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ABSTRACT

Algorithms for the Scaling Toward

Nanometer VLSI Physical Synthesis. (December 2005)

Chin Ngai Sze, B.Eng., The Chinese University of Hong Kong;

M.Phil., The Chinese University of Hong Kong

Chair of Advisory Committee: Dr. Jiang Hu

Along the history of Very Large Scale Integration (VLSI), we have successfully scaled

down the size of transistors, scaled up the speed of integrated circuits (IC) and the number

of transistors in a chip - these are just a few examples of our achievement in VLSI scal-

ing. It is projected to enter the nanometer (
���������

) scale era in the nearest future. At the

same time, the scaling has imposed new challenges to physical synthesis. Among all the

challenges, this thesis focuses on the following problems:

	 Increasingly domination of interconnect delay leads to a need in interconnect-centric

design flows;

	 Different design stages (e.g. floorplanning, placement and global routing) have un-

matched timing estimation, which brings difficulty in timing closure;

	 More and more VLSI circuits are designed in architectural styles, which require a

new set of algorithms.

The paper consists of two parts, each of which focuses on several specific problems in

VLSI physical synthesis when facing the new challenges.

	 Part-1 Place and route aware buffer Steiner tree construction

Efficient techniques are presented for the problem of buffered interconnect tree con-

struction under blockage and routing congestion constraint. This part also contains
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timing estimation and buffer planning for global routing and other early stages such

as floorplanning. A novel path based buffer insertion scheme is also included, which

can overcome the weakness of the net based approaches.

	 Part-2 Circuit clustering techniques with the application in Field-Programmable

Gate Array (FPGA) technology mapping

The problem of timing driven n-way circuit partitioning with application to FPGA

technology mapping is studied and a hierarchical clustering approach is presented

for the latest multi-level FPGA architectures. Moreover, a more general delay model

is included in order to accurately characterize the delay behavior of the clusters and

circuit elements.
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CHAPTER I

INTRODUCTION

A. Motivation and Aims

Very Large Scale Integration (VLSI) is the process of placing more than
� � � of electronic

components on a single chip, namely integrated circuits. It can generally be found in

modern memories, computers, signal processors. Due to the very high complexity of VLSI

processes, designs of VLSI chips using computer systems are essential in order to reduce

the time-to-market (TTM) and cost per transistors, as well as improve total yield. This

refers as to the Computer-Aid Design (CAD) or Electronic Design Automation (EDA).

Traditionally, the CAD for VLSI can simply be separated into three steps: high level

synthesis (involving Behavioral Synthesis and Sequential Synthesis), logic synthesis (in-

cluding technology mapping) and physical design synthesis[1, 2]. The detailed design pro-

cess is shown in Figure 41 in Appendix A. High level synthesis consists of the construction

of behavioral and functional specification and the conversion from specification into hard-

ware descriptions such as Finite State Machine (FSM). Logic synthesis refers to the trans-

lation of high-level language descriptions into logic designs (a set of technology specific

gates and interconnects, or netlist) and the optimization of the chip area, speed (delay) and

testability. Physical design synthesis transforms the circuit representation into a geometric

representation, the physical layout. It involves the process of circuit partitioning, floorplan-

ning, placement, and routing. The objective of physical design is to minimize the chip area

and to maintain chip performance. Since the design processes are very complicated, these

steps often operate separately and, there is no interaction between them. However, the de-

This thesis follows the style of IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems..
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Table I. Projections of VLSI chips feature size

Year of
�����

Product shipment 1999 2002 2005 2008 2011 2014

Minimum feature size (nm) 180 130 100 70 50 35

(DRAM half-pitch)

sign processes are changing due to the development of sub-micron and deep sub-micron

VLSI technology in the last decade. And we are expecting the process continues toward

nanometer VLSI technology which will bring us with more new problems.

B. Scaling Toward Nanometer VLSI Circuits

In 1965, Gordon E. Moore, the co-founder of Intel Corporation, predicted that “The com-

plexity for minimum component costs has increased at a rate of roughly a factor of two per

year”. After the 70’s, this prediction is generally formulated as “the number of transistors

on integrated circuits will be doubled every 18 months.” The projection is usually referred

to as “The Moore’s Law”.

The Moore’s Law is roughly valid throughout the past several decades due to the

rapid development of fabrication technology. We can observe that the VLSI feature size,

which is usually attributed by DRAM half pitch of the chip, shrinks along with the process

generations. The shrinking in chip element size and increase in chip density is generally

referred to as the “scaling” of VLSI circuits. According to several reports [3, 4] , the feature

size will be 70nm and 50nm in 2008 and 2011 respectively. The information is shown in

Table I.

We can use the scaling factor
�

to describe the scaling effect for consecutive genera-

tions (Typically,
� � �

� � ). The gate delay can be characterized by Equation (1.1) as shown
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in Figure 1.

����� � �
� 	���� � �

�����
	
��� (1.1)

When the scaling proceed, we have
��
������� , ������ and ������ . Therefore, gate delay is reduced

by a factor
�

for each generation.

VDD

IDS
Cgate

Fig. 1. Scaling of the gate delay

However, scaling has imposed a difference effect on the interconnect delay as shown

in Figure 2. The interconnect delay can be formulated by Equation (1.2), where � is the unit

length resistance, � is the unit length capacitance, � � and ��� is the resistive and capacitive

coefficient, � � is the spacing between adjacent interconnects.

�  � � ����� � � � �!� �
� ��� � � � � �

� �
� � �
� �

� �
(1.2)

If the interconnect dimension and spacing is scaled uniformly, the local interconnect delay

will become � � � � � �� 
 � so that the delay remains unchanged during scaling. However, the

length of global interconnect does not scale downward according to the shrink of feature

size. On the contrary, it scales upward slightly with the chip size
�
� "  $# . As a result, the

delay along global interconnect becomes ��� � � ��� � � "  # 
 � which is a quadratic relationship

to
�

and becoming much worse when comparing to the gate delay. Hence, as the VLSI
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technology scales downward, the interconnect delay has already dominated the total path

delay, which includes interconnect and gate delays. (See Figure 3 [3]).

l
l/s

L
LSchip

Schip

cross-section

h

w

cross-section

h/S

w/S

Fig. 2. Scaling of the local and global interconnect delay

The decrease in chip feature size and increase in complexity of chip design also bring

the following effects:

	 more hierarchical design schemes are needed.

	 noise effect is exacerbated.

	 power dissipation becomes unmanageable.

As a result, the link between each design stage is loosing. For example, a verified design in

logic synthesis steps may violate the rules in physical design steps. Also, a placement with

minimum “wirelength” does not produce a final layout with minimum clock cycle.
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1. Scaling in FPGA

Field-programmable gate array (FPGA) is one of the fastest growing semiconductor sec-

tors. In fact, the growth of FPGA industry is faster than the average of the semiconductor

industry. This can be justified by the following examples [5]. In 1988, the Altera MAX

5000 family had only 600 to 3,750 gates, while in 1999, each APEX 20K devices pro-

vide 60,000 to 1.5 million usable gates. Similarly, for the Xilinx XC2000 device family

introduced in 1985, each device has 1200 to 1800 logic gates, while in 1998, Xilinx Virtex

devices provides 58K to 4M gates.

Although the clock speed of FPGAs is comparatively slower than high-end custom-

designed devices such as microprocessor, there are many problems related to the increasing

complexity of FPGA. For example, there are becoming more hierarchical FPGA architec-

tures to remedy the FPGA design difficulty. In fact, one example of hierarchical FPGA

architectures can be found in the APEX20K device family which uses a two-level hierar-

chy (see Figure 23). Besides, the delay along interconnect is also increasing as the increase

in chip size and decrease in size of the logic array blocks.

C. Contribution

This research project focuses on solving the physical design problems due to the rapid scal-

ing of VLSI systems. The work can be divided into two parts: interconnect tree synthesis

with buffer insertion and circuit clustering for FPGA technology mapping.

1. Interconnect Tree Synthesis with Buffer Insertion

As mentioned in previous section, interconnect delay is dominating the total delay in the

circuit. Buffer insertion is one of the most effective methods to reduce wire delay. More-

over, since buffer insertion improves interconnect timing, the timing estimation in different
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stage using different buffering assumption can differ a lot. This actually is one of the

reasons why the link between different design stages is getting loose. More importantly,

sometimes an inaccurate timing estimation in early stages is vital to the timing closure of

the design process.

Due to the high importance of buffer insertion to physical synthesis and timing, I have

performed three projects related to buffering and interconnect tree synthesis.

	 Place and route aware buffered Steiner tree construction

A tree adjustment technique is proposed which modifies a given Steiner tree and

simultaneously handles the objectives of timing, placement and routing congestion.

To the best of my knowledge, this is the first study which simultaneously considers

these three objectives for the buffered Steiner tree problem. Experimental results

confirm the effectiveness of the algorithm while it achieves up to
� � �

speed-up when

comparing with the state-of-the-art algorithm. The project is described in Chapter III.

	 Accurate estimation of global buffer delay within a floorplan

The closed formed delay expressions of a buffered interconnect are extended to show

how one can model the blocks into a simple delay estimation technique that applies

both to two-pin and to multi-pin nets. Even though the formula uses one buffer type,

it shows remarkable accuracy in predicting delay when compared to an optimal real-

izable buffer insertion solution. Potential applications include wire planning, timing

analysis during floorplanning or global routing. Our experiments show that our ap-

proach accurately predicts delay when compared to constructing an realizable buffer

insertion with multiple buffer types. The project is detailed in Chapter IV.

	 Path based buffer insertion

A novel path based buffer insertion scheme is introduced which can overcome the

weakness of the conventional net based approaches. Experimental results show that
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our method can efficiently reduce buffer/gate cost significantly (by 71% on average)

when compared to traditional net based approaches. In literature, This is the first

work on path based buffer insertion and simultaneous gate sizing. The project is

explained in Chapter V.

2. Circuit Clustering for FPGA Technology Mapping

Owing to the rapid growth of FPGA density, we have more logic blocks in a FPGA chip.

The delay in interconnect is becoming more important. In the second part of this thesis, two

projects are presented to solve physical design problems related to latest FPGA designs.

	 Optimal circuit clustering for delay minimization under a more general delay

model

For the problem of area-constrained clustering for delay minimization, I proposed

a more general delay model, which practically takes variable interconnect delay

into account. The delay model is particularly applicable when allowing the back-

annotation of actual delay information to drive the clustering process. An algorithm

is presented to the clustering problem and can be proved to solve the problem opti-

mally in polynomial time. This work is presented in Chapter VII.

	 Multi-level circuit clustering for delay minimization

An effective scheme is proposed for multi-level circuit clustering for delay minimiza-

tion, which is applicable to hierarchical FPGAs. In fact, our algorithm is the first one

for the general multi-level circuit clustering problem with more than two levels. The

project is included in Chapter VIII.
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CHAPTER II

PERFORMANCE-DRIVEN INTERCONNECT TREE SYNTHESIS AND BUFFER

INSERTION

Due to the development of fabrication technology, the VLSI synthesis processes are en-

tering the deep sub-micron range (feature size � 500 nm). According to the projection in

International Technology Roadmap for Semiconductors 2000, the VLSI chips feature size

will drop to 100nm and 70nm in 2007 and 2010 respectively. Owing to the tremendous drop

in chip feature size, the interconnect delay becomes a dominant part of the total path delay,

which includes both the interconnect and gate delays. Since the importance of intercon-

nect delay on VLSI timing optimization increases rapidly, some timing-driven interconnect

routing methodologies adopted in current design cycles no longer produce feasible timing

solution. Buffering in the interconnect tree is one of the effective techniques to optimize

overall system performance and link between different design stages.

However, current buffer insertion techniques are too specific and their applications are

very limited within the overall design cycle. As a result, my research is to develop a com-

prehensive interconnect tree synthesis algorithm which simultaneously handles multiple

objectives such as buffer and wiring costs, obstacles, routing congestion, and signal in-

tegrity while the algorithm can be applied at different stages in the VLSI Computer-Aided

Design cycles.

We focus on the following three objectives of the buffered tree synthesis problem in

the next three chapters.

	 Place and route aware buffered Steiner tree construction

In order to achieve timing closure on increasingly complex IC designs, buffer in-

sertion needs to be performed on thousands of nets within an integrated physical

synthesis system. In most of previous works, buffers may be inserted at any open



10

space. Even when there may appear to be space for buffers in the alleys between

large blocks, these regions are often densely packed or may be useful later to fix crit-

ical paths. In addition, a buffer solution may inadvertently force wires to go through

routing congested regions. Therefore, within physical synthesis, a buffer insertion

scheme needs to be aware of both placement congestion and routing congestion of

the existing layout and so it has to be able to decide when to insert buffers in dense

regions to achieve critical performance improvement and when to utilize the sparser

regions of the chip. With the proposed Steiner tree adjustment technique, this work

aims at finding congestion-aware buffered Steiner trees. Our tree adjustment tech-

nique takes a Steiner tree as input, modifies the tree and simultaneously handles the

objectives of timing, placement and routing congestion. To our knowledge, this is

the first study which simultaneously considers these three objectives for the buffered

Steiner tree problem. Experimental results confirm the effectiveness of our algo-

rithm while it achieves up to
� � �

speed-up when comparing with the state-of-the-art

algorithm [6].

	 Accurate estimation of global buffer delay within a floorplan

Closed formed expressions for buffered interconnect delay approximation have been

around for some time. However, previous approaches assume that buffers are free

to be placed anywhere. In practice, designs frequently have large blocks that make

the ideal buffer insertion solution unrealizable. The theory of [7] is extended to

show how one can model the blocks into a simple delay estimation technique that

applies both to two-pin and to multi-pin nets. Even though the formula uses one

buffer type, it shows remarkable accuracy in predicting delay when compared to

an optimal realizable buffer insertion solution. Potential applications include wire

planning, timing analysis during floorplanning or global routing. Our experiments
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show that our approach accurately predicts delay when compared to constructing an

realizable buffer insertion with multiple buffer types.

	 Path based buffer insertion

Along with the progress of VLSI technology, buffer insertion plays an increasingly

critical role on affecting circuit design and performance. Traditional buffer insertion

algorithms are mostly net based and therefore often result in sub-optimal delay or

unnecessary buffer expense due to the lack of global view. In this paper, we propose a

novel path based buffer insertion scheme which can overcome the weakness of the net

based approaches. We also discuss some potential difficulties of the path based buffer

insertion approach and propose solutions to them. A fast estimation on buffered

delay is employed to improve the solution quality. Gate sizing is also considered

at the same time. Experimental results show that our method can efficiently reduce

buffer/gate cost significantly (by 71% on average) when compared to traditional net

based approaches. To the best of our knowledge, this is the first work on path based

buffer insertion and simultaneous gate sizing.
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CHAPTER III

A PLACE AND ROUTE AWARE BUFFERED STEINER TREE CONSTRUCTION

A. Introduction

It has been widely recognized that interconnect becomes a dominating factor for modern

VLSI circuit designs. A key technology to improve interconnect performance is buffer

insertion. A recent study by Intel [8] speculates that for
� ��� � technology, � ��� of the cells

on a chip will be buffers.

Early works on buffer insertion are mostly focused on improving interconnect timing

performance. The most influential pioneer work is van Ginneken’s dynamic programming

algorithm [9] that achieves polynomial time optimal solution on a given Steiner tree under

Elmore delay model [10]. In [11], Lillis et al. extended van Ginneken’s algorithm by us-

ing a buffer library with inverting and non-inverting buffers, while also considering power

consumptions.

The major weakness of the van Ginneken approach is that it requires a fixed Steiner

tree topology which makes the final buffer solution quality dependent on the input Steiner

tree. Even though it is optimal for a given topology, the van Ginneken algorithm will yield

poor solutions when it is fed with a poor topology. To overcome this problem, several

works have proposed to simultaneously construct a Steiner tree while performing buffer

insertion [12, 13, 14]. Although the simultaneous algorithms generally yield high quality

solution, their time complexities are very high. A different approach to solve the weakness

of van Ginneken’s algorithm is proposed by Alpert et al. [15]. They construct a “buffer-

aware” Steiner tree, called C-Tree for van Ginneken’s algorithm. Despite being a two-stage

sequential method, it yields solutions comparable in quality to simultaneous methods, while

consuming significantly less CPU time.
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Fig. 4. A minimum Steiner tree as shown in (a) may force buffers being inserted at dense

regions. A placement congestion aware buffered Steiner tree, which is shown in (b),

will enable a buffer solution at sparse regions.

Recent trends towards hierarchical (or semi-hierarchical) chip design and system-on-

chip design force certain regions of a chip to be occupied by large building blocks or IP

cores so that buffer insertion is not permitted. These constraints on buffer locations can

severely hamper solution quality, and these effects have to be considered in the buffered

path [16, 17, 18] class of algorithms. Though optimal, they are only applicable to two

pin nets. Works that handle restrictions on buffer locations while performing simultaneous

Steiner tree construction and buffer insertion are proposed in [19, 20], which can provide

high quality solutions though the runtimes are too exorbitant to be used in a physical syn-

thesis system. In [21], a Steiner tree is rerouted to avoid buffer blockages before conduct-

ing buffer insertion. This sequential approach is fast, but sometimes unnecessary wiring

detours may result in poor solutions. An adaptive tree adjustment technique is proposed

in [22] to obtain good solution results efficiently.

The huge number of nets that require buffering means that resources have to be allo-

cated intelligently. For example, large blocks closely placed together create narrow alleys

that are magnets for buffers since they are the only locations that buffers can be inserted

for those routes that cross over these blocks. But competition for resources for these routes
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is very fierce. Inserting buffers for less critical nets can eliminate space that is needed for

more critical nets which require gate sizing or other logic transforms. Further, though no

blockages lie in the alleys, these region could already be packed with logic and feasible

space may not exist for the buffers. If the buffer insertion algorithm cannot recognize this

scenario, after a buffer is inserted into this congested space, placement legalization may

shift it out too far from its original location due to cell overlap. Hence, whenever possible

one should avoid denser regions unless it is absolutely critical. For example, Figure 4(a)

shows a multi-pin net which is routed through a dense region or “hot spot”, and (b) shows

that the Steiner point is moved outside of the dense region in order to obtain an improved

buffer insertion result.

Similarly, a buffer solution may inadvertently force wires to go through routing con-

gested regions such as in Figure 5(a). Such solution causes wire detours in routing stage.

Generally speaking, an L-shaped wire has flexibilities on avoiding congestions without in-

creasing wirelength. These flexibilities may be ripped off when inserted buffers make the

L-shaped wire into a set of straight connections. If we let the buffering algorithm be aware

of the routing congestions, these flexibilities can be kept for congestion avoidance in later

routing stage.

To the best of our knowledge, the only published work about placement congestion

aware buffer insertion is the porosity aware buffered Steiner tree problem addressed in [6].

This work integrates the length-based buffer insertion [23] with a plate-based tree adjust-

ment to obtain a Steiner tree at regions with greater porosity. However, the routing conges-

tion is not considered and the runtime overhead is too large.

This work adopts the sequential method in constructing a Steiner tree and the tree

is then fed into a van Ginneken style buffer insertion algorithm. However, before buffer

insertion, a timing-driven plate-based tree adjustment algorithm is applied so that both

the placement and routing congestion are considered. Buffered paths between nodes are
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Fig. 5. A minimum buffered Steiner tree as shown in (a) may force wires going through

routing congested regions. A routing congestion aware buffered Steiner tree, which

is shown in (b), will enable a buffer solution at less congested regions.

found through utilizing the analytical form buffered path solution and a congestion cost

driven maze routing. In [6], each solution during path search is characterized by its cost

and downstream capacitance, thus, the solution set is a two-dimensional array while at the

same time, the tree adjustment is not driven by timing optimization. In the maze routing of

this work, only the congestion cost is considered for each candidate solution. Therefore,

the candidate solution set is a one-dimensional array and this smaller-sized solution set

enables a faster computational speed. In fact, our experiment shows that, when comparing

with [6], our algorithm achieves � � better timing, 	 � lower total placement and routing

congestion but runs up to
� �

times faster.

B. Problem Formulation

In this paper, we use a tile graph to capture the placement and routing congestion informa-

tion and at the same time reduce the complexity of our problem. A tile graph is represented

as � � �!��
 

��
 
 such that
��
 �����

�

��
�


� � ��� is a set of tile and

��

is a set of boundaries

each
���  
���� 
 of which is between two adjacent tile

�  and
���

.

If a tile
�  �� ��


has an area of � ���  
 and its area occupied by placed cells are � ���  
 , the
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placement density is defined as the area usage density � ���  
 � ��� ������ ������� . Let 	 ���  
���� 
 be the

maximum number of wires that can be routed across the tile boundary
���  
���� 
 and � ���  
���� 


be the number of wires crossing
���  
���� 
 . Similarly, the boundary density is � ���  
���� 
 �


 � ����� ��
��� ������� ��
�� .
A net is represented as a set of sinks

�
�  ��� � �

� �


���


� � �



�
� � and a source node �

�
. Each

sink �  �� �
�  ��� at location

���  
��  
 is associated with a load capacitance � � �  
 and a required

arrival time � � �  
 . The source node is at
������
�� � 
 and is associated with a driver with driver

resistance ��� . For simplification, a buffer type with input capacitance 	�� , intrinsic delay ���
and output resistance ��� is used. The unit wire resistance is � and the unit wire capacitance

is � . We use Elmore model [10] for interconnect delay and RC switch model for driver and

buffer delay.

Problem Definition:(Buffered Steiner Tree for Placement and Routing Conges-

tion Mitigation) Given a net � � �
�
��

� �


� � �



�
� � with source �

�
and sinks

�
� �


� � �



��� � ,

load capacitance � � �  
 and required arrival time � � �  
 for
��� � � � , tile graph � ��� 
 

��
 
 ,

and a buffer type � , construct a Steiner tree � ��� 

� 
 , in which
� � �! � �

� �
 � ��� and edges

in
�

span every node in
�

, such that a buffer insertion solution that satisfies � � �  
 is ob-

tained with a minimum congestion cost
�

.

The congestion cost can be formulated based on the application but the algorithm

should have the flexibility to take any kind of congestion cost formulation. In this paper,

we adopt the following definition. The placement cost � ���  
 of placing a buffer in a tile
�  

is the square of the density � ���  
 ; while the routing cost � ���  
���� 
 crossing a tile boundary
���  
 ��� 
 is the square of the boundary density � ���  
 ��� 
 . With this cost definition, we do not

use an infinite cost for overflow. In reality, if the placement or routing on a dense region

really helps improving slack or other design objectives, moving the previously placed and

routed elements in the next design cycle would be more beneficial.
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C. The Algorithm

1. Methodology Overview

Since simultaneous Steiner tree construction and buffer insertion is computationally expen-

sive for practical circuit designs, we propose to solve the congestion aware buffered Steiner

tree problem through the following three stages: 1)Initial timing-driven Steiner tree con-

struction1; 2)Tree adjustment for congestion improvement; 3)Van Ginneken style buffer

insertion.

Stage 1 can be accomplished by any heuristics while we apply “buffer aware” C-Tree

algorithm[15]. Stage 2 contains the key ideas behind the algorithm. The tree adjustment

phase modifies the existing timing-driven Steiner tree in an effort to reduce congestion

cost while maintaining the tree’s high performance. It allows Steiner points to migrate

outside of congested tiles into lower-congestion tiles while maintaining (if not improving)

performance. Finally, in Stage 3 the resulting tree topology is fixed for van Ginneken

style buffer insertion. Since we use known algorithms for Stages 1 and 3, the rest of the

discussion focuses on stage 2, which is the main contribution of this work.

2. Algorithm Motivation

The basic idea for the tree adjustment is to perform a simplified simultaneous buffer inser-

tion2 and local tree topology modification so that the Steiner nodes and wiring paths can be

moved to less congested regions without significant disturbance on the timing performance

obtained in Stage 1. Also for the sake of simplification, we assume a single “typical” buffer

� We choose a timing-driven Steiner tree algorithm here since it is fast and easy to im-
plement with our proposed tree adjustment technique. However, any Steiner tree (e.g.,
congestion-aware Steiner tree) can also be fed into stage 2 of our overall algorithm.

� Note that the “buffer insertion” in tree adjustment is for timing estimation. Actual
buffer insertion is performed in stage 3 of our algorithm.
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type, the Elmore delay model for interconnect and a switch level RC gate delay model for

this tree adjustment. The tree adjustment traverses the given Steiner topology in a bottom-

up fashion similar to van Ginneken’s algorithm. During this process, candidate buffering

and routing solutions are propagated from leaf nodes towards the source. At a Steiner node,

candidate solutions from its two child branches are merged. Therefore, we can consider the

propagation and merging process separately.

The buffered Steiner tree problem is inherently very difficult to solve and including

congestions into account makes the complexity even more formidable. In this problem,

three major factors (1) timing (2) load capacitance and (3) congestion cost have to be con-

sidered simultaneously on a two-dimensional Manhattan plane. Note that load capacitance

needs to be evaluated and maintained for delay calculation even though it is not a part of

objectives. In order to make the computation time practical, solution quality has to be sac-

rificed to a certain degree. Of course, the sacrifice on solution quality need to be as small as

possible while the computation cost reduction has to be substantial. In [6], a length-based

buffer insertion [23] scheme is employed to reduce complexity. Instead of maintaining

all the timing and load capacitance information, only the maximum driving load for each

buffer/driver is enforced as a rule of thumb. Therefore, the number of factors is reduced

from three to two and the computation speed is acceptable. However, the experimental

results in [6] show that runtime is almost doubled just because of considering congestions.

The runtime bottleneck is due to the fact that buffering solution has to be searched along

with node-to-node3 paths in a two-dimensional plane since low congestion paths have to be

found at where the buffers are needed.

If we can predict where buffers are needed in advance, then we can merely focus on

searching low congestion paths and the number of factors to be considered can be further re-

� The node may be the source node, a sink node or a Steiner node of degree greater than
two. Thus, degree-2 Steiner nodes are not included here.



