ON TRAFFIC ANALYSIS ATTACKS AND COUNTERMEASURES

A Dissertation

by

XINWEN FU

Submitted to Office of Graduate Studies of
Texas A&M University
in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2005

Major Subject: Computer Engineering



ON TRAFFIC ANALYSIS ATTACKS AND COUNTERMEASURES

A Dissertation

by
XINWEN FU
Submitted to Office of Graduate Studies of
Texas A&M University

in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Wei Zhao
Riccardo Bettati

Committee Members, Narasimha Reddy
Dmitri Loguinov

Head of Department, Valerie E. Taylor

December 2005

Major Subject: Computer Engineering



ABSTRACT

On Traffic Analysis Attacks and Countermeasures. (December 2005)
Xinwen Fu, B.S., Xi'an Jiaotong University;
M.S., University of Science and Technology of China

Co-Chairs of Advisory Committee: Dr. Wei Zhao
Dr. Riccardo Bettati

Security and privacy have gained more and more attention witrefhe growth and
public acceptance of the Internet as a means of communicationntorcthation
dissemination. Security and privacy of a computing or network system be
compromised by a variety of well-crafted attacks.

In this dissertation, we address issues related to secudtyrvacy in computer
network systems. Specifically, we model and analyze a spgoiad of network attacks,
known astraffic analysis attacksand develop and evaluate their countermeasures.
Traffic analysis attacks aim to derive critical informoatiby analyzing traffic over a
network. We focus our study on two classes of traffic analysiskat link-load analysis
attacks and flow-connectivity analysis attacks.

Our research has made the following conclusions:

1. We have found that an adversary may effectively discover link lgamhbsively

analyzing selected statistics of packet inter-arrivakesinof traffic flows on a
network link. This is true even if some commonly used countermea@ies

link padding) have been deployed. We proposed an alternative effective



countermeasure to counter this passive traffic analysiskat@ar extensive
experimental results indicated this to be an effective approach.

2. Our newly proposed countermeasure may not be effective agativa txaffic
analysis attacks, which an adversary may also use to dis¢tmvénk load. We
developed methodologies in countering these kinds of active attacks.

3. To detect the connectivity of a flow, an adversary may embedagmeable
pattern of marks into traffic flows by interference. We have pregpasew
countermeasures based on the digital filtering technology. Expgahresults
have demonstrated the effectiveness of our method.

From our research, it is obvious that traffic analysis attacksept a serious
challenge to the design of a secured computer network systenthe objective of this
study to develop robust but cost-effective solutions to counter link-loalgsis attacks
and flow-connectivity analysis attacks. It is our belief that methodology can provide
a solid foundation for studying the entire spectrum of traffidysrsattacks and their

countermeasures.
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1. INTRODUCTION

1.1. Overview of Network Security and Attacks

As the use of computer networks, especially the Internet, has becwoi®epread, the
concept of computer security and privacy has expanded to denote issagsnggeto the
networked use of computers and their resources. Thousands of succesdgfuhbrover
the years illustrate that we need to evaluate securitystésg systematically, study and
understand attack techniques, and then develop corresponding countermeasures.
Security attacks can be classified into two classefive and passive In active
attacks, an attacker changes, hence targeting damages diFectlgxample, network
messages can be altered, and web service can be deniedveyasietcks. In passive
attacks, an attacker simply listens or eavesdrops without lgctihanging anything.
Examples of passive attacks in daily life and compute domairhatgders-surfing (i.e.,
observing displays and keystrokes over someone's shoulder), telephone tapging,
wireless sniffing. Obviously, it is more difficult to detect passattacks than active ones.
To deal with these attacks, a variety of countermeasures leavedeveloped, and
they can be classified as either offensive or defensive. By oféecsuntermeasures, we
mean that defenders act on attacks (aimed at the sensitigts}aemd intend to actively
stop operations of the adversary. For example, the widely usedofremesintrusion

detection and response systenort[1] is an example of the offensive countermeasure.

This dissertation follows the style tEEE Transactions on Computers



It can monitor live traffic on a network, use a rule engine tatifie patterns within
traffic, and take actions such as filtering out the identifiedchkibg traffic. When
referring todefensivecountermeasures, we mean that defenders hide the sensitete targ
and passively deny or limit an enemy’s ability to accedsncryption is an example of a
defensive countermeasure.

In this dissertation, we model and analyze a special classackst namely traffic
analysis attacks, which can be either active or passive, andogeaatl evaluate

countermeasures to them.

1.2. Overview of Traffic Analysis Attacks

Traffic analysis attacks are aimed at deriving critiggbrimation by analyzing the
statistics of traffic flows. For example, in a military cmmmication network, by
intercepting traffic using sniffing tools and monitoring pattenargge of link load, an
adversary may uncover the location of command centers, determistatihef alertness
of various units, and/or detect covert information flows to or from apggreon-
involved parties.

Traffic analysis attacks challenge the design of traditioygtems where encryption
is typically used as the main method for protecting securitypanecy. However, it is
obvious that encryption cannot protect many other important charticee$ traffic
which may be mission critical and require protection.

We consider two types of traffic analysis attacks. Thea fgdink-load analysis
attack that aims at discovering traffic rate on a network link. Theorsgds flow-

connectivity attackhat intends to discover flow connectivity between two hosts. Link



load and flow connectivity in many applications are considered missitical
information and should be protected. We will develop and evaluate couatenes

against these two types of attacks from revealing link load and flow connectivity.

1.3. Summary of This Dissertation Research

As mentioned earlier, we are dealing with traffic analystsacks and their
countermeasures. In particular, we focus on link-load analysiskaitéand connectivity
analysis attacks, as defined above.

For each kind of attack, we assume that an attacker maythisegassive or active
means to launch attacks. We formally propose adversary modeiietinel performance
metrics based on which effectiveness and efficiency of ateuksountermeasures can
be evaluated. We will systematically analyze existing comr@asures and identify their
weaknesses. Based on our studies of the existing solutions, weweilbpl@nd evaluate
new countermeasures aimed at overcoming problems associated with curremssolut

In this dissertation research, we have obtained the following promisingsresult

1. An adversary may effectively discover link load by passivelyyairgy statistics

of packet inter-arrival times of traffic flows passing ttghwa network link. This
is true even if some commonly used countermeasures such as link paawaing
been deployed. We proposed an alternative effective countermeasunenter
this kind of passive link-load analysis attack.

2. Our newly proposed countermeasure may not be effective againa aeffic

analysis attacks, which an adversary may also use to dis¢tmvénk load. We

propose to develop methodologies in countering these kinds of active attacks.



3. To detect the connectivity of a flow, an adversary may invoke aattaeks over
the flow traffic and embed a recognizable pattern of markstive flow traffic.
We proposed new countermeasures based on digital filtering technald@y. |
results have demonstrated the effectiveness of our method.

In dealing with both link-load analysis attacks and connectiviglyars attacks, we
measure the degree of system securitydeyection rate which is defined as the
probability that an adversary discovers the target information. Fokdoad analysis
attack, the needed information is the link load while for a conngctanalysis attack;
the target information is the flow connectivity between hoste. drive analytical
formulas of detection rates for both attacks.

Furthermore, we carry out extensive experiments on both local amel avea
networks for the two classes of attacks and their countermea$heesbjective of these
experiments is to validate the correctness of our theoretical analysis.

In summary, in this dissertation, we model and analyze a féfic tanalysis attacks,
and develop and evaluate corresponding countermeasures. We hope that our
methodology will provide a solid foundation for studying the entire specof traffic

analysis attacks and their countermeasures.
1.4. The Organization of This Dissertation
The rest of this dissertation is organized as follows. In Se2tiare review related work.

In Section 3, we discuss passive link-load analysis attacks andd@itermeasures. In

Section 4, we discuss active link-load analysis attacks and thentermeasures. In



Section 5, we discuss flow-connectivity analysis attacks and filker-based

countermeasures. We summarize this dissertation research in Section 6.



2. RELATED WORK

2.1. Related Work for Link-Load Analysis Attacks

Generally speaking, perfect secrecy theory by Shannon fl2¢ iundation for the ideal
countermeasure system against statistical analysis attaekearchers have proposed
and analyzed various countermeasures and intended to realize onirappedke perfect
secrecy model in one form or another.

Baran [3] suggests addirdymmy(fraudulent) traffic to conceal the true amount of
traffic. A survey of countermeasures for traffic analysiggiven in [4]. To mask the
frequency, length and origin-destination patterns of an end-to-end wagation,
dummy messages are used to pad the traffic to a predefinedhpétlsrevident that
such a predefined pattern is sufficient but not necessary based pertbet secrecy
theory.

Newman-Wolfe and Venkatraman [5][6][7] give a mathematicaimiwork to
optimize the bandwidth usage while preventing traffic analysisefnhd-to-end traffic
rates. Timmerman [8] proposes an adaptive traffic hiding modeidiace the overhead
caused by traffic padding, in which the link padding rate is redulted) avith the
decrease of real traffic rate. Kung, Cheng, Tan, and Bradnesgé similar approach,
denoted as on demand traffic padding, which will generate dummig twatly when the
payload traffic is present. These approaches render larlgevscations in traffic rates

still observable.



Researchers at Texas A&M University have developed NetCafify {vhich
provides the end-to-end prevention of traffic analysis while gusgarg QoS (the worst
case delay of message flows) in time constraint communicatisomest Song, Wagner,
and Tian [11] analyze how SSH 1 and SSH 2 can leak user passwdgtsaupassive
traffic analysis attack and propose using traffic padding to counter tbk.atta

The above mentioned previous studies focus on applications utilizing theocdynm
used traffic padding approach to counter traffic analysiskattdo this dissertation, we
will evaluate the security level a traffic padding approachpranide and design new

effective countermeasures.

2.2. Related Work for Connectivity Analysis Attacks

To protect the anonymity of email transmissions, Chaum [12] proposesé of Mixes.
Many researchers suggest using CIT padding between a user afbttimeix [13].
Raymond in [14] gives an informal survey of sevelhoctraffic analysis attacks on
systems providing anonymous services. One of his conclusions isdfffiatgadding is
essential to achieving communication anonymity. Back, Mdller, andicSfitb] list
many possible attacks in Freedom anonymous communication systenDHIGzis,
Dingledine, and Mathewson [17] give a list of attacks to anonyrysgems. Most of
those attacks are only briefly discussed and lack systenraigsss. Freedman and
Morris developed Tarzan [18], which provides anonymity in a peeréo-grvironment

by using link padding to counter possible attacks.



The concept of continuous-time mix is introduced by Danezis in [1®pridves that
the optimal mix strategy that maximizes anonymity isERponential Mixi.e. a Stop-
and-Go Mix that delays packets individually according to an exponential distnbuti

Kong and Hong [20] develop an anonymity protocol for wireless ad-hegories.
When Alice tries to communicate with Bob, by broadcasting enedypiute discovery
messages recursively, she can find a route to Bob, who respondsequhbst through
the reverse path. Thus an anonymity path is built from Alicedio. Bhe authors and
other researchers also mention using broadcast MAC addressashiétweamore
protection. But the whole protocol is still susceptible to the flow marking attack.

Sun, Simon, Wang, and Russell [21], and Hintz [22] give quantitative pefae
analysis for an anonymous web server that uses encryption aret paekler mangling
such as in a NAT proxy. The analysis takes advantage of thin&a number of HTTP
features, such as the number and size of objects, can be used asesgmaidentify
web pages with some accuracy. Unless the web anonymizer addit@ssissue, these
signatures are visible to the adversary. Serjantov and Sewelij2aBjze the possibility
of a lone flow along an input link of a mix in peer-to-peer anonynysyesns. If the rate
of this lone input flow is approximately equal to the rate dbw fout of the mix, this
pair of input and outflow flows is correlated.

Guan, Fu, Bettati, and Zhao [24] define an entropy-based metric loatvdhe
anonymity degree of an anonymity system. They consider attadoise compromised
nodes cooperate to correlate packets passing those nodes and fimtléneta packet.

Many works in the related literature study this kind of packettlattack. In this



dissertation, we consider flow-level attacks which may be mergofe and dangerous.
We also study their countermeasures.

To find if a party (Bob) is communicating with another party ¢8)i an adversary
may measure the similarity between Bob's outbound traffic aivg'&linbound traffic.
Zhu, Fu, Graham, Bettati, and Zhao [25] propose using mutual informatiotindor
similarity measurement. Levine, Reiter, Wang, and Wright [26]aress correlation to
measure similarity between flows. Both papers consider pasaifie tinalysis attacks
against flow connectivity, while we discuss a class of actigffic¢ analysis attacks
which may be more flexible and dangerous.

Serjantov and Peter [23] and some other researchers mention \afty thrat an
adversary may introduce spike into traffic to find the communication relationship
between users, but without any in-depth study of how to introduce spikas kind of
spike should be introduced, or how to recognize the spike. We generadizenthiof
attack in wired and wireless networks and build a complete frarketwoanswer the

above questions.
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3. PASSIVE LINK-LOAD ANALYSIS ATTACKS AND COUNTERMEASURES

In this section, we investigate the effectiveness of link padarhg;h can be used as a
countermeasure against passive link load analysis attackfrsivigresent the network
model, padding mechanism, and adversary strategy. We then devéhgoratical
model and derive closed-form formulae for detection rates. Fina#tyvalidate results

from the theoretical model by experiments.

3.1. Models

In this section, we present the model of the network in our stodytteen formally
define the model of the adversary, which uses statistical pagtewgnition strategies for

traffic analysis attacks.

3.1.1. Network Model

In this work, we assume that the network consistprotected subnetswhich are
interconnected byunprotected networkslt is assumed that traffic within protected
subnets is shielded from observers. Unprotected networks can bepeitthe networks
(e.g., the Internet) or networks that are deployed over an emsibssible broadcast
medium. These networks are accessible to observation by thirespand are, therefore,
open to traffic analysis. This model captures a variety of t®us ranging from
battleship convoys (where the large-scale shipboard networks are protectediatet-the
ship communication is wireless) to communicating Personal Diggaistants (PDAS)

(where the protected networks consist of single nodes).
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Figure 1 illustrates the setup of the network in this study. $ecurity gateways
GWia andGWg are placed at the two boundaries of the unprotected network and provide
the link padding necessary to prevent traffic analysis of theoadyiraffic exchanged

between the protected subnets A and B.

network

Figure 1. Network Model

Note that the gateways can be realized as either stand{adxes, modules on
routers or switches, software additions to network stacks, or devieesdat the end
hostg. In this section, we assume that gateways are stand-alone Nexestheless, the
analysis in this section should also be valid for other implementaflansimplify the
discussion, the communication is one-way from Sulnes SubnetB. Consequently,

GW, andGW are also calledender gatewagindreceiver gatewayrespectively.

! This is the case when end users of onion-rouikegdnonymity systems choose to use link padding.
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3.1.2. Adversary Model

The goal of the adversary is to perform traffic analgsid infer critical characteristics
of the payload traffic exchanged between protected subnets over theeuatgutot
network. We assume that the adversary is only interested pagthe@ad traffic rate that

is, the rate at which payload traffic is exchanged betwmetected networks. As
mentioned earlier, the traffic rate is an important piece ofmétion in many mission-
critical communication applications [14]. Specifically, we asstiha there is a set of
discrete payload traffic rated, ..., an} The rate of payload traffic from the sender
will be one of thoseates at a given time. Consequently, the objective of the adyvé&sa
to identify at which of theseates the payload is being sent.

We assume that to identify at which rate the payload is beargmitted, the
adversary limits himself to passive attacks, i.e., observationsedfaffic. In addition,
the adversary’'s access to the system is limited to the ung@otewtworks. The
protected subnets and hosts within are not accessible. Neither isWkhpadding
infrastructure. This means that, in Figure 1, the adversary cantanml somewhere
between gatewaySW, andGWk.

