)
WRITE {10,223) JMID

223 FORMAT {'LONGITUDINAL prct‘ile of PSD @ Mid-depth, LDNDD (K, I,",I12,
$9:9

DO 600 I = 1,NX,2
WRITE (10,225) I,JMID
WRITE (10,125,ERR=99) (LDNDD(X,I,JMID), K = 1,NX)
WRITE (11,225) I,JMID
DO 500 K = 1,NK
WRITE (11,227,ERR~37) LDNDD (XK, I, JMID)
500 CONTINUE
600 CONTINUE

Write firat half of the total mass concentrations:
WRITE (10,315)
DO 700 J = 1,82
WRITE (10,135,ERR=99) (TSS(I,J},I = 1,6)
700 CONTINUE
315 FORMAT (/,'TOT Mass concentratlion TSS({I-1,6}, [mg/L]:")

Write second half of the total mass concentrations:
WRITE {18,317}
DO 7150 J = 1,N2
WRITE (10,135, ERR=99) {T55(I,J),I = 6,11)
750 CONTINUE
317 FORMAT (/,'TOT Mass concentratlon TS5S(I=6,1l), (mg/L]:'}
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Wwrite the total number concentrations:
WRITE {10,325)
DO 800 J = 1,NZ
WRITE (10, 135,ERR=99) ({(TNUM(I,J},I =~ 1,NX, 2}
800 CONTINUE
325 FORMAT (/,'TCT number concentratlon TNUM(I=odd), [#/cm”3):")

[+
C Define # grid points for TSS, TNUM, and TAREA contour plotting files.
C Note that J index ls reversed to translate the physical coordinates
C (which are pesitive down) to graphical cocrdinates (which are positive
C upi.
NEOINT = (NX* (NZ=1))
WRITE (12,*) NPOINT,' O'
DC 1000 I = 1, NX
DO 906 J = Nz=1,1,~1
JREV = NZ - J
WRITE (12,335) I, JREV, T35{I,J)
300 CONTINUE
1000 CONTINUE
335 FORMAT (I2,TR5,12,TR5,F20.6)
C
C Convert (divide by le6) and then cutput TNUM{) for contour:
WRITE (13,*) NPOINT," 0'
Do 1200 I - 1, NX
DO 1100 J = 1,N2-1
JREV = NZ - J
THUM{I,J) - TNUM{I,J)f1.E6
WRITE (13,335) I, JREV, TNUM(I,J)
11¢9 CONTINUE
1200 CONTINUE -
(v
C Qutput TAREA({} for contour:
WRITE (l4,*) NPOINT,' O
DO 1250 1 = 1, WX
DC 1150 J = 1,Nz-1
JREV = N2 - J
WRITE (14,335) I, JREV, TAREA({I,J)
11s¢ CONTINUE
1250 CONTINUE
[
WRITE (10,41%)
WRITE (10,425) (QTRIB{I),I = C,NX)
415 FORMAT (/,'Tributary Flowrates (I=0:NX), [m*3/s]:')
425 FORMAT {5{(ELl.5,TR3)}

WRITE (10,435)

WRITE (10,445) (NTRIB{1,I),I = 1,NX)
435 FORMAT (/,'Tributary Cencs (k=1,T=1:NX), [#fcm*31:%)
445 FORMAT (5{(Eli,5,TR3}}

WRITE (10,437)

WRITE {18,447} (NTRIB(15,I),1 = 1,NX}
437 FORMAT {/, 'Tributary Concs (k=15,I=1:NX), [#/cm~3]:')
447 FORMAT (5(E11l.5,TR3)}

WRITE (10,435)

WRITE {10,465) (NSOURC(1,I,1),T = 1,NX)
455 FORMAT {/,'Tributary Source Strengths (k=1,I=1:NX,1), [#/cm"3]:%)
465 FORMAT (S5(Ell.5,TR3})

WRITE (10,475)

WRITE (10,485) (NSCURC(15,I,1),I = 1,NX)
475 FORMAT (/,'Tributary Source Strengths (k=15,I=1:NX,1}, [#/cm*3]:")
485 FORMAT (5(El1l.5,TR3})

WRITE (10, 3359)
WRITE (10,135,ERR=99) (BEDMAS{I}),I = 1,NX)
355 FORMAT (/,‘'Active bed mass per area BEDMAS(I), [g/cm*2]:')

WRITE {10,365)
WRITE (10,135,ERR=99) (BEDVCL{I),I = 1,NX)

365 FORMAT (/,'Active bed volume per area,le bed depth BEDVOL(I)',
50, [an™3/femn2): )

IF (TIME .LE. !.E-€]) THEN
WRITE (10,375)
WRITE (10,135) (PCROS(I}), I = 1,NX)
375 FORMAT {(/,'Constant Bed Pcrosity PORCS(I), [cm*3/om~3) :')

ENDIF
C
CcT WRITE (10,415)
CT DO 1300 J = 1,NZ
cT WRITE (10,115,ERR=99) (CT1{I,J),I = 1,NX,2)

CT 1300 CONTINUE
CT 415 FORMAT {/, 'Tot Contaminant concentratlon CT(I-odd), [ug/L]:'}
C

cT DO 1500 K=1,NK

cT WRITE {10,*) 'FP(K,I-odd,J)} for K = ',K
cT DO 1460 J = 1, N2

cT WRITE (10,115) (FP(K,I,J),T = 1,NX,2}
CT 1400 CONTINYE

CT 1500 CONTINUE

c

crT WRITE (10,%)

cT WRETE (10,%) 'TOTFP (I-odd,J):*

[ DO 1600 J = 1, N2

ct WRITE (10,115) (TOTFP{I,J),I = 1,NX,2)

CT 1600 CONTINUE
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WRITE (10,*)
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FORMAT (5(E11.5,TR2))
FORMAT (5(F11.4,TR2))
FORMAT (6(E1l.5,TR2))

RETURN
WRITE (10,*}
WRITE (1C,*)
WRITE (10,*)
s3TCPR

END

'QUTPT RESULTS WRITE-ERROR to FILE 10
'OUTPT RESULTS WRITE-ERROR to FILE 11*
'OUTPT RESULTS WRITE~ERROR to CPR'
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APPENDIX F

Coagulation Source Codes (C)
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/* Subroutine FRCGAM32.c

* Last revised 7/14/90 2310. - (GAMMA) Dimensloned for 531.

