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ABSTRACT

Real-time Impulse-based Rigid Body

Simulation and Rendering. (May 2007)

Can Yuksel, B.S., Bogazici University

Chair of Advisory Committee: Dr. Donald House

The purpose of this thesis is to develop and demonstrate a physically based rigid

body simulation with a focus on simplifications to achieve real-time performance.

This thesis aims to demonstrate that by improving the efficiency with simplified

calculations of possible bottlenecks of a real-time rigid body simulation, the accuracy

can be improved. A prototype simulation framework is implemented to evaluate

the simplifications. Finally, various real-time rendering features are implemented to

achieve a realistic look, and also to imitate the game-like environment where real-time

rigid body simulations are mostly utilized.

A series of demonstration experiments are used to show that our simulator does,

in fact, achieve real-time performance, while maintaining satisfactory accuracy. A

direct comparison of this prototype with a commercially available simulator verifies

that the simplified approach improves the efficiency and does not damage the accuracy

under our test conditions. Integration of rendering elements like advanced shading,

shadowing, depth of field and motion blur into our real-time framework also enhanced

the perception of simulation outcomes.
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CHAPTER I

INTRODUCTION

The purpose of this thesis is to develop and demonstrate a physically based rigid

body simulation with a focus on simplifications to achieve real-time performance. The

approach taken in this study was experimental refinement. To efficiently carry out

experiments on proposed simulation elements, I implemented a prototype simulator.

This was used to develop and refine features like collision detection, collision response

and friction. It was also used to evaluate various real-time rendering features such as

advanced shading, shadowing, bloom effect, motion blur, and depth of field to achieve

a realistic look. The architecture of the prototype simulation exploits the processing

capabilities of both the CPU and the GPU. The CPU was utilized for all simulation

calculations and the GPU was dedicated for rendering purposes.

The conventional approach in real-time applications of rigid body simulation

is to use primitive objects; such as cubes and rectangular solids, as they can be

simulated efficiently. Real-time rigid body simulations are commonly used by gaming

companies; however their methods for making frameworks fast and efficient are trade

secrets. In this study, I propose simplified solutions to the common obstacles that

might become a bottleneck for a rigid body simulation framework; both for simulation

and rendering. I preferred to use rectangular objects with the intention to imitate

the traditional approach, but not all the simplifications presented here are limited to

rectangular objects.

Physical accuracy is the most important criterion of an engineering simulation,

but in computer graphics visual believability is the most important criterion. Even

The journal model is IEEE Transactions on Automatic Control.
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though this believability is mostly subjective, it is tightly connected to how well

the simulation mimics the real physical model. On the other hand, for any real-

time application computational efficiency is crucial. The system has only a small

fraction of a second to complete all simulation calculations and to render the resulting

frame. This time restriction is one of the main motivations behind the simplifications

presented in this thesis. However, these simplifications designed to speed up the

computation must not sacrifice the believability of the simulation.

One of the keys to believability is rendering, since human perception of an object’s

3D motion depends highly on its rendering and shading. Dynamic object shadows

significantly improve the perception of an object’s position and orientation in a 3D

environment. Since the final result is a 2D image, a ’depth of field’ effect can make a

significant difference on our perception of depth. Likewise, ’motion blur’ helps moving

objects stand out from stationary ones. Taken together, these rendering effects not

only improve the realism of the final image, but also contribute to the believability

of the dynamic simulation.
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CHAPTER II

BACKGROUND

This section summarizes some of the existing simulation and rendering methods that

are relevant to the thesis. The use of bounding volumes [1] to approximate the shape

Fig. 1. Some Types of Bounding Volumes. Spherical, AABB (Axis Aligned Bounding

Box), OBB (Object-oriented bounding box), Convex Hull

of a polygonal mesh model with a representative primitive object is illustrated in Fig-

ure 1. This method has been used for many different applications since the earliest

times of computer graphics. For collision detection, the premise is that intersections

between bounding volumes are much easier to detect than collisions between the ac-

tual surfaces. If the bounding volumes do not intersect, then the surfaces themselves

can not intersect. This method is appropriate for fairly simple geometries. Bound-

ing volume hierarchies consist of many bounding volumes and are typically used for

complex geometries [1] [2].

Collision detection has two phases: (1) the broad phase, and (2) the narrow

phase. The broad phase stands for the cases where two objects’s bounding volumes

are far separated from each other and no detailed collision check is required. The

narrow phase stands for the cases when intersection is detected (at the broad phase)
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between bounding volumes. This intersection only means that bounding volumes are

in penetration, but it does not necessarily mean that a real object-to-object collision is

present. If a broad phase intersection is detected, then the narrow phase determines

if the objects themselves are in collision. Only after determining that there is a

real collision, the collision point is calculated. Compared to the narrow phase, the

broad phase computation is much faster, and is used to minimize the number of

the narrow phase computations. One of the earliest methods for narrow phase of

Separating Plane on Face Separating Plane on Edge

Fig. 2. Witnessing(Separating) Plane.

collision detection is the polyhedral collision detection algorithm [3]. This method is

a brute-force approach since every possible edge-face combination is checked between

the objects where bounding boxes are not separating them. On the other hand,

Baraff’s witnessing plane (separating plane) approach, as illustrated in Figure 2, is

a speedup to the brute-force approach [4]. If two convex objects are separate from

each other, this means that there is a separating plane that lies between them. This

plane is defined on the surfaces or edges of the objects. The method finds that plane

and caches it as an initial guess for the following time-steps. Although Gottschalk’s
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separating axis theorem [5] is a similar approach using separating planes, it requires

less plane checks. Since Baraff’s separating plane is embedded onto the surface of

the object, each face and edge combination must be tested. It requires 48 (12 for

faces of each object and 36 for edges of one object) checks for the worst case. On

the other hand, the separating axis approach requires only 15 (6 for faces and 9 for

edges) checks for the worst case.

For finding the exact collision time and point, Hahn processed collisions by

chronologically backing up to the time of collision [6]. This back-tracing method

becomes quite slow when many objects are in collision at the same time. Mirtich’s

timewarp algorithm similarly backs up the time, but for only colliding objects [7].

