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ABSTRACT 

Soil Moisture Modeling and Scaling Using Passive Microwave Remote Sensing. 

(December 2005) 

Narendra N. Das, B.E., Government Engineering College Raipur. 

Chair of Advisory Committee: Dr. Binayak P. Mohanty 
 
 
 
 Soil moisture in the shallow subsurface is a primary hydrologic state governing 

land-atmosphere interaction at various scales. The primary objectives of this study are to 

model soil moisture in the root zone in a distributed manner and determine scaling 

properties of surface soil moisture using passive microwave remote sensing. The study 

was divided into two parts. For the first study, a root zone soil moisture assessment tool 

(SMAT) was developed in the ArcGIS platform by fully integrating a one-dimensional 

vadose zone hydrology model (HYDRUS-ET) with an ensemble Kalman filter (EnKF) 

data assimilation capability. The tool was tested with dataset from the Southern Great 

Plain 1997 (SGP97) hydrology remote sensing experiment. Results demonstrated that 

SMAT displayed a reasonable capability to generate soil moisture distribution at the 

desired resolution at various depths of the root zone in Little Washita watershed during 

the SGP97 hydrology remote sensing experiment. To improve the model performance, 

several outstanding issues need to be addressed in the future by: including ‘effective’ 

hydraulic parameters across spatial scales; implementing subsurface soil properties data 

bases using direct and indirect methods; incorporating appropriate hydrologic processes 
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across spatial scales; accounting uncertainties in forcing data; and preserving 

interactions for spatially correlated pixels.  

 The second study focused on spatial scaling properties of the Polarimetric 

Scanning Radiometer (PSR)-based remotely sensed surface soil moisture fields in a 

region with high row crop agriculture. A wavelet based multi-resolution technique was 

used to decompose the soil moisture fields into larger-scale average soil moisture fields 

and fluctuations in horizontal, diagonal and vertical directions at various resolutions. The 

specific objective was to relate soil moisture variability at the scale of the PSR footprint 

(800 m X 800 m) to larger scale average soil moisture field variability. We also 

investigated the scaling characteristics of fluctuation fields among various resolutions. 

The spatial structure of soil moisture exhibited linearity in the log-log dependency of the 

variance versus scale-factor, up to a scale factor of -2.6 (6100 m X 6100 m) irrespective 

of wet and dry conditions, whereas dry fields reflect nonlinear (multi-scaling) behavior 

at larger scale-factors. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

A very small proportion (0.15%) of fresh water on Earth is present as soil 

moisture (Dingman 1994). This small proportion of water (soil moisture) has an 

important influence in hydrology and meteorology. At the land-atmosphere boundary, 

soil moisture modulates the land-atmosphere interaction by partitioning rainfall into 

infiltration and runoff, and solar radiation into latent heat flux and sensible heat flux. 

Soil moisture also impacts the plant growth which affects ecological patterns and 

agricultural production. The hydrological, meteorological and ecological processes are 

influenced by spatio-temporal variability of soil moisture at the soil surface and in the 

root zone that in turn is affected by soil properties (Famigliettti et al., 1999), 

precipitation distribution (Jackson 1993), topographic features (Wilson and Gallant, 

2000), and vegetation characteristics (Hupet and Vanclooster, 2002).  

The heterogeneity present in the soil is due to difference in texture, porosity, 

structure and organic matters contents, which affects the soil hydraulic properties. The 

soil hydraulic properties mostly control the vertical and lateral transmission of soil 

moisture through the soil. Hawley et al. (1982)  found  significant  variability  in  surface  
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soil moisture due to difference in soil texture and antecedent soil moisture. Soil moisture 

distribution is also affected by variability present in the precipitation patterns. Sellers et 

al. (1995) presented spatial heterogeneity introduced by rainfall and removed through 

dry-down dynamics. Variations in topography (slope, curvature and aspect) effect the 

distribution of soil moisture near the land surface. Slope angle have significant affects on 

infiltration, lateral drainage and runoff. Aspect influences solar irradiance and thus 

evapotranspiration and soil moisture. Curvature present in the landscape influences the 

convergence of the lateral flow. Studies have also found that soil moisture content is 

inversely proportional to relative elevation (Hawley et al. 1982; Nyberg 1996).  Francis 

et al. (1986) found considerable difference in soil moisture content due to difference in 

vegetative cover. Vegetation influences soil moisture distribution by interfering in soil 

hydraulic properties through root activities, adding organic matters, interception, and 

evapotranspiration.  

Soil moisture pattern (distribution) evolves from many different geophysical 

processes acting over different scales (Dubayah et al., 1997). The spatio-temporal 

variability of soil moisture influences hydrological and meteorological processes in a 

nonlinear manner. This nonlinearity introduces spatio-temporal scaling effects for soil 

moisture. Rodriguez-Iturbe et al. (1995) concluded that the variance of soil moisture 

follow a power law decay, typical of scaling processes, as a function of area over which 

soil moisture is observed. 

The spatio-temporal variability of soil moisture imposes many challenges to 

measure and model the surface and the root zone soil moisture. Typically soil moisture is 
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measured in-situ or by remote sensing techniques. In-situ soil moisture measurement 

techniques can be used to continuously monitor soil moisture at various depths at a 

location but limited by its small support volume (few cm3). In-situ measurement 

techniques serve well for field plots or local-scale monitoring but are not very suitable 

for watershed or regional scale soil moisture observations. Remote sensing of soil 

moisture from air-/space-borne platforms has the ability to overcome this problem and 

provide large spatial coverage and temporal continuity. In the last three decades studies 

have successfully established the use of passive microwave remote sensing to measure 

the surface wetness (Engman and Gurney, 1991; Jackson, 1993; Njoku and Entekhabi, 

1995; Jackson et al., 1999). The existing and proposed air-/space-borne passive 

microwave remote sensors typically provide regional or global scale soil moisture 

distributions at spatial resolutions ranging from several hundred square meters to several 

thousand square kilometers. 

Typically, soil moisture state and energy/mass fluxes are simulated in Soil 

Vegetation Atmosphere Transfer (SVAT) scheme of any General Circulation Model 

(GCM) using surface soil moisture data from passive microwave remote sensing. The 

accuracy of SVAT models is usually restricted by unreliable estimates of root zone soil 

moisture (Koster and Milly, 1997) and its spatio-temporal scaling behavior. Despite the 

significance of root zone soil moisture in hydrological and meteorological predictions, 

research related to spatio-temporal modeling of root zone soil moisture and its scaling 

behavior at the regional/global scale is limited, hence this study. 
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The objective of this study is to model spatio-temporal distribution of root zone 

soil moisture and determine scaling properties of surface soil moisture using passive 

microwave remote sensing. The study is divided into two parts. First, a distributed root 

zone soil moisture assessment tool (SMAT) is developed in ArcGIS platform by fully 

integrating a one-dimensional vadose zone hydrology model (HYDRUS-ET) with 

ensemble Kalman filter (EnKF) data assimilation capability. Second part of this study 

focused on spatial scaling properties of Polarimetric Scanning Radiometer (PSR)-based 

remotely sensed soil moisture fields in a region with high row crop agriculture. Wavelet 

based multiresolution techniques was used to decompose the soil moisture fields into 

large-scale average soil moisture fields and fluctuations in horizontal, diagonal and 

vertical directions at various spatial resolutions.  
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CHAPTER II 

ROOT ZONE SOIL MOISTURE ASSESSMENT USING REMOTE SENSING 

AND VADOSE ZONE MODELING 

 
Soil moisture is an important hydrologic state variable critical to successful of 

many hydroclimatic and environmental predictions. Soil moisture varies both in space 

and time because of spatio-temporal variations in precipitation, soil properties, 

topographic features, and vegetation characteristics. In recent years, air- and space-borne 

remote sensing campaigns have successfully demonstrated the use of passive microwave 

remote sensing to map soil moisture status near the soil surface (0~0.05 m below the 

ground) at various spatial scales. In this study root zone (e.g., 0~0.6 m below the 

ground) soil moisture distributions were estimated across the Little Washita watershed 

(Oklahoma) by assimilating near-surface soil moisture data from remote sensing 

measurements using ESTAR (Electronically Scanned Thinned Array Radiometer) with 

an EnKF (Ensemble Kalman Filter) technique coupled with a numerical one-

dimensional vadose zone flow model (HYDRUS-ET). The resulting distributed root 

zone soil moisture assessment tool (SMAT) is based on the concept of having parallel 

non-interacting streamtubes (hydrologic units) within a geographic information system 

(GIS) platform. The simulated soil moisture distribution at various depths and locations 

within the watershed were compared with measured profile soil moisture data using 

TDR (Time Domain Reflectometry). A reasonable agreement was found under favorable 

conditions between footprint-scale model estimations and point-scale field soil moisture 
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measurements in the root zone. However, uncertainties introduced by precipitation and 

soil hydraulic properties caused suboptimal performance of the integrated model. The 

SMAT holds great promise and flexibility to incorporate various data assimilation 

techniques, scaling, and other hydrological complexities across large landscapes. The 

integrated model can be useful for simulating profile soil moisture estimation, and for 

predicting transient soil moisture behavior for a range of hydrological and environmental 

applications. 

 

Introduction 

 

Spatio-temporal distributions of soil moisture status in the root zone across large 

land areas provide important input for many agricultural, hydrological, and 

meteorological applications (Hanson et al., 1999). Also, estimation of root zone soil 

moisture at various temporal and spatial scales is key to strategic management of water 

resources. Root zone soil moisture is a critical storage parameter, which controls 

partitioning of energy and mass related to evapotranspiration and runoff (Georgakakos, 

1996). Precipitation, soil texture, topography, land use, and a variety of meteorological 

variables influence the spatial distribution and temporal evolution of root zone soil 

moisture. Many studies at the SGP97 (Southern Great Plains 1997 hydrology 

experiment) site have examined how these variables influence the spatio-temporal 

distribution of soil moisture and surface fluxes (Famiglietti et al., 1999; Mohr et al., 

2000; Mohanty et al., 2000a, 2000b; Mohanty and Skaggs, 2001; Bindlish et al., 2001; 
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Kustas et al., 2001; Wickel et al., 2001). The estimation of soil moisture and 

energy/mass exchange is simulated using Soil Vegetation Atmosphere Transfer models 

(SVAT). The accuracy of SVAT models is usually restricted by unreliable estimates of 

root zone soil moisture (Koster and Milly, 1997). Despite the significance of root zone 

soil moisture in hydrological and meteorological predictions, detailed spatio-temporal 

modeling of root zone soil moisture at the regional/global scale is often lacking.  

