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ABSTRACT 

 
 

Selected Problems in Turbulence Theory and Modeling. 

(December 2003) 

Eun-Hwan Jeong, B.S.; M.S. Korea Advanced Institute of  

Science and Technology, Korea 

Chair of Advisory Committee: Dr. Sharath S. Girimaji 

 

Three different topics of turbulence research that cover modeling, theory and 

model computation categories are selected and studied in depth. In the first topic, 

“velocity gradient dynamics in turbulence” (modeling), the Lagrangian linear 

diffusion model that accounts for the viscous-effect is proposed to make the existing 

restricted-Euler velocity gradient dynamics model quantitatively useful. Results show 

good agreement with DNS data. In the second topic, “pressure-strain correlation in 

homogeneous anisotropic turbulence subject to rapid strain-dominated distortion” 

(theory), extensive rapid distortion calculation is performed for various anisotropic 

initial turbulence conditions in strain-dominated mean flows. The behavior of the 

rapid pressure-strain correlation is investigated and constraining criteria for the rapid 

pressure-strain correlation models are developed. In the last topic, “unsteady 

computation of turbulent flow past a square cylinder using partially-averaged Navier-

Stokes method” (model computation), the basic philosophy of the PANS method is 

reviewed and a practical problem of flow past a square cylinder is computed for 

various levels of physical resolution. It is revealed that the PANS method can capture 

many important unsteady flow features at an affordable computational effort. 
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CHAPTER I 

 

INTRODUCTION 

 
Turbulence is one of the most complicated types of fluid motion. In this irregular, 

highly diffusive, and dissipative fluid motion, wide range spectrum of the scale of 

motion exists. Starting from the largest eddies, energy is cascaded into smaller and 

smaller eddies through non-linear interactions and is finally dissipated by viscous action 

at the smallest eddies. It is very difficult to generalize this broad ranged fluctuating 

motion.  These complicated flow features are solely governed by the Navier-Stokes 

equation. However, the general solution for this non-linear equation is not known, and 

the solutions are strongly influenced by the boundary/initial conditions. Furthermore, 

solving Navier-Stokes equation exactly (namely, direct numerical simulation: DNS) for 

a specific turbulent flow requires overwhelming computing power because of the broad 

range of scales of motions. Currently, DNS is only possible for relatively simple, low-

Reynolds number flows and is used more as numerical experiments of canonical flows. 

Consequently, for practical applications, we need turbulence models. To construct 

adequately accurate turbulence models, a clear understanding of the underlying physics 

is important. 

The turbulence research area can be roughly categorized as physical/numerical 

experiment, theory, and modeling. The experiment is the most fundamental method in 

turbulence research. Through direct measurement / computation  of  the flow  of  interest,  

This dissertation follows the style and format of Physics of Fluids. 
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quantitative or qualitative information on turbulent flow is acquired. Analytical or 

mathematical way of describing turbulent physics is sought in turbulence theory 

category. Ultimately, theory and experiment results are directly used in the development 

of turbulence models.  

In this dissertation, three different topics that cover modeling, theory and, 

additionally, model computation categories are chosen. They are i) velocity gradient 

dynamics in turbulence (modeling); ii) pressure-strain correlation in homogeneous 

anisotropic turbulence subject to rapid strain-dominated distortion (theory); and iii) 

unsteady computation of turbulent flow past a square cylinder using partially-averaged 

Navier-Stokes method (model computation). Each topic is discussed independently in 

depth in the separate chapters. The purpose and research directions are as follows. 

 

1.1 VELOCITY GRADIENT DYNAMICS IN TURBULENCE  

Knowledge of the velocity gradient dynamics is essential for understanding of 

wide ranged turbulence motions: turbulent kinetic energy cascade to the smaller scale is 

closely related to the vortex stretching mechanism and the velocity gradient performs a 

crucial role in this vortex-stretching phenomenon; scalar mixing and evolution of 

material surfaces are also related to the velocity gradient tensor; the dissipation of the 

turbulent kinetic energy is statistics of velocity gradient. Currently, there exists a simple 

velocity gradient dynamic model called the restricted-Euler equation. The restricted-

Euler equation explains many of qualitative features of turbulent flow observed in 

experiments. However, in the restricted-Euler equation, viscous and anisotropic pressure 

Hessian effects are absent. Inadequate viscous-effect modeling causes velocity-gradients 

to diverge in finite time. In  this  research, we  develop  new model that  accounts for the  

viscous-effect–variable relaxation time scale model–to  resolve  the unphysical  behavior 
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of restricted-Euler model. The results are compared with DNS data. 

 

1.2 PRESSURE-STRAIN CORRELATION IN HOMOGENEOUS 

ANISOTROPIC TURBULENCE SUBJECT TO RAPID STRAIN-

DOMINATED DISTORTION 

In the Reynolds stress closure, the modeling of pressure-strain correlation term is 

one of the toughest tasks. Pressure is usually decomposed into slow and rapid pressure. 

The role of the pressure-strain correlation is different depends on the turbulent flow 

regime. In return to isotropy turbulence regime, production is absent. Only the 

dissipation and the slow pressure-strain correlation affect the turbulence evolution. On 

the contrary, the slow pressure and dissipation terms are absent in rapid distortion limit. 

In this limit, the mean flow deformation rate is much larger than turbulent strain rate. As 

a result, turbulent flow is governed by a set of linear equations (rapid distortion theory: 

RDT).  In this research, rapid distortion calculation is performed for various anisotropic 

initial turbulence conditions in strain-dominated mean flows. The behavior of the rapid 

pressure-strain correlation is investigated and constraining criteria for the rapid pressure-

strain correlation models are sought. 

 

1.3 UNSTEADY COMPUTATION OF TURBULENT FLOW PAST A 

SQUARE CYLINDER USING PARTIALLY-AVERAGED NAVIER-

STOKES METHOD 

For accurate prediction of unsteady turbulent flow, it is necessary to resolve 

large unsteady scales of motion to some extent. Large Eddy Simulation (LES) and Direct 

Numerical Simulation (DNS) are physically appropriate tools for this purpose but 

computationally unaffordable for practical engineering applications. As a bridging 

model between RANS and LES, partially-averaged Navier-Stokes (PANS) method has 
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been proposed recently. In this research, basic philosophy of PANS method is reviewed 

and, as a practical application, flow past a square cylinder is computed for various levels 

of physical resolution. The results are compared extensively with existing experimental 

and LES data. 
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CHAPTER II 

 

VELOCITY GRADIENT DYNAMICS IN TURBULENCE: EFFECT 

OF VISCOSITY AND FORCING 

 

In this chapter, the first topic, “velocity gradient dynamics in turbulence” is 

discussed. The restricted-Euler equation is a promising but incomplete model for 

velocity-gradient dynamics in turbulent flows. While it captures many of the geometric 

features of the vorticity vector and the strain rate tensor, viscous and anisotropic–

pressure Hessian effects are not accounted for satisfactorily. Inadequate viscous-effect 

modeling causes velocity-gradients to diverge in finite time, rendering the restricted-

Euler model unsuitable for practical applications. We perform a Lagrangian frame 

analysis to fully comprehend the physics of viscous relaxation time-scale and propose a 

variable time-scale model that can adequately account for deformation history. Most 

importantly, the finite-time singularity (divergence of velocity-gradients) problem is 

fully resolved with the present model. We also model the effects of forcing that is used 

in numerical simulations to sustain stationary isotropic turbulence. Detailed comparison 

of the new model with DNS data reveals good agreement. 

 

 

2.1 INTRODUCTION 

Velocity-gradient dynamics and small-scale structure offer unique insight into 

turbulence mechanisms such as energy cascade, intermittency, material-element 

deformation, scalar mixing, etc. Important turbulence process such as vortex stretching 

and gradient-steepening due to non-linear interactions appear explicitly in the fluctuating 
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velocity-gradient equations making them well-suited for studying turbulence physics. 

Recently, details of many aspects of velocity-gradient dynamics and small-scale 

structures have emerged from direct numerical simulations (DNS). Some of the observed 

behavior lack simple explanations and while others are completely contrary to previous 

expectations. The objective of this chapter (and similar studies in the past of Ashurst et. 

al1, Girimaji and Pope2, Cantwell3,4, Girimaji and Speziale5, Soria et. al6, Martin et. al7,8,9, 

Ooi et. al10 ) is to develop simple dynamical models to explain the observed small-scale 

behavior.  

The restricted-Euler equation, first proposed by Viellefosse11, captures many of 

the qualitative aspects of the small-scale structure1,3.  Cantwell4 performed detailed 

studies of the velocity-gradient invariants to demonstrate further agreement between the 

restricted-Euler dynamical model and DNS data. The original restricted-Euler model had 

three major deficiencies : (i) incompatibility with mean momentum equation; (ii) lack of  

anisotropic pressure Hessian effects; and (iii) lack of viscous effects. The first of these 

deficiencies has been decisively addressed by Girimaji and Speziale6. Despite some 

progress, our inability to accurately account for anisotropic-pressure Hessian and 

viscous effects continue to limit the usefulness of the restricted-Euler model. Of the two, 

viscous effects are particularly important since the inviscid assumption leads to finite-

time singularity (divergence) of the restricted-Euler equation. Currently, the only model 

available to account for the viscous-effects is the linear diffusion model (LDM)7,8, which 

is based on the interaction-by-exchange with mean (IEM) and the least-mean-square 

estimator (LMSE) principles used for scalar mixing.  The linear diffusion model 

assumes that the time-scale of viscous relaxation is uniform everywhere, ignoring the 

effects of intermittency. The LDM equations can still lead to finite-time singularity if the 

initial velocity gradients are large enough. In a real turbulent flow, the viscous relaxation 
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time-scale is distributed over a wide range of values7 depending on the deformation 

history of the fluid element. High values of velocity gradients are typically associated 

with faster (smaller) relaxation time scales so that the gradients always remain bounded. 

We address the finite-time singularity and viscosity related issues in this research. 

Anisotropic pressure-Hessian modeling is not considered. As pointed out by 

Viellefosse11, this term only has a redistributive effect on the magnitude of velocity-

gradients. Thus, while the omission of this may affect some qualitative aspects of 

velocity-gradient geometry, the finite-time singularity aspect is unaffected.  

 The primary objectives of present work are  (i) to develop a better understanding 

of the viscous effects by performing Lagrangian-frame analysis and  (ii) to derive a 

suitable variable relaxation time-scale model. A prerequisite for the model is that 

velocity gradients remain finite, consistent with Navier-Stokes physics. Most 

importantly, the effort in this research should contribute towards making the restricted-

Euler based velocity-gradient model a viable computational tool. A secondary objective 

is to account for the effects of forcing on velocity-gradients. Small wavenumber forcing 

is typically employed in DNS to maintain a statistically stationary isotropic turbulent 

velocity field. The effect of forcing is absent in the restricted-Euler model and must be 

included to perform a clean comparison with forced isotropic DNS data.  In anisotropic 

flows, turbulence production is the forcing term and that appears in closed form in the 

modified restricted Euler equation (Girimaji and Speziale5). Since the forcing is absent 

in practical flows, it is not considered in great detail. 

 

2.2 VELOCITY GRADIENT EVOLUTION EQUATION 

For incompressible flow, the evolution equation for the local instantaneous 

velocity gradient tensor, jiij X/ua ∂∂= , is given by  
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kk

ij

ji
kjik

k

ij
k

ij

XX
a

XX
paa

X
a

u
t

a
∂∂

∂
+

∂∂
∂

−=+
∂
∂

+
∂
∂ 22

ν     (2.1) 

and the Poisson equation for kinetic pressure is 

nmmn
ii

aa
XX
p

−=
∂∂

∂2

.        (2.2) 

The strain rate tensor and vorticity vector associated with ija  are given by 

( )jiijij aas += 2
1 ; kjijki aεω =       (2.3) 

where ijkε  is the permutation index. The eigenvalues of ijs  are taken to be 1a , 2a  and 3a  

in descending order of numerical value. Due to continuity, we have 

0321 =++ aaa .        (2.4) 

Thus, we can conclude that 01 >a  and 03 <a . The sign of 2a  is not known a priori. 

Using (2.2), equation (2.1) can be written as 

ijijnmmnkjik
ij haaaa

dt
da

=−+ δ3
1  where 

k
k X

u
tdt

d
∂
∂

+
∂
∂

= .  (2.5) 

In above equation, ijh  is composed of anisotropic pressure Hessian and viscous diffusion 

terms : 

kk

ij
ij

kkji
ij XX

a
XX
p

XX
ph

∂∂

∂
+











∂∂
∂

−
∂∂

∂
−≡

222

3
1 νδ .    (2.6) 

The dynamics of the velocity gradient tensor can be understood by studying the 

behavior of its invariants P, Q and R (Cantwell2) :  

0=−= iiaP  (continuity);   2/aaQ jiij−= ;   3/aaaR kijkij−= .  (2.7) 
 
The characteristic equation of velocity gradient tensor is given by 03 =+λ+λ RQ  where 

λ is the eigenvalue of ija . The discriminat of this characteristic equation is given by  

32 427 Q/RD += .        (2.8)  
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As shown by Chong et. al 12, the two-dimensional state space (R,Q) can be divided into 

four regions of distinct local flow topologies according to the sign of discriminant D and 

invariant R. The evolution equations for Q and R are :   

kiik haR
dt
dQ

−−= 3 ; kijkij haaQ
dt
dR

−= 2
3
2 .     (2.9) 

If we assume that pressure Hessian term is isotropic and neglect viscous effects, we get 

the original restricted-Euler equation : 

R
dt
dQ 3−= ; 2

3
2 Q

dt
dR

= ;  0=
dt
dD .     (2.10) 

In this autonomous system of equations, the invariants evolve along the constant 

discriminant line and diverge in finite time. In a turbulent flow field, viscous effects 

prevent the velocity gradients from getting too large. Martin et. al8 attempt to account 

for viscous effect using the linear diffusion model (LDM): 

E

ij

kk

ij a
XX

a
τ

ν −=
∂∂

∂ 2

        (2.11) 

where Eτ  is a constant, interpreted as the viscous relaxation time-scale. With this model, 

the equations for the invariants become : 

E

QR
dt
dQ

τ
23 −−= ; 

E

RQ
dt
dR

τ
32

3
2 −=  ; 

E

D
dt
dD

τ
6−= .   (2.12) 

This is also an autonomous dynamical system of equations that can be solved knowing 

the initial conditions. This system has one attracting fixed point at the origin (Q=0, R=0) 

in the phase plane. The basin of attraction is approximately ( ) ( ) 2100 Eijij /aa τ≤ . If the 

initial values are larger, the velocity gradient still diverges in finite time. Thus, LDM is 

also not completely adequate as it can, and does, permit finite-time singularity. In a 

turbulent flow field,  the  effective viscous  relaxation  time-scale at   any  point  depends  
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on the prevailing length-scale ( l ) at that location :  

ν
τ

2l~eff .         (2.13) 

The length-scale ( l ) depends on the deformation history of the fluid element. It can vary 

from the integral length-scale of turbulence to the Kolmogorov-length scale. Physically, 

LDM does not account for the dependence of relaxation time-scale on fluid element 

deformation history. It is well known that viscous dissipation (equivalently, viscous 

action) is intermittent in character. The spatial distribution of viscous dissipation is 

sporadic rather than uniform, with much of the dissipation occurring in a small fraction 

of the total flow field. The implication clearly is that the viscous relaxation time-scale is 

not constant throughout a turbulent flow field. A physically accurate model for the 

viscous effect must account for this variation in the time-scale due to deformation 

history. 

