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ABSTRACT 

The Dynamic, Resource-Constrained Shortest-Path Problem 

on an Acyclic Graph with Application in Column Generation and 

a Literature Review on Sequence-Dependent Scheduling. (December 2005) 

Xiaoyan Zhu, B.En., Tsinghua University; 

M.S., MIT & Nanyang Technological University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Wilbert E. Wilhelm 

 

This dissertation discusses two independent topics: a resource-constrained shortest-path problem 

(RCSP) and a literature review on scheduling problems involving sequence-dependent setup 

(SDS) times (costs).    

RCSP is often used as a subproblem in column generation because it can be used to 

solve many practical problems.  This dissertation studies RCSP with multiple resource 

constraints on an acyclic graph, because many applications involve this configuration, especially 

in column genetation formulations.  In particular, this research focuses on a dynamic RCSP 

since, as a subproblem in column generation, objective function coefficients are updated using 

new values of dual variables at each iteration.  This dissertation proposes a pseudo-polynomial 

solution method for solving the dynamic RCSP by exploiting the special structure of an acyclic 

graph with the goal of effectively reoptimizing RCSP in the context of column generation.  This 

method uses a one-time “preliminary” phase to transform RCSP into an unconstrained shortest 

path problem (SPP) and then solves the resulting SPP after new values of dual variables are used 

to update objective function coefficients (i.e., reduced costs) at each iteration.  Network 

reduction techniques are considered to remove some nodes and/or arcs permanently in the 



 iv

preliminary phase.  Specified techniques are explored to reoptimize when only several 

coefficients change and for dealing with forbidden and prescribed arcs in the context of a column 

generation/branch-and-bound approach.  As a benchmark method, a label-setting algorithm is 

also proposed.  Computational tests are designed to show the effectiveness of the proposed 

algorithms and procedures.  

This dissertation also gives a literature review related to the class of scheduling 

problems that involve SDS times (costs), an important consideration in many practical 

applications.  It focuses on papers published within the last decade, addressing a variety of 

machine configurations - single machine, parallel machine, flow shop, and job shop - reviewing 

both optimizing and heuristic solution methods in each category.  Since lot-sizing is so 

intimately related to scheduling, this dissertation reviews work that integrates these issues in 

relationship to each configuration.  This dissertation provides a perspective of this line of 

research, gives conclusions, and discusses fertile research opportunities posed by this class of 

scheduling problems.  
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This dissertation follows the style and format of IIE Transactions.  

CHAPTER I 

INTRODUCTION 

 

This dissertation addresses two independent topics: a resource-constrained shortest-path problem 

(RCSP) and a literature review related to scheduling problems that involve sequence-dependent 

setup (SDS) times (costs). 

The first topic studied in this dissertation is a dynamic RCSP, which is a variant of the 

classical single-source, single-sink shortest-path problem (SPP).  Consider a directed graph 

(digraph) in which each arc has an associated cost and a vector representing the resources 

required to traverse it.  Then, RCSP is to find a shortest path (i.e., the path with the least total arc 

cost) from the source node to the sink node with a total consumption of each type of resource 

that observes a given upper bound.  We denote RCSP with a single resource constraint as 

SRCSP and RCSP with multiple resource constraints as MRCSP.  RCSP is often used as a 

subproblem in column generation (CG); many applications (e.g., in scheduling) may be modeled 

using an acyclic graph and multiple resource restrictions.  Thus, this dissertation studies RCSP 

with multiple resource constraints on an acyclic graph in the context of CG.  When RCSP is used 

as a subproblem in CG, objective function coefficients are updated using new values of dual 

variables at each CG iteration and, consequently, RCSP must be reoptimized with respect to 

these new objective function coefficients.  This renders the dynamic property of RCSP.  

Moreover, numerous mixed integer linear programming problems (MIPs) have been solved 

successfully using branch-and-bound (B&B), incorporating CG at each node of the B&B tree to 

compute (tight) bounds.  When RCSP is used as a subproblem in CG/B&B, some arcs in the 

graph may be forbidden or prescribed (i.e., with associated decision variables fixed to 0 or 1, 
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respectively) by the branching rule.  Thus, an effective solution method for RCSP must offer the 

ability to handle repeated reoptimization, subject to fixed (i.e., forbidden and prescribed) arcs in 

the context of CG/B&B.  Currently available methods do not satisfy these needs, so this 

dissertation aims to fill this void.  

Another topic studied in this dissertation is a class of scheduling problems that involve 

SDS times (costs).  In general, setup includes work required to prepare a machine (or process) to 

produce parts of a given type, including setting jigs and fixtures, adjusting tools, and 

provisioning material.  Because of their prevalence in, and importance to, industry and because 

of the challenges they present to solution methodologies, scheduling problems that involve SDS 

have attracted the interests of many researchers.  This dissertation contributes by focusing on 

recent results and providing a technical perspective of the topic. 

 The dissertation is structured in two parts; each corresponds to one of the two topics.  

Part I, consisting of Chapters II-IX, investigates RCSP.  Part II, consisting of Chapters X-XV, 

reviews the literature on scheduling problems with SDS.  The last chapter presents conclusions 

of this dissertation research and outlines fertile opportunities for future work. 
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CHAPTER II 

INTRODUCTION TO RCSP 

 

This chapter presents the scope of RCSP (Section 2.1), addressing various types of constrained 

SPPs (CSPs); motivations of this research (Section 2.2), focusing on the applications of RCSP; 

objectives of the research on RCSP (Section 2.3); and the organization of Part I (Section 2.4).  

 

2.1. Scope 

The classical SPP is to find a path with minimum cost from a given source node to a given sink 

node on a digraph.  A SPP subject to different types of constraints results in distinct types of 

CSPs.  In general, a CSP is to find a minimum cost path with respect to objective function 

coefficients while satisfying a set of constraints, which may impose some additional 

characteristics on the path in a graph.  The term “cost” in Part I of this dissertation refers to the 

objective function coefficients in SPP or CSP, although it may represent distance, time or 

another measure, depending on the application.  

CSP is important because, by incorporating different constraints in SPP, CSP can be 

used to model and solve a variety of practical problems.  The types of constraints most 

frequently considered include time-window constraints for nodes (Desaulniers et al. (1997), 

Desrochers  et al. (1992)) or arcs (Jaumard et al. (1996, 1998)); traffic-light constraints (Chen 

and Yang (2000)); on-off time-switch constraints (Chen and Yang (2003)); time-schedule 

constraints (Chen and Tang (1997)) in which departures from nodes are only allowed at some 

discrete time points; hop constraints (Daul and Gouveia (2004)), which require a feasible path 

with at most a given number of hops (arcs); equity constraints (Gopalan (1990)); label-

constraints (Barrett et al. (2000), Sherali et al. (2003)); bottleneck constraints (Berman et al. 
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(1990), Shin et al. (1995), Wilhelm (1999)), which limit the resource requirement (single 

resource) on each arc in the shortest path to be no greater than a given threshold; constraints 

from a set of forbidden paths that can not be part of any feasible solution (Villeneuve and 

Desaulniers (2005)); constraints from a set of prescribed arcs that are required to be part of the 

shortest path (Chen and Hung (1994)); as well as budget- or resource-constraints (Holmberg and 

Yuan (2003), Elimam and Kohler (1997)).   

This dissertation focuses on RCSP with single or multiple knapsack-type resource 

limitations; for example, a resource can be time, distance, capacity, money, workload, or 

reliability requirement.  Given a digraph in which each arc has an associated cost and a vector 

representing the resource required to traverse it, RCSP can be depicted as finding a shortest path 

from a source node to a sink node with a total consumption of each type of resource that 

observes a given upper bound.  The next chapter presents a formal description of RCSP.  

The shortest path problem with time windows (SPPTW), or, more generally, resource 

windows (SPPRW), is another type of CSP, which is to find a shortest path between a given pair 

of source and sink nodes such that the cumulative requirement of each type of resource at each 

node on the shortest path lies within a given resource window associated with that node.  

Analogous to a time window, a resource window at a node defines the smallest and largest 

amounts of resource that the cumulative resource requirement along a path from the source node 

to that node can be.  In this dissertation, the term “SPPTW” represents the SPP with window 

constraints on a single resource (usually time), and the term “SPPRW” represents the general 

case (i.e., SPP with multiple types of resource-window constraints).  Resource windows can be 

classified into two types: “hard” or “soft”.  In the former case, if one or more resource-window 

constraints are not satisfied, then the solution becomes infeasible (Kolen et al. (1987), Russell 

(1995), Bramel and Simchilevi (1996)).  In the latter case, a cost penalty is incurred if the 
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cumulative resource requirement at a node is outside its resource window (Balakrishnan (1993)) 

(the penalty is typically assumed to be a linear function of the amount of violation).  For 

example, if the resource is time, as in a vehicle routing problem with time windows (VRPTW), a 

hard time window requires a vehicle that arrives at a customer too early to wait to service the 

customer within the window, and that the vehicle can not arrive later than the due date (i.e., the 

upper bound of the window).  The SPPRW most extensively investigated is the one with hard 

resource windows.  Apparently, RCSP can be regarded as a SPPRW with a hard window at each 

node for each resource that ranges from 0 to the total resource limitation.  However, Chapter V 

shows that RCSP on an acyclic graph can be transformed in polynomial time into SPPRW with 

much tighter resource windows.  The next chapter presents a formal description of SPPRW. 

 

2.2. Motivation 

RCSP finds application in many areas, including transportation and communication (Holmberg 

and Yuan (2003)), network routing (Desrochers et al. (1992)), wastewater treatment (Elimam 

and Kohler (1997)), global supply chain design (Wilhelm et al. (2005b)), investment planning 

and project evaluation (Bard and Miller (1989)), transfer-line balancing (Dolgui et al. (2004)), 

scheduling and planning (Avella et al. (2004); Mingozzi et al. (1999)), as well as in some 

classical combinatorial problems, including generalized assignment, matching, and traveling 

salesman problems (Houck et al. (1980)).  Avella et al. (2004) discussed the applications of 

RCSP in the management and control of a vehicle fleet on a road network.   

In an important class of applications, RCSP appears as a subproblem in CG, which has 

been successfully used to solve some well-known problems like vehicle routing (Desrochers et 

al. (1992); Desrosiers et al. (1988); Desrosiers et al. (1984)), crew scheduling (Mingozzi et al. 

(1999); Desrochers and Soumis (1989); Lavoie et al. (1988)), prescribing the content and timing 
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of products upgrades (Wilhelm et al. (2003)), optimizing placing and picking operations on dual-

head placement machines (Wilhelm et al. (2004) and Wilhelm et al. (2005a)), and 

multicommodity flow problems (Holmberg and Yuan (2003)).  CG was first suggested by Ford 

and Fulkerson (1958) for a problem involving maximizing flow in a multicommodity network.  

It was then presented by Dantzig and Wolfe (1960) for linear programs with decomposable 

structures and by Gilmore and Gomory (1961) for the cutting-stock problem.  A good recent 

survey on CG was provided by Wilhelm (2001).  CG requires a model to be decomposed into 

two parts: the master problem and the subproblem(s).  RCSP is one of most important 

subproblems in many large-scale real-world problems because it can be used to model the 

complex logic by which many systems operate (Wilhelm (2001)).  Modern interest in CG was 

stimulated by the work in the context of VRPTW (e.g., Desrosiers et al. (1984); Desrochers et al. 

(1992); Desrosiers et al. (1993)).  Desrochers et al. (1992) solved VRPTW using a B&B 

approach for the integer set-partitioning formulation of VRPTW.  They solved the linear 

relaxation of this set-partitioning formulation by CG, generating feasible columns by solving 

SRCSP with additional time-window constraints using dynamic programming (DP).  Recently, 

Holmberg and Yuan (2003) solved a multicommodity network-flow problem with side 

constraints, using CG with SRCSP as a subproblem for each commodity to deal with side 

constraints.  The problem arose in the telecommunications area and the side constraints may 

represent the time-delay or reliability requirements on paths that are used for routing.   

In particular, many applications can be represented on an acyclic graph, e.g., nurse 

scheduling (Jaumard et al. (1998)), crew pairing (Desaulniers et al. (1997)), crew scheduling 

(Mingozzi et al. (1999)), assembly system design with tool changes (Wilhelm (1999)), 

prescribing the content and timing of products upgrades (Wilhelm et al. (2003)), transfer line 

balancing (Dolgui et al. (2004)), and simultaneous operational flight and pilot scheduling 
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(Stojković and Soumis (2001)).  Typically, applications in the area of scheduling can be modeled 

on an acyclic graph (van den Akker et al. (2000)).   

These types of applications, especially the class for which RCSP is a subproblem in CG, 

motivate this dissertation research.  This dissertation contributes by proposing a new, improved 

approach for repeatedly solving RCSP on an acyclic graph in CG/B&B.  Consequently, it can 

speed up CG approaches for problems that can be solved using CG with RCSP as a subproblem.  

Specialized algorithms handle issues related to preprocessing, reoptimization, and fixed arcs in 

CG/B&B. 

 

2.3. Objectives  

The objectives of this dissertation research on RCSP are: i) a review of the literature that relates 

applications and existing algorithms for RCSP; ii) an effective solution method for the dynamic 

RCSP, including preprocessing techniques, reoptimization methods, and procedures for dealing 

with fixed arcs; iii) some extensions of the proposed method; and iv) computational evaluation. 

 

2.4. Organization of part I 

The remainder of part I is structured as follows.  Chapter III reviews related literature and 

Chapter IV gives the formal descriptions of RCSP and SPPTW and introduces the main 

acronyms that are used in Part I of this dissertation.  Chapters V and VI propose new algorithms 

for solving RCSP.  Chapter VII presents a computational evaluation to show the effectiveness of 

the proposed algorithms.  Chapter VIII investigates the special issues that arise when the new 

method is applied in the context of CG and CG/B&B.  Finally, Chapter IX provides some 

extensions of the proposed algorithms.   
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CHAPTER III 

LITERATURE REVIEW: RCSP 

 

This chapter presents a comprehensive literature review.  Starting from an overview of SPP in 

Section 3.1, consecutive sections overview different aspects of RCSP, including complexity 

(Section 3.2), available solution algorithms (Section 3.3), preprocessing techniques (e.g., 

network reduction and resource-window tightening) (Section 3.4), reoptimization (Section 3.5), 

and issues related to fixed arcs (Section 3.6).  Finally, Section 3.7 summaries this entire chapter, 

emphasizing the necessity of this dissertation research.  

 

3.1. SPP 

The unconstrained, single-source, single-sink SPP is concerned with finding a minimum cost 

through a digraph path from a source node to a sink node.  SPP is important because it finds 

numerous applications and generalizations, for example, in communications and transportation 

networks (Deo and Pang (1984)), design of quality control systems (White (1969)), scheduling 

(Gamache et al. (2005)), and many other areas.  SPP is often used as a subproblem in CG 

approaches, for example, in the linear multicommodity flow problem (Babonneau et al. (2004)), 

vehicle routing problem (Christofides et al. (1981)), and single-machine scheduling problem 

(van den Akker et al. (2000)).  Glover et al. (1985a) described additional applications.  SPP is 

solvable in polynomial time and has been widely investigated.  Several solution methods have 

proven to perform very well in practice, including the label-setting algorithm of Dijkstra (1959) 

for nonnegative arc costs, and the label-correcting algorithms of Bellman (1958) and Ford (1956) 

for arbitrary arc costs but no negative cycles.  The primary difference between a label-correcting 

algorithm and a label-setting algorithm is the node selection criterion.  Rather than selecting a 
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node with the minimum cost label to scan as the label-setting algorithm does, label-correcting 

algorithms may select any node from a list of eligible nodes.  Using different selection criterion 

results in different label-correcting algorithms.  Glover et al. (1985b) presented several label-

correcting algorithms.  Algorithms for CSP are based on these methods for SPP.  Gallo and 

Pallottino (1986), Deo and Pang (1984), Bodin et al. (1982), and Golden and Magnanti (1977) 

provided reviews on SPP. 

 

3.2. Complexity 

Handler and Zang (1980) and Jaffe (1984) showed that RCSP is NP-hard, even if the graph is 

acyclic, only one resource constraint is involved, and all resource requirements and costs are 

positive (Dumitrescu and Boland (2003)).  Hassin (1992) showed that SRCSP is polynomial 

solvable if arc costs or arc resource requirements are bounded.   

Dror (1994) proved that an SPPTW with the requirement that the shortest path be 

elementary (no node is visited more than once on the path) is NP-hard in the strong sense and 

Garey and Johnson (1979) showed that an SPPTW that does not invoke this elementary path 

requirement is NP-hard in ordinary sense and can be solved in pseudo-polynomial time.  The 

solution to RCSP is guaranteed to be elementary if arc costs are nonnegative and resource 

constraints have only upper bounds, or if the graph is acyclic (Beasley and Christofides (1989)).  

Beasley and Christofides (1989) gave the conditions for a general graph that guarantee the 

solution to RCSP to be elementary and presented MIP formulas for the elementary, simple (no 

arc is visited more than once on the path), and nonelementary versions of RCSP with multiple 

resource constraints. 
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3.3. Available algorithms 

Since RCSPs are imbedded in a number of important practical problems, they have been studied 

rather extensively, as shown in Table 1, which gives taxonomy of available algorithms.  Two 

families of exact algorithms have been proposed: one involves solving a relaxed problem using 

Lagrangian or linear relaxation and the other uses DP.  Relaxation-based methods generally 

involve three steps: (1) compute lower and upper bounds for the optimal solution of RCSP by 

solving the relaxed problem, (2) use the results of the first step to reduce the network, and (3) 

close the gap between lower and upper bounds.  Following this general outline, Handler and 

Zang (1980) solved a Lagrangian dual to optimality in a step (1) solution to SRCSP.  To close 

the duality gap, they used the kth-shortest path algorithm of Yen (1971) with modified arc cost 

*
ij ijc w u+  (where ijc  is the original arc cost, ijw  is the amount of resource required to traverse the 

arc, and *u  is the optimal value of the Lagrangian multiplier), to update lower and upper bounds 

of SRCSP until the lower bound was greater than or equal to the upper bound.  They used 

Lagrangian relaxation with the goal of reducing the value of k and their method usually – but not 

always – achieves this goal.   

Beasley and Christofides (1989) proposed a method based on Lagrangian relaxation to 

optimize MRCSP.  They used subgradient optimization to (approximately) solve the Lagrangian 

dual as a first step and B&B to close the duality gap.  Mehlhorn and Ziegelmann (2000) 

proposed a hull approach for solving the linear-relaxation of MRCSP and closed the gap between 

lower and upper bounds in one of three ways: by enumerating paths as in Hassin (1992), by 

applying a kth-shortest path algorithm as in Handler and Zang (1980), or by enumerating paths in 

order of increasing reduced cost in combination with pruning unpromising paths.  However, 

relaxation-based methods have not been applied when RCSP is used as a subproblem in CG.  
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A number of previous papers gave DPs for RCSP and SPPRW.  Joksch (1966) proposed 

a DP approach for SRCSP and Hassin (1992) gave two exact pseudo-polynomial DP algorithms 

for SRCSP on an acyclic graph.  Aneja et al. (1983) adapted the shortest-path label-setting 

scheme of Dijkstra (1959) to solve MRCSP.  The label-setting approach is a generalization of 

Dijkstra’s algorithm, which permanently labels nodes that are processed in order, based on 

resource consumptions.  In addition to the label-setting approach, the label-correcting approach 

is a generalization of Ford-Bellman’s algorithm; it treats each node more than once and attempts 

to update the labels of all nodes at each iteration.  Desrochers and Soumis (1988b) presented a 

pseudo-polynomial time, generalized permanent labeling algorithm for SPPTW.  Desrochers and 

Soumis (1988a) presented a primal-dual reoptimization approach for SPPTW and Desrochers 

(1988) generalized it to solve SPPRW.  Dumitrescu and Boland (2003) investigated variants of 

the label-setting algorithm of Desrochers and Soumis (1988b) for both SRCSP and MRCSP, 

focusing on computational results.  For SRCSP, they presented an improved version of the label-

setting algorithm and an exact algorithm based on the weight-scaling method of Dumitrescu and 

Boland (2001), which scales resource requirements before applying the label-setting algorithm.  

In our terminology, a weight associated with an arc is called a resource requirement.  Both 

algorithms integrate information obtained from preprocessing.  They also presented an extension 

that integrates information from applying Lagrangian relaxation.   

Recently, Feillet et al. (2004) studied SPPRW, restricting the optimal path to be 

elementary, even if negative cost cycles exist.  Dror (1994) proved that the elementary SPPRW 

is NP-hard in the strong sense.  Feillet et al. (2004) proposed an exact DP algorithm adapted 

from the label-correcting algorithm of Desrocher (1988), which was developed for the 

nonelementary path version of SPPRW, and employed it in a CG approach for VRPTW.  The 

main advantage of the nonelementary SPPTW is that it can be solved effectively using DP, while 
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the primary disadvantage is that it provides a weaker lower bound.  If the graph is acyclic as in 

this dissertation, the optimal path is always elementary.   

Ioachim et al. (1998) considered a variant of SPPTW in a directed, acyclic network that 

includes a cost that is a linear function of the time at which service starts at each node.  A certain 

scheduling problem, which Stojković and Soumis (2001) formulated as an integer nonlinear 

multicommodity network flow model with time windows and additional coupling constraints, 

motivated this study.  Each coupling constraint links time variables (representing the service start 

times at nodes) in several SPPTW subproblems, each related to a single commodity.  Relaxing 

these coupling constraints using Lagrangian relaxation (e.g., the time variables appear in the 

objective function together with dual multipliers) introduces a linear cost on each node in the 

network of each SPPTW subproblem.  They proposed an exact DP algorithm for the 

nonelementary version of their variant of SPPTW. 

In the context of CG, RCSP must be solved a number of times. Each time, arc costs are 

updated with the current values of dual variables in the master problem.  The DP algorithms 

discussed above do not exploit this context.  To reoptimize at each CG iteration, the DP 

algorithm must be employed from scratch (i.e., from the first stage and onwards).  On the other 

hand, several approaches exploit the CG context.  Jaumard et al. (1996) investigated a SPPRW in 

which resource windows are associated with each arc.  They described a DP algorithm and a 

two-phase approach for an acyclic graph; both approaches have pseudo-polynomial time 

complexity.  The first phase of their two-phase algorithm constructed an expanded graph on 

which SPPRW can be solved as SPP.  The second phase used an (unconstrained) shortest path 

algorithm to prescribe an optimal path through the expanded graph.  The expanded graph need 

be constructed only once, and SPP is solved each time a subproblem is invoked in an attempt to 

generate an improving column.  But they did not report the numerical performance of their 
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method.  Wilhelm et al. (2003) reported a similar, two-phase approach for a layered acyclic 

graph in which each arc is incident from a node in one level to another node in the next level.  

This dissertation develops a systematic method for solving RCSP and SPPRW repeatedly. 

 

3.4. Preprocessing techniques 

Preprocessing techniques, which aim to reduce the size of an instance either by removing 

nodes/arcs or by tightening resource limitations, can facilitate solution and have been used 

widely.  They involve either resource-based reduction (Aneja et al. (1983)) or joint resource- and 

cost-based reduction (Beasley and Christofides (1989); Dumitrescu and Boland (2003)).  

Recently, Dumitrrescu and Boland (2003) presented a preprocessing algorithm for the general 

RCSP; it interleaves resource- and cost-based reduction, and their computational tests 

demonstrated that their approach can be surprisingly effective in reducing problem size.  For 

SPPTW, Desrochers et al. (1992) reduced the time window for each node, using a resource-

based method which examines and updates the time windows of nodes cyclically until no further 

reductions are possible.  Dumas et al. (1991) reported a similar time-window tightening 

technique and Jaumard et al. (1996) used a forward recursion to tighten resource windows.  

Desaulniers et al. (2002) mentioned that tightening resource windows is a way to speed up 

SPPTW algorithms.   

This dissertation develops an efficient preprocessing stage that implements a resource-

based reduction (see Section 5.1).  It does not propose a cost-based reduction because it deals 

with the dynamic RCSP for which arc costs are updated at each CG iteration.  
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3.5. Reoptimization 

The objective function coefficients of a RCSP subproblem in CG are updated using the new dual 

variables generated by the master problem at each CG iteration.  Thus, RCSP must be 

reoptimized at each CG iteration using the new arc costs but subject to the same set of resource 

constraints.  The optimal solution (i.e., a shortest path tree rooted at source node) from the 

previous CG iteration is available.    

In early work related to reoptimizing SPP, Goto and Sangiovanni-Vincentelli (1978) 

investigated the problem of updating shortest paths from all nodes to a set of nodes for the case 

in which the cost on each of a subset of arcs is decreased and proposed a method based on LU 

factorization of { }ijc , where ijc  is the cost on arc ( , )i j .  Their method requires a considerable 

amount of memory and is effective only if matrix { }ijc  is sparse.   

Gallo (1980) proposed the first efficient strategy for reoptimizing a SPP in two cases: (1) 

a different node is selected to be the source node of SPP each time, and (2) exactly one arc is 

assigned a new cost that is less than the old one each time.  Fujishige (1981) proposed another 

effective approach for the case in which each of a set of arcs incident to a common node is 

assigned a new cost that is less than the previous one.  Recently, Buriol et al. (2003) proposed a 

technique that can reduce the sizes of heaps used by several reoptimization algorithms (i.e., 

Ramalingam and Reps (1996), King and Thorup (2001), and Demetrescu (2001)) for the case in 

which a single arc is assigned a new cost that is either smaller or greater than the previous one.  

They provided a survey of research that had dealt with the case in which the cost of a single arc 

is changed and presented a comprehensive computational evaluation of their technique.  These 

methods, however, are very restrictive and only applicable to special cases (e.g., exactly one arc 

is assigned a new cost, or each of a set of arcs incident to a common node is assigned a new 

cost).  Although these methods can be applied iteratively if several arc costs change, the 
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resulting algorithms are computationally impractical when a number of arc costs are assigned 

new values.   

Pallottino and Scutellà (2003) proposed a methodology to reoptimize a single-source 

SPP on a general network for the case in which the cost on each of any subset of arcs is changed, 

either to a lower or a higher value.  They generalized the works of Fujishige (1981) and Gallo 

(1980), devising a two-phase method.  The dual phase reoptimizes arcs with increased cost 

sequentially.  The primal phase dynamically decomposes the set of arcs with decreased costs into 

disjoint subsets and reoptimizes each subset sequentially.  

This line of research has not been specialized to the acyclic graph.  This dissertation 

presents methods to reoptimize RCSP if the costs of any subset of arcs of the input acyclic graph 

are changed to values that are either higher or lower than the previous ones.   

 

3.6. Fixed arcs 

Arcs in a subproblem graph that are forbidden or prescribed correspond to associated decision 

variables that are fixed to either 0 or 1, respectively.  This issue arises when a CG/B&B 

approach employs RCSP subproblem(s).  Typically, existing methods assign a large cost to each 

forbidden arc and a small cost to each prescribed arc (e.g., Jaumard et al. (1996)) to induce the 

RCSP solution algorithm to exclude or include a decision variable, respectively.  However, such 

methods have the same complexity, whether arcs are forbidden and prescribed or not, even 

though these constraints can be used to reduce the size of RCSP to improve computational 

effectiveness.  This dissertation presents an algorithm that can detect infeasibility with respect to 

resource limitations before solving RCSP and reduce computational burden by exploiting the set 

of fixed arcs.  Again, this method is suitable for repeatedly solving RCSP, subject to a set of 

fixed arcs at a node in the B&B search tree. 



 17  

3.7. Summary 

A number of applications that involve RCSP as a subproblem in CG motivate the development 

of methods that are explicitly designed to reoptimize in CG effectively while systematically 

incorporating special issues (e.g., preprocessing techniques, reoptimization, and fixed arcs).  To 

the best of our knowledge, such methods have not been studied.  This dissertation studies such a 

problem, which involves an acyclic underlying graph, multiple resource constraints, repeated 

reoptimization, and fixed arcs as required in CG/B&B applications.  
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CHAPTER IV 

PROBLEM FORMULATION 

 

The following notation is used in the remainder of Part I.  Let ( , )G V A=  be an acyclic digraph 

with n V=  topologically ordered nodes 1, , nv v  and m A=  arcs.  An arc from iv  to jv  is 

denoted as either ( , )i jv v  or ( , )i j A∈ .  Since nodes of G are topologically numbered, arc 

( , )i j A∈  only if 1 i j n≤ < ≤ .  Let 1v  and nv  be source and sink nodes, respectively.  An ℜ -

dimensional resource limit vector =T ( 1T , ,T
ℜ

) is associated with set of nonnegative discrete 

valued resources, .ℜ   A cost ijc  and a discrete-valued resource-requirement vector 

ij =u ( 1 , ,ij ij
u u

ℜ
) are associated with each arc ( , )i j A∈ .  Traversing arc ( , )i j  consumes an 

amount ijru  of resource r∈ℜ .  Let path 1 jv v−  denote a series of consecutive arcs from 1v  to jv  

(such a path may not be unique).  The consumption (requirement) of resource r  on a path is the 

sum of the requirements of resource r  associated with all arcs on that path.  Note that since the 

graph is assumed to be acyclic, the solution must be elementary. 

RCSP consists of finding a shortest path from source node of 1v  to sink node of nv  in G 

with resource-limitation constraints.  Let ijx  be a binary decision variable associated with arc 

( , )i j A∈ .  1ijx =  if arc ( , )i j is on the optimal shortest path, 0 otherwise.  RCSP can be 

formulated as a MIP ( )1℘ : 

( )1℘              min     
( , )

ij ij
i j A

z c x
∈

= ∑                                 (1a) 

    s.t.      
( , ) ( , )

1 1
0   2, 1
1

ij jk
i j A j k A

j
x x j n

j n∈ ∈

=⎧
⎪− = = −⎨
⎪− =⎩

∑ ∑                                (1b) 
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( , )
ijr ij r

i j A
u x T

∈

≤∑                  r∀ ∈ℜ                                              (1c) 

   {0,1}ijx ∈              ( , )i j A∀ ∈                        (1d) 

Objective function (1a) is to find a shortest path with respect to arc costs, ijc .  Constraint (1b) 

requires that the solution vector { }ijx=x  describes a path from 1v  to nv .  Constraint (1c) 

invokes the resource limitations, requiring that the total consumption of resource r  on a  1 nv v−  

path be no greater than resource limitation rT .  Without constraint (1c), objective (1a) and 

constraints (1b) and (1d) define a classical SPP.       

SPPRW is to find a shortest nvv −1  path in G with resource-window constraints.  Let 

jrt be a decision variable representing the cumulative requirement of resource r∈ℜ  (CRR-r) at 

jv V∈  and 1( , , )j j j
t t

ℜ
=t  be a CRR vector at jv V∈ .  Let [ ,jr jrt t ] be a hard resource window 

for resource r∈ℜ  at jv .  Denote vectors 1( , , )j j jt t ℜ=t  and 1( , , )j j jt t
ℜ

=t .  Then, SPPRW 

can be formulated as a MIP ( )2℘ : 

( )2℘              min    
( , )

ij ij
i j A

z c x
∈

= ∑                                                                                 (2a) 

      s.t.     Constraints (1b) and (1d)                        
                    jr jr jrt t t≤ ≤                         1,j n= … , r∀ ∈ℜ                          (2b) 

                                       (1 )ir ijr jr ijt u t M x+ − ≤ −      ( , )i j A∀ ∈ , r∀ ∈ℜ                        (2c) 

where M is a large number.  Objective (2a) is the same as (1a).  Constraint (2b) imposes a 

resource window on the CRR vector at each jv V∈ .  Constraint (2c) requires that CRR-r at jv  

must lie within the hard resource window.  If CRR- r  along a path from 1v  to jv  is lower than 

jrt , it is increased to jrt .  The difference between models ( )1℘  and ( )2℘  is that ( )2℘  has 

resource-window constraints (2b) and (2c) rather than resource-limitation constraints (1c) in 

( )1℘ .  Later, it is shown that ( )1℘  can be transformed to ( )2℘  by formulating resource 
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windows [ ,j jt t ] for each node in G .   

When these models arise as subproblems in CG approaches, the objective function 

coefficient ijc  in (1a) and (2a) is the reduced cost associated with decision variable ijx , and it is a 

function of dual variables associated with the master problem.  ijc  can be negative, zero, or 

positive.  For each CG iteration, these objective function coefficients are updated using new dual 

variables from the master problems, while the resource constraints do not change.  This induces 

the dynamic property of the problems studied in this dissertation.   

