
TERRAINOSAURUS

REALISTIC TERRAIN SYNTHESIS USING GENETIC ALGORITHMS

A Thesis

by

RYAN L. SAUNDERS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2006

Major Subject: Computer Science

TERRAINOSAURUS

REALISTIC TERRAIN SYNTHESIS USING GENETIC ALGORITHMS

A Thesis

by

RYAN L. SAUNDERS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John Keyser
Committee Members, Glen Williams

Donald House
Head of Department, Valerie Taylor

December 2006

Major Subject: Computer Science

iii

ABSTRACT

Terrainosaurus: Realistic Terrain Synthesis Using Genetic Algorithms. (December 2006)

Ryan L. Saunders, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John Keyser

Synthetically generated terrain models are useful across a broad range of applications, including computer

generated art & animation, virtual reality and gaming, and architecture. Existing algorithms for terrain

generation suffer from a number of problems, especially that of being limited in the types of terrain that

they can produce and of being difficult for the user to control. Typical applications of synthetic terrain

have several factors in common: first, they require the generation of large regions of believable (though not

necessarily physically correct) terrain features; and second, while real-time performance is often needed

when visualizing the terrain, this is generally not the case when generating the terrain.

In this thesis, I present a new, design-by-example method for synthesizing terrain height fields. In this

approach, the user designs the layout of the terrain by sketching out simple regions using a CAD-style

interface, and specifies the desired terrain characteristics of each region by providing example height fields

displaying these characteristics (these height fields will typically come from real-world GIS data sources).

A height field matching the user's design is generated at several levels of detail, using a genetic algorithm to

blend together chunks of elevation data from the example height fields in a visually plausible manner.

This method has the advantage of producing an unlimited diversity of reasonably realistic results, while

requiring relatively little user effort and expertise. The guided randomization inherent in the genetic

algorithm allows the algorithm to come up with novel arrangements of features, while still approximating

user-specified constraints.

iv

TABLE OF CONTENTS
CHAPTER Page

I INTRODUCTION ... 1

II MOTIVATION .. 7

II.1 Applications of Terrain Generation .. 7
II.2 Idealized Terrain Generation .. 7
II.3 Goals ... 9

III BACKGROUND ... 11

III.1 Previous Work in Virtual Terrain ... 11
III.2 Other Similar Works ... 27
III.3 Other Topics .. 28

IV METHODS .. 36

IV.1 Prerequisites .. 36
IV.2 The User's Perspective (What It Does) .. 39
IV.3 The Computer's Perspective (How It Works) .. 44

V IMPLEMENTATION ... 68

V.1 Technologies ... 68
V.2 Supporting Libraries ... 69
V.3 Application Architecture ... 70
V.4 Optimizations & Simplifications ... 86

VI RESULTS & DISCUSSION ... 88

VI.1 Boundary Refinement .. 88
VI.2 Terrain Library Analysis .. 91
VI.3 Height Field Construction .. 97

VII FUTURE WORK ... 101

VII.1 User Study ... 101
VII.2 Placement of Features .. 101
VII.3 Automatic Map Construction ... 102
VII.4 Automatic Generation of Textures & Objects .. 102
VII.5 Computer-aided Terrain Classification & Segmentation 102
VII.6 Terrain Type Interpolation ... 103
VII.7 More Intelligent Construction of the Base LOD ... 103
VII.8 Enhanced Similarity Function .. 103
VII.9 Cross-LOD Analysis .. 104
VII.10 Enhanced Mutation & Crossover Operators ... 104
VII.11 Performance Improvements .. 104

VIII CONCLUSION .. 106

REFERENCES .. 108

VITA ... 112

v

LIST OF FIGURES

FIGURE Page

I.1 An Outdoor Scene from Halo 2 ... 1

I.2 A Height Field ... 3

I.3 The Three Phases of Terrainosaurus .. 4

I.4 Boundary Refinement in the User's Map ... 5

I.5 A Height Field Generated by Terrainosaurus ... 6

III.1 A Discrete Height Field ... 13

III.2 The Problem With Height Fields ... 14

III.3 Typical Characteristics of GIS-based Methods .. 17

III.4 Typical Characteristics of Sculpting Methods ... 18

III.5 Typical Characteristics of Simulation Methods ... 19

III.6 Typical Characteristics of Procedural Methods ... 20

III.7 Cracked Mud ... 24

III.8 Mean .. 31

III.9 Standard Deviation .. 32

III.10 Skewness ... 33

III.11 Kurtosis ... 34

IV.1 The Map Authoring Interface .. 41

IV.2 Artifacts Resulting from Linear Region Boundaries ... 42

IV.3 The Boundary Refinement Operation ... 43

IV.4 A Refined Boundary Avoids Unnatural-looking Artifacts ... 43

IV.5 The Encoding of a Gene in the Boundary GA .. 45

IV.6 The Absolute Angle Limit .. 46

IV.7 The Boundary GA Mutation Operator .. 47

IV.8 The Boundary GA Crossover Operator ... 48

IV.9 The Smoothness Fitness Function for Several Values of S .. 49

IV.10 Gaussian Curve Projection .. 52

IV.11 Determining Sigma G for Multiple Reference Values Using a Baseline Similarity 54

IV.12 The Need for Adaptability .. 55

IV.13 A Useless Statistical Measure .. 56

IV.14 Agreement ... 57

IV.15 Height Field GA Inputs .. 59

IV.16 Alpha Mask for Constructing the Base LOD .. 61

IV.17 The Encoding of a Gene in the Height Field GA ... 62

IV.18 The Gene Grid ... 62

IV.19 Unaligned Genes Look Like "Fingers" .. 67

V.1 A Suggested Application Architecture ... 71

V.2 Choice of Levels of Detail .. 72

vi

FIGURE Page

V.3 Multi-LOD Objects .. 73

V.4 The Terrain Library Data Structure ... 74

V.5 An Example Terrain Type Library (.ttl) File ... 75

V.6 The Terrain Type Data Structure .. 76

V.7 The Terrain Sample Data Structure ... 76

V.8 The Terrain Seam Data Structure .. 78

V.9 The Map Data Structure .. 78

V.10 An Example Terrain Type Map File .. 79

V.11 The Map Rasterization Data Structure .. 80

V.12 The Map Editor Window ... 81

V.13 The Terrain Viewer Window .. 82

VI.1 Map Boundaries Refined With S = 0.9 ... 88

VI.2 Map Boundaries Refined With S = 0.1 ... 89

VI.3 A Self-intersecting Boundary .. 90

VI.4 A Badly Scaled, Backtracking Boundary ... 90

VI.5 Elevation Histograms from the California Coast Hills .. 92

VI.6 A Reference Height Field from Florida ... 93

VI.7 A Generated Height Field Based on the Florida Reference .. 93

VI.8 A Reference Height Field from Washington .. 93

VI.9 A Generated Height Field Based on the Washington Reference 94

VI.10 A "Super Histogram" ... 97

VI.11 "Thirds" at 270m .. 98

VI.12 "Thirds" at 90m .. 99

VI.13 "Thirds" at 30m .. 99

vii

LIST OF TABLES

TABLE Page

VI.1 Height field generation running times ... 97

1

CHAPTER I

INTRODUCTION

Computer-rendered terrain is an important facet of most graphical applications that attempt to represent the

natural world in some way, including CG-animated feature films, virtual reality systems, computer games,

and art. The ability to synthesize large-scale, realistic terrain models is of considerable interest for many of

these applications.

Fig. I.1. An Outdoor Scene from Halo 2. Modern graphics hardware is capable of rendering

detailed terrain models in real time, as in this scene captured from Halo 2 ([Bungie 2004]).

Much of the recent research in virtual terrain has centered around accelerating the visualization of large

terrains to achieve interactive frame rates, resulting in a wide array of level of detail (LOD) algorithms,

methods of increasing rendering speed by omitting details that are too far away or would be otherwise

indiscernible to the viewer [Duchaineau et al. 1997] [Ulrich 2002] [Losasso & Hoppe 2004] [Li et al. 2003].

Recent, dramatic advances in the performance and capabilities of graphics acceleration hardware have

enabled the interactive presentation of richly-detailed terrain models, and have sparked increased interest in

This thesis follows the style and format of the Journal of the ACM.

2

representing outdoor phenomena, as evidenced by the prominence of nature-related techniques at a recent

Game Developer's Conference [Sanchez-Crespo 2002]. The visually stunning outdoor scenes in recent game

titles, such as Halo 2 [Bungie 2004] (Figure I.1), are solid evidence that believable terrain can be visualized

in real-time with current technology.

Terrain generation, in contrast, has received comparatively little treatment in the literature. Fractal-based

techniques are the most prevalent, because they are easily implemented, require relatively little processing

time and human input, and yield at least mediocre results, allowing random, unique terrains to be generated

rapidly. However, as several authors [Losasso & Hoppe 2004] [Pelton & Atkinson 2003] have noted, fractal

methods for terrain generation are limited in the types of terrain they can simulate, and one generally has to

resort to elevation maps digitized from the real world to get more interesting and believable terrain models.

In this thesis, I present Terrainosaurus, a new method of synthesizing realistic, heterogeneous (with

respect to type of terrain) height fields at multiple levels of detail. This method departs from current

industry-standard approaches to terrain generation in several important ways, most notably through the use

of real-world terrain data as raw material, and of artificial intelligence methods to control the generation

process.

There are a number of desirable characteristics for a terrain generation algorithm that could be optimized

during its design, some of which are in conflict with one another. However, not all of these characteristics are

equally important for all applications of terrain generation, and so, by selecting a more narrowly construed

problem, it is possible to make some reasonable decisions as to which characteristics are of the highest

priority. Terrainosaurus is aimed at the needs of "studio" users: artists, animators, simulation and video game

designers, people who typically have high goals for realism and quality, have powerful computing resources

at their disposal, and do not have real-time processing constraints. This means that, in order to be maximally

useful to its target user base, Terrainosaurus should optimize the following characteristics:

• realism, such that the terrain models generated by it create a plausible illusion of the real world

• extensibility, such that new types of terrain can be added to its repertoire on an as-needed basis

• ease of use, such that a human user is not burdened with tedious detail or arcane controls

The motivations and goals of Terrainosaurus are covered in more depth in Chapter II.

The variant of the terrain generation problem most commonly addressed is that of generating a digital

elevation map, in the form of a discrete height field: i.e., a rectangular grid of elevation values (Figure I.2).

This formulation of the problem is popular because of a number of simplifications it makes:

• for every coordinate pair within the bounds of the height field, there is precisely one corresponding

elevation value; thus, the resulting surface is manifold everywhere but at the height field edges

• the horizontal spatial resolution is constant throughout the terrain, being pre-defined by the resolution of

the rectangular grid

The advantages and disadvantages of of height fields, as well as those of several alternative representations

for terrain, are discussed in Section III.1.2.

3

Fig. I.2. A Height Field. Terrainosaurus generates terrain in the form of height fields,

rectangular grids containing one elevation value for each coordinate pair.

To this problem of terrain height field generation, we apply genetic algorithms. Genetic algorithms

are a class of techniques for solving difficult optimization problems using the metaphor of biological

micro-evolution, and are discussed in further detail in Section III.3.1. This approach allows the graceful

melding of competing goals, including design objectives specified by the user and realism constraints largely

outside of the user's direct control.

From the perspective of a user, Terrainosaurus is composed of three distinct phases (Figure I.3):

• assembly of a library of terrain types, collections of GIS elevation data (or terrain samples) that possess

similar characteristics and belong to the same category of terrain in the user's mind

• authoring of a 2D "map" describing the size, shape, and locations of one or more regions of terrain

• generation of a height field conforming to this map, with each region of terrain evincing similar

characteristics to those displayed by the terrain samples belonging to the corresponding terrain type

4

Fig. I.3. The Three Phases of Terrainosaurus .

The first of these phases, the construction of the terrain library (discussed in Section IV.2.1), is essentially a

classification process. The user (or a third party) provides a number of sample height fields, presumably from

GIS data sources, and sorts them into separate, logical terrain types. In this way, the user is able to construct

a "palette" of terrain types, with which he will later create his map. In so doing, the user describes by example

the characteristics he desires to have in the generated terrain.

At the moment, this process is entirely manual, and likely to be somewhat tedious, as it relies on the user to

compare terrain samples visually and to determine terrain type membership on this basis. Furthermore, not all

GIS elevation maps can be used as example terrains at the present time (the presence of bodies of water, for

example, significantly alters the statistical characteristics of a height field, making it unsuitable as a reference

example). In Chapter VII, I propose a number of areas for future work with the potential both to ease the

burden on the user and to relax the restrictions on example height fields. Still, even in Terrainosaurus's

current state, this is not as cumbersome as it might seem, as this task need be performed only infrequently:

once assembled, a terrain library can be reused indefinitely.

The second phase, the authoring of the map, is where the user will do most of his work, and is also where he

has the most freedom to create. The user expresses his desired terrain configuration by sketching arbitrary

5

polygonal regions using a 2D CAD-style interface, and assigning each region a terrain type from the library

constructed in the first phase.

Normally, the user will not want the boundaries between adjacent regions of terrain to be rigidly linear, so

in addition to normal polygon editing operations, we provide a boundary refinement operation, which is a

genetic-algorithm-controlled subdivision operation, replacing a straight boundary with a series of short linear

segments, forming an irregular, less artificial-looking boundary connecting the same endpoints as the original

(Figure I.4).

Fig. I.4. Boundary Refinement in the User's Map. In order to prevent artificial-looking linear boundaries

from being apparent in the generated height field, Terrainosaurus provides a boundary refinement

operation to subdivide the linear boundaries of the polygonal regions in the map into irregular boundaries.

The third phase, generation of the height field, is almost totally automated. The user selects a rectangular

region of his map, and a target spatial resolution, and then launches the generation process. A genetic

algorithm is applied repeatedly to generate successively higher resolution height fields (i.e., successively

finer levels of detail). At each LOD, the task of the genetic algorithm is to find a plausible way of arranging

small patches of height field data taken from the respective terrain types created by the user. The generated

height field is deemed "good" insofar as each region is similar to the user-provided examples for the terrain

type it is supposed to represent (Figure I.5).

The details of the Terrainosaurus algorithm are discussed in much greater depth in Chapter IV.

In contrast to many of the "quick and dirty" algorithms in common practice today, Terrainosaurus is

somewhat more complex, and is correspondingly more difficult to implement. In the interest of illuminating

the task of implementation somewhat, I discuss some of the design considerations, hurdles, and lessons

learned from the prototype implementation in Chapter V. An individual interested in implementing

Terrainosaurus may find this discussion useful, to avoid the problems we encountered during our research.

Conceptually, the main results of this work include:

• a new, genetic-algorithm-based method for generating terrain at multiple LODs without the use of fractals

• a terrain authoring paradigm for visually designing large-scale height fields that places a minimal burden

on the user in terms of effort and domain knowledge

• a means of comparing terrain height fields for similarity, based on their features and statistical

characteristics

6

In Chapter VI, I discuss the results produced by this work, as well as some of the significant problems and

"wrong turns" encountered during the research. In the process of this research, we identified a number of

promising avenues for further research, possibly leading to improvements in the quality of the generated

height fields and streamlining of the user experience. These are discussed in Chapter VII.

Fig. I.5. A Height Field Generated by Terrainosaurus . The generated terrain

may be composed of heterogeneous terrain types arranged into arbitrary regions.

7

CHAPTER II

MOTIVATION

The goal of Terrainosaurus is to "build a better mousetrap", so to speak. Established terrain generation

methodologies have their own respective strengths and weaknesses, which will be discussed in

Section III.1.3. Terrainosaurus is an attempt to address the shortcomings of these existing methods, yielding

a better way of generating artificial terrain for many applications.

In order to elucidate the motivation for something like Terrainosaurus, and to establish the context for the

discussion that follows, it is worth spending time addressing some preliminary questions:

• Why generate terrain?

• What characteristics would an ideal terrain generation algorithm have?

• What should be the primary objectives for Terrainosaurus?

II.1. Applications of Terrain Generation

Before bothering any further with how to generate terrain, it is first helpful to establish why it is worth doing,

and who the primary users of terrain generation algorithms are.

Terrain generation has applications in a number of fields, many of which are entertainment-related, though

certainly not all are. Examples include:

• Computer-generated art & animation—both the commercial variety and "art for art's sake" often depict the

natural world

• Video games & virtual reality (VR)—many virtual worlds involve at least some natural terrain. In

addition to the entertainment uses of virtual worlds, they also have applications in military & non-military

simulation

• Architectural rendering—while the focus of an architectural rendering is generally the buildings

themselves, realistic terrain can help to provide the larger context for the buildings, contributing to the

overall visual effect

II.2. Idealized Terrain Generation

As is the case in many problem domains, there are a number of traits that an ideal terrain generation

algorithm would have, some of which are in tension with one another. Such an ideal algorithm is probably

a figment of our collective imagination; nonetheless, having such an ideal in view provides a yardstick with

which to evaluate the strengths and weaknesses of real algorithms.

While this is not an exhaustive list, such an imaginary, ideal algorithm would:

• require a low degree of human input

• permit a high degree of human control

• be completely intuitive to control

8

• be able to reproduce a wide variety of recognizable terrain types and features realistically, in believable

relationship to one another

• produce models at arbitrary levels of detail

• run quickly enough to be used in real-time, dynamic applications

• be extensible to support new types of terrain

II.2.1. Requiring a Low Degree of Human Input

Digital terrain models typically involve large amounts of data. For example, a standard 10-meter USGS DEM

(digital elevation model) [USGS 2003] contains more than 10,000 data points per square kilometer. If an

artist has to place each point manually, this adds up to an enormous amount of painstaking work for the artist.

Therefore, any terrain construction detail that can be automated without significantly limiting the artist's

control over the result should yield an increase in productivity. An ideal terrain generation methodology

would accept a command as simple as "give me a 10 km by 5 km area of desert-like terrain with a resolution

of 10m per sample" and produce a believable result.

If the inputs required by an algorithm are sufficiently minimal, there may be a second benefit, in addition to

the increase in artist productivity: the algorithm may be useful for generating unique terrains automatically

(e.g., as a random world generator for a game).

II.2.2. Permitting a High Degree of Human Control

In obvious tension with the previous ideal is the goal of permitting the artist to exert an arbitrarily fine

degree of control over the features and characteristics of the generated terrain. To give an artist full creative

freedom requires that he be able to control the behavior of the terrain across all scales, from the macro-scale

features (hills, valleys, mountains, etc.) to the micro-scale details (cracks, crevices, etc.), with any degree

of localization, creating both global and local effects. An ideal algorithm would permit the artist to exert

whatever amount of control he wishes, where he wishes, while intelligently filling in the details he doesn't

care to specify directly.

II.2.3. Intuitively Controllable

If a user is required to gain arcane knowledge or specialized skills to use a tool effectively, that tool will have

a correspondingly steep learning curve. An ideal terrain generation algorithm would be perfectly intuitive

to use—a complete "black box" from the user's perspective, requiring no understanding whatsoever of the

algorithm's innards. All of the inputs available to the user would be easily understood: even an inexperienced

user would have a reasonable idea of how tweaking an input would affect the generated terrain.

II.2.4. Capable of Diverse, Believable Features & Terrain Types

A terrain generation algorithm that can reproduce only a narrow range of terrain types and features is

inherently limited in its usefulness. An ideal algorithm would be able to create a wide diversity of terrain

types (e.g., desert, mountains, plains) and features (e.g. ravines, riverbeds, volcanoes), both from the real

world and from the imagination of the artist. Additionally, the transitions between different types of terrain

9

(e.g., from mountains to foothills) would be believable, and the placement of semantic features would make

sense (waterfalls would pour into pools, rivers would always flow downhill).

II.2.5. Arbitrary Level of Detail

It is precisely because detailed terrain models involve such large quantities of data that continuous level of

detail (CLOD) algorithms are necessary for their visualization, at least in the general case where the viewer

is permitted to move about the terrain freely. However, full-detail terrain models are not always needed,

the requisite level of detail being determined by their intended use. For example, a model meant to act as

the setting for a computer-animated film needs highly realistic detail only in the areas near to which the

action is to take place, and can use relatively simple geometry for distant terrain. Similarly, the level of detail

required of the terrain in a flight simulation is significantly less than what is needed for ground-level action.

An ideal terrain generation algorithm would permit the creation of terrain at multiple levels of detail, and the

segmentation of large terrains into regions of differing levels of detail.

II.2.6. Fast Enough for Real-Time Applications

Many terrain-related algorithms are very slow, or else require a lengthy preprocessing phase [Ulrich 2002]

[Torpy 2006] before the terrain can be used in a real-time application. Intuitively, we would expect all but the

most simplistic terrain generation algorithms to fall into this category. Nonetheless, an algorithm that could

do most or all of its processing on-the-fly would provide several important advantages, including:

• instantaneous feedback to the artist of the effects of a particular modification

• the ability to modify dynamically the terrain in fundamental and interesting ways (such as transforming a

mountain into a crater, or rapidly eroding a riverbed into a deep gorge)

• savings in the amount of memory and disk storage required (if the full terrain can be (re)generated from a

more compact set of parameters)

• the ability to create seamless, infinite worlds, with arbitrarily fine, dynamic level of detail

II.2.7. Extensible

Regardless of how many types of terrain a terrain generation tool can create, there will always be a user

wanting something "just a little bit different"—the set of terrain types is ultimately as limitless as the human

imagination. Thus, an ideal terrain generation algorithm would be extensible in some way, allowing new

types of terrain to be introduced easily.

II.3. Goals

This idealized algorithm has set the standard of perfection fairly high, and Terrainosaurus most certainly will

not possess all of the traits of our imaginary ideal. So when it becomes necessary to compromise on one trait

in order to improve another, which traits should be preferred?

Different applications have different requirements, and the needs of the primary user community of terrain

generation tools should be used to answer this question—if users demand realism and Terrainosaurus gives

10

them speedy generation but mediocre results...it will not be very popular. Looking back at the above list of

terrain generation applications, one thing that most of them have in common is that they have time to spare:

with the possible exception of some games & VR applications, none of them need to generate terrain at

interactive speeds. Even in this last case, the terrain is normally generated once (either by the game designer,

or when the program starts) and never modified afterward. In fact, most CLOD algorithms depend on the

terrain being static). Thus, real-time performance, while nice, is not essential.

A second, significant observation is that terrain is, by its very nature, somewhat "sloppy": two mountains

might have innumerable, minute differences between them, but if some fundamental relationships are intact,

a human will perceive them as similar—the differences are inconsequential. The success of randomized

algorithms in imitating natural phenomena can be largely attributed to this fact. Because of this, and because

the terrain model being created is often quite large, a user of a terrain generation tool typically does not care

to exercise a great deal of fine-scale control over the terrain. Therefore, when forced to choose between the

competing goals of high controllability and ease of use, we should favor the latter.

In the design of Terrainosaurus, the goals considered to be most important are (in order of decreasing

importance):

1. realism

2. extensibility

3. ease of use (intuitive control, with low input requirements)

By pursuing these as guiding objectives, we can expect that the resulting algorithm will be of maximal

utility to the terrain generation community, particularly for non-real-time authoring of large-scale virtual

environments.

11

CHAPTER III

BACKGROUND

In this chapter, I cover a number of topics that serve as necessary background material for understanding the

Terrainosaurus algorithm. First, I survey the history and state-of-the-art in virtual terrain, and then highlight

several previous works that are especially similar to Terrainosaurus. Finally, I touch upon several auxiliary

topics that are directly relevant to Terrainosaurus.

III.1. Previous Work in Virtual Terrain

In order to understand the relationship of Terrainosaurus to the field of terrain generation, it is helpful to

have a grasp of the scope of current terrain generation literature and praxis. To this end, in this section, I

review the following topics:

• a brief discussion of the issues involved in mapping ellipsoid objects (e.g., the Earth)

• a survey of different structures for representing terrain, with their benefits and drawbacks

• a taxonomy of existing methods of generating terrain

• a discussion of level of detail issues in terrain generation

• a survey of existing terrain generation software

• pointers to terrain-related sites on the Internet

III.1.1. Geodetic Mapping

The Earth (and the other planets) are (roughly) ellipsoidal objects of enormous size. In most aspects of our

everyday life, it suffices to think of the Earth simply as an infinite plane, completely flat. Only when we deal

with a planet at larger scales (e.g., for global positioning and navigation) does it become necessary to account

for the effects of planetary curvature.

