
FLEXIBLE ALLOCATION AND SPACE MANAGEMENT

IN STORAGE SYSTEMS

A Dissertation

by

SUK WOO KANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Computer Engineering

FLEXIBLE ALLOCATION AND SPACE MANAGEMENT

IN STORAGE SYSTEMS

A Dissertation

by

SUK WOO KANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Riccardo Bettati

Deepa Kundur
Warren Heffington

Head of Department, Costas N. Georghiades

May 2007

Major Subject: Computer Engineering

iii

ABSTRACT

Flexible Allocation and Space Management in Storage Systems. (May 2007)

Suk Woo Kang, B.S., Seoul National University; M.S., Seoul National University

Chair of Advisory Committee: Dr. A. L. Narasimha Reddy

In this dissertation, we examine some of the challenges faced by the emerging

networked storage systems. We focus on two main issues. Current file systems allocate

storage statically at the time of their creation. This results in many suboptimal

scenarios, for example: (a) space on the disk is not allocated well across multiple

file systems, (b) data is not organized well for typical access patterns. We propose

Virtual Allocation for flexible storage allocation. Virtual allocation separates storage

allocation from the file system. It employs an allocate-on-write strategy, which lets

applications fit into the actual usage of storage space without regard to the configured

file system size. This improves flexibility by allowing storage space to be shared across

different file systems. We present the design of virtual allocation and an evaluation

of it through benchmarks based on a prototype system on Linux.

Next, based on virtual allocation, we consider the problem of balancing local-

ity and load in networked storage systems with multiple storage devices (or bricks).

Data distribution affects locality and load balance across the devices in a networked

storage system. We propose user-optimal data migration scheme which tries to bal-

ance locality and load balance in such networked storage systems. The presented

approach automatically and transparently manages migration of data blocks among

disks as data access patterns and loads change over time. We built a prototype sys-

tem on Linux and present the design of user-optimal migration and an evaluation of

it through realistic experiments.

iv

To Yeonhee Doh and Donghyun Kang

v

ACKNOWLEDGMENTS

I would like to thank God, who makes all these things possible for me. I could

not have come this far without his love and will.

I would like to thank my advisor, Dr. Reddy, for giving me a chance to work

with him. During my study, he has been a great mentor who guided my research and

motivated me to challenge myself. At the same time, he has been a great life teacher,

who gives very considerate advice to help me whenever I need advice in my life. I

cannot describe how much I appreciate his guidance, and I just would like to thank

him again.

I would like to thank Dr. Bettati, Dr. Kundur and Dr. Heffington for their

interest in this research and for their helpful suggestions. I would like to thank Dr.

Eun Jung Kim and Dr. Leo Luan for giving invaluable advice every time I sought

their opinion.

The other students in my research group have helped me throughout the course

of my study. I would like to thank them all, especially Sumitha Bhandarkar, Yong

Liu, Seongsoo Kim and Xiaonan Ma.

I would like to thank Donna and Warren. During my study, they have taken care

of me, my wife and my child with all their heart. They also have taught us the Bible

for three years to let us know God. I really appreciate their efforts and time. They

are like my parents here in the U.S.

Without my wife, Yeonhee Doh, I doubt if it would ever be possible to pursue a

Ph.D. I would like to express my deepest gratitude and love to her for her constant

love and encouragement. My son, Donghyun Kang, gave me the hope and strength to

get through all my courses. Finally, I would like to thank my parents and my in-laws

for their full support and belief in me.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Storage Allocation . 5

B. Data Distribution in Networked Storage Systems 6

II STORAGE ALLOCATION . 7

A. Virtual Allocation : The Proposed Solution 10

1. Design Issues . 14

a. VA Metadata Hardening (File System Integrity) . 14

b. Extent Size . 18

c. Reclaiming Allocated Storage Space 18

d. Chunk Size in RAID 19

2. Spatial Locality Issues 19

a. Metadata and Data Separation 19

b. Data Clustering 20

c. Space Allocation Policy 22

d. File System Aging (Fragmentation) 22

e. Multiple File Systems 23

3. Performance Issues . 24

B. Implementation . 24

C. Evaluation . 25

1. Experimental Setup 26

2. Evaluation Issues . 26

3. Impact of Various Factors 27

a. VA Metadata Hardening 27

b. Extent Size . 29

c. Reclaiming Allocated Storage Space 32

d. RAID . 36

e. Space Allocation Policy 38

f. Metadata and Data Separation 41

g. Metadata Clustering 42

h. File System Utilization 43

i. File System Aging 43

j. Multiple File Systems 45

vii

CHAPTER Page

k. Results for the Other Workloads 48

D. Related Work . 49

1. File System-level . 49

2. Block-level . 50

3. More Expressive Interfaces (Between the File Sys-

tem and the Storage System) 51

4. Other System Environments 51

E. Discussion . 52

F. Summary . 52

III DATA DISTRIBUTION IN NETWORKED STORAGE SYSTEMS 54

A. User-Optimal Migration 59

1. Data Placement . 60

2. Design Issues . 61

a. When to Migrate 61

b. Where to Migrate 62

c. What Data to Migrate 63

d. How to Migrate 64

e. Allocation Policy 64

f. Multi-user Environment 65

B. Evaluation . 65

1. Workload . 66

2. Experimental Setup 67

3. Single-User Environment 69

a. Migration Rate 69

b. Striping . 70

c. Sequential Allocation 72

d. Discussion of Results 74

4. Multi-User Environment 75

a. Striping . 75

b. Sequential Allocation 79

c. Discussion of Results 81

C. Related Work . 81

D. Discussion . 84

E. Summary . 84

IV CONCLUSIONS . 86

A. Dissertation Summary . 86

viii

CHAPTER Page

B. Further Work . 87

1. Virtual Allocation . 87

2. User-Optimal Migration 89

C. Concluding Remarks . 89

REFERENCES . 91

VITA . 101

ix

LIST OF TABLES

TABLE Page

I Example of a Block Map in Virtual Allocation 11

II An Example of the Extent-based Policy in VA with the ext2 File

System . 15

III An Example of the File System-based Policy in VA with the ext3

File System . 16

IV Reclaim Operation of Periodic Purges 32

V Reclaim Operation of Usual File System Activity 34

VI Three Different Network Latencies Used in This Study 68

x

LIST OF FIGURES

FIGURE Page

1 Storage System Architecture . 2

2 Transparency over Multiplicity of Storage Device Attachments 4

3 Example Illustrating Virtual Allocation 8

4 Allocation Strategy of Virtual Allocation 10

5 Virtual Allocation Architecture . 13

6 Illustration of the On-disk Layout Differences Between EXT2 (EXT3)

and VA-EXT2 (VA-EXT3) . 21

7 Illustration of the Data Placement Policy 22

8 The On-disk Layout Difference Between VA and the Fixed Parti-

tion Approach . 23

9 Impact of VA Metadata Hardening on Performance of VA for the

Large-file Workload (Bonnie++) . 28

10 Impact of VA Metadata Hardening on Performance of VA for the

Small-file Workload (Postmark) . 29

11 Impact of Extent Sizes on Performance of VA for the Large-file

Workload (Bonnie++) . 30

12 Impact of Extent Sizes on Performance of VA for the Small-file

Workload (Postmark) . 30

13 Normalized Disk Space to the Occupied Disk Space of the 128KB

Extent for Each Postmark Experiment 31

14 The Filled Status of Extents . 35

15 Performance of VA-RAID-5 of the Large-file Workload (Bonnie++) . 36

xi

FIGURE Page

16 Impact of NVRAM . 37

17 Performance of VA-RAID-5 of the Small-file Workload (Postmark) . 38

18 Impact of Space Allocation Policies 40

19 Impact of Metadata and Data Separation 41

20 Impact of Metadata Clustering . 42

21 Impacts of File System Utilization and Aging 44

22 Performance of Multiple File Systems with VA 46

23 Performance of VA for Database Workload 47

24 Performance of VA for NFS Trace Replay 49

25 Application Examples of Networked Storage Systems 55

26 Experimental Configuration . 67

27 Impact of Migration Rate . 69

28 Single-user Striping . 71

29 Single-user Sequential Allocation . 73

30 The Comparison Between Different Migration Schemes 75

31 Multi-user Striping with User-optimal Migration 77

32 Request Statistics . 78

33 Multi-user Sequential Allocation with User-optimal Migration 80

34 Real-World Examples of VA Deployment 87

1

CHAPTER I

INTRODUCTION

A typical storage system architecture consists of various components in several system

layers. As shown in Fig. 1, it includes a system call interface, a buffer cache, a file

system, an operating system interface to block devices, a disk device driver, a disk

controller and a set of disks. An application accesses the storage system through the

system call interface. The buffer cache stores and manages recently accessed data

blocks from disk in memory, so that additional accesses to them don’t need to go

to the disk whose access latencies are much larger than memory access latencies.

The file system manages the contents on the disk. It exports a file and a directory

structure to the application and handles the interface between the application and the

disk. All operating systems provide interface to block devices. This block interface

supports read and write operations and can carry out various operations such as

remapping of block addresses. It interacts with the storage system device driver,

which interfaces with disk controller. Disk controller manages the electronics of the

disks by running firmware. It may also implement address remapping to provide

logical storage characteristics as in Redundant Array of Inexpensive Disks (RAID

[1]).

Traditionally disk devices are directly attached to the hosts or servers, i.e.,

through the Small Computer Simple Interface (SCSI) standard or the Integrated

Digital Electronics (IDE) standard. Recently, they are being attached to networks,

either Storage Area Networks (SANs) or IP networks. Recent industry wide efforts

have established Internet SCSI (iSCSI [2]) as a standard to enable storage devices to

The journal model is IEEE Transactions on Automatic Control.

2

Application

System Call Interface

File System

Buffer Cache

O/S Storage Device Interface

(Block Interface)

Disk Device Driver

Disk Controller

Disk

Fig. 1. Storage System Architecture

3

be directly attached to IP networks. The iSCSI protocol encapsulates SCSI command

blocks in IP packets such that SCSI devices can be connected to servers and hosts

through IP interfaces rather than SCSI buses. It is expected that such IP connec-

tivity of storage systems will result in (a) improved scalability of I/O interconnects

by leveraging the significant amount of research and development invested in scaling

network throughputs, (b) enable consolidation of infrastructure around one network

(instead of requiring separate Local Area Networks (LANs) and Storage Area Net-

works (SANs) with Fibre Channel), (c) enable wider (geographically) distribution

and access of storage and (d) enable new storage paradigms (such as ”storage as a

service” [3]).

Early projects on connecting devices to networks have taken an application- spe-

cific or operating-systems specific approaches. Network attached disks have earlier

been proposed to reduce the activity of a file manager in a file system in order to im-

prove server throughput [4]. The Network Attached Secure Disks (NASD) project at

Carnegie Mellon University (CMU) has built a prototype system which migrates much

of file system functionality to the disk [4]. Commercially available SNAP server is an

example network-attached storage system that understands specific file systems such

as Network File System (NFS) [5]. Network attached disks have also been proposed

to improve the I/O connectivity [6, 7, 8]. Recent iSCSI efforts focus on standardizing

IP connectivity of SCSI disks based on the simple linear block addressable interface

(of current disks).

Fig. 2 shows the different ways storage can be currently accessed. Disk A is

attached directly to the client’s system, disk B is attached to the server’s system

or to another host, disk C is attached to the IP network (through iSCSI protocol)

and disk D is attached to the SAN network. The networked storage, SAN-based

storage, and storage attached directly to systems (either locally or at the server) will

4

System 1 System 2

A

C

B

D

Virtual Device 1

SAN

IP Network

File System File System

Virtual Device

SAN attached device

Local SCSI device
iSCSI device

Remote NBD device

Fig. 2. Transparency over Multiplicity of Storage Device Attachments

likely coexist in the future. The increased diversity poses challenges to file systems

and applications above the devices. Ideally, this diversity is hidden and the device

attachment is made transparent to the layers above the device.

The IP connectivity of I/O devices also enables pooling of storage systems and

data centers within a metropolitan area to improve sharing, utilization and admin-

istration of storage systems. In scientific communities, it is becoming increasingly

important to share large data collections in collaborative environments. The Data

grid [9] is an example of such a network of distributed storage resources.

If file systems and applications are designed to span multiple devices across a

network, locality and the resulting performance issues will be of immediate concern.

While flexible deployment may dictate that we do not worry about the actual location

and attachment of storage, performance issues may force us to revisit data allocation

and organization issues. The architectural and performance issues need to be con-

sidered in the light of networking storage devices and the consequent implications

on the performance of storage systems, networks and their interaction. A database

5

application’s performance may be significantly affected by the increased I/O delays

if data is accessed over WANs [10]. In such cases also, it will be necessary to employ

data caching or data migration to improve the performance. Previous work on iSCSI

accesses over WANs has shown a similar need to cache data close to the application

[11].

Current existing solutions such as Storage Resource Broker (SRB) [12] work as

middleware between file systems and applications. Such approaches are oblivious

to the storage location when storage is pooled at layers below the file system, for

example using Logical Volume Managers (LVMs).

In this study, we focus on two main issues which are posed by the diversity

of storage: (a) flexible storage allocation across multiple file systems/platforms and

(b) enhancing data distribution considering locality and load balance in networked

environments. The following sections provide a brief overview of the problems and

why they motivate us. More detailed descriptions and our solutions to the problems

are provided in the chapters that follow.

A. Storage Allocation

Storage Area Networks (SANs) and storage virtualization [13] allow storage devices

to be shared by multiple heterogeneous operating systems. However, native file sys-

tems, such as Windows NTFS or Linux ext2, expect to have exclusive access to their

volumes. In other words, each operating system reserves storage devices for its own

use, and the space in a storage device owned by one operating system cannot be used

by another. This problem seriously hampers the flexibility of storage management

[14]. This lack of flexibility manifests in the following restrictions: (a) file systems

cannot use storage space in another device owned by another file system, (b) a com-

6

puter can only create files on devices it owns. In Chapter II, we inspect this issue in

detail and provide a general solution for improving the flexibility of storage allocation

across multiple file systems. This is followed by detailed evaluation of the solution.

B. Data Distribution in Networked Storage Systems

In the next part of study, we focus on data distribution in networked storage systems.

Network connectivity of storage systems has resulted in wider distribution and access

of storage over network. Data distribution affects locality and load balance across

the devices in a networked storage system.

In a large-scale storage system, it is especially important to (a) allocate data

efficiently because the cost of data reallocation is high due to the large-scale and

large network latencies and (b) redistribute data adaptively in an automated manner

according to configuration changes or workload changes (after initial allocation) to

improve performance. Most of current storage systems do static allocation of storage

at the time of file system creation and do not provide the flexible data distribution. In

Chapter III, we study this problem in more detail and propose a solution for improving

data distribution in such networked storage systems. We study the behavior of the

proposed solution via an implemented prototype system on Linux.

7

CHAPTER II

STORAGE ALLOCATION1

Traditional file systems are closely tied to their underlying storage. The file systems

currently employ a static allocation approach where the entire storage space is claimed

at the time of the file system creation. This is somewhat similar to running with only

physical memory in a memory system. Memory systems employ virtual memory for

many reasons: to allow flexible allocation of resources, and to share memory safely,

etc. Traditional static allocation of storage at the time of file system creation lacks

such flexibility. To address this problem and to enable storage as a discoverable

resource, we have developed a virtual allocation technique at the block-level.

When a file system is created with X GBs, instead of allocating the entire X

GBs of space to the file system and making it unavailable for others, virtual allocation

only allocates storage space based on the current needs of the file system. Such an

approach may allocate Y GBs of storage space, where Y could be smaller than X.

The remaining storage space (X − Y) GBs will be unused and available to be used

flexibly. As the file system grows beyond Y GBs, the storage space can be allocated

on demand or when certain usage thresholds are exceeded.

Such an approach separates the storage space allocation from the file system size

and allows us to create virtual storage systems where unused storage space can be

provided to any application or file system as the needs arise. This approach allows us

to share the storage space across multiple (and possibly different) operating systems.

