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ABSTRACT 

 
 

Inhibition and Success of Prymnesium parvum Invasion on Plankton Communities in 

Texas, USA and Prymnesium parvum Pigment Dynamics. 

(May 2006) 

Reagan Michelle Errera, B.S., Trinity University 

Chair of Advisory Committee: Dr. Daniel Roelke 
 
 
 
 

Prymnesium parvum Carter, a haptophyte species capable of forming harmful 

algal blooms (HABs), has been identified in fresh and brackish water habitats 

worldwide.  In Texas, P.  parvum blooms have diminished local community revenues 

from losses to tourism, fishing, and hatchery production. In this thesis, P.  parvum 

dynamics were studied using in-situ microcosm experiments at Lake Possum Kingdom, 

Texas during three seasons (fall, winter, spring) in 2004-2005.  Specifically, nutrient 

additions were used to test the hypothesis that increased nutrient levels would not 

enhance P.  parvum’s ability to invade phytoplankton communities.  In addition to full 

nutrient additions to levels of f/2 media, other treatments included nutrient additions 

deficient in either nitrogen (N) or phosphorus (P).  Additionally, barley straw extract was 

tested as a growth inhibitor to prevent P.  parvum blooms.  Furthermore, P.  parvum 

initial population density was examined to test the hypothesis that increased initial 

populations could promote an increase in P.  parvum population densities.    
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Findings indicated that P.  parvum populations in Lake Possum Kingdom would 

not likely gain a selective advantage over other species when inorganic nutrients 

(nitrogen and phosphorus) were not limiting.   P.  parvum did, however, gain an 

advantage during both N- and P-limited conditions as indicated by toxicity, cell 

concentrations, and bulk phytoplankton community shifts.  Furthermore, P.  parvum 

blooms in Lake Possum Kingdom would likely not be inhibited by barley straw extract 

application. Initial population densities affected the final population density, but only 

when initial populations were low.   

A method to quickly and accurately detect the presence of P.  parvum is needed 

due to P.  parvum’s potential to cause toxic and lethal blooms.  This thesis tested 

whether P.  parvum photopigments are conservative regardless of growth conditions and 

could be used to quantify the relative abundance of P.  parvum in mixed community 

samples.  If biomarker pigments are conservative, then an optimized version of 

CHEMTAX could be employed as an alternative diagnostic tool to microscopy for 

enumeration of P.  parvum.  However, P.  parvum pigments in the Texas strain were not 

conservative throughout the growth cycle and therefore may not be a reliable indicator of 

cell abundance.        
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CHAPTER I 

INTRODUCTION 

1.  Introduction 

Incidences of harmful algal blooms (HABs) have increased in frequency, 

duration, and severity worldwide (Smayda, 1990; Hallegraeff, 1993).  Blooms of 

harmful and nuisance species have been reported in coastal and inland waters, and 

observed in fresh and saltwater environments.  Formation of HABs is a result of select 

biological, physical, and chemical conditions, which are achieved through a number of 

interacting phenomena (Roelke and Buyukates, 2001).  These conditions can vary 

greatly for different HAB species.  Consequently, predicting the initiation of blooms is 

difficult.  The causes for this apparent global expansion of the frequency and duration of 

bloom outbreaks are unknown; however, human alteration of water quality is believed to 

be a contributing factor (Hallegraeff, 1993).   

HABs have a direct impact on surrounding ecosystems.  One impact is the 

production of toxins by HAB species (Hallegraeff, 1993; Harvell et al., 1999, Van 

Dolah, 2000; Van Dolah et al., 2001).  In many cases, these toxins accumulate in the 

food web and affect human health when contaminated commercial species are involved.  

For example, brevitoxins produced by the dinoflagellate Karenia brevis can accumulate 

in the tissues of shellfish.  When contaminated shellfish are consumed by humans, the 

toxins can cause neurotoxic shellfish poisoning (NSP) (Steidinger et al., 1998, p. 133).   

_______________ 

This thesis follows the journal style of Harmful Algae.   
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HABs can directly affect natural resources and local economies.  For instance, an 

outbreak of Pfiesteria piscicida in Maryland caused an estimated $43 million loss in 

seafood sales for the region (Lipton, 1998).    

A newly investigated HAB species Prymnesium parvum Carter, a haptophyte, 

occurs worldwide.  This species was first identified by scientists in the late 1930s in 

Denmark and Holland where it was responsible for numerous fish kills in coastal waters 

(Shilo & Aschner, 1953; McLaughlin, 1958).  Today P.  parvum blooms have been 

identified in fresh and brackish-water environments from New South Wales, Australia to 

Texas, USA (Edvardsen and Paasche, 1998). The occurrences of the blooms have 

increased the need for water treatment plants to treat water from reservoirs, and have 

diminished local community revenues from lost tourism, fishing, and hatchery 

production.  

P.  parvum is able to produce an array of toxins (ichthyotoxic, neurotoxic, 

cytotoxic, hepatoxic, and hemolytic compounds) (Igarashi et al., 1996, 1999).  The 

toxins are released into the water column yielding an assortment of impairments (Ulitzer 

and Shilo, 1966; Edvardsen and Paasche, 1998, Igarashi et al; 1996, 1999) that affect 

fish, heterotrophic dinoflagellates, bacteria, phytoplankton and ciliates (Nygaard and 

Tobiesen, 1993; Tillmann, 2003; Fistarol et al., 2003; Granéli & Johansson, 2003a, b; 

Rosetta and McManus, 2003; Barreiro et al., 2005; Uronen et al., 2005).  The toxins are 

especially devastating to fish because the hemolytic effects cause the cells located in the 
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gills to lyse, followed by mortality due to blood loss.  To date there have been no reports 

of negative health effects of P.  parvum toxins to humans.   

In 1985, the state of Texas officially confirmed a P.  parvum bloom along the 

Pecos River (TPWD, 2003).  Since the initial identification, P.  parvum blooms have 

affected 19 reservoirs along five river basins in Texas (TPWD, 2003) with bloom 

occurrences appearing to be associated with brackish water (1 – 5 mS/C).  Due to P.  

parvum’s ability to produce dense blooms in a wide range of environmental conditions, 

it has caused extensive damage to local economies.  The Lake Possum Kingdom 

Chamber of Commerce estimated economic losses of $18 to $20 million due to P.  

parvum blooms from 1998 to 2001 (TPWD, 2002).  Additionally, P.  parvum blooms 

have resulted in fish kills exceeding 17.5 million fish in Texas since 1985 (TPWD, 

2003). 

 Eutrophication of local water bodies may explain, in part, the increase in 

frequency and intensity of P.  parvum blooms in Texas reservoirs.  Texas continues to 

experience high levels of urban and suburban development, resulting in increased 

clearing of trees, and the application of fertilizers to the landscape.  Cultural 

eutrophication of the surrounding water systems occurs with runoff and can stimulate 

harmful algal blooms (Hallegraeff, 1993).  An increase in nutrient loading can lead to a 

shift in species compositions and in doing so; destabilize plankton communities 

(Riegman, 1998).  These events may be beneficial to P.  parvum growth and promote 

bloom initiation.     
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Another theory suggests that during times of nutrient limitation P.  parvum is 

able to dominate phytoplankton communities (Granéli and Johnasson, 2003a). Several 

studies have shown that limiting nitrogen or phosphorus enhances the toxic effects of P.  

parvum, thereby providing P.  parvum with the ability to compete for limited nutrients. 

The toxins (alleopathy) could shift the phytoplankton community composition to one in 

which P.  parvum is the superior competitor (Johnasson and Granéli, 1999).  Granéli and 

Johnasson (2003a) demonstrated this phenomenon by introducing cell-free filtrates of P.  

parvum culture grown under nitrogen and phosphorus deficient conditions to cultures of 

Thalassiosira weissflogii, Procentrum minimum and Rhodomonas cf. baltica.  In these 

experiments, the three phytoplankton species experienced a rapid decline in cell 

abundances.   

More specifically, some of the toxins have the capability to act as allelopathic 

substances that inhibit growth of competing phytoplankton or deter potential predators.  

In a study preformed by Fistarol et al. (2003), cell-free filtrate of P.  parvum grown 

under nutrient sufficient conditions was added to cultures of cyanobacteria, 

dinoflagellates, nanoflagellates, and diatoms isolated from the Baltic Sea.  This resulted 

in a decrease in cell numbers of the phytoplankton groups.  The effect of toxins 

produced by P.  parvum is not limited to competitors.  They also negatively affect 

potential predators.  For instance, feeding by Euplotes affinis, a ciliate, ceased after it 

was exposed to P.  parvum (Granéli and Johansson, 2003b).  Furthermore, when offered 

an alternative prey, E. affinis consumption of the prey decreased when P.  parvum was 

present.  In the same study, they also demonstrated that survival of E. affinis decreased 
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when exposed to P.  parvum limited by either N- or P-, suggesting that toxin production 

was enhanced when P.  parvum became nutrient limited.     

The devastation caused by P.  parvum to Texas’ rivers, reservoirs, and fish 

hatcheries has resulted in the need to develop strategies for mitigating the effects of 

blooms.  A potential mitigation strategy involves the use of barley straw extract (BSE).  

Field trials and laboratory experiments suggested that BSE was effective in suppressing 

some phytoplankton taxa, including cyanobacteria, diatoms and chlorophytes (Gibson et 

al, 1990; Newman and Barrett, 1993; Everall and Lees, 1996; Ridge et al., 1999; Barrett 

et al., 1999).  However, algal species exhibited a range of sensitivities to BSE.  For 

example, Martin and Ridge (1999) demonstrated that the cyanobacterium Anabaena flos-

aquae experienced inhibition by 50% when treated with 371 g m-3 of barley straw, but 

another cyanobacterium, Anabaena cylindrical, was resistant to the putative inhibitors.    

The mechanism by which BSE affected phytoplankton involved leaching of 

growth inhibitors (oxidized polyphenolics) (Gibson et al., 1990; Ridge et al., 1995, 

1999).  It was essential that the BSE experienced oxidation to effectively inhibit algae 

growth (Gibson et al., 1990, Martin and Ridge, 1999).  The advantage of using BSE as a 

control substance is that there was no apparent effect on macrophytes and other aquatic 

life (Everall and Lees, 1996; Ridge et al., 1999); Everall and Lees (1996) reported that 

barley straw had no effect on living invertebrates, rotifer communities, or nesting 

waterfowl.  Furthermore, in preliminary studies of artificial ponds, barley straw did not 

affect trout fisheries (Ridge et al., 1999).   
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Based on the conflicting theories regarding the mechanisms that enhance P.  

parvum competitive abilities, I investigated P.  parvum demographics.  Specifically, I 

examined the role of nutrient availability in P.  parvum population dynamics, and the use 

of BSE as a potential growth inhibitor.  I tested whether different nutrient conditions and 

BSE would select against P.  parvum.  I also manipulated the initial population density 

of P.  parvum to test its potential effect on population dynamics.      