*  Stripped down portion of Batch.c.

* BSubroutine FRCGAM.c is written in C and called by FORTRAN main.

* Purpese is to calculate FRAC([][] and GAMMA[] for later use in CCAG.c.
*

"

*

*

*

Arrays are dimensicned for NK+1 elements, 1.e.,, waste the 0 elements, begln
w/ aubscript 1 te use Han logic. This done for Fortran portability. These
two arrays must similarly be dimensioned for NK+1 in Fortran main.

Gammacalc(} has been revised to accomodate particles larger than 200 um.

>/

#include <stdio.h>
#include <math.h>

FILE *fl,»f2;

FRCGAM(NK, LVSTEP, TEMP,VISCOS, DIAM, G, GRAV, RHO, RHOW, IBR, ISH, IDS, FRAC, BANDY, BAND3,

MAXFR1, MAXFR3, GAMMA)
/% TMPUT POINTER ARGUMENTS: */
int *NK; /* Number of actual PARTICLE SIZE classes */
float ALVSTEP; /% log{V[k+1]/v[k]} *f
int  ~IBR,*ISH,*ID5; /* operative collision mechanisms and trajectory types +/
float *TEMP; /* Temperature, [X] )
float *VISCOS; /* Molecular viscosity of suspension, [g/em-s] *f
float *RHO: /* Denslty of floce, [g/cm*3) L
float "RHOW: /* Denslty of fluid, [g/em*3] b
float *G; /* Velocity gradient, [1/3] *f
float *GRAV: /* Acceleration due to gravity, [cm/s~2] *f
fleoat DIAM[32]; /* Floc diameter, [um] f
/* QUTPUT POINTER ARGUMENTS: */

int *MAXFRI1;
int BANDI{10];
int *MAXFR3:
int BAND3[19]

float FRAC([32](4): /* fraction of particle floc to integer particle classes */
float GAMMA[513]; /* binary collision frequency functieon values, {1/(s-#/cm~3)}] */
{

int K;

£l = fopen ("FRAC™,
f2 = fopen {"GAMMAY

for (K = *NK: K >= 1; K--) /% Array =/
DIAM[K] = DIAM[K=1]; /* shifting from Fortran to C wy

FRACCALC {NK, LVSTEP, FRAC, BAND]1, BAND3 ,MAXFR1,MAXFRJ) ;
GAMMACALC (TEMP, VISCOS, DIAM, G, GRAV, RHO, RHOW, IBR, ISH, IDS,NK, GAMMA) ;

felose(f1):
fclose(f2);

for (K = 0; K ¢ *NK; Kt+) /* Array =/
DIAMI[K] = DIAM[K+1]: /* shifting from € back into Fortran »/

I /* end of FRCGAM subroutine =/

AR R R RN AR Rk kR R RN RN NN AR AT RACCALC (J AR Rk Ak R Ak kA AN AR AR RN KRR N KRN RN N ]
FRACCALC (NK, LVSTEP, FRAC, BAND] , BAND3, MAXFR1, MAXFR3)

/* INPUT POINTER ARGUMENTS: */
int  *NK; /* Number of PARTICLE SIZES “/
float *LVSTEP; /* Log(VIX+1/VIX]} wf
/* OUTPUT POINTER ARGUMENTS: L

int *MAXFRL;

int BANDL[1C]:

int *MAXFR3;

int BaAND3[1C];

float FRAC[32](4]: /* fraction of particle floc to integer particle classes */

{
int I, 1J, J%, K, Q, JMAX, FR3, CELL:
float SUMV, X, V1, V2, STEP, VDIFF:

STEP = *LVSTEP;
*MAXFR1 - floor{leglQ(2.00)/STEP);
/* max STEPs separation when I & J (J<I} create a K= I */

for {I= 1; I<= *MAXFR1; 1++}
BAND1[I] = floor(-1.0/ STEP* loglC{pow{10.0, {I})* STEP)~ 1.0}):

BANDL [*MAXFR1+ 1] = -1;

/* column 1, frac[][l]. Note that elements {]{0] left unassiqned.:
>/
VDIFF = pow{l0.0,STEP*1.0)- pow(1i0.0,5TEP*(.C); f* V[X+1] - VIE] */
for (IJ= *NK-1; IJ> BANDL[1]: IJ--)
{
SUMV = 1.0 + pow(10.0,STEP*({-IJ)*1.0): f% VII+ V[J) *f
CELL = IJ+ 1:
FRAC[CELL] [1] = (pow{10.0,STEP*1.0)— SUMV)/ VDIFF;
}

for {IJ= BAND1[1l]): IJ>= 0; IJ--}
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{
SUMV = 1.0+ pow({l0.0, STEP* (-IJ)*1.0):
for (Q= 1:; Q<= "MAXFR1: D++)

{f (IJ<= BAND1[Q] && IJ> BANDL[Q+1])

VDIFF = pow{lD.0,S5TEP* {Q+1}*1.0)
- pow({l0.0,STEP*Q*1.8);
CELL = 1J+ 1;

FRAC[CELL] [1] = {pow(10.0,$TEF* (Q+1)*1.0)- SUMV)/ VDIFF;
1

}

/* column 2, fracll(2]:
*/
for (K= 1; K<= *NK; K++t)
FRAC[K][2] = 1.0+ pow(10.0,-STEP*{*NK- X)):

/* column 3, frac[][3]:
.