This dissertation presents a set of solution algorithms and procedures for a set of 

problem types; we designate each using an acronym.  For reader convenience, we give an 

overview of these acronyms in Table 2.  The first category of Table 2 gives the acronyms for 

different problem types; the second category, the acronyms for algorithms and procedures; and 

the third category, the others.   

Table 2. Main acronyms used in Part I of the dissertation 

Acronyms for problem types 
KP Knapsack problem 
MCKP Multiple-choice knapsack problem 
MMCKP Multiple-resource, multiple-choice knapsack problem 
MRCSP RCSP with multiple resource limitations 
RCSP Resource-constrained SPP (with resource limitation(s)) 
RCkSP Resource-constrained k-SPP 
SPP Unconstrained shortest path problem 
SPPRW SPP with one or more types of resource windows 
SPPTW SPP with one type of resource windows (e.g., time) 
SPRCRW SPP with both resource-limitation and resource-window constraints 
SRCSP RCSP with one resource limitations 

 
Acronyms for algorithms and procedures 

ATSA Adaptation of TSA for solving SPPRW 
EGA Expanded-graph approach 
EP Expansion procedure used in stage 2 of TSA 
GERA EG  revising algorithm 

GFA Generating 0̂F  algorithm 
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Table 2. Continued 

GTSA Generalization of TSA for solving SPRCRW 
LSA Label-setting algorithm for solving RCSP 
MDFA Method for dealing with fixed arcs 
OA Optimizing algorithm used in stage 3 of TSA 
ROA Reoptimizing algorithm used in stage 3 of TSA 
RP Rounding procedure used in EP 
S1A Stage 1 algorithm used in TSA 
S1A-A Stage 1 algorithm used in ATSA 
S1A-G Stage 1 algorithm used in GTSA 
S1A-M Stage 1 algorithm used in TSA for an MMCKP-graph 
TSA Three-stage approach 
TSA-CG A version of TSA for solving RCSP in CG 
TSA-CG/B&B A version of TSA for solving RCSP in CG/B&B 

 
Other acronyms 

CRR-r Cumulative requirement of resource r 
CRR vector Cumulative resource requirement vector 

 

This dissertation proposes a three-stage approach (TSA), which comprises a preliminary 

phase (stages 1 and 2) and an iterative solution phase.  We may select algorithms for each stage 

for different problem types.  For reader convenience, Table 3 gives an overview of the 

algorithms we present for each stage of TSA to solve different problem types.  Later chapters 

discuss each.     

Table 3. TSA for different problem types  

 RCSP 
SRCSP 
MRCSP 

SPPRW
SPPTW SPRCRW RCkSP 

MMCKP 
MCKP 

KP 
 
Preliminary phase 
    Stage 1: (preprocessing) S1A S1A-A S1A-G S1A S1A or S1A-M
    Stage 2: (expanding) EP 

   (dealing with    
fixed arcs) 

MDFA or traditional method 

 
Iterative solution phase 
    Stage 3: (solving) OA or ROA Unconstrained 

k-SPP algorithm 
OA or ROA 
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CHAPTER V 

THREE-STAGE APPROACH 

 

This chapter introduces a new, improved approach (TSA) for solving RCSP and analyses its 

complexity.  TSA comprises three stages and is especially suitable for iterative reoptimization in 

the context of CG.  Section 5.1 describes the first stage – preprocessing –  in which a network 

reduction technique is used repeatedly to delete the nodes and arcs that can not be on any 

feasible path.  Importantly, tight resource windows are prescribed for each node in the reduced 

graph via the preprocessing stage so that RCSP becomes SPPRW on the reduced graph.  Section 

5.2 presents the second stage – an expanding stage, in which SPPRW on the reduced graph is 

transformed into SPP via a special procedure.  Since stages 1 and 2 are one-time processes; we 

include them both in what we call the preliminary phase.  Section 5.3 presents the third stage – 

an iterative solution stage that incorporates an algorithm for finding a shortest path with respect 

to a given set of arc costs.  Following that, Section 5.4 presents a combination of algorithms that 

form a TSA for repeatedly solving RCSP in the context of CG.  Figure 1 shows a general outline 

of TSA.  Finally, Section 5.5 gives a summary of this chapter.   

 
 

 

Fig. 1. General outline of TSA. 

 

 

  (RCSP) 
 ( , )G V A  

Stage 1: 
delete bottleneck nodes and arcs; 
formulate resource windows. 

 (SPPRW) 
( , )R R RG V A

  (SPP) 
( , )E E EG V A  

Stage 2: 
expand GR

Stage 3:  
Solve SPP on GE  
iteratively. 

Preliminary phase Iterative solution phase
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5.1. Preprocessing stage 

Stage 1 (preprocessing) uses a resource-based network reduction technique to delete nodes and 

arcs that can not be on any feasible (i.e., with respect to the resource limitations) path.  This 

method does not use any information about arc costs and is, thus, valid for any set of arc costs.  

This study does not explore a cost-based reduction because it addresses the dynamic RCSP for 

which arc costs are updated at each CG iteration.  Further, stage 1 formulates resource windows 

for each node in the reduced graph, based on the resource-limitation constraints.  In this section, 

Subsection 5.1.1 presents the stage 1 algorithm (S1A); following that, Subsection 5.1.2 shows 

some properties inferred from S1A; Subsection 5.1.3 analyzes the complexity of S1A; and 

Subsection 5.1.4 provides a brief summary of stage 1.   

5.1.1. Description of S1A 

Before presenting S1A, we define a bottleneck arc (node) as one that can not be on a feasible 

1 nv v−  path.  A bottleneck arc ( , )i j  is an arc that renders the resource available at jv  insufficient 

to continue a path to the sink node.  A bottleneck node has no arcs incident to it (both incoming 

and outgoing arcs) that can be on a feasible path to the sink node.  Thus, all arcs incident to a 

bottleneck node are bottleneck arcs.  Denote ( , )R R RG V A=  as the reduced graph obtained from 

stage 1 by deleting bottleneck nodes and arcs from G .  Let ( )jFS v and ( )jBS v  denote the sets 

of the successors (forward stars) and predecessors (backward stars) of jv  in RG , respectively, 

that is, ( ) { : ( , ) }j i j i RFS v v v v A= ∈  and ( ) { : ( , ) }j i i j RBS v v v v A= ∈ .  

We now introduce additional notation that we use to present S1A.  As Figure 2 depicts, 

some 1 jv v−  path requires the least (most) amount of resource r∈ℜ  in comparison with all 

other 1 jv v−  paths.  Let 
jr

f ( jrf ) denote this minimum (maximum) resource requirement.  
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Similarly, some nj vv −  path requires the least (most) amount of resource r  over all nj vv −  

paths.  Let jra  ( jra ) denote the corresponding minimum (maximum) amount of resource r  

required for traversing from jv  to nv  and jr r jrb T a= −  ( jrjr rb T a= − ) denote the corresponding 

minimum (maximum) amount of resource r  that would be left over (i.e., available) for a 1 jv v−  

path.    

 

Fig. 2. Illustration of notation 
jr

f , jrf , jra , jra , jrb  and jrb .  

Figure 3 details S1A, in which steps 1-4 detail the network reduction technique, which 

identifies and deletes bottleneck nodes and arcs and step 5 formulates tight resource windows for 

each node in RG .  Steps 3 - 4 identify and delete bottleneck nodes and arcs iteratively until no 

more bottleneck nodes or arcs can be deleted.  The backward pass determines jrb , the maximum 

amount of resource r  left over (i.e., available) for all 1 jv v−  paths (for node jv ) relative to 

resource limitation rT .  The forward pass determines 
jr

f , the minimum amount of resource r  

required over all 1 jv v−  paths.  In backward pass, node jv  with 0jrb < (step 3(i)) is a bottleneck 

because the maximum amount of resource r  that is available for 1 jv v−  paths ( jrb ) is less than 

0; in addition, arc ( , )i j  with ijr jru b>  (step 3(ii)) is a bottleneck because the maximum amount 

jv1v  nv  

The 1 jv v−  path with minimum 
requirement of resource r (

jr
f ) 

The j nv v−  path with minimum 
requirement of resource r ( jra ) 

The 1 jv v−  path with maximum 
requirement of resource r ( jrf ) 

The j nv v−  path with maximum 
requirement of resource r ( jra ) 

jrjr rb T a= −

jr r jrb T a= −
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of resource r  that is available for 1 jv v−  paths is less than the resource requirement on arc 

( , )i j , so arc ( , )i j  can not be used.  In forward pass, node jv  with jr
jr

b f<  (step 3(iii)) and arc 

( , )i j  with 
ir

f ijru+ jrb>  (step 3(iv)) are bottlenecks for similar reasons.  The conditions for 

identifying bottleneck nodes and arcs in forward pass are tighter than the ones in backward pass 

because 
jr

f  are calculated in the forward pass.    

 
(Network reduction)  
step 1. Topologically sort the nodes of G: 1 , , nv v .  
step 2. Initialize RG G=  by setting RV V=  and RA A= .  
step 3. For 1r = ℜ ,  
      set 0jrb = , 1, , 1j n∀ = −… , nrb rT=  and 

1
0

r
f = , rjr

f T= , 2, ,j n∀ = … . 

  (backward pass) For each \{ }j R nv V v∈  in decreasing jv  index,  

     calculate { }( )
max

j
jr ir jiri FS v

b b u
∈

= −  (if ( )jFS v =∅ , jr rb T= − ); 

  (i)                   if 0,jrb <  jv  is bottleneck; delete jv  and all the arcs incident to it; 
  (ii)             if jir iru b> , arc ( ,j iv v ) is a bottleneck; delete it.  
      If 1v is bottleneck, STOP; RCSP is infeasible. 

  (forward pass) For each j Rv V∈ { }1\ v  in increasing jv  index,  

     calculate { }( )
min

j
ijrjr iri BS v

f f u
∈

= +  (if ( )jBS v =∅ , rjr
f T= ); 

  (iii)                 if jrb <
jr

f , jv  is bottleneck; delete jv  and all the arcs incident to it; 

(iv)     if 
ir

f ijru+ jrb> , arc ( ,i jv v ) is a bottleneck; delete it. 
      If nv  is bottleneck, STOP; RCSP is infeasible. 

step 4. If anything was deleted from the graph, go back to step 3. 

(Formulate resource windows)  
step 5. For 1r = ℜ ,  

set nr rb T= , 1 0rf = .   
For each \{ }j R nv V v∈  in decreasing jv  index, calculate { }

( )
min

j
jr ir jiri FS v

b b u
∈

= − .    

For each j Rv V∈ { }1\ v  in increasing jv  index, calculate { }
( )

max
j

jr ir ijri BS v
f f u

∈
= + ; 

(i) if jrf > jrb , { }max ,jr jrjr
t f b= and { }min ,jr jr jrt f b= , else jr jr jrt t f= = .      

           STOP.                    

Fig. 3. S1A. 
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Step 5 establishes the window [ ,jr jrt t ] for each resource r∈ℜ  at each node jv  that 

remains in G  after deleting bottleneck nodes and arcs, that is ( )R RV G V= .  Recall that jrt  and jrt  

are the lower and upper bounds, respectively, for CRR-r at jv  as defined in model ( )2℘ .  The 

window [ ,jr jrt t ] is determined as follows.  In step 5(i), if jrf ≤ jrb , then every 1 nv v−  path 

containing jv  is feasible and so .jr jr jrt t f= =  If jrf > ,jrb { }min ,jr jr jrt b f= and { }max , .jr jr jr
t b f=   

The resource windows established in this way are hard resource windows.  That is, any 1 jv v−  

path with CRR-r larger than jrt  is infeasible; and if CRR-r along a 1 jv v−  path is lower than jrt , 

then CRR-r at jv  is increased to jrt .   

We interpret the calculations of jrt  and jrt  for the case in which jrf > jrb through a 

numerical example.  Considering jrt , if 10jrf = and 12jrb = , then { }min 10,12 10jr jrt f= = =  and 

CRR-r along any 1 jv v−  path is less than or equal to .jrt   If 10jrf =  and 8,jrb =  then 

{ }min 10,8 8jr jrt b= = =  and any 1 jv v−  path with CRR-r larger than 8 would not be augmented 

to a feasible 1 nv v−  path because 8.jrb =   For ,jrt  if 5jrb =  and 7,
jr

f = then 

{ }max 5,7 7jr jr
t f= = =  and CRR-r along any 1 jv v−  path is no less than 7.jrt =   If 5jrb =  and 

3
jr

f = , then { }max 5,3 5jr jrt b= = =  and if CRR-r on a 1 jv v−  path is less than 5, it is increased 

to 5 because 5jrb = , i.e., 5 is enough to traverse from jv  to nv  on any j nv v−  path.  Note that, 

= =11t t 0  and = =nnt t T .  Proposition 5.4, which is proven in the next subsection, establishes 

the correctness of step 5.   

 



 27  

5.1.2. Properties  

Proposition 5.1 can be used to judge whether RCSP is infeasible or not and Proposition 5.2 can 

be used to eliminate some resource constraint(s) from the problem.   

Proposition 5.1. The following statements are equivalent: (a) 1v  is bottleneck; (b) nv  is 

bottleneck; (c) every node of G is bottleneck; and (d) RCSP is resource infeasible (i.e., no 1 nv v−  

path satisfies all resource constraints). 

Proof.  Straightforward by the definition of bottleneck node.    ■ 

Proposition 5.2. If 1 0rb ≥  or nr rf T≤ , then the limitation of resource r∈ℜ  is redundant.  If 

1 0rb ≥  or nr rf T≤  for all r∈ℜ , then all 1 nv v−  paths in RG  are feasible with respect to the 

resource constraints and RCSP reduces to SPP.  

Proof.  Recall that 1ra  is the maximum requirement of resource r  over all 1 nv v−  paths.  Thus, 

1r nra f= .  Because 1 1r r rb T a= − , 1 0rb ≥  implies 1r ra T≤  and, equivalently, nr rf T≤ .  nr rf T≤  

implies every 1 nv v−  path is feasible with respect to resource r , thus, the limitation of resource 

r∈ℜ  is redundant and can be eliminated.  If all resource constraints are redundant, then RCSP 

reduces to SPP.    ■ 

The next proposition is valid for SRCSP (i.e., 1ℜ = ).  

Proposition 5.3. For SRCSP, graph G  need be traversed only once in the backward direction 

and only once in the forward direction to delete all bottleneck nodes and arcs.  

Proof.  We omit subscript r  in this proof because SRCSP entails only one type of resource.  

Note that if a node is bottleneck, all the arcs incident to it (both incoming and outgoing arcs) are 

bottleneck arcs.  Thus, deleting a bottleneck node is equivalent to deleting all arcs incident to it.  

Thus, we only need to show that the claim is true for bottleneck arcs.   
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First, we show that for SRCSP, an arc ( , )i j  is bottleneck if and only if ij ji
f u b+ > .  To 

see that, if ij ji
f u b+ > , it follows that iij ri

f u a T+ + >  and ( , )i j  is bottleneck arc.  On the other 

hand, if arc ( , )i j  is a bottleneck, then iij ri
f u a T+ + > , i.e., ij ji

f u b+ > .  By this observation, to 

prove the proposition, it is sufficient to show that the deletion of bottleneck arcs will not change 

the 
j

f  and jb  values that have already been established upon the completion of a backward and 

a forward pass.  The calculation of jb  involves only nodes jv ,…, nv , so no bottleneck arc deleted 

during the backward pass will change the established jb  values; similarly, no bottleneck arc 

deleted during the forward pass will change the established 
j

f  values.    

Now, we show that no bottleneck arc deleted during the forward pass will change the 

established jb  values.  Suppose that bottleneck arc ( , )i j  is identified and deleted during the 

forward pass.  Since the calculation of pb  involves only nodes pv ,…, nv , pb  does not change for 

any 1,p i n= + … .  Now, consider pb  for pv  ( 1,p i= … ) in the current (perhaps partially) 

reduced graph.   

By way of contradiction, suppose pb  is changed because arc ( , )i j  is deleted.  Then, arc 

( , )i j  must be on the np vv −  path with minimum resource consumption and, consequently, 

j ijb u− = ib .  Note that iv  is not a bottleneck (otherwise pv  is a bottleneck and would have been 

eliminated to attain the current reduced graph).  Since arc ( , )i j  is a bottleneck arc, ij ji
f u b+ > .  

It follows that ii
f b> , so iv  is a bottleneck.  But since iv  is not a bottleneck, pb  for 1,p i= …  

can not change, which contradicts the supposition. This completes the proof.    ■ 

It is worth mentioning that step 3 of TSA traverses the graph first in the backward 

direction then in the forward direction and Proposition 5.3 is only valid for that order of 



 29  

traversals.  Recall that the backward pass determines the maximum amount of each resource left 

over (i.e., available) for all 1 jv v−  paths (for each node jv ) relative to the resource limitation T .  

The forward pass determines the minimum amount of each resource required over all 1 jv v−  

paths.  During the forward pass, some bottleneck nodes and/or arcs may be deleted if the 

maximum resource requirement from the backward pass is less than the minimum resource 

requirement from the forward pass.  If the forward pass were performed first, the minimum 

resource requirement would be the smallest possible for each node because none of the original 

nodes and arcs would have been deleted from the graph, regardless of the value of T .  If this 

initial forward pass were then followed by a backward pass that deletes any node or arc, the 

minimum resource requirement determined by the forward pass must be updated at each node 

between the node where the bottleneck arc ends and the sink node.   

Although, for SRCSP, we only need to traverse the graph twice to delete all bottleneck 

nodes and arcs, for MRCSP, we may traverse the graph more than twice for each resource type.  

To see that, suppose step 3 of S1A completes backward and forward passes for resource r∈ℜ  

first and for resource 'r ∈ℜ  second, where 'r r≠ .  Further, suppose some bottleneck nodes 

and/or arcs are identified and deleted due to resource limitation 'rT  to revise the reduced graph.  

Then, values of 
jr

f and jrb  may change when they are recalculated relative to this revised 

reduced graph.  Consequently, it may be possible to identify additional bottleneck nodes and arcs 

due to resource limitation rT .  Thus, for MRCSP, step 3 should be repeated until no more 

bottleneck nodes and arcs can be deleted.    

For SRCSP, Proposition 5.3 guarantees that S1A can identify and delete all bottleneck 

nodes and arcs.  However, for MRCSP, it can not guarantee that it will identify all bottlenecks.  

Figure 4 depicts an example of MRCSP in which S1A does not identify all bottleneck nodes and 
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arcs.  This example comprises 5 nodes and 6 arcs with 2 types of resources and 1 2 2T T= = .  

Here, label <a,b> on an arc gives the requirements for resources 1 and 2, respectively.  The table 

on the right side in Figure 4 gives the values of jrb  and 
jr

f  that are calculated by step 3 in S1A.  

Arcs (3,4) and (4,5) and node 4 are bottlenecks, but S1A can not identify them as such.  The 

reason is that S1A identifies bottleneck nodes and arcs based on the values of 
jr

f and jrb  for 

each individual resource.  But this is not sufficient for MRCSP.  As shown in the example, 

neither arc (3,4) nor arc (4,5) can be identified as a bottleneck because 3,4, 4,3,
1 0 1r rr

f u b+ = + = =  

and 4,5, 5,4,
1 1 2r rr

f u b+ = + = = , for 1,2r = .  But, in fact, either of the two possible CRR vectors 

at node 3 – 1,2< >  or <2,1> – together with arcs (3,4) and (4,5), result in infeasible 1 5v v−  paths 

with respect to resource limitations.   

 

  

 

 

Fig. 4. An example of MRCSP. 

Proposition 5.4. For each jv  in RG , (a) any 1 jv v−  path with CRR-r, for r∈ℜ , larger than jrt  

can not be on a feasible 1 nv v−  path, and (b) if CRR-r associated with a 1 jv v−  path is less than 

jrt , it can be increased to jrt . 

First cycle of step 3 in S1A 

jv  1v  2v  3v  4v 5v

1jb  1 1 2 1 2 

1j
f  0 0 1 1 1 

2jb  1 0 2 1 2 

2j
f  0 0 1 1 1 

No bottleneck nodes and arcs are 
identified and deleted, STOP. 

5

<1,2> 

1 

2 4

3 

<0,0> <0,0> <1,1> 

<0,0> <2,1> 
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Proof.  For part (a), if jrf ≤ jrb , then jr jrt f=  and no 1 jv v−  path has a larger CRR-r than jrt ; we 

are done.  Otherwise, jrt { }min ,jr jrb f=  and there are two cases. Case (a1) is that, if jr jrb f≥ , 

then jrt jrf=  and no 1 jv v−  path has a larger CRR-r than jrt ; we are done.  Case (a2) is that, if 

jr jrb f< , then jrt jrb= .  Suppose there is a 1 jv v−  path P  with a CRR-r of jrμ  with 

jrμ > jrt jrb= . Recall that jrjr rb T a= −  where jra  is the minimum requirement of resource r  

over all j nv v−  paths.  Then jrjr ra Tμ + >  (i.e., P  can not be a part of any feasible 1 nv v−  path).   

For part (b), if jrf > jrb , then jrt { }max ,jr jr
b f=  and there are two cases.  Case (b1) is 

that, if jr jr
b f< , then jr jr

t f=  and no 1 jv v−  path has CRR-r less than jrt ; we are done.  Case 

(b2) is that, if jr jr
b f> , then jr jrt b= .  Suppose there is a 1 jv v−  path P  with CRR-r of jrμ  with 

jrμ < jr jrt b= .  Recall that jr r jrb T a= −  where jra is the maximum requirement of resource r  

over all j nv v−  paths.  Then jr jr ra Tμ + <  (i.e., P  augmented by any j nv v−  path results in a 

feasible 1 nv v−  path).  By setting jrμ  to jrμ′ = jr jrt b= , it follows that jr jr ra Tμ′ + = ; that is, P  

can still be augmented by any j nv v−  path to form a feasible 1 nv v−  path.  If jrf ≤ jrb , jr jrt f=  

and the statement can be proven true by applying an illustration that is similar to that used in 

case (b2).  This completes the proof. ■ 

Corollary 5.1. For SRCSP, each node and arc in RG  must be on some 1 nv v−  path(s) that satisfy 

resource windows determined by S1A.  

Proof. By Propositions 5.3 and 5.4.         ■ 

By Proposition 5.4, the original RCSP on G  is reduced to SPPRW on RG  with hard 

resource windows [ ,jr jrt t ], for j Rv V∈  and r∈ℜ .  Then, the optimal value of RCSP on G  is 
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equal to the optimal value of SPPRW on RG .  SPPRW, as depicted by model ( )2℘  (Chapter 

IV), is to find a shortest path from 1v to nv on acyclic digraph ( , )R R RG V A  that satisfies the 

resource-window constraints.   

5.1.3. Computational complexity of S1A 

Let γ  be the number of times (i.e., cycles) step 3 is repeated.   

Proposition 5.5.  S1A runs in ( )O mγℜ time, where m A=  is the number of arcs in G .  For 

SRCSP, S1A runs in ( )O mℜ .  

Proof.  Assume A | |V n> = .  Step 1, topological sorting of nodes, can be done in ( )O m  time; 

step 3 runs in ( )O mℜ  time for each cycle because every arc in G  is processed in constant time 

for each resource r∈ℜ ; step 5 runs in ( )O mℜ  time for the same reason. Thus, the total time 

for S1A is ( )O mγℜ .  For SRCSP, by Proposition 5.3, we have 1γ = ; thus, the run time of S1A 

is ( )O mℜ .    ■ 

For SRCSP, 1γ =  by Proposition 5.3.  Theoretically, for MRCSP, A  is an upper bound 

for γ .  Because, in the worst case, each cycle of step 3 identifies and deletes only one bottleneck 

arc and the maximum number of bottleneck arcs is A .  However, on average, γ  is much 

smaller than A .  Based on the computational results that Chapter VII presents, 1-6 cycles of 

step 3 are sufficient for preprocessing MRCSP.   

5.1.4. Summary 

Stage 1 (i.e., S1A) has two functions.  For SRCSP, it deletes all bottleneck nodes and arcs and, 

for MRCSP, it deletes some, if not all, of the bottleneck nodes and arcs, using a resource-based 

network reduction technique.  For MRCSP, step 3 is repeated until no more bottleneck nodes or 
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arcs can be deleted.  In contrast, for SRCSP, Proposition 5.3 shows that steps 3-4 need be 

implemented only once to identify and delete all bottleneck nodes and arcs.  This network 

reduction technique can be included in a preprocessing stage to enhance any algorithm for 

solving RCSP on an acyclic graph to help reduce the computational burden. 

Second, S1A tightens resource windows at each node in the reduced graph RG .  After 

stage 1, RCSP on input graph G  becomes SPPRW on reduced graph RG .  In RCSP, a difficulty 

arises because it is not possible to determine if constraints (1c) are satisfied or violated until an 

entire path from the source node to the sink node has been defined.  Thus, the infeasibility of a 

path can only be determined very late in the construction of the path.  Changing resource-

limitation constraints (1c) to resource-window constraints (2b) and (2c) by specifying a window 

for each resource at each node overcomes this difficulty.    

 

5.2. Expanding stage 

Stage 1 of S1A reduces the original RCSP on G  to SPPRW on RG  with hard resource windows 

[ ,j jt t ] for j Rv V∈ .  Starting from SPPRW on RG , stage 2 uses an expansion procedure (EP) to 

transform SPPRW on RG  to SPP on expanded graph EG ( , )E EV A= .  That is, RCSP on G  is 

reduced to SPP on EG  by stage 2.  This section proposes EP for stage 2 and introduces additional 

notation in Subsection 5.2.1, presents some properties inferred from EP in Subsection 5.2.2, 

analyzes the complexity of EP in Subsection 5.2.3, and gives a brief summary of this section in 

Subsection 5.2.4. 
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5.2.1. Description of EP 

EP applies to RG ( , )R RV A  with resource windows [ ,j jt t ], for j Rv V∈ .  Since RV  is obtained by 

deleting bottleneck nodes from ,V the indices of nodes in RV  are still in topological order (i.e., 

arc ( ,i jv v ) RV∈  if and only if i j< ) but they may not be consecutive.   

Now, we introduce additional notation used to detail EP.  Let jS  be a set of nodes in 

expanded graph EG  that is associated with specific node j Rv V∈  in RG .  Let k
j j Es S V∈ ⊆  denote 

the kth node in set jS , when 1,2, jk S= … .  As it expands RG  to form EG , EP may define a set 

of nodes jS  associated with j Rv V∈  in RG .  Then, 
j R

E jv V
V S

∈
=∪  and 'j jS S∩ =∅ , 

,jv 'j Rv V∈ , 'j j≠ .  EG  thus comprises RV  such sets of nodes.  Let { }1 , , jrRL

jr jr jrRL d d= …  be an 

ordered set, where 1
jrjrd t= , jrRL

jr jrd t=  and 1
jr jrd d− < , for 2, , jrRL= … .  For each j Rv V∈  in 

decreasing order, jrRL  is calculated according to:   

{ }
{ } { }

, ,

| , , , ( ) , , .
nr r

jr jrjr jr jr ir jir jr jr ir ir i j jr

RL T r

RL d d d u t d t d RL v FS v t t r

= ∀ ∈ℜ

= = − ≤ ≤ ∈ ∈ ∪ ∀ ∈ℜ
     (3) 

By way of (3), each element in jrRL  represents an amount of resource r∈ℜ  left over (i.e., 

available) for 1 jv v−  paths and is restricted to lie within window [ jrt , jrt ].  Expression (3) starts 

from the sink node nv  and initializes { }nr rRL T=  (i.e., the amount of resource r  left over for 

1 nv v−  paths is rT ).  In decreasing order of j Rv V∈ , expression (3) calculates jrRL  until finishing 

1rRL  for the source node.   

Let k
jy 1( , )k k

j j
y y

ℜ
=  be a CRR vector at node k

js jS∈  and jY  be the set of CRR vectors 

k
jy  for k

j js S∈  such that k
j j j≤ ≤t y t .  Each node k

js j ES V∈ ⊆  is associated with a unique 
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k
j jY∈y .  Initialize 1 { }Y = =1

1y 0 .  For each 1\ { }j Rv V v∈  in increasing order, the calculation of 

k
jry  involves two steps.  First compute  

k h
jr ir ijrg y u= + , for h

i iY∈y , ( , ) Ri j A∈  and r∈ℜ .                                   (4) 

Then, the value of k
jrg  is rounded up using jrRL  to define k

jry  according to (5):      

1 1

1

if ;

if   for some 2, , ;

if .jr

k
jrjr jr jr

k k
jr jr jr jr jr jr

RLk
jr jr jr

d g d t

y d d g d RL

g d t

−

⎧ ≤ =
⎪⎪= < ≤ =⎨
⎪
+∞ > =⎪⎩

…                          
(5a)
(5b)
(5c)

 

Expression (5a) rounds k
jrg  up to 1k

jrjr jry d t= =  when k
jrg  is lower than 1

jrjrd t= (see Proposition 

5.4).  Expression (5b) rounds all values of k
jrg  on the interval 1( , ]jr jrd d−  up to k

jr jry d= , for 

2, , jrRL= … .  Figure 5 illustrates that, if a value of k
jrg  corresponding to a 1 jv v−  path falls in 

interval 1( , ]jr jrd d− , this 1 jv v−  path can be augmented with the same set of j nv v−  paths as CRR-

r of jrd  to form feasible 1 nv v−  paths.  Expression (5c) sets k
jry = +∞  if jrRLk

jr jr jrg d t> =  because 

k
jrg  violates the limitation of resource r  (Proposition 5.4) and step 3(iii) of EP (see Figure 6) 

will discard it.   

 
Fig. 5. k

jry  is calculated using RP (4-5). 

              ×            ●           …         ●       ×       ×         ●                 ●             …         ●     ×    

            1
jr jrt d= <   …   < 1

jrd −      <       jrd   <    1
jrd + <    …    < jrRL

jrd jrt=  

"k
jrg  

'k
jrg  

k
jrg  

jrRL : 

'k
jr jry d=  
"k

jr jry d=  
1k

jr jry d=  
k
jrg ′′′  

k
jry ′′′ = +∞  

5(a) 
5(b)

5(c) 
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Remark 1.  Let jrΛ  be a set of values of k
jry  for j Rv V∈  and r∈ℜ .  If some interval (e.g., 

1( , ]jr jrd d +  in Figure 5), does not have any k
jrg  falling in it, then 1

jrd +  will not be in jrΛ .  Thus, 

jrΛ { }, ,jrjr jrRL t t⊆ ⊆  and 1jrjr jr jrRL t tΛ ≤ ≤ − + .  That is, using jrRL  to round k
jrg  up to k

jry  

reduces the solution space, perhaps significantly.  Hereafter, we refer to expressions (4) and (5) 

as the rounding procedure (RP).     

With this background, Figure 6 details EP.  EP processes nodes j Rv V∈  in order of 

increasing index, calculating k
jy , associating a node k

js jS∈  with each unique vector 

k
jy 1( , )k k

j j
y y

ℜ
= jY∈ , and connecting h

is  to k
js  if k

jy  is calculated from h
iy  (in steps 3(iii-iv)).   

 
step 1. For each r∈ℜ  and j Rv V∈ , calculate jrRL  according to (3). 
step 2. Initialize 1

1 1{ }S s= , 1 { }Y = =1
1y 0 . 

step 3. For each j Rv V∈ 1\{ }v  in increasing jv  index, 
     1k = . 
                For each ( )i jv BS v∈ ,  
(i)   for each h

i iY∈y ,  
(ii)   for each r∈ℜ , calculate k

jry  according to RP;  
(iii)                 if k

jr jry t> , discard k
jy  and go to step 3(i). 

 (iv)                 If k
jy = 'k

jy for 'k
jy jY∈ , add arc '( , )h k

i js s → EA ;               
 (v)                  else add k

jy → jY  in lexicographic order; k
js → jS ; ( , )h k

i js s → EA ; 1k k← + .  
 (vi)           Set E E jV V S= ∪  and free the memory used to store jrRL . 

step 4.  If 1ℜ > , delete the nodes and arcs that are not on any path from 1
1s  to 1

ns . STOP. 

Fig. 6. EP: expanding ( , )R R RG V A  to form ( , )E E EG V A . 

In step 3(v), k
jy  is inserted into jY  in lexicographic order so that the search in step 3(iv), 

which attempts to match k
jy  with some 'k

jy  in jY , is efficient.  A lexicographic order is a total 

ordering in that every two vectors are either equal, or one is lexicographically greater than the 

other. A nonzero vector is lexicographically positive if its first non-zero coordinate is positive. 
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The vector x  is lexicographically greater than the vector y  if x y−  is lexicographically 

positive, and this defines a lexicographic order in n .  In EP, once all successors of 1jv V∈  are 

processed, set jY  can be eliminated, freeing the memory needed to store it.     

