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ABSTRACT 

Integrated High-Resolution Physical and Comparative  

Gene Maps in Horses.  (December 2006) 

Candice Lea Brinkmeyer Langford, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bhanu Chowdhary 

 

High-resolution physically ordered gene maps for the horse (Equus caballus, 

ECA) are essential to the identification of genes associated with hereditary diseases and 

traits of interest like fertility, coat color, and disease resistance or susceptibility.  Such 

maps also serve as foundations for genome comparisons across species and form the 

basis to study chromosome evolution.  In this study seven equine chromosomes (ECA6, 

7, 10, 15, 18, 21 and X) corresponding to human chromosomes (HSA) 2, 19 and X were 

selected for high-resolution mapping on the basis of their potential involvement in 

diseases and conditions of importance to horses.  To accomplish this, gene- and 

sequence-specific markers were generated and genotyped on the TAMU 5000rad horse x 

hamster RH panel.  Additionally, screening of a BAC library by overgoes and 

subsequent STS content mapping and fingerprinting approaches were used to assemble 

and verify a BAC contig along a ~5 Mb span on ECA21. 

Dense gene maps were generated for each of the seven equine chromosomes by 

adding 408 new markers (285 type I and 123 type II) to the current maps of these 

chromosomes, thereby greatly improving overall map resolution to one mapped marker 

every 960kb on average (range: 700 kb – 1.3 Mb).  Moreover, the contig on ECA21 
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contained 47 markers (42 genes and 5 microsatellites) as well as 106 STS markers 

distributed along 207 BAC clones.  Comparisons of these maps with other species 

revealed a remarkably high level of horse-human X chromosome conservation, as well 

as two evolutionary breakpoints unique to Perissodactyls or Equids for the equine 

homologues of HSA19 and HSA2, one of which has been more precisely localized by 

the ECA21 contig.  Thus, high resolution maps developed for these chromosomes i) 

provide a basis to map traits of interest rapidly to specific chromosomal regions, ii) 

facilitate searches for candidate genes for these traits by fine comparisons of the equine 

regions with corresponding segments in other species, and iii) enable understanding the 

evolution of the chromosomes.  Expansion of this work to the entire equine genome will 

be important for developing novel strategies for diagnosis, prevention, and treatment of 

equine diseases. 
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To the glory of God, through whom all things are possible. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I asked God for strength that I might achieve; I was made weak that I might learn humbly to obey. 
I asked God for health that I might do greater things; I was given infirmity that I might do better things. 
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God. 
I asked for all things that I might enjoy life; I was given life that I might enjoy all things. 

I got nothing that I asked for – but everything I had hoped for… 
Almost despite myself my unspoken prayers were answered. 

I am among all men most richly blessed. 
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I.  INTRODUCTION 

The horse-human relationship 

The domestication of the horse 

 The paths of man and horse converged some 50,000 years ago when Cro-

Magnon man learned to hunt and kill horses, sometimes by herding them into 

inescapable situations (Levine 1999).  Ancient cave paintings from that time suggest that 

humans had a certain degree of reverence for the horse and its beauty, even in these early 

days.  Archeological evidence suggests that by around 4000-3000 BC man living on the 

steppes of present-day Europe and Asia discovered how to tame or domesticate horses 

(Levine 1999; Bowling and Ruvinsky 2000), though exactly how and when this took 

place is unclear.   

While other domesticated livestock such as cattle, sheep, and pigs can trace their 

roots to a few founding populations, suggesting that their domestication occurred in only 

a handful of locations (Vilà et al. 2001), mitochondrial DNA (mtDNA) from a wide 

variety of horse breeds tells a story that is somewhat different.   Vilà et al. (2001) 

examined and compared the maternally inherited genomes of horses from a wide variety 

of modern breeds with mtDNA extracted from the preserved remains of ancient horses 

from an Alaskan location dated 12,000 to 28,000 years ago.   Unlike the other 

domesticated livestock species, horses show an abundance of diversity in their mtDNA, 

indicating that their maternal lineages are widespread and that a number of separate  

__________________ 

This dissertation follows the style and format of Mammalian Genome. 
 



2 

domestication events must have occurred.   