19

duced to one. If we diagnose the mechanism on how buffer insertion improves interconnect

timing performance, it can be broken down into two parts: (1) regenerating signal level to

increase driving capability for long wires and (2) shielding capacitive load at non-critical

branches from the timing critical path. In a Steiner tree, buffers that play the first role

are along a node-to-node path while buffers for the second purpose are normally close to a

branching Steiner node. The majority of buffer insertion algorithms such as van Ginneken’s

method are dynamic programming based and have been proved to be very effective for both

purposes. However, optimal buffer solutions along a node-to-node path can be found ana-

lytically if the driving resistance for this path is known [24, 25]. This fact suggests that we

may have a hybrid approach in which buffers along paths are placed according to the closed

form solutions while the buffers at branching nodes are still solved by dynamic program-

ming, i.e., analytical buffered path solutions replace both the wire segmenting [24] and

candidate solution generations at segmenting points in the bottom-up dynamic program-

ming framework. The only problem of this approach is that the driving resistance of a path

to be processed is not known in this bottom-up procedure. This can be solved by sampling

a set of anticipated upstream resistance values and generating candidate buffering solutions

for each anticipated value. Different sampling rate may result in different solution qual-

ity and runtime tradeoffs. Computing candidate buffered paths analytically is faster than

dynamic programming, because the complexity of a dynamic programming approach has

a quadratic dependence on the segmenting size while analytical approach has only linear

dependence on the upstream resistance sampling size.

3. Steiner Node Adjustment

For a Steiner node, we find a few nearby tiles with the least congestion. In each of these

tiles, we consider an alternative Steiner node there. Therefore, the candidate solutions

from child branches are propagated to not only the original Steiner node but also these
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Fig. 6. (a) Candidate solutions are generated from ��� and ��� and propagated to every shaded

tile for � � . (b) Solutions from ��� and every shaded tile for ��� are propagated to ��	 and

its alternative nodes. (c) Solutions from ��	 and its alternative nodes are propagated

to the source and the thin solid lines indicate an alternative tree that may result from

this process.

alternative Steiner nodes. For a node � , we define expanded node set as its alternative

nodes as well as the node itself and denote this set as � �
� 
 . The selection of alternative

nodes in � �
� 
 can be controlled by the placement cost and wiring cost of the tiles4 or for

different objectives of Steiner node adjustment, other selection schemes may be applied.

After candidate solutions from child branches are merged at the original Steiner node and

each of the alternative Steiner nodes, the merged solutions are propagated further towards

the source. This process is illustrated in Figure 6 where the tiles for the expanded node set

are shaded. The alternative Steiner nodes enable alternative tree topologies and only the

topology that is part of the best solution at the root will be finally selected. Therefore, this

tree adjustment is a dynamic selection.

Usually, we restrain the alternative Steiner nodes to be close to the original Steiner

node so that the perturbation to the original timing driven Steiner tree is limited. We define

� See Section D for the � �
� 
 selection details adopted in our experiment.
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the adjustment flexibility which represent what the maximum distance of the alternative

Steiner nodes can be away from the original Steiner node. For example, in Figure 6, all

alternative nodes are enclosed in
� � �

tiles and so we refer it as the
� � �

tiles adjustment

flexibility. By this definition, we can have a larger flexibility for the selection of expanded

node set if, for instance, we adopt the � � � tiles adjustment flexibility in our program. A

larger adjustment flexibility would lead to a higher possibility for the original Steiner node

to migrate outside of the congested area.

The main difference between our proposed technique and the work of [6] is that a

regular array of tiles are considered for alternative Steiner node in [6] while our selection

on alternative Steiner nodes is according to the congestion for nearby tiles. This is based

on our observation that only the nearby tiles with relatively low buffer placement or routing

congestion cost worth considering to be the alternative Steiner node. Moreover, due to the

irregularity and flexibility of expanded node set in our algorithm, we have more choices

and can pick alternative Steiner nodes other than the immediate neighbor nodes for better

congestion reduction and higher efficiency. On the contrary, since [6] features a regular

array of tiles, a larger flexibility for alternative Steiner nodes is desired, the runtime would

become unbearable. This can be shown by our experiments in Section D.

4. Minimum Cost Buffered Path

Our work distinguishes from [6] significantly on the candidate solution propagation be-

tween two nodes. In [6], a length based buffer insertion is integrated with the minimum

congestion cost path search, so the process is not timing-driven. However, our algorithm

has the required arrival time information in an intermediate solution during the bottom-up

propagation and pruning process, and hence our work is capable of handling not only the

congestion reduction but also the timing optimization. In order to achieve these two objec-

tives, we separate the buffer insertion for timing from the minimum congestion cost path
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Fig. 7. Buffer positions along a path.

search. For a path of length
�

with driver resistance � � at one end and a load capacitance

	�� on the other end, the number of buffers � that minimizes the path delay is obtained in

[24] as:

� � ��� �

��� �

� � � � � � � �
�
� � 	 �

�
	�� 
 � � � ���

�
��� 
�
 �

� � � � � 	 � � ����
 �
The � buffers separate the path into � � �

segments of length
� �

,
�
� , ...

� � as illustrated in

Figure 7. According to [24], The length of each segment can be obtained through:

� � � �

� � �	� � � � � ���
�
��� 


� � 	�� � 	 �
� 
 (3.1)

�
�

�
� � �

� � � � � �
�

� � � � � � ���
�
���

� � 	�� � 	 �
� 


� � � �

� � �	� � � ���
�
���

�

�
� � 	�� � 	 � 


� 

Then, we explain our buffered path routing technique by an example. For the thick-

ened path in Figure 8(a), if we know the driving resistance at � � and load capacitance at ��� ,

we may obtain the optimal buffer positions at ��� and ��� . However, if we connect ��� and

� � in a two-dimensional plane, there are many alternative paths between them and the op-

timal buffer locations form rows along diagonal directions. The tiles for the optimal buffer

locations are shaded in Figure 8(a). Therefore, if we connect � � and � � with any mono-

tone path and insert a buffer whenever this path passes through a shaded tile, the resulting

buffered path should have the same minimum delay. The thin solid curve in Figure 8(a)

is an example of an alternative minimum delay buffered path. Certainly, different buffer

paths may have different congestion cost. Then the minimum congestion cost buffered path

can be found by running the Dijkstra’s algorithm on the tile graph which is demonstrated
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Fig. 8. Find low congestion path with known buffer positions indicated by the shaded tiles.

in Figure 8(b). In Figure 8(b), each solid edge corresponds to a tile boundary and its edge

cost is the corresponding wiring congestion cost (=square of its boundary density). There

are two types of nodes, the empty circle nodes that have zero cost and filled circle nodes

that have cost equal to the placement congestion cost in corresponding tile. In conclusion,

the shortest path obtained in this way produces a buffered path with both good timing and

low congestion cost.

An issue need to be handled by this approach is that the upstream resistance � � is

unknown in the bottom-up solution propagation process. However, we are aware that the

lower bound on the upstream resistance is � ������� � � � 
 � � 
 and the upper bound � is
����� � ��� 
 � � 
 plus the upstream wire resistance5. Then, we can sample a few values be-

tween � and � , and find the minimum cost buffered path for each value. Since the timing

result is not sensitive to the upstream resistance, normally the sampling size is very limited.

5. Overall Algorithm

In our algorithm, each intermediate buffer solution is characterized by a 4-tuple
� �
�

 � 
 � 
 � 


in which � is the root of the subtree, � is the downstream load capacitance seen from � , �

	 The maximum upstream wire resistance can be derived from the length of maximum
buffer-to-buffer interval. This is also mentioned in [23].
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Procedure: ����������	
�������
	
�����
�����
Input: Current node � to be processed
Output: Candidate solution set �������������
Global: Steiner tree ���! #"%$��

Tile graph &'�! 
 "%$ 
 �
1. If � is a sink

�������#(*)
���+"%,-�����."%/����0�."%1
�32
�����4���0���5(6)7�����0�32
Return ���������0���

2. � � ( left child of �
�����4��� � ���#(8���!���0��	
�������
	
���9����� � �

3. � � ���4���0���5(:��;=<3>?	�@
	
���
�!��������� � ���."%�����0���
4. If � has only one child

Return � � �������0���
5. � � ( right child of �
�����4��� � ���#(8�A�!�����A	
���
���
	
�����
��� � �

6. � � �������0���B(8��;=<.>+	
@
	
���
�!�C������� � ���."%�����0���
7. �������������#(EDF�G;7@��
�!� � �������0���.".� � ���4���0���
8. ��;-HI�J�
�!���������������
9. Return �C�������0���

Fig. 9. Core algorithm.

is the required arrival time at � and � is the accumulated congestion cost. A solution
�  � � 
 �  
 �  
 �  
 is said to be dominated by another solution

� �	�
�

 � ��
 � �	
 � � 
 , if �  �K � ��
 �  �

� � and �  LK � � . A set of buffer solutions
� �

� 
 at node � is a non-dominating set when

there is no solution in
� �

� 
 dominated by another solution in
� �

� 
 .
The complete algorithm descriptions are given in Figures 9 and 10 where the basic

operations are defined as follows.

	NMPO � � O � � �
�
� 
 
 � �

�
� 
�
 : merge solution set from left child of � to the solution set

from the right child of � to obtain a merged solution set
� �

� 
 . For a solution
�  � �

�
�

 �  � �


 �  � �

 �  � � 
 from the left child and a solution

� � � �
�
�

 � � � �


 � � � �

 � � � � 
 , they are

merged to
� � � � 
 ��� � �  � � � � � � �


 � � � ����� � �  � �

 � � � � 



 � � � �  � � � � � � � 
 .
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Procedure: ��;=<.>+	
@
	
���
�!���������  ���."%����� � ���
Input: Candidate solutions at �4���  �

Expanded node set ����� � �
Output: Candidate solution set ��������� � ���
Global: Tile graph &L�! 
 "%$ 
 �
1. ��������� � ���#(��
2. For each node � �

� ����� � �
3. ����� � �#(��
4. For each node �
� � �����  �
5. For each anticipated upstream resistance ��� at � �
6. ��� "%,7"%/��5(8�������	��H�
�
 � ;-� <-�9�!� ��<7�J�
���
��"�� � "�� �=�� (8���!����D �!� �A<=� ���A	
��� ��� � "����
".&�"��������� � �#( ����� � ��� )������ � "%,7"%/�"

� �32
7. ��;-HI�J�
�!�C��� � ������������ � ���5(E��������� � ����� ����� � �
8. Return �C������� � ���

Fig. 10. Subroutine of propagating candidate solutions from one node set to another.

	 ����� � O � � � � 
�
 : remove any solution
�  � � �

� 
 that is dominated by another solution
�
� � � �

� 
 .
	�� ��� ��������� O � ��
 � ����� 

� � � � � 
 � � 
 � � 
 : apply equations of (3.1) to find the set of buffer

positions � for the minimum delay from node � � to � � assuming driving resistance

� � at � � . The required arrival time � and downstream capacitance � at � � are also

returned.

	�� ��� � M ��� 	�
 � � ����� � � � � 
 � � 
 � 
 � 
 : apply Dijkstra’s algorithm to find the minimum

cost path connecting � � and � � on tile graph � �!��
 
 ��
 
 . On tile graph � , the cost

of each node
� � ��


is � � ��� 
 if
� � � ; otherwise zero. The cost of an edge in �

corresponding to boundary between tiles
�  and

���
is � � ���  
���� 
 . Return the path cost

finally. (An example is shown in Section III.D.)

� ��� ��	�� � � � ����� O � � � 
 (Figure 9) is a recursive procedure which is similar to van Gin-
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neken’s algorithm such that at each node, we propagate the solutions from its children,

merge and prune the solutions. However, the procedure ����
�� � � ��� O � � � �
�
�  
�
 
 �

�
�
� 
�
 (

(Figure 10) for solution propagation adopts our analytical equations and shortest path algo-

rithm described in Section III.D, which accelerates our algorithm when compare with the

van Ginneken’s dynamic programming approaches. When our algorithm terminates, we

obtain a set of solutions with different timing and congestion cost tradeoffs at the root.

D. Experimental Results

All experiments are performed on a Sun Ultra Sparc 450 machine running in 400 MHz.

Our experiments adopt the following parameters: � � �
�

���������	� �
, � � �

�

���	� � � �	� � ,

��� � �
���
�

���
, 	 � � � � � � � and ��� � � � � ��� � � . The sampling size of upstream resistance is

set to
�
.

We implement our algorithm “Place and Route Aware Buffered Steiner Tree Con-

struction” (PRAB) and the algorithm “Porosity Aware Buffered Steiner Tree Construction”

in [6]6 (namely POROSITY in this paper) with C++ and compare them based on a set of

industrial nets which is also used in [15] and [22]. In the benchmark nets, the driver resis-

tance ranges from
� � � � ��� to

� � � � � � � while the loading capacitance ranges from
�
� 	 � � to

� � � � � � .

For each net, after we construct a tile graph, we randomly produce a set of buffer

blockages and then calculate the placement density for each tile which range from
�

to
�
.

The boundary density for each tile boundary is also generated randomly ranging from
�

to
�
�

� � so that the importance of buffer placement cost and wiring congestion cost balance

each other in the buffered Steiner trees.



We compare our work to the algorithm in [6] since it is the latest published work with

almost the same problem formulation and similar objectives.
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In order to ensure a fair comparison, the buffered Steiner tree generation for both im-

plementations follows the three-stage scheme mentioned in Section C-1 and therefore we

can focus on the comparison between the congestion-aware tree adjustment step for both

algorithms. After the tree adjustment in stage 2, our PRAB algorithm generates a set of so-

lutions with different timing and congestion cost tradeoff but POROSITY produces a single

solution which only considers the minimization of estimated congestion cost. Therefore,

before running the van Ginneken style buffer insertion, we only pick the one with least

estimated cost in our solution set for the comparison with POROSITY.

1. Results for Real Multi-Sink Nets

Table II. Information of all testcases

graph size Stage 1
net sink (row � col) req/ps
mcu0s5 18

��� � ���
5949.31

mcu1s9 19
��� � ���

5936.46
n1071 17

��� � �	�
1723.04

n18905 29 
 � ��� � -1062.66
n313 19

� 

� � � 646.43
n7866 32 ��� � � � � -635.27
n8692 21

��� � �	�
284.87

n8702 43 �G1	

��
 � -2031.09
n8730 20 ���
� ���

-538.76
pointer3 20 
 � ��� � -613.75

In the first experiment, we pick the expanded node set from the
� � �

neighbor tiles

of each Steiner node –
� � �

tiles adjustment flexibility. Each expanded node set consists

of three tiles: the tile
�
� containing the original Steiner node, the tile

�
� with the smallest

buffer placement cost � ��� � 
 , and the tile
�
� with the smallest wiring cost average, which is

defined as
� 
��������$
���� # ��� � � � � �� � � � � � � where � ��� 
 ����� ��! ��� 
�� � 
 � ��
 � . To achieve the same Steiner
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node adjustment flexibility, we implement POROSITY with the “plate size” to be
� � �

.

Table II shows the information of all testcases. For each net, the second column shows

the number of sinks. “graph size” displays the number of columns and rows in the tile

graph which encloses the routing region of the net. “Stage 1 req” represents the required

arrival time at source node which is propagated from all sinks along the initial timing driven

Steiner tree without buffer insertion (just after Stage 1). Table III shows the comparison

between the POROSITY algorithm and our PRAB algorithm. Columns 2-7 represents

the results of POROSITY [6] while columns 8-13 shows our results. “req” represents

the required arrival time at source node for the buffered Steiner tree generated by all three

stages for both algorithms. Then, “imp” means the timing improvement by each three-stage

implementation when comparing to the first-stage Steiner tree. (Note that both algorithms

generate a negative improvement for the net
� � � � � � since in the process of congestion

mitigation, the total wire-length increases and in turn decreases the required arrival time at

source node.) “cost” shows the total congestion cost that is a sum of wiring cost “w.cost”

and buffer placement cost “b.cost”, which are induced by the final buffered Steiner tree on

the tile graph. Although we perform all three stages for both implementations, only the

CPU time for second stage is shown for proper comparisons.

From Table III, we observe the following:

	 Our algorithm for tree adjustment outperforms POROSITY [6] in the sense of both

timing improvement ( � � ) and congestion cost evaluation( � � ). Particularly, we are

better than POROSITY by
� � � in buffer placement cost. This justifies our claim that

our tree adjustment algorithm not only operates in a timing-driven manner but also

simultaneously handles the wiring and placement congestion while [6] does not.

	 PRAB runs with about 15 times speed-up. The main reason for the efficiency is that

we selectively pick the expanded node set according to the congestion nearby the
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Table III. Comparison between POROSITY and PRAB under
� � �

tiles adjustment flexi-

bility.

POROSITY[6] Our algorithm PRAB
net req/ps imp/ps cost w.cost b.cost CPU/s req/ps imp/ps cost w.cost b.cost CPU/s
mcu0s5 5919.85 -29.46 3.71 1.99 1.72 6.23 5922.10 -27.21 4.07 1.99 2.08 1.88
mcu1s9 6047.52 111.06 4.13 1.50 2.63 9.89 6082.39 145.93 2.67 1.10 1.57 0.65
n1071 1787.23 64.19 3.58 1.08 2.50 7.64 1792.37 69.33 3.08 1.45 1.63 1.93
n18905 -869.89 192.77 5.06 2.88 2.19 23.83 -791.84 270.82 4.69 3.07 1.63 4.69
n313 870.89 224.46 2.78 1.90 0.88 6.02 869.68 223.25 2.66 1.77 0.90 0.65
n7866 -20.83 614.44 3.19 2.24 0.95 141.67 32.30 667.56 2.69 2.02 0.68 8.06
n8692 639.72 354.85 3.39 1.81 1.59 18.27 660.48 375.61 4.36 1.74 2.62 1.00
n8702 347.54 2378.63 7.10 2.45 4.65 261.26 386.53 2417.62 5.64 2.63 3.01 11.89
n8730 99.45 638.21 8.29 1.61 6.68 11.42 169.78 708.54 8.02 1.53 6.49 1.12
pointer3 -328.44 285.30 3.56 1.99 1.57 41.36 -289.58 324.16 2.77 1.77 1.00 3.46

sum 4834.45 44.80 19.46 25.34 527.59 5175.61 40.65 19.06 21.59 35.33
ratio 1 1 1 1 1 1.07 0.91 0.98 0.85 0.067

node containing the original Steiner node; And, buffer location is determined by an

analytical formula so that node-to-node routing becomes very fast.

2. Results when More Choices for Expanded Node Set

The second experiment is intended to show that our algorithm is capable in handling the

situation when a greater flexibility is needed for the Steiner node adjustment. As stated in

Section C-3, the set of alternative Steiner nodes is defined by the expanded node set. In Ta-

ble IV, we have a � � � tiles adjustment flexibility while keeping the size of expanded node

set to be 3, which is the same as the first experiment. Similarly, POROSITY is implemented

with each plate consisting of � � � tiles.

Table IV consolidates our claims in the last experiment in the way that:

	 PRAB generates better timing and congestion cost results than POROSITY.

	 PRAB runs 16 times faster.
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Table IV. Comparison between POROSITY and PRAB under � � � tiles adjustment flexi-

bility.

POROSITY[6] Our algorithm PRAB
net req/ps imp/ps cost w.cst b.cst CPU/s req/ps imp/ps cost w.cst b.cst CPU/s
mcu0s5 5913.20 -36.11 4.55 1.68 2.87 14.77 5918.15 -31.16 4.63 1.95 2.68 2.07
mcu1s9 6047.59 111.13 4.19 1.70 2.50 19.48 6040.83 104.37 2.02 1.10 0.92 0.67
n1071 1783.42 60.38 2.88 1.07 1.81 16.91 1791.09 68.05 4.07 1.57 2.50 1.41
n18905 -973.32 89.34 5.39 2.63 2.76 48.17 -1026.91 35.75 3.95 2.80 1.15 10.25
n313 829.23 182.80 4.11 1.86 2.25 13.46 861.31 214.88 2.63 1.74 0.90 0.81
n7866 -18.14 617.13 3.19 2.24 0.95 163.36 18.42 653.69 2.56 2.06 0.50 8.21
n8692 625.81 340.94 5.22 1.59 3.63 25.52 651.07 366.20 4.11 1.74 2.37 1.04
n8702 338.17 2369.26 6.90 2.26 4.65 295.52 386.53 2417.62 5.55 2.54 3.01 11.77
n8730 101.29 640.06 5.81 1.57 4.24 23.25 163.90 702.66 4.70 1.51 3.19 1.36
pointer3 -336.62 277.12 2.62 2.12 0.50 56.93 -301.86 311.89 2.64 1.78 0.86 3.77

sum 4652.05 44.87 18.73 26.14 677.37 4843.95 36.88 18.80 18.08 41.36
ratio 1 1 1 1 1 1.04 0.82 1.00 0.69 0.061

Table IV demonstrates that our algorithm achieves a much faster Steiner tree adjust-

ment with better solution quality and it also reveals the fact that for exploring a larger

flexibility in Steiner node adjustment, our scheme of picking 3 tiles (irregularity) to be

the expanded node set not only makes our algorithm very efficient but also accomplishes

promising Steiner tree adjustment with congestion awareness.

Table V. Summary of total timing improvement and congestion cost for all 10 nets under

different adjustment flexibilities.

adjustment POROSITY[6] Our algorithm PRAB
flexibility imp/ps cost CPU/s imp/ps ratio cost ratio CPU/s ratio� � �

tiles 4834.45 44.80 527.59 5175.61 1.07 40.65 0.91 35.33 0.067
� ��� tiles 4652.05 44.87 677.37 4843.95 1.04 36.88 0.82 41.36 0.061� � �

tiles 4275.41 37.76 859.89 4749.34 1.11 37.15 0.98 42.45 0.049
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3. Results for Different Adjustment Flexibilities

We summarize Table III and IV in Table V. It also includes the results for the � � � tiles

adjustment flexibility setting with the size of expanded node set to be
�
. The columns in

Table V shows the corresponding total value of all
���

nets in previous experiments and

the ratio of our PRAB algorithm comparing to POROSITY. Table V shows that for larger

adjustment flexibility, our PRAB algorithm together with the expanded node set selec-

tion scheme provides a larger speed-up in run-time while its solution quality is still better

than [6] and the results agree with our claim that selecting a small number of tiles for the

expanded node set according to congestion helps improving efficiency but it does not hurt

the solution quality.

4. Summary

Experimental results confirm the effectiveness of our algorithm in producing solutions

with better timing and less placement and routing congestion cost when comparing to the

POROSITY algorithm. In our experiment, we use the Steiner tree construction algorithm

proposed in [15] in both two algorithms. However, any Steiner tree (e.g., a congestion-

aware Steiner tree) can be taken as an input to our plate-based tree adjustment algorithm,

and the similar solution quality of our tree adjustment technique can be expected.

E. Conclusion

In this paper, we proposed a new tree adjustment technique for congestion driven buffered

Steiner tree construction. For a Steiner tree, a tree adjustment is performed such that the tree

is perturbed to less congested region with very limited impact on its timing performance. In

order to anticipate the request from buffer insertion, we applied analytical form buffering

solution ahead of low congestion route search. To our knowledge, this is the first work
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which simultaneously considers the objectives of timing, placement and routing congestion

for the buffered Steiner tree problem. Compared with previous work, this method is faster,

more practical, and generates better solution quality.
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CHAPTER IV

ACCURATE ESTIMATION OF GLOBAL BUFFER DELAY WITHIN A FLOORPLAN

A. Introduction

Buffer insertion is becoming an ever critical component of physical synthesis for timing

closure and design planning (see Cong et al. [26] for a survey). Saxena et al. [8] estimate

that the distance between buffers continues to shrink rapidly. One must be able to effi-

ciently and accurately assess the impact of buffer insertion on a design, whether in terms

of floorplanning, resource allocation, timing estimation or within an actual buffer insertion

heuristic.

To this end, several works (e.g., [24, 25, 27, 28, 7]) have explored closed form expres-

sions for buffer insertion on a line. None of these works model blockages in the layout.

Given the advent of SoC chip design and the trends toward large memory arrays, IP cores,

and hierarchical design, an ever increasing percentage of the layout is covered by blocks

in which buffers cannot be inserted (though routes may cross over). A large blockage can

cripple a route’s ability to meet timing since delay is quadratic in length when no buffers

are inserted, but linear in length for optimal buffer insertion. Blockages are now a first

order delay effect and must be taken into account for any buffer estimation technique to be

sufficiently accurate. Several works, e.g., [19, 14, 22, 20], have explored the problem of

buffer insertion when there are constraints on the buffer positions, but none of them address

the problem of delay estimation.

Our work begins from Otten’s theoretical result [7] that in an optimal buffering, delay

is linear in terms of length. With large blockages and multi-fanout nets, a linear delay solu-

tion is not necessarily realizable. It is not at all immediately obvious how to overcome these

limitations, and whether such an extension (even if it were possible) would even be valid
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in a real design methodology. The primary contribution of this work is to extend Otten’s

theory to predict interconnect delays for multi-fanout nets in the presence of blockages, and

to validate it on real industrial test-cases. The end result of this work is a fast and simple

formula that is proved on real design scenarios, and can be of practical use in early design

planning.

The following key assumptions actually impose little error when compared to an actual

buffer insertion solution:

	 Smaller blocks ignored: Let
�

� # � be the spacing between consecutive buffers that

obtains optimal signal propagation speed. Blocks with width less than can safely be

ignored. While this may cause buffers to be inserted at distance less than the optimal

spacing, having multiple buffers in the library allows the optimal linear delay to still

be achievable. An example is shown in Figure 11. As long as the blocks are smaller

than
�

� # � , the optimal realizable buffering in (b) will have delay very close to the

ideal buffering of (a). Hence we can assume the delay model of (a) to approximate

(b).

	 Single buffer type: A single buffer type that yields the fastest point to point delay is

sufficient for modeling. It turns out that the more buffer types that are actually in the

library, the better the single buffer type approximation. As shown in Figure 11(b)

different size buffers may be required to buffer distances that are less than
�

� # � . Hav-

ing additional buffers in the library allows the situation in (b) better recover from its

perturbation from the ideal buffering in (a).

	 Block locations ignored: whether blocks are closer to the source or sink has little

effect on the actual buffered delay, so we ignore this effect.