Step 3(ii) calculates k
jry  using RP; it increases the opportunities to find a vector in jY  

matching k
jy  in step 3(iv) and, consequently, avoids adding a new node in jS  in step 3(v).  All 

nodes associated with j Rv V∈  that have the same CRR vector are represented by a single node 

with that CRR vector in EG .  RP reduces the size of EG .  Further, stage 3 of TSA solves SPP on 

EG  and the computational effort it requires depends on the size of EG  (see the next section); 

thus, RP reduces the computational effort that would be required by stage 3.  The computational 

evaluation in Chapter VII demonstrates the benefits of RP.   

 For MRCSP, steps 1-3 may create nodes and arcs that are not on any 1 1
1 ns s−  path, thus, 

step 4 may be needed to remove such nodes and arcs.  Figure 7(a) depicts an example with two 

resources and 1 2 2T T= = .  After S1A, RG G= . Note that, although arc (1,3) is a bottleneck, S1A 

does not identify it as such (see Section 5.1).  Let EG′  denote the expanded graph that steps 1-3 

of EP create.  Figure 7(b) shows EG′ , in which node 3
5s  does not have any successor and is not on 

any 1 1
1 7s s−  path.  Thus, for MRCSP, step 4 of EP is needed to delete the nodes and arcs that are 

not on any 1 1
1 ns s−  path in EG′ .  In the example of Figure 7, the subgraph in the dashed box 

(including arc ),( 2
3

1
1 ss ) is deleted from EG′  to complete EG .  

 We now present several properties that define the structure of EG  as created by EP.  
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5.2.2. Properties 

Proposition 5.6.  One node in EG  corresponds to source node 1v  in G ; and another one 

corresponds to sink node nv  in G ; that is { }1
1 1S s=  and { }1

n nS s= .  

Proof. Since 1 1 0r rt t= =  and nr nr rt t T= = , then { }1 1 0r rRL = Λ =  and { }nr nr rRL T= Λ = , r∀ ∈ℜ .  

Thus, { }1
1 1Y = =y 0 and { }1

n n rY = =y T , and { }1
1 1S s=  and { }1

n nS s= .    ■ 

 By proposition 5.6, 1
1s  is the source node and 1

ns  is the sink node in EG .  

 
Legend: (a) instance with two resources, the label on each arc is the resource requirement vector; (b) EG  
for instance of (a), the label on node k

js  is vector k
jy . 

Fig. 7. An example of expanded graph EG . 
 
 

Proposition 5.7.  For SRCSP, every node that steps 1-3 of EP create in EG  is on some path from 

1
1s  to 1

ns .  

Proof.  Consider SRCSP with { }1ℜ = .  Note that every node in EG  (except the source node 1
1s ) 

has one or more predecessors because EP constructs EG  in increasing order of j Rv V∈  index.  By 

2 

1 3

4 

5

6

7 
<0,1> 

<0,0> <0,0> <0,0> <0,0> 

<1,1> <0,2> 

<1,0> <2,0> 

1
2s1

1s
1
3s 1

4s 1
5s 1

7s

2
5s 1

6s

2
3s 2

4s 3
5s

<0,0> <0,0> <2,0> <2,0> <2,2>

<0,2> <2,2>

<2,2><2,2><1,1>

(a) 

(b)

<0,0>
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way of contradiction, suppose the proposition is not true.  Then, steps 1-3 of EP create a node k
js  

that is associated with 1
k
jy  and does not have any successor in EG , implying 1 1

k
j jy b> .  However, 

steps 1-3 create node k
js  only if 1 1 1

k
j j jy t b< ≤ , establishing a contradiction.  The proof is 

completed.    ■ 

 By Proposition 5.7, we do not need step 4 of EP for SRCSP.  

5.2.3. Computational complexity of EP 

To analyze the numbers of nodes and arcs in EG , define j jr
r

ϑ
∈ℜ

= Λ∏  for j Rv V∈ and 

max max{ }
j R

jv V
ϑ ϑ

∈
= .  Recall that jrΛ  is the set of values of k

jry  for j Rv V∈  and r∈ℜ .  Then, 

j jS ϑ≤  and maxmax
j R

jv V
S ϑ

∈
≤ ; that is, the maximal number of nodes associated with any j Rv V∈  is 

bounded by maxϑ .  Define ( )
j R

j j
v V

FS v ϑ
∈

Ω = ∑ .    

Proposition 5.8. The numbers of nodes and arcs in EG  are bounded by maxRV ϑ  and Ω , 

respectively, where max max{ }
j R

jv V
ϑ ϑ

∈
=  and ( )

j R
j j

v V
FS v ϑ

∈

Ω = ∑  is of order max( )RO A ϑ max( )O mϑ= .   

Proof.  The number of nodes in EG  that are associated with node jv  in RG  is bounded by 

maxjϑ ϑ≤ .  Thus, the total number of nodes in EG  is bounded by maxRV ϑ .  Because each node 

k
js j ES V∈ ⊆  has at most ( )jFS v  successors, the total number of arcs in EG  is bounded by 

( )
j R

j j
v V

FS v ϑ
∈

Ω = ∑ , which is of order max( )
j R

j
v V

O FS v ϑ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ max( )RO A ϑ= max( )O mϑ= .    ■ 

To analyze the complexity of EP, define 
( , )

1
R

jrr jr
i j A

t tθ
∈

= − +∑  for r∈ℜ  and r
r
θ

∈ℜ

Θ = ∑ .  

Recall that 1jrjr jrRL t t≤ − +  (see Remark 1).  Thus, jrRL  for j Rv V∈ , r∈ℜ  can be stored in a 
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one-dimensional array of size ( 1jrjrt t− + ).  Using this data structure for jrRL , each k
jy  can be 

calculated in ( )O ℜ  time according to RP (4-5) in step 3(ii) of EP.   

Proposition 5.9.  EP runs in ( )maxO mϑℜ +Θ  time in the worst-case.   

Proof.  Constructing sets jrRL  for all j Rv V∈  can be done in ( )rO θ  for each r∈ℜ .  Thus, 

constructing all sets jrRL  for j Rv V∈ , r∈ℜ (step 1) can be done in ( )r
r

O θ
∈ℜ
∑ ( )O= Θ  time.  

Considering arc ( , )i j Rv v A∈ , each k
jy  can be calculated from each h

i iY∈y  in ( )O ℜ  time.  

Because iY  is of order )( iO ϑ , the calculation of k
jy  from all h

i iY∈y  can be done in ( )iO ϑℜ  

time.  Inserting all resulting k
jy  into jY  in lexicographic order can be done in ( )jO ϑℜ  time, 

because vectors h
i iY∈y  are stored and processed in lexicographic order.  Thus, step 3 can be 

done in 
( , )

( )
R

i j
i j A

O ϑ ϑ
∈

⎛ ⎞ℜ + ℜ⎜ ⎟
⎝ ⎠
∑ ( )maxO mϑ= ℜ .  For MRCSP, deleting the nodes and arcs that 

are not on any connected 1 1
1 ns s−  path in step 4 can be done in ( )O Ω  because EA  is bounded by 

Ω  by Proposition 5.8.  Hence, the total run time of EP is ( )maxO mϑℜ +Θ .    ■ 

Remark 2.  The solution state (CRR vector) is associated with a feasible combination of 

resources in set ℜ .  Thus, the number of solution states increases with the number of resources, 

ℜ .  The factors j jr
r

ϑ
∈ℜ

= Λ∏  for j Rv V∈  and max max{ }
j R

jv V
ϑ ϑ

∈
=  in Propositions 5.8 and 5.9 

increase quickly with the number of resources.  On the other hand, it is likely that more 

bottleneck nodes and arcs can be identified and deleted to reduce the size of RG  as the number of 

resources increases.  The computational evaluation of Chapter VII investigates this trade-off. 
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5.2.4. Summary 

Via stage 2, SPPRW on RG  is transformed to SPP from source node 1
1s  to sink node 1

ns  on EG .  

EG  is acyclic and its nodes are in topological order (i.e., arc ( , )h k
i js s  is in EG  if and only if 

i j< ); note that no pair of nodes in set of jS  is connected.  The cost on arc ( , )h k
i js s EA∈ , for 

h
i is S∈ , k

j js S∈  is the cost on arc ( , )i jv v A∈ , ijc . 

 

5.3. Iterative solution stage 

Stages 1 (S1A in Figure 3) and 2 (EP in Figure 6) of TSA reduce the original RCSP to SPP on 

EG  with source node 1
1s  and sink node 1

ns  .  The task of stage 3 (iterative solution stage) is to 

optimize (or reoptimize) SPP on acyclic graph EG .  This section proposes an optimizing 

algorithm (OA) for stage 3 and analyzes its computational complexity.  Chapter VIII will 

propose a reoptimizing algorithm (ROA) that can be used in stage 3 (in place of OA) in CG 

applications.   

Let ( )k
E jFS s  and ( )k

E jBS s  denote the sets of the successors and predecessors of k
js  in 

,EG  respectively. ( ) { : ( , ) }k h k h
E j i j i EFS s s s s A= ∈  and ( ) { : ( , ) }k h h k

E j i i j EBS s s s s A= ∈ .  Recall that ijc  

is the cost on arc ( , )i jv v A∈  and arc ( , )h k
i js s EA∈ , for h

i is S∈ , k
j js S∈ .  The cost of a path is the 

sum of the costs associated with the arcs on the path.  Let ( )k
jsπ  be the label on node k

js , that is, 

the minimum cost among 1
1

k
js s−  paths in EG .  Then, the cost of an optimal path is 1( )nz sπ=  

(since { }1
n nS s=  by Proposition 5.6).  Let ( )k

jp s  be the predecessor of k
js  on the shortest path 

from 1
1s  to k

js .  Given z , a shortest path can be identified easily by backtracing using 1( )np s .  

Figure 8 details OA, an algorithm for optimizing SPP on EG .    
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step 1. Set 1
1( ) 0sπ = . 

step 2. For each j ES V⊆  in the order of increasing index, for each k
js jS∈ , calculate 

( ) min{ ( ) : ( , ) }k h h k
j i ij i j Es s c s s Aπ π= + ∈  and  

 ( )k
jp s =

*

*
h
i

s  with 
* *

* * *( ) ( ) , ( )k h h k
j E ji i j i

s s c s BS sπ π= + ∈ .  

step 3. Set 1( )nz sπ= .                                                                                           
step 4. Find the shortest path by tracing back using 1( )np s .  STOP.  

Fig. 8. OA. 

Proposition 5.10.  OA runs in ( )EO A ( )O= Ω . 

Proof.  Step 2 of OA processes every arc in EG  in constant time, so it can be done in ( )EO A  

time, where EA  is the arc set of EG .  Similarly, step 4 of OA traces from the sink node back to 

the source node in ( )EO A  time.  By Proposition 5.8, the number of arcs in EG  is bounded by 

Ω ; thus, OA runs in ( )EO A ( )O= Ω  time. ■ 

 

5.4. TSA for repeatedly solving RCSP 

Based on the analysis and results in Sections 5.1-5.3, this section states a version of TSA for 

solving RCSP repeatedly and analyzes its computational complexity.  Figure 9 details TSA, 

using iteration to refer to the CG iterations on which an instance of RCSP is solved repeatedly.  

Figure 9 shows that the preliminary phase of TSA (stages 1 and 2) is implemented only once in 

solving an instance of RCSP.  When 1iteration > , only stage 3 is needed.  

 
1   If 1iteration = , 
2  (stage 1):   run S1A;  
3  (stage 2):   run EP; 
4  (stage 3):   run OA on EG . 
5  If 1iteration > , 
6 (stage 3):  run OA on EG . 

Fig. 9.  TSA. 
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Proposition 5.11.  The complexity of TSA is ( )maxO m mγ ϑℜ + ℜ +Θ  for the first-time 

solution ( 1iteration = ).  Each subsequent solution ( 1iteration > ) requires ( )O Ω  time.  

Proof. By Propositions 5.5, 5.9 and 5.10, TSA runs in ( )max( ) ( )O m O m Oγ ϑℜ + ℜ +Θ + Ω  

= ( )maxO m mγ ϑℜ + ℜ +Θ  time for the first-time solution.  Each subsequent solution can be 

obtained by stage 3 and thus requires ( )O Ω  time.    ■ 

The power of TSA is demonstrated when RCSP is solved repeatedly (e.g. in CG).  For 

each iterative solution, only stage 3 is needed and it runs in ( )O Ω  max( )O mϑ=  time.  Chapter 

VII demonstrates the computational effectiveness of TSA when it is used to repeatedly solve 

RCSP.  

 

5.5. Summary 

This chapter proposes TSA and gives time complexities of each stage and of the entire approach.  

TSA is suitable for solving RCSP repeatedly, for example, when RCSP is a subproblem in CG 

and CG/B&B.  For each iterative solution, only stage 3 of TSA is needed to solve RCSP and it 

runs in ( )O Ω  max( )O mϑ=  time.   

The next chapter presents another method, which may be preferred for one-time solution 

of RCSP; Chapter VII uses it as a benchmark method for comparing computational results. 
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CHAPTER VI 

LABEL-SETTING ALGORITHM 

 

This chapter presents a label-setting algorithm (LSA) for RCSP.  Most previous studies chose 

various labeling algorithms to solve RCSP subproblem(s) in CG and CG/B&B; thus, this 

dissertation uses LSA as a benchmark in its computational evaluation of TSA in Chapter VII.   

In this chapter, k
jry  is still used to denote CRR-r for r∈ℜ  for a 1 jv v−  path and 

1 ,
( , , )k k k

j j j
y y

ℜ
=y …  is the CRR vector.  For each node jv RV∈ , let jD  be a set of labels that 

comprise all pairs ( k
jτ , k

jy ) of 1 jv v−  path cost k
jτ  and CRR vector k

jy  such that k
j j≤y t .  Then, 

the recursion of LSA, by increasing order of j , can be expressed as follows.  

1 1 1 1
1 1 1 1 1{( , ) : 0, },

{( , ) : min{ : calculate  according to (4) and (5),  

, , , ( , ) }}.

k k k h k
j j j j i ij j

k h h
j j i i i R

D
D c

D i j A

τ τ
τ τ τ

τ

= = =
= = +

≤ ∈ ∈

y y 0
y y

y t ( y )
                (6) 

The recursion initializes the cost at the source node of 1v  to be zero and its CRR vector to be the 

zero vector.  For each node jv , set jD  is calculated by processing every label in iD  for every 

predecessor iv  of jv .  The recursion continues until set nD  (i.e., label at the sink node of nv ) is 

obtained.  Note that { }1 1 1( , ) :n n n nD τ= =y y T  since nr nr rt t T= =  and { }nr rRL T= , r∀ ∈ℜ .  Thus, 

the optimal value is 

                       1
nz τ= .             (7) 

Figure 10 details LSA. 
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1  If 1iteration = , 
2   run S1A and construct jrRL  for j Rv V∈  and r∈ℜ according to (3) in Section 5.2. 
3  If 1iteration ≥ , 
4   implement recursion (6) by increasing jv RV∈  index; 
5   calculate the optimal value (expression (7)).  

Fig. 10.  LSA.  

Before solving RCSP for the first time, LSA uses S1A to remove the bottleneck nodes 

and arcs and formulate resource windows [ ,j jt t ], which are used in calculating jD .  Line 2 

determines ordered sets jrRL  (for j Rv V∈  and r∈ℜ ) for use in calculating k
jry  in recursion (6).  

For each iteration, recursion (6) of LSA must run from scratch (lines 4-5 in Figure 10).  

Proposition 6.1 establishes the complexity of LSA.   

Proposition 6.1.  LSA computes a first-time solution ( 1iteration = ) in ( )maxO m mγ ϑℜ + ℜ +Θ  

in the worst-case.  Each subsequent solution ( 1iteration > ) requires ( )maxO mϑℜ  time.  

Proof. By Proposition 5.5, S1A runs in ( ) ,O mγℜ  where γ  is the number of cycles of step 3 in 

S1A.  For SRCSP, 1.γ =   By Proposition 5.9, jrRL  for r∈ℜ  and j Rv V∈  can be determined in 

( )O Θ  time and each k
jy  can be calculated in ( )O ℜ .  maxϑϑ ≤≤ jjD , so the total number of 

labels is bounded by ( )
j R

j j
v V

FS v ϑ
∈

Ω = ∑ , which is of order max( )RO A ϑ max( ).O mϑ=   Thus, 

recursion (6) runs in ( )maxO mϑℜ  time.  Hence, the total run time of LSA is 

( )maxO m mγ ϑℜ + ℜ +Θ  for a first-time solution.  Each subsequent solution can be obtained by 

recursion (6), which runs in ( )maxO mϑℜ  time.    ■ 

By Propositions 5.11 and 6.1, LSA and TSA have the same worst-case complexity for 

the first-time solution.  However, TSA uses a preliminary phase to facilitate each iterative 
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solution, and, for each subsequent solution of RCSP, TSA requires max( ) ( )O O mϑΩ =  time while 

LSA requires ( )maxO mϑℜ  time.  Thus, TSA can be expected to outperform LSA when RCSP is 

solved repeatedly.  Chapter VII explores this conjecture computationally. 
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 CHAPTER VII 

COMPUTATIONAL EVALUATION OF TSA 

 

This chapter describes computational tests, designed to evaluate the effectiveness of TSA.  

Section 7.1 describes test instances and the computation platform.  Section 7.2 presents results 

comparing TSA and LSA on the test instances.  Section 7.3 investigates the effect of resource 

limitations on the performance of TSA.  Furthermore, Section 7.4 evaluates the effectiveness of 

the preliminary phase of TSA.   

 

7.1. Test problems and computational platform 

The set of test instances involves acyclic graphs and can be divided into three classes.  Class 1 

consists of 12 instances from Beasley and Christofides (1989), which are available from the OR-

library.  Beasley and Christofides (1989) provided 24 test instances, but 12 instances involve 

cyclic graphs; we use the 12 acyclic graphs, which range from 100 nodes and 959 arcs to 500 

nodes and 4,868 arcs.  Their instances involve either 1 or 10 resources (see Table 5); they 

generated resource requirements and arc costs independently from the discrete uniform 

distribution on range [ ]0,5 (i.e., [ ]0,5DU ).  

We generate instances in Classes 2 and 3 randomly.  Class 2 comprises SRCSP 

instances; and Class 3, MRCSP instances with 4 resources.  We generated instances in which 

each arc ( , )i j  is included in the graph with probability p .  In order to assure that the optimal 

path contains at least n q  arcs, for arc ( , )i j , j  is defined for each integer on 

[ ]1,min( , )i n i q+ + , where we specified q (1 q n< ≤ ) to restrict the span of arc ( , )i j  so that 

j i q− ≤  (see Remark 4 for the definition of span of an arc).  The expected number of arcs in a 
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graph that is randomly generated in this manner with parameters of n , p and q  is 

( )( 1) 2pq n q− + .    

Class 2 comprises two types of instances (types 2a and 2b) according to the way we 

assign resource requirements to arcs:   

type 2a:  the resource requirements on arcs are independent, identically distributed 

from [ ]1,10DU ; 

type 2b:  the resource requirement on each arc is positively related to its span, i.e., 

resource requirement on arc ( , )i j  equals [ ( )]R j i−  where [ ]i  denotes the nearest 

integer and R  is generated randomly from ( )0.0,1.0U . 

Class 3 comprises three types of instances (types 3a, 3b, and 3c) according to the way 

we assign resource requirements to arcs:   

type 3a:  the requirement for each resource is assigned independently as for type 2a; 

type 3b:  the requirement for each resource is assigned independently as for type 2b;  

type 3c:  the requirements for resources 1 to 2ℜ  ( ℜ  is an even integer) are mutually 

independently drawn from [ ]1,100DU .  Requirements of resources 2 1, ,r = ℜ + ℜ…  

are inversely related to resource 2r − ℜ ; that is, ( ) . 2
2500 0.0,1.0ijr ij r

u U u
−ℜ

⎡ ⎤= ⎣ ⎦ . 

Let min,rT  ( max,rT ) denote the requirements for resource r∈ℜ on the 1 nv v−  path(s) that 

require the minimum (maximum) amount of resource r .  These values can be obtained by 

setting ij ijrc u=  ( ij ijrc u= − ) and implementing a classical SPP algorithm for each resource r∈ℜ  

on input graph G .  For each instance in Classes 2 and 3, the limitation for resource r∈ℜ  is 

determined by 

min, max, min,( )r r r rT T T T η= + − × ,                                               (8) 
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where we specify parameter η  on ( ]0,1.0  to control the tightness of resource limitations.  For all 

instances in Classes 2 and 3, we draw arc costs independently from ( )100.0,100.0U − .   

Table 4 describes each instance in Classes 2 and 3 in detail.  The first column gives a 

code that identifies each test instance.  A triple (s or m, V , class type) denotes each instance in 

Classes 2 and 3, where s indicates a single resource, m denotes multiple resources, and class type 

Table 4. Test instances in Classes 2 and 3  

instance |ℜ | |V| |A| q p resource 1 resource 2 resource 3 resource 4 
            Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax 
s-100-2a 1 100 946 25 0.45 10 308 - - - - - - 
s-100-2b 1     9 98 - - - - - - 
s-200-2a 1 200 2150 50 0.25 8 446 - - - - - - 
s-200-2b 1     13 194 - - - - - - 
s-500-2a 1 500 5450 125 0.1 9 494 - - - - - - 
s-500-2b 1     38 491 - - - - - - 
s-700-2a 1 700 6973 140 0.08 10 657 - - - - - - 
s-700-2b 1     34 684 - - - - - - 
s-1000-2a 1 1000 10435 240 0.05 14 615 - - - - - - 
s-1000-2b 1     49 962 - - - - - - 
s-2000-2a 1 2000 18913 550 0.02 7 470 - - - - - - 
s-2000-2b 1     116 1926 - - - - - - 
s-3000-2a 1 3000 29013 750 0.015 10 560 - - - - - - 
s-3000-2b 1     153 2888 - - - - - - 
s-5000-2a 1 5000 45038 1000 0.01 11 668 - - - - - - 
s-5000-2b 1     283 4783 - - - - - - 
m-20-3a 4 20 155 20 0.8 3 105 6 73 4 82 3 90
m-20-3b 4     3 19 2 19 2 19 2 19
m-20-3c 4     22 807 43 888 20 3082 9 2548
m-50-3a 4 50 472 40 0.4 4 146 6 171 4 155 5 151
m-50-3b 4     5 48 7 48 2 48 7 49
m-50-3c 4     29 1384 23 1414 31 2748 5 4167
m-100-3a 4 100 946 25 0.45 9 253 8 305 10 312 11 282
m-100-3b 4     9 96 11 99 12 99 14 99
m-100-3c 4     74 2785 44 2939 27 6998 38 11668
m-500-3a 4 500 5450 125 0.1 9 525 12 487 13 487 10 515
m-500-3b 4     29 488 33 486 38 481 32 489
m-500-3c 4     86 4630 59 4740 37 18435 30 16337
m-1000-3a 4 1000 10435 240 0.05 10 572 11 576 11 601 10 599
m-1000-3b 4     61 957 54 969 46 951 65 973
m-1000-3c 4         58 5652 72 5673 32 22210 44 24065
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is 2a, 2b, 3a, 3b, or 3c.  For example, s-100-2a denotes the SRCSP instance of class type 2a with 

100 nodes; m-50-3b denotes the MRCSP instance of class type 3b with 50 nodes.  Columns 2 

and 3 give V  and A , respectively, to record the size of input graph G  in each instance.  

Columns 4 and 5 are the values of parameters q  and p , respectively, that are used to 

generate .G  Columns 6 and 7 give min,rT  and max,rT  for 1r =  and columns 8-13 give corresponding 

values for 2,  3,  and 4r = .  

We program all algorithms in the C/C++ programming language and conduct all 

experiments on a 3.2 GHz Pentium IV PC with 512 Mb of RAM.  

 

7.2. Computational results for TSA and LSA 

We solve each instance using both TSA and LSA, each for 100 randomly generated replications 

for each set of specified resource limitation(s).  Stage 3 of TSA uses OA.  At each replication, 

we generate a new set of arc costs randomly from [ ]0,5DU  for instances in Class 1 (to be 

consistent with the cost structure in Beasley and Christofides (1989)) and from 

( )100.0,100.0U −  for instances in Classes 2 and 3.   

Tables 5, 6, and 7 give computational results for instances in Classes 1, 2 and 3, 

respectively.  In these tables, the column that gives γ  reports the number of cycles made by step 

3 in S1A.  Columns of EV  and EA  record the size of expanded graph EG  in each instance.  The 

run times for stages 1 and 2 of TSA and for LSA preprocessing are recorded separately; these 

operations are conducted only once before 100 replications are made.  The run times for stage 3 

of TSA and for LSA recursion are the total run times for 100 replications (excluding the 

preliminary phase of TSA and LSA preprocessing, respectively).  The last column gives the 

threshold number of replications, which is calculated using 
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( )100 (TSA_preliminary) (LSA_preprocessing)
(LSA_recursion) (stage 3_of_TSA)

cpu cpu
threshold

cpu cpu
⎡ ⎤× −

= ⎢ ⎥−⎢ ⎥
,                (9) 

where ⎡ ⎤⎢ ⎥i  denotes the nearest integer towards infinity.  Note that (stage 3_of_TSA)cpu  is the 

total run time for stage 3 of TSA for 100 replications and does not include the time for the 

preliminary phase of TSA; (LSA_recursion)cpu  is the total run time for LSA recursion for 100 

replications and does not include LSA preprocessing time.  The preliminary phase of TSA 

requires more run time than LSA preprocessing.  However, for each subsequent solution, TSA 

requires less run time than LSA.  Thus, when the number of replications is greater than or equal 

to threshold , TSA is faster than LSA; otherwise, LSA is faster than TSA.   

Table 5 presents results of tests on Class 1 instances.  Beasley and Christofides (1989) 

determined the resource limitations for each instance in Class 1.  We calculate the average value 

of η  over all of resource types for each instance to provide intuition concerning how tight these 

resource limitations are.  As shown in column 5 of Table 5, the average value of η  for all Class 

1 instances is less than 0.1, indicating that their limitations are tight.  Both TSA and LSA solve 

all Class 1 instances, but TSA is much faster than LSA over 100 replications.  Actually, 

threshold is 3 for all Class 1 instances except rcsp23, which results in a threshold of 5.  Note that 

both instances rcsp23 and rcsp24 have 500 nodes and 10 resources; however, rcsp24 has many 

more bottleneck nodes (411 for rcsp24 versus 127 for rcsp23) and more bottleneck arcs (4,735 

for rcsp24 versus 3,545 for rcsp23) so that rcsp24 is solved more quickly than rcsp23. 

We test each Class 2 SRCSP instance using three values of { }0.1,0.5,0.9η = , ranging 

from tight to loose resource limitation(s); instance sizes range from 100 nodes and 946 arcs to 

5,000 nodes and 45,038 arcs.  Table 6 gives the results of these tests.  Columns 2 and 3 record η  

and 1T , respectively.  Other columns correspond to those in Table 5.  
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TSA requires much less run time than LSA for 100 replications, although stage 2 of TSA 

may consume some time to expand RG .  Actually, for all Class 2 instances, when the number of 

replications is larger than or equal to 4, TSA is faster than LSA (see the last column in Table 6).  

The complexity analysis of Chapters V and VI shows that run times, for TSA and LSA are 

related, not only to the size of an instance but also to the amounts of resources required by arcs.  

For example, S1A identifies and deletes the same numbers of bottleneck nodes and arcs in large 

instances of type 2a (s-3000-2a) and type 2b (s-3000-2b) with 0.5η = .  TSA solves instance s-

3000-2a in a run time of 72.089 seconds.  However, TSA runs a long time and terminates due to 

low memory while attempting to solve instance s-3000-2b.  Because the amounts of resources 

required in the instance of type 2b are larger than those in the corresponding instance of type 2a; 

it turns out that TSA takes a long time to generate a much larger expanded graph associated with 

s-3000-2b than that associated with s-3000-2a and, eventually, runs out of memory to store such 

a large graph.  Although LSA can solve these instances, it takes 117 seconds for instance s-3000-

2b for just one replication.  Another observation is that the total number of labels enumerated by 

LSA equals the number of nodes in expanded graph EG , which is created by TSA.  Because 

TSA and LSA generate the same set of k
jy ; each unique k

jy  is associated with a node in EG  by 

TSA and with a label by LSA.  Since type 2a instances have arc resource requirements that are 

uniformly distributed and type 2b instances have arc resource requirements that are proportional 

to the spans of arcs (so that large values of arc resource requirements may be generated for large 

span arcs), type 2b instances have more bottleneck arcs than type 2a instances for the same value 

of η ; this difference is especially distinct for 0.1η = .  For all test instances, both the size of EG  

and the total run time for 0.5η =  are much larger than they are for 0.1η =  or 0.9η = .  The next 

section investigates this issue in detail.     
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Table 7 gives the results on MRCSP instances with 4 resources; underlying graphs range 

from 20 nodes and 155 arcs to 1,000 nodes and 10,435 arcs.  Columns 3-6 give the resource 

limitations for resource r = 1, 2, 3, and 4, respectively.  Other columns correspond to those in 

Tables 5 and 6.   

Both TSA and LSA solve small instances (e.g., m-20 series (i.e., m-20-3a, m-20-3b and 

m-20-3c)) in reasonable times.  They also solve mid-size instances (e.g., m-50 and m-100 series) 

for both small and large values of η  but their performances degrade with the mid-range value of 

η .  On large instances (e.g., m-500 and m-1000 series), we test only small and large values of η  

because both TSA and LSA take long times to solve each instance with the mid-range value of 

η .  This is consistent with the complexity analyses of Chapters V and VI.  The performances of 

TSA and LSA dis-improve on MRCSP instances because the size of the solution space increases 

with the number of resources (see Remark 2).  Note that, for MRCSP instances, stage 2 of TSA 

identifies some bottleneck nodes and arcs that stage 1 of TSA can not identify, as illustrated in 

Section 5.1.   

Comparing s-100-2a versus m-100-3a and s-100-2b versus m-100-3b, we see that, with 

multiple resources, more bottleneck nodes and arcs can be identified and deleted if η  is small 

(e.g., 0.1η = ), but as η  increases, the multiple resources do not help identify more bottleneck 

nodes and arcs (e.g., 0.5η =  and 0.9η = ).   