Researchers in the cartographic and astronomic sciences have been devising schemes for dealing with

these effects for a long time. With the rise of computing technology, the field of Geographic Information

Systems (GIS), the application of computers to mapping and understanding the Earth, has made great use of

these schemes to produce digital maps of most of the Earth's surface. Still, GIS mapping is not without its

difficulties, many of them due to attempting to "unwrap" the ellipsoidal planet surface to produce a planar

representation of the geography; there appears to be no natural way of doing this. A full discussion of the

difficulties of planetary mapping, and their work-arounds, is outside of the scope of this thesis, but to name a

few:

• One way of producing a planar surface from an ellipsoidal surface is to map the ellipsoid using a spherical

coordinate system, and then to create a rectangular map with the latitude and longitude as the two axes.

The major problem with this approach is that distances become more and more distorted towards the poles.

For a digital terrain model, this means that if the surface is sampled uniformly in the latitude/longitude

coordinate system, the sample points will not be uniformly distributed across the surface of the sphere, but

will be denser around the poles.

12

• Another way of producing a planar surface is to "slice" the ellipsoid like an orange and to flatten each slice

of the map with a local planar projection. This results in less distortion, but causes discontinuities in the

planar map and creates large areas in the map that do not correspond to any point on the ellipsoid.

For more information on geodetic mapping, projection & coordinate systems, and GIS in general, the

USGS's website is a good place to start [USGS 2006].

III.1.2. Methods of Representing Terrain

One of the most fundamental decisions to be made when working with virtual terrain is that of how

to represent the terrain. The choice of data structure will affect the set of available tools in our terrain

generation "toolbox", and may also limit the kinds of terrain features that can be represented or the ways in

which the terrain can be edited and used. Some questions that must be answered based on the needs of the

application include:

• Does the terrain need to have infinite precision, such that it can be viewed at any arbitrary scale, or is it

acceptable to have a finite, maximal resolution?

• Is it important to be able to represent terrain structures like caves and overhangs, in which multiple

surfaces have the same horizontal coordinates, or will the terrain surface obey the vertical line test at every

point?

• Are the effects of planetary curvature important, or is a "flat Earth" approximation good enough?

• Will the terrain surface need to be rendered and/or tested for object collisions in an efficient manner?

In light of these considerations, we can compare the merits and limitations of several alternative

representations for terrain:

• height fields

• voxel grids

• non-uniform meshes

• analytic and fractal functions

III.1.2.1. Height Fields

The terrain representation most widely used at the present time is probably the height field. A height field

represents a surface as a scalar function of two discrete variables, such that the horizontal coordinate pair

 determines the elevation at that point. While there is nothing precluding the use of an infinite,

continuous function or a non-rectangular domain, in usual practice, this function is discretized at regular

intervals in and , with and valid over a finite, rectangular domain, the width and height of the height

field (Equation III.1).

(III.1)

13

This formulation leads to the familiar implementation of the height field as a 2D array of scalar elevation

values (Figure III.1).

Fig. III.1. A Discrete Height Field.

Advantages of Height Fields

Once we observe that the discrete form of the height field is essentially the same thing as a greyscale image,

this quickly leads us to the insight that computer vision and image processing techniques may be used to

construct, modify, analyze, and compress terrain models represented as height fields (for example, a rough

terrain could be made smoother by applying a standard Gaussian blur filter to it, and a height field can be

stored using an image file format).

A second advantage of the height field is that its regular structure makes it possible to optimize operations

like rendering, collision-detection and path-finding. The rendering of even very large height fields in

real-time has been made feasible by the invention of a number of continuous level of detail (CLOD)

algorithms, which render highly visible areas of the terrain with detailed geometry, using progressively

simpler geometry for obscured or more distant parts of the terrain [Duchaineau et al. 1997] [Ulrich 2002] [Li

et al. 2003] [Losasso & Hoppe 2004]. Collision detection, an expensive operation in the general case, can

be done cheaply when one of the objects is a height field since, given an location in the height field,

only a few surrounding triangles need to be checked for collision.

A third advantage is that significant quantities of real-world terrain data are available in height field form,

making it the representation of choice for working with GIS data.

14

Disadvantages of Height Fields

The most fundamental disadvantage of the height field is that, since surface elevation is a function of an

 coordinate pair, there must be exactly one elevation for every pair of coordinates. Because of this, a

height field is inherently unable to represent caves, overhangs, vertical surfaces, and other terrain structures

in which multiple surfaces have the same horizontal coordinates (Figure III.2). In practice, this limitation is

often inconsequential, since most natural terrain is fairly "well behaved" in this respect, and the exceptional

cases can be handled by modeling overlapping structures as separate objects placed atop the terrain (though

this solution does have an undesirable ad hoc quality to it).

Fig. III.2. The Problem With Height Fields. One of the main disadvantages of height

fields is that they are inherently limited in the kinds of features that they can capture;

features such as overhangs and caves cannot be represented in a standard height field.

15

A second disadvantage of the height field, when used in its usual, discrete form, is that it has a finite, uniform

resolution. This has two negative implications. First, because the resolution is finite, this places a firm upper

bound on the degree of fine-scale detail that the height field can represent. As a result, when viewed from a

too-close viewpoint, the terrain may appear blocky, featureless and unnatural. Second, because the resolution

is uniform throughout the domain, a a height field cannot gracefully handle terrains having a highly variable

local level of detail. If the resolution is chosen to match the average scale of the features in the terrain, then

any finer-scale features will be simplified or eliminated; conversely, if the resolution is chosen to be high

enough to capture the fine-scale features, areas containing only coarse features will also be captured at this

same high resolution, an undesirable waste of space and processing time. Ideally, a terrain representation for

terrain generation would either be infinite in resolution, or else would adaptively increase its resolution to

accommodate the addition of fine scale details, rather than requiring an a priori decision about resolution.

A third disadvantage of the height field, if used to represent terrain on a planetary scale, is that rectangular

height field patches do not map onto spheroid objects any better than rectangular image textures do. If the

standard, two-pole spherical projection is used to map a height field onto a spherical planet, the density of

height field points will be substantially greater in areas near the poles than at those near the equator.

III.1.2.2. Voxel Grids

Another possibility for representing terrain is the height field's 3D cousin, the voxel grid. A voxel grid is a

discrete, three-dimensional grid of voxels (the volumetric equivalent of pixels), in which (in the simplest

case) each voxel is either filled or not. By selectively filling voxels, one can create arbitrary 3D shapes.

Advantages of Voxel Grids

The main advantage that voxel grids have over height fields is that they are not constrained by the vertical

line test, and can represent vertical surfaces, overhangs, etc.

Disadvantages of Voxel Grids

Voxel grids inherit most of the problems of height fields, and add several of their own. They share the

height field's disadvantages of having a finite resolution, and of not handling planetary curvature gracefully.

Rendering and collision detection are more expensive than with height fields, and more data must be pushed

to the graphics card for the same amount of rendered horizontal area. Additionally, without the use of spatial

subdivision techniques (such as octrees), voxel grids are typically very wasteful of memory (as large chunks

of the grid are either completely empty or are buried deep underground).

III.1.2.3. Non-uniform Meshes

A more general way of handling terrain is to represent the surface of the terrain as an arbitrary mesh of 2D

primitives (usually polygons, but sometimes quadric or cubic Bezier or NURBS patches) embedded in the

3D space. Such mesh surfaces are popular ways of modeling and animating characters and other objects, and

there are numerous tools available for working with objects in this form.

16

A triangular irregular network (TIN) [Pajarola et al. 2002] is a special case of a non-uniform mesh. In a

TIN, the surface is represented as a mesh of triangles derived from a set of 3D points (using, for example, the

Delunay triangulation). TINs are useful ways of creating a mesh representation from real-world data—the

points, called mass points, could be sampled directly from the terrain surface, or could be derived from the

contours of a topographic map.

Advantages of Meshes

The main benefit of using meshes to model the terrain surface is that they are extremely general. The surface

may have arbitrary geometry and topology (overhangs, caves, rock arches, etc.), and an artist working with

meshes is free to model even the most bizarre and heterogeneous terrain structures using a single modeling

paradigm.

A second advantage of meshes is that they naturally support variable level of detail, allowing more vertices

in areas of sharp change and relatively few vertices in flat areas. As a result, a mesh structure can store some

terrain models much more efficiently than regular grid methods, since it does not require a globally high

resolution in order to achieve fine-scale features in a few places.

Furthermore, as most of the tools for computer modeling and animation support this paradigm, there is a

significant user base that is already comfortable with manipulating objects represented in this way.

Disadvantages of Meshes

The main difficulty with using meshes for terrain generation is that it is not clear how to generate them

automatically; even though terrain is almost always tessellated into some sort of polygonal representation

before rendering, I am unaware of any terrain generation methods (other than manual sculpting) that work

directly on a mesh representation (i.e., without the use of a more constrained, terrain-specific data structure).

III.1.2.4. Continuous Functions

A final possibility is to represent the terrain with some sort of analytic or fractal function. This approach

is seldom used in practice, with the MojoWorld world generator being a rare, but impressive example

[Pandromeda 2004].

Advantages of Continuous Functions

Continuous functions (both analytic and fractal) have the advantage of being viewable at any scale without

losing resolution; viewed close-up, they do not look "faceted" as height fields tend to do. Beyond this, both

analytic and fractal functions have their own advantages.

Certain classes of analytic functions offer mathematical advantages that make them friendly for rendering

and/or collision detection/response. Many types of analytic functions are differentiable at most or all points,

allowing precise derivatives to be calculated. Polynomial surfaces of low degree (quartic and below) have

closed-form solutions, allowing ray/surface intersections to be calculated in a straightforward way.

Fractals offer a different advantage: unlike analytic functions, which typically become more and more linear

when viewed at finer and finer scales, fractal functions continue to produce new details as they are evaluated

17

at progressively finer scales, meaning that a fractal terrain can have as much fine-scale detail as the display

system can render.

Disadvantages of Continuous Functions

The main problem of using continuous functions is the difficulty of modeling with them. If a single, global

function is used, it is difficult to know how to modify the function to achieve a certain local effect. A more

usable approach is to compose a number of functions, each having a local area of effect (B-spline patches

are example of this), though this has yet to replace polygon-based techniques as the dominant modeling

paradigm.

The other drawback of continuous functions is the difficulty of rendering them. For a polygon-based

rendering system, the function must be transformed into a form that the graphics hardware can process (e.g.,

triangles). For a ray tracing system, the first intersection of a ray with the surface must be evaluated. In either

case, depending on the complexity and topology of the function, this process may be quite expensive.

III.1.3. A Taxonomy of Terrain Generation Methods

Terrain generation has not received nearly as much attention in the literature as terrain LOD rendering has,

with relatively few innovations to date. The discussion of terrain generation in the computer science literature

dates back at least as far as 1977, to a paper in which terrain created from simple mathematical functions

is used to stage simulated military combat scenarios [Parry 1997]. Since that time, a variety of methods for

producing terrain have been proposed, generally falling into four broad categories:

• GIS-based methods

• Sculpting methods

• Simulation methods

• Procedural methods

III.1.3.1. GIS-based Methods

Fig. III.3. Typical Characteristics of GIS-based Methods. GIS-based methods are

simple to implement, and borrow their realism directly from the real world, but

are limited to the locations and resolutions for which real-world data is available.

18

The most obvious place to find natural-looking terrain is in nature itself. While not strictly a method of

generating terrain, the use of GIS data is a simple and effective way of getting very realistic terrain models

(Figure III.3). High-quality elevation maps (height fields) of the entire United States (and some other parts

of the world) can be downloaded or ordered from a variety of GIS data providers (such as Geo Community

[Qlinks 2006] and the U.S. Geological Survey (USGS) [USGS 2004]). These data are available in several

formats (with older elevation maps available in the DEM format [USGS 2003] and more recent data

available only in the more complex SDTS format [USGS 2003]) and at resolutions as high as 3 meters per

sample in some cases (though resolutions of 10 and 30 meters per sample are much more commonplace).

GIS data is ideal when the overriding concern is realism, and is often the best or only option when an

application needs to represent actual, real-world locations faithfully. Applications of this sort include

mapping software [ESRI 2006] and simulations set in real-world locations [Electronic Arts 2003] [Microsoft

Game Studios 2004]. Using GIS data, a high degree of realism can be achieved for relatively little human

effort.

The major drawback to the use of GIS data is the constraint that it imposes: only real-world locations that

are present in a mapping agency's database can be used. Thus, while little or no effort is required to use

GIS data in an application, finding suitable data may be time-consuming or simply impossible. For many

applications, this may unacceptably compromise artistic objectives (e.g., a movie director may want a

particular arrangement of mountains and rivers) or other, more utilitarian goals (e.g., a particular military

combat scenario might require a particular set of terrain features). A secondary disadvantage of GIS-based

methods is the significant amount of space required to store large datasets. Finally, the level of detail

available through GIS sources is limited—if a particular application requires finer-scale detail than that

offered by the mapping agency, one will have to resort to other means for achieving it.

III.1.3.2. Sculpting Methods

Fig. III.4. Typical Characteristics of Sculpting Methods. Sculpting methods allow the terrain

author to construct virtually anything imaginable, but require significant effort and skill.

At the opposite end of the spectrum, in terms of human effort, is the use of artistic tools to "paint" or

"sculpt" the features of the terrain (Figure III.4). In most cases, this means using computer-based modeling

19

and painting tools (such as Adobe Photoshop, Bryce 3D, or Maya) or specialized "level editors" (such as

those shipped with the recent game titles SimCity 4 [Electronic Arts 2003] and Unreal Tournament 2004

[Epic Games 2004]). Less commonly, an artist might create a model using traditional, physical media and

then digitize it using laser scanning techniques, as was done to create the terrain for the video game title

Trespasser [Wyckoff 1999].

The primary advantage of sculpting methods is the enormous freedom given to the artist. Anything the artist

can conceive, he can achieve, given sufficient skill and effort.

This strength is also its main drawback—achieving a desired result with this method typically requires a

large investment of human time and effort, and the quality of the results is heavily dependent on the skill

of the artist. As the size of the virtual environment increases, so does the cost of sculpting it, making this

method of terrain generation less and less feasible as projects increase in scope.

III.1.3.3. Simulation Methods

Fig. III.5. Typical Characteristics of Simulation Methods. Simulation methods have

high potential for realism, but are computationally expensive and difficult to control.

Another family of terrain generation methods involves the evolution of terrain by simulating the effects of

physical processes such as plate tectonics or erosion by wind or water [Kelley et al. 1988] [Musgrave et al.

1989] [Burke 1996] [von Werner 1996] (Figure III.5). Simulation techniques for terrain generation have been

explored to a much smaller extent than other methods.

These methods have the potential to produce highly realistic results, to the extent that they accurately model

the physical processes they are intended to simulate. They can also be very hands-off, requiring little input

from the user.

One drawback of simulation methods is the amount of processing time required. In order for the simulation

to produce realistic results, it must run at sufficiently fine resolutions in both space and time to adequately

capture the effects of these processes; as the resolution of the simulation increases, so does the time required

to run it. A second drawback of such methods is the relative lack of user control: since a simulation is

intended to capture the effects of natural processes, the role of the human user is limited to setting up the

20

initial conditions for the simulation and kicking it off—achieving specific, user-specified effects may be

difficult.

III.1.3.4. Procedural Methods

Fig. III.6. Typical Characteristics of Procedural Methods. Procedural methods are often simple

to implement, relatively fast to run, somewhat difficult to control, and limited in realism.

The term "procedural methods" describes a broad family of terrain generation techniques whose unifying

factor is that they produce a terrain model through the application of some sort of automatic "procedure"

(Figure III.6). While the aforementioned simulation methods (Section III.1.3.3) fit this description, I consider

them separately because, unlike true simulation methods, most procedural generation methods do not attempt

to simulate any physical processes, and use techniques that are quite different from the numeric integration

that is typical of simulations. In most cases, procedural generation methods are simply "hacks" that have

been found to work acceptably for generating certain types of terrain and rely heavily on random number

generation to produce irregular variations in the terrain surface. Some of the earliest discussions in the

literature focus on procedural methods for approximating terrain [Parry 1997] [Marshall et al. 1980].

Some of the most popular procedural techniques are fractal in nature, such as the midpoint displacement

method (MPD) [Fournier et al. 1982] and Perlin Noise [Perlin 1996]. These techniques exhibit the fractal

property of self-similarity at different scales, and generally involve randomly perturbing the height values

of the terrain by increasingly smaller amounts at increasingly finer scales. Prusinkiewicz & Hammel

describe a method for generating mountains with an integrated river network that is entirely fractal in nature

[Prusinkiewicz & Hammel 1993].

A similar class of procedural techniques in current practice is known as collaging or faulting methods

[Burke 1996]. In these techniques, an irregular height field is created through the random superposition of

simple shapes, such as spheres, cones, half-planes, or 2D trigonometric functions. After several hundred to

several thousand iterations, the result is a random height field possessing similar curvature and smoothness

characteristics to the primitive shape, but without any of the primitive shapes directly apparent in the terrain.

21

Less frequently used are a family of spectral synthesis techniques, which involve randomly or semi-randomly

constructing a frequency-spectrum (Fourier- or wavelet-space) representation of a terrain and then

performing the inverse transform to produce the spatial representation of the terrain [Pelton & Atkinson

2003] [Franke 2000].

Procedural methods for terrain generation are popular among artists and game designers [Fernandez 2006]

[Woodhouse 2003], largely because they are easy to understand and implement. They also generate unique

and (ideally) interesting results each time, and can run with little or no human input in many cases, making

them useful for generating random game worlds. If used in this way, the application need not store any height

field data on disk, since a new, unique terrain environment can be constructed each time the application runs.

The principal drawback of these methods is that they generally have no causal connection to the real-world

terrain they try to emulate, instead bearing only an incidental resemblance (in other words, they only happen

to look terrain-like rather than being somehow derived from the same principles and processes that cause the

formation of real terrain). Because of this, most procedural methods are only useful for simulating a limited

range of terrain types. In addition, since the procedural parameters do not typically correspond to real-world

terrain characteristics (and are often rather unintuitive), achieving a desired effect is likely to be an exercise

in trial and error.

III.1.4. Level of Detail Considerations

Another way of classifying terrain generation methods, essentially orthogonal to the taxonomy of the

previous section (Section III.1.3), is with respect to how they handle level of detail. In terrain rendering,

LOD considerations are important for handling large terrain models efficiently. In terrain generation,

however, LOD acquires a whole new level of importance. In rendering, LOD may be thought of simply as

an upper limit on the amount of detail to be shown; in generation, LOD has (or should have) an enormous

impact on the shape and features of the generated terrain. Terrain features occur across a variety of scales,

ranging from entire mountain ranges down to small cracks in the ground. As the LOD of a terrain is reduced,

the finer details are lost, leaving only the larger features; because of this, we may consider those details that

disappeared as belonging to the finer LOD, and we may design our algorithms to exploit this. At least three

classes of generation methods can be distinguished with respect to LOD:

• methods that are LOD-agnostic, and generate the full spectrum of detail in one shot

• methods that generate detail at different scales, and combine them via superposition

• methods that work from coarse to fine, progressively introducing finer and finer modifications to the

terrain

In the following sections, I describe these three classes of methods, concluding with a discussion of the

applicability of fractals to terrain generation.

III.1.4.1. LOD-agnostic Methods

The most simplistic approach to LOD is, of course, to ignore it as much as possible. A number of generation

methods follow this course, considering LOD only when initially selecting the resolution of the height field

(or other structure).

22

Many of the procedural methods discussed in Section III.1.3.4 fit this description. Collaging/faulting methods

[Burke 1996] are a good example: the resolution of the height field is fixed at the start of the algorithm, and

the collaging process runs to completion without explicit consideration for the LOD of generated features.

The features produced, whether large or small, are simply the consequence of the random overlapping of

hundreds or thousands of simple shapes.

Another class of methods that is typically LOD-agnostic is the class of simulation methods discussed in

Section III.1.3.3. Since simulation is usually done using numerical integration techniques on a regular grid

structure, the initial choices of grid resolution and simulation time-step are normally the only points at which

LOD considerations are consciously applied. Thereafter, the physical features of the terrain emerge through

the approximation of physical processes, without further reference to LOD (though the initial choice of LOD

will certainly affect the accuracy of the simulation).

These examples are sufficient to illustrate the principal weakness of most LOD-agnostic algorithms:

because they do "everything at once", with many overlapping effects, the effects of any individual

step in the generation process are difficult or impossible for the human user to distinguish, making the

generation process inscrutable, unpredictable…and uncontrollable. As was mentioned in Section III.1.3.3,

physically-based simulations have the drawback of being difficult for a user to guide towards a desired result.

This is partially attributable to the LOD-agnostic nature of the simulation: a tweak to the initial conditions

of the simulation may (or may not) produce the desired effect at a certain scale, but may also have undesired

side-effects at larger or smaller scales. Non-physically-based methods of the LOD-agnostic sort share this

characteristic of being opaque to the human user, and carry the additional liability of tending to generate

physically incorrect shapes. It is difficult to see how such methods could ever rise above the level of simple

"hacks" to become controllable, realistic terrain generators.

III.1.4.2. Superposition Methods

A second approach to LOD is to construct detail in separate "layers" of different scales, and then to combine

these layers by adding them together (employing superposition, to borrow signal theory terminology). To

understand the distinction between these methods and the following class (Section III.1.4.3), it is important to

grasp that these different layers are not themselves the LODs of the terrain, but only the details belonging to a

finite "slice" of the frequency spectrum. The actual LODs can be reconstituted by summing together all of the

layers up to the requisite degree of fineness.

Spectral synthesis methods [Pelton & Atkinson 2003] [Franke 2000] take precisely this approach: by setting

the values of the various frequency-domain coefficients, one can control the presence and importance

of details at different scales. The recombination of these different scales into a spatial-domain height

field is done by applying the appropriate inverse transform (Fourier or wavelet) to the frequency-domain

representation.

Another example of a superposition method is Perlin Noise [Perlin 1996], in which random noise layers of

different frequencies and amplitudes are added together; the choice of frequency and amplitude for each of

the layers gives some measure of control over the overall characteristics of the resulting height field.

23

The practical success of Perlin Noise in computer graphics can be largely attributed to its versatility.

Compared to the LOD-agnostic methods previously discussed (Section III.1.4.1), Perlin Noise (and similar

superposition methods) allow a user to achieve a greater variety of effects, by allowing him to exert some

degree of predictable control over the behavior of the surface at different scales.

III.1.4.3. Progressive Refinement Methods

A third approach to LOD in terrain generation is to refine the terrain surface progressively, starting from a

coarse LOD and adding finer and finer details until the desired LOD is reached. These methods differ from

those in the previous section (Section III.1.4.2) in that they construct new, fine-scale details as modifications

to the coarser LODs.

These methods often work by recursive subdivision: given a complete, coarse LOD of the terrain, the

next-finer LOD is constructed by subdividing the coarse LOD and, at the same time, introducing new,

small-scale modifications to the terrain. The Midpoint Displacement Method (MPD) [Burke 1996] is,

perhaps, the prototypical example of this. Terrainosaurus also takes a progressive refinement approach,

though with a bit more sophistication in how it introduces new details.

A main advantage of progressive refinement methods over superposition methods is that they can make use

of the previously constructed, coarse detail in deciding where and how to introduce the new, fine-scale detail.

While no previously existing method of which I am aware exploits this at all (and Terrainosaurus, in its

current incarnation, does so only to a limited degree), I believe that this family of methods holds the most

promise for generating realistic terrain containing recognizable, coherent features, such as rivers, volcanoes,

and ravines.

III.1.4.4. Fractals & Non-fractals

All terrain generation methods that are not agnostic with respect to LOD must decide how to handle the

different LODs: what kinds of features will appear in each LOD, how large they will be, and how they will

relate to one another. A physically correct solution to this problem is difficult (perhaps the "Holy Grail"

of terrain generation), and as a result, many researchers and practitioners have turned to fractals as an

approximate solution.

In his seminal work, The Fractal Geometry of Nature [Mandelbrot 1982], Benoit Mandelbrot observed

that many objects in nature display the fractal characteristic of self-similarity, having essentially the same

structure when viewed at a variety of scales. For example, the small-scale variations in elevation across a

1-meter-square piece of mountainous terrain might, if one zooms back far enough, happen to resemble the

large-scale variations across the entire mountain range. This observation has been applied to great effect in

computer graphics, with fractal algorithms being used as reasonable approximations of a number of natural

structures, both regular (e.g., plants and trees) and irregular (e.g., terrain).

Randomized fractal algorithms are a convenient method of creating irregular shapes across an entire range

of LODs. Because each successively finer LOD has a defined relationship to the one preceding it (modulo

the effects of the random number generator), fractal algorithms offer effectively unlimited amounts of detail:

24

when rendering a fractal surface, one can evaluate the fractal to whatever degree of fineness the display

system is able to show.