The file systems can function transparently on top of such virtual storage systems

1 c©2006 ACM. Reprinted, with permission, from “An Approach to Virtual Alloca-
tion in Storage Systems” by Suk Woo Kang and A. L. Narasimha Reddy, published
in ACM Transactions on Storage, Vol. 2, No. 4, pp. 371-399, November 2006.

8

as if they have access to a large storage device even though only a small fraction of

that device is actually allocated and used at that time. It also makes it possible for

a storage device to be expanded easily to other available storage resources because

storage allocation is not tied to the file systems.

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

30 GB

70 GB

50 GB
Actually

Region

100 GB Common Storage Pool

Allocated50 GB

50 GB

30 GB

10 GB

10 GB

Normal File Systems File Systems with Virtual Allocation

(NTFS)
Windows NT

(ext2)
Linux

(NTFS)
Windows NT

(ext2)
Linux

Fig. 3. Example Illustrating Virtual Allocation

Fig. 3 shows two example file systems with and without virtual allocation. In

Fig. 3, highlighted regions illustrate the current usage of disks, and bold rectangles

indicate actual allocations. The figure shows that unused storage space can be pooled

across different operating systems and different file systems with virtual allocation.

Part of the motivation for our work here came from the observation that some

of the students’ PCs were running out of disk space while their neighbors’ newer

machines in the same lab had plenty of unused space. outlined as the following: The

following issues further motivated our work: (a) Web hosting is a popular service

and it is anticipated that similarly storage hosting could be sold as a service. These

services provide storage for many users and allow server resources (disks, processors)

to be shared across multiple users. While processor sharing is automatic (when one

9

user does not use the processor, the others get more time), storage sharing is not

currently feasible. If a user asks for 100GB of space, but only uses 10GB, there is

no way some other users can use that 90GB of space on disk. This is the primary

problem our study is addressing. (b) Power and energy savings is another motivation.

By only allocating space for actual data, the amount of space (and hence the number

of disks) can be reduced, resulting in power and energy savings. (c) Utility computing

initiatives can benefit from our approach by allocating storage as needed by users,

rather than the maximum amount they will need. Different motivations for decoupling

storage allocation from file systems have been put forward [15, 16].

Virtual allocation is developed to improve the flexibility of using the available

storage. It is to be emphasized that virtual allocation is being pursued more to

improve flexibility of storage management than to improve disk space utilization

(which may be a side benefit). Virtual allocation has the following combination of

characteristics:

• It uses the generic block interface widely used in today’s systems. This allows

it to support a wide range of heterogeneous platforms, and allows the simplest

reuse of existing file system and operating system technology.

• It provides a mechanism to create virtual storage systems where unused stor-

age space can be provided to any application or file system as a discoverable

resource.

• It can be built on existing systems with little changes to operating systems.

In the following sections, we present the design rationale of virtual allocation and

explain our experimental methodologies and results.

10

������
������
������

������
������
������

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

������
������
������

������
������
������

������
������
������

������
������
������

���
���
���
���

�
�
�

�
�
�

������
�
�
�
�
�

�
�
�
�
�

Write Write
at t=t" (>t’)

VA
Meta
Data FS

Meta
Data at t=t’

Extent

Physical Disk

Allocation Unit

Virtual Disk

Storage
Expansion

Virtual Disk Capacity

Physical Disk Capacity

Storage Expansion Threshold

Expanded Disk

Fig. 4. Allocation Strategy of Virtual Allocation

A. Virtual Allocation : The Proposed Solution

In this section, we present the design rationale for virtual allocation and its component

architectures. Virtual allocation employs an allocate-on-write policy, i.e., storage

space is allocated when the data is written. Fig. 4 illustrates the storage allocation

strategy of virtual allocation. The figure shows an example in which new data is

written at time t = t′ and at time t = t′′ where t′′ > t′. In this example, virtual

allocation writes all data to disk sequentially in a log-like structure based on the time

at which data is written to the device. This approach is similar to log-structured file

systems [17, 18] where every write is written at the end of a log. However, in virtual

allocation, only storage allocation is done at the end of a log.2 Once data is written

to disk, data can be accessed from the same location, i.e., data is updated in-place.

Virtual allocation maintains a block map for this purpose. Virtual allocation’s block

2It is possible to employ other policies for space allocation other than sequential
allocation.

11

map is similar to a logical volume manager’s (LVM’s) block map, i.e., it converts file

system block addresses to actual physical device block addresses. However, virtual

allocation’s block map is dynamically constructed as data is written and not at the

time of file system (or logical volume) creation. Virtual allocation can be seen as a

generalization of LVM’s functionality.

This block map data structure is maintained in memory and regularly written

to disk for hardening against system failures. The on-disk block map, called VA

(Virtual Allocation) metadata, is stored at the front of the allocation log, as shown

in Fig. 4. Virtual allocation uses an extent, which is a group of (file system) blocks,

to reduce the VA metadata information that must be maintained. The block map

data structure contains information such as the logical device where the data belongs

(LDEV-ID), the logical block address of the data (LBA), the physical device where

the allocated extent resides (PDEV-ID), and the physical block address of the extent

(PBA).

Table I. Example of a Block Map in Virtual Allocation

LDEV-ID LBA PDEV-ID PBA

LDev0 100 PDev0 1000

LDev1 500 PDev0 1100

LDev0 1000 PDev1 1200

Table I shows an example of block map data structure. For example, the first

row of Table I means that a logical block 100 of the logical device LDev0 resides at

the physical block address 1000 of the physical device PDev0. Each entry of the block

map corresponds to one extent and whenever a new extent is written, VA metadata is

hardened for data consistency in case of a system failure. There are other hardening

12

policies which will be explained later. If we use a 256KB extent, the size of VA

metadata is less than 64KB per 1GB disk space.

File systems tend to create metadata at the time of file system creation. Due to

our sequential allocation policy, file system metadata tends to be clustered in front

of the allocation log. This metadata cluster is denoted by a single FS (file system)

metadata region in Fig. 4. IBM Storage Tank takes an approach of separating

metadata and normal data at the file system-level [14]. Our allocation policy tends

to result in a similar separation of the file system metadata from the file system data.

Virtual allocation makes it easy for file systems to span multiple disks. Fig.

4 shows that when the capacity of the file system’s disk is exhausted or reaches a

certain limit (storage expansion threshold), the disk can be expanded to other available

storage resources. This process of storage expansion allows file systems or applications

to potentially span multiple devices. As the file system usage increases, more disk

space is allocated transparently. The storage expansion is done in terms of allocation

units. For example, if the allocation unit is 1GB, whenever the storage expansion is

performed, virtual allocation adds 1GB of disk space to an existing disk by finding

other available storage resources. With virtual allocation, it is possible to configure

the storage systems such that the total physical capacity is smaller than the sum

of sizes of the file systems. In such a case, care needs to be taken to not run out

of physical space as file systems expand or mechanisms need to be provided in file

systems to deal with the consequences of running short of physical space. We define

a virtual disk as a storage device seen by the file systems or applications. File systems

or applications can function transparently on top of such a virtual disk as if they have

access to the complete storage space even though only a small fraction of that device

is actually allocated and used at that time.

Virtual allocation is implemented as a loadable kernel module that can be in-

13

serted below any file system. Fig. 5 shows that virtual allocation is a layer between

the file system and the disk device driver. Virtual allocation can be integrated into a

LVM layer when it is present. When virtual allocation is stacked on top of the disk

device driver, all I/O requests are intercepted by the VA module before being passed

to the underlying disk. For a write request to an unallocated extent, virtual allocation

dynamically allocates space for the extent and directs the request to that location. It

adds this allocation information to the block map so that data can be accessed later

from the same location. Further writes to the blocks in the same extent are written

to allocated blocks in that extent. For a read request, the block map is consulted for

mapping information. If it exists, it is directed to that location. Otherwise, it will be

an illegal access because an accessed extent is not yet written. Such a read miss will

not occur unless file system metadata is corrupted. We plan to address this exception

in the future for applications that access the raw device.

File System Application

Disk Device Driver

Manager
Storage Resource Disk Layout Reclaim

Manager

Virtual AllocationManager
Disk Block Map

Manager
Disk Capacity

Manager

Fig. 5. Virtual Allocation Architecture

Fig. 5 shows the components of the virtual allocation architecture. The disk

layout manager in Fig. 5 directs incoming read and write requests to appropriate

locations, and the disk block map manager maintains this information as a block

map. The disk capacity manager continuously monitors disk usage, and generates

14

a service message to the storage resource manager once the disk usage reaches the

storage expansion threshold. If the storage resource manager is invoked, it tries to

find available storage resources in the local computer or on the network. Once storage

is discovered and obtained, the existing device will be expanded to incorporate the

new storage. The reclaim manager is in charge of reclaiming allocated storage space

of deleted files. Reclamation of blocks of deleted files allows the continued flexibility

of virtual allocation and prevents abuse of virtual allocation as explained in later

sections.

1. Design Issues

a. VA Metadata Hardening (File System Integrity)

As mentioned earlier, our in-memory block map must be hardened to disk regularly

to protect against system failures. VA should be designed so that it does not compro-

mise the safety or integrity mechanisms employed by the higher layers (file systems)

or require changes to the higher layers. Since VA metadata hardening requires an

additional disk access, we have to carefully decide when or how often VA metadata

will be committed to disk to minimize the overhead.

In this study, we considered two kinds of VA metadata hardening policies: an

extent-based policy, and a file system-based policy. The extent-based hardening em-

ploys the strict policy of writing VA metadata to disk whenever a new extent is

allocated. The file system-based hardening policy exploits the update behavior of

the file system and defers VA metadata commitment to disk whenever possible. File

system-based hardening is less general3, but it is expected to improve performance.

We consider two file systems on top of VA to illustrate the metadata hardening poli-

3In Section 6, we discussed more general approach of file system-based hardening.

15

cies, e.g., the Linux ext2, and Linux ext3 file systems.

In the extent-based policy, whenever an extent is allocated on the storage system

(through file system writes), the VA metadata is hardened before the file system write

is allowed to proceed. Such a policy ensures that VA metadata is always correct and

does not compromise the integrity of the file system. This can be explained through

an example illustration with Linux ext2.

Table II. An Example of the Extent-based Policy in VA with the ext2 File System

Operation In-memory On-disk

1. I alloc I → B

2. B writes to disk

2-1. V updates V → B

2-2. V writes to disk V written

2-3. B written

Table II depicts a time line of operations when the new data block B is allocated

to a file I (§1) and written to disk (§2). VA observes this request and allocates the

new extent for B and updates its in-memory block map V (§2-1). VA commits this

metadata change to disk (§2-2) before B reaches the disk (§2-3). The file system is

consistent despite a crash at any point up to §2-1 because VA does not modify any

normal operation of the file system (except the V updates in-memory which will be

lost in case of the system crash, but it does not affect the file system integrity because

data B is not written to disk yet). If the system crashes between §2-2 and §2-3, this

also does not affect the file system integrity because B is not yet written to disk.

Although VA allocates the new extent to B, this mapped extent will be reused when

the restored system allocates data block B again. It is noted that VA metadata needs

16

to be hardened only when the extent is allocated, i.e., further writes to an allocated

extent do not involve any VA metadata updates.

If we commit VA metadata V after B is written, the file system integrity could

be broken. Assume that file system metadata I is written to disk before B and B

is written to disk. If the system crashes at this point (before V reaches the disk),

although the file system can track B through its inode I, our system cannot track

data B due to mapping information loss, which results in broken file system integrity.

If we keep update ordering of VA metadata and FS (meta)data as explained in Table

II, the extent-based hardening policy can be used with any file system regardless of

its update behavior without compromising the file system integrity.

Table III. An Example of the File System-based Policy in VA with the ext3 File System

Operation In-memory On-disk

1. I alloc I → B1

2. I alloc I → B2

3. I writes to journal

3-1. B1 writes to disk

3-2. V updates V → B1

3-3. B2 writes to disk

3-4. V updates V → B2

3-5. B1 written

3-6. B2 written

3-7. V writes to disk V written

3-8. I written

4. I writes to disk I written

17

We explain the file system-based policy with the ext3 file system. The ext3

file system is a journaling file system in which metadata consistency is ensured by

write-ahead logging of metadata updates. Ext3 supports three journaling modes of

operation. In one of the modes, in ordered mode, ext3 only logs changes to metadata

to the journal, but flushes data updates to disk before making changes to associated

metadata. Due to this property, underneath the ext3 ordered mode, we can optimize

the VA metadata hardening policy by aggregating multiple VA metadata updates as

depicted in Table III.

New data blocks B1 and B2 are allocated to a file I (§1, §2) and I is going to be

written to a journal (§3). The ordering property of ext3 ordered mode ensures that

B1 and B2 are written to disk first (§3-1, §3-3). At this point, VA can safely defer

V commitment to disk before I is written to the journal because system crashes at

any point make this operation invisible to the file system until I is written to the

journal. After both data blocks are written to disk (§3-5, §3-6), VA commits V to

disk (§3-7) before I is written to the journal (§3-8). Such delayed hardening may

enable aggregation of VA metadata updates and reduce the number of associated

disk accesses. To ensure that we are providing the same safety semantics as the ext3

ordered mode, we commit any VA metadata changes to disk before any FS metadata

reaches the journal. Such an approach requires the identification of FS metadata at

the block-level. We employed the file system layout discovery approach described in

[19].4

4More general approach was discussed in Section 6.

18

b. Extent Size

An extent size is a configurable parameter in our system. Larger extents retain more

spatial locality, and reduce the block map size that must be maintained, which results

in reduction of the overhead of VA metadata hardening. However, larger extents may

cause data fragmentation on the disk. Since even small requests are allocated an

extent, storage space will be fragmented if following write requests are not sequential.

The trade-offs with the size of an extent are similar to the trade-offs with the page

size in virtual memory or the block size in cache memory systems.

c. Reclaiming Allocated Storage Space

VA needs a mechanism to reclaim allocated space of deleted files to continue to provide

the benefits of virtual allocation. Without this mechanism, the storage space once

allocated to one application (e.g., file system) cannot be used by other applications

even if the allocated space is no longer used by that application.

Without reclamation, an application can write large files and delete them to turn

virtual allocation into static allocation. Second, as the files are deleted and created

through normal activity, if a large amount of block space is allocated while utilizing

only a small portion of that block space, the effectiveness of virtual allocation will

decrease over time. We conduct experiments to study this issue.

VA reclaims allocated space of deleted files employing dead block finding ap-

proaches described in [19, 20].3 When the reclaim operation is invoked, VA gathers

the information about dead blocks and looks up our block map to free dead blocks in

the allocated extents. When all the blocks in an extent are dead, that extent can be

reclaimed for reuse. The frequency of the reclaim operation must be decided carefully

considering the file system activity. It is to be noted that file systems can continue

19

working without reclamation of free space at the VA layer, (but without the benefits

of virtual allocation) and hence is not as critical an operation as garbage collection

in log-structured file systems.

d. Chunk Size in RAID

When our system is used with RAID, VA is layered on top of RAID. For each read

or write request, VA first remaps the block address, then RAID software or RAID

hardware layer handles this request according to its RAID policy, e.g., RAID-5.

RAID systems do considerable work in choosing the chunk size for optimizing

the performance [1]. In this study, when VA is used with RAID, the extent size

of VA is chosen to be the same as the chunk size of the RAID layer in order to

simplify the allocation. The write overhead of RAID systems and the metadata

hardening overhead of virtual allocation impact the choice of ideal chunk/extent size.

In this study, we consider RAID-5 systems and study the impact of the choice of

chunk/extent size on the performance of a system employing VA along with RAID.

