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ABSTRACT 
 

Development of Methods to Quantify Bitumen-Aggregate Adhesion and Loss of 

Adhesion Due to Water. (May 2006) 

Amit Bhasin, B.Tech., Institute of Technology, India; 

M.Eng., Texas A&M University 

Chair of Advisory Committee: Dr. Dallas N. Little 

 

Moisture induced damage of hot mix asphalt pavements has a significant 

economic impact in terms of excessive maintenance and rehabilitation costs.  The 

moisture sensitivity of an asphalt mix depends on the combined effects of material 

properties, mixture design parameters, loading conditions and environmental factors.  

Traditional methods to assess moisture sensitivity of asphalt mixes rely on mechanical 

tests that evaluate the mix as a whole.  These methods do not measure material properties 

and their role in moisture sensitivity of the mix independently.  This information is very 

important to select materials resistant to moisture induced damage, or to modify locally 

available materials to improve their resistance to moisture damage for economic reasons.  

The objective of this research is to develop experimental and analytical tools to 

characterize important material properties that influence the moisture sensitivity of 

asphalt mixes. 

Quality of adhesion between the aggregate and bitumen binder in wet and dry 

conditions plays an important role on the moisture sensitivity of the asphalt mix.  A part 

of this research work was to develop the Wilhelmy plate method and the Universal 

Sorption Device to measure the surface free energy components of the bitumen and 

aggregate with adequate precision and accuracy, respectively.  Surface energy of these 

materials was used to identify parameters based on thermodynamics that can quantify 

their interfacial adhesion and propensity to debond in the presence of water.  The 

thermodynamic parameters were shown to correlate well with the moisture sensitivity of 

asphalt mixes determined from laboratory tests.  Specific surface areas of the aggregates 

were also used to account for the influence of mechanical interlocking at the micro scale.  

In some mixes, chemical bonding also contributes to the adhesion between bitumen and 
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aggregate.  The use of a micro calorimeter was introduced in this research as a versatile 

and fast tool to quantify the combined effects of physical and chemical adhesion between 

these materials.  
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CHAPTER I 

INTRODUCTION 

 

Overview 

 

Approximately 2.4 million miles of pavements in the United States have a Hot 

mix asphalt (HMA) surface [1].  Hot mix asphalt (HMA) or asphalt concrete is composed 

of mineral aggregates that are bound together using bitumen.  Bitumen is a by-product 

from the distillation of naturally occurring crude oil.  Mineral aggregates are obtained by 

quarrying and processing natural rocks.  Since physical and chemical properties of these 

materials are source dependent, mechanical properties of the composite asphalt concrete 

varies significantly depending on the proportioning (mix design) and source of the 

constituent materials. 

Moisture induced damage or moisture damage is a form of distress in asphalt 

concrete pavements.  Moisture sensitivity of an asphalt mix can be defined as the 

degradation of its mechanical properties (such as stiffness and fatigue cracking life) in the 

presence of water. The economic impact of moisture damage due to premature pavement 

failure and excessive maintenance costs has prompted research in this area since the early 

1900’s.  Methods to identify materials and asphalt concrete mixes that are prone to 

moisture damage are an important part of the mixture design process.   

Factors such as physical and chemical properties of the constituent materials, 

loading conditions, and environmental conditions influence the rate of moisture induced 

damage or moisture sensitivity of an asphalt concrete mix. Two important attributes 

related to material properties that determine the moisture sensitivity of a mix are: 

• Adhesion between the bitumen and the aggregate in dry condition, and  

• Degradation of adhesion between the bitumen and the aggregate in presence of 

water. 

 

 

This dissertation follows the style of Transportation Research Record. 
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In this dissertation, the term “debonding” will be used to describe the loss of adhesion 

between bitumen and aggregate in the presence of water.   

Several mechanisms responsible for adhesion and debonding between the bitumen 

and aggregate are identified in the literature.  Most of these mechanisms are based on 

physio-chemical interactions between the bitumen and the aggregate, and can be 

classified into the following three broad categories: 1) mechanical adhesion, 2) physical 

adhesion, and 3) chemical bonding.   

Mechanical adhesion is due to the surface texture of aggregates that causes 

mechanical interlocking of the bitumen binder with the aggregate.  In this context, 

physical adhesion and debonding between the binder and aggregate is defined as the 

adhesion or debonding between these materials that is due to their surface free energies.  

Chemical reactions between the bitumen and the minerals on aggregate surface are also 

responsible for their adhesion and debonding.  For example, reaction of weak acids from 

the bitumen with the aggregate results in formation of salts at their interface.  The 

durability of this interface in the presence of water depends on the water solubility of 

these salts.  Extensive laboratory testing using various sophisticated experimental and 

analytical techniques described in the literature support the development and 

understanding of these mechanisms.  Despite the advanced understanding of fundamental 

mechanisms that cause moisture damage, little has been done to directly quantify 

physical or chemical properties that control these mechanisms. 

Currently, many highway agencies use the ratio of one or more mechanical 

property (modulus, tensile strength) of an asphalt mix after it is moisture conditioned to 

the unconditioned mix as a measure of the moisture sensitivity of the mix.  Although this 

methodology evaluates the moisture sensitivity of asphalt mixes based on their 

mechanical properties, it does not measure physical or chemical properties related to the 

mechanisms of adhesion and debonding.  Also, according to the literature, the ability of 

this methodology to accurately predict field performance of asphalt concrete mixes is 

questionable.  

This research is motivated by the understanding that, development of accurate and 

efficient methods to measure material properties related to adhesion and debonding in 

asphalt mixes will serve to bridge the gap between the current state of knowledge and 
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current state of practice to identify moisture sensitive mixes. This will in turn improve the 

efficiency the materials design process in identifying moisture sensitive asphalt mixes. 

 

Objective and Scope of Study  

 

 The important causes of moisture damage in asphalt mixes related to material 

properties are, poor adhesion between the bitumen and the aggregate, and degradation of 

the adhesion in the presence of water (debonding). According to the literature, 

mechanical interlocking, physical adhesion, and chemical bonding are the three main 

types of mechanisms responsible for adhesion between the bitumen and the aggregate.  

Also, the durability of physical adhesion and chemical bonds in the presence of water 

determines the propensity of these materials to debond.  The surface free energies of 

bitumen and aggregate can be used to quantify physical adhesion and debonding between 

these materials, which is correlated to the moisture sensitivity of the asphalt mix.  The 

main objectives of this research are to: 

• Identify, develop and validate test and analytical methods to accurately and 

efficiently determine the moisture sensitivity of asphalt mixes based on the 

surface free energy of bitumen and aggregates, and  

• Introduce a methodology to quantify the combined affects of physical and 

chemical interactions responsible for adhesion between bitumen and aggregate 

using a micro calorimeter. 

Fulfillment of the objectives of this research will enable users to quantify physical 

adhesion and debonding between various types of bitumen and aggregates using surface 

energies of these materials.  This can be used to assess the contribution of material 

properties to the moisture sensitivity of asphalt mixes.  Results from this study can also 

be used to quantify the cumulative effects of physical and chemical interactions on 

bitumen-aggregate adhesion. 
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Outline of the Dissertation  

 

Chapter II of this dissertation presents a literature review of the mechanisms of 

adhesion and debonding between bitumen and aggregates.  This chapter also presents the 

state of the art of practice in quantifying moisture sensitivity of asphalt mixes.  There are 

two broad methodologies used to determine the moisture sensitivity of asphalt mixes.  

The first methodology is to conduct mechanical tests on the whole asphalt mix.  For 

example, ratio of one or more mechanical property of the mix measured in dry condition 

and after moisture conditioning (accelerated moisture damage) is used to quantify its 

moisture sensitivity.  This methodology is widely accepted by several agencies for 

identifying and eliminating moisture sensitive asphalt mixtures during the materials 

design process.  Despite its ease of interpretation, this methodology can be at best 

described as empirical and is critiqued to be of poor reliability in the literature.  The 

second methodology is to measure and use material properties of both the bitumen and 

aggregate to estimate moisture sensitivity of the mix based on the fundamental 

mechanisms responsible for adhesion and debonding.  An example of this methodology is 

to estimate moisture sensitivity of asphalt mixes based on the adhesive bond strength 

between bitumen and aggregate, and their tendency to debond in the presence of water.  

Both these parameters can be computed by measuring surface free energies of the 

bitumen and aggregate.  Chapter II presents a discussion on these methodologies, the 

need for adopting the latter methodology in the materials design process, and its 

relevance with this research. 

 In earlier studies the Wilhelmy plate method and the Universal Sorption Device 

were introduced as methods to determine the surface free energies of bitumen and 

aggregates, respectively.  Part of the effort in this research was to modify these methods 

for use with bitumen and aggregates.  Chapters III and IV describe the improvements in 

experimental and analytical procedures related to the use of these methods. The chapter 

also includes results and discussions on surface free energy components measured for a 

suite of bitumen and aggregate types. 

 The primary purpose of measuring surface energies of bitumen and aggregates is 

to estimate moisture sensitivity of asphalt mixes.  Chapter V presents a description of the 
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bond energy parameters based on surface energies of these materials that can be used to 

estimate moisture sensitivity of asphalt mixes.  The chapter also presents data that 

demonstrates the correlation between the proposed bond energy parameters and moisture 

sensitivity of asphalt mixes based on laboratory and field performance of asphalt mixes.   

Adhesion and debonding between bitumen and aggregates is a result of the 

combined effects of physical adhesion due to surface free energy of these materials, 

chemical interactions at the interface, and mechanical interlocking.  It is likely that 

physical adhesion due to the surface free energy of the constituent materials contributes 

predominantly to overall adhesion in most bitumen-aggregate systems.  However, 

according to the literature, chemical interactions at the bitumen-aggregate interface in dry 

condition and in the presence of water can also be significant when chemically active 

aggregates such as limestone are used.  Chemical bonding is also a significant contributor 

to adhesion when active fillers such as hydrated lime or liquid anti-strip agents are added 

to the bitumen.  The second part of this research introduces the application of micro 

calorimeter as a fast and rapid tool to quantify physical and chemical interactions at the 

bitumen-aggregate interface. Chapter VI presents the theoretical background for the use 

of this technique and results that support the proposed applications of this technique.  

Chapter VII presents a comprehensive summary of the results from this research and 

recommendations for future work.  

   



 

                                                                         

6 

 

CHAPTER II 

LITERATURE REVIEW 

 

Moisture Sensitivity of Asphalt Mixes  

 

Moisture induced damage in asphalt concrete pavements is a major cause for high 

maintenance costs of state and federal highways.  Research to investigate the causes of 

moisture damage in asphalt concrete pavements and methods to prevent or reduce the 

impact of moisture damage has been continuing since the early 1950’s.  One or both of 

the following objectives have motivated most of this research: 

• To understand the mechanisms that are responsible for moisture damage. 

• To develop test methods that identify moisture sensitive asphalt mixes that are 

susceptible to failure before the completion of their intended service life. 

An important material related property that influences moisture sensitivity of 

asphalt mixes is the quality of adhesion between bitumen and aggregate in dry condition 

and in the presence of water.  In earlier studies, Rice [2], identified chemical reaction, 

mechanical bonding, and physical adhesion based on surface free energy as some of the 

mechanisms responsible for adhesion and debonding between bitumen and aggregate.  

Ishai and Craus [3] reiterate the significance of chemical, mechanical and physical 

interactions for adhesion and debonding.  They demonstrate the role of physical and 

chemical interactions between the bitumen and aggregate to resist moisture damage using 

active fillers such as hydrated lime.  Scott [4] demonstrates the importance of adhesion 

between polar functional groups from bitumen with the aggregate surface and influence 

of pH of the system in determining the moisture sensitivity of an asphalt mix.  In a state 

of the art paper, Taylor and Khosla [5] critiqued the several mechanisms that are 

responsible for moisture damage of asphalt mixes. These mechanisms also fall in one or 

more of the three broad mechanisms of mechanical, physical or chemical interactions 

between bitumen and aggregate.  The influence of these three broad mechanisms on the 

adhesion and debonding between bitumen and aggregate is reiterated in more recent 

literature [6,7,8]. 
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Pocius [9] describes the contribution of surface roughness to improve adhesion in 

terms of mechanical interlocking between the bitumen and aggregate.  Surface roughness 

in context of mechanical interlocking is significant at both a macroscopic and 

microscopic scale.  Tarrar and Wagh [10] reiterate the importance of surface texture in 

mechanical bonding between the bitumen and aggregate.  An effective way to quantify 

macroscopic roughness of aggregates is by measuring its surface texture using aggregate 

image analysis methods [11].  Surface texture of aggregates at a microscopic level can 

significantly differ from their surface texture at the macroscopic level.  Specific surface 

areas of aggregates may be used as a measure of the surface texture of aggregates at the 

microscopic level.  This research demonstrates that aggregates have a very broad range of 

specific surface areas (0.1 to 10 m2/gm) for the same size fraction.   

The chemical bonding model suggests that adhesion between the aggregate and 

bitumen is due to the formation of weak chemical bonds between various polar functional 

groups from the bitumen with the active functional groups on the surface of the 

aggregate.  Petersen et al. [12] report the existence of eight different types of functional 

groups in bitumen typically used for asphalt mixes.  Examples of weak acid type 

functional groups are carboxylic acids and anhydrides, and examples of weak base type 

functional groups are sulfoxides and pyridines.  Jamieson et al. [13] reports that, surface 

functional groups on aggregate surfaces associated with high affinity for bitumen include 

elements such as aluminum, iron, magnesium and calcium.  Elements associated with low 

bonding affinity include sodium and potassium.  Little et al. [8] reports the formation of 

calcium or sodium salts when carboxylic acid from the bitumen chemically interacts with 

the available calcium or sodium on the aggregate surface.  While sodium salts are readily 

soluble in water and accelerate moisture damage, calcium salts are relatively less soluble 

and therefore are more resistant to water induced damage.  The utility of active fillers 

such as hydrated lime and liquid anti-strip additives to retard moisture induced damage is 

also explained based on similar chemical interactions.  Details of specific interactions 

between various types of aggregates and bitumen functional groups are available in the 

literature.   

Majidzadra and Brovold [14] explain that adhesion between bitumen and 

aggregate is a key factor that determines the moisture sensitivity of an asphalt mix.  They 
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also report that a water-aggregate interface reduces free energy of the aggregate surface 

more than the water-bitumen interface.  Therefore, displacement of bitumen from the 

bitumen-aggregate interface by water is a thermodynamically favorable phenomenon.  

Theories from thermodynamics related to surface free energy of materials can be used to 

determine the work of adhesion between two materials if their surface free energy 

components are known.  In a three component system, this theory can be applied to 

determine the propensity of one liquid to displace another, from a solid surface based on 

their surface free energy components.  Cheng [15] and Kim et al. [16] demonstrate the 

correlation between these thermodynamic parameters and the moisture sensitivity of 

asphalt mixes.  They were able to compute these thermodynamic parameters by 

measuring the surface free energy components of the constituent bitumen and aggregates.  

 

Mixture Response and Empirical Tests to Assess Moisture Sensitivity 

 

 Identifying moisture sensitive asphalt mixes is an important part of the materials 

selection and mix design process.  Improper selection of materials and failure to 

accurately estimate the moisture sensitivity of a mix can result in premature failure of the 

asphalt pavement and excessive repair or reconstruction costs.   

A common method to quantify moisture sensitivity of an asphalt mix is to 

determine the ratio of a mechanical property of the mix (eg. stiffness, tensile strength) 

before and after moisture conditioning [17,18,19].  The term moisture conditioning in this 

context refers to any of the several available techniques that are used to cause accelerated 

moisture damage in an asphalt mix specimen.  The Lottman Test [17] and modified 

Lottman Test [20] are typical examples of this type of tests.  In the Lottman test, several 

replicate samples of an asphalt mix are divided into three groups.  The tensile strength of 

the first group of specimen, referred to as the control group, is measured using an indirect 

tension test.  The second group of specimen is vacuum saturated with water for 30 

minutes and the third group is vacuum saturated for the same duration followed by 

freezing at -18°C for 15 hours and at 60°C water bath for 24 hours.  These two groups are 

referred to as the moisture conditioned groups and represent short term and long term 

resistance of the mix to moisture damage.  The tensile strength of the moisture 



 

                                                                         

9 

 

conditioned mixes is also determined using the indirect tension test. The moisture 

sensitivity of the asphalt mix is reported as the ratio of the tensile strength of the moisture 

conditioned mix to the tensile strength of the unconditioned mix.  Most other tests in this 

category are a variation of this basic algorithm of testing. 

Several qualitative or subjective tests are also used to identify moisture sensitivity 

of asphalt mixes.  Examples of such tests are the boiling water test [21] and the static 

immersion test [22].  In these tests, loose aggregates coated with bitumen are placed in 

boiling water for a specified period of time, after which they are removed and visually 

examined for the approximate percentage area of the bitumen coating that is retained on 

the aggregate surface.  

Although empirical, most of these tests have the advantage that they quantify 

moisture sensitivity of the asphalt mix by taking into account the cumulative effect of 

material properties, mixture design parameters, and environmental conditions.  However, 

despite these advantages and popularity, this methodology suffers from drawbacks such 

as, 

• poor correlation with field performance,  

• requirement of extensive test time,  

• lack of measurement of material properties related to the mechanisms that cause 

moisture induced damage, and 

• inability to explain causes for good or poor performance of an asphalt mix. 

These shortcomings are well identified in the literature [23, 24].  It is evident from 

the literature review that the understanding of fundamental mechanisms responsible for 

moisture induced damage in asphalt mixes has greatly improved over the last five 

decades.  However, the current state of practice to identify moisture sensitive asphalt 

mixes relies on mechanical tests that do not measure material properties related to these 

fundamental mechanisms. 

 

Principles of Physical Adhesion Related to Surface Free Energy 

 

Molecules in the bulk of a material are surrounded from all sides by other 

molecules, and as a result have a higher magnitude of bond energy compared to the 
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molecules on the surface.  Therefore, work must be done in order to extract the molecules 

from the bulk and create a new area of surface molecules with excess energy.  A formal 

definition of surface free energy is the work required to create unit area of a new surface 

of the material in vacuum, commonly denoted by the Greek letter γ .  The term “free 

energy” is used in this context since the definition is based on work done, which is 

different from the total excess energy.  The most common units of surface free energy are 

ergs/cm2 or mJ/m2.  The terms surface tension, surface energy and surface free energy are 

often used interchangeably, although surface free energy is technically the correct term 

for use with principles of thermodynamics.   

Several theories explain the molecular origin of surface free energy of solids.  The 

Good-van Oss-Chaudhury (GVOC) theory is widely applied to explain the surface free 

energy components of various materials and determine these components by measuring 

work of adhesion of the material with other liquids or vapors [25, 26].  According to this 

theory, the total surface free energy of any material is divided into three components 

based on the type of molecular forces on the surface.  These components are: 1) the non-

polar component, also referred to as the Lifshitz-van der Waals (LW) or the dispersive 

component, 2) the Lewis acid component, and 3) the Lewis base component.  The total 

surface free energy is obtained by combining these components as follows: 

 

γ = γ LW + γ +− = γ LW + 2 γ +γ−        (2.1) 

 

where, γ is the total surface free energy of the material, LWγ is the Lifhsitz-van der Waals 

(LW) or dispersive component, γ +− is the acid-base component, +γ is the Lewis acid 

component, and −γ is the Lewis base component.  According to this theory, the work of 

adhesion, WAB  between two materials ‘A’ and ‘B’ in terms of their respective surface free 

energy components is given by:  

 

WAB = 2 γA
LWγB

LW + 2 γA
+γB

− + 2 γA
−γB

+       (2.2) 

 

For a bitumen-aggregate system, equation (2.2) can be used to compute their interfacial 
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work of adhesion if the surface free energy components of both these materials are 

known. 

 In order to quantify the propensity of one material to displace another, use of 

interfacial energies of these materials is necessary.  Interface is a surface that forms a 

common boundary between two different materials.  Figure 2.1 shows the idealized 

representation of an interface between two materials ‘A’ and ‘B’.  The molecules of both 

these materials at the interface are subjected to unequal forces as compared to their 

respective bulk molecules.  This creates a misbalance of forces at the interface and results 

in interfacial energy between the two materials, represented as ABγ .  Analogous to the 

surface free energy in vacuum, the interfacial energy between two materials can be 

defined as the work required to create unit area of the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Adhesive Failure Between Two Materials ‘A’ and ‘B’. 

 

Consider a three phase system comprising of bitumen, aggregate, and water 

(Figure 2.2) represented by ‘B’, ‘A’, and ‘W’, respectively.  The following processes 

occur when water displaces bitumen from the bitumen-aggregate interface.  The interface 

of the aggregate with bitumen is lost and is associated with external work, −γAB , from the 

definition of interfacial free energy. Similarly, two new interfaces, between water and 

bitumen, and between water and aggregate are created during this process.  The work 

Adhesive 
Failure 

A 

Interface 

B 

New surface of A is created 
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done for the formation of these two new interfaces is γWB + γWA .  Therefore, the total 

work done for water to displace bitumen from the surface of the aggregate is,  

γWB + γWA − γAB .  If the displacement process is thermodynamically favorable then it must 

be associated with an overall reduction in free energy of the system.  In other words the 

total work done on the system during the displacement process must be less than zero.  In 

this context, the energy associated with the displacement of bitumen by water from the 

bitumen-aggregate interface or debonding is referred to as the work of debonding and is 

expressed as: 

 

ABBWAW
wet

ABWW γγγ −+=         (2.3) 

 

  

 
Figure 2.2. Displacement of Bitumen from Bitumen-Aggregate Interface by Water. 

 

For practically all bitumen-aggregate systems the work of debonding, WABW
wet , is 

negative indicating that debonding in the presence of water is thermodynamically 

favorable.  However, the magnitude of work of debonding can differ significantly 

depending on the material and surface properties of bitumen and aggregate.  The higher 

the magnitude of work of debonding, the greater is the thermodynamic potential for water 

to cause debonding.  Presence of external work, such as when external traffic loads 

applied to the pavement, further aggravates the debonding process.   

Based on the above theory,  adhesion between the bitumen and aggregate and 

their propensity to debond can be quantified in terms of their dry work of adhesion, WAB , 

and work of debonding, WABW
wet , respectively.  For an asphalt mix to be durable with low 
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sensitivity to moisture damage, the dry adhesive bond strength, WAB , must be high and 

the magnitude of work of debonding, WABW
wet , must be low.  Therefore, surface free energy 

components of bitumen and aggregate can be used to compute these energy parameters 

and estimate the moisture sensitivity of an asphalt mix based on the principles of physical 

adhesion.  However, surface free energy components of solids such as bitumen and 

aggregates can only be determined indirectly by measuring their works of adhesion with 

different probe liquids with known surface free energy components.  According to the 

literature there are several methods that can be used to determine the surface free energies 

of bitumen and aggregate.  Table 2.1 presents a summary of these methods.  Appendix A 

presents a more detailed discussion of the theories related to surface free energy, 

thermodynamics of various interfaces, and methods commonly used to measure surface 

free energies of solids. 

 Any error in determining the surface free energy components of bitumen and 

aggregates will be inherited by the calculated energy parameters and consequently effect 

the accuracy of prediction of moisture sensitivity of the mix based on this theory.  