Root zone soil moisture distributions are best assessed by periodic gravimetric 

sampling or by calibrated TDR techniques. At a particular location, soil moisture can be 

continuously monitored by calibrating segmented TDR probes (e.g., Hook and 

Livingston, 1996) or by multi-sensor capacitance probes (e.g., Starr and Paltineanu, 

1998). Camillo and Schmugge (1983) retrieved root zone soil moisture estimates from 

surface measurement for dry soil with fully grown roots using a linear relationship 

between moisture content in the two soil layers based on a simple solution of Richards’ 

equation. These techniques serve well for field plot or local-scale monitoring but are not 

feasible for watershed or regional scale. Remote sensing of soil moisture from air-

/space-borne platforms has the ability to overcome this problem and provide large spatial 

coverage and temporal continuity. In the last three decades studies have successfully 

established the use of passive microwave remote sensing to measure the surface wetness 

(Engman and Gurney, 1991; Jackson, 1993; Njoku and Entekhabi, 1995; Jackson et al., 

1999). These measurements described soil moisture in a thin soil layer, usually up to a 

depth of 0.05 m below the soil surface (Schmugge et al., 1974, 1977, 1980; Jackson and 

Schmugge, 1989). However, an associated problem, which hindered the measurement of 
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soil moisture from air/space using passive microwave techniques, is its coarse spatial 

and temporal resolution which is not consistent with the scale of hydrologic processes of 

interest. 

  Prevot et al. (1984) demonstrated that the soil water balance could be determined 

with equal accuracy using remotely sensed surface soil moisture estimates substituted for 

in situ observations. Smith and Newton (1983) developed a soil water simulation model 

that utilized remotely sensed data to predict profile soil moisture. In the recent past, 

studies have been conducted on improving assessment of profile soil moisture with the 

help of surface soil moisture observations (Kostov and Jackson, 1993; Entekhabi et al., 

1994). Jackson (1993) elaborated four strategies using surface soil moisture data to 

estimate profile soil moisture: (i) statistical extrapolation of the surface observation, (ii) 

integration of surface observations in a profile water budget model, (iii) inversion of 

radiative transfer model, and (iv) the parametric profile model method. Kostov and 

Jackson, (1993) presented a detailed review of these basic approaches for estimating 

profile soil moisture using remotely sensed surface moisture data and concluded that the 

most promising approach to the problem of profile soil moisture estimation was the 

integration of remote sensing and computational modeling. An illustration of this 

concept has been provided by Entekhabi et al. (1994) in their theoretical approach for 

solving the inverse problem for soil moisture using sequential assimilation of remotely 

sensed surface data. Houser et al. (1998) studied the use of four-dimensional data 

assimilation methods in a  macro-scale land hydrology model to generate root zone 

moisture fields on regular space and time intervals. Several other studies were conducted 
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using data from the Southern Great Plains 1997 (SGP97) hydrology experiment (Jackson 

et al., 1999), and tested these concepts at the point scale (Crosson et al., 2002; Starks et 

al., 2003; Heathman et al., 2003; Crow and Wood, 2003). Walker et al. (2001) explored 

the effects of observation depth and update interval on soil moisture profile retrieval and 

made a comparison of two commonly used assimilation techniques (i.e., direct insertion 

and Kalman filter) using synthetic data. They concluded that Kalman filter assimilation 

scheme is superior to the direct insertion assimilation scheme, and profile retrieval was 

unsuccessful for direct insertion using the surface node alone, with observations over 

some non-zero depth being required. The superiority of the Kalman filter lies in its 

ability to adjust the entire profile, while direct insertion can only alter the profile within 

the observation depth. On the contrary, Heathman et al. (2003) investigated profile soil 

water content using direct data assimilation in Root Zone Water Quality model at four 

field sites in the Little Washita (LW) River Experimental Watershed during SGP97, and 

found that direct insertion assimilation improved model estimates down to a depth of 

0.30 m at all the sites considered in their study, and no significant improvement in soil 

water estimates below the 0.30 m depth. Crosson et al. (2002) applied the Kalman Filter 

based method for assimilating remotely sensed (ESTAR-based, during SGP97) soil 

moisture estimates in a point-scale testing scheme and found that even in the presence of 

highly inaccurate rainfall the model results in good agreement with observed soil 

moisture. Crow and Wood (2003) extended Ensemble Kalman Filter (EnKF) 

methodology to assimilate remotely sensed (ESTAR, SGP97) soil moisture data into a 

land surface model and validated against independent observations. They found that 
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root-zone soil moisture predictions made with the EnKF are more accurate than 

predictions derived from direct assimilation of ESTAR surface soil moisture imagery. 

Recently, Dunne and Entekhabi (2005) used ESTAR pixel and field data of SGP97 to 

investigate an ensemble-based reanalysis (ensemble based smoother) approach to land 

data assimilation. They demonstrated that smoothing improved the estimated soil 

moisture at the soil surface and at deeper depths over EnKF estimation. The performance 

of EnKF was also studied by Reichle et al. (2002) and Margulis et al. (2002), where soil 

moisture estimation is assessed by assimilating L-band (1.4 GHz) microwave 

observations into a land surface model. They showed that EnKF is a flexible and robust 

data assimilation technique that gives satisfactory estimates even for moderate ensemble 

size. From these, it is clear that EnKF offers several advantages over traditional methods 

of data assimilation for retrieving soil moisture from microwave remote sensing.  

Generally, data assimilation is used in conjunction with a SVAT (land surface 

model, LSM) model. The model can be treated as a stand-alone program, which 

communicates with the filter through its input and output files. The filter provides a set 

of random initial conditions, parameters, and forcing variables to the land surface model. 

In turn, the model derives a time-dependent state vector that is passed to the filtering 

algorithm. This modularity makes it possible to use nearly any land surface model in a 

data assimilation procedure based on an EnKF. The most frequently used SVAT model 

with data assimilation are NOAH model (Chen et al., 1996), Variable Infiltration 

Capacity (VIC) model (Liang et al., 1996), Mosaic model (Koster and Suarez, 1996), 

and Common Land Model (CLM; Dai et al., 2003). The SVAT models typically include 
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a thin surface soil layer and one or more thicker layers as root zone and estimate soil 

moisture of each soil layer at the land-atmosphere boundary and the interfaces between 

the soil layers. The SVAT models run typically in an uncoupled fashion using a number 

of generic tools to manage the input and output data. From the vadose zone hydrology 

perspective at the landscape scale or larger, there is a need for simple and robust 

integration of surface remote sensing information into a dynamic soil water model in a 

distributed computing platform (e.g., geographical information systems [GIS]) to 

improve the simulation of root zone soil moisture.  

  For distributed models, GIS is considered the best available tool for organizing 

and processing data at the watershed/regional scale (Thieken et al., 1999; Lachassagne et 

al., 2001; Schreier and Brown, 2001; Renschler, 2003). A GIS stores spatial data, 

determines model parameters, provides scale-independent visualizations, and allows 

analysis and combination of maps from various scales (Thieken et al., 1999).  

Geographic information systems have influenced the development and implementation 

of hydrologic models in several different ways: (i) GIS has provided new opportunities 

to develop and run fully distributed models efficiently. These models take into account 

and predict the values of studied phenomena at any point within the watershed (Mitas 

and Mitasova 1998). (ii) GIS has also allowed users to run more traditional lumped 

models more efficiently and to include at least some level of spatial effects by 

partitioning entire watershed into smaller sub-watersheds. Hellweger and Maidment 

(1999) automated a procedure to define and connect hydrologic elements in ARC/INFO 

and ArcView and write the results to an ASCII file that is readable by the Hydrologic 
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Engineering Center's Hydrologic Modeling System (HEC-HMS). (iii) GIS has been used 

to transform what were originally site-specific models into spatially distributed models. 

(iv) GIS is sometimes used to vary model inputs and compare model outputs with field 

data for improving the scientific process understanding. Paniconi et al. (1999) reviewed 

the strengths and weaknesses of GIS and explained why distributed hydrologic models 

typically rely on GIS.  

In this study we used the distributed modeling capability of GIS to apply a 

simple sequential data assimilation (i.e., EnKF) approach in conjunction with a 

numerically robust vadose zone hydrology model (i.e., HYDRUS-ET; Simunek et al., 

1997) that incorporates periodic remotely sensed surface soil moisture observation (from 

a passive microwave remote sensor, ESTAR) to estimate root zone (profile) soil 

moisture. This newly developed soil moisture assessment tool (SMAT) has the 

advantage of combining the spatio-temporal continuity of the model prediction with 

intermittent input of remotely sensed observations in a geographically distributed 

framework to improve the root zone soil moisture estimation and minimize vadose zone 

model/parameter uncertainties using the data assimilation protocol.  

 

Materials and Methods  

 

Study Watershed and Distributed Hydro-Climatic Parameters 

The 603 km2 Little Washita (LW) watershed (Fig. II-1) located in southwest 

Oklahoma in the Southern Great Plain (SGP) region of USA was selected for this study. 
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The LW watershed was chosen because it has been the focus of remote sensing 

experiments in 1992 Washita92 (Jackson et al., 1995), Washita94, SGP97 (Jackson et 

al., 1999), SGP99, and Soil Moisture Experiment 2003, SMEX03 (Jackson et al., 2005). 

Specifically, we used the ESTAR L-band passive microwave radiometer, horizontally 

polarized at 1.413 GHz (0.21 m) with a bandwidth of 20 MHz.  ESTAR was used to map 

soil moisture at a resolution of 800 m X 800 m during the SGP97 experiment (Jackson et 

al., 1999). The detailed description of the SGP97 experimental plan and other 

supplementary information can be found at http://hydrolab.arsusda.gov/sgp/sgp97.  

 

 

 

Fig. II-1. Little Washita (LW) watershed with Micronet and NOAA sites used in the 
study. 

 



 

 

14 

Extensive meteorological networks (of USDA-ARS Micronet, Oklahoma 

Mesonet, DOE/NOAA) across the region provide good spatio-temporal distribution of 

hydro-meteorological parameters. As used in this study, rain-gauges of USDA-ARS 

Micronet are strategically located in the watershed at a spacing of approximately 5000 

m. Forty two of these stations continuously measure rainfall, solar radiation, air 

temperature, and relative humidity at 5-min intervals. At three stations, wind speed and 

barometric pressure are also recorded. There are 64 well-defined soil series in the LW 

watershed, with sand, loamy sand, sandy loam, loam, and silty loam being the 

predominant textures on the soil surface (Allen and Naney, 1991). Land use and land 

cover (LULC) is dominated by rangeland/pasture (63%) with significant areas of winter 

wheat and other crops mostly in the flood plains and western portion of the watershed.  

The topography of the region is moderately rolling with a maximum relief of less than 

200 m.  

All the relevant GIS data used in this study including soil properties, land cover, 

and remotely sensed surface soil moisture were derived from the SGP97 database 

available at http://www.essc.psu.edu/nasa_lsh/. The meteorological data namely daily 

precipitation, wind speed, relative humidity, air temperature, and solar radiation used in 

this study were derived from ftp://daac.gsfc.nasa.gov/data/sgp97/. The footprint size of 

ESTAR-based soil moisture (800 m X 800 m) was used as the basis for grid resampling 

for all variables resulting in a total of 843 pixels across the LW watershed. The soil 

textural distribution (Fig. II-2) of LW has five dominant soil types: silty loam (32%), 

sandy loam (29%), loam (10.4%), sand (8.8%), and loamy sand (18%). During SGP97, 
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the LULC grid (Fig. II-3) had mainly four major land cover types: pasture, corn, wheat, 

and alfalfa. Average values of daily wind speed, relative humidity, and solar radiation 

based on all Micronet stations across the watershed were used for the model simulations. 