We also assume that the adversary has complete knowledge abouwtetivayg
machines and the countermeasure algorithms used for preventing dreifysis. For
example, the adversary can simulate the whole system, includiggténeay machines,
to obtaina priori knowledge about traffic behavior. In many studies on information

security, it is a convention that we make worst case assumptions, such as this one.
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Based on these assumptions, the adversary can deploy a sbraseglyon Bayes
decision theory [27]. The entire attack strategy consists of twoeghaise offline
training phase and the online classification phase as shown in Bigise will describe

these below.

1) (2) (3) (4)

Collect Preprocess Select feature Select
training data | training data (—» from preprocesse —» decision rule
training data

(a) Offline Training Phase

(1) (2) (3) (4)

Collect Preprocess Extract feature Make a
realistic data realistic data [ ] from preprocesse ™ decision
realistic data

(b) Online Recognition Phase

Figure 2. Flow Marking Attack Framework

The offline training phase in Figure 2 (a) can be decomposed intolitheing steps:
1. Collecting training data: The adversary reconstructs the elnike padding

system and collects timing information at different payload traffesrat
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2. Preprocessing training data: From packet timing information, attheersary
derives théPacket Inter-Arrival TiméPIAT) of the traffic.

3. Selecting feature from preprocessed training data: The adyessdects a
statisticalfeatureof the Packet Inter-Arrival TimgPIAT) that will be used for
traffic rate classification. Possible features we studyhis section are sample
mean, sample variance, and sample entropy. The adversary thees diev
Probability Density FunctiondPDF) of the selected statistical feature. As
histograms are usually too coarse for the distribution estimat@mssume that
the adversary uses the Gaussian kernel estimator of PDF [28h ishafective
in our problem domain.

4. Selecting decision rule: Based on the PDFs of statistezilifes for different
payload traffic rates, Bayes decision rules are derivedalRétat possible
payload traffic rates arey, ..., am. The Bayes decision rule can be stated as
follows:

The sample represented by feature tsrresponds to payload raigif
0j 0[Lm], Plw]s)= Plw|s) (3.1)
That is,
f(sea)P(@) > f(§o, JPlo) (3.2)

where f(sfu) is the PDF of feature s conditioned on payloadfic ratecs, P(w) is the a

priori probability that the payload traffic is seat ratewy, and P|s) is the post priori
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probability that the payload traffic is sent at eat when the collected sample has the
measured feature s

Once the adversary completes its training phasecah perform the classification at
run time. We assume the adversary uses some meatap tthe network between
gatewaysGW, andGW,. In particular, when she wants to determine theec payload
rate, the adversary collects a sample of packer-antival times. She calculates the
value of the statistical feature from the collectinple, and then uses the Bayes
decision rules derived in the training phase tocimdlhe collected sample to one of the

previously defined payload traffic rates.

3.2. Overview of Countermeasures to Link-Load Analysitagks

We now discuss mechanisms that can be used asntenoeasure for traffic analysis
attacks.

One way to counter the traffic analysis attack® i§ad” the payload traffic, that is,
to properly insert “dummy” packets in the payloeaffic stream so that the real payload
status is camouflaged. Link padding algorithms banimplemented in various ways
over the two gateways in Figure 1. The most commethod is to use a timer to control
the packet transmission. It works as follows: GW,, incoming payload packets from
the sender are placed in a queue. An interrupedriimer is set up 08Wa. When the
timer fires, the interrupt processing routine cleeulhether there is a payload packet in
the queue. If there is a payload packet, one i®vehfrom the queue and transmitted to

GWk. Otherwise, a dummy packet is transmitteGibk.
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We need to make a few remarks before we procedbefu In this section, we
assume that packet contents are perfectly encry(@ed, by IPSec with appropriate
options) and are, thus, non-observable. In pagrcuhe adversary cannot distinguish
between payload packets and “dummy” packets usgobfiding.

It is obvious from the implementation described\ahdhe only tunable parameter is
the time interval between timer interrupts. Theicaof this parameter discriminates
different padding approaches. A system is saichieaconstant interval time(CIT) if
the timer is a periodic one, i.e., the intervaWiesn two consecutive timer interrupts is
constant. This is the most common method used &oldipg. On the other hand, a
system is said to have \ariable interval timer(VIT) if the interval between two
consecutive timer interrupts is a random variabld satisfies some distribution. As we
will see in the later part of this section, CIT avild systems may perform significantly
differently in preventing traffic analysis attacks.

We assume that all packets have a constant sizis, ©bserving the packet size will
not provide any useful information to the adversditye only information available for

the adversary to observe and analyze is the timiipgckets.

3.3. Performance Metric and Analysis

3.3.1. Detection Rate as Performance Metric

Given the models described in the previous secti@wvould like to evaluate the system
security in terms of detection rateetection rateis defined as the probability that the

adversary can correctly identify the payload taffate. In this section, we derive the
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closed-form formulae for detection rates when ttheeasary uses sample mean, sample
variance, or sample entropy, as the statisticalifearespectively. Our formulae will be
approximate due to the complexity of the problenevéttheless, these formulae do
correctly reflect the impact of various system pagters, including the type of padded
traffic, sample size, and statistical feature u3dukse relationships are extremely useful
in design of a link padding system so that the alvVeletection rate can be minimized. In
the next section, we will see that experimentabdattches well to the performance
predicted by our approximation formulae.

We will focus our discussion on systems with ambp payload traffic rates, namely
the low traffic rate and the high traffic rate aagbume that both traffic rates occur with
equal probability. It is trivial to extend this woto complicated cases.

Figure 3 shows the PDFs of the statistical featwenditioned on two alternative

payload traffic ratesy and ap. Letd be the solution of the equation

f(day) =  (sea) (33)
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Figure 3. Bayes Decision Making for the Case of Rayload Traffic Rates

We assume that there is a unique solution to theatemn. Consequently, the Bayes
decision rule now becomel:s < d, the payload traffic rate i&j. Otherwise, the rate is

ah. The error rate for the Bayes decision rule canabeulated as follows:

= Pla)] ()i Pla) | 1 (e Jos @)

—00

The detection rate is then given by

V. = 1-¢ (3.5

Pla)] (s )i+ Pla ) (5 o @9)
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While numerical methods can be applied to calcula¢edetection rates, (e.g. with the
use of (3.2)), our goal here is to derive closedfdiormulae that can reveal the

relationship between the detection rate and otystem parameters.

3.3.2. Derivation of Detection Rate
3.3.2.1.Decomposition of Packet Inter-Arrival Time

Recall that the adversary collects a sample of BIAfTrun time in order to perform the
classification. Thus, to derive the detection rate,need to formally model the PIAT.
For a given system, let random varialflee the PIAT X can be considered as the sum

of three other random variables:
X =T +09y, + 0 (3.7)

whereT is the designed interval of two consecutive timeeirupts for the timer, and
Ow and e reflect the noise added by disturbance in the vgmesystem and by
congestion in the network, respectively.

Note thatT is defined by the link padding policy.should be constant for CIT link
padding but follows a specific distribution for VIihk padding.

yw is caused by a number of factors, which may imfiaetaccuracy of the timer’s
interrupt. First, the context switching from otlanning process to the timer’s interrupt
routine may take indeterminate time. Furthermorgmar interrupt may be temporally
blocked due to other activities. For example, ipayload packet from the sender is

arriving at the network interface card of the gatgwthe network interface card would
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generate an interrupt request, which can blocthellprocesses including the (scheduled)
timer interrupt. Thus, the timer's interrupts may be subtly butd@mly delayed by
incoming payload packet$his implies that the padded traffic’'s PIAT maycberelated
with the payload traffic

Ohet Captures the disturbance on the padded traffi®3 Baused by crossover traffic
at routers and switches. Clearkye: depends on the position at which the adversary
collects its sample. If the collection is made tighthe output of the sender gateway,
this noise may be ignored. However, if the adversatlects its sample far away from
the sender gateway, the noise level can be higtrassover traffic may significantly
interfere with the padded traffic.

In this section, we assume that g and S are normally distributed. These
assumptions simplify analysis without loss of gatigr and will be validated by our

experiments in Section 3.4.1. Specifically,
T ~N(r,02) (3.8)

where 7 is the mean of the timer timeout interval, amd = 0 in the case of CIT link

padding. And

0,

net

Mooz @9)

where died = 0 when the adversary observes the padded trafficpatsition next to the

sender’s gatewa@Wa. Similarly

2 For TimeSys Linux [29] used in our experimentss ttequest proceeds before the incoming packet
reaches the IP layer [30]. From that instant oa,rtetwork subsystem in the kernel becomes preeeptiv
Other high priority tasks such as the timer intetmoutine can then proceed as scheduled.
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3, ~N(0,02,) (3.10)

As &w may be correlated to the payload traffic, we dendly,, and g as the
variances of &w when the payload traffic rate is low and high, pexdively.
Consequently, we deno¥ and X;, as random variables when the payload traffic mte i
low and high, respectively. Thus,

X, ~N(wa?) (3.11)

whereu = 7 (ris the mean of the timer timeout interval) and

o’ =07 +0k + 0%, (3.12)
Similarly,
X, ~ N(,u,ahz) (3.13)
wherey = rand
OF =07 +0p + Ogun, (3.14)

Here we assume thxt and X, have the same mean. This assumption will be valtat
by our experiments later.
For the convenience of the discussion in theokstis section, we need to introduce

a ratio defined as follows:

o O7+ONtO;

_ net gw,h
r_F_az+0—2 T o (3.15)
| T net gw,l
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where 0%, ety Ogwirand gywi® are defined in (3.8), (3.9), (3.12), and (3.14),
respectively. The usage of will become clear when we derive the formulae for
detection rates for three different statisticaltdieas, namely, sample mean, sample

variance, and sample entropy.

3.3.2.2.Detection Rate Formula for Sample Mean

Let {X1, Xy, ..., X} be a random sample of packet inter-arrival timEse sample mean

is the average of the elements in the sample:

n

ngxi (3.16)
n

Note that sample meaX is a random variable and an unbiased estimatiofisofean
M.
The following theorem provides a closed-form folanfor estimation of detection

rate when the adversary uses sample mean as theefetatistic.

Theorem 3.1Using sample mean as the classification featuresgise to an estimated

detection rate

1
Vg =1- (3.17)

\/2(1/\/F+\/F)

wherer is defined in (3.15).
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The proof of Theorem 3.1 can be found in the fpatt of Section 3.5.1. From
Theorem 3.1, the following observations can be made

1. The detection rate in (3.17) is independent on $arsjzen. That is, when
sample mean is used as feature statistic, charniggngample size has no impact
on detection rates.

2. As shown in the second part of Section 3.5.1, thtedion ratevy is an
increasing function of, wherer > 1. That is, the smaller, the lower the
corresponding detection rate. Wher 1, the detection rate reaches 50%. Note
that for such a system with two possible payloadfitr rates, the detection rate
for the adversary is lower-bounded at 50% corregpgnto random guessing. In
reality, r = 1 may occur wheroi? is sufficiently large in comparison Witbzgw.

This corresponds to the case when the VIT paddinged.
3.3.2.3.Detection Rate Formula for Sample Variance

Let {Xi, Xy, ..., X} be a sample of siza from the distribution of random variable

Thesample variance ¥ defined as follows

2 (X, ~m)’ (3.18)

Y: i=1
n-1

Note that sample variancé is a random variable, and an unbiased estimatiod's

variance [31].
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Recall thatay? is the variance of padded traffic’s PIAT condigohon the high
payload traffic rate andi’the variance of padded traffic’s PIAT conditionettbe low
payload traffic rateai?is slightly larger thar?, which is validated by our experiments
in Section 3.4.1. Based on these observationdotloeving theorem provides a closed-
form formula for estimation of detection rate whee adversary uses sample variance
as the feature statistic.

Theorem 3.2 Using sample variance as the classification feagives rise to an

estimated detection rate

vy, = ma>{1—i ,O.SJ (3.19)

n-1

whereC is calculated as follows:

2 2 3.20
2[1—1Iogrj Z(rlogr —1) ( )
1 r-1

andr is defined in (3.15).
The proof of Theorem 3.2 can be found in the fpatt of Section 3.5.2. From
Theorem 3.2, the following observations can be made
1. The detection ratgy is an increasing function in terms of sample siz&/hen
n- oo, the detection rate is 100%. This means thatefatyload traffic lasts for a

long time at one rate, either low or high, andabeersary obtains such a sample,
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the adversary may detect the payload traffic rgteiding sample variance as a
statistical feature.

2. As shown in the second part of Section 3.5.2, tetedion ratevy is an
increasing function of defined in (3.15), where> 1. That is, the smallar, the
lower the corresponding detection rate. When 1, the detection rate is 50%.
This corresponds to the case of VIT padding witfiigantly large 7. This
suggests that although the adversary may use a sagple size to detect the
payload rate by sample variance, using a VIT paglduith a large interval
variance can make such an attack impossible, sincpayload traffic can last
very long at a fixed rate in practice, and the aslgy cannot obtain a sufficiently

large sample.

3.3.2.4.Detection Rate Formula for Sample Entropy

While there are many empirical entropy estimataalable, it is generally difficult to
obtain those estimators’ PDFs. In this work, weetadvantage of the relationship
between entropy and variance of a normal distdoutn order to describe sample
entropy’s effectiveness as the feature statistie Wil then use an empirical robust
histogram-based entropy estimator for our analyie following theorem provides a
closed-form formula for estimation of detectionerathen the adversary uses sample
entropy as the feature statistic.

Theorem 3.3. Using sample entropy as the classification featgires rise to an

estimated detection rate
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v, = ma»{l—%” ,o.5j (3.21)

whereCy is calculated as follows:

Z(Iog(rr_llog rD 2(|og(lro;jj (3.22)

and r is defined in (3.15).

The proof of Theorem 3.3 can be found in the fpatt of Section 3.5.3. From
Theorem 3.3 we can make a similar set of obsemstio that of the case of sample
variance.

1. Detection ratev; is an increasing function in terms of sample siz§hat is,

when the adversary obtains a larger sample, thectet rate will approach
100%.

2. As shown in the second part of Section 3.5.3, teeedion ratev; is an

increasing function of defined in (3.15), where= 1. Whenr =1, the detection

rate reaches 50%. In reality, this may occur wkenis sufficiently large. This

corresponds to the case when VIT padding with siefiily largec;?is used.
From statistical knowledge, we know sample vamaiscvery sensitive to outliets

In order for empirical estimation of sample entrapybe robust against outliers, we use

% An outlier is an observation that lies an abnordisiance from other values in the sample of tiddlpd
traffic PIAT.
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the method developed in [32]: First, we create stogram of the PIAT sample for a
given bin size (sayh). Then, according to [32], the differential entyopstimator of a

random variabl&X’s continuous distribution is given by

H = Zﬁlogﬁ +logAh (3.23)
~n o n

wheren is the sample sizé; is the number of sample points in iflebin, andzh is the
histogram’s bin size. If a constant bin size isduggoughout the experiment, tetagdh
in (3.23) is a constant and hence does not infleathe recognition result. It can,
therefore, be discarded, and the entropy estimatomula then simplifies to the

following:

~ k. k
H = ZF'IogF' (3.24)

Note thatdh, the histogram’s bin size, plays an important inléhe entropy estimation.
As the bin size approaches positive infinity, B# stimated entropy approaches zero. In
Theorem 3.4, we provide formulae of the optimal bire by minimizing the mean
square error (MSE) of the entropy estimation. $desee Section 3.5.4 for the proof.
Theorem 3.4The optimal bin sizedh for the histogram-based entropy estimator can be

calculated as follows:
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AX=— (3.25)

whereois the standard deviation of the underlying dusttion and the number of bin

can be calculated as follows:

(1-112=3n (3.26)

This entropy estimator is robust in the senseithatbased on probability weighted
sum. Generally, the probability that outliers ocsusmall. Thus, the probability weight
reduces the noise’s impact on the entropy estimaioreover, from the discussion in
[32] and our experiments, we found that this hisdogbased entropy estimator matches

the value predicted by Theorem 3.3.

3.4. Evaluations

In this section, we report results on evaluatingtesyn security in terms of detection rate.
The evaluations will be based on both theoreticalysis (from the previous section)
and experiments.