Therefore, it is extremely important to select a test method and develop a protocol that is 

appropriate for these materials based on factors such as,  accuracy of measurement, 

precision, speed and convenience of testing.   
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Table 2.1. Summary of Methods to Measure Surface Free Energy of Solids 

 

Test 

Method 

Working Principle Results vs. 

Work of 

Adhesion 

Suitable Materials Remarks 

Sessile 
Drop 
Method 

Captures image of probe 
liquids dispensed on solid 
surfaces to determine contact 
angles. 

Contact 
angles of the 
probe liquid 
with the solid. 

Low energy 
surfaces such as 
polymers. 

Sample must have a 
physically smooth 
surface. 

 

Expected surface 
free energy of the 
solid must be less 
than the surface free 
energy of probe 
liquids. 

Spreading pressure 
must be negligible 

Test is usually 
conducted in a static 
mode. 

Wilhelmy 
Plate 
Method  

Compares weight of a solid 
sample slide in air with its 
weight in a probe liquid after 
correcting for buoyancy to 
determine the contact angle of 
the liquid. 

Contact angle 
of the probe 
liquid with 
the solid. 

Low energy 
surfaces such as 
polymers. 

Sample must be 
prepared in the form 
of a smooth surface 
on a suitable 
substrate. 

 

Expected surface 
free energy of the 
solid must be less 
than the surface free 
energy of probe 
liquids. 

Spreading pressure 
must be negligible 

Test is conducted in 
a dynamic mode. 

Measures both 
advancing and 
receding contact 
angles. 

Adsorption 
Method  

Determines the adsorption 
isotherm of various solids with 
vapors of probe liquids.  The 
adsorption isotherm is used to 
calculate the surface area of 
the solid and spreading 
pressure of the vapor with the 
solid surface. 

Equilibrium 
spreading 
pressure of 
vapors of the 
probe vapor 
liquids with 
the solid. 

 

High energy solids. 

Quantity of the 
sample must 
provide sufficient 
surface area for 
adsorption that can 
be precisely 
measured by the 
instrument. 

Preconditioning the 
sample is important 
to ensure all 
physically adsorbed 
molecules are 
removed from the  
surface. 

This test is 
inherently time 
consuming. 
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Table 2.1. (Continued) 

 
 

Test 

Method 

Working Principle Results vs. 

Work of 

Adhesion 

Suitable Materials Remarks 

Inverse gas 
chromatogr
-aphy 

Measures the retention time 
for vapors of various probe 
liquids as it interacts with the 
solid. 

Retention 
time and 
retention 
volume. 

High or low energy 
solids.  

Choice of capillary 
or larger diameter 
columns to hold 
sample can be made 
depending on the 
nature of the 
sample. 

 

Since the test is 
conducted at an 
infinitely diluted 
condition the 
concentration of the 
probe vapors is very 
low and therefore it 
interacts with only 
high energy “spots” 
on the solid surface 
and therefore this 
test will usually 
yield slightly higher 
values compared to 
other methods. 

Micro 
calorimeter 

Measures enthalpy of 
immersion of solids in various 
probe liquids.  The free energy 
of immersion is obtained from 
the enthalpy of immersion by 
making suitable 
approximations for the entropy 
term or determining the 
contribution from entropy by 
testing at different 
temperatures.  

Free energy 
of immersion.  

High energy solids 
are best suited. 

Preconditioning 
requirements are the 
same as for 
adsorption method. 

Sufficient specific 
surface area of the 
sample must be 
available to 
generate heat of 
immersion that can 
be measured 
precisely using a 
Micro calorimeter. 

This test is much 
faster than the 
adsorption 
measurements but 
the effect of entropy 
must be 
accommodated 
before determining 
the surface free 
energy components 
from work of 
adhesion equations. 
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Material Property Tests to Assess Moisture Sensitivity  

 

 A possible solution to overcome the drawbacks associated with the mechanical 

tests currently used to identify moisture sensitive mixes is to include the use of material 

properties associated with the fundamental mechanisms of adhesion and debonding in 

conjunction with these tests.  The three main mechanisms related to adhesion and 

debonding identified previously are, physical adhesion, chemical interactions at the 

interface, and mechanical interlocking.  Accordingly, tests and analytical methods to 

measure material properties related to moisture sensitivity of asphalt mixes must focus on 

one or more of these mechanisms.  This section reviews some of the work done in this 

area and the need for further development of test procedures. 

 

Test Methods to Quantify Physical Adhesion  

 Surface energies of bitumen and aggregate can be used to estimate the moisture 

sensitivity of asphalt mixes based on physical adhesion.  Cheng [15] used the Wilhelmy 

plate (WP) method and the Universal Sorption Device (USD) to measure surface energies 

of bitumen and aggregates respectively.  Cheng demonstrates the use of surface energies 

of these materials to calculate the dry work of adhesion between the bitumen and 

aggregate, the work of debonding when water displaces bitumen from the bitumen-

aggregate interface, and the correlation of these parameters with the moisture sensitivity 

of asphalt mixtures.  However, results from this study are limited and do not rigorously 

examine the accuracy or suitability of the test protocol adopted for measuring surface 

energies of bitumen and aggregate.   

 

Test Methods to Quantify Physical and Chemical Adhesion 

According to the literature [27-30], chemical interactions at the bitumen-

aggregate interface may also contribute to their adhesion and debonding in addition to 

physical adhesion due to their surface free energies.  Evidence of such interactions is 

supported by several analytical experiments.  Typically these experiments are very time 

consuming, require a substantial infrastructure, and cannot be performed on a routine 

basis. 
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Petersen [29] and Curtis et al. [27] report that interaction between polar groups 

from the bitumen with the aggregate surface is largely responsible for adhesion of these 

materials.  Curtis et al. [31] reports the use of model compounds to represent the various 

polar functionalities in the bitumen.  However, the methodologies adopted in these 

studies do not directly quantify the strength of interaction between the functional groups 

and various aggregates. Ensley et al. [32], Ensley [33], and Ensley and Scholz [34], use a 

micro calorimeter to measure the enthalpy of immersion of different aggregate types with 

liquid bitumen at high temperatures.  They demonstrate the relationship between 

measurements from the micro calorimeter and the tenderness of asphalt mixes.  Although 

the enthalpy of immersion is directly related to the magnitude of interfacial bonding 

between these materials, it does not differentiate between physical and chemical 

interactions that cause bonding.  It is hypothesized that the micro calorimeter, combined 

with the work of adhesion computed using surface free energies, can be used to 

determine the relative contributions of physical and chemical interactions for different 

bitumen-aggregate systems. An important advantage of using the micro calorimeter is 

that it unifies the effects of both physical and chemical interactions into a single energy 

parameter, the enthalpy of immersion. This information can be used to judiciously select 

additives for bitumen and design asphalt mixes that are more resistant to moisture 

damage.  

 

Problem Statement  

 

Moisture damage in hot mix asphalt is the result of combination of several factors 

including material properties, environmental conditions and nature of loading. Physical 

adhesion, chemical interactions and mechanical interlocking are three broad mechanisms 

that can be used to explain the adhesion and debonding between the bitumen and 

aggregate in an asphalt mix based on material properties.  The current practice to identify 

moisture sensitive asphalt mixes is by conducting mechanical tests on the whole mix.  

This approach is associated with several disadvantages that can be overcome if material 

properties relevant to the mechanisms of adhesion and debonding are also included in the 

materials selection and design process.   
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 Surface free energy is a material property that can be used to quantify the dry 

work of adhesion and work of debonding, which can in turn be used to estimate the 

moisture sensitivity of asphalt mixes.  Use of accurate test and analytical methods is 

essential to apply this theory to identify material combinations that may result in a 

moisture sensitive asphalt mix.  The Wilhelmy plate method and the Universal Sorption 

Device were introduced in earlier research as possible methods to measure the surface 

free energies of bitumen and aggregate, respectively.  However, a significant effort was 

still required in tailoring these methods and applying them to accurately measure the 

surface properties of bitumen and aggregates.  A part of the effort in this research was to, 

• develop methods to measure surface free energies of bitumen and aggregate with 

acceptable precision and accuracy,  

• accurately measure specific surface areas of aggregates, and 

• introduce and validate parameters based on these properties that can be used to 

estimate moisture sensitivity of asphalt mixes.  

 According to the literature chemical interactions are also an important mechanism 

of adhesion, especially when chemically active minerals such as limestone are used or 

when active fillers or liquid anti-strip agents are added to the bitumen.  Therefore it is 

important that the physical adhesion between bitumen and aggregates due to their surface 

energies be considered in conjunction with the possibility of other mechanisms such as 

chemical interactions.  The second part of this research introduces the use of a micro 

calorimeter to measure the total interaction energy between bitumen and aggregates using 

a multi-faceted approach.  
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CHAPTER III 

WILHELMY PLATE METHOD  

 

Problem Description 

 

 The three surface free energy components of bitumen, aggregates, and water are 

the inputs for computing the work of adhesion and work of debonding between bitumen 

and aggregate.  The surface free energy components of bitumen can be determined by 

measuring the contact angle of the bitumen with different probe liquids of known surface 

free energy components.  The Wilhelmy plate method is a fast and efficient technique 

that measures the contact angles of bitumen with various probe liquids.  Cheng [15] used 

this technique to measure the contact angles of solids with three different probe liquids to 

determine its surface free energy components.  Results from Cheng [15] indicate that 

further development of this technique is required before it can be used to accurately 

estimate surface free energy components of bitumen.  For example, magnitude of the 

base component of surface free energy reported for some of the bitumen types was very 

high and does not reconcile well with their chemical properties.  In some cases, square 

roots of the calculated surface free energy components of the binders were large negative 

numbers that do not have any physical interpretation.  The methodology was also 

extremely sensitive to the experimentally measured contact angles and the accuracy of 

results required validation.  The methods developed in this research address these issues 

and present a test and analytical procedure that can be used on a routine basis to 

determine the surface free energy components of bitumen.     

 

Background and Theory 

 

Based on the Young-Dupre’ equation, Good, Van Oss, and Chaudhury, (GVOC) 

[25, 26] proposed the following relationship between the Gibbs free energy of adhesion, 

∆GLS
a , work of adhesion, WLS , contact angle,θ , of a probe liquid, L, in contact with a 

solid, S, and surface free energy characteristics of both the liquid and solid: 



 

                                                                         

20 

 

 

−∆GL ,S
a = WL ,S

a = γL (1+ Cosθ) = 2 γ S
LW γL

LW + 2 γ S
+γL

− + 2 γ S
−γL

+    (3.1) 

  

Equation (3.1) is used to calculate surface free energy components of bitumen by 

measuring contact angles.  In this equation, the solid represented by suffix ‘S’ is the 

bitumen under consideration and the liquid represented by suffix ‘L’ is any probe liquid.  

A probe liquid in this context is defined as a liquid for which the three surface free 

energy components are known from existing literature or standards and does not effect 

the physical properties of bitumen surface.  If the square roots of the three unknown 

surface free energy components of the bitumen are represented as x1, x2, and x3, then 

equation (3.1) can be rewritten as follows: 

 

( ) ( ) ( ) 321 222)1( xxxCos LL
LW
LL

+− ++=+ γγγθγ      (3.2)  

 

The contact angle of a probe liquid with the bitumen (measured experimentally) and 

surface free energy components of the probe liquid (from literature or standard tables) are 

substituted into equation (3.2) to generate a linear equation with three unknowns x1 

through x3.  It follows that contact angles of a bitumen measured with three different 

probe liquids will result in a set of three linear equations that can be solved for the 

unknowns x1, x2, and x3, which are the square roots of the surface energy components of 

bitumen.   

In 1863, Wilhelmy first proposed indirect contact angle measurement by 

immersing a plate into a liquid and deriving the angle from the measured force [35].  This 

is a dynamic contact angle measurement technique since the plate is in motion (moving at 

a few microns per minute) throughout the process.  From simple force equilibrium 

considerations, the difference between weight of a plate measured in air and partially 

submerged in a probe liquid, ∆F, is expressed in terms of buoyancy of the liquid, liquid 

surface energy, contact angle, and geometry of the plate.  The contact angle between the 

liquid and surface of the plate is calculated as follows: 
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cosθ =
∆F + Vim ρL − ρairg( )

PtγL

        (3.3) 

 

where, Pt is the perimeter of the bitumen coated plate, γL  is the total surface energy of the 

liquid, θ  is the dynamic contact angle between the bitumen and the liquid, Vim is the 

volume immersed in the liquid, ρL is the density of the liquid, ρair is the air density, and g 

is the local gravitational force.   

Figure 3.1 illustrates a schematic of the dynamic contact angle analyzer (DCA 

315, Thermo Chan Instruments) used in this research.  Two different contact angles are 

obtained during the test as the plate in immersed into the liquid up to a predetermined 

depth, and as it recedes from the liquid after being immersed.  Theoretically, for a surface 

that does not undergo any permanent change by coming into contact with the probe 

liquid, these two angles must be the same.  However, in most cases a hysteresis effect is 

seen in the force measurements due to differences in the advancing and receding contact 

angles.  Figure 3.2 illustrates a typical hysteresis effect obtained during force 

measurements. 

 

 
 

Figure 3.1. Schematic of a Wilhelmy Plate Device. 
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Figure 3.2. Hysterisis in Advancing and Receding Force Measurements. 

 

Development of Test Method 

 

Based on literature review it was determined that two important elements to use 

this method successfully to determine surface free energy components of bitumen are,   

1) selection of appropriate probe liquids, and  2) ensuring that the measured contact 

angles satisfy the requirements to be used with the selected theory.  

 

Selection of Probe Liquids 

A liquid or vapor can be used as a probe if,  

• its three surface energy components based on the GVOC theory are known,  

• it is homogenous and pure, and  

• it does not chemically interact (react or dissolve) with the solid surface that is 

being measured.   

There are approximately sixty liquids with values of the surface energy 

components based on the GVOC theory that are reported in the literature.  A careful 

screening and testing of various liquids with bitumen revealed that most of these liquids 

dissolve bitumen to some extent.  Only five liquids, distilled water, glycerol, formamide, 

ethylene glycol, and methylene iodide (diiodomethane), were short listed as appropriate 
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probes for testing bitumen.  

From equation (3.2), three different probe liquids are required to determine the 

three unknown surface free energy components of any bitumen.  Although theoretically 

correct, an improper choice of liquids combined with small experimental errors can 

significantly affect the calculated surface free energy components [36].  For example, if 

two or more of the probe liquids have similar surface free energy components, then the 

calculated surface free energy components of bitumen will be unduly sensitive to small 

errors in measurement of contact angles.  A mathematical measure of this sensitivity is 

referred to as the condition number.   Since, the condition number is a function of the 

surface free energy components of the selected probe liquids, it can be computed even 

before conducting the experiments.  A large condition number indicates that the 

calculated results are very sensitive to small experimental errors and vice versa.  

Appendix B presents the mathematical methods used to calculate the condition number 

for various combinations of probe liquids in this research.   

The three probe liquids that were used in the previous research were water, 

formamide and glycerol [15].  The condition number for this set of liquids is 18.6 and 

therefore the calculated surface free energy components of bitumen based on these three 

probe liquids can accumulate significant errors even if the errors in the measured contact 

angles are small.  If formamide is replaced by methyleneiodide then the condition number 

reduces to 4.9 which reduces the sensitivity of the computed results significantly.  In 

order to minimize errors and ensure satisfactory results, all five liquids were used as 

probes.  Using five liquids introduces redundancy since there are only three unknowns 

(surface free energy components of bitumen) and five linear equations (one equation by 

measuring contact angle with each probe liquid), however, using five liquids reduces the 

sensitivity and improves reliability of the calculated results. 

 

Validity of Contact Angles 

Equation (3.2) is based on the Young’s equation for contact angles.  In order to 

use this equation to compute the surface free energy components of the solid, it is 

important to ensure that the contact angles measured experimentally satisfy the 

requirements necessary for Young’s equation to be valid.  One of the important 
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requirements is that the probe liquid is pure, homogenous and does not chemically 

interact with bitumen.  Certain forms of chemical interactions are easily identifiable, such 

as when the probe liquid dissolves the bitumen.  However, in some cases complex 

interactions between the bitumen and probe liquid might not be apparent and other 

methods to screen liquids must be considered.  The following paragraphs describe a 

method based on a detailed study by Kwok et al. [37, 38]. 

Kwok and Neumann use a technique called the axisymmetric drop shape analysis 

profile (ADSA-P) to determine contact angle of probe liquids over different polymer 

surfaces.  This technique records the drop profile of a probe liquid in three stages: 

• as the liquid is being dispensed till the drop reaches the expected size, 

• as the liquid drop is retained in equilibrium over the solid surface, and 

• as the liquid drop recedes by reverse action back into the plunger. 

The dynamic means of recording data enabled Kwok and Neumann to identify 

liquids that demonstrate anomalous behavior such as excessive stick slip and change in 

contact angle of a stationary drop over time.  They regard contact angle data from such 

liquids as “meaningless”.  They also recommend that liquids demonstrating such 

anomalous behavior are in violation of one or more of the assumptions required for 

applying Young’s equation, and must not be used to calculate surface energies.  In their 

experiment they used up to 17 liquids on various polymer surfaces.  They also report that 

a plot of θγ CosL  versus Lγ , for a given solid with various liquids yields a smooth curve.  

They showed that the points corresponding to liquids undergoing complex interactions in 

their tests did not lie on this smooth curve.  As a corollary, it can be expected that if a 

liquid deviates from a smooth curve plot of θγ CosL  versus Lγ , then data from that liquid 

must not be included for calculation of surface energies.  Some other researchers argue 

that the plot of θγ CosL  versus Lγ might not necessarily be a smooth curve.  Deviations of 

individual points are possible due to polar or acid-base interactions between the solid 

surface and the liquid.  Based on the knowledge of bitumen chemistry, bitumen has polar 

function groups corresponding to weak acids or weak bases. Therefore, it is reasonable to 

expect that the acid-base components of bitumen will not be very large and the significant 

contribution to work of adhesion will be due to the LW component of surface free 
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energy. Without rejecting either point of view, the plot of θγ CosL  versus Lγ must at least 

approximate a smooth curve.  This requirement was used to screen and validate the 

accuracy of measured contact angles from the five probe liquids.  

 

Test Method 

Microscope glass slides (24mm x 60mm, No.1.5) are used as substrates for 

preparation of bitumen surfaces.  As mentioned earlier, five probe liquids were used in 

this research and three replicate slides of the same bitumen were tested with each probe 

liquid.  A total of at least 15 slides for each bitumen type were prepared as follows.  A tin 

with an approximate capacity of 50g, pre-filled with bitumen, was placed in an oven at 

the mixing temperature of the bitumen under consideration.  The tin with bitumen was 

removed from the oven after about one hour, stirred, and placed on a hot plate to maintain 

the desired temperature during the coating process.  The end of the glass slide intended 

for coating was passed six times on each side through the blue flame of a propane torch 

to remove any moisture, after which it was dipped into the molten bitumen to a depth of 

approximately 15 mm.  Excess bitumen was allowed to drain from the plate until a very 

thin (0.18 to 0.35 mm) and uniform layer of at least 10 mm remained on the plate. A thin 

coating is required to reduce variability of the results.  The plate was then turned with the 

uncoated side downwards and carefully placed into a slotted slide holder.  If necessary, 

the heat-resistant slide holder, with all the coated slides was placed in the oven after 

coating for 15 to 30 seconds to obtain the desired smoothness.  The bitumen-coated plates 

were placed in a desicator overnight. 

A DCA 315 microbalance with WinDCA software from Thermo Cahn 

Instruments was used to perform the test, acquire force data, and calculate contact angles.  

Balance calibration was performed with a 500 mg weight according to the manufacturer’s 

specification.  The five probe liquids (HPLC grade, Sigma-Aldrich) used for these 

experiments are distilled water, glycerol, formamide, ethylene glycol, and methylene 

iodide (diiodomethane).  Important method parameters include the total surface free 

energy of the probe liquids, local gravitational force, plate speed, and penetration depth.  

A speed of 20 microns per second and penetration depth of 5 mm was used in these 

experiments.  A slow speed is required to ensure quasi-equilibrium conditions, which 
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approaches the assumption of equilibrium.  The width and thickness were measured to an 

accuracy of 0.01 mm for calculation of the slide perimeter.  The slide was suspended 

from the micro balance using a crocodile clip – hook assembly.   It was ensured that the 

glass slide was suspended at right angles to the base of the balance.  A glass beaker was 

filled with the probe liquid to a depth of at least 10 mm and placed on the balance stage.  

The stage was raised or lowered during the test at the desired rate via a stepper motor 

controlled by the Win DCA software.  The weight of the slide measured by the 

microbalance was recorded continuously during the advancing (stage is raised to dip the 

slide) and receding (stage is lowered to retract the slide from the liquid) process.  A dark 

beaker was used for methylene iodide since this liquid is light sensitive.  Liquid surface 

tension data suggests that a fresh sample should be used for each set comprising of three 

replicate slides.   

After data acquisition, manual analysis of the force-distance data was performed.  

Buoyancy correction based on slide dimensions and liquid density can introduce 

unwanted variability into the resulting contact angles.  To eliminate these effects, a 

regression analysis of the buoyancy line and extrapolation to the force at zero depth was 

performed.  It is important in this procedure to select a representative area of the line for 

regression analysis.  

 

Calculating Surface Free Energy Components 

 

For any given ith probe liquid Li, equation (3.2) can be rewritten as: 

 

γLi
LW x1 + γ Li

− x2 + γLi
+ x3 = 1

2
γLi(1+ Cosθi)       (3.4)  

 

In equation (3.4), x1 through x3 are the square roots of the unknown bitumen surface free 

energy components and other terms are as described earlier. For m liquids equation (3.4) 

can be written in matrix form as: 
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         or, 

 

A x – B = E          (3.5) 

 

In equation (3.5), E is a column error matrix. Theoretically, E is a null matrix, however, 

due to experimental errors and over determinacy of the A matrix, it can have real non 

zero values.  A matrix is known from the probe liquid surface free energy components 

and B is known from the measured contact angles.  The unknown matrix x is determined 

by an iterative method to minimize the sum or squares of errors (elements of E matrix).  

The elements of the x matrix can then be squared to obtain the three surface free energy 

components of bitumen. Alternatively, equation 3.5 can be written as: 

 

 x  = A-1(B + E)                                                                                                          (3.6) 

 

When, A is not a square matrix, i.e. when m>3, which is true in this case, A-1   is 

substituted by A+ which is the Moore-Penrose inverse. The Moore-Penrose inverse 

matrix, A+, can be determined by singular value decomposition of the A matrix.  
 An analytical method to compute the error in the calculated surface free energy 

components based on the errors in contact angle measurement was developed.  Appendix 

B presents details of these analytical methods.  

 

Results  

 

Surface energies of nine different types of bitumen were measured in this 

research.  These materials were obtained from the Strategic Highway Research Program, 

Materials Reference Library (MRL), Reno, Nevada.  The selected bitumen, identified by 

a three letter alphabetic code, was from different sources and represents a range of 

different chemical compositions.  As mentioned earlier, in order to increase the accuracy 
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and reliability of the calculated surface free energy components, it is desirable to have as 

many probe liquids as possible.  However, based on the criteria for selection of probe 

liquids, only five liquids could be selected as probes for measuring contact angles.  Table 

3.1 presents the surface free energy components of these five probe liquids.  Tables 3.2 

and 3.3 present the advancing and receding contact angles, obtained using the Wilhelmy 

plate method.   