Micronet-based daily total precipitation data for the entire duration of SGP97 experiment 

(18 June 1997 to 16 July 1997) were spatially interpolated and resampled at 800 m X 

800 m resolution.  

 

 

 

Fig. II-2. Little Washita (LW) watershed soil map resampled at a resolution of 800 X 
800 m. (SL: sandy loam, SiL: silty loam, L: loam, Cl: clay, CL: clay loam, S: sand, 
SiCL: silty clay loam). 
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Fig. II-3. Landuse landcover (LULC) for Little Washita (LW) watershed resampled at a 
resolution of 800 X 800 m. 

 

The resulting daily spatially-distributed hydro-climatic data sets were used as 

inputs to the HYDRUS-ET model. Other necessary distributed model inputs such as leaf 

area index, albedo, and surface roughness across the LW watershed were referred from 

Jackson et al. (1999). Knowledge of soil hydraulic properties is a key input for root 

zone/vadose zone hydrologic modeling. Laboratory and field methods for determining 

soil hydraulic properties across large land areas are time consuming and expensive. 

Average soil hydraulic properties based on soil texture (i.e., pedo transfer functions) are 
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commonly used in hydrologic models. In this study, the average values for selected soil 

water retention and hydraulic conductivity parameters for the major soil textural classes 

by Carsel and Parrish (1988) (Table II-1) were used. Local (point) profile soil moisture 

data measured at three Micronet sites (Heathman et al., 2003) highlighted in Fig. II-1 

were used for comparison and validation with the model/data assimilation outputs at the 

pixel-scale. 

 

 

Table II-1. Average hydraulic properties for different soil textures (Carsel and Parrish, 
1988). 

Texture �r �s �  (cm-1) n Ksat (m d-1) 
Sand 0.045 0.43 0.145 2.68 7.128 
Loamy Sand 0.057 0.41 0.124 2.28 3.502 
Sandy Loam 0.065 0.41 0.075 1.89 1.061 
Loam 0.078 0.43 0.036 1.56 0.249 
Silt 0.034 0.46 0.016 1.37 0.06 
Silt Loam 0.067 0.45 0.02 1.41 0.108 
Sandy Clay Loam 0.1 0.39 0.059 1.48 0.314 
Clay Loam 0.095 0.41 0.019 1.31 0.062 
Sandy Clay 0.1 0.38 0.027 1.23 0.028 
Silty Clay 0.07 0.36 0.005 1.09 0.005 
Clay 0.068 0.38 0.008 1.09 0.048 

 
θr: residual water content, θs: saturated water contents, α , and n (-): fitting parameters related to 
particle-size distribution; Ksat: saturated hydraulic conductivity. 
 

Soil Moisture Assessment Tool (SMAT) 

 The information flow for soil moisture assessment tool (SMAT) developed in 

this study to assess spatio-temporal distribution of profile soil moisture is presented in 
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Fig. II-4. The simplified distributed modeling system was primarily based on running the  

 
 

 

 

Fig. II-4. Schematic representation of the Soil Moisture Assessment Tool (SMAT). 

 

one-dimensional partially-saturated vadose zone flow model HYDRUS-ET (Simunek et 

al., 1997) for each remote sensing footprint / pixel (800 m X 800 m) without any pixel-

to-pixel interaction within the ArcGIS framework. A major advantage of this GIS-based 

tool is its capability to automatically read and write (I/O) the spatially distributed input 

data (e.g., soil, landuse-landcover, precipitation, and initial ensemble for each time step), 
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and execute the HYDRUS-ET model in every pixel. The toolbox also writes the mean 

results of the updated ensemble according to their geospatial coordinates. 

We setup the one-dimensional HYDRUS-ET model for 843 ESTAR 

footprints/pixels across the LW watershed. The distributed footprint-scale parallel non-

interacting stream tubes (soil columns/hydrologic units) were identified on a pixel basis 

with top/bottom boundary conditions, initial profile soil moisture conditions, and soil 

and land parameters. An interface program was developed in Microsoft Visual Basic 6.0 

using Arc Objects to couple ArcGIS 9 with HYDURS-ET and EnKF using a C 

subroutine (Dynamic Link Library). The integrated model reads pixel-wise input 

information (soil texture, landuse-landcover, precipitation) from the GIS grids and 

assigns parameters, boundary conditions, and initial conditions in the input files of 

HYDRUS-ET. Other specifications and assumptions for our model simulations runs are 

given in Table II-2. Soil profiles of 0.65-m thickness were considered with atmospheric 

top boundary and free draining bottom boundary. The soil profile was discretized into 97 

elements (ranging from 0.001 m to 0.1 m) with finer discretization near the land-

atmosphere boundary where a large hydraulic gradient was expected as compared to the 

deeper depths. Time dependent top boundary conditions were used with precipitation 

distribution across the LW watershed. A unit (vertical) hydraulic gradient (free drainage) 

condition was used at the bottom boundary of the root zone for all the pixels. In free 

drainage bottom boundary condition the discharge rate q(n) assigned to the bottom node 

is determined by the equation q(n) = -K(h), where h is the local value of the pressure 

head, and K(h) is the hydraulic conductivity corresponding to this pressure head.  
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The spatial correlation of the uncertain initial soil profile input is unknown a 

priori and difficult to characterize. Porosity and wilting point control the upper and 

lower limit of volumetric soil moisture, respectively. The saturated hydraulic 

conductivity, which is highly variable in space, is a primary factor affecting infiltration. 

So, the initial status of soil moisture in the discretized soil profile is assigned a uniform 

value of 50% of the relative saturation according to soil type/texture. For computational 

limitations and efficiency 100 replicates were populated in the ensemble with a Gaussian 

noise of 20% to 5% of the soil moisture in decreasing order from top to bottom of the 

soil profile. Reichle et al. (2002) and Crow and Wood (2003) demonstrated with 

synthetic test problems that an ensemble of 100 replicates is sufficiently large to provide 

accurate estimates of soil moisture for the SGP conditions. 

Due to lack of physical data, and for computational simplicity, we assumed: (i) 

only one soil texture per pixel for the entire root zone (soil texture at the soil surface was 

assigned for the whole depth of 0.65 m soil profile), (ii) pixel with rock outcrop, urban 

and water cover were excluded in the simulation, (iii) any excess water above the soil 

surface was immediately removed, and (iv) runoff and runon between adjacent (800 m X 

800 m) pixels due to surface topography was considered minimal thus limiting the flow 

in the vertical direction only. 
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Table II-2. Definition, values, and sources for the parameters used in HYDRUS-ET. 

Parameter definition Value 
 

Number of soil layers 1 
Thickness of soil zone 0.65 m 
Soil hydraulic properties Carsel and Parrish (1988) 
Time step Daily 
Heat flow Nil 
Solute flow Nil 
Root growth Nil 
Upper boundary Atmospheric 
Bottom boundary free drainage 
Hysteresis Nil 
Number of Fixed nodes/elements across soil 
profile 

97 

Surface roughness Jackson et al., 1999 
LAI Jackson et al., 1999 
Transpiration depth of all land cover 0.6 m ( below top 0.05 m) 
Wind speed average wind speed of 

watershed 
Ambience temperature average temperature of 

watershed, 
Relative humidity average relative humidity of 

watershed 

LAI: leaf area index. 

 

To assess the performance of the integrated model (SMAT) we conducted a 

simulation experiment based on the dataset of SGP97 Hydrology experiment for LW 

watershed (Jackson et al., 1999). The SMAT was run for the entire duration of SGP97 

remote sensing experiment ranging from Day of Year (DOY) 169 to 197 (18 June 1997 

through 16 July 1997) for profile soil moisture estimation on a daily time step. The dates 

when (ESTAR) measured soil moisture were not available, model forecast ensemble 

estimates were carried forward with time for the entire profile. Availability of (ESTAR) 
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measured soil moisture to the model was made through analysis/update of the ensemble. 

Final state and measurement estimate are calculated by averaging the predictions made 

by the model replicates within the ensemble. After the completion of the data 

assimilation protocol for daily time-steps, ensemble means were written to an output file 

and read into soil moisture grids at various depths across the watershed.  

 

A Brief Description of HYDRUS-ET and Governing Equations 

HYDRUS-ET is a numerical model with a Galerkin-type linear finite-element 

scheme that solves the Richards’ equation for partially saturated water flow. The one-

dimensional water movement in a partially saturated rigid porous medium is described 

by a modified form of Richards’ equation using the assumption that the air phase plays 

an insignificant role in the liquid-flow process and that the water flow due to thermal 

gradient could be neglected: 
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)]cos([ βθ                                         [II-1] 

 where h is the soil water pressure head [m], � is the volumetric water content [m3m-3], t 

is the time [s], x is the spatial coordinate [m], S is the sink term [m-3s-1], β  is the angle 

between the flow and the vertical axis, and K is the unsaturated hydraulic conductivity 

function [ms-1] given by  

),()(),( xhrKxsKxhK =                                                 [II-2] 

where Kr is the relative hydraulic conductivity and Ks is the saturated hydraulic 

conductivity. The unsaturated soil hydraulic properties, �(h) and K(h), generally highly 
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nonlinear functions of pressure head, were described by van Genuchten (1980): 
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where θ(h) represents the water retention curve defining the water content, θ (m3/m3), as 

a function of the soil water pressure head h (m), θr and θs (m3/m3) are residual and 

saturated water contents, respectively, while α (m-1) and n (-) are fitting parameters 

related to particle-size distribution. Equation [II-3] is used in conjunction with the pore-

size distribution model by Mualem (1976) to yield the hydraulic conductivity function 

(van Genuchten, 1980): 
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where Ko is the matching point at saturation (m/s), and parameter l (-) is an empirical 

pore tortuosity/connectivity parameter. The model considers prescribed water flux at the 

top and bottom boundaries across the root zone determined by atmospheric conditions or 

free drainage. The Penman method was used to calculate daily evapotranspiration using 

two steps: (i) calculate the potential evapotranspiration (PET) and (ii) calculate the 

actual evapotranspiration rate using a relationship between relative evapotranspiration 

and the pressure head, h, along the soil profile. 

)(0 hfEE =                                                                    [II-5] 

The potential evapotranspiration, E0, is calculated using the generalized method of 

Penman. 
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where E0 is the potential evapotranspiration rate, Rn is the average daily net radiation 

intensity, Gs is the heat flux into the soil, aρ is the air density, cp is the specific heat 

capacity of the air at the constant pressure, ra is aerodynamic resistance of evaporating 

surface, where � = dm0 /dT, m0 is the specific moisture content of air saturated with 

water vapor at T (temperature), L is the latent heat of evaporation and d’ is the air 

saturation deficit. Novak (1987) formulation is used in HYDRUS-ET to calculate 

potential evaporation. 