	 Infinitesimal decoupling buffers: Buffers for decoupling capacitance off the critical
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path can be modeled to have zero input capacitance. This may lead to slight under-

estimation of delay, but the effect is almost negligible.

	 Larger block front-to-back buffering: A block with width larger than
�

� # � will cause

a linear delay model to break down. To optimize the delay across such a block, and

optimal buffering will almost assuredly place a buffer right before and right after the

block. Hence the delay across the large block can be modeled separately from the

rest of the Steiner route.

Despite the inaccuracy it would seem these assumptions impose, our simple linear

time estimation technique shows high accuracy when compared to realizing a buffer inser-

tion solution with van Ginneken’s algorithm [9].

Fig. 11. Example of (a) an optimally buffered line with equal spaced buffers and (b) an

optimal realizable buffering when blockages are present. Note that unequal buffer

sizes may be used here.

This approach has several potential applications. For example, it can assess the timing

cost of different block configurations during floorplanning or assess different Steiner routes

during wire planning. A global router can use this to decide which of several possible

Steiner tree constructions is likely to yield the best timing result. One may want to do

timing analysis of a floorplan and/or placement without having to actually perform the

buffer insertion for a net. One could embed the formula into a placement algorithm. Finally,
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the recent work of applies this approach in a Steiner tree construction that navigates the

environment as a precursor to buffer insertion.

B. Closed Form Formula for Two-Pin Nets

Consider buffering a line of length
�

. Assume a given “ideal” buffer [7] (or inverter) � that

is optimal for signal propagation speed on a wire. Let the intrinsic resistance and input

capacitance of � be given by ��� and 	 � , respectively. Assume the intrinsic buffer delay is

zero since this is a first order approximation. One could also add an intrinsic resistance

term and derive alternative formulas.

The unit wire resistance and capacitance are given by � and 	 , respectively. We make

the following assumptions:

	 The driver of the net has the same driver resistance as � . If this assumption is incor-

rect, that may indicate a design flaw. Too large a resistance means the driver should

probably be powered up until the resistance is close to � � . Even if the gate cannot

be properly sized, it will likely need a few buffers (in which the last buffer is of size

� ) as close as possible to the driver to power up the signal in order to drive the line.

Similarly, if the resistance is much lower than � , this indicates that the gate is likely

overpowered and can be powered down.

	 The sink of the net has input capacitance 	�� . A different value should not signifi-

cantly change the value, especially for a long line. Significantly different input ca-

pacitances also may potentially indicate an ill-sized sink. Overall, we find that sink

capacitance gets overshadowed by wire capacitance on nets that require buffering.

	 The intrinsic buffer delay is zero. This terms tends to be dominated by the ����	 �
term. However, an intrinsic delay term can easily be incorporated if desired.
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1. Delay Formula with No Blockages

The following result was also derived by Otten [7]. We present it here for completeness.

Theorem 1: The delay
� ��� 
 function of an optimally buffered line of length

�
with no

blockages asymptotically approaches the linear function of the design and buffer parasitics

given by:

� ��� 
 � � � � ��	 � � 	 � � � � ��� 	 ��� 	 
 (4.1)

Proof: Let � be number of stages (so there are �
�
�

buffers) that results in the optimal delay

along
�

, as in Figure 11(a). Several works have proved that the optimal buffer configuration

spaces the buffers at equal distances. Since the source and sink have the same parasitics as

� , all stages have the same delay. The length of wire between consecutive stages is � � . The

delay on the line is given by � times the sum of the buffer delay and the wire delay.

� ��� 
 � � � � � � 	
�

� � 	 ��
 � � �
�

� 	 �� � � 	 � 
�
 (4.2)

We wish to find the optimal number of buffers � . Taking the derivative with respect to

� , setting the expression to zero, and solving for � yields the optimal number of buffers

� � ��� � 	� ����	 � (4.3)

Obviously, if � is not an integer one may need to try rounding � up or down and see

which yields the best delay. Substituting Equation (3) into Equation (2) yields the theorem.

Observe that
� � � 
 is a lower bound on the realizable delay. A nice property of Theo-

rem 1 is that it is independent of the number of buffers. Of course, this will introduce some
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Fig. 12. Ratio of Equation (1) to (2) as a function of wirelength.

error because the delay in (1) is not realizable when the optimal number of stages is not an

integer. However, the error is actually quite small, as illustrated by Figure 12.

The figure presents the ratio of the delay according to the estimation formula in Equa-

tion (1) to the delay of Equation (2). As
�

goes to infinity, the ratio goes to one, meaning

the error goes to zero. Note that the maximum error occurs when the optimum number

of buffers � is not an integer. However, the realizable delay will actually be even less

than in Equation (2) if one permits additional buffer sizing. For example, if the number of

buffers � � �
� � , then one may size up the buffer type until the ideal number is three or size

down until it is four, thereby achieving a slightly better delay. Even without sizing though,

Equation (1) is within 0.5% of Equation (2) when more than one buffer is required.

This result is perhaps not surprising, given the observations of Cong et al. [29]. They

show that a fairly large “feasible region” exists for each buffer to be manipulated without

suffering significant degradation in timing. Our example bears this out as buffers are shifted
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slightly when � is not an integer in order to get equal spacing between buffers. This shifting

results in close to the ideal delay of Equation (1).

Corollary 1: The optimum spacing
�

� # � between buffers is

�
� # �

� � � � ��� 	 �
� 	 (4.4)

2. Delay Formula with Blockages

Next we consider inserting a block of width � somewhere on the line
�

. This notion can be

generalized to include jogs and bends as in Figure 13. Let
��� � 
 � 
 be the length on the route

from � to � . In the figure, we consider
�

to be
�����	� 
 �

��
 and � to be
����� ��
��

��
 . We wish to

derive a delay formula that is a function solely of
�

and � . Our strategy is as follows:

	 For � �
�

� # � , we assume that buffers can be placed (and potentially sized) in such

a way as to avoid the blockage while only suffering a nominal delay penalty. Hence,

we ignore � and just use Theorem 1.

	 For � K �
� # � , we try placing a buffer immediately before and after a blockage. This

minimizes the quadratic effect on delay that the width of the blockage has. For the

rest of the line, we simply invoke Theorem 1, again accepting the potential error from

the inability to have the optimal number of buffers be a non-integer.

For the second scenario ( � K �
� # � ), the buffered delay is given by the buffered delays

of the unblocked wires plus the delay needed to cross the blockage. The latter term is given

by the Elmore delay:

� � � � 
 � � � � 	 � � 	 ��
 � � � � 	 �� � 	 ��
 (4.5)
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Fig. 13. Buffering scheme on a route of length
� ����� �	��
��

��
 with a single blockage spanning

length � ������� ��
��
��
 .

Given a set of blockages 	 with crossing width � K �
� # � , then one can assume the

existence of a single buffer before and after each blockage and summing the pieces together.

We overload the
�

function so that
� � � 
 is the formula in Equation (1) for no blockages

and
� ��� 
 	 
 is the following delay for a set of blockages 	 .

Blockage Buffered Delay Formula:

� ��� 
 	 
 � � ��� � � 
 
 � �


�� �
� � � � 
 ,where

� 
 � �


�� �
� (4.6)

Unlike Theorem 1, this formula is not a lower bound on the actual achievable delay. It

could conceivably over-estimate delay since inserting buffers right after one blockage and

right before another may result in overly tight buffer spacing. However, the delay from

optimal buffered solution is rarely smaller than that from Equation (6) when � K �
� # � , as

we demonstrate in the next section.

C. Two-Pin Experiments

We use the following parameters from 100 nanometer technology [27]: � � �
�

���������	� �
,

	 � �
�

� � � � � � �	� � , ��� � �	���
�

���
, and 	 � � � � � � � . For these values, Equation (4) yields

�
� � �

� � � 	 � � . Assume that the sink and source are both buffers � . We first illustrate
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the accuracy of Equation (6) is accurate, even though it is independent of the blockage

location. For each possible blockage location, we compute
� � � 
 	 
 and the optimal delay

according to van Ginneken’s algorithm (using only buffer type � ).

Fig. 14. Comparison of the blockage buffered delay formula with van Ginneken’s algorithm

for the case of a single blockage on a 2-pin net with length
��� � �

.

Figure 14 shows this for a ten
� �

wire for blockages with widths
�
� � , � � � ,

�
�

�
, and

�
�

� � �
. The horizontal axis give the location of the blockage in terms of the distance

from the source. We observe the following. First, for all examples, the closed form of

Equation (6) is a tight lower bound. Next, the error is less than 1% for all blockage widths

and blockage placement. Finally, the maximum error occurs at the tail ends because this

is where one may have to either insert two buffers that are too close together or drive a

distance that is actually longer than the blockage. With a library of multiple buffer types

for van Ginneken’s algorithm, this small error is reduced even further. Thus, for a single

blockage the error is insignificant.

Next, consider the scenario when multiple blockages cover a significant part of the

wire. We generated ten different instances with either 3 or 4 blockages, covering a large

percentage of a
��� � �

wire. The ten cases are shown in Table VI, where the second column

gives the blockage widths and the third column gives the corresponding distances from the

source. For each case, we report the Blockage Buffered Delay formula and the optimal
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Table VI. Comparison of the blockage buffered delay formula with van Ginneken’s algo-

rithm for multiple blockages on a 2-pin net with length
� � � �

.

test Block widths Positions Eq.(6) van Gin Error
case (mm) (mm) (ps) delay (ps) (%)

1 1.8/4.0/2.9 0.1/2.2/6.7 437.0 438.5 0.35
2 2.5/4.0/2.9 0.3/3.2/8.7 451.9 452.5 0.11
3 0.5/4.7/2.1 1.3/2.2/9.7 440.6 441.5 0.21
4 3.5/4.7/2.0 0.0/4.2/9.7 497.0 497.8 0.14
5 4.5/0.7/3.0 0.5/6.2/8.7 454.1 454.7 0.12
6 2.5/2.1/2.9/1.1 0.3/3.2/6.7/10.0 390.9 391.6 0.16
7 2.5/1.1/5.9/0.5 0.0/3.2/4.7/11.0 527.7 528.1 0.08
8 2.6/4.4/0.9/1.8 0.3/3.2/8.7/10.2 448.5 449.2 0.15
9 1.5/3.3/0.9/4.2 0.3/2.2/5.7/7.3 456.5 457.8 0.28

10 1.5/3.3/3.9/2.2 0.0/2.2/5.7/9.8 456.5 461.7 0.11

delay according to van Ginneken’s algorithm in columns four and five. From the last error

column we see that our formula is well within one percent of optimal for all ten cases.

We have effectively shown that for single and multiple blockages, the error from our

formula is insignificant.

D. Linear Time Estimation for Trees

We now show how to extend the two-pin formulae to trees in the presence of blockages.

Two convenient properties of the following estimation technique are that:

	 It can be decomposed into a summation of piecewise components, just like the El-

more delay, thereby enabling efficient optimization algorithms.

	 The delay can be broken into the sum of the delays on a given path, allowing one to

compute the worst slack of the tree in a single bottom-up traversal.

Let � �!� 

� 
 be a Steiner tree with � nodes and source node
�	�

and sinks
�
�


� � �


�� � .
Let � � � � �  
 be the required arrival time for sink

�  and let � � � 
 be the parent of node
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� � �
� � ��� � . The quality of a given buffer solution is typically measured by the slack at

the source node, which is given by

� � ��� 
 � � � �

���  � �
� � ��� � �  


� � O � � � � ����
 �  
 � (4.7)

where
� O � � � ������
 �  
 is the buffered delay from the

� �
to

�  .
The key idea is to assume that if a path from

� �
to

�  is the most critical, that all sub-

trees off the critical path will be decoupled. To achieve the lowest delay to the critical sink,

the decoupling buffer should have the minimum possible input capacitance; we assume in-

put capacitance zero. We show in Section 5, that this is a second order effects, as compared

to the first order blockage effect.

Fig. 15. Multi-sink tree with only unblocked Steiner points.

1. Case 1: Unblocked Steiner Points

Consider the case where all Steiner points are unblocked, as in the four-sink example of

Figure 15. Here, all decoupling of branches can be accomplished by placing the buffer
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right near the Steiner point. Hence, the delay to a given sink can be broken piecewise into

the sum of its sub-paths. For example, the delays in Figure 15 are given by:

� O � � � � ����
 � ��
 � � ����� ����
 �
��
 
��	��� � � 
�� � 
 
���� � � 
�� ��
 � 
� O � � � � ����
 � � 
 � � ����� ����
 �
� 
 
��	��� � � 
�� � 
 � 
� O � � � � ����
 � � 
 � � ����� ����
 �
� 
 
��	��� � � 
�� � 
 � 
� O � � � � ����
 � � 
 � � ����� ����
 �
� 
 
��	��� � 	 
�� � 
 � 
 (4.8)

where
� ��� 
 	 
 is given by Equation (4.6).

2. Case 2: Blocked Steiner Points

Now consider when Steiner points may lie inside blockages, as in Figure 16. In this case,

decoupling may only occur outside of the blockage after incurring potentially significant

wirelength. This is modeled by keeping track of the off-path capacitance and multiplying

it by the upstream resistance inside the blockage. Also, we need to add the delay from the

extra capacitance loading on the (imaginary) driving buffer. Define the function � � � �
�

��

� 

to be the delay from the off-path capacitance inside a blockage as:

� � ���
�

��

� 

� � � � � � ��� 
 � 	 � � 
 (4.9)

For example, some of the delays in Figure 16 are given by:
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� O � � � ������
 � ��
 � � � ��������
 �
��
 
 �	����� 
 
�� 	 
 
���� � � 
 � ��

� 
 � � � ����� � 
 
�� 	�
 
���� � 	 
�� � 
 � ��� �

	

��
� 
�
� � � � ��� � 
 
 � 
 
 
���� � 
 
�� � 
�
� O � � � ������
 � � 
 � � � ��������
 �

� 
 
 �	����� 
 
�� � 

� 
� � � � ��� � 
 
 � 
 
 
���� � 
 
�� 	�
 � ��� �
	

��
� 
 � �����

	

��
� 
�
 (4.10)

Fig. 16. Multi-sink tree example with blocked Steiner points.

3. Linear Time Estimation Algorithm

The examples of Figure 15 and Figure 16 show that the estimation can be expressed as a

formula to find the delay to any sink. It is not as clear how to compute the slack at the source

without having to compute the delay to each individual sink. We now present a linear time

algorithm to compute the slack at the source in a single bottom-up tree traversal. The key

component is to recognize that at any given Steiner point, the most critical downstream path

can be determined because any upstream delay will be the same for all sinks downstream
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from the Steiner point.

For each node � , let � � � 
 denote the slack at node � , and let 	 �
� 
 denote the sub-tree

capacitance downstream from � that is in the same blockage as � . In Figure 16,

	 � �
	 
 � 	 ����� �

	

��
� 
 � ��� �

	

��
	 
 � �����

	

��
� 
�
 and

	 � � 
 
 � 	 � �
	 
 � 	 ������� 
 
�� � 
 � ��� � 
 
 � 	 
�
 (4.11)

Note that the input buffer capacitance 	�� is not stored in 	 �
� 
 , but is only invoked

when making a delay calculation. We only want to consider this additional capacitance

on the critical path, but not for the whole sub-tree, since the non-critical paths can be

decoupled with much smaller buffers.

We assume the edges in the tree are segmented such that whenever a blockage in in-

tersects a tree edge, the edge is broken into two edges incident to an intermediate boundary

node (as the
�  ’s are in Figure 15 and Figure 16). So each edge

� � 
 � 
 lies either completely

inside or outside a blockage in 	 . Boundary nodes lie outside 	 . A node lies inside 	
only if it is completely inside a block in 	 , e.g., in Figure 16 only

�
	 and

� 
 lie inside 	 .

The algorithm is shown in Figure 17. Instead of using the formulae from Section 2,

the delay is computed piecewise since this affords the simplest direct implementation. Step

1 visits each node � in a bottom-up tree traversal, initializing the downstream capacitance

	 �
� 
 to zero. Step 2 handles the case where � is a sink, initializing the slack to the required

arrival time. Step 3 handles multiple children and iterates through the children � � 
 � � � 
 � � of

� . Step 4 updates upstream information when going from node �  to � via the intermediate

variable �  � � 
 . If the edge
� �  
 � 
 is not in a blockage, the downstream in-blockage length

is zero and the slack is updated by the linear delay from � to �  . The slack is updated

to include the Elmore delay from � to the critical node downstream from �  that is just
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Fig. 17. Linear time estimation algorithm for trees.
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outside the blockage containing � . Finally, for edges
� �  
 � 
 that lie within blockages, all

downstream capacitance is summed in 	 �
� 
 .

Step 5 then identifies the child � � of � that is the ancestor of the most critical sink, and

the slack at � is then set. Finally, if � is not in a blockage, but the edge
� � ��
 � 
 is, then one

must incorporate into the slack the additional delay required for a buffer just outside the

blockage to drive. Since � is not outside the blockage, its downstream capacitance is then

set to zero. Finally, Step 6 returns the slack at the source. The time complexity is linear in

the number of nodes.

E. Experiments for Multi-Sink Nets

We call our estimation algorithm in Figure 17 BELT for Blockage Estimation in Linear

Time. We consider three other buffered slack calculations.

	 One can compute the estimation formula while ignoring blockages. This in effect

reduces to the estimations of [29, 7], whereby one just looks at the length of each path

and performs an optimal buffering as if it were a 2-pin net. Since this is essentially

the BELT estimation without the blockages, we call this formula ELT.

	 As in Section 3, we run van Ginneken’s algorithm using the single buffer type � , and

call this VG1 since there is one buffer type.

	 In practice, we have the ability to run actual buffer insertion with additional buffers

types. We generated three additional smaller buffers (since � is already a larger

buffer) to use with van Ginneken framework. We call this algorithm VG4.

All codes were written in C++, and compiled using g++ version 2.95 on a Sun Ultra-4

running SunOS 5.7.



49

For the following experiments, the required arrival times were chosen to be the same

for each sink since this actually increases the likelihood of error in the delay estimation

formula. If one sink is substantially more critical, then this sink will have all off-path

branches decoupled, making it an easier problem. Consequently, instead of reporting slack,

we report the maximum path delay (which also makes interpreting results more intuitive).

1. Results on Random Nets

Our first experiment examines randomly generated nets. First we created a simple artificial

floorplan. The plan has 16 high level square blocks, each five millimeters on a side. The

blocks are arranged in a regular pattern on a square layout that is 21 millimeters on a side.

Thus, there is sufficient space in the alleys ( wide) between blocks to allow buffer insertion.

This type of layout loosely corresponds to the kind of behavior one might expect from a

large chunky hierarchical design.

Next, we generated nine nets each of size three through ten pins. We ran the four

different algorithms, ELT, BELT, VG1 and VG4, on each net and summarize the results

in Table VII. In each case we set the driver strength and the sink size to be equal to

buffer � . The Steiner topology was generated using the C-Tree algorithm which ignores

blockages [15]. Delay calculations are for 0.10 micron technology [27].

The table presents a single row summarizing the average of nine different nets each

having the specified number of sinks. For each net, we report the average wirelength and

percent of the net that was blocked. For the four algorithms we present the average max-

imum delay for the net. The solutions of VG4 are also evaluated by SPICE model and

the results are shown in the rightmost column. The SPICE results are based on 50% Vdd

signal delay. Column 5 gives the ratio of ELT to BELT delay as a percentage. Note that

by definition ELT will always be less than BELT. The percentage ratio of BELT to VG4

delay is listed in column 7 for each case. It is well known that the Elmore delay is an upper
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Table VII. Experiments on randomly generated nets. Each row represents the average of

nine different nets.

net WL % %ELT/ %BELT/ BELT %BELT ln2/ VG4
sinks ( ��� ) Blk ELT BELT BELT VG4 ln2 VG4 SPICE VG1 VG4 SPICE

3 29104 88.5 552.8 45.0 1225.9 99.4 849.7 93.7 1235.0 1232.8 906.9
4 41983 93.3 617.0 43.5 1416.6 99.6 981.9 92.6 1428.7 1422.1 1060.6
5 39904 90.2 512.8 42.1 1216.6 99.2 843.3 93.2 1230.2 1225.9 904.5
6 46559 90.2 569.8 43.9 1295.6 99.4 898.1 93.0 1308.0 1303.7 965.5
7 50373 88.9 548.6 42.2 1299.3 99.2 900.6 93.5 1314.2 1309.4 963.0
8 59190 91.1 663.0 43.0 1541.7 98.9 1068.6 95.7 1558.0 1551.2 1117.0
9 54659 90.5 539.0 39.8 1353.0 99.4 937.8 94.0 1375.3 1368.2 997.7
10 65350 94.0 595.1 41.7 1426.4 98.9 988.7 95.1 1449.1 1441.8 1040.2

bound of real delay and people often multiply
� � � with the Elmore delay to reflect 50%

Vdd signal delay. When comparing the timing performance of two Steiner trees for a same

net, the scaling of
� � � does not affect the conclusion of the comparison. In order to have

more fair comparison with the SPICE results, we report the ratio of the BELT results scaled

by
� � � to the SPICE based VG4 results in column 9. We observe the following:

	 By comparing the ratio of ELT to BELT in column 5, observe if one ignores blockage,

the errors are typically off by over a factor of two. Of course the degree of the

error will depend on the size of the blocks. Clearly, ignoring blocks causes gross

underestimation of the achievable delay.

	 Comparing BELT to VG1, we see that the delay estimation is quite accurate, and

tends to underestimate the achievable delay by 1.1% on average.

	 Comparing BELT to VG4, we see that the error is reduced even further, to 0.8% on

average.

	 When compared to SPICE based VG4, the error of BELT is always less than 8%.

Clearly, the accuracy of BELT is sufficient while the accuracy of an estimation tech-

nique that is not blockage aware begins to suffer fairly significant underestimation. This
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Table VIII. Experiments for 13 nets from an industry design.

net WL % %BELT/ BELT %BELT ln2/ VG4
name ( ��� ) Sinks Blk ELT BELT VG4 ln2 VG4 SPICE VG1 VG4 SPICE
mcu0 50540 18 89.9 380 822 95.1 569.9 88.6 872 864 643.4
mcu1 41780 19 96.2 492 1052 97.4 729.3 92.6 1084 1080 787.3
n107 14870 17 97.6 257 361 91.4 250.2 85.8 396 395 291.7
n189 64700 29 83.8 573 1486 96.9 1029.8 91.9 1556 1532 1120.9
n313 69430 19 96.6 587 1821 99.0 1262.3 95.6 1850 1840 1319.7
n786 53110 32 96.4 1126 3574 92.3 2477.2 85.1 3880 3873 2911.3
n869 42180 21 96.6 1042 2605 92.6 1805.3 85.1 2816 2813 2122.5
n870 45230 21 97.3 972 2326 93.1 1612.4 85.4 2498 2498 1887.3
n873 49290 43 78.0 527 1363 99.1 944.6 92.1 1381 1375 1026.1
poi3 63600 20 96.8 1256 3746 97.4 2596.6 89.6 3854 3847 2898.1
big1 195300 88 85.8 1143 5920 97.6 4103.6 99.8 6115 6063 4111.0
big2 122500 79 93.1 545 1577 96.0 1093.1 95.9 1657 1643 1139.9
big3 95320 63 94.1 403 1415 96.8 980.5 96.7 1478 1460 1014.0

effect becomes magnified when the blockage map has large blocks that may correspond to

IP cores or memory.

2. Results on Large Real Nets

Our next experiments use the Steiner trees for a set of the industrial nets reported in [15]

and [22]. We perform the same set of experiments as in Section 1 and report the results in

Table VIII. This time the nets are listed on an individual basis.

We observe the following:

	 On average, the ELT/BELT percentage is 36.2%, which means that blockage has on

average about a 64% impact for these nets.

	 For some cases, the impact of blockage is not that significant, e.g., for net n107 ELT

is a reasonable estimate. For others, it is quite large, e.g., netbig1 has an ELT/BELT

percentage of 19.3%. In this case, we see that ELT underestimates the (realizable)

VG4 delay by 81%, while BELT underestimates the VG4 delay by 3%.

	 On average the error of BELT compared to VG4 is 5.2%, while on average the VG4
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delay is almost a factor of three higher than that predicted by ELT.

	 Compared to SPICE based VG4, the error of BELT is 9% on average.

These experiments illustrates that our estimation technique is sufficiently accurate for

design planning, while ignoring blockages is prohibitively costly.

Finally, note how efficient the estimation technique is. The total runtime in seconds

for running the above 13 test cases was 0.24, 23.0 and 29.0 for BELT, VG1 and VG4,

respectively. In other words, BELT is about 100 times faster than running an actual buffer

insertion algorithm. For medium sized nets, such as n786 and n869, the runtime of VG4

plus SPICE simulation is over 10000 times slower than the runtime of BELT.

F. Conclusion

We presented closed form formulae for estimating the achievable buffered delay when

buffering restrictions exist in the layout. We demonstrate that adding blockages to the

layout can cause significant error in estimation techniques that ignore the blockage terrain.

We also showed that our technique is a lower bound, has an error of less than one percent

for two-pin nets, and has only a few percent error for multi-sink nets.
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CHAPTER V

PATH BASED BUFFER INSERTION

A. Introduction

Buffer insertion is widely recognized as an essential technique for interconnect optimiza-

tion [30] while interconnect is a fundamental limit [31] for VLSI technology progress.

The importance of buffer insertion has resulted in numerous algorithmic and methodologic

works. Perhaps the most influential work is the classic van Ginneken’s algorithm [9].

Given a Steiner tree spanning a signal net and candidate buffer locations on the tree,

van Ginneken’s dynamic programming (VGDP) algorithm can find the maximum timing

slack solution optimally in quadratic time. This algorithm is extended to handle buffer

cost and buffer library in [11]. The noise avoidance issue is addressed in buffer inser-

tion in [32]. Higher order delay models are adopted in buffer insertion in [33]. For 2-pin

nets, quadratic programming based approach [34] and closed form buffering solutions are

proposed in [28, 35]. Recently, an � � � ����� � 
 buffer insertion algorithm is developed [36].

Recently, an industry study [37] predicts that
� � � of the cells on a chip will be buffers

at
� ��� � . The huge number of buffers may affect various aspects of circuit design and

performance including timing [30], power dissipation [11], signal integrity [32], placement

and routing congestion [37]. Therefore, buffer insertion needs to be conducted in a more

elaborated manner to push the envelope of performance.