 

Table 3.1.  Surface Free Energy Components of Probe Liquids 

 

Liquid γγγγ (Total) γγγγLW γγγγ+ γγγγ- 

Water 72.8 21.8 25.5 25.5 

Glycerol 64.0 34.0 3.92 57.4 

Formamide 58.0 39.0 2.28 39.6 

Ethylene Glycol 48.0 29.0 1.92 47.0 

Methylene Iodide 50.8 50.8 0.0 0.0 
 

 

Table 3.2. Advancing Contact Angles using Wilhelmy Plate Method 

 

Methylene-

iodide 
Glycerol 

Ethylene 

Glycol 
Water Formamide Bitumen 

Avg. CV Avg. CV Avg. CV Avg. CV Avg. CV 
AAB 41.1 2 63.2 1 57.3 0 81.2 1 63.4 0 

ABD 43.5 4 34.5 1 51.5 0 47.9 1 40.1 2 

AAM 43.4 5 21.3 1 51.1 3 45.8 1 41.6 1 

AAF 41.7 1 67.5 0 58.8 0 86.7 2 67.0 1 

AAH 40.8 2 61.2 1 59.6 1 85.3 1 76.1 2 

AAL 42.6 2 39.9 0 49.9 2 41.2 3 30.5 2 

ABL 37.0 2 64.5 2 53.3 1 75.8 3 65.7 0 

AAD 42.1 1 70.2 0 65.0 2 86.1 1 74.1 1 

AAE 38.4 1 45.9 1 48.6 0 49.3 2 37.1 1 
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Table 3.3. Receding Contact Angles Using Wilhelmy Plate Method 

 

Methylene-
iodide Glycerol Ethylene 

Glycol Water Formamide Bitumen 
Avg. CV Avg. CV Avg. CV Avg. CV Avg. CV 

AAB 41.1 2 63.2 4 57.3 1 81.2 1 63.4 0 
ABD 43.5 1 34.5 4 51.5 3 47.9 1 40.1 4 
AAM 43.4 15 21.3 27 51.1 1 45.8 3 41.6 7 
AAF 41.7 1 67.5 1 58.8 0 86.7 1 67.0 1 
AAH 40.8 2 61.2 0 59.6 1 85.3 1 76.1 1 
AAL 42.6 1 39.9 5 49.9 1 41.2 6 30.5 4 
ABL 37.0 7 64.5 6 53.3 3 75.8 4 65.7 4 
AAD 42.1 3 70.2 0 65.0 0 86.1 2 74.1 1 
AAE 38.4 3 45.9 2 48.6 3 49.3 6 37.1 3 

 

 

In order to validate the accuracy of results obtained from the Wilhelmy plate 

method using the Neumann criteria, a simple straight line was fit to between θγ CosL  

versus Lγ for each bitumen type.  Although a second degree polynomial is typically 

recommended to fit the data, in this case, contribution of the second order term was 

negligible.  The square of the difference between ordinates of the measured point and the 

curve was used to quantify the deviation of each point (representing each probe liquid) 

from the curve.  For seven bitumen out of nine, the deviation was highest for Formamide.  

For the other two bitumen (AAB and ABD) the deviation was very high for both 

diiodomethane and ethylene glycol.  When these deviations were computed by excluding 

formamide the best fit parameters improved for all bitumen including AAB and ABD.  

Based on this analysis it is inferred that there might be some undesirable interactions 

between the selected bitumen and formamide.  Therefore, contact angles measured using 

formamide were not included to calculate surface free energy components of the bitumen.  

Also, results from this analysis indicate that the contact angles measured using the 

Wilhelmy plate method corroborate well with the theoretical requirements for contact 

angle measurement recognized in the literature.    
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Advancing and Receding Contact Angle 

Theoretically the advancing and receding contact angles must be the same for a 

given solid surface.  Kwok et al. [37, 38] state that physical roughness of the solid surface 

and chemical heterogeneity are two possible causes for the hysteresis.  If hysteresis is due 

to surface roughness, then contact angles obtained from the test are meaningless since 

they do not satisfy the basic requirement of a smooth solid surface to apply Young’s 

equation.  On the other hand, if hysteresis is due to chemical heterogeneity of the solid 

surface, then the measured advancing contact angle can still be considered as a good 

approximation of the equilibrium contact angle to calculate surface free energy 

components [37].  For the Wilhelmy plate test, the bitumen samples were prepared by 

coating a thin glass slide with hot molten bitumen.   The sample preparation was done at 

high temperatures when the bitumen is in a liquid state.  As the sample cools, the same 

fundamental forces that responsible for surface free energy will ensure that the surface 

area is minimized and the surface does not have any roughness.  On the other hand, the 

chemical heterogeneity of bitumen is well established.  Therefore it seems reasonable to 

attribute the hysteresis of bitumen contact angles to chemical heterogeneity rather than 

physical roughness. 

The use of advancing contact angles to calculate the surface free energy 

components responsible for adhesion is supported by the literature [26, 39].  However, 

some work by other researchers [40, 41] indicates that the receding contact angles can 

also be used as an index of surface free energy.  Considering both advancing and 

receding contact angle data in Tables 3.2 and 3.3, the coefficient of variation between 0 

percent and 4.5 percent is seen, with the exception of receding angles obtained for 

bitumen AAM-1.   Standard deviations in the order of 1˚ are considered excellent and 

attainable, while values up to 3˚ are not uncommon in the literature.   

 Reproducibility in terms of standard deviation of the contact angles was used as a 

measure of precision of the technique.  The pooled standard deviations for both the 

receding and advancing angles for each probe liquid was estimated under the assumption 

of common precision for different materials.  Table 3.4 presents this information and is 

valid for conditions of one operator and one laboratory. 
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Table 3.4.  Pooled Standard Deviations in Degrees for Contact Angles 

 

Mode Water Methylene 

Iodide 

Ehtylene 

Glycol 

Glycerol Formamide 

Advancing 1.4 1.9 0.9 0.5 0.9 

Receding 1.1 2.9 0.8 2.9 1.5 

 

 

Surface Free Energy Components and Interpretation 

Tables 3.5 and 3.6 present the total and individual surface free energy components 

of the nine bitumen based on the advancing and receding contact angles, respectively.  

The surface free energy components and errors were calculated using the procedures 

described earlier and detailed in Appendix B.  The four probe liquids used for calculation 

were water, diiodomethane, ethylene glycol, and glycerol.  The range of total surface free 

energy of bitumen calculated using advancing contact angles varies from 13.6 to 32.4 

ergs/cm2.  This range using the receding contact angles varies from 31.3 to 47.6 ergs/cm2.  

Further, the main contribution to the total surface free energy is due to the LW 

component.  This is in line with the fact that bitumen is primarily a non-polar material.   

In some cases it was observed that the square root of a bitumen surface free 

energy component, typically the acid or base component, was still negative.  However, 

the magnitude of the component in such cases was very small and could be neglected or 

considered to be equal to 0 for all practical purposes.  Based on this observation, it was 

concluded that the negative results of large magnitude from the previous studies was 

largely due to inadequate selection of probe liquids.  To avoid negative solutions, the 

minimization of last squares of errors was repeated with the constraint that the solutions 

must be non-negative.  Differences between the results from the constrained and 

unconstrained least squares regression were minimal.   
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Table 3.5. Surface Free Energy Components Based on Advancing Contact Angles 

 

Surface Free Energy 
Components (ergs/cm2) 

Standard Deviation 
(ergs/cm2) No. Bitumen 

LW Acid Base 

Total 
(ergs/cm2) 

LW Acid Base 
1 AAB 13.58 2.68 0.00 13.6� 0.7 0.3 0.0 
2 ABD 32.45 0.40 0.00 32.5� 1.0 0.1 0.0 

3 AAM 24.85 0.20 0.00 24.9� 1.2 0.1 0.0 
4 AAF 21.35 0.79 0.00 21.4� 0.7 0.1 0.0 
5 AAH 20.25 1.35 0.00 20.3� 0.7 0.2 0.0 
6 AAL 31.29 0.00 0.00 31.3� 0.8 0.0 0.0 
7 ABL 18.47 1.76 0.02 18.8� 0.8 0.3 0.1 
8 AAD 18.47 0.06 0.10 18.6� 0.4 0.0 0.1 

9 AAE 26.10 1.99 0.00 26.1� 0.5 0.2 0.0 
 

 

Table 3.6. Surface Free Energy Components Based on Receding Contact Angles 

 

Surface Free Energy 
Components (ergs/cm2) 

Standard Deviation 
(ergs/cm2)  No. Asphalt 

LW Acid Base 

Total 
(ergs/cm2) LW Acid Base 

1 AAB 38.08 0.00 6.60 38.1� 0.7 0.0 0.6 
2 ABD 37.67 0.80 30.57 47.6� 0.6 0.1 1.4 
3 AAM 31.25 0.00 51.04 31.3� 1.6 0.0 2.5 
4 AAF 38.38 0.01 3.52 38.8� 0.5 0.0 0.5 
5 AAH 37.43 0.34 5.52 40.2� 0.7 0.1 0.7 

6 AAL 38.04 0.00 44.50 38.0� 0.6 0.0 2.7 
7 ABL 40.32 0.00 8.96 40.3� 1.2 0.0 1.6 
8 AAD 35.45 0.00 10.45 35.5� 0.7 0.0 1.2 
9 AAE 42.41 0.04 43.07 45.0� 5.0 0.1 3.2 

 

 

 



 

                                                                         

33 

 

A comparison between Tables 3.5 and 3.6 indicates that a very large difference in 

the acid component, γ+, and the base component, γ-, exists depending on whether the 

advancing or receding contact angle was used to calculate the value.  The aim of surface 

free energy measurements is not merely to distinguish between different bitumen types 

but to distinguish between bond strengths with different aggregates in wet and dry 

condition.  The surface free energy components from advancing contact angles are used 

for computing the adhesive bond strength of the bitumen with the aggregate.  Most 

bitumen are regarded to contain weak acid and weak base functional groups.  The small 

magnitude of acid and base components of surface free energy from the advancing 

contact angles is in agreement with this.  Therefore, the polar components computed from 

the advancing contact angle can be considered as a better representation of the neat 

bitumen properties.   

Figures 3.3 and 3.4 graphically illustrate the LW and acid components of surface 

free energy along with their standard deviations based on the advancing contact angles.  

The base component for these bitumen is negligible and is not shown.  Data in the figures 

indicates that the methodology is sensitive to distinguish the components between 

different types of binders. 
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Figure 3.3. LW Component of Bitumen Surface Free Energy. 



 

                                                                         

34 

 

 

γγγγ++++    (ergs/cm2)

0

0.5

1

1.5

2

2.5

3

3.5

A
A

B

A
B

D

A
A

M

A
A

F

A
A

H

A
A

L

A
B

L

A
A

D

A
A

E

 

 

Figure 3.4. Acid Component of Bitumen Surface Free Energy. 

 

Summary 

  

Some of the problems associated with the use of Wilhelmy plate method from 

previous studies were as follows: 

• Magnitude of the base component of bitumen surface free energy was very high.  

• Square root of the surface free energy component was a large negative number in 

some cases. 

• Computed surface free energy components were sensitive to the measured contact 

angles. 

• Although precision of contact angles was determined the precision of computed 

surface free energy was not established. 

• Accuracy of the data was not verified. 

In this research, selection of appropriate probe liquids and its impact on the 

resulting surface free energy values is emphasized.  Inclusion of more than three probe 

liquids helped reduce the sensitivity of the calculated surface free energy components and 

eliminate negative results of large magnitude.  This also helped in validating the accuracy 
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of the measured contact angles based on various theoretical and experimental criteria 

stipulated in the literature concerning contact angle measurements.  The surface free 

energy components of the bitumen calculated from the advancing contact angles in this 

research reconcile well with the general chemical properties expected for bitumen 

binders.  Analytical methods to compute surface free energy components and the 

propagated errors from measured contact angles were developed using statistical methods 

described in detail in Appendix B.  This improved the accuracy of the results and 

provided a means to estimate the precision of the surface free energy components and not 

just the precision of the measured contact angles. 
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CHAPTER IV 

UNIVERSAL SORPTION DEVICE  

 

Problem Description 

 

 Aggregates are a heterogeneous combination of various naturally occurring 

minerals.  It is reasonable to regard aggregates as high energy solids, since the surface 

free energy of clean aggregates is typically higher than the surface free energy of any of 

the probe liquids that are commonly used.  This eliminates the use of contact angle 

methods for measuring the surface free energy of clean aggregate surfaces and methods 

to measure properties such as spreading pressure must be resorted to.  A gas sorption 

approach was used by Li [42] and Cheng [15] to determine surface energies of 

aggregates.  Some of the results from Cheng [15] indicate the need for further refinement 

of this methodology for use as a test procedure for aggregates.  For example, in some 

cases different probe liquids resulted in different specific surface area for the aggregate.  

Specific surface area is an important input in computing spreading pressures and 

eventually the surface free energy components.  Therefore any discrepancy or error in 

specific surface areas of the aggregates is also reflected in the computed surface free 

energy components.  Results from the previous studies were based on a limited number 

of aggregates that were tested manually and the accuracy of these results was not cross 

examined.  Since measurement of adsorption isotherm is inherently a time consuming 

and sensitive procedure, manual control can lead to unwanted variability in the test 

results.  In this research, a completely automated manifold was developed to facilitate 

testing and improve precision of the test method.  Experimental and analytical methods to 

accurately measure and compute the surface free energy components were also 

developed.   

 

 

 



 

                                                                         

37 

 

Background and Theory 

 

Spreading pressure, in the context of vapor adsorption on solid surface, is defined 

as the reduction in the surface free energy of the solid due to the adsorption of vapor 

molecules on its surface.  Spreading pressure based on the equilibrium mass adsorbed at 

the maximum saturated vapor pressure is referred to as the equilibrium spreading 

pressure of the vapor with the solid, denoted by the symbol πe.  Based on this definition, 

equilibrium spreading pressure is expressed as:  

 

SVSe γγπ −=           (4.1) 

 

where, γ S  and SVγ  are the surface free energies of the solid in vacuum and in the 

presence of the vapor at maximum saturated vapor pressure, respectively. 

 The equilibrium spreading pressure of a vapor on a solid surface and their 

interfacial work of adhesion are related as follows (Refer Appendix A for a more detailed 

discussion and theoretical background of this equation): 

 

WSL = π e + 2γ LV            (4.2) 

 

The above equation is valid for high energy materials such as aggregates.  Further, using 

the Good-van-Oss-Chaudhury (GVOC) theory for the work of adhesion, the spreading 

pressure of the vapor on the solid surface and their surface free energy components are 

related as follows:  

 

+−−+ ++=+ LSLS
LW
L

LW
SLVe γγγγγγγπ 2222      (4.3) 

 

The surface free energy components of the solid are the three unknowns in 

equation (4.3).  The surface free energy components of the liquid are known and the 

spreading pressure between the liquid vapor and solid is experimentally measured.  

Similar to the Wilhelmy plate method, in order to compute the three surface free energy 
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components of the solid using equation 4.3, its spreading pressure with at least three 

different liquid vapors must be measured experimentally. 

The spreading pressure of a vapor over the aggregate surface is determined from 

its adsorption isotherm using equation (4.4) [43]: 

 

π e = RT
MA

n
p

dp
0

p0�          (4.4) 

 

where, R, is the universal gas constant, T is the test temperature, n is the mass of vapor 

adsorbed per unit mass of the aggregate at vapor pressure, p, M is the molecular weight of 

the probe vapor, p0 is the maximum saturation vapor pressure of the liquid, and A is the 

specific surface area of the aggregate. 

Specific surface area of the aggregate is calculated using the classical Branauer, 

Emmett and Teller (BET) equation [44] as shown below: 

 

α�
	



�
�


=
M
Nn

A m 0          (4.5) 

 

where, 0N is the Avogadro’s number, M is the molecular weight of the probe vapor, and 

α is the projected area of a single molecule of the probe vapor, and mn is the monolayer 

capacity of the aggregate surface. 

Monolayer capacity is the number of molecules required to cover the aggregate 

surface in a single layer.  This is calculated using equation (4.6) from the slope ‘S’ and 

intercept ‘I’ of the best fit straight line between 
)( 0 ppn

p
−

versus 
0p

p
, where p , p0, and 

n are the partial vapor pressure, maximum saturation vapor pressure, and mass of vapor 

adsorbed on aggregate surface, respectively.  The straight line fit is done only for partial 

vapor pressure, or
0p

p
, ranging from 0 to 0.35, since the BET equation is valid only for 

this range.   
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IS
nm +

= 1
          (4.6) 

 

Figure 4.1 summarizes the analytical steps proposed in this research to obtain 

surface free energy components of an aggregate.  Note that the specific surface area is 

determined using nHexane to calculate the spreading pressures from all three probe 

vapors.  Detailed explanation for this is explained later in the section entitled 

“Experimental Variables”. 

 

 
 

Figure 4.1. Flow Chart of Steps to Determine Aggregate Surface Free Energy. 

 

Development of Test Method 

 

Surface free energy components of aggregates are calculated from the spreading 

pressures of three probe vapors on the aggregate surface.  Spreading pressure of a probe 

vapor is determined by measuring the full adsorption isotherm of the probe vapor on the 

aggregate surface.  Therefore, the main experimental task to determine surface free 

Calculate three surface 
energy components using 

GVOC equations 

Measure adsorption 
isotherm with nHexane 

vapor (non polar) 

Measure adsorption 
isotherm with MPK vapor 

(mono polar) 

Measure adsorption 
isotherm with Water vapor 

(bi polar) 

Calculate specific surface 
area (SSA) from initial 

part of adsorption isotherm 
using BET equation 

 

Calculate equilibrium 
spreading pressure for 
each of the three probe 

vapors 
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energy of aggregates is to measure its adsorption isotherm with different probe vapors.   

To obtain a full adsorption isotherm, the aggregate was exposed to ten equal 

increments of partial probe vapor pressure from vacuum to maximum saturation vapor 

pressure.  For each increment, the adsorbed mass was recorded after it reached 

equilibrium.  Ten points were found to be sufficient to establish a good fit to the data 

within a reasonable test period.  The time taken for the adsorbed mass to attain 

equilibrium was considerable for some aggregates and resulted in long overall test times.  

Furthermore, sensitivity of measurements and the human judgment required to determine 

if equilibrium was achieved, introduced variability and human error in the experiment.  In 

order to avoid the influence of these factors on the test results, an automated test system 

capable of executing the entire test procedure with minimal operator effort and 

interference was developed.  More details of the test method and set up are described in 

the following sub sections. 

 

Sample Preparation  

The aggregates to be tested were sampled from a representative stockpile.  

Aggregates passing ASTM sieve #4 and retained on ASTM sieve #8 were used for 

testing. The aggregates were sieved and cleaned with distilled water in the sieve.  About 

25 grams of the aggregate were required for one replicate test with each probe vapor. 

After cleaning the aggregate with distilled water, they were dried in an oven at 150°C for 

6 hours and allowed to cool to room temperature inside a vacuum desicator for about 6 

more hours.  Once the sample was cleaned and ready to test it was placed in a wire mesh 

sample basket for testing.   

 

Test Setup  

The adsorption measurements were carried out in an air tight sorption cell.  The 

sample basket was suspended in the cell from a hook connected to a microbalance via a 

magnetic suspension coupling.  The magnetic suspension coupling enables accurate 

measurement of mass without the balance coming into any physical contact with the 

sample or vapors in the sorption cell.  The sorption and micro balance together form the 

sorption apparatus manufactured by Rubotherm.     
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In order to automate the test procedure, a test manifold was developed and 

connected to the sorption apparatus.  A software (SEMS, Surface Energy Measurement 

System) was developed to regulate the vapor pressure in the sorption cell and acquire 

mass, pressure, and temperature data as the test progresses.  Figure 4.2 illustrates a 

schematic of the manifold and the sorption apparatus.  Figure 4.3 shows a snapshot of the 

SEMS software for running the sorption test.  The probe liquids were stored in air-tight 

cylinders connected to the manifold.  The cylinders were degassed after connection to 

remove any trapped air and ensure the presence of only pure vapors from the probe 

liquid.  The cylinders were connected to the sorption cell via a solenoid valve that was 

regulated by a computer to maintain the desired amount of vapor pressure in the sorption 

cell.  

 
 
 

 
 
1. Microbalance  2. Magnetic suspension 3. Sample cell 
4. Buffer Tank   5. Water bath   6. Probe liquid containers 
7. Knock out tank  8. Vacuum pump 

 
 

Figure 4.2. Layout of Universal Sorption Device System. 
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Figure 4.3. Snapshot of SEMS Software Used for Sorption Measurement.  

 
Test Method 

After the sample was suspended from the magnetic suspension hook, the sorption 

cell was sealed using a viton O-ring.  The sorption cell was degassed using a mechanical 

vacuum pump.  Degassing was carried out at 70°C under a vacuum of about 5 millitorr 

for a period of 2 hours followed by cooling to 25°C under vacuum for 4 hours.  The 

temperature of the sorption cell was maintained using a water bath controlled by SEMS.   

After completion of degassing, the adsorption isotherm of a probe vapor with the 

aggregate was obtained using SEMS.  The following is a typical sequence of steps 

executed to obtain a full isotherm: 

• Mass of the aggregate was measured after degassing under vacuum. 

• Vapors from the probe liquid containers were dosed into the sorption cell to 

achieve a vapor pressure of approximately one-tenth the maximum saturated 

vapor pressure of the probe. 

• Mass of adsorbed vapor was calculated as the difference between mass after 

exposure to vapor and the mass under vacuum when equilibrium is attained. 

• The previous two steps were repeated by increasing the vapor pressure in 
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increments of approximately one-tenth of its maximum vapor pressure until 

saturated vapor pressure was achieved in the adsorption cell. 

In order to determine whether the adsorbed mass has reached equilibrium, SEMS 

calculates the slope of the adsorbed mass versus time for the last five minutes of the test.  

If the slope is less than a pre-specified significant threshold value, the adsorbed mass is 

considered to have reached equilibrium and the next increment of partial vapor pressure 

applied.  Correction for buoyancy is automatically applied to the measured mass as 

follows: 

 

B = MpV
RTz

          (4.7) 

 

where, M is the molecular weight of the vapor, p is the partial vapor pressure at the time 

of measurement, V is the volume of the aggregate sample, R is the Universal gas constant, 

T is the test temperature, and z is the compressibility factor that can be calculated using 

empirical equations or obtained from physical tables [45]. 

Following completion of the test, the SEMS software uses equations (4.4), (4.5) 

and (4.6) to calculate the specific surface area of the aggregate and the spreading pressure 

of the probe vapor from the test data and presents a summary report.  Equations (4.2) and 

(4.3) were used to determine the three surface free energy components of the aggregates 

based on the spreading pressures from the three probe vapors and specific surface area 

calculated using nHexane.  The three probe vapors used in this research were nHexane, 

Methyl propyl ketone (MPK), and water.  Table 4.1 presents the surface free energy 

components of these three probes. 