FR3 = 1, *MAXFR3 = 1;
for (K= 1; K<= *NE; K++)
{

Vi - pow(10.0,=-STEP* (K)};

X = logld(l.0= V1):

JMAX - floor (-X/ STEP* 1.0);

BANDI(K] = JMAX;

*MAXFR3I = *MAXFR2 + 1; /* uged in Diffun{) *f

if (IMAX< K)
goto NOMORE:
for {(JK= K: JK<= JMAX: JK++)
1
= pow{10.0,-STEP* {JK)}:
FRAC [FRI] [3] = V1+ v2;
FR2 = FR3+ 1;
1

NOMORE: /* dummy statement */ ;

fprintf(fl,"NK= %d LVSTEF— &£ MAXFR1= #d\n\n%, *NK, STEP, *MAXFR1) ;
fprintf(£1,"K FRAC([K][1] FRAC(K][?] FRAC[K][3] BAND1|K] BAND3[K]\n");

/* printf ("\t\nNK= %d LVSTEP- &%f MAXFRl= &d\n\n", *NK,STEP, *MANFRAL):
printf("it K FRAC[K][1] FRACIK][2] FRAC[K][3] BANDI[K] BANDI[KI\n“): %/

for (K= 1; K <= *NEK; Kt+)
{
forintf(£1,"%3d %10.4f %10.4f %10.4f %104 %104 \n®,
K,FRAC[X][L],FRAC(X] {2],FRAC([K! [3],BAND] [K],BAND3 [XK]) s
i printf(“\tle %10.4f %10.4f %10.4f $10d %¥10d \n",
K, FRAC (K} [1}, FRAC(K] [2],FRAC[K] (3], BANDI [K], BAND3 (K]} */
!

R R kAR AR R R R AR AR AR AR AR A AN AR R PRACCALS (A KA AR AR AR AT A RN IR NN A NN RN R RNk bk ai /

FRAR AR A AN RA XA R R R AR Ak Rk A A SAMMACATC () PR AR TR AR AR TR RN R AR AR AR Rk h R A AN TR
GAMMACALC { TEMF, VISCOS, DIAM, G, GRAV, RHO, RHOW, I1BR, I5H, IDS, NK, GAMMA)
/* CALCULATE Gamma FROM THREE TRANSPORT MECHANISMS */

/% INPUT POINTER ARGUMENTS: “/
int *NK: /* Number of PARTICLE SIZ2EZ o/
int  *IBR,*ISH,*IDS: /* operative collision mechanisms and trajectory typea =/
float *TEMP; /* Temperature, [X] L7
float *VISCOS; /* Molecular viscozity of suspension, [g/cm-s] */
float *RHG; F* Density of floce, [g/cm~3] */
float *RHCW; /* Density of fluld, [g/cm"~3] */
float *G; /* Velocity gradlent, [1/3] *f
float *GRAV; /* Acceleration due to gravity, [em/s*2] )
float DIAM{32];: /* Floc diameter, fum] */
/* CUTPUT PCINTER ARGUMENTS: */

float GAMMA[436]; /* binary collision freguency function values, [1/(s=#fem*3)]

{

float BrCorri{), ShCorri(}, DsCorr{):

float BetaBr, Betash, BetaDs, CorrBr, CorrSh, CorrDs:
fleat Di, Dj, LAMDA, BRCCEF, DSCOEF:

flecat BOLTZ = 1.3BE-16;

fleoat FI = 3,141592;

int I, J, K;

BRCOEF «~ 2.,0% BOLTZ™ (*TEMP)/ (3,0* {(*VISCOS)):
DSCOEF = PI* (*GRAV}* [*RHO- *RHCW)/ (72.* (*VISCQS)):

fprintf(f2,%\n X DIAM{I| DIAM[J] CorrBr CorrSh CorrDs GAMMA[K]\n"):
/* printf(™\t\n K DIAM(I] ©DIAM(J] CorrBr CorrSh CorrDs GAMMA [KI\n"): */

/* Weed to copy contents of DIAM(], written in Fortran main, to DIAM[]

*» usable in C. DIAM-Fort subscripting is {1:NK+1) and DIAM~C subscripting
* 43 [0D:NK], buL we want the C subscripts to correspond to their actual

* glement order, e.g., element 1 having subscript 1:

vf

for {I= 1; I <= *NK; I++)}

Di = DIAM(I]: /% dlameter of larger particle, [um] */
for {J= 1:; J¢= I; J++)
{

Dj = DIAM{J): /% diameter of smaller particle, [um] */

*/
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LAMDA =« Dj/ Di: /* size ratio (less or equal to 1) o/

/* Brownian correction =*/

LS

{

witch ((*IBR)+1)

case 1: /* IBR=0, Brownian Motion not considered */
CorrBr = 0.;
break:

case 21 /* IBR=1, Rectilinear Brownian Motion */
CorrBr = 1.;
break;

case 3: /* IBR=2, Cuyrvilinear Brownlan Motien *f

CorrBr = BrCorr{aDi, &LAMDA);
break:

1
BetaBr = CorrBr* BRCOEF* (1.0/Di + 1.0/DJ)* (Di+ DJ):

/* Fluld Shear correction */

/* Differential

M

{
[

=1
©
!

B
s
s
C.

(>

[=1

witch ({*ISH)+1)

ase 1; /* ISH=0, Fluid Shear not considered */
CorrSh = 0.;
break;

ase 21 /% ISHA=1, Rectilinear Fluid Sheay */
Corrsh = 1.;
break;

ase 3 /% ISH=2, Curvilinear Fluid Shear */
CorrSh = ShGorr (&D1, ¢LAMDA, G, VISCOS) »
break;

etasSh — CorrSh* (*G)}/ 6.0* pow({{D1+D}),2,0)* le-12;

adimentation correction */
witch ((*ID5)+1)

ase 1: /* IDS=Q, Differential Sedim not considered =/
CorrDs = 0.;
break:

ase 2! /% 1DS=1, Rectilinear Differential Sedim «/
CorrDs = 1.;
break;

agse 3: f* ID§=2, Curvilinear Differential Sedim Lr
CorrDs = DsCorr (£D1, £LAMDA) ;
break:

}
BetaDs = CorrDs* DSCOEF* pow{{DLl4D}),3.0)*fabs{{Di-Dj))* le-16:

D

X

GAMMA (K] = BetaBr+ BetaSh+ BetaDs:

RAG COEF NOT CONSIDERED YET*/

= I* {I-1}/ 2+ J: /* subscript reflects element order,
[1,NK}, not storage subscript order [2,NEK+1] */

fprintf(f2," %3d %6.2f %6.2f %6.3f %8.2a %8.2e %9.3e\n",

K,DIAM|(I),DIAM[J],CorrBr,CorrSh, CorrDa, GAMMA[K])