Non-colliding objects evolve forward in time. Since a real-time application requires

frequent synchronization of all objects, the potential of this method can not be fully

utilized in a real-time rigid body simulation framework. Collision Response is the

Fig. 3. Examples of Some Collision Response Methods. Illustrated methods are

Penalty method using springs, Volumetric penalty method, and Impulse-based

method respectively.

phase where contact forces are calculated for the collision points. Baraff [8] proposed

the constraint method for collision response. This method determines constraint

forces at the contact points and solves them continuously. This method will pre-
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vent penetration, but multiple contacts will drastically slow down the simulation.

McKenna and Zeltzer calculated contact forces using the penalty method [9]. This

analytic constraint method adds temporary springs to the contact points to simulate

contact force. The amount of force is proportional to the penetration of the objects

in the penalty method. Different penetration criteria differentiate similar methods as

illustrated in Figure 3. The volumetric calculation of the penetration is an enhance-

ment to this technique [10]. Mirtich [11] developed the impulse-based approach. This

method does not use explicit constraints like the previous methods, where the con-

straints define forces that are applied to the interacting objects. In the impulse-based

approach, impulses are used instead of forces to directly change the velocities of the

interacting objects. This method is more stable, robust, and easy to implement.

Stacking of rigid objects is a difficult problem, especially for impulse-based sys-

tems. [12] proposes a shock propagation method that transfers momentum through

interacting objects, and stabilizes the system for stacking. Their algorithm also sup-

ports non-convex objects. [13] introduces a reversible freezing approach that excludes

non-interacting objects from the simulation.

Since the priorities for a real-time simulation are different than for an offline

simulation, it is important to make proper selections from the existing methods to

implement a real-time rigid body simulator. Egan’s study focuses on real-time rigid

body simulation and evaluates existing methods for their contribution from a real-

time perspective [14].

Real-time rendering methods are highly developed and well known. Dynamic

shadow computation significantly enhances the user’s 3D perception of the scene.

Without shadows it is very hard to understand the 3D positions of objects in an

environment. There are many ways to compute shadows, but the most popular

shadowing method is shadow mapping [15]. This method is fast and robust. Moreover,
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with the GPU implementation, fragment programming gives precise control over the

shadow mapping [16].

The Bloom effect arises from the fact that the intensity of the monitor is limited.

Even the absolute white color, which generates the maximum intensity, is not enough

to imitate the brightness of a light source. However, this brightness effect can be

simulated by spreading bright values to its neighboring pixels [17].

The depth of field phenomenon arises from the fact that the focus of an ob-

ject depends on its distance from the lens [18] [19]. The precise simulation of this

real phenomenon is computationally expensive. Therefore, image based post-filtering

techniques approximate this behavior and they are commonly used even for offline

applications. Yu [20] explains a post-filtering method to imitate this natural phe-

nomenon in real-time.

The motion blur helps the moving objects to be distinguished from the resting

objects. Since a camera’s shutter is open for a finite amount of time, a moving object

will cause over-writing on the film, causing motion induced blur [19] [21]. Again, the

precise simulation of this real phenomenon is computationally expensive and image

based post-filtering techniques can be used to approximate this behavior.
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CHAPTER III

SIMULATION METHODOLOGY

The implementation of a rigid body simulation system is explained in detail in Baraff

and Witkin’s course notes [22], and these course notes constitute the basis for my

own system. The main purpose of this section is to explain the approaches and

simplifications developed for the most common issues of a rigid body simulation.

A. Collision Detection

Within a rigid body simulation, collision detection is the component that has the

most drastic effect on the accuracy of a rigid body simulation. But at the same time,

this phase is the most computationally costly element of the simulation.

Collision Detection has two objectives; finding (a) the colliding objects and (b)

their collision points. For finding the objects in collision, the simulation must be

robust and accurate because any miss-detection of colliding objects may lead to very

unrealistic results. Finding the exact collision point makes the collision detection

phase computationally costly. Its robustness is crucial for accuracy. However, as long

as the collision response is able to calculate correct impulses, exact collision points are

not fundamental for the believability of the simulation. This observation is exploited

in the simplifications carried out to make this step faster, which are described in

detail in the Narrow Phase (Chapter III.A.2).

1. Broad Phase

The goal of the broad phase is to determine the set of possibly colliding objects and

exclude the remaining objects from detailed collision detection in the narrow phase.

The list of colliding objects in the broad phase is named the Active Collision List
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(ACL). These are not necessarily real collisions, but the ACL strictly satisfies the

fact that there can not be any real colliding pair that is not in the ACL. Once the

ACL is generated in this step, it will be used in the narrow phase of collision detection.

For the broad phase of collision detection, I chose to use axis-aligned bounding

boxes (AABB). Using an axis-aligned box as a representative object has several ad-

vantages. It is a very fast and robust method of collision checking due to the fact

that it is rotationally invariant. The only downside is that it is not suitable for all

geometries. Bounding box tightness depends on both the shape and the orientation

of the geometry. For complex shapes, using an axis-aligned box may result in a very

poor approximation. Since my simulation uses only rectangular objects, AABB is

usually an appropriate method.

By definition, a bounding volume must cover its actual geometry for all times.

Although AABB is rotationally invariant, the actual geometry inside an AABB ro-

tates due to interactions with the environment. There are two ways to be sure that

the actual geometry will be covered by its AABB. The first method is to use a static-

sized AABB that works for the worst-case scenario. In the worst case scenario, the

AABB becomes a cube that has sides which are equal to
√

(a2 + b2 + c2) (for a rect-

angular object with dimensions a, b, c). When the actual geometry is a cube, the

static-sized AABB is 1.7 (
√

3) times bigger than the actual geometry size, which is an

acceptable ratio. But, the ratio between actual size and AABB size gets significantly

larger for long and thin rectangular objects and it starts to contradict with the notion

that a bounding volume should be tight to its representative geometry. The second

method is to use a dynamically sized AABB. In this method, the x-y-z extents values

of the actual geometry’s vertices are calculated for every time step giving the tightest

AABB possible. The only drawback of this calculation is that finding extents be-

comes too costly for a complex object with lots of vertices. Thus, there is a trade off
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between having tighter AABBs with dynamically sizing and saving computation time

using static-sized AABBs. In my simulation, I prefer the dynamically sized method

as illustrated in Figure 4. The reason is that the actual geometries in my simulation

are simple rectangular objects with 8 vertices. As a result, finding extents is not

computationally expensive.