 

Table 4.1. Surface Free Energy Components of Probe Vapors 

 

Probe Vapor γγγγLW 

(erg/cm2)    
γγγγ+ 

(erg/cm2)    
γγγγ- 

(erg/cm2)    
γγγγ 

(erg/cm2) 
Water 21.8 25.5 25.5 72.8 

Methylpropylketone 21.7 0 19.6 21.7 

Hexane 18.4 0 0 18.4 
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Experimental Variables 

 

Chemisorption versus Adsorption 

Bond strength between two materials due to their surface energies is typically an 

order of magnitude or more smaller than the chemical bond strength.  The main causes 

for the development of a bond between two materials are physical adsorption due to their 

surface energies and chemical adsorption or chemisorption due to formation of chemical 

bonds between the materials.  For example, vapors physically adsorbed on a solid surface 

can be removed by degassing at normal temperatures, while chemisorbed vapor 

molecules bond more tenaciously to the solid surface and usually cannot be removed 

without the aid of very high temperature and vacuum.  The methodology to measure 

surface free energy of aggregates is applicable only when the adsorbed mass is mostly 

due to physical adsorption and not chemisorption.  In earlier experiments Cheng [15] 

determined that there was no appreciable difference in the adsorption and desorption 

characteristics of typical aggregates such as granite, limestone, and gravel using the same 

probe vapors.  Based on this data and similar results from other studies [46], it is 

reasonable to consider that the adsorption of selected probe vapors on the aggregate 

surface is primarily physical in nature. 

 

Specific Surface Area 

Surface free energy is expressed in units of energy per unit area.  Since the 

adsorption isotherm is measured in terms of mass of vapor adsorbed per unit mass of 

aggregate, specific surface area is an important input to compute the spreading pressure 

and surface free energy of aggregates.  Equations (4.5) and (4.6) shown earlier are used to 

calculate the specific surface areas of aggregates from their adsorption isotherms.  The 

physical interpretation of these equations is as follows.  Equation (4.5) determines the 

number of molecules required to form a monomolecular layer over the aggregate surface.  

Thus, the total number of molecules forming a monolayer multiplied by the projected 

area of each molecule results in the specific surface area of the aggregate. 

The projected cross sectional area of a probe vapor molecule is theoretically 

obtained using a liquid density equation that assumes the hexagonal packing model. 
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Adsorbed molecules of polar probes such as MPK and water may have a preferred 

orientation resulting in different projected cross sectional areas for different aggregates.  

As a result, using the theoretical cross sectional area of the molecule may result in 

inaccurate estimation of specific surface areas of the aggregates.  The projected cross 

sectional area of nHexane (non polar probe) calculated based on liquid density formula is 

36Å2.  Gases such as nitrogen or argon are commonly used as probes to determine 

specific the surface area of solids on account of their relatively inert and non polar.  

Based on the comparison of specific surface areas of various standard materials using one 

or more probe vapors including inert gases, the projected area of nHexane molecules is 

estimated as 56Å2 [47], which is larger than the value calculated using the liquid density 

formula.  In this research it is recommended that this value of projected area of nHexane 

molecules be used to determine the specific surface areas of the aggregates.  This 

proposition is supported by experimental data presented later in this chapter.   

 

Sample size and preconditioning 

Although measuring adsorption isotherms is not a new technique, certain 

modifications were required in order to implement it for measuring aggregate surface 

energies.  Most of the vapor sorption methods described in literature use very finely 

divided solids and a sample mass of about 1gm or less [43, 46, 48].  Further, most of 

these tests are based on measurement of relatively pure and homogenous solids and 

employ preconditioning temperatures as high as 250°C for time durations as long as 24 

hours.   

Aggregates used in hot mix asphalt are heterogeneous and are often combined 

from different size fractions to achieve a desired gradation.  Surface free energy of an 

aggregate is an intrinsic material property and therefore must be independent of its 

geometry.  This eliminates the requirement to test every size fraction of the same 

aggregate to obtain its surface free energy characteristics.  This is true unless the size 

fraction is extremely fine such that differences in individual crystals become significant.  

Such fines are more likely to be considered as a part of the bitumen mastic rather than an 

aggregate bound by the bitumen.  It is important to select a sample size and quantity that 

represents the mixture properties.  Approximately 25 grams of aggregate passing the 
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ASTM #4 sieve and retained on the ASTM #8 sieve was found to be the most appropriate 

quantity and size for surface free energy measurements using the sorption apparatus.  The 

quantity of the sample is determined by the range (5-100 grams) and sensitivity (10 micro 

grams) of the balance.  For a given specific surface area and sample mass, a smaller 

aggregate size will result in a large total surface area and vice-versa.  A large total surface 

area increases measurement precision because larger amounts of vapor mass are 

adsorbed, but this results in longer degassing and equilibrium times.  On the other hand, a 

smaller total surface area reduces the test duration but at the expense of measurement 

precision.  The size fraction, between the #4 to #8 sieves optimizes precision and test 

duration. 

In this research, preconditioning of aggregates was done in two stages.  In the first 

stage the aggregate sample was cleaned with distilled water to remove any physical or 

organic impurities from the surface.  The sample was then heated in an oven at 150°C for 

12 hours and allowed to cool to room temperature in a desiccator.  Calcium sulfate 

crystals were added to the desiccator to lower humidity.  In the second stage of 

preconditioning the aggregates were transferred into the sample basket and suspended in 

the sorption cell.  A vacuum of about 5 millitorrs was applied for a period of two hours at 

a temperature of 70°C and the cell was allowed to cool back to test temperature under 

vacuum for three to four hours.  The adequacy of this preconditioning procedure was 

determined in two ways.  Firstly, the mass of aggregate was monitored during degassing 

and no appreciable change in mass was observed after about 2 hours of degassing 

indicating that there was no further significant desorption from the aggregate surface.  

Secondly, in another experiment isotherms of the same aggregate subjected to different 

durations of degassing were compared and found to be indifferent.  Figure 4.4 illustrates 

this comparison for a gravel sample with MPK as a probe vapor.  It is evident from the 

figure that the preconditioning procedure described above is adequate for testing this 

aggregate size fraction. 
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Figure 4.4. Evaluation of Preconditioning Time.  

 

Test Results  

 

Surface energies of five different aggregate types and four minerals were 

measured in this research.  The aggregates were obtained from the Strategic Highway 

Research Program, Materials Reference Library (MRL), Reno, Nevada.  These 

aggregates were from different sources and represent a range of mineral compositions.  

Three replicates of each aggregate were tested with each of the three probe vapors.   

 The SEMS software was used to carry out the adsorption test.  Figure 4.5 shows a 

typical output from the SEMS software after completion of a test with a probe vapor.  

The specific surface area and spreading pressure for the aggregate with the probe vapor 

are calculated using equations (4.4) and (4.5), respectively.  In order to calculate the 

surface free energy characteristics of the aggregate, spreading pressures from different 

probe vapors are combined using equations (4.2) and (4.3).  Table 4.2 presents the 

spreading pressure measured using the USD and the coefficient of variation of the results 



 

                                                                         

48 

 

based on three replicate measurements.  The specific surface areas of the aggregates were 

computed from the adsorption isotherm of nHexane and with a projected area of nHexane 

molecule as 56Å2.  

 

Table 4.2. Spreading Pressure  

 

M P K n Hexane Water 

Aggregate Spreading 
Pressure 
(erg/cm2) 

CV 
(%) 

Spreading 
Pressure 
(erg/cm2) 

CV 
(%) 

Spreading 
Pressure 
(erg/cm2) 

CV 
(%) 

RD 32.1 16.0 20.1 6.7 94.4 8.6 

RL 69.7 7.2 28.3 14.1 293.2 4.0 

RK 31.1 12.4 25.3 15.8 59.3 5.6 

RA 20.3 17.0 23.9 5.5 124.5 16.4 

RG 61.5 10.5 28.7 15.3 252.9 6.0 

Quartz 8.7 10.9 22.8 5.1 142.7 8.6 

Albite 28.4 1.9 23.4 9.0 85.6 6.5 

Calcite 29.4 3.5 39.6 3.5 139.6 6.2 

Microcline 18.4 3.9 20.0 1.3 72.7 3.7 
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Figure 4.5. Typical Report Generated Using SEMS Software. 

 

Table 4.3 summarizes surface free energy characteristics for the five aggregates 

and four minerals.  Figures 4.6 through 4.8 illustrate the three surface free energy 

components of the aggregate and mineral that were tested along with their standard 

deviations.  Results from these figures show that the last method can be used to determine 

the surface free energy components of the three aggregates with reasonable precision.  

Standard deviations for the surface free energy components are calculated using 

propagation of errors.  Appendix C presents the analytical steps that were used to 

compute the surface free energy components and their standard deviations based on the 

replicate measurements of spreading pressures. 
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Table 4.3. Surface Free Energy Components  

 

γγγγLW 

(erg/cm2)    γγγγ+ (erg/cm2)    γγγγ- (erg/cm2)    
Aggregate 

Avg. Std. 
Dev. Avg. Std. 

Dev. Avg. Std. 
Dev. 

γγγγAB 
(erg/cm2) 

γγγγTotal 
(erg/cm2) 

RD: Limestone 44.1 1.25 2.37 1.08 259 18 49.57   93.6 

RL: Gravel 57.5 4.09 23 4.15 973 39 299.2 356.8 

RK: Basalt 52.3 4.77 0.64 0.74 164 10 20.5   72.8 

RA: Granite 48.8 0.49 0  412 83 0   48.8 

RG: Sandstone 58.3 4.52 14.6 4.01 855 34 223.2 281.5 

Mineral: Quartz 37.2 1.0 0.0  525 32.2 48.3   96.6 

Mineral: Albite 47.5 0.5 0.7 0.1 245 10.1 21.3   77.1 

Mineral: Calcite 67.0 1.6 0.0  427 20.8 0   67.0 
Mineral: 
Microcline 43.9 0.4 0.0  239 8.0 0   46.6 
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Figure 4.6. LW Component of Aggregates. 
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Figure 4.7. Acid Component of Aggregate. 
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Figure 4.8. Base Component of Aggregate. 
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Validating Test Method Based on Specific Surface Area 

Table 4.4 presents the specific surface areas of five different aggregates measured 

using the three probe vapors and considering the projected cross sectional area of the 

probe molecule based on the liquid density formula.  Differences in cross sectional area 

determined using polar (MPK and water) and non-polar (nHexane) vapors are evident.  

The table also includes surface areas of aggregates calculated using nHexane but with a 

projected molecular cross sectional area of 56Å2 as adopted from the literature [47].  It is 

proposed that nHexane must be used with a projected cross sectional area of 56Å2 to 

compute the specific surface area of the aggregates since nHexane molecules are non-

polar and therefore their orientation is not affected by different surface polarities of 

different aggregate surfaces.  In order to validate this, the specific surface area of the 

same size fraction of two aggregates was measured using a commercially available 

standard Nitrogen sorption device manufactured by Micromeritics Inc.  Data from Table 

4.5 shows that the specific surface areas measured using this device agree well with the 

areas obtained using the adsorption equipment.  This comparison also provides a limited 

validation of the accuracy of measurement of this test method 

 
Table 4.4. Specific Surface Area of Aggregates 

 

Water1 (10A2) MPK1 (35A2) Hexane1 (39A2) Hexane2 
(52A2) 

Aggregate 
SSA 

(m2/gm) CV(%) SSA 
(m2/gm) CV(%) SSA 

(m2/gm) CV(%) SSA 
(m2/gm) 

RD 0.17 4 0.23 10 0.18 5 0.26 
RL 2.01 6 1.40 7 0.69 10 1.00 
RK 4.15 12 6.49 7 7.20 8 10.38 
RA 0.10 18 0.05 6 0.07 4 0.10 
RG 1.62 4 0.99 10 0.51 7 0.74 

Value in parenthesis is projected area of molecule used for calculation. 1 is value calculated  
using liquid density formula and 2 is value adopted from literature 
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Table 4.5. Specific Surface Area Using Different Methods 

 

Aggregate 
USD 

SSA (m2/gm) 
Micromeretics 
SSA (m2/gm) 

RK 10.38 10.10 
RA 0.10 0.13 

 

 

Surface Free Energy Components and Interpretation  

The test results indicate that the sorption test controlled by the SEMS software 

measures spreading pressures of aggregates with reasonable precision.  The Lifshitz-van 

der Waals (LW) or dispersive component of surface free energy varies from 44 to 58 

ergs/cm2 for different aggregates.  Although differences in the dispersive component 

between aggregates is not large, it contributes significantly to adhesion keeping in 

perspective the dispersive component of bitumen surface free energy that typically varies 

from 12 to 35 ergs/cm2.  Also, from existing literature [48, 49, 50] the dispersive 

component of finely divided minerals commonly found in aggregates, such as quartz and 

calcite is reported to be between 35 to 80 ergs/cm2.  These values were determined using 

various other techniques such as Wicking method, micro calorimeter and inverse gas 

chromatography.  The values obtained from USD measurements are in agreement with 

this range.   

The magnitude of the acid component is very small, and the magnitude of the 

base component is very high and significantly different for all five aggregates.  Also, 

from results shown in Chapter IV, most bitumen have a small acid component of surface 

free energy.  The dry work of adhesion between the bitumen and aggregate is given by 

equation (2.2).  From this equation it is evident that the acid and base interactions 

between the bitumen and aggregate are geometrically combined in a complimentary 

fashion (acid component of aggregate with base component of bitumen and vice-versa) to 

compute the total work of adhesion.  Therefore, the large magnitude of base component 

of aggregates is a significant contributor to the adhesion between the bitumen and 

aggregate with the acid component of bitumen, although small, acting as a scaling factor.  

This is in concurrence with other adhesion theories that attribute adhesion between 
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bitumen binder and aggregate to the weakly acidic character of the bitumen and a basic 

character of the aggregate [28]. 

 

Summary 

 

The test method developed in this research offers a convenient way to measure 

surface free energy components of aggregates that can be combined with the surface free 

energy components of bitumen to compute the dry work of adhesion, work of debonding 

and estimate the moisture sensitivity of asphalt mixes.  Discrepancies in specific surface 

areas of aggregates reported by previous researchers were resolved.  Precision of the test 

method was improved significantly by developing an automated test manifold controlled 

by a computer.  Specific surface areas of aggregates measured using this test method 

compare well with specific surface areas measured using industry standard method and 

provide a limited validation for the accuracy of this device.  Surface properties of pure 

minerals such as quartz and calcite measured using this method are also in reasonable 

agreement with similar data available in the literature based on other test methods. 
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CHAPTER V 

SURFACE FREE ENERGY AND MOISTURE SENSITIVITY OF ASPHALT 

MIXES 

 

General 

 

The objective of measuring surface free energies of bitumen and aggregate is to 

be able to compute their interfacial work of adhesion and the reduction in free energy of 

the system (work of debonding) when water displaces bitumen from the aggregate-

bitumen interface.  These two parameters can be used to estimate the moisture sensitivity 

of asphalt mixes based on the principles of physical adhesion.   

The conventional method of identifying moisture sensitive asphalt mixes during 

the mixture design process is by comparing results from mechanical tests on dry and 

moisture conditioned asphalt mixes.  However, these tests are not always reliable and do 

not provide any information regarding the causes for good or poor performance of a 

particular mixture.  This information is indispensable to a materials engineer who is often 

times required to modify the locally available materials, for economic reasons, to suit the 

design specifications.  The motivation to develop tests that measure material properties 

related to the fundamental mechanisms that are responsible for moisture sensitivity of 

asphalt mixes is to fill this gap.  Surface free energy of bitumen and aggregate and their 

concomitant bond energies are important material properties that influence the moisture 

sensitivity of asphalt mixtures.   

This chapter presents results to compare the moisture sensitivity of asphalt mixes 

measured by laboratory tests with the bond energy parameters of their constituent 

materials.   The chapter also presents results from another study that compares the 

moisture sensitivity of asphalt mixes based on field evaluation, with the bond energy 

parameters of their constituent materials.  The surface energies and bond energy 

parameters in the latter study were computed using the experimental and analytical 

techniques developed in this research and described in Chapters III and IV. 
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Bond Energy Parameters Related to Moisture Sensitivity  

 

 The three parameters based on surface free energies of bitumen and aggregate that 

are related to the moisture sensitivity of an asphalt mix are, 

• work of adhesion between the bitumen and aggregate, 

• work of debonding or reduction in free energy of the system when water displaces 

bitumen from a bitumen-aggregate interface, and 

• cohesive bond energy of the bitumen binder. 

The first two parameters can be computed using equations (2.2) and (2.3), respectively, if 

the surface free energy components of these materials are known.  The cohesive bond 

energy of the bitumen binder is the work done to create a new unit area by fracture in the 

neat bitumen phase.  By extending equation (2.2) to a system where both phases are of 

the same material, it can be shown that the cohesive bond energy is simply twice the total 

surface free energy of the material. 

For an asphalt mixture to be durable and less sensitive to moisture, it is desirable 

that the work of adhesion, ABW , between the bitumen and the aggregate be as high as 

possible.  Also, the greater the magnitude of work of debonding when water displaces 

bitumen from the bitumen-aggregate interface, wet
ABWW , the greater will be the 

thermodynamic potential that drives moisture damage.  Therefore it is desirable that the 

magnitude of work of debonding be as small as possible.  Based on this reasoning, one of 

the parameters that can be used to combine the two energy terms, ABW , and wet
ABWW , to 

assess the moisture sensitivity of the asphalt mix, is their ratio given as follows: 

  

wet
ABW

AB

W
W

ER =1           (5.1) 

 

The value of the bond energy parameter, 1ER , can be computed and used to predict the 

moisture sensitivity of the asphalt mix by measuring the surface free energy components 

of the constituent bitumen and aggregate.  The higher the value of 1ER , the less moisture 

sensitive the mix is likely to be. 
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 Equation (5.1) proposes 1ER as a parameter to estimate the moisture sensitivity of 

asphalt mixes based on the hypothesis that moisture sensitivity of an asphalt mix is 

directly proportional to the dry adhesive bond strength, and inversely proportional to the 

work of debonding or the reduction in free energy during debonding.  The latter term is 

determined from equation (2.3), which is reiterated as follows: 

 

ABBWAW
wet

ABWW γγγ −+=         (5.2) 

 

The term ABγ  in equation (5.2) refers to the interfacial bond energy between the 

bitumen and the aggregate.  The magnitude of resistance of the bitumen-aggregate 

interface is accounted for when work for debonding, wet
ABWW , is computed.  Therefore, it 

can be argued that the numerator for the bond energy parameter, 1ER , is redundant since 

the strength of interfacial adhesion is already accounted for in the denominator.  

However, an important factor that is not accounted for in the ratio, 1ER , is the wettability 

of aggregate by the bitumen.   

Although wettability and adhesion are both related to the surface free energy of 

materials, these are two different attributes.  Wettability refers to the ability of one 

material to wet the surface of the other material.  In other words, a material will wet the 

surface of another material if the cohesive bond energy of the former is less than the work 

of adhesion with the latter.  Work of adhesion on the other hand measures the strength of 

adhesion at the interface of two materials.  For example, a commercial epoxy glue might 

not wet a clean plastic surface, but may have a very good adhesive bond strength with the 

surface it is applied to.  Wettability also determines the ability of a material to impregnate 

itself in to the micro textural features of the solid surface.  Therefore, for a given 

aggregate surface, a bitumen with greater wettability will coat the aggregate surface more 

than a bitumen with lower wettability.  Better coating of aggregate surface results in 

fewer locations for initiation of moisture damage and corresponds to lower moisture 

sensitivity of the mix.  Therefore, it is also proposed that resistance of an asphalt mix to 

moisture damage is directly proportional to the wettability of the constituent bitumen 
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with the aggregate and inversely proportional to the reduction in free energy when water 

causes debonding.  Mathematically, this is expressed as follows: 

 

wet
ABW

BBAB

W
WW

ER
−=2           (5.3) 

 

where, BBW , is the cohesive bond energy of the bitumen and other terms are as described 

before. 

It is proposed that the two parameters, 1ER  and 2ER , that are derived using 

surface free energy of materials can be used to estimate the moisture sensitivity of asphalt 

mixes based on the principles of physical adhesion, when other mixture properties, 

loading conditions, and environmental conditions are controlled.  The bond energy 

parameters were computed for the nine bitumen and five aggregate types that were used 

for surface free energy measurements in the previous chapters.  In addition to these two 

bond energy parameters, it also proposed that moisture sensitivity of asphalt mixes will 

also be inversely related to the overall micro texture of the aggregate surfaces which can 

be approximated to be proportional to its specific surface area.  In order to accommodate 

the influence of surface roughness at a micro level, two additional parameters are 

proposed.  These are the product 1ER  with the specific surface area, and the product of 

2ER  with the square root of the specific surface area.  Square root of the specific surface 

area is selected for the latter case based on a principles of catalysis which states that rate 

of diffusion in micro porous materials is either proportional to the square root of the 

specific surface area or independent of it [51].  Since all asphalt mixes are cured at the 

mixing temperature for the same time duration before compaction, the amount of bitumen 

that wets different aggregate surfaces can also be approximated to be proportional to the 

square root of the specific surface area of the.  The remainder of this chapter will present 

data that demonstrates the correlation between moisture sensitivity of asphalt mixes 

measured in the laboratory or from field performance with these four bond energy 

parameters. 
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Table 5.1 presents the cohesive bond strength, BBW , for the nine bitumen types.  

Tables 5.2 and 5.3 present the work of adhesion and work of debonding for all possible 

combinations of the nine bitumen types with the five aggregates.  Tables 5.4 and 5.5 

present the values of the two bond energy parameters, 1ER  and 2ER .  From the data in 

these tables it is evident that for a given aggregate type, changing the type of bitumen can 

result in a range of different energy parameters, and consequently a range of different 

predicted moisture sensitivities.  Similarly, for a given type of bitumen, changing the type 

of aggregate can result in significantly different moisture sensitivities of the asphalt mix.  

 

Table 5.1. Work of Cohesion for Different Binder Types 

 

Bitumen 
Work of 
cohesion 

(ergs/cm2) 
AAB 27.2 

ABD 64.9 

AAM 49.7 

AAF 42.7 

AAH 40.5 

AAL 62.6 

ABL 37.7 

AAD 37.2 

AAE 52.2 
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Table 5.2. Work of Adhesion Between Bitumen and Aggregates 

 

Bitumen RA RK RL RD RG 
AAB 118* 95* 158* 102 150 

ABD 105* 99* 126* 96 123 

AAM 88 84 104 81 102 

AAF 101 90 126 90 121 

AAH 110 95 141 97 135 

AAL 78 81 85 74 85 

ABL 114 96 149 100 143 

AAD 70* 69* 83* 66 82 

AAE 129 110 165 113 159 
* Indicates mixes included for testing 

 

Table 5.3. Work of Debonding in Presence of Water 

 

Bitumen RA RK RL RD RG 
AAB -58* -15* -182* -44 -154 

ABD -79* -20* -222* -58 -189 

AAM -88 -27 -236 -65 -202 

AAF -76 -22 -215 -57 -184 

AAH -68 -18 -202 -51 -171 

AAL -99 -31 -256 -72 -220 

ABL -66 -18 -194 -49 -165 

AAD -101* -36* -251* -74 -217 

AAE -58 -11 -185 -43 -156 
* Indicates mixes included for testing 
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Table 5.4. Bond Energy Parameter – Lab Tests (ER1) 

 

Bitumen RA RK RL RD RG 
AAB 2.05* 6.34* 0.87* 2.32 0.97 

ABD 1.34* 4.88* 0.57* 1.66 0.65 

AAM 1.00 3.13 0.44 1.24 0.50 

AAF 1.32 4.12 0.58 1.59 0.66 

AAH 1.61 5.23 0.70 1.91 0.79 

AAL 0.79 2.65 0.33 1.03 0.39 

ABL 1.74 5.41 0.77 2.04 0.86 

AAD 0.69* 1.90* 0.33* 0.88 0.38 

AAE 2.23 9.87 0.89 2.63 1.02 
* Indicates mixes included for testing 

 

Table 5.5. Bond Energy Parameter – Lab Tests (ER2) 

 

Bitumen RA RK RL RD RG 
AAB 1.57* 4.53* 0.72* 1.70 0.80 

ABD 0.51* 1.67* 0.27* 0.54 0.31 

AAM 0.44 1.27 0.23 0.48 0.26 

AAF 0.76 2.15 0.38 0.84 0.43 

AAH 1.02 3.00 0.50 1.11 0.55 

AAL 0.16 0.60 0.09 0.16 0.10 

ABL 1.16 3.30 0.58 1.27 0.64 

AAD 0.32* 0.87* 0.18* 0.38 0.20 

AAE 1.32 5.19 0.61 1.42 0.68 
* Indicates mixes included for testing 

 

Moisture Sensitivity Based on Laboratory Performance of Mixes 

 
The experiment to validate the correlation between energy parameters and 

moisture sensitivity of asphalt mixes based on laboratory tests comprised of three 

important steps.  The first step was to select a set of asphalt mixes which would be 
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expected to have a range of different moisture sensitivities.  This was done based on the 

energy parameters shown in Tables 5.4 and 5.5.  The second step was to select a method 

to quantify moisture sensitivity of asphalt mixes by laboratory testing.  This was done by 

dividing the compacted samples of selected asphalt mixes into two different groups.  The 

first group of mixes was the control group (dry) and the second group of mixes was 

subjected to accelerated moisture damage (moisture conditioned).  The ratio of the 

mechanical properties of the moisture conditioned mix to the dry mix was used to 

quantify the moisture sensitivity of the asphalt mixes.  In the third step, correlation 

between moisture sensitivity of asphalt mixtures based on laboratory testing and bond 

energy parameters was determined.  The following sub sections provide details of the 

aforementioned experiments. 