In our experiments, we let the adversary use b-pagformance network analyzer,
such as Agilent’'s J6841A [33], to dump the paddaetffit for traffic analysis. A series of
experiments were carried out. In terms of paddaffi¢rtype, we measure both systems
with CIT and VIT padding. In terms of experimen&&ivironments, we consider the
following cases: a) a laboratory environment, ampus network, and c) a wide area

network.
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GW, andGWg in Figure 1 are installed with TimeSys Linux/R&atre [29]. Both
CIT and VIT paddings use a timer with interruptemial mean equal to 10ms. The
payload has two rate states: 10 packets per se@ps) and 40pps. We assume both

rates occur in equal probability, that ¥ c)=P (c«)=50%

3.4.1. Experiments in a Laboratory Environment

The advantage of performing the experiments irbarkory environment is that we can
control the cross traffic over the network. Theadigantage is that the generated cross
traffic may not have the same characteristics os¢hin a real network. Nevertheless,
our experiment setup is shown in Figure 4.

The two gateways are connected by a Marconi ESR-%hterprise switch router
[34]. Subnet C is connected to the router as tbesctraffic (noise) generator while the
cross traffic receiver is located in Subnet D. Nttat the cross traffic shares the
outgoing link of the router, creating a situatiohase the cross traffic has an impact on

the padded traffic. We run several cases of exparisnas described below.
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Subnet A Subnet B

M ar coni

ESR-5000
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@
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SubnelC SubneiD

Adversary
Analyzer

Noise Noise
Sender Receiver

Figure 4. Experiment Setup in Laboratory for Pasgittacks

3.4.1.1.The Case of Zero Cross Traffic

For the case of no cross traffic, the workstatiorsuibnet C does not transmit, and the
router only deals with the padded traffic fr@Wa. That is, dhet in (3.15) is 0. Hence,

the variance ratio becomes

oZ+0?
r=—L —guh (3.27)

2 2
UT + ng,l

This situation is the best case for the adversaryeacan observe traffic with minimum
disturbance. Hence, this is the worst case foratthministrator that wants to prevent

traffic analysis attacks.
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3.4.1.1.1CIT Link Padding

First, we analyze systems that use CIT link paddifiwat is,o?is 0. Hence, (3.27) is

further simplified as follows:

guh (3.28)

From the theorems in Section 3.3.2, we see thadetection rate is a function of sample
sizen and ratior.
Figure 5 (a) shows the distributions of paddeffitta PIAT under low rate (10pps)
and high rate (40pps) payload traffic. We haveftiewing observations:
1. The two distributions are almost bell-shaped. T{partially) validates our
assumption that the padded traffic’s PIAT has anadistribution.
2. The means of padded traffic’'s PIAT under differeates of payload traffic are
virtually identical. This is also consistent witletassumption made in 3.3.2.1.
3. The two distributions are slightly different. Thanance of padded traffic's
PIAT conditioned on the high-rate payload traff'm,zgwyh in (3.14) is slightly
larger than the variance of padded traffic’s PlAdnditioned on the low-rate

payload traffic,angJ in (3.12). This implies

g
r=—9"5q (3.29)

gw,l
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Figure 5 (b) shows both empirical and theoreticaives of detection rate for

different feature statistics. We have the followolgservations:

1. The empirical detection rate curves coincide welithwtheir theoretical
counterparts. This validates our theoretical mo@lleé empirical curve of sample
variance is a little lower than the theoretical theeause sample variance is very
sensitive to outliers in the data.

2. The detection rate of sample mean is alma@%. Sample mean is not an
effective feature for the adversary.

3. On the other hand, as the sample size increasestida rates for both sample
variance and sample entropy increase as predigtedub Theorem 3.2 and
Theorem 3.3. At sample size of 1,000, both feataokseve the detection rate of
almost100%. This means that CIT padding fails if the adverases sample
variance or sample entropy as feature statistimefzdly speaking, sample
entropy performs empirically better than samplaarare in terms of detection

rate.
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3.4.1.1.2VIT Link Padding

Recall from (3.27), the variance ratian (3.15) is given by

2

gw,h
2 2

UT + ng,l

o ogl+o
wheregi® > 0 since we are using VIT padding.

Theorems in 3.3.2 show that wheapproacheg, the detection rates approach 50%
for all the three feature statistics. We note thatCIT padding, the value aofdecreases
with increasing values afi%. Figure 6 (a) displays the empirical curves okdgon rate
in terms ofoy for a fixed sample size & 00Q We can see that wheaw increases, the
detection rate quickly drops and approaches 50%xpected. Clearly, a system with
VIT padding performs better (i.e., with lower ddten rate) than one with CIT padding.

In any case, as shown in (3.17) and (3.21), whensize of sample increases, the
detection rate increases as well. An interestingstijon is: How large does a sample
have to be in order for the adversary to have gefitly high probability in making a
correct detection? Let(p) be the sample size that can achieve a detecsitenafp
percent. Figure 6 (b) provides the theoretical eur¥n(99%) vs. or. We can see that
with a reasonable value @f, the sample size needs to be extremely largedardo
achieve a 99% detection rate. For example, whetirttex interval standard deviatian
=1ms, to achieve the detection rate of 99%, the sasipk has to be greater thari*1a
is virtually impossible for an attacker to obtaurck a large sample. This clearly shows

the effectiveness of VIT padding.
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3.4.1.2.The Case of Non-Zero Cross Traffic

Recall that the case of zero-cross traffic is thstlrase for the adversary. As VIT has
shown to be effective in the case of zero crog$fidrave will no longer have to consider
systems with VIT padding here since VIT has beeswshto be effective even for the
adversary's best-case scenario (zero cross traffit a line tap very near the sender

gateway). We thus concentrate on the system withpatdding. In a system with cross
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traffic, dne? in (3.15) may no longer be zero. As for CIT paddindere ov°=0, the

variance ratidn (16) now becomes

o> +0°

net gw,h

= _net Tawh (3.30)

2 2
Oret T Ogy

net

We observe that decreases with increasimgec, resulting in a low detection rate for all

feature statistics. Thus, the biggge?, the smaller the detection rate.
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In the experiments described here, cross trafénegated from within subnet C
causes router congestion, which in turn affectotteervation by the adversary. Figure 7
shows how the detection rate is impacted by theuatnof cross traffic. We can make
the following observations:

1. Note that the PIAT for the padded traffic remaihd@ms. Hence, the amount of
cross traffic is directly proportional to the wtdition of the link shared between
Subnet B and Subnet D. The data shows that asthetilization increases, the
detection rate of sample entropy and sample vagiagecreases. Intuitively, this
is because the crossover traffic between SubnetdCSaibnet D interferes with
the padded traffic betweeBW, and GWs, and % increases with the shared
link’s utilization. The sample mean’s detectioreregmains low, as expected.

2. We observe that sample entropy results in a begezction rate than sample
variance does. It can be perceived that, with tweease of the shared link’s
utilization, outliers have more chance of occurrig@gmple variance is much
more sensitive to outliers and, hence, it has adetection rate.

3. Even with the link utilization o##0%, sample entropy can still have a detection
rate of abou?70%, implying that CIT padding may still not be ageefive in this

kind of situation.
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3.4.2. Experiments over Campus and Wide Area Networks

Figure 8 shows the setup for the experiments dssglig this subsection. Figure 8 (a) is
a setup for experiments over the Texas A&M Campesamdrk. That is, the padded
traffic goes through Texas A&M campus network befar reaches the receiver's
gateway. Figure 8 (b) is a setup for experimener dlie Internet between Ohio State
University and Texas A&M University. Here, the sendvorkstation and the sender
gateway are located at Ohio State University. Thddpd traffic goes through the
Internet and arrives at Texas A&M University, whehe receiver gateway and the
receiver’'s workstation are located. In both cafies,observation point of the adversary
is located directly in front of the receiver gatgwand thus maximally far from the
sender. We note that in this case, the path frensémder’s workstation to the receiver’'s
workstation spans over 15 routers.

In each case, we collect data continuously foormplete day (24 hours). The data
for the case of Texas A&M campus network was ctdéon March 24, 2003 while the
data for the wide are network case was collectedlarch 26, 2003. Figure 9 (a) and
Figure 9 (b) display the detection rate throughibet observation period when sample
size is1000 We make the following observations:

1. When the padded traffic traverses only the TexasMA&ampus network, the

detection rates of sample entropy and sample \@iare high for almost all the
time we collected data. This means that over a umediize enterprise network

like the Texas A&M campus, the crossover traffis tianited influence on the
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padded traffic’'s PIAT. Consequently, we would nretammend CIT padding for
use in such an environment.

2. When the padded traffic traverses more network etd¢s) such as the span of the
Internet between Ohio State University and TexasMA&Jniversity, the
detection rates are low. This is because the pattd#it experiences congestion
at a large number of routers and switches, andIAS is seriously distorted with
a relatively largerne:

3. In the case of wide area networks, sample entromy sample variance can
experience oveb5% detection rates during periods of relatively loetwork
activity (such as at 2:00AM). This means that Cladging may still be
sufficiently safe even if the adversary is very oden

Experimental results in Figure 9 match our theoattanalysis in Section 3.3.2. This

further validates the correctness of our theorkfreanework for analyzing the passive

link load analysis attack and their countermeasures
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Figure 8. Experiment Setup over Campus and thenetdor Passive Attacks
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3.5. Theorem Proof

In this subsection, we prove theorems introducesiection 3.3.2.
3.5.1. Proof of Theorem 3.1

Theorem3.1: Using sample mean as the classification feagures rise to an estimated

detection rate

1
=1- (3.31)

T T )

wherer is defined in (3.15).

Proof: The distribution of sample mean for a normal disttion N(z, &) is still a
normal oneN(x, &*/n). Thus, sample meaX, for the case of the payload traffic rate

being low has a normal distribution
0.2
f(x)=N(go?)= N(”’le (3.32)
Similarly, sample meaiX,, for the high payload traffic rate has a normatriisition
0.2
f,(x)=N(wo?)= N(ﬂ,ﬁj (3.33)

Since X, and X,, are normally distributed, we can use the Bhattaglaabound [27] to

estimate the error rate as follows:
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£, <Pl )P(@)| Y T(xT@)F (xIw)ix 339

Substituting (3.32), (3.33), an®(w)=P(a)=0.5 into (3.34) and carrying out the

integration, we have

£, < %exp(— K) (3.35)
where
ol +o,
ol 2 (3.36)

Substituting (3.15) into (3.36) and some rearraggive have

2 2

Substituting (3.37) into (3.35), the error ratgigen by

1
T ol +

IN

(3.38)

The detection rate, then satisfies the following:

V = 1-¢ (3.39)
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\}

1- 1 (3.40)

\/2(1/\/F+\/F)

Thus, we can use the lower bound of (3.40) asshimation of detection rate by sample
mean. The theorem is proven.
In the following, we prove that detection ratés an increasing function efwhen

the adversary use sample mean as the featurdistafs prove that, increases with,

we need to prove that the tetfn) = /2{L/r +/r ) in (3.17) increases with

_ 1.1
dt/dr—zﬁ(l JFJ (3.41)

Sincer = 1, dt/dr = 0. Thust(r) increases with, and the decision ratg, increases with

r.

3.5.2. Proof of Theorem 3.2

Theorem 3.2 Using sample variance as the classification feagives rise to an

estimated detection rate

v, = ma{l— S ,O.SJ (3.42)
n-1

whereC is calculated as follows:
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2 2 3.43
2(1—1Iogrj Z(rlogr —1] ( )
r-1 r-1

andr is defined in (3.15).

Proof: Denote X,.1” as a random variable with abi squaredistribution fo (x) with

freedomn-1, which is defined as follows,

Xngl eXF(— Xj
fﬁjﬁ=—————jL (3.44)

wherex > 0. DenoteY as the random variable of sample variance. Tnerl)Y /o2 has

a chi square distribution with freedawi [31]. That is

n-1
)(f_l = p Y (3.45)

From (3.45), we get

2
'Yzﬁ%EXil (3.46)

From chi square’s properties, we have sample vegiamearnY as
Y =g? (3.47)

and its variancear(Y) as
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(3.48)

To get sample variance’s PDF at sample sjzge first compute its distribution function

P(Y < = 2
(v<y) P( AV y] (3.49)
n-1
- P[ X2, < n 21 yj (3.50)
Differentiating the two sides of (3.50), we have ttensity function
_ n-1 \n-1
f(y)=1, (—UZ yj = (3.51)

We denotey| as the random variable of sample variance of patiddiic’'s PIAT at the

low rate payload traffic. Substituting (3.44) in(8.51), we then derivé&;’s density

function f, (y)

(n—lyjz_l exr{— n—lyj
o 207 " )n-1 (3.52)
2

Similarly, Yy, is the random variable of sample variance of pdddsfic’s PIAT at high

rate payload traffic, and its density functidp (y) is
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n-1, 7_lex _n-1,
oy 20, " )n-1 (3.53)
2

To get the detection rate, we calculate the crogst . of f, (y) and f, (y)

fY, (yc) = th (yc) (3.54)

After lengthy arithmetic operations, we have

o2\ olo?
y, = Iog(—g — (3.55)
g )0, —0

Now we use Chebynov inequality for the estimatidrewor rate if the adversary uses
sample variance as the feature statistic. Theristdrom the mean of, to the cross

pointy. is denoted ab,
D =vy.-Y, (3.56)

Substituting (3.47) and (3.55) into (3.56), we have

2 2
D = [Iog(a—gj% —1}0’,2 (3.57)
g, )0y —0,

Denotingc; as the ratio oD, to the standard deviation Wf
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D,

1/vaﬂY, )

¢ = (3.58)

Substituting (3.48) and (3.57) into (3.58), we have

o’ o?
"’9(02 oiogt t
¢ = /%0 —9 (3.59)
2

n-1

Similarly, denotingDy, as the distance from the meariygto the cross point,

ol ol
D,=0f-y. = Jﬁ[l— Iog(—gjﬁj (3.60)
g )oy —0

Thenc,, the ratio oD, and the standard deviation4f can be calculated as follows

o} o’
1- Iog(agj P _' p
c, = | . h 9 (3.61)

n-1

When sample size is big (>40), we can assume that a chi square iBBFmmetrical.

Thus from Chebynov inequality, we can get the erateey

1.1
o2 2 (3.62)
B 2
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Thus, the detection rate can be calculated as

v, = 1-g (3.63)
2 1 1

. . 3.64

4c?  4c? (3.64)

Substituting (3.15), (3.59) and (3.61) into (3.64¢ have

C:Y

— (3.65)

v, 21-

where

1) (3.66)

Thus, we use the lower boundwfas the estimation of the detection rate. Sincewha
must be greater than 50%, we can get (3.19). Tém¢im is proved.

In the following, we prove thaty is an increasing function of That is, we need to
prove thatCy in (3.20) is a decreasing function ofFor terms in (3.20), we have the

following denotations

CYl(r) :k)i (3.67)

(3.68)
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If Cy1is decreasing function ar@ is an increasing function, thély is a decreasing
function.

We first prove tha€y; is a decreasing function. Lete’, we have

Culr)=c,(x)=—> (3.69)
e -1
dac, = o (3.70)
dr dr
= dc, dx (3.71)
dx dr
= e -1-x€
. (3.72)
r(ex—l)

Since r>1, x>0, the denominator of (3.72) is greater thanWe have the Taylor

expansion of the numerator of (3.72) as follows

e" —1-xe" :i(%—ﬁjx“ (3.73)

n=1

Since

<0 (3.74)

So

e -1-xe" <0 (3.75)
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Thus

dc, _de, (3.76)
dr dr

Cyiis a decreasing function in termsrof

Now we proveCyis an increasing function of Letr = €, we have,

(3.77)

and

= (3.78)

Since r>1, x>0, the denominator of (3.78) is gretitan0. The Taylor expansion of the

numerator of (3.78) is as follows

e —e* —xe = Z(ﬂ]x“ (3.79)
n=1 n!
Since
n>02"1"Nsg (3.80)

nl

we have
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e —e* —xe* =0 (3.81)
So
dC,, _dc. (3.82)
dr dr

andCyA(r) is an increasing function of

Thus, we have proved thetan increasing function in termsrof
3.5.3. Proof of Theorem 3.3

Theorem 3.3:Using sample entropy as the classification featgires rise to an

estimated detection rate

v, = ma{l—CTH ,o.5j (3.83)
whereCy is calculated as follows:

1 1
= +

Z(Iog(rr_l log rD Z(Iog(lro;jj (3.84)

C

andr is defined in (3.15).