Still, as useful as the fractal approximation for terrain is, it cannot tell the whole story—not all types of

terrain exhibit conveniently self-similar properties across all the levels of detail at which we experience them.

To see that this must be the case, one need only consider the diverse array of physical forces that interact to

create real-world terrain—plate tectonics, erosion due to wind & water, earthquakes, avalanches, floods &

volcanic eruptions, dehydration & thermal expansion (to name a few)—it is intuitively obvious that each of

these forces acts more noticeably at some scales than at others. Figure III.7 is a photograph, taken close-up,

of cracked, dried mud formed at the bottom of a volcanic crater in the Death Valley area in California; if a

fractal relationship held between this bit of terrain and its surrounding macro-environment, we would expect

to find it in the context of an area characterized by broad, flat mesas, separated by narrow, severe ravines.

As it turns out, this photo was taken at the bottom of a relatively shallow, sloping crater. Obviously, in this

example, no fractal relationship holds between these two scales.

Fig. III.7. Cracked Mud. A photograph taken close-up of cracked mud. The physical process

predominantly responsible for this effect does not manifest in the same way in the surrounding

larger-scale environment. As a result, while a fractal relationship does appear to exist in the terrain

in this photo, we would not expect this local effect to be co-reducible, along with its surrounding

environment, to a single fractal function. (Photo courtesy of www.freenaturepictures.com.)

Therefore, since fractal relationships cannot be trusted to hold in the general case, any terrain generation

algorithm that relies on fractal behavior is inherently limited—there will be types of terrain (probably many

types of terrain) that it will be unable to reproduce. Any terrain generation algorithm that aims to support a

broad range of terrain types at various scales must allow for the possibility of non-self-similar terrain.

25

This leads to the observation that multi-scale, fractal terrain generation algorithms are simply a special

case of a more general class of multi-scale, not-necessarily-fractal terrain generation algorithms. Fractal

algorithms answer the question, "What should the terrain look like at this scale?", with, "Just like it did at

the larger scale, but smaller." This is a straightforward way of generating terrain across multiple LODs, but

it is probably not sufficient for many types of terrain. Part of the goal of Terrainosaurus is to provide an

alternative answer to this question, leading to a terrain generation methodology that is more general and

controllable.

III.1.5. Existing Tools for Terrain Generation

While the list of terrain generation software is too large to be reviewed exhaustively in this section, it is

worthwhile to make note of a representative sampling. Most of these applications permit the use of more than

one of the above techniques as a way of mitigating the weaknesses of each.

III.1.5.1. Terragen

Terragen [Planetside 2006] is a well-known terrain generation and rendering tool, developed by Planetside

Software, free for non-commercial use. It provides several fractal algorithms for generating terrains and also

provides a simple set of sculpting tools for modifying the resultant height fields. It offers an integrated ray

tracing engine including some very nice cloud, water, and atmospheric lighting effects, and has a significant

artistic community.

III.1.5.2. MojoWorld

MojoWorld [Pandromeda 2004] is a set of applications for creating and exploring fractal worlds. MojoWorld

Transporter is a free program for exploring the worlds created by the commercial product, MojoWorld

Generator. Unlike most hybrid fractal/sculpting terrain generators, MojoWorld handles fractal objects in

symbolic form, allowing entire worlds to be viewed at any level of detail and stored in relatively small files.

III.1.5.3. Bryce 3D

Bryce 3D [DAZ 2006] is a general-purpose 3D modeling and animation tool, but is perhaps best known

for its terrain modeling capabilities. It offers a full set of painting/sculpting tools for generating and editing

height-field-based terrain objects, including the ability to use Adobe Photoshop image filters.

III.1.5.4. World Machine

World Machine [Schmidt 2006] is a procedural height field generation tool, free for non-commercial use. Its

most interesting aspect is that it treats the terrain creation process as composed of simple "device" primitives

(e.g., 2D Perlin noise generator, Gaussian blur filter, etc.) which the user connects to form a "machine", a

directed acyclic graph (DAG) that will produce the height field when evaluated. The main benefit of this

approach over a more traditional fractal/sculpting approach is that, since the series of operations is preserved

in the DAG, the user is free to tweak the parameters of any stage of the generation process, rather than

having to commit to a particular filter size, random seed, etc. at the outset.

26

III.1.5.5. Erosion 3D

Erosion 3D [von Werner 1996] is an application for simulating the effects of water erosion on height

field terrain. Developed at the Department of Soil Science and Water Protection of the Institut fÃ¼r

Geographische Wissenschaften (Institute for Geographic Sciences) in Germany, Erosion 3D is intended

primarily as an analysis tool, not as a terrain creation tool.

III.1.6. Other Sources for Terrain Information

There also exist a number of community hubs and information portals on the Internet that focus partially or

exclusively on the synthesis and use of virtual terrain. These sites are good places to go to find mature, free

software, tutorials, technical specifications, and links to other resources.

III.1.6.1. United States Geological Survey

http://www.usgs.gov

The U.S. Geological Survey [USGS 2006] is a U.S. government organization dedicated to geographic,

environmental and biological research. The USGS maintains standards (i.e., file format specifications) for

GIS data interchange, offers downloadable GIS data, and provides a wealth of GIS-related information.

III.1.6.2. GeoCommunity

http://www.geocomm.com

GeoCommunity [Qlinks 2006] is a portal site for the GIS community, and provides information, software,

and freely downloadable GIS data for the entire United States, and some other parts of the world.

III.1.6.3. The Virtual Terrain Project

http://www.vterrain.org

The Virtual Terrain Project (VTP) [VTP 2006] is an online repository containing a wealth of information and

free, cross-platform software, as well as a portal to additional resources. The stated goal of VTP is "to foster

the creation of tools for easily constructing any part of the real world in interactive, 3D digital form."

III.1.6.4. Gamasutra

http://www.gamasutra.com

Gamasutra [Gamasutra 2006] is one of the premiere websites of the game developer community, tracking

game industry news and providing tutorials on useful techniques for real-time interactive games, including

techniques for generating and visualizing terrain.

III.1.6.5. NeHe

http://www.nehe.gamedev.net

http://www.usgs.gov
http://www.geocomm.com
http://www.vterrain.org
http://www.gamasutra.com
http://www.nehe.gamedev.net

27

Neon Helium Productions (NeHe) [GameDev.net 2006] is another game developer community site, focused

on largely on OpenGL, providing articles, tutorials and sample code. It has a number of tutorials on terrain

rendering and generation.

III.2. Other Similar Works

In the course of reviewing the existing terrain generation literature, several papers were encountered that

were especially similar to aspects of Terrainosaurus (in spirit, at least, if not in application).

III.2.1. Procedural Modeling of Cities

This paper [Parish & Müller 2001] by Parish & Müller describes CityEngine, a procedural approach to city

generation (buildings, roads, etc.) using L-systems. The user provides raster maps of the land elevation,

bodies of water, and population density, and CityEngine constructs a plausible road network and a set of

buildings matching these maps, using L-system rules derived from studying actual cities.

CityEngine is similar to Terrainosaurus in a number of ways; in fact, parts of Terrainosaurus's generation

pipeline are inspired by that of CityEngine. In a sense, they are "sister systems", attacking different problems

(terrain vs. cities), using different techniques (genetic algorithms vs. L-systems), but with the same objective:

extensible, realistic synthesis of large-scale constructs, incorporating both human-designed layouts and

realism constraints derived from real-world observations.

III.2.2. Towards an Understanding of Landscape Scale and Structure

This paper [Gallant & Hutchinson 1996] by Gallant & Hutchinson investigates the relationship between the

resolution of a height field and the kinds of physical features that can be detected within that height field. As

their analysis tool, they use a positive wavelet decomposition of the height field (intuitively, the inverse of the

aforementioned collaging methods (Section III.1.3.4), although the positive wavelet decomposition does not

technically have an inverse operation) to break it into features of different scales, from which they draw their

conclusions.

While their objective is quite different (they are interested in hydrological analysis), their work bears a

resemblance to Terrainosaurus in that they are seeking to decompose terrain height fields into features of

different scales in order to characterize and understand them.

III.2.3. SAR Surface Ice Cover Discrimination Using Distribution Matching

This paper [Gill 2003] by Gill describes an algorithm for computer-aided discrimination between sea ice and

open water from synthetic aperture radar (SAR) imagery. In this algorithm, a human identifies a region he

believes to be "ice" and another he believes to be "water", and then the computer categorizes the rest of the

image as "ice" or "water" using the Kolmogorov-Smimov (KS) and statistical distribution matching tests.

This is similar to Terrainosaurus in that the statistical characteristics of human-identified terrain types

are used to compare samples of terrain for similarity, though Terrainosaurus uses a different means of

determining the degree of similarity.

28

III.2.4. Flexible Generation and Lightweight View-Dependent Rendering of Terrain

This technical report [Pelton & Atkinson 2003] by Pelton & Atkinson describes a spectral synthesis

technique for terrain generation based on real-world GIS example data:

1. Compute a wavelet transform of the example height field

2. From this, construct a frequency histogram of the example height field

3. Generate a new wavelet-space representation of a height field by stochastically sampling the frequency

histogram from the example height field

4. Create the spatial representation of the height field by performing the inverse wavelet transform

In this way, they are able to create new height fields similar to a reference height field. They note that their

approach is successful at creating unique results with similar roughness characteristics to the original, but

that it fails to capture semantic features, specifically riverbeds.

Their approach is similar to Terrainosaurus in that both derive new, unique terrain models using example

GIS elevation maps.

III.3. Other Topics

Having surveyed the landscape of terrain-related literature, there still remain a few auxiliary topics that must

be covered to set the stage adequately for the Terrainosaurus algorithm:

• genetic algorithms

• computer vision

• descriptive statistics

III.3.1. Genetic Algorithms

Unfortunately, many of the more interesting problems in computer science fall into the class of NP hard

problems (for which there are no known polynomial-time solutions), meaning that they become intractably

difficult to solve optimally as the size of the problem increases [Cormen et al. 2001]. In many cases, it is not

feasible to find a perfect solution, and approximation techniques must be used. The genetic algorithm (GA) is

one of these techniques.

Genetic algorithms are used in several places in Terrainosaurus as a way of replacing the role of human

intelligence with a form of artificial intelligence. By pushing the burden of constructing a believable terrain

model onto the computer, the human user is relieved of most of the work of terrain generation.

Conceptually, a genetic algorithm is a parallel search algorithm that tries to find better and better solutions

to its problem through a process analogous to the Darwinian theory of biological micro-evolution. Single

possible solutions within the solution space of the problem are called chromosomes (or, alternatively,

individuals). A fitness function provides an evaluation of how good of a solution any particular chromosome

is, expressed as a scalar value. As the GA iterates, new potential solutions to the problem are explored by

taking the more "fit" of the existing chromosomes and recombining some of their sub-parts (their genes)

29

to create new chromosomes having characteristics of both "parents". By iteratively evolving a population

of chromosomes (generally of some fixed size), the GA explores the solution space in a parallel fashion.

Hopefully, after some reasonable number of iterations, the most "fit" of the chromosomes in the final

population will be fairly close to an optimal solution to the problem [Obitko & Skavík 1999].

In order to adapt a GA to solve a particular problem, we must define three basic things:

• a modular, genetic encoding for describing candidate solutions

• crossover and mutation operators to work on this genetic representation

• a fitness function for evaluating the "goodness" of a particular candidate solution

The meaning and implementation of these things will vary according to the problem domain to which the GA

is applied.

III.3.2. Computer Vision

Computer vision is the branch of computer science concerned with processing images to recover conceptual

representations of the objects present within those images. Computer vision techniques are useful in a

number of areas, especially robotics and augmented reality (AR) applications.

In Terrainosaurus, feature detection techniques are used in the analysis of terrain models, to find the

location, size, and scale of geometric features of the terrain (such as edges, ridges, and peaks).

III.3.2.1. Single-scale Feature Detection

The normal method of feature detection is to design a detector for the desired feature, a function that, given

a pixel location within the image, returns a scalar response indicating how much the pixels in that vicinity

resemble the desired feature. The stronger the resemblance, the higher the response will be. This detector is

then passed over every pixel in the image, and its response recorded. Pixels containing local maxima of the

detector response are kept, and the other pixels are zeroed, a technique called non-maximal suppression. The

result is a greyscale image with grey or white pixels wherever the feature was found and black elsewhere.

Feature detectors are highly sensitive to the scale of the feature being detected. For example, an edge detector

optimized for finding sharp edges between regions will perform poorly if the edges in the image are diffuse

(i.e., blurry), especially in the presence of noise. Thus, it is important to tune the detector to the scale of

feature being sought.

III.3.2.2. Scale-space Feature Detection

Unfortunately, in many computer vision applications, the scales at which features will appear are unknown.

If this is the case, then scale-space feature detection may be used to search for features across a range of

scales [Lindeberg 1998,1] [Lindeberg 1998,2].

Scale-space feature detection is a relatively straightforward extension of single-scale feature detection, in

which locally maximal detector responses are looked for, not only across the domain of the image,

but also across adjacent scales. Because the algorithm is independent of the actual feature detector matrix

30

used, virtually any single-scale detector may be adapted to work in scale-space, including "blob" detectors,

"edge" detectors, "ridge" detectors, etc.

The major steps in scale-space feature detection are:

1. Generate the scale-space representation of the image by convolving the image with successively larger

Gaussian blobs. This produces a 3-dimensional image "cube", in which the added dimension represents

scale; as the scale parameter increases, fine-scale image details disappear, leaving only the larger-scale

shapes.

2. Calculate the feature detector response at every pixel in the scale-space image.

3. Find the locations within the scale-space image at which the detector response is maximal. Finding the

maxima in the and dimensions yields the locations of the detected features, while finding the scale at

which each is maximized gives an estimate of the size of the feature.

In this way, features present in the image may be recovered and, additionally, classified according to the

scale at which they appear. For example, when ridge detection is performed on an image of a crumpled

piece of cloth, a tiny wrinkle in the fabric will yield a maximal detector response at a fine scale, and will

completely disappear as the scale is increased. In contrast, a gentle fold in the fabric will give some small

response at the finest scale, and a much higher response as the scale approaches that of the fold.

If the only benefit of scale-space detectors over single-scale detectors were that features are detectable at

multiple scales, this would not be much of an improvement over single-scale detectors (since the same thing

can be accomplished by running a single-scale detector multiple times, at several different scales), and not

worth the additional cost in memory and computation time. However, since scale-space detectors are able to

examine multiple scales simultaneously, a "long" feature (such as an edge or ridge) can be recognized as a

single feature, even if it varies dramatically in scale along its length. In contrast, a multi-pass, single-scale

detector would register multiple, partially overlapping features in this case, rather than a single feature of

varying scale. As a result, a scale-space detector will report fewer features (and generally, more meaningful

ones).

III.3.3. Descriptive Statistics

Descriptive statistics is the branch of statistics dealing with identifying patterns and trends within collected

samples of data. In Terrainosaurus, measured statistics are used as a basis for comparing terrains for

similarity: intuitively, the more similar the statistical characteristics of two terrains, the more "alike" they are.

In particular, we are interested in the following four statistics:

• the sample mean

• the sample standard deviation

• the sample skewness

• the sample kurtosis excess

The following diagrams of these statistics depict distributions similar in shape to a Gaussian (normal)

distribution. This is because some of these measures (the skewness and kurtosis excess) are defined with

31

reference to the Gaussian distribution, such that the Gaussian distribution has a value of zero. Thus,

Gaussian-like distributions are convenient for conveying an intuitive sense of the statistic. This should not be

taken to mean that these measures apply only to the Gaussian distribution; they are defined wholly in terms

of raw moments and central moments of the distribution, and can be applied to any distribution. The degree

to which these measures deviate from zero gives an indication of how non-Gaussian the distribution is.

III.3.3.1. The Sample Mean

The best-known statistic is the sample mean, or unweighted average (Equation III.2). Intuitively, this is the

"center" value of a sample distribution (Figure III.8) [Weisstein 2004].

Fig. III.8. Mean. The mean of a statistical distribution is a first-order

measure and is the value around which the distribution is centered.

(III.2)

III.3.3.2. The Sample Standard Deviation

A second useful statistic is the sample standard deviation, , a non-negative value measuring the degree of

variability of a sample distribution (Equation III.3). A low standard deviation indicates that the sample values

are tightly clustered about the mean (Figure III.9) [Weisstein 2003].

32

Fig. III.9. Standard Deviation. The standard deviation of a statistical distribution is a

second-order measure describing the degree to which the distribution is "spread out".

(III.3)

III.3.3.3. The Sample Skewness

A third, lesser-known statistic is the sample skewness, , which measures the degree of asymmetry of

a sample distribution (Equation III.4). A skewness of zero indicates that the distribution is perfectly

symmetrical about the mean, whereas a positive or negative skewness indicates that the distribution is

skewed to the left or right of the mean, respectively (Figure III.10) [Weisstein 2005].

33

Fig. III.10. Skewness. The skewness of a statistical distribution is a third-order measure describing the

amount of asymmetry of the distribution. Values less than zero indicate that the distribution is skewed

to the left of the mean, and values greater than zero indicate that the distribution is skewed to the right.

(III.4)

This formulation of the skewness is in terms of the second and third k-statistics. The first four k-statistics are

given in Equation III.5 [Weisstein 2002].

(III.5)

34

where is the sample size and the 's are the th sample central moments, given by Equation III.6

[Weisstein 2003].

(III.6)

III.3.3.4. The Sample Kurtosis Excess

A fourth statistic is the sample kurtosis excess, , often simply called the sample kurtosis, which measures

the degree of peakedness of a sample distribution (Equation III.7). The normal distribution has a kurtosis of

zero, whereas a more peaked distribution has a positive kurtosis and a flattened distribution has a negative

kurtosis (Figure III.11) [Weisstein 2004].

Fig. III.11. Kurtosis. The kurtosis excess of a statistical distribution is a fourth-order

measure describing the amount of "peakedness" of the distribution. Values less than

zero indicate that the distribution is more "flat" than a normal distribution, and values

greater than zero indicate that the distribution is more peaked than a normal distribution.

(III.7)

35

The 's are the second and fourth k-statistics, as defined above in Equation III.5.

36

CHAPTER IV

METHODS

In this chapter, I discuss the Terrainosaurus algorithm at a conceptual level, including its overall strategy and

major steps, explaining the rationale for important design decisions. The gritty details of implementing the

algorithm are glossed over here, and presented in detail in the chapter on implementation (Chapter V). These

topics will be covered in the following order:

• prerequisites—design strategy and basic tools

• how the algorithm works from the user's perspective

• how the algorithm works from the computer's perspective

IV.1. Prerequisites

Before delving into the details of the algorithm, there are several things that must be nailed down first,

outlining the basic strategies underlying Terrainosaurus:

• how ease of use will be ensured

• how the terrain generation problem will be attacked

• what data structure will be used to represent the terrain

• how level of detail will be addressed

IV.1.1. Usability Considerations

Since one of our major stated objectives is to create something easy to use, this aspect deserves specific

consideration. While a full-scale user study would be helpful in this respect, this is outside the scope of this

thesis. Nevertheless, there are basic user-interaction decisions we can make that will, prima facie, promote

usability.

The crucial observation to make, in this regard, is that not all possible parameters and constraints for a terrain

generation algorithm are of the same nature. For our purposes, it will suffice to distinguish between three

types:

• those that are essentially free, meaning that the user can manipulate them for artistic purposes (within

limits, of course), without damaging the apparent realism of the terrain—examples of these include the

size of a mountain range, and the placement of lakes and mountain peaks

• those that are critical for maintaining the apparent realism of the terrain—examples of these include

the characteristic fine-scale detail of different terrain types, and the smoothness of transitions between

different terrain types

• everything else—the miscellaneous parameters that influence things like algorithm running time, memory

usage and quality of results

In everything, our goal is for Terrainosaurus to be thoroughly intuitive. For each of these three types of

parameters/constraints, a different method of user interaction is most appropriate.

37

IV.1.1.1. Visual Authoring

Those aspects of the terrain that can be freely manipulated for artistic effect without impacting the

realism of the terrain belong under the control of the user. Since most of these are spatial and/or visual,

a visual authoring environment is the obvious choice, allowing the author to interact with a visual

representation of his work, and to refine it incrementally until it reaches his satisfaction. Human beings

process visually-presented information quite efficiently, and we would expect this to be especially true of

information that is already spatial in nature, such as terrain. Furthermore, the digital art community works

almost exclusively with 2D and 3D visual authoring tools (e.g., Photoshop, 3D Studio, Maya), and will be

much more likely to adopt a tool that allows them to work in this fashion.

IV.1.1.2. Example-based Design

In contrast to the previous section, those aspects of the terrain that are crucial for maintaining its realism are

not especially suitable candidates for user authoring. These are likely to be more highly constrained, and

possibly in ways that are not well understood or would be tedious or impossible to replicate by hand (e.g.,

satisfying a certain statistical distribution). Such things are perhaps better left for the computer to solve,

freeing the user to do what the computer cannot: imagine and create.

Still, the user needs to be able to control the characteristics of the generated terrain in some way. A design by

example approach is a graceful method of specifying these characteristics: rather than requiring the user to

comprehend the complexities that give a particular flavor of terrain its identity, we simply ask him to provide

one or more examples that exhibit the characteristics he would like to see replicated in his terrain. In this

way, the burden of reverse-engineering terrain is transferred off of the user and on to the software, and the

algorithm becomes a true "black box" from the user's perspective, requiring almost no domain knowledge to

be used.

Two additional benefits come from taking such an approach. First, the algorithm is easily extensible, since

the user can simply add new examples of terrain to achieve new effects. Second, the algorithm can be

"upgraded" completely transparently to the user—because of the simplicity of the interface, improvements

can be made to the algorithm without the user having to learn to use new parameters, or even needing to

know that anything has changed.

IV.1.1.3. Miscellaneous Controls

Naturally, there are other parameters and constraints that do not fit well into either of the above categories. If

these values cannot be determined automatically, then other methods of presenting them to the user will be

required, such as standard GUI controls (sliders, buttons, etc.).

Having additional, non-visual parameters for the user to set is not, in itself, a problem. The important thing

is not for all parameters to be expressible visually, but for all parameters to be intuitive: the meaning of the

parameter should be easily understood by a user who has no comprehension of the inner workings of the

algorithm. As a result, the user should have a fair idea of what the effect of changing each parameter will be,

even before the change is made.

38

One example of a non-visual parameter that is nonetheless intuitive is a "quality" parameter that adjusts a

tradeoff between the amount of processing time spent and the realism of the result produced. Even though

this tradeoff does not have an obvious visual meaning, humans already understand the concept of spending

additional time working on a task to achieve a better result.

As an example of the sort of parameters that we want to avoid presenting to the user, consider the

well-known Perlin Noise [Perlin 1996] function. While the usefulness of Perlin Noise is indisputable—it

has been used to great effect for creating believable imitations of a wide variety of natural phenomena—it

has a significant drawback: it requires a non-trivial amount of domain knowledge (or else brute force,

trial-and-error experimentation) to achieve a desired result. To a novice user, the parameters (e.g., octaves,

turbulence, persistence) are "magic": it is difficult to gain an intuition for the effects of tweaking one of them

without first understanding how Perlin Noise works.

IV.1.2. Terrain Generation Strategy

Obviously, there is no unique "correct" answer to the problem of generating terrain; instead, there are

infinitely many "good" answers, infinitely many more "bad" answers, and everything in between. Thus, the

quest to make believable terrain can be viewed as a search over an infinitely large solution space, in which

some solutions are quantitatively better than others.

A number of methods exist for finding good approximate solutions to problems for which an exhaustive

search is infeasible or (as in the case of terrain generation) impossible. These methods vary in performance

and generality. In Terrainosaurus, we have chosen to use a genetic algorithm for this purpose ([Obitko &

Skavík 1999]). The major benefits of GAs (for our purposes) are:

• they are randomized, rather than deterministic; as a result, they are capable of some degree of innovation

and can produce an effectively unlimited number of unique terrain models. Additionally, this randomness

can enable a properly-tuned GA to escape from locally "best" solutions in order to find other, better

solutions.

• they are extremely general: a GA treats its problem as a "black box", and need not understand the complex

effects of the changes it makes, only caring about the results of the fitness evaluation. Because of this, a

GA can unite a diversity of orthogonal or competing constraints: anything that can be incorporated into

the fitness evaluation. This makes a GA an attractive development tool, as it leaves open a straightforward

means of adding new constraints as they become necessary.