Research and monitoring related to P.  parvum has increased dramatically in 

Texas over the past five years.  A method to quickly and accurately detect the presence 

of P.  parvum is needed.  Enumeration by microscopy is accurate (Jordon et al., 1994), 

but also time-consuming (Millie et al., 1993).  Consequently, the number of samples that 

can be counted using a microscope is limited (Wilhelm and Manns, 1991).  In addition, 

personnel must also be trained by a taxonomist to identify P.  parvum cells within mixed 

assemblages of phytoplankton.  Microscopic identification of P.  parvum is difficult due 

to its similarity with other haptophytes and chrysophytes, and P.  parvum cell size and 

shape vary.   

An alternative to microscopy is the use of photosynthetic pigment profiles as 

chemotaxonomic markers of phytoplankton groups (Jeffery et al., 1997; Zapata et al., 

2004).  Individual phytoplankton groups have characteristic pigments that may be used 

as chemotaxonomic biomarkers (Gieskes and Kraay, 1983; Bidgare et al., 1990; Althuis 

et al.; 1994, Schübert et al., 2000).  CHEMTAX (CHEMical TAXonomy) is a matrix 

factorization program that enables the user to estimate the abundances of major algal 

groups using photopigment biomarkers (Mackey et al., 1996; 1997; Wright et al., 1996, 
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Wright and van den Enden, 2000).  Briefly, the program uses an initial estimate of 

pigment ratios for targeted algal classes and a steepest descent algorithm that determines 

the “best fit” of the unknown sample to known pigment ratios of algal groups.  Input for 

the program consists of the photopigment concentrations obtained by high performance 

liquid chromatography HPLC analyses.  

CHEMTAX can be optimized for better performance in targeted systems by 

adjusting the initial estimates of pigment ratios to algal groups that are more 

taxonomically defined.  Therefore, I also studied P.  parvum photopigment dynamics in 

an attempt to optimize CHEMTAX for estimates of the relative abundance of P.  

parvum.  I assumed that if pigment ratios were conservative throughout different stages 

of growth, an optimized version of CHEMTAX could be employed as an alternative 

diagnostic tool to microscopy.  

2.  Objectives 

In this research the overarching objective is to further the understanding of P.  

parvum bloom dynamics and toxicity in Lake Possum Kingdom, Texas.   Specifically, 

this research focused on the relative roles of inorganic nutrients, the efficacy of barley 

straw extract as a mitigation tool, and initial population densities in formation bloom 

densities.  In addition, this research investigated if CHEMTAX could be optimized for 

estimation of P.  parvum relative abundance in terms of total phytoplankton biomass 

(Chl a).   

3.  Hypotheses 

 The primary hypotheses guiding the research were: 
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1. P.  parvum populations will not gain a selective advantage over other species in 

natural assemblages in Lake Possum Kingdom when nutrient concentrations are 

high.  

2. P.  parvum blooms in Lake Possum Kingdom will be inhibited by barley extract.   

3. P.  parvum initial population density will affect population dynamics.   

4. P.  parvum pigments will be conservative throughout changing growth stages.   
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CHAPTER II 

INHIBITION OF PRYMNESIUM PARVUM INVASION ON NATIVE 

PLANKTON COMMUNITIES WITH THE USE OF BARLEY STRAW 

EXTRACT IN TEXAS, USA 

 

Refer to Chapter I for main introduction; additional introduction material 

pertaining to the objectives of the experiment conducted in Lake Possum Kingdom is 

described below.   

1. Purpose 

 In this chapter, my objective is to investigate changes in phytoplankton biomass 

and P.  parvum population dynamics in response to addition of nutrients and barley 

straw extract (BSE), and inoculations of P.  parvum.  Specifically, nutrient additions 

were used to test the hypothesis that elevated levels of inorganic nutrients would not 

enhance P.  parvum’s ability to invade phytoplankton communities.  Additions of BSE 

tested the hypothesis that known phytoplankton growth inhibitors would prevent P.  

parvum blooms.  P.  parvum initial population density was manipulated to test the 

hypothesis that inoculations would promote increased P.  parvum population densities.  

In-lake experimental incubations were conducted over three seasons (fall, winter, and 

spring) to test these hypotheses.   
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2.  Methods 

2.1.  Site description 

 Lake Possum Kingdom (32° 52’ N, 98° 26’W) is located approximately 103 km 

northwest of Fort Worth, Texas in Palo Pinto, Young, and Stephens counties (Fig. 2.1).  

The reservoir contains relatively high content of salt (2.93 – 3.98 mS/C).  Morris 

Sheppard Dam construction was completed by the Brazos River Conservation and 

Reclamation District (currently known as Brazos River Authority) in 1941, and is the 

first dam constructed on the mainstem of the Brazos River system.  According to Texas 

Parks and Wildlife (TPWD) (2005), Lake Possum Kingdom has been severely impacted 

by P.  parvum blooms since 1997, with the most devastating blooms occurring since 

2000.  This study was performed in Echo Cove, near the grounds of the Possum 

Kingdom State Park.  Historically, the cove is located in an area where blooms have 

initiated (Joan Glass, pers. comm.) making it an ideal location for this study.   

2.2.  Culturing  

A strain of P.  parvum isolated from west Texas, USA (ZZ181, University of 

Texas- Culture Collection of Algae) was used for this study.  This strain was kept in 

culture using sterilized ultra-pure water enriched to f/2 nutrient concentrations  

(800 µM-N, 40 µM-P, N:P=20; Guillard and Ryther, 1962) and autoclaved.  The culture 

was maintained under a 12h light: 12h dark cycle at 19°C under 30W cool-white 

fluorescent lamps (200 µE m-2 s1) until travel to the field site.  The culture was 

transported to the Possum Kingdom reservoir in an 18.9-L blue tinted polycarbonate 

carboy and shaded from direct sunlight.   
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Fig. 2.1. Study site location, Lake Possum Kingdom (reservoir).   Lake Possum 
Kingdom is the first reservoir built on the Brazos River in Young, Stephens and Palo 
Pinto counties, Texas, USA.  The circled area represents the location of Echo cove. 
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2.3.  Field procedures 

Experiments were conducted during three seasons: fall (October through 

November, 2004), winter (January through February, 2005), and spring (March through 

April, 2005).  The timing of the experiments was based on the time of year when 

historical P.  parvum blooms occurred in Lake Possum Kingdom.  Each experimental 

incubation ran for 28 days.   

Experiments included eight treatments, and each treatment was tested in triplicate 

(Table 2.1).  Water contained the natural plankton assemblage was collected in the 

vicinity of Echo Cove, Possum Kingdom reservoir (32.87391°N, -98.54570°W) at a 

depth of 0.5 m. To exclude large zooplankton, which may cause bias in small bottles 

(Sommer, 1985; Roelke et al., 2003), lake water was filtered through a 153 µm mesh.  

Manipulations were conducted using twenty-four transparent 2-L polycarbonate bottles 

which reduced light by 10% (λ = 379-979).  To some bottles, nutrients were added to 

concentrations of f/2 media (Guillard and Ryther, 1962).  A pilot study determined that 

concentrated BSE (Microb-Lift CBSE, Ecological Laboratories Inc.) at 50-fold greater 

(1.56 mL of extract) than the manufacture’s recommendation negatively affected P.  

parvum cultures.  Therefore, BSE was added to some experimental bottles at this higher 

dosage.  Some bottles received inoculations from a P.  parvum culture to yield 

approximately 300 cells mL-1 in the bottle (3% of bloom level) (Table 2.1).  After 

capping, the bottles contained enough air in the headspace to allow them to float.  The 

bottles were then placed within protective frames that were shaded by neutral density  

irradiance filters (55.25% reduction in light).  In total, the bottles received an 
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Table 2.1. Microcosm experiment design.   The experiments were initiated using 2 L of 
filtered (153 µm) water from Lake Possum Kingdom. Treatments included nutrient 
additions to levels of f/2 media, BSE, additions of P. parvum, and a combination of these 
factors. 
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 approximate 65% reduction in light transmission.  Each frame was tethered within the 

cove, which allowed the bottles to experience turbulence, temperature and light similar 

to natural conditions. 

Samples were collected weekly for analyses of P.  parvum population densities 

and photopigments concentrations.  For enumeration of P.  parvum population densities, 

10 mL of water was collected from each bottle and preserved using glutaraldehyde 

solution (5% v/v).  For estimation of photopigment concentrations, water samples 

ranging between of 65 mL to 150 mL were collected from each bottle.  These samples 

were filtered under gentle vacuum (5< kPa, Whatman GF/F) and under minimal light, 

then stored at -70° C.  Water temperature and salinity readings for Echo Cove were 

recorded using a HydroLab Quanta multi-probe.  The Quanta multi-probe was calibrated 

for salinity using a freshwater standard (0.781 mS/cm). 

2.4.  Laboratory procedures 

Measurement of photopigment concentrations was done using HPLC following 

the procedure described in Pinckney et al. (1996; 2000, 2002).  Briefly, filters containing 

the pigments were placed into 100% acetone (1 ml) and sonicated, then extracted for 20-

24 h at -20° C.  Filtered extracts (300 µL) were then injected into the HPLC system, 

which was equipped with two reverse-phase C18 columns placed in series (Rainin 

Microsorb-MV, 0.46 x 10 cm, 3mm, Vydac 201TP, 0.46 x 25cm, 5mm). A nonlinear 

binary gradient was used for pigment separations.  Solvent A consisted of 80% methanol 

and 20% ammonium acetate (0.5M adjusted to pH 7.2), and Solvent B was 80% 

methanol and 20% acetone.  Absorption spectra and chromatograms were acquired using 
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a Shimadzu SPD-M10av photodiode array detector and pigment peaks were quantified at 

440 nm.  Authentic photopigment standards (DHI, Denmark) were used for instrument 

calibration. 

Cell counts were performed using the Utermöhl (1958) settling technique for 

only P.  parvum cells.  Typically, 500-1000 µL were settled for a 24-h period, then 

counted using an inverted microscope (400x, Leica Microsystem Inc.).  A range of 15-50 

randomly selected fields of view were counted per sample, which resulted in ~200 P.  

parvum cells counted per sample, with a 5% error.   

The pigment concentrations acquired through HPLC and an initial pigment ratio 

file were used to determine major algal groups (cyanobacteria, euglenophytes, 

chlorophytes, prymnesiophytes cryptophytes, and diatoms) using CHEMTAX (Mackey 

et al., 1996, 1997; Schübert et al., 2000; Pinckney et al., 1996, Pinckney et al., 2001, 

Pinckney et al., 2002) .   

At the completion of the third experiment, ambient acute toxicity of samples was 

determined using an assay based on survivability of Pimephales promelas over 24 h (US 

EPA methods, 2002).  These procedures were carried out at Baylor University.  Samples 

were diluted using a 0.5 dilution series with reconstituted hard water (RHW), which was 

prepared according to US EPA recommendations (US EPA, 2002).  RHW was used as 

control treatment water for all toxicity assays.    All culturing and toxicity tests were 

performed at 25 ± 1°C with a 16:8 hour light-dark cycle.  P. promelas larvae were fed 

newly hatched Artemia nauplii two hours before initiation of testing (US EPA, 2002).  
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LC 50 values for P. promelas toxicity tests were estimated using Probit (Finney, 1971) 

or Trimmed Spearman Karber (Hamilton et al., 1977) techniques as appropriate.   