In fact, most of the previous works on buffer insertion are net based, i.e., buffer inser-

tion is performed on one net after another individually. Even though the buffer insertion

problem with net based formulations is relatively easy to solve, it may lead to sub-optimal

path delay or unnecessary buffer usage due to the lack of global view. The weakness of net

based buffer insertion can be illustrated through a very simple example in Figure 18. Con-
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sider two nets � and � along a critical path in the circuit. If we perform buffer insertion on

net � first, 4 buffers are needed on B and then no buffer is needed on � for satisfying the

critical path timing constraint. This is denoted by solution
� �

. However, the constraint can

also be satisfied by putting 1 buffer on both � and � , denoted as
� �

. Optimizing the entire

path may get a better solution and certainly can lead to a better deployment of buffering

resources. Usually, net based dynamic programming algorithms such as [11] do not have a

global view, nets which are processed first tend to over-consume buffer resources.

b

c
a

A
B

b

c
a

A
B

S1 S2

Fig. 18. Net based buffer insertion solutions depend on net ordering.

Despite their current popularity, the net based buffer insertion methods, without global

view of the whole combinational circuit, will become inadequate for future technologies.

In [38, 39], network based buffer insertion algorithms are proposed. In these approaches,

buffer insertion is performed on all nets between PI/registers and registers/PO simultane-

ously through Lagrangian relaxation. However, both works include a restrictive assumption

that buffers are inserted at every branch node to simplify the calculation of delay. In prac-

tice, whether or not buffers are necessary at certain branch node depends on timing con-

straints of related paths. Due to path re-convergence, it is very difficult to perform network

based buffer insertion without the assumption. Although their works usually produces good

results, they do not scale very well. Indeed, in [38], the CPU time consumption explodes

for the larger testcases. When buffer insertion is considered beyond the limit of nets or

gates, it is natural to consider gate sizing at the same time. In [40], a greedy heuristic on

integrated gate sizing and buffer insertion is proposed. However, it neglects wire delays.
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The network based methods make severe oversimplifications in order to achieve a solution,

such as ignoring wire delays entirely. Our method takes advantage of some global opti-

mization without sacrificing any of the modeling accuracy that the net based approaches

provide.

In this paper, we propose a path based buffer insertion heuristic in order to minimize

buffer/gate cost subject to path timing constraints. This approach is in the middle be-

tween net based and network based methods. However, it can achieve both better solution

quality and faster computation runtime. Since our path based approach can easily handle

false paths, the solution quality can be much better than network based methods. Besides,

instead of relying solely on static timing analysis, a fast estimation on buffered delay is ap-

plied on the entire network so that a better global view is obtained. Our path based buffer

insertion algorithm is based on the VGDP algorithm since it is robust and sophisticated

enough to handle different instances. However, directly using VGDP may induce problems

and we successfully solve those problems by a set of techniques such as off-path required

arrival time estimation and gate sizing at sinks. Experimental results show that the usage

in buffer/gate cost is reduced by 71% on average through our approach compared with

traditional net based algorithms. The runtime is also reasonably fast.

The conference version of our paper can be found in [41]. However, this paper con-

tains more details in algorithm description and new experimental results. Moreover, exper-

imental results on ISCAS circuits are also included.

B. Problem Formulation

A placed and routed circuit can be formulated as a directed acyclic graph (DAG) � �
�!� 

� 
 . An example is shown in Figure 19. A vertex � � �

can be either (1) a primary

input (PI) / primary output (PO) (e.g., nodes � and � in Figure 19(b)), or (2) a pin of a
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(c) The circuit model
with routing tree ab-
straction

Fig. 19. Example of combinational circuit models

module (e.g., � and � ), or (3) a Steiner node on the route (e.g., O , shown as double circle

in Figure 19(b)), or (4) a candidate buffer insertion location (not shown in Figure 19(b)).

An edge is either an interconnect wire (solid line) or an input-to-output path (dotted line)

within a module.

In this paper, interconnect wires are modeled as a distributed RC network and we

adopt the Elmore delay model. Thus, an interconnect � is annotated by the corresponding

resistance � � � 
 and capacitance 	 � � 
 . A buffer �  in the buffer library is defined by

its load capacitance 	 � �  
 , intrinsic delay � � �  
 and output resistance � � �  
 , while 	 � �  

represents the buffer cost which can be either buffer area or power.

A module is identified by the delay � � � � for each input-to-output path, the capacitance

	 � of the input pin and the resistance � � of the output pin. If
�

is the size of the module,

	 � � �	 ��� � � � and � � � �� � � � , where �	 � 
 �� � 
 � � are the unit size output resistance, unit

size gate area capacitance and gate perimeter capacitance of the module. In this paper,

the size of each gate is selected from the set
� � ���

�

��
�


� � �


�� � � . Each primary input

is annotated with a user-defined arrival time while each primary output a required arrival
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time.

There may exist buffer blockages in the floorplan, for example, the shaded box in

Figure 19(a). When a buffer insertion candidate location overlaps with the region of the

buffer blockages, it is restricted such that no buffer can be placed. In other words, there

exists no buffer candidate location within the buffer blockage region.

Signal slew rate is also considered in our path based buffer insertion algorithm. For

a signal propagating along a wire, we employ a simple metric of � ��
 � � � ������
�� � � O � �
� � 	�� � � � 

� O � O � � � [30]. The slew rate at the receiving end of a wire depends on both the

propagation slew rate
� # and the launching slew rate

�
� at the driving end of the wire and

is given in [42] as
� � �# � � �

� . In our buffer insertion algorithm, any buffer solution with

receiving slew rate greater than a certain threshold will be discarded.

The problem of simultaneous gate sizing and buffer insertion is defined as follows.

Given a DAG which represents a placed and routed combinational circuit, a buffer library, a

set of buffer candidate locations, a set of buffer blockage regions, find a buffering solution

such that the overall cost of buffers and gate sizes is minimized. Buffering solution is in

terms of the locations and types of buffers inserted, and sizes of the gates. At the same

time, the solution is subject to the constraint of both the arrival time at each primary input

and the required arrival time at each primary output as well as the slew rate requirement.

As mentioned in Section A, van Ginneken’s dynamic programming (VGDP) approach

is very flexible and efficient so that it can be easily applied to buffer blockage avoid-

ance (by selectively setting candidate buffer locations) while considering buffer cost (i.e.,

area/power), buffer polarity and slew rate [43]. In order to utilize the flexibility and effi-

ciency of VGDP, we intend to use net based buffer insertion algorithm as a building block

for path based buffer insertion. In this way, we abstract the routing tree of the circuit and

ignore all the details (i.e., Steiner node and interconnect tree structure, etc.) within the

routing tree. An example of our circuit model is shown in Figure 19(c). In our model,
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we abstract all interconnect routing so that vertices only represent PI/PO of the circuit and

input/output pins of modules (we use this definition for vertex hereafter in this paper) while

edges only for input-to-output paths within a module. The routing tree is identified by its

root vertex. For example, the routing tree ��� � � 
 is rooted at vertex � and with sinks � and
�

. In a combinational circuit, the root of a routing tree is either a PI vertex or an output

pin of a module, while a sink is either a PO vertex or an input pin of a module.

C. Net Based Buffer Insertion

For a routing tree, if the required arrival time (RAT) at each sink vertex is given, VGDP

algorithm traverses every candidate buffer location �  of the tree in a bottom-up manner,

propagating a set of solutions in the form of
� � 
 � 
 � 
 which stands for downstream load

capacitance, RAT, and total buffer cost respectively. Each solution reflects the intermediate

results of a buffering solution on the subtree rooted at �  . When the propagation reaches the

driver (i.e., root vertex), a set of solution with different cost-RAT tradeoff is obtained. If

the arrival time (AT) at the root vertex is given, we pick the solution with minimum buffer

cost while timing requirement is satisfied.

Conventionally, net based buffer insertion for the whole circuit is accomplished by

iteratively performing the following steps:

1. Static timing analysis (STA) and obtain the RAT and AT at every vertex

2. Perform buffer insertion for a routing tree with the AT and RAT obtained from STA

(according to a specific net order. Discussion of net order is in Section F.)

3. Update STA results (of the fanin/fanout cone of the buffered routing tree) and per-

form buffer insertion for the next routing tree

However, this is in fact a greedy algorithm and in our experiment, we found that
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the buffering solution of this approach is far from optimal even we let the iteration run

unboundedly in order to refine the buffering solution for buffer cost reduction. Our obser-

vation to the problems of net based buffering include:

	 STA is usually not buffer aware so the timing estimation at the first iterations are

inaccurate and the circuit is very timing critical. Hence, the first processed nets tend

to over-consume buffer resources (the case of net � in
� �

of Figure 18).

	 Since the algorithm is in nature greedy and a poor buffering decision to a routing

tree ��� � � 
 due to incorrect timing estimation may lead to a poor buffering decision

at other routing trees ��� � � 
 where � is a transitive fanin/fanout of � . Thus, earlier

buffering decision may have degraded the quality of the whole buffering process,

which cannot be improved in latter iterations. This is especially true for those nets

along a critical path from PI to PO.

	 Buffering solution of a routing tree is highly depending on the criticality of the sinks,

which in turn depends on buffering of their fanout routing tree. Therefore, the criti-

cality can be substantially different from the results of STA due to buffer blockages,

which brings significant error in final buffering solution.

D. Path Based Buffer Insertion

In this section, we propose our path based buffer insertion algorithm (PBBI) as described in

this section. The key elements of our buffer insertion algorithm are (i) buffer aware static

timing analysis, (ii) path based VGDP buffer insertion, and (iii) off-path required arrival

time estimation.

Different from net based buffering insertion schemes, our PBBI algorithm starts with

buffer aware static timing analysis. The steps are as follows:
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(b) The “merged tree”

Fig. 20. Example of algorithm overview

(1) The buffer aware static timing analysis takes care of buffer blockages and therefore

the resultant AT and RAT is comparatively much more accurate than ordinary STA

and it would not over-consume buffer resources even at the very beginning.

(2) A list of � most critical paths is obtained based on the buffer aware STA.

(3) Merge all routing trees of the vertices along the path into one big routing tree and

then VGDP is applied to the “merged trees”.

(4) repeat step (3) for every path found in step (2).

For example, in Figure 20(a), if the critical path is
� ��� ��� ��� � � , the “merged

tree” are formed from ��� � � 
 and ��� � � 
 , shown in Figure 20(b). In our approach, the

root (e.g., � ) and the sink (e.g., � ) along the path have a fixed AT and RAT respectively,

which in turn produces a relatively good buffering solution. For all other sinks, namely off-

path sinks (e.g.,
� 
 �

), we propose an approach to adjust their RAT values to become more

accurate and then the adjusted RAT are fed into the VGDP algorithm. In this section, we
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assume an efficient VGDP algorithm is given such that it considers buffer blockage, buffer

polarity, buffer area/power and slew rate.

1. Buffer Aware Static Timing Analysis

Critical path method is widely used as a tool for static timing analysis (STA) [44]. It

propagates the static delay information throughout the circuit. However, the delay along

interconnect changes during the process buffer insertion which is a main source of error of

net based buffer insertion algorithms, as mentioned in Section A. A work which predicts

the post-buffering delay is in [45]. The work derives delay equations along a buffered

wire segment considering buffer blockages and applies the equations for delay estimation

upon multi-pin nets. Experimental results show that the delay estimation merely produces

insignificant errors. Toward our problem, we verify in our experiments that integrating this

buffer aware delay estimation with STA provides a good guide for buffer insertion using

VGDP. With buffer aware STA, early buffering step will not over-consume buffer resource

which trap the overall solution into a local optimum.

Buffer aware STA not only provides a good basis for VGDP algorithm on a path, but

it is also a crucial element of the whole path based buffer insertion algorithm. For example,

if we are performing buffer insertion on a critical path � � from PI to PO, it propagates a

set of solutions from the PO vertex with accurate RAT information (since the RAT at PO

is fixed by user specification). During the propagation, there may exist some branch paths

such that the RAT of those paths is needed to compute the solution sets. In such a way, if

the RAT of branch paths is not accurate since STA is not aware of buffering along those

branches, VGDP may think that the branches are more critical than � � , which destroys the

solution quality of the path based buffer insertion algorithm.
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2. Path Based Buffer Insertion

In order to accomplish path based buffer insertion, a list of distinct paths must be first

obtained. With the help of buffer aware STA, � most critical paths can be found using

a polynomial-time algorithm in [46] ( � can be changed during the progress of the algo-

rithm). The parameter � is a tradeoff between quality and speed while � can be determined

on the fly - stop finding the next critical path if the slack of the path is greater than a

specific value. Note that the accuracy of our algorithm can also be improved when false

paths are detected and only sensitizable critical path are selected. In the whole circuit,

each routing tree have to be processed once. Therefore, if the list of paths are overlap-

ping with each other, we delete the common vertices from the less-critical path and cut it

into different distinct paths. For example, if the
�

most critical paths in Figure 19(c) is
� � 
�� 
 � 
 � ��� � � 
 � 
 � 
 � 
 
 
�� ��� � � 
 � 
 
 
�� � , after removing common vertices, the list of distinct

paths becomes
� � 
�� 
 � 
 � ��� � � 
 ����� � � 
 
 
 � ��� � � 
 ��� .

After getting a list of distinct paths, for each path, the algorithm treats all routing trees

along the path as one big routing tree. The merging process is simple since the routing trees

is cascaded together such that the sink (an input pin of a module) along the path merges

into the root (an output pin of the same module) of the fanout routing tree. The merged

vertex is treated as a candidate buffer location such that a special buffer must be inserted.

The parameters of the special buffer corresponds to the capacitance/delay/resistance of

the pin-to-pin path of the module. In Figure 19(c), the merged routing tree on the path
� � 
�� 
 � 
 � � consists of three sinks

� 
 � 
 � rooted at � . �
and � are merged into one buffer

location with a special buffer � � according to input-to-output path of M �
(The delay model

of a buffer is similar to that of an input-to-output path of a module). After all, VGDP

algorithm is applied to the merged routing tree. After all paths have been processed, there

may exist some routing trees in which no buffer insertion has been performed. They are
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all comparatively non-critical and net based buffer insertion can be carried out for each of

those nets. In summary, PBBI only processes each of merged trees (which are generated

by distinct paths) once. In other words, our algorithm performs buffer insertion on each net

only once in one single pass.

3. Off-Path Required Arrival Time Estimation

Since the PBBI algorithm performs buffer insertion in a path-by-path basis, the buffering

solution may violate the timing constraints. An example is shown in Figure 21. The straight

line represents input/output path within a module and dotted curly line stands for a path.

Assume that � is a PI vertex and � is a PO vertex and the algorithm processes the path

� � � � � � � � � � � � � � � � prior to another path � � � � ��� � � . We define the

off-path sinks of a path � � as the sinks of the merged routing tree derived from � � such that

the sinks are not along � � . For example, for the path � � � � � � � � ��� � � � � � � ,
� is an off-path sink of � � . When applying VGDP on the path � � , actual buffering solution

may reduce the delay along
� � � � � to a value which is less than our delay estimation

using buffer aware STA. Since the delay between � and � is bounded above by the an user

specified RAT and AT, the delay along the paths � � �
and ��� � could be larger than

our estimation. In such case, it could happen that even with the minimum-delay buffering

along the path � � � , the delay along � � � � � � � � � � � � � � � � still violates the

timing constraint. After each time we perform path based buffering insertion along a path,

the AT and RAT of fanin and fanout cone for each vertex of the path are updated, so the

only situation which causes the problem is that there exists re-convergence along the path

we are performing buffer insertion. As in the previous example, we are inserting buffer

along the path � � , assuming that there exists a path � � � in the list of distinct paths. The

required arrival time of the off-path sink � (denoted as � � �  ) does not reflect the buffering

solution along � � � since the final buffering solution is unknown until the whole path � �
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is done. In this consideration, an equation for spreading out the slack of a path to all the

routing tree is needed, which is presented in Theorem 1. In the following, we first derive

the equation and revisit the problem in the example at the end of this section.

a

g

h

i

p

q

r z
RT(g)

Fig. 21. A problem of path based buffer insertion algorithm

Considering a circuit which only contains a cascade of two-pin routing trees
� ��� � �

��
 
 ��� � �
� 
 
 � � � 
 ��� ��� ��

� as shown in Figure 22. For each routing tree

� ��� ���  
 �
with root

�  , the only sink is �  . With optimal buffering, we can find the minimum delay

�  for each ��� � �  
 . And based on the minimum delay, for each
�  , � � � � and � ��� � � is

propagated from PI and PO respectively according to the user specified timing constraint.

Note that since the circuit is a sequence of 2-pin net, the slack � ��� � �
�
� � � � must be the

same for all
�  . If � � � � � � � � � � , the circuit has zero slack and only the minimum-delay

buffering solution can fulfill the timing constraint. However, if slack �
�
, different buffer-

ing with smaller buffer cost is possible. We can denote � � � � �
�
� � � � as “useful slack”

resource such that buffering algorithm uses it to reduce the total buffer cost. Intuitively,

since the ratio of timing improvement to buffer cost is usually greatest around the middle

region of the cost-delay tradeoff curve, a buffering solution for the whole circuit with min-

imum cost tends to spread the “useful slack” to each ��� � �  
 . Based on a buffering solution
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� with minimum cost, we can calculate the delay � � , � � �

� � and � ��� �

� � for each ��� � �  

accordingly. Note that � � �

���
� ��� ��� and � � � �

���
� � � � ��� . Ideally, � � �

� � � � ��� �

� � since

the solution � would consume “useful slack” completely.

s1

RT(s1)

t1 s2

RT(s2)

t2 sk

RT(sk)

tk
...

Fig. 22. Example of a circuit for Theorem 1

The following theorem is to quantify the spreading of “useful slack” and it matches

with our experimental results of buffering for minimum cost. The minimum delay to PO

is � � � �

���

�
� � � �

� � with buffering solution � and that is � ��� ���
�

� � � � � with optimal

buffering solution for minimum delay.

Theorem 1 If the “useful slack” evenly distributes to every ��� � �  
 for � � � 

� � �


 � in

a manner that the ratio of minimum delay to PO with buffering solution � to that with

optimal buffering solution is a constant among all
�  , then

� � � �

� � � � ��� � �
� � � � � � �

�
� � � � ��
 � � � � � �

�
� � � � 


� � � �
�
� � ��� � (5.1)

Proof From the assumption that the delay ratio is a constant, we have

� � � �

� �

�
� � � �

� �
� � � � �

�
� � � � �

� � ��� �

� �

�
� � � �

���

� ��� � �
�
� ��� � � (5.2)

� � � � �
�
� � � �

� �
� � � ���

�
� � � � �

� � ��� ���
�
� � � �

���

� � � ���
�
� � � ��� (5.3)
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�
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� � � � � � � ���
�
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�
��� ��� 


� � � ���
�
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� � � � �
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�
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� � � � �
�
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� � � � � � � ���
�
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 � � � � ���

�
� � ��� 


� � ���
�
� � ��� (5.6)
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Equations (5.2)-(5.6) shows the derivation of Theorem 1. From (5.2) to (5.3), we

substitute � � � �

��� with � � � ��� and subtract
�

from both side. (5.4) is based on the fact that

� � � �

���
� � � ��� with zero slack and (5.5) is due to equal slack along the 2-pin routing trees.

Finally, we have (5.6) because � � � ���
�
� � � ��� � � � ���

�
��� ��� which is delay from

�
� to

��� . �

Theorem 1 provides a method for adjusting the required arrival time of � in Figure 21

and the equation is shown in (5.7), where � � ��� is the required arrival time at � and � ���
is the arrival time at � based on buffer aware STA. Although the slack � �����

�
����� is due

to the path
� � � � � � � � � � � � � which is less than the slack at � , we can use

� � ���
�
� ��� as a lower bound estimation. In such case, spreading the value of � �����

�
� ���

over path � � ��� � � � � � � � gives a good adjustment to � � �  and make the sink �

a little bit more critical in the routing tree ��� ��� 
 .

adjusted � � �  � � ���  
� � � � ���

�
� ���  
 � � �����

�
� ��� 


� ���
�
��� � (5.7)

E. Path Based Buffer Insertion and Simultaneous Gate Sizing

The framework of our PBBI algorithm provides us the flexibility in integrating gate sizing

into PBBI. It is due to the fact that when we cascade several routing trees into one merged

tree, input pin and output pin of a module along the processing path is treated as one single

vertex � , which is a special candidate buffer location and a buffer must be inserted at �

while the resistance/delay/capacitance characteristic of the buffer is derived from that of

the module’s input-to-output path. In this point of view, if we also consider gate sizing

with � choices of size, then we can derive � special buffers according to the sizes. Thus, by

restricting the VGDP algorithm to insert one and only one buffer at � choosing from the �

special buffers, path based simultaneous buffer insertion and gate sizing is accomplished.
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Indeed, treating the gate sizing as selecting a buffer from a buffer library may cause

error because a gate can have more than one input and more than one output. When the

algorithm changes the size of a gate along a path, for those input pins and output pins

which are not along the path, their capacitance or resistance values change simultaneously

without considering the impact resulted from the change. However, such sacrifice helps

maintaining the solution quality of the processing path (which must be more critical than

the unprocessed paths) and we have verified this claim by our experimental results such

that the algorithm can substantially reduce overall area of buffers and gates.

1. Gate Sizing at the Sinks

Along a path, using path based simultaneous buffer insertion and gate sizing on the merged

routing tree cannot solve the problem when the root of the merged routing tree also need

gate sizing. It is especially true when the root of the merged routing tree is an output pin

of a module. For example, in Figure 19(c), after we already finished buffer insertion for

the merged routing tree of ��� � � 
 and ��� � � 
 , if we are processing the path
� 
 
 � � , the

merged routing tree is just ��� � 
 
 itself. In addition to applying VGDP to ��� � 
 
 , we have

to perform gate sizing for the module
� �

with pins
� � 
 � 
 
 � .

Sizing up a gate reduces the output resistance and so the delay is reduced. At the same

time, the input capacitance increases which in turn raises the delay of upstream intercon-

nect. Such delay increase can be handled by adding a delay penalty when doing gate sizing

as proposed in [47]. However, the main problem about this issue is that the increase in load

capacitance may alter the other path delays of the previously buffered routing tree. In the

above example, if we size up the module
� �

, the increase in input capacitance at
�

may

increase the downstream load capacitance of ��� � � 
 and it may in turn increase the delay

along the path
� � 
 � � .

In order to fix this problem, we perform gate sizing at all sinks of the merged routing
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tree while we apply VGDP. If the sink vertex is not a PO, and if the module at the sink

is not sized previously, we perform gate sizing for the module at the sink. At a sink
�

without gate sizing, VGDP starts to propagate one solution with the corresponding load

capacitance, the required arrival time � ��� � , and zero cost (which means no buffer has

been inserted up to
�
). With gate sizing at

�
, we propagate � solutions ( � is the total number

of different gate sizes), each of which have a scaled load capacitance, the gate size as its

cost, and an modified required arrival time � � � �� � �  
 . Assume that the original output

resistance of the gate is � � and that of a sized gate is �  , while ��� and 	 � is the output

resistance and input capacitance of the buffer used in buffer aware STA. For simplicity, we

assume that there is a linear relationship between the delay change
� � ��� �� ���  


�
� � � � 


and the change in resistance
� �  

�
� � 
 . Empirically, we found that (5.8) gives a good and

effective calculation for � ��� �� � �  
 , where
�

� # � is the optimal buffer interval which is also

used in [45]. Intuitively,
� �  

�
� � 
 ��� � # � 	 � 	 � 
 gives the change in delay if there exists a

buffer in the downstream of
�

while the length between
�

and the buffer is
�

� # � .

� � � �� � � � � � � � �  
�
� � 
 ��� � # � 	 � 	 � 


� � � �� � � � � � � � �  
�
� � 
 � � � � � 	 � 	

� � 	 � 
 (5.8)

F. Experimental Results

We have implemented a very efficient VGDP buffer insertion algorithm according to [48]

which uses approximation techniques to improve the efficiency. We have performed exper-

iments on
���

combinational circuits which are randomly generated based on real nets from

IBM. For simplicity, buffer cost refers to the number of buffers inserted, which approxi-

mately stands for buffer area. All experiments are running on a Debian Linux machine with

2.4 GHz processor and 1GB RAM. The size of each testcase is summarized in Table IX.
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Table IX. Summary of testcases

Circuit Size
circuit # mod # edge total # B candidate
a1 53 68 121 1449
a2 154 160 314 1880
a3 259 272 531 3190
a4 328 352 680 3897
a5 465 480 945 4316
a6 564 592 1156 6625
a7 742 768 1510 6810
a8 766 816 1582 8658
a9 893 928 1821 8083
a10 999 1072 2071 11623
a11 1958 2136 4094 20432
a12 2983 3120 6103 25738

The second column refers to the number of modulus in the circuit. The third column refers

to the number of edges, which equals the total number of sinks for all routing trees. The

column “total” is “mod”+“edge” which is a measure of the circuit size. “# B candidate” is

the total number of buffer candidate locations for each circuit.

1. Path Based Buffer Insertion

We first compare our PBBI algorithm with the net based buffer insertion algorithm using

the same implementation of VGDP.

In order to know the minimum achievable delay of the circuit with optimal buffer in-

sertion, for each net in the circuit, a minimum-delay buffer insertion algorithm is applied,

namely “Net based (min delay)”. The minimum delay in � � and the number of buffers

inserted are listed in the second and third columns of Table X. We then set the delay con-

straint of a circuit to be its minimum achievable delay. For all the following comparisons

between VGDP and PBBI, the worst slacks of the circuit for both methods are similar and
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are not shown in the tables. For net based buffering, we tried several different ordering (see

Section G) and made the conclusion that, on average, all tested ordering performs similarly

in terms of total buffer cost. As a result, in our experimental results, we used the ordering

based on ascending order of worse slack for comparison. The results are shown in Table X.

The column “B cost” stands for the total number of buffers inserted while “% redu” is the

percentage of buffer cost reduction when PBBI is compared to net based buffer insertion

(min cost) which minimizes buffer cost while subjects to delay constraint, as described in

Section C.