IV.1.3. Choice of Data Structure

The terrain data structure used in Terrainosaurus is the height field 1 (Section III.1.2.1). This decision makes

sense in light of two facts:

1. most current, real-time applications of terrain use height fields

1 Throughout the remainder of this thesis, the terms height field and terrain will be used synonymously, unless otherwise noted.

39

2. GIS elevation data is most widely available in this form; as a result, the data has already been sampled

to a finite resolution and has lost its ability to resolve features like overhangs and caves. Thus, there is no

further penalty for using height fields, and no additional benefit to using other representations that do not

share these restrictions

IV.1.4. Level of Detail Strategy

From an LOD perspective, the terrain generation problem can be understood as the problem of constructing a

height field having the following characteristics:

• at each LOD, appropriate, characteristic features are present in the terrain, in correct proportions

• the entire set of LODs is coherent, meaning that features present in coarse LODs continue to exist at the

same locations in the finer LODs

As was stated in Section III.1.4.3, Terrainosaurus approaches terrain construction as a multi-LOD,

progressive refinement process. As was also mentioned earlier (Section III.1.4.4), one of the more significant

goals of Terrainosaurus is to offer a not-necessarily-fractal answer to the question of what the terrain ought

to look like at any given LOD.

IV.2. The User's Perspective (What It Does)

Since ease-of-use is one of the primary objectives of our approach, it is worth taking some time to walk

through how our approach looks from the perspective of a user. This will also serve to create the context for

the more technical discussion to follow. Consider a hypothetical user, a set designer for a large computer

animation studio. Among this user's routine tasks is the construction of outdoor, virtual worlds for the

commercials, feature films, and video game content that his company develops.

From the user's perspective, terrain generation with Terrainosaurus involves three discrete phases:

• assembling a terrain library

• authoring a terrain map

• generating a height field

IV.2.1. Terrain Library Assembly

The user's first step is to assemble a terrain library, the "palette" with which he will later "paint" his terrain

models. His task in this phase is to define the taxonomy of terrain types he wants to use. Terrain types

are logical abstractions, semantic classes of terrain, as a human would think of them (things like "steep

mountains", "sandy beach", "rocky desert", "plains", etc.) and are created by providing one or more terrain

samples, example height fields representative of these classes. These examples will normally come from

providers of real-world GIS data (e.g., [Qlinks 2006]), though they could potentially come from other sources

as well. Once the user has populated his library with example terrains, Terrainosaurus analyzes the library

(see Section IV.3.2) in order to identify unifying characteristics for each terrain type, measurable quantities

that are similar across all of the example terrains within a single terrain type (and thus, which are likely to

40

contribute to the user's perception of those terrains as being related). These example terrains will also serve

as the raw material for constructing new height fields in the third phase (see Section IV.3.3).

Because terrain types are correlative to human mental categories, they are effectively unlimited in number,

and will vary according to the user. No matter how many terrain types are identified, there will always be

someone who wants something just a bit different. At the same time, the choice of terrain types is not wholly

arbitrary—it is important that example terrains for the same terrain type are truly similar in some way, or else

the terrain analysis process will be hindered, because Terrainosaurus will be unable to identify meaningful

unifying characteristics for that terrain type.

The user's terrain libraries can be as coarse- or as fine-grained as he wishes, depending on his needs, and

he might have separate libraries for different purposes. For example, he might define many variations of

"mountains" in order to finely control the kinds of features that appear throughout a mountainous terrain

model, or he might have only a few, highly different, general-purpose terrain types for building more

heterogeneous worlds.

While the construction of the terrain library is likely to be a bit tedious, it is something that will be done

only infrequently, as once a terrain library has been assembled, it can be reused indefinitely, and extended

incrementally as additional terrain types are needed. Section VII.5 discusses potential avenues for future

research that might help alleviate this burden on the user.

IV.2.2. Map Design

The user's primary design task when using Terrainosaurus is to create the layout of his terrain. He does

this visually, creating a 2D, vector-drawn map of the terrain using a CAD-style interface (Figure IV.1). By

representing the map as a vector drawing rather than a raster image, we avoid committing to a particular

resolution for the map, enabling the user to defer the decision of what LOD to generate until he actually

generates it, allowing him to produce multiple LODs from a single map. The map is made up of one or more

polygonal regions of terrain, which may be of arbitrary sizes and shapes. Each region is assigned one of the

terrain types from the library. Through sketching out such regions and tweaking their shapes, the user can

express the approximate layout he desires for his terrain, using a modeling paradigm that is well-established

and intuitive.

41

Fig. IV.1. The Map Authoring Interface. The user describes his desired terrain layout

by authoring a 2D map, which specifies the location, size, and shape of regions

of terrain, each of which may have its own terrain type. A CAD-style interface

allows the user to accomplish this using a familiar and intuitive design paradigm.

IV.2.2.1. Boundary Refinement

The use of polygons to represent regions in the terrain type map has the advantage of simplicity: operations

on polygons are well-defined and well-understood, and provide a straightforward way for a user to work

with the map. However, while linear shapes are useful tools for modeling, their linearity is also a drawback:

since polygons are restricted to having straight edges, curved or irregular shapes may require large numbers

of small segments to be adequately approximated. If the approximation is not fine enough for the particular

application, the unrealistically straight edges will be visible. In our case, this means that if the length of a

linear region boundary is large compared to the resolution of the generated height field, this boundary may

be reflected visibly in the generated terrain as an unnaturally straight transition between two terrain types; the

longer the boundary, the more noticeable this is likely to be. If the height field is colored or texture-mapped

according to terrain type, this effect is greatly magnified (Figure IV.2). Therefore it is important that the

boundaries between regions be of sufficiently fine scale.

42

Fig. IV.2. Artifacts Resulting from Linear Region Boundaries. Seams between adjacent regions can

appear as unnatural-looking artifacts in the generated height field if the region boundaries are long

and linear. This effect is made all the more obvious by coloring or texture-mapping the regions.

Creating such fine-scale boundaries by hand would be quite tedious, and it is much to be preferred, from

a user-experience standpoint, that this task be automated. We do this by providing a boundary refinement

operation, which non-destructively replaces a straight boundary from the user's polygonal map with a new

boundary that follows the same approximate path as the original, but with a meandering, irregular shape

made up of many short segments (Figure IV.3). The user influences the shape of this boundary by adjusting

a smoothness parameter. The resulting refined boundary will be used instead of the original linear boundary

when the height field is constructed, producing a more believable, irregular transition between the regions

(Figure IV.4). The gory details of this operation are described later, in Section IV.3.1. Using this operation,

the user is enabled to sketch his map using rough, simple shapes, and then to fill in fine-scale boundary

detail automatically. With this paradigm, even an inexperienced user should be able to create a simple but

believable map in just a few minutes.

43

Fig. IV.3. The Boundary Refinement Operation. The boundary refinement operation replaces a long,

linear segment of a region boundary with a string of short segments connecting the same endpoints.

Fig. IV.4. A Refined Boundary Avoids Unnatural-looking Artifacts. With long, linear boundaries replaced by

irregular, meandering boundaries, such boundary artifacts are no longer evident in the generated height field.

IV.2.3. Height Field Construction

Once satisfied with the map he has created, the user selects a rectangular chunk of the map, chooses the

desired level of detail, and launches the height field generation algorithm. This third phase of the process is

computationally expensive (and therefore, slow), but is also entirely automated: once started, no further input

from the user is needed, and he can go on to other tasks.

In this phase, Terrainosaurus generates a height field at multiple LODs, beginning from the coarsest possible

LOD and continuing up to the target LOD requested by the user. At each LOD, the height field is built such

that the features present in each region resemble those of the corresponding terrain types at that LOD.

44

A secondary, optional by-product of generating each LOD is a rasterized version of the user's map, an image

file with the same raster dimensions as the generated height field, in which each pixel represents the terrain

type of the corresponding grid cell in the height field. This information could be loaded and used by another

program to do terrain-type-based postprocessing, such as generating a texture map for the height field, or

simulating erosion of the terrain surface using terrain-type-specific soil characteristics.

IV.3. The Computer's Perspective (How It Works)

Having covered the fundamental concepts in Terrainosaurus and outlined the general steps of the algorithm,

all that remains to be done is to peer inside of the "black boxes" in the above outline, and fill in the details. In

this section, I discuss the following aspects:

• the boundary refinement algorithm

• height field analysis & comparison

• the height field generation algorithm

IV.3.1. Boundary Refinement

The boundary refinement operation is the first algorithmic aspect of Terrainosaurus that I discuss, and also

the first problem that we solve using a genetic algorithm.

IV.3.1.1. Overview

The boundary refinement operation is essentially a randomized subdivision operation. It takes as input a

single line segment of arbitrary length and produces a piecewise-linear curve with the same starting and

ending points as the original segment, but made up of segments (connecting points), where is

proportional to the length of the original segment. This curve is then translated, rotated and scaled as needed

to line it up with the original boundary's end points. Since we will ultimately be transforming the entire curve

anyway, we can, without loss of generality, think of the original boundary as lying along the positive axis,

starting from the origin. All of the diagrams in this section reflect this convention.

A useful result of applying this operation to each boundary in the map is that the segment length throughout

the entire map is roughly uniform (recall that , the number of segments, was said to be proportional to

the length of the original boundary). If this length is chosen to be small enough, relative to the resolution

of the height field that will be generated, no straight boundaries between terrain types will be evident in the

generated height field, nor in any texture maps applied to the height field.

The segment length (and thus, the number of segments) may be calculated from the resolution of the target

height field, according to the spatial version of the Nyquist limit: considering the height field as sampling the

boundary, we know that the height field cannot resolve boundary details finer than half its spatial resolution

(Equation IV.1).

(IV.1)

45

However, since the generated boundary may need to be scaled somewhat to match the endpoints of the

original boundary, we incorporate a "slop factor" of two, resulting in Equation IV.2.

(IV.2)

The shape of the generated boundary is subject to the constraints imposed by the user. The user can control

how sharp the angles between successive segments are allowed to be by adjusting the smoothness parameter,

, which can vary from 0.0 (very rough) to 1.0 (very smooth).

IV.3.1.2. Genetic Encoding

The first step in casting the boundary refinement problem as a genetic algorithm is to define a suitable

genetic encoding for a boundary. In the encoding we selected, a chromosome has genes, one for each

segment in the resulting boundary, and each gene contains a real-valued angle in the range

indicating the relative change in direction of the corresponding segment with respect to the one preceding

it (Figure IV.5). A positive angle indicates a turn to the counter-clockwise direction, while a negative angle

indicates a turn to the clockwise direction. A differential angle of zero indicates that the segment is traveling

in the same direction as the previous segment. The angle of the first segment is defined with respect to the

axis, since it has no preceding segment.

Fig. IV.5. The Encoding of a Gene in the Boundary GA. A boundary's genetic encoding is the sequence

of relative angles between successive segments. An angle of zero indicates no change in direction.

46

An encoding such as this is advantageous in that it represents the shape of the boundary in terms of a local

property of the curve (the differential angle). This is a convenient representation, since the property that we

are trying to optimize (the curve smoothness) is itself a local property. Furthermore, the curve smoothness

can be calculated using only the angles, without the need to convert to Cartesian coordinates, with the result

that the fitness evaluation can be done quite cheaply, in terms of processing time.

Another important consequence of this encoding is that the relationship between the gene angle values and

the 2D Cartesian points to which they are decoded depends on the entire chromosome: since each angle

encoded in a gene is specified relative to the preceding line segment, a change in the angle of one gene will

affect the location of not just the next point, but of every subsequent point. As a result, the end point of the

boundary cannot easily be held fixed, since mutations earlier in the sequence will tend to move it. This is one

reason that we must transform the curve at the end of the algorithm, rather than simply constructing the curve

"in place".

A downside to this encoding is that it is possible for the boundary to double back on itself, which causes

several problems. We prevent this by requiring that the absolute angle (i.e., the angle with respect to the

axis) cannot exceed a certain maximum angle at any point on the boundary (Figure IV.6). This is discussed in

more detail in Section VI.1.

Fig. IV.6. The Absolute Angle Limit. A constraint is placed on the maximum

absolute angle that a segment can have with respect to the reference axis, in

order to prevent the boundary from doubling back and intersecting with itself.

47

IV.3.1.3. Genetic Operators

To mutate and cross-breed the chromosomes, we use the standard GA crossover and mutation operators.

Mutating a gene corresponds to changing the degree of "bend" between two consecutive segments

(Figure IV.7).

Fig. IV.7. The Boundary GA Mutation Operator. Mutation of a boundary segment's

gene changes the amount of "bend" between that segment and its predecessor.

Crossing two chromosomes is the equivalent of cutting each boundary in the middle of one of the segments

and exchanging the pieces (Figure IV.8).

48

Fig. IV.8. The Boundary GA Crossover Operator.

IV.3.1.4. Fitness Evaluation

A chromosome is "fit" if the boundary curve it represents satisfies the smoothness constraint placed on it.

The smoothness of a single gene is calculated according to Equation IV.3. When is near 1, this equation

is linear, favoring angles near zero and penalizing sharper angles. For lower values of , the equation

becomes more sinusoidal, favoring sharper angles (Figure IV.9). The constant 1.1 in this equation controls

the horizontal offset of the sinusoid's peak, and is somewhat arbitrary.

(IV.3)

49

Fig. IV.9. The Smoothness Fitness Function for Several Values of S.

The fitness of the entire chromosome is then calculated as the mean fitness across all of the genes.

IV.3.1.5. Decoding the Result

Once the GA has completed, we have a "best" boundary, encoded as a series of floating-point, relative angle

values. The final step in this operation is to decode this chromosome into a series of 2D points (to)

connecting the end points of the original boundary. This is done in a relatively straightforward manner:

1. The initial point is placed at the origin.

2. Subsequent points to are calculated from the previous point, using the recurrence relation

Equation IV.4.

(IV.4)

3. The end points of the generated curve will not, in general, line up with the end points of the original

boundary. Therefore, we construct an affine transformation matrix that translates, rotates and scales the

points such that the first and last points line up exactly with the start and end points, respectively, of the

original boundary. This transform is constructed in the following way:

50

a. Let be the vector connecting the start and end points of the original boundary, and be

similarly defined for the refined boundary.

b. The transform is the matrix , with:

the 2D translation along the vector from the origin to the

start point of the original boundary

the 2D rotation by the angle between and

the 2D scaling by the ratio

At this point, the original boundary has been replaced with a suitable, refined version, and the operation is

complete.

IV.3.2. Terrain Analysis & Comparison

The second algorithmic aspect I discuss is the way in which Terrainosaurus analyzes and compares height

fields. The ability to recognize geometric and statistical similarities between height fields is central to

Terrainosaurus's design-by-example paradigm, allowing much of the labor of the terrain construction

process to be transferred off of the user and onto the computer.

IV.3.2.1. Analyzing a Single Height Field

The ultimate goal of Terrainosaurus is the creation of terrain models that, to a human viewer, are

recognizable, plausible reproductions of the kinds of terrain that the user supplied as inputs. Therefore,

the central question that must be asked is this: what gives a "kind" of terrain its identity in the mind of

the viewer? A comprehensive answer to this question would involve aspects of a number of disciplines,

including geology, ecology, linguistics, and human cognition, and is certainly outside of the scope of this

research. Nevertheless, for our purposes, we must arrive at a partial answer to this question, one that can be

quantified in terms of height field geometry.

Intuitively, several ways of characterizing the geometry of a height field seem to be reasonable candidates

for terrain type analysis. First, there are the elevations and slopes in the height field (i.e., the zeroth and first

derivatives of the height field surface). Everyday experience tells us that different kinds of terrain often have

very different elevation ranges and steepnesses; desert terrain, for example, is generally rather flat, while

mountainous terrain can be extremely steep, even completely vertical in places. Furthermore, some kinds

of terrain occur at characteristically different altitudes (it would be unusual indeed to find a sandy beach

at 10,000 feet of elevation!). Empirical investigation of a number of example terrains indicated that the

statistical distributions of elevation and slope tended to be similar between height fields of the same terrain

type (Section VI.2.1).

Another way of quantitatively characterizing a height field is by the presence and size of certain identifiable

"features": things like peaks, ridges, cliffs, rivers and gorges. Again, experience teaches us to expect

51

mountain ranges to have more pronounced peaks and ridges than most other kinds of terrain, and that plains

areas contain primarily smooth, relatively flat ground. Empirical investigation also indicated that edge

statistics tended to be similar within the same terrain type.

This list of height field characteristics is by no means exhaustive: a number of other measures seem worthy

of future investigation as potential ways of terrain characterization and may ultimately turn out to be

more effective for comparing terrains (several possibilities are discussed in Section VII.8). Even so, the

characteristics already mentioned are sufficient starting material for a similarity function.

IV.3.2.2. Comparing a Height Field to a Reference Terrain Type

Having observed that real-world examples of the same terrain types appear to exhibit similarities in their

statistical behavior, we need a way of quantifying this similarity. Conventional statistical hypothesis tests,

such as , the KS test, and the t test were considered, but ultimately rejected as not adaptable enough. First

of all, it is not enough just to test whether the means of two distributions come from the same population:

the mean is an ambiguous indicator of terrain type (Gill remarks that the same is true when distinguishing

between ice and sea water in SAR imagery [Gill 2003]), and also tells us nothing about the shape or

roughness of the terrain. Second, we need to be able to accommodate multiple reference terrain samples; it is

not clear how to adapt a KS test, for example, to use multiple reference distributions. Thus, a new kind of test

is needed.

Towards this end, we introduce the concept of Gaussian curve projection, a technique for comparing

unbounded scalar values to determine the similarity of a test value to one or more scalar reference values.

With this as a building block, we define a statistical distribution similarity measure for comparing a test

distribution (e.g., of elevation values) to one or more reference distributions. Finally, we define an aggregate

similarity measure combining the distribution similarities to form an estimate of the overall similarity

between a height field and one or more reference height fields (i.e., the height fields composing a terrain

type).

Gaussian Curve Projection

Gaussian curve projection is a simple means of transforming an arbitrary scalar test value into a bounded

similarity measure, given one or more scalar reference values against which to compare the test value.

The test and reference values may be either bounded or unbounded, but the resulting similarity measure is

guaranteed to fall in the range , with values near one indicating "very similar" and values near zero

indicating "very dissimilar".

52

Fig. IV.10. Gaussian Curve Projection. Gaussian curve projection is a flexible technique

for transforming bounded or unbounded values into the range, by evaluating

a Gaussian function (with a suitable mean and standard deviation) at those values.

This is accomplished by constructing a Gaussian curve based on the reference values, and then finding the

projection of the test value onto that curve (Figure IV.10). The curve has a height of one unit at its peak,

has a center value equal to the mean of the reference values, and has a standard deviation chosen

"appropriately" (how should be determined is discussed later). The resulting function (Equation IV.5) is

capable of handling any scalar value, positive or negative, yields a value of one when evaluated at ,

and yields values asymptotically approaching zero as diverges from , with the rate of falloff governed by

the value of .

(IV.5)

The only missing piece in the above formulation is the determination of , which I have saved for last

because it deserves a slightly longer discussion. This value behaves as a sort of tolerance, controlling how

wide a range of values around is considered acceptable. There is no "one size fits all" formula for setting

53

this parameter; instead, the parameter must be set in a manner appropriate to the context in which Gaussian

curve projection is being used. Here are some suggestions for determining :

• If the values being compared are bounded, may be chosen as some fraction of the total possible range

of values.

• If the number of reference values is sufficiently large, then can be chosen to be the sample standard

deviation of the reference values. This has the drawback that the resulting function will report some of the

reference values themselves as having low similarity. This is likely not what is desired, leading to the next

suggestion.

• If the number of reference values is sufficiently large, then can be chosen such that all reference values

evaluate to a similarity value greater than or equal to some baseline similarity value, (Figure IV.11).

Given a choice of , may be determined according to Equation IV.6, which is obtained by rearranging

Equation IV.5. This guarantees that all reference values will be reported as having high similarity, and

results in a larger value of than would be produced by the previous formulation.

• If the number of reference values is too small to derive a meaninful value of , but there are other, similar

sets of reference values for which has already been determined, it may be possible to arrive at an

acceptable by deriving it from the other 's (e.g., by taking their mean).

These last two suggestions are what Terrainosaurus employs: when a suitably large set of example height

fields (more than one) are available for any given terrain type, is calculated using Equation IV.6, with

a of 0.9; otherwise, cannot be determined from the terrain type, and instead, the mean of all the

terrain types for which could be determined is used as a fallback.

(IV.6)

54

Fig. IV.11. Determining Sigma G for Multiple Reference Values Using a Baseline

Similarity. When sufficient reference values are available, may be determined by

choosing a baseline similarity value, (in this example, 0.9), and selecting such that

all reference values project to a similarity value greater than or equal to this baseline value.

Comparing Statistical Distributions

With this new tool in hand, we can now move on to comparing entire statistical distributions of things

(elevations, slopes, etc.). To do this, we define an adaptive distribution similarity measure that compares

a test distribution to the reference distributions on the basis of four statistical measures describing the

distributions:

• the sample mean

• the sample standard deviation

• the sample skewness

• the sample kurtosis excess

In each of these statistics, the similarity of the test distribution to the reference distribution(s) is calculated

using Gaussian curve projection as defined above. The combined distribution similarity is the weighted

average of the resulting four individual similarity measures (Equation IV.7).

(IV.7)

55

The weights assigned to the four statistics (the 's) must sum to 1.0, in order to ensure that the combined

distribution similarity measure stays within the range, but they are not, in general, equal. As I alluded

to earlier, this distribution similarity measure () is adaptive, giving greater weight to individual statistics

(the 's) in which the reference distributions are more unified and, similarly, giving lesser weight to those in

which the reference distributions diverge. To understand the necessity of this adaptability, consider the case

where a "hills" terrain type is defined with four example height fields having nearly identical distributions of

elevation values, except that each has a significantly different mean elevation from the others (Figure IV.12).

Fig. IV.12. The Need for Adaptability. Taking as an example the case where

four distributions are identical, with the exception of their mean values,

the need for an adaptive distribution similarity measure becomes apparent.

In this case, the for the standard deviation, skewness, and kurtosis are all extremely small, while that

of the mean elevation is quite large. If, when combining the individual similarity measures to form the

distribution similarity measure, we were to assign each measure a uniform weight of 0.25, this would

have the undesirable consequence of giving undue merit to height fields whose elevation distributions are

completely unlike those of the reference height fields but happen to have a mean elevation within the range

spanned by the examples. Because the for the mean elevation is large, many height fields will have a

mean elevation falling in the "good" zone, and would be rewarded for this with a minimum similarity score

of approximately 0.25. As the divergence with respect to mean elevation increases, the grows to embrace

more and more of the range of possible values, and the mean becomes less and less of a differentiator

(Figure IV.13).

56

Fig. IV.13. A Useless Statistical Measure. As the reference distributions diverge further and further

from one another, with respect to any particular statistic, that statistic becomes progressively more

worthless for judging the similarity of a height field to that terrain type, because the Gaussian function

for the individual statistics's similarity grows too wide to have any significant ability to differentiate.

Another way of stating this problem is to say that, as the for a statistic grows in magnitude, that statistic

becomes less and less meaningful for answering the question "what gives this terrain type its identity?". In

the extreme case of an enormous , the statistic is totally worthless (Figure IV.13). An obvious solution is to

gradually ignore individual statistics as they become less useful: as the reference height fields disagree more

strongly on a particular statistic, the for that statistic increases, and the corresponding for that statistic

should decrease (with the others increasing proportionately to keep the sum of the 's at 1.0). Thus, for the

example above, the mean would be assigned a weight near 0, and the other three statistics would be assigned

weights near 0.33.

In order to determine appropriate values for the weights, we introduce another measure, the agreement. The

agreement describes how successfully a particular statistic unites the reference distributions. We define the

agreement as 1 minus the ratio of the curve variance to the variance of a Gaussian curve that spans the entire

terrain library, or zero, if the variance of that statistic exceeds that of the library as a whole (Equation IV.8).

(IV.8)

57

Fig. IV.14. Agreement. The agreement of a terrain type, with respect to an individual statistical

measure, is a function of the ratio of that statistic's similarity curve variance to that of a curve

spanning the whole library. Statistics that tightly cluster the example height fields (tt1) are more

useful and exhibit a higher agreement than those in which the example height fields diverge (tt2).

This measure (Figure IV.14) gives an idea of how much confidence may be placed in the effectiveness of

this statistic, and also gives us a way to set the 's in Equation IV.7: weights are chosen in proportion to the

agreement values, normalized such that they sum to 1 (Equation IV.9).