 

2.3 LAGRANGIAN ANALYSIS AND MODELING 

2.3.1 Lagrangian linear diffusion model 

The dependence of viscous action on velocity gradient time history can be best 

understood by performing a Lagrangian frame analysis. We will consider the flow 

equations in a Lagrangian frame of reference (x,t). The underlying Eulerian flow field is 

given by u(X,t), where X represents Eulerian (Cartesian) coordinate system. The 

Eulerian coordinate X of a Lagrangian particle identified by x evolves according to  

( ) ( )( )tt
dt

td ,,, xXuxX
=  with ( ) xX =0 .     (2.14) 

The technique used here to study material element deformation is fairly common place 

in the field of continuum mechanics. In continuum mechanics terminology, the Eulerian 
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coordinate system can be considered as the present configuration and the Lagrangian 

one as the reference configuration. In the absence of material deformation caused by 

velocity field, the present (Eulerian) and the reference (Lagrangian) frames would be the 

same. The effect of the velocity field is to deform the configuration rendering the present 

coordinate different from the reference coordinate frame. The transformation tensor 

between the two frames contains important information about the material deformation. 

In the Lagrangian reference frame, the evolution equation for fluctuating velocity 

becomes 

( )
kk

i

i

i

XX
u

X
p

dt
t,du

∂∂
∂

+
∂
∂

−=
2

ν
x

.      (2.15) 

From the equation (2.1), the Lagrangian frame evolution equation for ija  can be written 

as 

( ) ( ) ( ) ( )
kk

ij

ji
kjikij XX

t,a
XX

pt,at,at,a
dt
d

∂∂

∂
+

∂∂
∂

−=+
X

xxx
2

ν .   (2.16) 

As mentioned in the introduction, we do not consider the effect of anisotropic pressure-

Hessian in this work. If we neglect the anisotropic part of pressure Hessian, we have 

( ) ( ) ijnmmn
ji

t,at,a
XX
p δxx3

1
2

−=
∂∂

∂ .      (2.17) 

In equations (2.16) and (2.17), the spatial derivatives are still evaluated in Eulerian 

frame (present configuration). The viscous diffusion term can be rewritten in terms of 

the Lagrangian derivatives (reference configuration) : to leading order, we have 

( ) ( ) ( )
nm

ij
nkmk

nm

ij

k

n

k

m

kk

ij

xx
ta

CC
xx

ta
X
x

X
x

XX
ta

∂∂

∂
=

∂∂

∂

∂
∂

∂
∂

≈
∂∂

∂ ,,, 222 xxX
ννν ,   (2.18)  

where  Cij=∂ xi/∂Xj. The transformation tensor Cij represents the deformation experienced 

by  a fluid  particle relative to its  original state at  time t = 0. Then, the velocity  gradient 
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evolution equation becomes  

( ) ( ) ( ) ( ) ( ) ( )
nm

ij
nkmkijnmmnkjikij xx

t,a
CCt,at,at,at,at,a

dt
d

∂∂

∂
≈−+

x
xxxxx

2

3
1 νδ . (2.19) 

In the above equation, all the derivatives are taken with respect to the Lagrangian 

coordinate system. The effect of the velocity gradient time history on viscous action is 

contained in the Cauchy-Green tensor CmkCnk . In the field of continuum mechanics, the 

Cauchy-Green tensor is widely used to describe material element deformation. This  

Cauchy-Green tensor provides gradient (distance) information in the present (Eulerian) 

configuration. When viewed from the reference (Lagrangian) coordinate frame, the 

effect of the velocity field is to steepen present configuration gradients and render the 

effective viscosity (νCmkCnk) enhanced and anisotropic.  

In this work, we will focus only on the increased viscosity magnitude. We set 

pqpqmnnkmk CCCC δ3
1≈ ,       (2.20) 

leading to 

( ) ( ) ( ) ( ) ( ) ( )
kk

ij
pqpqijnmmnkjikij xx

ta
CCtatatatata

dt
d

∂∂

∂
=−+

,
3

,,,,,
2

3
1

x
xxxxx νδ . (2.21) 

Here, Tpqpq /CC νν ≡3  can be interpreted as the effective turbulent viscosity. It is shown 

in Girimaji13 that CpqCpq grows exponentially at long times :  

( )( )taaexp~CC pqpq 21 + ,  where  021 >+ aa .    (2.22) 

Thus for fluid particles with large velocity gradients, effective viscosity will be very 

large (growing exponentially fast) keeping the gradients bounded. This physical picture 

is consistent with the velocity gradient behavior in turbulence. It is also known that the 

distribution of CpqCpq is nearly lognormal with long tails indicating intermittent 

character.  
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As a modeling hypothesis, we propose that the intermittent character of the 

viscous relaxation timescale is entirely due to the viscosity enhancement factor CpqCpq. 

We note that the Lagrangian field is not directly affected by the velocity field. Hence, it 

is reasonable to expect the behavior of kkij xx/a ∂∂∂ 2ν  to be similar to that in pure 

diffusion case (in the absence of velocity field) so that it is characterized by a constant 

relaxation time-scale. Thus, 

( ) ( ) ij
L

ij
kkkk

ij at,aY
xx

Y
xx

t,a
τ

νν 122

−≈=
∂∂

∂
≈

∂∂

∂
x

x
    (2.23) 

where τL is a constant, to be interpreted as the molecular viscous relaxation time-scale. 

The molecular viscous relaxation time-scale is inversely proportional to the molecular 

viscosity (τL ~1/ν). So, the overall model for viscous effects is 

ij
L

pqpq

kk

ij
pqpq

kk

ij a
CC

xx
a

CC
XX

a
τ

νν
33

22

−≈
∂∂

∂
≈

∂∂

∂
.    (2.24) 

The model is effectively a Lagrangian linear diffusion model (LLDM) with a viscosity 

enhancement factor CpqCpq . In the light of equation (2.24), the original LDM can be 

regarded as a constant Eulerian relaxation time-scale model. With current model, the 

Eulerian relaxation time-scale is given by 

pqpq

L
E CC

τ
τ

3
=          (2.25) 

where CpqCpq  is a function of time history of velocity gradient. In a turbulent flow, the 

maximum value of effective viscosity and the minimum value of effective relaxation 

time scale are limited by their corresponding Kolmogorov-scale values, i.e., 

( ) ηνν u~KmaxT = ; ( )
ν
ηηττ

2

==
u

~KminE     (2.26) 

where η and u are Kolmogorov length and velocity scales respectively. The modeled 
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time-scale must also satisfy this bound. Thus, the complete model for the relaxation 

time-scale is 











= K

pqpq

L
E ,

CC
min τ

τ
τ

3
       (2.27) 

where ντ /LL
2=  and L is the integral length scale of turbulence. The model relaxation 

time-scale value ranges from the near-laminar (molecular) value to the Kolmogorov-

scale value as is the case in Navier-Stokes turbulence. In summary, the effective 

viscosity depends on the molecular viscosity and the ability of turbulence to steepen 

velocity gradients. This is clearly consistent with the prevailing qualitative picture of 

viscous action in turbulent flow fields. 

To complete the model specification, an appropriate closure for Cij must be found 

in terms of velocity-gradients. In fact, an accurate representation of Cij is crucial for the 

success of the model since it contains the information about deformation history. 

Fortunately, the evolution of Cij depends only on the velocity-gradients. From the 

equation (2.14), we can write  

j

k
ik

j

k

k

i

j

i

j
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x
X

a
x
X

X
u

x
u

x
X

dt
d

∂
∂

=
∂
∂

∂
∂

=
∂
∂

=










∂
∂

.     (2.28) 

The deformation tensor Cij is the inverse of ji x/X ∂∂  and solving the above equation is 

equivalent to solving an evolution equation for Cij. Thus, the viscous effect can be 

completely described without any further closure assumptions.  This is an important 

positive feature of the proposed viscous-effect model. 

 

2.3.2 Effect of forcing        

 In order to sustain a statistically stationary isotropic velocity field, low 
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wavenumbers are forced in a typical DNS calculation. It is important to account for the 

effect of this forcing on the velocity gradient evolution to perform an accurate 

comparison with DNS data. Three popular techniques for sustaining stationary isotropic 

turbulence are (i) stochastic isotropic forcing of low-wavenumbers, (ii) holding the 

amplitude of low-wavenumbers constant while permitting change in their phase and, (iii) 

assigning negative viscosity to low-wavenumbers. While the exact nature of the forcing 

certainly affects the turbulence large-scales, it is reasonable to argue that high-

wavenumbers are relatively insensitive to the method of forcing. Therefore, for the sake 

of simplicity, we account for the effect of forcing with a linear forcing model. The 

forced model equation is 

 ij
s

L

pqpq
ijnmmnkjik

ij a
CC

aaaa
dt

da






 −−+−=

ε
ε

τ
δ 1

33
1 ; ijij aa≡ε   (2.29) 

where εs is a pre-assigned value for each fluid-particle. Such forcing ensures that the 

value of ijijaa  of a fluid-particle tends to εs at long times. One of the main motivations of 

choosing this form of forcing is that the probability density function (PDF) of ijijaa  will 

tend to that of εs. Thus, by prescribing the required PDF for εs, any desired distribution 

of ijijaa  can be obtained.  

In this model, the time-scale of the linear forcing is chosen to be identical to that 

of viscous action. This is easy to justify, since the rate of energy input into the system 

must match the loss due to viscous action. Thus, the forcing process is controlled by 

viscous process. On the whole, the viscous and forcing processes are controlled by the 

parameter τL. The value of τL clearly will depend on the Reynolds number of the flow of 

interest. However, the precise value of τL is irrelevant so long as 211 /

ijijL aa<<−τ or 

( ) 211 /
sL ετ <<− . This again is consistent with the physical picture that turbulence is 
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somewhat insensitive to Reynolds number provided that it is high enough. In all the 

problems considered in this research, τL=1 whereas 150≈sε . Other choices of τL 

make only qualitative difference in the results obtained. 

 

2.3.3 Numerics 

The time evolution of the velocity gradient of each particle is obtained 

numerically by integrating equations (2.26) and (2.29) using 4th-order Runge-Kutta 

method. In the simulations, ija  and εs values of different fluid particles are assigned 

from DNS data14. Depending on the quantity of interest, 3,000 to 30,000 fluid elements 

are used in the model calculations.  The results are summarized in the next section. 

 

2.4 RESULT AND DISCUSSION 

We will now investigate the turbulence small scale-structure predicted by the 

various models and their behavior in decaying and forced isotropic turbulence. The DNS 

data of forced isotropic turbulence used for comparison here are those of Yeung14 

( λRe =90) and Martin et. al7 ( λRe =40).  

 

2.4.1 Small-scale geometry 

Direct numerical simulations have revealed some universal aspects of the 

turbulence small-scale structure : (i) the intermediate eigenvalue ( 2a ) of  the strain-rate 

tensor is mostly positive; (ii) the vorticity vector is aligned along this intermediate 

eigenvector with a high probability. As shown by Viellefosse11and Cantwell3, the 

restricted Euler model captures  these  features. It  is  important  that  the  viscous effects  

model  also retains this velocity gradient  structure. To investigate  the internal geometry 
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of the new model, we define normalized velocity gradient tensor and time as 

ijmnmnijij aaa/ab τ ′== ; τ ′=′ /dttd ; mnmnaa/1=′τ .  (2.30) 

Using equation (2.5), we can derive the evolution equations for the normalized 

quantities : 

ijmnmnijijlnmnlmijnmmnkjik
ij bhbhbbbbbbbb

td
db 22

3
1 ττδ ′−′+++−=

′
  (2.31) 

3τττ ′−′=
′
′

ijijikjkij hbbbb
td

d .       (2.32) 

Here, ijh is given by 

( )( )
( )( )








′−

′−=
LLDM,/b/CC
LDM,/b/

Eulerrestricted,
h

ijLpqpq

ijEij

ττ
ττ

3
1

0
 .   (2.33) 

Equations (2.31) and (2.32) respectively govern the geometry and the magnitude of 

velocity gradients. The evolution of the magnitude of the velocity gradient (or invariants 

R and Q) is totally different for each model. However, the last two terms in equation 

(2.31) cancel each other for both LDM and LLDM (recall, ijijbb =1) rendering the 

normalized velocity gradient tensor geometry identical for the restricted-Euler model, 

LDM and LLDM. This means that LDM and LLDM retain all of the geometrical 

characteristics of the velocity gradient tensor incumbent in the restricted-Euler model. 