/* printf{"\t %3d %6.2f %6.2f ¥6.3f %8.2e ¥8.2e 19.3e\n%,

t

}

K,DIAM[I],DIAM[J],CorrBr, CorrSh, CorrDs, GAMMA (K] ) */

/rwkrxnkansaxxnaxe  Curvilinear Correction for Brownian motjon #*sswasrssdxanxcs/
float BrCorr{Di,LAMDA)
float *Di, *LAMDA: /* pointer to variables *f

{
float BOTSI2E, TOPSIZE, DELSIZE, ABOT, ATOP, correctlon, DI_UM, DL;

int K, BOT,

TOP
static float BR[11](5]= [/* dia a b < d ~f

{0.100, 1.025,-0.626, 0.516,-0,152},
10.200, 1.007,-D.860, 0.870,-0.322},
{0.600, 0.976,-1.155,
[1.000, 0.962,~1.263,

/* DBROWN */ {2.000, 0.943,-1.383, 1,725

DI_UM = *Di;
DY = *LAMDA;
for (K=

InterpolBr:
30T

TOP
BOTSIZE
TOPSIZE
DELSIZE
ABOT

ATOP

a
{
i
}

{6.000, D.916,-1.533, 1.991,-0,887},
{10.086, 0.%05,-1.587, 2.087,-0.93¢},
{20.00, 0.891,-1.658, 2.221,-~1.009},
{60.00, 0.871,-1.73%, 2.2371,=1.080},
{200.0, D.863,-1.775, 2.439,-1.125},
{600.0, ©.BS0,-1.825, 2.500,-1.150}
}: /* coefficlents for €00 added by eye */

; Ke€= 9 Ki4)

£{DI_UM< BRI[K] (0]}
goto InterpolBy;

K:

K- 1;

BR[BOT][0]:

BRITOP) (0]

BOTSI2E- TOPSIZE:

BR[BOT] [1]+ BR[BOT] [2]* DL+ BR[BOT][3]* DL*BL+ BR[BOT] [4]*
DL*DL*DL:

BR[TOF] (1]+ BR(TOP] (2]* DL+ BR[TOP] [3]* DL*DL+ BR([TOP][4]*
DL*DL*DL;
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correction = ABOT + (ATOP- ABOT)/ DELSIZE* (BOTSIZE- DI_UM);
return cerrection:
}

Itttiittitttttttiit cutvilinear correctiun for rluid Shear l‘a’ﬁtttttaliittttti/
float ShCorr{Di,LAMDA, G, VISCOS)
float *Di, *LAMDA, *G, *VISCOS; /* pointer to varlables */

{

float HA, BOTHA, TOPHA, DELHA, TEMPO, ADLER, ABOT, ATOP, correction, DI UM, DL;

int ¥, BOT, TOP:

float PI = 3.141592;

float HAM = 4.1E-13;

static flcat SH[LL][S]= { /* BHA a b c d «f
{10.c0, o0.000, O.000, 0.000, 0.000},
{1.00,«1.128, 2.498,-2.042, 0.671},
{ 0.00,-1.228, 2.498,-2.042, 0.671},
{-1.00,-1.482, 3.189,-3,468, 1.581},
{=2.00,=1.704, 3.116,-2.881, 1.121},
{-3.00,-2.523, 5.550,-6.098, 2.553},

/* SHEAR */ {~4.00,-3.723,10.039,-12.569,5.557},

{-5.0C0,-5,775,18.267,~-24,344,10.992},
{-6.00,-7.037,20.829, ~25,589,10, 755},
{=7.00,-8.733,25.663,-30.703,12.555},
{-8.00,-9.733,230.663,-35.703,14.555)

DI_UM = *Di;
DL = *LAMDA;

HA = loglQ (HAM/ (18.0* PIY {*VISCOS)* DI_UM* DI_UM* DI_UM* 1E-12* {*G)));
for {K= 0; K<= 10; K++)

{
1f{EA > SH[K][0])

goto Interpolsh;
}

InterpolSh:

BOT - X

TCOP - K- 1;

BOTHA = SH[BOT] (0] *

TOPHA = SR[TOR] [0];

DELHA = TOPHA - BOTHA:

ABOT = SHIBOT]([1]+ BH[BOT][2]* DL+ SH[BCT][3]* DL*DL+ SH([BOT] [4]}*
DL*DL*DL;

ATOP = SH[TOP][1]+ SH[TOF|[2]* DL+ SH{TOF][3]* DL*DL+ SH[TOF] [4]*
DL*DL*DL;

TEMPO = ATOP= {ATOP~ ABOT)/ DELHA® (TOPHA- HA):
ADLER — pow(10.0, TEMPO*1.0):

correction = ADLER* 8.0/ pow({l.(+ DL,3.0}):
return correction:
}

Jewwaswnaww Curyilinear Correctien for Differential Sedimentation wesessssraiiay
float DsCorr (DL, LAMDA)
float *Di, *LAMDA; /* pointer to variables */

{
float BOTSIZE, TOPSIZE, DELSIZE, ABOT, ATOP, correction, DI_UM, DL, TEMPO:
int K, BOT, TOP:
static float DS[B][5])= { /* dia a b ] d L7
{0.000, 0.000, 0.800, 0.000, O0.000},
{4.000,-1.212, 0.,991,-1.661, 1.103},
/* BEDIM */ {1¢.00,-1.966, 2.520,-3.725, 2.001},
{20.00,-2.447, 3.647,-5.417, 2.817},
{60.00,-3.002, 4.547,-6.762, 3.454},
{100.0,-3.132, 4.547,-6.762, 3.454},
{200.0,-3.928, 6.423,-9.449, 4.514},
{600.0,=-3,928, 6.423,-9.449, 4.614)
}r /¥ coefficlents for 600 repeated
by GWC as if the limiting case*/
DI_UM = *Di:
DL = *LAMDA;
for (K= 0; K<=7; Kt+)
{

if{DI_UM < DS[K][0]}
goto InterpolDs;
}

Interpclis:

BOT - K;

TOP - K-1:

BOTSIZE = DS[BOT][D];

TOPSIZE = DS([TCP) [C0]:

DELSIZE = BOTSIZE- TOPSIZE:

ABOT = DS[BOT][1] + DS[8OT)[(2]* DL+ DS[BOT] [3]* DL*DL+ DS[BOT) [4]*
DL*DL*DL;

ATOP = DS(TOP] [1} +DS[TCP][2]™ DL+ DS[TOP] [3]* DL*CDL+ DS(TOP] [4]*
DL*DL*DL;

TEMPO = ABOT+ (ATOP= ABOT)/ DELSIZE* {BOTSIZE=- DI_UM};

correction = pow(10.0, TEMPC*1.0):
return cerrectlon:

,]ftiillt**tt**tlliitt*ttlllii!ktltlleuc()Rtttllu*!llnﬁﬁlrrtttalikittlll”*"
/* subroutine FRCGAM3Z.c

* Last revlised 7/14/90 2310. - [GAMMA) Dimensiocned fer 531.