2. Spatial Locality Issues

a. Metadata and Data Separation

Our storage allocation policy changes the on-disk layout of a file system located on

top of our system. One of the major differences between the system with virtual

allocation and the system without virtual allocation is that in the former, metadata

is separated from data. File systems put significant effort into keeping the metadata in

close proximity to the data. Earlier studies [19, 21, 22, 23] have shown the importance

of exploiting spatial locality on disks. Hence, it is necessary to closely evaluate our

approach in light of these studies.

20

In this study, we compared three kinds of systems:

• Linux ext2 with virtual allocation (VA-EXT2) and ext2 with a normal storage

system (EXT2)

• Linux ext3 with virtual allocation (VA-EXT3) and ext3 with a normal storage

system (EXT3)

• RAID-5 with virtual allocation (VA-RAID-5) and a normal RAID-5 storage

system (RAID-5)

In the case of the ext3 file system (VA-EXT3 and EXT3), we used, by default,

ordered mode unless specifically noted. In RAID-5 configurations (VA-RAID-5 and

RAID-5), we used the ext2 file system.

Fig. 6 shows differences of the on-disk layout between EXT2 (EXT3) and VA-

EXT2 (VA-EXT3). The on-disk layout of EXT3 is the same as EXT2 except for

a journal; the journal (or log) is commonly stored as a file within the file system,

although it can also be stored on a separate device or partition. Fig. 6 depicts the

journal stored as a file, which is the default in ext3. Fig. 6(a) shows the on-disk

layout of a 16GB partition at 85% file system utilization and Fig. 6(b) shows the

on-disk layout of the same partition at 10% file system utilization. In our system, all

file system metadata is clustered in front of the allocation log, and the data is written

with temporal locality after this metadata cluster. We expect that this metadata and

data separation will affect the performance of different workloads differently.

b. Data Clustering

Due to our storage allocation policy, all written data are clustered in VA, as shown in

Fig. 6. Data clustering will improve performance of VA-EXT2 compared to EXT2 by

21

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(journal)

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

��
��
��
��

�
�
�

�
�
�

VA−EXT2 (VA−EXT3)VA metadata data

FS metadata

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(journal)
EXT2 (EXT3)

0G 16G

FS metadata data

(a) 85% File System Utilization

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

��
��
��
��

VA−EXT2 (VA−EXT3)
VA metadata data

FS metadata (journal)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

EXT2 (EXT3)

16G0G

(journal)
FS metadata data

(b) 10% File System Utilization

Fig. 6. Illustration of the On-disk Layout Differences Between EXT2 (EXT3) and

VA-EXT2 (VA-EXT3)

22

reducing seek distances. The effect of the clustering will appear differently according

to the partition size and the file system utilization. At low file system utilization,

VA-EXT2 can reduce seek distance significantly compared to EXT2, as shown in Fig.

6(b). As the file system utilization gets higher, the benefit of clustering in VA is likely

to decrease.

VA

Allocation

Metadata Cluster

0G 16G

Fig. 7. Illustration of the Data Placement Policy

c. Space Allocation Policy

Fig. 6 shows a linear allocation of space on the device. Modern disk drives have higher

transfer rates in outer cylinders due to the zoned constant angular velocity (ZCAV)

techniques [24]. When the linear allocation starts in outer cylinders, the metadata

cluster can exploit the higher data rates to improve file system performance.

Alternatively, the linear allocation of space can start in the middle of the disk

as shown in Fig. 7 and wraparound. This may reduce average seek distances to

metadata by placing metadata in the middle of the disk.

d. File System Aging (Fragmentation)

Earlier file systems have used clustering to improve performance [25, 26]. These stud-

ies indicated that clustering can improve performance on empty or new file systems.

As the file system ages, free space on the disk becomes fragmented. This fragmenta-

tion degrades the spatial locality and hence the performance of the file system. VA

23

may similarly experience fragmentation as files expand through append operations.

In order to understand the long term effectiveness of our system, we have to consider

the effect of fragmentation due to file system aging [27].

e. Multiple File Systems

Currently, if multiple file systems are used, the number of partitions must equal the

number of file systems. Each file system resides on its own partition and uses its

own dedicated disk space. In contrast to this fixed partition approach, the data of

different file systems are written to disk sequentially with temporal locality if multiple

file systems are used with virtual allocation, i.e., all data are intermixed on the disk

regardless of partitions.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

Fixed Partition Approach

FS1 (EXT2) FS2 (EXT2)
FS2 metadata

0G 16G

VA

FS2 metadata

VA metadata

FS1 metadata

Fig. 8. The On-disk Layout Difference Between VA and the Fixed Partition Approach

Fig. 8 shows one example of the on-disk layout comparing the fixed partition

approach with our approach. In this example, two partitions are used. First, one file

system (FS1) is created on the first partition and then the other file system (FS2) is

created on the second partition. As shown in Fig. 8, in the fixed partition approach,

each EXT2 FS owns its partition and distributes its metadata. On the contrary, in

our approach, FS1 metadata is written in front of the allocation log and FS2 metadata

24

is written right after the FS1 metadata cluster.

3. Performance Issues

There are four factors that affect the performance of VA. The first factor is VA meta-

data hardening. The extra synchronous writes required for VA metadata hardening

may impact the overall performance. The second factor is the seek distance. Since

we change the spatial locality of the data on the disk, seek distances are different

from those of a normal storage system. The third factor is related to space allocation

policy, i.e., in VA, data observe different data rates than in a normal storage system.

The last factor is the in-line overhead. VA has to consult its block map for every I/O

request, which is not the case in normal storage systems. These four factors impact

the performance of VA.

B. Implementation

We developed a prototype of virtual allocation as a kernel module for Linux 2.4.22

based on the layered driver architecture. For the dynamic redirection (or remapping)

of disk I/O requests, the virtual allocation module must have the capability of observ-

ing all disk I/O requests. For this reason, we place VA between the operating system

block device support routines and the disk device driver. The in-memory block map

was implemented as a hash table. Each hash entry consists of 24bytes; 4bytes for

LDEV-ID, 4bytes for PDEV-ID, 4bytes for LBA, 4bytes for PBA, and 8bytes for

doubly-linked lists.

25

C. Evaluation

In this section, we compare the following systems: EXT2 and VA-EXT2, EXT3

and VA-EXT3, RAID-5 and VA-RAID-5. We used four workloads in our experi-

ments. The first workload was sequential reads and writes of large files of Bonnie++

benchmark [28]. We used test files of various sizes depending on the experiment and

used a 4KB chunk size. Bonnie++ sequentially writes a test file to disk and then

sequentially reads it by the unit of the chunk size.

The second workload we chose was Postmark [29]. We configured Postmark to

create files between 8KB and 64KB in a number of directories and perform 100,000

transactions. This file size range matches file size distributions reported in the file

system studies [30]. The number of directories and files are varied depending on the

experiment. In each case, the number of directories chosen is sufficient to span the

entire partition. Postmark focuses on stressing the file system by performing a series

of file system operations such as file creations, deletions, reads, and appends.

The third is the TPC-C benchmark developed for testing the performance of

database systems running OLTP workloads by the Transaction Processing perfor-

mance Council (TPC) [31]. The scale of the TPC-C benchmark is expressed in terms

of the number of warehouses represented. The database used in this study contains

16 warehouses. We used the Oracle 10g database with the Hammerora open source

TPC-C script [32].

As the fourth workload, we employ NFS trace with a replay tool. We used one

hour of Harvard EECS trace [33] which is a research workload from a university

Computer Science Department and employed TBBT [34] as a replay tool.

26

1. Experimental Setup

All experiments were performed on a commodity PC system equipped with a 3GHz

Pentium 4 processor, 900MB of main memory, and two kinds of 10,000 RPM Seagate

SCSI disks (ST3146807LW: 147GB, ST336607LW: 37GB) controlled by the Adaptec

SCSI Card 29160. All single disk experiments were performed on a disk of 147GB size

except the experiments of the space allocation policy and the multiple file systems,

where a disk of 37GB size was also used. In RAID experiments, three disks (one

147GB disk and two 37GB disks) were used to form RAID-5 array, and a Linux

Software-RAID driver was used.

The operating system was Red Hat Linux 9 with a 2.4.22 kernel, and the file

system was the ext2 or the ext3 file system depending on the experiment. All exper-

iments were run on an empty file system except the file system aging experiments.

Total accessed data of each test was much larger than the system RAM (900MB). We

ran all tests at least ten times, and computed 95% confidence intervals for the mean

throughput.5

2. Evaluation Issues

As mentioned earlier, the ZCAV effect can skew benchmark results enormously. Since

the effect of the allocation policy that we measure may be subtle, we had to reduce

ZCAV effects as much as possible [35]. Where necessary, to reduce ZCAV effects,

we used a partition of 7GB size (using outer cylinders) on the 147GB disk. There

was less than 0.2% performance variation due to ZCAV effects on up to 7GB of the

disk. The 16GB partition of the disk showed 2.4% performance variation, and the

32GB partition showed 5.4% variation. All these results were measured by ZCAV

5Where necessary, we showed the confidence interval as y-error bars in the results.

27

benchmark [36].

To see the impact of disk arm movements in a heavily utilized disk, we also

used a partition of 32GB size on the 37GB disk and compared results with the other

configuration (a 7GB partition on the 147GB disk) in the experiments of multiple file

systems.

We measured the in-line overhead due to the dynamic remapping of block ad-

dresses by employing a Postmark benchmark.6 Postmark was configured to create

50,000 files (between 8KB and 64KB) and perform 100,000 transactions in 200 di-

rectories. The performance overhead ranged from 0.6% to 3.3% compared to the

normal storage system. All following VA experimental results reported here include

this overhead.

3. Impact of Various Factors

a. VA Metadata Hardening

We measured the impact of VA metadata hardening for a large-file workload (Bon-

nie++) and a small-file workload (Postmark). We did experiments on ext2 and ext3

with two VA metadata hardening policies, i.e., an extent-based hardening (with ext2

and ext3) and a file system-based hardening (with ext3). We used a test file of 2GB

size in Bonnie++, and Postmark was configured to create 50,000 files (between 8KB

and 64KB) and perform 100,000 transactions in 200 directories. The 512KB extent

size was used in both experiments.

Fig. 9 shows the results of Bonnie++ benchmark. The figure depicts the write

and the read throughputs of Bonnie++ under different configurations. Each group of

6Another overhead is additional memory to manage the block map. With a 512KB
extent size, for 1TB storage, the memory overhead is 48MB.

28

69.6
66.166.0 65.8

57.2

65.8

54.7

65.5

55.2

65.6

0

10

20

30

40

50

60

70

80

WRITE READ

Operation

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

EXT2

VA-EXT2-EX

EXT3

VA-EXT3-EX

VA-EXT3-FS

Fig. 9. Impact of VA Metadata Hardening on Performance of VA for the Large-file

Workload (Bonnie++)

bars compares the performance among different configurations. Each group consists

of five bars: for reference, the first bar and the third bar show the performance of

EXT2 and EXT3 respectively. In system configurations, *-EX represents VA with the

extent-based hardening and *-FS denotes VA with the file system-based hardening.

The Bonnie++ results show that VA-EXT2 with the extent-based hardening in-

curred an overhead of 5.1% in write operations and incurred no measurable overhead

in read operations compared to EXT2. Similarly, VA-EXT3 with the extent-based

hardening incurred an overhead of 4.3% in write operations and incurred no mea-

surable overhead in read operations compared to EXT3. VA-EXT3 with the file

system-based hardening caused 3.5% overhead compared to EXT3. The impact of

the extent-based hardening was smaller in VA-EXT3 compared to VA-EXT2, which

can be explained as frequent journal accesses amortized the seek operation cost of VA

metadata hardening because of the journal’s proximity to VA metadata on the disk.

Fig. 10 shows Postmark results. In Fig. 10, we observed that VA-EXT2 with the

extent-based hardening showed a 2.2% performance increase in the transaction rate

29

126 129

86
92 95

0

20

40

60

80

100

120

140

160

EXT2 VA-512K EXT3 VA-EXT3-EX VA-EXT3-FS

Configuration

T
ra

n
sa

ct
io

n
 R

at
e

(f
ile

s/
se

c)

Fig. 10. Impact of VA Metadata Hardening on Performance of VA for the Small-file

Workload (Postmark)

and VA-EXT3 with the extent-based hardening showed a 7.1% performance increase.

VA-EXT3 with the file system-based hardening further increased performance up to

10.5%. The hardening overhead seems to be more than compensated by other factors

such as improved seek times due to sequential allocation. We will present more data

later to clarify this further.

These results indicate that the impact of VA metadata hardening is larger in the

large-file workload and when the VA is used with the ext2 file system (VA-EXT2).

We used, by default, VA-EXT2 with the extent-based hardening in all the following

experiments to provide the base performance. When a comparison is needed, we also

present the results of VA-EXT3 with both hardening policies.

b. Extent Size

We measured the impact of the extent size using Bonnie++ and Postmark. Four

different extent sizes were used in this experiment, i.e., 128KB, 256KB, 512KB, and

1MB. Bonnie++ and Postmark were configured to have the same configuration as

30

the previous experiment. We compared each performance result of VA-EXT2 to that

of EXT2.

69.6

54.4

62.2
66.0

69.0

0

10

20

30

40

50

60

70

80

EXT2 VA-128K VA-256K VA-512K VA-1024K

Configuration

W
ri

te
 T

h
ro

u
g

h
p

u
t

(M
B

/s
ec

)

Fig. 11. Impact of Extent Sizes on Performance of VA for the Large-file Workload

(Bonnie++)

126

112
122

129 131

0

20

40

60

80

100

120

140

160

EXT2 VA-128K VA-256K VA-512K VA-1024K

Configuration

T
ra

n
sa

ct
io

n
 R

at
e

(f
ile

s/
se

c)

Fig. 12. Impact of Extent Sizes on Performance of VA for the Small-file Workload

(Postmark)

Fig. 11 and Fig. 12 show the impact of the extent size in both workloads.

Each bar in Fig. 11 shows the write throughput of Bonnie++7 and each bar in

7The read throughput of each configuration was nearly the same, which was not
shown due to space constraints.

31

Fig. 12 denotes the transaction rate of Postmark. In both Bonnie++ and Postmark

results, larger extent sizes show better performance. Larger extents increase spatial

locality and reduce VA metadata overhead (both number of hardening operations

and the size of the hash table). Bonnie++ incurred overheads even at extent sizes

of 1MB whereas in Postmark, extent sizes of 512KB or larger incurred no overhead

or performed better than EXT2. The nature of I/Os, large (Bonnie++) versus small

(Postmark) contributed to these differences.8

1.000 1.003 1.004
1.014

0.90

0.95

1.00

1.05

128KB 256KB 512KB 1024KB

Extent Size

N
o

rm
al

iz
ed

 D
is

k
S

p
ac

e

Fig. 13. Normalized Disk Space to the Occupied Disk Space of the 128KB Extent for

Each Postmark Experiment

Large extent size can increase overall performance of VA-EXT2, but it may

increase occupied disk space due to fragmentation. We measured the occupied disk

space for each previous Postmark experiment and compared it for different extent

sizes. Fig. 13 shows these results. In the case of the 512KB extent size, only 0.4% disk

space overhead was observed compared to that of the 128KB extent. These results

indicate that we can use extents up to 1MB without much disk space overhead. All

the following VA experiments in this study used a 512KB extent unless specifically

8We also ran both benchmarks with VA-EXT3 and got results similar to VA-EXT2.
We didn’t report this result due to the similarity.

32

noted.

c. Reclaiming Allocated Storage Space

We studied the impact of deleted files in two scenarios, periodic purges and the

usual file system activity of file creation and deletion. For periodic purges, we used

Bonnie++ to create a large test file (of 2GB size) and delete it, which is followed by

the reclaim operation. For the usual file system activity, we used Postmark with the

same configuration as the previous experiment except for one parameter; we changed

the create/delete ratio from 5 (default) to 3. In this configuration, the file creation

happens with 30% probability and the file deletion happens with a probability of

70%. So, during transactions, the amount of data that the file system contains is

reduced. After transactions of Postmark, we reclaimed allocated space of deleted files

and created an additional 10,000 files three times to see the impact on the file system

block space. In each experiment, we ran the benchmark for EXT2 and VA-EXT2 and

recorded block allocation statistics, e.g., the number of allocated blocks in EXT2, the

number of allocated extents in VA-EXT2.