 

2.4.2 Unforced isotropic turbulence 

According to Navier-Stokes physics, an unforced turbulent velocity field will 

dissipate all its energy leading at long times to 0=ija . In this respect, restricted-Euler 

model and LDM are far from describing real physics of the velocity gradient field. In the 

restricted-Euler model, there is only one fixed point (R=0 ,Q=0), which is not attracting.  
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As shown in Figure 2.1, the velocity gradients diverge in finite time along the constant 

discriminant line on (R,Q) phase plane. In case of LDM, the convergence of the velocity 

gradient depends on its initial value (Figure 2.2, Eτ =1). There exist two fixed points 

(R=0 ,Q=0) and (R=2/ Eτ
2, Q=-3/ Eτ

3) which are stable node (local attractor) and saddle 

(non-attractor) respectively. As pointed out by Martin et. al8, LDM is physical only for 

small to moderate values of the invariants (or velocity gradients) when the trajectory is 

attracted to (R=0 ,Q=0). The present LLDM has one fixed point (at R=0 ,Q=0) which is 

a stable node (global attractor). Results from the LLDM simulations are shown in Figure 

2.3. For the sake of comparison, the same initial values have been used as for restricted-

Euler model and LDM (Figures 2.1 and 2.2). As required, all the LLDM velocity 

gradient trajectories are attracted to the origin in (R,Q) phase plane irrespective of the 

initial conditions. The observed behavior can be readily explained by inspection of 

equation (2.21), (2.22) and (2.24). Any increase in ija  results in a rapid increase in the 

effective viscosity through an increase in Cij curbing further growth of velocity-gradients. 

This characteristic of LLDM is consistent with the Navier-Stokes physics in which a 

high value of velocity gradient is associated with a smaller relaxation time-scale causing 

the velocity gradient to remain bounded.  

 

2.4.3 Forced isotropic turbulence 

Behavior of invariants 

We will now compare the behavior of the LLDM in forced isotropic turbulence 

against DNS data. Figure 2.4 is a typical scatter plot of invariants R and Q obtained from 

DNS data. This figure shows that the invariants are concentrated near the origin of (R,Q) 

plane in significant numbers. This corresponds to purely sheared fluctuations. A 
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secondary tendency of turbulence is that invariants are densely distributed near the right 

branch of D=0 curve. Near this branch, the evolution of invariants is very slow 

suggesting that the right branch of the D=0 curve is an attracting manifold in (R,Q) 

phase space9. Figure 2.5 shows the (R,Q) steady-state scatter plot from a forced LLDM 

calculation. The velocity gradients corresponding to Figure 2.4 are used as initial values. 

For linearly forced LLDM, ijh  can be written as 

ij
s

L

pqpq
ij a

CC
h 






 −−=

ε
ε

τ
1

3
.       (2.34) 

From equation (2.8) and (2.9), we derive the evolution equation of the discriminant :  

D
CC

dt
dD s

L

pqpq 





 −−=

ε
ε

τ
1

3
6 .       (2.35) 

From this equation, we deduce the behavior of the forced LLDM in isotropic turbulence 

as follows. Initially, the system behaves like the restricted-Euler model. At steady state, 

ε converges to εs and D goes to zero. As a result, all particles cluster near D=0 branch. 

The clustering is more dense in the fourth quadrant of the (R,Q) plane because of the 

character of the non-linear term which is the dominant feature of the original restricted 

Euler equation. Thus, the current model results are consistent with those of DNS 

observation (Figure 2.5). The R and Q distributions do not even attain a statistically 

stationary state in restricted-Euler model and LDM calculation. For this reason, the 

original restricted-Euler model and LDM are quite unphysical making even simple 

comparison with DNS data virtually impossible. The LLDM must therefore be 

considered physically most accurate as it does yield a statistically stationary state that is 

reasonably close to DNS data.  For even better agreement, effect of anisotropic pressure 

Hessian must be accounted for. 
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Small-scale statistics 

The forced LLDM equation (2.28) is devised to yield any specified ε-PDF 

(probability density function) by suitably choosing the values of εs. However, behavior 

of the PDFs’ of other variables predicted by the model is not known. We will now 

compare the PDFs’ of the viscous diffusion terms of ija , ijs  and iω  obtained from 

forced LLDM with DNS results. The model results are shown in Figure 2.6. Comparison 

with the similar PDFs’ of DNS data presented in Ref. 7 (Figure 1) reveals that the 

LLDM captures all the qualitative features, especially near log-normality of the 

distributions quite well. The quantity that most accurately reflects the viscous action of 

the model is the conditional average of the viscous diffusion term. It is defined as 

YXX/Y ii∂∂∂ 2ν , where Y is any variable of interest. According to the LLDM, the 

conditional average of the viscous diffusion term is given by 

YYYY
CC

Y
XX

Y

EL

pqpq

ii ττ
ν 1

3

2

−=−≈
∂∂

∂     (2.36) 

where Y = ija , ijs  or iω . The conditional averages from forced LLDM calculation are 

shown in Figure 2.7. In this plot, the slope of the curve at a given value of the variable 

represents the inverse of conditional averaged Eulerian viscous relaxation time-scale. 

Referring to the plot of the same quantity calculated from DNS data (Ref.7, Figure 2), 

we can conclude that the LLDM reproduces the qualitative features of the conditional 

diffusion quite well and the quantitative aspects reasonably adequately. 

 

2.5 CONCLUSION 

In order to accurately describe velocity-gradient dynamics in a turbulent flow 

field, the restricted-Euler model must be augmented with adequate models for 
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anisotropic pressure Hessian and viscous effects. Of these two, accounting for the 

viscous effects is particularly important to prevent finite time divergence of the model 

equations. In this research, a new model - Lagrangian linear diffusion model (LLDM) - 

is proposed to account for viscous effects. Using Lagrangian reference frame analysis, a 

variable viscous relaxation time-scale model is derived. Consistent with Navier-Stokes 

physics, the viscous relaxation time-scale experienced by a fluid element depends on its 

deformation history. The model relaxation time-scale ranges from near-laminar values to 

Kolmogorov-scale value. A simple model for forcing model is also introduced for the 

purpose of clean comparison of the model results with forced isotropic turbulence DNS 

data. Analysis reveals that LLDM retains all the geometrical characteristics of the 

velocity gradient tensor inherent in the restricted-Euler model. Very importantly, RE-

LLDM equation (restricted-Euler equation with LLDM viscous model) does not diverge 

and, therefore, it can be used as a quantitative model for velocity gradient dynamics. The 

PDFs’ and conditional average of the viscous diffusion terms of various quantities -

ija , ijs  and iω - predicted by the model compare well with DNS data. It must be pointed 

out that similar comparison with previous models is not possible because the predicted 

velocity-gradients diverge in finite time.  
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Figure 2.1 Typical R-Q trajectory of the restricted-Euler model. Dotted line represents 
0427 32 =+= Q/RD . 
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Figure 2.2 Typical R-Q trajectory of the LDM. 
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Figure 2.3 Typical R-Q trajectory of the LLDM. 
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Figure 2.4 R-Q scatter plot of DNS result for isotropic turbulence with small wave-
number forcing ( λRe =90, Yeung14). 
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Figure 2.5 R-Q scatter plot of forced LLDM at nearly steady state. 
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Figure 2.6 Normalized probability density functions of viscous diffusion terms in forced 
LLDM. Variable= ( ) ( ) ( )LpqpqLpqpq /YCC//YCCY/Y τστνσν 3322 −−=∇∇ . 
σ  = standard deviation. Y = ija , ijs  or iω . 
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Figure 2.7 Plot of conditional average of viscous diffusion versus corresponding 
variables in forced LLDM. Conditional mean= ( )Y/YY 22 ∇∇ νσν , equation (2.36). Y 
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CHAPTER III 

 

PRESSURE-STRAIN CORRELATION IN HOMOGENEOUS 

ANISOTROPIC TURBULENCE SUBJECT TO RAPID STRAIN-

DOMINATED DISTORTION  

 

In this chapter, the second topic, “pressure-strain correlation in homogeneous 

anisotropic turbulence subject to rapid strain-dominated distortion” is investigated. For 

the better understanding of the physics of the pressure-strain correlation in strain-

dominated mean flows, rapid distortion calculations are performed with various 

anisotropic turbulence initial conditions. Based on the results of simulations, we infer 

important physical characteristics of the “rapid” pressure-strain correlationΦ(r)
ij in such 

flows: i) it vanishes when there is no production of anisotropy, ii) in the proximity of 

two-componential state it tends to decrease Reynolds stress anisotropy, and iii) its 

magnitude is generally smaller than that of production. The observed characteristics are 

proposed as criteria that pressure-strain correlation models may be required to satisfy. 

All of the current popular models violate the above criteria for a sizeable subset of 

anisotropic initial conditions. Reynolds stress transport model calculations show that 

unphysical and unrealizable model behavior can be directly attributed to these violations 

 

 

3.1 INTRODUCTION 

Accurate modeling of the pressure-strain correlation is one of the most important 

challenges in the second-moment turbulence closure model. In particular, the “rapid” 

portion of the pressure-strain correlation has been the subject of many analytical and 
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modeling studies. When turbulence is subjected to rapid distortion (RD), its evolution is 

simply described by so-called rapid-distortion theory (RDT). The RDT equation is linear 

in fluctuating velocity. In RD limit, the physics of rapid pressure-strain correlation can 

be studied in isolation because complicate effects of slow pressure-strain correlation and 

dissipation are absent.  Another important feature of this limit is that the fluid behaves as 

an elastic material rather than viscous medium. The stresses and other turbulence 

properties including the pressure-strain correlation depend on the total strain 

(deformation) experienced by the fluid element rather than the current strain rate.  

In homogeneous turbulence, the rapid pressure-strain correlation can be 

expressed as a function of the velocity spectrum tensor15. In RDT, which is a multi-point 

description of turbulence, the pressure-strain correlation appears in closed form as the 

velocity spectrum is fully known. To describe accurately the pressure-strain correlation 

at the one-point closure level, at a minimum two independent turbulence field tensors - 

componentality and dimensionality - are needed16,17. In the traditional second-moment 

closure approach, the Reynolds stress tensor contains the componentality information 

while dimensionality tensor is not known. Depending on the dimensionality tensor, the 

pressure-strain correlation takes a large range of values for a given combination of 

Reynolds stresses and the mean velocity field17. Thus, without the knowledge of the 

dimensionality tensor, the problem of the rapid pressure-strain correlation closure is not 

well-posed and the solution is not unique.  

The challenge of traditional one-point closure modeling is to select a single 

appropriate value for the pressure-strain correlation within the range of allowable values 

for the given Reynolds stress tensor. Given this limitation, no single one-point closure 

model can simulate the entire range of physics incumbent in the RDT equations.  This 

leads to the question, how can RDT solutions be used to improve one-point closure 
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models? The best that can be expected of any general traditional one-point closure 

model is that it embodies the most likely features of the RDT solutions: features that are 

common for the largest set of dimensionality tensors for a given Reynolds stress tensor. 

As a result, in one-point closure modeling, many of the pathological aspects of the RDT 

behavior will have to be excluded in favor of the dominant highly-probable features.  

In this research, we will address only those modeling issues that pertain to 

fundamental consistency with RDT physics and realizability matters. The focus is on 

physics of pressure-strain correlation in rapidly-distorted homogeneous anisotropic 

turbulence, where our understanding is relatively poor. Specifically, we study extreme 

cases of initial turbulence anisotropy: two-component (2C) and one-component (1C) 

turbulence, along with isotropic turbulence. This choice is motivated by the argument 

that if rapidly-distorted turbulence behavior can be well understood and modeled at the 

three extremes of the Lumley invariant triangle map18, the behavior at any arbitrary level 

of anisotropy can, perhaps, be inferred.  

Several types of strain-dominated rapid deformation - homogeneous shear (HS), 

plain strain (PS), axisymmetric contraction (AC), and axisymmetric expansion (AE) - 

are considered in this study.  Once some degree of understanding of the rapid pressure-

strain correlation physics is developed, we will attempt to formulate general guidelines 

to aid in future model developments. The model guidelines derived in the research are 

expressly for strain-dominated mean flows.  Rotation-dominated (elliptic) mean flows 

and flow in rotating frames will be examined in a separate study as the behavior of these 

flows in the RD limit significantly differs from that of strain-dominated flows. 

Girimaji19 demonstrates that coefficients in a rapid pressure-strain correlation model 

must depend upon the mean flow in order to accurately capture turbulence physics. 

Therefore, it is logical to postulate different guidelines for different mean flows.   
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The objectives of the present study are: i) to develop a better understanding of 

the pressure-strain correlation in highly anisotropic turbulence subject to rapid strain-

dominated distortion; ii) to assess model performance (physical consistency, 

realizability) by comparison with RDT data; iii) to seek physical principles and 

mathematical constraints, which can be used to guide development of better pressure-

strain correlation models in the RD limit for anisotropic turbulence; iv) to estimate 

bounds on the values of the pressure-strain correlation. 

 

3.1.1 Background 

Isotropic turbulence 

As a prelude to the study of initially anisotropic turbulence, we will briefly 

review the most prominent RDT result in initially isotropic turbulence. Simple analysis 

shows that pressure-strain correlation can be written in rapidly distorted isotropic 

turbulence as15: 
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In the above: Φ(r)
ij is the “rapid” part of the pressure-strain correlation; p(r) is the “rapid” 

part of the pressure fluctuation; Ui and ui are mean and fluctuating velocities 

components; k=〈uiui〉/2 is the turbulent kinetic energy; Pij is the production tensor; 

P=Pii/2; and δij is the Kronecker delta symbol. Equation (3.1) is called the Crow 
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constraint and its use in pressure-strain correlation modeling can be traced to Rotta20. 

Currently, coefficients in pressure-strain correlation models are chosen to satisfy (3.1) at 

the RD limit irrespective of the componentality or the dimensionality of turbulence. 