Ee0 = E0 exp( -0.463 LAI)                                            [II-7] 

where LAI is the leaf area index of the pixel. The potential transpiration, Eto is  

Et0 = E0 – Ee0                                                                           [II-8] 

The sink term ‘S’ in Eq. [II-1] is the volume of water removed from a unit volume of soil 

per unit time due to plant water uptake. Feddes et al (1978) defined S as  

S(h) = �(h) Sp                                                                        [II-9] 

where �(h) is the root water uptake water stress response function of the soil water 

pressure head (0 �  � � 1) and Sp is the potential water uptake rate. The Sp is equally 

distributed over the entire root zone, 

Sp = 0

1
t

R

E
L

                                                                      [II-10] 

where Et0 is potential transpiration rate and LR is the depth of the root zone. 

 

Ensemble Kalman Filter 

Data assimilation systems are typically designed to merge uncertain predictions 
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from models with incomplete and noisy measurements from an observing system. 

Assimilation approaches optimally combine model predictions and independent 

observations in such a manner that the shortcomings of each approach are mutually 

compensated. Evensen (2003) presented an algorithm based on ensemble of model 

predictions to evaluate error covariance information necessary for standard Kalman 

Filter (KF) for updating model predictions using observations. The method uses a 

nonlinear model to propagate the ensemble state across space or time. The initial 

ensemble was chosen to properly represent the soil profile error statistics by adding 

perturbation (Gaussian distributed noise) to the initial guess of the model states. The 

resulting ensemble reflects the uncertainty introduced by input errors. The ensemble 

replicates a broad range of values and the variances of the propagated states increase, as 

compared to the case where model input values are held fixed at their nominal values. 

This increased variability across the ensemble tends to make the filter rely more on 

measurements and reduces the adverse impact of model bias. We used an ensemble size 

of 100 in the application described here. It uses the physics of the vadose zone model 

(HYDRUS-ET) to vertically extrapolate surface soil moisture measurements to soil 

moisture states at deeper depths not directly observed by the remote sensor. The non-

linear one-dimensional vadose zone model used for assimilation can be represented in a 

generic form as the spatially discretized soil moisture at all computational nodes across 

the soil profile at time t into a state vector ψ  of dimension n (Reichle et al., 2002):  

ωψψ += )(F
dt

d
                      [II-11] 
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The nonlinear operator F( ) include all deterministic forcing data (e.g., observed 

rainfall). Uncertainties related to the errors in the model or the forcing data are 

summarized inω . The observations used for the assimilation scheme are remotely 

sensed (ESTAR) measurements of soil moisture across the LW watershed during the 

SGP97 experiment (Jackson et al., 1999). The ensemble of model state is integrated 

forward in time according to Eq. [II-11]. The matrix of the forecast ensemble members 

can be written as: 

Nn
NA ×ℜ∈= ).,,.........,,( 321 ψψψψ          [II-12] 

where N is the number of ensemble members and n is the size of the model state vector. 

The ensemble-mean matrix ( A ) can be defined as  

NAA 1=            [II-13] 

where Nn
N

×ℜ∈1  is a matrix in which each element is equal to 1/N. The ensemble 

perturbation matrix can then be defined as  

AAA −=′            [II-14] 

The ensemble covariance Nn
eP ×ℜ∈ can be defined as  
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           [II-15] 

For example, at time ti over the region of interest, we possess an ensemble of forecasts 

that are representative of the true state of soil moisture. Typically, the ensemble-mean 

forecast is the best prediction of the profile soil moisture state at ti. Now if we receive an 

ESTAR-based soil moisture observation at the same time ti. then we need to update our 
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prediction of the soil moisture state and its uncertainty given this new observation. 

While the observation carries information about the surface soil moisture state only, we 

intend to extract information about the entire soil moisture profile. Thus, the 

representative forecast ensemble was used to derive polynomial coefficients between 

surface and subsurface computational nodes present in the state vector (A) by using a 

least squares fit. These polynomials were then used to calculate the observed state vector 

of measurement ensemble by adding perturbation (Gaussian distributed noise). Given a 

vector of observation d,  

Nn
nddddD ×ℜ∈= ).,,.........,,( 321         [II-16] 

The perturbation matrix of D is defined by 

NnX ×ℜ∈            [II-17] 

from which we construct the ensemble of the covariance matrix 
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e            [II-18] 

The updated equation, expressed in terms of ensemble covariance matrices, is 

)()( 1 HADRHHPHPAA e
T

e
T

e
a −++= −        [II-19] 

where Aa is the updated matrix, )( HAD −  is the innovation matrix, 

1)( −+ e
T

e
T

e RHHPHP  is the Kalman gain, and H interpolates the true state (i.e., ESTAR 

based brightness temperature) of the observed quantity (i.e., soil moisture). In this case 

H is an identity matrix because the soil moisture product of ESTAR was used directly 

instead of microwave brightness temperature. The analyzed/updated matrix Aa is carried 

forward in time as ensemble of initial state for the next time step. 
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Statistical Methods 

 To evaluate the performance of the proposed data assimilation scheme with 

respect to the point measurements of profile soil moisture, we used coefficient of 

determination (R2), root mean square error (RMSE), and mean bias error (MBE). The 

statistics of RMSE and MBE are defined as  

n

OP
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=
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         [II-20] 
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          [II-21] 

where P, O are predicted and observed soil moisture, respectively, and n is the 

number of observations. The root mean square error and MBE are indicative of overall 

error and mean bias in the estimation process, respectively.  

 

Results and Discussion 

 

 Performance of the SMAT was evaluated by comparing the simulated 

(overlapping) footprint-scale profile soil moisture to the local (point-scale) profile soil 

moisture data measured at three Micronet sites (Heathman et al., 2003) highlighted in 

Fig. II-1. These three sites (i.e., Micronet-133, Micronet-149 and 02-NOAA) were 

selected for validation because they represent typical scenarios in the LW watershed.  
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Site Micronet-133 

Site Micronet-133 was selected due to the matching soil profile (based on pixel-

scale NRCS soil database, Fig. II-2) used in the model and the local (point-scale) 

observation at the field site. Point observations indicate a sandy loam soil for the entire 

soil profile, which agrees with our model assumption of the soil texture at the soil 

surface assigned for the whole soil profile depth of 0.65-m. Figure II-5a shows the 

surface soil moisture comparison between models without data assimilation (Open-loop) 

and with EnKF-based data assimilation, and ESTAR observations at the top 0-5 cm 

depth. Open loop results are obtained from the average of 100 replicates without 

updating. Figure II-5a illustrates the ability of EnKF to correct the errors in HYDRUS-

ET model.  
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Table II-3. Comparison of field soil moisture measurements and model results from Day 
of Year (DOY) 170 to 197 at 02-NOAA, Micronet-133, and Micronet-149. 

Sites Statistics   0-0.15 m 0.15-0.30 m 0.30-0.45 m 0.45-0.60 m 
Micronet-133 Local SL SL SL SL 

Model SL SL SL SL 
      

 R2 0.82 0.84 0.88 0.79 
 MBE -0.0052 0.0014 -0.007 0.01 
 RMSE 0.0048 0.0057 0.0002 0.002 
      

Micronet-149 Local SiL SiL L CL 
 Model SiL SiL SiL SiL 
      

 R2 0.81 0.67 0.25 0 
 MBE 0.0029 -0.0715 -0.0847 -0.1129 
 RMSE 0.012 0.0065 0.0261 0.0392 
      

02-NOAA Local L Cl L SiL 
 Model SL SL SL SL 
      

 R2 0.55 0.3 0.23 0.15 
 MBE -0.1034 -0.1674 -0.1697 -0.1697 

  RMSE 0.0174 0.0342 0.0394 0.0398 
 

SL: sandy loam, SiL: silty loam, L: loam, Cl: clay, CL: clay loam. 
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(b) 
 

Fig. II-5. Site Micronet-133 temporal series of soil moisture at a) surface, b) 0-0.15 m, c) 
0.15-0.30 m, and d) 0.45-0.60 m. (DOY: day of year, EnKF: ensemble Kalman filter, 
Meas: Measured). 
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Fig. II-5. Continued. 

 

Figures II-5b-d show the comparison of SMAT-based profile soil moisture estimations 

and TDR-based field observations at four different depths. From DOY 170 to 175 the 
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root zone soil moisture estimated by the model at the depths of 0-0.15 m, 0.15-0.30 m, 

and 0.45-0.60 m depends on the initial estimate of the ensemble. The filter improved the 

surface soil moisture at the initial period of the simulation, in contrast to the soil 

moisture at the deeper depths. The continuous analysis/update (i.e., EnKF-based 

assimilation of surface soil moisture using ESTAR observations) from DOY 175 to 184 

(except on 179) improved the profile soil moisture estimations and the trends of the 

simulated and observed states matched well. These matching trends in Fig. II-5b-d verify 

the hypothesis that surface soil moisture observation obviously carries information in the 

memory about the unobserved portion of the state (profile soil moisture). Even after the 

gap in ESTAR over-flights between DOY 184 to 192 the model maintains a good trend 

except on DOY 191. On DOY 191, the impact of a rainfall event is clearly visible in the 

model estimates, but was missing in the measured soil moisture at the depth of 0-0.15 m 

(Fig. II-5b). This emphasizes the importance and sensitivity of the precipitation 

information available to the model at a daily time step, which affects the performance of 

the model. The filter regained the trend from DOY 193 due to new ESTAR 

measurements from DOY 193 to 197 except on 196. Statistical comparison of the model 

estimations with point measurements is given in Table II-3. For this site high R2 values 

were observed for all the depths across the root zone indicating the efficient data 

assimilation capability of SMAT for surface soil moisture reaching to the deeper depths 

under favorable conditions (i.e., for matching soil profile at the pixel- and point-scales). 

Low RMSE values observed for this site confirm the suitability of the model and 

agreement of assumptions with field conditions. 



 

 

34 

Site Micronet-149 

The actual soil profile (based on point observations) of this site matches the 

model soil profile of silty loam for the top 0.30 m (Table II-3). Figure II-6a shows the 

surface (0-5 cm) soil moisture comparison among the Open-loop, model with EnKF, and 

ESTAR observations. As expected the Open-loop and EnKF predictions drift apart, and 

ESTAR measured soil moisture allow the EnKF to capture the dry-down portion of the 

experiment (DOY 170 to 185). Uncertainty in hydraulic parameters and bottom 

boundary condition and the mismatch of soil profile below 0.30 m were the limiting 

factors for the model. The bottom-most clay layer in the actual soil profile restricted the 

downward flux during the experiment and retained higher moisture in the soil profile 

between the depths of 0.30 to 0.60 m. The higher Ks value of silt loam (Table II-1) than 

clay loam layer considered in the model drained the soil profile faster during the 

simulation resulting in lower soil moisture predictions. The EnKF algorithm failed to 

maintain the temporal trends at the deeper layers (except the surface moisture) due to 

imperfect forecast ensemble polynomial coefficients obtained by least squares fit. 