 
 
Materials  

Nine mixtures were selected for the mechanical tests using aggregates RA 

(granite), RK (basalt) and RL (limestone) and asphalt binders AAB, ABD and AAD.  

Amongst the nine neat asphalt binders measured using the Wilhelmy plate method, the 

asphalt AAB has the lowest cohesive bond energy of about 27 ergs/cm2 and the asphalt 

ABD has the highest cohesive bond energy of about 65 ergs/cm2.  Amongst the 45 

possible combinations of nine asphalt binders and five aggregates with known surface 

energies, the work of adhesion between AAB and RL was one of the highest and AAD 

and RA was one of the lowest.  Similarly the calculated value of free energy released 

when water displaces asphalt from the asphalt-aggregate interface was one of the highest 

for the combination of AAD and RL and one of the lowest for the combination of AAB 

with RK.  Another important factor that differentiated the three selected aggregates was 

their specific surface area.  The specific surface areas of RA, RL and RK were of the 

order of 0.1, 1 and 10 m2/gm, respectively.  Therefore, selection of these three aggregates 

and bitumen provide a range of different values for the bitumen cohesion, bitumen-

aggregate adhesion, and bitumen-aggregate debonding.  
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Mix Designs and Sample Preparation 

Figure 5.1 shows the aggregate gradation used for all the nine mix designs.  The 

optimum asphalt content was determined using the Superpave design method with a 

Superpave Gyratory Compactor (SGC) using 125 design gyrations at 4% air voids.  The 

test samples were prepared using the SGC in a 101 mm diameter mold.  Two of the 

mechanical tests included in this study were in the direct tension mode.  Based on the 

literature, the minimum recommended aspect ratio (diameter : height) for samples 

subjected to direct tension tests is 1:2 [52].  Also the minimum diameter of the cylindrical 

sample must be at least four times the size of the largest aggregate in the mix.  Based on 

this information, dimensions of the test specimen were selected as 75 mm in diameter and 

150 mm in height.  The finished specimen were obtained by coring and sawing a 100 mm 

diameter and 175 mm high sample compacted using the SGC.  The number of gyrations 

of the SGC was adjusted to achieve a target air void of 7±0.5% for the finished sample 

(after coring and sawing).  Samples with air voids that did not fall in  this range were 

discarded.  Extreme care was exercised during sawing and coring operations to ensure 

proper sample geometry. 

 

Mechanical Tests and Parameters 

 Three types of mechanical tests were conducted on the dry and moisture 

conditioned asphalt mix samples.  One of these tests was in compression and the other 

two were in a direct tension mode.  The direct tension mode was selected since the effect 

of stripping would be most evident in this mode.  At least two replicates of both dry and 

moisture conditioned samples were tested for each of the nine mix designs.  All 

mechanical tests were conducted at a temperature of about 25±1°C.  Aluminum plates 

with fixtures to connect them to the universal testing machine, were glued to both ends of 

the sample using epoxy glue to enable testing in direct tension mode.  Each sample was 

attached with three linear variable displacement transformers (LVDTs) with a maximum 

range of 1.8mm to record permanent and resilient deformation.  The LVDTs were 

mounted at a distance of 25 mm from either face of the sample with a total gauge length 

of 100 mm. 
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Figure 5.1.  Aggregate Gradation for All Mixes. 

 

The first mechanical test was the dynamic modulus test in compression.  This test 

was conducted using a haversine loading with a frequency of 10 Hz.  The stress level was 

kept to a minimum to avoid any permanent sample damage.  Each sample was tested for 

200 load repetitions.  The samples were then allowed to rest for a minimum of 30 

minutes prior to further testing.   The parameter of interest from this test is the ratio of the 

dynamic modulus of the moisture conditioned sample to the dry sample.  

The second type of test was the dynamic modulus test in tension.  The sample was 

connected to the loading arm from the top and gripped using a mechanical chuck at the 

bottom via the aluminum end plates.  Proper alignment of the sample was ensured during 

this process.  The loading arm was continuously adjusted during the process of fixing the 

sample to ensure that the sample was not prestressed.  The dynamic modulus in tension 

was also conducted using a haversine loading with a frequency of 10 Hz and 200 load 

repetitions.  The parameter of interest from this test is the ratio of the dynamic modulus 

in tension of the moisture conditioned sample to the dry sample.  The third test 

immediately followed the second test.  In this test the dynamic haversine loading was 

continuously applied at a high stress level until the sample failed in tension.  In most 
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cases failure of the sample was from the middle.  Resilient strain and permanent 

deformation of the sample was continuously recorded during the test.  Figures 5.2 and 5.3 

show typical loading and response from the dynamic creep test in tension.  The parameter 

of interest from this test is the ratio of the fatigue life of the moisture conditioned sample 

to the dry sample.  Figure 5.4 shows the reduction in modulus of the mix with increasing 

number of load cycles normalized by the modulus of the first load cycle.   

A good estimate of fatigue life is the number of load cycles that corresponds to 

the maximum value of: 

 

*
1

*

E

E
N N            (5.4) 

 

where, N is the number of load cycles, *
NE  is the shear modulus at the Nth load cycle, and 

*
1E  is the shear modulus at the 1st load cycle.  Figure 5.4 also shows a plot of 

*
1

*

E

E
N N versus the load cycles.  Figure 5.5 shows the set up for conducting the tension tests 

with a sample that failed in tension after the dynamic creep test.   

In dynamic creep the parameters of interest were the accumulated permanent 

strain in the sample as well as the reduction in modulus of the sample with increasing 

number of load cycles.  In order to collect data for these parameters, LVDTs with smaller 

range and greater sensitivity were used.  However, due to practical limitations, these 

LVDTs could not record data until complete sample failure for all samples.  Therefore for 

this research, the fatigue life of the mix is defined as the number of load cycles required 

to attain 1% permanent strain.  Table 5.6 provides a summary of the mechanical tests and 

relevant parameters used to quantify moisture sensitivity of asphalt mixes.  
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Table 5.6. Summary of Mechanical Tests Used to Estimate Moisture Sensitivity 

 

Test Type Test Parameters Parameters to estimate 
moisture sensitivity Sample Size 

Dynamic 
Modulus 
(Compression) 

Haversine loading in 
compression at 10Hz and 
25°C at low stress level for 
200 cycles 

Ratio of wet to dry 
compression modulus of 
mix 
 

Dynamic 
Modulus 
(Tension) 

Haversine loading in tension 
at 10Hz and 25C at low stress 
level for 200 cycles 

Ratio of wet to dry tension 
modulus of mix 
 

Dynamic 
Creep 

Haversine loading in tension 
at 10Hz and 25C at high 
stress level until sample 
failure 

Ratio of wet to dry number 
of load cycles required for 
1% permanent microstrain 
  

 
Diameter: 75mm  
 
Height: 150mm 
 
Obtained by sawing & 
coring a 100mm 
diameter and 175mm 
high sample 
compacted using the 
Superpave gyratory 
compactor 
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Figure 5.2.  Typical Loading and Average Response from Dynamic Creep Test 

Without Rest Period. 
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Figure 5.3. Curve Showing Accumulated Permanent Strain Versus Load Cycles. 

 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800

Cycles (number)

E
* n

 / 
E

* 1
  (

Te
ns

io
n)

0

100

200

300

400

500

600

700

800

900

N
 E

* n
 / 

E
* 1

 (T
en

si
on

)

Reduction in Modulus

No. of load cycles x
reduction in modulus

 
 
 

Figure 5.4. Reduction in Modulus from Dynamic Creep Test.  
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Figure 5.5. Test Set Up and Sample Failure for Dynamic Creep Test (Tension). 

 
Moisture Conditioning 

Samples were moisture conditioned by submerging them in deionized water under 

vacuum to achieve a saturation level between 70 to 80%.  This took about two minutes in 

most cases.  After achieving target saturation, the samples were kept submerged under 

deionized water for 24 hours at 50°C.  The samples were then removed from the water 

and air dried for 24 hours prior to testing.  The samples retained a saturation level 

between 25 and 30% at the time of testing.  Testing of the moisture conditioned samples 

was completed within 24 to 36 hours after removal from the water.  Figure 5.6 shows the 

failure plane of a moisture conditioned sample after a dynamic creep test in tension. 
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Figure 5.6. Failure Plane of Moisture Conditioned Sample After Dynamic Creep 

Test. 

 

Results  

Four bond energy parameters, 1ER , 2ER , 1ERxSSA , and 2ERxSSA , are 

proposed as indicators of moisture sensitivity of asphalt mixes.  Three different 

parameters are used to quantify the moisture sensitivity of asphalt mixes based on 

laboratory testing.  These are the ratio of dynamic modulus in compression, ratio of 

dynamic modulus in tension, and ratio of load cycles for 1% permanent strain in tension 

of dry samples to moisture conditioned samples.  Correlations between the four bond 

energy parameters and the three parameters from laboratory testing were determined.  

The ratio of dynamic modulus in compression did not show a significant correlation with 

any of the bond energy parameters.  This was expected since the modulus of asphalt 

mixes in compression is a complex function of various other mechanical and material 

properties and the effect of debonding might not be significant in the compression mode.  

However the bond energy parameters showed different levels of correlation with the 

other two parameters from the mechanical tests.  Figures 5.7 through 5.14 illustrate the 

correlation between each of the four bond energy parameters and the moisture sensitivity 

of asphalt mixes based on each of the two parameters from the direct tension tests.  
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Figure 5.7. ER1 vs. Wet to Dry Ratio of Fatigue Life. 
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Figure 5.8. ER1 vs. Wet to Dry Ratio of Resilient Modulus in Tension. 
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Figure 5.9. ER1xSSA vs. Wet to Dry Ratio of Fatigue Life. 
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Figure 5.10. ER1xSSAvs. Wet to Dry Ratio of Resilient Modulus in Tension. 
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Figure 5.11. ER2 vs. Wet to Dry Ratio of Fatigue Life.  
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Figure 5.12. ER2 vs. Wet to Dry Ratio of Resilient Modulus in Tension. 
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Figure 5.13. ER2xSQRT(SSA) vs. Wet to Dry Ratio of Fatigue Life.  
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Figure 5.14. ER2xSQRT(SSA) vs. Wet to Dry Ratio of Resilient Modulus in Tension. 
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Discussion 

 Correlation between the bond energy parameters multiplied with the specific 

surface area of the aggregates and the moisture sensitivity of the asphalt mixes was made 

on a log-log scale.  This is because, the specific surface areas of the three aggregates 

increased by an order of magnitude from aggregate RA to RL to RK.  The following can 

be inferred from the results: 

• The correlation between bond energy parameters and moisture sensitivity of the 

mix based on ratio for cycles required for 1% permanent deformation was better 

than the correlation between bond energy parameters and moisture sensitivity of 

the mix based on ratio of resilient modulus in tension. 

• The bond energy parameter of 2ER  (ratio of wettability to the work of debonding) 

correlates better than 1ER  (ratio of work of adhesion to the work of debonding) 

with the moisture sensitivity of the mixes estimated by laboratory testing.   

• Product of square root of specific surface area and  2ER  gives the best correlation 

with moisture sensitivity of the mix estimated by laboratory testing. 

• Use of wettability and specific surface areas in the bond energy parameters, as 

proposed earlier, is supported by these results.  

 

Comparison of Field Performance of Mixes 

  

One way to correlate the bond energy parameters with moisture sensitivity of 

asphalt mixes is by measuring the moisture sensitivity of the asphalt mixes using 

laboratory tests as discussed in the previous section.  The advantage of using this 

methodology is that the experiments can be conducted on selected materials under well 

defined laboratory conditions.  However, one of the reasons to investigate the use of bond 

energy parameters is the inefficiency of the mechanical tests in predicting moisture 

sensitivity of asphalt mixes.  It is therefore desirable to establish a correlation of bond 

energy parameters with the moisture sensitivity of asphalt mixes based on their field 

performance.  Unlike laboratory tests, it is difficult to control and quantify the moisture 

sensitivity of field mixes on a uniform scale owing to the differences in environmental 
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and field conditions of these mixes.  Nevertheless, a qualitative assessment of moisture 

sensitivity of field mixes can still be made.  The following sub sections present results 

from an independent study that correlates moisture sensitivity of field mixes with the four 

bond energy parameters proposed earlier.  This independent study, uses the experiment 

and analytical techniques to measure surface energies and calculate bond energy 

parameters that were developed in this research [53].  

  

Materials and Moisture Sensitivity   

 

A total of eight field mixes from Texas and Ohio were included in this study.  The 

moisture sensitivity was classified as “good” or “poor” these mixes based on inspection 

of pavements, field cores, and laboratory testing [53].  Table 5.7 lists the mix designs 

along with their rated resistance to moisture damage, constituent binder grades, and 

aggregate types.  Similar binder grades or aggregate types with suffixes “A”, “B” etc., 

indicate that these were obtained from different sources.  The eight mix designs 

comprised of 6 different types of bitumen and 8 different types of aggregates.  Some 

mixes had a combination of more than one type of aggregate.  Surface energies for the 

bitumen and aggregates were determined using the Wilhelmy plate method and Universal 

Sorption Device as described in Chapters III and IV.  The only difference was that 

ethylene glycol was not used as a probe liquid in measuring surface energies of the 

bitumen.  Tables 5.8 and 5.9 list the surface free energy components for these materials, 

work of cohesion for bitumen, and specific surface areas for the aggregates.     
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Table 5.7. Summary of Mix Designs 

 

Mix 
Design 

No. 

Perfor-
mance Asphalt 

Grade Aggregate Types 

1 Good PG 76-22 A Granite  

2 Poor PG 76-22 B Granite 

3 Good PG 76-22 C Quartzite  

 

4 Good PG 76-22 C Sandstone A Sandstone B 

5 Good PG 76-22 C Gravel A Limestone A 

6 Good PG 76-22 D Sandstone A Sandstone B 

7 Poor PG 64-22  Limestone B Gravel B 

8 Poor PG 64-28  Limestone B Gravel B 
 

 

Table 5.8.  Surface Free Energy Components of Bitumen from Field Mixes 

 

Surface Free Energy (ergs/cm2) Asphalt 
Binder LW Acid Base Total 

Work of 
cohesion 

(ergs/cm2) 
PG 64-22  29.9 0.00 1.00 29.9 59.8�

PG 64-28  17.9 0.13 2.88 19.1 38.2�

PG 76-22 A 14.7 1.33 1.79 17.8 35.6�

PG 76-22 B 24.2 0.07 1.31 24.7 49.4�

PG 76-22 C 12.1 1.13 2.84 15.7 31.4�

PG 76-22 D 21.8 0.63 0.65 23.1 46.2�
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Table 5.9.  Surface Free Energy Components of Aggregates from Field Mixes 

 

Surface Free Energy (ergs/cm2) 
Aggregate 

SSA 

(m2/gm) LW Acid Base Total 

Granite 0.67 56.3 43.5 782.7 425.2 

Gravel A 0.80 59.5 1.2 286.0 96.5 

Gravel B 4.76 63.5 7.7 546.3 193.2 

Limestone A 0.49 59.9 18.8 561.1 265.4 

Limestone B 0.53 58.0 1.8 401.1 111.1 

Quartzite 1.35 60.9 8.9 545.0 200.1 

Sandstone A 0.83 62.5 2.0 222.6 105.0 

Sandstone B 1.00 64.0 8.5 316.9 167.8 

 
 

Surface free energy values were used to compute the work of adhesion, work of 

debonding, and the two bond energy parameters, 1ER , and 2ER .  Since surface free 

energy components of bitumen and aggregates are measured individually, it is possible to 

compute the bond energy parameters for all possible combinations of bitumen and 

aggregate and not just the selected eight mixes.  For mixes that contain more than one 

type of aggregate, the bond energy parameters were calculated for each bitumen-

aggregate pair.  It is reasonable to consider that the bitumen-aggregate combination that 

provides the poorest, or most critical values, of these parameters will govern the mixture 

performance.  Tables 5.10 and 5.11 present the work of adhesion between the bitumen 

and aggregate in dry condition and work of debonding in presence of water.  Tables 5.12 

and 5.13 present values for the two bond energy parameters, 1ER , and 2ER .   
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Table 5.10. Work of Adhesion Between Bitumen and Aggregates 

 

Bitumen Quart-
zite 

Sand-
stoneA Granite Gravel 

A 
Sand-
stoneB 

Lime-
stoneA 

Lime-
stoneB 

Gravel 
B 

76-22 C 114 92 134 93 103 119 100 115 

76-22 D 115 100 125 101 108 117 105 116 

76-22 B 96 89 103 87 94 98 88 97 

76-22 A 122 99 140 101 110 126 108 122 

64-22 91 89 95 87 93 93 86 93 

64-28 93 82 106 81 90 97 83 93 
 

 

Table 5.11. Work of Debonding in Presence of Water 

 

Wet Quart-
zite 

Sand-
stoneA Granite Gravel 

A 
Sand-
stoneB 

Lime-
stoneA 

Lime-
stoneB 

Gravel 
B 

76-22 C -139 -62 -200 -75 -95 -151 -101 -139 

76-22 D -138 -53 -208 -67 -90 -152 -96 -136 

76-22 B -158 -65 -230 -81 -104 -171 -113 -156 

76-22 A -132 -55 -195 -68 -89 -145 -94 -131 

64-22 -163 -65 -239 -83 -106 -177 -116 -161 

64-28 -160 -71 -228 -87 -108 -173 -118 -160 
 

 

Table 5.12. Bond Energy Parameter – Field Mixes (ER1) 

 

ER1 Quart-
zite 

Sand-
stoneA Granite Gravel 

A 
Sand-
stoneB 

Lime-
stoneA 

Lime-
stoneB 

Gravel 
B 

76-22 C 0.82 1.48 0.67 1.24 1.09 0.79 0.99 0.83 
76-22 D 0.83 1.88 0.60 1.50 1.19 0.77 1.10 0.85 
76-22 B 0.61 1.37 0.45 1.07 0.91 0.57 0.78 0.62 
76-22 A 0.92 1.79 0.72 1.49 1.24 0.87 1.15 0.93 

64-22 0.56 1.37 0.40 1.05 0.88 0.53 0.74 0.58 
64-28 0.58 1.16 0.46 0.93 0.83 0.56 0.70 0.59 
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Table 5.13. Bond Energy Parameter – Field Mixes (ER2) 

 

ER2 
Quart-

zite 
Sand-
stoneA Granite Gravel 

A 
Sand-
stoneB 

Lime-
stoneA 

Lime-
stoneB 

Gravel 
B 

76-22 C 1.69 1.03 1.95 1.21 1.32 1.73 1.48 1.67 
76-22 D 2.01 0.99 2.63 1.23 1.47 2.16 1.63 1.95 
76-22 B 3.42 1.65 4.28 2.16 2.31 3.52 2.92 3.31 

76-22 A 1.54 0.87 1.87 1.04 1.19 1.61 1.29 1.51 
64-22 5.17 2.20 6.75 3.09 3.17 5.30 4.45 4.90 
64-28 2.94 1.61 3.37 2.04 2.08 2.94 2.62 2.89 

 
 

Results 

 
Figures 5.15 and 5.16 illustrate the comparison of field performance with the two 

bond energy parameters, 1ER  and 2ER .  Figures 5.17 and 5.18 repeat these comparisons 

with the two bond energy parameters multiplied by the specific surface areas of the 

respective aggregates.  A threshold value of the bond energy parameter in each case was 

derived based on the reported field performance of the asphalt mixes.   
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Figure 5.15. ER1 vs. Field Evaluation of Moisture Sensitivity.  
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Figure 5.16. ER2 vs. Field Evaluation of Moisture Sensitivity. 
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Figure 5.17. SSAxER1 vs. Field Evaluation of Moisture Sensitivity. 
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Figure 5.18. SQRT(SSA)xER2 vs. Field Evaluation of Moisture Sensitivity. 
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Discussion 

 

Mixes 7 and 8 contain more than one aggregate (limestone and gravel) and both 

are reported to be moisture sensitive based on field performance.  Since both aggregates 

were present in significant percentages in the mix, it is reasonable to consider that failure 

of any one type of aggregate can render the entire mix as moisture sensitive.  When only 

the bond energy parameters are considered, both aggregates appear to contribute 

approximately equally to moisture sensitivity of the mix.  However, if the specific surface 

area of the aggregates are also considered by multiplying it with the bond energy 

parameters, it appears that limestone is the key contributor to moisture sensitivity of the 

mix and therefore it is the “weak link” that renders the entire mix to be moisture 

sensitive.  

The threshold value for the bond energy parameters effectively differentiated 

mixes that were moisture sensitive in most cases, although the actual threshold value 

varied depending on the parameter used.  From figure 5.17, it can be argued that mixture 

5 must also be a poor performing mix when the bond energy parameter 1ER x SSA is used 

to estimate moisture sensitivity of the mix, or that the bond energy parameter does not 

adequately differentiate moisture sensitive mixes in this case.  Considering the limited 

data available, both the aforementioned arguments are possible.  In these comparisons it 

must be borne in mind that there was no control over the traffic or environmental 

conditions which can contribute to significant variability in the results.  Therefore, while 

a generalized conclusion can be made that bond energy parameters segregate mixes based 

on their moisture sensitivity, this data cannot be used for qualitative comparisons 

between various parameters.  
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CHAPTER VI 

APPLICATIONS OF CALORIMETER 

 

General 

  

As described earlier, adhesion between bitumen and aggregate and debonding in 

the presence of water are key factors that influence the moisture sensitivity of an asphalt 

mix from a materials point of view.  Mechanical interlocking, physical adhesion and 

chemical interactions are the three main mechanisms responsible for adhesion and 

debonding.  The previous chapters described the development of tests to determine 

surface free energies of bitumen and aggregate and concomitant bond energy parameters.  