Proof: A normal distribution’s differential entropy cae lbalculated as



53

2
- '0912—7;‘7*1 (3.85)

H

Here we use sample varianc¢elefined in (3.18) to estimate sample entrd@y

log27Y +1

H = 3.86
5 (3.86)
To get sample entropy’s PDF, we first derive itstribution,
~ 2h-1
P(A <h)=P(M<hj=P y<© (3.87)
2 2T

Differentiating two sides of (3.87), we get samgtgropy’s PDF

e o2 _ e 1) g2l ' 388
f-(h) f{ ZHJ P(Y< 277)( ZHJ (3.88)

DenoteH, as the sample entropy of padded traffic’'s PIAThat low-rate payload traffic,

and f, (h) asH/’'s PDF. DenoteHy, as the sample entropy of padded traffic’s PIAT at
the high-rate payload traffic, anﬁﬁh (h) asHy's PDF. To get the detection rate, we need

to calculate the cross poingof f; (h) and f (h)

fo (h.)=f5 (ho) (3.89)

By lengthy arithmetic operations
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o’ olo?
log| 277log —2 1211 +1
. g{ g(dﬁjaﬁ —le:l (3.90)
. 2

For the ease of estimation, we approximate sammtegy’s mean as follows

E(ﬁ):% (3.91)

That is, we approximate the entropy estimator iB§Bas an unbiased one.
Now we use Chebynov inequality for the error egBmation. The distance from the

mean ofH, to the cross poirtt; is denoted ab,

°T log| 277log U—ﬁ ﬂ
o’ )oy —0f | log2mo? +1 (3.92)
2 2
- o2 o?
log| log| —2- h
g[ g(aﬁJas—af} (393)
2

Using Taylor expansion over (3.86) and by appraeragoproximation, we get

val{I:I) = 2_1n (3.94)

(3.94) is the same result as for the histogrambasgropy estimator in [32]. Denoting

¢ as the ratio oD, to the standard deviation lf
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ag,| o
log{log —3 | 5
9 )% ~9i (3.95)
NS
2n

Similarly, denotingDy, as the distance from the mearHpfto the cross poirtt; andc,as

the ratio ofD;, to the standard deviation bf, we have

D = o2\ olo?
log 277Iog(“}“' +1
log2rm? +1 l: o’ )o, -0} (3.96)
2 2
log 70*? ~o
e (Jﬁj (3.97)
1 109 —
— | —
2
2 _ 2
|Og O-hi;_g
o} Iog(agj (3.98)
|
c,=— =
5|1
2n

So error rate is calculated as

1 1 _Cq;
W7 4c? 4c? n

(3.99)
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where

2 r 12
o?) o?
2|:|Og[(loga_gj 0.2 _ha.2 Jj| 2 2 (3 100)
Jon=0t)] 5g Ghor -

Substitute (3.15) into (3.100), we have

1 1
= +

Z{Iog(rr_l(logr)ﬂz 2[|og( |ro;H2 (3.101)

C

g

Since

v; 21-e; (3.102)

Substituting (3.102) into (3.99), we have

i (3.103)

In this section, we use the lower boundvgfas the estimation of the detection rate

by sample entropy. Consider that detection ratet imeigreater than 50% and we can get

(3.21) in Theorem 3.3. The theorem is proved.

In the following we prove that; is an increasing function in termsrfThat is, we

need to prove tha€; is a decreasing function of Denote
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-1
C“l(r)::o? (3.104)
CHz(r):rL_l (3.105)

If Cha(r) in (3.104) andCpy(r) in (3.105) are increasing functions of C; is a

decreasing function ot

We can see th&u:(r)=1/ Cya(r), whereCy(r) is defined in (3.67). SincBy4(r) is a
decreasing function af, Cyy(r) is an increasing function Cy(r)=CyAr), whereCyAr)
is defined in (3.68). We have proved tRai(r) is an increasing function, so@(r).

Thusvﬁ is ofr, wherer>1.

3.5.4. Proof of Theorem 3.4

Theorem 3.4The optimal bin sizedh for the histogram-based entropy estimator can be

calculated as follows:
AX = — (3.106)

whereois the standard deviation of the underlying disttion and the number of bin

can be calculated as follows:

(1-212=3n (3.107)
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Proof: We now develop theory calculating the optimal biresfor histogram based

entropy estimation. In [32], for a histogram basattopy estimation,

2

E(d)=H —'_1+i(%j (3.108)
2n 24\ o

where H is the estimated entropll is original entropy of random variablk | is the

number of binsn is the sample sizelx is the bin size and is X's standard deviation.

If random variableX is normally distributed,
var[Hi )= %n"l (3.109)

Moreover, for a normally distributed random varghbsgince the probability of>30 is
very small and ignorable, we have the followingateinship between bin sizéx, the

number of bing and random variab¥'s standard deviatiotr,

60 = |AX (3.110)
Thus
Ax_1 (3.111)
g 6

We can calculate the mean square error (MSE) oétv@py estimation as follows,
gl - AY|=varfA)+[piaslA ) (3.112)
where

IBIAH)|= E(A)-H (3.113)
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Substitute (3.108) and (3.109) into (3.112),

E[(H -Af :%n‘l +(2_14(%j2 —'_‘1j (3.114)

g n

To derive a minimum mean square error, the secemah tin (3.114) should be

minimized,
2
i(%j _I-1 (3.115)
24\ o n
Substituting (3.111) into (3.115), we have
1(6) _1-1
_(_j _1-1 (3.116)
24\ | 2n
Thus
(1-112=3n (3.117)
Ax=6|_0 (3.118)
3.6. Summary

While researchers have proposed link padding asffactive way to prevent traffic
analysis, there was no systematic method to anahgeecurity of a system under the
traffic analysis attacks before our study resulesemeleased. We provide an effective

analysis model for the evaluation of different paddstrategies aimed at camouflaging
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the payload traffic rates under traffic analysimeis. We define as our security metric
detection rate, which is the probability that taeerof payload traffic is recognized. We
believe that our analysis methods can be widely tigeanalyze other security systems
for different objectives under traffic analysisaaits.

By statistical analysis of different feature statis (sample mean, sample variance,
and sample entropy) of the padded traffic PIATSs, fauend that sample variance and
sample entropy can exploit the correlation betwpayload traffic rate and PIATs of
padded traffic, when the padded traffic is dumped axplored next to the sender
gateway or at a remote site across one or moreested routers. The reason for the
failure of CIT padding is that payload traffic casssmall disturbances to the timer’'s
interval, which is used to control packet sendikigreover, the higher the user traffic
rate, the larger the disturbance of the PIAT ofghdded traffic.

After a careful analysis, we propose VIT link peddas an alternative to the most
common CIT link padding. Both theoretical analyarsl empirical results validate the
effectiveness of VIT padding strategy. The impoctaof the VIT padding technique is
validated by extensive experiments showing that &K padding may be compromised
even at a remote site behind noisy routers.

In this portion of the dissertation research, viscuss the simple case where two
classes of traffic rates should be distinguisheat. ®chnique can be easily extended to
multiple traffic rates by performing more offlineaining. It is also straight-forward to
use our technique to track the user payload tra#fie variation by measuring sample

entropy of the PIAT of the corresponding paddetfitra
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4. ACTIVE LINK-LOAD ANALYSIS ATTACKS AND COUNTERMEASURES

In this section, we address issues related todtieedink-load analysis attack and their
countermeasures. In particular, we study how areadvy may discover link load by
actively pinging victim networks and analyzing &tts of ping round trip times, (i.e.,
the active link load analysis attack) even if lildad is protected by the VIT padding
analyzed in Section 3. We will also develop andiata countermeasures against this

kind of attack.

4.1. Models

This section first presents the network model ahdnt discusses link padding
mechanisms used as countermeasures for traffigasattacks. Finally, we define the

model of adversary who uses statistical patteriogeition strategies for activping

probing attacks on these security systems, whighl@mink padding mechanisms.
4.1.1. Network Model
We use a similar network model as shown in FigurBut we assume that the payload

traffic has been protected by VIT link padding ieplented on gatewa@W, andGW,

which allow cross traffic to pass through.

4.1.2. Adversary Model

We first present our assumptions on the capalsilafehe adversary, i.e. threat model.
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1. The adversary cannot obtain information from packehtents, which are
perfectly encrypted. All (payload or dummy) packbtsre a constant size and
dummy packets cannot be distinguished from paypeeets.

2. The adversary is external, that is, she is notracgzant of either Subnet A or B
and does not compromise sender and receiver gasewhg adversary can only
obtain access to the two subnets in seemingly leggs$, such as pinging the two
gateways.

3. The adversary has complete knowledge about thevggtenachines and the
countermeasure algorithms used for preventing itradinalysis. Thus, the
adversary can simulate the entire system, includieggateway machines, to
obtain a priori knowledge about traffic behaviar.nrhany studies on information
security, it is a convention that we make worstecassumptions like this. But,
we will show in this section, even without the daibty of simulating the system,
the adversary can also track the traffic rate clmngpattern by a method
introduced in this section.

Now we discuss the adversary strategy in ternaactive link load analysis attack.
Recall that the motivation of link padding is tosare traffic confidentiality, i.e., to
prevent the adversary from performing traffic as&y and inferring critical
characteristics of the payload traffic exchangeeéranprotected networks. We limit the
adversary’'s interest tpayload traffic rate that is, the rate at which payload traffic is
exchanged between protected subnets. Specificalyassume that there is a set of

discrete payload traffic ratesd, ..., ay}. At a given time, the rate of payload traffic
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from the sender will be one of those rates. Conseity) the objective of the adversary
is to identify at which of then rates the payload is transmitted. But, we willoals
demonstrate how the adversary may take the appmattihed in this section to track
the continuous changing pattern of the payloadidraf

We consider that, based on these assumptions,adversary may deploy a
sophisticated ping probing attack aimed at detengithe payload traffic rate. In the
attack, the adversary pings the sender gaté®\al, analyzes the statistics of round trip
times (RTT) of these ping packets and tries tove@eBubnet A’'s payload traffic rate
(even ifGW, uses VIT padding). We use this ping attack as dehtm analyze a much
larger class of active probing attacks.

The adversary can analyze his sample of ping R3ta dased on Bayes decision
theory [27]. The entire attack strategy consistsaaf phases: Offline training phase and
online recognition phase. We will describe thenobel

The offline training phase can be decomposed mtddllowing steps:

1. Collecting training data: The adversary reconsguitte entire link padding
system and collects timing information of ping petsk at different payload
traffic rates.

2. Preprocessing training data: From the timing d#ta, adversary derives RTT
information at different payload traffic rates.

3. Selecting feature from preprocessed training datae adversary selects a
statistic of the RTT sample of sire This statistic is called featureand will be

used for traffic rate classification. Possible teas we study in this section are
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sample megmsample varianceandsample entropyThe adversary then derives
the Probability Density Function§PDF) of the selected statistical feature. As
histograms are usually too coarse for the distidouestimation, we assume that
the adversary uses tl@aussian kernel estimator of POJE], which is effective
in our problem domain.

4. Selecting decision rule: Based on the PDFs ofsticail features for different
payload traffic rates, Bayes decision rules arevddr Recall that there ama
possible payload traffic rates. The Bayes decisibe can be stated as follows:

The sample represented by featummgesponds to payload radeif
0j 0[1,m), P(a]s) = Plew]s) (4.1)

That is,

f(sw )P(w)= f(s{a)j JP(ew,) (4.2)

where f(s¢u) is PDF of feature s conditioned on payload t@affatecy, P(w) is the a
priori probability that the payload traffic is tramitted at ratey, and Pg|s) is the post
priori probability that the payload traffic is seat ratecy when the collected sample has
the measured feature equal to s

Once the adversary completes her training phasecai perform the classification
at run time. We assume that the adversary has da@$1o ping the gatewagN, and
GW&. In particular, when she intends to determinectimeent payload rate, the adversary

collects a sample of ping RTTs. She calculatesvtiee of the statistical feature from
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the collected sample and then uses the Bayes aecisies derived in the offline

training phase to determine the payload traffie.rat

4.2. Overview of Countermeasures to Link-Load Analysitagks

In Section 3.2, we have introduced CIT padding ¥hdpadding methods to protect the
link load from passive link load analysis attackecall the implementation of these
methods. In CIT Padding, a periodic timer is usadGij to control the sending of
padded traffic. In VIT padding, a non-periodic time used toGW, to control the
sending of padded traffic.

As we have shown in Section 3.4, VIT padding ciectvely counter passive link-
load analysis attacks while the commonly used Gdding fails under passive link-load
analysis attacks.

In this section of the dissertation, we will showat the active link load analysis
attack can defeat VIT padding. To counter this kih@ctive attack, we have to perturb

both the payload traffic and cross traffic througti.

4.3. Performance Metric and Analysis

4.3.1. Detection Rate as Performance Metric

Given models described in the previous sectiomwaeld like to evaluate the security of
the system in Figure 1 in terms of detection rRiecall that dtection ratas defined as
the probability that the adversary can correctgniify the payload traffic rate. In this

section, we derive the closed-form formulae foredBbn rates when the adversary uses
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sample mean, sample variance, or sample entrofgfieastatistical feature, respectively.
Our formulae will be approximate due to the complerf the problem. Nevertheless,
they do correctly reflect the impact of variousteys parameters, including the type of
padded traffic, sample size, and statistical featiged. These relationships are useful for
understanding the nature of the attack and degjgeifective countermeasures. In the
next section, we will see that experimental dath matches the detection rate predicted

by our approximation formulae.

Let {Xy, ..., X,} be a sample of ping RTT with sample sizeSample mearX ,

sample variance ,yandsample entropy:I are defined below:

Sample Mean Z": X
o= (4.3)
n

Sample Variance n (X —m)2

Y - i=1 I (44)
n-1

Sample Entro ~ : .
P 24 H= Zﬁlog5 +log Ax (4.5)

—n n

Note that in (4.5) we use the histogram-based pytestimation developed in [32],
wherek; is the number of sample points in tfebin, and4x is the bin size of the
histogram. In Theorem 4.1, we derive a method toutzte the optimal bin size for the
estimation of entropy. Refer to Section 4.5.1 Fa proof of Theorem 4.1.

Theorem 4.1The optimal bin sizedh for the histogram-based entropy estimator can be

calculated as follows:
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AX=— (4.6)
where g is the standard deviation of the underlying disttion and the number of bin
can be calculated as follows:

(1-112=3n (4.7)

Below, we derive close-form formulae for simple &ssn which the user payload

traffic has two statuses: low raig¢ and high ratexw,.

4.3.2. Derivation of Detection Rate

We consider two kinds of systems: stable systenmerevtihe payload traffic rate remains
stable and periodic systems where the payloaddnaffe changes periodically.
4.3.2.1.Detection Rate for Stable Systems

The ping RTT can be represented as a random Variaet RT Tow andRT Thign be

random variables of RTT when the user payloaditradite is low and high respectively.
Denote their means asand 4 and variances a§ anddy’ respectively. Also we define

r as the ratio betweed? and &2

=% (4.8)
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The following theorems provide closed-form forneuleor estimation of detection
rate when sample mean, sample variance, and saemptepy are used as feature
statistics respectively.