Figures II-6b-d illustrate the comparison of profile soil moisture using the data 

assimilation scheme (SMAT) and field observed values at the depths of 0-0.15 m, 0.15-

0.30 m, and 0.45-0.60 m. Of particular significance, the EnKF estimates for soil profile 

at the 0-0.15 m depth closely matched the point-scale measurements (Fig. II-6a) with R2, 

MBE, and RMSE values of 0.81, 0.0029, and 0.01, respectively (Table II-3). 
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(b) 
 
 
Fig. II-6. Site Micronet-149 temporal series of soil moisture at a) surface, b) 0-0.15 m, c) 
0.15-0.30 m, and d) 0.45-0.60 m. (DOY: day of year, EnKF: ensemble Kalman filter, 
Meas: Measured). 
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Fig. II-6. Continued. 

 

 

Even though the profile soil texture at the 0.15-0.30 m depth in the model and at the field 

location were the same, observed and estimated soil moistures at this depth did not 
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match well (see Fig. II-6c) due to the impact of the clay loam layer at the bottom of the 

profile. The filter totally underestimated the soil moisture in the deeper zone 0.45-0.60 m 

with a MBE of -0.1129 (Table II-3). At the field site, however, the clay layer retains 

moisture at an average 0.35 m3/m3 throughout the observation period due to the 

impeding layer.  

 

Site 02-NOAA 

 This site was especially chosen to demonstrate the impact of a total mismatch of 

the model soil profile with the local soil profile (Table II-3), which completely alters the 

flow regime of the soil column by introducing uncertainty in hydraulic parameters. The 

model used sandy loam for the entire 0-0.60 m soil profile, which led to a well-drained 

soil column for this site. Neither the Open-loop nor the EnKF could predict the local soil 

moisture at this site. As evident from Figs. II-7b-d, no agreement between measured and 

EnKF was observed at any depth, with high negative bias for the entire root zone (Table 

II-3). Note, however, EnKF could update the surface (0-5 cm) soil moisture prediction 

across the study period (Fig. II-7a). A partial agreement was observed at the depth of 0-

0.15 m following the rainfall event on DOY 191. 
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(b) 
 

Fig. II-7. Site 02-NOAA temporal series of soil moisture at a) surface, b) 0-0.15 m, c) 
0.15-0.30 m, and d) 0.45-0.60 m. (DOY: day of year, EnKF: ensemble Kalman filter, 
Meas: Measured). 
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(d) 
 
 
Fig. II-7. Continued. 
 
 
 
 The duration of the SGP97 hydrology experiment was comparatively shorter than 

what is generally applied to models. It is not apparent whether a shorter period had any 
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appreciable effect on the model results, although some previous studies have found that 

soil moisture predictability may be related to the model time-scale (e.g., Schlosser and 

Milly, 2000). At all three study sites (02-NOAA, Micronet-133, and Micronet-149), in 

the early part of the experiment (first 10 days), EnKF estimated soil moisture on the 

surface was only marginally better than the Open-loop (see Fig. II-5a, II-6a, II-7a). 

Margulis et al. (2002) found similar results at the watershed/regional scales. For sites 

Micronet-133, Micronet-149, and 02-NOAA, Open-loop and EnKF for soil surface lead 

to RMSE of 0.062, 0.090, 0.054 and 0.010, 0.013, 0.011, respectively.  Figures II-5a, II-

6a, and II-7a confirm that EnKF is able to track the dry-down period after precipitation 

events much better than the Open-loop modeling scheme.  A significant benefit of the 

EnKF in the proposed integrated model is its ability to instantaneously update moisture 

estimates and error standard deviations throughout the soil profile. This is possible due 

to the carry over memory of the surface soil moisture about the profile soil moistures. As 

discussed for the site Micronet-133, the effects of surface moisture update on the profile 

soil moistures only get evident gradually with time, as surface moisture variations 

redistribute throughout the soil profile (Figs. II-5b-d).  

 Precipitation is the most important time-dependent forcing data for soil moisture 

distribution in hydrologic studies (Margulis et al. 2002). Precipitation uncertainties, 

especially in ungauged areas, can be expected to have significant impact on the 

evolution and distribution of soil moisture. A major limitation of the integrated data 

assimilation model (SMAT) is the implications of deterministic forcing data, mainly 

precipitation. At the three study sites (02-NOAA, Micronet-133, and Micronet-149), the 
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peak surface soil moistures were observed after a day from the model estimation peak on 

DOY 191. This lagged behavior in surface soil moisture could partially be due to the use 

of daily (24-h cumulative) precipitation values reported for the following day. 

Subsequently, lagging surface soil moisture adversely affects the filter performance 

when comparing the results with the local point profile data for a particular day. Another 

limitation that affects the model performance of EnKF is the assumption of one soil 

texture across the whole depth of the soil profile. Soil hydraulic parameters for sandy 

loam and silty loam profiles of sites 02-NOAA and Micronet-149, respectively, in the 

model are much different from the local soil profiles. Furthermore, the spatial variability 

of soil hydraulic conductivity and soil water retention characteristics across the 

corresponding (ESTAR) remote sensing pixel greatly influence the vertical and lateral 

soil moisture transmission. The effect of soil texture was further illustrated by Mohanty 

and Skaggs (2001) who demonstrated the relationship of soil texture in determining soil 

moisture stability and variability across time at selected ESTAR remote sensing 

footprints during the SGP97 experiment. Inclusion of more detailed soil database or 

aggregated/effective soil hydraulic parameters (e.g., Zhu and Mohanty, 2002, 2003a, 

2003b) for future applications of this distributed root zone soil moisture assessment tool 

(SMAT) may overcome this limitation. 
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Fig. II-8. Model predicted soil moisture grids at different depths across Little Washita 
(LW) watershed Day of Year (DOY)193 (12th July 1997) at the depth of (a) 0.05 m, (b) 
0.2 m, (c) 0.4 m and (d) 0.6 m. 

 

Figure II-8 shows the output of our ArcGIS-based distributed root zone process 

model with the EnKF data assimilation scheme (SMAT) in terms of soil moisture states 

across the LW watershed for DOY 193 (12 July 1997) at four discrete depths (viz, 0.05 

m, 0.20 m, 0.40 m, and 0.60 m). The discussion of Sellers et al. (1995) about spatial 

heterogeneity introduced by rainfall and removed through dry-down dynamics is also 

applicable at this coarse (watershed) scale. During the dry-down period, the effect of soil 

texture (Fig. II-2) on surface (0-5 cm) soil moisture patterns (Fig. II-8) is visible at this 
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scale, which matches with the findings of remote sensing observations across the SGP97 

region (Jackson et al., 1999). A significant advantage of the ArcGIS-based SMAT is that 

it can be adopted at any fine or coarse spatial resolution to identify the transitional scale 

that separates (nonlinear) fine versus coarse scale soil moisture dynamics, where 

changes in soil moisture spatial heterogeneity are negatively or positively correlated with 

the change in mean soil moisture.  

 

Conclusion 

 

 We developed a new distributed root zone soil moisture assessment tool (SMAT) 

on the ArcGIS platform by fully integrating a one-dimensional vadose zone hydrology 

model (HYDRUS-ET) with EnKF data assimilation capability using the parallel non-

interacting stream tubes concept and remotely-sensed surface soil moisture as the 

primary input.  A major advantage of this novel scheme is that it can be used to compute 

root zone soil moisture distribution and its temporal evolution at multiple spatial 

resolutions including landscape, watershed, and regional scales. Results illustrate both 

the challenges and potential benefits of this new model. The system described here is 

formulated with its ultimate application in purview, i.e., operational estimation of near 

surface and root zone soil moisture using aircraft-/satellite-based microwave remote 

sensing measurements at different scales. Comparisons of EnKF filter simulations 

estimates with Open-loop simulations estimates also demonstrate the advantage of 

assimilating remote sensing measurements with model estimations, which are consistent 
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with previous studies at the SGP sites. Passive microwave-based soil moisture 

measurements are particularly important during the dry-down period when Open-loop 

model may diverge. The model displayed a reasonable capability to generate soil 

moisture distribution at the desired resolution at various depths of the root zone in Little 

Washita watershed during the Southern Great Plains 1997 (SGP97) remote sensing 

experiment. To improve model performance several issues need to be addressed in the 

future including ‘effective’ hydraulic parameters across spatial scales, developing 

subsurface soil properties data bases using direct and indirect methods, implementing 

more appropriate vadose zone flow models at landscape scale, correction of forcing data, 

and implementation on spatially correlated pixels.   
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CHAPTER III 

SCALING OF SURFACE SOIL MOISTURE FIELDS DURING SMEX02 

 
 In this study, we examined the scaling properties of the Polarimetric Scanning 

Radiometer (PSR)-based remotely sensed soil moisture fields during the Soil Moisture 

Experiment 2002 (SMEX02) hydrology campaign using wavelet-based multiresolution 

analysis. The multiresolution technique decomposed the PSR-based soil moisture fields 

into large-scale average soil moisture fields and fluctuations in horizontal, diagonal and 

vertical directions at various resolutions. Results suggested linearity in the log-log 

dependency of the variance of soil moisture up to a resolution of 6100 m X 6100 m on 

PSR sampling dates during the SMEX02. The wet fields (with high soil moisture) show 

almost similar variance for all the resolutions signifying the strong spatial correlation. 

Analysis of the dry fields (with low soil moisture) indicated a log-log linearity of 

moments with various scales, and a concave functional relationship with the order of 

moments, typically representing a multiscaling process. The scaling exponent of soil 

moisture during drydown suggest a transition from simple scaling (in wet fields) to 

multiscaling (in dry fields) behavior. The detail components of multiresolution analysis 

in the horizontal and the vertical directions for dry and wet fields exhibited similarity, 

whereas the diagonal component shows difference in simple scaling properties. Another 

important finding of this study is the increase of subpixel soil moisture variability with 

increasing resolution, especially for the wet fields. 
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Introduction 
 

 Soil moisture is highly variable across space scales of few meters to kilometers 

and time scales of minutes to months. The spatio-temporal scaling of soil moisture is 

influenced by non-linear soil moisture dependent processes (hydrological, 

meteorological and soil physical processes) (Western et al., 2003). Most of the 

hydrological and meteorological models involving soil moisture are nonlinearly 

parameterized and sensitive to spatio-temporal variability and scale dependency of soil 

moisture. Spatial scaling of soil moisture is poorly understood because it is difficult to 

model and measure in a comprehensive manner (Dubayah et al., 1997). However, air-

borne passive microwave remote sensing offers techniques to estimate soil moisture in 

top 5 cm of the soil surface over a large area with good spatial resolution (Jackson 

1993). The operational constraint of airborne passive microwave remote sensing is that it 

can not achieve large spatial soil moisture fields on a routine basis. Recent deployment 

of space-borne sensor as AMSR-E has the capability to map soil moisture in large land 

areas on regular (1.5 days) intervals. In the foreseeable future, no space-borne passive 

microwave remote sensing platform will have ground spatial resolution finer than 40 km 

(Crow et al., 2005). Within such a coarse resolution (>40 km), great degree of soil 

moisture variability is observed over a large range of spatial scales encompassing 

various soil types, topographic features, vegetation and climatic conditions. Air-borne 

remote sensing campaigns including Washita ’92 (Jackson et al., 1995), Washita ’94, 

Southern Great Plains 1997 (SGP97) hydrology experiment (Jackson et al., 1999), 

SGP99, SMEX02 (Bindlish et al., 2005), SMEX03 (Jackson et al., 2005), SMEX04, and 
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SMEX05, provided us the unique opportunity to study the spatial scaling of soil 

moisture in variety of hydro-climatic conditions, within the coarse resolution of space-

borne passive microwave remote sensing platform.   