2.5.  Statistical analyses 

Differences in total chlorophyll a (Chl a) and P.  parvum cell concentrations 

between treatments were evaluated using a general linear model (GLM) repeated 

measures analysis of variance (ANOVA) (SPSS Inc. Chicago, Illinois).  The factors 

included filtered assemblage (control) and filtered assemblages with additions of 

nutrients, BSE and P.  parvum.  A cumulative repeated measures approach was used 

with the GLM to assess when factors became statistically significant (p<0.05), i.e., the 

model was run starting at the experiment’s initiation through each sampling date (days 0-

7, days 0-14, days 0-21, and days 0-28).  In this way, the timing of bloom and 

senescence events could be accounted for when assessing the significant of treatments 

effects.  For the winter and spring experiments, the Chl a data were log transformed to 

achieve normality. 

3.  Results  

There was a seasonal difference in water temperature and salinity.  Temperature 

varied between the three seasons (Table 2.2), with the fall representing the warmest 

mean water temperature and the winter having the coldest mean temperature.  Salinity 

ranged between 2.0 and 1.6 during the three experiments (Table 2.2).   

3.1. Fall experiments 

During the fall experiment, biomass was affected by the addition of nutrients (Fig 

2.2A, appendix A).  Only moderate changes were observed in bottles receiving no  
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Table 2.2.  Summary of lake temperature (mean over 28 days) and salinity at the start of 
each season. Seasonal temperature varied by approximately 10 ºC.  Salinity has a 
moderate variance. 
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Fig. 2.2.  Fall season experiment.  Divided into (A) Total biomass, and (B) P. parvum 
concentration. The open boxes (□) represent treatment averages that did not receive 
nutrient additions, closed boxes (■) represent treatments averages that did receive f/2 
nutrient additions.  Total biomass increased within the first 7 days then gradually 
declined.  P. parvum cell concentration increased through day 14 then noticeably 
decreased to levels below the control. Standard errors are indicated.  
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nutrients (Table 2.3A, appendix C).  After 7 days, biomass increased approximately 4-

fold in the bottles receiving nutrients then gradually declined (Fig. 2.2A).  Statistically, 

the difference between bottles receiving no nutrients and bottles receiving nutrients was 

significant for the duration of the experiment (Table 2.3A, appendix C).   

The other factors had varying impacts on the experiment.  BSE had a negative 

impact on biomass through day 14, but after that time its affect was not significant 

(p>0.05).  The interaction between BSE and nutrients were significant during the first 14 

days if the experiment.  This interaction was not significant from day 14 onward.  P.  

parvum additions were not significant during this experiment.   

P.  parvum cell concentrations were also influenced by the addition of nutrients 

(Fig. 2.2B, appendix A).  In bottles that did not receive nutrient additions, P.  parvum 

growth was moderate.  In bottles receiving nutrient additions, however, P.  parvum 

concentration increased 15-fold through day 14, but then decreased dramatically, to 

levels below bottles that did not receive nutrient additions.  Statistically, the influence of 

nutrient additions was significant (p<0.05) for the entire duration of the experiment 

(Table 2.3B, appendix C).  BSE additions, P.  parvum inoculations, and the other 

interaction terms were not significant during this experiment.   

Quantitatively, the initial phytoplankton community was dominated by diatoms, 

and this dominance persisted throughout the experiment in bottles that did not receive 

nutrient additions (Fig. 2.3, appendix A).  However, when nutrients were added a 

community shift occurred.  In these bottles, diatoms dominated until day 14 when the 

community shifted to dominance by chlorophytes and euglenophytes (Fig. 2.3B).   
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Table 2.3.  Fall experiment GLM repeated measures ANOVA. (A) Total biomass, and 
(B) P. parvum concentration. Notation Nut. represents treatments which received 
nutrient additions and BSE represents treatments that received barley straw extract. For 
total biomass, several levels and interactions were significant for a short period of time, 
however, nutrient additions was the only significant level throughout the experiment.  
Nutrient additions again were significant for the duration of the experiment for P. 
parvum concentration. Degrees of freedom for the models was 11.  Note: shaded areas 
represent values where p<0.05. 
 

 



21 

 

Fig. 2.3. Average fall phytoplankton bulk community composition.  Divided into (A) 
bottles receiving no nutrient additions, and (B) bottles receiving nutrient additions. The 
community was dominated by diatoms over the 28 day experiment in bottles receiving 
no nutrients.  A community shift from dominance by diatoms to dominance by 
euglenophytes and chlorophytes occurred in bottles receiving nutrient additions.  
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3.2. Winter experiments 

 During the winter experiment, biomass was again affected by the addition of 

nutrients (Fig. 2.4A, appendix A).  Similar to the fall, moderate changes were observed 

in bottles receiving no nutrient additions, and a 10-fold increase was observed in bottles 

receiving nutrients.  In this experiment, however, biomass accumulated gradually 

throughout the duration of the experiment, instead of decreasing as observed during the 

fall experiment.  Again, there was a significant difference between the bottles that 

received no nutrients and the nutrient treatments for the entire experimental period 

(Table 2.4A, appendix C).   

 With the additional nutrients, changes in P.  parvum cell concentrations during 

the winter experiment were similar to the fall experiment (Fig. 2.4B, appendix A).  

Bottles that did not receive nutrient additions showed an increase in population densities, 

and bottles receiving nutrients showed an 11-fold increase by day 14.  Population 

density then declined to levels below bottles that did not receive nutrient additions.  

Differences between bottles resulting from the addition of nutrients were significant 

throughout the duration of the experiment (Table 2.4B, appendix C).  Several interaction 

terms were significant (Table 2.4B, appendix C); however, these interactions were not 

significant after day 7.   

 At the start of the winter experiments the phytoplankton community was 

dominated by prymnesiophytes and diatoms, with chlorophytes present (Fig. 2.5, 

appendix A).  This community composition trend changed little in bottles that did not 

receive nutrient additions (Fig. 2.5A).  When nutrients were added, however, community  
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Fig. 2.4.  Winter season experiment.  Divided into (A) Total biomass, and (B) P. parvum 
concentration. The open boxes (□) represent treatment averages that did not receive 
nutrient additions, closed boxes (■) represent treatments averages that did receive f/2 
nutrient additions.  Total biomass for bottles that received nutrients gradually increased 
for the duration of the experiment.  P. parvum cell concentration increased through day 
14 then noticeably decreased to levels below the control. Standard errors are indicated.  



24 

 
 
 
 
Table 2.4.  Winter experiment GLM repeated measures ANOVA. (A) Natural log of the 
total biomass, and (B) P. parvum concentration. Notation Nut. represents treatments 
which received nutrient additions and BSE represents treatments that received barley 
straw extract.  The natural log of the total biomass consistently indicated a significant 
difference between bottles which did not receive nutrient additions and bottles which 
received nutrient additions.  While, P. parvum concentration indicated that several 
interactions were significant, for short periods during the duration of the experiment.  
But nutrient additions were again consistently different throughout the experiment.  
Degrees of freedom for the models was 11.  Note: shaded areas represent values where 
p<0.05. 
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Fig. 2.5. Average winter phytoplankton bulk community composition.  Divided into (A) 
bottles receiving no nutrient additions, and (B) bottles receiving nutrient additions. The 
community was dominated by diatoms over the 28 day experiment in bottles receiving 
no nutrients.  A community shift from dominance by diatoms to dominance by 
euglenophytes and chlorophytes occurred in bottles receiving nutrient additions.  
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composition shifts were pronounced.  In these bottles, diatoms and prymnesiophytes 

were replaced by chlorophytes after day 14 (Fig. 2.5B).    

3.3. Spring experiments  

During the spring, again total biomass differed between bottles that received no 

nutrients and those that did (Fig. 2.6A, appendix A).  When nutrients were added 

biomass increased.  Biomass increased approximately 10-fold 7 and 14 (Fig. 2.6A, 

appendix A).  Significant differences were detected between no nutrients additions and 

nutrient additions for the duration of the experiment (Table 2.5A, appendix C). 

 Significant (p<0.05) differences were apparent for the additions of BSE and P.  

parvum, however, these were not detected until after day 14 (Table 2.5A, appendix C).  

Significant interactions effects occurred after day 21.   

 Changes in P.  parvum cell concentrations during the spring experiments showed 

a pattern different from the other two experiments (Fig. 2.6B, appendix A).  In bottles 

that did not experience nutrient additions population growth was again modest (Fig. 

2.6B). When nutrients were added, however, P.  parvum cell concentrations, showed an 

initial increase (small) but then experienced a large decrease of approximately 110-fold 

(Fig. 2.6B).  This affect of nutrient additions was significant (p<0.05) after day 7 (Table 

2.5B, appendix C).  No other treatments were significant during this experiment.   

 The initial community composition for the spring experiment consisted largely of 

prymnesiophytes (Fig. 2.7A).  This composition changed little in bottles that did not 

receive nutrient additions.  When nutrients were added, the community composition 

shifted, and became dominated by chlorophytes and euglenophytes (Fig. 2.7B).   
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Fig. 2.6.  Spring season experiment.  Divided into (A) Total biomass, and (B) P. parvum 
concentration. The open boxes (□) represent treatment averages that did not receive 
nutrient additions, closed boxes (■) represent treatments averages that did receive f/2 
nutrient additions.  Total biomass increased for 14 days then rapidly declined.  While P. 
parvum cell concentration had a slight initial increase but then a sharp decreased to 
levels below the control. Standard errors are indicated.  
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Table 2.5.  Spring experiment GLM repeated measures ANOVA. (A) Natural log of the 
total biomass, and (B) P. parvum concentration. Notation Nut. represents treatments 
which received nutrient additions and BSE represents treatments that received barley 
straw extract.  The natural log of the total biomass consistently indicated a significant 
difference between bottles which did not receive nutrient additions and bottles which 
received nutrient additions.  However, after day 14, other levels and interactions became 
significant, therefore, interpretation is difficult. After day 7, P. parvum concentration 
were significantly impacted by nutrient additions for the duration of the experiment.  But 
nutrient additions were again consistently different throughout the experiment.  Degrees 
of freedom for the models was 11.  Note: shaded areas represent values where p<0.05. 
 

 



29 

 
 
Fig. 2.7. Average spring phytoplankton bulk community composition.  Divided into (A) 
bottles receiving no nutrient additions, and (B) bottles receiving nutrient additions. The 
community was dominated by prymnesiophytes over the 28 day experiment in bottles 
receiving no nutrients.  A community shift from dominance by prymnesiophytes to 
dominance by euglenophytes and chlorophytes occurred in bottles receiving nutrient 
additions.  
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 Nutrient additions had a large effect on ambient toxicity.  After 24 hours, the LC 

50 of Pimephales promelas exposed to free-cell filtrate from no nutrient addition bottles 

ranged between 4-6% of the original sample.  Filtrates from bottles receiving nutrient 

additions were not toxic (Fig. 2.8).   