Although the result in equation (3.1) has long been known, it is not often 

recognized that the derivation tacitly assumes that both componentality and 

dimensionality tensors are isotropic. It is possible to fabricate a turbulent velocity field 

with an isotropic Reynolds stress (componentality) tensor but an anisotropic 

dimensionality tensor. Such a velocity field will not satisfy equation (3.1). Thus, even 

for flows with initially isotropic Reynolds stresses, the Crow constraint is more a 

modeling guideline than a rigorous mathematical constraint. Yet, this guideline has 

proved to be quite adequate for all dimensionality tensors provided the componentality 

tensor is reasonably close to isotropic.  

For initially anisotropic turbulence, a model based on the Crow constraint can 

yield completely unphysical results, as will be shown later. As rapidly-distorted 

anisotropic turbulence is of great practical interest, it is important to develop modeling 

guidelines similar to equation (3.1) for anisotropic turbulence. 

 

Anisotropic turbulence 

A review of previous anisotropic rapid-distortion studies is given in Hunt and 

Carruthers21. Sreenivasan and Narasimha22 and Maxey23 (and references therein) 

investigated the influence of various types of distortion and anisotropy levels on 

turbulence evolution. In their studies, only special cases of the initial energy spectrum 

tensor were considered. Various cases of three-component (3C) axisymmetric turbulence, 

with the Reynolds stress component along the axis of symmetry increasing from its 

isotropic value of 2/3k to the maximum allowed value of k, were studied. Maxey23 
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investigated, in some detail, the role of the pressure-strain correlation at the rapid 

distortion limit and the performance of the model of Launder et al.24 in the homogeneous 

shear flow. Hunt & Carruthers21 further pointed out that the asymptotic values of 

Reynolds stresses depend on the initial anisotropy level. An important conclusion from 

all these studies is that the level of initial anisotropy plays a crucial role in the 

subsequent turbulence evolution. However, these studies stop well short of developing 

general modeling constraints or guidelines in rapidly distorted anisotropic turbulence. 

Our first objective is similar to that of previous studies mentioned above. Then, 

we proceed further to characterize important physical features of pressure-strain 

correlation and establish new modeling guidelines in anisotropic turbulence. 

 

3.2 GOVERNING EQUATIONS 

The velocity fluctuation evolution equations in the RD limit are the following 

(see, e.g., Pope25) 
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Here, ii x/Ut/tD/D ∂∂+∂∂= .  The  equations  are written  in  Cartesian coordinates. In  

homogeneous  turbulence,  the velocity and the pressure fields can be written in terms of  

their Fourier components:  
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where, ( )tκr  is the wavenumber vector and ( )t,ûi κ
r  is the Fourier coefficient vector of 

the velocity fluctuation. Then, equation (3.2) transform to the evolution equations for the 

components of vectors )(tκr  and )(ˆ tur  
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   35 











−

∂
∂

−=
2

2ˆ
ˆ

κ

κκ
δ lj

jl
k

l
k

j

x
U

u
dt
ud

      (3.5) 

subject to the incompressibility condition: 

.0ˆ =iiu κ          (3.6) 

Cambon and Scott26 refer equations (3.4)-(3.5) as the Kelvin-Townsend equations. For 

given initial conditions, equations (3.4)-(3.6) can be solved directly. Then, the 

covariance of two Fourier coefficients 

( ) ( ) ( )t,ût,ût,R̂ j
*
iij κκκ rrr

=        (3.7) 

can be extracted from the data for each given )(tκr . Summation of (3.7) over all 

wavenumber vectors gives the Reynolds stress components in the physical space: 

( )t,R̂uu ijji κ
κ

r
r
∑= .                      (3.8) 

Another way to obtain ijR̂ and Reynolds stresses is to solve directly the evolution 

equation for the covariance of two Fourier coefficients of a given wavenumber vector  
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which is derived using equation (3.5). Details of the derivation can be found in Pope25 (p. 

412), for instance. Now, the continuity equation takes the following form 

( ) ( ) .R̂R̂ ijjiji 0== κκκκ
rr        (3.10) 

Equation (3.9) is a numerically more efficient alternative to equation (3.5) for 

calculating Reynolds stresses at the RD limit27 and, hence, has been adopted in this 

study. Summation of  (3.9)  over  all  )(tκ
r   yields  the  Reynolds  stress  evolution  

equation  in the RD limit: 
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where production Pij is given by 
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and the “rapid” pressure-strain correlation Φ(r)
ij  is 
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Thus, the RDT equations can be used directly to study the physics of production and 

pressure-strain redistribution processes.  

In the current study, RDT data are used to evaluate directly the accuracy of three 

popular models for the “rapid” part of the pressure-strain correlation - IP (isotropization-

of-production) model28, LRR model24, and SSG model29 - for several isotropic and 

anisotropic initial conditions. Only linear and quasi-linear models are chosen as non-

linear models violate one of the basic requirements of rapid pressure-strain correlation 

closure25. IP, LRR, and SSG models can be represented in the general form: 

( ) ( )
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In the above, bij denotes the anisotropy tensor and Wij is the mean rotation-rate 

(vorticity) tensor: 
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The  models  differ  only  in   the  value  of  coefficients,  which  are  given  in  Table 3.1. 

The  value  0.8  of  the  coefficient  C2
0  recommended  in  all  three models, comes from 
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constraint (3.1). 
 

3.3 CALCULATION PROCEDURE 

The RDT equations ((3.4), (3.9)-(3.10)) and modeled Reynolds stress evolution 

equation (3.11) are solved in a variety of homogeneous turbulent flows. Mean flows 

investigated here are homogeneous shear (HS) 
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and axisymmetric expansion (AE)  
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To describe clearly the initial condition, we introduce two quantities16,17 that 

characterize the velocity spectrum tensor: componentality (C) and dimensionality (D) of 

the turbulence field. These are scalars related to the corresponding tensors mentioned in 

the introduction. Componentality refers to the number of non-zero diagonal components 

in the initial Reynolds stress tensor. Dimensionality refers to the number of orthogonal 
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directions in which wavenumbers are permitted16. In the present research, turbulence 

dimensionality is always equal to three unless prohibited by incompressibility condition.  

In keeping with the main objective of the research, highly anisotropic as well as 

isotropic turbulent velocity fields are chosen as initial conditions. Anisotropic cases 

considered are: one-component (1C) and axisymmetric two-component (2C) turbulent 

states. Three kinds of 1C initial conditions are considered: 
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They are denoted as 1C1, 1C2, and 1C3 respectively. The three axisymmetric 2C initial 

conditions are 
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which are denoted as 2C1, 2C2, and 2C3 respectively. Isotropic condition is given by  

0=ijb , 321 ,,j,i = .        (3.15) 

Values of the anisotropy tensor given in (3.13)-(3.15) are used directly to solve modeled 

Reynolds stress evolution equation (3.11).  

To solve RDT equations (3.4), (3.9), and (3.10), initial turbulence fields with 

desirable properties should be generated. Since many different choices of the 

wavenumber vectors and the Fourier coefficients of the velocity fluctuation can yield the 

required anisotropy, the choice of the initial fields for these quantities must be made 
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carefully. As was mentioned in the introduction, it is important to choose an initial field 

that captures the features common to most, if not all, wavenumber distributions 

(dimensionalities). The clear choice, then, is uniform distributions of wavenumbers and 

velocity vectors within the range permitted by the initial Reynolds stress tensor. Thus, in 

the present study the following assumptions on the initial distributions of vectors 

( )0=tκr  and ( )0=t,û κrr  are made:  

a) Velocity fluctuations in all permissible directions are equally energetic. That is, 

Fourier coefficients of initial velocity fluctuations in all permissible directions have the 

equal magnitude. Whether Fourier coefficient vectors are permitted in a specific 

direction is determined from the initial turbulence componentality;  

b) For a given vector ( )0=tûr  all permissible wavenumber vector directions are equally 

probable. Permissible wavenumber vector directions are determined purely by 

incompressibility condition (3.6).  

Thus, the most general (unbiased) initial velocity field can be generated for the specified 

Reynolds stress tensor. For 1C turbulence, the initial vector ûr  is aligned along the 

corresponding unit vector. In 2C turbulence, initial vectors ûr  are uniformly distributed 

in a circle on the permissible plane. In 3C isotropic case, vectors ûr  are uniformly 

distributed on a sphere. The magnitudes of ûr  are such that the total initial turbulent 

kinetic energy is recovered. 

 For each vector ( )0=tûr , the corresponding wavenumber vectors ( )0=tκr  are 

determined from assumption (b) above. Because equation (3.9) does not depend on the 

magnitude of the wavenumber vector, but on its direction only, one can assume, without 

loss of the generality that all permissible wavenumber vectors are of equal magnitude 

initially. Thus, to generate initially isotropic turbulence, wavenumber vectors are 
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distributed evenly on the surface of a unit sphere. In 1C turbulence, vectors )(tκr are 

uniformly distributed in the unit circle lying in the plane normal to the initial vector ûr . 

In 2C turbulence, the generation of vectors κr  is explained below for the case of 2C3 

turbulence.  

In 2C3 turbulence initial vectors ûr  are equally distributed in the plane (1,2) (Fig. 

3.1). The corresponding wavenumber vector distribution is dictated by incompressibility 

condition (assumption b). Effectively, the full set of vectors κr  is divided into families, 

with each family having the same value of the projection of κr  on axis 3 (Fig. 3.1): 

)cos( 1
3 θθκκ dii += − , for Ni ,2=  and κκ =i

3 , for 1=i . Here, 1=κ , 01=θ , and 

)N(/d 12 −= πθ . All families carry equal amount of energy. Then, knowing the 

number of vectors κr  in each family, one can determine the energy associated with each 

vector κr  and ( )0=t,R̂ij κ
r . Vectors κr  in the cases of 2C2 turbulence and 2C1 turbulence 

are generated in the similar manner.  

A fourth-order Runge-Kutta scheme was used for time integration of all 

equations.  

 

3.4 RESULTS AND DISCUSSION 

Results from computations of RDT equations ((3.4), (3.9)-(3.10)) and modeled 

Reynolds stress evolution equation (3.11) are now presented. The mean flows, the initial 

conditions, and basic outcomes from the RDT and model calculations are given in Table 

3.2. The RDT calculations show evolution of anisotropy level in some cases (denoted by 

‘E’) and no evolution in others (‘N’). All isotropic turbulence cases evolve from their 

initial  states. Our  RDT  data  interrogation  focuses  on  the  role of  the  pressure-strain  

correlation,  especially its  relation  to  production. The  analysis  is  centered  around the 
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anisotropy evolution equation at the RD limit: 

( )( )r
ijij

ij ''P
kdt

db
Φ+=

2
1 ,        (3.16) 

where P″
ij(=Pij-2Pbij-2δijP/3) is the production of anisotropy. Also crucial in the analysis 

is the magnitude of anisotropy, which evolves according to 

( )( )ij
r

ijijij
ijij bb''P

kdt
bdb

Φ+=
2
1

2
1 .      (3.17) 

 We first investigate if a generalized form of constraint (3.1) is possible for an 

anisotropic flow, that is, if the pressure-strain correlation merely counteracts certain 

fraction of the production. In such a case, the pressure-strain correlation could have one 

of two forms: 

( )
ij

r
ij ''P∝Φ     or     ( ) ∝r

ijΦ 





 −=′ PPP ijijij δ

3
2 , 

where the proportionality coefficient in each expression could be a constant or a scalar 

invariant of the mean velocity gradient tensor. The simplest manner to verify the 

existence of such a linear relationship would be to compute the following ratios 

( ) ( )

ijij

r
ij

r
ij

''P''P
R

ΦΦ
=1  or 

( ) ( )

ijij

r
ij

r
ij

PP
R

′′
=

ΦΦ
2 .      (3.18) 

The first ratio R1 in (3.18) is, probably, more justified in anisotropic turbulence 

considering the form of anisotropy evolution equation (3.16) in the RD limit. In isotropic 

turbulence, when both componentality and dimensionality tensors are isotropic, we have 

36021 .RR ==  in accordance with (3.1). The RDT data confirm that the ratio R1 is 

indeed preferable to R2 because, at t=0 , R1 shows less variation for different initial flow 

conditions. Nevertheless, even the initial value of the ratio R1 changes from case to 

case: 11=R  for HS (1C2, 2C1) and 2501 .R =  for HS (2C2), PS (2C1, 2C2, 2C3), AE 

and AC (2C2, 2C3) flows. Further R1 and R2 change substantially with turbulence 
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evolution. Some examples of R1 evolution are shown in Fig. 3.2. In none of the cases 

considered, the ratio R1 (and R2) is equal to the isotropic value 0.36.  

One clear conclusion can be drawn from RDT data: the pressure-strain 

correlation does more than merely counteract the anisotropy production. In the absence 

of a unique relationship between the production and pressure-strain correlation, subtler 

connections are now investigated. One of the main features of the pressure-strain 

correlation is its redistributive nature. The fact that the pressure-strain correlation 

termΦ(r)
ij is traceless reveals that it does not alter the total energy. It is generally 

believed that the pressure-strain correlation removes energy from high-energy 

components and enhances lower-energy components. In contrast, the production process 

is believed to increase anisotropy by injecting energy into selected components of the 

Reynolds stress tensor.  The specific issues investigated are the following. 

1) Can there be redistribution without production? That is, what happens toΦ(r)
ij, when 

P″
ij =0.  

2) Does the “rapid” pressure-strain correlation always extract energy from high-energy 

components and deposit it into low-energy ones? This can be answered by monitoring 

the sign of Φ(r)
ijbij (refer to equation (3.17)). 

3) Can more energy be redistributed than produced in the first place? That is, can the R1 

(or R2) value be greater than unity. 