Fig. 4. Dynamically Sized AABB. The blue lines represent the bounding volumes. In

the left image, the sizes of the bounding volumes are the same as its represen-

tative object because objects lie in axis aligned positions. In the right image,

the sizes of the bounding volumes are bigger because the objects are rotated.

Since the AABB is axis-aligned, it is simple to use for collision detection. The

AABB values are sorted in the x, y, z directions independently. Two objects can not

be in collision unless their AABB min/max values (x, y, z) are overlapping along all

three coordinate axes. If any two objects satisfy this condition, they are added into

the Active Collision List (ACL) as a pair.

2. Narrow Phase

The goal of the narrow phase is to determine the real collisions using the ACL and to

find the collision points where the objects are touching each other. In my simulation,

two types of collisions are defined: (a) edge-to-edge and (b) face-to-vertex. The list
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of colliding objects in the narrow phase is named the Real Collision List (RCL). Once

the RCL is generated in this step, it is used in the collision resolution step.

For my real-time simulation, the separating plane (SP) is an appropriate ap-

proach to check collisions. Finding the plane that separates two geometries is not

computationally cheap, however, most probably, that plane will keep separating those

geometries for following time steps. Thus, caching SP is very important for efficiency.

The caching of SP starts when the pair is inserted into the ACL and stops when the

pair leaves the ACL. This process repeats itself every time a pair of objects moves in

and out of the ACL.

In the framework, once a SP is found, it is stored. However, this plane may not

separate the pair for the following time step. The most probable reason for this is

the rotations of the objects. In the next time step, if the old SP is not separating

anymore, the program will look for a new SP. It is important to choose wisely which

SP type to start with. In my implementation, I prefer to use an alternating method

for seeking the new SP. Since the occurrence of a non-valid old SP is most probably

due to rotations, the best guess in terms of SP method would be the other SP method.

For example, if the old SP was a face SP and if it is not separating at this time step,

the program starts by looking for an Edge SP, and vice-versa.

There are three different situations in which there will be no old SP. The first

case is the next time step after a collision. By definition, a collision means there is no

possible SP to separate the pair. The second case is that, at the end of the every time

step, after object collisions are resolved, the exiting SP is re-checked to be sure that

it is still separating. The reason for this double check is the displacements at the end

of the collision resolution step and it is explained in detail in the Separation (Chapter

III.C.1). During this process, if the existing SP no longer separates the pair, the SP

is deleted. The third case is the time when a pair enters or re-enters the ACL, since
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the stored SP is deleted every time a pair goes out of the ACL. As a result, there may

not be an old SP to check for a pair in the ACL. The program starts by looking for a

new face SP because an edge SP is computationally more expensive. In any case, if

there is no possible new SP, it means collision for the pair. In this situation, the pair

in the ACL is moved to the RCL and this finalizes the first goal of the narrow phase

collision detection.

The second goal of the narrow phase collision detection is to find collision points

where the pair touches each other. Finding the exact collision points is the most

computationally demanding part of the collision detection algorithms. Luckily, the

SP can also be used for very quickly estimating collision points. My approach of using

SP for collision points does not always guarantee finding the exact collision points.

However, for most of the cases, the estimated points are very close to the real collision

points. The important fact here is that using the SP is a very fast method to detect

usable collision points.

In order to find collision points with the SP, I assume that, if there is a real

collision and an old SP is present, it indicates that the collision happens on that SP.

For example, if the old SP is an edge SP, it indicates that an edge-to-edge collision is

present at this time step. This assumption saves time because finding collision points

without SP information is not trivial for penetrated objects. This is described in detail

in the Separation (Chapter III.C.1). In an edge-to-edge collision case, there exists one

collision point and detecting it is straight forward using two edges associated with the

old edge SP. However, in the case of face-to-vertex collision, there may be multiple

collision points.

My second assumption is that any points penetrating the old SP are treated as

collision points in face-to-vertex collisions. With this assumption, the SP replaces the

face of the colliding object. Since the SP is an infinite plane, some points penetrating
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that plane are not necessarily penetrating the actual face of the object. For similar

sized objects, the error due to this assumption is negligible. However, when the size

difference is big between objects and if the face SP lies on the small object, this

assumption causes big deviations from the actual collision points as illustrated in

Figure 5.a.

Fig. 5. Finding Collision Point with Separating Plane. (a) illustrates big error in

finding the actual collision points. (b) illustrates the correction of this problem

by choosing right object for separating plane.

The solution for this problem is to choose the right object for the face SP. For an

edge SP, the result plane is unique and it uses the edge information that comes from

both objects. For the face SP, the SP lies on one of the objects and is not unique.

In many cases, both objects have a face available for a SP as illustrated in Figure

5, and the search stops when the program detects one. In my implementation, the

program starts to look for a face SP with the bigger object as illustrated in Figure

5.b. In the case of small-to-big object collision, using an infinite SP is not a bad
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approximation for the face of the big object. Another benefit of this approach is that

the bigger object has a lower tendency to move and rotate compared to the smaller

object. This will result in a more stable SP, which will continue to separate the pair

for more following time steps.

Another simplification is developed to handle multiple collision points between

colliding pairs (only happens in the face-to-vertex collision case). Since my simulation

is designed only for rectangular objects, it can be adapted to handle collisions faster

for this special case. The common characteristic of rectangular objects is that they

are symmetric with respect to their three local coordinate planes. Using this property,

multiple collision points can be interpolated to one collision point that will give the

same impact. Since the object is symmetric, opposite impacts will cancel out each

other and they will be simplified to an impact that can be defined by one collision

point, as illustrated in Figure 6. With this method, an object falling straight on the

floor (or onto another object) will bounce back straight up due to one collision over

one collision point that lies just beneath the object’s center of mass, as illustrated

in Figure 6.a. To make this approximation more accurate, a weighting component is

added to the interpolation. As Figure 6.b illustrates, the penetration depth of the

collision point defines the value of the weights.