4. Discussion  

4.1.  Inorganic nutrients 

In my study, inorganic nutrients impacted total phytoplankton biomass and P.  

parvum concentrations throughout the duration of the experiments in all three seasons.  

The increase in total biomass in these bottles occurred because of the nutritional 

enrichment of the system.  The inconsistency of the total biomass growth patterns, i.e. a 

decrease in biomass for the fall and spring experiments following the initial increase, 

and a gradual increase during the winter experiment, maybe due to food-web 

destabilization, or the  paradox of enrichment (Rosenzweig ,1971).  The paradox of 

enrichment suggests that steady state predator/prey populations begin to oscillate when 

prey populations are stimulated because predators respond slower and prey accumulate 

biomass.  Predators eventually “catch up” to a point were overgrazing occurs.  At this 

point, prey biomass becomes greatly diminished, followed by a decline in predators.  

The cycle might then repeat.  Because samples from zooplankton were not collected in 

this study, further research is needed to verify this conclusion.   

During the fall and winter experiments, P.  parvum population growth occurred 

until day 14 (Fig. 2.2B and 2.4B, appendix A), then decreased.  During the spring 

experiment, the population declined after day 7 (Fig. 2.6B, appendix A).  Interestingly,  
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Fig. 2.8.  Mean survival during a LC 50 for Pimephales promelas. No nutrient addition 
bottles were near the initial toxic levels.  While bottles with nutrient additions reported a 
100 percent survival of P. promelas, which indicated the water was not toxic. Note: the 
heavy line represents toxicity at the initiation of the spring experiment.   
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the decline in P.  parvum cell density occurred when chlorophytes started to dominate 

the phytoplankton community (Figs. 2.3B, 2.5B,and  2.7B).  Chlorophytes are good 

competitors under conditions of high N:P ratio (Tilman, 1977, Tilman et al, 1982, 

Tilman et al, 1986).  The N: P of f/2 media is approximately 24:1 ratio (Guillard and 

Ryther, 1962).  Chlorophytes have higher affinity for phosphorus than P.  parvum, and is 

therefore able to exclude P.  parvum during prolonged conditions of high N:P.  If P.  

parvum is a stronger competitor under conditions of low N:P, the species may invade 

phytoplankton communities when N is limiting.  This concept will be discussed further 

in chapter III.   

P.  parvum toxicity results indicated that bottles that received no nutrient 

additions were highly toxic.  However, when nutrients were added the water was not 

toxic (Fig. 2.4).  If P.  parvum’s toxicity is a mechanism influencing competition 

through the mechanism of allelopathy, one would expect the full nutrient treatments 

would have been highly toxic, since P.  parvum would have to compete with emerging 

chlorophytes.  However, the toxicity dramatically decreases as nutrients are added.  Thus 

P.  parvum lost its competitive advantage and other species become superior 

competitors.    

4.2.  Barley straw 

 Barley straw extract did not inhibit P.  parvum growth during these experiments.  

A limitation of BSE is that leached tannins must be oxidized before they inhibit alga 

growth, inhibition then continues after the initial oxidization because of on-going 

leaching from the barley straw (Gibson et al., 1990; Martin and Ridge, 1999).  A 
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laboratory experiment conducted prior to the field experiments tested the effect of BSE 

on P.  parvum.  After a 24-h exposure, BSE did inhibit cultured P.  parvum growth.  

Thus, it can be concluded that the chemical composition of the commercial BSE was 

able to inhibit P.  parvum growth.  In the bioassay experiments, inhibition may have 

occurred in the early days of the experiments, but by day 7 BSE lost its potency and P.  

parvum recovered.  If this is the case, then approaches to management involving acute 

exposures to BSE may not be effective.  BSE occasionally affected biomass, but when it 

did, the interaction term between nutrients and BSE was significant.  An explanation of 

those findings would be complex, involve additional research, and is beyond the scope 

of my research.   

4.3. Mitigation  

This research revealed a potential strategy for mitigating P.  parvum blooms.  

Based on the findings of the study, nutrient additions with high N:P, or non-limiting 

conditions, appear to inhibit P.  parvum population growth, as well as toxin production.  

Application of nutrients in enclosed areas, such as coves in lake systems where P.  

parvum blooms often initiate, might prevent bloom formation.  Localized nutrient 

additions, however, would need to be closely monitored so that accumulation of 

phytoplankton biomass would not be excessive.  Large accumulation of phytoplankton 

biomass could result in a variety of other negative impacts to the environment, such as 

hypoxia/anoxia, the emergence of other nuisance/toxic species, and alteration of the food 

web.   
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CHAPTER III 

THE ROLE OF INORGANIC NUTRIENTS ON THE INVASION SUCCESS 

OF PRYMNESIUM PARVUM ON NATIVE PLANKTON COMMUNITIES IN 

TEXAS, USA 

 

Refer to Chapter I for main introduction; additional introduction material 

pertaining to the objectives of the experiment conducted in Lake Possum Kingdom is 

described below.   

1.  Purpose 

In this chapter, my objective is to investigate changes in phytoplankton biomass 

and P.  parvum population dynamics in response to full and partial nutrient additions.  In 

these experiments, the role of nitrogen- and phosphorus-limitation as well as, the 

influence of P.  parvum initial population density on community dynamics was 

examined.  Nutrient additions were used to test the hypothesis that increased nutrients 

will not enhance P.  parvum’s ability to invade phytoplankton communities and the 

inoculation densities of P.  parvum were manipulated to test the hypothesis that variation 

in initial population densities of P.  parvum affects population demographics.   

2. Methods 

Refer to Chapter II for details regarding site description, culturing, basic field 

procedures, and laboratory procedures.  New field procedures are described below.   
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2.1. Field procedures 

In addition to the treatments described in Chapter II, i.e. natural assemblage and 

full nutrient additions with and without P.  parvum additions, four additional treatments 

were performed during each of the three experiments (Table 3.1).  These included the 

addition of f/2 media deplete in NaNO3 (N-deplete) with and without P.  parvum, and 

NaH2PO4 (P-deplete) with and without additions of P.  parvum.  Again, P.  parvum was 

added so that initial population densities were approximately 300 P.  parvum cells mL-1 

(3% problematic level).  The additional four treatments were also run in triplicate.   

2.2. Statistical analyses 

Differences in P.  parvum cell concentrations and total chlorophyll a (Chl a) 

between treatments were evaluated using a general linear model repeated measures 

analysis of variance (ANOVA) (SPSS Inc., Chicago, Illinois).  The two factors tested 

were P.  parvum inoculations and nutrient class.  The nutrient addition factor had four 

levels: control, full nutrient additions, N-deplete nutrients additions, and P-deplete 

nutrient additions.  A GLM repeated measures ANOVA was conducted to determine 

statistical significance (p<0.05) for each sampling period.   

3.  Results 

Biomass was affected by nutrient treatment in all three seasonal experiments 

(Fig. 3.1A, appendix A).  In each season, bottles that received full nutrient additions had 

a higher biomass than the other treatments, with the exception of day 28 during the fall 

(Fig. 3.1A, appendix A).  Bottles from the N-deplete treatments had the second highest 

accumulation of biomass, again except during day 28 of the fall experiment.  Bottles  
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Table 3.1. Microcosm experiment design. These experiments were initiated using 2 L of 
filtered (153 µm) water from Lake Possum Kingdom. Treatments included nutrient 
additions to levels of f/2 media, N-deplete nutrient additions, P-deplete nutrient 
additions, and additions of P. parvum, and a combination of these factors.  
 

 



37 

 
 
Fig. 3.1. Seasonal total biomass.  Divided into (A) Fall (B) Winter, and (C) Spring.  A 
dashed line (--■--) represents no nutrient additions, a solid line (     ●     ) represents 
treatments that received full nutrient additions, a broken line (―― - ▲) represents N-
deplete nutrient additions, and dotted line (••�••) represents P-deplete nutrient additions.  
Biomass was affected by nutrient classes.  Specifically, bottles that received full nutrient 
additions usually had the highest biomass, followed by N-deplete bottles, with P-deplete 
and control bottles having the lowest biomass accumulation.   
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from the P-deplete treatment and the control additions showed low accumulation of 

biomass, with P-limited conditions having slightly higher biomass than the controls 

during the fall and winter experiments.  Statistical analyses indicated that inoculation of 

P.  parvum was usually not significant (Table 3.2, 3.3, 3.4, appendix C).  Therefore, 

biomass results were presented as the averages of the different nutrient treatments.   

  In the fall experiments, bottles that received full nutrient additions showed a 

rapid increase in biomass through day 7, but then declined (Fig. 3.1A, appendix A).  

Bottles receiving N-deplete nutrients also showed growth, but it occurred gradually over 

the course of 28 days.  In this experiment, the nutrient treatment was significant (p<0.05) 

and all nutrient treatments were different (Table 3.2, appendix C).   

 Changes in biomass during the winter experiments responded differently to the 

addition of nutrients, where accumulation of biomass occurred with no decline over the 

course of the experiments (Fig 3.1B, appendix A).  N-deplete bottles showed a buildup 

of biomass until day 7, but then declined.  The control and P-deplete bottles showed 

modest growth.  Nutrient treatments were again significantly (p<0.05) different 

throughout the experiment and all treatments were different (Table 3.3A, appendix A).  

The addition of P.  parvum was significant (p<0.05), but only through day 14.   

 During the spring experiment biomass in bottles receiving full nutrient additions 

differed from the winter and fall.  Although, similar pattern occurs the duration is 

different, where a rapid increase occurred through day 14, then rapidly declined (Fig. 

3.1C, appendix A).  N-deplete bottles followed a similar pattern as the full nutrient 

bottles, but the maximum accumulation of biomass was much less.  P-deplete bottles had  
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Table 3.2.  Fall experiment GLM repeated measures ANOVA. (A) Total biomass, and 
(B) P. parvum concentration. Nut_class represents treatments which received 
combinations of f/2 nutrients. For total biomass, nut_class was the significant factor for 
the duration of the experiment and all nutrient levels were significantly different.  
Nut_class again were significant for the duration of the experiment for P. parvum 
concentration. The control and P-deplete bottles had similar population growth 
throughout the experiment. Dunnent’s T3 post hoc test was performed.  Degrees of 
freedom for the models was 23.  Highlighted areas represent significance at p< 0.05.   
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Table 3.3. Winter experiment GLM repeated measures ANOVA. (A) Total biomass, and 
(B) P. parvum concentration. Nut_class represents treatments which received 
combinations of f/2 nutrients. For total biomass, nut_class was the significant factor for 
the duration of the experiment.  P. parvum inoculations were also significant through 
day 14. P. parvum concentration were significantly affected by both nut_classes and P. 
parvum additions throughout the experiment.  Dunnent’s T3 post hoc test was 
performed, a bonferroni’s post hoc test is indicated by ♠. Degrees of freedom for the 
models was 23.  Highlighted areas represent significance at p< 0.05.   
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Table 3.4.  Spring GLM repeated measures ANOVA. (A) Total biomass, and (B) P. 
parvum concentration. Nut_class represents treatments which received combinations of 
f/2 nutrients. For total biomass, nut_class was the significant factor for the duration of 
the experiment. All treatment levels were significantly different. P. parvum 
concentration were significantly affected by nut_classes. Dunnent’s T3 post hoc test was 
performed. Degrees of freedom for the models was 23.  Highlighted areas represent 
significance at p< 0.05.   
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the lowest accumulation of biomass.  Significant differences (p<0.05) was determined 

between the nutrient classes (Table 3.4A, appendix C), and the nutrient treatments were 

all different.   