 

3.4.1 RDT results 

Non-evolving cases 

The RDT  calculations demonstrate that  in  some cases  (denoted by ‘N’ in Table  

3.2) turbulence anisotropy does not change from its initial level. In other words, the term 

dbij/dt on  the  left  side  of  equation (3.16)  is  equal to zero  for each component of  the 
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anisotropy tensor bij. It is straightforward to show (see the Appendix A) that in such 

cases all components of the production term P″
ij  are exactly equal to zero. It follows 

then from equation (3.16), that the pressure-strain tensor components should also be 

equal to zero. Thus, if P″
ij =0, then Φ(r)

ij=0. In order to confirm this, we examine the 

second invariant of tensors P″
ij and Φ(r)

ij, i.e., P″
ijP″

ij andΦ(r)
ijΦ(r)

ij. The second invariant 

contains information about all tensor components. If all individual components of the 

tensor are equal to zero, so is the invariant. The RDT calculations show that when the 

invariant P″
ijP″

ij is equal to zero, thenΦ(r)
ijΦ(r)

ij is also equal to zero. Note that in these 

cases, Pij  or P″
ij  need not vanish.  

 

Evolving cases 

Cases in which the RDT predicts turbulence anisotropy evolution are denoted by 

‘E’ in Table 3.2. If the pressure-strain correlation decreases anisotropy and the 

production term increases its level, then Φ(r)
ijbij in (3.17) should be negative, and P″

ijbij  

should be positive. The computed RDT values of P″
ijbij and Φ(r)

ijbij in some 

representative cases are plotted in Fig. 3.3. The P″
ijbij evolution is shown with a solid 

line (without symbols), while the Φ(r)
ijbij evolution is represented by dashed line 

(without symbols). It is clearly seen that P″
ijbij  is always positive as expected, while 

Φ(r)
ijbij is predominantly negative (again as expected). In one case (Fig. 3.3e) Φ(r)

ijbij 

assumes small positive values at latter stages of simulation. Although instances of 

positive Φ(r)
ijbij are observed, in the proximity of 2C limit (initial stages of evolution) 

Φ(r)
ijbij is always negative. This implies that the pressure-strain correlation 

predominantly reduces the Reynolds stress anisotropy at this limit. 

The  RDT  data  demonstrate  that  the  magnitude of  R1  and R2  initially  never 
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exceeds unity. Some results are shown in Fig. 3.2. In few cases, for example in AE 

(2C2) flow (Fig. 3.2b), R1 exceeds unity at long times. The conclusion then is that the 

magnitude of the redistribution does not, in general, exceed that of the production. 

For strain-dominated mean flows, RDT results imply that the most likely 

behavior of the pressure-strain correlation is as follows (irrespective of the initial 

anisotropy): 

1) ( ) 0=r
ijΦ , when 0=ij''P ; 

2) ( ) 0≤ij
r

ij bΦ  in the proximity of 2C turbulence. 

3)  R1 and R2 1≤ . 

In the rapid distortion limit, it would be reasonable to expect the models to display the 

same trends as RDT. We propose the first of the above characteristics of RDT as a 

rigorous mathematical constraint that a rapid pressure-strain correlation model must 

satisfy. We suggest the other two RDT characteristics as guidelines, the model violation 

of which should be minimized. Lacking dimensionality tensor information, one-point 

closures may not be able to capture the observed exceptions to criteria two and three. 

The model values of Φ(r)
ijbij, R1, and R2 must be scrutinized closely in the event of 

undesirable model behavior. Two categories of undesirable model behavior we 

investigate are: inconsistency with turbulence (RDT) physics and unrealizable evolution 

trajectories.  

Inconsistency.  If a turbulence model predicts evolution of Reynolds stress anisotropy 

when RDT indicates no evolution, the model is labeled as being inconsistent with 

turbulence physics.  In Table 3.2,  when  a model  shows evolution (denoted as ‘ER’ and  

‘EU’),  but  the RDT does not  (‘N’), we have inconsistency.  For the first time, we  pose 

consistency as a modeling constraint. 
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Unrealizability. As is common practice, a model is labeled as unrealizable, if it produces 

negative diagonal components of the Reynolds stress tensor (in the principal 

coordinates). In such a case, a model evolution trajectory passes from the realizable 

region (inside Lumley triangle) to the unrealizable area (outside Lumley triangle). The 

model evolution trajectories are tracked on the (ξ, η) invariant plane: where the 

invariants are defined by 6η2=bijbji and 6ξ3=bijbjkbki. To assess realizability violation, the 

outline of the Lumley invariant triangle is also shown. A trajectory is deemed 

unrealizable when it crosses the boundary of the Lumley triangle. In all cases identified 

with ‘EU’ (in Table 3.2), the model behavior is unrealizable. 

 

3.4.2 Model calculations 

Three models for the “rapid” part of the pressure-strain correlation (IP, LRR, and 

SSG) are now compared with the RDT data. The most fundamental aspects of the model 

calculations are tabulated in Table 3.2. In the table, ‘ER’ stands for an evolving 

realizable trajectory and ‘EU’ denotes an evolving unrealizable solution. The table 

demonstrates that in many cases models yield evolution of turbulence anisotropy when 

the RDT clearly shows no evolution. In other cases, when the RDT shows evolution, 

model behavior is unrealizable.  We will now compare model calculations with RDT 

data and try to explain the physical failing underlying inconsistent and unrealizable 

model behavior. In particular, the connection between the violations and the proposed 

modeling guidelines will be sought.  

 

Non-evolving cases  

 We discuss in detail, at first, the results from four cases: AC(1C2), AE(1C2), 

HS(1C1), and PS(1C1). The cases are identified by the mean flow and the initial 
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turbulence anisotropy (in parentheses). In these cases, RDT calculations show no 

evolution, as is seen from Table 3.2. Thus, bij(t)= bij(0), P″
ijbij =0 and Φ(r)

ijbij =0. Models, 

however, demonstrate various behavior patterns including inconsistent and unrealizable 

evolution.  

Case AC (1C2). All models predict spurious evolution in this case, but evolution 

trajectories stay inside the Lumley triangle (Fig. 3.4a). Thus, all three models considered 

predict inconsistent, but realizable behavior. To understand the origin of poor model 

behavior,  we  now  examine  the  ratio  R1  (Fig. 3.4b)  and   the  invariants P″
ijbij  and  

Φ(r)
ijbij (Fig. 3.4c). The initial value of Φ(r)

ijΦ(r)
ij  implied by each model is non-zero, 

while the P″
ijP″

ij  value is equal to zero as can be seen from R1→∞ at 0=t  (Fig. 3.4b). 

Non-zero model Φ(r)
ij, then, causes the model trajectory to evolve. In RDT calculations, 

both Φ(r)
ij  and P″

ij are equal to zero resulting in no evolution. From Fig. 3.4(c), it is seen,  

that for each model, P″
ijbij is  positive  and  Φ(r)

ijbij   is negative.  To summarize, all 

models violate criteria 1 and 3, and not criterion 2 in this case. 

Case HS (1C1).  The  IP model predicts no  anisotropy  evolution  in agreement with  the 

RDT. In both cases - IP-model and RDT calculations - initial values of Φ(r)
ij and P″

ij are 

equal to zero. Results from LRR and SSG models are shown in Fig. 3.5. The LRR model 

shows inconsistent and unrealizable behavior. The SSG model predictions are 

inconsistent, but realizable (Fig. 3.5a). From Fig. 3.5(b) it is clear that both models 

violate criteria 1 and 3. As regards criterion 2, the SSG model does not (Fig. 3.5c). 

Case PS (1C1). In this case all models exhibit inconsistent and unrealizable behavior 

(Fig. 3.6a). All three models violate all three criteria (Figs. 3.6b and c). 

Case AE (1C2). Again,  all  models predict inconsistent  and  unrealizable behavior  

(Fig.3.7a), and all three criteria are violated (Figs. 3.7b and c). The SSG model further 



   47 

predicts that production tends to reduce anisotropy (P″
ijbij < 0), which is completely 

inconsistent with the RDT and turbulence physics. 

 

Evolving cases 

Now we consider cases where the RDT shows evolution of initial turbulence 

anisotropy (see Table 3.2).  In all these cases, all three models show anisotropy 

evolution also. In this sense their behavior is consistent with the RDT. When a model 

predicts consistent and realizable behavior, no criterion violation is observed. Some 

examples are shown in Figs. 3.3 (a-c) for criterion 2 and in Figs. 3.2(a) and (b) for 

criterion 3. Results for all cases studied are summarized in Table 3.3. In many cases, the 

model evolution is unrealizable. As examples, cases AC (2C2) and PS (2C2) will be 

discussed in detail. Case AC (2C2). The RDT trajectory starts from the 2C-axisymmetric 

turbulence corner of the Lumley triangle and evolves towards the 1C turbulence corner 

(Fig. 3.8a). All three model trajectories initially exit the Lumley triangle, but later 

recover and re-enter the realizability zone (Fig. 3.8a). The model prediction after the 

first trajectory exit from the Lumley triangle is irrelevant and, therefore, the model 

behavior must be deemed unrealizable. The reason for the violation can be seen in Fig. 

3.3(d). The value of Φ(r)
ijbij  predicted by each model is initially positive leading to an 

increase of anisotropy level. At  later times, the Φ(r)
ijbij values become  negative  as  the  

Reynolds stresses recover  to  realizable values. The  RDT value of Φ(r)
ijbij is always 

negative. Criterion 2 is violated, but not criterion 3 (Fig. 3.2c). 

 Case PS (2C2). The RDT trajectory is similar to the AC(2C2) case (Fig. 3.8b). All 

models are again unrealizable (Fig. 3.8b). The degree of violation in this case is much 

larger and there is no recovery to realizable values. The explanation is again found by 

investigating the behavior of Φ(r)
ijbij  presented in (Fig. 3.3e). The model values of 
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Φ(r)
ijbij  are positive and substantially larger than in the previous case making recovery to 

realizable values difficult. The RDT values are, again, always negative. Criterion 3 is not 

violated (Fig. 3.2d). 

All the calculated results are summarized in Table 3.3. In the table, ‘C1’, ‘C2’, 

and ‘C3’ represent  three criteria. Violation of a criterion is denoted by ‘V’ and non-

violation is shown by ‘N’. Two other columns recording consistency and realizability 

are added in Table 3.3 to clearly demonstrate the connection between undesirable 

behavior and criteria violation. In these two columns, again ‘V’ indicates violation of 

consistency/realizability and ‘N’ shows non-violation. The connection between 

undesirable model behavior and modeling guideline violation is evident. Violations of 

criteria 1 and 3 are associated with spurious evolution and inconsistent model  behavior.  

Violations of criterion 2 and realizability condition are correlated.  

Implications of the RDT and model calculations are now summarized. 

1) Without exceptions, the RDT data indicates that Φ(r)
ij=0, when P″

ij =0. Inconsistent 

model behavior is imminent when Φ(r)
ij is non-zero as P″

ij  vanishes. Therefore, criterion 

1 is a mathematical constraint that a model must be mandated to satisfy. Another 

important inference is that for this combination of Reynolds stresses and mean velocity 

gradients, the “rapid” pressure-strain correlation assumes an unique value, which is zero. 

2) From the results in this section, it is clear that Φ(r)
ijbij  being positive (in the 

proximity of 2C turbulence) is not a desirable feature in a model, since all observed 

realizability violations are associated with such behavior. In all these cases, the RDT 

values of Φ(r)
ijbij  are negative in 2C limit. The underlying physics is now explained. 

When Φ(r)
ijbij  is positive, the model extracts energy from low-energy components and 

deposits it into high-energy components. This action continues even when the low-

energy component is completely depleted, driving that component into negative values. 
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Mathematically, this is much like counter-gradient transport, which almost always has a 

destabilizing influence. While the RDT data does permit this destabilizing energy 

transfer in some instances, physics incumbent in the RDT equations ensures a delicate 

balance between production and redistributive processes leading to realizable behavior. 

It remains to be seen if single-point closure models can be developed to replicate this 

delicate balance. Until this issue is addressed satisfactorily, criterion 2 must be 

considered as an important constraint that a one-point closure model should satisfy in the 

proximity of 2C turbulence to avoid the risk of unrealizable behavior. Motivated by 

these findings, Sambasivam30 investigated the realizability violations in turbulence 

calculations using various linear and non-linear rapid pressure-strain models. Complete 

model calculations (including slow pressure-strain correlation and dissipation terms) 

starting from initial conditions spanning the entire Lumley triangle, were performed for 

different types of homogenous turbulence. It was found that every single episode of 

realizability violation was accompanied by Φ(r)
ijbij being positive. While not all instances 

of Φ(r)
ijbij in the interior led to unrealizable trajectories, every unrealizable trajectory did 

exhibit positive Φ(r)
ijbij. Every trajectory that exhibited Φ(r)

ijbij  at the 2C turbulence limit, 

did become unrealizable. To a large extent, this finding validates the importance of the 

proposed modeling guideline. 

Much like criterion 2, criterion 3 appears to be physically reasonable in the 

proximity of 2C turbulence. This criterion also suggests approximate bounds on the 

pressure-strain correlation magnitude: 0 ≤ Φ(r)
ijΦ(r)

ij ≤  P″
ijP″

ij. Thus, the larger the 

anisotropy production, the wider is the range of values that the correlation can take. The 

margin of error incurred in pressure-strain correlation modeling is therefore likely to 

increase with increasing anisotropy production, even with the most accurate models. 
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3.5 CONCLUSION 

In the rapid distortion limit, turbulence evolution depends on various factors: 

type of anisotropy, degree of anisotropy, velocity spectrum tensor, and the imposed 

mean-flow deformation. Consequently, the pressure-strain correlation term will also 

depend on these parameters, especially the so-called dimensionality tensor. While the 

behavior of the pressure-strain correlation can be quite complex and not easily 

generalized in anisotropic turbulence, certain physical features can be identified as being 

common for  a  

variety of dimensionality tensors. The RDT calculations performed in this research show 

that in mean strain-dominated flows the dynamics of turbulence is such that: 

1) ( ) 0=r
ijΦ , when 0=ij''P .  

2)  ( ) 0≤ij
r

ij bΦ  in the proximity of 2C turbulence. 