* stripped down portlon of Bateh.c.

* Subroutine FRCGAM.c is written In C and called by FORTRAN main.
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purpose is to calculate FRAC{][] and GAMMA[] for later use in COAG.c.

"

*

*  Arrays are dimensioned for NK+1 elements, 1.s,, waste the D elements, begln
%+  w/ subscript 1 to use Han loglc. This done for Fortran portabllity. These
*
=
*

two arrays must similarly be dimensioned for NK+1 in Fortran main.
Gammacalc () has been revlised to accomodate particles larger than 200 um.

#include <stdie. h>
#include <math.h>

FILE *f1,*f2;

FRCGAM (NK, LVSTEF , TEMP, VISCOS, DIAM, G, GRAV, RHO, RHOW, IBR, I5H, IDS, FRAC, BAND1, BAND3,

MAXFR1, MAXFR3, GAMMA]

/* INPUT POINTER ARGUMENTS: */
int  *NK: /* Number of actual PARTICLE SIZE ¢lasses n/
float *LVSTEP: /* log{V[k+11/v(k]) *f
int  *IBR,*ISH,*IDS; /* operative collision mechanisms and trajectory types */
float *TEMP; /* Temperature, [K!} v/
float *VISCOS; /% Molecular viscosity of suspension, [g/cm-s] *f
float *RHO; /* Density of flocs, (gfcm”3] “/
float *RHOW: f* Density of fluid, [gfem~3] *f
float *G; f* Veloclty gradient, [1/s] wf
float *GRAV; /* Acceleraticon due to gravity, [cm/s*2] *f
float DIAM[32]; /* Floc diameter, [um] *f
f* OUTPUT POINTER ARGUMENTS: */
int *MAXFR1;

int BAND1[10]:

int PMAXFR3;

int BAND3[10}:

float FRAC([32] [4]: /* fraction of particle floc to integer particle clasaes */

float GAMMA(513]: /* binary collision freguency function values, [1/(s-#/cm*3)]

{
int K;

f1 - fopen ("FRAC™, "w*
f2 = fopen{"GAMMA

for (K = ¥*NE; K »>= 1; K-~} /* Array */
DIAM{K] — DIAM[K-1]: f* shifting from Fortran to C *f

FRACCALC (NK, LVSTEP, FRAC, RAND], BAND3 , MAXFR1, MAXFR3} ;

GAMMACALC (TEMP , VISCOS, DIAM, G, GRAV, RHO, RHOW, IBR, ISH, IDS, NK, GAMMA) ;

fclose(fl);

fclose({f2):

for (K = 0; K < *NK; Kt+) /* Array */
DIAM[K] — DIAM[K+1]; /* shifting from € back into Fortran */

I /* end of FRCGAM subroutine */

FRAE R AR A AR RRRR AR A A KRR NN RN AN SR AN ATRACCALC [ TV EANRRRN IR AN R KNI NN AR A dr bk b ak ki f

FRACCALC {NK, LVSTEP, FRAC, BAND]1, BAND3, MAXFR1, MAXFR3)

/* INPUT POINTER ARGUMENTS:
int YNK; /* Number of PARTICLE SIZES
float *LVSTEP; /* log(V[k+1/V[k])

/* OUTPUT POINTER ARGUMENTS:
int  *MAXFRL:

int BANDL1[10]:
int *MAXFR3;
int BRND3[10}:

float FRAC([32][4]: /% fracticn of particle flac to integer particle classes

{
int
flo

I, I3, JK, K, Q, JMAX, FR3, CELL;
at SUMV, X, V1, V2, STEP, VDIFF:

STEP = *LVSTEP:
*MAXFR] = floor{legi0(2.00)/STEP);

/* max STEPs separation when I & J {J<I) create a K = I

for {(I= 1; I<= *MAXFRL: I++4)

BAND1[I] = floor{-1.0/ STEP* loglO(pow{10.0, {I}* STEF)= 1.0));

BAND1 [*MAXFR1+ 11 = -1;

/* column 1, frac[][l]. Note that elements [][0] left unasaigned:

*/

VDIFF = pow{10Q.0,STEP*1.0)- pow{1{0.0,STEF*0.0); /* V[K+1] - VK] */
for {IJ= *NK-1; IJ> BAND1[l]; IJ~--}

{
SUMV = 1.0 + pow(l10.0,STEP*(-IJ)*1.0): = vIl+ V() *f
CELL = IJ+ 1:
FRAC[CELL] [1} = {pow(1C.0,STEP*1.0)- SUMV)/ VDIFF:

}

for {IJ= BAND1[l]}; IJ>= 0; IJ==)

SUMV = 1.0+ pow(10.0, STEP* {-IJ)}*1.0):
for (Q= 1; Q<= *MANFR1: Q++)
{

v
*/
*/

*/

*/

L7
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if (IJ<= BAND1(G] && TJ> BAND1[Q+1])
{

VDIFF = pow{10.0,STEP* (Q+1)*1.0)
- pow(10.0,STEP*Q*1.0);
CELL - IJ+ 1;

FRAC[CELLI[1] = {pow(10.0,STEP* {(Q+1)*1.0)~- SUMV)/ VDIFF;:
}

}
/* column 2, frac[]{2]:
*f

for (K= 1; K<= *NK: K++)
FRAC[K]{2] = 1.0+ pow(1l0.0,=STEP* {*NK~ K)):

/* column 3, frac[][3]:
*/

FR3 = 1, *MAXFR3 = 1;
for (K= 1; Ke<= *NK; K++)
{

vl = pow{l0.0,-STEFP* (K));
x loglCG{l.0- V1):