The use of bond energy parameters to identify moisture sensitive mixes was also 

demonstrated.  However, these bond energy parameters are related to only physical 

adhesion between materials and also include mechanical interlocking to some extent 

when specific surface areas of the aggregates are combined with the bond energy 

parameters.  However, when chemically active aggregates such as limestone are used or 

when active fillers such as hydrated lime or liquid anti strip agents are added to the 

bitumen, chemical interactions may contribute significantly to adhesion.   

 It is proposed that a micro calorimeter can be used in different ways to quantify 

the adhesion and debonding between the bitumen and aggregate.  The three different 

ways of using the micro calorimeter explored in this research are as follows: 

• To rapidly measure the enthalpies of immersion of aggregates with different 

probe liquids, which is then used to determine the surface free energies of 

aggregates. 

• To measure the enthalpy of immersion of aggregates with water which is a direct 

measure of the total reduction of energy of the aggregate-water system when 

water coats the surface of a clean dry aggregate. 

• To measure the enthalpy of immersion of aggregates with bitumen at mixing and 

compaction temperatures (approximately 150°C), which is a direct measure of the 
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total reduction of energy of the aggregate-bitumen system when bitumen coats the 

surface of a clean dry aggregate. 

This chapter presents a description of the tests and results for the above three applications 

for a subset of materials used with the Wilhelmy plate method and USD.  Comparisons 

between results based on surface free energy measurements and the results from the 

micro calorimeter indicate that this device can be used to measure various 

thermodynamic parameters related to the moisture sensitivity of the asphalt mixes with 

adequate sensitivity.  

 

Surface Free Energy of Aggregates 

 

When a clean solid (such as an aggregate) is immersed in a liquid, a new solid-

liquid interface is formed and the clean solid surface is eliminated.  This interaction is 

associated with a change in the total energy of the system and evolution of heat, referred 

to as the enthalpy of immersion.  The enthalpy of immersion represents the strength of 

surface interaction at the solid-liquid interface.  In the absence of any chemical reactions 

the enthalpy of immersion represents the reduction in total energy of the system due to 

the total surface energies of the two materials.  If the interfacial surface free energy at the 

aggregate-liquid interface is represented byγAL , and surface free energy of the clean solid 

surface is represented byγA , then based on the above explanation, the change in free 

energy of the system due to immersion immG∆  is given by: 

 

∆Gimm = γAL − γA          (6.1) 

 

The right hand side of equation (6.1), can be replaced by the surface free energy 

components of the solid and liquid using the GVOC theory.  Further, based on the classic 

Gibbs free energy equation, immG∆ , can be replaced by the enthalpy of immersion 

immH∆ , and entropy of immersion immS∆ , to obtain the following equation: 

 

∆Himm − T∆Simm = γL − 2 γA
LW γL

LW − 2 γA
+γL

− − 2 γA
− γL

+     (6.2) 
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In equation (6.2) the subscript “A” refers to the aggregate, and “L” refers to the liquid 

and other terms are as described before. 

Douillard et al [49] determined the heats of immersion and adsorption isotherms 

for various pure minerals with different probe liquids.  Based on the comparisons of 

adsorption isotherms and heats of immersion, they demonstrate that the entropy term, 

immS∆ , in equation (6.2) can be approximated as 50% in magnitude of the enthalpy term, 

immH∆ .  Since aggregates are composed of minerals which belong to the same class of 

materials used by Doullaard et al. it is reasonable to extend this approximation to heats of 

immersion with aggregates.  If a calorimeter is used to measure enthalpy of immersion, 

immH∆  of a solid immersed in a probe liquid with known surface free energy components, 

and the approximation that the entropy term, immS∆ , is 50% in magnitude of the enthalpy 

term is used, then the only unknowns in equation (6.2) are the three surface free energy 

components of the solid.  Just as with the Wilhlemy plate method and USD, measuring 

enthalpy of immersion with three probe liquids will generate a set of three equations that 

can be solved to determine the three surface free energy components of the aggregate.  

 

Test Description 

The micro calorimeter used in this study was an isothermal differential 

calorimeter manufactured by Omnical Inc..  The differential calorimeter comprises of two 

cells, a reaction cell and a reference cell.  The net enthalpy is measured as the difference 

between the enthalpies of the reaction and reference cell using a series of thermocouples 

connected in series between the two cells. Figure 6.1 shows a schematic of the 

differential micro calorimeter. 
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Figure 6.1. Schematic Layout of the Micro Calorimeter. 

 

The aggregates included in this research were RD (limestone), RG (sandstone), 

RK (basalt), and RL (gravel). The three probe liquids used to measure the enthalpies of 

immersion were, heptane, benzene, and chloroform. These three probe liquids were 

selected because heptane is a non polar liquid and benzene and chloroform are mono 

polar liquids with a Lewis base and an Lewis acid character, respectively.  Enthalpy of 

immersion of at least two replicates was measured in random order for each aggregate-

probe pair.   

Aggregates passing the #100 sieve and retained on the #200 sieve were found to 

be of suitable size for these tests.  This was based on the minimum surface area required 

to generate heat that can be measured by the instrument with adequate precision.  

Crushed aggregates were sieved to obtain sufficient material of the desired size.  The 

aggregates were then washed in the #200 sieve with distilled water and oven dried.  

About 8grams of the sample to be tested was placed in a 16ml capacity glass vial.  The 

tare weight of the vial was recorded before filling it with the sample.  The vials have a 

polypropylene open top cap sealed with a PTFE lined silicone septa.  This vial was used 

in the reaction cell.  Another empty vial sealed with a similar cap and septa was used in 

the reference cell.  Prior to testing, both vials were preconditioned by heating at 150°C 

for four hours under vacuum below 300millitorr.  Vacuum was drawn in both vials using 
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a 26 gauge syringe needle passing through the silicone septa.  After completion og  

preconditioning the needle was quickly withdrawn allowing the silicone septa to seal 

itself retaining the contents of the vial under vacuum.  The vials were then allowed to 

cool to the test temperature of 25°C.  The test set up developed in this study enables 

preconditioning of four vials simultaneously.  After the samples were preconditioned and 

cooled, the vial with the aggregate sample was weighed again to obtain the exact dry 

weight of the test sample and placed in the reaction cell.  The empty vial was placed in 

the reference cell.  Four syringes of 2ml capacity each were filled with the probe liquid.  

Two of these syringes were positioned on top of the reaction vial and the other two on top 

of the reference vial.  An accompanying software with the micro calorimeter recorded the 

differential heat between the two cells within an accuracy of 10µwatts.  As soon as 

thermal equilibrium was reached (typically 30 to 40 minutes) the syringes were pushed 

simultaneously piercing through the septa and the probe liquid was injected in both vials.  

Since differential heat between the two cells is recorded, heat generated due to the 

process of piercing and injection is compensated during measurement.  The net heat 

measured in the reaction cell is due to, 

(i) enthalpy of immersion in the reaction cell,  and  

(ii) difference in heat of vaporization of the probe liquid on account of the 

difference in free volume of the reaction and reference cell.   

The latter is corrected by calculating heats of vaporization for the corresponding probe 

liquids.   

Specific surface area of the aggregates is an important input for determining their 

surface free energy.  In this research, the specific surface areas of the materials used were 

determined using adsorption measurements with the USD.  In practice, this can be done 

using any commercial nitrogen adsorption equipment.  The total enthalpy of immersion is 

divided by the mass of the sample to obtain the enthalpy of immersion in ergs/gm and 

then by the specific surface area to obtain the heat or enthalpy of immersion in ergs/cm2. 

The surface free energy components of the aggregates were determined by solving the 

three simultaneous equations generated using each of the three probe liquids from 

equation 6.2.  
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Results and Discussion 

Table 6.1 presents the average enthalpy of immersion of different aggregate-probe 

pairs and Table 6.2 presents the coefficient of variation for these measurements. 

 

Table 6.1. Enthalpy of Immersion in ergs/cm2 

 

Liquid Probe 
Aggregate 

Benzene Chloroform Heptane 

RD 159 345 108 

RG 204 386 99 

RK 63 137 38 

RL 130 416 76 

 

 

Table 6.2. Coefficient of Variation (%) for Measured Enthalpy of Immersion 

 

Liquid Probe 
Aggregate 

Benzene Chloroform Heptane 

RD 3 0 4 

RG 0 1 5 

RK 2 0 1 

RL 7 2 4 

 

 

Based on the data presented above it is evident that the micro calorimeter has very 

good repeatability.  The device also has adequate sensitivity to differentiate between the 

heats of immersion of different aggregates with the same probe and heats of immersion of 

different probes with the same aggregate.  Table 6.3 presents a comparison of the surface 

free energy components of the aggregates measured using the Universal Sorption Device 

and the micro calorimeter.     
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Table 6.3.  Surface Free Energy Components of Aggregates in ergs/cm2 

 

Surface Free Energy Components 

LW Acid Base Aggregate 

USD MC USD MC USD MC 

RD 44 52 2 11 258 469 

RG 58 48 15 162 855 920 

RK 52 18 1 16 162 154 

RL 57 38 23 42 973 1652 

 Note: USD = Universal Sorption Device,  MC = Micro Calorimeter 

 

With the exception of the acid component of RG, the order of magnitude and 

trends in the surface free energy components derived from both methods are similar.  

Micro calorimeter appears to be more sensitive than the USD in differentiating between 

the Lifshitz-van der Waals (LW) component of surface free energy of different 

aggregates.  Figures 6.2 through 6.4 present a graphical comparison of the three surface 

free energy components determined using the micro calorimeter and the USD. 

The base component of surface free energy derived from the USD and the micro 

calorimeter show similar trends.  The important application of determining aggregate 

surface free energy components is not to rank aggregates based on their surface free 

energy components, but to calculate the work of adhesion and work of debonding for 

different bitumen-aggregate combinations in order to predict the moisture sensitivity of 

different asphalt mixes.  

Therefore it more reasonable to compare the work of adhesion and work of 

debonding obtained by combining surface energies from the USD and Wilhelmy plate, 

with these values obtained by combining surface energies from the micro calorimeter and 

Wilhelmy plate method.  A total of 36 combinations of nine bitumen and four aggregates 

are included in this comparison.  Figures 6.5 and 6.6 illustrate this comparison for the dry 

work of adhesion and wet work of debonding, respectively. 
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Figure 6.2.  Comparison of the LW Component of Surface Free Energy. 
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Figure 6.3.  Comparison of the Acid Component of Surface Free Energy. 
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Figure 6.4.  Comparison of the Base Component of Surface Free Energy. 

 

The dry work of adhesion calculated using results from micro calorimeter 

compares well with the values calculated using results from the USD.  The wet work of 

debonding calculated using results from the micro calorimeter correlates well with the 

values calculated using results from the USD, although there is a bias in the results.   

In the preceding comparisons, results from the mirco calorimeter are compared 

with results from the USD.  If the USD is used as a reference for accurate and true 

surface energies of aggregates then the bias and scatter between results from the micro 

calorimeter can be largely attributed to the assumption made for the contribution of the 

entropy term.  However, both of these are indirect methods to measure surface free 

energy components of aggregates and there is no concrete evidence that results from the 

USD represent the “true values” for these components. 
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Figure 6.5. Comparison of Dry Adhesive Bond Strength between USD and Micro 

Calorimeter. 
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Figure 6.6. Comparison of Wet Adhesive Bond Strength between USD and Micro 

Calorimeter. 
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Hydrophilcity of Aggregates 

 

The enthalpy of immersion of an aggregate in water can be used to quantify the 

hydrophilicity of different aggregates.  In this context hydrophilicity of an aggregate is 

defined as the reduction in total energy of the system when water wets the surface of a 

clean dry aggregate.  It can also be described as the thermodynamic drive for water to wet 

the surface of the aggregate or in a phenomenological sense it is the affinity of water 

molecules to the aggregate surface.  The hydorphilicity of the four previously selected 

aggregates was measured as the heat of immersion of these aggregates with water.  The 

test procedure was similar to the procedure used to measure heat of immersion of 

different aggregates with the probe liquids.  Table 6.4 presents the values for heat of 

immersion of the four aggregates in water.   

 

Table 6.4. Heats of Immersion in Water 

 

Heat of Immersion 
Aggregate 

ergs/cm2 ergs/gm 
RD 348 515 

RG 436 876 

RK 373 7785 

RL 977 4600 
 

 

 Results present in Table 6.4 show that the aggregates differ significantly in their 

affinity to water.  The greater the hydrophilicity or the heat of immersion in water, the 

greater will be the thermodynamic drive for water to wet the surface of the aggregate.  

The hydrophilicity of an aggregate can also be theoretically computed if the surface free 

energy components of the aggregate and water are known.  Mathematically this value is 

given by: 

 

γAW − γA            (6.3) 
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There are two major differences between the hydrophilicity estimated from these 

two different methods.  Firstly, although both terms measure the reduction in energy of 

the system when water wets the aggregate surface, hydrophilicity derived from equation 

6.3 is the reduction in free energy of the system whereas the hydrophilicty measured 

using the micro calorimeter is the reduction in total energy of the system.  In other words, 

the latter term includes the enthalpy and entropy effect.  For this class of materials it is 

reasonable to assume that the contribution of entropy will be a fixed percentage of the 

enthalpy of immersion.  Therefore, although hydrophilicity derived by either method may 

not be equal due to the contribution of entropy, these two terms must at least be linearly 

correlated.   

The second difference is that hydrophilicity determined using equation 6.3 takes 

into account only the physical interaction between the aggregate and water due to their 

surface free energies.  According to the literature, electrostatic interactions between the 

aggregate and water also exist during the process of adhesion between these materials.  

These interactions are also associated with the change in pH of the water that comes into 

contact with the aggregate surface.  Although, the contribution of electrostatic 

interactions themselves is a very small percentage of the total work of adhesion between 

the aggregate and water based on their surface free energy components [54], change in 

pH of the water can alter its surface free energy components which in turn can effect the 

magnitude of physical adhesion between the aggregate and the water.  It is proposed here 

that the hydrophilicity of aggregates measured using the micro calorimeter is due to the 

cumulative effect of all these interactions, which otherwise would be difficult to quantify 

individually and combine. 
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Figure 6.7 Hydrophilicity of Aggregates from USD vs. Micro calorimeter. 

 

Figure 6.7 compares the hydrophilicity of aggregates based on equation 6.3 with 

the hydrophilcity of aggregates measured as the heat of immersion using the micro 

calorimeter.  The correlation between hydrophilicity measured using both these methods 

for the three aggregates excluding RG, considering a straight line fit passing through the 

origin is significant.  The bias of this straight line from 1:1 fit is due to the fact that the 

contribution of entropy is also included in the ordinate.  This also explains the reason 

why the values of ordinate are generally higher compared to the values in the abscissa 

that includes only the free energy component of the total energy.  The following 

paragraph explains the possible causes for deviation of RG from the general trend. 

At first instance, the departure of RG from the general trend was attributed to the 

fact that the acid component of surface free energy of RG measured using the micro 

calorimeter was very high compared to the measured using the USD.  However, this 

deviation did not improve when the graph was plotted by hypothetically increasing the 
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acid component of RG from the USD.  The deviation is also not due to the entropy term 

since the relative contribution of entropy to the total energy of the system must be 

approximately the same for these materials.  Eliminating these possible causes, the 

deviation of RG from the general trend can be explained based on the differences in 

electrostatic or other complex interactions associated with the change in pH of water after 

coming into contact with RG as compared to other aggregates. This provides a limited 

support to the proposition that the heat of immersion measured using the micro 

calorimeter is sensitive to the sum effect of different interactions that quantify the 

thermodynamic drive for water to wet the surface of the aggregate including the 

contribution from surface free energy of these materials.  The following example further 

reinforces this proposition. 

Consider moisture sensitivity of asphalt mixes with the two aggregates RG and 

RL.  Data from the USD indicates that RG has a very high affinity for water (325 

ergs/cm2) based on the surface free energy terms alone.  This is approximately the same 

as the affinity of RL to water (361 ergs/cm2) compared to other aggregates (130 ergs/cm2 

for RK and 160 ergs/cm2 for RD).  Therefore the moisture sensitivity of RL aggregate 

must be approximately the same as that of the RG aggregate if hydrophilicity based on 

the surface free energies from the USD are considered.  This is contradictory to data from 

other studies [55] which shows that RG is an aggregate with intermediate stripping 

tendency as compared to RL which has a very high tendency to strip.  However, 

hydrophilicity of the two aggregates based on the heat of immersions measured by the 

micro calorimeter, corraborate well with these findings. 

 

Total Energy of Adhesion Between Aggregates and Bitumen 

 

 Another application of the micro calorimeter is to measure the total energy of 

adhesion between different bitumen and aggregates at the mixing and compaction 

temperature.  It is proposed that this instrument and method is sensitive to identify the 

presence of any chemical reaction that may contribute to the adhesion between the 

bitumen and aggregate.  Earlier studies that report the measurement of work of adhesion 

between the bitumen and aggregate [32-34] were associated with several drawbacks.  For 
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example, the post test equilibrium heat flow was generally much higher than the pre test 

equilibrium heat flow.  This difference was attributed entirely to the reduction in free 

energy as multiple layers of bitumen built beyond the first monolayer on the aggregate 

surface during the adhesion process, whereas it is likely that a significant part of this 

difference is due to the differences in specific heats of the reaction and reference cell due 

to the mixing of the bitumen and the aggregate.  Also, these studies did not attempt to use 

results from the micro calorimeter in conjunction with the heat of immersion with water 

and surface free energy components of bitumen and aggregate.  The following paragraphs 

present a description of the test method to measure the total energy of adhesion between 

the aggregates and bitumen and a comparison of these results with the work of adhesion 

determined using the surface free energy of the bitumen and aggregate.  

 

Materials and Test 

 The four aggregates used previously, RL, RK, RG and RD and two bitumen 

types, AAB and ABD were used in this experiment.  This resulted in a total of eight 

bitumen-aggregate combinations.  The micro calorimeter used was the same as before but 

with a different set up for holding the samples to conduct the tests at 150°C with bitumen 

in liquid form.  Figure 6.8 shows the sample set up used for the high temperature 

experiments.  The test procedure was similar to the heat of immersion experiments 

described earlier.  The reaction vial (bitumen + aggregate) and reference vial (blank cell 

+ aggregate) were placed in their respective cells.  The aggregates were used immediately 

after oven drying them at 160°C for 16 hours.  The system was allowed to come to 

equilibrium at 150°C, which usually took about 4 hours.  During the equilibration time, 

aggregates in the glass columns are separated from the reaction vial with the bitumen or 

the blank vial using a filter paper.  After equilibrium is reached, the glass columns are 

lowered by about 5 mm, puncturing the filter paper and allowing the aggregates to drop 

into the vial.  Aggregates in the reaction vial readily mixed with the bitumen in the liquid 

form.  This resulted in a reduction of free energy of the system that is associated with the 

release of heat and is measured by the micro calorimeter.  The amount of heat given out 

is the total energy of adhesion between the bitumen and the aggregate.  
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Figure 6.8.  Reaction Vial to Conduct Immersion Experiments at High 

Temperatures with Micro calorimeter. 

 

Results and Discussion 

 At least two replicate measurements were made for the heat of immersion for 

each bitumen-aggregate combination.  Figures 6.9 and 6.10 present a comparison of the 

heats of immersion measured for the four aggregates using bitumen AAB and ABD, 

respectively, with the theoretical work of adhesion between these aggregates and the 

bitumen calculated using their surface free energy components from the Wilhelmy plate 

method and the USD.   
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Figure 6.9. Measured Total Energy of Adhesion vs. Work of Physical Adhesion for 

AAB.  
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Figure 6.10. Measured Total Energy of Adhesion vs. Work of Physical Adhesion for 

ABD. 
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There are three possible reasons for the differences between the values measured 

using the micro calorimeter and the theoretical values calculated from the surface 

energies using the Wilhelmy plate method and the USD.  Firstly, as mentioned before, 

the value computed from the surface energies is related to the free energy of adhesion, 

whereas the value measured using the micro calorimeter is due to the total energy of 

adhesion.  However, under the assumption that the proportion of entropy does not change 

significantly for this class of materials when comparing one bitumen-aggregate 

combination with another, it is reasonable to expect that entropy will not affect the 

positive linear trend between the work of adhesion and total energy of adhesion.  The 

second reason for difference between the two values is that the work of adhesion was 

computed based on surface free energy values of the bitumen and aggregate at 25°C, 

whereas the total energy of adhesion was measured using the micro calorimeter at 150°C.  

Since the rate of decrease in surface free energy of materials with temperature for these 

materials is usually small and similar, this difference will also not significantly affect the 

positive linear trend between the work of adhesion at 25°C and the total energy of 

adhesion at 150°C.  The third and most important reason is that the work of adhesion 

based on the surface free energy components of bitumen and aggregate quantifies only 

the physical adhesion between these two materials.  In contrast, the total energy of 

adhesion measured by the micro calorimeter is due to all possible physical and chemical 

interactions that occur between the aggregate and the bitumen.  This difference is not 

necessarily constant for all aggregates.  As a result chemical interactions can cause 

deviations in any expected positive correlation between work of adhesion based on 

surface free energy and total energy of adhesion based on heats of immersion.   

 Figures 6.9 and 6.10 show that the total energy of adhesion for RD is significantly 

greater than that expected for other aggregates based on the theoretical work of adhesion.  

Based on the above explanation, it is expected that there are significant chemical 

interactions associated with RD as compared to other aggregates.  This is substantiated by 

the fact that while RD is predominantly a limestone, other aggregates are predominantly 

siliceous.  Other studies suggest that the presence of calcium ions on the aggregate 

surface promote the formation of chemical bonds with functional groups such as 

carboxylic acids from the bitumen.  Further, the heat dissipation curves for RD were 
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predominantly exothermic but inevitably showed a small endotherm before finally 

achieving the post mixing equilibrium.  This endotherm was more significant for RD than 

for other aggregates.  Typically chemisorption is preceded by physical adsorption and in 

some cases there is a small energy barrier that needs to be overcome before 

chemisorption follows physical adsorption.  It is suggested that low intensity chemical 

interactions continue even after wetting of the aggregate surface by bitumen and the 

endotherm prior to equilibrium is associated with the energy absorbed during the 

transition from physical adsorption to chemisorption.  From these results, it is inferred 

that the micro calorimeter can be used to quantify the total energy of adhesion between 

aggregate and bitumen including effects of physical and chemical bonding.  Also, this 

method used in conjunction with surface energies measured using the Wilhelmy plate 

method and the USD can be used to identify presence of any chemical bonding that 

contributes to adhesion. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS  

 

General 

 
 Moisture sensitivity of asphalt mixes is one of the forms of pavement distresses 

that results in high maintenance and rehabilitation costs of pavements.  Therefore it is 

important to identify and eliminate materials or material combinations during the mix 

design process that can render the asphalt mix susceptible to premature moisture induced 

damage.  Research in this field in the past five decades has focused on mechanical tests 

on whole asphalt mixes to estimate their moisture sensitivity.  These tests do not always 

accurately predict the moisture sensitivity of asphalt mixes in field.  Also, these tests do 

not provide information that can explain the causes for the moisture sensitivity or 

resistance to moisture damage of asphalt mixes.  This information is important to modify 

mixes that do not meet moisture sensitivity requirements, by using locally available 

materials. 