In contrast to the relatively calm and good-natured horses bred in modern times, 

the wild Przewalski’s horses and free range mustangs found today are known to be 

particularly difficult to tame or domesticate.  This leads to the postulation that wild 

horses in ancient times were similarly obdurate, and individuals were selected for taming 

and breeding on the basis of their gentleness and trainability (Jansen et al. 2002) – some 

of the earliest examples of humans inadvertently exploiting the genetics of horses 

through selective breeding.  

Usefulness of the horse for humans 

Once the horse was domesticated, it was subsequently adapted for a variety of 

uses.  The utility of horses as beasts of burden was probably among the first to be 

realized, with horses put to work pulling and carrying heavy loads for – and including – 

humans (Levine 1999).  At some point, humans discovered that these strong animals 

could be ridden for herding, hunting, or transportation.  Also, agricultural functions were 

developed for the horse, many of which are employed to this day in some parts of the 

world.  Each of the services performed by the horse for man required certain 

characteristics, such as strength and manageability – features for which horses were 

initially selected and bred.  As a result, human emphasis shifted to selective mating to 

obtain horses with desired characteristics. This can be considered as the beginning of the 

application of basic ‘genetic’ approaches to breed horses.  Eventually man observed that 

certain conditions and diseases could also be passed down through the generations, and 
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came to use this to his advantage as well, carefully breeding horses for selected qualities 

and health. 

Breeding resulting from increased understanding of the potential inherited causes 

behind certain traits and diseases is becoming all the more important as time has 

progressed.  In today’s industrialized nations, where electrical and mechanical devices 

such as automobiles have usurped the role of beast of burden, horses are primarily used 

in different contexts such as racing, showing, and recreation – a role that has increased 

exponentially during the past couple of decades.  Because of these developments, the 

need for improved breeding programs and increased knowledge of diseases and 

conditions of interest to the horse community has continued to grow along with these 

changes.   

Economic and social impacts of the horse 

Statistics published by the American Horse Council in 2005 highlight the 

relevance of the horse to modern society in the United States. Currently the horse 

industry contributes over $101 billion to the economy annually and involves around 4.6 

million people nationwide (http://www.horsecouncil.org/statistics.htm).   These numbers 

clearly reflect a prominent role for the horse in the lives of many Americans.  In addition 

to its economic influence, the horse has an invaluable effect on the mental and physical 

well-being of countless numbers of people.  Many people find horses to be excellent 

companion animals and the therapeutic benefits of riding or simply sharing the company 

of a horse are recognized (Henricksen 1971; Potter et al. 1994; North American Riding 

for the Handicapped Association, Inc., http://www.nahra.org).  Additionally, horses 
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contribute to the physical safety of people through their services in police forces 

(http://www.mountedpolice.com/) and even in guiding the blind 

(http://www.guidehorse.org/).   

Throughout history, horses and humans have maintained a relationship that has 

proven beneficial through economic progress and enhanced well-being for both.  As a 

result, mankind is obligated to strive for the advancement of horse welfare by continuing 

to seek ways to improve equine medicine, along with advancement in management, 

nutrition, breeding and selection methods.  Additionally, an in-depth knowledge of horse 

biology as a whole is essential.  All this can be facilitated with a detailed understanding 

of the genetic constitution of the horse, and the roles, functions, and interactions of 

individual genetic factors (genes) in regulating various body systems, development, and 

disease mechanisms. 

 

Gene maps and their significance 

Mapping genes and genomes – an overview 

 To better understand the hereditary components of various traits in the horse and 

utilize the information in a way that is advantageous to the species and the people with 

whom they are involved, it is essential to have comprehensive knowledge of the horse 

genome including precise locations of genes and other elements critical for genome 

function.  For all species where genomes have been analyzed, gene maps are the 

foundational tool that fulfills this primary requirement by depicting the locations of the 

approximately 25,000 genes in typical mammalian genomes.  When sequence 
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information is available for several species, comparative gene maps provide additional 

details on the structural constitution of individual genes and the regulatory elements that 

govern their expression.  Using the comparative information, genetic data may be 

extrapolated from the maps of one species and used to rapidly develop or expand gene 

maps in other species by identifying regions where common sets of genes are present in 

genomic segments of different species (conserved synteny).  Comparisons made at the 

sequence level help to identify additional features such as evolutionarily conserved 

functional or regulatory elements and breakage or fusion points that are an integral part 

of chromosome evolution.  Jointly, such information is critical to searches for genes 

governing traits of interest in a given species along with understanding chromosome 

evolution.  Importantly, identification of regions that are highly conserved across 

mammals as well as regions that are unique to a certain species (or even individual 

populations of a species) is relevant to the study of mammalian evolution in general and 

species divergence and evolution in particular.   