TMAX = floor{=X/ 3TEP* 1.0);
BAND3 [K] = JMAX;
*MAXFR3 =~ *MAXFR3 + 1; /% used in Diffun() */

If (JMAX< K}
goto NOMORE;

for {JK= K; JK<= JMAX: JK++)
{

v2 = pow(l0.0,-STEF* (JK}):
FRAC [FR3] [2] =~ V1+ V2:
FR3 = FR3+ 1;

}

NOMORE: /* dummy statement */ :

fprintf{fl,"NK-= %d LVSTEP=~ &%f MAXFRI~ &d\n\n", *NK,STEP, *MAXFR1}):
fprintf(f1,"K FRAC[K][1] FRRC[X][2] FRAC[K][3] BAND1{K] BAND3I[KI\n"):

F* printf ("\t\nNK= &%d LVSTEF= %f MAXFR1= %d\n\n*, *NK,STEP, *MAXFR1);
printf{"\t K FRAC[K][1) FRAC(K)[2] FRAC[K][3] BAND1(X] BAND3I[K]\n"}: »/

for (K= 1: K <= *NK; Kt++)
{
fprintf(fl,"%$3d $10.4f ¥10.4f %10.4f %10d %10d \n",
K, FRAC[K] [1],FRAC[K] [2), FRAC[K] {3),BANDL1[K],BAND3[K]}
f* printf{"\t%3d %10.4f %10.4f %10.4f 410d %10d \n%,
K,FRAC[K] [1), FRAC[X] [2],FRAC(K] [3], BANDL [K}, BANDI (K]} : */
}

SRR R AR AN Rk A RN AR AN A RN RACCALC (J FF N AR Akt ek bk r kR d AT xRk f

FRAG I E AR R RR AR AR A RANNN R NS Rk kN CAMMACAT,C(J*FF R hd kA ke sk hru A Nk AR AN R RS AR Rk bk dddnn f
GAMMACALC { TEMP, VISCOS, DIAM, G, GRAV, RHO, REOW, IBR, 15H, IDS, NK, GAMMA)
/% CALCULATE Gamma FROM THREE TRANSPCORT MECHANISMS */f

/* INPUT POCINTER ARGUMENTS: «f
int  *NK; f* Number of PRRTICLE SIZES =/
int  *IBR,*ISH,*IDS; /* operative colliszlon mechanisma and trajectory types */
float *TEMP: f* Temperature, [K] */
float *VISCOS; f* Molecular viscosity of suspension, [g/cm-3] rf
float *RHO; f/* Density of flocs, [g/am*]] */
float *RHOW; /* Density of fluild, [g/am"3] L¥
float *G; F* Velocity gradient, [1/3) */
float *GRAV; /* Acceleration due to gravity, [em/s5"2] *f
float DIAM[32]: /* Floc diameter, [um] *f
/* QUTPUT POINTER ARGUMENTS: ./

float GAMMA[436]; /* binary collisien frequency function values, [1/(s-¥#/cm~3)] */

1

float BrCorr{), ShCorr{), DsCorr{):

fleat BetaBr, Betash, BetaDs, CorrBr, CorrSh, CorrDa;
float Di, Dy, LAMDA, BRCOEF, DSCOEF;

float BOLTEZ = 1.38E-16;

float PI - 3,1415%92;

int I, J, K»

BRCCEF = 2.0* BOLTZ* (*TEMP)/ (3.0% (*VISCOS)):
DSCOEF = PI* (*GRAV)* (*RHO- *RHOW)/ {72.% (*VISCOS)}:

fprintf(f2,"\n K DIAM[I] DIAM{J] CorrBr CorrSh CorrDs GAMMA[K]I\n%):
/* printf¢"\t\n K DIAM[I] DIAM[{J] CorrBr CorrSh CorrDs GAMMA([K]\n"); */

/* Need to copy contents of DIAM[), written in Fortran main, to DIAM[)

* usable in C. DIAM-Fort Bubscripting is (1:NK+l) and DIAM-C subscripting
* is {0:NK]), but we want the C subscripts to correspond to their actual

* element order, e.g., element 1 having subscript 1:

*/

for (I= 1; T <= *NK; I++)

{
Di = DIAM[I]: /* diameter of larger particle, [um] =/

for (J= 1; J<= I: Jt++)
{
+5 = DIAM[J); /* diameter of smaller particle, [um] */
LAMDA = D3/ Di: /* slze ratio (less or equal to 1) ./

/* Brownian correctien */
switch ({*IBR}+1)
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case 1: /* IBR=D, Brownian Motlon not consldered */
CorrRy = 0.:
break;

case 2: /% 1IBR=1, Rectilipnear Brownlan Motion */
CorrBr = 1.;
break:

case 3: /* IBR=2, curvilinear Brownlan Mection x/
CorrBr = BrCorr (&Di, 4LAMDA);
break;

}
BetaBr = CorrBr* BRCOEF* (1,0/DL + 1.0/BD4)* (Di+ DJ):

/* Fluld Shear correction */
switch ({*ISH}+1)
{

case 1: /* ISH=0, Fluld Shear not considered */
CorrSh = 0.;
break;

case 2 f* 1I5H=1, Rectilinear Fluld Shear ~/f
Coresh = 1.;
preak;

case 3: /* ISH=2, Curvilinear Fluld Shear x/
CorrSh = $hCorr (&D1, §TAMDA, G, VISCOS) ¢
break;

]
BetaSh = CorrSh* {*G)/ 6.0* pow((Di+D{},3.0)* le-i2;

/* Differentlal Sedimentation correction */
swltch {{*ID5)+1}
{

case 1: /* 1DS=0, Differential Sedim not considered */
CorrDs = 0.7
break;

case 2; /* IDS=1, Rectilinear Differentlal Sedim *f
CorrDs = 1.;
break;

case 3: /* 1Ds~2, Curvilinear Differential Sedim *f
CorrDs = DeCorr (&Di, sLAMDA)
break;

t
BetaDs = CorrDs* DSCOEF* pow{{Di+DJ),3.0)"fabs((Di-Dj)}* le=16;