B. Collision Response

The impulse-based approach is a very robust method for collision response [11]. There

are no temporary springs or constraints to maintain under some criteria as in other

methods. Moreover, it is easy to implement because all the interactions of the sim-

ulation are defined by simple impulses. Since the highest priority of the simulation

is to achieve real-time performance, the impulse-based approach is suitable for this
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Fig. 6. Multiple Point Collision. (a) Illustrates interpolating multiple collision points

to a single collision point. (b) Illustrates the penetration weights.

goal.

After colliding objects are determined with their collision points, the impulses

are calculated in the collision response step.

1. Calculating Impulses

The impact (impulse) between objects can be calculated by [11]:

J =
−(1 + ε)[vA − rAωA − vB − rBωB] · n

1
mA

+ 1
mB

− n · (rAI−1
A rAn)− n · (rBI−1

B rBn)
(3.1)

where for object i, mi is its mass, Ii is its inertia tensor, ri is its displacement between

the center of mass and the collision point, n is the normal direction of the collision,

vi is its linear velocity, ωi is its angular velocity, and ε is the coefficient of restitution.

Equation 3.1 is for collision between two objects and it can be simplified for the

case when an object makes a collision with a fixed object. Since the fixed objects are

assumed to have infinite mass, we have:

J =
−(1 + ε)[vA − rAωA].n

1
mA

− n.(rAI−1
A rAn)
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2. Friction

Fig. 7. Friction. The left image illustrates the initial state of the simulation. The

other two images illustrate the final states. Without (middle) and with (right)

friction.

Friction is a very important component for believability. In real world, there is

not only surface friction but also air friction. Moreover, in the absence of friction,

objects do not keep interacting as illustrated in Figure 7. This is not desirable, since

the main purpose of building a mathematical framework beneath any simulation is

the desire to observe these interactions.

I used Coulomb’s friction model for my simulation and the direction of the friction

force opposes the direction of the motion.

F ≤ µN

where F is frictional force, µ is friction coefficient, and N is the force in the direction

of the normal.

There are two types of friction: static and dynamic (kinetic). Static friction

refers to the friction when the object is not moving. The dynamic friction is the

friction when the object slides over a surface. The only difference in these friction

types is magnitude (friction coefficient) and, usually, the static friction is bigger than
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the dynamic friction. In my implementation, I simply define a very low threshold for

speed that differentiates the static and dynamic friction.

C. Collision Resolution

Collision resolution is the step that finalizes the whole collision operation. In my

implementation, instead of resolving every pair’s collision sequentially, all collision

outcomes are calculated and stored for all colliding objects. Then, these stored out-

comes are applied at the same time to the states of these colliding objects. The main

reason why I prefer not to resolve collisions sequentially is that an object may be in

collision with multiple objects and the outcomes would be different depending upon

their resolving order. Another reason is that, after collisions are resolved, it is impor-

tant to check if an object becomes frozen as explained in detail in Freezing (Chapter

III.D). In a sequential resolving process, an object may get in and out of the frozen

state multiple times in the collision resolution process.

1. Separation

In an iterative simulation of rigid bodies, penetration is inevitable. Some collision

response methods even use this penetration to calculate impact forces. However, the

impulse-based method enforces non-penetration. Avoiding penetration is a difficult

problem. Most simulation methods use a back-tracing technique to avoid penetration

by finding the exact collision point and time. The back-tracing method backs up time

recursively to find the actual collision time and point till the penetration is detected.

This method is not always guaranteed to converge and is computationally very costly.

In my simulation, I used a simple and robust method to separate penetrating

objects. My method is to externally apply instantaneous displacements to separate
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penetrated objects at the end of the collision resolution step. To calculate these

displacements, my approach is to use the old SP as a reference for separation and to

move the objects away from each other in the direction of that SP’s normal. I also add

a weighting term to these displacements. The amount by which objects are pushed

away from each other varies inversely with their masses. The reason for weighting by

masses is to ensure that these displacements do not inject external potential energy

to the system.

The problem becomes complicated when an object is in contact with multiple

objects. Any separation due to one contact may cause deeper penetrations between

other contacts. In my implementation, I used displacement vectors to handle this

problem. Since all the collision calculations are carried out at the same time, it

would not be wise to simply add these displacement vectors, as illustrated in Figure

8.a. Averaging the sum of the displacement values with the number of colliding objects

may not result in total separation even for the simple case as illustrated in Figure 8.b.

Since final displacements represent instantaneous position changes of the objects, it

Fig. 8. Separation Methods in a Simple Penetration Case. (a) Using the sum of dis-

placements causes too much separation. (b) Averaging the total sum may not

result in total separation. (c) My approach.
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is very important to calculate them properly. If the displacements are bigger than

they are supposed to be, the result will look very strange. In a simulation, these

inaccurate instantaneous jumps would draw the viewer’s attention, detracting from

believability. On the other hand, if they are too small to separate the penetrating

objects, the objects will remain in penetration for the following time steps. This will

cause an excessive call of computationally costly collision functions, slowing down in

the simulation and jeopardizing its accuracy.

As illustrated in Figure 9.b, my final approach is to use the first possible dis-

placement as a reference. Then the algorithm separates other displacement vectors

according to their directions with respect to the reference displacement. In the first

option, if they lie in the same direction with the reference displacement, they con-

tribute to the reference displacement. The contribution is done by adding its per-

pendicular component to the reference displacement. For the horizontal component,

it is compared with the reference displacement and the biggest value is selected to

be the horizontal component of the new reference displacement as illustrated in Fig-

ure 9.b. In the second option, if they lie in the opposite direction of the reference

displacement, they are simply added to the reference displacement as illustrated in

Figure 9.b. With these steps, the reference displacement will transform to a final

displacement that will cover all other displacements. This approach, similar to other

methods, does not guarantee a total separation of colliding objects in the scene as

illustrated in Figure 9. However, it has the potential to work for most probable simple

cases as illustrated in Figure 9.c and, most importantly, the computational burden of

this algorithm is negligible.
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Fig. 9. My Separation Approach in a Complex Penetration Scenario. (a) Labeling

penetrations randomly. (b) Updating reference displacement. (c) Applying

the final state of the reference displacement.