3) 0 ≤ ( ) ( )r
ij

r
ij ΦΦ ≤ ijij ''P''P  in the proximity of 2C turbulence.  

It is proposed that criterion 1 be used as a rigorous mathematical constraint and the other 

two as guidelines for developing “rapid” pressure-strain correlation models. 

 Reynolds stress transport model calculations performed at the rapid distortion 

limit display unphysical (inconsistent) and unrealizable behavior for some initial 

turbulence anisotropies and mean flows. Inconsistent behavior refers to spurious 

evolution predicted by a model when the RDT indicates no change in anisotropy from its 

initial level. Clearly, in a full-turbulence equation set, there may be evolution from an 

anisotropic initial state, but this evolution must be initiated by “slow” pressure-strain 

correlation or dissipation terms. 

 Close examination of the RSTM results reveal that both unrealizable and 

inconsistent model behavior can be directly related in the investigated cases to violations 



   51 

of the guidelines proposed. Inconsistent behavior occurs when the model pressure-strain 

correlation does not vanish as the production of anisotropy goes to zero. Unrealizable 

model behavior is observed when the model pressure-strain correlation unphysically 

attempts to increase anisotropy rather than diminish it at the 2C turbulence state.  

The results and analysis presented in this research should aid in better 

understanding the role of the pressure-strain correlation in turbulence and hence, enable 

us to develop improved models for this term. Similar examination of mean rotation-

dominated flows will be undertaken in the future. 
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Table 3.1 Model coefficients for expression (3.12) 

 LRR-IP LRR-QI SSG 

1
1C  0 0 1.8 
0
2C  0.8 0.8 0.8 
1
2C  0 0 1.3 

3C  1.2 1.75 1.25 

4C  1.2 1.31 0.4 
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Table 3.2 Summary of RDT and IP, LRR, SSG model calculation results. Notations: (E) 
evolving trajectory; (N) no evolving; (U) unrealizable evolution; (R) realizable evolution. 
1C3 (AC, AE) case is equivalent to 1C2 (AC, AE); and 2C3 (AC, AE) case is equivalent 
to 2C2 (AC, AE). 

 
Solution trajectories 

Model 
Initial 

condition
s 

Flow 
RDT 

IP LRR SSG 
AC N EU EU EU 
AE N ER ER ER 
PS N EU EU EU 

1C1 

HS N N EU ER 
AC N ER ER ER 
AE N EU EU EU 
PS N ER ER ER 

1C2 

HS E ER ER ER 
PS N N EU EU 1C3 
HS N N EU EU 
AC N ER ER ER 
AE N EU EU EU 
PS E ER ER ER 

 
2C1 

 
HS E ER ER ER 
AC E EU EU EU 
AE E ER ER ER 
PS E EU EU EU 

2C2 

HS N N ER ER 
PS E ER ER ER 2C3 
HS E ER ER ER 
AC E ER ER ER 
AE E ER ER ER 
PS E ER ER ER 

isotropic 

HS E ER ER ER 
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Table 3.3 IP, LRR, SSG model behavior assessment in RD limit. Notations: (C1) 
criterion 1; (C2) criterion 2; (C2) criterion 3 (C3); (N) non-violation; (V) violation. 
 

Mean 
flow 

Anisotropy 
condition Model Realizability 

 
Consistency 

 
C1 C2 C3 

IP V V V V V 
LRR V V V V V 1C1 
SSG V V V V V 
IP N V V N V 

LRR N V V N V 1C2 
SSG N V V N V 
IP N V V N V 

LRR N V V N V 2C1 
SSG N V V N V 
IP V N N V N 

LRR V N N V N 

AC 

 
2C2 

SSG V N N V N 
IP N V V N V 

LRR N V V N V 1C1 
SSG N V V N V 
IP V V V V V 

LRR V V V V V 1C2 
SSG V V V V V 
IP V V V V V 

LRR V V V V V 

AE 

2C1 
SSG V V V V V 
IP V V V V V 

LRR V V V V V 1C1 
SSG V V V V V 
IP N V V N V 

LRR N V V N V 1C2 
SSG N V V N V 
LRR V V V V V 1C3 
SSG V V V V V 
IP V N N V N 

LRR V N N V N 

PS 

 
2C2 

SSG V N N V N 
LRR V V V V V 1C1 
SSG N V V N V 
LRR V V V V V 1C3 
SSG V V V V V 
LRR N V V N V 

HS 

2C2 
SSG N V V N V 
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Figure 3.1 Coordinate scheme for the 2C3 initial turbulence state.
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Figure 3.2 Evolution of the ratio R1 for various cases, a) HS (1C2), b) AE (2C2), c) AC 
(2C2), d) PS (2C2). Notations : () RDT, ( ) IP, ( ) LRR, ( ) SSG. 
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Figure 3.3 Evolution of P”

ijbij and Φ(r)
ijbij, a) PS (isotropic), b) HS (1C2), c) AE (2C2), 

d) AC (2C2), e) PS (2C2). Notations: for P”
ijbij, () RDT, ( ) IP, ( ) LRR, 

( ) SSG; for Φ(r)
ijbij , (- -) RDT, ( --) IP, ( --) LRR, ( --) SSG. 
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Figure 3.4 AC flow with 1C2 initial turbulence state: a) Lumley triangle, b) evolution of 
the R1 parameter, c) evolution of invariants P”

ijbij and Φ(r)
ijbij. The black dots (•) denote 

the corners of Lumley triangle corresponding to isotropic, 2C, and 1C conditions. Other 
notations are the same as in Figs. 3.2 and 3.3.  
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Figure 3.5 HS flow with 1C1 initial turbulence state: a) Lumley triangle, b) evolution of 
the R1 parameter, c) evolution of invariants P”

ijbij and Φ(r)
ijbij. Notations are the same as 

in Figs. 3.4. 
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Figure 3.6 PS flow with 1C1 initial turbulence state: a) Lumley triangle, b) evolution of 
the R1 parameter, c) evolution of invariants P”

ijbij and Φ(r)
ijbij. Notations are the same as 

in Figs. 3.4. 
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Figure 3.7 AE flow with 1C2 initial turbulence state: a) Lumley triangle, b) evolution of 
the R1 parameter, c) evolution of invariants P”

ijbij and Φ(r)
ijbij. Notations are the same as 

in Figs. 3.4. 
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Figure 3.8 Solution trajectories in the Lumley triangle, a) AC (2C2 and isotropic), b) PS 
(2C2 and isotropic). Notations : () RDT, ( ) IP model, ( ) LRR model, ( ) SSG 
model for initially anisotropic turbulence. The corners of Lumley triangle are marked 
with  (•). 
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CHAPTER IV 

 

UNSTEADY COMPUTATION OF TURBULENT FLOW PAST A 

SQUARE CYLINDER USING PARTIALLY-AVERAGED  

NAVIER-STOKES (PANS) METHOD 

 

In this chapter, the final topic, “unsteady computation of turbulent flow past a 

square cylinder using Partially-Averaged Navier-Stokes (PANS) method” is covered. 

The PANS method – a bridging model between Reynolds Averaged Navier-Stokes 

(RANS) method and Large eddy Simulation (LES) – is used to calculate the flow past a 

square cylinder. PANS calculations are performed at various levels of physical 

resolution, and the solutions are compared with experimental data and LES computation. 

The result shows that more and more flow features are captured as the physical 

resolution improves with decreasing fk (PANS resolution control parameter). Overall, all 

results compared – Strouhal number (St), mean/RMS drag coefficient (CD), RMS lift 

coefficient (CL) and mean/fluctuating velocity field data at various locations – 

monotonically go from RANS to the experimental results with increasing scale 

resolution. PANS method appears capable of capturing many important unsteady flow 

features at an affordable computational effort. 

 

 

4.1 INTRODUCTION 

Flow past a bluff body is of practical importance in many engineering 

applications. In this flow, boundary layer, shear layer, and wake flow exist at the same 

time and interact with each other to generate very complicated flow features such as 



   64 

separation, reattachment, recirculation, unsteady vortex shedding, three-dimensional 

flow features, and so on. Vortex shedding induces a pulsating pressure field that leads to 

time-dependant loading on bluff body and generation of acoustic noise over the entire 

flow field. Clear understanding of these phenomena is important for addressing 

structural and environmental issues.  

The flow past a square cylinder is an idealized bluff-body problem that has been 

subject to a great deal of experimental and computational investigations. Accurate 

calculation of this unsteady turbulent flow requires resolving large unsteady scales of 

motion to some extent. The traditional Reynolds averaged Navier-Stokes (RANS) type 

statistical models are not suitable for this application because not only small-scale 

turbulent motions but also the geometry-dependant large eddy motions are modeled. 

Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are physically 

appropriate tools for the calculation of unsteady turbulent flows. Recently, the flow past 

a square cylinder has served as a benchmark for testing various sub-grid scale 

models31,32,33. However, because of the overwhelming requirement of computing power, 

LES and DNS are still not practical tools for engineering applications. As a compromise, 

several strategies for combining the best feature of RANS method and LES are being 

developed34~37.  

Recently, Girimaji38 proposed partially-averaged Navier-Stokes (PANS) method 

– a bridging model between RANS method and LES – which is based on the averaging-

invariant property39 of the Navier-Stokes equation. In this research, we solve the flow 

past a square cylinder problem using PANS method and perform a detailed comparison 

with existing experimental and LES data.  

As widely accepted, the RANS models are the most sophisticated one-

point closures. In these closures, complicated physics such as curvature and 
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rotation can be accurately modeled and different physical processes like return to 

isotropy, dissipation, and production can be accounted for appropriately. 

Furthermore, important issues such as realizability and consistency with various 

limiting cases of physics can be incorporated accurately. According to Girimaji38, 

the failure of the classical RANS method in solving unsteady turbulent flow (so-

called URANS approach) is due to its incorrect adaptation rather than inherent 

model deficiency. The PANS method rectifies the incorrect adaptation in RANS 

for resolving large unsteady fluctuations by introducing partial averaging concept.  

The extent of partial averaging is determined implicitly by pre-specified fraction 

of unresolved turbulent energy (fk) and unresolved dissipation rate (fε). These two 

parameters actively control the physical resolution of the computation. The PANS 

model, subject to minor assumptions, is a formal cutoff wave-number sensitive 

adaptation of the existing RANS models.  

The PANS method entails the computation of evolution equation for 

resolved field along with a two-equation closure model for the sub-filter stresses. 

The sub-filter stress is the generalized second order central moment39 that is 

modeled using Bossinesq approximation. Evolution equations for sub-filter 

kinetic energy and dissipation rate are solved to complete the model closure. 

The organization of this chapter is as follows: we will present the PANS 

model equations followed by the details of the computation of the flow past a 

square cylinder. The calculation results and discussion are presented next and a 

summary/conclusion will be given at the end. 

 

4.2 PANS MODEL EQUATIONS 

The incompressible Navier-Stokes equations is 
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Consider a general filtering operation that is linear and constant preserving39. The 

instantaneous velocity field is decomposed into resolved velocity field (Ui) and 

unresolved velocity field (ui) : 

iii uUV += , where ii VU = .      (4.2) 

The angular bracket represents a general filtering (or averaging) operator that commutes 

with time and space differentiation. The resolved velocity field is loosely identified as 

the velocity associated with non-universal large-scale structure that is calculated fully 

and the unresolved velocity field is taken to be the background turbulent field. Each 

velocity field satisfies continuity condition such that  
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For this arbitrary filtering process, the average of unresolved velocity and the correlation 

between resolved and unresolved velocities are non-zero39,  

00 ≠≠ jii uU,u .        (4.4) 

We consider the generalized central moments39 ( )g,fτ  and ( )h,g,fτ  defined by 

( ) gffgg,f −=τ ,       (4.5) 

( ) ( ) ( ) ( ) hgfg,fhh,fgh,gffghh,g,f −−−−= ττττ .  (4.6) 

Then, from the equations (4.1) to (4.6), the evolution equations of the resolved velocity 

and the generalized second moment (sub-filer stress) can be written as 
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The evolution equation for the unresolved turbulent kinetic energy, 

( )iiu V,VK τ
2
1

= ,        (4.10) 

comes directly from the contraction of equation (4.8) : 
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Pu and εu are the production and dissipation rate of unresolved turbulent kinetic energy : 
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As pointed out by Germano39, the evolution equations of the generalized central 

moments of any order are invariant to the type of filter operation. If the averaging range 

is expanded to integral length scale (represented by over-bar), equation (4.7) and (4.8) 

become RANS equation ( iii VUV == ). By replacing the averaging process with a 

typical filter operator ( ( )iii VLUV == , L  is the filter operator), equation (4.7) and 

(4.8) become the governing equations for LES. 

In PANS method, there is no such an explicit relationship between resolved and 

instantaneous velocity because the averaging is implicit in nature. The extent of the 

partial averaging – equivalently, the physical resolution – in PANS is determined by two 
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control parameters: the ratio of the unresolved kinetic energy to the total fluctuating 

kinetic energy (fk =Ku/K) and the ratio of the unresolved dissipation rate to the total 

fluctuating dissipation rate (fε =εu/ε). The total fluctuating kinetic energy (K) and the 

total fluctuating dissipation rate (ε ) are defined as  

 ( )( )iiii VVVVK −−=
2
1 ;   

( ) ( )
j

ii

j

ii

x
VV

x
VV

∂
−∂

∂
−∂

=νε .   (4.13) 

Rather than a pre-determined cutoff as in LES, the PANS cutoff wave-number varies 

according to the pre-specified fk value. By suitably choosing fk and fε, implied cut-off can 

be placed any part of energy spectrum including dissipation range.  

The roles of fk and fε can be understood in following way. When the Reynolds 

number is high enough, most of the dissipation occurs in the smallest scales of motion. If 

the implied cutoff is in the inertial range, it is reasonable to expect that fε is unity. This 

means all of dissipation rate is modeled. The different settings of the fk value actively 

control the resolution of the flow motion. Setting fk equal to unity means all fluctuating 

motion is modeled. In this case, PANS reverts back to standard K-ε model. The smaller 

the fk value, the larger the number of scales of motions captured by solving the resolved 

velocity field. The appropriate value for fk will depend on physical resolution 

requirement and the flow field on consideration. The limiting case of fk = fε = 0 

corresponds to DNS. 