We also performed similar experiments on net based buffer insertion with buffer aware

static timing analysis. The result is shown in the last column of Table X. From the results,

net based buffer insertion (min cost) with/without buffer aware STA perform similarly in

term of buffer resource allocation. This implies the buffer resource allocation of net based

buffer insertion cannot be easily improved by only applying simple slack distribution meth-

ods.

From Table X, we have the following conclusions.

	 The average reduction in buffer area is 15% for PBBI algorithm when comparing to

the net based buffer insertion (min cost).

	 The average reduction is 72% for PBBI when comparing to the net based buffer

insertion (min delay).

	 Although there is more than � � increase in CPU-time, the total CPU time for the

biggest circuit with
� � modules is still less than

�
minute. In fact, the CPU time is

empirically linear to the size of the circuit and the buffer candidate locations.

In our next experiment, we consider buffer blockages and the results are shown in

Table XI. From the results, we obtained an even greater buffer cost reduction of
� 	 � when
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Table X. Comparison of net based and path based buffer insertion

Net based Net based Path based (PBBI) Net based
(min delay) (min cost) w/ BaSTA

circuit B cost min D (ns) B cost CPU(s) B cost % redu CPU(s) B cost
a1 204 10.5 127 0.7 96 24.41 0.7 105
a2 274 20 144 0.5 138 4.17 1.1 142
a3 484 21 216 1.0 177 18.06 2.0 206
a4 592 26.5 317 1.3 288 9.15 2.8 325
a5 645 43 357 1.0 338 5.32 3.6 354
a6 1009 28.3 285 2.1 232 18.60 4.3 262
a7 1033 61.5 384 1.5 307 20.05 8.4 384
a8 1314 33 434 2.6 359 17.28 5.5 430
a9 1238 84 461 1.8 363 21.26 16.1 462
a10 1700 54 492 3.7 414 15.85 13.6 489
a11 2991 105 841 5.9 766 8.92 39.0 803
a12 3925 122 1048 5.1 852 18.70 38.1 1046
Total 15409 — 5106 27.1 4330 15.20 135.2 5008

(avg)

Table XI. Comparison of net based and path based buffer insertion considering buffer block-

ages

Net based (min cost) Path based (PBBI)
circuit B cost CPU(s) B cost % redu CPU(s)
a1 103 0.5 83 24.10 0.7
a2 128 0.5 114 12.28 1.1
a3 195 0.9 151 29.14 1.9
a4 294 1.1 241 21.99 2.8
a5 309 0.9 304 1.64 3.8
a6 272 1.8 186 46.24 4.3
a7 343 1.3 248 38.31 8.5
a8 401 2.2 314 27.71 5.7
a9 423 1.7 294 43.88 16.1
a10 463 3.3 336 37.80 13.4
a11 787 5.6 657 19.79 31.2
a12 961 5.2 712 34.97 33.9
Total 4679 25.2 3640 (avg)28.54 123.4
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Table XII. Comparison of net based and path based buffer insertion considering gate sizing

Net based (min cost) Path based (PBBI+GS) (PBBI+GS)
w/o sink sizing

circuit B cost � G � A CPU(s) B cost � G � A % redu CPU(s) B cost � G � A
a1 115 36 151 0.6 81 8 89 41.06 1.5 109 9 118
a2 189 20 209 0.5 102 24 126 39.71 2.5 100 28 127
a3 278 44 322 0.9 151 10 161 50.00 7.0 161 12 173
a4 391 72 463 1.2 222 94 316 31.75 10.3 224 108 332
a5 488 112 600 0.9 218 61 279 53.50 15.7 328 70 398
a6 641 159 800 1.9 197 16 213 73.38 18.1 224 18 243
a7 779 198 977 1.3 235 34 269 72.47 44.9 250 39 289
a8 839 166 1005 2.4 310 52 362 63.98 19.2 416 60 476
a9 973 310 1283 1.7 279 42 321 74.98 61.9 299 48 348
a10 1089 216 1305 3.5 322 39 361 72.34 38.7 394 45 439
a11 2097 331 2428 6.2 587 68 655 73.02 93.2 664 78 742
a12 3149 837 3986 6.0 709 110 819 79.45 119.4 723 127 850
Total 11028 2501 13529 27.2 3413 558 3971 70.65 432.5 3892 642 4533

(avg)

comparing to the net based buffering. From our observation, it is due to the fact that buffer

insertion with blockages becomes more complicated, and an algorithm with a global view

would perform better.

2. Simultaneous Gate Sizing and Buffer Insertion

We have performed the similar experiments for simultaneously gate sizing and buffer inser-

tion. For net based approach, we have implemented the delay penalty scheme [47] which

includes driver sizing into net based buffer insertion process. However, the delay penalty

formula used in the paper is mainly for solution comparison in VGDP. When applying the

delay penalty as a mean to estimate the delay increase in upstream interconnect, we have

to scale the delay penalty empirically. The results is shown in Table XII. In the table, “
�

G” is the total size change in all gates, “
�

area” is the total increase in cost (area) from the

buffer insertion/gate sizing, and “% redu” is the percentage of total cost reduction when

PBBI+GS is compared to the net based approach.

From Table XII, we found that the overall cost reduction by PBBI algorithm is 71%
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when comparing to net based gate sizing/buffer insertion. As the same time, our PBBI+GS

algorithm is reasonably efficient as the runtime is within 2 minutes for the biggest testcase.

Our novel technique of performing gate sizing at sink results in significant improve-

ment in solution quality. For [47], the delay penalty is calculated at the driver of a routing

tree. It is simple and effective but it only reflects the delay increase in the upstream in-

terconnect toward the gate and the routing tree itself. We have performed experiments for

our PBBI algorithm using different gate sizing schemes, results show that gate sizing using

delay penalty takes 14% more area than our gate sizing at sink technique (shown in the last

three columns of Table XII). In conclusion, the lack of a global view results in the trapping

into a local optimal solution and the error exacerbates when the complexity of the problem

increases.

3. PBBI on ISCAS Circuits

From [49], we obtained the layout and parasitic information for some placed and routed

ISCAS85 circuits in
��� � � � technology. In order to emulate the latest technology, we scale

the interconnect by a constant factor. The size of each testcase is summarized in Table XIII.

Table XIII. Summary of ISCAS placed and routed circuits

Circuit Size
circuit # mod # edge # B candidate
c1355 619 1096 2377
c1908 938 1523 4647
c2670 1642 2292 7982
c3540 1741 2961 8971
c432 203 343 1015
c499 275 440 1413
c5315 2608 4509 13427
c7552 3828 6253 19291
c880 469 755 1944
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We performed experiments on the ISCAS circuit with settings similar to Table X. The

results are shown in Table XIV. We found that the results are similar to Table X while PBBI

outperforms net based buffer insertion for buffer cost minimization by 16% on average.

One special observation is that runtime of PBBI is actually very similar to the net based

counterpart.

We found that the efficiency is due to that fact that the PI to PO paths in the ISCAS

circuits are comparatively shorter than our random testcases in terms of number of modules

along the paths. In such a case, the resultant merged routing trees for VGDP are smaller.

Table XIV. Comparison of net based and path based buffer insertion

Net based (min delay) Net based (min cost) Path based (PBBI)
circuit B cost min D (ns) B cost CPU(s) B cost % redu CPU(s)
c1355 585 23.9 74 0.19 67 9.46 0.18
c1908 1027 50 106 0.3 82 22.64 0.38
c2670 2030 65 85 0.47 82 3.53 0.54
c3540 2082 82.7 100 0.54 77 23.00 0.64
c432 212 19.9 24 0.06 17 29.17 0.12
c499 300 19.6 39 0.09 31 20.51 0.14
c5315 3322 74.7 150 0.85 140 6.67 1.02
c7552 4411 75.6 240 1.15 187 22.08 1.50
c880 395 16.9 21 0.14 21 0.00 0.16
Total 14364 — 839 3.79 704 (avg)16.09 4.68

G. Different Orderings for Net Based Buffer Insertion

In order to find out the the best ordering for net based buffer insertion in terms of buffer

cost minimization subject to timing constraints, we performed a set of experiments on
� �

randomly generated circuits. In the experiment, we have tested the following ordering:

a the topological order from PI to PO;
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b the topological order from PO to PI;

c first process the net with the smallest worse slack;

d random;

e pick a path according to the descending order of its criticality, then pick a net from

PI to PO;

f pick a path according to the descending order of its criticality, then pick a net from

PO to PI;

g according to the descending order of the total load capacitance of the nets;

h pick a path according to the descending order of its criticality, then according to the

descending order of the total load capacitance of the nets;

i first process the net such that most critical paths are passing through it;

j assign a cost value to each path representing its criticality, then first process the net

such that it has the biggest total cost from all the paths passing through it;

The results are shown in Table XV. Each column represents one circuit and all num-

bers shown in the table are numbers of buffer inserted. From the table, we observed that no

single ordering outperforms other orderings for most testcases. In fact, all tested ordering

performs on average similarly in terms of total buffer cost.

H. Conclusion

The VLSI technology scaling requests increasingly more buffers in circuit designs and

therefore buffer insertion needs to be carried in more elaborated manner. As a departure
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Table XV. Number of buffers inserted for 20 testcases

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
a 148 117 54 128 126 86 84 180 167 133
b 135 117 82 135 113 85 83 180 163 145
c 116 103 69 120 119 89 82 172 135 127
d 145 125 64 131 130 104 114 178 180 153
e 136 110 73 128 126 104 81 169 135 124
f 116 103 70 128 119 89 65 168 140 115
g 146 115 44 128 128 107 78 168 132 110
h 136 110 73 128 126 104 81 169 132 116
i 136 105 52 118 118 104 78 164 143 130
j 132 101 52 118 118 104 78 164 143 124

c11 c12 c13 c14 c15 c16 c17 c18 c19 c20
a 118 99 104 80 65 47 227 559 467 382
b 133 116 100 61 52 37 229 455 375 329
c 114 82 106 101 74 44 236 446 378 292
d 120 100 104 98 66 42 228 483 487 417
e 114 92 106 95 74 44 227 443 380 287
f 113 85 106 102 72 45 236 456 392 294
g 84 83 105 92 67 57 227 526 498 429
h 114 92 107 96 75 52 227 445 382 289
i 103 96 109 86 49 42 160 424 381 289
j 103 96 109 81 45 42 159 424 381 289
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from traditional net based buffer insertion methods, we propose a path based buffer in-

sertion approach which can obtain a better buffer usage efficiency due to its global view.

To the best of our knowledge, this is the first work on path based buffer insertion. Com-

pared to network based methods, our approach is more practical in terms of computation

complexity. Several techniques are proposed along with the path based buffering including

buffer aware static timing analysis, slack spreading along off-paths and simultaneous sink

sizing. Experimental results show that our approach can reduce buffer/gate cost by 71% on

average compared to net based methods.
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CHAPTER VI

CIRCUIT CLUSTERING FOR FPGA TECHNOLOGY MAPPING

Circuit clustering is defined as assigning circuit elements into clusters under different de-

sign constraints, such as area and pin constraints [50, 51, 52, 53]. In this way, the circuit

clusters are smaller compared to the original circuit, and hence manipulation and synthesis

of the clusters are easier. Most circuit clustering algorithms aim at either minimizing the

circuit delay or the inter-cluster connections. One major application of circuit clustering is

FPGA technology mapping. In this problem, each cluster is then mapped to a lookup table

(LUT) which is the basic logic element in a FPGA chip.

We focus on the following two objectives of the circuit clustering problem in the next

two chapters.

	 Optimal circuit clustering for delay minimization under a more general delay

model

As the interconnect delay dominates the path delay in VLSI technology advance-

ment, we can no longer use simplified delay model [50, 51] for circuit clustering.

Our work is to propose a delay model in order to handle the importance of inter-

connect delay which is vital for new FPGA architectures. The research also aims at

considering the area-constrained clustering of combinational circuits for delay mini-

mization under the proposed delay model, which practically takes variable intercon-

nect delay into account. The delay model is particularly applicable when allowing

the back-annotation of actual delay information to drive the clustering process.

	 Multi-level circuit clustering for delay minimization

In [5], it is stated that the growth of FPGA industry is much faster than the average

of the semiconductor industry. For example, Altera launched the MAX5000 devices



79

with only 600 to 3750 usable gates while it shipped the APEX 20K devices family

with up to 51480 logic elements (each of which is a 4-input LUT) and 0.3 to 1.5

million usable gates [54]. Dealing with the high and ever growing complexity of the

FPGA devices, Altera employs a 2-level (namely MegaLAB) architecture as shown

in Figure 23. In the structure, each MegaLAB consists of 10-24 of logic array blocks

(LABs) which contains 10 LUTs connected by local interconnect array. We can

treat the LAB as the first-level cluster and the MegaLAB as the second-level cluster.

This design improves timing performance by manipulating the fast local interconnect

within a LAB and semi-global interconnect within a MegaLAB. In order to cope with

the new architectures, we propose an algorithm towards the problem of multi-level

circuit clustering for delay minimization and applicable to hierarchical FPGAs.

Fig. 23. The MegaLAB structure in Altera APEX 20K devices
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CHAPTER VII

OPTIMAL CIRCUIT CLUSTERING FOR DELAY MINIMIZATION UNDER A MORE

GENERAL DELAY MODEL �

A. Introduction

Circuit clustering is to assign circuit elements into a number of clusters under different de-

sign constraints, such as area and/or pin constraints [51, 52, 53, 50]. In this way, the circuit

clusters are smaller compared to the original circuit and manipulation of these clusters is

easier. Circuit clustering algorithms usually aim at minimizing either the circuit delay or

the inter-cluster connections.

In this paper, we focus on the problem of combinational circuit clustering for de-

lay minimization subject to area constraints. This problem is first studied in [50]. The

authors formulate the problem in the unit delay model, in which no delay is associated

with any gate or with any connection within a cluster and a unit delay is assigned to each

inter-cluster connection. They propose a polynomial time algorithm to solve the problem

optimally. Recently, most researchers adopt the general delay model [53], in which each

gate is associated with a delay value, no delay is for each connection within the same clus-

ter, and a constant delay is for each inter-cluster connection. An algorithm for the circuit

clustering problem under the general delay model is proposed in [51]. It is proved that the

algorithm can optimally solve the problem in polynomial time.

However, when wire delay starts to dominate the total delay in a circuit, the general

delay model is no longer capable of handling more practical problems in current technol-

� Reprinted with permission from “Optimal Circuit Clustering for Delay Minimization
under a More General Delay Model” by C. N. Sze and T.-C. Wang, 2003. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, Volume: 22, Issue:
5, pp. 646-652. COPYRIGHT 2003 by IEEE.
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ogy. Hence, it is necessary for the delay model to be more sophisticated such that a delay

value is also associated with each connection within a cluster. As a result, we propose a

new delay model in this paper, which is practical for the delay back-annotation techniques,

in which the actual delay information of the circuit after place and route is fed-back to drive

the clustering process. In fact, our delay model is more general because the general delay

model adopted in [51] is a special case of our model (with all connections within the same

cluster set to zero).

We demonstrate several trivial extensions of the algorithm in [51] and show that they

cannot optimally solve the circuit clustering problem under our proposed delay model.

Details are discussed in Section C.

Besides, we present a vertex grouping technique, and integrate it with the algorithm in

[51] such that our algorithm can be proved to optimally solve the area-constrained combi-

national circuit clustering problem for delay minimization under our delay model in poly-

nomial time.

The paper is organized as follows. The next section gives the problem definition. In

Section C, we present a brief review of the algorithm in [51] and several trivial extensions.

Section D describes our vertex grouping technique while the overall algorithm is discussed

in Section E. Analysis of the algorithm and conclusion are included in the last two sections.

B. Problem Definition

A combinational circuit can be represented as a directed acyclic graph (DAG) � � ��� 
 � 
 .
�

is the set of vertices which represent the functional blocks (e.g., gates) in the graph and
�

is the set of edges which stand for the connections among the blocks. In the graph, PI is the

set of vertices with out-going edges only, and on the contrary, PO vertices have in-coming

edges only. A vertex � is a predecessor (successor) of a vertex � if there exists a path from
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� to � (from � to � ). A vertex � is an immediate predecessor (immediate successor) of a

vertex � if there exists an edge from � to � (from � to � ).

For each vertex � � �
, let � �

� 
 represent its area. A cluster 	 � �
is a set of vertices

�
� �


���


� � �



��� � which satisfies the area bound M , where M is a given constant. For each

cluster 	 , its area � � 	 
 is defined as the sum of area of all vertices in it and must be no

more than M . That is,

� � 	 
 � �

� �
� � �

� 
 � M

In the input (unclustered) graph, delay values are associated with all vertices and

edges. For each vertex � � �
, let � � � 
 represent its intrinsic delay. For each edge

� � 
 � 
 � �
, it is associated with a delay � � � 
 � 
 (Note that, � � � 
 � 
 � �

in [51]). For

the graph in Figure 24(a), the numbers beside the vertices and edges indicate the delay val-

ues associated with them. For example, the vertex delay of O is
�

( � � O 
 � �
), and the edge

delay of
� � 
 O 
 is

�
( � � � 
 O 
 � �

).

A clustering
�

on the graph � is defined as a set of clusters,
� � � 	 �


 	 � 
 � � � 
 	 � � ,
such that all the clusters in

�
satisfy the following condition.

� � � � � 

� � �


 � � 
 	  � �
, s.t.

��� �� � � 	  
 � M ,� � 	� � 	  � �

Note that node duplication (i.e., a node appearing in more than one cluster) may hap-

pen in
�

. Let � � be the clustered graph induced by a clustering
�

on the graph � . The delay

associated with � � is evaluated as follows. For each edge
� � 
 � 
 within the same cluster,

it still has the original delay � � � 
 � 
 . However, for each edge connecting two vertices in

different clusters, its edge delay is replaced by a fixed value
�

. For the clustered graph � �

shown in Figure 24(b), the set of boxes indicates a clustering (which contains three clusters

	 � 
 	 � 
 	 � ) on the graph in Figure 24(a). This clustering contains node duplication - node

� appears in both 	 � and 	 � . Since the vertices � 
 � 
 O are in the same cluster 	 � , the edge



83

delays are � � � 
 � 
 � �
and � � � 
 O 
 � �

. (But for the delay model adopted in [51], there is

no delay associated with the edge
� � 
 � 
 or

� � 
 O 
 in this example.) However, the edge
� O 
�� 


is across two clusters 	 � and 	 � , so � � O 
�� 
 becomes a predefined value
�

. Practically, we

assume � � � 
 � 
 � � for each edge
� � 
 � 
 in the input graph.

To calculate the delay of a path from vertex � to vertex � , we always include all vertex

delays and edge delays along the path. The path delay at a vertex � is defined as the

maximum delay of all paths from PIs to � .

The delay of a clustered circuit � �
is defined as the maximum delay of all paths from

PIs to POs, which is equal to the maximum path delay at all PO vertices. For example,

in Figure 24(b), the delay of � �
is

� � � � along the path � � � � O � �
. Based on

the definitions, the circuit clustering problem considered in this paper is presented in the

following.

Circuit clustering with variable interconnect delay

Given a graph � , find a clustering
�

, a set of clusters, such that the delay of

the clustered circuit is minimized.

C. Previous Work and Pitfalls in Trivial Extensions

1. Previous Work

In this section, we discuss the algorithm in [51], which solves the circuit clustering problem

optimally under the general delay model. In the algorithm, each cluster has one and only

one root vertex � and we denote the cluster rooted at � (which is found by the algorithm) as

� � � � � O � � � 
 1. Let � � be the set of all predecessors of � together with the vertex � . Note that

� All vertices in the cluster are predecessors of the root vertex.
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Fig. 24. A circuit with variable interconnect delay and a clustered circuit

in the algorithm, � � � � � O � � � 
 is a subset of � � . When the context is not ambiguous, we also

denote the subgraph induced by � � by the vertex set � � .
The algorithm consists of two phases: labeling phase and clustering phase. For each

vertex � � �
, the label of � ,

��� ��
 , is defined as the minimum path delay at � among

all possible clusterings on the graph � � . In the labeling phase, for each vertex � in a

topological order, the algorithm finds � � � � � O � � � 
 from � � such that it would make the path

delay at � become the minimum among all possible clusterings on � � , and at the same time,

the algorithm obtains
��� � 
 .

In order to get
��� � 
 , the algorithm first calculates

� � � ��
 of each predecessor � of � .
� � � ��
 is defined as the sum of

��� ��
 and the maximum delay of the paths from the output

of � to the output of � in the input graph2. Then, a vertex � with the highest
� �

value is

repeatedly found and included into the cluster rooted at � until the cluster area violates the

area constraint.

� When calculating the delay of a path from the output of � to the output of � , the vertex
delay of � is not included.
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After finding the � � � � � O � � � 
 , the algorithm continues to calculate
�
� , the maximum

� �
value of the PI vertices which are inside the cluster, and find

�
� , the maximum

� � � � value

of the vertices outside the cluster. After that, the label of � ,
��� � 
 , can be found by getting

the greater value of
�
� and

�
� .

The clustering phase constructs clusters from POs to PIs according to the cluster in-

formation generated in the labeling phase. First, for each PO vertex � , the corresponding

� � � � � O � � � 
 is included into the clustering
�

. Then, for each vertex � outside
�

, which

is an immediate predecessor of any vertex inside
�

, � � � � � O � � ��
 is also included into the

clustering
�

. The procedure is repeated until all vertices in � are included in
�

.

2. Pitfalls in Trivial Extensions

This section shows that the algorithm in [51] cannot be “trivially” extended to deal with the

circuit clustering problem with variable interconnect delay.

The labeling phase in [51] is based on the fact that in the general delay model, for

each vertex � � � �

�
� ,

� � � ��
 � � effectively represents the path delay at � due to �
when � is not included in � � � � � O � � � 
 . Therefore, to make the resultant path delay at � as

small as possible, adding vertices into � � � � � O � � � 
 is done in the non-increasing order of

the
� �

values. However, in our delay model, it requires replacing the original connection

delay with a constant inter-cluster delay
�

; hence, instead of
� � � ��
 � � , the expression

� � � ��
 � � �
� � � 
�� � ��
�
 represents the path delay at � due to � when � is not included in

� � � � � O � � � 
 . Note that for each vertex � ,
� � ��
 is defined as the immediate successor of �

such that the delay on the path from the output of � to the output of � passing through
� � ��


is maximum among all immediate successors of � 3. Therefore, if
� � � ��
 �

� � �
� 
 , it is not

always true that
� � � ��
 � � �

� � � 
�� � � 
�
 �
� � �
� 
 � � �

� � � 
�� � � 
�
 . As a result, we cannot

� If more than one immediate successor of � satisfies the definition of
� � ��
 , we just pick

any one of them to be
� � ��
 .
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use
� �

value to select vertices.

To simplify our presentation, we define
�

�
� ��
 to be

� � � � 
 � � �
� � � 
�� � � 
�
 for each

vertex � � � �

�
� . In other words, for a root vertex � ,

�
�
� ��
 indicates the maximum delay of

the paths through the vertex � when � is not in the cluster rooted at � . Obviously, using
�

�
� � 


rather than
� � � ��
 for vertex selection is another trivial extension for applying the algorithm

in [51] under our delay model. However, problems still exist in this extension. An example

is shown in Figure 25(a). In the figure, M � � 
 � � � , each vertex has a unit area and

the number beside each vertex or edge is the delay value associated with it. It is easy to

calculate that
�

�
� O 
 � � �

,
�

�
� � 
 � �	�

,
�

�
� � 
 � � �

,
�

�
� � 
 � � �

,
�

�
� � 
 � � �

,
�

�
� � 
 � � �

with

respect to the root vertex
�
. Under this calculation, we know that vertex selection based

on the value of
�

� should be in the order of � 
 � 
 O 
 � 
 � 
 � . Based on this ordering, we can

eventually form the clustering
� ��� 
 � 
 � � , � O 
 � 
 � � , � � 
 ��� � , and the path delay at

�
is
� �

which is shown in Figure 25(b). However, as in Figure 25(c), if we form the clustering
� ��� 
 � 
 O � , � � 
 � � , � � 
 ��� � instead, the path delay at

�
becomes

� �
. In fact,

��� 
 � 
 O � is

an optimal choice for � � � � � O � ��� 
 while
����� 
 � � �

. The problem of using the value of
�

�

to select vertices is that the vertex set of the resultant cluster may not be connected and

this may increase the circuit delay. This example shows that such a trivial extension of

algorithm in [51] is also unable to produce optimal solutions.

D. Vertex Grouping

In this section, we first define the function
� � � ��� 
 � 
 for each edge

� � 
 � 
 and then present

our vertex grouping algorithm.

Definition 1

Given a root vertex � and its associated � � , the
� � �

value of an edge
� � 
 � 
 , which

represents the path delay at � due to
�

if
�

is not included into the cluster of �
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Fig. 25. Examples of circuit clustering

and
�

is included, is defined as

� � � � � 
 � 
 � ��� � 
 � � � � � � 
 � 
 


where
� � � 
 � 
 is defined as the maximum delay (including gate and edge de-

lays) along any path from
�

to � , in the input graph (assuming all gates are in

the same cluster).

By calculating
� � � � � 
 � 
 , we obtain the delay due to

�
in the situation where

�
is

excluded from the cluster and
�

is included into the cluster rooted at � . The reason why
� � �

is calculated for each connection, but not for each vertex, is that the delay on each fanout

edge of a vertex can differ. If M � � 
 � � � , the
� � �

values for the graph in Figure 26(a) (for

root vertex
�
) are shown in Figure 26(b). In the figure, it is clear that when � is included

into the cluster while � is excluded, the path delay at
�

is greater than the situation when

we add � into � � � � � O � ��� 
 since
� � � � � 
 � 
 � � �

�
� � � � � 
 O 
 � � �

. In other words, if we cannot

include � and � at the same time, we should not choose to include � . By this observation,

vertices should be added into a cluster in a “group” basis. Hence, we propose the following

grouping strategy.
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Fig. 26. Illustration of vertex grouping

Definition 2 (Vertex Grouping)

Given a root vertex � , its associated � � , and an edge
� � ��
�� 
 in � � ,

� � 
 � � � � � 
�� 

is a subset of � � such that a predecessor �  of � � must be assigned into

� ��
	� � � � � 
�� 

if there exists a path from �  to � � , denoted �  � �  � � � � � �

� � � � � � , such

that
� � � � � � 
 � � � ��
 �

� � � � � ��
�� 
 , � � � � 
 � 

� � �


 � �
Also, � � is always assigned into

� � 
 � � � � � 
�� 
 .