  The soil moisture patterns (distributions) evolves from many different 

geophysical processes acting over different scales, such as topography, rainfall, soil 

characteristics and vegetation distribution (Dubayah et al., 1997). Past studies of these 

geophysical processes such as rainfall (Gupta and Waymire, 1990; Kumar and Foufoula-

Georgiou, 1993a, 1993b), stream flow (Gupta and Waymire, 1990; Rodriguez-Iturbe et 

al., 1994), and clouds (Tessier et al., 1993) have suggested multiscaling properties. 

Rodriguez-Iturbe et al. (1995) studied and characterize the spatial pattern of soil 

moisture, and concluded that the variance of soil moisture follow a power law decay, 

typical of scaling processes, as a function of area over which soil moisture is observed. 

Hu et al. (1998) used multiresolution analysis to investigate the scale variation of soil 

moisture by decomposing soil moisture images into average large-scale and detailed 

small-scale fluctuation components. They found that average large-scale soil moisture 

was non-stationary at the scale studied (30 m to 10 km) and the small-scale fluctuations 

exhibited simple scaling process, while the overall soil moisture variability exhibited 

multiscaling properties. Kumar (1999) used estimation techniques based on multi-

resolution tree to characterize the subgrid variability of soil moisture at multiple scales 

by combining information, such as soil moisture measurements and soil hydrologic 

properties available at different scales. Western and Blöschl (1999) examined the effect 

on the apparent spatial statistical properties of soil moisture (variance and correlation 
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length) on changing the measurement scale in terms of spacing (distance between 

samples), extent (overall coverage), and support (integration area). They found that the 

effect of extent on the correlation length is the most important one of the three (extent, 

support, and spacing). The apparent variance increases with the increasing extent, 

decreases with increasing support and does not change with spacing. Cosh and Brutsaert 

(1999) showed that grouping soil by textural class was useful to characterize the soil 

moisture field and their dynamics into groups with different statistical properties.  

Famiglietti et al. (1999) used Electronically Scanned Thinned Array Radiometer 

(ESTAR)-based soil moisture data of SGP97 and point soil moisture measurements in 

selected fields to investigate within pixel variability of remotely sensed soil moisture. 

Mohanty and Skaggs (2001) also used ESTAR dataset of SGP97 to show the 

characteristic differences in the space-time dynamics of soil moisture within several 

remote sensing footprints with various combinations of soil texture, slope and vegetation 

type. They also found that ESTAR footprint average soil moisture matches differently 

with ground-based soil moisture reflecting nonlinearity in the hydrologic processes for 

various combinations of soil, topography, and land cover. Using measured and modeled 

soil moisture from Washita’92 and Washita’94 experiments Peters-Lidard et al. (2001) 

found multiscaling properties. Nykanen and Foufoula-Georgiou (2001) scaling study of 

soil moisture disagreed with the results of Rodriguez-Iturbe et al. (1995) and Hu et al. 

(1997) who reported log-log linear relationships of the variance of soil moisture with 

scale. More recently, Oldak et al. (2002) studied the statistical properties of remotely 

sensed soil moisture field (passive microwave remote sensing with ESTAR L-band 
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radiometer) of Washita ’92 and SGP97 experiment. They found that the shape of scaling 

dependencies remains the same during drydown, consequently reducing the volume of 

observations needed to predict scaling of surface soil moisture during drydowns. 

Brunsell and Gillies (2003) conducted multiresolution analysis on radiometric 

temperature data of AVHRR (Advanced Very High Resolution Radiometer) and 

reported that at very large scales, statistical self-similarity was observed through all 

levels of aggregation. Studies at larger scales (50–1000 kms) (Vinnikov and Robock, 

1996; Entin et al., 2000) from agricultural sites in the former Soviet Union, Mongolia, 

China, and the USA have found the soil moisture variation could be represented as a 

stationary field with a correlation length of 400-800 kms. 

 All aforementioned studies provide enough evidence that spatial scaling of soil 

moisture generally depend on topography, rainfall, soil characteristics and vegetation 

distribution. In this study, we examined the scaling properties of the Polarimetric 

Scanning Radiometer (PSR)-based remotely sensed soil moisture fields during SMEX02 

hydrology campaign in Iowa. We focused on spatial scaling properties of soil moisture 

in the top soil layer (0-5 cm) of a region with high row crop agriculture. Wavelet based 

multiresolution techniques was used to decompose the soil moisture fields into large-

scale average soil moisture fields and fluctuations in horizontal, diagonal and vertical 

directions at various resolutions. The primary objective of this study is to relate soil 

moisture variability at the scale of the PSR footprint (800 m X 800 m) to larger scale 

average soil moisture field variability. We also investigated the scaling characteristics of 

fluctuation fields among various resolutions. 



 

 

50 

Materials and Methods 
 

Study Region 

 The regional study area of SMEX02 in Iowa is shown in Fig. III-1 (Bindlish et 

al., 2005). The details of SMEX02 experiment plan can be found at website 

(hydroloab.arsusda.gov/SMEX02). The duration of the study was from June 6th to 12th 

July 2002. Nearly 95% of the regional study area is used for row crop agriculture. Corn 

and soybean are grown on approximately 90% of the row crop acreage (in 2002, nearly 

60% crop was corn and 40% soybean). The climate of SMEX02 regional site is humid, 

with an average rainfall of 835 mm. The regional site is considered as the pothole region 

of Iowa because of its undulating terrain (Bindlish et al., 2005). The PSR (Polarimetric 

Scanning Radiometer) observations were conducted during June 25th to July 12th, 2002.  

The PSR is an airborne microwave imaging radiometer operated by NOAA 

Environmental Technology Laboratory (Piepmeier & Gasiewski, 2001). The complete 

functional operation (flightlines and mapping specifications) of PSR is given in Bindlish 

et al. (2005). PSR in SMEX02 used 10 frequencies (6 Ghz, 6.5 Ghz, 6.92 Ghz, 7.32 Ghz, 

10.64 Ghz, 10.69 Ghz, 10.70 Ghz, 10.75 Ghz, and Thermal) for passive microwave 

remote sensing. Bindlish et al. (2005) closely examined the effects of RFI (Radio 

Frequency Interference) and reported that the 7.32 GHz and 10.7 GHz bands were far 

superior to the other frequencies. So the soil moisture fields of SMEX02 regions were 

created using these two C band channels (7.32 GHz and 10.7 GHz).  
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Fig. III-1. Location of SMEX02 experiment and IOWA regional study area (Bindlish et 
al. 2005). 

 
 
Ten days of PSR based soil moisture estimates   (resolution: 800 m X 800 m, size: 144 X 

70 pixels) over the regional area during SMEX02 is illustrated in Fig. III-2. Bindlish et 

al. (2005) concluded that the despite of peak crop conditions (biomass ~8 kg/m2) 

encountered during the SMEX02 experiment, good results were obtained using the full 

soil moisture retrieval algorithm. As illustrated in Fig. III-2 there are some null values at 
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the bottom portion of the soil moisture fields. For this study the null values were 

dropped from the study region by trimming all the 10 soil moisture fields resulting in a 

net area of 125 X 70 pixels. 

 

 

 

 

Fig. III-2. PSR (C-band single channel) based soil moisture estimates over the regional 
area during SMEX02. 

 

Multiresolution Analysis of PSR Estimated Soil Moisture Fields 

In remote sensing context, spatial scale (resolution) is defined as the size of the 

smallest distinguishable part (pixel) of a spatial dataset (Lam and Quattrochi, 1992).  
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Spatial dataset at different scales may carry different information. Each level of spatial 

scales has its own unique properties that are not the simple summation of the 

disaggregated part (Golley, 1989). Wavelet analysis, a relatively new tool in geophysics 

(Kumar and Foufoula-Georgiou, 1997) has the capability to decompose the 2D-spatial 

dataset into average and detail components at various scales. The spatial dataset (in this 

study: PSR-based soil moisture field) is decomposed into average and detail components 

corresponding to the frequencies, and the location of those components in the space 

domain is also registered. The wavelet coefficient D derived from the decomposition 

corresponds to a wavelet function � of scale m and position n, k of the 2D-spatial 

dataset. The decomposition of the soil moisture field into wavelet and scaling function 

coefficient is called multiresolution analysis (Mallat, 1989). In this study a discrete 

wavelet transform (DWT) was used to decompose the PSR based soil moisture fields (of 

SMEX02) into an equally large set of scaling and wavelet coefficients. A brief 

description of DWT is as follows. 

For a square-integrable function )(xf , the integrable wavelet transform is 

defined as  

 �
∞

∞−
−= dxuxxfuWf )()(),( λψλ        [III-1] 

where, u is the location parameter and � is a dilating parameter. The function �(x) is 

called a wavelet function and the corresponding wavelet family is given by 

)).(( ux −λψλ  Substituting x and u in the wavelet transform Eq. [III-1] to be vectors x 

= (x1, x2) and u = (u1, u2) respectively, a two dimensional wavelet transform is obtained.  
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In this study the Haar wavelet (Haar, 1910) is used to conserve the amount of 

information within multiresolution analysis. Haar wavelet was preferred over other 

wavelets because of its ability to detect rapid change during data decomposition (Mahrt, 

1991). Haar wavelet )(tψ  and scaling �(t) function is the simplest of all orthogonal 

(orthonormal) wavelets (Kumar and Foufoula-Georgiou, 1997) and is given as 

�
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 The orthonormal Haar wavelet family constitutes an orthonormal basis for the 

space L2(R) which is a collection of square-integrable functions (finite energy). The 

square-integrable functions can be represented by a linear combination of the wavelets 

�m, n(x), i.e. 

)()( ,, xDxf nmnm
nm

ψ��
∞

−∞=

∞

−∞=
=       [III-4] 

where xnm (,ψ ), the Haar wavelet family at discrete resolution level and discrete location, 

can be represented as  

)n2-(x2(
2

1
(x) mm-

nm, ψψ
m

=                    [III-5] 

where 2-m is the dilation parameter � of Eq. [III-1] and n2m is the location parameter u of 

Eq. [III-1].  