Fad DRAG COEF NOT CONSIDERED YET*/

K = I* {I-1}/ 2+ J: /* subscript reflects element order,
[1,NK], not storage subscript order (2,NK+l] */

GAMMA[K] = BetaBr+ Betash+ BetaDs;

fprintf(£2,"™ %3d %6.2f ¥6.2f %6.3T %B.Ze %t68.Ze ¥9.3e\n%,
K,DIAM[I],DIAM[J],CorrBr,Corrsh,CorrDs, GAMMA[K]) ;
F* printf{"\t %34 %6.2f %6.2f %6.3f %8.2e %8.2e %¥9.3e\n%,
K,DIAM[I],DIAM!|J), CortBr, Coresh, CorxDs, GAMMA[X]); */
1

¥

freeksasekiknansns  Cyryllinear Correcticn for Brownlan motion a#akessstswsssnny
float BrCerr (Di, LAMDA)
float *Di, =*LAMDA; /* pointer to variables *f

{

float BOTSIZE, TOPSIZE, DELSI2F, ABRGT, ATOP, cerrectien, DI UM, DL:

int K, BOT, TCP;

static float BR[11][5]= {/* dia a b [ d */
{0.100, 1.025,-0.626, 0.516,-0.152},
{p.200, 1.9007,-0.860, 0.870,-0.322},
{0.600, 0.976,~1.155, 1.342,-0,554},
{1.000, 0.962,-1.263, 1.522,-0.645},

f* BROWN */ (2.000, 0.943,-1.383, 1.725,-0.748},

{e.000, 0£.916,-1.533, 1.991,-C.887),
{10.00, ©€.905,-1.587, 2.087,-0.936),
{20.00, 0.891,-1.658, 2.221,-1.009),
{60.00, 0.871,-1.739, 2.371,-1.090}),
{200.0, 0.863,-1.775, 2.43%,-1.125},
(600.0, 0.850,-1.825, 2.500,~-1.150}
1; /* coefficients for 600 added by eys */

DI_UM =~ *Di:
DL = *LAMDA;
for (K= 0; K<= 93; Kt+)

{
LE(DI_UM< BR[R]{0]}
goto InterpolBr:

InterpolBr:

BOT - K;

TOP - K- 1;

BOTSIZE = BRIBQTI[0]:

TOPSIZE = BR[TCP)[D]:

DELSIZE — BOTSIZE— TOPSIZE;

ABOT = BR[BCT] {1]+ BR[BOT] {2]* DL+ BR[BOT] [3]* DL*DL+ BR[BOT] [4]*
DL*DLADL:

ATOP = BR[TOP] [1]+ BR(TCP][2]1* DL+ BRA[TCP] [3]* DL*DL+ BR[TOP]{4]*
DL*DL*DL;

correction = ABOT + (ATOP= ABOT}/ DELSIZE* (BOTSIZE- DI_UM):
return correction;
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Jrdsmannussunnenirt  cyuryllinear correction for Fluid Sheay *eswvdsasastzhinnis/
float ShCorr(Di,LAMDA,G,VISCOS)
float *Di, *LAMDA, *G, *VISCOS; /* pointer to varlables */

{

float HA, BOTHA, TOPHA, DELHA, TEMPQ, ADLER, ABOT, ATOP, gorrecticn, DI_UM, DL;

int X, BOT, TOP:

float PI = 3.141592;

float HAM = 4,1E-13;

static fleat SH[11)[S]= { /* HA a b =3 d w/
{1e.co, 0.000, 0.000, 90.000, 0.00C},
{1.00,-1.128, 2.498,-2.042, 0.671},
{ 0.00,~1.228, 2.498,-2.042, 0.€71},
{-1.00,-1.482, 3.189,-3.468, 1.581},
{-2.00,-1.704, 3.116,-2.881, 1,121},
{=3.00,~2.523, 5.550,-6.098, 2.551},

f* SHEAR */ {-4.00,-3,723,10.039,-12.569,5.557},

{-5.00,-5,775,18.267,-24.344,10.992},
{-6.00,=7.037,20.829,-25,.589,10.755},
{-7.00,-8.733,25.663,-30.703,12, 555},
{~9.00,-9.733,30.663,-35.703,14.555}
Yz

DI_UM = *Di:
DL = TLAMDA;

HA = 10910 (HAM/ (18,0% PI* (*VISCOS)* DI_UM* DI_UM* DI_UM* 1E-12* (*G))}:
for (K= 0; K<= 10; K++)

1f(HA > SH{K] (0]}
goto Interpolsh;
¥

Interpolsh:

BOT = K;

TOP = K- 17

BOTHA =« SH[BOT)[0];

TOPHA = SH[TOP] (0]

DELHA = TOPHA - BOTHA;

ABOT = SH[BOT]|[1]+ SH[BCT][2]* DL+ SH[BOT)[3]1* DL*DL+ SH(BOT) [4])*
DL*DL*DL;

ATOP = SH[TOP][11+ SHITCP][2]* DL+ SH[(TCP][3]* DL*DL+ SH[TOP] [4]*
DL*DL*DL;

TEMPQ = ATOP- {ATOP- ABOT}/ DELHA* (TOFHA=- HA):
ADLER = pow(10.0,TEMPO*1.0);

correction = ADLER* 8.0/ pow{l.0+ DL,3.0);
return correction:
i

Jawwwwnswss curvilinear Correction for Differential Sedimentation *aswsvswnnrrif
float DsCorr{Di,LAMDA)
float *Di, *LAMDA; /* pointer to wariables */

{
float BOTSIZE, TOPSIZE, DELSIZE, ABOT, ATCP, correction, DI_UM, DL, TEMPO;
Int K, BOT, TOF:
static fleat DS[8][5]= { /* dia a b c d
{0.000, ©.000, 0.C00, 0.000, 0,000},
{4.000,-1.212, 0.991,-1.661, 1.103},
/* SEDIM */ {10.00,-1.966, 2.520,-3.725, 2.0061},
{20.00,-2.447, 3.647,-5.417, 2.817},
{60,00,-3.002, 4.547,-6.762, 3.454},
{100.0,-3,132, 4.547,-6.762, 3.454},
{200.0,-3.928, 6.423,-9.449, 4.814},
{600.0,-2.928, 6.423,-9.449, 4.614}
}: /* coefficients for 600 repeated
by GWC as 1f the limiting case*/
DI_UM = *Di:
DL = ALAMDA;
for (K= 0; K<=7; K++)