To solve the resolved field equation, a constitutive relation between unresolved 

field stress and the resolved flow field is needed. It is reasonable to argue that the 

background turbulence is ’universal’ enough to be represented by one-point turbulence 

closure. We will adopt the Bossinesq approximation in the PANS closures : 
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Starting from the standard K-ε equations and invoking the averaging-invariance property, 

Girimaji38 derived the evolution equation for Ku and εu :  
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The constants σk, σε, Cε1, and Cε2 are those of the standard K-ε model.  

The basic PANS model rationale can be understood by comparing the eddy 

viscosity of the unresolved scales (νu) and that of total fluctuations or RANS (νT = 

CµK2/ε). If the implied cut-off wave-number is in the range that is smaller than that of 

energy-containing scale or in the inertial range, then 
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If the PANS model can produce unresolved kinetic energy and unresolved dissipation 

rate satisfying the conditions 

KKu <  and εε =u ,        (4.17) 

the eddy viscosity value of the PANS will be much smaller than that of RANS and 

PANS model can resolve more scales of motion than RANS model.  

In summary, equations (4.3), (4.7), (4.14), and (4.15) combine to form the PANS 

model. The model equations are basically in the same form as the standard K-ε model. 

The primary differences are in the model coefficients. This means that existing  CFD 

codes  with  with  standard  K-ε  models  can  be  easily converted into PANS  code with 
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minor changes. 

 

4.3 COMPUTATION 

For comprehensive comparison with the existing data33,40~45, the PANS model 

calculation is performed at Re=UoD/ν=22,000 (D : cylinder edge length). The fε value is 

set to unity in all calculations. To assess the capability of resolution control of the PANS 

model, various values of fk (=1.0, 0.7 and 0.4) that cover the range of RANS to LES are 

chosen. The Cartesian coordinate system has been used in describing the flow field. The 

square cylinder is aligned in z(spanwise)-direction and inlet flow is set in x(streamwise)-

direction. The computational domain and dimensions are shown in figure 4.1. A total 18 

cells have been imposed along the cylinder edge. Uniform grid is used in span-wise 

direction. The simulation conditions and geometry are tabulated in table 4.1. In order to 

isolate the effect of the model from grid resolution, all the cases are computed on the 

same 3-dimensional grid. It must be pointed out that both fk =1.0 and 0.7 case can be 

computed on much coarser grids. In fact, fk =1.0 (RANS) case requires only a 2-

dimensional grid. However, for smaller fk values, more scales of motions are captured 

and a full 3-dimensional calculation is needed. 

For the flow simulation, FLUENT – a commercial CFD program – has been 

used with appropriate change in model equation of unresolved kinetic energy and 

unresolved dissipation rate according to equation (4.15). Time marching has been 

performed with constant time step (∆t=0.025). Standard inflow and outflow boundary 

conditions are used at inlet and outlet. The log-law wall function is used at the wall 

boundary of cylinder. This means that fk is set to unity at the wall adjacent cells for every 

case as is typical of detached eddy simulation (DES). The lateral (y-direction) 

boundaries are also subject to wall boundary condition to make the simulation 
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comparison with experimental data more accurate (H=14D is the exactly the same value 

as Lyn’s experiment45). For the boundary condition of the unresolved turbulent 

quantities at inlet, turbulence intensity is set to 2%. The ratio of unresolved eddy 

viscosity to molecular viscosity is set to a typical value48 of 10, from which inlet 

unresolved dissipation rate is calculated. Periodic boundary condition is imposed in the 

span-wise direction. 

After each flow is fully developed, the data are gathered to calculate flow 

statistics. The instantaneous resolved quantity is decomposed into time-spanwise 

ensemble averaged quantity and fluctuating quantity (e.g., Ui(t) = (Ui)mean+u’). All of the 

data plots are based on this decomposition. 

 

4.4 RESULTS AND DISCUSSION 

Apart from integrated flow parameters data – Strouhal number (St), drag 

coefficient (CD), and lift coefficient (CL) –, near wake mean and fluctuating velocity 

field data are also calculated and compared with experiment and LES. For the statistical 

data, about ten shedding cycles of instantaneous data are used for fk = 1.0 and 0.7 cases. 

In these two cases, the flow field shows nearly regular shedding pattern and ten 10 

shedding cycles are adequate for computing statistics. In case of fk = 0.4, however, due 

to larger degree of fluctuations in all directions, more than 30 shedding cycles of data 

are used for compiling statistics.  

Many experiments on flow past a square cylinder are focused on force exerted by 

the flow on the body40~43, rather than on the details of flow field itself. One of earliest 

detailed flow-field measurements can be found in Durao et. al.44 for Re=14,000 and 

more complete measurements of Re=21,400 are given in Lyn et. al.45. Above data are 

used for evaluating PANS calculation results. Of the many LES computations in 
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literature, the results of Sohankar et. al.33 (Re=22,000) have been selected for the 

comparison with PANS. For the velocity field data the comparison, only Smagorinsky 

sub-grid scale model result in Sohankar has been used.  

We first perform a grid and time-step convergence study in 2-dimensional 

domain (see the dotted line in figure 4.1). For this study, fk is set to 0.7. A cut of 3-

dimensional grid specified in table 4.1 is used as a reference grid. For time step 

convergence test, five different time steps (∆t =0.025, 0.05, 0.1, 0.25, and 0.5) are 

chosen and calculated in the reference grid. For grid size convergence test, four different 

grids are used with the same time step as in full 3-dimensional calculation (∆t=0.025). 

Each grid is coarsened or fined in constant ratio that is parameterized as the number of 

grid cells divided by the number of reference grid cells. The selected ratios are 1.5, 1.0, 

0.55, and 0.25. Unresolved turbulent kinetic energy and dissipation rate are volume 

averaged over entire 2-dimensional domain and their behaviors are plotted in figure 4.2. 

As can be seen in figure 4.2(a), time step invariance of the statistics is well 

accomplished in the reference grid if ∆t is less than 0.1. Grid size invariance of the 

statistics is also evident. As shown in figure 4.2(b), the difference of the value of 

statistics between reference grid and tested finest grid is less than 6%. 

Figure 4.3 presents qualitative differences between the PANS calculations of 

various physical resolutions. Instantaneous contours of various quantities for different fk 

on the plane that is perpendicular to z-axis at the near-wake of the cylinder are revealed. 

Figure 4.3(a)-(c) are the contours of velocity magnitude. In case of standard K-ε model 

(fk =1.0) calculation, it can be seen that the complex near wake fluctuating motions are 

smeared out resulting in an unrealistically big separation bubble (fig 4.3(a)). However, 

as fk value decreases, the bubble size reduces and the more details of the flow structures 

are captured (fig 4.3(b) and (c)). In z-vorticity contour (fig 4.3(d)-(f)), a similar pattern 
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of increased resolution with decreasing fk can be seen. Contrary to the well-defined 

laminar type vorticity contour of K-ε model (fig 4.3(d)), more complex vortical 

structures are captured as fk decreases (fig 4.3(e) and (f)). Furthermore, unresolved 

turbulent kinetic energy levels (fig 4.3 (g)-(i)) get smaller with decreasing fk. This 

clearly reveals that the implied cut-off length scale decreases with fk. The PANS model 

effect can be most clearly seen on the contour plot of eddy viscosity (see equation 

(4.14)). Recall that the desired PANS condition for increased physical resolution is a 

systematic decrease in eddy viscosity. Since the unresolved dissipation rate is of the 

same order in high Reynolds number flow for different values of fk, decreasing 

unresolved kinetic energy with fk directly leads to decrease in eddy viscosity  (fig 4.3 (j)-

(l)). Considering the grid and the boundary conditions are the same for the all 

simulations, the increased resolution is clearly PANS model effect.  

Table 4.2 shows overall statistical results for different set of calculations with 

various experimental results. No blockage correction is applied. The Strouhal number (St 

= fD/U0, f : shedding frequency) is extracted from the instantaneous lift coefficient (CL) 

time series. The Strouhal number is apparently insensitive to physical resolution. 

However, consistent with other published results46~48, the standard K-ε model (case1) 

significantly under-predicts mean drag coefficient ((CD)mean) value. Since the periodic 

shedding motion is the main source of the momentum change in the flow over bluff body, 

non-physically big separation bubble in a standard K-ε model simulation prevents 

mixing and leads to larger base pressure causing (CD)mean value to be under-predicted 

significantly. In addition, (CD)rms and (CL)rms are also under-predicted in K-ε model. 

However,  as  fk  decreases, more  flow  motions  are  resolved and (CD)mean, (CD)rms and  

(CL)rms values get closer to the experiment and LES values. The range LES values in the 

table come from different sub-grid models. 



   74 

The profiles of the mean stream-wise velocity along the centerline are shown 

figure 4.4. The experimental result of Lyn45 and Durao44 and LES of Sohankar33 are 

presented together. Following the basic philosophy of the RANS method, the RANS 

calculation (fk = 1) of the flow past square cylinder has to result in a steady solution after 

a long time. However, due to RANS model inadequacy, time accurate RANS calculation 

yields laminar-like shedding motion with unrealistically big separation bubble. A steady 

RANS solution can be obtained if the calculation is performed over half domain with 

symmetric boundary condition along the centerline. The steady and time-accurate results 

are presented together in figure 4.4. If the RANS model were adequate, these two results 

would be identical. With PANS (fk = 0.7 and 0.4), the bubble size get smaller and closer 

to the experimental result as fk decreases. The stagnation point along the centerline 

measures x/D = 1.3 and 1.42 for fk = 0.4 and 0.7 respectively. These values are in good 

agreement with Lyn’s experiment (x/D = 1.4). On the contrary, LES result of Sohankar 

shows rather a small value (x/D = 1.0). The recovery of the stream-wise mean velocity at 

x = 6.0 is 0.74 and 0.87 for fk = 0.4 and 0.7 respectively. These values are again 

comparable to the experiment result (Durao:0.88, Lyn:0.6) and LES result (0.79). The 

RMS (root-mean-square) profiles of the three fluctuating resolved velocity components 

are shown in figure 4.5. Again, the PANS results get closer to experimental data with 

decreasing fk (fig 4.5(a), (b)). Figure 4.5(c) – the profile of ((w’w’)mean)1/2 for PANS fk = 

0.4 and LES – reveals one of the apparently different features of PANS to RANS 

method in that the prediction of ((w’w’)mean)1/2 profile is not even possible for the 

standard K-ε model (fk =1) in this problem. Because there is no production for z-

directional fluctuation, w’ is not captured in RANS and, furthermore, there is no mean 

motion in spanwise direction. On the contrary, the PANS prediction of ((w’w’)mean)1/2 for 

fk = 0.4 comparably well follows LES result. For the case of fk = 0.7, there exists 
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spanwise motion, but it is very small compared to the case fk = 0.4. In Figure 4.6, 

instantaneous iso-surfaces of various flow variables (vorticity magnitude, velocity 

magnitude, w-velocity, x-vorticity, and y-vorticity) are compared for RANS (fk =1) and 

PANS (fk =0.4) calculations. The difference between RANS and PANS is more clearly 

revealed in this figure.  

The lateral y-direction profiles of mean and fluctuating quantities at x = 1.0, 2.5, 

4.0, and 6.0 are presented in figure 4.7 and 4.8. The results are compared with Lyn’s 

experiment. The LES data of Sohankar is presented for x = 2.5. For RANS (fk =1.0), both 

mean and fluctuating profiles of the resolved velocity are far from the experimental 

result. However, for the PANS, getting better result decreasing fk is observed again. Both 

mean and fluctuating quantities match well with experiment for fk = 0.7 and 0.4 cases. 

 

4.5 CONCLUSION 

The PANS method is a recently-developed approach that attempts to combine the 

best features of RANS and LES. In this chapter, PANS method calculation result of flow 

past a square cylinder is represented. Various values of resolution control parameter (fk = 

1.0, 0.7, and 0.4 with fε=1.0) are used and the results are compared with experiment and 

LES results. With decreasing fk, more flow structures and scales are captured. The 

results show that mean drag coefficient and RMS values of drag and lift coefficients get 

closer to the experimental results with increasing model physical resolution (decreasing 

fk). The mean and fluctuating quantities of the resolved velocity field are also compared 

along the centerline and at several cross-sections in near wake region. Again PANS 

results improve with decreasing fk. The results typically go from RANS to experiment 

with decreasing fk. Our findings indicate that PANS method is suited for performing 

variable resolution simulations in unsteady turbulent flows. With the proper 
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specification of resolution control parameter, unsteady turbulent flow calculation can be 

performed with less computational effort (compared to LES), with more increased 

accuracy (compared to standard RANS type model) using the PANS method. 
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Table 4.1 The computational geometry and resolution control parameter setting. 

Case Dimension fk fε Grid Comment 

1 20D×14D×4D 1.0 1.0 95×107×21 Standard RANS 

2 20D×14D×4D 0.7 1.0 95×107×21  

3 20D×14D×4D 0.4 1.0 95×107×21  

 
 

 

Table 4.2 Summary of the PANS calculation result of integrated flow parameters in  
comparison with experiment and LES data. 