Note that in Definition 2, all vertices on the path from �  to
�

are the predecessors of

� , i.e.,
� 
 � ��
 � � � 
 �  � � � . Based on this grouping definition, � is assigned into

� � 
 � � � � 
 O 
 ,
shown in Figure 26(c), because there exists a path � � � such that

��� � � � 
 � 
 �
� � ��� � 
 O 
 . In

fact, it indicates that � and � should be assigned to the cluster rooted at
�

at the same time.

Definition 2 describes the condition whether a vertex �  in � ��� is in
� ��
	� � � � � 
�� 
 . In

order to get
� � 
 � � � � � 
�� 
 , we can check all vertices in � ��� . However, given the subgraph � �

rooted at � , it is not necessary to get
� ��
	� � � � 
 � 
 for every edge

� � 
 � 
 in � � . Therefore, we

propose the following vertex grouping algorithm which assigns vertices into
� ��
 ��� � � 
 � 
 for

some edges
� � 
 � 
 only. The algorithm is shown below, followed by a detailed discussion.



89

ALGORITHM Grouping( ;0".& � )
Input : vertex ; , & �
Output : list � � of edges,

@
;=<7H�> ��	I" � � for each edge ��	I" � � � � �
begin

leader set= )=2 ;
FOR each immediate predecessor H of ;

/* i.e., ��HJ"�;
� � $ */
put edge ��HJ"�;
� into leader set;

END FOR
WHILE (leader set is not empty)

remove an edge ��	I" � � from leader set and
put it into � � ;@
;=<7H�> ��	I" � ���F)9	 2 ;
FOR each immediate predecessor � of 	

Group vertex( � , 	 , 	 , � );
END FOR

END WHILE
return � � , @
;=<7H�> ��	+" � � for each edge ��	+" � � � � � ;

end

Group vertex( � , � , 	 , � )
begin

IF ( � in @
;=<7H�> ��	+" � � )
return;

ELSE IF ( � � � ���J"�� �	� � � � ��	I" � � )
add ���J"�� � into leader set;
return;

ELSE IF ( � � � ���J"�� �	
 � � � ��	I" � � )
add � into @
;=<7H�> ��	+" � � ;
FOR each immediate predecessor � of �

Group vertex( � , � , 	 , � );
END FOR

END IF
end

In ����
 ��� ��� � � 
 , each edge
� � 
 � 
 is first stored in the “leader set”. When all ver-

tices in
� � 
 � � � � 
 � 
 are found, the edge

� � 
 � 
 has been removed from “leader set” and

put into a list � � . We denote all edges in both “leader set” and � � as “leader edges”.

��� 
 � � � O ��� O � ��� 
 ��
 � 
 � 
 shows the process of checking whether the vertex
�

should be

added into
� � 
 � � � � 
 � 
 . If

� � � � does not comply with the definition of
� ��
	� � � � 
 � 
 , the
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edge
� � 
 � 
 is added into the “leader set”. The algorithm terminates when “leader set” is

empty.

In this algorithm, not all edges in � � may be added to � � , and we only obtain
� ��
 ��� � � 
 � 


for each “leader edge”
� � 
 � 
 � � � . After ��� 
 � � ��� � � 
 , all predecessors of � are divided

into groups and the “leader edge” of each group is stored in the list � � .
For the circuit in Figure 26(a), the results after ��� 
 � � ��� � � 
 are shown in Figure 26(c).

In the figure, the thick lines are edges in � � (leader edges) while totally five groups are

formed. With the grouping algorithm, we are able to obtain an important property in which

adding a group (no longer a vertex) into a cluster without increasing the path delay at the

root vertex � is possible.

E. The Algorithm

In this section, we present our algorithm (shown below) based on the grouping strategy,

which is a “non-trivial” extension of the algorithm in [51], for the circuit clustering problem

under our new delay model.

ALGORITHM Circuit clustering( & )
Input : graph & � �! L"%$��
Output : a set of clusters � � )7� � ".� � " ����� ".� � 2
1. begin
2. compute the maximum delay matrix

�
,

where
� ���%"��
� is the maximum delay along

any path from � to � , (including gate
and edge delays) assuming all gates are
in the same cluster;

3. FOR each PI � , ����� � ���
��� � ;
4. sort the non-PI vertices of & in a

topological order to obtain list � ;
5. WHILE � is not empty
6. remove the first vertex ; from � ;
7. compute & � ;
8. FOR each edge ��HJ" � � � $

s.t. H � & �	� ) ;�2 	
��� � � & �
9. � � � ��H " � ��� ����H ��
 � � � "�;
��

���
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END FOR
10. � � � Grouping( ;�".& � );
11. � �� � sort the edges in � � in

non-increasing order of � � � ;
12. Labeling( ;0"%� �� );

END WHILE
13. � � all PO vertices;
14. � � � ;
15. WHILE � is not empty
16. remove a vertex ; from � ;
17. � � � � ) cluster ��;
�32 ;
18. FOR each vertex � � �! � cluster ��;���� ,

s.t. � is an input of cluster( ; )
and cluster ��� ���� �

19. � ��� � ) ��2 ;
END FOR

END WHILE
20. end

Labeling( ;0"%� )
Input : vertex ; , list �
Output : ����;
�." cluster ��;
�
1. begin
2. cluster( ; )= ) ;�2 ;
3. WHILE � is not empty
4. remove the first edge ��H " � � in � ;
5. IF � � � cluster ��;�� � @
;=<7H�> ��H " � ��� � D �
6. cluster ��;
� � cluster ��;�� � @
;=<7H�> ��H " � � ;
7. ELSE
8. insert ��HJ" � � back to the head of � ;
9. break;

END IF
END WHILE

10. � � ��;
� � max ) � � � ���J"�@ ��� ��� � � 
 �����J"�@ ��� �����
� � � cluster ��;���� ���
	0���32 ;

11. � � ��;
� � � � � � ��H " � ��� ��HJ" � � is the first edge in � � ;
12. ����;
� � max ) � � ��;
�." � � ��;
�32 ;
13. end

Similar to [51], our algorithm consists of two parts: the labeling phase (lines 3-12)

and the clustering phase (lines 13-19). The clustering phase works in the same way as [51].

In the labeling phase, we get a cluster � � � � � O � � � 
 for each vertex � in a topological
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order. For each non-PI vertex � , we first compute the value
� � � � � 
 � 
 for each edge

� � 
 � 
 �
�

which connects vertices in � � . Based on the
� � �

values, we apply our vertex grouping

algorithm to divide the vertices in � � into groups. After that, each group of vertices is

considered for adding to � � � � � O � � � 
 based on the
� � �

value of its leader edge. Thus, the

leader edges are sorted in advance according to their
� � �

values.

For example, applying our algorithm to the circuit in Figure 26(a), the resultant clus-

tering contains three clusters: � � � � � O � ��� 
 � ��� 
 � 
 O � , � � � � � O � � � 
 � � � 
 ��� , � � � � � O � � � 
 �
� � 
 � � , and

����� 
 � � �
along the path � � � � O � �

or � � � � � � �
. In fact, the

clustering is the same as the optimal one shown in Figure 25(c).

The main difference between our algorithm and the algorithm in [51] is that we employ

the grouping strategy and add vertices to a cluster in a group basis, which guarantees a

minimum circuit delay under our delay model. Besides, in order to apply the grouping

strategy, we calculate
� � �

for every edge while the algorithm in [51] calculates
� �

for every

vertex for selecting vertices which has been shown not applicable to our delay model.

For our algorithm, we have the following lemma describing some important properties

of the sorted list � �
� that is generated in line 11 of 	������ � ��� � � � � � O ����� � � 
 .

Lemma 1 For any non-PI vertex � , the following properties � �
, � � � � and � �

are correct.

Let
� � 
 � 
 and

� � 
 � 
 be any two edges in � �
� (note that � 
 � 
�� 
 � are in � � ).

P1. If
� � 
 ��
 is positioned before

� � 
 � 
 in �
�
� , then

��� � 
 � � � � 
 � 
 � � K ��� � 
 � � ����
 � 
 � �
P2. If

�
is the predecessors of both � and � (

�
and � may be the same vertex) such that

� � � ��
 ��� � � 
 � 
 and
���� � ��
 ��� � � 
 � 
 , then

��� � 
 � � � � 
 � 
 � � K ��� � 
 � � ����
 � 
 � �
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P3. If a vertex � is the predecessor of both � and � such that � � � ��
	� � � � 
 ��
 , there

must exist a path from � to � such that all edges
� � 
 � 
 along the path satisfy � �

� ��
	� � � � 
 ��
 and � � � � 
 � � � � 
 ��
 and they must also satisfy the following inequality.

��� � 
 � � � � 
 � 
 � � �
��� � 
 � � � � 
 � 
 � �

P4. If
�

is the predecessor of both � and � such that
� � � � 
 � � � � 
 ��
 and

���� � ��
	� � � � 
 ��
 ,
there must exist a path from

�
to � such that all edges

� � 
 � 
 along the path satisfy

� � � � 
 � � � � 
 ��
 and � � � ��
	� � � � 
 ��
 and they must also satisfy the following

inequality.

��� � 
 � � � � 
 � 
 � � �
��� � 
 � � � � 
 � 
 � �

K ��� � 
 � � � � 
 � 
 � �
Proof � �

is trivial and it is simply because the list �
�
� is sorted. For � � , it is true because

��� 
 � � � O ��� O � � 
 stops including the predecessor
�

only when
� � � � � 
 ��
 K � � � ��� 
 � 
 . The

same reasoning is applicable for � � ; before ����
	� � � O �
� O � � 
 stops including the prede-

cessors into
� � 
 � � � � 
 ��
 , each examined edge

� � 
 � 
 must have
� � � � � 
 � 
 �

� � � � � 
 ��
 . � �
is

obtained by joining � � and � � . �

F. Optimality and Complexity of the Algorithm

The authors in [51] state that in any clustering
�

on a graph � , the path delay at any vertex

� should be greater than or equal to the path delay at � in an optimal clustering
�
� # on

� � (Lemma 1 in [51]). It can be easily proved that this lemma is also applicable to our

new delay model. To prove the optimality of our algorithm, we first prove that (1) the

label of each vertex,
���
� 
 (which is calculated in the labeling phase), is the lower bound of

the path delay at � in any optimal clustering, and (2) the clustering phase (lines 13-19) is
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able to construct a clustering such that the path delay at � equals
���
� 
 . From (1) and (2),

together with Lemma 1 in [51], it can be then proved that the clustering
�

generated by

our algorithm is an optimal clustering.

Before proving (1) and (2), we first explore an important lemma for vertices within a

cluster.

Lemma 2 For any cluster � � � � � O � � � 
�� �
� � generated in

� � � O � ��� � � 
 , for each edge
��� 
 � 


such that
� 
 � � � � ,

� � � � �

�
� � � � � O � � � 
�
 and

� � � � � � � O � � � 
 , if we arbitrarily divide

� � � � � O � � � 
 into two sets � and � such that � ���� 
 � ����
, �  � � � � � � � O � � � 
 and

��� � ���
, there must exist an edge

�
�

 � 
 connecting vertices in � and � (without loss

of generality, assume � � � and � � � ) such that
��� � �

�

 � 
 K � � ��� � 
 � 
 .

Proof In the labeling phase, groups of vertices are assigned into � � � � � O � � � 
 in the non-

increasing order of the leader edges’
� � �

values. According to � �
in Lemma 1, if a vertex �

is assigned into � � � � � O � � � 
 (that means � � � � � O � � � 
�� �
� � ), there must exist an immediate

successor � of � and an edge
� � 
 � 
 such that � � � ��
 ��� � � 
 � 
 and

� � � �
�

 � 
 K � � � � � 
 � 
 ,

while the edge
� � 
 � 
 must have the value

� � � � � 
 � 
 greater than or equal to the
� � �

values

of all leader edges of those groups that are not yet assigned to � � � � � O � � � 
 . Therefore,
� � � �

�

 � 
 K � � � � � 
 � 
 K � � � ��� 
 � 
 . �

From Lemma 2, we know that
� � � �

�

 � 
 K � � � � � 
 � 
 . Besides, we have

�
�
�
� 
 �

� � � �	� � � � � 
�� 
 ! � 
 � � � �

�� � � � �

�
� � � � � O � � � 
�
 
 � � � � � � � O � � � 

� (which is generated

in line 11 of
� � � O � ��� � � 
 ). The following Corollary can be easily derived.

Corollary 1 For any cluster � � � � � O � � � 
	� �
��� generated in

� � � O � ��� � � 
 , if we arbitrarily

divide � � � � � O � � � 
 into two sets � and � such that � ��
� 
 � ���� , �  � � � � � � � O � � � 
 and

��� � ���
, there must exist an edge

�
�

 � 
 connecting vertices in � and � (without loss

of generality, assume � � � and � � � ) such that
��� � �

�

 � 
 K �

�
�
� 
 .

Lemma 3 For any vertex � , the path delay at � in any optimal clustering of the subgraph
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� � , denoted by � O � � � � � 
 , is greater than or equal to
���
� 
 .

Proof It is proved by induction.

(1. Induction basis) For any PI vertex � ,
���
� 
 � � � � 
 . It is obvious that

���
� 
 � � O � � � � � 
 .

(2. Induction step) Assume that the statement,
��� � 
 � � O � � � ��� 
 , is true for all vertices

� � � � �

� �
� � 
 , and we are going to prove that the statement is also true for vertex � , i.e.,

���
� 
 � � O � � � � � 
 .

The value of
���
� 
 is the maximum value of

�
�
�
� 
 and

�
�
�
� 
 (in line 12 of

� � � O � ��� � � 
 ).
We consider the two cases separately.

	 (Case 1)
���
� 
 � �

�
�
� 
 � � � � �	� � ����� 
�� � � 
�


� � � � � � 
�� ��� 
�
 ! � � � � � � � � O � � � 
 �
� � 	 
�

� � � � � �	����� 
 � � ��� ��� 
 
 � 
 � � � � 
�� ��� 
�
 ! � � � � � � � � O � � � 
 � � 	 
 � . Since
�

is a PI,
���
� 
 � � � � � � ��� 
 � � ��� ��� 
 
 � 
 � � � � 
�� ��� 
�
 ! � � � � � � � � O � � � 
 � � 	 

� �

� � � � � � � 

� 
 ! � � � � � � � � O � � � 
 � � 	 

� , which is the maximum delay among the paths

from all PIs in � � � � � O � � � 
 to � , and by assumption,
�
�
�
� 
 is greater than or equal to

the delay value of all other paths involved in calculating
�
�
�
� 
 . Hence, the path delay

at � in any optimal clustering of the subgraph � � cannot be smaller than
�
�
�
� 
 .

	 (Case 2)
���
� 
 ���

�
�
� 
 � � � � �	����� 
 � � � � 
 � 
 � � ! ��� 
 � 
 � �

, � � � � � � � O � � � 
 and
� �

� � �

�
� � � � � O � � � 
�
 � . This case implies � � � � � O � � � 
 � � � . Here, we prove by contra-

diction.

Assume � O � � � � � 
 is smaller than
���
� 
 , i.e.,

���
� 
 � � O � � � � � 
 . And we denote the

corresponding cluster rooted at � in an optimal clustering as 	 � . Without loss of

generality, we assume 	 �
� � � . There are three cases.

(a) If 	 �
� � � � � � O � � � 
 � � � � 
 , there must exist two edges

� � 
 � 
 
 � � � 
 � � 
 (they may

be the same) such that � 
 � � � � � �

�
	 � 
 , �


 � � � 	 � ,
���
� 
 ����� � 
 � � � � 
 � 
 � �

and � O � � � � � 
 � � O � � � � � � 
 � � � � � 
 � 
 � � . This is depicted in Figure 27(a). First,

� O � � � � � � 
 � � � � ��
 � 
 � � � � O � � � � � 
 K � O � � � � � 
 � � � � 
 � 
 � � . Second, based on
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the induction hypothesis that
��� � 
 � � O � � � ��� 
 for all vertices

� � � � �

� �
� � 
 , we

have � O � � � � � 
 K ��� � 
 . Thus,
���
� 
 � � O � � � � � 
 but it contradicts our assumption. (See

Figure 27(a).)

(b) If 	 � � � � � � � O � � � 
 (which implies 	 �

�
� � � � � O � � � 
 �� � ), there must exist an

edge
� � 
 � 
 with � � � �

�
� � � � � O � � � 
 and � � � � � � � O � � � 
 such that

� � � � � 
 � 
 � ���
� 
 .

Let
� � denote the set of all such edges. For each edge

� � 
 � 
 � � � , both � and � are

in 	 � because � O � � � � � 
 �
���
� 
 . So, � � � � � � � O � � � 
 and � � 	 �

�
� � � � � O � � � 
 . We

consider the first edge
� � 
 � 
 remaining in � in line 11 of

� � � O � ��� � � 
 with
���
� 
 �

� � � � � 
 � 
 . Since
���
� 
 � � O � � � � � 
 , the vertex � must be in 	 �

�
� � � � � O � � � 
 and � �

� � � � � O � � � 
 , i.e.,
� � 
 � 
 � � � . In this case,

� � � O � � � � � 
 should add
� � 
 � � � � 
 � 


into the � � � � � O � � � 
 if the area of � � � � � O � � � 
  � ��
 ��� � � 
 � 
 does not exceed the area

constraint M . However, � � � �

�
� � � � � O � � � 
 implies that the area of � � � � � O � � � 
  

� ��
	� � � � 
 � 
 exceeds M . When � � 	 � and the area of � � � � � O � � � 
  � � 
 � � � � 
 � 

is greater than M , there must exist an edge

� � 
�� 
 such that � � � � 
 � � � � 
 � 
 , � �
� ��
	� � � � 
 � 
 , � � � � �

�
	 � 
 and

� � 	 � . The situation is depicted in Figure 27(b).

Based on the induction hypothesis, � O � � � � � 
 � � ��� 

� 
 � � K ��� � 
 � � ����


� 
 � � .

Then, by � � of Lemma 1, � O � � � � � 
 K � O � � � � � 
 � � ����

� 
 � � K ��� � 
 � � ��� 


� 
 ��
�
��� ��
 � � � � 
 � 
 � � �����

� 
 � � O � � � � � 
 which is impossible. (See Figure 27(b).)

(c) If
� � � � � � O � � � 


�
	 � 


�� �
, we can divide � � � � � O � � � 
 into two disjoint subsets

� � � � � O � � � 

�
	 � and � � � � � O � � � 
 ��	 � . By Corollary 1, there exists an edge

��� 
 ��
 such

that
� � � � � � � � O � � � 


�
	 � 
 and � � � � � � � O � � � 
 � 	 � such that

����� 
 � � � � 
 ��
 � � �
� � � ��� 
 ��
 K �

�
�
� 
 �����

� 
 . This is depicted in Figure 27(c). Since we know � O � � � � � 
 K
� O � � � ��� 
 � � � � 
 ��
 � � , due to the induction hypothesis that � O � � � � � 
 � � � � 
 ��
 � � K
��� � 
 � � ��� 
 ��
 � � , we have

� O � � � � � 
 K � O � � � � � 
 � � ��� 
 ��
 � � K ����� 
 � � � � 
 ��
 � � K ���
� 
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which contradicts the assumption � O � � � � � 
 �
���
� 
 . (See Figure 27(c).)

As a result, the statement is also true for vertex � . �

cluster(v)

Cv

u
w

f
g

EC

group(c,d)
cluster(v) Cv

s
t

(a) (b)

cluster(v)=Cv

(c)

a

b

a’

b’

Fig. 27. Illustration of Proof of Lemma 3

Lemma 4 In our algorithm, for any vertex � in the clustering
�

generated by the clustering

phase (lines 13-19), the path delay at � is less than or equal to
���
� 
 .

Proof Our delay model is different from that in [51], but the clustering phase in our algo-

rithm is the same as that of [51], so the proof is the same. Details can be found in [51].

�

Based on Lemma 3 and Lemma 4, we can easily derive the following theorem.

Theorem 1 The clustering
�

generated in our algorithm is an optimal clustering for any

instance of the problem described in Section B.

Proof In Lemma 3, it is shown that for each vertex � , the label
���
� 
 in our algorithm is less

than or equal to the path delay at vertex � in any optimal clustering; Lemma 4 states that

our algorithm is able to generate a clustering with the path delay at � less than or equal

to
���
� 
 which is the lower bound of the path delay at vertex � in any optimal clustering.

Together with Lemma 1 in [51], the clustering
�

generated by our algorithm is an optimal
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clustering. �

We analyze the complexity of our algorithm. In ��� 
 � � ��� � � 
 , ����
	� � � O �
� O � � 
 would

run at most
! � !

times, so the time complexity of the WHILE loop is � ��! � ! ! � ! 
 . In

	������ � � � � � � � � O ����� � � 
 , finding the maximum delay matrix
�

takes � � ! � ! ��! � ! � ! � ! 
�
 ,
finding a topological order in line 4 takes � � !$� ! � ! � ! 
 time, the sorting in line 11 takes

time � ��! � ! ��� ��! � ! 
�
 , and
� � � O � ��� � � 
 takes only � � ! � ! 
 time. So, the first WHILE loop

of 	������ ����� � � � � � O ��� � � � 
 takes � � !$� ! � ! � ! ��� � ! � ! 
 � ! � ! ! � ! 
�
 time. Clustering phase (lines

13-19) takes time � � ! � ! � ! � ! 
 . So the overall time complexity is � ��! � ! ��! � ! ��� ��! � ! 
 �
! � ! ! � ! 
�
 � � � ! � ! � ! � ! 
 .

Remarks: In fact, our algorithm can also handle the case where the inter-cluster de-

lay
�

is a variable value (say
� � � 
�� 
 
 � � � 
 � 
 � �

). It is because the calculation of
� � � ��� 
 � 
 � ��� � 
 � � � � � � 
 � 
 includes the value of

�
such that if

�
becomes a variable� ��� 
 � 
 , the calculation becomes

� � � ��� 
 � 
 � ��� � 
 � � ��� 
 � 
 � � � � 
 � 
 and it still correctly

represents the situation when
��� 
 � 
 becomes an inter-cluster edge. Besides, the optimality

of the algorithm still holds because all the theoretical results remain true and can be proved

similarly.

G. Conclusion

In this paper, we have introduced a new delay model which is more general and practical

than the general delay model [53]. Under our new delay model, a circuit clustering algo-

rithm based on a novel vertex grouping technique is proposed and is proved to optimally

solve the area-constrained combinational circuit clustering problem for delay minimization

in polynomial time.
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CHAPTER VIII

MULTI-LEVEL CIRCUIT CLUSTERING FOR DELAY

MINIMIZATION �

A. Introduction

Circuit clustering is defined as assigning circuit elements into clusters under different de-

sign constraints, such as area and pin constraints [51, 52, 53, 50]. In this way, the circuit

clusters are smaller compared to the original circuit, and hence manipulation and synthesis

of the clusters are easier. Most circuit clustering algorithms aim at either minimizing the

circuit delay or the inter-cluster connections.

In this paper, we focus on the problem of combinational circuit clustering for delay

minimization subject to area constraints. This problem is first studied in [50]. The authors

formulate the problem in the unit delay model in which no delay value is associated with

any connection within a cluster or any gate while unit delay is assigned to each inter-cluster

connection. A polynomial time algorithm is also proposed to solve the problem optimally.

Recently, most researchers adopted the general delay model [53], in which each gate is

associated with a delay value, no delay is for each connection within the same cluster, and

a constant delay is for each inter-cluster connection. An algorithm which solves the circuit

clustering problem based on the general delay model is proposed in [51]. It is proved

that the algorithm can optimally solve the problem in polynomial time. The problems

considered in [51, 53, 50] are referred to as single-level circuit clustering.

The necessity of a solution to the multi-level (or hierarchical) circuit clustering prob-

� Reprinted with permission from “Multi-Level Circuit Clustering for Delay Minimiza-
tion ” by C. N. Sze, T.-C. Wang and L.-C. Wang, 2004. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume: 23, Issue: 7, pp. 1073-1085.
COPYRIGHT 2004 by IEEE.
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lem is increasing when more and more designs are built on hierarchical FPGA architec-

tures. The two-level clustering problem with area constraints is studied in [55]. The prob-

lem formulation requires the division of a circuit into clusters (second-level clusters) and

each cluster is then further divided into smaller clusters (first-level clusters). It is proved

that two-level circuit clustering for delay minimization is an NP-hard problem. Hence,

they propose a heuristic which is extended from [51]. Their algorithm constructs a candi-

date second-level cluster rooted at each node and then covers the whole circuit based on

the clusters. During the construction of each candidate second-level cluster, the first-level

clusters within it are formed at the same time. Both first-level and second-level clusters are

constructed according to the same criterion – nodes are chosen by comparing the maximum

delay of the paths from primary inputs to the cluster root passing through them.

However, the heuristic in [55] is not effective enough according to our experiments.

The main reason may be related to the restriction in which it does not allow node dupli-

cation within a second-level cluster. Node duplication within a second-level cluster has

two contrasting effects on delay minimization. On one hand, it may reduce the circuit de-

lay since a node can be included into different clusters so that the number of inter-cluster

connections may be reduced. On the other hand, each cluster is constrained by an area

bound and node duplication consumes area, so less different nodes can be included into a

second-level cluster and then the circuit delay may increase. However, we have shown by

experiment that properly allowing node duplication within second-level clusters is benefi-

cial to delay minimization. Moreover, since the algorithm in [55] performs first-level and

second-level clusterings at the same time, for each node included into a first-level cluster,

all the data for first-level and second-level clusters (e.g., lists of candidate nodes and im-

mediate successor with maximum delay) should be updated accordingly. It makes their

algorithm hardly extensible to solve the circuit clustering problem with more than two lev-

els.
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In order to cope with the difficulties mentioned above, we propose an algorithm for

the general combinational circuit clustering problem with any arbitrary number of levels.