 P.  parvum accumulation was also affected by the addition of nutrients, although 

the response was varied across classes. Unlike biomass dynamics, P.  parvum growth 

responded to the addition of P.  parvum (Fig. 3.2, appendix A).   

Focusing on the fall experiments, P.  parvum in bottles receiving full nutrient 

additions grew until day 14, then abruptly dropped to levels below the control (Fig. 

3.2A, appendix A).  Bottles receiving P.  parvum and N-deplete nutrients appeared to 

have high population growth than N-deplete bottles that did not receive P.  parvum (Fig. 

3.2A, appendix A), and both treatment types had a population decline after day 21.  P.  

parvum population growth in the control and P-deplete bottles were not statistically 

different (Dunnett’s T3, p>0.05, Table 3.2B, appendix C).  

During the winter, P.  parvum displayed similar trends to the fall experiments 

(Fig 3.2B, appendix A).  Bottles that received full nutrient additions showed a rapid 

increase in P.  parvum concentrations, and then rapidly decreased to levels below the 

control.  Again, bottles receiving P.  parvum and N-deplete nutrients showed a different 

population growth trend than N-limited bottles that did not receive P.  parvum.  N-

deplete bottles that received P.  parvum additions underwent high population growth that 

continued throughout the experiment, whereas populations in N-deplete bottles that did 

not receive P.  parvum additions declined after day 14.  The control and P-deplete bottles 

had moderate growth.  Bottles receiving P.  parvum showed significantly different  
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Fig. 3.2. Seasonal P. parvum concentration.  Divided into (A) Fall (B) Winter, and (C) 
Spring. A dashed line (--■--) represents the control, a solid line (     ●      ) represents 
treatments that received full nutrient additions, a broken line (―― - ▲) represents N-
deplete nutrient additions, and an dotted line (••□••) represents P-deplete nutrient 
additions.  The open symbols represent treatments that did not receive P. parvum 
additions, closed symbols received P. parvum additions. P. parvum accumulation was 
affected by nutrient classes and P. parvum inoculations (depending on the season).    
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population densities from (Table 3.3B), but the interaction term was also significant, so 

the interpretation is complex (Table 3.3B). 

When nutrients were added during the spring experiment, P.  parvum 

experienced initial population growth, but then declined to concentrations similar to P-

deplete treatments (Fig. 3.3C, appendix A).  The N-deplete bottles showed higher 

growth through about day 21, then declined.  Control bottles showed a little population 

growth during the spring experiments.  Statistically, full nutrient additions were similar 

to bottles receiving P-limited nutrient additions (Dunnett’s T3, p>0.05, Table 3.4B, 

appendix C).  The P-depleted bottles were also comparable to the control.  P.  parvum 

inoculations did not have a significant effect (Table 3.4, appendix C) during the spring 

experiments.  However, the in-field P.  parvum densities were already high at the start of 

the spring experiment.   

During the fall and winter experiments, diatoms dominated the community 

composition in the control bottles and bottles receiving nutrient additions deplete in N 

and P (Fig. 3.3A and B, appendix A).  A community shift occurred in bottles receiving 

full nutrient additions.  For example, after day 14, diatoms were replaced by 

chlorophytes and euglenophytes as the dominate algal groups (Fig. 3.3A and B, 

appendix A).  Fall and winter experiments differed in that the overall biomass was 

higher for all phytoplankton groups during the winter.   

Spring community composition was dominated by prymnesiophytes in the 

control bottles, and bottles receiving nutrient additions deplete in N- and P- (Fig. 3.3C,  
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Fig. 3.3. Phytoplankton bulk community compositions.  Divided into (A) Fall (B) Winter 
(C) Spring. During the fall experiments addition of full nutrients resulted in a 
community shift from diatoms, cryptophytes and prymnesiophytes to euglenophytes and 
chlorophytes.  During the winter experiments initial concentrations of prymnesiophytes 
was higher compared to the fall.  Again, bottles that received full nutrients resulted in a 
community shift from diatoms to chlorophytes.  During the spring initial community 
structure was dominated by prymnesiophytes.  A community shift again occurred in 
bottles receiving full nutrients from a dominance of prymnesiophytes to chlorophytes, 
euglenophytes and diatoms.   Final Chl a values for each nutrient treatment where 
determined to be significantly different (p < 0.05) as indicated (a, b, c, d). 
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appendix A).  In the bottles receiving full nutrients bottles, prymnesiophytes dominated 

through day 7, then the dominance shifted to chlorophytes and euglenophytes.   

Toxicity differed between the nutrient treatments (Fig. 3.4).  The LC 50 for 

Pimephales promelas at the start of the spring experiment was 9.81 % of the ambient 

water.  In the control bottles toxicity at this level persisted, when full nutrients were 

added to the bottles toxicity was not detectable.  Toxicity was lessened in N- and P-

deplete bottles as compared to the control.  The bottles receiving nutrient additions 

deplete in N- and P- were toxic, but less so than the controls.   

4.  Discussion 

The experiments presented in Chapter II suggested that P.  parvum was an 

inferior competitor when N:P ratios were high.  This finding was supported with the data 

presented in this chapter as well.  During the fall and winter experiments performance of 

P.  parvum was best in bottles receiving nutrients deplete in N, i.e. low N:P.  When N:P 

was high, e.g. in bottles receiving full nutrients and P-limited nutrients, P.  parvum 

growth was decreased.  This trend was also apparent during the spring experiment.  

However, it was not as pronounced due to the decline of P.  parvum concentrations in 

the N-limited treatment following day 21 (Fig 3.2C).  In bottles where treatments 

resulted in high N:P, P.  parvum concentration declines corresponded to the emergence 

of chlorophytes.  For example, after day 14 during the fall and winter experiments and 

after day 7 during the spring experiments, chlorophytes began to dominate the 

community structure just as P.  parvum population densities began to decline.   
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Fig. 3.4.  Mean survival during a LC 50 for Pimephales promelas. No nutrient addition 
bottles were near the initial toxic levels.  While bottles with full nutrient additions 
reported a 100 percent survival of P. promelas, which indicated the water was not toxic. 
Bottles receiving nutrients deplete in N- or P- were toxic but toxicity was less than the 
control bottles and initial conditions. Note: the heavy line represents toxicity at the 
initiation of the spring experiment.   
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The Monod equation (Monod, 1950) can interpret this shift through consideration 

of growth rate and the concentration of the limiting nutrient, P.  Typically, chlorophytes 

utilize P efficiently (Kp ≈ 0.02 µM) and gain a competitive advantage over other algal 

groups when N:P ratios are high or intermediate (Tilman et al 1986, Sommer, 1989), due 

to their maximum reproductive rate (µmax ≈ 2 d-1).  P.  parvum’s affinity for P is 0.006 

µM (Grover, in prep), making it a more effective user of P, then chlorophytes, however, 

under high nutrient conditions, P. parvum cannot compete, regardless of toxicity, due its 

maximum growth  rate (µmax = 0.72 d-1).  Furthermore, my research suggests that P.  

parvum could also be a superior competitor for N, i.e. during N-limited conditions P.  

parvum accumulated high concentrations (Fig. 3.1, 3.2, 3.3, appendix A). 

P.  parvum toxicity was similar to results discussed in Chapter II, in which that 

bottles that received no nutrient additions were highly toxic.  However, when nutrients 

were added the bottles were not toxic (Fig. 3.4).  In addition, when the bottles are N-or 

P-limited toxicity increases compared to full nutrient additions.  Again, if P.  parvum’s 

toxicity was a mechanism influencing competition, through the use of allelopathy, the 

full nutrient treatments and P-limited nutrient additions should have been highly toxic 

due to competition with chlorophytes.  In addition, N-limited nutrient additions bottles 

would not have been toxic; however, P.  parvum it exhibited toxicity levels comparable 

to P-limited nutrient addition bottles.  These results support previous work showing that 

toxicity increases during N- or P-limitation (Johansson and Granéli, 1999; Granéli and 

Johansson, 2003a, b; and Fistarol et al., 2003).  My experiment suggests that toxicity is 
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more complicated then a simple competitive response and perhaps linked to nutrient 

limitation at the cellular level.      

Additional ideas materialized based on the findings in this experiment.  For 

example, P.  parvum additions influenced the population dynamics of P.  parvum during 

the fall and winter experiment although during the fall this difference was not significant 

at levels of p<0.05.  However, during the spring experiments, additions of P.  parvum 

had no apparent effect on P.  parvum population dynamics.  The major difference 

between the fall and winter compared to the spring experiments was the in-field 

concentrations of P.  parvum at the initiation of the experiments.  During the fall and 

winter P.  parvum populations were approximately three times lower than the spring.  

Spring P.  parvum population densities may have been sufficient and the addition of 

more cells had no effect on the population.  Therefore, the influence of invading cells is 

likely a function (in part) of the resident P.  parvum population density.   

My findings did support my hypothesis that nutrient loading into Lake Possum 

Kingdom does not contribute to an increase in P.  parvum blooms.  What maybe the 

underlying mechanism is Lake Possum Kingdom is still a young reservoir (~65 years 

old).  Therefore, the lake may still be experiencing a maturing process and possibly has 

yet to reach a state where the physiochemical environment and the ecology are in 

“balance”.  Based on the findings of this experiment, I suspect that nitrogen 

concentrations may now become limiting during the winter, thereby providing an 

environment where P.  parvum blooms are favored.  In the past N was not limiting in the 

winter.  Further investigations are needed to support this hypothesis.   
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CHAPTER IV 

PRYMNESIUM PARVUM PIGMENT DYNAMICS 

1.  Purpose 

In this chapter my objectives were to determine if P.  parvum photopigments were 

conservative, and if so, could an optimized version of CHEMTAX be employed as an 

alternative diagnostic tool to microscopy for enumeration of P.  parvum.  These 

objectives were based on uncertainties regarding Texas P.  parvum photopigments.  

Most of the research on P.  parvum regarding photopigments was has focused on strains 

isolated from Europe, Australia or New Zealand (Fawley, 1989 and Zapata et al., 2004), 

and one study suggested that photopigments relative to Chl a were conservative 

(Wilhelm and Manns, 1991).  However, the cellular content of carotenoids and Chl a are 

influenced by variations in irradiance and nutrient availability (Latasa, 1995 and 

Goericke and Montoya, 1998).   

2.  Methods 

Refer to Chapter II for methods on P.  parvum culturing.   