In summary, consistent with our TSA and LSA complexity analysis, the run times 

required by TSA and LSA depend not only on the size of the underlying graph but also on the 

number of resources and the amounts of resources required by arcs.  The run time required by 

stage 1 (i.e., S1A) is negligible for almost all of test instances; S1A is indeed efficient.  The 

number of cycles in S1A, γ , is at most 6 over all MRCSP instances and 1γ =  for all SRCSP 
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Table 7.  Results of solving instances in Class 3 for 100 replications 
 

instance η T1 T2 T3 T4 γ NBN NBA |VE| |AE| 
                      

m-20-3a 0.1 13 12 11 11 1 17 152 3 3
  0.5 54 39 43 46 1 1 12 1970 5721
  0.9 94 66 74 81 1 1 12 265 1407
m-20-3b 0.1 infeasible - - 1 - - -
  0.5 11 10 10 10 4 2(9) 104(142) 11 14
  0.9 17 17 17 17 1 1 14 523 2349
m-20-3c 0.1 100 127 326 262 1 11 141 8 14
  0.5 414 465 1551 1278 1 1 14 1675 6549
  0.9 728 803 2775 2294 1 1 12 142 1017
m-50-3a 0.1 18 22 19 19 4 22(26) 405(423) 34 60
  0.5 75 88 79 78 1 5 83 244860 794024
  0.9 131 154 139 136 1 5 38 2209 14222
m-50-3b 0.1 infeasible - - 1 - - -
  0.5 26 27 25 28 1 5 163(205) 9617 17167
  0.9 43 43 43 44 1 5 84 4364 24295
m-50-3c 0.1 164 162 302 421 3 36 447 15 27
  0.5 706 718 1389 2086 1 5 85 114474 467701
  0.9 1248 1274 2476 3750 1 5 83 1413 9101
m-100-3a 0.05 21 22 25 24 4 93 938 7 8
  0.1 33 37 40 38 1 6 71(110) 26223 44139
  0.9 228 275 281 254 1 6 71 666279 6162433
  0.95 240 290 296 268 1 6 71 6403 62057
m-100-3b ≤0.2 infeasible - 1 - - - -
  0.25 30 33 33 35 2 6(42) 143(825) 388 492
  0.9 low memory - - - - - -
  0.95 91 94 94 94 1 6 71 44096 369813
m-100-3c 0.05 200 188 375 619 6 22(63) 619(880) 76 104
  0.1 345 333 724 1201 1 6 91(94) 201708 377057
  0.9 2513 2649 6300 10505 1 6 71 554514 5109023
  0.95 2649 2794 6649 11086 1 6 71 6042 56656
m-500-3a 0.05 34 35 36 35 2 66(152) 1136(3829) 5330 8050
  0.95 499 463 463 489 1 45 610 211742 2393833
m-500-3b 0.05 infeasible - 1 - - - -
  0.95 465 463 458 466 1 45 610 270554 2915987
m-500-3c 0.05 313 293 956 845 3 55(97) 1111(2642) 34349 49637
  0.95 4402 4505 17515 15521 1 45 610 50110 631858
m-1000-3a 0.05 38 39 40 39 2 139(263) 1964(6841) 14934 21375
  0.95 543 547 571 569 1 115 1362 1240084 13725213
m-1000-3b 0.05 infeasible - 1 - - - -
  0.95 low memory - - - - - -
m-1000-3c 0.05 337 352 1140 1245 2 134(160) 1929(3331) 179.837 260.888
  0.95 5372 5392 21101 22863 1 115 1362 250552 3090572
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Table 7. Continued  
 

instance TSA run time (sec.) NL LSA run time (sec.) threshold
  stage1 stage2 stage3 total   prep recursion total  

m-20-3a 0 0 0.031 0.031 3 0 0.46 0.46 0 
  0 0.531 0.063 0.594 2093 0 21.56 21.56 3 
  0 0.078 0.063 0.141 267 0 4.22 4.22 2 
m-20-3b - - - - - - - - - 
  0 0 0.048 0.048 27 0 0.46 0.46 0 
  0 0.156 0.063 0.219 530 0 10.16 10.16 2 
m-20-3c 0 0 0.078 0.078 9 0 1.343 1.343 0 
  0 0.609 0.093 0.702 1680 0.015 33.344 33.359 2 
  0 0.046 0.048 0.094 143 0 3.031 3.031 2 
m-50-3a 0 0.016 0.016 0.032 43 0 1.671 1.671 1 
  0 3795.9 6.687 3802.61 258093 0.031 176730.4 176730 3 
  0 0.719 0.171 0.89 2213 0 40.969 40.969 2 
m-50-3b - - - - - - - - - 
  0 17.125 0.328 17.453 28061 0 399.69 399.69 5 
  0 2.484 0.282 2.766 4370 0 178.13 178.13 2 
m-50-3c 0 0.015 0.047 0.062 16 0 1.719 1.719 1 
  0 959.8 3.344 963.147 116503 0.156 62289.8 62290 2 
  0 0.5 0.14 0.64 1415 0.03 28.61 28.64 2 
m-100-3a 0 0.015 0.061 0.076 7 0 1.72 1.72 1 
  0 64.797 0.578 65.375 77368 0.094 1513.3 1513.39 5 
  0 1963.9 157.25 2121.19 666448 0.046 82676.1 82676.1 3 
  0 3.157 0.375 3.532 6404 0.015 186.25 186.265 2 
m-100-3b - - - - - - - - - 
  0 178.86 0.141 179.002 153969 0.063 2553.15 2553.21 8 
  - - - - - - >10 hrs - - 
  0 77.61 1.971 79.581 44097 0.015 6284.45 6284.47 2 
m-100-3c 0 0.219 0.048 0.267 334 0.172 2.781 2.953 2 
  0 2858.2 4.654 2862.89 338557 1.797 100335.3 100337 3 
  0 2995.9 27.218 3023.16 554515 0.296 132839.2 132839 3 
  0 2.86 0.36 3.22 6043 0.063 177.19 177.253 2 
m-500-3a 0 5.813 0.157 5.97 29379 0.344 210.16 210.504 3 
  0 155.56 11.608 167.172 211743 0.094 8550.9 8550.99 2 
m-500-3b - - - - - - - - - 
  0 999.66 16.079 1015.74 270555 0.14 84829.2 84829.3 2 
m-500-3c 0 66.391 0.687 67.078 96445 8.781 2088.47 2097.25 3 
  0 38.203 2.766 40.969 50111 0.266 2536.59 2536.86 2 
m-1000-3a 0 25.25 0.501 25.751 98642 0.75 877.35 878.1 3 
  0 3458.2 19516 22974.7 1240085 0.188 105121.7 105122 5 
m-1000-3b - - - - - - - - - 
  - - - - 1401506 0.439 1045992 1045992 - 
m-1000-3c 0 908.22 4.38 912.595 592414 24.516 26429.2 26453.7 4 
  0 263.14 16.03 279.173 250554 0.563 17473.65 17474.2 2 
 



 59  

instances.  For all test instances, the run time of TSA stage 3 is proportional to the size of EG , 

and the run time of LSA is proportional to total number of labels enumerated.  TSA and LSA 

both solve RCSP effectively; their performances on SRCSP are better than on MRCSP.  TSA 

takes advantage of its preliminary phase, which is implemented only once for each instance to 

make EG  available to facilitate subsequent calculation.  In contract, LSA must run its recursion 

from the beginning for each reoptimization.  TSA significantly outperforms LSA on all test 

instances that involve repetitive solutions.  TSA is most suitable for applications that use RCSP 

as a subproblem in CG or CG/B&B, while LSA is preferred for one-time solution.   

 

7.3. Effect of resource limitations on TSA 

To demonstrate the effect of resource limitations on TSA performance, we conduct a series of 

tests on selected instances: s-500 series and m-50 series with { }0.1, ,1.0η = … .  Tables 8 and 9 

give computational results on s-500 series and m-50 series, respectively.  Columns in Tables 8 

and 9 correspond to those in Tables 6 and 7, respectively.   

To exemplify performance, Figures 11(a) and 11(b) depict the size of EG  and the run 

times of stages 2 and 3 as a function of η  in instance s-500-2a, respectively.  They demonstrate 

that both the size of EG  and run time increase with η  but then decrease as η  continues to 

increase.  Each curve has a single peak occurring around the median value of η .  Specifically, 

the peak occurs at 0.5η =  for s-500-2a, s-500-2b, m-50-3a, and m-50-3c, and at 0.7η =  for m-

50-3b.  When η  takes the mid-range value, the size of EG  is large and the run times of stages 2 

and 3 are long.  If η  is small (e.g., 0.1), many bottleneck nodes and arcs can be identified and 

deleted and few feasible 1 nv v−  paths exist.  On the other hand, if η  is large (e.g., 0.9), some 
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paths are always feasible with respect to resource limitations and EG  includes them directly 

without expanding them.  The extreme case is that 1.0η = , for which E RG G= .   

Table 8.   Results of solving the s-500 series for { }0.1, ,1.0η = …  

instance η T1 NBN NBA |VE| |AE| TSA run time (sec.) 
              stage1 stage2 stage3 total 

s-500-2a 0.1 57 45 610 15005 152044 0 3.703 0.958 4.661
  0.2 106 45 610 28778 319643 0 7.547 1.891 9.438
  0.3 154 45 610 38237 438197 0 9.656 2.560 12.216
  0.4 203 45 610 43551 507481 0 11.422 2.765 14.187
  0.5 251 45 610 44861 526350 0 11.703 2.907 14.61
  0.6 300 45 610 42179 495970 0 10.86 2.625 13.485
  0.7 348 45 610 35070 412773 0 8.375 2.109 10.484
  0.8 397 45 610 23467 275838 0 5.391 1.360 6.751
  0.9 445 45 610 9485 111743 0 2.156 0.562 2.718
  1 494 45 610 455 4840 0 0.171 0.064 0.235
s-500-2b 0.1 83 47 2215 11605 57040 0 1.781 0.455 2.236
  0.2 128 45 896 25744 197345 0 5.437 1.412 6.849
  0.3 173 45 615 36141 333601 0 8.938 2.108 11.046
  0.4 219 45 610 42486 427600 0.016 11.453 2.517 13.986
  0.5 264 45 610 44532 469984 0 12.032 2.767 14.799
  0.6 309 45 610 42468 461333 0 11.421 2.612 14.033
  0.7 355 45 610 36108 399201 0.015 9.031 2.055 11.101
  0.8 400 45 610 25494 285003 0 6.140 1.575 7.715
  0.9 445 45 610 11105 125874 0 2.625 0.671 3.296
  1 491 45 610 455 4840 0 0.171 0.064 0.235
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Fig. 11. Instance s-500-2a.  
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 Table 9 shows that, for MRCSP instances, the size of EG  and run time to solve it are 

quite sensitive to η .  For example, relative to instance m-50-3a, as η  increases from 0.1 to 0.5, 

the size of EG  increases from 34 nodes and 60 arcs to 244,860 nodes and 794,024 arcs and the 

run time of stage 2 increases from 0.016 second to 3,795.9 seconds; as η  increases further from 

0.5 to 0.9, the size of EG  decreases to 2,209 nodes and 14,222 arcs and run time of stage 2 

decreases to 0.719 second.   

Table 9.  Results of solving the m-50 series for { }0.1, ,1.0η = …   

instance η T1 T2 T3 T4 NBN NBA |VE| |AE| TSA run time (sec.) 
                    stage1 stage2 stage3 total 

m-50-3a 0.1 18 22 19 19 22(26) 405(423) 34 60 0 0.016 0.016 0.032
  0.2 32 39 34 34 5 89(98) 2120 4886 0.015 0.656 0.032 0.703
  0.3 46 55 49 48 5 83 28735 74615 0 52.063 0.733 52.796
  0.4 60 72 64 63 5 83 131222 383115 0 1134.17 3.391 1137.56
  0.5 75 88 79 78 5 83 244860 794024 0 3795.93 6.687 3802.61
  0.6 89 105 94 92 5 83 216061 779777 0.015 2743.45 6.267 2749.74
  0.7 103 121 109 107 5 83 97518 392873 0 359.926 2.685 362.611
  0.8 117 138 124 121 5 83 22647 105654 0 14.875 0.720 15.595
  0.9 131 154 139 136 5 83 2209 14222 0.015 0.719 0.171 0.905
  1 146 171 155 151 5 83 45 389 0 0.016 0.077 0.093
m-50-3b 0.1 9 11 6 11 50 472 infeasible - - - -
  0.2 13 15 11 15 50 472 infeasible - - - -
  0.3 17 19 15 19 32(35) 444(452) 22 29 0 0.016 0.062 0.078
  0.4 22 23 20 23 5(6) 223(345) 491 726 0 0.406 0.078 0.484
  0.5 26 27 25 28 5 163(205) 9617 17167 0 17.125 0.328 17.453
  0.6 30 31 29 32 5 125(142) 78421 173544 0 533.972 1.908 535.88
  0.7 35 35 34 36 5 108 229676 630848 0 3889.15 5.828 3894.98
  0.8 39 39 38 40 5 92 89096 331482 0 520.20 2.406 522.606
  0.9 43 43 43 44 5 84 4364 24295 0 2.484 0.282 2.766
  1 48 48 48 49 5 83 45 389 0 0.031 0.063 0.094
m-50-3c 0.1 164 162 302 421 36 447 15 27 0 0.015 0.047 0.062
  0.2 300 301 574 837 5 97(105) 1793 4426 0 0.688 0.062 0.75
  0.3 435 440 846 1253 5 87 22514 67667 0 32.875 0.639 33.514
  0.4 571 579 1117 1669 5 86 82604 289443 0 474.903 2.156 477.059
  0.5 706 718 1389 2086 5 85 114474 467701 0 959.803 3.344 963.147
  0.6 842 857 1661 2502 5 83 91493 415852 0 556.887 2.563 559.45
  0.7 977 996 1932 2918 5 83 43332 213512 0 105.671 1.373 107.044
  0.8 1113 1135 2204 3334 5 83 8377 50011 0 5.500 0.437 5.937
  0.9 1248 1274 2476 3750 5 83 1413 9101 0 0.500 0.140 0.64
  1 1384 1414 2748 4167 5 83 44 389 0 0.016 0.126 0.142
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7.4. Effectiveness of prescribing resource windows and RP in TSA  

The goal of this section is to demonstrate the effectiveness of prescribing resource windows in 

stage 1 and calculating k
jy  with RP in stage 2 of TSA.  For this purpose, we adapt EP in 

Subsection 7.4.1 to devise an expanded graph approach (EGA).  EGA neither prescribes resource 

windows and nor uses RP to calculate k
jy .  We use the s-500 and m-20 series to compare TSA 

and EGA computationally in Subsection 7.4.2. 

7.4.1. Description of EGA 

Let ( , )EGAG W E=  be the expanded graph created by EGA ( ( , )E E EG V A denotes the expanded 

graph created by TSA).  Let jW  be the set of all nodes k
jw W∈  for 1, , jk W= …  that are 

associated with a specific j Rv V∈  and ijE  be the set of all arcs ( , )h k
i jw w E∈  associated with a 

given arc ( , ) Ri j A∈ .  EGA constructs an expanded graph in a manner similar to that used by EP, 

but using resource windows [ ]0,T  at each node and calculating k
jry  according to  

k h
jr ir ijry y u= + , for ( , )h k

i jw w E∈ .                                                   (10) 

That is, EGA does not prescribe tight resource windows as stage 1 of TSA (S1A) does, and it 

calculates k
jy  without RP.   

A sink node 1
1nw +  must be included in W  and corresponding arcs 1

1( , )h
n nw w + , for h

n nw W∈  

must be included in E  because nW  contains more than one node.  Arc ( , )h k
i jw w  is in E only if 

k h
j i ij= +y y u ≤ T , where h

iy  and k
jy  are CRR vectors associated with h

iw  and k
jw , respectively.  

EGA can construct EGAG  based on the following recursion, which processes nodes j Rv V∈  in 

increasing index order: 
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1
1 1

1
, 1 1

{ : 0},
{ : : , ,( , ) },
{( , ) : : , , },
{( , ) : }.

k k h k h
j j j i ij j i i i j R

h k k h k h k
ij i j j i ij j i i j j

h h
n n n n n n

W w
W w w W v v A
E w w w W w W
E w w w W+ +

= =
= = + ≤ ∈ ∈
= = + ≤ ∈ ∈
= ∈

1
1y

y y u y T
y y u y T

  (11) 

To make a fair comparison, the network-reduction technique (steps 1-4 of S1A) is used in 

conjunctive with EGA to identify and delete bottleneck nodes and arcs before constructing EGAG .  

After constructing EGAG  as in (11), the nodes and arcs that are not on any path from 1
1w  to 1

1nw +  

are deleted to complete EGAG .  The optimal value (i.e., minimum cost) and optimal path can be 

found using OA.  Based on Propositions 5.5, 5.9 and 5.10, the following proposition is 

established.   

Proposition 7.1.  The number of arcs in EGAG  is bounded by ( )O mϕ .  The expanding stage of 

EGA constructs EGAG  in ( )O mϕℜ , where 
1

( 1)r
r

Tϕ
ℜ

=

= +∏ .  The minimum cost and the optimal 

path can be computed in ( )O E  ( )O mϕ=  time.  The total run time for a first-time solution 

( 1iteration = ) is ( )O m mγ ϕℜ + ℜ , where term ( )O mγℜ  represents the time to identify and 

delete bottleneck nodes and arcs before constructing EGAG .  Each subsequent solution 

( 1iteration > ) requires ( )O mϕ  time.  

Proof.  Because ( )jW O ϕ=  and each node k
jw  in EGAG  has at most ( )jFS v  successors, the 

number of arcs in EGAG  is bounded by ( ) ( )
j R

j
v V

O FS v O mϕ ϕ
∈

⎛ ⎞ =⎜ ⎟
⎝ ⎠
∑ .  Considering arc ( , )i j Rv v A∈ , 

k
jy  can be calculated from each h

iy  for h
i iw W∈  in ( )O ℜ  time.  That is, each node k

jw  

(associated with k
jy ) can be created in ( )O ℜ  time.  To facilitate the test if a duplicate of k

jy  

already exist, we store CRR vectors k
jy  for k

j jw W∈  in lexicographic order for j Rv V∈ .  Because 
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( )iW O ϕ= , the calculation of k
jy  from all h

iy  for h
i iw W∈  can be done in ( )O ϕℜ  time.  

Further, resulting k
jy  are in lexicographic order because h

iy  for h
i iw W∈  are stored and processed 

in that order.  Thus, inserting all resulting nodes k
jw  (associated with k

jy ) into jW  ( ( )jW O ϕ= ) 

requires ( )O ϕℜ  time to check if duplicates of k
jy  already exists; simultaneously, all resulting 

k
jy  can be inserted into established k

jy  for k
j jw W∈  in lexicographic order.  Thus, the expanding 

stage of EGA constructs EGAG  in 
( , )

( )
Ri j A

O ϕ
∈

⎛ ⎞ℜ⎜ ⎟
⎝ ⎠
∑ ( )O mϕ= ℜ  time.  Deleting nodes and arcs 

that are not on any 1 1
1 1nw w +−  path can be done in ( )O mϕ  time.  By Proposition 5.10, the 

minimum cost and the optimal path can be computed in ( )O E  ( )O mϕ=  time.  Thus, the total 

run time for a first-time solution is ( )O m mγ ϕℜ + ℜ , where term ( )O mγℜ  represents the 

time to identify and delete bottleneck nodes and arcs before constructing EGAG  (see Proposition 

5.5).  Each subsequent solution can be found using OA in ( )O mϕ  time.    ■ 

Recall that TSA runs in ( )maxO m mγ ϑℜ + ℜ +Θ  time for the first-time solution; each 

subsequent solution can be obtained by stage 3 and requires max( ) ( )O O mϑΩ =  time (see 

Proposition 5.10).  Note that, in general, r
r
θ

∈ℜ

Θ =∑ ( )
( , )

1
R

jr jr
r i j A

t t
∈ℜ ∈

= − +∑ ∑
( , )

( 1)
R

r
r i j A

T
∈ℜ ∈

<< +∑ ∑  

( 1)r
r

m T
∈ℜ

= +∑ mϕ<< ℜ , and 
1 1

( 1)jrj jr jr
r r

t tϑ ϕ
ℜ ℜ

= =

= Λ << − + <<∏ ∏  for j Rv V∈ , so maxϑ ϕ<< .  

Thus, TSA offers much better worst-case performance than EGA.  Since EGA does not prescribe 

tight resource windows for nodes in RG , it generates many nodes and arcs that eventually are not 

on any path from 1
1w  to 1

1nw +  and must be deleted to complete EGAG .  Further, EGA calculates k
jy  

using (10) without RP (4-5); thus, it enumerates more distinct values of vectors k
jy  and 
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consequently generates more nodes in EGAG .  The shape of EGAG  can be imagined as a pyramid; 

and the shape of EG  as a barrel.  These points are demonstrated by the following computational 

results (see Table 10).    

7.4.2. Computational results  

Table 10 shows that EGAG  has many more nodes and arcs than EG  for every instance.  It 

turns out that EGAG  includes many duplicated partial paths that are not necessary.  The density of 

EGAG  ( W E ) is almost 100 percent, indicating that EGA merges few nodes as it constructs 

EGAG .  Since the run time for solving SPP on an expanded graph (either EGAG  or EG ) in stage 3 

depends on the size of expanded graph, the run time for solving an instance on EGAG  is longer 

than that on EG .  Another observation is that the size of EGAG  increases with η , while the size of 

EG  increases with η  to a peak and then decreases as η  continues to increase (see Section 7.3).  

As η  increases, the performance of EGA degrades further and further.  For example, EGA 

solves instance m-20-3a with 0.9η =  in 121.56 seconds, generating EGAG  with 44,086 nodes and 

44,259 arcs, but TSA can easily solve this instance in 0.14 second, generating EG  with 265 

nodes and 1,407 arcs.  In summary, by prescribing resource windows and using RP to calculate 

k
jy , TSA expands the partial paths in RG  if and only if necessary; thus, TSA is more effective 

than EGA.  Hence, prescribing resource windows and calculating k
jy  using RP are effective and 

especially important for TSA.   
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Table 10. Comparison of TSA and EGA 
 
instance η   TSA run time (sec.)   EGA: run time (sec.) 

    |VE| |AE| stage1 stage2 stage3 total |W| |E| stage1 stage2 stage3 total 
s-500-2a 0.1 15005 152044 0 3.703 0.958 4.661 20102 187416 0 4.235 1.232 5.467
  0.5 44861 526350 0 11.70 2.907 14.61 78737 772990 0 16.407 4.689 21.096
  0.9 9485 111743 0 2.156 0.562 2.718 103217 952418 0 21.078 5.719 26.797
s-500-2b 0.1 11605 57040 0 1.781 0.455 2.236 23863 131770 0 3.547 0.877 4.424
  0.5 44532 469984 0 12.03 2.767 14.799 76625 706352 0 18.516 4.550 23.066
  0.9 11105 125874 0 2.625 0.671 3.296 96532 892090 0 24.344 5.301 29.645
m-20-3a 0.1 3 3 0 0 0.031 0.031 3 3 0 0 0.031 0.031
  0.5 1970 5721 0 0.531 0.063 0.594 10083 10127 0 10.657 0.188 10.845
  0.9 265 1407 0 0.078 0.063 0.141 44086 44259 0 120.93 0.625 121.56
m-20-3b 0.1 infeasible - - - - - - - - - -
  0.5 12 14 0 0 0.048 0.048 14 14 0 0.016 0.048 0.064
  0.9 523 2349 0 0.156 0.063 0.219 17161 20677 0 23.235 0.251 23.486
m-20-3c 0.1 8 14 0 0 0.078 0.078 14 14 0 0.015 0.078 0.093
  0.5 1675 6549 0 0.609 0.093 0.702 17142 17142 0 26.828 0.297 27.125
  0.9 142 1017 0 0.046 0.048 0.094 44551 44551 0 91.408 0.515 91.923
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CHAPTER VIII 

TSA FOR SOLVING RCSP IN CG AND CG/B&B 

 

In this chapter, we consider the special issues that arise when RCSP is used as subproblem(s) in 

CG and CG/B&B.  In the context of CG, arc costs are updated using the new values of dual 

variables at each CG iteration and the subproblem must be reoptimized with respect to these new 

arc costs.  Section 8.1 proposes ROA that can be used in stage 3 of TSA in CG applications and 

presents a version of TSA for solving RCSP subproblem using ROA in CG (TSA-CG).  Further, 

in the context of CG/B&B, some arcs ( , )i j  in graph G  may be forbidden or prescribed (i.e., 

associated decision variables ijx  that are fixed to 0 or 1, respectively, by the branching rule).  

Section 8.2 proposes a method for dealing with these fixed arcs (MDFA) and presents a version 

of TSA for solving RCSP as a subproblem in CG/B&B (TSA-CG/B&B).  

 

8.1. ROA and TSA-CG 

When RCSP is used as a subproblem in CG, the RCSP subproblem must be reoptimized with 

respect to the new arc costs at each CG iteration.  Of course, OA (Figure 8) can be used to find a 

(new) shortest path with respect to the updated arc costs.  This section proposes an alternative 

method – ROA (Subsection 8.1.1) and analyzes the complexity of ROA (Subsection 8.1.2).  

Based on that, Subsection 8.1.3 presents TSA-CG and Subsection 8.1.4 analyzes the complexity 

of TSA-CG.  Finally, Subsection 8.1.5 shows the computational tests on ROA.   

8.1.1. Description of ROA 

Rather than solving from scratch to prescribe each iterative solution, ROA only updates the 

labels ( )k
jsπ  that are affected by the new arc costs, using the shortest path tree found at the last 
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iteration (i.e., using the previous arc costs).  A shortest path tree comprises the shortest path from 

source node 1
1s  to each of the other nodes in EG  (i.e., { }11\EV s ).   

Let B  be a set of arcs that have updated (new) costs.  These new costs may be smaller or 

larger than the old ones.  Let ijc  denote the old cost on arc ( , )i jv v A∈ ;  and ijc′ , the new cost on 

the arc.  Correspondingly, let ( )k
jsπ  denote the minimum cost among 1

1
k
js s−  paths at the last 

iteration; and ( )k
jsπ ′ , the minimum cost at the current iteration.  Recall that ( )k

jp s  denotes the 

predecessor of k
js  in the shortest path tree.  Let H  be a heap that stores a set of arcs in G  that 

have updated costs; and EH , a heap that stores a set of arcs in EG , in which the tail of each arc 

has updated value of ( )k
jsπ .  Using this notation, Figure 12 details ROA (with respect to B ).  

ROA is a label-setting algorithm, which is tailored for RCSP on an acyclic graph.  

Initialize heap H  with the arcs in B  (step 1) and the process continues until H =∅  and 

EH =∅  (step 2).  On each iteration of ROA, the arc with the smallest index j from either H  or 

EH  is selected for preprocessing (step 2(i)).  If the selected arc is from H , then steps 2(ii-x) 

apply; otherwise, steps 2(xi-xviii) apply.  Because arc ( , )i j  in G  might correspond to several 

arcs in EG , each with tail in iS  and head in jS , respectively, the processing of arc ( , )i j  in H  

involves dealing with all arcs ( ,h k
i js s ) in EG  that correspond to ( , )i j  (see step 2(iv)).  In steps 

2(v-viii), each arc ( ,h k
i js s ) that corresponds to arc ( , )i j  in H  is processed as follows ( j  here is 

1j  in ROA of Figure 12).  If ijc′ ijc>  and ( )k
jp s h

is≠  (step 2(v)), the current shortest path (i.e., the 

shortest path prescribed at the last iteration) is still optimal.  If ijc′ ijc>  and ( )k
jp s h

is=  (step 

2 (v i ) ) ,  then  ( )k
jsπ ′  and  ( )k

jp s  a re  updated  to  be  { }min ( ) : ( )h h k
i ij i E js c s BS sπ ′ ′+ ∈  and 

{ }
( )

arg min ( )
h k
i E j

h
i ij

s BS s
s cπ

∈

′ ′+ , respectively.  If ijc′ ijc<  and ( )k
jp s h

is≠  (step 2(vii)), and, in addition, if 
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step 1. Set H B← , EH =∅ , and ( )k
jsπ ′ = ( )k

jsπ , k
j Es V∀ ∈ . 

step 2. While H ≠ ∅  or EH ≠∅ , 
(i)           let { }1 min : ( , )i jj j v v H= ∃ ∈  and { }2 min : ( , )h k

i j Ej j s s H= ∃ ∈ . 

(ii)          If 1 2j j≤ : 
(iii)            for each 

1
( , )i jv v H∈ , 

(iv)                for each 
1 1

k
j js S∈  such that 

1
( )h k

i E js BS s∃ ∈ , 
(v)            if

1ijc′
1ijc>  and 

1
( )k

jp s h
is≠ , go to step 2(iv); 

(vi)            if
1ijc′

1ijc>  and 
1

( )k
jp s h

is= ,  

                               
1

( )k
jsπ ′ = { }

1 1
min ( ) : ( )h h k

i ij i E js c s BS sπ ′ ′+ ∈ =
1

*
* *( )h

i i js cπ ′ ′+ ; 
1

( )k
jp s = *

*
h
is ; 

(vii)            if
1ijc′

1ijc<  and 
1

( )k
jp s h

is≠ , if 
1

( )h
i ijs cπ ′ ′+ <

1
( )k

jsπ ′ , 
1

( )k
jsπ ′ =

1
( )h

i ijs cπ ′ ′+ ;  
                        

1
( )k

jp s = h
is ; 

(viii)            if
1ijc′

1ijc<  and 
1

( )k
jp s h

is= , 
1

( )k
jsπ ′ =

1 1 1
( )k

j ij ijs c cπ ′+ − ; 

(ix)                    if 
1

( )k
jsπ ′

1
( )k

jsπ≠ , insert { }
1 1

( , ) : ( )k h h k
j i i E js s s FS s∈  into EH ; 

(x)                 remove 
1

( , )i jv v  from H . 

(xi)         If 2 1j j≤ : 
(xii)           for each 

2
( , )h k

i j Es s H∈ , 
(xiii)   if ( )h

isπ ′ ( )h
isπ> and

2
( )k

jp s h
is≠ , do nothing;  

(xiv)              if ( )h
isπ ′ ( )h

isπ> and
2

( )k
jp s h

is= ,  

                               
2

( )k
jsπ ′ = { }

2 2
min ( ) : ( )h h k

i ij i E js c s BS sπ ′ ′+ ∈ =
2

*
* *( )h

i i js cπ ′ ′+ ; 
2

( )k
jp s = *

*
h
is ; 

(xv)               if ( )h
isπ ′ ( )h

isπ< and
2

( )k
jp s h

is≠ , if 
2

( )h
i ijs cπ ′ ′+ <

2
( )k

jsπ ′ , 
2

( )k
jsπ ′ =

2
( )h

i ijs cπ ′ ′+ ;  
                               

2
( )k

jp s = h
is ; 

(xvi)              if ( )h
isπ ′ ( )h

isπ< and
2

( )k
jp s h

is= , 
2

( )k
jsπ ′ =

2
( )h

i ijs cπ ′ ′+ ;       

(xvii)             if 
2

( )k
jsπ ′

2
( )k

jsπ≠ , insert { }
2 2

( , ) : ( )k h h k
j i i E js s s FS s∈  into EH ; 

(xviii)            remove 
2

( , )h k
i js s  from EH .        

step 3. Set 1( )nz sπ ′= .  
step 4. Find the shortest path by tracing back using 1( )np s . STOP.                  

 
Fig. 12. ROA.  

( )h
i ijs cπ ′ ′+ < ( )k

jsπ ′ , then ( )k
jsπ ′ = ( )h

i ijs cπ ′ ′+  and ( )k
jp s = h

is ; otherwise, the current shortest path 

is still optimal.  If ijc′ ijc<  and ( )k
jp s h

is=  (step 2(viii)), then the current shortest path is still 

optimal but the optimal cost on the path is decreased by amount of ij ijc c′− .  If ( )k
jp s  is changed 



 70  

during the processing of ( ,h k
i js s ), all arcs outgoing from k

js  are inserted into EH  (step 2(ix)).  

After it is processed, arc ( , )i jv v  is removed from H  (step 2(x)).  A similar analysis applies to 

steps 2(xiii-xvii), where ( )k
isπ  differs from ( )k

isπ ′ , but this part of ROA is not detailed to 

conserve space. 

8.1.2. Computational complexity of ROA 

ROA processes each node in iS  before any node in jS  for j i> .  Further, because no pair of 

nodes in set iS  is connected, heap EH  can be stored as an n-dimensional array in which each 

element is a linked-list of arcs (unsorted).  All arcs with head in iS  are inserted into linked-

list [ ]EH i  if labels (i.e., the minimum cost ( )k
jsπ ) on their tails are changed by ROA (step 2(ix) 

and (xvii)).  With this heap structure EH , heap operations (extraction in steps 2(i) and (x) and 

insertion in steps 2(ix) and (xvii)) can be done in constant time.  ROA processes arcs in [ ]EH i  

before processing arcs in [ ]EH j  for j i> .  The following proposition establishes the complexity 

of ROA.  

Proposition 8.1.  ROA runs in ( )EO A = ( )O Ω  time in the worst-case. 

Proof.  Since each operation on heap EH  takes a constant amount of time, the processing of 

each arc in heap EH  is in constant time.  In the worst-case, all arcs in EG  must be processed 

once; thus, the total run time of ROA is ( )EO A = ( )O Ω  in the worst-case.    ■  

Note that OA and ROA are two methods for solving SPP in stage 3 of TSA.  They both 

have the same worst-case complexity of ( )O Ω .  Since ROA must maintain a heap, the implicit 

coefficient, ROAc , of Ω  is larger than the one, OAc , that is implicit in the expression that 

describes the complexity of OA.  That is, the worst-case complexity of ROA is ( )ROAO c Ω  and 
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that of OA is ( )OAO c Ω  with ROA OAc c>  so that, ROA may require large run time, on average.  On 

the other hand, the actual run time of ROA relates to set B .  In general, the run time of ROA 

increases with B .  For small B , ROA is more likely to be faster than OA.  Section 8.3 

presents computational tests that compare ROA and OA.   

8.1.3. Description of TSA-CG 

Figure 13 details TSA-CG that incorporates ROA in stage 3 to solve RCSP in CG (without fixed 

arcs), using iteration to refer to a CG iteration. Figure 13 shows that the preliminary phase of 

TSA (stages 1 and 2) is implemented only once in solving an instance of RCSP.  When 

1iteration > , only stage 3 is needed.  λ  is a parameter specified by the analyst.  If the number of 

arc costs that are assigned new values on an iteration is greater than λ , SPP is solved from 

scratch using OA; otherwise, SPP is reoptimized using ROA.  0λ =  implies OA is implemented 

on every iteration.  Chapter VII designs experiments to estimate an appropriate value for λ  for 

the test instances.  