Our algorithm constructs clusters for each level separately, from the first level to the desired

level. The clustering of each level is performed on a contracted graph which only captures

the most important delay information from the clustering of the previous level. Besides,

since we only perform circuit clustering on the contracted graph formed from the previous

level, a simple but effective single-level graph clustering algorithm can be employed. As

a result, our algorithm effectively handles the multi-level problem by repeating the single-

level graph clustering algorithm and the graph contraction technique.

Although we employ a single-level clustering algorithm which is extended from [51],

our overall algorithm is not merely a trivial extension of [51], because without our graph

contraction technique, the single-level clustering algorithm cannot be repeatedly applied to

the circuit to obtain a multi-level clustering. As a result, the graph contraction algorithm

plays a critical role in our work and it successfully links every two successive levels of

circuit clustering.

Taking the two-level clustering problem as an example, our algorithm first divides the

circuit into a set of first-level clusters with node duplication, so that the node duplication

within second-level clusters can be later guided by those first-level clusters. In this way,

node duplication within a second-level cluster happens only when the duplication helps

minimizing the delay of the resultant first-level clustering. In fact, our implementation and

experimental results show that, under this mechanism, allowing node duplication within

second-level clusters indeed further reduces the delay values. We are able to achieve 12%

more delay reduction when comparing with the algorithm in [55], in which node duplica-

tion within second-level clusters is not allowed.

In the rest of the paper, Section 2 defines the notation and the problem formulation.

In Section 3, our algorithm as well as the most essential graph contraction technique is
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explained in detail. Analysis of the algorithm is presented in Section 4. Section 5 discusses

some postprocessing techniques to reduce the area of the clustered circuit and Section 6

describes the implementation of our algorithm and the experimental results. Finally, we

conclude the paper in the last section.

B. Definitions and Problem Formulation

A combinational circuit can be represented as a directed acyclic graph (DAG) � � ��� 
 � 
 .
�

is the set of nodes which represent the functional blocks (e.g., gates) in the circuit and
�

is the set of edges which stand for the connections among the blocks. In the graph, PIs are

nodes with out-going edges only, and on the contrary, POs have in-coming edges only.

An area function � �
� 
 is defined for each node � � �

. The value of � �
� 
 represents

the area of the corresponding functional block.

A first-level cluster 	 � � �
is a set of nodes

�
� �


���


� � �



��� � which satisfies the first-

level area bound M � , and a second-level cluster 	 � is a set of first-level clusters
� 	 �

�

 	 �

�



� � �


 	 �

� � which satisfies the second-level area bound M � . More generally, an � -th-level clus-

ter 	
 
is a set of

� �
�
� 
 -th-level clusters

� 	  � �
�


 	  � �
�



� � �


 	  � �
� � and its area bound is denoted

as M  . For each first-level (second-level) cluster, its area function is defined as the sum of

area of all nodes (the sum of first-level area bounds) in the cluster. That is,

� � 	 � 
 � �

� �
� �

� �
� 
 and � � 	 � 
 � �

� � � ���
M �

In general, for each � -th-level cluster 	
 
, we have

� � 	  
 � �
� ��� � � � �

M  � � 
 � � � � 

� � �


 ���

where � is the desired level of circuit clustering.

In the definition of the cluster area for an � -th-level cluster 	
 
, all

� �
�

� 
 -th-level
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clusters inside 	
 
are considered to have the same area M  � � . So totally no more than

� �
� � � �� �

�
� 
 -th-level clusters can be included into one � -th-level cluster1.

Besides area constraints, there are delay values associated with all nodes and edges.

For each node � � �
, a delay function � � � 
 is defined as a non-negative value which

represents the delay of the functional block. The notation � � � 
 � 
 represents the edge delay

from node � to node � . For each edge within the same first-level cluster, it is associated with

a fixed delay
�
� . For each edge connecting two nodes in different first-level clusters but

in the same second-level cluster, the edge delay is assigned to a fixed delay
�
� . Generally,

for each edge connecting two nodes in different
� �
�

� 
 -th level clusters but in the same

� -th-level cluster, the edge delay is associated with a fixed delay
�  . And, each edge,

which connects two nodes between two different � -th-level clusters, has a fixed delay
� ��� � .

Practically, we have
�
� �

�
� �

�
� � � � � �

� ��� � for an � -level circuit clustering.

For the delay of a path from node � to node � , we always include all node delays and

edge delays along the path. The path delay at a node � is defined as the maximum delay

of all paths from PIs to � . The delay of a clustered circuit is defined as the maximum path

delay at all PO nodes; in other words, it is the maximum delay of all paths from PIs to

POs within the clustered circuit. According to the above definitions, the multi-level circuit

clustering problem with area constraints is presented in the following.

Problem (Multi-Level Circuit Clustering)

Divide the graph � into a set
�
�
� � 	 �

�

 	 �

�


� � �


 	 �
� � � of first-level clusters,

divide the set of all first-level clusters into a set
�
�
� � 	 �

�

 	 �

�


� � �


 	 �
� � � of

second-level clusters, and recursively divide all the
� �
�

� 
 -th-level clusters

into a set
�  � � 	  

�

 	  

�


� � �


 	  
� � � of � -th-level clusters until a set of � -th-level

� It seems that our area definitions of clusters are different from [55], but in fact, the
TLC implementations we obtained from the authors of [55] follow our definitions here.
Details are discussed in Section F.
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clusters is obtained, such that the delay of the clustered circuit is minimized.

The clusters of each level may have common elements, but the clustered circuit

must be logically equivalent to the original circuit. The clusters of each level

should satisfy the following conditions.

� � � � � 

� � �


 �
�
� 
 	 �� � �

, s.t.

��� �� � � 	 �� 
 � M � ,� � �� � � 	 �� � �

� � � � � 

� � �


 �
��� 
 	 �� � �

� , s.t.

��� �� � � 	 �� 
 � M � ,� � �� � � 	 �� � �
�

and,� � � � � 

� � �


 � � 
 � � � � � 

� � �


 �  � 
 	  � � �  � � ,

s.t.

��� �� � � 	  � 
 � M  ,� � �� � � 	  � � �  � �
An example is shown in Figure 28. In the figure, there are 17 nodes in the graph and

a three-level circuit clustering is shown. In the clustering, the delay of edge
� � 
 � 
 is

�
�

since
�

and � are in different third-level clusters. The delay values of
��� 
 � 
 and

� � 
 � 
 are
�
�

and
�
� , respectively. Since O and � are in the same first-level cluster, the delay associated

with
� O 
 � 
 is

�
� . If each node is associated with unit area and M �

� � 
 M �
� � 
 M �

� � �
,

the area � of each first-level cluster in the clustering is
�

except for the clusters containing

� ,� or 
 , whose � equals
�
. The second-level cluster containing

� � 
 � 
 � 
 � 
 O 
 ��� has an area

of
�
. The area of the second-level cluster containing

��� 
 � 
 � 
 � � is also
�

since it consists

of three first-level clusters and no more first-level cluster can be further filled into it. In

fact, the area of each second-level cluster in Figure 28 is
�

except the one containing
� � 
�� �

(whose area is 2). The area of each third-level cluster in the graph is the same, which is
���

.

In the example, we assume
�
�
� � 
 �

�
� � 
 �

�
� � 
 � �

� � � and � � � 
 �
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Fig. 28. An example of circuit clustering with three levels
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�
for each node � . The delay of the clustered circuit is equal to

� � , which is along the

path � � � � O � � � � � � � � � � � � � � , including the edge entering � and the

one leaving � (The delays of both are
�
� .).

C. The Algorithm

The flow of our algorithm, Multi-Level circuit Clustering (MLC), is depicted in Figure 29.

We divide the multi-level clustering problem into two subproblems: single-level graph clus-

tering and graph contraction. In next subsections, the subproblems and their solutions are

discussed in detail. Before that, a brief overview of our algorithm and some new notations

for the subproblems are introduced.

Single-Level
Graph Clustering Graph Contraction

lev = n?

Yes

No

lev = 0, G0=G

Slev+1

Glev

Slev,Glev-1

Input

Output

Output

Input

Glev

Sec 3.1
Sec 3.2

lev++

Fig. 29. The flow of our algorithm

At the beginning of our algorithm, the level index (denoted by
� O � ) is set to

�
, which

means the circuit is not yet clustered. So, we have � � � � , while in � � � �!� ��

� � 
 , we

denote the node delay ��� � � 
 for each node � � � �
and edge delay � � � � 
 � 
 for each edge

� � 
 � 
 � � �
, where � � � � 
 � � � � 
 for each node � � � �

and � � � � 
 � 
 � �
� for each edge
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� � 
 � 
 � � �
.

Then, � � is the input to the single-level graph clustering algorithm and
�
� , a first-level

clustering, is returned. Then,
� O � is increase by

�
(
� O � � �

) to indicate that the algorithm

has obtained a first-level clustering. If we want a single-level clustering (i.e., � � �
), it is

needless to perform graph contraction step and the algorithm terminates. But if � �
�
, � �

and
�
� are then used to generate the contracted graph � � . In graph contraction, we treat

each first-level cluster 	 � as an independent supernode. In other words, � � is built in the

way that each node represents a supernode, which in fact stands for a cluster in
�
� .

The contracted graph � � is completely different from the original circuit � �
because

for each node in � � , there must exist a corresponding cluster in the clustering
�
� on � � .

So, in the contracted graph � �
� �!�

�


�

��
 , we define the node delay as � � � � 
 for each node

� � �
� and the edge delay as � � � � 
 � 
 for each edge

� � 
 � 
 � �
� , which are different from

the node delay and edge delay ��� � � 
 defined in � � .
In general, each time the single-level graph clustering algorithm takes the contracted

graph � ����� as input and it outputs a set of clusters,
�
����� � �

2. After that,
� O � is increased by

�
. If

� O � is equal to the required number of levels, � , the algorithm terminates. Otherwise,

graph contraction is performed on � ����� � � based on
�
� � � and returns a new contracted graph

� �����
� ���

� � �


�

� � � 
 (and a new set of corresponding node and edge delays with notation

� � � � � � ). Then, single-level graph clustering is once again performed on the new graph � � � � ,

and the output is a set
�
� � � � � of clusters. The algorithm iterates until the desire level � is

obtained.

The details of the single-level graph clustering and graph contraction algorithms are

presented in Sections 3.1 and 3.2. The graph contraction algorithm is the main contribu-

tion in the paper since without graph contraction, single-level graph clustering cannot be

� Actually, in the subproblem of Single-Level Graph Clustering, we use the notation
�� � � � � � instead of

�
����� � � . Their difference is explained in Section 1.
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repeatedly applied to the circuit � .

1. Single-Level Graph Clustering

In this section, the definition of the single-level graph clustering subproblem is first pre-

sented. Then, we present our algorithm to this subproblem.

a. Definition of the Subproblem

In the subproblem, given a graph � � � �
� � �

� � �

 �

� � � � , it is required to construct the graph

clustering �� ����� � � which is to divide the graph � � � � into a set �� ����� � �
� � �	 ����� � ��


 �	 � � � � ��


� � �



�	 ����� � ���� ����� � � of clusters, such that the delay of the clustered graph is minimized. The delay

of each node � is defined by � ����� � � � � 
 while the edge delay is � � � � � � � � 
 � 
 for each edge
� � 
 � 
 � �

����� . When the end vertices � and � of an edge are assigned into different clusters,

the edge delay will become
� � � � � � � � � 
 � 
 � � �

� � � � �
� �

� � � � ��
�
 instead 3. The clusters

may have common nodes, but the clustered graph must retain the predecessor-successor4

relationship of the original graph. The clusters must also satisfy the following conditions.

� � � � � 

� � �


 �
����� � �
�


 �	 ����� � � � �
����� ,

s.t.

��� �� � � �	 � � � � � 
 � � � ����� �
� � ��� ,� ��� ����� � 	� � �	 ����� � � � �

����� ,

where � � �	 ����� � � 
 is defined as the number of nodes in �	 ����� � � for
� O � K �

, � � �	 � 
 �
�

� �	�
� �� � �

� 
 and M � � �
.

Since for each time we only deal with single-level graph clustering, the definition of

“
� � O � � � 
 -th-level” clustering �� � � � � �

� � �	 � � � � ��

 �	 � � � � ��



� � �


 �	������ � �� � ����� � � in this subproblem

� The reasoning of the edge delay calculation is explained in Section D.
� In a graph, a vertex � is a predecessor (successor) of a vertex � if there exists a path

from � to � (from � to � ). Similarly, a vertex � is an immediate predecessor (immediate
successor) of a vertex � if there exists an edge from � to � (from � to � ).
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is slightly different from
�
� � � � �

� � 	 ����� � ��

 	 � � � � ��



� � �


 	 � � � � �� � ����� � � in Section B. For each

cluster �	 � � � � � � �� � � � � � , it only contains a number of nodes (or namely supernodes) in the

contracted graph � ����� while the corresponding 	 � � � � � � �
����� � � contains a set of

� O � -th-level

clusters. However,
�
����� � � can be easily converted from the corresponding

� � O � � � 
 -th-level

clustering solution �� ����� � � of the single-level graph clustering subproblem. The conversion

is further explained in Section 3. Figure 30 shows an example. In the figure, there are

two third-level clusters �	 �
� and �	 �

� on the “contracted graph” which is constructed from the

second-level clustering of the circuit shown in Figure 28.

Vf

Vj

Vl

Vq

C1
^ 3

C2
^ 3

Fig. 30. The corresponding �� � of
�
� in Figure 28
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b. Solution to the Subproblem

The subproblem can be solved by applying the single-level circuit clustering algorithm in

[51] with modifications5. The delay model adopted in [51] is slightly different from the

delay model that we consider in this paper. There is no delay value for each edge within

the same cluster in the delay model in [51]. But, in our model, the delay of each edge within

the same cluster can be any number. (Note that, �
� � � 
 � 
 � �
� for each edge

� � 
 � 
 � � �
at the beginning of the algorithm when

� O � � �
. But, after the first iteration,

� O � K �
, the

delay � ����� � � � � 
 � 
 of each edge
� � 
 � 
 � �

����� is defined by the last graph contraction and

the delay value may be different for every edge.) However, taking the first iteration with
� O � � �

as an example, if we assume each edge has the delay
�
� during the calculation of

the delay matrix
�
� , which stores the maximum delay (including node and edge delays)

of the paths between any two nodes, single-level clustering under our model can be solved

optimally6 in a similar way. The pseudo-code of the modified single-level graph clustering

algorithm is shown in Figure 31.

At the first time the algorithm is invoked, the circuit is unclustered. We have
� O � � �

,

� � � � 
 � � � � 
 for each node � � � �
, and � � � � 
�� 
 � � ��� 
 � 
 � �

� for each edge
� � 
 � 
 �

� �
in the graph � � . After the first iteration (

� O � K �
), the values of each � � � � � � � � 
 and

each � � � � � � � � 
�� 
 are determined in the last graph contraction step (discussed in the next

section). Moreover, the calculation of delay matrix
�

� � � � � , which stores the maximum

delay (including node and edge delays) of paths between any two nodes in
�
� � � , is calculated

based on the values of � ����� � � � � 
 and � � � � � � � � 
 � 
 defined in the input graph � � � � .

Each cluster generated by the Single-Level Graph Clustering (SLGC) algorithm has

	 Although the single-level circuit clustering algorithm in [56] can also be applied to our
subproblem, we did not use it because of its higher computational complexity.



The optimality is discussed in Section D.
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ALGORITHM Single-Level Graph Clustering( & � � � )Input : graph & � � � � �! � � � "%$ ����� �
Output : graph clustering

�

� � � � � � � )
�

� � � � � �� "
�

� � � � � �� " ����� "
�

� � � � � �� � � ��� � 2
1. begin
2. compute the delay matrix

�
� � � � � , where

�
����� � �9���%"����is the maximum delay (including node and

edge delays) of the paths from � to � ;
3. FOR each PI � , DO � � � � � ����� � ��� � � � � ����� � ;4. Sort the non-PI nodes of  � � � in a topological order

to obtain list � ;
5. WHILE � is not empty
6. Remove the first node � from � ;
7. Compute

�

� ;8. FOR each node H � �

� � ) � 2 do
9. � � ��H � � � � � � � �9��H ��


�
� � � � ����HJ"���� � � � � � � ����H � �END FOR

10. � � Sort the nodes in
�

� � ) � 2 in decreasing order of � �
11. Labeling( �I"%� );

END WHILE
12. � � all PO nodes;
13. � � � ;
14. WHILE � is not empty
15. Remove a node � from � ;
16. � � � � ) cluster ���0�32 ;
17. FOR all nodes � �  ����� � cluster ���0� , such that � is

an input of cluster( � ) and cluster( � ) �� �
18. � ��� � ) ��2 ;

END FOR
END WHILE

19. return
�

� ����� � � � � ;
20. end

Labeling( �I"%� )
Input : node � , list �
Output : � � � � � �����0�." cluster ���0�1. begin
2. cluster( � )= ) � 2 ;
3. WHILE ( � is not empty)
4. Remove the first node H in � ;
5. IF � � � cluster ����� � ) H�2-� �

� � ����� �� � ��� �
6. cluster ���0� � cluster ������� ) HJ2 ;
7. ELSE
8. break;

END IF
END WHILE

9. � �� � � � � ����� � max ) � � ��� ��� � � cluster ���0� � ���
	��32 ;
10. � �� � � � � ����� � max ) � � ��H ��
 � � � � � � � � � ����� � � ��� H

� �'2 ;
11. � � � � � ������� � max ) � ������ � � �����." �

�
� � � � � ���0�32 ;12. end

Fig. 31. The pseudo-code of our single-level graph clustering algorithm
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one and only one root vertex � and we denote the cluster rooted at � as � � � � � O � � � 
 7. Let

� � be the set of all predecessors of � together with the vertex � . Note that, � � � � � O � � � 
 is a

subset of � � . When the context is not ambiguous, we also denote the subgraph induced by

� � by the vertex set � � .

The algorithm consists of two phases: labeling phase and clustering phase. For each

vertex � � �
� � � , the label of � ,

�
� � � � �

�
� 
 , is defined as the minimum path delay at � among

all possible clusterings on the subgraph � � . In the labeling phase (lines 2-11 of SLGC),

for each vertex � in a topological order, the algorithm finds � � � � � O � � � 
 from � � such that

it would make the path delay at � become the minimum among all possible clusterings on

� � , and at the same time, the algorithm obtains
�
� � � � �

�
� 
 .

In order to get
�
����� � �

�
� 
 , the algorithm first calculates

� � � ��
 locally for each predecessor

� of � (lines 8-9 of SLGC).
� � � ��
 is defined as the sum of

�
����� � �

� ��
 and the maximum delay

of the paths from the output of � to � in the input graph8. Then, a vertex with the highest
� �

value is repeatedly picked and included into the cluster rooted at � until the cluster area

violates the area constraint (lines 3-8 of Labeling). Note that the cluster area � �
� 
 in line 5

is defined the same as that in Section a.

After finding the � � � � � O � � � 
 , the algorithm continues to calculate
� �
� � � � � , the maximum

� �
value of the PI vertices (denoted by the set � 	

) which are inside the cluster, and to find
� �
� � � � � , the maximum

� � � � �
� � � � �

� �
� � � � ��
 value of the vertices outside the cluster. After

that, the label of � ,
�
� � � � �

�
� 
 , can be found by getting the greater value of

� �
� � � � � and

� �
� � � � �

(lines 9-11 of Labeling).

The clustering phase (lines 12-19 of SLGC) constructs clusters from POs to PIs ac-

cording to the cluster information generated in the labeling phase. First, for each PO vertex

�

All vertices in the cluster are predecessors of the root vertex.
�

When calculating the delay of a path from the output of � to � , the vertex delay of � is
not included.
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� , the corresponding � � � � � O � � � 
 is included into the clustering
�

. Then, for each vertex
�

outside
�

, which is an immediate predecessor of any vertex inside
�

, � � � � � O � � � 
 is also in-

cluded into the clustering
�

. The procedure is repeated until all vertices in � � � � are included

in
�

. Finally,
�

is returned and stored as �� � � � � � .
As an example, a sample circuit is shown in Figure 32, while all PI nodes and PO nodes

are not included in the figure. In this example, we assume M �
� � 
 M �

� � 
 �
�
� � 
 �

�
�

� 
 � �
� ��� 
 � � � � 
 � � 
 � �

� 
 � �
for each node � . For this sample circuit, we perform the

SLGC algorithm and the resultant first-level clustering result is depicted in Figure 33. As

shown in the figure, node duplication is allowed between first-level clusters so as to reduce

the delay of the resultant circuit. For example, node � is duplicated and located in two clus-

ters �	 �� and �	 � . In the first-level clustering �� � � � �	 �� 
 �	 �
�

 �	 �� 
 �	 �

�

 �	 ��


 �	 �� 
 �	 � 
 �	 �� 
 �	 ��

 �	 �� � ,

the first-level clusters are named according to the root node of each cluster for legibility.

a b c

d e f g

h i

j k

m l

n

Fig. 32. A sample circuit � �
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Fig. 33. First-level clustering �� � for Figure 32

2. Graph Contraction

The problem definition of the graph contraction subproblem and our solution are presented

in this section.

a. Definition of the Subproblem

After constructing the set �� � � � of
� O � -th-level clusters, the second subproblem is to build a

contracted graph � � � �
� � �

�����
� �

� �


���


� � �



� � � � � � 

� � � � � from the graph � ����� � � and the

clustering �� � � �
� � �	 � � ��


 �	 � � ��


� � �


 �	 ������ � ��� � , and at the same time, assign node delay � � � � � � � � � 

to each node � � � �

� � � and edge delay � ����� � � � � �	
 ����
 to each edge
�
�
��

����
 � �

����� , such that

each node �  in � � � � corresponds to a
� O � -th-level cluster �	������ in �� � � � on the graph � � � � � �

and its path delay in � � � � is the same as the path delay at the root node �  of �	������ in the

clustered graph of � ����� � � , in other words, the label
�
� � �
� �  
 of �  .
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b. Solution to the Subproblem

In the subproblem, since clusters may have different numbers of nodes and subgraph struc-

tures, and there may be several edges connecting nodes inside two different clusters, delay

assignments to each supernode and each edge connecting the supernodes are not straight-

forward. The general algorithm for constructing � � � � from graph � ����� � � and clustering �� � � �
is shown in Figure 34.

ALGORITHM Graph Contraction( & ����� � � ,
�

� � � � )
Input : Graph & � � � � � , Clustering

�

� � � � = )
�

� � � �� "
�

� � � �� " ����� "
�

� ������ � ��� 2
Output : & �����1. begin
2. FOR each cluster

�

� ����� in
�

� �����3. construct a node �  in & �����
4. � ����� � �����

 � � � �
�

� ����� );
/* � � � � � �7���

 � is assigned in & � � � */
END FOR

5. FOR each edge � � ��	I" � � in & � � � � �
6. IF ( 	 and

�
are not in the same cluster of

�

� ����� )
7. assume

�
in

�

� ����� which is rooted at ; ;
8. find the cluster

�

� � � �� rooted at 	 ;
9. IF (there exists no edge from � � to �  in & ����� )10. add an edge from � � to �  in & ����� ;
11. � � � � � �����

� "��  � � � � � � ��	+"
� � 
 � � � � � � � � � � � � �

� � ����� � �9���
 � 
 � ����� �

� "�;
� ;
/* Note that � � � � � �����

� "��  � is defined in & ����� */
/* and � ����� ��	+"

� � is defined in & � � � � � */
12. ELSE IF (there exists an edge from � � to �  in

& � � � )13. IF ( � � � � � �9���
� "��  ��� � � � � ��	I"

� � 
 � � � � � � � � � ����� �
� � ����� � �9���

 � 
 � ����� �
� "�;
� )

14. � � � � � �����
� "��  ��� � � � � ��	+"

� � 
 � � � � � � � � � ����� �
� � ����� � �9���

 � 
 � ����� �
� "�;
� ;

END IF
END IF

END IF
END FOR

15. return & ����� ;16. end

Fig. 34. The pseudo-code of our graph contraction algorithm

In the first FOR loop (lines 2-4), each new node (or namely supernodes) �  in � � � �
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is first created in such a way that �  is corresponding to a cluster �	 � � � in �� � � � . The delay

� � � � � � � �  
 of each new node �  is set to
� � �	�� � � 
 , which is defined as the maximum delay of

paths from any node within �	�� � � to the root of the cluster, in order to keep the maximum

delay values of the clusters in the new graph.

The second FOR loop (lines 5-14) is to create edges between the supernodes and to

calculate the delay value � � � � � � � � � 
 �  
 for each edge
�
�
� 

�  
 in � � � � . For each inter-cluster

edge induced by the original graph � ����� � � and �� � � � , we build an edge between the two

corresponding supernodes and assign the delay value such that the maximum delay of the

paths passing through that inter-cluster edge is maintained. This is the most complicated

part for the graph contraction algorithm since different edges may connect different nodes

inside two clusters. Our work successfully accomplishes the delay assignment to each edge

(lines 9-14) which is depicted in Figure 35. (Note that the notation � ����� � � 
 � 
 represents the

edge delay between nodes � and � in graph � ����� � � . At the first time graph contraction is

performed, when � and � are nodes in the original circuit � �	��� � 
 and �� � ��� �
��
 is a first-

level clustering, ��� � � 
 � 
 is set to
�
� for each edge

� � 
 � 
 in � � . For the case where � and

� are nodes generated by the previous graph contraction step, all corresponding � ����� � � 
 � 

values are also assigned at the same time.) In Figure 35, the “height” of a node, an edge, or

a cluster represents its delay. It is obvious that
� � � � � � � � � �  
 � � � � � � � 
 � 
 � �

� � �
� � 
 � 
 , so we

have
� � � ����� � � 
 � 


�
� � � � � � � �  
 � �

� � �
� � 
 � 
 . Since the edge between � and � becomes an

inter-cluster edge connecting two
� O � -th-level clusters (originally it connects two

��� O �
�
� 
 -

th-level clusters), its delay value has to be adjusted such that � ����� � � � � � 
 �  
 � � � � ����� � � ��
����� which leads to the equation in line 11 and line 14 of Graph Contraction.