(IV.9)

Finally, we define the distribution agreement as the mean of the four individual agreement measures

(Equation IV.10). This gives an estimate of the measure of significance that the distribution similarity has:

if the example height fields are tightly clustered with respect to each of the four individual statistics, the

distribution agreement will be very high. Conversely, if all four statistics are worthless, this value will be

near zero.

(IV.10)

58

Terrain Similarity Evaluation

Having defined a method of comparing the statistical distribution of a quantity between a single test height

field and a set of reference height fields, only a small step further is required to be able to compare entire

height fields on the basis of multiple such quantities. We define the terrain type similarity between a test

height field and a set of reference height fields to be the weighted average of the distribution similarities for

the following quantities (Equation IV.11):

• elevation

• slope

• edge scale

• edge length

• edge strength (detector response)

(IV.11)

As you might expect, the 's are defined to be proportional to the respective distribution agreements, as

defined in Equation IV.10, normalized such that the 's sum to 1 (Equation IV.12).

(IV.12)

Just as the individual statistical agreements were used to attenuate the effect of a useless statistic, so also

the distribution agreements diminish the effect of whole distributions that do not unify the reference height

fields. For example, suppose that a terrain type composed of 5 example height fields displays a high degree

of unanimity in the statistical distribution of slopes and elevations, but a lesser degree of correspondence in

the distribution of edges. Due to the difference in agreement measures, when evaluating the similarity of a

generated height field to the reference terrain type, Terrainosaurus will demand a high degree of conformity

with respect to elevation and slope in order to give a high score, but will pay less attention to how the height

field matches with respect to the other measures. Thus, characteristics in which the examples for a particular

terrain type are strongly united will contribute more to the overall terrain similarity than will characteristics

in which they diverge.

One advantage to this means of comparing height fields is that it is relatively immune to differences in height

field size and shape: because the comparison is made on the basis of statistic characteristics, the height fields

may be of differing sizes and shapes...even non-rectangular shapes. For Terrainosaurus, this is crucial,

as the terrain regions in the user's map are highly unlikely to be rectangular. However, very small or thin

59

regions are likely to perform less well than larger regions, both because of the smaller sample sizes that they

represent, and because the smaller areas that they cover will inhibit the formation of longer features.

IV.3.3. Height Field Construction

The final algorithmic aspect that I discuss in depth is the height field construction step. This also employs

a genetic algorithm, but to solve a somewhat harder problem than the boundary refinement problem

(Section IV.3.1).

IV.3.3.1. Overview

The height field generation algorithm is, at its heart, a multi-scale image synthesis operation: the goal of this

process is a height field (greyscale image) of the requested size and LOD, containing plausible imitations

of the examples in the terrain library, arranged according to the user's map. At the beginning of this step,

Terrainosaurus has the following inputs from the user (Figure IV.15):

Fig. IV.15. Height Field GA Inputs.

• a 2D vector map, expressing the user's desired layout for the height field

• a world-space, rectangular "active" chunk of this map, indicating the particular area of the map for which a

height field should be generated

• the target LOD to generate

• a library of terrain samples, serving as examples of what the terrain types referenced by the user's map

should look like

The height field construction process proceeds in an iterative fashion, starting from the coarsest possible

LOD and continuing until the target LOD has been reached. The coarsest LOD is constructed in a naïve

fashion, by simply pasting together chunks of elevation data from the appropriate terrain types. Each

subsequent LOD is constructed by the genetic algorithm, using the previous LOD as a rough "pattern" to

follow.

The GA does not attempt to synthesize the height field from scratch; instead, it takes advantage of the fact

that we already have realistic data for each terrain type...in the terrain library. Conceptually, the genetic

60

algorithm searches for a way to blend together small chunks of terrain from the library, such that the resulting

terrain "makes sense":

• each region of the height field resembles its corresponding terrain type

• the transition between regions at each boundary is smooth, without unrealistic discontinuities

• the entire height field has the same macro-scale shape as the previous LOD

The necessity of the first two of these constraints should be obvious: we want the terrain to look real.

The reason for the third may require some further explanation. Recall that the LOD strategy used by

Terrainosaurus is progressive refinement (Section III.1.4.3). During any run of the GA, earlier LODs have

already established the macro-scale features of the terrain; the job of the current run of the GA is simply to

add new, fine-scale detail, not to re-invent the coarse-scale structure.

IV.3.3.2. Analyzing the Map

The map the user created is a vector drawing. This makes a lot of sense from a user-interface standpoint,

since we have no way of knowing a priori what LOD the user will want to generate (the user himself may

not know this, and even if he does have a particular LOD in mind, there is no guarantee he won't later decide

that he needs a more detailed model). Representing the map with the (virtually) infinite resolution of a vector

drawing allows us to defer this decision until the height field is actually generated.

However, since the height field we are going to generate is a raster object, it will be much more convenient to

have the map in a similar form (i.e., a raster with the same dimensions as the height field). Furthermore, once

the height field generation process begins, we do know the resolution of the height field we are to generate,

so we can safely convert the map to a raster form, since the additional precision afforded by the vector

representation is no longer useful. At the same time, we can do some extra analysis on the rasterized map that

will be helpful later on. Specifically, for each grid cell in the rasterized map, the quantities we calculate are:

• the terrain type ID

• the distance to the nearest region boundary

• the unique ID for the enclosing terrain region

The first of these is simply the result of rasterizing the map. The second two are derived from the first, and

require segmenting the map back into contiguous regions. It is worth noting that the regions found at this

stage may not have a 1-to-1 correspondence with those in the vector-drawn map, for a variety of reasons:

• two adjacent regions with the same terrain type are indistinguishable from one another, and will be merged

• a region that is too tiny to cover any raster cells, or which falls outside of the active area of the map, will

not appear in the rasterized map at all, and will be eliminated

• a concave region that only partially intersects the active area of the map may have multiple, distinct

fragments that fall within the active area, in which case it will create multiple regions

61

IV.3.3.3. Creating the Initial LOD

Since the GA requires a "pattern" height field to follow when constructing the next LOD, we cannot begin

the generation process without a base LOD with which to prime the GA. Obviously, this base LOD cannot be

constructed by the GA, so some other way of creating a height field is needed.

An easy way of creating this base height field is to randomly select appropriately shaped chunks of elevation

data from the corresponding LODs of the terrain samples in the library. The discontinuities that would

otherwise exist at the edges between terrain types can be avoided by making the selected chunks a few pixels

wider around the border and blending between chunks where they overlap. This can be done as an image

compositing operation, by constructing an appropriately shaped alpha mask with an alpha value of 1 in the

region interior, fading to 0 just outside the region boundaries (Figure IV.16). 5 pixels of overlap seems to

work well.

Fig. IV.16. Alpha Mask for Constructing the Base LOD. The base LOD is not constructed by the GA, but is

instead created by combining chunks of raw data of the appropriate sizes and shapes, taken from the terrain

library. These chunks are blended together, using an alpha mask with a linear falloff across the boundaries.

IV.3.3.4. Encoding & Decoding a Height Field

Once again, the problem must be expressed in a genetic encoding so that the GA can work on it. In this case,

the thing that needs to be transformed into a set of genes is a height field.

Perhaps the simplest encoding would be for every pixel in the height field to be its own gene. We rejected

this approach as being too fine-grained: a height field of any substantial size would contain thousands or

millions of genes, and it is difficult to envision meaningful mutation operators to work on such an encoding.

In the encoding we selected, each gene represents a small, -pixel chunk of the height field, and has a

terrain type and a transformation associated with it. A gene does not directly contain the elevation data for

its chunk of the height field; instead, it holds a pointer to one of the example terrains for its terrain type, and

the coordinates within that terrain from which to copy its source data. The transformation allows the

source data to be rotated, translated and scaled before being blended into their target location (Figure IV.17).

62

Fig. IV.17. The Encoding of a Gene in the Height Field GA.

A chromosome is a 2D grid of such genes, arranged such that each gene overlaps slightly with those on each

side of it (Figure IV.18). To prevent unseemly seams from appearing between adjacent genes, we blend

between adjacent genes using a 2D Gaussian blending function.

Fig. IV.18. The Gene Grid. A chromosome in the height field GA is a 2D grid of overlapping

genes. Each gene has a local area of influence, within which it is responsible for determining

elevation values of the height field. In the overlapping areas, two or more genes contribute

to the height field elevations, with the areas of influence smoothly blended between them.

One benefit of this encoding is that it is relatively compact. By keeping only a reference to the source

height field data within the gene, the chromosomes are able to be substantially smaller than they would be

if they carried the pixel data internally (a single height field stored in IEEE single-precision

63

floating-point format is four megabytes in size!). As a result, memory is not a significant factor in

determining the GA population size (instead, processing time is the limiting factor).

A second, less obvious benefit is that it is computationally inexpensive. Since the gene transformation is

only applied to the pixel data when the chromosome is decoded, mutation operations that only modify the

transformation parameters can be very fast. Also, because no pixel data is stored in the gene, crossover

operations are faster as well. Furthermore, many queries about the geometric characteristics of a gene (mean

elevation, gradient, etc.) can be made quite inexpensive by precomputing these quantities for each of the

reference terrain samples. Then, to query these properties for a gene, all that needs to be done is to look up

the precomputed property for the gene's source data location, accounting for any transformation applied to

the data.

Another not-so-obvious trait of this encoding is that it is a lossless encoding: it is possible to encode and

decode a height field using this scheme, recovering the original height field exactly. It also is relatively

robust against numerical drift: the transformation parameters for each gene can be tweaked indefinitely

without corrupting the elevation data, since the transformation is only applied when the chromosome is

decoded back into a height field, and it is always applied to the original data.

IV.3.3.5. Genetic Operators

With this encoding, a wide variety of genetic operators is possible; virtually any image processing operation

is a candidate, though not all operations are equally reasonable. For example, a "vortex" transformation on

a gene is not likely to improve the terrain configuration substantially, and in many cases would introduce

unrealistic shapes to the generated height field. On the other hand, an image "rotation" transformation

corresponds directly to a geometric rotation of the height field surface, and could be quite useful for

rearranging the genes.

We use a varied set of genetic operators to operate on the chromosomes for the height field GA.

Rectangular Region Copy

(crossover)

This crossover operator exchanges rectangular clusters of

corresponding genes (i.e., genes with the same grid indices) between

two chromosomes. The height and width of the copy rectangle are

both selected randomly from the range , thus, the number of

copied genes falls into the range . The location of the copy

rectangle within the gene grid is randomly selected such that the entire

rectangle is within the grid. This operator corresponds to an image

copy operation.

Vertical Offset (mutation) This mutation operator modifies the vertical offset component of a

gene's transformation, effectively altering the mean elevation of the

gene. It tends to transform the gene in the direction of the pattern

height field's mean elevation in the vicinity of that gene. This operator

is similar to an image brightness adjustment operation.

64

Vertical Scale (mutation) This mutation operator modifies the vertical scale component of

a gene's transformation, changing the elevation range of the gene

without altering its mean elevation. It tends to transform the gene

towards having the same elevation range as the pattern height field

has in the vicinity of the gene. This operator corresponds to linearly

stretching or compressing the contrast of an image.

Rotation (mutation) This mutation operator modifies the rotation component of a gene's

transformation, effectively rotating the contents of the gene about

the horizontal center point of the gene. It tends to transform the gene

toward having the same gradient direction as the pattern height field

has in the vicinity of the gene. This operator corresponds directly to an

image rotation operation.

Random Source Data Selection

(mutation)

This mutation operator completely replaces the source data (i.e., the

pointer to the source height field, and the coordinates within that

height field) in a gene. The new source height field is randomly chosen

from among the examples for the gene's terrain type, and the new

source coordinates are randomly chosen from within that example.

Horizontal Offset (mutation) This mutation operator modifies the coordinates within the source

terrain sample from which the gene takes its data. Like the previous

operator, this one has the effect of replacing the gene's contents with

new data, but the effect is likely to be less drastic, as it keeps the same

source height field and only picks new source coordinates within that

height field.

I said of several of the mutation operators (those that modify the gene's transformation parameters) that

they "tend to" adjust the transformation towards conformity with the pattern height field. This works by

introducing a random change to the transformation parameter, drawn from a Gaussian distribution centered

over the value that would conform the gene to the pattern (thus, this value has the highest probability of

being chosen, but a nearby value may be chosen instead).

IV.3.3.6. Fitness Evaluation

Finally, we come to the crux of the matter: how does the GA discern between good height fields and bad

ones? The fitness evaluation is separated into two aspects, and we calculate the overall fitness as a weighted

combination of the two (Equation IV.13).

(IV.13)

geometric compatibility

65

regional terrain type similarity

a weighting coefficient, controlling how strongly each component

affects the overall fitness; 0.5 was found experimentally to be a

reasonable value

Geometric Compatibility

Geometric compatibility describes how well the height field encoded in the chromosome matches

the "pattern" provided by the previous LOD. This is important for ensuring that the generated LOD

is conforming to the macro-scale features constructed by the previous LODs. The compatibility of a

chromosome can be estimated directly from the genetic representation, by comparing the mean elevation

and the mean gradient over each gene's area of influence with those values for the corresponding areas of the

pattern height field.

In comparing these geometric properties, we encounter the same difficulty that we did earlier, in our

discussion of comparing statistical distributions: we are trying to compare two unbounded quantities, to get

a compatibility measure in the bounded range . We employ the same solution to this problem here

as we did to the other instance: a Gaussian curve projection. In this case, the curve mean is the value of the

pattern height field that we're trying to match, and the curve standard deviation is chosen to be one fourth

the range for the gene's terrain type (e.g., for a "mountain" gene, the curve standard deviation would be one

fourth of the elevation range for the "mountain" terrain type). Again, the choice of standard deviation is

somewhat arbitrary, but this value seems to work well, allowing a moderate amount of disagreement between

a gene and the pattern before the gene starts to be heavily penalized. The total compatibility of a gene is then

calculated from Equation IV.14.

(IV.14)

overall compatibility for gene

mean elevation over gene

mean gradient magnitude (slope) over gene

mean gradient angle over gene

The aggregate compatibility of the entire chromosome () is then simply the mean of all of the 's.

Regional Terrain Type Similarity

The second aspect of height field fitness is the regional terrain type similarity: how similar each region is to

the examples that make up its corresponding terrain type, in terms of measurable characteristics.

66

The similarity of each individual region is calculated just as described in Section IV.3.2. For the aggregate

similarity of the whole height field, however, rather than simply using the arithmetic mean of the individual

regional similarities, we instead calculate the area-weighted mean, using the proportion of pixels within

each region as the weight for that region's similarity. This reduces the impact that small regions have on the

overall fitness of the terrain.

Localized Guidance of the Genetic Algorithm

As is the case for many things, the GA's great strength can also be a weakness. GAs can solve optimization

problems in which the effects of changes are not well understood, precisely because the GA is agnostic about

the internal interactions, only evaluating the outcomes. Unfortunately, this also means that a standard GA is

rather "dumb": it does not take advantage of domain-specific knowledge that might help guide the GA more

quickly in the direction of an optimal solution (or, at least, away from truly horrible solutions). When the

chromosome size is large, the contribution of any individual gene to the overall fitness is highly diluted, thus

an "error" in a gene may take a long time to be fixed, and convergence will be slow.

To address this, we modify the GA to retain additional information from the fitness evaluation, and we

use this information to adjust the probability of a mutation occurring in a gene and also to influence the

probability distribution function for choosing which mutation operator is invoked.

We do this in several places in the GA. At the region level, we retain the region similarity measure, using

it to increase or decrease the mutation probabilities of the genes within that region. Similarly, at the gene

level, we retain the individual compatibility components, as well as the overall compatibility measure. The

probability of a gene being mutated is calculated using Equation IV.15:

(IV.15)

where is the baseline probability of mutation. With this formulation, the baseline mutation probability

still has a strong effect, but genes in highly dissimilar regions and genes that are highly incompatible with the

underlying pattern are substantially more likely to be mutated.

Once the GA decides to mutate a particular gene, it still has to choose which mutation operator it will apply.

An attractive feature of this enhancement to the GA is that smart and dumb mutation operators may be

freely intermixed. A smart mutation operator is one that has a predictable relationship to some component

of the fitness evaluation (e.g., , the mean elevation of a gene, is directly affected by the "vertical offset"

operator). In contrast, a dumb genetic operator produces unpredictable effects, or else cannot easily be related

to any part of the fitness evaluation (e.g., the "pick new source location" operator). When deciding which

operator to use, the GA modifies the mutation operator probability distribution function (PDF), giving higher

probabilities to smart operators that are needed by the current gene and lower probabilities to smart operators

that are not. Probabilities for dumb operators remain fixed.

67

One way to understand these changes to the GA is as additional, tighter feedback loops within the GA,

essentially creating several child GAs within the height field generation GA, who are better equipped

to handle particular aspects of the problem. One point that deserves to be mentioned is that, despite

incorporating this additional guidance, the algorithm is still a probabilistic algorithm, not a deterministic one.

While a speedier convergence rate is generally a good thing, we want to retain the randomness and diversity

of the GA, so as not to lose the ability to escape local maxima in the solution space (i.e., terrains that are

"OK" but not "great").

Cleaning Up the Final Result

A final improvement we can make concerns those few genes that are out-of-place at the end of the GA.

Given enough evolution cycles, the GA is generally successful at bringing most of the genes into alignment,

however, since it is a probabilistic algorithm, it is not unlikely that a handful of genes out of the dozens (or

hundreds) in the chromosome might escape being brought into conformity with the rest. Such genes are

especially noticeable if they have a substantially different elevation from the surrounding terrain; they look

sort of like squarish "fingers" poking up from the ground (Figure IV.19).

Fig. IV.19. Unaligned Genes Look Like "Fingers".

These remaining artifacts can be removed by applying a conform operator to these aberrant genes. The

conform operator simply sets the gene's transformation parameters so as to give the gene a compatibility

value of 1; in effect, it forces the gene to fit the pattern height field as closely as possible.

68

CHAPTER V

IMPLEMENTATION

In this chapter, I discuss some of the architectural features of the prototype implementation of

Terrainosaurus, covering some of the more significant design decisions that were made and how some of the

technical challenges were dealt with. In so doing, I hope to save other developers some of the difficulties I

encountered during this research.

In this chapter, I present the following topics:

• the choice of development platform and technologies used

• a discussion of the application architecture

• suggested optimizations and simplifications

V.1. Technologies

The Terrainosaurus algorithm could be implemented using any number of programming languages and

libraries, both commercial and free, proprietary and open-source. While these decisions are ultimately up to

the programmer(s) implementing the algorithm, it may be productive to consider the decisions made in the

design of the current implementation, and the reasons for them.

V.1.1. Development Platform

The current implementation of Terrainosaurus was developed in C++, with heavy reliance on the Standard

Template Library (STL) and a number of the Boost libraries. C++ was selected for a number of reasons,

including the following:

• C++ is a multi-paradigm programming language, allowing the developer a great deal of freedom

in selecting the best approach to a particular problem. Object-oriented techniques, for example, are

well-suited to implementing user interfaces, whereas generic programming techniques are appropriate for

low-level utilities and complex algorithms.

• C++ gives the programmer a great deal of freedom in managing resources (such as memory), and typically

does not incur the cost of compiler-generated run-time checks, meaning that a carefully written program

can be very fast. Languages such as C# and Java provide nice additional features (run-time array bounds

checking, garbage collection, etc.), but these come at the cost of run-time performance; thus, a well-written

C++ program will always be faster than an equivalent program in C# or Java. Of course, the risk of

foregoing these features is that bugs may be harder to track down, and as a result, it may take longer to

develop the application.

• Good compilers for C++ exist for all major computing platforms, such as Microsoft's compiler for the

Win32 platform and GCC for the many UNIX variant platforms.

• Third-party libraries, of both the commercial and free varieties, are widely available for C++, solving a

diverse spectrum of problems.

69

Another means of implementing Terrainosaurus that was considered is as an extension to a general-purpose

numeric processing application, such as Matlab or its free cousin, Octave. These programs provide native

implementations of mathematical constructs such as vectors and matrices, have a (limited) graphical user

interface, and have an impressive array of add-on "toolboxes" providing additional functionality, including

statistical analysis, image processing, and pattern analysis. Because Matlab is an interpreted language it is

especially useful for rapid prototyping of algorithms.

Although it was considered, Matlab was ultimately rejected as a development platform, for two main

reasons.

1. Matlab is a commercial product; if implemented as a Matlab toolbox, Terrainosaurus would only be

usable by persons having access to a copy of Matlab. A person interested in modeling terrain is not

especially likely to be a Matlab user.

2. Matlab's programming language does not provide sufficient facilities for modularization, type safety, and

code reuse to make development of a medium- to large-scale application feasible.

V.1.2. Graphics API

OpenGL was chosen as the 3D rendering API, because of its cross-platform availability and familiarity.

Another immediate-mode rendering API (e.g., Direct3D) could have been used equivalently.

Another possibility for displaying the results is to implement an interface to one of the commercially

available modeling and rendering systems (e.g., Maya, 3D Studio). Then, rather than being rendered directly,

the results would be used to instantiate objects in the modeling system's scene graph. In this way, one could

get high-quality rendering support "for free".

V.2. Supporting Libraries

While almost any needed functionality could, in principle, be implemented directly in C++, this is wasted

effort when there already exist mature, freely available C/C++ libraries and tools providing good solutions

for these problems. In order to simplify the development process, a third-party library was used wherever

possible, as long as the following things were true of it:

1. The library is fairly mature, providing a robust, full-featured solution to the problem domain it addresses.

Incomplete and alpha-quality libraries are not desirable.

2. The library has adequate documentation, and is under active development/maintenance. This gives some

degree of confidence that the developers of the library are committed to its continued existence and

improvement.

3. The library is cross-platform, and does not have dependencies on proprietary libraries. This keeps

Terrainosaurus from being bound to a particular operating system variant.

4. The library is distributed under fairly liberal licensing terms. A "do (mostly) whatever you want" style

license, such as the Apache License or the LGPL is preferable, but a GPL'd library was considered

acceptable if it is also available under a commercial license. This leaves open the possibility of future

commercial development.

70

V.2.1. File Parsing

For small-scale projects, it may be sufficient to hard-code configuration constants and algorithm parameters

directly into the source code. An application of any significant size and complexity, though, generally needs

to be able to accept configurable parameters from data files (and ideally, in a robust way, so that a malformed

data file does not cause the application to crash). Besides adding to the overall quality of the application,

having the ability to read configurable parameters from a file can also drastically cut down on the amount of

time needed to tune a complex algorithm, by eliminating the edit/compile/run cycle.

Writing robust file parsing code can be both difficult and tedious, so some sort of higher-level solution is

desirable. ANTLR [Parr 2006] is one such tool, allowing a developer to write a description of the grammar for

his file format and generating Java, C#, C++, or Python code for parsing files in that format. The generated

code is human readable (unlike that produced by other tools like yacc), and generates fairly good error

messages for malformed files. Once familiar with ANTLR, a developer can modify or extend the format of

the file with very little effort.

V.2.2. Fourier Transform

Frequency-domain signal analysis generally implies calculating the discrete Fourier transform (DFT) of a

spatial-domain or time-domain signal (this is needed in Terrainosaurus for speeding up the feature detection

step, as described in Section V.4.2.1). However, writing an efficient discrete Fourier transform (DFT)

implementation is tricky indeed—a research area in its own right. Fortunately, a very complete and highly

optimized C library exists for performing many variations on the DFT, called FFTW (the "Fastest Fourier

Transform in the West") [Friggo & Johnson 2003]. FFTW is available from the Massachusetts Institute of

Technology under both the GPL and a commercial license.

V.3. Application Architecture

A suggested general architecture for an implementation of Terrainosaurus is pictured in Figure V.1. To a

large degree, this is a straightforward reflection of the concepts described in Chapter IV.

In this section, I discuss the following aspects of this suggested architecture in greater depth:

• how LOD is expressed in the architecture

• inputs and outputs of the algorithm

• the data structures

• the user interface

• implementing the genetic algorithms

71

Fig. V.1. A Suggested Application Architecture.

72

V.3.1. LOD Handling

Level of detail is a concept fundamental to Terrainosaurus, and is important for a number of things. As

discussed in Chapter IV, LOD is central to the height field generation algorithm: starting from a coarse

LOD, the algorithm builds progressively finer-scale height fields, until reaching the user's desired LOD. In

each iteration, the algorithm uses real-world elevation data of that LOD, either taken directly from GIS data

available at that LOD, or else resampled from GIS data at a different LOD. LOD is also important in other,

less obvious ways. For example, the desired LOD tells us how finely the map boundaries must be subdivided

in order for there not to be any straight boundaries in the resulting height field. Also, when rendering a height

field, it is necessary to know the LOD: this specifies how to scale the and dimensions of the height field

in order to be in correct proportion to the vertical axis.