1   If 1iteration = , 
2  (stage 1):   run S1A;  
3  (stage 2):   run EP; 
4  (stage 3):   run OA. 
5  If 1iteration > , 
6 (stage 3):  If B λ≥ , run OA; else (i.e., B λ< ), run ROA. 

Fig. 13.  TSA-CG. 
 

Remark 3.  In implementing TSA to solve RCSP subproblem(s) in CG, the preliminary phase of 

TSA can help reduce the size of the overall problem.  Let ℑ  denote a problem that can be solved 

by CG (or CG/B&B) with RCSP subproblem(s).  If the preliminary phase identifies arc ( , )i j  as 

a bottleneck, it fixes decision variable ijx  to 0.  All fixed variables can be removed from problem 

ℑ .  Thus, the preliminary phase of TSA can reduce the size of ℑ . 
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8.1.4. Computational complexity of TSA-CG 

Proposition 8.2.  The worst-case complexity of TSA-CG is ( )maxO m mγ ϑℜ + ℜ +Θ  for the 

first-time solution ( 1iteration = ).  Each subsequent solution ( 1iteration > ) requires ( )O Ω  time.  

Proof. Because the complexities of ROA and OA are the same, TSA-CG has the same 

complexity as TSA in Figure 9, which is ( )maxO m mγ ϑℜ + ℜ +Θ  for the first-time solution.  

After that, Each subsequent solution can be obtained by either OA or ROA and thus requires 

( )O Ω  time.    ■ 

TSA-CG is suitable for repeatedly solving RCSP as a subproblem in CG.  At each CG 

iteration, only stage 3 is needed to solve an RCSP subproblem and it runs in ( )O Ω  max( )O mϑ=  

time.   

8.1.5. ROA tests 

This subsection investigates ROA (Figure 12) by comparing it with OA (Figure 8).  Recall that 

B  is the set of arcs in G  that are assigned new arc costs.  Since stage 2 of TSA expands G , the 

number of arcs in the expanded graph EG  that are assigned new costs may be much larger than 

| |B .  Our experiment tests four values of | |B  (1, 3, 5 and 10) on two selected series, s-500 and 

s-1000.  We run 100 replications for each value of | |B  on each instance with a specified 

{ }0.1,0.5,0.9η = .  We number the arcs in G  from 1 to A .  For each replication, we choose | |B  

arcs at random from G  by generating | |B  unique integers (corresponding to | |B  arcs) from 

1,DU A⎡ ⎤⎣ ⎦ .  For each selected arc, e, we generate a random value Δ  from 

( )100.0, 1.0) (1.0,100.0U − − ∪  and add it to the current cost of arc e.  If Δ  is negative, the cost 

of arc e  decreases; otherwise, it increases.  

Table 11 presents computational results.  The run times in Table 11 do not include the 
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time for the preliminary phase of TSA because OA and ROA are used only in stage 3 of TSA.  

Note that the run time for OA does not depend on set B ; the run times for OA in column 6 are 

the average run times per replication over 100 replications.  However, the run time for ROA 

depends on the number of arcs in B  and their locations in the graph.  Table 11 demonstrates this, 

giving the average, standard deviation, minimum, and maximum values, of run times for 100 

replications (columns 7-10).  The last column in Table 11 gives the ratio of the average run time 

for one replication of ROA to one of OA.   

Columns 7-10 in Table 11 show that ROA run time differs significantly as a function of 

the arcs in set B , even for the same value of | |B .  For all test instances, the minimum run time 

of ROA can be 0 second if the arcs in B  do not alter the current shortest path tree.  However, the 

maximum run time of ROA can be large, much larger than OA if the arcs in B  affect a large 

portion of EG  (especially if the arcs in B  affect the entire graph).  Consequently, the standard 

deviations (column 8) are large, even much larger than average run times of ROA.     

Furthermore, Table 11 shows that, on average, if | | 3B ≤ , ROA is faster than OA, except 

for instance s-500-2b with 0.9η = , which has the smallest expanded graph (9,484 nodes and 

11,173 arcs) among all test instances.  However, on average, if | | 5B ≥ , ROA is slower than OA 

for most instances except for s-1000-2b with 0.1,  0.5,η =  or 0.9.  These results are consistent 

with expectations.  Basically, ROA may save time by resolving only portions of EG  that are 

effected by the arcs in B .  In general, the portion of the graph that is affected increases with 

| |B , and may even encompass the entire graph.  On the other hand, ROA must maintain an 

additional heap to store the portion of EG  that has been affected and heap operations require 

additional run time.  This trade-off balances at some value of | |B , on average.  For most of the 

test instances, the value of | |B  balances at 3~5.  
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Table 11.  Comparison of OA and ROA 

instance η |VE| |AE| |B| OA run time ROA run time (×10-3sec.) ratio 
          (×10-3sec.) mean stdev min max   

s-500-2a 0.1 15004 152044 1 10.32 2.02 6.88 0 47 0.196
   3 10.31 2.96 6.528 0 31 0.287
   5 10.62 10.93 24.993 0 171 1.029
   10 10.31 17.66 33.586 0 235 1.713
  0.5 44860 526350 1 30.01 9.85 55.121 0 531 0.328
   3 30.15 24.53 79.526 0 531 0.814
   5 29.99 93.28 268.432 0 1656 3.110
   10 30.15 152.02 310.131 0 1688 5.042
  0.9 9484 11173 1 6.87 1.08 3.958 0 16 0.157
   3 6.88 7.18 34.411 0 250 1.044
   5 6.72 18.43 59.442 0 344 2.743
   10 6.72 29.69 62.745 0 344 4.418
s-500-2b 0.1 11604 57040 1 5.47 1.09 3.995 0 16 0.199
   3 6.09 1.88 5.602 0 32 0.309
   5 5.01 5.62 10.798 0 63 1.122
   10 5.15 7.84 12.08 0 63 1.522
  0.5 44531 469984 1 28.59 7.82 47.27 0 469 0.274
   3 28.59 15.62 52.036 0 359 0.546
   5 28.76 59.84 168.558 0 1078 2.081
   10 28.59 116.87 232.379 0 1094 4.088
  0.9 11104 125874 1 7.97 1.72 6.251 0 47 0.216
   3 7.82 3.82 6.766 0 31 0.488
   5 7.96 10.15 35.046 0 296 1.275
   10 7.97 19.53 38.727 0 188 2.450
s-1000-2a 0.1 38268 378134 1 24.22 1.87 5.548 0 31 0.077
   3 24.54 7.65 22.729 0 157 0.312
   5 24.06 25.63 101.882 0 922 1.065
   10 24.06 39.53 82.868 0 719 1.643
  0.5 111871 1239797 1 70.62 8.29 50.864 0 500 0.117
   3 70.16 29.21 107.244 0 781 0.416
   5 71.25 97.81 332.752 0 2282 1.373
   10 72.34 251.42 562.565 0 2765 3.476
  0.9 21039 239205 1 12.19 1.88 7.437 0 62 0.154
   3 12.03 5.31 19.904 0 172 0.441
   5 12.34 17.35 71.108 0 563 1.406
   10 12.18 44.54 90.218 0 484 3.657
s-1000-2b 0.1 37378 177380 1 13.6 1.25 4.798 0 31 0.092
   3 13.14 3.44 7.863 0 31 0.262
   5 12.19 9.06 19.116 0 125 0.743
   10 12.03 12.81 20.488 0 109 1.065
  0.5 173034 1761164 1 109.53 15 75.526 0 656 0.137
   3 109.54 28.13 79.775 0 703 0.257
   5 110.47 103.9 357.198 0 2844 0.941
   10 109.38 349.07 742.203 0 3485 3.191
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Table 11.  Continued 

instance η |VE| |AE| |B| OA run time ROA run time (×10-3sec.) ratio 
          (×10-3sec.) mean stdev min max   

s-1000-2b 0.9 40906 447040 1 22.66 2.02 6.518 0 47 0.089
   3 21.73 9.53 20.153 0 140 0.439
   5 22.35 16.09 48.137 0 422 0.720
   10 21.87 56.88 93.649 0 437 2.601
 

 

8.2. MDFA and TSA-CG/B&B 

When RCSP is used as a subproblem in CG that is incorporated in a B&B scheme, some arcs 

( , )i j  in the graph may be fixed.  Solving RCSP with fixed arcs poses opportunities to specialize 

TSA to gain effectiveness.     

Let 0F ( 1F ) be the set of arcs that correspond to the binary variables fixed to 0 (1) at a 

node in the B&B tree.  Then, 0F  is the set of the forbidden arcs on G  which are not allowed on 

the optimal path; and 1F  is the set of the prescribed arcs that must be on the optimal path.  At 

each B&B node 0F  and 1F  are fixed and RCSP subproblem(s) is(are) solved at each CG 

iteration.  Thus, it is worth taking some time to revise EG  based on 0F  and 1F  before solving 

RCSP subproblem(s).  The revised graph is smaller than EG  and the resulting problem can be 

solved using either OA (Figure 8) or ROA (Figure 12) on the revised graph. 

This section contains five subsections.  Subsection 8.2.1 investigates properties related 

to forbidden ( 0F ) and prescribed arcs ( 1F ) and proposes MDFA to exploit them.  Subsection 

8.2.2 presents TSA-CG/B&B, a version of TSA for solving RCSP in CG/B&B, and Subsection 

8.2.3 analyzes its complexity.  Subsection 8.2.4 presents a computational evaluation of MDFA.  

Finally, Subsection 8.2.5 summarizes this section and discusses some issues related to 

implementing TSA-CG/B&B.  
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8.2.1. Description of MDFA 

To avoid confusion, we assume that the preliminary phase of TSA deletes bottleneck arcs from 

G .  Define implied forbidden arcs in G  as the arcs that can not be on connected 1 nv v−  paths 

that contain all arcs in 1F  and do not contain any arc in 0F .  All arcs in EG  corresponding to 

forbidden (including implied forbidden) arcs in G  can be removed from EG .   

Theorem 8.1.  If arc ( , )i j  in acyclic graph G  is prescribed (i.e., ijx =1), then any arc ( ', ')i j  

with (a) 'i i< and 'j i> , or (b) 'i i= and 'j j≠ , or (c) 'i i j< <  is an implied (type 1) forbidden 

arc.  

Proof.  If arc ( , )i j  is prescribed, then any arc ( ', ')i j  identified by cases (a), (b) and (c) can not 

be on a 1 nv v−  path together with arc ( , )i j  (see Figure 14).    ■ 

 By the above theorem, the following corollary is straightforward.  

Corollary 8.1.  Suppose 1F ≠ ∅ , if prescribed arcs in 1F  can not be sorted as  

{ }1( , ), 1,2, | |
k ki jv v k F= …  such that k ki j<  and 1k kj i +≤ ,                                     (12) 

then, RCSP subject to the set of prescribed arcs 1F  is infeasible because prescribed arcs conflict. 

   
Fig. 14.  Dashed arcs ((a), (b) and (c)) are forbidden due to prescribed arc ( , )i j . 

v1  vi vj 

(c)  arcs ( ',' ji ) with 'i i j< <  are implied forbidden arcs. 
(b)  arcs ( ',' ji ) with 'i i= and 'j j≠  are implied forbidden arcs. 
(a)  arcs ( ',' ji ) with  'i i< and 'j i>  are implied forbidden arcs. 

vn 

prescribed arc ( , )i j   
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By invoking Theorem 8.1, additional implied (type 2) forbidden arcs may be found.  

After removing implied (type 1) forbidden arcs ( ', ')i j  in cases (a), (b) and (c) for each 1( , )i j F∈  

and arcs in 0F  from G , some of the remaining nodes and arcs may no longer be on any 1 nv v−  

path, and so become implied (type 2) forbidden arcs.  Let 0̂F  be a set of all of forbidden arcs 

including i) forbidden arcs in 0F ; ii) implied (type 1) forbidden arcs stated in Theorem 8.1 for 

each 1( , )i j F∈ : 
1( , ) ' ' , ' ' , '

( ', ') ( ', ') ( ', ')
i j F i i j i i j j i i j i

i j i j i j
∈ < < = ≠ < >

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ ∪∪ ∪ ∪ ∪  in which the three terms in 

parentheses are associated with cases (a), (b) and (c), respectively; iii) implied (type 2) forbidden 

arcs that are not on any 1 nv v−  path after removing the forbidden arcs in i) and ii).  Given 0F  and 

1F , the algorithm detailed in Figure 15 – GFA – generates 0̂F  in ( )O m  time.   

step 1. Set 0̂F =
1( , ) ' ' , ' ' , '

( ', ') ( ', ') ( ', ')
i j F i i j i i j j i i j i

i j i j i j
∈ < < = ≠ < >

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

∪ ∪∪ ∪ ∪ ∪ 0F∪ .  

             For 1 j n≤ ≤ , 

           ( )jBS v′ { }0̂( ) : ( , )i j i jv BS v v v F= ∈ ∉  and ( )jFS v′ { }0̂( ) :  ( , )i j j iv FS v v v F= ∈ ∉ . 

step 2. For j  in increasing order from 2 to n , 
              if ( )jBS v′ = ∅  and ( )jFS v′ ≠ ∅ ,  

                 ( ) ( ) \ { }i i jBS v BS v v′ ′= , ( )i jv FS v′∀ ∈ ; 0̂F = 0̂F { }( , ) : ( )j i i jv v v FS v′∪ ∈ ; ( )jFS v′ = ∅ . 
step 3. For j  in decreasing order from n -1 to 1, 
                If ( )jFS v′ = ∅  and ( )jBS v′ ≠ ∅ ,  

                 ( ) ( ) \ { }i i jFS v FS v v′ ′= , ( )i jv BS v′∀ ∈ ; 0̂F = 0̂F { }( , ) : ( )i j i jv v v BS v′∪ ∈ ; ( )jBS v′ = ∅ . 

step 4. If any 1( , )i j F∈  has ( )iBS v′ = ∅  or ( )jFS v′ = ∅ , STOP;  
             the problem is infeasible because the remaining graph is disconnected.   
step 5. Return 0̂F .  

Fig. 15. GFA: generating 0̂F  algorithm. 

Step 1 of GFA initializes 0̂F  with arcs in 0F  and implied forbidden arcs of type 1.  Steps 

2 and 3 identify implied forbidden arcs of type 2.  Step 4 checks to determine if the remaining 

graph, denoted as RFG , is connected.  Note that, if RFG  is connected, every prescribed arc in RFG  
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is a bridge, that is, an arc such that the connected graph becomes disconnected if it is removed 

from the graph.  Thus, removing implied forbidden arcs is equivalent to fixing prescribed arcs.   

Now, based on 0̂F , the algorithm detailed in Figure 16 – GERA – can identify and 

remove all forbidden arcs in EG .  Let EFG  be the resulting graph, that is, EFG  is formed from EG  

by removing all forbidden arcs in EG .  EFG  is a subgraph of EG  and we call it the revised graph.  

Let ( )k
E jFS s′  be a subset of ( )k

E jFS s  that denotes a set of successors in EFG ; and ( )k
E jBS s′  be a 

subset of ( )k
E jBS s  that denotes a set of predecessors in EFG .  Note that arc ( , )i j 0̂F∈  implies 

that arcs ( ,h k
i js s ) with h

i is S∈  and k
j js S∈  are forbidden in EG .  GERA removes all forbidden 

arcs of EG  that correspond to arcs in 0̂F  (step 1).  Then, it identifies and removes the arcs in the 

remaining graph that can not be on any 1 1
1 ns s−  path (steps 2 and 4).  If 1( )E nBS s′ = ∅  (step 3) or 

1
1( )EFS s′ = ∅  (step 5), EFG  is disconnected so STOP; otherwise, return EFG  defined by ( )k

E jBS s′  

and ( )k
E jFS s′ , for k

j Es V∈  (step 6).  Figure 16 details this procedure.   

 
step 1. Set ( )k

E jBS s′ = ( )k
E jBS s , ( )k

E jFS s′ = ( )k
E jFS s , k

j Es V∀ ∈ .  

             For each arc ( , )h k
i j Es s V∈  ∋ 0̂( , )i j F∈ ,  

                 ( ) ( ) \{ }k k h
E j E j iBS s BS s s′ ′=  and ( ) ( ) \{ }h h k

E i E i jFS s FS s s′ ′= . 
step 2. For each 1

1\ { }k
j Es V s∈  in increasing j  index order from 2 to n ,   

             if ( )k
E jBS s′ = ∅  and ( )k

E jFS s′ ≠ ∅ ,  
                 ( ) ( ) \{ }h h k

E i E i jBS s BS s s′ ′= , ( )h k
i E js FS s′∀ ∈ ; ( )k

E jFS s′ = ∅ . 
step 3. If 1( )E nBS s′ = ∅ , STOP. The problem is infeasible because EFG  is disconnected.  
step 4. For each 1\{ }k

j E ns V s∈ , j  in decreasing order from 1n −  to 1,  
             if ( )k

E jFS s′ = ∅   and ( )k
E jBS s′ ≠ ∅ ,  

                 ( ) ( ) \{ }h h k
E i E i jFS s FS s s′ ′= , ( )h k

i E js BS s′∀ ∈ ; ( )k
E jBS s′ = ∅ . 

step 5. If 1
1( )EFS s′ = ∅ , STOP. The problem is infeasible because EFG  is disconnected.  

step 6. Return ( )k
E jBS s′  and ( )k

E jFS s′ , k
j Es V∀ ∈ .  

Fig. 16. GERA: EG  revising algorithm. 
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After revising EG  to EFG ,  either OA or ROA can be applied to EFG  to find an optimal 

solution by replacing ( )k
E jFS s with ( )k

E jFS s′  and ( )k
E jBS s  with ( )k

E jBS s′ , respectively, in Figures 

8 and 12.  In addition, ROA replaces B  with 0̂\B F  because arcs in 0̂F  do not appear in EFG . 

Remark 4.  Define the span of arc ( , )i j  as j i− , assuming that the nodes are topologically 

numbered.  Based on Theorem 8.1, it is appropriate to select a branching variable ijx  whose 

corresponding arc ( , )i j  has a large span, so that it will generate more implied forbidden arcs and 

cause EFG  to be smaller than if the branching variable has a small span.   

8.2.2. Description of TSA-CG/B&B 

Figure 17 details TSA-CG/B&B, which incorporates MDFA in the first iteration of CG at each 

B&B node (except the root node).  At the root node of the B&B tree ( 1 0F F= =∅ ), RCSP is 

solved using TSA-CG in Figure 13 (line 1).  At each other node in the B&B tree some arcs are 

fixed.  The first CG iteration (line 2 of Figure 17), sorting 1F  according to expression (12) (see 

Theorem 8.1) (line 3) if 1F ≠∅ .  GFA then generates 0̂F  (line 4), and GERA revises EG  to form 

EFG  (line 5) before OA optimizes SPP on EFG  (line 6).  MDFA is the method that deals with 

fixed arcs as specified in lines 3-5.  For subsequent iterations ( 1iteration > ), only stage 3, which 

applies either OA or ROA (line 8), is needed.  Note that the preliminary phase (involved in TSA-

CG in line 1) is conducted only once for the entire problem while MDFA is conducted once for 

each B&B node (except at root node).  
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1   If root node of B&B tree, apply TSA-CG; else 
2     If 1iteration = ,  
3    (MDFA):  sort arcs in 1F  according to expression (12) if 1F ≠ ∅ .  
                                          If this is not possible, STOP; the problem is infeasible.  
4                   run GFA (to generate 0̂F ); 
5                   run GERA (to revise EG  to EFG ).  
6  run OA on EFG . 
7    If 1iteration > , 
8   if 0̂\B F λ≥ , run OA on EFG ; else run ROA on EFG  with set 0̂\B F . 

Fig. 17. TSA-CG/B&B. 

8.2.3. Computational complexity of TSA-CG/B&B 

Proposition 8.3.  TSA-CG/B&B runs in ( )maxO m mγ ϑℜ + ℜ +Θ  time for the first-time 

solution ( 1iteration = ) and each subsequent solution ( 1iteration > ) requires ( ) ( )EFO G O= Ω  

time, where EFG  denotes the number of arcs in EFG .   

Proof.  In comparison to TSA-CG, TSA-CG/B&B adds MDFA operations in lines 3-5.  Line 3, 

which sorts arcs in 1F  according to expression (12), can be done in ( ) ( )O A O m=  time; line 4 

implements GFA, which generates 0̂F  and runs in ( ) ( )O A O m= ; and line 5 applies GERA, 

revising EG  to form EFG  and running in ( ) ( )EO A O= Ω  because each arc in EG  is processed in 

constant time.  Since the worst-case complexity of TSA-CG is ( )maxO m mγ ϑℜ + ℜ +Θ  

(Proposition 8.2), the run time of TSA-CG/B&B is ( )max ( ) ( )O m m O m Oγ ϑℜ + ℜ +Θ + + Ω  

( )max .O m mγ ϑ= ℜ + ℜ +Θ  By Propositions 5.10 and 8.1, the second part is straightforward.   ■ 

8.2.4. MDFA tests  

This section describes tests of MDFA.  We choose the traditional method for dealing with fixed 

arcs as a benchmark; it assigns large costs to forbidden arcs and small costs to prescribed arcs 
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and then applies OA with respect to these adjusted arc costs.  This section studies instance s-

1000-2a, using a factorial experiment design with four specified sets of 1F  and two specified sets 

of 0F , as shown at the bottom of Table 12.        

Table 12 shows results related to all ( 1 0,F F ) combinations.  Columns 5-8 give the 

specified sets of 1F  and 0F .  Column 9 denotes the cardinality of 0̂F .  Columns 10 and 11 give 

the number of nodes in EFG  and ratio EF EV V , respectively; columns 12 and 13 give the 

number of arcs in EFG  and ratio EF EA A , respectively.  Columns labeled (a), (b), (c) and (d) 

are specified at the bottom of Table 12.  Stage 3 of TSA uses OA to solve SPP on EFG .  The last 

column in Table 12 gives the break even number of replications for which the run times for 

MDFA and the traditional method are the same.  If the number of replications is larger than this 

value, the total run time for MDFA is less than that of the traditional method; otherwise, the 

traditional method is faster than MDFA.  The break even is calculated using  

100 (MDFA)
(traditional method) (stage 3_of_TSA)

cpubreakeven
cpu cpu

×
=

−
.                         (13) 

 MDFA consumes run time to identify and remove forbidden arcs from EG , but this “set 

up” time is off set by reducing the size of EG  significantly (for most of the tests, the graph is 

reduced more than 40% and 50%; even 86% and 96% (test21 and test22), in terms of the number 

of nodes and arcs, respectively), reducing run time correspondingly.  This set up time is incurred 

once in revising EG  but a time saving that results from the smaller graph accrues at each 

replication.  For 100 replications, the total time for MDFA (revising EG  to EFG  plus solving SPP 

on EFG  for 100 replications) is less than that for the traditional method.  breakeven ranges from 4 

to 23 for this set of tests.   
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Another observation relates to 0̂F .  Table 12 shows that 0̂F  can be calculated very 

quickly (0 seconds).  It is worth mentioning the cardinality of 0̂F  ( 0̂F ) because a large 0̂F  

results in a small EFG .  Table 12 shows that 0̂F  is large for all the tests ( 0̂ 4,050F ≥ ) although 

1F  and 0F  are either 1 or 4, respectively, small numbers in comparison to 10,435A = .  When 

1 set 3F =  and 0 set 6F = , 0̂ 9,456F = , that is, 91% of the arcs in G  are forbidden 

( 10,435A = ).  Further, 0̂F  is much larger when { }1 set 1 (273,504)F = =  than when 

{ }1 set 2 (503,504)F = =  (6,870 versus 4,050 for 0 set 5F = ; 6,872 versus 4,052 for 0 set 6F = ), 

because the span of arcs (273,504)  and (503,504)  are 231 and 1, respectively; the former is 

much larger than the latter.  Tests with 1 4F =  (i.e., 1 set 3F = and 1 set 4F = ) give similar 

results.  These observations validate Remark 4, which notes that it is likely that many implied 

forbidden arcs can be identified if the spans of prescribed arcs are large.  Next, consider tests 

using { }1 set 1 (273,504)F = =  and 1 set 4F = { }(382,503),(503,504),(504,512),(512,546)= .  

Although set 1 prescribes only one arc and set 4 prescribes four arcs, 0̂F  is larger for set 1 than 

for set 4. Because the span of arc (273,504)  is 231 504 273= − , larger than the total span of 

path 382-503-504-512-546, which is formed by the arcs in set 4 , which is 164 546 382= − .  

Note that the value of 0̂F  is not as sensitive to the set of prescribed arcs as it is to the set of 

forbidden arcs.   
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8.2.5. Summary and discussion  

As shown in this section, TSA-CG/B&B incorporates MDFA to deal with fixed arcs; it detects 

infeasibility caused by fixed arcs in three steps: sorting arcs in 1F  detects infeasibility with 

respect to prescribed arcs (Corollary 8.1); GFA detects infeasibility due to RG  being 

disconnected; and GERA detects infeasibility due to EG  being disconnected.  

 MDFA is designed for application in which RCSP is solved repeatedly.  It requires some 

computational time to remove all forbidden arcs from EG , but each solution on the resulting 

graph EFG  can be found in much less time than on EG  because the run time required to solve 

SPP depends on the size of input graph and EFG  is smaller than EG .  The computational results 

show that if RCSP is solved repeatedly, MDFA outperforms the traditional method (Jaumard et 

al. (1996)), which is to assign a large cost to each forbidden arc and a small cost to each 

prescribed arc before solving SPP on EG  with respect to these adjusted arc costs.    

Remark 5.  Implied forbidden arcs must receive correct treatment in selecting branching 

variables.  Consider a node in the B&B search tree with specified sets 1F , 0F , and generated 0̂F .  

Decision variables corresponding to arcs in 0̂F  should not be selected as branching variables, 

because, for each, the right child node (fixing the branching variable to 1) would be infeasible, 

and the left child node (fixing the branching variable to 0) would be the same as its parent node, 

which already forbids this arc (i.e., fixes the branching variable to 0).  In the implementation of 

CG/B&B, 0̂F  should be stored in association with each active node of the B&B tree to avoid 

such ineffectiveness.  Note that the construction of 0̂F can be expedited by starting with the 0̂F  

constructed by GFA at its parent node. 
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Remark 6.  In the implementation of a B&B approach, in which RCSP is a subproblem in 

CG/B&B, bottleneck arcs are forbidden at all nodes in the B&B tree.  Thus, the variables 

corresponding to bottleneck arcs have zero values permanently and can be removed by fixing 

them to zero at root node.  
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CHAPTER IX 

THREE EXTENSIONS OF TSA 

 

This chapter presents extensions of TSA to solve SPPRW and a generalized resource-constrained 

SPP with both resource-limitation and resource-window constraints (SPRCRW) (Section 9.1); 

resource-constrained k-SPP (RCkSP) (Section 9.2); and multiple-resource, multiple-choice 

knapsack problem (MMCKP) (Section 9.3).  Section 9.4 presents an application of MMCKP in a 

international assembly system design problem.   

 

9.1. SPPRW and SPRCRW 

TSA can be adapted to solve SPPRW, for which resource windows are given for each node but 

may not be tight.  Thus, an adaptation of TSA (ATSA) for solving SPPRW uses stage 1 to 

tighten resources windows that are given initially.  Desrochers et al. (1992) introduced a 

technique for tightening time windows (i.e., with only one type of resource) that has been widely 

used and proven to be effective in practice.  We generalize this technique for SPPRW (i.e., to 

deal with multiple types of resource windows) and use it in stage 1 of ATSA.  Figure 18 details 

our stage 1 algorithm in ATSA (S1A-A).  At the end of S1A-A, it is likely that some arcs can be 

deleted.  We refer the reader to Desrochers et al. (1992) for an illustration of their technique.  

Stages 2 and 3 of ATSA are exactly the same as stages 2 and 3 of TSA.  
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step 1. for each resource r∈ℜ , for each jv V∈  in increasing order of j ,  
     apply the following four conditions to tighten resource windows: 

(i) compute minimal resource requirement from predecessors: 
 { }{ }{ }( , )max ,min ,minjr jr irjr i j A ijrt t t t u∈= + ; 

(ii) compute minimal resource requirement from successors: 
 { }{ }{ }( , )max ,min ,minjr jr irjr j i A jirt t t t u∈= − ; 

(iii) compute maximal resource requirement from predecessors: 
 { }{ }{ }( , )min ,max ,maxjrjr jr i j A ir ijrt t t t u∈= + ; 

(iv) compute maximal resource requirement from successors: 
 { }{ }{ }( , )min ,max ,maxjrjr jr j i A ir jirt t t t u∈= − ; 

until no more reductions are possible. 

Fig. 18.  S1A-A: stage 1 algorithm of ATSA. 

 This approach can be generalized to SPRCRW (i.e., SPP with both resource-limitation 

constraints and resource-window constraints).  Let 1ℜ  be the set of resources limited by 

constraint (14b) and 2ℜ  be the set of resources constrained by resource windows (14c)-(14d).  

Then, 1 2ℜ =ℜ ∪ℜ . Let 1 2ℜ =ℜ ∩ℜ .  Using the notation introduced in Chapter IV, a formal 

description of SPRCRW can be stated as MIP ( 3)℘ :  

( 3)℘                 min     
( , )

ij ij
i j A

z c x
∈

= ∑                                                                                    (14a) 

                        s.t.       Constraints (1b) and (1d)                           
                                           

( , )
ijr ij r

i j A
u x T

∈

≤∑                       1r∀ ∈ℜ                                        (14b) 

                 jr jr jrt t t≤ ≤                       1,j n= … , 2r∀ ∈ℜ                (14c) 
                                     (1 )ir ijr jr ijt u t M x+ − ≤ −     ( , )i j A∀ ∈ , 2r∀ ∈ℜ .                       (14d) 

In SPRCRW, resource r∈ℜ  involves both resource limitation (14b) and resource window 

constraints (14c)-(14d) if ℜ ≠∅ .  If 2ℜ =∅ , ( 3)℘  reduces to ( 1)℘ , RCSP; and if 1ℜ =∅ , 

( 3)℘  reduces to ( 2)℘ , SPPRW.  A typical application of model ( 3)℘  is as the subproblem used 

in CG to solve VRPTW, in which multiple resource constraints represent vehicle capacity 

constraints (14b) and time-window constraints (14c)-(14d).  A generalization of TSA (GTSA) 
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can solve SPRCRW.  Figure 19 details our stage 1 algorithm for GTSA (S1A-G), which is 

designed specifically to solve SPRCRW.   

 
step 1. For 1r∈ℜ , apply S1A to formulate the window of resource r  at each node ; 
step 2. For r∈ℜ , form the union of the resource window that results from step 1 and the 

resource window that is given in model ( 3)℘  as the initial resource window for 
resource r  at each node;  

step 3. For r∈ℜ , apply S1A-A to tighten the resource window for each node.  

Fig. 19.  S1A-G: stage 1 algorithm of GTSA. 

In Figure 19, S1A-G transforms resource-limitation constraint (14b) to resource-window 

constraints (14c)-(14d) using S1A and then tightens the resource windows, if possible, using 

S1A-A.  For r∈ ℜ  (then 1r∈ℜ ), step 1 transforms constraint (14b) to a resource-window at 

each node, then step 2 takes the union of the resource window from step 1 and the resource 

window that is given initially in model ( 3)℘  for each node, and, finally, step 3 applies S1A-A to 

tighten the resulting resource windows.  Stages 2 and 3 of GTSA are exactly the same as stages 2 

and 3 of TSA.  

TSA can be adapted easily to deal with RCSP, SPPRW and SPRCRW by adapting stage 

1 appropriately.  Stages 2 and 3 are applicable to each of these problems.  

 

9.2. RCkSP 

A k-SPP is to find the first k shortest paths.  Efficient algorithms for k-SPPs were proposed by 

Yen (1971) for general graphs; Katoh et al. (1982) for undirected graphs; and Fox (1978), 

Eppstein (1998) and Lawler (1976) for acyclic paths.  Eppstein (1998) gives a recent survey on 

k-SPP.  In contract, RCkSP has not been studied.  TSA can be adapted to solve RCkSP.  Recall 

that the preliminary phase of TSA relaxes resource constraints by generating expanded graph 

EG .  The preliminary phase of TSA can transform RCkSP into an unconstrained k-SPP on the 
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expanded graph EG .  Thus, by incorporating a classical unconstrained k-SPP algorithm in stage 

3 of TSA (e.g., Lawler’s algorithm), TSA can solve RCkSP on an acyclic graph and is suitable 

for solving RCkSP repeatedly as in CG.   