Finally, for every two supernodes, if there exists more than one edge linking them, we

only keep the edge with maximum delay value and remove all the others in the new graph

� ����� . Note that in the clustering generated by our single-level graph clustering algorithm

mentioned in Section b, inter-cluster edges only connect from the roots of the predecessor
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clusters.
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b
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=δlev+1(vi)

+x

Fig. 35. Illustration of edge delay calculation in ��������� 	�

��������������
��

We describe in Section D that in this graph contraction algorithm, some crucial delay

information of each new node �  �� �
� � � is extracted from the root of the corresponding clus-

ter �	 ����� . Since this delay information is retained in the contracted graph, finding the next

higher-level clustering from the contracted graph for delay minimization can be achieved

by the SLGC algorithm in polynomial time.

For the first-level clustering �� � in Figure 33 and � � in Figure 32, the contracted graph

� � is shown in Figure 36 as an example. Again, we assume M �
� � 
 M �

� � 
 �
�
�

� 
 �
�
� � 
 � �

� ��� 
 � � � �  
 � � 
 � �
�  
 � �

for each node �  . Each cluster in �� � becomes

a node in � � . For example, � � in � � represents �	 �� in �� � . The delay value � � � � 
 assigned

to each node � in � � is calculated from
� � 	 
 , the maximum delay among all paths within

the corresponding cluster 	 . For example, � � � � � 
 � � � �	 �� 
 � � along the path O � � � �

and � � � ��� 
 � � � �	 �� 
 � �
along the path

� � � . The edges in � � are also constructed

accordingly. For example, between clusters �	 �� and �	 �� , there are two edges
� � � 
 � 
 
 � � 
�� 
 � .

Then, we construct an corresponding edge
�
��� 
 �
� 
 in � � . The edge delay � � � ��� 
 ��� 
 is
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Fig. 36. The contracted graph � � constructed from �� � and � �

assigned by comparing the two edges
� � � 
 � 
 
�� � 
�� 

� . Figure 37 shows the calculation of

� � � � 
�� 

�

� � � �
� 
 � �
�
� � 
 � 
 � � �

�

� �
��
 � �

�
� � � � � � � � � . Similarly, � � � � 
 � 


�
� � � ��� 
 � �

�
� � 
 � 
 � � �

�

� �
��
 � �

�
� � � � � � � � �

. According to the above comparison,

we assign the edge delay � � � ��� 
 �
� 
 � � � � � 
 � 

�

� � � ��� 
 � �
�
��� 
 � 
 � � �

�

� �
��
 � � . Note

that, in this example, we use ��� � � 
 � 
 from the circuit (the original graph � � ) in Figure 32

to calculate � � � ��� 
 ��� 
 for the contracted graph � � .

Moreover, the path delay at node � , which equals
�
�
� � 
 , in the clustered graph of � �

in Figure 33 is 19 which is the same as the path delay at ��� in � � . This example shows that

our graph contraction algorithm can retain the crucial delay information in the contracted

graph by keeping the path delay at a node �  in � � � � the same as that at the root node of the

corresponding cluster �	������ in the clustered graph of � � � � � � .
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Fig. 37. Example of delay calculation of the new edge
�
� � 
 �
� 
 in � �

3. Remarks

A multi-level clustering is achieved when we iteratively perform the single-level graph clus-

tering and graph contraction to get the information of all clusterings �� � 
 �� � 
 � � � 
 �� � . How-

ever, due to limited space, we only demonstrates the generation of 2-level clustering in this

section as an example.

After the contracted graph is constructed based on the first-level clustering �� � (it

equals
�
� because the first-level circuit clustering on � is the same as the single-level graph

clustering on � � ), a second-level clustering �� � can be found from the contracted graph � �

by the single-level graph clustering algorithm in Section b with
� O � � �

. This time, the

algorithm takes
�
�

� �
� for the calculation of label

� �
� value (in line 10 of “Labeling”),

�
�

� �

for area bound (in line 5 of “Labeling”), and edge and node delays, � � , in � � step for the

calculation of
�
� . The resultant second-level clustering of � �

in Figure 32, obtained by

performing the SLGC algorithm on � � in Figure 36, is shown in Figure 38. In the example,

we add
� �

�

� �
� 
 � � to the delay of each edge connecting two second-level clusters when
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calculating the delay of the clustered circuit.
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Fig. 38. Second-level clustering �� � on � �

As mentioned previously, the definition of
� O � -th-level clusters in the subproblem is

slightly different from that in Section B. A
� O � -th-level cluster 	 � � � in the multi-level

clustering problem contains several
��� O �

�
� 
 -th-level clusters while a

� O � -th-level cluster

�	������ in the single-level graph clustering subproblem contains several nodes in the con-

tracted graph � � � � � � . However, the conversion is straightforward since each vertex in the

contracted graph � � � � � � represents a
� � O �

�
� 
 -th-level cluster in the

��� O �
�
� 
 -th-level clus-

tering. For example, in Figure 38, the second-level cluster containing two supernodes � �
and ��� actually consists of two first-level clusters �	 �

� and �	 �� shown in Figure 33. At the

same time, this second-level cluster contains 5 nodes
� � 
 O 
 � 
 � 
 ��� in

�
. The conversion of

this second-level cluster is depicted in Figure 39.

After the second-level clustering �� � (or in general, the � -th-level clustering ��  ) is ob-

tained, a contracted graph � � ( �  ) is constructed. The third-level clustering �� � (
� � � � 
 -th-

level clustering ��  � � ) can then be generated similarly. In conclusion, our overall algorithm

can be easily employed recursively to get an � -level circuit clustering.
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Fig. 39. A simple example about conversion from �	�� � � to 	�� � � 

D. Analysis of the Algorithm

In our algorithm, the contracted graph � ����� is constructed such that the path delay at �  in

� ����� equals the label value
�
�����
� �  
 of the root node �  of the corresponding cluster �	������ in the

clustered graph of � ����� � � . We discuss the correctness of our graph contraction algorithm

in Theorem V-1. Before that, a lemma has to be first stated.

Lemma V-1 The contracted graph � �����
� � �

� � �


�

����� � generated by the algorithm

Graph Contraction is acyclic if the input graph � ����� � � is acyclic.

Proof It is proved by the contrapositive.

Assume the contracted graph � � � � is cyclic. There exists a cycle in � ����� and with-

out loss of generosity, we let the cycle pass along the path � �


���


� � �



�
� 
 � � such that each

vertex appears once along the path except � � . We denote the corresponding clusters as

�	 ������

 �	 � � ��



� � �


 �	 � � ��

 �	 ������ , and the root node of those clusters as ��� 
 � � 
 � � � 
 � � 
 ��� . Since all

inter-cluster edges are incident from a root node, there must exist a cycle in the graph

� ����� � � passing along the path �
� 
 � � � 
 � � 
 � � � 
 � � 
 � � � 
 ��� . This proves that if � � � � is cyclic, then
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path delay at �  in & �����
� ����� � 
 � � � ��� � � � 
 � � ��� ��� � � � � path delay at � � in & � � � 
 � ����� � �����

� "��  � 

� � �

� ����� ���
� ����� � 
 � � � � � � � � � � 
�� ��� �	� � ��� � � � � � �� � ���� ) � � � � ��;

� ��

� � � � ��;
� " � �


 � ����� �
� "�;  ��
 � � ����� � � � � � � � �32� � � � � ��;

 �


����

 (8.1)

� ����� � � is also cyclic, which is the contrapositive of Lemma V-1. �

Theorem V-1 For any node �  in the contracted graph � �����
� � �

� � �


�

����� � generated by the

algorithm Graph Contraction, the path delay at �  in � � � � is equal to the label,
�
� � �
� �  
 , of

the root node �  of the corresponding cluster �	 � � � � �� ����� .
Proof From Lemma V-1, we know that the contracted graph in each level is a directed

acyclic graph, so the theorem can be proved by induction.

(1. Induction basis) For any PI node �  in � � � � , in the corresponding cluster �	�� � � � �� � � � ,
all nodes of � � � � � 	

must be also within the cluster �	������ � �� ����� since �	�� � � � � � � . So� � �	 � � � 
 is equal to the maximum delay from any node in � � � � � 	
to �  . In other words,

the path delay at �  in � � � � (
� � � � � � � � �  
 � � � �	�� � � 
 ) is equal to the label,

�
�����
� �  
 , of the

root node �  of the corresponding cluster �	 � � � � �� � � � .
(2. Induction step) Assume that the statement is true for all nodes �

� � �
� � � (corresponding

to clusters �	 � � �� rooted at � � ) which are immediate predecessors of node �  �� �
� � � (corre-

sponding to cluster �	������ rooted at �  ), we are going to prove that the statement is also true

for node �  .

According to Equation (8.1), path delay at �  in � ����� is equal to
�
�����
� �  
 .

As a result, the statement is also true for node �  . �

An example of Theorem V-1 is that in Figure 33, the label,
�
�
� � 
 , of � is

���
(
� �

� �
� � � � 
 � � � � � � � � 
 � � � � � � � � 
 � � � � � � � � 
 on the path “a PI node”

� � � � � � � � ,

assuming all PI nodes are not associated with any gate delay), which is exactly the same as

the path delay at � � (
� ���

on the path “a PI node”
�

� �
�

��� ) in Figure 36.
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Based on Theorem V-1, it is trivial that two observations can be made to describe the

relationship between �� ����� and
�
����� in the algorithm.

Consider two sets: (1) the set �� ����� � �
� � �	 � � � � ��


 �	 ����� � ��


� � �


 �	�� � � � �� � � ��� � � which is a single-

level graph clustering on the contracted graph � �����
� � �

�����
� �

��� � ��


��� � ��



� � �



��� � �� � � � � 

� � � � � ,

and (2) the set
�
����� � �

� � 	 ����� � ��

 	 ����� � ��



� � �


 	�� � � � �� � � ��� � � which is a
��� O � � � 
 -th-level clustering

on the
� O � -th-level clustered circuit of � (with all

� O � -th-level clusters denoted by the set
�
� � �

� � 	 � � ��

 	 � � ��



� � �


 	 �������� ��� � ),

Observation V-1: The path delays at the root nodes of two corresponding

clusters (e.g., �	 ����� � � and 	 ����� � � ) are equal, where the root node of the cluster

	 ����� � � in the set
�
����� � � is defined as a node ��� in the unclustered circuit � such

that ��� is covered by 	 � � � � � and none of its immediate successors is covered

by 	 � � � � � .

Observation V-2: The delays of the clustered graph induced by �� � � � � � and the

clustered circuit induced by
�
� � � � � are the same.

According to Theorem V-1, these observations reveal that performing single-level

graph clustering on the
� O � -th-level contracted graph is the same as performing

� � O � � � 
 -th-

level clustering based on the corresponding
� O � -th-level clustering and it allows the single-

level graph clustering algorithm to be repeatedly applied to obtain the clustered circuit to

any level � with correct delay information.

Then, we further derive the local optimality of our algorithm in Theorem V-2.

Theorem V-2 Given a contracted graph � �����
� � �

�����


�

� � � � generated by the graph con-

traction algorithm, our single-level graph clustering algorithm generates a graph clustering,

�� � � � � �
� � �	 � � � � ��


 �	 � � � � ��


� � �


 �	�� � � � �� � ����� � � , which minimizes the delay of the resultant clustered

graph.

Proof From Lemma V-1, it is obvious that the contracted graph in each level is a directed
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acyclic graph. The optimality of our algorithm is based on the optimality of single-level

circuit clustering algorithm in [51] because they are structurally similar. The main differ-

ence between the problem definition in [51] and our single-level graph clustering subprob-

lem is the delay model. There is no delay associated with each interconnect linking two

gates in the same cluster in general delay model [51] while in our problem, every edge
� � 
 � 
 � �

����� linking two nodes in the same cluster would have a delay value � ����� � � � � 
 � 
 .
When the end vertices � and � are assigned into different clusters, the edge delay will be-

come
� � ����� � � � � 
 � 
 � � �

� � � � �
� �

� � � � ��
�
 instead. As mentioned in [51], our delay model

can be transformed to the general delay model by adding a dummy node (namely � ��� ) with

zero area and delay
� � � � � � � � � ��� 
 � � � � � � � � � 
 � 
 for each edge

� � 
 � 
 � �
����� . The transfor-

mation of an edge
� � 
 � 
 is depicted in Figure 40a. For the case when � and � are assigned

in different clusters, Figure 40b shows that the delay between � and � retains the same after

transformation.

In our single-level graph clustering algorithm, we first calculate the delay matrix
�

����� � � , which stores the maximum delay (including node and edge delays) of paths be-

tween any two nodes in
�
����� . Since we use

�

����� � � to store the delay of paths in � ����� for

all the delay calculation throughout the algorithm, the calculation of this delay matrix has

the same function as the transformation shown in Figure 40. As a result, the optimality of

algorithm in [51] can also be applied to our single-level graph clustering algorithm. �

Based on Theorem V-1, Theorem V-2, Observation V-1 and Observation V-2, it can be

shown that our algorithm generates an optimal
� � O � � � 
 -th-level circuit clustering

�
� � � � �

on a circuit � if the
� O � -th-level clustering

�
� � � is given. The local optimality described in

Theorem V-2 does not guarantee a final globally optimal solution but the local optimality

of each recursive step tends to maintain the circuit with a small delay value. In fact, our

experiments have shown that the delay reduction achieved by our algorithm is much better

than the state-of-the-art algorithms.
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Fig. 40. Transformation to general delay model
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For the time complexity of the algorithm, the modified single-level circuit clustering

algorithm takes � � !$� ! � � 
 � ��! � ! 
 � ! � ! ! � ! 
 time [51], and each graph contraction takes

� ��! � ! � ! � ! 
 time, where
�

and
�

are the node and edge sets of a given graph respectively.

And for each graph contraction, the number of edges and number of vertices both are non-

increasing. So for each level, the complexity of single-level graph clustering algorithm is

still bounded above by � ��! � ! � � 
 � � !$� ! 
 � !$� ! ! � ! 
 . Therefore, the overall time complexity of

our algorithm is � � � ! � ! ��! � ! � 
 � ��! � ! 
 � ! � ! 
�
 for the multi-level circuit clustering problem

with � levels.

E. Postprocessing Techniques

In the experiment, our algorithm generates large clustered circuits since node duplications

occur frequently in order to minimize the circuit delay. So, we present two simple post-

processing techniques to reduce the area of a clustered circuit while the circuit delay is

unchanged. The techniques are employed after the clustered circuit is generated, and they

do not increase the delay of the clustered circuit. Assuming we have an � -level clustered

circuit, the first technique locates those � -th-level clusters each of which is a proper subset

of another � -th-level cluster and so they can be deleted without changing the delay and

functionality of the whole circuit.

The second technique packs several � -th-level clusters into one single cluster if the

area constraint is not violated. This can be done when the original clusters are small. The

technique is based on the First Fit Decreasing method for the bin packing problem (which

is also mentioned in [53]). All the � -th-level clusters are sorted in the non-increasing order

of the area. We assume each bin has the capacity of M � . Then, it starts to place clusters one

by one into the bins. Each time we place a cluster in the leftmost bin that still has enough

space for it, and start a new bin if necessary.



127

F. Implementation and Experimental Results

We test our algorithm upon a two-level hierarchy which is based on Altera’s APEX FPGA

architecture [55] and compare our algorithm (namely MLC) to the UCLA TLC implemen-

tations which are obtained from the authors of [55]. Based on the timing extraction in [55],

we use the same parameters, i.e., M �
� ���

, M �
� � � �

,
�
�
� �

�

��� � � , � �
� �

�

� ��� � ,�
�
� �

� � ��� � , � � � 
 � �
�

��� � � , � �
� 
 � �

for each node � (refer to [55] for the details of

timing extraction). We evaluated our algorithm on this 2-level hierarchy mainly because

this architecture is the latest FPGA model for the multi-level circuit clustering problem.

Experiments are performed on MCNC benchmark circuits which are also used by

UCLA TLC [55]. The benchmarks are pre-processed and mapped into 4-input LUT net-

works by UC Berkeley SIS and UCLA RASP systems. Each benchmark circuit is clustered

into a two-level clustering by the two TLC implementations (No node duplication and Full

node duplication) and our algorithm. The first TLC implementation does not allow any

node duplication among different second-level clusters while the latter one does. However,

both TLC implementations do not allow node duplication within a second-level cluster.

Both TLC implementations return the clustering information while the one with node du-

plication also returns a new circuit which is functionally equivalent to the original circuit.

In order to carry out a fair and objective comparison, our implementation strictly fol-

lows the same problem formulation as the TLC implementations in [55]. First, in our

implementation, each PI node or PO node forms a second-level cluster by itself and it is

excluded from any cluster rooted at any other node which is neither PI node nor PO node.

As a result, the edge delay from each PI node to any of its immediate successors is always�
� , while similarly the same delay

�
� is always associated with the edge from any node to

a PO node. Secondly, our problem formulation and the problem formulation in [55] seem

to be different in the area calculation of second-level clusters. We limit the total number



128

of first-level clusters within a second-level cluster while [55] limits the total number of

nodes in a second-level cluster. So, if some first-level clusters contain fewer nodes, more

first-level clusters can be included into a second-level cluster in the problem formulation of

[55]; While in our problem formulation, the maximum number of first-level clusters within

a second-level cluster is always fixed. However, our problem formulation is more appro-

priate to the APEX FPGA architecture where one MegaLAB (=second level cluster) can

hold no more than 16 logic array blocks, LABs (=first level clusters), even when some of

the LABs are not full. In fact, we find that the TLC implementations we obtain from the

authors of [55] follow our definition on the second-level cluster area bound, so this ensures

a fair comparison.

In our implementation, we have also imposed a constraint on the maximum number

of inputs for each first-level cluster. In the specification of Altera APEX FPGA devices, a

first-level cluster (LAB) cannot have more than 22 inputs. Hence, we control the number

of inputs to a first-level cluster by adding a condition in the
	 � statement in line 5 of

“Labeling” in Figure 31, such that we stop adding new nodes into each first-level cluster

when the number of inputs to the cluster is more than 22. This constraint is also considered

in the UCLA TLC implementations.

The experimental results are shown in Table XVI. Columns 2-4 show the results of

TLC with no node duplication (No ND). Columns 5-8 show the best results of TLC in

which node duplication is allowed among second-level clusters (Full ND). Columns 9-13

list the results of our algorithm. For the “delay” columns, they represent the delays of the

clustered circuits in � � . “% de” columns list the percentage of delay reduced when compar-

ing to the TLC (No ND) implementation. “CPU” columns show the CPU time (in second)

consumed by each implementation on SUN Ultra4 workstations. “area” columns record

the numbers of second-level clusters which reflect the total area in each clustered circuit.

Moreover, “area-p” column shows the number of second-level clusters in each clustered
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circuit after applying our postprocessing techniques. Note that the clusters containing only

a PI node or a PO node are not counted in the calculation of “area” and “area-p” in all

implementations.

Table XVI. Comparison between two TLC implementations and our algorithm

UCLA TLC (No ND) UCLA TLC (Full ND) Our Algorithm MLC 1-level
Circuits delay CPU area delay %de CPU area delay %de CPU area area-p delay %di

alu 23.38 0.26 22 21.22 9.2 0.34 59 16.61 29.0 1.13 168 74 15.89 4.5
apex2 17.08 0.91 141 14.92 12.6 1.97 181 12.73 25.5 6.96 311 59 12.01 6.0
apex6 10.79 0.23 99 10.56 2.1 0.34 99 9.09 15.8 0.37 104 14 9.09 0.0
C1908 15.66 0.22 25 15.43 1.5 0.26 25 13.21 15.6 0.30 93 43 12.49 5.8
C5315 16.38 1.50 109 14.45 11.8 1.42 136 13.70 16.4 1.79 206 67 13.46 1.8
C880 18.32 0.14 26 16.38 10.6 0.13 26 15.40 15.9 0.24 63 30 15.40 0.0
dalu 12.72 0.25 16 11.28 11.3 0.35 16 9.81 22.9 0.71 83 24 9.58 2.4
des 12.72 2.06 245 10.56 17.0 5.32 245 10.30 19.0 14.97 610 142 9.58 7.5
i10 23.89 1.50 230 22.45 6.0 3.85 288 18.07 24.4 9.69 521 217 17.35 4.1
i9 11.03 0.19 63 10.31 6.5 0.19 63 8.12 26.4 0.35 63 63 8.12 0.0
k2 14.67 0.37 48 13.95 4.9 0.72 101 11.27 23.2 2.47 246 64 10.55 6.8
large 16.36 0.69 116 15.41 5.8 1.43 145 12.73 22.2 5.99 307 66 12.01 6.0
misex3 14.18 0.69 45 12.97 8.5 1.42 63 11.27 20.5 4.98 262 62 10.55 6.8
too large 12.51 0.13 3 12.51 0.0 0.11 3 10.30 17.7 0.15 40 10 10.06 2.4
vda 11.77 0.18 39 10.56 10.3 0.26 39 9.81 16.7 0.71 127 38 9.58 2.4
x3 9.08 0.22 99 8.12 10.6 0.33 99 8.12 10.6 0.36 102 13 8.12 0.0

Average 8.1 20.1 3.5
Total 9.54 1326 18.44 1588 51.17 3306 986

The results demonstrate that our algorithm achieves, on average,
� � �

more delay

reduction than the TLC (Full ND) implementation. Moreover, our results are constantly

better or the same for all benchmarks. Although our algorithm runs comparatively slower,

the total run time for all 16 circuits is still less than one minute.

Due to more node duplication, our resultant area is greater when comparing to the

TLC implementations before applying the postprocessing techniques. However, our post-

processing techniques effectively reduce the number of second-level clusters, on average,

by � ��� (from
� � ���

to 	 ��� ). The effectiveness of our techniques is due to that most second-

level clusters are not fully occupied. In fact,
� ���

of second-level clusters are less than half

full in our results before postprocessing.
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Since the Altera Quartus package is not available to us, we are unable to integrate our

MLC algorithm into it to get the post-routing delay information. However, according to

the comparisons of the post-routing results in [55] and the pre-routing results in this paper,

we observe that the TLC implementation with full node duplication has better delay results

than the TLC implementation with no node duplication for most cases (13 out of 16 in

[55] and 15 out of 16 in this paper), and this indicates that better pre-routing results are

likely to introduce better post-routing results. Since our algorithm generates much better

pre-routing results than both the TLC implementations for almost all cases, it is likely that

our post-routing results are also better.

Our work aims at minimizing the circuit delay, and we do successfully push the delay

close to the minimum. This can be seen in columns 14-15 of Table XVI. The columns show

the delay achieved by our algorithm with � � �
(“one” level clustering only) and only

�
� ,�

� (without
�
� ) used for edge delays, together with the percentage difference (“%di”)

when comparing to the delays achieved by the our algorithm ( � � �
two-level clustering).

For the � � �
case, the single-level graph clustering algorithm is only performed once and

no graph contraction is performed. In fact, we can take these
�
-level clustering results as

a “loose” lower bound for our two-level clusterings. From the last column, it is shown

that our results produce only
�
� � � more delay than the

�
-level results. In fact, out of 16

benchmarks, we obtain 2-level clustering solutions of the same delay as the
�
-level results

for 4 circuits (whose “%di” values equal to
�
�

�
).

G. Conclusion

We have presented an effective algorithm for the general multi-level circuit clustering prob-

lem for delay minimization. The experimental results upon a two-level hierarchy shows

that our algorithm achieves better delay reduction over the recent two-level circuit cluster-
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ing algorithm [55]. Our future work aims at studying the area minimization for multi-level

circuit clustering subject to delay constraints.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

This thesis focuses on five important problems in physical synthesis when the VLSI tech-

nology scales. The problems fall into two aspects: (1) Place and route aware buffer

Steiner tree construction, and (2) Circuit clustering techniques with the application in Field-

Programmable Gate Array (FPGA) technology mapping.

When the VLSI technology approaches the nanometer era, we have encountered more

and more problems in physical synthesis, which includes power dissipation, process vari-

ations, crosstalk noises, etc. After my graduation, I will work at IBM Austin Research

Laboratory and continue to devote myself in the research and development of the elec-

tronic design automation.
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APPENDIX A

VLSI DESIGN CYCLE

The overview of the VLSI systems design cycle is shown in Figure 41 which is ex-

tracted from [2]. The cycle can be generally divided into three parts: high-level synthesis,

logic synthesis and physical design synthesis.

System Specification

Architectural Design

Behavioral Design

Logic Design

Circuit Design

Physical Design

Fabrication

Packaging and Testing

High-level synthesis

Logic synthesis

Physical Design Synthesis

Fig. 41. A simplified VLSI design cycle

In high-level synthesis, the first steps are system specification and architectural design.

The specification is a high-level representation of the system and it initiates the whole

design process. As a result, it should consider all factors inside the design process such

as, functionality, performance, technology, market value, etc. For the Architectural design,
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instruction sets and system elements such as ALUs, caches are specified. The Micro-

Architectural Specification is the output of architectural design step.

The next step is the functional design and behavioral synthesis. In this step, all func-

tional unit and the connection between the units are defined. Besides, for each unit, the

system requirements are specified while the limitations are estimated.

For logic design, the output is the Register Transfer Level (RTL) description such

as Verilog, Hardware Description Language (HDL) and VHDL. The description specifies

logic expressions of each functional unit. In this step, logic and timing simulation and

testing are performed.

The circuit design step is intended to convert logic specification into circuit repre-

sentation. The representation is always called a netlist. It represents all circuit elements

including gates and connections. The conversion is always guided by timing and power

limitation.

For physical design processes, circuit level representation is converted into geometric

representation. The process includes partitioning, floorplanning, placement and routing.

The output of physical design is a layout. Throughout the processes, the conversion should

strictly satisfy some design rules, such as metal width, size, layers and chip area specifica-

tion. Verification is very important for layout quality assurance. If the limitation cannot be

fulfilled, engineering changes must be performed.

Fabrication, packaging and testing are the last steps of the design cycle. In the pro-

cess, wafers are fabricated and diced into chips. The chips should be packaged and tested

before delivery. The final product should satisfy all system specification and performance

requirement.
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