Because we are working with USGS elevation data, the choice of LODs has already been made for us, to

a large degree. USGS DEMs are commonly available in resolutions of 1/9 arc-second (3 1/3 meters per

sample), 1/3 arc-second (10 meters per sample) and 1 arc-second (30 meters per sample). Because of this, a

power-of-three relationship between LODs is most convenient, as it requires the least amount of resampling,

because the standard-resolution DEMs can be used directly. Following this power-of-three relationship,

coarser LODs can be derived with resolutions of 90m, 270m, 810m (Figure V.2). Further resolutions, such

as 2.4km and coarser, are less useful because standard USGS 10m and 30m DEMs become unusably small

when resampled to such coarse resolutions (around 4x4 samples).

Fig. V.2. Choice of Levels of Detail. USGS digital elevation maps come in a range

of LODs, with a power-of-three relationship between successive resolutions. This

scheme can be extended to include additional resolutions for which data is not

typically available (in these cases, the standard-resolution maps must be resampled).

Because LOD is so ubiquitous throughout Terrainosaurus, it is natural that its data structures would directly

support multiple levels of detail. The diagrams in this chapter depict the multi-LOD components of the data

structures as in Figure V.3.

73

Fig. V.3. Multi-LOD Objects. Most of the data structures suggested

for Terrainosaurus have at least some attributes that are LOD-specific.

V.3.2. Inputs & Outputs

Figure V.1 depicts the inputs and outputs of an implementation of Terrainosaurus. Assuming that

Terrainosaurus is not embedded in the context of a larger application, this generally implies that

Terrainosaurus is reading/writing files from/to machine storage (e.g., the computer's hard drive).

The input and output files include:

• the terrain type library (TTL) file—this describes the user's classification of example height fields into

a taxonomy of terrain types and is read to determine what elevation map files should be loaded (see

Figure V.5 in Section V.3.3.1 for a suggested format for this file)

• terrain type map (MAP) files—these contain the map designs authored by the user, and are both read and

written by Terrainosaurus (see Figure V.10 in Section V.3.3.5 for a suggested format for these files)

• digital elevation map (DEM) files—these contain height field elevation data, and are read to load

the example height fields, and written to save the height fields generated by Terrainosaurus (see

Section V.3.3.3 for a discussion of file formats for height fields)

• image (IMG) files—these encode the terrain type of each point in a height field as a pixel color and are

generated as a by-product of the map-rasterization process; they may be used for terrain-type-based

postprocessing of the generated height fields

V.3.3. Suggested Data Structures

The way in which data is organized is of great importance in the design of most kinds of software. A poorly

structured data model will adversely impact the design of the rest of the system and may be difficult to

change once the rest of the system has been built. As an aid to future implementors, I offer the following

suggested organization of data structures.

74

V.3.3.1. Terrain Library

Fig. V.4. The Terrain Library Data Structure.

The Terrain Library structure (Figure V.4) is primarily a container for the other data structures, but it also

holds aggregate statistics for the entire library of height fields. The important components of the Terrain

Library are:

• a set of Terrain Type objects representing the various types of terrain defined by the user

• a set of Terrain Seam objects representing the properties of the seams between each possible pair of

Terrain Types

• terrain statistics aggregated from all of the Terrain Samples in the library; these are used to establish the

significance of the agreement between the Terrain Samples of a Terrain Type

• similarity parameters aggregated from all of the Terrain Types in the library; these are used as a fallback

when a Terrain Type does not have enough Terrain Samples to calculate its own similarity parameters

Because the Terrain Library, once constructed, is essentially static, it makes sense to store this information in

a file, and to load it at application startup. A simple way to accomplish this is with a file format resembling

the Windows .ini format, essentially a human-readable list of key/value pairs grouped into sections

(Figure V.5).

75

A Terrain Type entry

[Terrain Type: California_Coast_Hills]

 color = <0.6, 0.6, 0.3, 1.0>

 sample = "35120e8 - Cypress Mountain, CA"

 sample = "35120f8 - Lime Mountain, CA"

 sample = "35121f1 - Pebblestone Shut-in, CA"

 sample = "33116b7 - Mesa Grande, CA"

.

.

A Terrain Seam entry

[Terrain Seam: Colorado_Small_Mountains & Colorado_Large_Mountains]

 smoothness = 0.3

.

.

Terrain statistics aggregated across the whole library for an LOD

[Aggregate: LOD_30m]

 # Whole-library variances, used to calculate agreement

 elevation_mean_variance = 8.18938e+008f

 elevation_stddev_variance = 2.14651e+006f

 elevation_skewness_variance = 11.5058f

 elevation_kurtosis_variance = 85.087f

.

.

 # Whole-library averages, used when a terrain type has

 # insufficient samples to calculate its own values

 default_elevation_mean_variance = 2.48967e+006f

 default_elevation_stddev_variance = 68969.8f

 default_elevation_skewness_variance = 1.74482f

 default_elevation_kurtosis_variance = 4.5054f

.

.

Fig. V.5. An Example Terrain Type Library (.ttl) File.

76

V.3.3.2. Terrain Type

Fig. V.6. The Terrain Type Data Structure.

A Terrain Type (Figure V.6) represents a single, conceptual type of terrain, having one or more concrete

examples. Its important components are:

• a name, describing the terrain type in a way that is meaningful to the user (e.g., "Mountains")

• an integer ID, uniquely identifying this Terrain Type within the parent Terrain Library; this ID is used by

other data structures to reference this Terrain Type

• a set of Terrain Sample objects, the example terrains that make up this Terrain Type

• terrain statistics aggregated from all the Terrain Samples belonging to this Terrain Type; these are used to

calculate the similarity parameters used when measuring how "like" this Terrain Type a generated height

field is

V.3.3.3. Terrain Sample

Fig. V.7. The Terrain Sample Data Structure.

The Terrain Sample class (Figure V.7) represents a single, rectangular chunk of terrain, and can be thought of

as an enhanced height field. It serves two similar, but distinct functions:

1. it represents the example GIS terrains within the Terrain Library, in which case it has a parent Terrain

Type

2. it represents the under-construction terrains, in which case it has a Map Rasterization and does not have a

parent Terrain Type

77

The important components of a Terrain Sample are:

• if this is an example terrain in the terrain library, a reference to the parent Terrain Type

• if this is a height field being generated by Terrainosaurus, a reference to a Map Rasterization describing

where the terrain regions are located and what the terrain type is at each point in the height field

• a rectangular grid of height field elevations (pictured above in yellow)

• a rectangular grid of 2D vectors representing the gradient at each point in the height field (pictured above

in green)

• lists of features (peaks, edges, ridges, etc.) located within the height field; each feature contains one or

more 4-dimensional points, giving the location within the height field, the scale at which the

detector gave the strongest response, and the value of that detector response

• calculated statistics for each region in the height field (encoded in the associated Map Rasterization); these

statistics need to be evaluated separately for each region because each region must be evaluated against its

corresponding Terrain Type

• raster objects containing windowed statistical measurements of the Terrain Sample, such as the mean

elevation, mean gradient and minimum/maximum elevation, calculated over the neighborhood

surrounding each cell of the raster; these are precalculated when the Terrain Sample is studied, and are

during the height field construction GA to perform efficient queries of the geometry of individual genes

(pictured above in blue)

The vast majority of the data processed by Terrainosaurus comes from terrain elevation maps. Height field

data are commonly found in either the DEM (Digital Elevation Map) format [USGS 2003] or the SDTS

(Spatial Data Transfer Standard) format [USGS 2003], with newer data available only in the SDTS format.

The DEM format is an ASCII text format with fixed-length records, a relatively simple format, but also

rather bulky—a typical 30m DEM is larger than a megabyte. SDTS, in contrast, is a binary file format, and is

much more compact, but also much more complicated, as SDTS is the USGS's "Swiss Army Knife" format,

capable of storing a wide range of raster and vector map data.

While the preceding discussion may sound disheartening, the developer of terrain processing software

actually has quite a bit of latitude in selecting a terrain file format. This is because, while GIS data sources

typically use only the aforementioned formats, there exist public-domain utilities for converting between

these formats and a wide array of raster formats, including TIFF, Targa, raw XYZ coordinates, POV (the

POV-Ray ray tracer file format), and AutoCAD DXF. The Virtual Terrain Project [VTP 2006] also describes

an additional, terrain-specific format, the Binary Terrain (BT) format, which also offers better compression

than ASCII formats.

In the current implementation of Terrainosaurus, we chose to implement a parser for the DEM format,

because DEM is easy to read and because PC environments typically have plenty of hard drive space, so

the data expansion is not a huge problem. Image file formats are not ideal for storing terrain data because,

in order to encode a height field into such a format, the elevations must be scaled to fit within the range of

legal pixel values (often or ; doing so loses the absolute scale of the data, and makes it

impossible to compare elevations between different height fields.

78

One important "gotcha" to be wary of, when using DEM or SDTS data, is that the real-world tiles covered

by the data in an elevation map are often non-rectangular, due to the curvature of the Earth (Section III.1.1).

As a result, the actual, valid region of a DEM or SDTS height field may be a trapezoid (or even an arbitrary

quadrilateral, depending on the mapping coordinate system used); grid cells outside of this valid region will

be marked "void". A simple solution for dealing with this is to trim some number of pixels off of each edge

(30 pixels seems to be sufficient), thereby ensuring a rectangular valid region.

V.3.3.4. Terrain Seam

Fig. V.8. The Terrain Seam Data Structure.

The Terrain Seam class (Figure V.8) represents characteristics of the boundary between two different Terrain

Types (two adjacent regions of the same Terrain Type are considered to be a single, contiguous region; thus,

a Terrain Type cannot have a boundary with itself). The components of a Terrain Seam are:

• a scalar in the range indicating the target smoothness for that boundary type

• references to the two Terrain Types this Terrain Seam separates

V.3.3.5. Map

Fig. V.9. The Map Data Structure.

79

The Map class (Figure V.9) represents a user-authored, vector-drawn Terrain Type map.

The Map can be implemented as a 2-dimensional connected polygonal mesh (using, for example, a variation

of the winged-edge [Baumgart 1975] data structure): polygonal regions in the map correspond to mesh

faces, and boundaries between regions correspond to mesh edges. The usefulness of this approach is that

conventional polygon-modeling tools and techniques may be used to author the map. Furthermore, most

3D modeling packages already contain robust tools for editing polygon meshes, possibly simplifying

implementation of Terrainosaurus as part of such a package.

In order to use a polygon mesh structure to represent the map, it must be augmented with some additional

data fields. Instead of conventional polygon mesh attributes like 3D positional coordinates, texture

coordinates, vertex colors and normals, the map mesh needs the following attributes:

• 2D positional coordinates for each vertex in the map

• the Terrain Type for each region (face) in the map

• the sequence of 2D points representing the boundary refinement for each edge in the map

Because the Map is implemented as a topologically connected polygon mesh, it must also be stored this map

in a format that preserves this information. A simple way to do this is with a trimmed-down version of the

Wavefront OBJ file format [Wavefront 1995]. The only record types of the OBJ format that are needed are a

2D version of the vertex record ('v'), a terrain type declaration ('tt', analogous to the material declaration), and

a face record ('f') (see Figure V.10).

Map vertices

v -700.0 -700.0 # 1

v -400.0 -400.0 # 2

.

.

Map regions (faces)

tt California_Coast_Hills

f 1 2 3 4 5 6

.

.

Fig. V.10. An Example Terrain Type Map File. One way of persisting the user's

terrain type map is with a variation on the ubiquitous Wavefront OBJ file format.

80

V.3.3.6. Map Rasterization

Fig. V.11. The Map Rasterization Data Structure.

The Map Rasterization class (Figure V.11) is a raster version of a Map, and is usually associated with one

or more Terrain Samples of the same dimensions. Besides being useful during the height field generation

process, as described in Section IV.3.3.2, the Map Rasterization is also useful for exporting a representation

of the map in a form useful for downstream processing of the height field: the raster of terrain type IDs can

be saved in a conventional image format (PNG or Targa, for example), and used to do further computation,

such as assigning texture coordinates to the terrain, or populating the terrain with trees, rocks, or other

objects. The components of a Map Rasterization are:

• a raster object containing the integer terrain type ID for each grid cell

• a raster object containing the integer region ID for the region enclosing each grid cell

• a raster object containing the scalar distance from the center of the grid cell to the nearest region boundary;

this is used to generate the alpha masks for creating the coarsest LOD to prime the generation process

(Section IV.3.3.3)

• the number of distinct regions present in the Map Rasterization

• the Terrain Type, pixel-area, axis-aligned bounding box of each region, and a pixel located inside of that

region (needed to flood-fill the region)

V.3.4. Suggested User Interface

Ideally, a graphical user interface for Terrainosaurus should allow the user to view, navigate and edit the

terrain type map in an intuitive fashion, and to invoke the height field generation GA, and to visualize the

results. At a minimum, the interface should support the following operations:

• load map

• save map

• create region

• delete region

• move vertex

• set terrain type

• refine boundary

81

• select region to generate

• save terrain

The prototype implementation of Terrainosaurus accomplishes these operations with two user interface

windows: a map editor window and a terrain viewer window.

The map editor window (Figure V.12) allows the user to select regions, boundaries, and vertices by clicking

on them or "lasso selecting" them with the mouse. When selecting individual objects or adding regions to

the map, the mouse pointer will snap to nearby vertices and edges, making it possible to create connected

polygons. Loading, saving and editing operations are triggered by keyboard commands.

Fig. V.12. The Map Editor Window. The map editor window allows the user to

view, navigate and edit a terrain type map using polygon modeling operations.

The terrain viewer window (Figure V.13) is a 3D height field viewer, allowing the user to explore the

generated height field (or one of the example height fields) in 3D. One minor "trick" that deserves

mentioning is that, when displaying a height field, the height field geometry (or the camera) should be offset

in the vertical direction by the mean elevation of the height field. This is necessary in order to have the height

82

field in the viewport; if this transformation is not done, the height field surface may be located far above or

below the camera in the 3D space, making it difficult to find.

Fig. V.13. The Terrain Viewer Window. The terrain viewer window allows the

user to view the generated terrain at different levels of detail and from any angle.

V.3.5. Implementing the Genetic Algorithms

Because GAs are used in multiple places in Terrainosaurus, it is advantageous to write the bulk of the GA

code in a reusable manner and then to specialize it as needed for each of the GAs. To do this, however, is

slightly more complicated than writing reusable library functions, since the parts of the algorithm that need

to be specialized are embedded deep within the algorithm (i.e., the reused functionality is the over-arching

algorithm, not the low-level functions and objects, as is normally the case when creating a reusable code

library).

V.3.5.1. A Generic GA Framework

This pattern of interaction between the reusable and application-specific parts of the code is sometimes

referred to inversion of control, and implementations of this principle are commonly called frameworks.

Frameworks can be implemented in a structured programming language through the use of callback functions

(the GLU polygon tessellator code is a small example of this), but object-oriented and generic programming

constructs (inheritance, polymorphism and templates) make framework implementation much simpler and

cleaner. The usual method of creating a framework is for the hotspots (application-specific parts of the

framework) to be implemented as abstract interfaces, and the rest of the framework to be implemented in

83

terms of these abstract objects. Then, to specialize the framework for a particular application, all that a

developer needs to do is to create application-specific objects to fit into those hotspots.

A suggested way of decomposing a GA as a framework is as follows. To use the framework to solve

a particular problem, the developer would subclass some or all of the following classes to implement

problem-specific functionality.

Genetic Algorithm the top-level object of the framework. This object has a number of

parameters specifying the overall behavior of the algorithm, such as

the population size, number of evolution cycles, and the probabilities

of mutation and crossover. In addition to setting these parameters, the

developer must add one or more specialized Operator objects to the GA.

Once configured, the GA is launched by calling its run() function.

Chromosome the representation of an individual solution in the algorithm. This class

should contain some number of Genes, and the specialized Operators

should be written to work on it.

Gene an atomic sub-part of a Chromosome. Mutation and crossover operators

work on these.

Initialization Operator an operator for performing some arbitrary initialization on a

Chromosome. These are called to initialize new Chromosomes as they

are introduced into the population (e.g., to replace those that were killed

off in the previous evolution cycle).

Crossover Operator an operator for performing some sort of exchange of genetic material

between two Chromosomes. The probability of a crossover operator

being invoked on a pair of Chromosome is controlled by the Genetic

Algorithm's crossover probability parameter.

Mutation Operator an operator for performing some arbitrary mutation on a Gene. The

probability of a mutation operator being invoked on a gene is controlled

by the Genetic Algorithm's mutation probability parameter.

Fitness Operator an operator for calculating a fitness value (a scalar in the range)

for a Chromosome.

A Genetic Algorithm must have at least one initialization operator and one fitness operator, but it may have

as many operators of each type as desired, and may optionally assign a weight to each registered operator.

For the initialization, crossover, and mutation operators, these weights are used to construct a cumulative

probability distribution function, which is then used to select which of the available operators is used (with

probabilistic preference given to operators with higher weights). In the case of the fitness operators, each

registered operator is invoked on the chromosome, and the weights are used to determine how significant

each fitness component is to the overall fitness calculation.

84

V.3.5.2. The Boundary Refinement GA

The boundary refinement GA is relatively straightforward to implement, with each gene containing only

a relative angle from the previous segment and the absolute angle with respect to the axis. The operators

defined on this GA are:

Init: Random Angle an initialization operator that populates a chromosome with random

angles in each gene (subject to the max absolute angle constraint)

Init: Straight Line an initialization operator that populates a chromosome with an angle of

zero between consecutive segments

Cross: Splice Subsequences a crossover operator that chooses a split-point and exchanges the

subsequences following that point between two chromosomes

Mutate: Random Bend a mutation operator that introduces a random change to the angle in a

single gene

Fitness: Smoothness a fitness operator that evaluates the fitness of a chromosome according

to the scheme described in Section IV.3.1.4

The boundary refinement GA itself has only one additional parameter beyond the standard parameters

belonging the the Genetic Algorithm framework:

max absolute angle the maximum allowed deviation from the axis; see Section VI.1.1

in Chapter VI for further discussion of the problems and implications

associated with this.

V.3.5.3. The Height Field Generation GA

The height field GA is a bit more complicated than that for the boundary refinement. The Chromosome

for this GA contains a 2D grid of Genes, each of which contains pointers to its source Terrain Sample and

Terrain Type, as well as a set of transformation parameters. Also, the Chromosome retains the results of the

last fitness evaluation (the regions' similarity and gene compatibility measurements), and uses these values to

bias the operator probabilities towards operators that are more likely to be helpful (Section IV.3.3.6).

The operators defined for the height field GA are:

Init: Random Source Data an initialization operator that initializes each Gene with a randomly

selected source Terrain Sample from the appropriate Terrain Type, and

randomly chosen coordinates within that Terrain Sample from

which to get its elevation data.

Cross: Swap Rectangular Region a crossover operator that swaps rectangular clusters of Genes between

two Chromosomes

Mutate: Reset Transform a mutation operator that resets the transformation parameters in a

Gene.

85

Mutate: Vertical Offset a mutation operator that adjusts the mean elevation of a Gene.

Mutate: Vertical Scale a mutation operator that adjusts the vertical range spanned by a Gene.

Mutate: Vertical Rotate a mutation operator that adjusts the rotation around the vertical applied

to the elevation values for a Gene.

Mutate: Horizontal Translate a mutation operator that adjusts the coordinates used for the

source height field data for a Gene.

Fitness: Gene Compatibility a fitness operator that evaluates the similarity between the approximate

geometric shape of the elevations controlled by each Gene and the

corresponding area of the "pattern" height field from the previous

LOD.

Fitness: Region Similarity a fitness operator that evaulates the similarity between each region of

generated terrain and the corresponding terrain type that that region is

supposed to emulate.

Also, the height field GA has several additional parameters beyond the standard parameters belonging the the

Genetic Algorithm framework:

gene size the width/height (in pixels) of a single Gene—larger values result in

fewer Genes being required to cover the entire height field, but also

permit less fine-scale modification to the height field; values around

16 pixels seem to work well, at least for lower resolution height fields

(up to 90m).

overlap factor the percentage of linear overlap between adjacent Genes (see

Figure IV.18); this controls how much blending occurs between

adjacent Genes—a value of zero implies no blending, and would result

in discontinuities at gene boundaries; values around 20% seem to work

well.

max crossover width the width of the largest rectangular chunk of Genes that will be

swapped during a single crossover operation; if this value is , this

implies that, at most, Genes will be swapped.

max vertical scale the maximum factor by which to scale a Gene's elevation values

during a single mutation; this controls how drastic of a change the GA

is allowed to make.

max vertical offset the maximum amount by which to change a Gene's mean elevation

during a single mutation; this controls how drastic of a change the GA

is allowed to make.

86

V.4. Optimizations & Simplifications

Terrainosaurus is a computationally expensive algorithm; as such, anything that can be done to increase its

efficiency is a welcome improvement. Furthermore, it will be easier to implement if existing technologies

can be leveraged to solve some of its sub-problems. Toward these ends, I offer several ideas for optimizing

and/or simplifying the implementation of the algorithm that were used in implementing the prototype.

Further suggestions for optimizing the process that have not yet been explored are discussed in Chapter VII.

V.4.1. Caching the Analysis of Library Terrain Samples

The height field analysis step is, by far, the most expensive part of the algorithm. While this cost cannot be

completely eliminated (as each generated height field must be evaluated for fitness), it is at least possible to

avoid repeatedly analyzing those height fields belonging to the Terrain Library, since these are essentially

static. One way to do this is to dump the results of analyzing an LOD of a height field into a file as soon

as it is analyzed. Then, whenever that LOD of that particular height field is needed thereafter, if the dump

file is newer than the .dem file from which it was generated, the analysis can be skipped, and the previously

calculated results just rehydrated from the file.

In fact, if the dump file is created as a binary dump of the Terrain Sample's data structures, the analysis

results can be loaded very quickly, even more quickly than loading the original .dem file that they originally

came from! This can be attributed to the rather bad compression of the .dem file format, and to the cost

of parsing ASCII text into numeric data, which is avoided by reading and writing as binary. One word of

warning though: during active development, it is easy to change a data structure, while forgetting the impact

that this will have on the dump files. Be sure to verify that your dump files are the size your data structures

expect them to be.

V.4.2. Optimizing the Feature Detection Step

Feature detection is the most computationally expensive part of the height field fitness evaluation—speeding

this up will result in a significant reduction in overall execution time. Several things can be done to accelerate

this step.

V.4.2.1. Do Convolution in the Frequency Domain

The first step in scale-space feature detection is to generate the scale-space representation of height field

(height field), which requires convolving the image with Gaussian filters of various sizes. As the size of

the filter increases, the convolution becomes more and more computationally expensive to perform in the

spatial domain. Fortunately, because of the properties of the Fourier transform, the expensive spatial-domain

operation of convolving two images is equivalent to performing ordinary, element-wise multiplication

of their frequency domain representations (i.e., their Fourier transforms). The computational cost of this

multiplication does not increase as the filter size grows. Therefore, if the amount of convolution to be done

is large enough, the computational savings of doing this convolution in the frequency domain will more than

offset the expense of performing the forward and inverse Fourier transforms, for a net increase in speed.

87

V.4.2.2. Save & Reuse Computations

At the risk of stating the obvious, one way of reducing the expense of feature detection is to cache the results

of computations rather than recomputing them each time they are needed. Feature detectors typically use

first, second, and third, or even higher partial derivatives of the image to compute their response, and these

derivatives occur multiple times in the evaluation. Because of this, a significant speed-up can be realized (at

the cost of higher memory usage) by creating additional rasters to cache the various derivatives. Furthermore,

different detectors often have some of their sub-computations in common; thus, the overall cost of doing

both edge and ridge detection can be reduced by keeping the intermediate results from the edge detector and

reusing them for the ridge detector.

V.4.2.3. Limit the Number of Scales

The cost of feature detection is proportional to the number of scales being searched. Thus, a good way to

limit the expense is to reduce the number of scales. Because of the known, power-of-three relationship

between successive LODs of the terrain, it may be possible (or even preferable) to limit the scales searched

by the feature detection step to a small number. How significantly this will affect the performance of the GA

fitness function is not clear, and is an area for future research (Section VII.11).