Table IV. Reclaim Operation of Periodic Purges

Operation
EXT2 VA Live Extents

Live Blocks (Number of Blocks)

1. Initial 0 0

2. FS create 27,509 217 (27,776)

3. File write to disk 552,311 4316 (552,448)

4. File delete 27,509 4316 (552,448)

5. Reclaim 27,509 217 (27,776)

33

Table IV shows the result of the Bonnie++ experiment. In this experiment, a

live block denotes a data block which contains valid data and a live extent denotes an

extent which contains at least one live block. The table represents the number of live

blocks of EXT2 and the number of live extents of VA-EXT2 during the experiment.

In the case of live extents in VA-EXT2, the corresponding number of blocks are also

shown in parenthesis for comparison with that of EXT2. The second row of Table

IV shows the statistics after the file system is created (§2). The third row shows

that as a result of test file creation (§3), EXT2 allocated 552,311 blocks whereas VA-

EXT2 allocated 4,316 extents (552,448 blocks). The number of allocated blocks in

VA-EXT2 was a little bit higher than that of EXT2 because the extent size (512KB)

was larger than the file system block size (4KB). The fourth row shows the statistics

after the test file is deleted before the reclaim operation (§4). The last row shows the

statistics after the reclaim operation (§5); the number of live extents of VA-EXT2

shown corresponds to the value after the reclaim operation. In this experiment, 100%

of the allocated extents could be reclaimed.

Table V shows the results of the Postmark experiment. In this experiment, a

touched block denotes a data block which is allocated by EXT2 at least once. The

table depicts the number of live blocks and touched blocks of EXT2 and the number

of live extents of VA-EXT2 during the experiment. Similar to the results of the

previous experiment, the second and the third rows of Table V show the number of

live blocks, touched blocks and live extents after the file system is created (§2), and

after the file set for transactions is written to disk (§3). At the fourth row of Table

V, which shows the statistics after transactions (§4), we can observe that the number

of touched blocks increased. The increased number of touched blocks corresponds

to newly allocated (not reused) blocks by EXT2 due to the file creation during the

transactions. VA-EXT2 also showed an increase of the allocated extents by a similar

34

Table V. Reclaim Operation of Usual File System Activity

Operation

EXT2 EXT2 VA-EXT2

Live Touched Live Extents

Blocks Blocks (Number of

Blocks)

1. Initial 0 0 0

2. FS create 27,509 27,530 217 (27,776)

3. File set write to disk 516,020 516,020 4,059 (519,552)

4. Do transactions 163,191 537,982 4,237 (542,336)

5. Reclaim 163,191 537,982 3,623 (463,744)

6. 10k files write to disk 260,494 537,982 3,713 (475,264)

7. 10k files write to disk 359,303 537,982 3,917 (501,376)

8. 10k files write to disk 457,126 539,926 4,176 (534,528)

35

amount.

The fifth row of Table V shows the resulting number of live extents in VA-

EXT2 after the reclaim operation (§5). In contrast to the result of the previous

experiment, VA-EXT2 could reclaim only 15% of total allocated extents. Transactions

in Postmark caused extent fragmentations, so that some extents could not be freed,

remaining partially live. The following three rows of Table V show the statistics

of EXT2 and VA-EXT2 when we created an additional 10,000 files three times (§6,

§7, §8). When we created 10,000 files (§6), EXT2 allocated 97,303 blocks while not

increasing the number of touched blocks, which means that EXT2 efficiently reused

previously allocated blocks. VA-EXT2 allocated 90 new extents (11,520 blocks) and

reused partially live extents for other blocks. These results indicate that the file

system efficiently reuses blocks so that partially live extents will eventually be filled

because reused blocks reside at the extents already allocated. The following two rows

of Table V show the results as more files are created.

0

50

100

150

200

250

1 17 33 49 65 81 97 113

Number of Occupied Extent Slots

N
u

m
b

er
 o

f
E

xt
en

ts

After Transactions

10k creation

20k creation

30k creation

Fig. 14. The Filled Status of Extents

Fig. 14 presents the extent statistics after doing transactions (§4) to after cre-

36

ating total 30,000 files (§8). The x-axis represents the filled status of the extent, and

the y-axis depicts the corresponding number of the extents. We can observe that as

more files are created after the reclaim operation, partially live extents get more and

more filled. Reclaiming allocated space of deleted files in the small-file workload may

require sub-extent valid bits at the VA layer. Large files, when deleted, can be very

efficiently reclaimed so that reclaimed space can be reused for allocation at the VA

layer.

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 256 512 1024

RAID−5
VA−RAID−5

W
rit

e
T

hr
ou

gh
pu

t (
M

B
/s

ec
)

Extent (Chunk) Size (KB)

Fig. 15. Performance of VA-RAID-5 of the Large-file Workload (Bonnie++)

d. RAID

We measured the performance of VA with RAID using the same benchmarks and

configurations as the extent size experiment. Fig. 15 shows the write throughput of

RAID-5 and VA-RAID-5 systems.9 As the extent size increases, the write throughput

of VA-RAID-5 increases, but even with the 1MB extent size, the write throughput

corresponds to only 52.5% of RAID-5. This overhead is due to the expensive small-

9RAID-5 and VA-RAID-5 systems showed nearly the same read throughput.

37

write cost of VA metadata hardening.

0.977
0.9891.000

0.987 0.976

17% 4% 1%

0.7

0.8

0.9

1.0

1.1

NO−HARDEN NVRAM− NVRAM− NVRAM−RAID−5

Configuration

N
or

m
al

iz
ed

 W
rit

e
T

hr
ou

gh
pu

t

Fig. 16. Impact of NVRAM

To reduce the overhead, we considered an alternative configuration using non-

volatile memory (NVRAM) for this workload; we gather VA metadata changes in

NVRAM until it reaches a predefined size, at which point, we commit all VA metadata

to disk. This enables aggregation of VA metadata writes to disk and correspondingly

reduces the small-write costs of RAID-5. Fig. 16 shows the result when we used

NVRAM with a 512KB extent size. The height of bar denotes the write throughput

normalized to that of RAID-5. In system configurations, NO-HARDEN denotes the

configuration where VA metadata hardening is turned off and NVRAM-* denotes

the configuration with NVRAM. The percentage in this configuration is the ratio

of the dedicated NVRAM size to total amount of VA metadata. With NVRAM-

1%, the write performance only suffers 1.2% penalty compared to the case when

hardening is turned off. This result indicates that a very small amount of NVRAM

can eliminate almost all VA metadata hardening costs in a VA-RAID-5 system. In

all other experiments except this one (e.g., VA-RAID-5 for the large-file workload),

38

we do not assume that we have NVRAM.

 60

 70

 80

 90

 100

 110

 120

 130

 140

128 256 512 1024

RAID−5

Extent (Chunk) Size (KB)

T
ra

ns
ac

tio
n

R
at

e
(f

ile
s/

se
c) VA−RAID−5

Fig. 17. Performance of VA-RAID-5 of the Small-file Workload (Postmark)

Fig. 17 shows the Postmark transaction rate of RAID-5 and VA-RAID-5 systems

for various extent (chunk) sizes. VA-RAID-5 with extent sizes of 256KB or higher

performed nearly as well or better than RAID-5. VA-RAID-5 shows better perfor-

mance with larger extent sizes in both workloads. It is observed that the small files

in Postmark impact the performance of the normal RAID-5 system as well as the

VA-RAID-5 system.

e. Space Allocation Policy

We performed two experiments to measure the impact of various data placement poli-

cies on the performance of VA. We used Postmark in these experiments. Postmark

was configured to create 3,500,000 files and perform 100,000 transactions in 200 direc-

tories. First, we measured the transaction rate of two configurations: VA on a 16GB

partition of the 147GB disk (VA NORMAL partition) and VA on a 16GB partition

of the 37GB disk (VA ZCAV partition). The data rate difference of the location of

39

0GB and 16GB of each partition was 2.4% and 14.0% on the two disks (due to ZCAV

effects).

The graph in Fig. 18(a) shows the performance of each configuration as a per-

centage of the transaction rate of the corresponding EXT2. VA on a ZCAV partition

performed better than EXT2 by 25% at 10% file system utilization, whereas VA on a

NORMAL partition showed 16% performance improvement. As the file system uti-

lization increases, the performance improvement decreases for both cases as the seek

time benefits from clustering decrease. However, VA on a ZCAV partition always

showed better performance improvement than VA on a NORMAL partition due to

higher data rates available for metadata on ZCAV partition.

The second experiment was done in the NORMAL partition which has almost the

same data rate across the partition, allowing us to focus on the impact of seek times.

We did experiments with two data placement policies. One policy (VA-NORMAL)

starts allocation from the beginning of the partition and the other one (VA-MIDDLE)

starts allocation from the middle of the partition as shown in Fig. 7. The latter policy

will place the metadata cluster (which consists of VA and FS metadata) in the middle

of the partition because FS metadata is created at the time of file system creation.

Fig. 18(b) shows various performance metrics of the two policies. As shown in Fig.

18(b), VA-MIDDLE improved the transaction rate by 2%, the file creation rate by

40%, the file deletion rate by 2%, the data read rate by 11% and the data write rate by

11% compared to VA-NORMAL. These performance improvements of VA-MIDDLE

are attributed to the fact that average seek distance to metadata is reduced compared

to VA-NORMAL.

40

 80

 90

 100

 110

 120

 130

 140

10 20 30 40 50 60 70 80 90

VA NORMAL partition

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

File System Utilization (%)

VA ZCAV partition

(a) Space Allocation Policy 1

1.00

Rate Rate Rate Rate

1.35

1.14

1.03

1.14

1.01
1.03

1.00
1.00

0.95 1.00

1.23
1.25

1.00
1.03

Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4 EXT2

Transaction Date WriteFile Creation File Deletion Data Read

Performance Metrics

VA−MIDDLE
VA−NORMAL

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(b) Space Allocation Policy 2

Fig. 18. Impact of Space Allocation Policies

41

6

6.4

6.8

7.2

7.6

8.0

0 2 4 6 8 10 12 14 16 18

D
at

a
R

ea
d

R
at

e
(M

B
/s

ec
)

Bin

Fig. 19. Impact of Metadata and Data Separation

f. Metadata and Data Separation

In order to study the impact of separating metadata and data into two separate

clusters, we modified Postmark to report on the data read rate of files based on their

proximity to metadata. We used a 32GB partition and populated files up to 75% file

system utilization. Files in the system are divided into 19 bins, where bin 0 is the

closest to metadata and bin 18 is the farthest away.10 The data read rate for files

in each bin is reported in Fig. 19. Bin 18 shows about 9% degradation of the data

read rate compared to that of bin 0. If we exclude the bias from ZCAV effects, the

degradation from metadata and data separation will be 4.6%. This is attributed to

the fact that the distance from metadata to bin 18 is farther than to bin 0.

10The (VA and FS) metadata cluster is located before bin 0.

42

684
625

357365

982

797

912

1066

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

 0

 200

 400

 600

 800

 1000

 1200

 1400

File Deletion

EXT2 EXT3

File Creation

C
re

at
io

n/
D

el
et

io
n

R
at

e
(f

ile
s/

se
c)

Operation

VA−EXT3VA−EXT2

Fig. 20. Impact of Metadata Clustering

g. Metadata Clustering

We configured Postmark to measure the speeds of file system create and delete op-

erations. Postmark was set to have a file system utilization of 30% in a 7GB parti-

tion. Fig. 20 shows the results of this experiment. VA-EXT2 with the extent-based

hardening incurred an overhead of 8.6% in the file creation phase and showed 8.6%

improvement in the file deletion phase. VA-EXT3 with the extent-based hardening

showed 2.2% performance increase in the file creation phase and 14.4% improvement

in the file deletion phase. VA-EXT3 with the file system-based hardening showed

16% performance increase in the file creation phase and 19.4% improvement in the

file deletion phase. In VA-EXT2, VA metadata hardening and seek distances affect the

performance of file create operations. In the file deletion phase, the seek operations to

access metadata determine the performance. VA-EXT2 showed faster deletion per-

formance than EXT2 due to metadata clustering. In VA-EXT3, the journal access

improved the performance by reducing the seek times to metadata.

43

h. File System Utilization

We measured the performance of VA according to various partition sizes and various

file system utilizations. We used Postmark to analyze the performance of normal file

system activities. Two different partition sizes were used: 7GB and 16GB. For each

partition size, we configured Postmark to have a file system utilization from 20% to

90% in units of 10%. For each partition size and each file system utilization, we

measured the transaction rate of VA-EXT2 and compared it to that of EXT2 with

the same configuration.

Fig. 21(a) shows the results of Postmark. A large partition with smaller utiliza-

tion works best in VA-EXT2 because data is relatively more clustered than EXT2.

VA-EXT2 showed about 7.6% performance improvement (excluding the ZCAV bias)

with a 16GB partition at 20% utilization compared to EXT2. As the file system gets

full, the on-disk layout of the two systems becomes similar. Therefore, the two sys-

tems show similar performance at larger utilizations. The performance results under

the partition size of 7GB show similar trends.

i. File System Aging

In this experiment, we measured the impact of fragmentation of the file system due

to aging on VA-EXT2 and compared it to EXT2 in order to examine the long term

effectiveness of our system. We modified Postmark to simulate file system activities

over time similar to [27].

First, it creates a number of directories and populates them with files up to 10%

file system utilization. It measures the transaction rate the same way as is done

in Postmark. Then it populates more files to make a file system usage of 20% and

measures the transaction rate again. It repeats these procedures up to 90% utilization.

44

 20

 40

 60

 80

 100

 120

 140

 160

 180

20 30 40 50 60 70 80 90

T
ra

ns
ac

tio
n

R
at

e
(f

ile
s/

se
c)

File System Utilization (%)

VA 16GB

VA 7GB
EXT2 7GB

EXT2 16GB

(a) File System Utilization

60

70

80

90

100

20 30 40 50 60 70 80 90

EXT2

R
el

at
iv

e
P

er
fo

rm
an

ce
 (

%
)

File System Utilization (%)

VA

(b) File System Aging

Fig. 21. Impacts of File System Utilization and Aging

45

The graph in Fig. 21(b) shows the performance of the file system at each utiliza-

tion as a percentage of the transaction rate of the corresponding empty file system.

As shown in Fig. 21(b), as the file system ages, VA-EXT2 incurs a performance

impact similar to that of EXT2 at different file system utilizations.

j. Multiple File Systems

Next, we considered the use of multiple file systems with virtual allocation. Specifi-

cally, We compared the fixed partition approach with our approach by performing two

experiments. In the first experiment, we used two configurations to see the impacts

of disk arm movements by employing two benchmarks (Bonnie++ and Postmark).

First, we created two 3.5GB partitions on the 147GB disk and created an ext2 file

system11 on each partition (VA-7GB). Both benchmarks were configured to have a file

system utilization of 30%. In the second configuration, we used two 16GB partitions

on the 37GB disk with ext2 file systems (VA-32GB), where both benchmarks were set

to have 80% utilization. We ran the benchmark on two ext2 file systems concurrently

and compared the results between VA and the fixed partition approach.

Fig. 22(a) shows the average throughput of two file systems from Bonnie++

benchmark and the average transaction rate of two file systems for Postmark. In the

large-file write workload, we observed that VA-7GB incurred an overhead of 19% and

VA-32GB caused an overhead of 17% compared to the fixed partition approach. The

VA metadata hardening is the main reason for this overhead as observed earlier. The

read operation of VA-7GB showed large performance improvement, i.e., by 24%, and

VA-32GB increased performance up to 29%. These performance gains are attributed

11We performed the same experiments using an ext3 file system with various jour-
naling modes and got similar results to those of EXT2, which were not shown due to
similarity.