Case Re/103 St (CD)mean (CD)rms (CL)rms 

1 (fk =1.0) 22 0.132 1.44 0.0022 0.27 

2 (fk =0.7) 22 0.133 1.77 0.129 0.994 

3 (fk =0.4) 22 0.130 1.97 0.216 1.19 

LES33 22 0.126-0.132 2.03-2.32 0.16-0.20 1.23-1.54 

Lyn45 21.4 0.132 2.1 - - 

Durao44 14 0.138 - - - 

McLean40 15-40 - - - 1.4 

Berman41 5.8-32 0.130 - - 1.2 

Norberg42 13 0.132 2.16 - - 

Luo43 34 0.13 2.2 0.18 1.2 
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Figure 4.1 Computational domain. 
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Figure 4.2   Time step/grid size convergence test result of flow past a cylinder in 2D 
domain, (a) time step convergence test result, (b) grid size convergence test result.  
Symbols  and  represent 2-d computational domain averaged unresolved kinetic 
energy and unresolved dissipation rate respectively. 
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Figure 4.3 Instantaneous contour plot of velocity magnitude (a-c), z-vorticity (d-f), 
unresolved kinetic energy (g-i), and unresolved eddy viscosity (j-l) for various fk value. 

fk=1.0 fk=0.7 fk=0.4 
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Figure 4.4 Stream-wise mean velocity profiles along the centerline.
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Figure 4.5 Profiles of of ((u’u’)mean)1/2 , ((v’v’)mean)1/2 , and ((w’w’)mean)1/2 along the 
centerline. Legend is the same as given in Fig 4.4. 
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     (a) vorticity magnitude (0.5, fk=1.0)      (b) vorticity magnitude (0.5, fk=0.4) 
 
 
 

     
     (c) velocity magnitude (0.2~1.6, fk=1.0)      (d) velocity magnitude (0.2~1.6, fk=0.4) 
 
 
 

 
Figure 4.6 Instantaneous iso-surfaces, (a)-(b) vorticity magnitude, (c)-(d) velocity 
magnitude, (e)-(f) z-velocity, (g)-(h) x-vorticity, and  (i)-(j) y-vorticity. Values in the 
parenthesis represent the magnitude of each iso-surface. 
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(e) z-velocity (±0.1, fk=1.0)   (f) z-velocity (±0.1, fk=1.0) 

    
(g) x-vorticity (±0.5,1, fk=1.0)   (h) x-vorticity (±0.5,1, 

fk=0.4)              
 
 
          

 
(i) y-vorticity (±0.5,1, fk=1.0)   (j) y-vorticity (±0.5,1, fk=1.0) 

 

 

Figure 4.6 (Continued) 
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Figure 4.7  Lateral profiles of mean velocities at various x-locations. Legend is the same 
as given in Fig 4.4.
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Figure 4.8  Lateral profiles of turbulent quantities at various x-locations. Legend is the 
same as given in Fig 4.4. 

x=1.0 

x=2.5 

x=4.0 

x=6.0 



 

 

87 

 

REFERENCES 
 

1. Wm. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson, “Alignment of 

vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence, ” 

Phys. Fluids 30, 2343 (1987). 

2. S. S. Girimaji and S. B. Pope, “A diffusion model for velocity gradients in 

turbulence,” Phys. Fluids A 2, 242 (1990). 

3. B. J. Cantwell, “Exact solution of a restricted Euler equation for the velocity gradient 

tensor, ” Phys. Fluids A 4, 782 (1992). 

4. B. J. Cantwell, “ On the behavior of velocity gradient tensor invariants in direct 

numerical simulations of turbulence, ” Phys. Fluids A 5, 2008 (1993). 

5. S. S. Girimaji and C. G. Speziale, “A modified restricted Euler equation for turbulent 

flows with mean velocity gradients, ” Phys. Fluids 7, 1438 (1995). 

6. J. Soria, R. Sondergaard, B. J. Camtwell, M. S. Chong, and A. E. Perry, “A study of 

the fine-scale motions of incompressible time-developing mixing layers, ” Phys. 

Fluids 6, 871 (1994). 

7. J. Martin, A. Ooi, C. Dopazo, M. S. Chong, and J. Soria, “The inverse diffusion time 

scale of velocity gradients in homogeneous isotropic turbulence, ” Phys. Fluids 9, 

814 (1997). 

8. J. Martin, C. Dopazo, and L. Valino, “Dynamics of velocity gradient invariants in 

turbulence: Restricted Euler and linear diffusion models, ” Phys. Fluids 10, 2012 

(1998). 

9. J. Martin, A. Ooi, M. S. Chong, and J. Soria, “Dynamics of the velocity gradient 

tensor invariants in isotropic turbulence, ” Phys. Fluids 10, 2336 (1998). 

10. A. Ooi, J. Martin, J. Soria, and M. S. Chong, “A study of the evolution and 

characteristics of the invariants of the velocity-gradient tensor in isotropic 

turbulence, ” J. Fluid Mech. 381, 141 (1999). 



 

 

88 

11. P. Vieillefosse, “Local interaction between vorticity and shear in a perfect 

incompressible fluid, ” J. Phys. (Paris) 43, 837 (1982). 

12. M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three-

dimensional flow fields, ” Phys. Fluids A 2, 765 (1990). 

13. Sharath S. Girimaji, “ Modeling turbulent scalar mixing as enhanced diffusion, ” 

Combust. Sci. and Tech. 97, 85 (1994). 

14. P.K. Yeung, private communication, (1999). 

15.  S. Crow, “Viscoelastic properties of fine-grained turbulence,” J. Fluid Mech. 33, 1 

(1968). 

16. W. C. Reynolds and S. C. Kassinos, “A one-point model for the evolution of the 

Reynolds stress and structure tensors in rapidly deformed homogeneous turbulence,” 

Proc. R. Soc. London, Ser. A, 451, 87 (1995). 

17. S. C. Kassinos, W. C. Reynolds, and M. M. Rogers, “One-point turbulence structure 

tensors,” J. Fluid Mech. 428, 213 (2001). 

18. J. L. Lumley, “Computational modeling of turbulent flows,” Adv. Appl. Mech. 18, 

123 (1978). 

19. S. S. Girimaji, “Pressure-strain correlation modeling of complex turbulent flows”, J. 

Fluid Mech. 422, 91 (2000). 

20. J. C. Rotta, “Statistische theorie nichthomogener turbulentz 1,” Z.Phys. 129, 547 

(1951). 

21. J. C. R. Hunt and D. J. Carruthers, “Rapid distortion theory and the problems of 

turbulence,” J. Fluid Mech. 212, 497 (1990). 

22. K. R. Sreenivasan and R. Narasimha,  “Rapid distortion of axisymmetric 

turbulence,” J. Fluid Mech., 84, 497 (1978). 

23. M. R. Maxey, “Distortion of turbulence in flows with parallel streamlines,” J. 

Fluid.Mech., 124, 261 (1982). 

24. B. E. Launder. G. J. Reece, and W. Rodi, “Progress in the development of a 

Reynolds stress turbulent model,” J. Fluid.Mech., 68, 537 (1973). 

25. S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge (2000). 



 

 

89 

26. C. Cambon and J. F. Scott, “Linear and nonlinear models of anisotropic turbulence,” 

Annual Rev. Fluid Mech. 31, 1 (1999). 

27. S. C. Kassinos and W. C. Reynolds, “A particle representation model for the 

deformation of homogeneous turbulence,” Annual Research Briefs, Center for 

Turbulence Research, NASA Ames/Stanford University, Stanford, CA, p31 (1996). 

28. D. Naot, A. Shavit, and M. Wolfshtein, “Interactions between components of the 

turbulent velocity correlation tensor due to pressure fluctuations,” Israel J. Technol. 8, 

259 (1970). 

29. C. G. Speziale, S. Sarkar, and T. B. Gatski, “Modeling the pressure-strain correlation 

of turbulence: An invariant dynamical systems approach,” J. Fluid Mech., 227, 245 

(1991). 

30.  A. Sambasivam, “Realizability of Reynolds stress and rapid pressure-strain 

correlation models in turbulence,” MS Thesis, Aerospace Engineering Department, 

Texas A&M University (2003). 

31. W. Rodi, J. Ferziger, M. Breuer, and M. Pourquie, 1997, “Status of large eddy 

simulation : Result of workshop,” ASME J. Fluids Eng., 119, 248 (1997). 

32. P. R. Voke, “Flow past a square cylinder : Test case LES2,” in J. P. Chollet, P. R. 

Voke, and L. Kouser (eds.), Direct and Large Eddy Simulation II, Kluwer Academic, 

Dordrecht (1997). 

33. A. Sohankar and L. Davidson, “Large eddy simulation of flow past a square 

cylinder : Comparison of different subgrid scale models,” ASME J. Fluids Eng., 122, 

39 (2000). 

34. P. R. Spalart, “Trends in turbulence treatments,” AIAA paper 2000-2306, Fluids 

2000 Conference and Exhibit, Denver, CO, (2000). 

35. P. Batten, U. Goldberg, and S. Chakravarthy, “LNS-An Approach towards embedded 

LES, ”AIAA paper No.2002-0427, 40th Aerospace Sciences Meeting and Exhibit, 

Reno, NV, (2002). 

36. M. R. Khorrami, B. Singer, and M. E. Berkman, “Time accurate simulations and 

acoustic analysis of slat free shear layer,” AIAA Journal, 40, 7, 1284 (2002). 



 

 

90 

37. C. G. Speziale, “Computing non-equilibrium flows with time-dependant RANS and 

VLES,” Proceedings of the 15th ICNMFD, Monterey, CA, USA (1996). 

38. S. S. Girimaji, “Partially averaged Navier-Stokes method : A variable resolution 

(from RANS to DNS) turbulence model,” Submitted to Physics of Fluids (2003). 

39. M. Germano, “Turbulence : The filtering approach,” J. Fluid Mech., 238, 325 (1992). 

40. I. McLean, and I. Gartshore, “Spanwise correlations of pressure on a rigid square 

section cylinder,” J. Wind Eng. Ind. Aerodyn., 41-44, 797 (1992). 

41. P. W. Berman, and E. D. Obasaju, “An experimental study of pressure fluctuations 

on fixed and oscillating square-section cylinders,” J. Fluid Mech., 119, 297 (1982). 

42. C. Norberg, “Flow around rectangular cylinders : Pressure forces and wake 

frequencies,” J. Wind Eng. Ind. Aerodyn., 49, 187 (1993). 

43. S. C. Luo, M. G. Yazdani, Y. T. Chew, and T. S. Lee, “Effects of incidence and 

afterbody shape on flow past bluff cylinders,” J. Wind Eng. Ind. Aerodyn., 53, 375 

(1994). 

44. D. F. G. Durao, M. V. Heitor, and J. C. F. Pereira, “Measurements of turbulent and 

periodic flows around a square cross-section cylinder,” Exp. Fluids, 6, 298 (1988). 

45. D. A. Lyn, S. Einav, W. Rodi, and J. H. Park, “A laser-doppler velocimetry study of 

the ensemble-averaged characteristics of the turbulent near wake of a square 

cylinder,” J. Fluid Mech., 304, 285 (1995). 

46. R. Franke and W. Rodi, “Calculation of vortex shedding past a square cylinder with 

various turbulence models,” in Schumann, U. et. al. (eds.), Turbulent Shear Flows 8, 

Springer, Berlin (1993). 

47. S. Murakami and A. Mochida, “On turbulent vortex shedding flow past 2D square 

cylinder predicted by CFD,” J. Wind Eng. Ind. Aerodyn., 54/55, 191 (1995). 

48. W. Rodi, “Comparison of LES and RANS calculation of the flow around bluff 

bodies,” J. Wind Eng. Ind. Aerodyn., 69-71, 55 (1997). 



 

 

91 

APPENDIX A 

 
The RDT results show (Table 2) that in the following cases: 1C1, 1C3 (for all 

mean flows), 1C2 (AC, AE, PS), 2C1(AC, AE), and 2C2(HS), initial anisotropy of 

turbulence does not change. These are cases, when the production-of-anisotropy term 

ij''P  in equation (16) is equal to zero for all Reynolds stresses at 0=t . 

As an example, let us consider the mean flow under axisymmetric contraction, 

where SU , =11 , 23322 /SUU ,, −== , and the rest of the components is equal to zero. 

In such a flow, the components of the Reynolds stress production tensor  

k

i
kj

k

j
kiij x

U
uu

x
U

uuP
∂
∂

><−
∂

∂
><−=  

 

are ><−= 1111 2 uuSP , ><= 2222 uuSP , ><= 3333 uuSP , and the others are equal 

to zero. For different initial turbulence anisotropy cases one has 

1C1: kuu 211 >=< , SkP 411 −= , 03322 == PP , SkP 42 −= , 

1C2: kuu 222 >=< , SkP 222 = , 03311 == PP , SkP 22 = , 

1C3: kuu 233 >=< , SkP 233 = , 02211 == PP , SkP 22 = , 

2C1: 011 >=< uu , kuuuu >=>=<< 3322 , 011 =P , SkPP == 3322 , SkP 22 = , 

2C2: 022 >=< uu , kuuuu >=>=<< 3311 , kSP 211 −= , 022 =P , SkP =33 , 

SkP −=2 , 

2C3: 033 >=< uu , kuuuu >=>=<< 2211 , kSP 211 −= , SkP =22 , 033 =P , 

SkP −=2 . 

Then, the components of the production-of-anisotropy tensor PPbP''P ijijijij δ
3
22 −−=  

in each case are 

1C1: 0332211 === ''P''P''P , 

1C2: 0332211 === ''P''P''P , 
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1C3: 0332211 === ''P''P''P , 

2C1: 0332211 === ''P''P''P , 

2C2: Sk''P
2
3

11 −= , 022 =''P , Sk''P
2
3

33 = , 

2C3: Sk''P
2
3

11 −= , Sk''P
2
3

22 = , 033 =''P . 

Non-diagonal components of ij''P  are equal to zero in all cases. It is seen that only in 

two cases (2C2 and 2C3) there are non-zero components of ij''P  and, therefore, the 

invariant ijij ''P''P  has a non-zero value. In these two cases, the RDT data show the 

turbulence anisotropy evolution from the initial level. In other cases (1C1, 1C2, 1C3, and 

2C1) there is no production of anisotropy and, as RDT computations demonstrate, no 

change of initial anisotropy occurs. It follows then from equation (16), that the pressure-

strain tensor components have to be also equal to zero in such cases.   

 For other mean flow configurations, similar analysis can be easily made, which 

leads to the same conclusions. 
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