 

9.3. MMCKP 

This section shows that TSA can solve MMCKP, in particular, when MMCKP is a subproblem 

in CG or CG/B&B.  We illustrate this point after presenting a formal description of MMCKP.   

Given κ  sets 1 , ,H Hκ…  of items to pack in a knapsack with multiple capacity 

constraints (i.e., resource limitations) 1 , ,T T
ℜ

…  and that each item ij H∈  has profit ijc−  and 

resource requirement vector { }1 , ,ij ij iju u
ℜ

=u … , MMCKP is to choose exactly one item from 

each set so that the total profit is maximized without exceeding resource limitations rT , r∈ℜ .  

MMCKP may thus be formulated as model ( 4)℘ : 

( 4)℘               max 
1 i

ij ij
i j H

z c x
κ

= ∈

= −∑∑                                                                   (15a) 

s.t.   
1 i

ijr ij r
i j H

u x T
κ

= ∈

≤∑∑          r∀ ∈ℜ                                             (15b) 

   1
i

ij
j H

x
∈

=∑                    1, ,i κ= …                                         (15c) 

          {0,1}ijx ∈                  1, , ,i κ= … ij H∈ .                           (15d) 

All coefficients ijru  and rT  are positive, discrete values; coefficients ijc  are unrestricted; and sets 

1, ,H Hκ…  are mutually disjoint with iH  having cardinality of ih .  The total number of items 

that are available to choose is 1 iim hκ

=
= ∑ .   

If 1ℜ = , MMCKP reduces to the classical multiple-choice knapsack problem (MCKP), 

which is defined as a 0-1 knapsack problem (KP) with additional, disjoint multiple-choice 

constraints (15c).  MCKP is NP-hard as it contains KP as a special case, but it can be solved in 
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pseudo-polynomial time using DP (Dudzinski and Walukiewicz (1987)).  The problem has a 

wide range of applications: capital budgeting (Nauss (1978)), for which only one project may be 

selected from some subset of projects, subject to a single, scarce resource limitation; determining 

which components should be linked in series in order to maximize fault tolerance (Sinha and 

Zoltners (1979)); and menu planning (Sinha and Zoltners (1979)).  MCKP often arises as a 

subproblem in CG (e.g., Wilhelm et al. (2005b) and Fisher (1981)).  Algorithms available to 

solve MCKPs are typically based on B&B (Nauss (1978), Sinha and Zoltners (1979)) and DP 

(Dudzinski and Walukiewicz (1987) and Pisinger (1994)).  Research on MMCKP is sparse.  

TSA gives a new and effective algorithmic approach to solve MMCKP (MCKP); in addition, it 

is suitable for solving MMCKP repeatedly as a subproblem in CG and CG/B&B.   

 

Fig. 20.  Representation of MMCKP on an acyclic graph: (a) multigraph; (b) MMCKP-graph. 

MMCKP can be represented as RCSP on an acyclic graph.  Figure 20(a) uses an acyclic 

multigraph (with parallel arcs connecting certain pairs of nodes) to formulate MMCKP with 

parallel arc 1( , ) j
i iv v +  representing item j  in set iH .  Such a special multigraph has node set V  

with 1V κ= + ; each arc has tail at iv  and head at 1iv + , 1, ,i κ= … .  Arc 1( , ) j
i iv v +  appears in the 

graph if and only if there is a corresponding decision variable ijx  in MMCKP.  To avoid parallel 

(a)  
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arcs, we construct an equivalent simple graph G  (i.e., with no parallel arcs) by adding node 
jiv  

in the middle of arc 1( , ) j
i iv v + , as shown in Figure 20(b).  Such a node is called an arc-node and 

the set of all arc-nodes is denoted V .  The node set of graph G  become V V+  with 

1V V m κ+ = + + .  G  comprises two types of arcs: type 1 arcs, denoted as 
jie , point from node 

iv  to arc-node 
jiv ; type 2 arcs, denoted as 

jie , point from arc-node 
jiv  to node 1iv +  for 1, ,i κ= … .  

These two types of arcs appear in pairs.  The arc set of G  is denoted A  with 2A m= .  The 

resource requirement vector and the cost associated with 
jie  are iju  and ijc , and the resource 

requirement vector and the cost associated with 
jie  are the zero vector and zero, respectively.  

Such a special graph ( , )G V V A+  is called an MMCKP-graph because MMCKP as defined in 

model ( 4)℘ is equivalent to RCSP on this graph with the arc costs and resource requirement 

vectors as defined above.  The equivalent RCSP is to find a shortest path from 1v  to 1vκ+  with 

respect to ijc  so that the total requirement of resource r  observes its limit rT  for r∈ℜ .  The 

optimal value of MMCKP is the negative of the minimum cost for RCSP.  The following 

propositions relate to the application of TSA to solve RCSP on the MMCKP-graph.  

Proposition 9.1.  Three conditions are equivalent: (a) arc 
jie  is bottleneck; (b) arc 

jie  is 

bottleneck; and (c) arc-node 
jiv  in V  is bottleneck.  

Proof.  If any of arcs 
jie , 

jie , or arc-node 
jiv  is a bottleneck, then the other two are not on any 

1 1v vκ+−  path.  Thus, they all must be bottlenecks.    ■ 

 By Proposition 9.1, it is sufficient to check whether arc 
jie is a bottleneck without 

checking arc 
jie  and arc-node 

jiv .  Once arc 
jie  is judged to be a bottleneck, Proposition 9.1 
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establishes that arc 
jie  and arc-node 

jiv  are bottlenecks.  Bottleneck arcs 
jie  and 

jie  and arc-node 

jiv  can all be deleted from the graph.   

Let iH ′  be a subset of iH  that is formed by removing item j  from iH  if arcs 
jie  and 

jie  

are bottlenecks and have been deleted from the MMCKP-graph.  Let { }
1

min
i

r ijrj Hi
M u

κ

′∈=

= ∑  and 

{ }
1
max

i
r ijrj Hi

M u
κ

′∈=

= ∑  for r∈ℜ .  Define r r rM TΔ = −  and rr rT MΔ = − .  Using the notation of 

Section 5.1, we have the following proposition.  

Proposition 9.2.  For the MMCKP-graph, ir ir rb f= − Δ  and ir rir
b f= + Δ  for iv V∈ , r∈ℜ .      

Proof.  By induction in decreasing order of i .  When 1i κ= + , 1,rfκ+ = rM ; 
1, rr

f M
κ+

= , so the 

statement is true.  Suppose the statement is true for i k>  and consider the case for which i k= ; 

then, (1) { }1, max
k

k r kr kjrj H
f f u+ ′∈

= + ; (2) { }
1,

min
k

kjrk r kr j H
f f u

′+ ∈
= + ; (3) { }1, min

k
kr k r kjrj H

b b u+ ′∈
= − ; and (4) 

{ }1, max .
k

kr k r kjrj H
b b u+ ′∈

= −  By (1) and (4), we have 1,k rb + = 1, ( )krk r krf b f+ + −  and by induction 

kr kr rb f− = −Δ .  Thus, 1,k rb + = 1,k r rf + − Δ .  Similarly, by (2) and (3), we can prove 

1, 1,k r rk r
b f+ +

= + Δ .  This completes the proof.    ■ 

Proposition 9.3.  If { }min
i

ijr ijr rj H
u u

′∈
> + Δ  for some r∈ℜ , then arc 

jie  is a bottleneck.   

Proof.  By S1A, arc 
jie  is a bottleneck if ijr jrir

f u b+ >  for some r∈ℜ .  By Proposition 9.2, 

jr rjr
b f= + Δ ; thus, arc 

jie  is a bottleneck if ijr rjr ir
u f f> − + Δ { }min

i
ijr rj H

u
′∈

= + Δ .    ■    

Proposition 9.4.  If 0rΔ ≤ , the thr  knapsack capacity constraint is redundant; and if 0rΔ ≤ , 

r∀ ∈ℜ , the optimal solution is 1
iijx =  for { }arg min

ii j H ijj c′∈= , 1, ,i κ∀ = . 
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Proof.  0r r rM TΔ = − ≤  implies r rM T≤ .  This proves first part.  If all knapsack capacity 

constraints are redundant, then the optimal solution will be 1
iijx =  for { }arg min

ii j H ijj c′∈= , 

1, ,i κ= , by the greedy argument.    ■ 

Proposition 9.5.  If any node in V  of MMCKP-graph is a bottleneck, then MMCKP is 

infeasible relative to knapsack capacity constraints (15b).  

Proof.  If any node in V  of the MMCKP-graph is a bottleneck, then there is no connected path 

from 1v  to 1kv + .     ■ 

Corollary 9.1.  For MCKP (i.e., 1ℜ = ), if rrT M≥ , r∈ℜ , then arc 
'jie  with { }arg min

i
ijr

j H
j u

∈

′ =  

can not be a bottleneck. 

Proof.  If arc 
'jie  is a bottleneck, then node iv  is a bottleneck and, by Proposition 9.5, MCKP is 

infeasible with respect to resource limitations, contradicting the fact that rrT M≥ , r∈ℜ .    ■  

Based on Propositions 9.1-9.5, Figure 21 details a specialized S1A (S1A-M) for TSA for 

solving RCSP on the MMCKP-graph.  S1A-M is specialized for the MMCKP-graph.  Step 2(i) 

assures that the problem is feasible; otherwise, the algorithm stops at step 2.  Step 2(i) also 

checks and removes redundant resource constraints using Proposition 9.4 and, if all resource 

constraints are judged to be redundant during the iterative process (steps 2 and 3), the greedy 

algorithm prescribes the optimal solution in step 3.  Step 2(ii) uses Proposition 9.3 to detect arcs 

that are bottlenecks relative to each resource; according to Propositions 9.1 and 9.2, we do not 

need to test for bottleneck nodes.  Step 3 iterates step 2 until no reduction is possible.  After 

deleting bottleneck arcs, steps 4(i-ii) use Proposition 9.2 to further simplify the calculations of 

irb  and 
ir

f  for nodes in V .  Step 4(iii) calculates ,,
,

jj
i ri r

f b , , ,,
j ji r i rf b ,

,ji rt  and 
,ji rt  for nodes in V  

easily because the in- and out-degrees of each node in V  are 1.   
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step 1. Initialize graph RG  by assigning RV V V= +  and RA A= .  
step 2. For 1r = ℜ ,  
(i)  calculate rΔ  and rΔ . If 0rΔ <  (i.e., rrT M< ), STOP; the problem is infeasible.    
             If 0rΔ ≤ , resource constraint r  is redundant and removed from the model.  

 (ii)        For each iv V∈ { }1\ vκ+ , if ijru { }min
i

ijr rj H
u

′∈
> + Δ , for ij H ′∈ , delete 

jie , 
jie , and 

jiv .  

step 3. If 0rΔ ≤  for all r∈ℜ , the optimal solution is given by Proposition 9.4, STOP; 
otherwise, if anything was deleted from the graph in step 2, go back to step 2. 

step 4. For 1r = ℜ ,  

    set 
1

0
r

f = , 1 0rf = , 1,rbκ+ rT= , and 1,r rb Tκ+ = . 

  (i)          For each iv V∈ { }1\ vκ+  in decreasing iv  index, calculate irb { }1, min
i

i r ijrj H
b u+

′∈
= − . 

  (ii)         For each iv V∈ { }1\ v  in increasing iv  index, calculate { }1, max
i

ir i r ijrj H
f f u− ′∈

= + , 

ir ir rb f= − Δ , ir rir
f b= − Δ , { }max ,ir irir

t f b= and { }min ,ir ir irt f b= .  

  (iii)    For each 
jiv V∈ , calculate ,ji r ir ijrf f u= + ,  

,j
ijri r ir

f f u= + , , 1,ji r i rb b += , , 1,ji r i rb b += , 

              { }, ,,
max ,

j jj
i r i ri r

t f b= and { }, , ,min ,
j j ji r i r i rt f b= .    

            STOP.                

Fig. 21.  S1A-M: S1A specialized for the MMCKP-graph. 

After stage 1, stages 2 and 3 of TSA can be applied.  TSA is suitable for solving RCSP 

on an MMCKP-graph repeatedly; thus, it is suitable for solving MMCKP as in CG. 

 

9.4. An application of MMCKP 

In this section, we apply TSA to solve a MMCKP subproblem repeatedly in a branch-and-price 

(CG/B&B) approach, which is used to solve a real problem called NAFTAP, and demonstrate 

the performance of TSA by a numerical example.  NAFTAP is to prescribe a strategic design of 

an assembly system and its supporting supply chain in the international business environment; it 

was formulated specifically to model the terms under the North American Free Trade Agreement 

(NAFTA).  The strategic design problem is to prescribe a set of facilities, including their 

locations, technologies, and capacities, as well as strategic aspects of its supporting supply chain, 
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selecting suppliers; locating distribution centers; planning transportation modes; and allocating 

target levels (i.e., amounts) for production, assembly, and distribution (Wilhelm et al. (2005b)).  

The objective is to maximize after-tax profits.  Our previous paper (Wilhelm et al. (2005b)) 

presents a comprehensive MIP that models this complicated international design problem.  It 

deals with multiple time periods, multiple (end) products with bills-of-materials (BOMs) that 

have multiple echelons, and multiple countries but focuses on the relationship between the U.S. 

and Mexico that was established by NAFTA.  It also investigates international business issues 

raised by NAFTA, such as border crossing, transfer price, exchange rate, local content rule, safe 

harbor rules, etc.  We refer the reader to Wilhelm et al. (2005b) for a detailed description of 

NAFTAP and the model.  

The NAFATP model in Wilhelm et al. (2005b) was designed for a CG approach. CG 

applies Dantzig-Wolfe decomposition (Dantzig and Wolfe (1960); Bazaraa et al. (1990)) to the 

linear relaxation of the model and exploits the block angular structure to obtain a subproblem of 

type 1 (SP1) for each end product E
ep P∈  ( EP  is a set of end products).  SP1s associated with 

E
ep P∈  are mutually independent of each other.  SP1 associated with E

ep P∈  ( 1 ( )SP e ) 

prescribes a system design for a single end product ep , including production, assembly and the 

supply chain, by selecting a subset of alternative facilities.  To facilitate presentation, we use the 

term “component” to indicate raw material, an in-process-part, end product, or an end product in 

the distribution subsystem.  Correspondingly, we use the term “alternative facility” to indicate a 

unique location and a set of technologies and capacities for each supplier, 

manufacturing\subassembly facility, assembly facility, or distribution center.  We use the term 

“process” to indicate outsourcing, production, assembly, or stocking operations.  Thus, we 

represent supplier, production, assembly, and distribution decisions in a common way.   
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Let eP  be the set of components that are required to assembly and distribute end product 

E
ep P∈  and pF  be the set of alternative facilities that can process component p .  For an end 

product E
e Pp ∈ , )(1 eSP  involves only binary decision variables e

pfy  for ep P∈  and pf F∈ .  

e
pfy  equals 1 if facility pf F∈  is open for processing ep P∈  in assembly of end product ep ; 

otherwise 0.  With this notation, )(1 eSP  can be formulated as follows.  

)(1 eSP : min  1

e p

SP e e
e pf pf

p P f F
Z yψ

∈ ∈

= ∑ ∑                                                                (16a) 

  s.t.     
p

e
pf

f F
y

∈
∑ = 1  ∀  raw material ep P∈                   (16b) 

          
p

e
pf

f F
y

∈

−∑ ≤ 1−   ∀  non raw-material ep P∈            (16c)   

        
e p

O e
pf pf

p P f F
G y

∈ ∈
∑ ∑ ≤ eL                                                         (16d) 

e
pfy { }0,1∈       ep P∀ ∈ , pf F∈ .                            (16e) 

The objective function (16a) minimizes the total reduced cost associated with decision 

variables e
pfy  where e

pfψ  denotes the reduced cost associated with e
pfy .  Equality (16b) assures 

that a solution prescribes exactly one supplier to provide the raw material required by local 

content rules under NAFTA.  Inequality (16c) assures that a solution prescribes at least one 

facility (distribution center) to manufacture each component (store the end product), allowing 

facility flexibility (e.g., one component may be processed in several facilities).  Inequality (16d) 

invokes a budget (resource) limitation, assuring that the total fixed cost associated with 

prescribing facilities for end product ep  does not exceed an investment budget of eL  dollars.  

Parameter O
pfG  represents the fixed cost of opening pf F∈  to process ep P∈ .   This budget 

limitation is appropriate because each ep  may be viewed as a profit center that serves a unique 

market segment.  Finally, constraints (16e) give binary restrictions. 
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Note that if we can transform inequality (16c) to an equality, )(1 eSP  becomes MCKP as 

defined in Section 9.3 and can be solved as a RCSP on an MMCKP-graph using TSA.  For this 

purpose, let pS  be a set of all nonempty subsets of pF  for ep P∈  if p  is not a raw material; and 

pS  be a set of singleton subsets of pF  if p  represents a raw material.  Then, | |2 1pF

pS = −  if p  

is not a raw material and p pS F=  if p  is a raw material.  Define binary variable e
psy  (for 

ep P∈  and ps S∈ ) that equals 1 if a set of facilities ps S∈  is prescribed to process p ; otherwise 

0.  Let ps ps
f s

ψ ψ
∈

= ∑  and O O
ps pf

f s
G G

∈

= ∑  for ps S∈ .  Then, )(1 eSP  can be reformulated as 1( )SP e , 

which is MCKP and can be solved as RCSP on an MMCKP-graph using TSA.   

1 ( )SP e : min  1

e p

SP e e
e ps ps

p P s S
Z yψ

∈ ∈

= ∑∑                                                                 (17a) 

  s.t. 
p

e
ps

s S
y

∈
∑ = 1   ep P∀ ∈                              (17b) 

  
e p

O e
ps ps

p P s S
G y

∈ ∈
∑∑ ≤ eL                                                         (17c) 

e
psy { }0,1∈                                  ep P∀ ∈ , ps S∈ .                 (17d) 

Intuitively, we can construct the corresponding MMCKP-graph from the BOM network, 

which defines relationships amongst components that constitute end product ep .  In the BOM 

network, an arc connecting one node to another node means that the tail component is used to 

produce or assemble the arrowhead component.  We offer an example (Figures 22) to help 

interpret the construction of the MMCKP-graph.  The example deals with a single end product 

5ppe = , with the BOM network shown in Figure 22(a).  The example assumes two alternative 

facilities for each component.  In an actual application, there may be many alternative facilities.     

Starting with a BOM network, we first construct a network – the BOM with alternative 

facilities (BAFN) – by adding nodes Dp  and D  after node ep , and by adding parallel arcs with 

each arc representing a set of alternative facilities in pS  in which each tail component can be 
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processed.  Figure 22(b) depicts BAFN and shows that, for example, component 4p  can be 

manufactured in alternative facilities 5f , 6f , or both.  Nodes in level 1 always represent raw 

materials, which are, by assumption, outsourced, and corresponding arcs represent their 

respective, alternative suppliers. Node Dp  represents end product ep  in the distribution 

subsystem, arcs from nodes ep  to Dp  represent alternative final assembly facilities, node D  

represents all customer demands for the end product, and arcs from nodes Dp  to D  represent 

alternative DC facilities to store the end product ep .   

 
Fig. 22. An example of SP1: (a) example of BOM restrictions; (b) example of BAFN; and (c) 
example of SBAFN.  

 
Then, we revise BAFN, forming a serial network (SBAFN) in which each node still 

represents a component and each arc represents a specified set of alternative facilities for 

processing the tail component, as shown in Figure 22(c).  SBAFN includes one copy of every 

node p  in BAFN.  The nodes are sequenced according to the topological order in BAFN.  

(c) 

(a) 

(b)

p1 p2 

p4 

pe=p5 

p3 

------Level 1 

------Level 2 

------Level 3 

------Level 4 

f1

f8,f9 

f3,f4 

f9

f1

f5,f6 

f8

f6,f7 

f2 f3

p1 p2

p4

pD=p6

pe=p5

p3

D

------Level 5 

------Level 6 

f4

f4

f3

f3

f3,f4 f6
f5

f7f6

f8
 

f6
 

f2
 

f3
 

f3
 

f5
 

f1
 

f1
 

p2 

p3 

D 

p4 

p1 

f8,f9 

f6,f7 

f5,f6 

f3,f4 f4
 

f6
 

f7
 

p5 

f9
 

p6 



 99  

Actually, the nodes can be sequenced in any order.  SBAFN is compatible with the multigraph in 

Figure 21(a).  We can obtain the MMCKP-graph from SBAFN, by adding an arc-vertex in each 

arc in SBAFN.  Associating the resource requirement O
psG  and cost psψ  to the appropriate arc 

(that has the tail at node p  and represents ps S∈ ) as illustrated in Section 9.3, 1 ( )SP e  (i.e., 

)(1 eSP ) can be solved as RCSP on the specified MMCKP-graph using TSA.  The optimal 

solution prescribes an optimal system design for end product ep  that observes budget limits.   

We carried out a preliminary numerical example which involves two end products ( 1e  

and 2e ) representing two types of laptop computers.  These two end products have the same 

BOM and each end product has 12 raw materials (each with 3 alternative facilities), 3 in-process-

parts (each with 4 alternative facilities), one end product (each with 4 alternatives facilities), and 

in addition, four alternative distribution centers, totally entailing 56 binary variables e
pfy , 

equivalently, 111 binary variables e
psy .  The example has a planning horizon comprising three 

time periods and specifies cost parameters and demands randomly.    

Branch-and-price solves this laptop example in 26.938 seconds, exploiting 27 B&B 

nodes.  It calls TSA to solve 1 1( )SP e  and 1 2( )SP e  each 274 times and the total run time to obtain 

these 548 solutions is only 1.538 seconds.  The total run time of the preliminary phases of the 

two SP1s is 0.016 second.  The resulting expanded graph has 24(24) nodes and 58(58) arcs for 

each of these two SP1s.  The performance of TSA in solving SP1s in this laptop example is quite 

satisfactory.  More computational results will be provided in a later working paper.  This 

example demonstrates that TSA can be used to effectively solve subproblems in CG/B&B.  
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CHAPTER X 

INTRODUCTION TO SCHEDULING PROBLEMS WITH SDS 

 

Most practical scheduling problems involve setup times (costs).  In general, setup includes work 

required to prepare a machine (or process) to produce parts of a given type, including setting jigs 

and fixtures, adjusting tools, and provisioning material.  Because of their prevalence in, and 

importance to, industry and because of the challenges they present to solution methodologies, 

scheduling problems that involve sequence-dependent setup (SDS) have attracted the interests of 

many researchers.  Lot-sizing is intimately related to scheduling and a significant body of 

literature deals with integrating these issues (Haase (1994), Potts and van Wassenhove (1992), 

Drexl and Kimms (1997), Karimi et al. (2003)).  Typical studies seek to prescribe the schedule 

as well as lot sizes to minimize the average setup cost over all jobs and holding cost over the 

entire schedule. 

Specific objectives of this dissertation research on reviewing the scheduling problems 

that involve SDS are: (i) an overview with emphasis on recent results, (ii) an integrated view of 

lot-sizing and SDS scheduling, (iii) a perspective of this line of research, and (iv) fertile 

opportunities for future research. 

The problem of prescribing a sequence, even for a single machine with SDS with 

makespan as the objective, is equivalent to the traveling salesman problem (TSP) and is, 

therefore, NP-hard (Pinedo (2002)).  This difficulty has motivated a number of solution methods, 

including optimizing methods (B&B, branch-and-cut (B&C), DP, and MIP solvers), hybrids 

(methods that combine B&B, DP, or MIP solvers with a heuristic), and heuristics (meta-

heuristics such as genetic algorithms (GA), simulated annealing (SA), tabu search (TS), and 

greedy randomized adaptive search procedure (GRASP); methods based on TSP algorithms, 
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greedy algorithm; decomposition; dispatching rules; simulation; list scheduling).  Each approach 

has unique characteristics that suit it for specific problems.   

Several earlier papers have reviewed research related to setup times (e.g., Allahverdi et 

al. (1999) and Yang and Liao (1999)).  In particular, Allahverdi et al. (1999) cited nearly 200 

references that deal with setup issues, but most were published before the 1990’s.  They 

categorized setup as sequence-independent or sequence-dependent as well as batch and non-

batch.  Batch setups involve times (or costs) that are typically much larger between batches (i.e., 

“major”) than those between jobs within a batch (i.e., “minor”).   Batches are also called 

families.  They addressed traditional configurations (single machine, parallel machines, flow 

shops, and job shops) and emphasized that future research should focus on objectives related to 

due dates. 

Other review papers have focused on specific machine configurations.  Cheng et al. 

(2000) reviewed research on flow shop scheduling problems with setup times.  They presented a 

complexity hierarchy and classified research into four categories that involved sequence 

independence and dependence relative to both job and family setup times (see also Monma and 

Potts (1989)).  Kim and Bobrowski (1994) categorized early (before 1988) job shop scheduling 

research relative to the job arrival pattern and listed only four references that dealt with SDS.   

Yet other papers have focused on combined lot-sizing and scheduling.  Potts and van 

Wassenhove (1992) reviewed work that combined batching, lot-sizing and scheduling, stressing 

that, up to 1992, few studies had considered this important set of inter-related decisions.  Drexl 

and Kimms (1997) summarized more recent work by presenting MIP formulations for different 

single- and multi-level lot-sizing and scheduling problems.  But these formulations do not 

incorporate SDS. 
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Table 13. Three-field notation γβα ||  

The α  field specifies the machine configuration: 
 1     single machine  

 Fm  m-machine flow shop 
 FFc  flexible flow shop with c stages in series, each with a set of identical machines in 
  parallel  

 FJc  flexible job shop with c work centers, each with a set of identical machines in parallel 
 Jm  m-machine job shop in which each job has its own predetermined routing 

 Pm  m identical machines in parallel 
 Qm  m uniform machines in parallel, each operating at a different speed 
 Rm  m unrelated machines in parallel, each with a unique processing time for a job. 
The β  field specifies any processing restrictions and constraints that may be relevant: 
              block blocking can occur in a flow shop because buffers have limited capacities 
 brkdwn  breakdown or shutdown of machines 
 ijbs ( )ijkbs  sequence-dependent batch setup time (or cost) (on machine k) 

 ( )jj dd  jobs have due dates (deadlines) 

 d ( d )   all jobs have a common due date (deadlines), dd j = ( dd j = ) 
  Mj not all m machines in parallel are capable of processing job j 
 nwt  jobs cannot wait between operations in a flow shop 
 prmp  jobs can be preempted 
 prec  precedence constraints relate jobs 
 prmu  a permutation sequence is used in a flow shop 

 jr  jobs have known release dates 
 recrc  jobs may recirculate to be processed on the same machine several times 
 ( )ijkij ss  sequence-dependent setup time (cost) for job j immediately after job i (on machine k) 

The γ  field describes the objective to be minimized: 
 maxC   makespan 
 maxL   maximum lateness 
 maxT   maximum tardiness 
 jj Cw )(∑  total (weighted) completion time 

 jj Tw )(∑  total (weighted) tardiness 

 jj Uw )(∑  (weighted) number of tardy jobs 

 jj TE ∑+∑  total earliness / tardiness 

 jj TwEw ′′∑+′∑     total weighted earliness / tardiness 

 jjjj TwEw ′′∑+′∑     total weighted earliness / tardiness with unique penalties 

 ijijkij bsss ∑∑∑ ,, or ijkbs∑   total setup time (cost) with respect to ijs , ijks , ijbs , or ijkbs  

 ℜ   any regular measure of performance (see Pinedo (2002)) 
 γ   any measure of performance 
 Π   minimize cost  
 'Π   minimize sum (or average over time horizon) of setup and holding cost. 
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This dissertation contributes by focusing on recent results, providing a perspective of 

SDS scheduling research, integrating lot-sizing and SDS scheduling, and suggesting fertile 

opportunities for future research.  Throughout, we use the three-field notation γβα ||  (Graham 

et al. (1979)) given in Table 13 to denote scheduling problems.  For example, max||1 Csij  

designates a single-machine configuration with SDS and the objective of minimizing makespan; 

jjijk CwsprmuFm ∑|,|  designates an m machine flow shop configuration with SDS requiring a 

permutation sequence that minimizes total weighted completion time.  We use standard 

terminology (e.g., Pinedo (2002)) in which a “sequence” is an ordering of jobs and a “schedule” 

is the set of starting and ending times for setup and production of every job.  Symbols jp~ , jr~  

and ijs~  denote random processing, arrival and SDS, respectively.   

This part of the dissertation has been organized in six chapters. Chapters X-XIV review 

studies related to the single machine, parallel machine, flow shop, and job shop configurations, 

respectively. We discuss research related to each configuration in detail, including solution 

methods, problem complexities, and combined lot-sizing and scheduling.  Chapter XV presents 

our perspective, gives our conclusions, and suggests research opportunities. 
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CHAPTER XI 

THE SINGLE MACHINE CONFIGURATION 

 

Since the single machine represents a building block for more complex configurations, 

researchers have dealt with it in some detail.  A fundamental issue is the inherent difficulty of 

single-machine scheduling problems that involve SDS.  Research has established the complexity 

of most single machine problems; for example, Pinedo (2002) showed that max||1 Csij  is strongly 

NP-hard.  For the case of batch SDS times, Monma and Potts (1989) showed that max||1 Cbsij , 

jjij Cwbs ∑||1 , max||1 Lbsij , and jij Ubs ∑||1  are polynomial solvable when the number of 

batches is fixed and that max||1 Cbsij , max||1 Lbsij , and jij Ubs ∑||1  are NP-hard for an 

arbitrary number of batches; Ghosh (1994) showed that jij Cbs ∑||1  and jjij Cwbs ∑||1  are 

strongly NP-hard for an arbitrary number of batches, even when the jobs within a batch have the 

same processing time and weight, and proposed a DP formulation; Chen (1997) proved that 

jjjjij TwEwbs ′′∑+′∑||1  is NP-hard, even for the case with two batches of jobs and a common 

due date and weight for all jobs in each batch and for the case with large due dates that do not 

restrict the solution. 

This section reviews the extensive research on single machine scheduling problems that 

involve SDS.    Section 11.1 reviews optimizing and hybrid methods and Section 11.2 considers 

heuristics.  Section 11.3 discusses the combined lot-sizing and scheduling problem.   

 

11.1 Optimizing and hybrid methods 

Even though complexity analysis is not encouraging, researchers have developed approaches, 

typically based on B&B, DP, or MIP solvers, to prescribe optimal solutions. 
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As an early work, Barnes and Vanston (1981) combined B&B with DP to solve 

ijjjij sCws ∑+∑||1 .  For max|,|1 Lsprec ij , Uzsoy et al. (1991) proposed a B&B algorithm, for 

which run times increased rapidly for problems with more than fifteen operations, and Uzsoy et 

al. (1992) developed DP algorithms for max|,|1 Lsprec ij  and jij Usprec ∑|,|1  where precedence 

constraints comprise a number of strings (i.e., chains).  Coleman (1992) formulated a MIP for 

jjij TwEws "'||1 ∑+∑  and solved it to optimality using LINDO.  Chen (1997) introduced DP 

algorithms for jjjjij TwEwbs ′′∑+′∑||1  with an unrestrictively large, common due date for all 

jobs (i.e., in all batches), for jjjjij TwEwbs ′′∑+′∑||1 jjdβ∑+  with common due date for all 

jobs, where the term jjdβ  represents a penalty assessed for the due date prescribed by decision 

variables jd  for each batch; and for jjjjij TwEwbs ′′∑+′∑||1 jjdβ∑+  with two batches of jobs.  

Rabadi et al. (2003) reported a B&B algorithm for jjij TEsd ∑+∑|,|1 .  Asano and Ohta 

(1996) studied jijjj Esrd ∑|,,|1 , detailing a B&B algorithm that included a dominance 

relationship to derive a strong lower bound.  The branching rule and the strong lower bound 

enhanced computational effectiveness, but run time increased exponentially with the number of 

jobs (as to be expected), making it impractical to optimize large-scale instances (for example, a 

30-job instance required about 30 minutes to solve).  Asano and Ohta (1999) initiated a B&B 

algorithm to solve max|,,|1 Tsrbrkdwn ijj  optimally for the case in which a set of break downs are 

pre-specified (e.g., representing preventative maintenance) and a post-processing procedure to 

delay a shutdown by prescribing its starting time with the goal of reducing maxT .  This work 

extended that of Leon and Wu (1992), which treated sequence-independent setup times.  Tan et 

al. (2000) compared B&B (Ragatz (1993)) with three heuristics for jij Ts ∑||1  (see also Section 

11.2) and indicated that B&B may be preferred in solving smaller problems. 