46

1.00

0.810.83

1.24
1.29

1.041.06
1.00 1.00

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Postmark TRBonnie++ READBonnie++ WRITE

Operation

EXT2
VA−7GB

VA−32GB

(a) Multiple File Systems 1

1.00

1.06

1.11 1.09

0.7

0.8

0.9

1.0

1.1

1.2

EXT2 VA−32GB VA−HALF VA−FULL

Configuration

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
n

R
at

e

(b) Multiple File Systems 2

Fig. 22. Performance of Multiple File Systems with VA

47

Transactions

1.001.00 0.99 0.97
1.02

0.94
1.00 1.00

���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

N
or

m
al

iz
ed

 E
la

ps
ed

 T
im

e

EXT2
VA

Data Creation 1k 10k 30k

Operation

Fig. 23. Performance of VA for Database Workload

to the fact that if multiple file systems access a single storage device concurrently, the

fixed partition approach will incur higher disk seek costs between the two partitions,

whereas VA can reduce these seek costs significantly due to its allocate-on-write policy.

In the small-file workload, VA-7GB and VA-32GB improved performance by

3.6% and by 6.1%. These performance improvements are due to the reduction of

seek distances similar to the case of the large-file workload. These results indicate

that VA could provide performance improvement over fixed allocation for these work-

loads while increasing the flexibility of allocation across multiple file systems. In

both workloads, VA in heavily utilized disk (VA-32GB) showed better performance

improvements than in the other VA configuration (VA-7GB). The higher media rates

possible due to ZCAV effects and the placement of metadata in those regions con-

tributed to this difference.

In the second experiment, we modified the configuration of VA-32GB into two

other configurations to study the impacts on performance when two file systems are

not created at the same time. In the first configuration, the second file system is

48

created after 40% of the first file system is written. In the second configuration, the

second file system is created after 80% of the first file system is written. We call

these VA-HALF and VA-FULL. These configurations are designed to force metadata

separation of the two file systems. We measured the transaction rate of two file

systems the same way as is done in VA-32GB.

Fig. 22(b) shows these results. VA-HALF showed better performance than EXT2

by 10.7% and better performance than VA-32GB (where two file systems were created

at the same time) by 4.6%. In VA-HALF, the impact of VA metadata hardening is

reduced because the first file system already allocated 40% extents. These results

indicate that virtual allocation can get similar or better benefit even if multiple file

systems are not created at the same time. The performance result of VA-FULL shows

a similar trend.

k. Results for the Other Workloads

Fig. 23 shows the results of TPC-C workloads. The bar height represents the elapsed

time normalized to that of EXT2 for various database operations. VA-EXT2 showed

performance in different database operations comparable to EXT2 because the on-

disk layout of the workload was similar. Transactions were done on one large file (a

table-space), so most of the data was clustered in both the systems.

Fig. 24 shows the results of NFS trace replay. The bar height represents the

request latency of each NFS operation. VA-EXT2 showed similar performance to

that of EXT2.

49

0

2

4

6

8

10

12

14

getattr read write mkdir

Operation

R
eq

u
es

t
L

at
en

cy
 (

m
se

c)

EXT2
VA

Fig. 24. Performance of VA for NFS Trace Replay

D. Related Work

The related work on VA can be grouped into four categories. The first group pro-

poses file system-level changes, requiring that file systems be modified or replaced

to improve storage allocation flexibilities. The second group proposes a block-level

approach, the category under which VA belongs. The third group proposes changes

to the storage interface, i.e., the interface between the file system and the storage

system. Finally, the fourth group discusses the work in other system environments

(e.g., virtual machines).

1. File System-level

IBM’s Storage Tank [14] separates metadata operations from data operations to al-

low a common pool of storage space to be shared across heterogeneous environments.

Log-structured file systems (for example, LFS [17] and WAFL [18]) allow storage

allocation to be detached from file systems because all new data is written at the

50

end of a log. File systems such as ReiserFS [37] and JFS (Journaled File System)

[38] support expansion of file systems. None of these systems allocates storage space

based on the actual usage.

2. Block-level

Veritas Volume Manager [39] and other existing Storage Resource Management (SRM)

products such as IBM Tivoli Storage Manager [40] provide considerable flexibility in

storage management, but allocate storage space based on the file system size. Loge

[41] separates storage allocation from the file system to optimize write operations; it

writes blocks near the current disk-head position. The Loge system does not provide

storage allocation flexibility with traditional file systems. In contrast, the focus of

this study is on the integration of the flexible storage allocation scheme into a tra-

ditional file system environment. HP’s AutoRAID employed dynamic allocation in

order to reduce the small write penalty of RAID systems [42]. Petal [43] proposes

a disk-like interface which provides an easy-to-manage distributed storage system to

many clients, (e.g., file systems and databases). Petal’s virtual disks cleanly separate

a client’s view of storage from the physical resources, which allows sharing of the

physical resources more flexibly among many clients, but they still allocate storage

space according to the configured file system size. Recently a storage resource al-

location technique called thin provisioning has been introduced [44], which provides

storage allocation flexibility as our system does. However, the details about their

architecture, implementation and performance are unknown.

51

3. More Expressive Interfaces (Between the File System and the Storage System)

Object-based storage proposed by CMU [15] allows storage allocation to be done at

the storage systems as opposed to a file system manager. Logical disk [45] defined a

new interface to disk storage that separates file management and disk management.

Boxwood [16] exposed allocate/deallocate interface to the higher layer through the

chunk manager to allow flexible storage allocations. These approaches require changes

of the existing storage interface (in Boxwood), requiring the new storage devices (in

object-based storage) or modified file systems (in Logical disk).

4. Other System Environments

VMWare’s virtual machine [46] can operate in a mode where it uses a host file system

file as a virtual disk; in this mode, the host file is expanded dynamically when needed

(if the host OS supports sparse files, which is the usual case). A number of recent

studies have considered building federated file and storage systems [47, 48, 49] across

multiple workstations. These systems focus on the issues of trust and availability

among others, while allowing storage resources to be shared across multiple systems.

Virtual allocation is on-demand allocation; it is orthogonal to storage virtualiza-

tion products sold by vendors. Storage virtualization hides the connectivity, physical

characteristics, and organization of devices from file systems. However, existing prod-

ucts allocate storage based on file systems’ size, and don’t allow sharing of unused

space. This is akin to programs allocating the maximum amount of memory they

may need and not relinquishing this or sharing it even when they actually need much

smaller amount of memory. It is because the products employ static allocation where

every mapping between logical and physical block is predetermined for given size

52

when creating a logical volume. In contrast, in VA, every mapping is determined

dynamically as data is written (on-demand) so that storage can be allocated based

on actual use. Using VA, several different file systems may share single storage re-

source or a single file system may span multiple storage resources, resulting in better

flexibility.

E. Discussion

In virtual allocation, we identified the need for reclaiming the deleted file space at the

storage system. We also found that identification of file system metadata could lead

to efficiencies in hardening virtual allocation metadata through such policies as file

system based-hardening. We employed gray-box approach proposed by Wisconsin [19,

20] for the file system-based hardening and the reclaim operation. As an alternative,

we could use a stackable file system [50]. We can identify data types (e.g., metadata

or data) and detect file system delete operations by adding functionalities to the

stackable file system layer. The stackable file system approach is less constrained by

various platforms or file systems than the (gray-box) approach employed here. We

also implemented this approach and confirmed it is feasible.

F. Summary

In this chapter, we have proposed virtual allocation employing an allocate-on-write

policy for improving the flexibility of managing storage across multiple file sys-

tems/platforms. By separating the storage allocation from the file system creation,

common storage space can be pooled across different file systems and flexibly managed

to meet the needs of different file systems. Virtual allocation also makes it possible

for storage devices to expand easily so that existing devices incorporate other avail-

53

able resources. We have shown that this scheme can be implemented with existing

file systems without significant changes to the operating systems. Our experimental

results from a Linux PC-based prototype system demonstrated the effectiveness of

our approach.

54

CHAPTER III

DATA DISTRIBUTION IN NETWORKED STORAGE SYSTEMS

Storage ”bricks” are being used to build cost-effective storage systems that can scale

over a broad range of system sizes. A storage brick contains a microprocessor, a small

number of disk drives and network communications hardware. Such an approach has

been advocated by many researchers [4, 51, 52]. Some of the production systems have

taken a similar approach [53].

Network attachment of storage systems has also resulted in the possibility of con-

solidating or pooling of storage systems over wider geographic areas, for example stor-

age systems connected over Local/Metropolitan/Wide Area Networks (LAN/MAN/

WAN). It is expected that such network connectivity of storage systems will (a) en-

able wider (geographically) distribution and access of storage and (b) enable new

storage paradigms (such as ”storage as a service” [3]).

It is possible to build a large-scale storage system based on the infrastructure

mentioned above. For example, grid computing applications such as TerraGrid Clus-

ter File System [54] or IBM General Parallel File System (GPFS) [55] can employ

multiple storage bricks to provide high performance and scalability. These storage

bricks can be attached to clusters over LAN or over WAN [56].

Fig. 25(a) shows the example usage of this infrastructure in a University campus.

There are three Department file servers each of which has its ”local” (which is attached

directly to the server) disk. Each disk is also attached to network so that each

server can access other server’s disk if it is necessary. During normal times, each

server uses its local disk, but there may be cases when one server needs more storage

resources than it has. Such a case can occur, for example, when CS Department server

temporarily needs lots of storage space due to large-scale computing. Rather than

55

IP Network
Disk

Disk

ECE Dept.

Server

MATH Dept.

Server

Disk

CS Dept.

Server

(a) Cooperative Storage Consolidation

IP Network

Disk

Disk

File Server A

File Server B

Disk

File Server C

(b) Storage Hosting Service

Fig. 25. Application Examples of Networked Storage Systems

56

buying and attaching more physical disks to CS server, it would be better if we can

use other server’s available storage and network bandwidth. This application scenario

of cooperative storage consolidation can be generalized to storage hosting service as

shown in Fig. 25(b). In Fig. 25(b), storage devices are geographically distributed

and attached to the IP network. Any file server can lease available storage resource

as it needs. In this configuration, the increased flexibility of storage allocation poses

challenges to data distribution among disks because data distribution of each server

over the network impacts its performance directly.

In a large-scale storage system, it is important to (a) allocate data efficiently

because the cost of data reallocation is high due to the large scale and large network

latencies and (b) redistribute data adaptively in an automated manner according

to configuration changes or workload changes (after initial allocation) to improve

performance.

The problem described in (a) is referred to in the literature as the file allocation

problem (FAP). There is a significant body of research on this problem [57], but it is

not our focus. In this study, we focus on the problem of data redistribution (described

in (b)) in storage systems built out of networked devices. This study focuses on

data migration as a redistribution action. An area of ongoing research, automated

data migration requires deciding when to migrate, where to migrate, what data-set to

migrate, and how to migrate (migration speed) [58]. In this study, we consider these

migration decision issues in terms of balancing locality and load balance as explained

below.

When data is ”local” or proximate to the user1 over the network, user can observe

lower network latencies and hence can observe better performance. However, if the

1In this study, user is file system or application of storage devices.

57

user’s data sets are larger than the capacity of the local devices, a tendency to keep

data local may cause thrashing problems. Second, if the user’s data set receives a

significant number of I/O requests, the local devices may not be able to support the

required I/O rates or data rates. On the other hand, if user’s data is distributed

widely over such a storage network, we may be able to exploit multiple devices to

support the required I/O and data rates. Wider distribution of data also may result

in better load balancing. However, accesses over the network to ”remote” devices may

incur extra network latency overheads and may tend to be slower than local accesses.

Hence, there is a need to balance the locality of data accesses with load balancing in

such a system. In this study, we consider longer-term locality considerations at the

I/O or storage system beyond what is already exploited in memory. Data locality

and load balancing issues are studied earlier in memory systems, for example [59].

Multiple users, diverse workloads, and time varying I/O demands make this

problem even more challenging. When a user accesses data from multiple locations

on the network, data that was local during a previous access may become remote at

a later time.

In networked storage systems, we are considering data migration between devices

of similar characteristics (disks). The performance difference arises due to network

latencies and differences in load at the disks. When devices have equal response times,

a local disk will provide better performance than a remote disk, due to network

latencies. However, the response times of devices may fluctuate over time due to

differences in loads and workloads. A local disk may get slower than a remote disk

due to the increased load as more and more data is migrated to a local disk. The

migration of data has to take these issues into account. In networked storage systems,

the direction of migration of heavily referenced data may not always be in a fixed

direction, from a remote device to a local device. When multiple users are considered

58

from multiple vantage points of the network, the data may have to migrate in different

directions for different users at the same time.

Even when a single user is considered, migrating data to a local disk may not

always be beneficial even when thrashing (due to large data sets) is not a problem.

The local device may not be able to support the required I/O rates or data rates.

It may be better to keep some data remote in order to exploit multiple devices to

achieve higher I/O and data rates. Such considerations become more difficult when

multiple users access storage from multiple vantage points of the network.

We propose user-optimal migration to address these issues. In user-optimal mi-

gration, each user or application makes migration decisions based on what is best for

its application. This is contrasted with a centralized network-optimal migration of

data. We use I/O request response time as a measure of performance to decide on the

suitability of a device. We explain user-optimal migration with a single user and two

devices (A and B), while the approach is more general. If device A is local to the user,

initially the user may find A offers better performance than B. Data is then migrated

to A. As more and more data is migrated to A, the load on device A may get so high

that its performance may get worse than the performance of B. At that point, the

migration of data to A will stop. If the response time at A continues to remain high

and is found to be worse than B, eventually some active data may be migrated to

B to reduce the load on A in order to reduce the response times at A. This process

results in a stable operating point when the response times to both devices A and B

are nearly the same (including the effects of load and network latency). Locality is

exploited as more data migrates to A, but load balancing will also be considered to

make sure that disk A doesn’t get too heavily loaded as data is migrated to A.

When multiple users share storage devices over the network, each user employs

user-optimal migration of his/her data sets to improve the performance or access

59

times to his/her data. Data migration tries to balance locality and balance load of

each user’s data accesses in such an environment. Moreover, as the load from different

users fluctuates over time, user-optimal migration is expected to smooth out the loads

at storage devices.

Our work makes the following contributions and differs from the previous work

in the following ways:

• Propose (and evaluate) user-optimal migration policy to guide the migration

process.

• Choose active data (that is currently read or written) for migration to reduce

migration cost.

• Consider the possibility of migrating active data to remote devices in order to

improve load balancing.

• Use longer-term performance metrics to guide migration decisions.

• Consider data locality on networked devices.

The remainder of this chapter is organized as follows. Section 2 gives details of

the related work. Section 3 describes the algorithm of the user-optimal migration,

followed by our prototype implementation and evaluation in Section 4. Section 5

points to discussions and future work. Section 6 concludes the chapter.

A. User-Optimal Migration

In this section, we first describe data placement and next describe user-optimal mi-

gration policy. We present important design issues related to user-optimal migration.

60

1. Data Placement

In large-scale storage systems, storage system’s software may employ virtualization

in order to allow data to be placed where they are needed. Such virtualization breaks

direct coupling between physical and logical addresses and enables mapping of one

logical set of data to one or many physical locations. Commercial products such as

IBM Collective Intelligent Bricks (CIB) support this feature [51].

In such systems, an indirection map, containing mappings of physical to logi-

cal addresses, is maintained. Thus, every read and write request is processed after

consulting the indirection map and determining the actual physical location of data.

Similar structures have been used by others [23, 41, 42]. In our system, as the data

migrates from one device to another device, there is a need to keep track of the

remapping of the block addresses. When data is migrated, the indirection map needs

to be updated. This is an additional cost of migration. We factor this cost into the

design, implementation and evaluation of the proposed scheme.

Migrating data in units of file system blocks (usually 4KB) is easier, but requires

a larger amount of information in the indirection map. In order to accommodate

these two competing issues of flexibility and the need for smaller indirection maps,

we allocate data in 128KB chunks. In order to allow migration of data in multiples

of file system block sizes (typically, 4KB), we also maintain a block validity map.