Progress in equine medicine, breeding programs, and advances in equine 

management and health care can substantially benefit from improved knowledge about 

the genome of the horse.  Identification of causative genes and gene variants is critical, 

as understanding the molecular basis of a condition or disease can result in improved 

accuracy of diagnostic tests.  This will prove useful in breeding programs, and also in 

determining the appropriate treatment for an affected horse.  Moreover, information and 

additional benefits (such as improved treatment methods) provided by gene maps from 

other species like humans, cattle, dogs, etc. may be used in the horse for clinically 
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identical diseases.  Detailed comparative maps can prove highly valuable in such 

circumstances, as details about homology and evolution are provided which can help to 

determine, for example, whether a species (and therefore its genetic composition) is 

closely related to the horse.  It is therefore apparent that gene maps are of utmost 

importance to the future health and well-being of horses. 

Gene mapping in other species 

The power and utility of gene maps have already been demonstrated in a number 

of mammals, particularly humans, mice, rats, and various livestock and companion 

animal species where sequence information has become available in recent years (e.g. 

cattle and dogs).  Genome maps and/or whole genome sequence data are publicly 

available for over 1000 organisms (http://www.ncbi.nlm.nih.gov); consequently, it is 

possible for genomic research to proceed at a rapid pace with an increasing interface 

with medicine.  For example, causal mutations are routinely being identified for a 

number of diseases in humans and the frequency of such reports in domestic animals is 

also on the rise (described below).  In recent years, comparative gene mapping data has 

facilitated the transfer of information from maps of one species to that of another. An 

excellent illustration of this is Wilson disease in humans and its analysis in dogs where it 

is known as copper toxicosis (Su et al. 1982; van de Sluis et al. 2002; Muller et al. 2003; 

Stuehler et al. 2004).  Moreover, for species where sequence data is available, programs 

have been or are being developed to further exploit the genomic information by 

determining the locations and roles of functional elements which regulate gene activity, 

the significance of variations in splicing, non-coding RNAs, etc.  Overall, gene maps 
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confer a number of benefits – both realized and potential – to those species where they 

are available. 

The Human Genome Project was officially established in 1990 with the goals of 

identifying and studying every part of the genome and the intent to make the discoveries 

publicly available for novel biomedical and functional genomics research (Collins et al. 

1998; 2003a).  The resulting genome sequence sparked a new era in biomedical research 

(Collins et al. 2003b).  The ever-increasing volume of information collected and 

disseminated is resulting in the discovery and exploration of genes associated with 

thousands of diseases and conditions, with nearly 17,000 diseases listed in the database 

Online Mendelian Inheritance in Man (OMIM; http://www.ncbi.nlm.nih.gov/ 

Omim.html).  Public availability of the genome sequence has encouraged subsequent 

global research projects such as the International HapMap Project (The International 

HapMap Consortium, 2003) and Encyclopedia of DNA Elements (ENCODE; The 

ENCODE Project Consortium, 2004), which have been launched with goals of 

identification and characterization of elements of the human genome which contribute to 

diseases or traits.  Ultimately such by-products of the Human Genome Project will 

enable us to understand the regulation of causative genes.  The latter are presently prime 

targets for the development of novel, more effective drugs that render promise for 

refinement of treatment methods. 

The success of the Human Genome Project formed a foundation upon which 

genome projects were established for a number of species, including important 

agricultural and companion species such as cattle, chicken, pig, and dog (discussed in 
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ensuing paragraphs).  Additionally, medium- to high-resolution gene maps are presently 

available for a wide range of livestock species such as sheep, goat, turkey, and buffalo 

(Womack 2005).  These maps have led to the identification of genes and mutations 

responsible for several traits of interest in some of the species studied in greater detail.  