Theorem 4.2Using sample mean as the classification featuresgiise to an estimated

detection rate

Ve =1- exp{—l(ﬂh2 'u'z ] L (4.9)
4 o, +0 \/2‘1/\/?+\/Fj
Theorem 4.3:Using sample variance as the classification feagives rise to an

estimated detection rate

v, = ma{l— C ,O.SJ (4.10)
n-1
whereCy is calculated as follows:
1 1
v = 2 + 2
1 r (4.11)
2/1-——logr 2 ——logr -1
r-1 r-1

Theorem 4.4:Using sample variance as the classification feagives rise to an

estimated detection rate
~ CH
V; =ma 1——n 05 (4.12)

whereCy is calculated as follows:
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Z(Iog(rr_llog rD z(log(lro;]j (4.13)

Refer to Section 4.5.2 for the proof of Theorerm, &ection 4.5.3 for the proof of
Theorem 4.3 and Section 4.5.4 for the proof of Taeo4.4, respectively.

We have a number of observations from the aboseréms:

1. For sample mean, detection rate increases expafigntith sample size n. Thus,
if there is a small difference betweeR and 4, detection rate will increase
dramatically with sample size. Furthermore, detectrate decreases when
varianced® and&? increase.

2. For sample variance, the detection rate is an asong function in terms of
sample size n. Whem - oo, the detection rate i500%. This means that if the
payload traffic lasts for a sufficient time at aia¢e, then the adversary can obtain
a sample of sufficiently large size, and he magdethe payload traffic rate by
sample variance of ping RTT. Furthermore, the deteaate is an increasing
function ofr defined in (4.8), where = 1. That is, the smaller r, the closer the
two variances under different payload traffic raaesl, intuitively, the lower the
corresponding detection rate. Wher 1, the detection rate 80%. That is, the

probing attack using sample variance will fail.
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3. For sample entropy, the detection rate is alsanareasing function in terms of
sample size n. Also, the detection rate is alsmareasing function of r in (4.8),

wherer = 1. Whenr =1, the detection rate reach&®%0.

4.3.2.2.Detection Rate for Periodic Systems

In this kind of system, the payload traffic rateanbes periodically with time. Thus, a
sample of ping RTTs may span payload traffic ofedént rates. A sample of ping RTTs
can be partitioned into a few segments. Each segooeresponds to an interval during
which the payload traffic rate is either low or lnighssume that a sample Hapossible
partitions: {Partition;: 1 < i <L} interms of segment length. For example, if weda
sample of one ping RTT, we have two possible panst Partition; = {the one ping
RTT is collected when the payload traffic rateas/] and Partition, = {the one ping
RTT is collected when the payload traffic rateighh.

We denote a correct detection of the payload bgtean adversary as the one in
which the adversary discovers the payload tratite while he collects the first RTT of
the sample. It can be seen that the first RTT nagdilected when the user payload
traffic rate is either low or high.

To derive the detection rate for this kind of syst we can derive the occurrence
probability Pr(Partition;) of Partition; and the average recognition error rate conditioned
on this partition caseRr(error|Partition;). Then we have the general form of detection

rate formulavy for this kind of system as follows:
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vy =1- Pr(error | Partition, ) Pr{Partition, ) (4.14)

For the case of two payload traffic rates, we asthat the payload traffic at each
rate lasts for half of the payload rate changingogeM is the number of ping RTTs in
half of this period andn is the sample size, we have the following theorem.

Theorem 4.5When sample size <M, a closed form of detection rate is as follows:

v, :1—(M —n+1£+n—1j (4.15)
M 2M

where error rate = 1-v, andv can be calculated in (4.9), (4.10) or (4.12) whies
adversary uses different features respectively.
Refer to Section 4.5.5 for the proof. From Theorérs, we have the following
observations:
1. When the ping packet rate is fixed, the payload catanging period is largev]
is larger and thug is larger. This is intuitive.
2. Vg has a complicated relationship with sample sib@cause of’s relation with
n. From our experiments and later analysis, we eantlsat giverM, detection

ratevyg has a maximum value at some
4.4. Evaluations
In this section, we evaluate the security of aeysunder an active traffic analysis

attack. We will also demonstrate how well the tle¢ioal analysis of detection rate from

the previous section approximates results from ex@ats designed to reflect real-life

* Ping packets are sent out at a constant rate.
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situations. In the series of experiments that wedaoted, we assume that the adversary
uses a high-performance network analyzer, such geA’'s J6841A, to dump ping
packets. In terms of experimental environmentscamsider the following three cases:
laboratory (i.e., local area network - LAN), campustworks (i.e., metropolitan area
network - MAN), and Internet, (i.e., wide area netkv- WAN).

GWia and GW, in Figure 10 run TimeSys Linux/Real-Time. To campassive
traffic analysis attacks, VIT padding is used. Ttmaer interval satisfies a normal
distribution N(10ms 3m¢<), which is a reasonable setting for resisting pasgraffic
analysis attacks. Thus, the average rate of padddiic between the two security
gateways isL00 packets per second (pps). The payload has twageaate stated0
pps and 40pps. We assume both rates occur in eqoiadbility. Note that for such a
system, the detection rate for the adversary isetdwounded at 50%. For all the

experiments, the adversary uses an appropriateofgbéng packets with size of 512

bytes.

4.4.1. Experiments in a Laboratory Environment

The experiment setup is shown in Figure 10. Theaathge of experimenting in a
laboratory environment is that we can control thess traffic over the network. The
disadvantage is that the generated cross traffizc moa reflect the characteristics of a
real network.

The two gateways are connected by a Marconi ESR-Shterprise switch router.
Subnet C is connected to the router as the craffgt(noise) generator while the cross

traffic receiver is located in Subnet D. The crorsdfic shares the outgoing link of the
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router, creating a case where the cross trafficanasfluence on the padded traffic. The

adversary pings the sender gateway behind the Marcoter.

Subnet A | nter network Subnet B
GW/_\ GWB
M ar coni
‘: ESR-5000
| — = Bob
Alice
[ ] — L
% SUbne1C Analyzer %
H :
Noise Noise g
Sende Receive Adversary

Figure 10. Experiment Setup in Laboratory for Aetittacks

4.4.1.1.Results of Stable Systems

Figure 11 (a) and Figure 11 (b) show the deteatia by different features for cases of
with and without cross traffic. We have the follogiobservations:
1. As the sample size increases, as shown in Figuréa) ldetection rates for
sample mean, sample variance, and sample entropase and approach 100%.
This shows that when payload traffic lasts for Higently long time at a given
rate, an adversary can use these three featurdstéomine the payload traffic

rate with 100% accuracy, even if VIT padding hasrbased. This means that
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security systems using padding fail under activaffic analysis attacks.
Furthermore, the trend of theoretical detectior rafrves coincides well with the
trend of empirical curves for the three features.

2. From Figure 11 (a) and Figure 11 (b), sample entrspa fairly robust feature in
detecting the payload traffic rate. This is becasaple entropy defined in (5) is
not sensitive to outliers, which influence the periance of sample mean and
sample variance, especially when there is croffictra

3. In Figure 11 (b), as the link utilization increastee detection rates of the three
features decrease. This is because the crosg thaffiveen Subnet C and Subnet
D interferes with ping traffic. In theory, comparedthe ping RTT variances?
andoy? in the no cross traffic case, both these variancesncreased in the cross
traffic case, by a quantity relative to the crasdfic. This will cause a decrease
inr. As Theorem 4.2 predicts, the detection ratalbthree features drops.

We have seen that systems with VIT padding fadeuractive traffic analysis attacks.
The reason of this failure lies in the subtle iatdion between the traffic padding system
and the probing traffic. Whil&sWx's network subsystem processes payload packets
from Subnet A, the processing of ping packets igydel. A higher rate of payload
traffic causes more delay on ping packets. This nmethat sample mean, sample
variance, and sample entropy of the RTT of the ipgppackets at a given sample size
are changed, and there is some correlation betweemuser payload traffic rate and
sample mean, sample variance, and sample entrofhed®TT of the probing packets.

The adversary can exploit this correlation to digcdhe user payload traffic rate.
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4.4.1.2 Results of Periodical Systems

Figure 12 (a), (b) and (c) give detection ratesderiodical systems. The traffic rate
changes periodically between 10pps and 40pps. Enedoin our experiments is 1
minute. Figure 13 illustrates how the adversarytcack continuously changing payload
traffic rate by probing attacks. We have the foilogvobservations.

1. In all figures, the theoretical curves match thepeiwal curves generally well.
This validates various approximate assumptions mdd=n we derive Theorem
4.5.

2. As Theorem 4.5 predicts, there exists a maximuraatien rate as sample size
changes. That is, in practice, when the ping piplattack is deployed, the
adversary has to choose an appropriate sampléosimaximize its detection rate.

3. In Figure 13, sample entropy (sample size = 2,@00%sed to track the changing
pattern of the user payload traffic rate while tegyload traffic rate has three
statuses: 0 pps, 10 pps, and 40 pps. Each rasefdas minutes in one period. It
is clear that the adversary can use sample ent@pgconstruct the payload
traffic rate pattern very well. This further comfis the effectiveness of probing

attacks.
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4.4.1.3.Security Improvement

From Theorem 4.2, Theorem 4.3, and Theorem 4.4kmwesv that wherr decreases,
and/ora® andai’ increase, the detection rate decreases. To recarg increaser” and
a2, we may intentionally introduce a random delapitoy packets. This is similar to the
effect of adding noise to the RTT of ping packegscloss traffic. We assume that the
random delay satisfies a normal distributiis, o). It can be perceived that an
appropriate selection ofsr and ot will dramatically reduce the detection rate. To
validate this approach, we again use the configarah Figure 10 as the experimental
network setup. There is no cross traffic. Figuregives the detection rate by different
statistics when ping packets are delayed by a randterval, which satisfies a normal
distribution N(10ms 3mg). We observe that the detection rate achievablethey
adversary at different feature statistics approa@@6o (the minimum detection rate for

two class recognition) at a large sample size.
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In addition to this random delay method, other msemay also be used to counter
the active traffic analysis attacks. To defeat pieg-based probing attack, one can
disable the ping service on security gatewaysthmitisadvantage of this method is that
ping often is a useful service for debugging a wekwe.g., to check iGW, is alive.
Sometimes, one cannot sacrifice functionality fe $ake of security.

Another method for countering active ping probattacks is that one should avoid
sending payload traffic at a constant rate for Ipegiods of time. For example, in a

peer-to-peer anonymous file sharing system, tleedilould be split into small pieces
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before uploading and downloading. Consequently giitection rate will decrease since

the adversary cannot get a sufficiently large sanfql a constant rate of payload traffic.

4.4.2. Experiments over Campus and Wide Area Networks

In this subsection, we examine the detection rdtenathe ping traffic of the adversary
traverses a campus network and the internet, regplgc

Figure 15 shows the setup for the experimentsudssad in this subsection. In both
cases, the observation point of the adversarydatéal right in front of the receiver
gateway and thus maximally far from the senderuied5 (a) is a setup for experiments
over our local campus network. That is, the pirafic goes through our local campus
network before it reaches the sender’'s gatewayr€i@5 (b) is a setup for experiments
over the Internet between a remote campus netwutloar local campus network. Here,
the sender workstation and the sender gatewayeateld at the remote campus network.
The ping traffic goes through the Internet andvagiat the remote campus network. We
note that in this case, the path from the sendesskstation to the receiver’s
workstation spans 15 or more routers.

In each case, we collect data continuously foh@drs. The data for the case of our
local campus network was collected on July 16, 20@8le the data for the wide area

network case was collected on July 14, 2003.
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Figure 16 (a) and (b) show the detection rateutjinout the observation period. We

have the following observations:

1. When ping traffic traverses only our local campasaork, the detection rates of
sample entropy and sample mean can approach @5%utThis means that over
a medium-sized enterprise network like our campetsvork, the cross traffic
does have an influence on the ping traffic, buttesys using VIT padding
scheme alone still cannot resist ping probing &ttadfectively.

2. When the padded traffic traverses more network etg¢s) such as the Internet
between the remote campus network and our locapeametwork, the detection
rates are much lower. This is because ping tratig a low scheduling priority at
a large number of routers and switches, and the &Tping packets is seriously
distorted.

Experimental results in Figure 16 match our thecaétanalysis in Section 4.3.2.

This further validates the correctness of our teecal framework for analyzing the

active link load analysis attack and their countsasures.
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4.5. Theorem Proof

In this section, we prove theorems introduced ictiSe 4.3.2.

4.5.1. Proof of Theorem 4.1

Theorem 4.1The optimal bin sizedh for the histogram-based entropy estimator can be

calculated as follows:
AX = — (4.16)

whereois the standard deviation of the underlying disttion and the number of bin

can be calculated as follows:

(1-2)12=3n (4.17)

Proof: We now develop theory calculating the optimal biresfor histogram based

entropy estimation. In [32], for a histogram basattopy estimation,

£(i)= 1 -'2_;1+2_14(%j (4.18)

where H is the estimated entropll is original entropy of random variablk | is the
number of binsn is the sample sizelx is the bin size and is X's standard deviation.

If random variableX is normally distributed,

val(l-|) = % nt (4.19)
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Moreover, for a normally distributed random vareghéince the probability 030 is
very small and ignorable, we have the followingatieinship between bin sizéx, the

number of bind and random variabl¥'s standard deviatiorr,

60 = 10X (4.20)
Thus
Ax_1 (4.21)
g 6

We can calculate the mean square error (MSE) oéiiepy estimation as follows,
El(H - AV |=var(d)+ [piag A (4.22)
where
lBIag )| = E(H)-H (4.23)

Substitute (4.18) and (4.19) into (4.22),

E[(H ~Af :%n‘l {2_14(%}2 —'_'1J (4.24)

g n

To derive a minimum mean square error, the secemal in (4.24) should be minimized,

i(&jz _1-1 (4.25)
24\ o n

Substituting (4.21) into (4.25), we have
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L(ET _1-1 (4.26)
24\ | 2n
Thus
(1-2)12=3n (4.27)
Ax =92 (4.28)

Below, we derive close-form formulae for simple ema$n which the user payload

traffic has two statuses: low raiég¢ and high rateuw,.

4 .5.2. Proof of Theorem 4.2

Theorem 4.2Using sample mean as the classification featuresgiise to an estimated

detection rate

~ 1(u, -1 B 1
~1- J LU H) (4.29)
Y (ex[{ 4 op+o )] [ +r)

Proof: The distribution of sample mean of a normal distitn N(z, ¢°) is still a normal
one,N(, d®/n). Thus, sample meak, for the case when the payload traffic rate is low

has a normal distribution
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(4 )= N, 07) = N(/Jl %‘j (4.30)

Similarly, sample meaiX,, for the high payload traffic rate has a normatriisition

2

. (4a) = N, 02) = N(uh,a—r:j (4.31)

Since X, and X,, are normally distributed, we can use the Bhattaglaabound [27] to

estimate the error rate as follows:

£, <Pl )Pl [T X )T e, Jox @32

Substituting (4.30), (4.31), an®(w)=P(a)=0.5 into (4.32) and carrying out the

integration, we have
s%exp(— K) (4.33)

where

2 (4.34)

After substituting (4.34) into (4.33) and some raaging, we have
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2
kz}(uhz-ﬂ.z i (1/\/7“/?) (4.35)
4 o +0, 2 2

Substituting (4.35) into (4.33), the error ratgigen by

1 (/-1h “H )2

£ et ! (4.36)

- <e
§ S +4r )

The detection rate, then satisfies the following:

vV = 1-¢ (4.37)

\}

(- )

"4 otro? 1

1-e * o
w/Z(i/\/F+\/F)

Thus, we can use the lower bound of (4.38) ase#ttienation of detection rate by

(4.38)

sample mean. The theorem is proven.

4.5.3. Proof of Theorem 4.3

Theorem 4.3:Using sample variance as the classification feagives rise to an

estimated detection rate

v, = ma{l— v ,O.SJ (4.39)
n-1

whereC is calculated as follows:
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2 2 4.40
2(1—1Iogrj Z(rlogr —1] ( )
1 r-1

andr is defined in (4.8).