 106

Only one paper has addressed rescheduling in single machine scheduling problems that 

involve SDS.  Unal et al. (1997) rescheduled jjjjij Cwrdbs ∑|,,|1  and max|,,|1 Crdbs jjij  in a 

make-to-order environment with batch setup, inserting newly arrived jobs into a given sequence 

of existing jobs without making existing jobs tardy, without modifying the sequence of existing 

jobs relative to each other, and without incurring any additional setups.  They related an exact, 

polynomial time algorithm for the maxC  problem; and, after showing that the jjCw∑  problem is 

strongly NP-hard, described two heuristics with data-dependent worst-case error bounds. 

Several hybrid approaches have combined an optimizing method with a heuristic to 

resolve some portion of the problem.  Ozgur and Brown (1995) suggested a two-phase hybrid for 

applications with a symmetric batch setup matrix { }ijbs  (i.e., with jiij bsbs = , nji ,,1, …= ); in 

application to an automated cable-assembly machine, their hybrid posted good results.  Their 

first phase classifies products into families using cluster analysis and obtains an efficient 

sequence for each family by solving a TSP.  Their second phase sequences families using a 

special-purpose B&B algorithm.  Roslöf et al. (2002) combined a MIP solver with an iterative 

heuristic for solving jijj TwCwsr "'|,|1 max ∑+ . 

 

11.2. Heuristics 

The fact that SDS typically results in problems that are NP-hard has motivated many researchers 

to devise heuristics that prescribe “good” solutions within “reasonable” run times.   

max||1 Csij  and max||1 Cbsij  can be modeled as TSPs in which each node (city) 

represents a job and each directed arc gives the travel time (or distance) between the nodes it 

connects.  Ozgur and Brown (1995) described a two-phase TSP heuristic (Section 11.1).  Choi et 

al. (2003) considered a GA for applications with an asymmetric { }ijs  matrix.  Spina et al. (2003) 
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presented an approach that integrated Constraint Logic Programming and a GA in application to 

a process that produced sheets for catalytic converters.  In their tests, their approach converged 

rapidly to a “near-optimal” solution but performed well only under certain conditions; in 

particular, it required pre-processing techniques to reduce the size of the solution space.  In an 

application involving CC assembly on a single machine, Rossetti and Stanford (2003) used 

clustering methods to group CCs and a nearest–neighbor heuristic to sequence groups, requiring 

CCs in a group to be processed consecutively.  

Numerous researchers have studied problems with objectives related to due-dates.  For 

jij Ts ∑||1 , Alidaee et al. (2001) applied a generalized greedy algorithm and França et al. (2001) 

were able to prescribe good solutions using a memetic algorithm (see Moscato (1989, 1999)), a 

GA combined with a local improvement procedure.  Tan et al. (2000) compared four methods 

(B&B (Ragatz (1993)), GA (Rubin and Ragatz (1995)), SA (Tan and Narasimhan (1997a)), and 

random-start pair wise interchange (Rubin and Ragatz (1995))) for jij Ts ∑||1 .  Their 

experiments suggested that SA and random-start pair wise interchange can yield good solutions 

for large-scale instances and that B&B may be preferred in solving smaller problems (see also 

Section 11.1). 

To solve jjij Tws ∑||1 , Kim et al. (1995) and Lee et al. (1997) used the Apparent 

Tardiness Cost with Setups (ATCS) heuristic (see Lee et al. (1992)).  Kim et al. applied a feed-

forward neural network to determine values of the look-ahead parameters in ATCS rules; their 

tests showed that, on average, their heuristic improved 19%-50% over Raman et al. (1989) and 

9%-22% over Lee et al. (1992).  Lee et al. (1997) used pre-determined parameters in ATCS rules 

and incorporated a local improvement procedure to further refine the schedule prescribed by the 

ATCS rule.  Their experimental results showed that the ATCS dispatching rule is, on average, 

better than Raman’s rule by more than 30% when the number of jobs is large (more than 40).   



 108

Ovacik and Uzsoy (1994b) developed heuristics for application on a rolling horizon 

basis to a case of max|,|1 Lsr ijj  that arose as a sub-problem in a job shop model of semiconductor 

production.  At any time when a scheduling decision was to be made (e.g., when a machine 

completed service), they used B&B to solve max|,|1 Lsr ijj  for the set of jobs on hand as well as 

those with ready times within a specified horizon.  To deal with dynamic job arrivals, they 

processed only the first job scheduled, then re-applied their method at the next decision point.  

Their tests showed that the rolling horizon approach can consistently give better schedules than 

dispatching rules in combination with local improvement procedures. Other heuristics include 

one based on Lagrangian relaxation for 2|,|1 jjijj Twsr ∑  (Sun et al. (1999)) and TS for Π||1 ijs  

(Laguna and Glover (1993), Laguna (1999), Kolahan et al. (1995), Kolahan and Liang (1998)) 

and Π||1 ijbs  (Woodruff and Spearman (1992)), where Π  denotes some setup related cost 

function (Table 14), and GRASP for ijjjij sCws ∑+∑||1  (Feo et al. (1996)) (Section 11.1, 

which discusses an early paper by Barnes and Vanston (1981)). 

Relative to problems with multiple objectives, Tan and Narasimhan (1997b) used SA to 

minimize jj Tw )(∑  and ijs∑ .  Gupta and Sivakumar (2004) investigated a multi-objective 

problem in semiconductor manufacturing and employed simulation to minimize average cycle 

time and average tardiness while maximizing machine utilization.  They introduced the concept 

of conjunctive simulated scheduling, in which discrete event simulation is used to evaluate 

scheduling criteria.  When a machine becomes available, the simulator uses scheduling criteria to 

select the job for its next operation and then advances its clock to the next decision instance.  

They used compromise programming, which combines multiple objectives into one in making 

each decision.   
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11.3. Combined lot sizing and SDS scheduling   

The problem of lot-sizing and scheduling on a single machine has received considerable 

attention.  Six variations of this problem have been studied and are known to be NP-hard (Drexl 

and Kimms (1997)):  

(1)economic lot scheduling (ELS) in which the planning horizon is infinite;  
 

(2)capacitated lot-sizing (CLS), also called the large bucket model, identifies lots of 
several part types to be processed each period, then schedules jobs in each period 
separately; 

 
(3)discrete lot-sizing and scheduling (DLS), also called the small bucket model, 
subdivides macro periods of CLS into micro periods in which only one part type may be 
processed at full capacity; 

 
(4)continuous setup lot-sizing (CSL) adapts DLS, allowing at most one part type each 
period but using less than full capacity; 

 
(5)proportional lot-sizing and scheduling (PLS) adapts CSL, allowing unused capacity to 
process a second part type in a period;  

 
(6)general lot-sizing and scheduling GLS) incorporates a user-defined parameter to 
restrict the number of lots per period.   

In particular, the case involving sequence-independent setup has been studied at some length 

(Thizy and van Wassenhove (1985), Dobson et al. (1987), Trigeiro et al. (1989), Fleischmann 

(1990), Cattrysse et al. (1993), Blocher et al. (1999)), for example, using B&B (Blocher et al. 

(1999)) and a heuristic based on column generation for a set-partitioning formulation (Cattrysse 

et al. (1993)).  The case involving SDS has also attracted attention as discussed below.  

Recently, Wagner and Davis (2002) developed a heuristic for ELS with SDS.  Similar to 

the methods of Delporte and Thomas (1977) and Maxwell (1964), their heuristic imposes a 

cyclic schedule, which sequences all jobs in a cycle and then repeats the cycle indefinitely.  They 

evaluated sequences using a nonlinear program and showed that their heuristic can outperform 

Dobson’s heuristic (1992) when utilization is high and SDS time (cost) is significant.  Dobson’s 
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heuristic is based on a Lagrangian relaxation that leads to two types of sub-problems: one 

prescribes lot size; and the other, sequences by solving a TSP.   

Haase and Kimms (2000) and Gupta and Magnusson (2005) studied CLS with SDS in 

which setups may be carried over from one period to the next and are preserved over idle 

periods.  Haase and Kimms formulated a MIP that considered only efficient sequences.  (An 

efficient sequence is one that no other sequence dominates.  Sequence A is said to dominate 

sequence B if the total setup cost of A is less than that of B, A and B comprise exactly the same 

set of jobs, and the first and last jobs of the two sequences are the same.)  They indicated that the 

size of solvable instances ranged from 3 products and 15 periods to 10 products and 3 periods 

and solved instances within this range optimally using B&B, incorporating a tailor-made 

enumeration method.  Gupta and Magnusson (2005) also formulated a MIP and recounted a 

heuristic that solved test instances to within 10%-16% of optimum, depending on the size of the 

instance.  Earlier work by Haase (1996) devised a heuristic priority rule for the case with SDS 

costs (but zero times) and used a local search to derive appropriate values of parameters for use 

by the priority rule.  Miller et al. (1999) formulated a MIP that allowed backlogs (i.e., 

backorders) and introduced a GA that incorporated a hill-climbing technique to solve it.   

Some research has addressed DLS with SDS.  These DLS-SDS models subdivide the 

planning horizon into many short time periods (e.g. shifts or days), and require the processing of 

each lot to take several full time periods - the so-called “all-or-nothing” assumption.  

Fleischmann (1994) formulated this problem as a TSP with time windows and devised a 

procedure to determine lower bounds using Lagrangean relaxation in combination with a 

heuristic. He reported computational results for problems with up to 10 products and 150 

periods.  Salomon et al. (1997) developed an exact solution method by applying a DP algorithm 

to the problem formulated as a TSP with time windows and was able to optimize instances of 
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moderate size.  Jordan and Drexl (1998) offered a B&B algorithm, employing specialized 

bounding and dominance rules.  

Meyr (2000) extended the GLS of Fleischmann and Meyr (1997) to deal with SDS 

times.  He formulated a MIP and proposed an approach that combined a dual algorithm to re-

optimize sub-problems with a local search heuristic.  He applied this approach to GLS with SDS 

by embedding a dual network flow algorithm into threshold accepting and SA, respectively.  He 

used local search procedures (threshold accepting and SA) to fix the setup sequence and solved a 

network flow sub-problem for each candidate setup sequence to determine the lot sizes and 

holding costs associated with each candidate.  Network flow sub-problems can be re-optimized 

quickly by using information about the current solution to evaluate a new candidate if these two 

solutions differ only slightly.  He also applied this approach to the corresponding, parallel 

machine problem (Meyr (2002)) (Section 12.3). 
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CHAPTER XII 

THE PARALLEL MACHINE CONFIGURATION 

 

Production systems employ various types of parallel machine configurations and a substantial 

literature has focused on identifying the complexity of related problems (Monma and Potts 

(1989), Cheng and Chen (1994), Ghosh (1994)).  This section reviews the research related to 

parallel-machine scheduling problems that involve SDS.    Section 12.1 reviews optimizing and 

hybrid methods and Section 12.2 addresses heuristics.  Section 12.3 discusses the combined lot-

sizing and scheduling problem.   

 

12.1. Optimizing and hybrid methods 

Regrettably, little research has been directed to developing optimizing methods for the parallel 

machine configuration.  Balakrishnan et al. (1999) formulated jjjjijkj TwEwsrQm "'|,| ∑+∑  

as a MIP with substantially fewer zero-one variables than required by typical formulations.  

They successfully applied their model to solve small instances and suggested use of Bender’s 

decomposition to solve larger instances by separating their formulation into an integer master 

problem, which prescribes job assignments to machines and the sequence at each machine, and a 

linear programming sub-problem, which prescribes the exact completion time of each job.  

One hybrid addressed a problem in the chemical industry that involved an order of 

magnitude difference between small and large setup times.  Bitran and Gilbert (1990) formed a 

network to represent setup cost, a B&B algorithm to deal with the large setup times, and a 

heuristic to sequence within families.  In another hybrid, Yalaoui and Chu (2003) described a 

heuristic for max|| CsPm ij  with job-splitting (i.e., each job can be split into segments that can be 

processed in parallel on different machines).  They first decomposed the problem into 
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independent max||1 Csij  problems, which they modeled as TSPs and solved by the B&B 

algorithm of Little et al. (1963).  Subsequently, they employed a step-by-step improvement 

methodology, taking setup times and job-splitting into account.   

 

12.2. Heuristics 

Most of the research on the parallel machine configuration has focused on heuristics.  Guinet 

(1993) formulated a MIP for max|| CsPm ij  (and another for jij CsPm ∑|| )) to show that it is a 

vehicle routing problem and, thus, NP-hard.  He proposed a heuristic based on the assignment-

problem algorithm. For max|| CsPm ij , França et al. (1996) proposed a three-phase heuristic 

based on TS.  Gendreau et al. (2001) devised lower bounds and a “divide and merge” heuristic 

that proved to be much faster than the heuristic of França et al. (1996) while providing solutions 

of similar quality.  Mendes et al. (2002) compared two meta-heuristics for max|| CsPm ij : a 

heuristic based on TS (adapted from França et al. (1996)) and a memetic, which combines a GA 

with local search procedures.  Results showed that the memetic was superior when setup times 

are small compared to processing times but TS excelled on instances with large setup times and 

many machines (6 or 8 machines in their tests).   

Other research has addressed variations of max|| CsPm ij . For example, Kurz and Askin 

(2001) presented a MIP for max|,| CsrPm ijj  and applied four heuristics based on earlier work 

(Papadimitriou and Steiglitz (1998), Johnson and Papadimitriou (1985), Reinelt (1994), and 

Coffman et al. (1978)).  Weng et al. (2001) described and tested seven heuristics for 

jjij CwsRm ∑|| . 
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Researchers have developed various heuristics to solve (weighted) tardiness problems: 

jjij TwsPm )(|| ∑ , jjijk TwsQm )(|| ∑ , and jjijk TwsRm )(|| ∑ .  Following Lee et al. (1997), Lee 

and Pinedo (1997) offered a three-phase heuristic for jjij TwsPm ∑|| ; it comprises three phases: 

(1) a pre-processing procedure to calculate due-date related factors; (2) an ATCS dispatching 

rule to construct seed sequences; and (3) a SA heuristic that starts from a seed solution generated 

by the second phase.  Based on Lee et al. (1992), Lee et al. (1997), and Kim et al. (1995), Park et 

al. (2000) extended the ATCS rule for jjij TwsPm ∑|| , utilizing a neural network to determine 

values of the look-ahead parameters employed by the rule.  Using a simulation model, they 

showed that their approach improved the objective by an average of 6% over the ATCS rule of 

Lee et al. (1997).  Kim et al. (2003) adapted a TS heuristic for jjij TwsPm ∑||  , categorizing 

jobs in accordance with due-dates.  Their computational testing showed that, in general, the 

performance of their heuristic improved as the number of machines increased and dis-improved 

as the number of jobs increased.  Bilge et al. (2004) applied TS to jijkj TsrQm ∑|,|  and Kim et 

al. (2002) used SA for jijk TsdRm ∑|,| . The computational tests of Kim et al. (2002) showed 

that their heuristic achieved significantly better total tardiness values than a neighborhood search 

did.   

Researchers have also studied the total (weighted) earliness and tardiness problem.  

Heady and Zhu (1998) solved jjjjij TwEwsPm ′′∑+′∑||  using a greedy heuristic, and 

Radhakrishnan and Ventura (2000) employed SA to solve jjij TEsPm ∑+∑|| . Both 

Balakrishnan et al. (1999) (see Section 12.1) and Sivrikaya-Serifoglu and Ulusoy (1999) 

investigated jjijkj TwEwsrQm "'|,| ∑+∑ .  Sivrikaya-Serifoglu and Ulusoy (1999) assumed 

ww ′′≠′  and composed two GAs, one with a crossover operator and one without.  Tests on 960 



 115

randomly generated instances indicated that their GAs were effective; that a neighborhood-

exchange search gave relatively better results in small and easy instances; that GA with the 

crossover operator was best in application to larger, more difficult instances; and that the 

recombinative power of GA with the crossover operator improved with increasing problem size. 

For max|,| LsrPm ijj , Ovacik and Uzsoy (1995) extended the rolling-horizon heuristic 

they initiated for max|,|1 Lsr ijj  (Ovacik and Uzsoy (1994b) (Section 11.2)).  Their tests showed 

that their heuristic outperformed the EDD dispatching rule combined with local search methods.  

Kim and Shin (2003) solved max|,| LsrRm ijj  using a TS that restricts changes in job sequence, 

allowing only the jobs that can change the position of the job that defines maxL  in the current 

schedule to change sequence position.  Their tests showed that their restricted TS prescribed 

better solutions more quickly than the rolling horizon procedure of Ovacik and Uzsoy (1995) for 

max|,| LsrPm ijj , and outperformed basic TS (Glover (1989, 1990)) and SA (Kirkpatrick et al. 

(1983)) for max|,| LsrRm ijj .  

List-scheduling algorithms are one-pass heuristics that are widely used to prescribe 

schedules.  The “standard” list-scheduling algorithm constructs a schedule by assigning each job 

in listed order to the machine that becomes idle first.  Ovacik and Uzsoy (1993) showed that, for 

max|| CsPm ij  and max|| LsPm ij , list schedules need not be dominant (A set of schedules is 

called dominant if it contains at least one optimal schedule).  They also derived worst-case error 

bounds for the standard list-scheduling algorithm applied to max|| CsPm ij  and max|| LsPm ij , 

assuming that setup times are bounded by processing times.  Schutten (1996) studied a list-

scheduling algorithm for ℜ|,| ijj srPm  in which each job is assigned in listed order to the 

machine that can finish it at the earliest time (i.e., start its processing (not its setup) as early as 



 116

possible).  He proved that this algorithm yields dominant list schedules for ℜ|,| ijj srPm .  In 

contrast, Hurink and Knust (2001) showed that no list-scheduling algorithm can efficiently 

prescribe dominant schedules for max|,| CsprecPm ij .  

Dhaenens-Flipo (2001) investigated Π|,| ijksdQm  in which Π  is the sum of 

production, distribution, and setup costs.  They relaxed deadline constraints by incorporating 

them in the objective function, which became a linear combination of two criteria, deadlines and 

cost, and then solved their model with a heuristic.  In an application involving CC assembly on 

non-identical parallel machines, Hop and Nagarur (2004) proposed a composite GA to solve 

weighted, multiple objectives by dealing with workload balancing, CC similarities, and total 

setup time.   

Several studies have addressed environments in which uncertainty must be considered 

explicitly; Aytug et al. (2005) reviewed this work.  Arzi and Raviv (1998) modeled a 

workstation as γ|~,~| ijj srRm .  They suggested several dispatching rules that proved, through 

simulation tests, to give good average values of several objective functions designated by γ : 

though put, total setup time, and work-in-process (WIP) level.  Anglani et al. (2005) studied 

| , |j ij ijPm p s s∑  in which SDS involved costs (but zero times).  They formulated a fuzzy 

mathematical programming model and solved an approximate version of that model to minimize 

ijs∑ . 

 

12.3. Combined lot sizing and SDS scheduling 

Several studies have addressed combined lot sizing and SDS scheduling on parallel machines.  

Kang et al. (1999) investigated Π|| ijsRm , which holds the objective, Π , of minimizing the 

sum of setup and holding costs minus sales revenue.  They assumed that the demand for each 
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product must be satisfied in each time period but sales could exceed demands and that SDS 

involved costs but zero times.  Their hybrid column generation approach implements B&B in a 

heuristic manner, chaining sub-sequences for a time period, then time periods for the scheduling 

horizon to form a sequence.  One heuristic truncates the B&B tree based on the number of 

fractional variables in the optimal solution at a node; the other heuristic iteratively executes local 

search to find improvements in the neighborhood of an incumbent solution.  Their computational 

tests showed that their heuristics required lengthy run times but prescribed good solutions with 

machine utilizations of 70% and 95% but poor solutions at higher utilizations (e.g., 99%).  Meyr 

(2002) generalized the problem, allowing non-zero SDS times. This study extended Meyr’s 

earlier work (Meyr (2000)), describing heuristics that combined dual re-optimization with either 

SA or threshold accepting.  Meyr showed that his two heuristics prescribed solutions that were 

competitive with those prescribed by the approach of Kang et al. (1999) but that they required 

very long run times. 
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CHAPTER XIII 

THE FLOW SHOP CONFIGURATION 

 

The flow shop configuration is common in many manufacturing and assembly facilities; it 

comprises a series of machines that process on each job as it progresses down the line.  For 

example, the typical CC assembly line can be modeled as a flow shop or flexible flow shop with 

SDS (Kurz and Askin (2003, 2004)). 

An optimal permutation sequence, which uses one of the possible !n  permutations of 

jobs to order them at all machines, is typically sought.  The alternative would be to prescribe a 

different sequence at each machine, but this would require searching over mn )!(  sequences to 

prescribe an optimal solution, a truly daunting task.  Unless otherwise noted, all flow shop-

scheduling studies we review deal with permutation schedules. 

Gupta (1986) proved that γ|| ijksFm  is NP-Hard.  Gupta and Darrow (1986) proved 

that max||2 CsF ijk  is NP-hard, and that permutation schedules for this problem do not always 

minimize maxC .  

This section reviews the rather copious research on flow shop scheduling that involves 

SDS.    Section 13.1 addresses optimizing and hybrid methods and Section 13.2 reviews 

heuristics.  Section 13.3 discusses several variations of the flow shop with SDS.  Section 13.4 

reviews the scheduling of CC assembly, an important industrial application of the flow shop with 

SDS.  Finally, Section 13.5 discusses the combined lot-sizing and scheduling problem.   
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13.1. Optimizing and hybrid methods 

A substantial literature has focused on versions of max|| CsFm ijk , especially using permutation 

schedules max|,| CsprmuFm ijk .  For max|,| CsprmuFm ijk  and max|,| CsnwtFm ijk , Stafford and 

Tseng (2002) presented two MIP models, designated WST and SGST.  WST utilizes 2n  (where 

n  is the number of jobs) binary variables to assign jobs to sequence positions in a manner 

analogous to the classical assignment problem, and SGST uses pairs of disjunctive constraints 

and 2/)1( −nn  binary variables to prescribe which job in each pair of jobs is sequenced ahead of 

the other. They compared these two models using a 12-cell experimental design and concluded 

that the models were competitive in solving instances with 7≤n , and that the WST model 

proved significantly better for instances with 8≥n .   

Rios-Mercado and Bard (1998a) studied the convex hull of the set of feasible solutions 

for both a TSP-like MIP (in which binary variables prescribe whether one job is an immediate 

predecessor of another or not) and the formulation of Srikar and Ghosh (1986) (in which binary 

variables prescribe whether one job is a predecessor of another or not) (Stafford and Tseng 

(1990) reported a minor error in constraint formulation).  They developed several classes of valid 

inequalities, showed that some of the inequalities are indeed facet-defining for the two different 

formulations, and implemented a B&C approach to test the effectiveness of the valid 

inequalities.   

Rios-Mercado and Bard (1999a) devised a hybrid B&B algorithm with a partial 

enumeration strategy to find an approximate (or, with luck, an optimal) solution for 

max|,| CsprmuFm ijk .  They derived a lower bound based on machine completion times in partial 

schedules and their tests showed this bound was more effective than that given by the linear 

relaxation of their model. To further improve their algorithm, they applied dominance rules in 
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B&B and used GRASP (Rios-Mercado and Bard (1998b)) and a TSP-based heuristic (Rios-

Mercado and Bard (1999b)) to find good feasible solutions that provide upper bounds.   

Relative to objectives based on due dates ( jjijkj TEsMFFc ∑+∑|,|  and 

jijkjj EsrMFFc ∑|,,| ), Hui et al. (2000) and Mendez et al. (2001), respectively, gave MIP 

formulations for the case in which each stage contains non-identical parallel machines. 

 

13.2. Heuristics 

Recently, Ruiz et al. (2005) presented an advanced GA and a hybrid GA for 

max|,| CsprmuFm ijk  that applied a local search in an improvement phase. As a basis of 

comparison to evaluate the performance of their two GAs, they adapted the five flow shop 

heuristics that are considered the most capable in solving max|| CprmuFm : SA (Osman and 

Potts (1989)), TS (Widmer and Hertz (1989)), GA (Reeves (1995)), iterated local search (Stutzle 

(1998)), and a GA originally proposed for the no-wait flow shop (Aldowaisan and Allahverdi 

(2003)).  They tested four sets of 120 instances each that were based on the instances studied by 

Taillard (1993).  These instances ranged from 20 jobs and 5 machines to 500 jobs and 20 

machines and included SDS times published by Vallada et al. (2003).  Test results showed that 

their two GAs outperformed the other heuristics and they concluded that their two GAs are the 

most effective methods available for solving max|,| CsprmuFm ijk .  Simons (1992), Das et al. 

(1995), and Rios-Mercado and Bard (1998b, 1999b) have described other heuristics for 

max|,| CsprmuFm ijk .  Additionally, Norman (1999) devised a TS heuristic for 

max|,,| CsprmublockFm ijk  with finite buffers.  Bianco et al. (1999) formulated 

max|,,| CsrnwtFm ijkj  as an asymmetric TSP with time window constraints and developed two 

greedy heuristics to solve it.   
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Several researchers have studied objectives based on due dates.  Parthasarathy and 

Rajendran (1997a, 1997b) introduced SA for )max(|,| jjijk TwsprmuFm  and 

nTwsprmuFm jjijk /)(|,| ∑ .  Extending their earlier work (Rajendran and Ziegler (1997)), 

Rajendran and Ziegler (2003) recently related a heuristic for jjjjijk TwCwsprmuFm '|,| ∑+∑  

that constructs a “good” sequence using two preference relations and then applies an 

improvement scheme.  In their tests, their heuristic was faster and prescribed solutions of higher 

quality than either a random search or a greedy local search.  

 

13.3. Variations of the flow shop 

Researchers have devised heuristics to address a number of variations of the flow shop.  One 

variation of the traditional flow shop allows certain jobs to skip some stages.  Kurz and Askin 

(2003, 2004) investigated max|| CsFFc ijk  with this variation, proposing a MIP and comparing 

four heuristics: a naive greedy approach, a multiple machine-insertion TSP heuristic, Johnson’s 

Rule, and a GA with random-keys.  In their tests, the GA with random-keys was very effective.  

Pugazhendhi et al. (2004) investigated max|| CsFm ijk  and jjijk CwsFm ∑|| , modifying a set of 

recursive equations to account for skipped operations in calculating the timetable for permutation 

schedules and developing a simple heuristic to derive non-permutation schedules from a given 

permutation sequence.  Tests showed that the resulting non-permutation schedules consistently 

gave better maxC  values than the associated permutation schedules. However, non-permutation 

schedules did not make significant improvements on average in minimizing jjCw∑ . 

Another variation allows the reentry of jobs, which occurs, for example, in the 

production of integrated circuits.  Pearn et al. (2004) presented three fast network algorithms for 
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ijkjijk bsrecrcdbsFFc ∑|,,|  based on a case study of integrated-circuit final testing.  Hwang and 

Sun (1997, 1998) addressed a version of max1 |,|2 CsrecrcF ij  in which SDS times on the first 

machine depend, not on the immediately preceding job, but on the job that is two sequence 

positions ahead of it and suggested a hybrid that combines DP and a GA.  For 

max|,| LsrecrcFFc ijk , Demirkol and Uzsoy (2000) studied decomposition methods (Ovacik and 

Uzsoy 1997)), and Ovacik and Uzsoy (1994a) investigated dispatching rules that consider jobs 

available at the machine as well as others that will become available within a certain future time 

window. 

Extending their previous work (Hwang and Sun (1997, 1998)), Sun and Hwang (2001) 

investigated a variation of max2 ||2 CsF ij  in which only the second machine has SDS times and 

they depend, not on the immediately preceding job, but on the job that is k  sequence positions 

ahead.  This version was motivated by a case study that involved machining a cylinder head.  

They solved this problem optimality using a DP algorithm, which utilized a dominance 

condition, and also proposed a GA heuristic.   

 

13.4. CC assembly 

In CC assembly, setup is time-consuming (Rossetti and Stanford (2003), Maimon et al. (1993), 

Hashiba and Chang (1991)) and sequence-dependent because different types of CCs share 

different subsets of component types.  Thus, SDS must be considered explicitly in scheduling 

CC assembly.  McGinnis et al. (1992) provided an overview of the essential elements of CC-

assembly technologies as well as a framework for process-planning.  Some applications involve 

CC assembly on a single machine (e.g., Rossetti and Stanford (2003)) or parallel machines (e.g., 

Hop and Nagarur (2004)).  Rossetti and Stanford (2003) enumerated a method to estimate SDS 
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time based, not only on an existing setup, but also on all preceding setups.  They identified 

component placement as a bottleneck in the CC assembly line and used a single machine to 

model all placement operations.  Based on estimated SDS times, they used clustering methods to 

group CCs and a nearest–neighbor heuristic to sequence groups.  Hop and Nagarur (2004) 

modeled a CC assembly process as a set of non-identical parallel machines and discussed a 

composite GA to solve it.   

CC assembly has been well studied (e.g., Feo et al. (1995), Shailendra et al. (1996), 

Rajkumar and Narendran (1998), and Wilhelm and Tarmy (2003)).  The typical CC assembly 

line can be modeled as a flow shop (e.g., Maimon et al. (1993), Kim et al. (1996), Logendran et 

al. (2003), and Schaller et al. (2000)) in which SDS setup involves provisioning each component 

type at the machine that places it on the CC.  Some research on flow shop with SDS can be 

applied directly to schedule CC assembly (e.g., Kurz and Askin (2003, 2004)).   

Maimon et al. (1993) modeled a CC assembly process as a two-machine flow shop and 

devised two scheduling methods that were based on component commonality among CC types.  

Their first method, GUB, sets up component types that are common among two or more CC 

types only once and assembles them onto their respective CC types; it then sequentially sets up 

and assembles remaining component types for each CC type.  Their second method, SDSM, 

schedules CC types so that each is followed (immediately) in the schedule by the CC type with 

which it shares the largest number of component types.  They gave a numerical example, which 

showed that GUB resulted in a higher throughput but also a higher WIP level than SDSM.  Kim 

et al. (1996) allowed a job to start on the following (placement) machine before it is completed 

on the current (placement) machine, representing time lags appropriately because each job 

comprises a batch of identical CCs. They proposed several heuristics, including TSs and SAs, 

with the objective of minimizing mean tardiness.  Schaller et al. (2000) modeled CC assembly as 
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max|,| CprmubsFm ijk  with family setup times and required all CC types within each family to 

be assembled before starting the next family.  They assumed that the families of different CC 

types were pre-determined and resorted to a heuristic.  Logendran et al. (2003) modeled a CC 

assembly process as a two-machine flow shop and sequenced families of CC types using TS with 

the objective of minimizing mean flow time. 

 

13.5. Combined lot sizing and SDS scheduling 

Researchers have also investigated the problem of integrating lot-sizing and sequencing 

decisions in the flow shop.  Sikora et al. (1996) considered a variation with limited intermediate 

buffer space and deadlines, and they studied the objectives of minimizing maxC  and inventory 

holding costs. They integrated the Silver-Meal lot-sizing heuristic (Silver and Meal (1973)), 

which they modified to deal with lot splitting, with Palmer’s flow shop heuristic (Palmer 

(1965)), which they augmented with an improvement procedure, and demonstrated the efficacy 

of their approach by scheduling an actual CC assembly line.   

In another paper, Sikora (1996) presented a GA that used separate crossover and 

mutation operators for lot-sizing and sequencing decisions.  He compared this GA (Sikora 

(1996)) with the integrated approach (Sikora et al. (1996)) and found that the GA that used a 

population size of 10 prescribed much better schedules with significantly less run time than the 

integrated approach.  However, the performance of the GA was sensitive to the selection of 

parameter values and it was difficult to determine effective values.  
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CHAPTER XIV 

THE JOB SHOP CONFIGURATION 

 

The job shop scheduling problem – even without SDS – is NP-hard (Pinedo (2002)).  Only a few 

papers have addressed job shop scheduling with SDS over the last decade.  Kim and Bobrowski 

(1994) emphasized the impact of SDS on job shop scheduling performance.   

This chapter reviews the limited research on job shop scheduling that involves SDS.    

Section 14.1 addresses optimizing and hybrid methods and Section 14.2 reviews heuristics.  To 

our knowledge, over the last decade no research has been directed towards the combined lot-

sizing and scheduling problem. 

 

14.1. Optimizing and hybrid methods 

Only one early paper investigated B&B in the job shop configuration; Gupta (1982) formulated a 

model for ijkijk ssrecrcJm ∑|,|  but (as to be expected) B&B can solve only small instances 

because run time increases rapidly with problem size.  