The increasing amount of genome information available for these species may be 

accessed in the form of databases such as the Ensembl (http://www.ensembl.org), 

University of California Santa Cruz (http://genome.ucsc.edu/), and National Center for 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/) genome browsers.   

 A plethora of resources has become available in other species as well.  Linkage 

maps marked the beginning of the development of dense gene maps in the chicken and 

this eventually led to integration of different genomic resources (Groenen et al 2000; 

Groenen and Crooijmans 2003; Aerts et al. 2003) that provided the foundation for the 

complete sequence of the chicken genome. Other tools such as a 6000rad radiation hybrid 

panel have been used for integrating linkage and cytogenetic information and to align the 

maps to the sequence information (Morisson et al. 2002; Leroux et al. 2005; Morisson et 

al. 2005). Several BAC libraries including the TAM31, TAM32, and TAM33 (Lee et al. 

2003b) and CHORI-261 (http://bacpac.chori.org/chicken261.htm) libraries have been 

generated.  Of these, the three TAM libraries were used to construct the first BAC-based 

map of the complete chicken genome (Ren et al. 2003).  The next year, a clone-based 

physical map of the genome providing a 20X coverage enabled anchoring of draft 

sequence information obtained for the entire chicken genome (Wallis et al. 2004; 

International Chicken Genome Sequencing Consortium 2004).  Along with the 
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sequencing of the genome, a map showing nearly 2.8 million SNPs has been published 

for the chicken genome (Wong et al. 2004; International Chicken Polymorphism Map 

Consortium), which is anticipated to prove useful for investigating genetic traits such as 

QTLs (Gao et al. 2006; Rowe et al. 2006).  Gene expression analysis has also become 

possible for the chicken in recent years with the availability of an extensive collection of 

chicken ESTs and cDNA clones (Boardman et al. 2002; http://www.chick.umist.ac.uk/) 

used to generate cDNA microarrays (Burnside et al. 2005; Bourneuf et al. 2006; Smith et 

al. 2006). 

 Although linkage (e.g., Barendse et al. 1994) and syntenic maps (see Womack 

2005) have been key to the expansion of genomic information in cattle, radiation hybrid 

maps have expanded rapidly in the recent past.  Most recently, a third-generation 

radiation hybrid map of the entire cattle genome was published with 3,484 markers 

(including ~3,000 BAC end sequences) mapped using the Illinois-Texas 5,000rad RH 

panel (Everts-van der Wind et al. 2004, 2005).  Another RH map was constructed that 

same year using a 7,000rad RH panel (SUNbRH7000-rad) to map 5,593 markers (Itoh et al. 

2005).  A 12,000rad RH panel has also been established for cattle (Rexroad et al. 2000).  

In addition, the three BAC libraries available for cattle (RPCI-42, http://bacpac.chori.org 

/mbovine42.htm; CHORI-241, http://bacpac.chori.org/bovine240.htm; and TAMBT, Cai 

et al. 1995) have been used to generate a 294,651 whole clone HindIII fingerprint map of 

the entire genome (http://www.bcgsc.ca/lab/mapping/bovine).  Altogether, these 

resources have aided in the assembly of the cattle genome sequence 
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(http://www.hgsc.bcm.tmc.edu/projects/bovine/), which presently gives an ~7.1X 

coverage of the bovine genome (Btau_3.1; ftp://ftp.hgsc.bcm.tmc.edu/pub/data/ 

Btaurus/fasta/Btau20060815-freeze).  Additional sequence information collected from a 

variety of cattle breeds has enabled detection of SNPs (see ttp://www.ncbi.nlm. 

nih.gov/SNP/snp_batchSearch.cgi?org=9913&type=SNP; http://www.animalgenome 

.org/bioinfo/resources/util/q_bovsnp.html).   Moreover, cattle EST projects have proven 

to be a powerful resource for bovine research (http://racerx00.tamu.edu/bovine/ 

cattle_est_db.html), leading to the construction of cDNA microarrays such as the 

18,263-element array generated by the National Bovine Functional Genomics 

Consortium (NBFGC; Suchyta et al. 2003), and two others by the University of Illinois 

with 3800 and 7872 elements, respectively (Band et al. 2002; Everts et al. 2005).   