Moisture sensitivity of any asphalt mix in field is due to the combined action of 

material properties, mix design properties such as air void structure, external loads, and 

environmental conditions.  Selection of proper materials is the first step to ensure that the 

resulting asphalt mix will not be moisture sensitive.  This is possible by measuring 

material properties that are closely related to the mechanisms responsible for adhesion 

between bitumen and aggregate and debonding between these materials in presence of 

water.  Examples of such properties are, physical adhesion due to surface free energies of 

bitumen and aggregate, and chemical interactions between these materials.   

The use of Wilhelmy plate method and Universal Sorption Device (USD), was 

introduced in earlier studies to measure the surface free energies of bitumen and 

aggregate and use these values to quantify the work of adhesion between these materials 

in dry condition and the work of debonding in presence of water.  However, results from 

these studies do not corroborate well with known physical and chemical properties of 

bitumen and aggregate.  In this research, significant changes to these test methods were 
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made to enable measurement of bitumen and aggregate surface energies.  The surface 

free energy components of the bitumen and aggregate were computed using analytical 

techniques that use the results from the Wilhelmy plate method and the USD.  Precision 

of the surface free energy components was established using statistical methods for 

propagation of errors based on the precision of the experimentally measured parameters 

from these tests.  Accuracy of the measurements from the Wilhelmy plate method was 

assessed by comparing the contact angles measured using this method with the theoretical 

requirements for advancing contact angles proposed in the literature.  Accuracy of the 

USD was assessed by comparing the specific surface areas of aggregates measured using 

this device with the areas measured using a standard method based on nitrogen 

adsorption.  Surface free energy components of some minerals measured using this 

method also corroborate well with surface free energy components of similar minerals 

reported in the literature using different test methods.   

The work of cohesion in the bitumen, work of adhesion between bitumen and 

aggregate, and work of debonding between bitumen and aggregate in presence of water, 

were computed using the surface free energy of bitumen and aggregate.  Different energy 

parameters based on these thermodynamic quantities and specific surface areas of 

aggregates were proposed to assess the moisture sensitivity of asphalt mixes.  Moisture 

sensitivity of different asphalt mixes measured in the laboratory and based on field 

records correlate well with most of these energy parameters.  

While physical adhesion due to surface free energy is the significant contributor 

to total adhesion in most bitumen-aggregate systems, there are also material combinations 

in which adhesion due to chemical reactions is important.  For example, when a 

chemically active mineral aggregate such as limestone is used in the asphalt mix or when 

active fillers such as hydrated lime or liquid anti strip agents are added to the mix to 

improve its performance.  The use of a micro calorimeter to measure the combined 

effects of physical and chemical adsorption of bitumen with aggregate and water with 

aggregate was demonstrated.  It was also shown that this method can be used with the 

Wilhelmy plate method and USD to differentiate and identify the presence of any 

significant chemical interactions.  Use of the micro calorimeter as a faster method to 

estimate the surface free energy components of aggregates was also demonstrated. 
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Conclusions and Discussion  

 

Surface Free Energy of Bitumen and Aggregates 

 Based on development of the Wilhelmy plate method and the USD to measure the 

surface free energy components of the bitumen and aggregates, respectively, the 

following conclusions can be made: 

• The Wilhelmy plate method and the USD can be used to measure the surface free 

energy components of bitumen and aggregates with adequate precision and 

accuracy.   

• Most bitumen have a low Lifshitz-van der Waals (LW) component and very low 

acid and base components.  This corroborates well with the known fact that 

bitumen are low surface energy materials with a weak acid-base character.  

• Most aggregates have a similar magnitude of the LW component, and a small 

magnitude of the acid component.  However, the base component of surface free 

energy varies significantly from one aggregate to another and is typically one or 

two orders of magnitude higher than any other component of aggregate or 

bitumen.  Consequently, when the work of adhesion is computed, the geometric 

mean of the acid component of bitumen and base component of aggregates are 

significant contributors. 

 

The following cautions must be exercised in interpreting the results from these 

methods: 

• The magnitudes of acid and base components are computed using the surface free 

energy components of probe liquids from the GVOC scale which assumes that the 

acid component of water is equal to the base component of water.  This 

assumption is disputed by some in the literature [36].  Therefore, the magnitude of 

acid and base components of different materials derived from these tests must not 

be interpreted too literally, since these magnitudes are relative on a scale that 

assumes that the acid component of water is equal to its base component.  

• When bitumen slides are prepared for testing with the Wilhelmy plate method, a 

glass substrate is cleaned and immersed in the hot liquid bitumen.  As soon as the 
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slide is removed from the liquid bitumen, it cools and attains its room temperature 

consistency within a short period of time.  Representation of the polar functional 

groups from the bulk of the material on such a surface will be based on random 

distribution.  When the surface free energy components of the bitumen are 

measured by immersing the slide in a probe liquid, the acid and base character of 

the bitumen will be established by the nature and concentration of different 

functional groups on the surface.  However, in real mixes, when liquid bitumen is 

mixed with aggregates, there is a substantial amount of time that allows polar 

species to migrate from the bulk of the bitumen to the aggregate-bitumen 

interface.  It is probable that the concentration of polar species at the bitumen 

aggregate interface will be more than the concentration of the polar species on the 

bitumen slide that is prepared for testing with the Wilhelmy plate method.  

Therefore, in interpreting the small acid and base values of the bitumen it must be 

remembered that these values can be significantly magnified due to kinetics of the 

polar molecules in real mixes. 

• The Wilhemy plate method and the USD measure the surface free energies of the 

bitumen and aggregate which are related to the physical adhesion between these 

materials.  Any possibility of chemical reactions between these two materials can 

influence the work of adhesion computed based on the surface free energies of 

these materials.  

 

Surface Free Energy and Moisture Sensitivity of Asphalt Mixes 

 Different combinations of the thermodynamic parameters based on the surface 

free energy of bitumen and aggregate were proposed to rationally explain and assess the 

moisture sensitivity of asphalt mixes.  The energy parameter that incorporates wettability 

of the aggregate by the bitumen, work of debonding in the presence of water, and the 

specific surface area of the aggregate, correlates best with the moisture sensitivity of 

asphalt mixes based on laboratory and field performance of asphalt mixes.  This 

parameter is given as follows: 
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The following must be noted while using the above or other thermodynamic 

parameters to assess moisture sensitivity of asphalt mixes: 

• There are two possible applications for the thermodynamic parameters derived 

from the surface free energy measurements.  Firstly, parameters such as the one 

shown in the expression (7.1) may be used on their own as a material selection 

and screening tool, as demonstrated in this research.  Secondly, these 

thermodynamic parameters can be combined with other material and mixture 

properties and used with mechanistic models based on continuum mechanics to 

predict performance of pavements.   

• The application of this parameter needs further investigation when binders that 

are modified chemically by addition of active fillers, liquid anti strip agents or any 

other active agent such as polyphosphoric acids.   

 

Applications of Micro Calorimeter 

 The use of a micro calorimeter to measure thermodynamic properties related to 

moisture sensitivity of mixes was proposed.  Results show that the micro calorimeter can 

be used to measure, 

• surface free energy components of aggregates,  

• total energy of adhesion between the bitumen and aggregate including the 

cumulative effects of physical adsorption and chemisorption, and  

• total energy of adhesion between aggregate and water including effects of 

physical adsorption and effects due to electrostatic and other interactions. 

The aforementioned properties measured using the micro calorimeter are directly related 

to the adhesion and debonding mechanisms between bitumen and aggregate and hence to 

the moisture sensitivity of the asphalt mixes. 

Important advantages of using a micro calorimeter are: 

• lower capital cost of the equipment, 

• excellent repeatability combined with adequate sensitivity, 
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• shorter test times as compared to adsorption methods, 

• preconditioning of samples can be done independent of the equipment saving on 

sample preparation time, and 

• less operator skill required to operate the device and conduct tests. 

 

Recommendations for Future Work 

  

 Based on the work done in this research the following recommendations for future 

work are made: 

• The combined use of Wilhelmy plate method, USD and the micro calorimeter 

must be made to identify the material characteristics of aged bitumen, bitumen 

modified using active fillers, and bitumen modified using liquid anti strip agents. 

• Application of thermodynamic parameters from surface free energy 

measurements in conjunction with other material and mixture properties using 

continuum damage models to predict performance of pavements subjected to 

various modes of distress. 

• Laboratory and field tests to compare the moisture sensitivity of mixes with active 

fillers, and liquid anti strip agents with the thermodynamic parameters measured 

using the micro calorimeter.  

• Immersion experiments of aggregates with bitumen and aggregates with probe 

liquids must be conducted using the micro calorimeter at different temperatures to 

quantitatively establish the effects of entropy. 

• Immersion experiments of relatively homogenous aggregates representing the 

commonly used minerals, with probe liquids doped with chemicals that represent 

various functional groups in bitumen must be performed using the micro 

calorimeter.  This information will be useful in understanding the relative 

adsorption of different functional groups from the bitumen to the aggregate 

surface, which can in turn be used to modify the locally available materials to 

reduce moisture sensitivity of asphalt mixes. 
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APPENDIX A  

BACKGROUND OF CONCEPTS RELATED TO SURFACE FREE ENERGY  

 

Background 

 

The intermolecular forces that determine the existence of matter in a solid or 

liquid state are also responsible for the special properties of the surface [56].  Figure A.1 

shows the hypothetical layout of molecules and the intermolecular forces of a material in 

vacuum.   

 

 
Figure A.1.  Differences in intermolecular forces of surface molecules versus bulk 

molecules 

 

The molecule in the bulk, ‘B’ is subjected to intermolecular forces that are evenly 

distributed from all sides, whereas, the molecule ‘S’ on the surface is subjected to 

intermolecular forces from all sides, except from the side exposed to vacuum.  This 

misbalance of forces has two outcomes.  Firstly, molecules at the surface have free 

energy which is approximately equal to its missing share of bond energy compared to the 

molecules in the bulk.  Secondly, the material will try to minimize the number of 

molecules on the surface with free energy by drawing into its bulk as many molecules 

from the surface as possible.  This also explains the tendency of liquids to contract to a 

spherical shape on a molecular basis. 

Bulk molecule - 
uniform forces 

Surface molecule  – 
subject to inward forces 
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 The presence of excess energy of surface molecules also suggests that energy 

must be supplied to extend the surface of a material.  The total energy thus supplied to 

extend the surface by unit area, sE , can be approximated by the heat of vaporization per 

unit volume of the material [57].  Further, surface free energy is defined as the work 

required to create unit area of a new surface of the material in vacuum, commonly 

denoted by the greek letter γ .  The term “free energy” is used in this context since the 

definition is based on work done, and is different from the total excess energy sE .  The 

terms surface tension and surface free energy are used interchangeably.  The former was 

originally introduced to explain the capillary action of liquids.  This term is misleading if 

one attempts to explain the surface properties of liquids by considering the presence of a 

surface layer that is subjected to tension.  It must be emphasized that the primary source 

of surface energy or surface tension is the inward pull on the surface molecules at the 

surfaces from the bulk and not forces that are parallel to the surface creating some kind of 

a tension. 

 

Special Characteristics of Surface Free Energy of Solids 

 

The phenomenon of reduction in surface area of a material due to its surface free 

energy is readily visualized for liquids.  For example, in the absence of gravity, liquids 

try to minimize the total surface area for a given volume by assuming the shape of a 

sphere.  However, in case of solids, reduction in surface area is not evident.  This does 

not mean that the forces involved on the solid surfaces are absent or less as compared to 

the liquids.  The reason why solids do not contract is due to the limited mobility of 

molecules.     

Unlike liquids, the limited mobility of molecules on a solid surface is also 

responsible for heterogeneity of surface free energy even for pure solids.  For example, 

different faces of crystals can have different surface energies.  Kuznetsov [58] provides a 

detailed account that explains the differences in surface free energies of different faces of 

the same crystal and how it influences the cleavage shape when a crystal is fractured.  For 

example, molecules at the free edge of a crystal are likely to have more free energy as 

compared to molecules on the face of a crystal.  However the effect of free edges on the 
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surface energy of the solid is likely to be significant only if the solid particles are 

extremely small or have a very large surface area [35].  Other, factors such as crystal 

defects and size can significantly alter the surface free energy of the solid surface.  The 

type of surface finishing also affects the surface free energy of the solid.  For example, 

even after very fine grinding, a crystalline solid might have distinct crystal features on the 

surface.  During this process the total surface area of the solid may be reduced due to the 

reduction in roughness but the surface free energy might remain largely unaffected.   

However, if the surface is prepared by polishing it with a yielding substance (eg. leather) 

the top few layers of the surface, (upto 50Å), can be rendered as amorphous significantly 

altering its surface free energy [59].  

 

Interfaces 

 

The explanation and definition of surface free energy is based on the consideration of 

a material in vacuum.  In real life applications, materials are rarely exposed to vacuum.  

In fact, most surfaces exist in the form of an interface with another material.  Various 

types of interfaces that are commonly seen are liquid-liquid interface, liquid-vapor 

interface, solid-liquid interface, and solid-vapor interface.  Surface free energy of 

materials is especially useful in explaining a variety of physical phenomena such as 

adhesion, wetting, and adsorption, at these interfaces.  This section presents a discussion 

on some of these physical phenomena.   

 

Work of Adhesion and Cohesion 

 When two materials are brought together to form a new interface, the surface free 

energy of these materials causes them to physically adhere with each other.  Therefore, 

the work required to separate these two materials is referred to as the work of adhesion.  

Dupre [60] expressed the work of adhesion between two materials, ABW , in terms of their 

respective surface energies and interfacial energy as: 

 

W AB = γ AV + γ BV − γ AB          (A.1) 
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where, γAV  and γBV  are the surface free energies of ‘A’ and ‘B’ when they are separated 

in a vapor medium ‘V’, and ABγ  is the interfacial energy between these materials. 

Similar to the work of adhesion, the work of cohesion of a liquid is defined as the 

work required to separate a column of the liquid of unit area into two [61].  This 

definition can be extended to solids as well.  From the definition of surface free energy it 

can be shown that the total work of cohesion of a material is: 

  

WAA = 2γ           (A.2) 

 

where, γ  is the surface free energy of the material.  Comparison of the work of adhesion 

between any two materials with their individual work of cohesion can be used to estimate 

how the two materials interact at their interface.  For example, if the work of cohesion of 

a liquid is significantly greater than its work of adhesion with another solid, then the 

molecules of the liquid will have more affinity to itself than to the solid surface.  This 

will result in limited wettability of the solid by the liquid.  Similarly if work of cohesion 

of the liquid is significantly less than its work of adhesion with the solid, then the liquid 

will wet the surface of the solid.  In this context, wettability of a solid, A, by a liquid, B, 

can be quantified as follows: 

 

BBAB WW −= Bby A  ofy Wettabilit        (A.3) 

 

Contact Angles 

Contact angles are commonly used to measure the surface free energy of solids.  

When a drop of liquid is placed on a clean smooth horizontal surface, it either spreads 

over the solid surface or takes the shape of a drop with a finite contact angle between the 

solid and liquid phases (Figure A.2).  
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Figure A.2.  Contact Angle of Liquid on a Solid Surface 

 

If a finite contact angle is formed by the liquids on the solid surface, then the relationship 

between the contact angle, θ , and the surface free energies of the solid and liquid is given 

by: 

 

γ SV = γ SL + γ LV cosθ          (A.4) 

 

where, γSL  is the interfacial energy between the solid and the liquid, γ SV  and γLV  are the 

surface free energies of the solid and liquid in presence of the vapor V.  Equation (A.4) is 

due to Young [62], although it was not proven for several years after he first proposed it.  

Equations (A.1) and (A.4) can be combined to give the following equation: 

 

W SL = γ LV 1 + cos θ( )           (A.5) 

 

The above equation is referred to as the Young-Dupre equation and is a very important 

relationship commonly used to determine surface free energies of solids.  

 

Spreading Pressure 

Spreading pressure is defined as the reduction in the surface free energy of the 

solid due to the adsorption of vapor molecules on its surface.  Based on this definition, 

spreading pressure is mathematically expressed as: 
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π p = γ S − γ SVp          (A.6) 

 

where, pπ is the spreading pressure of a vapor at partial vapor pressure p,  and γ S  and 

γ SVp  are the surface energies of the solid in vacuum and in the presence of the vapor at 

partial vapor pressure p , respectively. 

Further, equation (A.7) presents a direct application of the Gibbs free energy 

equation relating spreading pressure of the vapor at partial pressure, p, to the mass of 

vapor adsorbed and its vapor pressure [43, 63]:  

 

π p1 = RT
MA

n
p

dp
0

p1

�            (A.7) 

 

where, R is the universal gas constant, T is the test temperature, and other terms are 

described before.  The spreading pressure based on the equilibrium mass adsorbed at the 

maximum saturated vapor pressure is referred to as the equilibrium spreading pressure of 

the vapor with the solid, denoted by the symbol πe.  Equation (A.7) is rewritten as follows 

for equilibrium spreading pressure: 

 

π e = γ S − γ SV           (A.8) 

 

Using equation (A.1) we can define work of adhesion between a solid and a liquid, WSL 

as: 

  

WSL = γ S + γ L − γ SL            (A.9) 

 

Substituting the values of the interfacial tension γSL  from equation (A.4) , π e  

from equation (A.8), and considering the total surface tension of the liquid saturated in its 

own vapor to be the same as the surface tension of the liquid, we get a more general form 

of the equation for work of adhesion: 
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WSL = π e + γ LV (1+ cosθ )           (A.10) 

 

For solid surfaces with very low surface energy, such as polymers, the spreading 

or film pressure is small and the approximation 0≈eπ can be made.  This assumption 

typically holds good for all liquids that form a finite contact angle with the clean solid 

surface. Therefore equation (A.10) reduces to the form of equation (A.5) as described 

earlier.  This approximation is not valid for solids with very high surface energies.  

However, for such solids, the contact angle is typically 0, and therefore the work of 

adhesion can be expressed as: 

 

WSL = π e + 2γ LV           (A.11) 

 

This relationship between the work of adhesion and equilibrium spreading pressure of the 

vapor is very important in determining the surface free energy of solids.  

 

Theories Related to Surface Free Energy  

 

Thus far, the term surface free energy or surface tension of a solid or liquid was 

expressed as a single quantity, γ .  This section describes the origin and modeling of 

surface free energy of materials from the molecular interactions point of view.  This 

discussion is important as it can be applied to theoretically calculate and predict work of 

adhesion between two different materials based on their individual surface energies, 

determine the interfacial energy of various types of interfaces, and to measure the surface 

free energy of unknown materials indirectly using the principles of work of adhesion.   

 

Background for the Development of Theories Related to Surface Free Energy  

One of the earliest theories to explain surface free energy and interfacial energy of 

materials was given by Good and Griffalco [64].  They used the Berthlot relation for the 



 

                                                                         

123 

 

attractive constants between like molecules aaA and bbA , with attractive constant of 

unlike molecules abA : 

 

Aab

AaaAbb

= 1            (A.12) 

 

to determine the relationship: 

 

γ ab = γ a + γ b − 2Φ γ aγ b           (A.13) 

 

where, Φ is characteristic constant for the system being studied. 

They also demonstrate that the theoretical value of Φ under idealized conditions 

is close to unity.  However, the true experimental value of Φ ranges from 0.31 to 1.15 for 

combinations of water with mercury and isobutyl alcohol respectively.  They 

experimentally demonstrate that the deviation of Φ  from 1 is more when the 

predominant forces in one phase are different from the predominant forces in the second 

phase.  For example, the predominant forces in case of mercury are metallic bonds as 

compared to hydrogen bonds in water.  

Fowkes [65] introduced the idea that the total surface free energy of a material is 

actually made up of two components, namely the dispersion forces and forces related to 

specific interactions such as hydrogen bonding.  He also proposed that the total surface 

free energy or surface tension is a linear combination of these interactions expressed as 

follows: 

 

γ Total = γ Dispersive + γ Specific           (A.14) 

 

This method to model the surface free energy of materials into its components is also 

referred to as the two-component theory and is still in use today.   

Fowkes [66] also revalidated the work of Griffalco and Good regarding the use of 

geometric mean based on the Berthelot relationship.  He also showed that this 
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relationship is valid as long as there is no substantial difference between the sizes of 

molecules being used.  The assumption of setting Φ as 1 was successful in the 

experimental work since only dispersive component of surface energies was being 

investigated using saturated hydrocarbons.  Saturated hydrocarbons in general do not 

have any bonds that can contribute to specific interactions and the specific component for 

this class of materials is set to 0.  

Harkins [67] demonstrated the relationship between the surface energies of a 

solid, liquid, their interfacial energy and equilibrium spreading pressure as follows: 

 

π e = γ s − γ L + γ SL( )           (A.15) 

 

Fowkes used this relation to show that: 

 

π e + 2γ L = 2 γ S
dγ L

d            (A.16) 

 

He uses equation (A.16) with adsorption data from other researchers to show how 

dispersive component of surface free energy can be obtained using adsorption 

measurements.  He also demonstrates how heat of immersion and heat of adsorption are 

related to surface free energy of these materials based on these equations.  In another 

series of experiments he determines the value of the following expression using polar 

liquids: 

 

γ12 − γ1 − γ 2 + 2 γ1
dγ 2

d           (A.17) 

 

In the absence of any polar interactions, Fowkes verified that the value of the 

above expression was zero.  However, when polar liquids were used, the expression 

always has some positive value indicating that there was some excess energy due to the 

polar interactions.  This reinforced the idea that the total surface free energy of a solid or 

liquid is not equal to its dispersive component but also has an additional component due 

to the specific or polar interactions between various molecules.  Dann [68] demonstrated 
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that this additional component due to polar interactions was a function of properties of 

both the materials.  

 

More Recent Developments in Theories Related to Surface Free Energy  

The specific component of surface free energy, specificγ , from equation (A.14) is 

attributed to the polar interactions on the material surface and dispersive component to 

Lifshitz van der Waals (LW) type of interactions.  Van Oss, Chaudhury and Good [25] 

explain that all polar interactions in the term specificγ , including hydrogen bonding, can be 

explained as a type of electron acceptor-electron donor interactions.  An important aspect 

of the electron acceptor-electron donor interactions, or Lewis acid-base interactions is 

that unlike the dispersive component, these interactions are asymmetrical.  They use the 

term γ AB in place of γ specific in equation (A.14) to represent the polar or acid – base 

component of surface free energy.  This theory is also known as the Good – van Oss – 

Chaudhury (GVOC) theory or the acid-base theory of surface free energy.  The electron 

acceptor and electron donor parameters of the acid-base component were represented as 

γ + and γ -, respectively.  On account of the asymmetry of these parameters, they proposed 

the following expression for the contribution of polar interactions between two materials 

represented by subscripts ‘1’ and ‘2’: 

 

2 γ1
+γ 2

− + 2 γ1
−γ 2

+           (A.18) 

 

and the relationship between the acid-base component of the surface free energy of a 

material with its individual acid and base components as: 

 

γ AB = 2 γ+γ −           (A.19) 

 

Therefore, the total surface free energy of any material can be expressed in terms of its 

three surface free energy components as: 

 

γ Total = γ LW + γ AB = γ LW + 2 γ+γ −         (A.20) 
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Based on this theory, the interfacial tension between two materials denoted by subscripts 

‘1’ and ‘2’ is given as: 

 

γ12 = γ1 +γ 2 − 2 γ1
LWγ 2

LW − 2 γ1
+γ 2

− − 2 γ1
−γ 2

+        (A.21) 

 

Note the similarity between equations (A.17) and (A.21) and the changes due to the 

development of the acid-base theory.  Equation (A.1) and (A.21) can also be combined to 

give the work of adhesion between two materials based on the acid-base theory as: 

 

W12 = 2 γ1
LWγ 2

LW + 2 γ1
+γ 2

− + 2 γ1
−γ 2

+         (A.22) 

 

Surface Free Energy Components of Some Liquids 

Determining the three surface free energy components of solids based on the 

GVOC theory is of particular interest in various physical chemistry applications.  A 

common methodology for this is to measure the work of adhesion of the solid with a suite 

of at least three different liquids with known surface free energy components (referred to 

as the probe liquids).  This generates three linear equations based on equation (A.22), 

which can be solved to determine the surface free energy components of the solid.  The 

surface free energy components of at least three probe liquids must be known a priori in 

order to be able to use this methodology successfully.  It is evident that any error in the 

surface free energy components of the probe liquids will be inherited by the surface free 

energy components of the solid.  As of date there is still general disagreement about the 

“true” values of the surface free energy components.  Different values for the three 

surface free energy components of the same liquid are available in the literature.  