D. Freezing

Resting contact, where objects are colliding but sliding on each other, is not defined

in my simulation. However, I do use the concept of freezing [13]. A frozen object does

not move and can be removed from the dynamic calculations. To become frozen, an

object must satisfy three criteria:

• Its kinetic energy must be below a certain threshold.

• It must continue in this low energy state over a certain time.

• It must have a real collision with another object in that time step. This criterion

assures that the object is touching another object.

The total kinetic energy can be calculated as:

1

2
M |v|2 +

1

2
ωT Iω
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The freezing method saves computation time and stabilizes the simulation. Due to

the gravitational field, combined with numerical instabilities and frictional forces,

objects have the tendency to keep moving indefinitely. Even when objects should

stop completely, discrete time steps cause the objects to vibrate over the surface due

to these factors. The bigger the time steps become, the bigger these errors are. The

’freezing’ approach helps the simulation to ignore almost stopped objects and use

the computation time for dynamically interacting objects as illustrated in Figure 10.

When an object becomes frozen, its velocities (linear and angular) are set to zero

Fig. 10. Freezing of the Objects. In the figures, the textured objects are frozen; white

objects are active. In the left image, the stacked objects are frozen in their

initial state. As illustrated in middle image, with the impact of the object

thrown, some of the stacked objects become active. In the right image, all

objects are again frozen in their final state.

and it is not iterated by the simulation. This frozen state is reversible; there are

two cases that cause an object to get out of the frozen state. In the first case, if an

object is pushed by a force that would result in a kinetic energy more than a certain

threshold, the object escapes from the frozen state. Since escaping from the frozen

state is instantaneous while entering requires some time, the threshold is different for

entering and escaping. In my simulation, I set the escaping threshold to be twice that

of the entering threshold. The second case of escaping from the frozen state is due
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to a contact object (CO). As stated in the third criteria of becoming frozen, every

frozen object must have a CO. If object A is in collision with object B and if object

B has a lower z position than object A, object B is the CO for object A. If the object

A has multiple collisions, the colliding object that has the lowest z position is the CO

for object A. The purpose of CO is to decide a contact object that the actual object

may rest upon. In the simulation, frozen objects are neglected from iteration unless

their CO is frozen at the same time. With this CO method, it is possible to activate

a frozen object sitting at the top of another object when the bottom object becomes

activated.

In my simulation, the only external force is gravity. Consequently, my CO ap-

proach as implemented works only in the z direction. If needed, this approach could

easily be adapted for any arbitrary external net force by changing the lowest value

direction of CO to be the external net force direction.

E. Energy Conservation

In my simulation, objects are perfectly rigid and there is only surface friction. How-

ever, in real life, there are many dissipative forces causing energy losses, which are

difficult to simulate. These include air friction, deformation and fracturing. Hence, it

is always wise to stabilize the system by some methods that decrease the total energy.

Although this section is named ’energy conservation’, the main purpose is to ensure

that external energy is not pumped into the system.

In my object separation approach, explained in detail in the Separation (Chapter

III.C.1), objects to be separated are moved away from each other. The most obvious

energy pumping occurs when objects are separated from the ground plane. Objects

moved up to be separated from the ground plane gain external elevation (potential
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energy) that will be converted to kinetic energy by the gravitational force in following

time steps. In my implementation, the system calculates height displacement and uses

this displacement to calculate external pumped energy. Then, the equivalent amount

of kinetic energy is removed from the vertical component of the object’s velocity.

1. Stacking

Figure 11 illustrates the stacked configurations that my simulation is able to stably

generate. The stacking is a difficult problem, especially with an impulse-based ap-

proach. Since the impulses can be transferred from one object to another one at a

time, the simulation becomes very unstable when there are many objects on the top

of one another. The methods explained in the Freezing and Energy Conservation

sections help stacking but are not sufficient to handle all stacking cases. Even with

these methods, stacking is not perfectly stable.

Fig. 11. Stacking Examples. These are some stacking examples that my simulation is

able to generate stable configurations.
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CHAPTER IV

RENDERING METHODOLOGY

Rendering plays an essential supporting role in the simulation by enhancing the

viewer’s perception of the final result. The rendering part of this thesis supports

per-pixel shading, shadowing, bloom effect, depth of field, and motion blur. Most of

these features are natural optical effects, and their accurate computation is expensive.

In this section, I will explain some techniques for simplifying these complex meth-

ods to preserve real-time performance. Since rendering plays only a supporting role

in this framework, efficiency of the rendering and post-filtering techniques has the

highest priority. Most of these rendering effects can be implemented more accurately

in an offline simulation and rendering framework. However, here I present highly

simplified techniques to get the most visual improvement out of these rendering ef-

fects, while keeping the computational cost minimal. All these rendering features are

designed to work on the GPU and they are implemented using the CG language.

Some of the rendering features require multiple rendering passes. These rendering

passes are processed in a display buffer and their results are stored in textures on the

graphics hardware. Some passes are directly used in the final composition and some

of them are only used for intermediate states. The final image, to be displayed on

the screen, is a composition of these rendering passes.

A. Fragment Lighting

In Figure 12, the left image is rendered using basic OpenGL lighting and shading,

and the right image is rendered using fragment lighting. The most obvious difference

between these two images is the specular term of shading. The specular term is

avoided in the OpenGL version. Although OpenGL is capable of calculating the
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Fig. 12. Advanced Shading. Basic OpenGL (left) and fragment shading (right).

specular term, the result is not pleasing due to the fact that OpenGL handles lighting

and shading computations only on the vertices. Since the specular component is a

very rapidly changing term over the surface, the basic vertex point interpolation

is not capable of catching these high frequency changes. On the other hand, the

fragment shader calculates lighting and shading per pixel. Especially for low-poly

models, fragment shading significantly improves lighting and shading results. Another

improvement for the specular term of shading is the use of ’specular maps’. Parts of

an object may have different material properties. Since the diffuse term can be taken

care of with the color of the applied texture, the specular term typically requires an

additional texture. However, this extra texture is a burden on the graphics hardware,

and can be avoided. Since the diffuse texture has an alpha channel that is not used

for the diffuse color computation, it can be used to store the specular mask. As

illustrated in Figure 13, a specular mask can be used to make the metallic parts of

the boxes shinier than the other parts.
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Fig. 13. Specular Maps. Basic OpenGL (left) and fragment shading with specular

maps (right).