{
1f{DI_UM < DS[K] (01}
goto InterpolDs;

InterpolDs:
8oT - K;
TCOP - K-1l;
BOTSIZE =~ DS[BOT]{0]);
TOPSIZE = DS[TOF] (0]
DELS$IZE = BOTSIZE- TOPSIZE;
ABOT = D5[BOT] {1} + DS[BOT] (2] DL+ DS[BOT) [2]* DL*DL+ DS(BCT][4)*
DL*DL*DL;
ATOP = DS[TOP] [1] +DS{TOP)[2]* DL+ DS[TOP][3)* DL*DL+ DS[TOP}[4]*

DL*DL*DL;
TEMPO ~ ABOT+ (ATOP- ABOT)/ DELSIZE* (BOTSIZE- DI_UM):

correction = pow{1{.0, TEMPC*1.0};
return correction;

/t*ntnnntttacaaanunwrnwuitaatttt.a-gmmc”nnnnnntitttwa-ntnnmttatannrwntaat/

/* Program COAG3Z.c Last revised 7/19/%0 1935.
*

« Removed all references to FILE3 because it was glgantic and unused.
* Purpose ls to calculate Delta¥Y([][][] for particle coagulation.

»  Subroutine COAG.c is written in C and called by FORTRAN main.

-
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Particle class array lndices are from [1 to n] in the Han logic, rather than
{0 to n-1], so these arrays are dimensicned here for [n+l]. Particle conc
array is shifted on entry/exit to allow access to subscripts from [0,n! and
is needed for Fortran transfer compatabllity.

GAMMA array 1s dimensioned 1 element larger than needed to allow for skip of
element 0, 1.e., (32* {32/2 - 1) + 1). [GAMMA] dimensioned for 513.

Note that the variable order for multidimensional array in C is reversed
relative to its Fortran representation.

B omow o A A A *oow

*f

tinclude <stdio.h>
#include <math.h>

COAG {NK, NX,NZ,N1, HMAX, DELT, FRAC, BAND] , BAND3, MAXER 1, MAXFR3 , GAMMA, ALPHA,
DELN1,Y)

/* INPUT POINTER ARGUMENTS:
*/

int *NK: /* Number of actual PARTICLE SIZE classes e/
int *NX; /* Number of Longitudinal nodes *f
int  *NZ; /* Nurmber of Vertical nodes */
float N1[€][111(32]: /* number conc before transport or rxn., [#/cm~3] LF
float *HMAX: /* Max. allowable timestep for coag integration, [s} *f
float *DELT: /* Reactjon time, ie, time step taken in transport, {a] */
float *ALPHA; /* collision efficiency =/
float FRAC[32][4]: /* Fraction of particle floc te integer particle
classes - from FRCGAM */
flecat GAMMA[513]; /* Binary collislen frequency function values,
[1/{s-#/cm*3)] - from FRCGAM */
int *MANFR]; /* from FRCGAM.c */
int BAND1{10]: /* from FRCGAM.c */
int  *MAXFR3: /* from FRCGAM.c */
int BAND3[10]: /* from FRCGAM.c */
/* QUTPUT POINTER ARGUMENTS:
*/
float DELNL[6][11)[32];/* change in number conc due to coagulatlon, [#/cm*3-a)*/
float ¥[30];: f* working wvecter of concix,z) to examine in maln.for */

JRAAR R Rk R Rk A KR KRR AR KA AR N NCOAG () ANk R R kAR AR AR R AN S AN ARERRNR S
{

int  dimNK = *NK:

int dlimNX = *NX;

int dimNZ = *NZ;

int  k, i, 3;

float DY[32]; /* Derlvatlive array used ln calculations, [#/cm"]] */
float TTRY: /* Time step used for next integration step, [s] *f
float Tadjuat: /* NOTE** thia is passed but NOT changed for simple Euler */

/* Actual {adjusted) time step for integration, (B] w7
float T = 0.; /* Elapsed simulation time during rxn step, (a) L7

/* T is reset to 0. for each node integration */
int CALL = 0O: /% No. of calls to Diffun{) during simulation v/

for (3 = 0; 9 < dimNz-1; J+4) /* skips j= dimNZ-1, the bed: no ecoagulation */
for {1 = 1: 1 < aimNX; 5++) /*+ skips 1= 0, the U/S boundary: ne coagulation */

{
T « 0.0; /* reinitialize time for next Integration */

/* Need to copy contents of 3-D array N1[j]1(1)([k], written in Fortran maln, to

* 1=D vector Y{k], independent of location in ¢. DIAM=Fort subscripting is

* (1:NK+1) and DIAM-C subseripting is [0:NK], but we want the C subscripts to
correspond to thelr actual elemant order, e.g., element 1 having subscript 1:

for (k = dimNK; k >= 1; k--)
¥Y(k] = NI[F1[11(k=-1]: /* I.C. on concentratlon */

i Commented out:
DIiffun(Y, NK, ALPHA, FRAC, GAMMA, MAXFR1, MAXFR3, BAND] , BAND3, CALL, DY) ;
This call can be used to get information on derivatives at system
time {not same as T)=0., w/o changlng ¥, if so desired.

>/

INTEGRATE:

/* Determine a timestep from current reaction time, desired time for output,

*  and max timestep constralnt:

*/

/* Comment out code to reverse and speed the block
* if ((*DELT- T) >= *HMAX}

* TTRY = *HMAX:

* else 1f ((*DELT- T) < *HMAX}

“! TTRY = *DELT:

*

if ((*DELT= T} <= *HMAX)
TTRY = *DELT;

else if ({*DELT- T) > *HMAX)
TIRY = *HMAX:

/* Integrate concentration in time using Euler's method {NOT adjusted by
predictor-Corrector methed!}:
*f
Euler PCMI(&T,Y, §TTRY, DY, NK, ALPHA, FRAC, GAMMA, MAXFR], MAXFR3,BANDI,
BAND3, &aCALL iTadjust),

T += TTRY;
1f{T< *DELT)
goto INTEGRATE:
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