Proof: Denote X,..” as a random variable with cbi squaredistribution fo (x) with

freedomn-1, which is defined as follows,

X n;L eXF(— Xj
f. (x)= S ) (4.41)

wherex > 0. DenoteY as the random variable of sample variance. Tnerl)Y /g% has

a chi square distribution with freedawi [29]. That is

x2, ="ty (4.42)
o
From (4.42), we get
gt e (4.43)
Y=—"—y° .
n _1)(n 1

From chi square’s properties, we have sample vegiaimearnY as
Y =g? (4.44)

and its variancear(Y) as
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(4.45)

To get sample variance’s PDF at sample sjzge first compute its distribution function

PLY < = 2
(v<v) P( LAV y] (4.46)
n-1
) P[ X2, <71 yj (4.47)
Differentiating the two sides of (4.47), we have ttensity function
_ n-1 \n-1
f(y)=1, (—Uz yj = (4.48)

We denotey| as the random variable of sample variance of patiddiic’'s PIAT at the

low rate payload traffic. Substituting (4.41) in(4.48), we then derivé;’s density

function f, (y)

(n_lyjz_lex _n—ly
N 207 ")n-1 (4.49)
2

Similarly, Yy is the random variable of sample variance of pdddsfic’s PIAT at high

rate payload traffic, and its density functidp (y) is
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(n—lyjfl ex;{— n—1yj
_\ oy 20, " )n-1 (4.50)
2

To get the detection rate, we calculate the crogst . of f, (y) and f, (y)

f, (v.)= 1, (v.) (4.51)

After lengthy arithmetic operations, we have

o2\ olo?
| h |

Now we use Chebynov inequality for the estimatibrewor rate if the adversary uses
sample variance as the feature statistic. Therdistdrom the mean of, to the cross

pointy. is denoted ab,
DI = yc _Y_I (453)

Substituting (4.44) and (4.52) into (4.53), we have

2 2
D = [Iog(a—gj% —1}0’,2 (4.54)
g, )0y —0,

Denotingc; as the ratio oD, to the standard deviation Wf
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D,

1/vaﬂY, )

c = (4.55)

Substituting (4.45) and (4.54) into (4.55), we have

g’ o?
Iog(agj o; —haz -
¢ = 1 )%~ (4.56)
2

n-1

Similarly, denotingDy, as the distance from the meariygto the cross point,

o? ol
D,=0f -y, = Jﬁ[l— Iog(—gjﬁj (4.57)
g )oy —0

Thenc,, the ratio oD, and the standard deviation4f can be calculated as follows

o} o’
1- Iog(agj P _' p
c, = | ’ h ~ 9 (4.58)

n-1

When sample size is big (>40), we can assume that a chi square iBBFmmetrical.

Thus from Chebynov inequality, we can get the erateey

1t
.2 2 (4.59)
B 2
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Thus, the detection rate can be calculated as

v, = 1-e, (4.60)
2 1 1

- - 4.61

4c?  4c? ( )

Substituting (4.8), (4.56) and (4.58) into (4.64% have

CY

— (4.62)

v, 21-

where

1) (4.63)

Thus, we use the lower boundwfas the estimation of the detection rate. Sincewha
must be greater than 50%, we can get (4.39). Témr¢im is proved.

In the following, we prove thaty is an increasing function of That is, we need to
prove thatCy in (4.63) is a decreasing function of For terms in (4.63), we have the

following denotations

C,,(r)="29" (4.64)

(4.65)
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If Cy1is decreasing function ar@; is an increasing function, thedy is a decreasing
function.

We first prove tha€y; is a decreasing function. Lete’, we have

Culr)=c,(x)=—> (4.66)
e -1
a&, = doy (4.67)
dr dr
= dc, dx (4.68)
dx dr
= e -1-x¢e
— (4.69)
r(e —1)

Since r>1, x>0, the denominator of (4.69) is greater thanWe have the Taylor

expansion of the numerator of (4.69) as follows

e —1- xe :i(%—ﬁjx (4.70)

n=1

Since

<0 (4.71)

So

e -1-xe <0 (4.72)
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Thus

dc, _d% _, (4.73)
dr dr

Cyiis a decreasing function in termsrof

Now we proveCyis an increasing function of Letr = €, we have,

(4.74)

and

dC,, _ dc,, _e”-e -xe 4.75)
dr dr r(ex —1)2 .

Since r>1, x>0, the denominator of (4.75) is grettan0. The Taylor expansion of the

numerator of (4.75) is as follows

> —e* —xe" = 2(2_—?_n]x“ (4.76)
n=1 n
Since
On > 0,2‘_|1‘” >0 (4.77)
nl

we have
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e —e* —xe* =0 (4.78)
So
dC,, _dc. (4.79)
dr dr

andCyA(r) is an increasing function of

Thus, we have proved thetan increasing function in termsrof

4.5.4. Proof of Theorem 4.4

Theorem 4.4:Using sample entropy as the classification featgines rise to an

estimated detection rate

v, = ma{l—c—” ,o.5j (4.80)
n

whereCy is calculated as follows:

1 1
= +

Z(Iog(rr_l log rD Z(Iog(lr();jj (4.81)

C

andr is defined in (4.8).

Proof: A normal distribution’s differential entropy can balculated as
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2
- '0912—7;‘7*1 (4.82)

H

Here we use sample variancelefined in (4.4) to estimate sample entrdﬁ)y

log27Y +1

H = 4.83
5 (4.83)
To get sample entropy’s PDF, we first derive itstabution,
~ 2h-1
P(A <h):P(|ogz—m+l<hj:P v<® (4.84)
2 2

Differentiating two sides of (4.84), we get samg@idropy’s PDF

e e 1) g2l '
- = = 8
f-(h) f{ ZHJ P(Y< 277)( 2n} (4.85)

DenoteH, as the sample entropy of padded traffic’'s PIAThat low-rate payload traffic,

and fH~| (h) asH/’s PDF. DenoteHy, as the sample entropy of padded traffic’'s PIAT at
the high-rate payload traffic, ant}qh (h) asHy's PDF. To get the detection rate, we need

to calculate the cross poingof f; (h) and f (h)

f-(h.)=f. (h) (4.86)

By lengthy arithmetic operations
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o’ olo?
log| 27rlog —2 121 | +1
h_g{ 4@J¢—ﬁ} (4.87
° 2

For the ease of estimation, we approximate sammptegy’s mean as follows

E(A)= % (4.88)

That is, we approximate the entropy estimator iB3}tas an unbiased one.
Now we use Chebynov inequality for the error egBmation. The distance from the

mean ofH, to the cross poirti; is denoted ab,

°T log 2nloga—ﬁﬂ
o’ )oy —0f | log2mo? +1 (4.89)
2 2
- o2 o?
log| log| —2- h
{Q@Jﬁ—w} (4.90)
2

Using Taylor expansion over (4.90) and by appraeraégoproximation, we get

var{H )= 2—1n (4.91)

(4.91) is the same result as for the histogrambasgropy estimator in [32]. Denoting

¢ as the ratio oD, to the standard deviation lf
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ag,| o
log{log —3 | 5
91 )% ~9 (4.92)
NS
2n

Similarly, denotingDy, as the distance from the mearHpfto the cross poirtt; andc,as

the ratio ofD;, to the standard deviation bf, we have

D = o2\ olo?
log 2ﬂlog(“J“' +1
log2m? +1 l: o’ )o, -0} (4.93)
2 2
|Og ﬂ
(sz (4.94)
o?log —
I 2
— | —
2
|Og ﬂ
? log| 7 (4.95)
o’ log — -
cC,=— A
h
5|1
2n

So error rate is calculated as

1 1 _Cs;
"7 4c? 4c? n

(4.96)
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where

H 5 5 2 = -2
ol o
2 log | log—" |-
{g([ g”'ZJaﬁ ‘O'IZH dlog T O (4.97)

Substitute (4.8) into (4.97), we have

C. = 1 + 1

A Z{IOQ[rr—l (log r)ﬂ2 ZPOQ(I:);]T (4.98)

Since
Substituting (4.98) into (4.96), we have
Vo 21-Ca (4.100)
H n

In this section, we use the lower boundvg-)fas the estimation of the detection rate

by sample entropy. Consider that detection ratet imeigreater than 50% and we can get
(4.80) in Theorem 4.3. The theorem is proved.

In the following we prove that; is an increasing function in termsrofThat is, we

need to prove tha€; is a decreasing function of Denote
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r-1
CHl(r)=@ (4.101)
CHZ(r) = rL—l (4.102)

If Cua(r) in (4.101) andCyo(r) in (4.102) are increasing functions of C is a

decreasing function ot

We can see th&u:(r)=1/ Cya(r), whereCy(r) is defined in (4.64). SincBy.(r) is a
decreasing function af, Cyy(r) is an increasing function Cy(r)=CyAr), whereCyAr)
is defined in (4.65). We have proved tRai(r) is an increasing function, so@(r).

Thusvﬁ is ofr, wherer>1.

4.5.5. Proof of Theorem 4.5

Theorem 4.5When sample size <M, a closed form of detection rate is as follows:

v, =1-[M=-n+t  n-1 (4.103)
M oM

where error ratee = 1-v, andv can be calculated in (4.9), (4.10) or (4.12) whies
adversary uses different features respectively.

Proof: We assume that the user payload traffic rate eeibw (denoted a&)) or high
(denoted asw) and the rate varies periodically with each ratgtihg for half of the
period. Recall how the adversary does the rategreton. After getting a sample, she

calculates its feature measuremgnwhose PDF ip(s). Offline she obtains the decision
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boundaryd. For two class di, ay) classification problem, whes<d, the sample is
classified as frona, otherwise fronca,.

First let's check the elements of a sample of sizbere aren elementsXy, ..., Xy,
from «, whose RTTs satisf)(x4, 6i°), and the other element¥,, ..., Yo are fromaa,
whose RTTs satisff(z4, oi?). Thus, the sample i<, ..., Xm Y1, ..., Yok

For a sample consisting of packets from bgthnda, the adversary should classify
the sample as belonging to the rate whose packets sp first in the sample. Let's
calculate the error rate under this definition abarect classification.

Define wy as the event thalements fromw show up first, anda, x as the event

thatk elements fromw, show up first, then

Pr(error) = Zn: Pr(error‘qk )Pr(ch( ) + Zn: Pr(error‘%k )Pr(cqu) (4.104)
k=1 k=1
where
Pr(error‘cqyk)= Pr(squk > d) (4.105)
Pr(error‘%k): Pr(s%k >d) (4.106)

Under the assumption of that< M, we now check different cases @fx and a i for a
sample of size (<M).
We have the following cases in which the payloaffitr rate is classified ag: (M-

n+1) number ofawn, {wWn-1, ahi}, { W2 ah 2}, .., {w1, ahn1}. We have the following
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cases in which the payload traffic rate is clasdifasa,: (M-n+1) number ofa, n, { &b n-1,

wa}, { ahna w2}, ..., {ah1, @na}. Thus

M-n+1
2 7= k=n

Pre, )= 12M (4.107)
—,1<k<sn-1
2M

and

M_n+1,k=n

Pred,, )= 12M (4.108)
—,1<k<sn-1
2M

When we don’t consider the order of elements iarae,
W, =W, Whenk#n (4.109)
Thus
Pr(s ,k)z Pr(sh,n_k), whenk # n (4.110)

Noticing this fact, we have

Prs, > » )_+ Prs, . < ) (4.111)

Substitute (4.107) and (4.108) into (4.104) anddenthe elements,
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Pr(error) > Pr(error‘qk JPr{ea, )+ Pr(error‘%k )P, ) (4.112)

= M-n+l

o (Pr(error‘cq’n)+Pr(error‘%n))

- (4.113)
+ﬁz (Pr(error\cq,k )+ PV(GWOF‘%n—k ))

Since we assume that the high-rate traffic andrat@-traffic have the same probability

to happen, it's easy to see that

£ :%(Pr(error‘cq’n)+ Pr(error‘%n)) (4.114)

where € is the error rate for the static case of the twdfit-rate classification.

Obviously,

Pr(error‘a{k)+ Pr(error‘cqm_k) = PV(SM >d)+ Pf(Sa,nyn_k <d) (4.115)

S (4.116)

Substitute (4.114) and (4.116) into (4.113),

M-n+1 n-1
e+

Pr{error) = o

(4.117)

Since success rate= 1 - Pr(error), we have (4.15) instantly.
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4.6. Summary

In this section, we have evaluated the securitgystems under active traffic analysis
attacks. To demonstrate the threat from such afac& assume that the adversary uses
ping probing to derive user payload traffic ratd& found that by measuring statistics
of the round trip time of ping packets injectedisecurity gateways, the adversary can
achieve its objective to determine and track thdqgaal traffic rates. This is true even if
a powerful link padding scheme, such as VIT paddiag been used.

Of the possible statistics, sample entropy isfeaceve and robust feature statistic to
explore the correlation between user payload traffite and the round trip time of
probing ping packets. The reason for the succedheoexploit is that payload traffic
causes small disturbances to the RTT of ping packdoreover, the higher the user
traffic rate, the larger this disturbance and hemtager entropy.

Under the framework of statistical pattern rectigni we have formally modeled
systems with different statistical features. Ourp@ioal results match well with our
theoretical analysis. Our framework can be easilgreled to analyze other statistical
analysis attacks. We have also conducted extergsiperiments in various situations
including a laboratory, campus networks, and therhet. We have found that for
campus networks, the ping probing attack can atillieve a high detection rate. This
extensive empirical data consistently demonstriaée usefulness of our formal model

and correctness of detection rate predicted byltrsed-form formulae.
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To improve the system security, we have proposadnaom delay method to
counter the active probing attack. Our experimesutsl theories have shown the

effectiveness of this scheme.



108

5. CONNECTIVITY ANALYSIS ATTACKS AND COUNTERMEASURES

In this section, we study connectivity analysisaeits and their countermeasures. In
particular, we focus connectivity analysis attaeminst communication privacy in a
wireless anonymous communication system. In tmd kif attack, an adversary embeds
a recognizable pattern of marks into wireless itafflows by electromagnetic
interference. We propose a new countermeasure loaseigital filtering technology.

Concerns about privacy have gained more attemtitmthe rapid growth and public
acceptance of the Internet as a means of commigrnicand information dissemination.
Communication privacy has become necessary aniihbege in many scenarios, such as
anonymous web browsing, E-Voting, and E-Commeroeedch of these scenarios,
encryption alone cannot hide the communicatiorticeiahip between users [11][21].

Since Chaum [12] pioneered the basic idea of tim®mymous communication system
referred to as mixes for hiding the communicaticelationship between users,
researchers have developed various anonymity sgsi@naifferent applications. Guan,
Fu, Xuan, Shenoy, Bettati, and W. Zhao [24][35]dstiuhe problem of preventing
passive traffic analysis attacks in a missiona@ltsystem. In this section, we study how
to hide communication relation from active trafioalysis attacks in a general (best-
effort) communication system.

Although a significant amount of effort has beead® in wired networks, not
enough attention has been paid to hide communicat@ationship in wireless

environments. In this section, we consider a bn@adje of wireless networks, ranging
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from networks with all links being wireless to higbwired and wireless networks. The
wireless links can be either 802.11 (or its exi@ms) or Bluetooth. A wireless network
may use existing mix techniques to provide anonyirat flow-based applications such
as anonymous web browsing. We study three mix baichpproaches, which are
feasible for a flow-based wireless mix network &nd that they are all susceptible to a
new flow-level attack, which we call the flow mangi attack.

The remainder of this section is organized a®Wadt We first introduce the wireless
mix network model and adversary threat model. Wan tiscuss flow marking attack
and related issues and use experiments to evaigatbhreat against communication
privacy. Finally we develop a digital filter-basewuntermeasure to flow marking

attacks and empirically prove its feasibility.

5.1. Models

In this section, we first present the model of metwork, and then describe the wireless

mix network model used in this section. Finally, weoduce the threat model.