B. Shadow Mapping

In my implementation, I used the basic shadow mapping technique, giving results as in

Figure 14. This method requires additional render passes per light. For performance

reasons, I prefer to use only one light source, which requires only one more rendering

pass.

The first step for shadow mapping is rendering the scene from the light’s view.

This rendered image is called the ’depth map’. The values of this image are the dis-

tances between the light source and the objects as illustrated in Figure 15. However,

GPU implementation has its difficulties. Since a standard texture has discrete integer

values between 0-255, the precision is not enough for depth values. I used two differ-

ent methods to solve this problem. The first method is to encode the floating-point

depth value using the three channels of a texture. Even though this improves the

results compared to regular integer values, depth values still lack precision. The sec-

ond method is to implement ’Render to Texture’ application using another OpenGL
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Fig. 14. Shadow Mapping. Without (left) and with shadows (right).

context. With the ’Render to Texture’ feature, it is possible to bypass the display

buffer and render directly to a texture. Moreover, rendering to a texture gives the

ability to use floating-point textures. Even though using a floating-point texture is

generally slower, using render to texture performs better since it does not include

encoding and decoding of floating-point values. For these reasons, I chose to use the

render to texture method for all render passes used in this simulation framework.

The result image after this step is named ’Base Image’. This Base Image will later

be used as input data for other effects before it will be used in the final composition.

C. Bloom Effect

The Bloom effect is the only rendering effect that is not designed to enhance percep-

tion, but simply to give a more appealing and realistic final image. The true Bloom

effect can only be simulated using HDRI (High Dynamic Range Image) with floating

point textures to store the render outcome. There are two reasons why I did not chose

to use floating-point precision textures in my implementation. The first reason is that
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Fig. 15. Depth Map. The values of this texture are the distances between the light

source and the objects.

supporting floating-point precision in the graphic pipeline is hardware specific and,

even on hardware that supports it, it slows down the application. The second reason

is that my simulation environment has a simple lighting setup. Since the only very

bright object in the scene is the light source that has absolute white color, it is not

necessary to use floating-point precision to detect the bright values generated from

this light source. In my framework, I prefer to use standard textures. To catch the

bright values, I assume that absolute white in the Base Image indicates that upper

values are cut and these values should be enhanced with Bloom effect as illustrated

in Figure 16.

The first step is to detect the white values in the Base Image. The texture

of these selected values is called the HDR Mask. A simple threshold approach, by

selecting only absolute white values, results in flickering of the Bloom effect because

of the discontinuity over the HDR Mask. To create a smooth and continuous HDR
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Fig. 16. Bloom Effect. Without bloom effect (left), HDR Mask (middle), and with

bloom effect (right).

Mask, I prefer to use ’powers of values’ to create the mask instead of the threshold

approach. With this method, values lower than 1 rapidly converge to zero and create

a smooth transition between 0 and 1. This method is similar to that used when

calculating a rapidly changing specular term for shading.

The second step is to spread these values over the HDR Mask to simulate the

bloom effect. A two-dimensional convolution filter is applied over the HDR Mask to

spread these values. For filtering, I prefer to use a linear kernel instead of the Gaus-

sian kernel, which is commonly preferred by offline applications. Since the Gaussian

distribution is curved, for a small sized kernel, the transition is significantly sharper

than the linear distribution. Moreover, the linear filter requires a smaller sized kernel

than the Gaussian to achieve a similar spreading look.

To make this effect visible on the screen, the kernel size should not be smaller

than 1/15 of the input size. Let N denotes the width and height of the bloom texture.

The computational cost of the bloom effect is:

• Filtering: N2 texture units
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• Convolution filter per texture unit: (N/15)2

• Total processing: N2 · (N/15)2 = N4/225

This process will be significantly faster with the following simplifications. Since the

spreading application is a blurring operation over the source image, the high-frequency

features will automatically smooth out. The first simplification is to use a smaller

input image for Bloom effect calculation by scaling down the Base Image by 1/4.

Using a smaller version of the source image will further support the goal of achieving

a soft bloom effect and it requires significantly smaller computation time. I called the

scaled-down version of the Base Image the Blurred Image. It is a smaller and blurred

version of the Base image and its alpha channel is used for the HDR Mask.

The second simplification is to use a separable convolution filter. Separable

convolution stands for the special case when a convolution kernel can be separated

into two independent elements for each axis. Since the linear kernel is a separable

convolution filter, the simulation applies the filter (kernel) sequentially two times in

the x and y direction separately. This step requires one more filtering pass, however

the time complexity improves from O(n2) to O(n). The whole computation of the

Bloom effect with this simplified version is:

• Scaling down the Base Image: N2 texture units

• Filtering: (N/4)2 texture units

• Convolution filter per texture unit: (N/4)/15

• Total processing: N2 + 2 · ((N/4)2 · (N/60)) = N2 + (N3/480)

For example, if the Base Image is chosen to be 1024x1024, these simplifications speed

up the computations more than 1,500 times. Using a smaller Base Image sacrifices

some quality; however, the speed-up is very significant.
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D. Depth of Field

Fig. 17. Depth of Field. Base Image (left), Depth Mask (middle) and final Image with

Depth of Field (right).

Depth of field (DoF) is another feature that enhances the 3D perception. In

my implementation, I prefer to use a post-filtering technique because the resulting

quality of this method is acceptable and the computation time is minimal.

The first step of the DoF implementation is to gather the depth values. These

values are calculated in advance of the shading step using camera space z positions.

By definition, both the background and the foreground are out of focus in a DoF

effect. The next step is to set the ’plane of focus’ that lies in between foreground

and background. The plane of focus is an imaginary plane that lies perpendicular to

the camera view and it represents the region that is in focus. After setting the plane

of focus, the other regions are interpolated to have a smooth transition between in

and out of focus. The finalized mask is then stored in the alpha channel of the Base

Image. This one channel mask is called the ’Depth Mask’. For the second step of the

implementation, a blurred version of the Base Image is needed.