The coefficient in Eq. [III-4] can be defined as 
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�= dxxxfD nmnm )()( ,, ψ        [III-6] 

A multiresolution analysis is a method of projecting the original signal on to 

coarse and coarser resolution. In practice, the multiresolution analysis is conducted over 

a finite level of scales m = 0,1,..,M. The multiresolution analysis results in a series of 

approximate signals at scale M (average fields of coarsest resolution), and detail signals 

(detail components) at all other levels of decomposition. The additional advantage using 

Haar wavelet and scaling function within the multiresolution analysis is that the product 

at each scale level m is an aggregation of original data. With the Haar wavelet and 

scaling function the aggregated dataset for each scale level m would be the same as when 

the region observed from the same type of sensor but at a resolution equal to scale level 

m. Therefore, Haar wavelet is suitable to quantify the loss of information (detail 

components) within the dataset while decomposing a particular resolution. For two 

dimensional cases, based on work of Mallat (1989), the multiresolution analysis is given 

by 

),(),(),(),(),(1 yxfDyxfDyxfDyxfIyxfI v
m

d
m

h
mmm +++=−   [III-7] 

 For detail multiresolution derivation, we refer the reader to Kumar and Foufoula-

Georgiou (1997). The approximation of the function ),( yxf at the resolution m is 

characterized as inner product     

),( mnkm ffI η=         [III-8] 

where n and k are location parameters. The detail components (horizontal, diagonal and 

vertical) of the function ),( yxf are defined as inner products 
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),( mnk
hh

m ffD β=         [III-9] 

),( mnk
dd

m ffD β=                  [III-10] 

),( mnk
vv

m ffD β=                  [III-11] 

The scaling function η (2-dimensional) and wavelet functions �h, �d and �v are 

created from Haar wavelet function )(xψ  Eq. [III-2] and Haar scaling function )(xϕ  Eq. 

[III-3], and are defined as  

η (x,y) = )(xϕ )( yϕ                  [III-12] 

�
h(x,y) = )(xψ )( yϕ                  [III-13] 

�
d(x,y) = )(xψ )(yψ                  [III-14] 

�
v(x,y) = )(yψ )(xϕ                  [III-15] 

 An illustration of applying the above algorithm of multiresolution analysis, the 

PSR based soil moisture field of July 10th 2002 (SMEX02) at the original resolution (800 

m X 800 m) (Fig. III-3a (level m = 1)) decomposed into four fields of resolution 1600 m 

X 1600 m as illustrated in Fig. III-3b. This include one average field A1 (top left 

quadrant) corresponding to the scale function η and three fluctuation fields D1
h 

(horizontal component: top right quadrant), D1
d (diagonal component: bottom right 

quadrant), and D1
v (vertical component: bottom left quadrant) corresponding to wavelets 

�
h(x,y), �d(x,y), and �v(x,y) respectively. Similarly the average field A1 presented in Fig. 

III3b could be decomposed further (level m = 2) into four fields (A2, D2
h, D2

d, and D2
v) 

of resolution 3100 m X 3100 m. In this study 10 PSR based soil moisture fields for 

SMEX02 were decomposed till level m = 5 (resolution: 22500 X 22500 m) for 
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multiresolution analysis. At each level of decomposition, the average field (A) becomes 

more homogenous and the anisotropy is captured in the fluctuation components (D). 

Kumar and Foufoula-Georgiou (1993a) demonstrated that the wavelet decomposition 

aggregate a non-stationary image into average fields (A) which are non-stationary and 

fluctuation fields (D) which are stationary. The stationary fields, which are considered as 

fluctuation of the process, could be used to test the presence of self-similarity (simple 

scaling).  

 The horizontal, diagonal and vertical wavelet coefficients measure the intensity 

of the local variation within the pixel of the soil moisture field when decomposing for a 

particular scale. The value of the coefficient is zero when no variation (local signal is 

constant) is observed within the aggregated pixel for the scale under consideration.  The 

value of the coefficient is large when the magnitude of the wavelet is close to the scale 

of heterogeneity in the soil moisture field. Thus, the variance of the wavelet coefficients 

gives information about subpixel variability for the spatial scales in the remote sensing 

data (Percival, 1995). The wavelet variance is defined as 

�= nkmmy D
N

,,
22 1σ                  [III-16] 

where my,
2σ  is the wavelet variance of the spatial dataset y at scale m. nkmD ,  are the 

wavelet coefficients in a particular direction at position nk and scale m.  

 



 

 

58 

  
(a)     (b) 
 

Fig. III-3. Haar wavelet decomposition of a PSR based soil moisture field. (a)  
Representation of original soil moisture field on June 25th 2005 of resolution 800 m X 
800 m. (b) Average field A1 (top left quadrant) and three fluctuation fields D1

h  
(horizontal component: top right quadrant), D1

d (diagonal  component: bottom right 
quadrant), and D1

v (vertical component:  bottom left quadrant) of resolution 1600 m X 
1600 m.   

 

Simple Scaling and Multiscaling 

 Following (Gupta and Waymire, 1990), let [Z(x)] represent an arbitrary 

stochastic soil moisture field of a spatial dataset indexed by vector dRx ∈ , where dR is d 

dimensional space. Then [Z(x)] is statistically self-similar if for any arbitrary set of 

points, x1, x2, x3, .., xn, the equality holds in the joint probability distribution of [Z(x)]: 

 P[ Z(�x1) < z1,….., Z(�xn) < zn]  = P[�h� Z(x1) < z1,.., �h� Z(xn) < zn]           [III-17] 

where � is the scale ratio and h� is a real scaling exponent. For simple scaling there is 

only one scaling exponent h� and the process is said to be “fractal” or “mono-fractal”. 
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The expected moment of stochastic field can then be related to this single value as a 

function of scale: 

E[ Z p(�) ]  = �ph� E[ Z p(1) ]                                                  [III-18] 

where p is the order of the moment, taking log of both side of Eq. [III-18],  

log mp(�) = s(p) log �+ log mp(1)                                      [III-19] 

where mp(�) = E[ Z p(�) ]  and s(p) = ph�. For simple scaling process the log-log linearity 

in log mp(�) versus log � for each p and, linearity of the slope s(p) change for each p 

must be satisfied. If s(p) is a nonlinear function of p the process has multiscaling 

properties. In this study, for the soil moisture field the scale factor � = Ai / A0, where Ai 

is any pixel area obtained from aggregation from the original (remote sensor) pixel area 

and A0 is the coarsest pixel area after aggregation (multiresolution analysis).   

 One more type of scaling typically found in soil moisture fields is the power law 

scaling of variance of soil moisture contents (Hu et al., 1997) 

a
h

L VarVar )(α=                    [III-20] 

where VarL is the variance at the aggregated level, Vara is the variance in the original 

soil moisture field, � is the scale-factor defined as before and h is the slope. The 

exponent of the power law is found to be an index for the spatial correlation structure of 

the soil moisture field. An exponent of -1 refers to a spatially independent identical 

distribution process, while an exponent of 0 indicates a completely spatially correlated 

structure. 
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Results and Discussion 

 

 The 10 days of PSR based soil moisture fields during SMEX02 (Fig. III-2) were 

decomposed (multiresolution analysis) till level 5. The decomposition resulted in 5 

coarser resolution fields (1600 m X 1600 m, 3100 m X 3100 m, 6100 m X 6100 m, 

12100 m X 12100 m, and 22500 m X 22500 m) of average soil moisture from the base 

resolution of 800 m X 800 m. The decomposition also resulted in 3 fluctuation fields 

(horizontal, diagonal, and vertical) for each level of decomposition at 5 coarser 

resolutions. Five scale factors (log(�) =log(Ai / A0): -5.3, -3.9, -2.6, -1.2, 0) 

corresponding to decomposed resolutions were calculated with A0 as the area of coarsest 

resolution (22500 m X 22500 m).  

 

Analysis of Power Law Scaling 

The mean of soil moisture fields at various resolutions is plotted against log of 

scale factors in Fig. III-4. Three distinct groups are clearly visible in the plot (Fig.III-4); 

the upper most group is of the wet fields (July 10th, July 11th, and July 12th), the 

intermediate group is the partially dry fields (July 1st, July 4th, July 8th, and July 9th) and 

the lower most group is of the dry fields (June 25th, June 27th and June 29th ) during the 

SMEX02.  
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Fig. III-4. Mean of soil moisture against log of scale-factors. 

 

The variance for average soil moisture fields is plotted against scale factors on a 

log-log plot in Fig. III-5. Like Fig. III-4, similar three groups are clearly visible in the 

Fig. III-5, with one exception of July 4th, 2002 which shows high soil moisture variance 

due to scattered rainfall. The discussion of Sellers et al. (1995) about high spatial 

heterogeneity introduced by rainfall and removed through dry-down dynamics is also 

found applicable here at all scale factors. Linearity in the log-log dependency of the 

variance on scale factors Eq. [III-20] can be observed in Fig. III-5. In this study, linearity 

is observed up to scale factor of -2.6 (6100 m2). Rodriguez-Iturbe et al. (1995) reported 

linear scaling up to 1000 m2 for the Washita ’92 soil moisture data. Hu et al. (1997) 

found the linearity up to 32000 m2 for the same dataset (Washita ’92) using a different 

aggregation scheme. Oldak et al. (2002) demonstrated that for ESTAR dataset during 

SGP97 the linearity was observed up to 7800 m2. Another apparent characteristic is the 

near linearity of variance against scale factors for the wet fields (Fig. III-5). The near 
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zero slope for the wet fields indicate almost similar variance for all the scale factors (a 

strong spatial correlation). However, higher soil moisture variability at all scale factors is 

observed in wet fields due to variability present in precipitation pattern (Kumar and 

Foufoula-Georgiou, 1993a) over the study area. The variability at any given scale factor 

becomes smaller as the drydown progresses (Fig. III-5). In Fig. III-5 a very low variance 

at scale factor 0 (22500 m X 22500 m) for the driest field (June 29th) indicates an almost 

uniform soil moisture field.  A least square fit slope of approximately -0.23 is observed 

for all dry fields, which is consistent with the slope reported by (Hu et al., 1997). As the 

slope of the log (variance) across scales remains almost constant for the dry fields, the 

temporal decrease in variability were mostly related to the decrease in intercepts 

suggesting a proportional drydown.  
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Fig. III-5. Dependencies of the variance of soil moisture against scale –factors in a log-
log plot.  
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Scaling Analysis of Soil Moisture Fields 

Scaling analysis was conducted for all the soil moisture fields of SMEX02. Eight 

moments were calculated for each scale factor of the soil moisture fields. Figure III-6a 

illustrates log-log dependency of 4th moment of June 29th (dry field) and July 11th 2002 

(wet field) plotted against scale factors. Similarly 2nd to 8th moments were plotted against 

scale factors in a log-log plot for all the soil moisture fields (Fig. III-6b). The slope in 

Eq. [III-19] was estimated by linear regression for moment order p (2nd to 8th moment) 

with high R2 (coefficient of determination). Linearity is observed up to scale factor of -

2.6 (6100 m2) for all sampling days of SMEX02, as for variance (results not shown 

here). It was also observed that the slope become smaller for higher order moments. For 

illustration, slopes of June 29th (dry field) and July 11th (wet field) are plotted against 

moment order p in Fig. III-6b. To exhibit simple scaling process, the rate of change of 

the slope with respect to moment order is equal to the slope at the 1st moment (Gupta and 

Waymire, 1990). The expected value of first moment about mean is 0 and consequently 

the slope is always 0 for the first moment. A straight line is plotted based on slope of 1st 

and 2nd orders of moments in Fig. III-6b.  From Fig. III-6b for June 29th (dry field) a 

non-constant rate of change of slope (non-linear, downward open concave function) with 

respect to moment order indicates that soil moisture does not obey a simple scaling law, 

therefore a multiscaling process. Multiscaling property was observed for all the dry 

fields of SMEX02. Gupta and Waymire (1990) found slope in the range of -5 to 0 for 

rainfall analysis, which is much higher in absolute value than the slope we found in the 

present study. On the contrary, Wood (1994) found an upward concave function 
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relationship between the slope and the order of moment for the scaling properties of soil 

moisture fields simulated from the coupled water-energy model. Hu et al. (1998) and 

Oldak et al., (2002) demonstrated similar multiscaling for the dry fields of Washita ’92 

and SGP97 experiments, respectively. Another important finding of scaling 

characteristics of this study was simple scaling for all the wet fields during SMEX02. 