A laboratory experiment was designed to investigate potential variation in 

pigment ratios as a function of the physiological growth stage of cultures.  Stock culture 

was injected into triplicate 4 L flasks containing 2L of f/2 media.  The size of the 

inoculations was such that the initial concentration of P.  parvum cells were 9.6*103 

cells L-1.  The flasks were then incubated for 33 days under the same conditions as 

described in Chapter II, 2.2.  At three-day intervals, samples were collected for analyses 
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of photopigments using HPLC.  Refer to Chapter II for methodology regarding HPLC.  

Samples were also taken for microscopic cell counts.   

Cell counts followed procedures described in Chapter II, 2.4.  Minor 

modifications to the method included counting a range of 20-80 randomly selected fields 

of view for counting which resulted in ~2877 P.  parvum cells counted in a typical 250 

µL settled sample.  Cell biovolume was approximated by measuring cell dimensions 

corresponding to geometric shapes that best fit cell morphology (Wetzel and Likens, 

1981). 

 The coefficient of variation was calculated for each pigment ratio to determine if 

pigment ratios were conservative (discussed later).  Changes in P.  parvum population 

density growth phases were determined through observation.  That is, the transition from 

log growth to stationary phase was determined at the point were population increases 

were notably slower. The coefficient of variation was determined for pigment ratios 

(pigment concentration/Chl a concentration) over the period of the growth cycle.   

3.  Results 

 A number of studies have shown that P.  parvum has a moderate growth rate 

under a wide range of physicochemical conditions (Holdway et al, 1978; Brand, 1984; 

and Larsen and Bryant, 1998).  Under our experimental conditions, the P.  parvum 

culture had a mean growth rate of 0.069 d-1 (during log-growth phase), which is slightly 

lower relative to growth rates reported previously (Jim Grover, pers. comm.).   

We determined that our P.  parvum culture had eight characteristic pigments that 

were consistently present throughout its growth cycle.  They were chlorophyll c1c2, 
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chlorophyll c3, fucoxanthin, violaxanthin, diadinoxanthin, diatoxanthin, zeaxanthin, and 

β-cartone (Fig. 4.1).  The number of pigments detected might be lower.  Diatoxanthin 

maybe converted to diadinoxanthin (xanthophylls cycle) during filtration, and 

violaxanthin, a derivative of zeaxanthin, may also be produced during filtration.   

Pigment ratios were not conservative, i.e. constant, over the course of growth.  

For example, during early log-growth phase, while turbidity remained low in the flasks, 

pigments ratios experienced a period of relative stability.  From day 12 to day 21, 

pigment ratios remained moderately constant (see Fig. 4.2 for representative examples, 

appendix B).  As cell densities and turbidity increased, after day 21, the pigment ratios 

(per unit Chl a) were dynamic.  Some ratios increased, while others decreased (see Table 

4.1, appendix C).  The coefficient of variation typically had values above 10% (Table 

4.2). 

4.  Discussion  

4.1. Pigment variation 

Cellular Chl a concentrations are variable in order to facilitate adaptation in a 

fluctuating environment (Jeffery et al., 1997).  In particular, algae shift Chl a 

concentrations based on shifts in light availability (Jeffery et al., 1997; Goericke and 

Montoya, 1998; Mackey et al., 1998; Schlüter et al., 2000).  For example, when exposed 

to low light conditions Chl a concentrations increase, but during high light exposure Chl 

a will decrease (Sakshaug et al., 1987; Goericke and Montoya, 1998; Descy et al., 2000).  

In this study, the culture incubation irradiance was held constant.   
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Fig. 4.1. Representative chromatogram for P. parvum.  Nine pigments were consistently 
present during early and late log growth phase, which were (1) chlorophyll c3, (2) 
chlorophyll c1c2, (3) fucoxanthin, (4) violaxanthin, (5) diadinoxanthin,(6) diatoxanthin, 
(7) zeaxanthin, (8) chlorophyll a, and (9) β-cartone phytopigments. 
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Fig. 4.2. Example of P. parvum cell concentration and pigment/Chl a over the course  
of log growth. A solid line (     ●     ) represents cells L -1, a dashed line (--□--) represents 
pigment ratio.  Fucoxanthin per chlorophyll a ratio showed a noticeable increase after 
day 21, this corresponded to an increase in P. parvum cell  
concentrations.   Results shown are typical across triplicate flasks and pigments.  
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Table 4.1.  Minimum, maximum and mean pigment/chlorophyll a ratio for Prymnesium parvum.  Gradient has two states of 
low turbidity and high turbidity, corresponding ratios are presented.  Ratios (mean) increase as they progress from low to high 
turbidity.    
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Table 4.2. Coefficient of variation for each pigment.  Total includes the COV for the duration of the experiment. Flask 3 high 
turbidity represents ratios with the least variability. 
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However, turbidity within the flasks increased with cell density, thus it is likely that the 

cultures became light-limited.  Therefore, light availability within the flasks could have  

been a factor contributing to P.  parvum pigment shifts, but due to pigments complex 

response further research is needed. 

 The coefficient of variation indicated inconsistent and sometimes high variation 

for the pigment ratios for P.  parvum.  Therefore, P.  parvum pigment ratio variations 

could lead to variations in biomass determination provided by CHEMTAX. Schlüter et 

al. (2000) indicated similar shifts in pigment ratios of prymnesiophytes containing 

19’hex-fucoxanthin (Table 4.3) when exposed to different light concentrations.  

However, Schlüter et al. (2000) also showed that the general trends of the phytoplankton 

community did not change when the varying pigment ratio files were loaded into 

CHEMTAX.  Therefore, I concluded that CHEMTAX can be a reliable method to 

identify major phytoplankton groups in the presence of P.  parvum.  However, further 

research is needed to determine if CHEMTAX can precisely account for P.  parvum 

within the prymnesiophyte category.   

4.2.  Pigment identification 

 Several studies have indicated that P.  parvum contains the pigments Chl c3, Chl 

c1 and c2, fucoxanthin, diadinoxathin, Chl a, and β-carotene (Wilhelm and Manns, 1991; 

Fawley, 1989; Zapata et al., 2004).  Recently, an evaluation of the European (CCMP-

708) and New Zealand (CS-345) strains of P.  parvum pigments identified Chl c3-

MgDVP and Chl c2-MgDG as new pigments.  In addition, they identified similar 

pigment/Chl a ratios (fucoxanthin and Chl c3) as reported in the current experiment (see 
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Table 4.3.  Coefficient of variation for two prymnesiophytes with 19’hexFuco.  Pigment/Chl a ratios obtained from Schlüter 
(2000, Table 2). COV was calculated from the averages of low light, medium light, and high light conditions.  ND = pigments 
not determined.  Variability is similar to differences found for P. parvum.    
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appendix C).  However, two new pigments, violaxanthin and zeaxanthin, were identified 

within the culture.   

 It is difficult to keep culture of P.  parvum without the presences of bacteria, due 

to its mixtrophic ability.  Therefore, these cultures did contain small amounts of bacteria.  

Prior to the experiment, an aliquot of the culture was counted using an epifluorescence 

microscope.  Through this technique it was determined that the bacteria did not contain 

Chl a.  However, due to the presence of this containment, we can not rule out the 

possibility that it maybe present within the pigment diagnostic.  Therefore, further 

research is needed to examine an azenic culture of P.  parvum for pigment analysis.   
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CHAPTER V 

CONCLUSION 

 

1.  Summary 

In this research, I suggest that P.  parvum populations in Lake Possum Kingdom 

would not likely gain a selective advantage over other species when nutrients were not 

limiting (i.e., nutrient replete conditions).   P.  parvum did, however, gain an advantage 

during N- and P-limitation as indicated by toxicity, cell concentrations and bulk 

community shifts.  P.  parvum blooms in Lake Possum Kingdom would likely not be 

inhibited by barley straw extract application. Initial population densities affected the 

final population density, but only when initial populations were small.  P.  parvum 

pigments in the Texas strain were not conservative throughout the growth cycle; 

therefore, the application of CHEMTAX for estimating the relative abundance of P.  

parvum will have to relay on unique pigment ratio values depending on the growth stage 

of P.  parvum.      

2.  Management recommendations 

This research suggested that Lake Possum Kingdom becomes nitrogen limited 

during the winter.  These seasons do not represent the optimal growth temperatures for 

P.  parvum (Grover, in prep) though they do represent the optimal conditions of nutrient 

limitation for this species to produce toxins.  Therefore, localized nutrient additions may 

be used as a mitigation tool during the fall, winter, and spring in order to deter P.  

parvum competition and minimize potential toxic effects.  The application of nutrients in 
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enclosed areas, such as coves in lake systems where P.  parvum blooms often initiate 

might prevent full bloom formation.  A management strategy of localized nutrient 

additions, however, needs to be closely monitored so other phytoplankton species, such 

as chlorophytes or other non-desirable species overwhelm the current phytoplankton 

community.     

3.  Future research needs  

Future research on P.  parvum is needed in a number of areas, from 

physiochemical conditions of bloom areas to optimizing CHEMTAX for estimates of P.  

parvum relative abundance.   

The presence of golden algae within the plankton community does not guarantee 

bloom formation.  For example, four freshwater lakes in Texas that contain golden algae 

do not experience blooms or fish kills related to toxic events (R. Kiesling and D. Roelke, 

pers. comm.).  Why then does P.  parvum occur in some freshwater reservoirs and not 

cause detrimental effects, while in other lakes blooms can be devastating?  Though it is 

known that P.  parvum needs ions for the toxin to finishing formation (Joan Glass, pers. 

comm.), food web interactions, which in turn are affected by community structure, are 

important factors for bloom initiation.  Phytoplankton community composition is 

different in brackish and saltwater lakes compared to freshwater lakes (Wetzel, 2001); 

this concept may provide an understanding of P.  parvum bloom formation. I propose 

that blooms formations are affected by the physiochemical conditions and the structure 

of the phytoplankton community and these conditions warrant further study.   
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This research suggests that blooms may subside when nutrients are added into 

the system.  However, this should be occurring in the winter and spring when Texas 

experiences its rainy season.  But these seasons are historically the height of P.  parvum 

blooms.  Therefore, a central question is how are the nutrients getting into the system?  

If they are, are they available for biological use?  A hypothesis to explain this maybe 

linked to theory of why P.  parvum blooms occur in the brackish waters areas of Texas.  

The ions present in salt and brackish water have the ability to bind particles, therefore, 

causing them to sink to the floor of reservoirs.  Thus, I suggest that the nutrients are 

entering into these systems, but they are not available for use, especially in deep 

reservoirs, such as Lake Possum Kingdom where the sediments are not re-suspended.   

Based on this theory studies are needed to look at the availability of nutrients (through 

direct loading as well as benthic storage) in the reservoirs and rivers.   

Bloom termination is an important area of research and maybe the most 

important to determine mitigation strategies.  Again, historically, blooms occur during 

the winter and early spring months, a time where most zooplankton species are senescent 

within the water column.  Therefore, there maybe a link between the emergence of a 

predator (zooplankton), perhaps when P. parvum is non-toxic, that is able to terminate a 

bloom.  Roelke et al. (in prep) suggests that competition could occur with bacteria for 

available resources when a liable carbon source, such as barley straw extract, is added.  