In the previous Bloom effect (Chapter IV.C), a filtering operation (sequential
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over x and y) is applied over the HDR Mask to spread its values. The same technique

(with a smaller sized kernel) is applied to the Blurred Image. After this operation,

the Blurred Image becomes not only smaller, but also a uniformly blurred version of

the Base Image. Since the HDR Mask is in the alpha channel of the Blurred Image,

both filtering operations are applied at the same time. In the final composition step,

the Base Image and Blurred Image are blended using the Depth Mask as illustrated

in Figure 17.

E. Motion Blur

Fig. 18. Motion Blur. Base Image (left), Motion Mask (middle) and final Image with

Motion Blur (right).

The motion blur is an effect that helps the user to distinguish moving objects from

resting objects. Since fast moving objects should look blurred compared to slower

moving objects, this effect can be achieved with a similar post-filtering method as

described in the Depth of Field (Chapter IV.D).

The first thing needed is the velocities of the moving objects. Since the objects

have angular velocities, the relative velocity is not constant over an object. In the
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Advanced Shading step, the angular and linear velocities are explicitly sent to the

vertex shader and these vertex-based values are then interpolated in the fragment

shader to generate a mask, as illustrated in Figure 18. This mask is called the

’Motion Mask’. After the Motion Mask is generated, it is stored in the Base Image’s

alpha channel.

Since the Base Image has only one alpha channel, the Motion Mask is in conflict

with the Depth Mask. In my implementation, I prefer to simply add these two masks.

Since the DoF and Motion Blur effect are using the same post-filtered image to blur,

it may become confusing to the viewer to distinguish which effect causes the blurred

look. Since the depth of field effect is emphasizing the depth and the motion blur

effect is emphasizing the motion, it is usually easy to perceptually differentiate these

two effects.

In a true motion blur effect, the blur should be in the direction of the motion

covering the path of the object, however, in my implementation, the blur occurs only

on the fast moving object. Although inaccurate, it is computationally efficient and

creates an acceptable effect. After the DoF effect is embedded in the framework,

adding motion blur using a similar approach, has little extra computation cost.

F. Final Result

The final rendering result is accomplished after 6 rendering passes in the following

order.

• 1st pass: Rendering from light’s view to generate the Depth Map.

• 2nd pass: Per pixel rendering to generate the Base Image.

• 3rd pass: Scaling down the Base Image to generate the Blurred Image.
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• 4th pass: X pass of filtering of the Blurred Image.

• 5th pass: Y pass of filtering of the Blurred Image.

• 6th pass: Compositing

The final compositing step uses the Base Image and the Blurred Image. The Base

Image’s RGB components consist of the per-pixel rendering result and its alpha chan-

nel has the depth and motion masks. The Blurred Image’s RGB components consist

of the scaled down and blurred version of the Input Image to be used for Depth of

Field/Motion Blur. Its alpha channel has the HDR Mask. This compact representa-

tion of the rendering elements allows the framework to run in real-time.

The compositing step uses the Base Image and the Blurred Image to generate

the final result as illustrated in Figure 19.
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Base Image (left) and the sum of Depth and Motion Masks in its alpha channel (right)

Blurred Image (left) and the HDR mask in its alpha channel (right)

Final Image

Fig. 19. Construction of the Final Composted Image.



36

CHAPTER V

RESULTS

A number of example scenarios, shown in Figure 20, were developed to test the

simulation. These images were captured from the real-time version of the simulation.

In Figure 20.a, 20.b and 20.c, the configurations are stable and all objects are in a

frozen state except one as illustrated in the initial states of figures. The motion is

externally triggered by throwing this separated object into the stacked objects. In

Figure 20.d, the configuration is not stable and objects fall due to gravity.

An important feature of my simulation is its capability for handling different

sized objects in the same environment without adjusting any parameters. In penalty-

based methods, the simulation requires careful tweaking of parameters when there

is a change in the size of simulated objects. Moreover, even after tweaking, these

methods may still not be able to handle greatly different sized objects in the same

environment. Figure 20.d shows that the impulse-based simulation is able to simulate

variable sized objects robustly in the same environment. As illustrated in the same

figure, the biggest box is more than 15,000 times bigger than the smallest one and

the simulation performs without a problem.

A. Comparison of the Results with Another Engine

In this section, the results of my simulation are compared with 3ds Studio Max R©7.0

simulation plug-in which is a built-in simulation environment developed by Havok R©.

For comparison purposes, the simulation parameters are set to be the same. I com-

pared the outcomes in terms of performance and accuracy. As stated in the introduc-

tion (Chapter I), the goal of my simulation is to achieve believability. Since evaluating

the believability of a simulation is subjective, I assumed that the performance and
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accuracy would reflect the believability of the simulation.

The term ’sub-time step’ as used by Havok implies dividing the constant time

step into smaller steps, in order to achieve plausible results. In order to match this

feature when doing comparisons, I also integrated a sub-time step application into my

framework. My simulation’s sub-time step algorithm works adaptively by counting

the number of collisions. The number of sub-time steps determines the maximum

depth of recursion in my framework. Since Havok’s simulation is a trade secret, the

implementation details of their sub-time step method are unknown. For the test, I

designed a scene in which the outcomes are predictable. For most cases, it is not easy

to predict the outcomes of any simulation because the interactions are complicated.

In the test scene, the objects (boxes) are aligned and, at the same time they lie on a

plane that is 45 degrees with the ground plane, as illustrated in Figure 21. Given this

alignment, it is easy to predict the general course of a simulation outcome. When

simulation starts, objects will fall due to the gravity.

The tests were conducted in two groups by the magnitude of the constant time

steps. In order not to crash Havok’s simulation, the first group of tests was done using

Havok’s simulation default time step settings (0.0333 seconds). Even with sufficient

sub-time steps, both simulations suffered from accuracy problems with this time step.