Luh et al. (1998) studied a facility that produced a variety of gas-insulated switch gears, 

each in small volume.  Some stations required no setup; others required batch setups with longer 

setup time between dissimilar products than between similar products.  They developed a MIP 

and a hybrid that used Lagrangian relaxation to relax machine capacity constraints, leading to 

several sub-problems for which they devised DP algorithms and heuristics with the goal of 

obtaining “near optimal” solutions.   
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14.2. Heuristics 

GAs (Candido et al. (1998)), dispatching rules (Ovacik and Uzsoy (1994a)), and simulation 

(Kim and Bobrowski (1994)) models have been used to schedule job shops with SDS.  Low 

(1995) related a heuristic and showed that it prescribed a more realistic solution than approaches 

that treat the problem as having either independent or no setups. 

Zoghby et al. (2005) adapted the disjunctive graph model (Balas (1969)) to address 

reentry and introduced new features of this adapted disjunctive graph (Roy and Sussman (1964)) 

for γ|,| ijsrecrcJm .  They found that the traditional method (Balas (1969)) used to avoid 

infeasible solutions – reversing a disjunctive arc on the critical path – does not suffice, and 

presented an algorithm to remove infeasibilities.  They further discussed potential applications of 

their results in meta-heuristics and decomposition methods (such as the shifting bottleneck 

method) to solve γ|,| ijsrecrcJm .  (The shifting-bottleneck procedure was originated by Adams 

et al. (1988) for max|| CJm .)   

To reschedule max|,| LsrJm ijj , Artigues and Roubellat (2002) proposed a polynomial 

algorithm to insert a new operation into an existing schedule without changing previously 

scheduled operations.  They suggested that their insertion algorithm could be used to improve 

the performance of some job-shop scheduling methods.  For example, it could be used to 

generate a search neighborhood in a local search procedure simply by omitting a critical 

operation, using a simple heuristic to prescribe an initial schedule, and then reinserting the 

critical operation to construct a complete schedule.  

To solve max|| CsJm ijk , Cheung and Zhou (2002) devised a heuristic, which combines a 

GA with a modified shortest-processing-time rule that accounts for SDS. Their computational 

results showed that this method can generate better solutions than the method of Choi and 
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Korkmaz (1997) but that it required much longer run times.  Choi and Choi (2002) studied a 

variation of max|| CsJm ijk  that allowed alternative operations; they formulated a MIP with the 

objective of minimizing maxC  and devised a local search procedure that substantially enhanced 

the performance of several greedy dispatching rules.  Hertz and Widmer (1996) devised a TS for 

max|| CsJm ijk  and Sun et al. (2003) proposed a GA for the related max|,| CsrecrcJm ijk .  

With the goal of promoting on-time delivery in a semiconductor fabrication facility, 

Mason et al. (2002) investigated a specialization of jjijkj TwsrrecrcFJc ∑|,,| , which included a 

batching machine that processed several jobs simultaneously.  They presented a disjunctive 

graph to model this complex job shop and proposed a modified shifting-bottleneck heuristic to 

deal with the added complexity of batching machines, parallel machines, SDS, and reentrant 

flow of jobs.   

Kim and Bobrowski (1997) investigated the impact of uncertainty on sequencing 

decisions, considering stochastic processing, arrival, and SDS times while modeling SDS times 

as independent, normally distributed random variables.  Their nine-machine job shop simulation 

tests showed that stochastic setup time had a negative impact on shop performance but did not 

diminish the advantages of sequencing rules (e.g., Wilbrecht and Prescott (1969) and Kim and 

Bobrowski (1994)) that deal explicitly with setup. 
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CHAPTER XV 

PERSPECTIVES ON SDS SCHEDULING RESEARCH 

 

This chapter provides perspectives on SDS scheduling research. We give two tables that provide 

broad perspectives.  Table 14 gives a taxonomy of studies, categorized according to the four 

machine configurations and combined lot-sizing and scheduling.  The three columns in Table 14 

give the reference, designate the specific problem studied, and note the solution method, 

respectively.  This taxonomy provides a useful structure by which studies on specific problem 

types can be related and a framework that shows relationships among studies. 

Table 14. A taxonomy of SDS scheduling literature published over the last decade  

Single machine Criterion (specializations) Solution Method 
Monma and Potts (1989) 1|bsij|Cmax,  

1|bsij|Lmax, 
1|bsij|ΣwjCj, 
1|bsij|ΣUj.  

Complexity and DP formulation 

Ghosh (1994) 1|bsij|Σ(wj)Cj Complexity and DP formulation 
Chen (1997) 1|bsij|Σwj′Ej+Σwj′′Tj  

1|bsij|Σwj′Ej+Σwj′′Tj+Σβjdj  
(common due date for each 
batch) 

Complexity and DPs  

Ozgur and Brown (1995) 1|bsij|Cmax  Two-stage B&B/TSP heuristic 
Spina et al. (2003) 1|sij|Cmax Hybrid: GA + Constraint Logic 

Programming 
Rossetti and Stanford (2003) 1|bsij|Cmax  Nearest-neighbor heuristic  
Unal et al. (1997) 1|rj,bsij, jd |Cmax (rescheduling) 

1|rj,bsij, jd |ΣwjCj (rescheduling) 

Polynomial algorithm (optimal) 
 
Proved strongly NP-hard; gave 2 
heuristics 

Rubin and Ragatz (1995) 1|sij|ΣTj GA 

Tan and Narasimhan (1997a) 1|sij|ΣTj  SA 
Tan et al. (2000) 1|sij|ΣTj B&B, GA, SA and pairwise exchange 
França et al. (2001) 1|sij|ΣTj Memetic (GA combined with local 

improvement) 
Alidaee et al. (2001) 1|sij|ΣTj Generalized best-in greedy heuristic  
Kim et al. (1995) 1|sij|ΣwjTj Heuristic using ATCS rule and neural 

networks 
Lee et al. (1997) 1|sij|ΣwjTj Three-phase heuristic involving ATCS 

rule 
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Table 14. Continued 

Single machine Criterion (specializations) Solution Method 
Barnes and Vanston (1981) 1|sij|ΣwjCj+Σsij Hybrid B&B/DP 
Laguna and Glover (1993) 1|sij|ΣwjCj+Σsij Integrated target analysis and TS 
Feo et al. (1996) 1|sij|ΣwjCj+Σsij GRASP 
Coleman (1992) 1|sij|Σwj′Ej+Σwj′′Tj MIP 
Asano and Ohta (1996) 1| jd ,rj,sij|ΣEj B&B incorporating dominance relation 

Sun et al. (1999) 1|rj,sij|ΣwjTj
2 Heuristic based on Lagrangian 

relaxation 
Rabadi et al. (2003) 1|d,sij|ΣEj+ΣTj  B&B 

Woodruff and Spearman (1992) 1|bsij, jd |Π′  TS 

Kolahan et al. (1995) 1|sij|II1 TS 
Kolahan and Liang (1998) 1|sij|II2 with variable pj Adaptive TS 
Laguna (1999) 1|sij|Π′ MIP and TS 
Roslöf et al. (2002) 1|rj,sij|w′Cmax+Σw′′Tj MIP solver combined with an iterative 

heuristic 
Asano and Ohta (1999) 1|brkdwn,rj,sij|Tmax B&B 
Uzsoy et al. (1991) 1|prec,sij|Lmax  B&B 
Uzsoy et al. (1992) 1|prec,sij|Lmax  

1|prec,sij|ΣUj 
DP 
DP and heuristic 

Ovacik and Uzsoy (1994b) 1|rj,sij|Lmax Rolling horizon procedure 
Tan and Narasimhan (1997b)  1|sij|MO(ΣwjTj & Σsij)  SA 
Gupta and Sivakumar (2004) 1|sij|MO(ΣCj/n, ΣTj/n, & Cmax) Simulation 
Parallel Machines (PM) Criterion (specializations) Solution Method 
Monma and Potts (1989) P2|prmp,bsij|Cmax,  

P2|prmp,bsij|Lmax,  
P2|prmp,bsij|ΣwjCj,  
P2|prmp,bsij|ΣUj.  

Complexity 

Cheng and Chen (1994) P2|bsij|ΣCj  Complexity  
Ghosh (1994) Pm|bsij|Σ(wj)Cj  Complexity and DP formulation 
Guinet (1993) Pm|sij|Cmax  

Pm|sij|ΣCj 
MIP and a heuristic 

França et al. (1996) Pm|sij|Cmax TS-based, three-phase heuristic 
Gendreau et al. (2001) Pm|sij|Cmax Divide and merge heuristic 
Mendes et al. (2002) Pm|sij|Cmax TS-based and memetic heuristic 
Kurz and Askin (2001) Pm|rj,sij|Cmax MIP and GA, multiple insertion (TSP), 

slicing (TSP) and multiple MULTI-FIT 
heuristics 

Hurink and Knust (2001) Pm|prec,sij|Cmax  List scheduling algorithm 
Yalaoui and Chu (2003) Pm|sij|Cmax with job-splitting B&B based heuristic  
Schutten (1996) Pm|rj,sij|ℜ   List scheduling algorithm 

Weng et al. (2001) Rm|sij|ΣwjCj Proposed and tested seven heuristics 
Lee and Pinedo (1997) Pm|sij|ΣwjTj 3-phase ATCS heuristic to generate SA 

seed 
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Table 14. Continued 

Parallel Machines (PM) Criterion (specializations) Solution Method 
Park et al. (2000) Pm|sij|ΣwjTj Heuristic using ATCS rule and neural 

networks 
Kim et al. (2003) Pm|sij|ΣwjTj TS-based Heuristic 
Bilge et al. (2004) Qm|rj,sijk|ΣTj TS 
Kim et al. (2002) Rm|d,sijk|ΣTj SA 
Heady and Zhu (1998) Pm|sij|Σwj′Ej+Σwj′′Tj Greedy heuristic 
Sivrikaya-Serifoglu and Ulusoy (1999) Qm|rj,sijk|Σw′Ej+Σw′′Tj Two GAs (one with crossover operator) 
Balakrishnan et al. (1999) Qm|rj,sijk|Σwj′Ej+Σwj′′Tj MIP 
Radhakrishnan and Ventura (2000) Pm|sij|ΣEj+ΣTj SA 
Ovacik and Uzsoy (1993) Pm|sij|Cmax  

Pm|sij|Lmax 
Worst-case error bound of list schedules 

Ovacik and Uzsoy (1995) Pm|rj,sij|Lmax Rolling horizon procedure 
Kim and Shin (2003) Rm|rj,sij|Lmax Restricted TS 
Bitran and Gilbert (1990) Pm|bsij,prmp|Σbsij  B&B/heuristic 
Dhaenens-Flipo (2001) Qm| ,d sijk|II, sum of setup and 

production-distribution costs 

Heuristic  

Hop and Nagarur (2004) Qm|sijk|MO(workload balancing, 
board similarities, Σsijk) 

Composite GA 

Arzi and Raviv (1998) Rm| jr~ , ijks~ |throughput, Σsijk and 
WIP 

Dispatching rules 

Anglani et al. (2005) Pm| jp~ ,sij|Σsij  Fuzzy mathematical programming + 
heuristic 

Flow shop (FS) Criterion (specializations) Solution Method 
Gupta (1986) Fm|sijk|γ Complexity 
Gupta and Darrow (1986) F2|sijk|Cmax Proved NP-complete and prmu not 

optimal 
Srikar and Ghosh (1986) Fm|prmu,sijk|Cmax MIP 
Stafford and Tseng (1990) Fm|prmu,sijk|Cmax Correction of Srikar and Ghosh’s MIP 
Simons (1992)  Fm|prmu,sijk|Cmax 2 dispatching rules and 2 TSP-based 

heuristics 
Das et al. (1995) Fm|prmu,sijk|Cmax Saving index heuristic 
Rios-Mercado and Bard (1998a) Fm|prmu,sijk|Cmax B&C 
Rios-Mercado and Bard (1998b) Fm|prmu,sijk|Cmax GRASP 
Rios-Mercado and Bard (1999a) Fm|prmu,sijk|Cmax B&B heuristic with partial enumeration
Rios-Mercado and Bard (1999b) Fm|prmu,sijk|Cmax Enhanced TSP-based heuristic 
Schaller et al. (2000) Fm|bsijk,prmu|Cmax  Heuristic 
Stafford and Tseng (2002) Fm|prmu,sijk|Cmax  

Fm|nwt,sijk|Cmax 
Two MIPs 

Ruiz et al. (2005) Fm|prmu,sijk|Cmax Two GAs 
Kurz and Askin (2003) FFc|sijk|Cmax Greedy & TSP-insertion heuristics, 

Johnson’s rule  
Kurz and Askin (2004) FFc|sijk|Cmax Above + MIP and random keys GA 
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Table 14. Continued 

Flow shop (FS) Criterion (specializations) Solution Method 
Pugazhendhi et al. (2004) Fm|sijk|Cmax  

Fm|sijk|ΣwjCj 
Heuristic 

Norman (1999) Fm|block,prmu,sijk|Cmax TS 
Bianco et al. (1999) Fm|nwt,rj,sijk|Cmax Greedy heuristics 
Rajendran and Ziegler (1997) Fm|prmu,sijk|ΣwjCj Heuristic with an improvement scheme 
Mendez et al. (2001) FFc|Mj,rj,sijk|ΣEj (batch plant) Continuous-time MIP 
Hui et al. (2000) FFc|Mj,sijk|ΣEj+ΣTj (batch plant) Continuous-time MIP 
Parthasarathy and Rajendran (1997a) Fm|prmu,sijk|max wjTj  

Fm|prmu,sijk|ΣwjTj 
SA 

Parthasarathy and Rajendran (1997b) Fm|prmu,sijk|(ΣwjTj)/n SA 
Rajendran and Ziegler (2003) Fm|prmu,sijk|ΣwjCj+Σw′jTj Heuristic with an improvement scheme 
Pearn et al. (2004) FFc|bsijk, jd ,recrc|max total 

machine workload 

Network algorithms 

Ovacik and Uzsoy (1994a) FFc|recrc,sijk|Lmax Dispatching rule based heuristic 
Demirkol and Uzsoy (2000) FFc|recrc,sijk|Lmax Decomposition method 
Hwang and Sun (1997) F2|recrc,sij1|Cmax DP 
Hwang and Sun (1998) F2|recrc,sij1|Cmax DP and GA 
Sun and Hwang (2001) F2|sij2|Cmax DP and GA 
Maimon et al. (1993) F2|sijk|throughput and WIP Two scheduling methods 
Logendran et al. (2003)  F2|bsijk|(ΣwjTj)/n  Lower bound and TS 
Kim et al. (1996) Fm|sijk|(ΣTj)/n (time-lag) Heuristics (e.g., TS, SA) 
Job shop Criterion (specializations) Solution Method 
Candido et al. (1998) Jm|sij|ℜ  GA-based heuristic 

Hertz and Widmer (1996) Jm|sijk|Cmax TS 
Choi and Korkmaz (1997) Jm|sijk|Cmax MIP and a heuristic 
Cheung and Zhou (2002) Jm|sijk|Cmax Hybrid GA heuristic with SPTS rule 
Choi and Choi (2002) Jm|sijk|Cmax MIP and a local search scheme 
Sun et al. (2003)  Jm|recrc,sijk|Cmax Hybrid GA and heuristics 
Ovacik and Uzsoy (1994a) Jm|sijk|Lmax Dispatching rule based heuristic 
Artigues and Roubellat (2002) Jm|rj,sij|Lmax (insertion problem) Insertion algorithm  
Gupta (1982)  Jm|recrc,sijk|Σsijk  B&B 
Low (1995) Jm|rj,sijk|mean flow time, mean 

tardiness, mean machine idle 
Heuristic 

Kim and Bobrowski (1994)  Jm|sijk|γ Simulation 
Zoghby et al. (2005) Jm|recrc,sij|γ Meta-heuristics and disjunctive graph 
Kim and Bobrowski (1997)  Jm| ijks~ |γ (stochastic jr~ , jp~ , ijks~ ) Dispatching rules 

Luh et al. (1998) FJc|block,bsijk,rj|Σwj′Ej
2+Σwj′′Tj

2  MIP and hybrid: Lagrangian relax, DP 
+ heuristic 

Mason et al. (2002) FJc|recrc,rj,sij|ΣwjTj (batch plant) Modified shifting bottleneck heuristic 
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Table 14. Continued 

Combined lot-sizing Criterion (specializations) Solution Method 
Dobson (1992) Π′ (ELSP: single machine) Lagarangian relaxation based heuristic 
Wagner and Davis (2002) Π′ (ELSP: single machine) Heuristic 
Miller et al. (1999) min sum of setup, inventory and 

backlog cost (CLSP: single 
machine) 

MIP and GA with hill-climbing local 
search 

Haase (1996) Π′ (CLSP: single machine) Heuristic priority rule 
Haase and Kimms (2000) Π′ (CLSP: single machine) MIP and B&B with a tailor-made 

enumeration 
Gupta and Magnusson (2005) Π′ (CLSP: single machine) MIP and heuristic 
Fleischmann (1994) Π′ (DLSP: single machine) Formulation (TSP with time windows) 

+ heuristic 
Salomon et al. (1997) Π′ (DLSP: single machine) DP 
Jordan and Drexl (1998) Π′ (DLSP: single machine) B&B 
Meyr (2000) Π′ (GLSP: single machine) MIP & dual re-optimization + heuristic 
Meyr (2002) min sum of setup, holding and 

production costs (non-identical 
parallel machines) 

Dual re-optimization + heuristic  
(SA or threshold accepting) 

Kang et al. (1999) min sum of setup, holding and 
production costs minus sales 
revenue (parallel machines) 

Hybrid column generation\B&B + 
heuristic 

Sikora et al. (1996) Fm|block, jd ,sijk|bi-objective 
(Cmax & min holding cost) 

Integrated heuristic approach  

Sikora (1996) Same as above GA with crossover and mutation 
operators 

II1 – sum of setup, defective part, tool and machining costs 
II2 - sum of earliness and tardiness penalties and compression and extension costs 
MO – multi-objective 

 

Table 15 lends further perspective by tallying the number of studies cited that deal with 

each combination of methodology (Column 1) and machine configuration (Columns 2-5).  The 

first methodology involves formulation of SDS problems.  Most formulations are MIP models; 

few papers report computational experience because run times tend to be excessive for these NP-

hard problems, even for instances of modest size.  The second methodology, which involves 

analyzing the complexity of different types of problems, is typically based on a DP formulation 

(e.g., Monma and Potts (1989), Ghosh (1994), and Chen (1997)).  
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Table 15. Summary of research methodologies for SDS scheduling 

Methodologies Single 
machine 

Parallel 
machine 

Flow shop  Job shop 

 
Formulation 2 (4) 4 6 3 
 
Complexity analysis 3 3 1  
 
Optimizing methods 

B&B 6 (2)   1 
B&C   1  
DP 3 (1)  3  
MIP solver 1 1 5  

 
Hybrid optimizing-and-heuristic methods 
   Based on B&B, DP, or MIP solver 2 2 (1) 1 1 
 
Heuristics 

GA (hybrid GA) 4 (1) 4 4 (1) 3 
SA 3 (1) 4 (1) 3  
TS 5 5 3 1 Meta-heuristic 

GRASP 1  1  
Methods based on TSP heuristics 1 1 4  
Greedy algorithm 1 1 3  
Decomposition 1 1 1 1 
Dispatching rules 2 3 2 3 
Simulation  1   1 
List scheduling  3   

  
Note: The number in each cell gives the number of studies that applied the methodology to the machine 
configuration excluding combined lot-sizing, which is tallied as the number in parentheses. 

  

The third methodology, optimizing methods, includes B&B, B&C, DP, and MIP solvers.  

Most papers have focused on the single machine configuration; few have studied the parallel 

machine and job shop configurations.  B&B has been used extensively to optimize the single 

machine configuration; only one early study (Gupta (1986)) applied B&B to the job shop 

configuration and none have applied B&B to the parallel machine and flow shop configurations.  

Only one paper, Rios-Mercado and Bard (1998a), has applied B&C to SDS; it addressed a flow 

shop problem, max|,| CsprmuFm ijk .  DP has been applied rather extensively to single machine 

and flow shop configurations but not to parallel machine and job shop configurations.  MIP 
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solvers (e.g., LINDO (Coleman (1992), Balakrishnan et al. (1999), and Stafford and Tseng 

(2002)) and CPLEX (Mendez et al. (2001))) have been used primarily in application to the flow 

shop configuration but they can only solve problems of small-to-modest size.   

The fourth methodology, hybrid methods, combines an optimizing method (e.g., B&B, 

DP, or MIP solvers) and a heuristic, which either prescribes a solution found early in the search 

process or resolves some portion of the problem.  For example, Ozgur and Brown (1995) and 

Bitran and Gilbert (1990) sequenced jobs in each family using heuristics and sequenced families 

using B&B for max||1 Cbsij  and ijij sprmpbsPm ∑|,| , respectively; Roslöf et al. (2002) 

augmented a MIP solver with an iterative heuristic for jijj TwCwsr ′′∑+′ max|,|1 ; and Rios-

Mercado and Bard (1999a) used B&B with partial enumeration to approximate 

max|,| CsprmuFm ijk .  Actually, the rolling horizon method in Ovacik and Uzsoy (1994b) 

belongs to this class; it uses B&B to determine the next job to process and applies it in a 

heuristic fashion, solving the dynamic scheduling problem by applying B&B at each time a 

scheduling decision must be made.   

The fifth methodology, heuristics, is rather expansive because heuristics are motivated 

by the inherent difficulty of SDS scheduling problems.  Although heuristics may provide good 

approximate solutions in reasonable run time, few give performance guarantees for problems 

involving SDS. 

Table 15 shows that meta-heuristics have been widely used for all machine 

configurations.  In particular, GA and TS have been the most favored approaches for a variety of 

objective functions, including makespan ( maxC ) as well as those related to due dates (e.g., maxL , 

jT∑ , jjTw∑ ).  Interestingly, França et al. (1996) and Kim et al. (2003) reported that the 

performance of TS improved with the number of machines in the parallel machine configuration.  
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SA places third, close behind GA and TS.  In contrast, researchers have applied GRASP in only 

two recent papers. 

Since SDS is intimately related to TSP - for example, max||1 Csij  is, in fact, TSP - 

heuristics based on TSP algorithms have been evolved for the single machine (e.g., Ozgur and 

Brown (1995) for max||1 Cbsij ), parallel machine (e.g., Kurz and Askin (2001) for 

max|,| CsrPm ijj ), and flow shop (e.g., Rios-Mercado and Bard (1999b) for 

max|,| CprmusFm ijk ) configurations.  A feature that is common to these papers is that they have 

all addressed the objective of minimizing maxC .   

Other heuristics – greedy algorithm; decomposition; dispatching rules; simulation; list 

scheduling; and heuristics based on TSP algorithms – have all been used, but by fewer 

researchers.  Decomposition divides an intractable problem into smaller, less challenging sub-

problems, develops solutions for the sub-problems, and assembles them into a schedule for the 

original problem.  An effective implementation requires fast procedures to obtain high-quality 

solutions to the sub-problems.  Recent applications of decomposition include rolling horizon 

heuristics for max||1 Lsij  (Ovacik and Uzsoy (1994b)) and max|| LsPm ij  (Ovacik and Uzsoy 

(1995)) and a modified shifting bottleneck procedure for jjijj TwsrrecrcFJc ∑|,,|  (Mason et al. 

(2000)).  Dispatching rules, which are typically tested using a simulation model, are popular 

because they reflect how decisions are made in many practical cases.  Neural networks have 

been used to determine the parameters required by ATCS rules (Kim et al. (1995) for 

jjij Tws ∑||1 and Park et al. (2000) for jjij TwsPm ∑|| ).  List scheduling algorithms offer an 

advantage in that they have been shown to provide worst-case error bounds for max|| CsPm ij  and 

max|| LsPm ij  (Ovacik and Uzsoy (1993)) and dominant schedules for ℜ|,| ijj srPm  (Schutten 
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(1996)) but it is known that they cannot generate a set of dominant schedules for 

max|,| CsprecPm ij  (Hurink and Knust (2001)).  We present our conclusions in the next chapter. 
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CHAPTER XVI 

CONCLUSIONS AND FUTURE RESEARCH 

 

16.1. Conclusions on the RCSP research 

To solve RCSP, this dissertation proposes TSA, which comprises two phases: a one-time 

preliminary phase (stages 1 and 2) and an iterative solution phase (stage 3), as shown in Figure 

1.  TSA requires less computational effort for each subsequent solution than the first-time 

solution and is especially suitable for solving RCSP repeatedly, for example, as a subproblem in 

CG and CG/B&B.  Computational results demonstrate the effectiveness of TSA and show that it 

outperforms a method we devised for benchmarking purpose (i.e., LSA) in the context of CG.  

TSA incorporates several specialized algorithms for dealing with particular issues (e.g., 

preprocessing, reoptimizing and fixed arcs); computational results demonstrate the effectiveness 

of these algorithms.       

TSA is a unified approach comprising three stages.  By applying adaptations of stage 1, 

it can solve RCSP, SPPRW and SPRCRW.  Stages 2 and 3 are applicable to each of these 

problems.  By incorporating a classical unconstrained k-SPP algorithm in stage 3, TSA can solve 

RCkSP on an acyclic graph.  Further, TSA can be applied to MMCKP, recasting it as RCSP on 

the MMCKP-graph.  Since TSA is suitable for solving RCSP repeatedly, each of these 

extensions is suitable for solving the corresponding problem repeatedly. 

This dissertation research shows that algorithms for solving subproblems in CG (e.g., 

RCSP) should explicitly consider issues related to repeated solution.  If possible, a preliminary 

phase can be used to reduce the computational burden incurred by repeated solutions.  Moreover, 

if the algorithms are used to solve a subproblem in CG/B&B, then effective methods for dealing 

with fixed variables should also be considered when designing the algorithms.  For CG/B&B, the 
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branching strategy of B&B should be considered together with algorithms for solving 

subproblem(s) to obtain good overall performance.  For example, if the subproblem is RCSP and 

we use TSA to solve it, it is appropriate to choose a branching variable whose corresponding arc 

has a large span (see Remark 4) and it is not good to choose the one that has an associated arc 

that can be relegated to set 0̂F  (see Remark 5). 

 

16.2. Conclusions on the SDS scheduling literature review   

This dissertation contributes by achieving its purpose of reviewing SDS scheduling research as a 

guide for future research.  It also achieves its objectives, providing (i) an overview with 

emphasis on recent results, (ii) an integrated view of lot-sizing and SDS scheduling, (iii) a 

perspective of this line of research, and (iv) fertile opportunities for future research (Section 

16.3).  The perspective is enhanced by a taxonomy that classifies research according to machine 

configuration with an emphasis on problem type studied and by tallying of studies according to 

the methodology applied to the machine configuration.  Overall, the perspective emphasizes that 

SDS is relevant to virtually all machine configurations.  We address the fourth objective of this 

part of dissertation research in the next section, discussing fertile research opportunities. 

 

16.3. Future research on SDS scheduling problems   

The taxonomy (Table 14) shows that SDS is attracting an increasing amount of interest and 

Table 15 shows that a variety of methods have been considered for each machine configuration.  

Despite this amount of attention, no solution approach is widely recognized as providing 

superior capability to resolve problems in this class.  We suggest that research would be further 

stimulated by establishing a set of test instances that would allow rigorous comparison of 

solution methods. This section discusses research opportunities relative to optimizing methods, 
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heuristics, objectives related to due dates, bi- or multi-objectives, machine configurations, 

combined lot sizing and scheduling, rescheduling, stochastic scheduling, and CC assembly. 

16.3.1. Optimizing methods 

This review shows clearly that optimizing methods for SDS scheduling have not enjoyed the 

steady - and sometimes dramatic – progression of improvements that have enhanced integer-

programming methodologies over the last decade.  Future research could bridge this gap, more 

fully exploring opportunities to adapt methods like B&P and B&C to SDS scheduling.  

16.3.2. Heuristics 

Most existing methods are heuristics. Although they may provide good approximate solutions in 

reasonable run time, few give performance guarantees.  Researchers have proposed numerous 

heuristics with little theoretical underpinnings.  A significant challenge for future research is, 

then, to analyze worst-case error bounds for heuristics.  Several studies have proposed 

approaches to determine parameter values upon which heuristics depend (e.g., TS and SA (Kim 

et al. (1996)), GA (Sikora (1996)), ATCS rule (Lee et al. (1992), Kim et al. (1995), Park et al. 

(2000)), and priority rule (Haase (1996))) but future research is needed to establish an integrated 

knowledge base for specifying effective parameter values.  In addition, future research should be 

directed toward devising formal structures that incorporate local search methods to exploit the 

diversification of GAs in combination with intensification of local searches (e.g., Miller et al. 

(1999), Mendes et al. (2002), França et al. (2001), Moscato (1989, 1999), Spina et al. (2003), 

and Ruiz et al. (2005)).  

16.3.3. Objectives related to due dates 

Most papers address the objective of minimizing maxC , especially for flow shops and job shops: 

this review cites 22 papers that deal with maxC  and only 7 that address due-date objectives for 
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the flow shop and 7 papers that deal with maxC  compared with only 3 papers that address due-

date objectives for the job shop.  Motivated by the need for just-in-time production, a few 

researchers have investigated the total (weighted) earliness and tardiness objective for the single 

machine (Coleman (1992), Rabadi et al. (2004)), parallel machine (Heady and Zhu (1998), 

Radhakrishnan and Ventura (2000), Sivrikaya-Serifoglu and Ulusoy (1999), Balakrishnan et al. 

(1999)), flow shop (Hui et al. (2000), Rajendran and Ziegler (2003)), and job shop (Luh et al. 

(1998)) configurations.  Fertile opportunities are thus available for future research to address 

due-date related objectives.  

16.3.4. Bi- or multi-objectives 

In many real-world applications, it may be necessary to consider several objectives 

simultaneously and a schedule that is acceptable relative to one criterion may be unacceptable 

relative to another.  Relatively few papers have dealt with bi- or multi-objectives (e.g., single 

machine (Tan and Narasimhan (1997b), Gupta and Sivakumar (2004)), parallel machines (Hop 

and Nagarur (2004)), and flow shop (Sikora (1996), Sikora et al. (1996)), leaving further 

opportunities for the future.  

16.3.5. Machine configurations 

The single machine configuration has received the bulk of attention due to its relative simplicity.  

A modest amount of research has addressed the parallel machine and flow shop configurations.  

Most flow shop research has dealt with permutation schedules (this review cites only one paper 

(Pugazhendhi et al. (2004)) that dealt with non-permutation schedules) but they are not 

necessarily optimal for the flow shop with SDS (except for the no-wait flow shop (Gupta 

(1986))); this issue poses research challenges.  Relatively few studies have investigated the job 
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shop configuration and, to our knowledge, none has studied its combined lot-sizing and 

scheduling problem with SDS. 

16.3.6. Combined lot-sizing and scheduling 

Most research related to combined lot-sizing and scheduling problems with SDS has focused on 

the single machine configuration.  Research on other configurations is sparse.  Only two papers 

(Kang et al. (1999), Meyr (2002)) studied the parallel machine configuration and two others 

(Sikora (1996), Sikora et al. (1996)) studied the flow shop configuration; to our knowledge, none 

has considered the job shop configuration.  Most research on combined lot-sizing and scheduling 

has not considered backordering; one exception relates to the single machine configuration 

(Miller et al. (1999)).  

16.3.7. Rescheduling 

As part of a current trend, two papers have dealt with rescheduling problems in dynamic 

environments (e.g., Artigues and Roubellat (2002) for max|,| LsrJm ijkj  and Unal et al. (1997) for 

jjijjj Cwsrd ∑|,,,|1  or maxC ).  Rescheduling is an important issue for all machine configurations 

and objectives since it is important to be able to respond to unforeseen events. 

16.3.8. Stochastic scheduling 

Few researchers have considered stochastic scheduling problems with SDS.  Three papers have 

dealt with uncertain processing, setup and/or arrival times: two (Arzi and Raviv (1998), Anglani 

et al. (2005)) dealt with the parallel machine configuration; and one (Kim and Bobrowski 

(1997)), with the job shop configuration.  Thus, stochastic scheduling with SDS is another fertile 

opportunity for future research.  
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16.3.9. CC Assembly 

This review discusses four papers that model CC assembly as a flow shop; one, as a set of 

parallel machines; and one, as a single machine.  In all cases, SDS times are substantial, 

emphasizing the need for effective solution methods. Optimizing methods have not been 

investigated extensively for CC assembly, even though the CC industry is in need of effective 

scheduling methods.  In addition, little progress has been made on stochastic models for 

scheduling CC assembly. 
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