5.1.1. Mix Network

A traditional mix is a relay server for anonymousadl communication [12]. It has a
public key which senders use to encrypt messagesixAbperates as follows:
1. The sender attaches the receiver address to theageeand encrypts the entire
package by using the mix’s public key;
2. The mix collects a batch of messages (from diffesemders), and decrypts them

to obtain the receiver addresses;
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3. Finally the mix sends decrypted messages out ieaaranged order to their
corresponding receivers. Batching and reorderiegnacessary techniques for a
mix to reduce or eliminate the correlation betwagmut messages and output
messages. This kind of correlation may help an @&dve to identify flow
connectivity.

A mix network consists of multiple mix servers amdn provide enhanced
anonymity. In a mix network, senders route theissages through a series of mixes.
Therefore, even if an adversary compromises one antk discovers the correlation
between its input and output messages, other naikegy the path can still provide the
necessary anonymity [17][36][37]. Figure 17 illadas the route selection for one
message. A sender can choose different routesafdr message or use one route for all

her messages.

Alice Mix Network Bok

Figure 17. Mix Network
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Message-based mix networks have been extendedowsbésed networks for
applications such as anonymous FTP, Web browsidgpvand audio transmission, and
many other low-latency applications. In the contaxn IP network, the relay servers in
Figure 17 form an overlay network and forward p#éskestead of messages.

Researchers have paid attention to attacks erplgacket-level correlationn
anonymous communication systems. However, thisois sufficient and sometimes
misleading, since most of today’'s communications ffow based, with the majority
using TCP. On the Internet, TCP flows constitut@c690% of the Internet traffic and
UDP flows constitute 10%~40% [38][39], while allhet protocols combined produce
less than 5% traffic. On the Sprint IP backboney applications such as distributed file
sharing and streaming media using TCP and UDP flomstitute 60% of the traffic on
some links, while 30% is web traffic [40]. Traffilows consist of rich features that can
be explored to compromise anonymity systems.

Major differences between flow-based systems ardsayge-based systems are as
follows:

1. Flow-based systems usually do not use dummy patiketad the traffic in order
to counter traffic analysis attacks. This is beeadsmmy packets consume
additional bandwidth and reduce efficiency [27].

2. Flow-based systems usually adopt static routimg, ane path per flow, in order
to avoid the difficulty and overhead caused by gisimultiple routes for TCP

connections and to prevent intersection attackg [[31s practice coincides with
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the design of several existing systems, includimgw@s [41], Tor [42], and
many others.

3. Batching and reordering increase the (worst casigydand are less preferred
methods in flow based systems [23]. However, thay tve necessary to counter
packet-level timing correlation attacks.

In this section, we will investigate the secumtyflow-based systems with several
different configurations. In [43], a complete list batching strategies for a message-
based mix has been provided to counter messagktiemeg attacks. In our opinion, not
all of them are appropriate for flow-based systeRts. example, in a threshold mix, a
mix can transmit the batch of packets only if thenber of packets it collects has gone
beyond a pre-defined threshold. This may causewsemproblems for traffic of TCP
flows, for instance, if the first (SYN) packet catrbe exchanged between a sender and
receiver, the TCP flow cannot start, and henceefitige mix network may not be stable.
We select three batching strategies which apped&etteasible for a flow-based mix

network. We summarize them in Table 1.
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Table 1. Batching Strategies

Strategy | Name Adjustable Algorithm
Index Parameters
S Simple Proxy None No batching or reordering
Timed Mix <t> If timer of periodt fires, send all the
> packets queued in the last interval
Stop-and-go Mix <y, o*> Each packet is assigned a de
(Continuous Mix) (deadline) satisfying a distribution wi
S

mean u and varianced®. A packet is

sent out when its deadline is reached

ay
h

5.1.2. Wireless Networks

In this subsection, we introduce the wireless netwnodel used in this section. We

note that there are two popular radio frequency) (REhnologies: IEEE 802.11 [44]

(and its extensions such as 802.11a/b/g) and Bitle{d5].

The IEEE 802.11 standards are widely adopted foeless LAN (WLAN). Two

types of WLAN are supported: one is the infrasuiretmode and the other ad-hoc mode.

In the infrastructure mode, a station acts as doess point (AP) centrally controlling

the WLAN, and other mobile units communicate witie tAP. A WLAN in the

infrastructure mode is denoted as the basic sepatéBSS). In the ad-hoc mode, an AP
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does not exist. All mobile units (MUs) communicatéhin their transmission range.
Ad-hoc routing protocols, such as DSDV [46], DSR][4AAODV [48], and many others,
have been developed to extend the range and fliéxibi ad-hoc networks. A WLAN in
the ad hoc mode is also denoted as an Independssit Bervice Set (IBSS). An
Extended Service Set (ESS) consists of multiple /BBSS interconnected by access
points and a distribution system, such as ethernet.

Bluetoothis a low cost, low-power, short range radio techgyg) originally designed
as a cable replacement to connect devices suclobidenphone handsets, headsets, and
portable computers. In Bluetooth, a group of twoetght Bluetooth units forms a
piconet sharing the same wireless channels (hopping seglieln a piconet, any, but
only one, unit can act as theasterof the piconet, and the others ataves The master
implements centralized control, and only commumicabetween the master and slaves
is allowed. The communication between two slave®lgyed via the master. Piconets
can be interconnected and formse@atternet Routing algorithms are proposed in [49]
and many others for efficient communication betwd&lnetooth units (BU) in a

scatternet. We focus on the standard of Bluetodttbé&cause of its popularity.

5.1.3. Wireless Mix Network

Most anonymity communication systems are built @srlay networks. Thus, wireless
units (MUs or BUs) can use mixing strategies disedsabove and form a wireless mix
network. This section assumes an ESS-like netwattk @ombined wireless (Bluetooth

or 802.11) and wired links, in which any host cahas a mix. For example, in Figure
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17, Alice (sender) and Bob (receiver) can be molilgs, and they may communicate

with each other through a wireless or wired mixwoek.

5.1.4. Adversary Model

In the following, we summarize the adversarialuagstions considered in this
section:

1. The content of wireless communication between Ipgdicipants is protected by
underlying encryption algorithms and immune to attgck.

2. The adversary is an external one and thereforetisaregal participant of the
wireless network.

3. The adversary can passively eavesdrop on the comatiom session. We will
show that eavesdropping wireless links can beyeseslized in Section 5.3.

4. The adversary can actively interfere with wirelesstworks by injecting
interference traffic. We assume that the adverssmgs a reasonably good
directional antenna, allowing it to interfere walselected victim with minimum

disturbance to other wireless units [50][51][52].

5.2. Flow Marking Attack

In this subsection, we introduce the flow markimtgek and related issues.
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5.2.1. Overview and Problem Definition

Figure 18 illustrates the basic idea of a flow nmagkattack. Alice is communicating
with Bob through a wireless mix network. The gofthe adversary is to find if Alice is
communicating with Bob. A component of the adveysamterferer, first embeds a
series ofmarksinto Alice’s traffic by interfering with her linkAnother component of
the adversarysniffer, then eavesdrops on Bob’s inbound traffic. Therfierer and the
sniffer communicate with each other and/or repbdirt actions and findings to the
adversary headquarter. If the sniffer discoverst#epn of marks in Bob’s traffic that is
similar to that embedded by the interferer, theeaslary can be sure that Alice is indeed
communicating with Bob.

Thus, the general problem of the flow marking cttaan be defined as follows:
given a series of marks embedded into a flow, hawan adversary recognize them at a
location somewhere along this path of the same#low

Flow marking is a general technique and can bel uséboth wired and wireless
networks. In wired networks, an adversary may expIlbCP’s characteristics and use
efficient denial of service approaches [53] toantice marks. In wireless networks, an
interferer can use electromagnetic interferencenbed marks into traffic. This is the

focus of this section.
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Interferer

Figure 18. Flow Marking Attack Scenario

5.2.2. Issues of Flow Marking Attack

From the viewpoints of both adversaries and defenydéere are four critical issues

related to the problem of flow marking attacks:

1.

2.

3.

4.

How can an adversary introduce marks into trafevé and intercept traffic?
How can an adversary effectively recognize if markist?
How effective and efficient can the flow markingaak be in reality?

How can we counter flow marking attack to minimitzeeffectiveness?

We intend to address these issues in the follow@agions.

5.3. Mark Embedding and Traffic Interception

In this section, we discuss two key issues relateémbedding marks into wireless

traffic and intercepting wireless traffic.
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5.3.1. Overview of Radio Frequency Communication

The physical layer of IEEE 802.11 and Bluetootiwisere interference may happen.
IEEE 802.11 (and its extensions) has two diffeygmgsical layers: frequency hopping
(FHSS) layer and direct sequence (DSSS) fayBtuetooth uses FHSS. Both IEEE
802.11 and Bluetooth use license-free ISM (indaktiscientific, and medical) radio
frequency (RF) band from 2.4GHz to 2.5GHz. Thisthasndivided into many channels.
In this section, we assume that an adversary aigkeptop) computer equipped with
an 802.11b (DSSS) PCMCIA card to apply the interiee and hence to embed marks.
Below we will focus on how the interference anceroeption can be realized. Related
RF specifications are based on the regulation oeAcan Federal Communications

Commission. Please refer to [43] and [45] for R§utations in other regions.

5.3.2. Interfering with and Intercepting Wireless Commuaticn

It's straightforward to interfere with and inter¢ef02.11 DSSS communication.
There are 11 channels available, Channels 1 toHbsts in the same channel can
interfere with and intercept one another. Furtheemonly Channels 1, 6 and 11 are free
of interference with each other, but adjacent celnmay interfere with each other.

In FHSS, the transceiver must be synchronized. Woth 802.11 and Bluetooth, the
ISM band is divided into B8MHz channels. The synchronized transmitter andivec
communicate on a series of channels, denotdtbpping patterror hopping sequence

and only remain on one channel for a predefinedusrnof time, denoted abwell time

® Today, most of 802.11 products use DSSS becatisetogh throughput.
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An 802.11 DSSS device can interfere with an 80FHBES device since 802.11
FHSS hopping sequence visits the DSSS channeltarabjacent channels regularly,
hence potentially causing interference with eadreotintercepting the 802.11 FHSS
traffic is not difficult since 802.11 FHSS has only possible hopping sequences
divided into 3 sets, and the adversary can know vihele hopping sequence by
observing a small fragment of communication usingappropriate spectrum analyzer
[54]. Then the adversary can adjust her own 80EHS$S device to synchronize with
the victim 802.11 device and intercept the traf@d.course, a full ISM band analyzer
can easily intercept 802.11 FHSS traffic.

In general, an 802.11 DSSS device can cause miaieirence to Bluetooth traffic
than to 802.11 FHSS traffic since a Bluetooth dewirsits a fixed DSSS channel more
frequently. Bluetooth’s hopping sequence has aldimeé of 625 microseconds, which
corresponds to 1600 hops/s. The Bluetooth spetiditalso requires that the hopping
sequence distribute the hop frequencies equally thes 79 MHz during a short time
interval. An 802.11 FHSS device’s hopping ratefteroin the order of tens of hops per
second.

It is still possible to intercept Bluetooth comnmation, although Bluetooth’s
hopping sequence has a very long period lengthdaed not show repetitive patterns
over a short time interval. The method has a fefeas. First, a piconet uses clear-text
frequency hopping sequence (FHS) packets to exehaogping sequence information
between the master and slaves. An adversary carcept FHS packets, synchronize

with the master, and then eavesdrop on the commtionc Second, the adversary may
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have sophisticated Bluetooth listening devicesiff the communication [55]. Again, a

full ISM band analyzer can easily intercept Bluetotaffic.

5.4. Mark Recognition by Feature Frequency

In this section, we address two issues of the floarking attack: how to choose an

effective pattern of marks and how to recognizeksar

5.4.1. Effective and Efficient Marks

An effective pattern of marks for flow marking afta must demonstrate uniqueness.
That is, the adversary can be certain of recoggithe same series of marks at one
location as the one it introduces at another locatBecause of the inherent nature of the
Internet traffic, an arbitrary pattern of marks nmraot be effective and efficient for flow
marking attacks.

In this section, we demonstrate that a periodttepa of marks can be effective and
efficient. That is, an adversary may use-off traffic with a period ofT,, denoted as
interference period to interfere with the victim traffic. During aon period the
interfering device transmits traffic at a rate aghhas possible. This will reduce the
available bandwidth for the victim traffic or digtupackets of the victim traffic. During
an off period the interfering device becomes silent and th@nai¢raffic gains the lost
bandwidth. In this way, the adversary forces thatimi traffic to adapt to the pattern of
the interfering traffic and the victim traffic dde@s a replicate pattern. The adversary

can choose a relatively unique interference peftothpared with the background noise
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traffic) to achieve a series of unique and stroregk® within the network. We use an on
period (approximately) equal to the off period,waach lasting fof,/2.

Depending on where interference is deployed in ghth of the flow, the flow
marking attack can have different effects on dédfertypes of flows. For TCP flows, the
interference location can be flexible. The adversgan apply interference at any point
along a TCP flow’s path (i.e., at the sender, aermediate mix, an intermediate hop, or
the receiver). Since TCP uses a loop-control mashar{56], a TCP flow will
demonstrate the similar periodicity along its patim the sender to the receiver. For
UDP traffic, an adversary may have to deploy thacét as close to the sender as
possible. We will focus on the effect of flow margiattacks on TCP flows because of

their dominant status on the Internet.

5.4.2. Flow Marking Attack Framework

Now we summarize the framework of flow marking el based on pattern recognition
[27] in Figure 2. Although we have introduced a iamframework in Section 1, we
prefer to give a relatively detailed introductiam the current context for the ease of
understanding the topic in this section.

Recall that in a flow marking attack, an adversairgs to discover if Alice is
communicating with Bob by checking if the intentidly embedded pattern of marks
exist in both Alice’s outbound traffic and Bob’sbimund traffic. The adversary has to
decide what the pattern is and how to evaluatexitstence.

Generally speaking, the goal of the pattern reitmgnprocess is to use classifiers to

classifyan unknown pattern as belonging to one of seveiatieg patternclasseswith
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the help of a feature (or a vector of featuresglassifier is trained from training data. In

a flow marking attack, there are only two clasdesvents:

wp: Alice does not communicate with Bob
(5.1)
wy: Alice communicates with Bob

Following the common practice, a pattern recognitsystem for flow marking
attacks consists of two phases: (a) offline tragrphase and (b) online mark recognition
phase.

Figure 2 (a) is the flowchart of offline traininghg@se. In the following, we will
discuss each step of this phase for flow markirechs illustrated in Figure 18.

1. Collecting training datalhe adversary emulates the entire system. Thdeneer
interferes with Alice’'s wireless link and dumps @dis interfered traffic or
records the adversary’s own interference trafficgéneral, an adversary may not
achieve a perfect periodic interference and negldsrener own or Alice’s traffic
to derive the actual interference period. The snifhtercepts Bob’s inbound
traffic.

2. Preprocessing training datdhe collected data sample will be divided into
segments, each of which contains packets withinngrval, T, denoted as
sampling interval Thus, the number of packets in each segment faerrtise
series. The number of segments in the sample iste@rassample sizeThis

time series of packet counts is denoted as follows:
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X(T,,Ts) ={x.K , xy} (5.2)

whereT, is the interference periodN is the sample size ang the number of
packets in thé™ segment. We denowample lengthas the lasting time of the
traffic sample and it is equal MTs.

3. Selecting feature from preprocessed training dtés is the key step for flow

marking attacks. An appropriate feature extractethiX(T;, Ts) should represent
the pattern of marks.
In flow marking attacks, because the adversaryi@atiy introduces periodicity
into the victim traffic, when Fourier transform &pplied toX(T,, Ty, strong
amplitudes will be observed around the frequencyl/®f, denoted adeature
frequency

4. Selecting decision rule: If the sniffer can obsetive feature frequency in Bob’s
traffic, she can be sure that Alice is communigatith Bob. Here, we have an
implicit assumption: without interference, the aiyale at the feature frequency
is not significant. The adversary collects trainimngffic without applying the
interference and derives thas priori knowledge of statistics of the amplitude
during the offline training phase.