Additionally, termination may occur due to an introduction of a virus in bloom areas.    

Besides P.  parvum bloom dynamics, more information is needed on the basic 

physiological requirements of the species.  P.  parvum also demonstrates mixtrophic 
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capabilities (Nygaard and Tobiesen, 1993; Skovhaara and Hansen, 2003; and Martin-

Cereceda et al., 2003).  The life strategy of both producing energy through 

photosynthesis and consuming organisms for a similar purpose is not fully understood.  

It is possible that shift pigments occur during times of light stress and mixtrophy 

becomes an alternative at this point. Thus, the cellular concentrations of pigments are 

decreasing because they are no longer used for energy acquisition.  If this is occurring, 

we could possibly determine light limitation of P.  parvum based on the amount of 

mixtrophy occurring.  If we can understand the mechanisms behind the apparent 

dynamics in pigments, we could possible optimize CHEMTAX based on these 

limitations.   

Finally, based on this study new pigments have been identified in Texas’s strain 

of P.  parvum.  Violaxanthin and zeaxanthin pigments are part of the xanthophylls cycle 

(Sapozhnikov et al., 1957 and Schubert et al., 1994) and have been shown to protect 

algae and plants against photodamage (Krinsky, 1971 and Schubert et al., 1994).  Based 

on the proximity of Texas to tropical areas, where light is more predominate, is possible 

that speciation is occurring to account for the increase in light.  DNA records need to be 

examined to determine if this is occurring, in addition to analysis of P.  parvum cultures 

without the presences of bacteria.   
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A-43
Winter 2005

Natural assemblage, nitrogen deplete f/2 nutrients, and P. parvum
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Natural assemblage and phosphorus deplete f/2 nutrients

Time (days)

To
ta

l r
el

at
iv

e 
ab

un
da

nc
e 

(µ
g 

C
hl

a 
L-1

)
P.

 p
ar

vu
m

co
nc

en
tra

tio
n 

(c
el

ls
 L

-1
)



122

A-46
Winter 2005 

Natural assemblage and phosphorus deplete f/2 nutrients

A

B

C

R
el

at
iv

e 
ab

un
da

nc
e 

(µ
g 

C
hl

a 
L-1

)

Time (days)



123

A-47
Winter 2005

Natural assemblage, P. parvum, and phosphorus deplete f/2 nutrients

Time (days)

To
ta

l r
el

at
iv

e 
ab

un
da

nc
e 

(µ
g 

C
hl

a 
L-1

)
P.

 p
ar

vu
m

co
nc

en
tra

tio
n 

(c
el

ls
 L

-1
)



124

A-48
Winter 2005 

Natural assemblage, phosphorus deplete f/2 nutrients, and P. parvum
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Natural assemblage and P. parvum
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A-61
Spring 2005

Natural assemblage, f/2 nutrients, and P. parvum
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A-62
Spring 2005

Natural assemblage, f/2 nutrients, and P. parvum
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A-63
Spring 2005

Natural assemblage, f/2 nutrients, BSE, and P. parvum
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Spring 2005 

Natural assemblage, f/2 nutrients, BSE, and P. parvum
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Spring 2005

Natural assemblage and nitrogen deplete f/2 nutrients
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Spring 2005 

Natural assemblage and nitrogen deplete f/2 nutrients
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A-67
Spring 2005

Natural assemblage, nitrogen deplete f/2 nutrients, and P. parvum
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A-68
Spring 2005

Natural assemblage, nitrogen deplete f/2 nutrients, and P. parvum

A

B

R
el

at
iv

e 
ab

un
da

nc
e 

(µ
g 

C
hl

a 
L-1

)

Time (days)



145

A-69
Spring 2005

Natural assemblage and phosphorus deplete f/2 nutrients
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A-70
Spring 2005 

Natural assemblage and phosphorus deplete f/2 nutrients

A

B

C

R
el

at
iv

e 
ab

un
da

nc
e 

(µ
g 

C
hl

a 
L-1

)

Time (days)



147

A-71
Spring 2005

Natural assemblage, phosphorus deplete f/2 nutrients, and P. parvum
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A-72
Spring 2005 

Natural assemblage, phosphorus deplete f/2 nutrient, P. parvum
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Pigment/Chlorophyll a ratios and P. parvum cell concentrations 

β-cartone

Time (days)

Pr
ym

ne
si

um
 p

ar
vu

m
(c

el
ls

 L
-1

)
β-cartone

/ / C
hla ratio (µg L

-1)

Flask 1

Flask 2

Flask 3



160

B-11
P. parvum flask concentration 

Pr
ym

ne
si

um
 p

ar
vu

m
(c

el
ls

 L
-1

)

Time (days)



 

 

161

APPENDIX C 

TABLE  Page 

C-1 Fall experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 162 
 
C-2 Winter experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 163 
 
C-3 Spring experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 164 
 
C-4 Fall experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 165 
 
C-5 Winter experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 166 
 
C-6 Spring experiment GLM repeated measures ANOVA with mean  
 square................................................................................................. 167 
 
C-7 Pigment concentrations ..................................................................... 168 



162

A.
Total Chl a 

Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 7165.810 189.297 (< 0.001) 18629.970 127.391 (< 0.001) 27574.600 106.342 (< 0.001) 34019.500 107.974 (< 0.001)
P. parvum 2.830 0.075 (< 0.001) 5.900 0.040 (0.843) 36.100 0.139 (0.714) 144.230 0.458 (0.508)
BSE 1594.830 42.130 (< 0.001) 2079.160 14.217 (0.002) 899.950 3.471 (0.081) 603.730 1.916 (0.185)
Nut. x BSE 879.110 23.223 (< 0.001) 1115.570 7.628 (0.014) 314.980 1.215 (0.287) 115.560 0.367 (0.553)
Nut. x P. parvum 1.660 0.044  (0.837) 6.570 0.045 (0.835) 32.280 0.124 (0.729) 144.230 0.458 (0.508)
BSE x P. parvum 21.070 0.557 (< 0.001) 80.460 0.550 (0.469) 104.100 0.401 (0.535) 178.120 0.565 (0.463)
Nut. x BSE x P. parvum 18.430 0.487 (0.495) 68.540 0.469 (0.503) 96.980 0.374 (0.549) 165.770 0.526 (0.479)

B.

Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 2.310E+14 63.718 (< 0.001) 1.390E+15 73.528 (< 0.001) 1.060E+15 57.672 (< 0.001) 7.360E+14 48.303 (< 0.001)
BSE 9.010E+07 4.181 (0.058) 4.280E+12 0.127 (0.726) 1.040E+13 0.002 (0.963) 6.070E+12 0.035 (0.854)
P. parvum 1.510E+13 0.000 (0.996) 2.420E+12 0.225 (0.642) 4.180E+10 0.567 (0.462) 5.330E+11 0.399 (0.537)
Nut. x BSE 2.130E+12 0.588 (0.454) 3.330E+12 0.175 (0.681) 1.830E+13 0.996 (0.333) 2.780E+13 1.827 (0.195)
Nut. x P. parvum 1.330E+12 0.368 (0.552) 1.670E+13 0.877 (0.363) 3.350E+13 1.820 (0.196) 2.970E+13 1.948 (0.182)
BSE x P. parvum 3.840E+12 1.063 (0.318) 2.160E+13 1.136 (0.302) 3.790E+13 2.059 (0.171) 3.190E+13 2.094 (0.167)
Nut. x BSE x P. parvum 8.290E+11 0.299 (0.639) 1.050E+13 0.552 (0.468) 1.920E+13 1.042 (0.323) 1.330E+13 0.875 (0.364)

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

C-1
Fall experiment GLM repeated measures ANOVA with mean square
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A.
LN Total Chl a Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 3.600 455.87 (< 0.001) 15.407 1442.194 (< 0.001) 38.868 2523.870 (< 0.001) 68.067 3936.069 (< 0.001)
BSE 0.015 1.905 (0.186) 0.016 1.516 (0.236) 0.010 0.665 (0.427) 0.023 1.305 (0.27)
P. parvum 0.050 6.36 (0.023) 0.039 3.644 (0.074) 0.023 1.496 (0.239) 0.013 0.767 (0.394)
Nut. x BSE 0.013 1.667 (0.215) 0.003 0.248 (0.625) 0.000 0.920 (0.352) 0.015 0.855 (0.369)
Nut. x P. parvum 0.000 0.035 (0.854) 0.031 2.864 (0.11) 0.029 1.860 (0.192) 0.032 1.835 (0.194)
BSE x P. parvum 0.000 0.059 (0.811) 0.001 0.132 (0.721) 0.000 0.023 (0.882) < 0.000 0.002 (0.966)
Nut. x BSE x P. parvum 0.000 0.018 (0.894) 0.001 0.108 (0.747) < 0.000 0.002 (0.962) 0.000 0.013 (0.911)

B.
Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 2.712E+14 51.845 (< 0.001) 1.308E16 142.960 (< 0.001) 4.094E+15 53.597 (< 0.001) 6.236E+14 8.651 (0.01)
BSE 2.852E+11 0.055 (0.818) 3.514E+13 0.384 (0.544) 2.300E+12 0.030 (0.864) 2.212E+12 0.031 (0.863)
P. parvum 5.963E+13 11.398 (0.004) 2.358E+14 2.578 (0.128) 1.431E+14 1.873 (0.19) 7.520E+13 1.043 (0.322)
Nut. x BSE 3.906E+13 7.466 (0.015) 3.121E+14 3.412 (0.083) 3.363E+14 4.403 (0.052) 3.885E+14 5.389 (0.034)
Nut. x P. parvum 2.147E+13 4.103 (0.06) 1.163E+14 1.271 (0.276) 1.500E+14 1.964 (0.18) 1.690E+14 2.344 (0.145)
BSE x P. parvum 6.008E+13 11.484 (0.004) 1.471E+14 1.608 (0.223) 1.296E+14 1.697 (0.211) 7.901E+13 1.096 (0.311)
Nut. x BSE x P. parvum 4.025E+12 0.769 (0.393) 1.467E+13 0.160 (0.694) 1.145E+13 0.150 (0.704) 2.182E+13 0.303 (0.59)

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

C-2
Winter experiment GLM repeated measures ANOVA with mean square
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A.
LN Total Chl a Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 0.506 7.722 (0.013) 11.029 167.118 (< 0.001) 18.683 145.215 (< 0.001) 34.133 219.639 (< 0.001)
BSE 0.040 0.614 (0.445) 0.065 0.982 (0.336) 0.483 3.755 (0.071) 1.129 7.265 (0.016)
P. parvum 0.176 2.690 (0.120) 0.003 0.053 (0.821) 0.942 7.323 (0.016) 0.755 4.860 (0.042)
Nut. x BSE 0.020 0.311 (0.585 0.003 0.041 (0.843) 0.276 2.147 (0.162) 0.837 5.384 (0.034)
Nut. x P. parvum 0.345 5.263 (0.036) 0.004 0.061 (0.808) 1.019 7.919 (0.012) 0.983 6.324 (0.023)
BSE x P. parvum 0.123 1.876 (0.190) 0.122 1.844 (0.193) 0.054 0.417 (0.527) 0.374 2.407 (0.140)
Nut. x BSE x P. parvum 0.119 1.815 (0.197) 0.106 1.603 (0.224) 0.040 0.314 (0.583) 0.833 5.362 (0.034)