V.4.3. Optimizing the Computation of Windowed Statistics

In the "studying" phase of analysis for a Terrain Sample, several statistics are calculated over cell

neighborhoods around each cell of the height field. Computing these quantities is very similar to performing

convolution with an pixel filter. Just like many filters, these operations are separable, meaning that

they can be done more efficiently by being evaluated as two sequential 1-dimensional operations: first the

statistic is evaluated across the -coordinate, and then across the -coordinate of the result.

V.4.4. Simplifying Rasterization of the Map

Generating the Map Rasterization from the Map is a somewhat difficult problem, primarily because,

especially with the addition of the refined boundaries, the polygons that make up the map tend to have many,

many edges, and to be highly non-convex.

Fortunately, this problem has already been solved. The GL Utilities (GLU) Library includes a tessellator

for transforming (possibly self-intersecting) non-convex polygons into triangles, which can be rendered

easily. Then, to create the Map Rasterization, we need only render these triangles, with an appropriately

chosen viewport, and then to read back the rendered pixels from the framebuffer. For this to work, the color

with which each triangle is rendered needs to encode the terrain type ID for its corresponding region. Also,

it is important to disable lighting, antialiasing and alpha blending, so that the rendering system does not

interpolate colors (thus destroying this encoding).

Another potential solution, if using OpenGL is impossible or undesirable, is to rasterize the boundaries

between regions, and then to use a flood-fill algorithm to fill in the regions.

88

CHAPTER VI

RESULTS & DISCUSSION

In this chapter, I will discuss the results achieved with Terrainosaurus, both successes and problems, and

with running times and generated images. The sequence of topics will parallel that of the previous chapters:

• the boundary refinement algorithm

• the terrain comparison algorithm

• the height field construction algorithm

VI.1. Boundary Refinement

The boundary refinement operation offers the user a simple means of creating irregular boundaries between

regions of terrain, without having to draw every bend in the curve by hand (Figure VI.1, Figure VI.2).

In many (if not most) cases, this amount of control is sufficient for the user's needs. It is also a very fast

computation (refining the boundaries for an entire map is virtually instantaneous from the user's point of

view, using 20 evolution cycles and a population size of 5 for the GA).

Fig. VI.1. Map Boundaries Refined With S = 0.9.

89

Fig. VI.2. Map Boundaries Refined With S = 0.1.

There are, however, several aspects that deserve some additional discussion.

VI.1.1. The Accumulated Angle Constraint

One item of interest regarding this operation is the global constraint we impose, that the absolute angle is

not allowed to exceed a certain threshold at any point. This was found to be necessary in order to force the

boundary to make progress in the direction of the end point. Without this constraint it is very possible for

the curve to double back on itself, especially if the smoothness parameter is low (thus allowing sharper turns

with each segment). This is problematic for a number of reasons.

First of all, it is easy for the curve to intersect itself, producing loops in the boundary. We consider this

behavior to be undesirable, since it effectively creates additional regions, and it is not completely clear which

of the two adjacent terrain types should fill the new regions (Figure VI.3).

90

Fig. VI.3. A Self-intersecting Boundary. If no constraints are placed on the

boundary GA, it can generate boundaries that loop back on themselves.

Second, it is possible for the generated start and end points to be very near to each other (i.e., the boundary

wanders far away, but ends up back near the place from which it started). Such a boundary is a very poor

approximation of the original. Worse still, a generated boundary with this characteristic will have to be

scaled enormously in order to get the start and end points to line up with the original boundary. The result of

this is that the boundary will be magnified to absurd proportions, as compared to the rest of the map, and will

probably also intersect several nearby boundaries (Figure VI.4).

Fig. VI.4. A Badly Scaled, Backtracking Boundary. If a boundary's end point is too close

to its start, then the scale factor required to place the generated end points on top of the

original end points is huge, causing the boundary to be scaled to absurd proportions.

91

A third problem, related to the previous two, is that as the refined boundary becomes less linear, the scale

factor needed to bring the end points into alignment increases. As the scale factor increases, so do the lengths

of the line segments that make up the boundary, thereby thwarting one of the objectives of the boundary

refinement operation (i.e., to keep the lengths of individual segments small).

These problems are all prevented or minimized by the global constraint on accumulated angle. Unfortunately,

this simplification also excludes certain, valid boundary shapes, in much the same way that height fields

cannot represent certain, valid terrain features. Thus, it would be nice to be able to lift this restriction, but in

order to do this, we would need some other way of avoiding the aforementioned problems; this is an area for

future work.

VI.1.2. Smoothness and Level of Detail

Another topic worth discussing is the effect of the smoothness parameter. In order to keep the curve

well-behaved, both locally and at larger scales, we evaluate its fitness at several levels of detail, using the

same smoothness value. Thus, the generated curves will display similar behavior at several scales (i.e., they

are fractal-like). As a result, the operation is somewhat limited in the kinds of boundaries it can produce:

rough, meandering boundaries and smooth, straight boundaries are both possible, but smooth, meandering

boundaries are not (since this would imply sharper turns at larger scales and softer turns at finer scales). This

behavior could be made more controllable with the introduction of additional smoothness parameters for

coarser levels of detail, though the additional benefit might not be worth the added complexity.

VI.1.3. Additional Constraints

As mentioned previously, one of the benefits of a genetic algorithm is its flexibility. While the only

constraint currently imposed on the generated boundaries is that they have a user-specified, characteristic

smoothness, it would be relatively straightforward to incorporate additional constraints into the fitness

evaluation, such as:

• In addition to matching the locations of the endpoints of the original boundary, the refined boundary

should also match specific angles at the endpoints. This would make it possible to eliminate sharp

"corners" from regions.

• The refined boundary should not intersect other, nearby boundaries.

• The refined boundary should not have any self-intersections, nor should it end near to where it began. This

would help to address the problems discussed in the previous section about the global constraint on the

accumulated angle.

• The refined boundary should remain within a user-defined "envelope". This would provide the user with

additional control over the shape of the boundary.

VI.2. Terrain Library Analysis

VI.2.1. Empirical Analysis

In order to validate the claim that the statistics used are suitable for establishing similarity, we examined

56 terrains taken from 7 US states. The terrains were grouped into 18 terrain types, the smallest of which

92

contained only one example, and the largest of which contained 8 examples. Classification was done based

on visual inspection by one user.

Visual comparison of histograms in Matlab revealed a high degree of similarity between the histograms of

the same terrain type, when compared to those of other terrain types. In most cases, the mean values were

fairly close, and the histogram had the same approximate shape (the example in Figure VI.5 is fairly typical).

Because of this, we conclude that these statistics are meaningful in evaluating similarity.

Fig. VI.5. Elevation Histograms from the California Coast Hills. The elevation

histograms for several samples of similar terrain, taken from a region of southern

California. The overall histogram shapes correspond fairly well to one another.

The terrain library also scored well against the similarity function. Of course, every terrain sample received

a self-fitness score above 90%—this is true by definition, so it means nothing. What is significant is that

agreement measurements were also high, typically above 90% for most measurements. In contrast, when

a sample of steep, Wyoming mountains was "misclassified" among samples of Florida flatland, many of

the agreement measurements dropped from 97%–99% to under 60% (and in once case, nearly to 0%). This

agrees with conclusions drawn from visual inspection of the histograms.

VI.2.2. The Similarity Function

The most difficult part of Terrainosaurus was constructing an effective terrain type similarity measurement.

While there is certainly room for improvement, the function described in Section IV.3.2 does a reasonably

good job of favoring more realistic terrain, at least with the terrain types used to test it (e.g., Figure VI.6,

Figure VI.7, Figure VI.8, Figure VI.9). This success can be attributed to several desirable characteristics:

93

• it scores all of the reference height fields highly (similarity of 90% or better) without over-fitting the data;

this allows it to generalize effectively in order to accept new data

• it is able to detect when a particular measurement is useless for evaluating a particular terrain type and

ignore that measurement; furthermore, it can also detect when its overall discriminating power is weak due

to bad input data

• it is not sensitive to any similarity between terrain samples belonging to different terrain types; this allows

it to be tolerant of overlapping (or even identical) terrain types created by the user

Fig. VI.6. A Reference Height Field from Florida.

Fig. VI.7. A Generated Height Field Based on the Florida Reference.

Fig. VI.8. A Reference Height Field from Washington.

94

Fig. VI.9. A Generated Height Field Based on the Washington Reference.

VI.2.2.1. On the Importance of Classifying Well

The user's only job in the terrain library analysis process is to segregate the example terrains into meaningful

terrain types. It is not important for these terrain types to be disjoint with respect to one another (i.e., no

overlap in measured statistics); to require this of the user would be overly taxing, and is not reflective of

the real world either (many diverse terrain types share similar mean elevations, for example). One of the

strengths of this algorithm is that the user is allowed to create as many, finely-distinguished terrain types as

he needs to suit his purposes.

It is important, however, that each terrain type be coherent. The similarity function is designed to adapt

itself to whatever patterns it is able to discover within the examples given to it—if the examples given to it

are essentially unrelated, the function will be unable to learn anything meaningful, and will, accordingly,

produce garbage. When the similarity function described in this paper was originally implemented, it

produced initially poor results; this turned out to be the result of several badly-classified examples.

A related issue that also poses problems for the similarity analysis is the presence of multiple terrain types

within a single terrain sample, such as a lake in the midst of mountainous terrain, or mountains trailing off

into a flat plain. These situations can yield statistical distributions that are uncharacteristic of any of the

terrain types involved, often significantly skewed or multi-modal. Because Terrainosaurus does not currently

detect these conditions, such example terrains cannot be used.

Addressing these issues would go a long way towards improving the overall user experience in this phase,

and is an area for future work (Section VII.5).

VI.2.2.2. Things that Didn't Work

In arriving at this similarity function, a number of things were attempted that turned out not to work

effectively. I mention a few of them here in the hopes of providing guidance and inspiration to

future researchers in this area: guidance—that the dead-ends of the past need not be revisited—and

inspiration—that one of these failed ideas might be the seed that one day sprouts into an idea that does work.

95

Direct Height Field to Height Field Comparison

Early in the research process, we attempted to use the RMS (root mean square) difference between the

generated height field and a reference example as an estimate of their similarity. This was never intended

to be the final similarity function, but only a temporary, partial solution. Just the same, it is instructive to

consider the problems from which it suffers, as similar pixel-wise approaches will likely have many of the

same failings:

• it is quite sensitive to the precise placement of features in the terrain; as such, it is too restrictive to be

the basis for a real similarity function, as it cannot even relate similar example terrains to one another;

consider comparing a sloping terrain to its mirror image—this would receive a low similarity score even

though it is comparing a terrain to itself!

• it is not clear how to generalize a pixel-by-pixel comparison such as this to handle multiple example

terrains in a terrain type

• it is extremely sensitive to the mean elevation of the terrains: a large difference in mean elevations will

inordinately penalize two otherwise very similar terrains

• it is not even clear how to compare two rectangular terrains of different dimensions, much less two

non-rectangular regions

• as the RMS difference between two terrains is effectively unbounded, this value cannot, by itself serve as

a similarity measure, and it is unclear how to adequately transform this unbounded value into a bounded

value (this is only an issue if fitness-proportional selection is used in the GA; an unbounded fitness

function can still work if tournament selection is used in the GA)

Comparing the Fourier Transform

Another idea we attempted was to compare the Fourier transforms of terrains. This gets around the problem

of the previous idea, that the height fields needed to be of the same size, since the Fourier transforms can be

resampled to the same size and compared directly. However, attempting to compare the FFTs magnitudes of

apparently similar terrains did not yield promising results, and so we abandoned this approach.

Linear Pattern Analysis

As a third approach, we tried to apply standard pattern analysis tools to discover automatically the

relationships between examples of the same terrain type. The main difficulty motivating this approach

was that of identifying which characteristics of a set of terrains are most important. In order to choose

which terrain chromosomes to keep and which to "recycle" during the GA, a good means of ranking them

is needed...but given the wide variety of possible characteristics that could be used, it is hard to see which

should be given preference (or whether all should be weighted equally).

Fisher's linear discriminant (FLD) [Gutierrez-Osuna 2004] is a common pattern recognition technique for

dimensionality reduction, in which a large number of characteristics can be projected down to a smaller

set. FLD chooses the projection that maximizes separation between the different classes of data (i.e., in our

case, the terrain types). It also calculates a separability ratio, which can be used as a relative measurement

of how well a set of characteristics separates the classes. Using this separability ratio, we thought to find

96

an optimal set of characteristics (and weights for those characteristics) with which to compare and evaluate

terrain height fields.

While this approach initially showed some promise, it turned out to have some serious problems. The fatal

flaw with using FLD is that it solves the wrong problem: it produces the combination of characteristics

that show the biggest difference between the terrain types in the library. This has the effect of ignoring

characteristics that all terrain types have in common, even if those characteristics turn out to be important for

producing that terrain type. What we actually want is the set of characteristics that most strongly characterize

each terrain type—this set might be different for each terrain type. Given a terrain height field, FLD would

be useful for helping to answer the question "To which of terrain type does it most likely belong?", whereas

the real question we want to answer is "How much like its reference terrain type is it?".

A strange consequence of using a similarity function based on FLD is that the similarity between two height

fields of the same terrain type cannot be determined except through opposition to every other terrain type.

This is wildly counter-intuitive: adding new terrain types or adding new examples to an existing terrain type

should have no effect on the other terrain types.

Related to this, in order for an FLD-based similarity function to work, all terrain types must be significantly

different from one another. This places an extra burden on the user: he must ensure, not only that the

examples in each terrain type are similar to each other, but also that they are different from all of the other

terrain types. Furthermore, such a similarity function is conceptually opposite to what is really wanted: a

classifier-based system attempts to maximize separability; that is, differences between terrain types are made

more important than the similarities within a terrain type.

A final problem with FLD is that it requires a significant number of examples in each class to work (if

there are too few samples, a matrix becomes singular and thus cannot be inverted). As the number of

characteristics under consideration increases, the requisite number of examples increases as well. Because of

this, FLD is not a good candidate for a similarity fitness function: it doesn't work at all with too few samples.

Histogram Aggregation

A fourth approach, which bears a stronger resemblance to the similarity function we ultimately used, but still

turned out to be fatally flawed was to create one giant, terrain-type-wide super histogram (Figure VI.10) for

each statistic (e.g., elevation, slope) used in the comparison. These would be computed by adding together

the individual histograms from each sample in the terrain type, and normalizing the super histogram to have

an area of 1. In theory this composite histogram would be smoother than those of the individual examples,

and would better represent the terrain type as a whole. Then, to evaluate the similarity of a generated height

field to this terrain type, one need only calculate the RMS difference between the height field's normalized

histogram and the terrain type's super histogram.

While this idea led to the similarity function described earlier, it has several problems. The first problem is

the difficulty of combining histograms with different bucket sizes, though this might be solved by resampling

the histogram. The more serious problem is that, unless the distribution means are very close, the resulting

super histogram will be multi-modal. Obviously, such a distribution will not compare well to the (usually)

unimodal distributions that produced it.

97

Fig. VI.10. A "Super Histogram". Concatenating the histograms of

multiple terrain samples turned out to be a fatally flawed approach.

VI.3. Height Field Construction

The height field construction algorithm is able to create a reasonably good imitation of the example terrains

given to it, providing a computationally-expensive, but low effort means of generating terrain.

VI.3.1. Performance of the GA

The height field GA is, without a doubt, the most computationally intensive part of the application. As the

LOD increases, so does the computation time (see Table VI.1).

Table VI.1. Height field generation running times.

LOD Time (s)

270m 40 s

90m 270 s

30m 2070 s

98

These numbers are for one run on a 1.2 GHz Pentium III with 256 MB of RAM. The running time ratios

between successive LODs are unsurprising: each successive LOD takes between 6 and 8 times as long as the

one before. The GA itself (ignoring the fitness function) is linear in the number of genes in a chromosome.

Similarly,the fitness function is linear in the number of pixels in the height field. Since each successive LOD

is approximately 9 times larger than the previous, it makes sense that the running times would scale similarly.

Obviously, scalability is an issue with this algorithm. As it is now, the 30m LOD is at least reachable.

Unfortunately, the 10m LOD can be expected to take a 6 to 8 times as long again. Before the algorithm can

be pushed to these higher LODs, it must be accelerated somehow, whether via a GPU implementation, or

some other form of parallelism.

VI.3.2. Successfulness of the GA

From the figures in this section, it is obvious that the algorithm works fairly well, at least at the 270m

(Figure VI.11) and 90m (Figure VI.12) LODs. The terrain types bear a significant resemblance to their

reference examples, and the transitions between regions work well too. Unfortunately, when going to the

30m LOD (Figure VI.13), this does not hold true. According to several GA researchers with whom I spoke

at a recent conference on evolutionary programming, as the size of the problem increases, the GA population

size should increase accordingly. This is problematic, as the running time for the 30m LOD is already quite

large.

Fig. VI.11. "Thirds" at 270m. At the 270m resolution, the terrain

types display characteristically different elevation patterns.

99

Fig. VI.12. "Thirds" at 90m. At the 90m resolution, the terrain types still look fairly reasonable,

though it would be nice to see larger, more coherent features in the hilly terrain (yellow).

Fig. VI.13. "Thirds" at 30m. At the 30m resolution, the size of the

terrain has exceeded the ability of the GA to bring it all together.

Further research into tuning the GA parameters is likely to yield better results; still, there are some other

ways in which the construction process could be improved as well. Probably the most noticeable flaw in the

30m height field (Figure VI.13) is the "tiling" effect visible in the flatter areas. This effect can also be seen

in the mountainous, yellow area, though it is a bit less glaring due to the already rugged terrain in that area.

100

This effect is the result of the genes not aligning well with one another. One possible way of dealing with

this issue would be to subdivide the genes into smaller patches (or would be a good start) for the

purpose of calculating gene compatibility. This would yield a more accurate estimate of the shape of a gene,

and would hopefully lead to finding genes that naturally fit well to the pattern height field, which would

reduce or eliminate the tiling effect.

101

CHAPTER VII

FUTURE WORK

While the results achieved with this method are respectable, numerous extensions and improvements are

possible, offering greater performance, a higher degree of realism, greater ease of use, and/or additional

control over the generated terrain.

VII.1. User Study

One of the main objectives of this research has been to develop a method of generating terrain that is easy

and intuitive for a user to use. In pursuit of this goal, I have had to make a number of judgments as to the

user-friendliness of particular aspects, armed primarily with my own intuition as a user and creator of

graphically-oriented software. While I have some degree of experience using painting, illustration, modeling

and animation software, I am unquestionably more technically adept than the average user of such software.

Furthermore, as the programmer of Terrainosaurus, I have the luxury/handicap of knowing all the details of

its implementation. Hence, it would be beneficial to evaluate the effectiveness of Terrainosaurus with groups

of professional 3D artists, architects, and simulation/game designers to see how effectively they are able to

use it, what features they like, and what features they find to be either constraining or conspicuously absent.

VII.2. Placement of Features

In Terrainosaurus, the user's control over the design of his terrain is region-based: all user modifications to

the shape of the terrain are made through creating regions of various shapes and sizes, and assigning terrain

types to them. If the user wants a finer degree of control over one area of the map, he creates smaller regions

and/or a finer taxonomy of terrain types. This works well enough for exercising fine control over the size and

shape of regions, and the spatial relationships between them, but is less effective at guaranteeing the presence

of particular features (e.g., rivers, volcanoes, cliffs etc.) in the places the user wants them.

A very useful extension to this method would be to allow the user to specify the geometric attributes of

particular features (e.g., the path of a river, the location and elevation of a mountain peak, etc.) during

the design phase. In the generation phase, these feature specifications would impose additional, localized

constraints for the GA to meet, and would influence or override the shape of the generated terrain in that

area. Such an extension would provide the user a whole new level of control over the generation process,

with no necessary increase in complexity (if the user doesn't care about the placement of specific features, he

can simply not use that extension; then the terrain generation process is no different than described above).

There are at least two challenges in creating such an extension. First, the definition of what constitutes a

"feature" in this context is a bit hazy. How large of an area around a user-placed mountain peak should be

considered "the mountain"? And what sort of data structure should be used to represent the "feature"? One

possibility is to let features be areas (not necessarily rectangular) of height field data isolated from the input

terrain samples. This has the benefit of providing a natural relationship between the identified features and

102

the terrain types in which they occur, but it is not clear how this would encompass features like rivers (since

they can be of arbitrary length).

Besides the difficulty of defining and representing distinct features, there is also the problem of maintaining

physically correct relationships in the vicinity of these features. For example, if the user places a cliff or a

waterfall in a particular location, then it becomes necessary to ensure that the area "above" that cliff/waterfall

has a higher elevation than the ground "below" the feature. Or, to give another example, when placing rivers,

it may be necessary to create lakes or cut gorges in order to maintain the constraint that a river can never flow

uphill.

Both of these challenges suggest that terrain synthesis using individually placed features may add a

significant amount of complexity to the generation process. A good first step toward understanding this

problem might be to identify a representative set of features (mountains, rivers, gorges, waterfalls, alluvial

fans, cliffs, etc.) and to analyze the geometric "environment" in which each feature can exist. This might

give some insight into how to represent a feature and how to incorporate its constraints into the generation

process.

VII.3. Automatic Map Construction

In the usual case, a user of Terrainosaurus will want to exercise control over the general layout of the terrain,

so leaving the layout of the terrain type map in the hands of the user makes a lot of sense. Nevertheless,

there are cases in which it would be useful to be able to create a plausible map automatically, such as a game

engine creating random worlds, or an artist looking for inspiration. Therefore, some sort of higher-level

mechanism for automatic map construction (possibly another GA), could be a useful extension.

VII.4. Automatic Generation of Textures & Objects

As lovely as the terrains generated by Terrainosaurus are, they are a bit lacking in visual realism without

appropriate textures and objects. Without these sorts of visual cues, the illusion of "the real world" will never

be complete. Thus, an important companion task to the generation of the landscape is the synthesis and

placement of realistic textures and objects.

Although the generated terrain model could be textured in a number of ways, ideally we would like to be able

to texture the generated model automatically, using the geometry of the height field and the terrain-type map

to guide the process. A genetic algorithm approach similar to that employed for generating the height field

might be very successful at generating believable textures. Taking this idea a bit further, the placement of

three-dimensional objects (such as natural objects like rocks and trees, or man-made objects like bridges and

houses) could also be automated. By taking the geometry and terrain type into account, more realistic results

could be achieved (e.g., trees should not be placed above the treeline elevation, houses built on swamp land

could be built on stilts).

VII.5. Computer-aided Terrain Classification & Segmentation

Currently, the most tedious and error-prone part of this approach is the construction of the terrain type

library: the process is completely dependent on a human to classify terrain samples correctly, and also

103

requires the person doing the classification to avoid samples containing mixtures of terrain types (such as

lakes, seashore, etc.).

A useful extension would be to incorporate the feature analysis into this earlier stage as well. The computer

could analyze new terrain samples as they are being added, compare them to those already present in

the library, and inform the user of how similar it is to those already in the library, and how a particular

classification of the sample would affect the aggregate statistics that control the similarity function (i.e.,

would adding this terrain to the "mountains" category significantly diminish the agreement between

"mountains" examples?). This information could help the user to make a better decision in classifying the

sample.

Ideally, the terrain library would be able to admit any height field as a terrain sample. As discussed in

Section VI.2.2.1, terrain samples containing multiple terrain types, are currently unusable. In order to make

them usable, the terrain library needs to handle non-rectangular sub-regions of the height field, allowing a

terrain sample to be segmented into its constitutent terrain types. Some of this can be done automatically

(since a body of water has constant elevation, the computer should be able to segment water from non-water

quite easily), but segmenting other types of terrain would require fuzzy boundaries and more sophisticated

segmentation algorithms. Perhaps an adaptation of the user-initiated classification procedure described in

Gill's paper on ice classification [Gill 2003] would be effective for this.

VII.6. Terrain Type Interpolation

Some types of terrain occur only near certain other types. For example, it would be unusual to find sandy

terrain in the middle of a grassy plain (unless it's a golf course). On the other hand, sandy beaches are

ubiquitous near the ocean. Terrain types such as this could be viewed as transitionary types and could be

introduced automatically near the user-generated regions of the neighboring terrain type. So, for example,

the user could create a region of "plains" adjacent to "mountains" and the height field construction algorithm

would introduce some "mountain foothills" around the boundary between them.