For this purpose, our indirection map contains a block validity bit of each file system

block and two locations for each data chunk (e.g., part of a chunk may reside at

device A and the other part may reside at device B). An entry of an indirection map,

in our system, is a 5-tuple as shown below: (logical-chunk-identifier, A<address,

validity-map>, B<address, validity-map>). We have considered multiple options for

the indirection map, but the evaluation of these options is outside the scope of the

61

current study (primarily due to lack of space). Data caching in shared memory

machines have explored similar issues of data structures, flexibility and overheads

[60]. It is also noted that the indirection map itself can migrate over the network

and can be cached within the memory of individual storage bricks for performance

reasons.

Data is migrated to a device that has unused or unallocated storage. A back-

ground process merges inactive partial chunks between two devices to keep unallo-

cated storage space available on each device for facilitating migration.

2. Design Issues

User-optimal migration is based on virtualized storage architecture which is explained

above. In this subsection, we explain the design rationale of user- optimal migration

in terms of migration decision issues.

a. When to Migrate

User-optimal routing has been proposed in [61] for adhoc wireless networks and has

been applied in other contexts [62]. While switching paths over which packets are

routed does not involve significant overheads, data migration in storage systems in-

volves costs in reading (from old location), transferring (over the network) and writing

data (into new location). These costs need to be taken into account in our approach

of user-optimal data migration.

We factor these costs by initiating migration only when the performance differ-

ence between devices exceeds by some amount, say δ (migration threshold). Con-

sidering two devices on the network, data present on one device A, is migrated to

another device B, when response time rA − rB > δ, where ri includes both the net-

work access times and device response times. When the device is locally-attached

62

(directly connected to that server), ri measures data access latency from the local

disk (disk seek and rotation time plus data transfer time plus disk queuing time). For

a network-attached disk, network latency and network storage protocol processing

delay are additionally added. Our approach keeps track of response times of different

devices over the network continuously (as explained below) to facilitate the migration.

The δ parameter controls the onset of migration in the system. A small δ makes data

migration more responsive to differences in response times and a very large δ leaves

the data where it is allocated. In this study, we compute the δ parameter based on

the observed statistics, i.e., δ =2 * standard deviation of response times.

Caching in memory can take advantage of short-term temporal locality of data

access patterns. Data migration is intended to take advantage of longer-term tem-

poral locality in data access patterns. Hence, we measure response times over longer

periods of time to guide data migration decisions. To minimize the short-term vari-

ations while keeping track of longer-term trends in performance, we employed expo-

nential averaging which is widely employed in network measurements, for example in

estimating round trip times and queue lengths [63].

b. Where to Migrate

In general, when data can reside on multiple (more than two) devices, data currently

on a device with higher response time will be migrated to the device with the lowest

response time. It is possible to design several strategies that accomplishes this goal.

In this study, we sort devices based on response times and prioritize migration from

the device with the highest response time to the device with the lowest response

time. If response times to be compared are the same or in similar range, we use

randomization to break the tie.

63

c. What Data to Migrate

In order to reduce the cost of migration, data that is currently read or written to

device A is migrated to B. If migrated data is not accessed often, migration may

not be helpful in improving performance. Therefore, we need to choose part of data

from active data as migration candidates. For this purpose, we maintain migration

candidate list employing probabilistic LRU algorithm [64]. In this scheme, an accessed

item if not already on this list, is entered into the list with a small probability. Hence,

the list contains mostly frequently accessed items. Since the list is driven by the LRU

policy, not recently accessed items fall off the list over time. As a result, the list mostly

contains frequently and recently accessed data. When migration onset condition is

met, we consult migration candidate list to check if current accessed data is in the

list. Migration occurs only if data is in the list.

As a result, migration involves the steps of transferring the currently accessed

data over the network and writing to the second device. This policy of migrating

active data, more importantly, results in not causing any additional load at the device

with higher response times.2 We also considered other migration policies such as

migration on read and migration on write. The former policy migrates data only

when it is read and the latter one moves data only when it is written. We don’t

present these results here due to lack of space. The policy presented in this study is

migration on access where data migration occurs when data is read or written.

2Migrating inactive data from heavily loaded device increases load further on that
device because migration involves reading data from that device.

64

d. How to Migrate

When the response times satisfy the constraints mentioned above, active data mi-

gration is initiated. The migration rate, rate at which data is migrated, needs to be

carefully chosen. High migration rate will impact normal read and write accesses by

increasing the load on the network and the devices. High migration rate also may al-

ter the data access patterns quickly and significantly to result in considerable changes

to response times at different devices. This may result in oscillations if not carefully

managed. Too small a migration rate may not adjust access time imbalances quickly

enough to improve performance. We use migration tokens to control the speed of

migration. The number of migration tokens controls the number of requests that

are migrated at any given time. For data migration (read or write), it must get a

token first. If it cannot get a token, read and write requests are processed normally;

migration doesn’t occur.

e. Allocation Policy

Data migration remaps initial allocation of blocks based on performance. Initial

allocation influences the load balance and data locality and hence influences data mi-

gration. We consider two allocation strategies in our study: striping and sequential

allocation. Striping initially allocates data evenly over the devices resulting in bal-

anced load (in most cases). The sequential allocation method allocates data locally

until storage space is exhausted on the local device, at which point data is allocated

on a remote device. Sequential allocation favors local devices over load balancing.

We study user-optimal migration with both allocation methods. When coupled

with striping, hot data would be migrated to local device over time, improving locality

and decreasing load balance. When coupled with sequential allocation, hot data

65

may be migrated to remote device when the local device gets heavily loaded, thus

improving load balance over time.

f. Multi-user Environment

User-optimal migration migrates data in a user-selfish manner based on data access

latency observed by each user. The migration actions initiated by one user may

affect the performance of other users for some time. However, it is expected that

the migration actions will tend to improve the performance of all users over longer

periods of time. We will study user-optimal migration in a multi-user environment

to understand these issues.

B. Evaluation

For evaluation, we implemented the following systems as a Linux kernel driver. Each

configuration name consists of <allocation policy-migration policy>.

• STR-NOMIG: Data is striped over available disks. No migration is used.

• SEQ-NOMIG: Data is sequentially allocated. No migration is used.

• STR-MIG: Data is allocated by striping and migration is performed using

user-optimal migration protocol.

• SEQ-MIG: Data is allocated sequentially and migration is performed using

user-optimal migration policy.

The next subsections present performance evaluation and comparison between

each system.

66

1. Workload

We used SPECsfs benchmark as workload for our study. SPECsfs 3.0 is the latest

version of the Standard Performance Evaluation Corp.’s benchmark that measures

NFS file server’s performance [65]. It is a synthetic benchmark that generates an

increasing load of NFS operations against the server and measures the response time

and the server throughput as load increases. It defines both the operation mix and

scaling rules. The operation mix of SPECsfs 3.0 is mostly small metadata opera-

tions and reads, followed by writes. SPECsfs creates files that will later be used for

measurement of the system’s performance according to its scaling rules and performs

transactions following the operation mix.

SPECsfs reports a curve of response time vs. delivered throughput (not offered

load). The signature of the SPECsfs results’ curve contains three key features: the

base response time, the slope of the curve in the primary operating regime, and the

throughput saturation point. At low throughput, there is a base response time which

is the best response time obtainable from the system. As load on the server increases,

response time tends to increase (e.g., linear relationship). This slope indicates how

well the server responds as load increases. As the load further increases, there will be

a throughput saturation point at which a bottleneck in the system limits the through-

put. Several factors such as network, the speed of the server and client processor, the

size of file cache, and the speed of the server disks determine these features [66].

In this study, we focus on data migration strategy on server disks. Thus, we

configure the system to have a bottleneck in server disks to increase the likelihood of

data migration. All the following results are for systems running SPECsfs 3.0, NFS

version 3 using UDP.

SPECsfs is used for our evaluation because it reflects realistic workloads. It tries

67

to recreate a typical workload based on characterization of real traces by deriving its

operation mix from much observation of production systems [65]. At the same time,

using SPECsfs workload is challenging. Its operation phase consists of file creation

and transactions, each of which has different characteristics; the file creation phase is

mostly write operations while the transaction phase involves random reads and writes.

Thus, user-optimal migration must adapt to these abrupt access pattern changes and

load changes over time.

IP Network

(netem)

Disk A

Disk B

NFS Server A

NFS Server B

MIG

Disk C

NFS Server C

MIG

MIG

Fig. 26. Experimental Configuration

2. Experimental Setup

Fig. 26 shows our experimental configuration. All of the machines in our experiments

consist of a commodity PC system equipped with a 3GHz Pentium 4 processor, 1GB

of main memory. Three disks are connected to each NFS server: one locally (di-

rectly) attached disk (a 10,000 RPM Seagate SCSI disk through Adaptec SCSI card

68

Table VI. Three Different Network Latencies Used in This Study

RTT

avg. min. max. mean dev.

9.0ms 4.3ms 18.5ms 2.3ms

17.0ms 12.4ms 24.3ms 2.2ms

25.0ms 20.5ms 32.2ms 2.2ms

29160) and two network attached disks (same kind of disks connected through iSCSI3

protocol). We use two clients (load generators) for each NFS server.

The operating system was Red Hat Linux 9 with a 2.4.30 kernel and the exported

file system (of each NFS server) was an Ext2 file system. To see the impact of network

latency, we used netem [67] which provides network emulation functionality for testing

protocols by emulating the properties of wide area networks. Netem is included, by

default, in Linux kernel 2.6 distribution. Three subsystems are connected through

a router with network emulator (netem) in 100Mb/s LAN. We used three different

network latencies as shown in Table VI (9ms RTT was used as a default, unless

specifically noted). We employed δ =2 * standard deviation of device response times

+ 2 * standard deviation of RTT to control the onset of migration. Inherent variance

of netem added reality to the experiments in addition to access pattern changes of

SPECsfs workload.

3iSCSI stands for Internet SCSI, which enables to carry SCSI commands over IP
networks.

69

3. Single-User Environment

For single-user environment, we used NFS Server A with two load generators. NFS

Server A employed Disk A (local) and Disk B (remote) each of which had a 16GB

partition.4 It exports a 32GB file system which spans Disk A and Disk B to its load

generators. First, we evaluate the impact of the design parameters in user-optimal

migration and then consider more complex scenarios.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

1 Token/sec
4 Tokens/sec

Fig. 27. Impact of Migration Rate

a. Migration Rate

For this experiment, we used striping with the user-optimal migration scheme (STR-

MIG). Data is allocated by striping over local disk (Disk A) and remote disk (Disk B).

If the request response time of remote disk is larger than that of local disk by δ, then

data migration from remote disk to local disk is initiated and vice versa. We used

4For intuitive explanation, we call Disk A as local disk and Disk B as remote disk
in single-user environment.

70

9ms of RTT. Fig. 27 shows the results with different number of migration tokens.5

The base response time in the case of four tokens was better than that of one token

case by 13.6% because a system with four tokens could reduce the number of remote

disk accesses more due to a faster migration rate. However, faster migration caused

earlier throughput saturation due to higher loads. In the system with one token, data

migration occurred in one direction, from remote disk to local disk as the load is varied

from 100 operations/sec to the saturation point. In the system with four tokens, the

data was migrated from remote disk to local disk at lower NFS throughputs and

from local disk to remote disk at higher NFS throughputs. The faster migration at

lower throughputs to local disk resulted in higher loads at the local device at higher

throughputs, which in turn, resulted in migrating data to remote disk.

Setting number of migration tokens dynamically based on workloads and net-

work latencies seems feasible and is a subject of future study. In all the following

experiments, we used the migration rate of four tokens per second.

b. Striping

Fig. 28(a) shows the results of two configurations; normal striping (STR-NOMIG)

and striping with user-optimal migration (STR-MIG). STR-MIG showed better base

response time by 24% and at higher loads, it improved performance from 6.7% to

20% when compared to STR-NOMIG. In addition, it could increase the saturation

point by 9.6% over that of STR-NOMIG. This performance improvement is attributed

to the fact that striping suffers from larger remote disk access latency, while user-

optimal migration could reduce the number of remote disk accesses by migrating

5Since the SPECsfs benchmark reports the response time vs. delivered throughput,
as opposed to offered load, attempts to exceed the saturation point can result in fewer
operations per second than attempted. In Fig. 27, the actual x value of data point
indicates delivered throughput.

71

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

STR-NOMIG
STR-MIG

(a) Striping with User-optimal Migration

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

STR-NOMIG 17ms
STR-MIG 17ms

STR-NOMIG 25ms
STR-MIG 25ms

(b) Impact of Network Latency in Striping

Fig. 28. Single-user Striping

72

data gradually from remote disk to local disk. In normal striping (STR-NOMIG),

the remote response times limit the realized throughput. User-optimal migration

could increase the throughput saturation point by migrating data from remote disk.

Fig. 28(b) shows the impact of network latency. As we expected, migration

showed larger performance improvement as network latency got larger. STR-MIG

with 17ms RTT improved the base response time by 24.3% and improved the response

time for higher loads from 8.5% to 26.5%. It increased the throughput saturation

point by 9.1%. Similarly, STR-MIG with 25ms RTT improved the base response

time by 33.3% and improved response times at higher loads from 7.0% to 29.8%.

The throughput saturation point was increased by 10.8%. High network latency

directly impacted performance of the normal striping system, while STR-MIG was

less sensitive to network latency increase because data migration can effectively reduce

the impact of higher network latency (by improving locality).

c. Sequential Allocation

Fig. 29(a) shows the results of sequential allocation (SEQ-NOMIG) and sequential

allocation with user-optimal migration (SEQ-MIG). When local disk is not heavily

loaded (until load 400), there is no difference between the two schemes. At load

600, SEQ-NOMIG started suffering from heavy local disk load, while SEQ-MIG mi-

grated active data to remote disk to improve load balance.6 This caused performance

improvement in response time up to 45.3% at higher loads. At the same time, it

increased the throughput saturation point by 18.2%. In contrast to normal striping,

in sequential allocation, the bottleneck of the system was local disk. Larger satura-

tion point of user-optimal migration is attributed to the fact that data migration to

6When migration was initiated at load 500, it incurred a little overhead on response
time.

73

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

SEQ-NOMIG
SEQ-MIG

(a) Sequential Allocation with User-optimal Migra-

tion

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

SEQ-NOMIG
SEQ-MIG 9ms

SEQ-MIG 17ms

(b) Impact of Network Latency in Sequential Allo-

cation

Fig. 29. Single-user Sequential Allocation

74

remote disk could reduce the load of local disk.

Fig. 29(b) shows the impact of network latency. In SEQ-MIG with 17ms RTT,

number of migrations were fewer than in SEQ-MIG with 9ms RTT. This resulted in

worse response time than that of system with 9ms RTT at higher loads. In 25ms

RTT, migration didn’t happen; user-optimal migration decided not to migrate data

because of remote disk’s higher network latency. The data set was small enough to

fit on the local disk and hence the network latency has no impact on the performance

on the SEQ-NOMIG system.

d. Discussion of Results

From Fig. 28(a) and Fig. 29(a), we can observe that systems employing migration

(STR-MIG and SEQ-MIG) exhibited better characteristics than systems without mi-

gration, with striping or sequential allocation. STR-MIG offered better response

times than STR-NOMIG at most NFS throughputs. SEQ-MIG offered similar re-

sponse times as SEQ-NOMIG at lower loads while improving the throughput satu-

ration points and response times at higher loads. This adaptability comes from the

flexibility of user-optimal migration policy; the direction of migration changes based

on changes in loads at different disks.

Fig. 30 shows the performance comparison between two migration schemes;

migration based on locality and user-optimal migration (STR-MIG and SEQ-MIG). In

migration based on the locality scheme, every accessed data on remote disk is migrated

to local device while inactive data is migrated to remote device. The performance of

this scheme became worse as load increased (due to the heavily loaded local disk).