Therefore, a brief discussion of the causes and consequences of this discrepancy is 

justified in this context.   

GVOC and coworkers first presented the three surface free energy components of 

various pure homogenous liquids.  The split of total surface free energy between the 

dispersive or LW component and the polar or acid – base component for various liquids 

was determined by comparing results from experiments that measured their interfacial 

tension with non polar liquids such as alkanes.  Once the LW component is known, the 
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acid-base component,  AB
1γ , can be determined using equation (A.20).  GVOC realized 

that the further breakup of the acid-base components into acid and base components was 

not possible mathematically.  This led them to make the assumption that the acid and 

base components for water are equal.  In other words, the ratio of acid to base component 

of water was assumed to be 1.  Using this assumption and equation (A.20) the acid and 

base component of water was each determined to be 25.5 ergs/cm2.  The three surface 

free energy components of water were then used to determine the surface free energy 

components of other liquids by measuring interfacial tensions.  Based on their work and 

this assumption, GVOC present the three surface free energy components for 

approximately 60 liquids.  

This approach has been under criticism by various other researchers in this field.  

Some of the reasons that instigated this criticism are as follows.  Firstly, the Lewis base 

component of surface free energy for several materials such as polymers always seemed 

to be consistently much higher than the Lewis acid component [69].  Secondly, there 

appeared to be no rational justification for the assumption of considering the acid base 

component ratio for water to be equal to 1 since it has been argued that water tends to be 

more acidic than basic [36, 39].     

In order to reconcile these differences, use of a reference material with all three 

known surface free energy components is inevitable.  It has been suggested that if the 

reference material to be used is water, then it must be regarded as a stronger Lewis acid 

than a Lewis base [36, 70].  In other words, the ratio of acid to base component of water 

must be greater than 1 as opposed to the assumption made by GVOC.  Various values 

have been proposed in the literature for this ratio.  For example Taft and co-workers [71] 

consider the ratio of acid to base character of water as 1.17/0.18 = 6.5.  Although these 

values refer to the parameters that are used to quantify the electron donor and electron 

acceptor characteristics of water based on a “solvatochromic scale”, it still suggests that 

the assumption made by GVOC maybe in error.  Della Volpe demonstrate that if the ratio 

of 6.5 is used to compute the three surface free energy components of various liquids, a 

totally new set of numbers emerge. It is evident that the surface free energy components 

of any solid determined using these liquids and values as a reference will inherit these 

assumptions and accordingly care must be taken in interpreting such results. 
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Summary of Theories Related to Surface Free Energy  

In summary, currently there are two main theories used to explain the surface free 

energy of solids and liquids.  These are the two component theory, in line with equation 

(A.14) proposed by Fowkes, and the three component or acid-base theory, according to 

equation (A.20) proposed by GVOC.  The three surface free energy components of 

various liquids were determined by GVOC and co workers based on the assumption that 

the ratio of acid to base component of water is 1.  However, some other researchers argue 

that the scale of surface free energy components based on this ratio is inaccurate since the 

actual ratio of acid component to base component of water is much higher than 1.  Based 

on this argument, surface free energy components of various liquids have been proposed 

in literature using different values for the acid base ratio of water.  Despite this criticism, 

the scale proposed by GVOC is still very popular amongst various users.  However, 

surface free energy components of materials derived using this scale must be interpreted 

with caution considering the fact that the resulting values are only a relative measure with 

respect to the acid and base components of water.   

 

Determining Surface Free Energy of Solids 

 

Various direct and indirect methods to measure surface free energy of solids have 

been used in the literature.  One of the earliest method to estimate surface free energy of 

solids was to measure the surface tension of the solid in liquid form at various 

temperatures above its melting point and then extrapolate its surface tension at room 

temperature.  Several direct methods to measure surface free energy of crystalline solids 

have also been reported [58].  However, most of these methods are applicable for 

crystalline materials that undergo brittle fracture and are often useful only from a 

fundamental research point of view.  Also, these methods have rarely been used to derive 

the three surface free energy components of solids.   

Direct measurement of surface free energy components of solids is rarely feasible.  

However, it is possible to measure the work of adhesion of the solid as it interacts with 

various liquids and gases.  Examples of interactions between solids and liquids or gases 

are, formation of contact angles, vapor adsorption, evolution of heat when solids are 
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immersed in a liquid etc.  Various methods have been used to measure surface free 

energy of solids such as the contact angle approach, gas adsorption method, inverse gas 

chromatography, etc.  Some of these methods will be discussed in this sub section.   

The basic algorithm for determining the surface free energy components of an 

unknown solid is similar for all these methods.  The work of adhesion between two 

materials, the solid (unknown surface free energy components) and the probe liquid or 

vapor (known surface free energy components) is determined experimentally.  The work 

of adhesion is related to the surface free energy components of the solid and probe as 

follows: 

   

W XP = 2 γ X
LWγ P

LW + 2 γ X
+ γ P

− + 2 γ X
−γ P

+         (A.23) 

 

where, WXP  is the work of adhesion between the probe liquid or vapor denoted by the 

suffix P, and the solid denoted by the suffix X.  The work of adhesion of the solid with at 

least three different probe liquids or vapors must be measured to generate a set of three 

linear equations that can then be solved to determine the three unknown surface free 

energy components of the solid. 

 Some of the methods to measure surface free energy components of solids are 

based on measuring work of adhesion in the form of contact angles, adsorption isotherms, 

heats of immersion and retention times.  The Wilhelmy plate method and sessile drop 

methods can be used measure dynamic and static contact angles of different probe liquids 

with the solid.  The Universal Sorption Device (USD), micro calorimeter, and inverse gas 

chromatography are instruments used to measure the adsorption isotherms, heats of 

immersion and retention times, for different probes with the solid, respectively.  Details 

for the Wilhelmy plate method, USD and micro calorimeter are presented in Chapters III, 

IV, and VI, respectively.  The other two methods are discussed in the following sub 

sections. 

 

Contact Angle Approach 

The contact angle approach is applicable to solids that form a finite contact angle 

with various liquids.  Usually such solids are referred to as low energy solids.  Examples 
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of such solids include polymers such as PMMA, and polyethylene.  By combining 

equations (A.5) and (A.23) one can relate the contact angle of the probe liquid with the 

solid to their surface free energy components as follows: 

 

γ P 1 + cosθ( ) = 2 γ X
LWγ P

LW + 2 γ X
+ γ P

− + 2 γ X
−γ P

+       (A.24) 

 

In equation (A.24), γP , without any superscript is the total surface free energy of the 

probe.  Therefore, if the surface free energy of the probe liquid and its components are 

known, and the contact angle of the probe liquid with the solid is measured 

experimentally, then the only three unknowns in equation (A.24) are the three surface 

free energy components of the solid.  Contact angles with three or more probe liquids and 

their surface free energy components can be used with equation (A.24) to generate a set 

of linear equations that can be solved to determine the unknown surface free energy 

components of the solid.  Some of the general considerations for the use of this approach 

are that: 

• the spreading pressure of vapors from the probe liquid on the solid surface must be 

negligible (this is generally true in case of low energy solids), 

• the surface of the test specimen must be very smooth, 

• the surface free energy of the probe liquids must be greater than the expected surface 

free energy of the solid,  and  

• the probe liquids must not interact chemically with the solid (eg dissolve the solid).   

Two popular experimental methods to measure the contact angles of liquids with 

low energy solids are the Wilhelmy plate method and the sessile drop method.  While the 

former is a dynamic method to measure contact angles, the latter is a static method.  In 

the sessile drop method, a drop of the liquid is dispensed using a micro syringe on a 

smooth solid surface. The shape of the drop is captured by a camera and the contact angle 

of the liquid with the solid surface is calculated either manually or by using an image 

processing software.  Figure A.3 shows a schematic of the set up for measuring contact 

angles using the sessile drop method.  More refined techniques such as axisymmetric 

drop shape analysis can also be used to compute precisely the shape and contact angle of 

the drop by using computer analysis to fit the observed shape of the drop using 
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theoretical models [38].  The sessile drop method can also be used in an advancing mode 

by slowly adding more volume of liquid to the dispensed drop and causing its boundary 

to expand.  Surface and interfacial phenomenon such as the change in contact angle of the 

drop with time can also be observed using this set up.   

 

 

 
 

Figure A.3.  Schematic for the sessile drop method 

 

Inverse Gas Chromatography 

Conventional gas chromatography is used to separate or investigate a mixture of 

gases that are passed through a column of known material using an inert carrier gas.  The 

gas passing through the column interacts with the standard material in it.  The total time 

of interaction results in different retention times or travel time for the gas from one end of 

the column to another.  The time of interaction, also referred to as the retention time, is 

characteristic of the gas (unknown phase) and the material in the column (known phase).  

The principle of inverse gas chromatography is very similar to gas chromatography with 

the exception that in this case the known phase is probe vapors carried using the inert gas 

and the unknown phase or material under investigation is filled in the column.  Although 

the basic principles remain the same, use of inverse gas chromatography to determine the 

surface free energy components of a solid deviates slightly from the basic algorithm 

described earlier.  

Micro syringe to dispense 
probe liquid 

Camera to capture contact 
angle image 

θ θ 
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In a typical experiment, the solid material to be investigated is filled in the 

column of the gas chromatograph.  Typically gas chromatograph columns are capillary 

columns made of fused silica with 0.25mm diameter and about 15m in length.  The 

material to be tested can be dissolved using a volatile solvent.  The solution is then 

flushed through the capillary column followed by a dry inert gas purge that dries the 

solvent and leaves behind a film of the solid material on the inside walls of the capillary 

column.  In case it is not feasible to prepare a solution of the solid sample, one can use a 

larger column made of silanzed glass with diameters of about 2-3mm and length of about 

30cm and fill it with the solid in a powder form.  Silanized glass wool can be used on 

either slide to plug the column and retain the sample in place.  

Typically the tests using the IGC are conducted in an infinitely diluted condition, 

that is extremely small volumes of the probe gas are injected with the carrier gas to pass 

through the column.  This is necessary to allow the consideration of the probe as an ideal 

gas.  In the IGC experiments it is assumed that methane has negligible interaction with 

the solids in the column, and the retention time for methane is approximated as zero.  

Therefore the net retention time of other vapors is measured as the difference of their 

travel time with the travel time for methane.  The free energy of adsorption is 

proportional to the retention volume based on the following equation: 

 

−∆Ga ∝ RT ln VN( )          (A.25) 

 

where, 

 

VN = j
m

FtN
T

273.15
          (A.26) 

 

In equations (A.25) and (A.26) T is the column temperature, m the sample mass, F 

the exit flow rate at 1 atm and 273.15K, tN is the net retention time calculated as the 

difference between the travel time for the probe vapor with the travel time of methane, j 

is the James-Martin correction, which corrects the retention time for the pressure drop in 

the column bed [72, 73]. 
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The free energy of adsorption is also be related to the work of adhesion as 

follows: 

 

− ∆G a = aN A ∆G a
LW + aN A ∆G a

AB = aN A 2 γ X
LWγ P

LW + 2 γ X
+ γ P

− + 2 γ X
−γ P

+( )   (A.27) 

 

Combining equations (47) and (49) we get: 

 

RT ln VN( ) = aN A 2 γ X
LWγ P

LW + 2 γ X
+ γ P

− + 2 γ X
−γ P

+( )+ C      (A.28) 

 

When a series of non polar liquids are used, the above equation reduces to: 

 

RT ln VN( ) = γ X
LW aN A 2 γ P

LW( )+ C         (A.29) 

 

The above equation is in the form of a straight line.  Retention volumes for a 

series of non polar probe vapors with known values of surface energies, example alkanes, 

can be plotted based on equation (A.29).  The slope of the resulting straight line 

corresponds to the LW
Xγ .  Thus the LW component of the solid can be determined.  If 

retention times corresponding to polar probes are also included in the plot, then the 

values corresponding to the polar probe will lie above the straight line from the non polar 

probes.  The deviation from the straight line is a measure of the polar or acid-base 

interactions between the probe and the solid, AB
aG∆ .  Figure A.4 illustrates this principle.  

Once the LW component is known, the acid and base components of surface free energy 

of the solid can be determined by measuring the retention time of monopolar probes 

(probes that have either the acid component zero or the base component zero) and using it 

with equation (A.28).   
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Figure A.4.  Retention time versus liquid properties [74] 

 

Any conventional gas chromatograph can be retrofit with suitable columns to 

function as an IGC.  Commercially available IGC’s are also available that are specifically 

designed for these kinds of experiments.  Dry helium is typically used as a carrier gas.  A 

mixture of alkanes (non polar probes) is injected in the IGC using a gas tight syringe.  

Ethylacetate and toluene are examples of monopolar probe vapors that are basic in nature 

(the acid component is zero) and DCM and chloroform are examples of probe vapors that 

are acidic in nature (the base component is zero).  The time taken for the vapors to travel 

through the column is determined using a flame ionization detector at the other end of the 

column.  Figure A.5 illustrates a typical output from the chemstation software.   

 

 

Figure A.5. Typical retention times from the chemstation software [74] 
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APPENDIX B 

COMPUTING SURFACE ENERGIES FROM CONTACT ANGLES  

 

Equations for Work of Adhesion  

 

Based on the Young-Dupre equation (neglecting the spreading pressure) work of 

adhesion can be expressed as follows: 

 

)1(5.02/ θγ CosWw adhesion +==        (B.1) 

 

where, γ is the total surface free energy of the probe liquid, and θ is the contact angle of 

the probe liquid on the surface of the solid being investigated. 

For a set of liquids, this equation can be expressed as: 

 

+−−+ ++=+ slisli
LW
s

LW
liili Cos γγγγγγθγ )1(5.0      (B.2) 

 

where, γ is the total surface free energy, γLW is the Lifshitz-Van der Waals component of 

surface free energy, γ- is the Lewis base component of surface free energy, γ+ is the Lewis 

base component of surface free energy, subscript li refers to the ith liquid, where i is equal 

to the number of probe liquids being used, and subscript s refers to the solid surface. 

If the actual number of liquids used is ‘m’ then the system of linear equations 

generated based on the above equations is shown below: 

 

A x = B,          (B.3) 

 

where, 
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Three distinct cases can occur: 

 

Case 1: When m < 3 the number of equations generated is less than the number of 

unknowns and hence the set of equations becomes indeterminate, 

 

Case 2: When m = 3 the number of equations is exactly equal to the number of unknowns 

and the equations can be solved.  In this case the matrix A is a square matrix and the 

vector ‘X’ containing the square roots of the unknown components of the solid can be 

solved if A is non-singular as follows: 

 

X = A-1B          (B.7) 

 

Case 3: When m > 3 then the number of equations available are more than the unknowns 

and the system becomes over determinate.  It is easy to see that the matrix A would no 

longer be a square matrix and it will not be possible to directly inverse the matrix.  Other 

tools to get the best solution for this scenario will have to be used and are discussed later. 
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Sensitivity to Choice of Liquids  

  

 If the component properties of the liquids are very close to each other the 

calculated surface free energy components will become unduly sensitive to the measured 

contact angles.  This is more important in cases when only a limited set of liquids are 

being used to estimate the surface energies of the solid.  A simplified demonstration of a 

similar effect is given as follows. 

 Consider a case where a value ‘y’ is measured using different probes with 

characteristic ‘x’.  The calculated parameter of interest is the slope of y vs. x.  If two 

probes with very similar values of x are selected then the measured value of y might not 

be very different.  This theoretically small difference is compounded by experimental 

error which could be relatively large.  As a result the calculated value of slope can have a 

large variability.  This can be seen from Figure A.1 where probes 1 and 2 with values of 

‘x’ as 1 and 2 respectively are used to measure parameter ‘y’.  With only these two points 

on the graph the variability in the slope can be very large.  However, if a third probe is 

used with the value of ‘x’ as 10 which is significantly different from the values of the 

other two probes, and assuming that the variability of the measured parameter ‘y’ is same 

in this range, it can easily be seen that the variability in the calculated slope is reduced.   

Mathematically this scenario can be represented as follows: 

 

12

12

xx
yy

Slope
−
−

=          (B.8) 

 

It is evident that if x2-x1 is very small its reciprocal would be very large, in turn which 

implies that the error in measuring y2 and y1 is amplified by a very large number.   

The above illustration is a simplification of what could happen as a consequence 

of a poor choice of liquids especially when a limited set of liquids are to be used to 

determine the surface properties.  In the present case, liquids must be selected so that the 

calculated surface energies would represent reasonable estimates of the true value with 

minimum error.  A mathematical measure of this is the condition number of the selected 

set of liquids.  The smaller the condition number the less sensitive are the calculated 
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results to the experimental error.  More about condition number is discussed in the later 

sections. 
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Figure B.1. Demonstration of Effect of Choice of Probes on Calculated Values 

 

Error Propagation 

 

As given in equation (B.1), ‘w’ is a function of ‘γ’ and ‘θ’.  By the propagation of 

error formulas, an estimate ŵ  of the true value of w, and the standard deviation of ŵ  can 

be obtained as follows:  

 

( )θγ cos15.0ˆ +=w          (B.9) 
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( )ˆ ˆvarw wσ =          (B.11) 

 

where, γ is the total surface free energy value of the liquid available from literature, θ  is 

the average contact angle from “r” replicate measurements, 2σ Γ is the variance of γ, 2
θσ  

is the variance of θ , θσ Γ  is the covariance of γ and θ , and the square brackets denote 

that the derivatives within the brackets are to be evaluated at the mean of γ and of θ, 

respectively. 

When the random errors in measurements of γ and θ are assumed to be 

independent, σγθ = 0 and equation (B.10) is reduced to the following form: 
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The value of 2
γσ  can be obtained from literature.  The value of 2

θσ  is, however, 

unknown and it is estimated as (1/r)*variance of “r” replicate measurements of θ.  That 

is: 
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Also, note from equation (B.1) that 
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and 
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Thus, 
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and 
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Using (B.12), (B.13), (B.16), and (B.17), the propagated variance of error in the work of 

adhesion can be calculated for each liquid as follows: 
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Singular Value Decomposition 

 

As discussed earlier, in the case when more than three liquids are used the system 

of equations becomes over determinate and the matrix A is a mx3 rectangular matrix.  

The Singular Value Decomposition (SVD) technique can be used to solve such as system 

of equations.  The SVD technique can also be used to calculate the condition number of 

the selected liquids (even without any contact angle measurements) to assess if the choice 

of liquids is appropriate for calculating the surface free energy components of the solid.  

The SVD is based on a linear algebra theorem that states that any mxn matrix A where 

m>n can be represented as follows: 

 

A = U W VT          (B.19) 
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where, U is a mxn orthogonal matrix, W is a nxn diagonal matrix, and VT is a nxn 

orthogonal matrix.  In the present case n = 3, since there are three unknown components 

of surface free energy and m = number of probe liquids being used.  Further, the 

condition number of the matrix A is defined as the ratio of the largest to the smallest 

diagonal element in the W matrix.  Typically a condition number above 10 can result in a 

solution where square roots of the surface free energy components are negative. 

 

The inverse of the matrix A is obtained as follows: 

 

A+ = V [diag (1/wj)] UT        (B.20) 

 

where, A+ is refered to as the Moore-Penrose inverse. 

 

Now, equation (B.18) can be used easily with equation (B.7) to calculate x which is a 

vector comprising of the square roots of the three surface free energy components as 

follows: 

 

x = V [diag (1/wj)] UT B        (B.21) 

 

However, take into account the different error variances in work of adhesion for different 

probe liquids, the matrices A and B are changed as follows: 

 

3

1

1

1

1

1

1

...............

mx
m

lm

m

lm

m

LW
lm

ll
LW
l

A

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=′
−+

−+

σ
γ

σ
γ

σ
γ

σ
γ

σ
γ

σ
γ

,       (B.22) 

 



 

                                                                         

142 

 

1

1

11

)1(
............

)1(

5.0

mx
m

mlm

l

Cos

Cos

B

�
�
�
�
�

�

�

�
�
�
�
�

�

�

+

+

=′

σ
θγ

σ
θγ

        (B.23) 

 

where, 1σ̂  through ˆmσ  are the estimates of the propagated error standard deviations in the 

work of adhesion of the m liquids calculated using equation (B.18). 

The matrix A’ is referred to as the design matrix.  x can now be calculated using 

the design matrix A’ and vector B’ in place of A and B using the same procedure as 

described earlier.  The SVD matrices must be generated for A’ and not A for calculating 

x when the errors are to be included. 

The variance in the estimate of the parameters of vector x, say x1 through x3, 

which actually represent the square roots of the surface free energy components, can be 

estimated from the following equation when SVD is used: 
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This provides an estimate of the variance of errors of the components of X.  Since the 

vector X contains the square roots of the surface free energy components the values 

obtained upon solving X must be squared to get the estimate of actual components and 

the variance estimate of the errors in the surface free energy components can be obtained 

by propagation of errors as follows: 
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APPENDIX C 

COMPUTING SURFACE ENERGIES FROM SPREADING PRESSURES  

 

Equations for Work of Adhesion 

 

The sequence of calculations for the USD is same as the WP method.  The only 

difference is in the work of adhesion formula which in this case is: 

 

πγ 5.02/ +== adhesionWw         (C.1) 

 

where, Γ is the total surface free energy of the probe liquid, and π is the spreading 

pressure of a probe vapor on the surface of the solid being investigated.  The equation 

(B.3) remains the same where only the definition of B changes to accommodate 

spreading pressure instead of contact angle: 

 

A x = B,          (C.2) 

 

where, 
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Further, the error propagation in “w” given by equations (B.12), (B.13), (B.16), and 

(B.17) is modified as follows: 
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where γ is the total surface free energy value of the liquid available from literature, and 

π  is the average spreading pressure from “r” replicate measurements, 2σ Γ is the variance 

of   γ, and 2
πσ  is the variance of π .  The value of 2

γσ  is available from literature.  The 

value of 2
πσ  is, however, unknown and it is estimated as (1/r)*sample variance of “r” 

replicate measurements on π .  Also, note from equation (B.23) that: 
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and 
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The propagated variance of error in the work of adhesion can be calculated for each 

liquid as follows: 
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All other steps to calculate x remain the same as in the case of the WP method. 
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