VII.7. More Intelligent Construction of the Base LOD

One weakness of Terrainosaurus, in the normal case where multiple terrain types are present in the map, is

that the algorithm for constructing the coarsest LOD is rather naive: a simple copy-and-paste operation with

blending near the seams to prevent sharp drops. This can have a disconcerting, unrealistic effect when the

mean elevations are significantly different. A more intelligent means of constructing this initial LOD could

eliminate this problem.

VII.8. Enhanced Similarity Function

The current fitness function evaluates generated terrain regions for similarity to the reference terrain type

by comparing a few of the more obvious characteristics of terrain. There must be other characteristics that

could be incorporated to give additional discriminating power to the similarity function and thus improve the

quality of the generated terrains. Some ideas for future investigation are:

• the spatial "density" of features—how close together they typically occur, how "clumped" they are

104

• the distance to the terrain type boundary—how far from the transition between terrain types certain

features typically occur (e.g., we would expect a mountain peak of any significant size to occur towards

the interior of a mountainous region)

• "directionality" of features—to what extent certain features exhibit the same directional tendency; this

might be necessary to reproduce terrains strongly affected by wind erosion, for example

• frequency-spectrum information—though direct comparison of Fourier transform coefficients did not yield

useful results (Section VI.2.2.2), it may be that a more sophisticated frequency analysis would do so

• higher-order derivatives of the surface—how the curvature varies across the terrain surface

VII.9. Cross-LOD Analysis

The iterative, multi-LOD height field generation approach used in Terrainosaurus is based on the

observation that different features become visible at different scales. Hence, it is reasonable to consider them

as "belonging" to different LODs and generate them accordingly. No attempt has been made, however, to

look for relationships between features at different LODs. It might be, for example, that fine-scale ridges tend

to occur nearby and perpendicular to larger-scale ridges in certain types of mountain ranges. It seems likely

that there would be many relationships of this sort that could be exploited to achieve more believable terrain

models, though how to discover and apply these relationships is unclear.

VII.10. Enhanced Mutation & Crossover Operators

In conjunction with a better terrain similarity function, it would also be nice to have some smarter mutation

and crossover operators. One way in which the operators might be made more intelligent is with regard to

the formation of features in the terrain. Rather than naively copying rectangular regions, a crossover operator

could copy contiguous genes that span an identified feature. Similarly, a mutation operator might push the

source coordinates for a gene closer to or further from a feature detected in the source height field, in an

attempt to find more plausible source material, given the state of features forming in the generated height

field.

VII.11. Performance Improvements

Unfortunately, the height field generation phase is a bit on the slow side. This is partially attributable to the

use of a genetic algorithm, but there are also other areas of the process that contribute to its slowness.

The use of a genetic algorithm in the height field generation process has certain benefits, such as the

enormous amount of flexibility it affords, but is not without its drawbacks. The most obvious of these is its

runtime complexity, as discussed in Section VI.3.1. It might be possible to achieve similar results using a

different, more efficient optimization algorithm (though doing so might preclude the implementation of some

of the other improvements described above).

The most CPU-intensive part of the fitness analysis is the feature detection step; scale-space feature detection

is a rather expensive operation. A useful topic for future research would be to investigate how the diagnostic

power of the feature detector changes as the range and number of scales searched decreases. Because the

terrain construction process focuses at each step on generating detail at a particular LOD (the detail at coarser

105

LODs is already essentially fixed, and the detail at finer LODs does not exist yet), it might even be that a

single-scale detector could perform as well as or better than a multi-scale detector.

Another aspect of the algorithm with a lot of potential for optimization is its inherent parallelizability. A

large proportion of the computations performed during the height field generation algorithm are done once

per element (whether an "element" is a pixel, a height field cell, or a gene), with relatively few conditional

branches and data dependencies, and so might be able to benefit from a symmetric multiprocessing system,

or better yet, implementation on a modern GPU. The large memory sizes and programmability features of

recent GPU architectures suggest that it might be possible to run large parts of the construction algorithm

entirely on the GPU.

106

CHAPTER VIII

CONCLUSION

Terrain generation is a topic of interest to practitioners in a number of fields, some of which are

entertainment- and art-related, with others being more utilitarian in nature. This topic has received

significantly less treatment in the literature than has the related topic of real-time terrain visualization.

Terrain generation methods currently in practice are usually fractal in nature, and are often difficult to

control.

Terrainosaurus is a new, user-friendly method of generating an effectively unlimited diversity of 3D terrain

models. It differs from current state-of-the-art methods for terrain generation in a number of ways, in

particular:

• it uses user-provided, real-world elevation data as raw material. Because of this, a user can extend the

capabilities of the system without changing the fundamental algorithm, simply by adding examples of new

types of terrain.

• it follows a user-centric design paradigm, where types of terrain are described by example, and the desired

arrangement of these terrain types is specified in an intuitive manner (i.e., by drawing a map). In this

paradigm, the user is freed from nearly all of the manual labor that characterizes manual "sculpting"

methods for height field creation, and is not required to learn esoteric skills in order to get a desired result,

as in many procedural methods.

• it uses artificial intelligence techniques, specifically genetic algorithms, to generate a height field

approximating the user's design and manifesting the appropriate terrain characteristics in each distinct

region. To my knowledge, this is the first significant attempt to apply artificial intelligence techniques to

the problem of terrain generation.

The second contribution of Terrainosaurus is a paradigm for terrain generation in which the user is freed

from almost all of the burden of constructing the terrain, while at the same time still retaining some control

over the shape of the terrain. All of the inputs expected of the user are intuitive to grasp. Furthermore, it

is not necessary for the user to understand how Terrainosaurus works in order to use it effectively. These

characteristics will become increasingly important in the future as the scale of virtual worlds continues to

increase—development teams simply will not have the time to design the terrain manually.

The third contribution of Terrainosaurus is a new method of performing approximate comparisons of terrain

height fields using a variation on statistical distribution matching. This comparison method is adaptive, is not

highly sensitive to differences in the size or shape of the terrains being compared, and has a built-in measure

of how well it is performing in any given case.

Terrainosaurus, while not as trivial to implement as more simplistic algorithms, could be of enormous use in

a studio authoring environment, especially when integrated with 3D modeling tools for manual fine-tuning.

107

Towards this end, it would be useful to implement this algorithm as a plugin for one or more currently

popular 3D modeling packages.

Obviously, terrain generation is not yet a solved problem. The positive results produced by Terrainosaurus

suggest that even more promising results will emerge with additional research. It is my belief that future

research in this field ought to pursue a course similar to Terrainosaurus's—the use of artificial intelligence

techniques seems a promising road (and perhaps the most promising) for doing terrain generation in a way

that is both realistic and user-friendly.

108

REFERENCES

Baumgart, B. 1975. Winged Edge Polyhedron Representation for Computer Vision. In Proceedings of the

1975 National Computer Conference. AFIPS Press. Arlington, VA. 589–596.

Bungie Studios. 2004. Halo 2 (software). Microsoft Corporation. Redmond, WA.

Burke, C. 1996. Generating Terrain. http://www.geocities.com/Area51/6902/terrain.html.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. 2001. Introduction to Algorithms, 2nd Ed.. MIT Press.

Cambridge, MA.

DAZ Productions. 2006. Bryce 3D (software). DAZ Productions. Draper, UT.

http://www.daz3d.com/program/bryce/.

Duchaineau, M., Wolinsky, M., Sigeti, D., Miller, M., Aldrich, C., and Mineev-Weinstein, M. 1997.

ROAMing Terrain: Real-time Optimally Adapting Meshes. In Proceedings of IEEE Visualization

'97. IEEE Computer Society Press. Los Alamitos, CA. 81–88.

Electronic Arts. 2003. SimCity 4 (software). Electronic Arts. http://simcity.ea.com/.

Epic Games, Inc. 2004. Unreal Tournament 2004 (software). Atari, Inc. Lyon, France.

http://www.unrealtournament.com/.

ESRI. 2006. ArcGIS (software). ESRI. Redlands, CA. http://www.esri.com/software/arcgis/.

Fernandez, A. 2006. Lighthouse 3D - Terrain Tutorial.

http://www.lighthouse3d.com/opengl/terrain/index.php3.

Fournier, A., Fussell, D., and Carpenter, L. 1982. Computer Rendering of Stochastic Models. In

Communications of the ACM. Vol. 25. No. 6. ACM Press. New York, NY. 371–384.

Franke, S. 2000. Spectral Synthesis Noise for Creating Terrain. In GameDev.net. GameDev.net.

http://www.gamedev.net/reference/articles/article900.asp.

Friggo, M. and Johnson, S. 2003. FFTW: The Fastest Fourier Transform in the West, Version 3 (software).

Massachusetts Institute of Technology. Cambridge, MA. http://www.fftw.org/.

Gallant, J. and Hutchinson, M. 1996. Towards an Understanding of Landscape

Scale and Structure. In Proceedings of the Third International

Conference/Workshop on Integrating GIS and Environmental Modeling.

National Center for Geographic Information and Analysis. Santa Barbara, CA.

http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/gallant_john/paper.html.

Gamasutra. 2006. Gamasutra: The Art & Business of Making Games. CMP Media LLC. San Francisco,

CA. http://www.gamasutra.com/.

2006. NeHe Productions. GameDev.net. http://nehe.gamedev.net/.

Gill, R. 2003. SAR Surface Ice Cover Discrimination Using Distribution Matching. In Proceedings of

POLinSAR 2003. http://earth.esa.int/workshops/polinsar2003/pr.html.

109

Gutierrez-Osuna, R. 2004. Lecture Notes: Course in Pattern Recognition. PRISM Group at Texas A&M

University. College Station, TX. http://research.cs.tamu.edu/prism/lectures.htm.

Kelley, A., Malin, M., and Nielson, G. 1988. Terrain Simulation Using a Model of Stream Erosion. In

Proceedings of SIGGRAPH '88. ACM Press. New York, NY. 263–268.

Lindeberg, T. 1998. Feature Detection with Automatic Scale Selection. In International

Journal of Computer Vision. Vol. 30. No. 2. Springer. New York, NY. 77–116.

ftp://ftp.nada.kth.se/CVAP/reports/cvap198.pdf.

Lindeberg, T. 1998. Edge Detection and Ridge Detection with Automatic Scale Selection. In

International Journal of Computer Vision. Vol. 30. No. 2. Springer. New York, NY. 117–154.

ftp://ftp.nada.kth.se/CVAP/reports/cvap191.pdf.

Li, S., Liu, X., and Wu, E. 2003. Feature-based Visibility-driven CLOD for Terrain. In Proceedings of

Pacific Graphics 2003. IEEE Computer Society Press. Los Alamitos, CA. 313–322.

Losasso, F. and Hoppe, H. 2004. Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids. In

Proceedings of SIGGRAPH 2004. ACM Press. New York, NY. 769–776.

Mandelbrot, B. 1982. The Fractal Geometry of Nature. W. H. Freeman. New York, NY.

Marshall, R., Wilson, R., and Carlson, W. 1980. Procedure Models for Generating Three-Dimensional

Terrain. In Proceedings of SIGGRAPH '80. ACM Press. New York, NY. 154–162.

Microsoft Game Studios. 2004. Flight Simulator 2004 (software). Microsoft Corporation. Redmond, WA.

http://www.microsoft.com/games/flightsimulator/.

Musgrave, F., Kolb, C., and Mace, R. 1989. The Synthesis and Rendering of Eroded Fractal Terrains. In

Proceedings of SIGGRAPH '89. ACM Press. New York, NY. 41–50.

Obitko, M. and Skavík, P. 1999. Visualization of Genetic Algorithms in a Learning Environment. In

Proceedings of Spring Conference on Computer Graphics '99. Comenius University. Bratislava,

Slovakia. 101–106.

Pajarola, R., Antonijuan, M., and Lario, R. 2002. QuadTIN: Quadress-based Triangulated Irregular

Networks. In Proceedings of IEEE Visualization 2002. IEEE Computer Society Press. Los

Alamitos, CA. 395-402.

Pandromeda, Inc. 2004. MojoWorld (software). Pandromeda, Inc. New Creek, WV.

http://www.pandromeda.com/.

Parish, Y. and Müller, P. 2001. Procedural Modeling of Cities. In Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques. ACM Press. New York, NY.

301–308.

Parr, T. 2006. ANTLR: ANother Tool for Language Recognition (software). http://www.antlr.org/.

Parry, S. 1997. The Generation and Use of Parameterized Terrain in Land Combat Simulation. In

Proceedings of Winter Simulation Conference '77. 422–431.

110

Pelton, B. and Atkinson, D. 2003. Flexible Generation and Lightweight View-Dependent Rendering of

Terrain. School of Engineering Technical Report COEN-2003-01-22. Santa Clara University,

Department of Computer Engineering. Santa Clara, CA.

Perlin, K. An Image Synthesizer. In Proceedings of SIGGRAPH '85. ACM Press. New York, NY.

287–296.

Planetside Software. 2006. Terragen (software). Planetside Software. Ellesmere Port, Cheshire, UK.

http://www.planetside.co.uk/terragen/.

Prusinkiewicz, P. and Hammel, M. 1993. A Fractal Model of Mountains with Rivers. In Proceedings of

Graphics Interface '93. 174–180.

Qlinks Media Group. 2006. Geo Community Website. Qlinks Media Group. Niceville, FL.

http://www.geocomm.com/.

Sanchez-Crespo, D. 2002. Science Imitates Nature at GDC. In Gamasutra.com. CMP Media LLC. San

Francisco, CA. http://www.gamasutra.com/gdc2002/features/nature/nature_01.htm.

Schmidt, S. 2006. World Machine (software). http://www.world-machine.com/.

Torpy, A. 2006. L3DT (software). Bundysoft. http://www.bundysoft.com/L3DT/.

Ulrich, T. 2002. Rendering Massive Terrains Using Chunked Level of Detail

Control. In Proceedings of SIGGRAPH 2001.

http://cvs.sourceforge.net/viewcvs.py/*checkout*/tu-testbed/tu-testbed/docs/sig-

notes.pdf?rev=HEAD.

USGS. 2003. The SDTS Document. United States Geological Survey. Reston, VA.

http://rockyweb.cr.usgs.gov/nmpstds/demstds.html.

USGS. 2003. National Mapping Program Standards. United States Geological Survey. Reston, VA.

http://rockyweb.cr.usgs.gov/nmpstds/demstds.html.

USGS. 2004. USGS Seamless Data Distribution. United States Geological Survey. Reston, VA.

http://gisdata.usgs.net/Website/Seamless/viewer.php.

USGS. 2006. USGS Website. United States Geological Survey. Reston, VA. http://www.usgs.gov/.

von Werner, M. 1996. Erosion 3D (software). Institut für Geographische Wissenschaften. Berlin,

Germany. http://www.geog.fu-berlin.de/~erosion/.

VTP. 2006. The Virtual Terrain Project (software). VTP. http://www.vterrain.org/.

Wavefront Technologies. 1995. The OBJ File Format Specification.

http://www.martinreddy.net/gfx/3d/OBJ.spec.

Weisstein, E. 2004. Sample Mean. In MathWorld—A Wolfram Web Resource. Wolfram Research, Inc.

Champaign, IL. http://mathworld.wolfram.com/SampleMean.html.

Weisstein, E. 2003. Standard Deviation. In MathWorld—A Wolfram Web Resource. Wolfram Research,

Inc. Champaign, IL. http://mathworld.wolfram.com/StandardDeviation.html.

111

Weisstein, E. 2005. Skewness. In MathWorld—A Wolfram Web Resource. Wolfram Research, Inc.

Champaign, IL. http://mathworld.wolfram.com/Skewness.html.

Weisstein, E. 2004. Kurtosis. In MathWorld—A Wolfram Web Resource. Wolfram Research, Inc.

Champaign, IL. http://mathworld.wolfram.com/Kurtosis.html.

Weisstein, E. 2002. k-Statistic. In MathWorld—A Wolfram Web Resource. Wolfram Research, Inc.

Champaign, IL. http://mathworld.wolfram.com/k-Statistic.html.

Weisstein, E. 2003. Sample Central Moment. In MathWorld—A Wolfram Web Resource. Wolfram

Research, Inc. Champaign, IL. http://mathworld.wolfram.com/SampleCentralMoment.html.

Woodhouse, F. 2003. Terrain Generation Using Fluid Simulation. In GameDev.net. GameDev.net.

http://www.gamedev.net/reference/articles/article2001.asp.

Wyckoff, R. 1999. Postmortem: DreamWorks Interactive's Trespasser. In Gamasutra.com. CMP Media

LLC. San Francisco, CA. http://www.gamasutra.com/features/19990514/trespasser_01.htm.

112

VITA

Contact Information

Ryan L. Saunders may be reached by mail at PO Box 753, Bellevue, WA 98009, or by email at

saunders@aggienetwork.com.

Education

I received a Bachelor of Science in Computer Engineering from Texas A&M University in 2002. I continued

on to pursue my Master of Science also at Texas A&M, graduating in December of 2006.

Professional Experience

My professional experience includes:

• Hewlett Packard (Richardson, TX) Intern—FORTRAN compiler team

• Dynetics, Inc. (Huntsville, AL), Intern—Industrial automation division

• Self-employed (College Station, TX), Independent Contractor—Dynamic website development

• Microsoft Corporation (Redmond, WA), Software Development Engineer—Microsoft Office (current)

Publications

In the course of my Master's degree studies, I was co-author of a paper, Terrain Generation Using Genetic

Algorithms, which was accepted to the Genetic and Evolutionary Computation Conference (GECCO) 2005.

	Terrainosaurus
	TABLE OF CONTENTS
	CHAPTER I: INTRODUCTION
	CHAPTER II: MOTIVATION
	II.1. Applications of Terrain Generation
	II.2. Idealized Terrain Generation
	II.2.1. Requiring a Low Degree of Human Input
	II.2.2. Permitting a High Degree of Human Control
	II.2.3. Intuitively Controllable
	II.2.4. Capable of Diverse, Believable Features & Terrain Types
	II.2.5. Arbitrary Level of Detail
	II.2.6. Fast Enough for Real-Time Applications
	II.2.7. Extensible

	II.3. Goals

	CHAPTER III: BACKGROUND
	III.1. Previous Work in Virtual Terrain
	III.1.1. Geodetic Mapping
	III.1.2. Methods of Representing Terrain
	III.1.2.1. Height Fields
	Advantages of Height Fields
	Disadvantages of Height Fields

	III.1.2.2. Voxel Grids
	Advantages of Voxel Grids
	Disadvantages of Voxel Grids

	III.1.2.3. Non-uniform Meshes
	Advantages of Meshes
	Disadvantages of Meshes

	III.1.2.4. Continuous Functions
	Advantages of Continuous Functions
	Disadvantages of Continuous Functions

	III.1.3. A Taxonomy of Terrain Generation Methods
	III.1.3.1. GIS-based Methods
	III.1.3.2. Sculpting Methods
	III.1.3.3. Simulation Methods
	III.1.3.4. Procedural Methods

	III.1.4. Level of Detail Considerations
	III.1.4.1. LOD-agnostic Methods
	III.1.4.2. Superposition Methods
	III.1.4.3. Progressive Refinement Methods
	III.1.4.4. Fractals & Non-fractals

	III.1.5. Existing Tools for Terrain Generation
	III.1.5.1. Terragen
	III.1.5.2. MojoWorld
	III.1.5.3. Bryce 3D
	III.1.5.4. World Machine
	III.1.5.5. Erosion 3D

	III.1.6. Other Sources for Terrain Information
	III.1.6.1. United States Geological Survey
	III.1.6.2. GeoCommunity
	III.1.6.3. The Virtual Terrain Project
	III.1.6.4. Gamasutra
	III.1.6.5. NeHe

	III.2. Other Similar Works
	III.2.1. Procedural Modeling of Cities
	III.2.2. Towards an Understanding of Landscape Scale and Structure
	III.2.3. SAR Surface Ice Cover Discrimination Using Distribution Matching
	III.2.4. Flexible Generation and Lightweight View-Dependent Rendering of Terrain

	III.3. Other Topics
	III.3.1. Genetic Algorithms
	III.3.2. Computer Vision
	III.3.2.1. Single-scale Feature Detection
	III.3.2.2. Scale-space Feature Detection

	III.3.3. Descriptive Statistics
	III.3.3.1. The Sample Mean
	III.3.3.2. The Sample Standard Deviation
	III.3.3.3. The Sample Skewness
	III.3.3.4. The Sample Kurtosis Excess

	CHAPTER IV: METHODS
	IV.1. Prerequisites
	IV.1.1. Usability Considerations
	IV.1.1.1. Visual Authoring
	IV.1.1.2. Example-based Design
	IV.1.1.3. Miscellaneous Controls

	IV.1.2. Terrain Generation Strategy
	IV.1.3. Choice of Data Structure
	IV.1.4. Level of Detail Strategy

	IV.2. The User's Perspective (What It Does)
	IV.2.1. Terrain Library Assembly
	IV.2.2. Map Design
	IV.2.2.1. Boundary Refinement

	IV.2.3. Height Field Construction

	IV.3. The Computer's Perspective (How It Works)
	IV.3.1. Boundary Refinement
	IV.3.1.1. Overview
	IV.3.1.2. Genetic Encoding
	IV.3.1.3. Genetic Operators
	IV.3.1.4. Fitness Evaluation
	IV.3.1.5. Decoding the Result

	IV.3.2. Terrain Analysis & Comparison
	IV.3.2.1. Analyzing a Single Height Field
	IV.3.2.2. Comparing a Height Field to a Reference Terrain Type
	Gaussian Curve Projection
	Comparing Statistical Distributions
	Terrain Similarity Evaluation

	IV.3.3. Height Field Construction
	IV.3.3.1. Overview
	IV.3.3.2. Analyzing the Map
	IV.3.3.3. Creating the Initial LOD
	IV.3.3.4. Encoding & Decoding a Height Field
	IV.3.3.5. Genetic Operators
	IV.3.3.6. Fitness Evaluation
	Geometric Compatibility
	Regional Terrain Type Similarity
	Localized Guidance of the Genetic Algorithm
	Cleaning Up the Final Result

	CHAPTER V: IMPLEMENTATION
	V.1. Technologies
	V.1.1. Development Platform
	V.1.2. Graphics API

	V.2. Supporting Libraries
	V.2.1. File Parsing
	V.2.2. Fourier Transform

	V.3. Application Architecture
	V.3.1. LOD Handling
	V.3.2. Inputs & Outputs
	V.3.3. Suggested Data Structures
	V.3.3.1. Terrain Library
	V.3.3.2. Terrain Type
	V.3.3.3. Terrain Sample
	V.3.3.4. Terrain Seam
	V.3.3.5. Map
	V.3.3.6. Map Rasterization

	V.3.4. Suggested User Interface
	V.3.5. Implementing the Genetic Algorithms
	V.3.5.1. A Generic GA Framework
	V.3.5.2. The Boundary Refinement GA
	V.3.5.3. The Height Field Generation GA

	V.4. Optimizations & Simplifications
	V.4.1. Caching the Analysis of Library Terrain Samples
	V.4.2. Optimizing the Feature Detection Step
	V.4.2.1. Do Convolution in the Frequency Domain
	V.4.2.2. Save & Reuse Computations
	V.4.2.3. Limit the Number of Scales

	V.4.3. Optimizing the Computation of Windowed Statistics
	V.4.4. Simplifying Rasterization of the Map

	CHAPTER VI: RESULTS & DISCUSSION
	VI.1. Boundary Refinement
	VI.1.1. The Accumulated Angle Constraint
	VI.1.2. Smoothness and Level of Detail
	VI.1.3. Additional Constraints

	VI.2. Terrain Library Analysis
	VI.2.1. Empirical Analysis
	VI.2.2. The Similarity Function
	VI.2.2.1. On the Importance of Classifying Well
	VI.2.2.2. Things that Didn't Work
	Direct Height Field to Height Field Comparison
	Comparing the Fourier Transform
	Linear Pattern Analysis
	Histogram Aggregation

	VI.3. Height Field Construction
	VI.3.1. Performance of the GA
	VI.3.2. Successfulness of the GA

	CHAPTER VII: FUTURE WORK
	VII.1. User Study
	VII.2. Placement of Features
	VII.3. Automatic Map Construction
	VII.4. Automatic Generation of Textures & Objects
	VII.5. Computer-aided Terrain Classification & Segmentation
	VII.6. Terrain Type Interpolation
	VII.7. More Intelligent Construction of the Base LOD
	VII.8. Enhanced Similarity Function
	VII.9. Cross-LOD Analysis
	VII.10. Enhanced Mutation & Crossover Operators
	VII.11. Performance Improvements

	CHAPTER VIII: CONCLUSION
	REFERENCES
	VITA