When the working set size exceeded the local device size, it could only deliver very low

throughput due to thrashing. User-optimal migration is observed to perform better

than the locality based migration scheme and achieved higher throughput saturation

75

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500 600 700 800 900 1000 1100

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

Migration based
on locality

STR-MIG
SEQ-MIG

Fig. 30. The Comparison Between Different Migration Schemes

points.

4. Multi-User Environment

For multi-user environment with striping, we used three NFS Servers A, B and C

with two load generators each. NFS server A exports a 32GB file system which spans

Disk A, Disk B and Disk C to its load generators. NFS server B exports a 32GB file

system which spans Disk B, Disk C and Disk A to its load generators. NFS server

C is similar. Thus, NFS server A, B and C share storage resources (Disk A, Disk B

and Disk C), and data of three servers may be intermixed on the three disks. For

multi-user environment with sequential allocation, we used two NFS Servers A and

B with Disk A and Disk B.

a. Striping

In this experiment, we used two configurations. In the first configuration, three NFS

servers used striping simultaneously (STR-NOMIG) and in the second one, three

76

NFS servers used striping with user-optimal migration concurrently (STR-MIG). We

compare results between the two configurations here.

We ran the three servers at different loads. We operated NFS server A at varying

loads from 120 to 1200 and simultaneously operated NFS server B at varying loads

from 80 to 800 and NFS server C from 40 to 400. Thus, the load distribution of server

A, B and C was 3:2:1. This allowed us to study the impact of different loads at the

different servers.7 We used 9ms of RTT. Fig. 31(a) and 31(b) show the result of each

NFS server’s performance and average performance of all three servers. In Fig. 31(a),

using user-optimal migration, performance improvement in NFS server A was from

7.3% to 20.1% and performance improvement in NFS server B and in NFS server C

were similar to server A. We could observe that each server tried to improve locality;

each server migrated its remote data to its local disk. As a result, each server could

improve response times significantly compared to normal striping case. Since the data

was originally striped across all the disks, the loads at all the servers together impact

the response times at the disks. Fig. 31(b) compares the average performance of two

configurations. Our system (STR-MIG) improved response time from 6.6% to 20.4%

and increased the saturation point by 5.4% compared to STR-NOMIG.

Fig. 32(a) shows the total number of requests served at Disk A, Disk B and

Disk C as a function of time from the viewpoint of NFS server A. We can observe

that migration from Disk B and Disk C to Disk A was continuously done during

the benchmark to reduce the number of remote disk accesses (denoted as a Disk B

request and Disk C request in Fig. 32(a)). Without migration, nearly equal number

of requests would have been observed at the three disks.

This migration helped the system to improve locality, but it may result in lower

7We also conducted experiments when each server has the same load. Similar
results were observed and hence not reported here.

77

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

Server A (STR-NOMIG)
Server A (STR-MIG)

Server B (STR-NOMIG)
Server B (STR-MIG)

Server C (STR-NOMIG)
Server C (STR-MIG)

(a) The Performance of Individual Server

 2

 3

 4

 5

 6

 7

 8

 9

 10

 200 400 600 800 1000 1200 1400 1600 1800

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

STR-NOMIG
STR-MIG

(b) Average Performance of All Servers

Fig. 31. Multi-user Striping with User-optimal Migration

78

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 2000 4000 6000 8000 10000 12000 14000

N
um

be
r

of
 R

eq
ue

st

System Time (sec)

Disk A request
Disk B request
Disk C request

Disk A request

Disk C request

Disk B request

(a) Number of Requests of NFS Server A

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

D
is

k
A

D
is

k
B

D
is

k
C

D
is

k
A

D
is

k
B

D
is

k
C

D
is

k
A

D
is

k
B

D
is

k
C

D
is

k
A

D
is

k
B

D
is

k
C

D
is

k
A

D
is

k
B

D
is

k
C

D
is

k
A

D
is

k
B

D
is

k
C

2000 4000 6000 8000 10000 12000

System Time (sec)

N
u

m
b

er
 o

f
R

eq
u

es
ts

Server C
Server B
Server A

(b) Request Distribution

Fig. 32. Request Statistics

79

balance of load. Fig. 32(b) presents overall request distribution among the three

disks during the experiment. Each group consists of three bars: the left most bar

denotes number of requests issued on Disk A and the next two bars represent the

number of requests issued on Disk B and Disk C from the three NFS servers. In

Fig. 32(b), we can observe the following. First, the fraction of the server A requests

served at disk A gradually increased indicating that server A increased its locality

during the experiment. Similarly Server B increased its locality at Disk B. Disk C

showed relatively balanced request distribution because server C was the most lightly

loaded server. Second, in a normal striping system, the number of requests issued

on Disk A, Disk B and Disk C would be the same (in most cases). It is observed

that load balance was decreased by up to 12.8% in user-optimal migration. This

was a consequence of the improved locality and the imbalanced load across the three

servers. It is also noted that the load imbalance at the disks is not at the same level

as the load imbalance at the servers (3:2:1).

b. Sequential Allocation

Similar to the previous experiment, we configured two NFS servers to use sequential

allocation without migration (SEQ-NOMIG) and with migration (SEQ-MIG). Server

A allocates its data first on Disk A and then on Disk B in a concatenated fashion and

similarly, server B allocates its data first on Disk B and then on Disk A, i.e., locality

is maximized for each server’s data. We tested loads of 100 to 1100 at server A and

tested loads of 25 to 400 at server B. Server B’s load was kept at a quarter of server A’s

load in this experiment. Different loads at the servers result in different loads at the

devices when data migration is not employed. Fig. 33(a) and 33(b) show the result

of each server. At load 500, server A started data migration to Disk B due to the

heavy load of Disk A. User-optimal migration improved the performance of the heavily

80

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

SEQ-NOMIG
SEQ-MIG

(a) NFS Server A

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300 350 400 450

R
es

po
ns

e
T

im
e

(m
se

c)

NFS Ops/sec

SEQ-NOMIG
SEQ-MIG

(b) NFS Server B

Fig. 33. Multi-user Sequential Allocation with User-optimal Migration

81

loaded server A. It improved throughput saturation point by 11.7% at server A. Data

migration of server A impacted the performance of server B. However, response time

improvement in server A (e.g., from 10.1ms to 6.5ms) was more significant than the

response time increase in server B (e.g., from 2.2ms to 3.6ms).

This experiment also highlights the local good versus global good tension that

is addressed by our approach. While server A’s performance improved in this exper-

iment at the cost of server B’s performance, overall (global) average response time

also improved at the same time (since there are more requests at server A). Over

time, the response times of the two devices will be within δ (migration threshold)

and migration will stop.

c. Discussion of Results

When multiple users share storage resources by striping and those devices have perfor-

mance differences (due to disk hardware or network latencies), user-optimal migration

could improve performance by improving locality. In multi-user workloads, the re-

sulting improvement in locality did not decrease load balance much. If multiple users

use sequential allocation and there are load differences, user-optimal migration allows

a heavily loaded server to reduce its load by migrating its data to a server with less

load.

C. Related Work

Data (file) migration has been studied extensively earlier in systems where disks and

tapes are used [57, 68, 69, 70, 71]. As mentioned earlier, we are considering data

migration among disks. Characteristics of data migration can be much different in

two cases. First, the ratio of access time of local disk and remote disk is much smaller

82

than that of disk and tape, the decision of data migration among disks can be different

from disk and tape case. Second, the performance of disk is always better than that

of tape, heavily referenced data always migrate from tape to disk. In contrast, in

our case, heavily referenced data may migrate in different directions depending on

workloads.

Data migration has also been studied in HP’s AutoRAID system where data

can migrate between a mirrored device and a RAID device [42]. In these systems,

hot8 data is migrated to faster devices and cold data is migrated to slower devices

to improve the access times of hot data by keeping it local to faster devices. When

data sets are larger than the capacity of faster devices in such systems, thrashing

may occur. Some of the systems detect thrashing and may preclude migration during

such times [42]. Our data migration scheme is more general and considers migration

among multiple disks over a network with dynamically changing characteristics. Data

migration direction is decided by workload changes - a faster device at some time can

become a slower device later and vice versa.

Aqueduct [72] deals with data migration among storage devices without applica-

tion down-time. It takes a control-theoretical approach to provide QoS guarantees to

client applications during a data migration, while still accomplishing the data migra-

tion in as short a time as possible. Similar to our system, Aqueduct uses I/O request

response time as a performance measure, but there are significant differences from

our work. First, Aqueduct is only focused on how to migrate data without signif-

icantly impacting foreground activities. Other migration decision issues mentioned

in the earlier section, i.e., migration initiation, destination, data set to migrate were

statically decided (e.g., by system administrator). Only migration speed is deter-

8Data that is currently being accessed or active is called ”hot” data and data that
is not currently being accessed or inactive is called ”cold” data.

83

mined dynamically according to the impact on foreground performance. In contrast,

in our system, all of the migration issues are decided dynamically based on system

characteristics such as workload, disk access locality and disk load. Second, we focus

on migrating active data (that is currently being accessed), which results in reduced

migration cost.

The problems of data distribution in large-scale storage systems are addressed in

[73, 74, 75]. This body of work is focused on data migration as a result of configuration

changes such as insertions or removals of disks. Handling heterogeneity in shared-

disk file systems is addressed in [76], where observed request latencies were used

for adaptive file set migration among servers to balance the metadata workload on

servers. Our work is different from this work in two points: (a) Our system is dealing

with migrating block-level data in contrast to file-level data (e.g., file sets) and (b)

we consider a multi-user environment where several applications compete for shared

resources.

Request distribution, load balancing and memory cache hits are considered in

LARD [77] for improving the performance of clustered file servers. D-SPTF [78]

additionally considered disk head scheduling when redirecting requests in brick-based

storage systems where multiple copies of a data item may be present. In this study, we

are considering the case where there is single copy of a data item, i.e., no replication.

A number of studies have pointed to the need for improving the locality of ac-

cesses when devices are networked [10, 79, 80]. These studies have pointed to the

importance of reducing the impact of network access latencies on applications’ per-

formance. File systems and other applications already employ caching to exploit the

locality characteristics of data accesses. As mentioned earlier, we consider longer-term

locality considerations at the I/O or storage system beyond what is already exploited

in memory.

84

D. Discussion

As an alternative approach to ours, we could think of a policy which would implicitly

create a storage hierarchy, where heavily referenced data is migrated in the local

storage, and less referenced data is migrated in the more distant networked storage.

This idea is tested against our system and the results are presented in Fig. 30. The

primary difference from hierarchical memory systems is that the loads at the devices

can exceed disk throughput capacities and queuing delays can build up. Hence, a local

disk can be slower if all the needed data is on the local disk (and hence a higher load)

than a remote disk (because of lower load). A second reason is that the access times

of local and remote devices are a factor of 2 or 3 away, not an order of magnitude

higher as in cache-memory hierarchy.

Disks have been traditionally attached to hosts or servers. Only recently, they

are being attached to networks, either Storage Area Networks or IP networks. Most

of current storage systems do static allocation of storage at the time of file system

allocation and do not provide the flexibility that is being pursued here.

E. Summary

In this chapter, we have proposed user-optimal migration for balancing load and local-

ity in a networked storage system. Through realistic experiments on an experimental

testbed, user-optimal migration is shown to automatically and transparently balance

disk access locality and load balance through migration of active data blocks. Mi-

gration is decided by longer-term performance metrics and it is shown to adapt to

changes of workloads and loads in each storage device in a networked environment.

User-optimal migration was shown to improve locality with an allocation policy of

striping and to improve load balance with an allocation policy of sequential allocation.

85

We have shown that user-optimal migration is effective in multi-user environments

and can effectively share common storage resources under different user loads. We

have also shown that the user-optimal migration policy can outperform policies based

on maximizing locality or load balance alone.

86

CHAPTER IV

CONCLUSIONS

A. Dissertation Summary

In this dissertation, we have considered some of the challenges posed by the emerg-

ing networked storage systems. Traditional file systems employ a static allocation

approach where the entire storage space is claimed at the time of the file system

creation. This results in space on the disk is not allocated well across multiple file

systems. We have proposed virtual allocation employing an allocation-on-write pol-

icy for improving the flexibility of managing storage across multiple file systems. By

separating the storage allocation from the file system creation, common storage space

can be pooled across different file systems and flexibly managed to meet the needs of

different file systems. We have shown the effectiveness of our approach through the

evaluation of it.

Next, we have examined the problem of balancing locality and load in networked

storage systems with multiple storage devices. Data distribution affects locality and

load balance across the devices in a networked storage system. We have proposed user-

optimal migration which balances disk access locality and load balance automatically

and transparently through migration of active data blocks. Migration is decided by

longer-term performance metrics and it is shown to adapt to changes of workloads

and loads in each storage device in a networked environment. We have presented the

design and an evaluation of it through realistic experiments.

We introduced the motivations of this study in Chapter I. In Chapter II, we

presented the design of virtual allocation and performance evaluation of it. In Chapter

III, we discussed user-optimal migration architecture with performance evaluation.

87

B. Further Work

In this section, we will present the discussion issues and propose further extensions

for two architectures.

1. Virtual Allocation

Fig. 34 shows various ways in which VA can be deployed. As a research prototype, we

implemented VA using a device driver. It is possible to deploy VA inside file system.

In this case, VA allows file system to allocate its storage space flexibly, but it may

not be easy to share storage space with other file systems. For more scalability, it is

possible to deploy VA inside a storage controller or inside a router. This can result

in flexible storage allocation across multiple operating systems.

VA (File
System)

FS1 FS2

VA (Device Driver)

FS1 FS2

VA (Storage Controller)

FS1 FS2

VA (Router)

Scalable,

Simple

Complex

Fig. 34. Real-World Examples of VA Deployment

VA has several limitations. First, it may not support mixed workloads well

88

because of the allocation policy. If the small-file workload results in excessive extent

fragmentations, then the performance of sequential read or write operation of a large

file will suffer. This problem could be solved through the separation of large-file

workloads and small-file workloads similar to [81]. Second, for large-file workloads,

the environments where small-write cost is expensive as in RAID-5, VA requires

additional resources such as NVRAM. Third, the deployment of VA on an existing

file system requires reorganization or copying of file system data onto the VA devices.

VA can be extended easily to support snapshots. The VA block map can be

extended to create entries for a number of versions of data on the disk. Each time a

snapshot is created, all writes, including old blocks (previous versions of data), can

be treated to require allocations of new space on the disk.

We believe that our system can be extended employing the IP connectivity of

I/O devices (e.g., iSCSI [2]). The IP connectivity of I/O devices makes it possible

for storage devices to be added to the network and enables storage to be treated as a

discoverable resource. Virtual allocation, through its separation of storage allocation

from the file system creation, potentially allows file systems to span multiple devices

across the network. When storage resources need to be shared over a network, virtual

allocation’s block map could be extended to enable local disk caching in unallocated

disk space to offset large data access latencies. Recent studies have shown the impor-

tance of caching in such networked storage systems [10, 11]. This could be pursued

in the future. Another topic of interest is to investigate the interaction between mul-

tiple file systems and VA with RAID. Our allocate-on-write policy would need to be

suitably modified to fit into the logical device characteristics advertised by the RAID.

89

2. User-Optimal Migration

In our approach, data is migrated to other locations only when there is a benefit in

terms of performance. Ideally, when all the devices have nearly the same response

times, data is not migrated from one device to another. To avoid oscillations and to

take costs of migration into account, we set thresholds (the δ parameter) to dampen

migration around this ideal operating point. Our system adapts to workload and

data distribution changes to reach this operating point.

When block network storage protocol devices (like iSCSI) are used, data cannot

be simultaneously shared by multiple file systems without additional locking mech-

anisms. In the work here, we assume a single file system or user is accessing data

at a time. In such scenarios, migration will provide similar benefits as caching [82].

Andrew File System [83] employed disk caching to reduce the load on the file server

and to exploit the disk access locality at each client.