The scaling exponent during drydown suggest a transition from simple scaling (in wet 

fields) to multiscaling (in dry fields). As illustrated in Fig. III-6b, wet field of SMEX02 

on July 11th 2002 obey simple scaling law when slope measured at 1st moment for all the 

values of slopes with respect to the order of moments p. Therefore, the study support the 

conclusion of Dubayah et al. (1997), Hu et al. (1998) and Oldak et al. (2002) that the 

multiscaling (mutifractal) scaling is an appropriate statistical model for soil moisture 

spatial distribution during the drydown.  
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Fig. III-6. (a) Linear fit for moment of order four versus scale-factors on a log-log plot 
for average soil moisture fields of June 29th (slope s(p) = -0.54, and R2 = 0.85) and July 
11th 2002 (slope s(p) =  -0.17, and  R2 = 0.9). (b) Deviation and conformance to simple        
scaling in the change of slopes with respect to order of moments for soil moisture fields 
of June 29th and July 11th 2002 (SMEX02), respectively. 
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Wavelet Variance 

The fluctuation fields (horizontal, diagonal and vertical wavelet coefficients) 

measure the intensity of the local variation of soil moisture within the scale factor 

(resolution). Wavelet variance Eq. [III-16] for horizontal, diagonal and vertical wavelet 

coefficients were calculated for each level of scale factor. Fig. III-7 shows the wavelet 

variance of horizontal component against the log of scale factor for June 29th (dry field) 

and July 11th (wet field) of SMEX02. Fig. III-7 illustrates an interesting feature of 

subpixel variability present in a dry versus a wet field at various scale-factors. At a 

smaller scale-factor (-5.3) the soil moisture variability is almost similar for both 

scenarios, whereas for higher scale-factors (-3.9, -2.6, -1.2, 0) the difference in soil 

moisture variability between dry and wet fields increases with increasing scale-factor.  

 

 

0
1
2
3
4

5
6
7
8

-6 -5 -4 -3 -2 -1 0

log(Scale factor)

W
av

el
et

 v
ar

ia
nc

e

29th June (dry)

11th July (wet)

 

Fig. III-7. Wavelet variance versus scale factor in log-log plot for fluctuation fields 
(horizontal direction) on June 29th and July 11th 2002 (SMEX02). 
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Study of Self Similarity 

To examine self-similar nature of soil moisture fields of SMEX02, the first six 

moments of wavelet coefficients of fluctuation fields (horizontal, diagonal and vertical 

components) were calculated for each level of decomposition (multiresolution analysis).  

Table III-1 presents the slope in Eq. [III-19] and R2 for the order of moment versus scale 

factor in a log-log plot for all the fluctuation fields of June 29th (dry field) and July 11th 

(wet field) of SMEX02. It is apparent from Table III-1 that as the order of moment 

increases, the value of slope increases and R2 decreases. The linearity of regression (high 

R2) suggests presence of self similarity. Fig. III-8a-c and Fig. III-9a-c illustrate the rate 

of change of slope with respect to moment order p for three fluctuation components of 

June 29th (dry field) and July 11th (wet field) of SMEX02, respectively. Once again, 

linear regression techniques were used to determine the slope in Fig. III-8a-c and Fig. 

III-9a-c, and the values are shown in the figures. A constant rate of change from the 1st 

order moment indicates simple scaling in all the three directions.  
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Table III-1. Results of regression: slope s(p), coefficient of determination R2 for order of 
moment versus scale-factors in horizontal, vertical and diagonal directions stationary 
fluctuation components) for PSR based soil moisture estimates of SMEX02. 

 
SMEX02           Horizontal           Diagonal          Vertical 

June 29th 2002       
Order of Moment 

p Slope s(p) R2 Slope s(p) R2 Slope s(p) R2 
1 0 NA 0 NA 0 NA 
2 0.318 0.99 0.387 0.98 0.355 0.91 
3 0.609 0.96 0.580 0.95 0.549 0.91 
4 0.804 0.92 0.792 0.94 0.800 0.90 
5 1.040 0.86 1.016 0.94 0.943 0.87 
6 1.179 0.81 1.241 0.91 1.161 0.85 

July 11th 2002       
Order of Moment 

p       
1 0 NA 0 NA 0 NA 
2 0.410 0.96 0.591 0.93 0.288 0.92 
3 0.650 0.93 1.192 0.93 0.560 0.92 
4 0.928 0.89 1.599 0.93 0.831 0.86 
5 1.189 0.86 1.997 0.93 0.998 0.82 
6 1.339 0.83 2.379 0.92 1.163 0.79 
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Fig. III-8. Slope s(p) versus order of moment p plots for fluctuations fields on June 29th 
2005 (SMEX02): (a) horizontal, (b) diagonal and (c) vertical directions. 
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Fig. III-8. Continued. 
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Fig. III-9. Slope s(p) versus order of moment p plots for fluctuations fields on July 11th 
2005 (SMEX02): (a) horizontal, (b) diagonal and (c) vertical directions. 
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Fig. III-9. Continued. 
 

 

The regression resulted in slope ranging from 0.22 to 0.266 except for diagonal 

component of July 11th 2002 (wet field) of SMEX02, which is 0.472. A range of slopes 

(0.22 to 0.266) for fluctuation fields in horizontal and vertical directions between a dry 
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(June 29th) and wet field (11th July) indicates minimal change in self-similarity pattern 

during drydown from wet field to dry field. This is an important observation in the sense 

that, although wet fields show higher soil moisture variability (higher wavelet variance) 

at any given resolution, they showed similar horizontal and vertical fluctuation fields as 

the dry fields for all the scale-factors. The difference of slope in diagonal direction for 

the wet field suggests change in self similarity pattern along the diagonal direction. It is 

also interesting to note that the positive slope is observed which is opposite to what 

found by Hu et al. (1998) in their study of fluctuation fields in Little Washita watershed 

using the ESTAR microwave data collected during Washita ’92 and, Brunsell and Gillies 

(2003) examination of self similarity present in AVHRR data of July 2nd 1997 in the 

SGP97 region. The positive slope is due to increase in subpixel variability with 

increasing scale factors.  

 

Conclusion 

 

 We have examined the spatial structure of PSR based soil moisture fields of 

SMEX02 using Haar wavelet multiresolution analysis. SMEX02 regional area was 

nearly 95% of row crop agriculture (corn and soybean). The multiresolution study was 

conducted on 5 distinct scale-factors (resolutions). Our finding of scaling properties for 

the soil moisture fields of SMEX02 also confirms the previous finding that soil moisture 

follows power law scaling with increasing scale-factors. The spatial structure of soil 

moisture exhibited linearity in the log-log dependency of the variance versus scale-
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factor, up to a scale factor of -2.6 (6100 m2) irrespective of wet or dry fields. The study 

also support increase in variability with precipitation for all the scale-factors and also 

show remarkable increase in sub-pixel variability with increasing scale-factors for all 

wet days. It is also shown that once a dependency on scale factor is established at the 

beginning of drying period, its shape is maintained during the drydown. Slope of the 

dependencies almost remains the same where as the intercept decrease as the drying 

progresses. The scaling exponent during drydown suggest a transition from simple 

scaling (in wet fields) to multiscaling (in dry fields). The fluctuation fields (horizontal, 

diagonal and vertical wavelet coefficients) measure the intensity of the local variation of 

soil moisture within the scale factor (resolution). These fluctuation fields indicated 

simple scaling, with similar simple scaling properties observed in horizontal and vertical 

directions for dry and wet days, whereas difference in self-similarity property was 

detected in diagonal direction of wet and dry fields. The results of this work (i.e. the 

statistical variability of soil moisture with changing spatial resolution in an area of row 

crop agriculture) contribute to basic understanding how to assimilate remotely sensed 

data of high agricultural landscape (corn and soybean) into ecological and climatological 

modeling.   
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CHAPTER IV 

GENERAL CONCLUSIONS 

 

This study deals with modeling of root zone soil moisture and scaling of surface 

soil moisture. Two studies were conducted from two different hydrology experiments 

(SGP97 and SMEX02) and highlighted the importance of spatio-temporal variability 

present in surface and root zone soil moisture. The study also demonstrated the modeling 

and scaling challenges introduced by soil moisture distribution present across space and 

time, and most importantly, the spatial distribution of soil, vegetation and precipitation 

which controls the distribution of soil moisture in space. Better methods for defining the 

accuracy in precipitation, and spatial properties for soil and vegetation as they affect soil 

moisture are key challenges for the spatially-distributed SMAT model. Sequential data 

assimilation (EnKF) formulated for SMAT is flexible and can be tested for deeper soil 

profile. The SMAT model can readily trade off estimation accuracy and computational 

demands by simply adjusting the number of ensemble members. The significance of 

results from second study (wavelet based multiresolution analysis) is that it provides a 

possible direction for development of downscaling algorithm that can capture the spatio-

temporal scaling properties of soil moisture. Wavelet based multiresolution analysis can 

make available data from passive microwave remote sensing platforms to model root 

zone soil moisture at various resolutions. Further research and investigation is essential 

in variety of hydroclimatic conditions to improve the performance of scaling and 

modeling scheme developed/evaluated in this work. This study leads to an ultimate goal 



 

 

75 

of establishing an operational platform for assessing surface and root zone soil moisture 

at various spatial resolutions from space-borne passive microwave remote sensors.   
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