Hence, the second group of simulations was carried out with a 0.0033 seconds (one

tenth of the first test) constant time step. For both test groups, the results represent

the final states after 5 seconds (simulation time) of the simulation. For all of the

result images, the black background results represent my simulation, and the white

background results represent Havok’s simulation. The expected result from the test

scene is a symmetric distribution. Since all the objects are perfectly aligned and lie

on a 45 degrees plane at their initial state, the final distribution of objects should

be aligned and symmetric on the ground plane. Moreover, the whole displacement
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should lie on the vertical direction when seen in top view, due to the object’s initial

configuration. Any horizontal displacement is a calculation error. From this point

of view, none of the results presented in Figure 22 is perfect. However, Havok’s

simulation has different issues other than symmetry. As illustrated in Figure 22.a,

Havok’s simulation failed to perform for 1, 4 and 10 sub-time steps. Many objects

totally penetrated into the ground plane and fell through the floor to infinity. The

objects that appear smaller in Havok’s simulation results indicate these falling objects.

Since Havok’s simulation is a trade secret, the underlying framework is unknown.

Table I summarizes the performance comparisons between the Havok simulation

and my simulation. It shows clearly that my simulation is significantly faster than

Havok’s simulation for all cases in which a comparison was possible. For 400 objects,

my simulation’s slowest result (0.0033 seconds constant time steps with 200 sub-time

steps) takes about the same amount of time as Havok’s fastest acceptable result

with only 4 sub-time steps. In my test scenario, distribution and symmetry are the

main criteria used for accuracy comparisons. For this purpose, both simulations’

best results (0.0033 constant time steps with 200 sub-time steps) were compared.

Although this accuracy comparison is by nature subjective, it is apparent that my

simulation gives no less accurate results than Havok’s while being more than 20 times

faster.

Figure 23 demonstrates another very important and surprising fact that the only

result satisfying accuracy expectations is generated with the real-time version of my

simulation. It is surprising because the real-time version calculated the same scene

more accurately than the slowest 200 sub-time step versions. Figure 24 illustrates the

test results with 1,600, 3,600 and 6,400 cubes. Havok’s simulation could not perform

the tests for 3,600 and 6,400 objects, due to memory limitations. The complexity

of the simulation is O(n), except for the sorting algorithm for the overlapping tests



39

which has O(n. log n) complexity. The scalability graph shown in Figure 25 supports

this fact, indicating that the curve is close to linear.
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(a) - Simulation of 221 brick objects rendered with all rendering effects.

(b) - Simulation of 60 very thin and long objects rendered with all rendering effects.

Fig. 20. Results from Various Test Scenarios.
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(c) - Simulation of 221 brick objects rendered with all rendering effects.

(d) - Simulation of 19 variable sized objects rendered with all rendering effects.

Fig. 20. Continued
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Fig. 21. Comparison Test Environment. The left image is captured from the top view

from my simulation and the right image is from Havok’s simulation. The

middle is captured from the perspective view of my simulation to give an idea

about the test environment.
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(a) Constant time is 0.0033 seconds.

Fig. 22. Results of 400 cubes compared with 3ds Max simulation plug-in developed

by Havok. The top images are the results of my simulation and the bottom

images are results of Havok’s simulation. The numbers below the images

represent the sub-time step iterations.
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(b) Constant time is 0.0333 seconds.

Fig. 22. Continued
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Table I. Comparison of Running Times. Time results indicate the computation time

of 5 seconds sequence. ’F’ indicates ’failure in calculations’. ’N/A’ indicates

that 3ds Max couldn’t run the test due to the memory limitations. All tests

are done with a 1.8 GHz (AMD) CPU and 1 Gb RAM computer.

(a) Constant time is 0.0333 seconds.

(b) Constant time is 0.0033 seconds.
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Realtime - 5.0s 0.033/1 - 1.55s 0.0033/200 - 86.31s 0.0033/200 - 2054.16s

Fig. 23. Real-time Results Comparison. The numbers below the images represent

the constant time steps, sub-time step iterations, and the calculation time

respectively.
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0.0333/200 0.0033/200 0.0033/200 0.0333/200

(a) 1600 cubes. The numbers represent the constant time step, and sub-time step

respectively.

Fig. 24. The Results for Various Numbers of Objects.
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1 10 200

(b) 3600 cubes (0.0033 seconds time step). The numbers represent the sub-time step

iterations.

Fig. 24. Continued
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1 10 200

(c) - 6400 cubes (0.0033 seconds time step). The numbers represent the sub-time

step iterations.

Fig. 24. Continued
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Fig. 25. Scalability of My Simulation.
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CHAPTER VI

CONCLUSION

I aimed to design a prototype simulation that works in real-time in a game-like envi-

ronment with the support of rendering features. To achieve this goal, the features of

both simulation and rendering were simplified. Although these simplifications may

sometimes cause deviations from exact solutions, they do not generally damage the

believability of the simulation. Moreover, by simplifying the calculations of possible

simulation bottlenecks, efficiency improves. Since computation time is limited in a

real time application, the efficiency improvement may lead to accuracy improvement.

As the comparison section demonstrated, the test results indicate that my sim-

ulation outcome is not only more accurate, but also faster than Havok’s simulation.

Both simulation engines have strong and weak points. Unlike my system, Havok’s

rigid body simulation is not limited to rectangular objects; it supports a variety of

shapes and cases. The more cases a simulation supports, the more performance it

sacrifices. Moreover, since Havok’s engine is integrated into 3ds Max, performance

may not be the highest priority for this offline environment. When the performance

comparison is carried out to achieve similarly accurate results, Havok’s engine is

much slower than my simulation. Another very important fact is that highly opti-

mized implementation and compilation create a big difference for the efficiency and

the performance of an application. My simulation environment was implemented to

experiment with different ideas and to demonstrate their outcomes. For this reason,

when performance is considered, my implementation should not be a match for a

highly optimized and developed commercial engine. All these facts aside, the test

results still indicate that my simulation is faster and the outcomes are more accurate

for the special case of rectangular objects.
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My simulation framework is limited to rectangular objects. I used the symmetry

property of rectangular objects to approximate multiple collision points as a single

collision point. As a future work, this simplification can be generalized to work

for any convex shape. The collision resolution step is still a major bottleneck for

my framework when many objects are interacting such as in stacking. It might be

fruitful to investigate modifying the shock propagation method [12] for use in real-

time applications. It might be possible to use this approach to propagate the impact

and improve the efficiency for the collision resolution step.
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