In this section, we assume the adversary useB#lyes decision rule for flow
marking attacks. To use the Bayes decision rule attiversary collects training traffic
without applying the interference and derives #hpriori probability density function
(PDF) of the amplitude at the supposed featureutreqy. She collects data by

emulating the flow marking attack and obtains tiE#-Pf the amplitude at the feature
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frequency. From these two statistics, the advergmyerates the following Bayes
decision rule:

The amplitude at the feature frequency impligsf

pla 1a)= p(a, |a) (5.3)

That is,

plala)Pra)= plal w)Pria) (5.4)

wherea is the measured amplitude of the feature frequdPigyu) (i=0,1) is thea priori
probability that Alice is communicating with Bob aot (set as 50% in this section),
p(wla) is thea posterioriprobability that Alice is communicating with Bob e the
collected sample has the amplitude at the fean@guéncyp(alw) is the PDF of the
amplitude of the feature frequency conditioned wh&lce and Bob are not
communicating with each other apfa|a) is the PDF of the amplitude of the feature
frequency conditioned when Alice and Bob are comicaiimg with each other.

From (5.4), the decision boundadycan be derived if we solve the following

equation:

plala)Pra)= pla]w,)Priw) (5.5)

Thus, the rule is,
Alice is communicating with Bob if a>d
Refer to Figure 2 (b) for procedures in the onl@eognition phase. The procedure is

similar to the offline recognition phase. The diffiece is that here, the network is
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realistic. During the online recognition phase, tdversary interferes with Alice’s
wireless traffic and measures the feature frequeridgob’s inbound traffic. Then the
adversary makes a decision by the Bayes decislerbased on the measured amplitude

at the feature frequency.

5.4.3. Detection Rate as Evaluation Criterion

Detection rate is defined as the probability thratdversary correctly recognizes the fact
that Alice is communicating with Bob. To derive tketection rate for the Bayes
decision system, the adversary has to estimgtesterioriprobability distribution of the
feature frequency power amplitude in power spectiomelassesw andaw. We assume
that the adversary uses a Gaussian kernel funbé@ed method to estimate density

functions [28].

Figure 19. Bayes Decision Rule for Flow Markingafktt
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As showed in Figure 19, ongéalw) andp(alcw) are derived, detection rate can be

calculated in (5.6).

—00

v=P(w )Tfs{wo Jds+ P( Tf (5.6)

5.4.4. Selection of Interference Interval and Sampling@iwal

In flow marking attacks discussed above, theret@oeparameters: interference period
T, and sampling intervalls. These parameters are critical to the effectivermsd
efficiency of a flow marking attack.

We claim that the sampling interval should be semathan half of the interference

period. That is,
T, <T, /2 (5.7)

This claim can be justified as follows. When weigbpackets in a sampling interval
and derive the packet count time series in Steggs 3hown in Figure 2 (a) and Figure 2
(b), this process is similar to zero-order hold[57] sampling process. We know the
feature frequency i&/T;, which has to be preserved for the best effectissrof flow
marking attack. Nyquist's sampling theorem [57] gess that to preserve this feature

frequency, the sampling rate should be at leasietwf the feature frequency. That is,
1T, <2/T, (5.8)

Thus, (5.7) is justified.
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The selection of interference periddis not arbitrary either. As discussed above, the
interference traffic during the on period of théenfierence period has to decrease the
victim traffic rate, and the off period has to bad enough so that the victim traffic can
gain the lost bandwidth. Clearly, for 802.11 DS882.11 FHSS and Bluetooth, there
are different requirements for choosiAg because of their different physical and
protocol characteristics.

The interference period cannot be too long singaractice, a flow may only last for
a short time. For example, the duration of a FTBsisa is determined by the
corresponding file size.

Interference period is also related to the requat of sample length for the
effectiveness of flow marking attack. By the ddfom of a feature frequency, an
adversary must sample for at least one completke @fcinterference. Otherwise, she
could not recognize the feature frequency [57].s[lthe sample length &fTs should be

greater than the interference period, i.e.,

T, < NT{ (5.9)

5.5. Evaluation of Flow Marking Attack

In this section, we empirically show the failureafvireless mix network under a flow

marking attack (FMA) in a laboratory environmentatiscuss related issues.
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5.5.1. Experiment Environment

Figure 20 illustrates the experiment setup in thgotatory. It is a typical one-mix
anonymous communication network with wireless linke., an ESS-like wireless
network. Alice uses FTP to download a file from Bibbough a mix. To simplify our
discussion, we assume that only Alice’s link iseMss, and she communicates with
other parts of the network through a machine perfiog access-point-like functions. We
also install NISTNet [58] on this access-point-ld@mputer to simulate delay and other
network dynamics when necessary. One computerascis noise generator to inject
noise traffic. In this way, we can evaluate the actpof noise on the performance of

flow marking attacks.

_---P
MicroAP Mix il SFe-[\ljer
And =]
NISTNet [ ] E (Bob)
Interferer Noise Maker Sniffer

Figure 20. Experiment Setup
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Mixing strategies are implemented on the TimeSgalRTime Linux operating
system for its timer accuracy [29]. We integrate thix control module performing
batching and reordering functions into Linux’s el sub-systenmNetfilter [59], and
firewall rules are used to specify what traffic glibbe protected.

We use WaveLAN silver PC card as 802.11 DSSS dsyf8pectrum24 LA 3021 PC
card as 802.11 FHSS devices, and Belkin Bluetod@hcBrd as Bluetooth devices.
Wireless traffic and wired traffic is dumped by dcpnp [60]. Wireless channels can be
changed by iwconfig [61].

In our experiments, a timed mix timer has a penbd00ms. The stop-and-go mix
assigns an exponentially distributed delay to pacleth average delay &f5ms. This
delay cannot be too long, otherwise it may caussge number of packet reordering

and hence seriously disrupt normal behavior of TCP.

5.5.2. Failure of Mix Networks under FMA

Figure 21 shows the power spectrum by 64-point F¥Ta stop-and-go mix network
with an 802.11 DSSS wireless link. We can see ttatfeature frequency, 2HZ/T)),
has a strong amplitude compared to the case witthowt marking attacks, in which

every frequency component has roughly equal angagu
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Figure 21. Power Spectrum of 802.11 DSSS TrafficSkmp-and-go Mix

Figure 22 shows the relationship between detectitsmand sample length for all the
three mixing techniques in Table 1 and three typeswireless links. In all the
experiments, interference peridd= 0.5s and sampling intervdl = 0.1s. 802.11 DSSS
and 802.11 FHSS links have a bandwidth capacit®Mibps while the Bluetooth link

has a bandwidth capacity d¥bps.
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Figure 22. Continued

We have the following observations from Figure 22:

1. A wireless anonymous communication system may cetelyl fail under flow
marking attacks. As sample length increases, afi@arking attack can achieve a
detection rate 0£00% in all cases as shown in Figure 22.

2. An adversary only needs a few seconds of samphiraghieve a detection rate of
100%. This shows that flow marking attacks can bectiffe and efficient for
online piracy tracing even if an anonymous file leage service is used on the

Internet since most of the file downloading tak@sger than a few seconds.
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5.5.3. Detection Rate vs. Different Wireless Links

Figure 23 compares detection rate for the threteréifit wireless links. Stop-and-go
mixes are used in experiments. As we analyze alsxee an adversary can use the
same 802.11 DSSS channel to interfere with thenvié02.11 DSSS wireless link, she
achieves the highest detection rate in this cagealse of a higher hopping rate, a
Bluetooth FHSS link is more susceptible to the 802DSSS interference than an 802.11
FHSS link, where the Spectrum24 PC card has a hgppte of10 hops/s. The

adversary achieves higher detection rate in the chmterfering with a Bluetooth link.
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Figure 23. Detection Rate for Different Types ofr#léss Links
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In the following, we concentrate on propertiesfloiv marking attacks of 802.11

DSSS wireless links. For other cases, we haveaimgbults.

5.5.4. Sample Length to Achieve Detection Rate of 95%

Figure 24 shows the minimum amount of time an axhrgrtakes to achieve a detection
rate of 95% for each interference period. From fag@4, we can see that at the
interference period of 0.5s, it takes the adversasijput 1.6 seconds to achieve a
detection rate of 95%. This indicates that theransoptimal interference period by

which the sample length is minimized. That is, flomarking attacks can be very

effective and efficient when the adversary operatélse optimal mode.

16

14

—
N~

Sample Length (s)

0.5 1 1.5 2 2.5 3 3.5 4
Interference Interval (s)

Figure 24. Sample Length Required to Achieve Oetedrate of 95%
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We note that the curve is concave up. The reas@s ifollows: if the interference
period is too small, a TCP flow does not have ehotigie to reduce the rate during
interference and to increase the rate during tleatsiime of the flow marking attack.
Thus, the introduced pattern would have a weakappee in the TCP flow. It may take
more time to effectively detect the pattern of nsarlOn the other hand, if the
interference period is very long, from (5.9), weoknthe flow marking attack needs at
lease one interference period of sample to be taeféecThus, the longer the interference
period, the larger the sample length. Clearly, ldtrge sample length is caused by the

unnecessarily large interference period.

5.5.5. Impact of Noise Traffic

Figure 25 shows noise’s impact on the effectiverméssflow marking attack. We use
to represent the ratio of the number of noise itgblackets to the number of TCP
payload packets. The noise traffic is generatedh &it inter-arrival time satisfying a
Pareto distribution with the shape parameter o{@25

We have the following observations:

1. Noise traffic has a clear impact on the performawfca flow marking attack. We
can see that as r increases, detection rate desreéise reason is that noise
traffic introduces randomness into the aggregatdtid, and the power spectrum
at the feature frequency would have more randonslyiduted energy with more

noise traffic. This decreases detection rate.



136

2. Noise traffic’s impact on the flow marking attacklimited. We can see that an
adversary may still achieve a detection rate of%0&ven if r= 5, which

corresponds to a 60% utilization rate for Bob’s 1 link.
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Figure 25. Detection Rate vs. Noise Traffic
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5.6. Countermeasures by Filtering
5.6.1. Overview

In this section, we develop possible countermeastarélow marking attacks. Our idea
is based on signal processing theory. That is, seedigital filters to filter out possible
feature frequencies introduced by adversaries.

The filter-based countermeasure works as follows:

1. We deploy filters at locations where traffic shapand filtering is needed.

2. The filter utilizes a periodic timer of periddto sample the traffic rate. It buffers
packets arriving in its current timer interval, shg n" interval, and counts the
number of packet(n), in this interval.

3. Then, we can calculate the required numign), of packets we should transmit

in order to filter out feature frequencies by usihg following formula:

M

y(n)= 3 alk)x(n- k)= Y bl )y(n-1) 5.10)

k=0 =1
whereM is the filter orderx(n - k) and yf — k) are the number of input packets
and output packets of the filter, respectively,ingithe pask” interval, anda(k)
andb(k) are filter coefficients, which are discussed i.3. Please refer to [63]
for general knowledge of the design of a recur§iNR) filter specified in (5.10).

4. The filter then acts depending on different valags(n) andy(n): If x(n) = y(n),

the filter sends oug(n) payload (user) packets when the timer fires asidshthe

® In fact,x(n) is the sum of incoming packets in the currergrivail and packets left over from the previous
interval. Refer to Step 4.
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remainingx(n)-y(n) payload packets, which will be counted into thetnmexind
of incoming packets, i.ex(n+1) = x(n+1) + x(n) - y(n). If x(n) <y(n), the filter
generatesy(n) - x(n) dummy packets and sends them out with) payload

packets;

5.6.2. Selection of Filter Coefficients

Filter coefficients have to be carefully chosen fioe best performance in countering
flow marking attacks. To achieve this objective, fivet determine the possible feature
frequency band K, F,), which should be filtered out. In reality, thetarference
frequency of an adversary is bounded due to tHewilg reasons: It takes time for the
victim traffic to respond to the interference anddduce its rate. Time is also needed for
the victim traffic to gain the bandwidth when thmterference stops. This gives feature
frequency an upper bounBd,. Moreover, a traffic flow only lasts for a limitedterval,
for example, the duration of a FTP session is detexd by the file size. This gives
feature frequency a lower bourtdl,

Then we set a sufficiently large filter ordand use theyulewalk function from
Matlab to derive the filter coefficien&k) (k=0, ..., M) andb(l) (I=1, ..., M). The filter
is of a band-stop type, as we just filter out thed of possible feature frequencies. The
benefit is that details of traffic are kept and tm@mber of dummy packets can be

reduced.
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5.6.3. Evaluation of Filter-based Countermeasure

Figure 26 gives the detection rate when we putex fof T;=0 on MicroAP in Figure 20,
where a stop-and-go mix is used. The interfererez@@ is 0.5s and the filter has an
order of20.

We can see that detection rate approa&i®@s, which is the minimum value in a
two-class pattern recognition. So traffic filteringan be used as an effective
countermeasure for flow marking attacks in combamatvith mixes in a wireless mix

network.
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Figure 26. Detection Rate with Filter-based Counesasure
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5.7. Summary

This section studies the performance of an anongmwateless communication system
under flow marking attacks. Detection rate is dedinas the probability that the
adversary finds the communication relationship Afice” and “Bob”: whether or not
they are communicating with each other. We showithakes only a few seconds for an
adversary to achieve a detection rate of 100%. iBhig a wireless environment, flow
marking attacks can be very effective and efficiewen if traditional mix technologies
are used.

To counter flow marking attacks, we introduce ardermeasure that uses digital
filters to filter out the suspect band of featuregluencies. Our filter is an IIR recursive
one. We empirically demonstrate the success ofdilgisal filter based countermeasure.
With a filter deployed in a wireless mix networketdetection rate can be maintained

near the minimum value &0%.
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6. CONCLUSIONS

In this dissertation, we study traffic analysisaekis and their countermeasures. Traffic
analysis attacks are aimed at deriving criticabinfation by analyzing the statistics of
traffic flows. This kind of attack challenges thestyn of traditional systems where
encryption is typically used as the main method gostecting security and privacy.
However, it is obvious that encryption alone canmmbtect many important
characteristics of network traffic that may be nusscritical and require protection. We
focus on studying the threat from link-load anadyattacks and connectivity analysis
attacks and relevant countermeasures to them.

Link padding is to counter traffic analysis attackVe introduce statistical pattern
recognition as a formal framework for analyzing sieeurity of communication systems
under traffic analysis attacks. We find that thenomonly used CIT padding still can
reveal the payload traffic rate if an adversary soees statistics such as sample entropy
and sample variance of packet inter-arrival tinWs. discover that VIT padding can be
very effective against these kinds of passive laad analysis attacks.

Using the framework of statistical pattern recogmnit we also study the security of
VIT padding under active link-load analysis attacks demonstrate the threat from such
attacks, we consider ping probing attacks aimedeat/ing user payload traffic rates.
We found that by measuring statistics of the rouipdtime of ping packets injected into

security gateways, the adversary can break themydrack the user payload traffic
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changing pattern, and discover exactly the payloaffic rate that security gateways
attempt to protect. This is true even if a powenfigdthod such as VIT padding is used.

In addition, we study connectivity analysis attgokbich are aimed at discovering
the flow connectivity between a pair of users. \Wel that a class of active connectivity
analysis attacks, namely flow marking attacks, banboth effective and efficient in
wireless networks. We propose filter-based appresth counter these kinds of attacks.
Our experimental data shows that our approach edm tb protect flow connectivity
information when the system is under connectivitglgsis attacks.

In this dissertation, not only do we have experitakresults about the above attacks
and countermeasures in a laboratory environmertt,wgualso theoretically analyze
these attacks and countermeasures and perform sesderxperiments on campus
networks and the Internet to further validate ourdihgs. We believe that our
methodology will provide a solid foundation for dying the entire spectrum of traffic

analysis attacks and their countermeasures.
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