B.
Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nut. 1.564E+13 0.558 (0.466) 8.725E+14 39.844 (< 0.001) 3.369E+15 181.873 (< 0.001) 5.872E+15 354.086 (< 0.001)
BSE 4.800E+11 0.017 (0.898) 9.010E+11 0.041 (0.842) 7.112E+12 0.384 (0.544) 5.850E+12 0.353 (0.561)
P. parvum 3.434E+13 1.225 (0.285) 4.506E+13 2.058 (0.171) 3.788E+13 2.045 (0.172) 5.352E+13 3.227 (0.091)
Nut. x BSE 6.453E+12 0.230 (0.638) 2.589E+12 0.118 (0.735) 3.839E+11 0.021 (0.887) 6.910E+11 0.042 (0.841)
Nut. x P. parvum 2.269E+13 0.809 (0.382) 4.579E+12 0.209 (0.654) 3.264E+12 0.176 (0.680) 7.360E+09 0.000 (0.983)
BSE x P. parvum 6.348E+13 2.265 (0.152) 2.690E+13 1.228 (0.284) 1.526E+13 0.824 (0.378) 8.893E+12 0.536 (0.475)
Nut. x BSE x P. parvum 4.641E+13 1.656 (0.216) 4.803E+13 2.193 (0.158) 4.013E+13 2.166 (0.160) 3.748E+13 2.260 (0.152)

   F  (p)   F  (p)
0-7 0-14

   F  (p)   F  (p)
0-140-7

0-28
   F  (p)   F  (p)

   F  (p)    F  (p)
0-280-21

0-21

C-3
Spring experiment GLM repeated measures ANOVA with mean square
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C-4
Fall experiment GLM repeated measures ANOVA with mean square

A. 
Total Chl a Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 2412.463 235.278 (< 0.001) 5346.688 203.815 (< 0.001) 6132.085 113.828 (< 0.001) 7216.298 67.527 (< 0.001)
P. parvum 0.369 0.036 (0.852) 1.132 0.043 (0.838) 2.005 0.037 (0.85) 2.396 0.022 (0.883)
Nut _ class x P. parvum 11.023 1.075 (0.389) 30.548 1.164 (0.356) 59.423 1.092 (0.383) 167.327 1.566 (0.239)

B. 
Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 2.246E+14 120.000 (< 0.001) 4.033E+14 88.754 (< 0.001) 8.329E+14 97.240 (< 0.001) 1.330E+15 147.473 (< 0.001)
P. parvum 3.583E+11 0.574 (0.462) 6.154E+10 0.014 (0.909) 1.210E+13 1.413 (0.252) 3.247E+13 3.599 (0.076)
Nut _ class x P. parvum 4.121E+12 2.202 (0.128) 3.726E+12 0.820 (0.502) 1.770E+12 0.207 (0.89) 9.242E+12 1.024 (0.408)

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

Nuts      N      None      P Nuts      N      None      P Nuts      N      None      P Nuts      N      None      P

0-7 0-14 0-21 0-28
   F  (p)    F  (p)    F  (p)    F  (p)

Nuts     N      None      P Nuts      N      None      P N      Nuts      None      P N      Nuts      None      P
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C-5
Winter experiment GLM repeated measures ANOVA with mean square

A.
Total Chl a Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 2608.167 68.386 (< 0.001) 30457.369 350.191 (< 0.001) 33590.037 401.144 (< 0.001) 67277.733 613.423 (< 0.001)
P. parvum 298.517 7.827 (0.014) 408.067 14.076 (0.002) 238.857 2.853 (0.112) 442.598 4.036 (0.064)
Nut _ class x P. parvum 62.785 1.646 (0.221) 333.164 3.831 (0.032) 58.802 0.702 (0.565) 158.499 1.445 (0.272)

B.
Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 2.238E+14 23.923 (< 0.001) 5.258E+15 49.475 (< 0.001) 9.880E+15 77.876 (< 0.001) 1.687E+16 104.608 (< 0.001)
P. parvum 1.290E+14 13.793 (0.002) 7.033E+14 6.618 (0.02) 1.203E+15 9.479 (0.007) 2.396E+15 14.858 (0.001)
Nut _ class x P. parvum 2.259E+13 2.415 (0.104) 1.856E+14 1.747 (0.198) 5.017E+14 3.954 (0.028) 1.558E+15 9.661 (0.001)

0-7

Nuts      N      P      None

N      Nuts      None      P Nuts      N      None      P

  F  (p)   F  (p)

0-14
  F  (p)   F  (p)

0-7 0-14 0-21 0-28

0-21 0-28

  F  (p)   F  (p)

Nuts      N      P      None Nuts      N      P      None

  F  (p)   F  (p)
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C-6
Spring experiment GLM repeated measures ANOVA with mean square

A. 
Total Chl a Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 465.578 21.951 (< 0.001) 18235.626 250.021 (< 0.001) 22931.316 133.100 (< 0.001) 23806.556 105.718 (< 0.001)
P. parvum 55.547 2.619 (0.126) 98.793 1.355 (0.263) 179.697 1.043 (0.323) 137.842 0.612 (0.446)
Nut _ class x P. parvum 95.304 4.493 (0.019) 165.583 2.270 (0.122) 100.862 0.585 (0.634) 38.180 0.170 (0.915)

B. 
Cells L-1 Mean sq. Mean sq. Mean sq. Mean sq.
Nutrient class 5.485E+14 15.204 (< 0.001) 3.468E+15 32.370 (< 0.001) 8.583E+15 56.783 (< 0.001) 8.091E+15 12.102 (< 0.001)
P. parvum 4.975E+13 1.379 (0.259) 1.298E+14 1.212 (0.288) 4.792E+13 0.317 (0.582) 5.384E+14 0.805 (0.384)
Nut _ class x P. parvum 3.829E+13 1.062 (0.395) 4.209E+13 0.393 (0.76) 1.965E+13 0.130 (0.941) 4.131E+14 0.618 (0.614)

  F  (p)
0-7 0-14 0-21 0-28

  F  (p)   F  (p)   F  (p)

   F  (p)
0-7 0-14 0-21 0-28

Nuts      N      None      PNuts      N      None      PNuts      N      None      P

N      Nuts      None      P N      None      Nuts      P N      None      Nuts      P N      None      P      Nuts

   F  (p)    F  (p)    F  (p)
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Time (days) P. parvum (cells L -1)
Chl C3 Chl c1c2 Fuco 19'HFuco 9'cis-Neo Viola Diad Diat Zeax Total Chl a B-Car

3 NA 22.94 91.17 35.69 0.00 0.29 0.25 7.11 1.31 2.11 74.72 2.19
6 2.80E+08 27.13 15.40 42.98 0.77 0.52 0.00 12.26 2.10 3.41 84.29 3.22
9 1.04E+08 26.24 11.05 27.57 0.56 0.33 0.00 4.91 1.42 1.64 63.56 1.08
12 1.81E+08 30.25 14.42 35.02 0.65 0.42 0.08 5.58 2.24 2.17 75.77 1.40
15 2.09E+08 49.66 17.64 41.15 0.74 0.57 0.17 7.24 28.98 2.87 84.61 1.43
18 1.81E+08 29.05 17.13 42.53 0.60 0.46 0.21 8.83 2.98 4.10 83.69 2.34
21 1.78E+08 31.40 19.71 45.17 0.55 0.52 0.00 8.20 3.15 3.10 82.91 0.14
24 2.43E+08 75.33 22.40 50.77 0.72 0.69 0.00 12.71 3.76 3.38 65.22 0.05
27 3.92E+08 78.80 22.20 45.55 0.67 0.68 0.00 0.00 3.17 3.15 34.86 0.02
30 3.87E+08 114.59 29.45 56.67 1.07 9.79 0.85 23.24 6.85 10.18 53.66 0.04
33 6.63E+08 155.24 36.17 67.76 1.32 1.08 0.00 39.84 9.37 18.61 60.27 0.03
3 8.25E+07 36.47 14.10 43.16 0.15 0.41 0.20 8.65 1.35 2.32 88.70 2.92
6 1.29E+08 27.35 10.78 33.67 0.00 0.29 0.00 4.58 1.35 1.86 71.06 1.71
9 1.06E+08 32.06 11.29 28.79 0.15 0.08 0.00 5.08 1.39 1.58 75.39 1.32
12 2.28E+08 38.82 19.11 42.39 0.26 0.50 0.11 6.58 2.49 2.51 97.99 1.72
15 2.56E+08 40.11 26.46 53.81 0.36 0.77 0.28 11.58 3.89 3.56 128.00 2.76
18 2.33E+08 43.94 25.77 51.95 0.33 0.73 0.21 10.83 3.87 3.38 119.30 2.34
21 3.15E+08 39.86 27.07 55.34 0.63 0.75 0.00 12.15 4.31 3.34 112.45 0.14
24 3.13E+08 99.58 30.79 60.51 0.82 0.94 0.00 17.83 5.59 5.63 107.35 2.00
27 4.69E+08 75.12 33.50 59.24 0.67 0.74 0.42 10.98 4.97 5.69 126.63 2.53
30 5.10E+08 128.16 31.39 58.82 1.10 1.00 0.85 20.39 6.34 10.86 48.17 0.03
33 5.99E+08 175.80 44.17 71.72 1.45 1.13 1.93 47.28 13.25 30.24 103.64 0.12
3 4.94E+07 29.01 16.14 41.67 0.05 0.30 0.22 7.65 1.31 2.53 90.44 2.91
6 1.58E+08 23.05 13.31 25.20 0.13 0.22 0.00 3.25 1.00 1.49 68.51 1.33
9 1.83E+08 33.61 13.12 31.41 0.19 0.36 0.00 5.33 1.58 1.66 79.33 1.29
12 1.85E+08 43.31 17.25 46.31 0.33 0.57 0.00 7.63 2.96 3.45 96.56 1.74
15 1.94E+08 33.25 16.65 31.27 0.16 0.37 0.13 5.19 1.92 1.85 85.30 1.26
18 2.53E+08 32.59 17.77 38.79 0.40 0.46 0.17 6.31 2.58 2.55 833.53 0.09
21 3.85E+08 54.00 27.65 62.53 0.38 0.77 0.00 14.97 4.41 3.34 119.98 0.16
24 4.60E+08 124.41 35.03 68.48 0.42 1.09 0.68 19.20 4.99 5.33 98.42 0.36
27 6.72E+08 152.81 38.11 59.03 0.43 1.11 0.65 15.56 5.76 6.98 95.50 0.18
30 6.40E+08 177.69 59.32 87.39 0.82 1.81 2.90 46.93 11.87 14.62 198.88 2.43
33 9.23E+08 160.80 35.20 81.82 1.29 0.91 2.08 19.05 3.13 4.58 5.79 0.03

Flask 3

Flask 1

Flask 2

-1)

C-7
P. parvum photopigments 
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