In this study, we considered two allocation policies; striping and sequential al-

location. Random allocation has been proposed by others [51, 53] to achieve load

balancing with heterogeneous devices and for minimizing disruptions as devices are

added to the system. In these systems, multiple copies of data is often employed. The

remapping required for migration would have to be suitably modified to work with

random allocation and multiple copies of data. This could be pursued in the future.

Our migration policy could be evaluated in more diverse workloads and tested

in a wide area testbed such as Planetlab [84].

C. Concluding Remarks

In this dissertation, we presented the design and implementation of flexible storage

allocation and a data migration policy in a networked storage system. We motivated

90

the need for these solutions and provided rationale for our design choices. Results

show that our systems provide better flexibility or better performance compared to

other systems. We believe that the design principles presented in this thesis are very

useful and they could be easily applied to a real product.

91

REFERENCES

[1] D. Patterson, G. Gibson, and R. Katz, “A case for redundant array of inexpen-

sive disks (RAID),” in Proc. ACM SIGMOD, September 1988, pp. 109-116.

[2] M. Krueger, R. Haagens, C. Sapuntzakis, and M. Bakke, “Small computer sys-

tems interface protocol over the Internet (iSCSI) requirements and design con-

siderations,” RFC 3347, Internet Engineering Task Force, July 2002, Available:

http://www.ietf.org/rfc/rfc3347.txt; Accessed: January 27, 2007.

[3] A. Sporer, “Delivering storage as a service,” Available: http://www.emc.com/

pdf/service/C1086 del storage service ldv.pdf; Accessed: January 27, 2007.

[4] G. Gibson, D. Nagle, K. Amiri, F. Chang, E. Feinberg, H. Gobioff, C. Lee,

B. Ozceri, E. Riedel, D. Rochberg, and J. Zelenka, “File server scaling with

network-attached secure disks,” in Proc. ACM SIGMETRICS, June 1997, pp.

272-284.

[5] Adaptec, Inc., “Snap server product overview,” Available: http://www.adaptec.

com/en-US/products/nas; Accessed: January 27, 2007.

[6] R. Horst, “TNet: A reliable system area network,” IEEE Micro, vol. 15, no. 1,

pp. 37-45, February 1995.

[7] Seagate LLC., “Fibre channel: The digital highway made practical,” Avail-

able: http://www.seagate.com/support/kb/disc/tp/fc.html; Accessed: January

27, 2007.

[8] R. Meter, “A brief survey of current work on network attached peripherals (ex-

tended abstract),” Operating Systems Review, vol. 30, no. 1, pp. 63-70, January

1996.

92

[9] The European Datagrid Project, Available: http://eu-datagrid.web.cern.ch/eu-

datagrid; Accessed: January 27, 2007.

[10] W. Ng, and B. Hillyer, “Obtaining high performance for storage oursourcing,”

in Proc. ACM SIGMETRICS, June 2001, pp. 322-323.

[11] X. He, Q. Yang, and M. Zhang, “A caching strategy to improve iSCSI perfor-

mance,” in Proc. IEEE LCN, November 2002, pp. 278-288.

[12] The SDSC Storage Resource Broker, Available: http://www.npaci.edu/DICE/

SRB; Accessed: January 27, 2007.

[13] L. Huang, G. Peng, and T. Chiueh, “Multi-dimensional storage virtualization,”

in Proc. ACM SIGMETRICS, June 2004, pp. 14-24.

[14] J. Menon, D. Pease, R. Rees, L. Duyanovich, and B. Hillsberg, “IBM Storage

Tank - A heterogeneous scalable SAN file system,” IBM Systems Journal, vol.

42, no. 1, pp. 250-267, 2003.

[15] M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,” IEEE Commu-

nications Magazine, vol. 41, no. 8, pp. 84-90, August 2003.

[16] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and L. Zhou, “Boxwood:

Abstractions as the foundation for storage infrastructure,” in Proc. USENIX

OSDI, December 2004, pp. 105-120.

[17] M. Rosenblum, and J. Ousterhout, “The design and implementation of a log-

structured file system,” ACM Transactions on Computer Systems, vol. 10, no.

1, pp. 26-52, February 1992.

[18] D. Hitz, J. Lau, and M. Malcom, “File system design for an NFS file server

appliance,” in Proc. USENIX Winter, January 1994, pp. 235-246.

93

[19] M. Sivathanu, V. Prabhakaran, F. Popovici, T. Denehy, A. Arpaci-Dusseau,

and R. Arpaci-Dusseau, “Semantically-smart disk systems,” in Proc. USENIX

FAST, March 2003, pp. 73-88.

[20] M. Sivathanu, L. Bairavasundaram, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,

“Life or death at block-level,” in Proc. of USENIX OSDI, December 2004, pp.

379-394.

[21] M. McKusick, W. Joy, S. Leffler, and R. Fabry, “A fast file system for UNIX,”

ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 181-197, February

1984.

[22] G. Ganger, and Y. Patt, “Metadata update performance in file systems,” in

Proc. USENIX OSDI, November 1994, pp. 49-60.

[23] R. Wang, D. Patterson, and T. Anderson, “Virtual log based file systems for a

programmable disk,” in Proc. USENIX OSDI, February 1999, pp. 29-43.

[24] R. Meter, “Observing the effects of multi-zone disks,” in Proc. USENIX, January

1997, pp. 19-30.

[25] J. Peacock, “The counterpoint fast file system,” in Proc. USENIX Winter,

January 1988, pp. 243-249.

[26] L. McVoy, and S. Kleiman, “Extent-like performance from a UNIX file system,”

in Proc. USENIX Winter, January 1991, pp. 33-44.

[27] K. Smith, and M. Seltzer, “A comparison of FFS disk allocation policies,” in

Proc. USENIX, January 1996, pp. 15-26.

[28] Bonnie++ Benchmark, Available: http://www.coker.com.au/bonnie++, Ac-

cessed: January 27, 2007.

94

[29] PostMark Benchmark, Available: http://www.acnc.com/benchmarks.html; Ac-

cessed: January 27, 2007.

[30] W. Vogels, “File system usage in Windows NT 4.0,” in Proc. ACM SOSP,

December 1999, pp. 93-109.

[31] TPC-C Benchmark, Available: http://www.tpc.org; Accessed: January 27,

2007.

[32] Hammerora, Available: http://hammerora.sourceforge.net; Accessed: January

27, 2007.

[33] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS tracing of email

and research workloads,” in Proc. USENIX FAST, March 2003, pp. 203-216.

[34] N. Zhu, J. Chen, T. Chiueh, and D. Ellard, “TBBT: Scalable and accurate trace

replay for file server evaluation,” in Proc. ACM SIGMETRICS, June 2005, pp.

392-393.

[35] D. Ellard, and M. Seltzer, “NFS tricks and benchmarking traps,” in Proc.

USENIX: FREENIX Track, June 2003, pp. 101-114.

[36] ZCAV Benchmark, Available: http://www.coker.com.au/bonnie++/zcav; Ac-

cessed: January 27, 2007.

[37] ReiserFS, Available: http://www.namesys.com; Accessed: January 27, 2007.

[38] S. Best, “JFS Overview,” Available: http://www.ibm.com/developerworks/

library/l-jfs.html; Accessed: January 27, 2007.

95

[39] Symantec Corp., “Veritas volume manager overview,” Available: http://www.

symantec.com/enterprise/products/overview.jsp?pcid=1020&pvid=203 1; Ac-

cessed: January 27, 2007.

[40] M. Kaczmarski, T. Jiang, and D. Pease, “Beyond backup toward storage man-

agement,” IBM Systems Journal, vol. 42, no. 1, pp. 322-337, 2003.

[41] R. English, and A. Stepanov, “Loge: A self-organizing storage device,” in Proc.

USENIX Winter, January 1992, pp. 237-252.

[42] J. Wilkes, R. A. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID

hierarchical storage system,” ACM Transactions on Computer Systems, vol. 14,

no. 1, pp. 108-136, February 1996.

[43] E. Lee, and C. Thekkath, “Petal: Distributed virtual disks,” in Proc. ACM

ASPLOS, October 1996, pp. 84-92.

[44] 3PARdata, Inc., “Thin provisioning,” Available: http://www.3pardata.com/

products/thinprovisioning.html; Accessed: January 27, 2007.

[45] W. Jonge, M. Kaashoek, and W. Hsieh, “The Logical Disk: A new approach to

improving file systems,” in Proc. ACM SOSP, December 1993, pp. 15-28.

[46] Vmware, Inc., “Vmware workstation,” Available: http://www.itc.virginia.edu/

atg/techtalks/powerpoint/vmware/sld018.htm; Accessed: January 27, 2007.

[47] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,

“OceanStore: An architecture for global-scale persistent storage,” in Proc. ACM

ASPLOS, November 2000, pp. 190-201.

96

[48] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. Douceur, J. Howell,

J. Lorch, M. Theimer, and R. Wattenhofer, “FARSITE: Federated, available,

and reliable storage for an incompletely trusted environment,” in Proc. USENIX

OSDI, December 2002, pp. 1-14.

[49] L. Cox, C. Murray, and B. Noble, “Pastiche: Making backup cheap and easy,”

in Proc. USENIX OSDI, December 2002, pp. 285-298.

[50] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. Wright, “On incremental

file system development,” ACM Transactions on Storage Systems, vol. 2, no. 2,

pp. 161-196, May 2006.

[51] IBM Corp., “Collective Intelligent Bricks,” Available: http://www.almaden.ibm

.com/StorageSystems/Advanced Storage Systems/Intelligent Bricks; Accessed:

January 27, 2007.

[52] J. Gray, “What happens when processing, storage bandwidth are free and infi-

nite?,” Keynote speech at ACM IOPADS, November 1997.

[53] S. Ghemawat, H. Gobioff, and S-T. Leung, “The Google file system,” in Proc.

ACM SOSP, October 2003, pp. 29-43.

[54] Terrascale Technologies, Inc., “TerraGrid cluster file system,” Available: http://

www.terrascale.com/prod over e.html; Accessed: January 27, 2007.

[55] F. Schmuck, and R. Haskin, “GPFS: A shared-disk file system for large comput-

ing clusters,” in Proc. USENIX FAST, January 2002, pp. 231-244.

[56] IBM Corp., “An introduction to GPFS,” Available: http://www-03.ibm.com/

systems/clusters/software/whitepapers/gpfs intro.pdf; Accessed: January 27,

2007.

97

[57] B. Gavish, and O. Sheng, “Dynamic file migration in distributed computer

systems,” Communications of the ACM, vol. 33, no. 2, pp. 177-189, February

1990.

[58] L. Yin, S. Uttamchandani, and R. Katz, “SmartMig: Risk-modulated proactive

data migration for maximizing storage system utility,” in Proc. IEEE MSST,

May 2006.

[59] E. Markatos, and T. LeBlanc, “Load balancing vs. locality management

in shared-memory multiprocessors,” Tech. Report: TR399, University of

Rochester, 1991.

[60] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of direc-

tory schemes for cache coherence,” in Proc. IEEE ISCA, May/June 1988, pp.

280-289.

[61] V. Borkar, and P. Kumar, “Dynamic Cesaro-Wardrop equilibration in networks,”

IEEE Transactions on Automatic Control, vol. 48, no. 3, pp. 382-396, March

2003.

[62] L. Qiu, R. Yang, Y. Zhang, and S. Shenker, “On selfish routing in Internet-like

environments,” in Proc. ACM SIGCOMM, August 2003, pp. 151-162.

[63] S. Floyd, and V. Jacobsen, “Random early detection gateways for congestion

avoidance,” ACM/IEEE Transactions on Networking, vol. 1, no. 4, pp. 397-413,

August 1993.

[64] Smitha, and A. Reddy, “LRU-RED: An active queue management scheme to

contain high bandwidth flows at congested routers,” in Proc. Globecom, Novem-

ber 2001, pp. 2311-2315.

98

[65] SPECsfs Benchmark, Available: http://www.spec.org/osg/sfs97r1; Accessed:

January 27, 2007.

[66] R. Martin, and D. Culler, “NFS sensitivity to high performance networks,” in

Proc. ACM SIGMETRICS, May 1999, pp. 71-82.

[67] Netem, Available: http://linux-net.osdl.org/index.php/Netem; Accessed: Jan-

uary 27, 2007.

[68] E. Miller, and R. Katz, ”An analysis of file migration in a UNIX supercomputing

environment,” in Proc. USENIX Winter, January 1993, pp. 421-434.

[69] M. Lubeck, D. Geppert, K. Nienartowicz, M. Nowak, and A. Valassi, “An

overview of a large-scale data migration,” in Proc. IEEE MSST, April 2003,

pp. 49-55.

[70] A. Smith, “Long term file migration: Development and evaluation of algo-

rithms,” Communications of ACM, vol. 24, no. 8, pp. 521-532, August 1981.

[71] V. Cate, and T. Gross, “Combining the concepts of compression and caching for

a two-level file system,” in Proc. ACM ASPLOS, April 1991, pp. 200-211.

[72] C. Lu, G. Alvarez, and J. Wilkes, “Aqueduct: Online data migration with

performance guarantees,” in Proc. USENIX FAST, January 2002, pp. 219-230.

[73] A. Brinkmann, K. Salzwedel, and C. Scheideler, “Efficient, distributed data

placement strategies for storage area networks (extended abstract),” in Proc.

SPAA, July 2000, pp. 119-128.

[74] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence, “FAB: Building

distributed enterprise disk arrays from commodity components,” in Proc. ACM

ASPLOS, October 2004, pp. 48-58.

99

[75] R. Honicky, and E. Miller, “A fast algorithm for online placement and reorgani-

zation of replicated data,” in Proc. IEEE IPDPS, April 2003, pp. 57.

[76] C. Wu, and R. Burns, “Handling heterogeneity in shared-disk file systems,” in

Proc. ACM/IEEE SC, November 2003, pp. 7.

[77] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel,

and E. Nahum, “Locality-aware request distribution in cluster-based network

servers,” in Proc. ACM ASPLOS, October 1998, pp. 205-216.

[78] C. Lumb, R. Golding, and G. Ganger, “D-SPTF: Decentralized request distri-

bution in brick-based storage systems,” in Proc. ACM ASPLOS, October 2004,

pp. 37-47.

[79] Y. Lu, F. Noman, and D. Du, “Simulation study of iSCSI-based storage system,”

in Proc. IEEE MSST, April 2004 , pp. 101-110.

[80] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy, “A performance compar-

ison of NFS and iSCSI for IP-connected networked storage,” in Proc. USENIX

FAST, April 2004, pp. 101-114.

[81] D. Anderson, J. Chase, and A. Vahdat, “Interposed request routing for scalable

network storage,” in Proc. USENIX OSDI, October 2000, pp. 259-272.

[82] Y. Hu, and Q. Yang, “DCD - Disk Caching Disk: A new approach for boosting

I/O performance,” in Proc. IEEE ISCA, May 1996, pp. 169-178.

[83] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, and R. Side-

botham, “Scale and performance in a distributed file system,” ACM Transac-

tions on Computer Systems, vol. 6, no. 1, pp. 51-81, February 1988.

100

[84] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak, and

M. Bowman, “PlanetLab: An overlay testbed for broad-coverage services,”

Computer Communications Review, vol. 33, no. 3, pp. 3-12, July 2003.

101

VITA

Suk Woo Kang received his B.S. and M.S. degrees in Electrical Engineering from

Seoul National University, Seoul, Korea in February 1996 and 1998. He worked at

Daewoo Electronics Company located in Seoul between 1998 and 2003. While working

at Daewoo, he mainly participated in various embedded computing system projects.

He was a Ph.D. student in the Department of Electrical and Computer Engineering

at Texas A&M University since September 2003, and he received his Ph.D. in May

2007. His research interests are in distributed storage systems and file systems. His

address is 378 La Strada Drive #25, San Jose, CA 95123.

The typist for this dissertation was Suk Woo Kang.