 For the cat, a linkage map containing 253 markers on 34 linkage groups was 

published by Menotti-Raymond et al. (1999) and provided a platform for genetically 

mapping diseases and conditions.  Since then, three generations of radiation hybrid maps 

have been developed for the cat genome using the 5,000rad whole genome radiation 

hybrid panel developed by Murphy et al. (1999b).  The first whole-genome radiation 

hybrid map for the cat included 424 type I and 176 type II markers (Murphy et al. 2000); 

the second generation map added 585 type I and 279 type II markers to this (Menotti-

Raymond et al. 2003b).  A resolution of 1 marker mapped every 1.5Mb was achieved by 

the latest map (Murphy et al. 2006).  These maps provided a framework for sequence 

information acquired for the cat as a result of the feline genome project initiated in 2002 

(O’Brien et al. 2002).  From this, a 2X draft coverage sequence has become available 
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and SNP discovery is underway (see http://pre.ensembl.org/Felis_catus/index.html); a 

7X coverage genome sequence is anticipated sometime in 2007.  In addition, the feline 

CHORI BAC library (RPCI-86; http://www.bacpac.chori.org) has been exploited to 

generate a high-resolution contig map of the feline major histocompatibility complex 

(Beck et al. 2005). 

 Gene mapping and genome-related research in the dog have evolved rapidly as 

well in recent years – once again with linkage and cytogenetic mapping taking the initial 

lead (Mellersh et al. 1997; Neff et al. 1999; Breen et al. 1999; Mellersh et al. 2000).  

High-resolution radiation hybrid maps with a 1 marker per Mb coverage of the genome 

have been developed for the dog using the RHDF5000-2 whole genome RH panel 

(Guyon et al. 2003).  This panel was next used for an integrated map of the genome 

including 4,249 markers (Breen et al. 2004), complemented by the 1.5X whole-genome 

sequence from a standard poodle dog which was available as early as 2003 (Kirkness et 

al. 2003).  Moreover, Hitte et al. (2005) constructed a 10,000-marker RH map using this 

survey sequence by deriving gene markers from the available sequence and mapping 

them using a 9,000rad RH panel.  In this way, the somewhat limited poodle sequence data 

was organized to yield more information.  The 7.5X draft sequence of the boxer genome 

was made public in July 2004 along with a catalogue of SNPs established using 

information from multiple breeds (Lindblad-Toh et al. 2005).  Of particular interest in 

the dog community are extensive regions of linkage disequilibrium (LD), resulting from 

the homogeneity due to an imposed lack of diversity and/or inbreeding within individual 

dog breeds (Ostrander and Wayne 2005); investigation of these regions provide clues to 
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canine evolution (Lindblad-Toh et al. 2005).  Additionally, haplotypes that are shared 

across multiple breeds were uncovered which may reveal heritable elements such as risk 

factors that are common to the breeds (Lindblad-Toh et al. 2005).   

The gene maps and genomes of mice have proven useful for making comparisons 

with human and for modeling a number of diseases (for review, see Guénet 2005).  A 

framework provided by a clone-based physical map (Gregory et al. 2002) was used to 

organize sequence information obtained for the mouse in the first draft of the mouse 

genome sequence (Mouse Genome Sequencing Consortium 2002).  The present 

assembly of the mouse genome (NCBI build 36) is approximately 2.66 Gb in length and 

includes nearly 22,000 genes.  Availability of sequence information has facilitated 

investigations into features of the mouse genome, such as those that could give clues 

about events in murine and mammalian evolution.  These include segmental duplications 

(Cheung et al. 2003), gene deletions and evolutionary breakpoints (Fitzgerald and 

Bateman 2004), and differences in genetic variation between strains of laboratory (e.g., 

Wade et al. 2002; Yalcin et al. 2004) and “wild-derived” (Ideraabdullah et al. 2004) 

mice, among others.  Mouse sequence data has also made possible closer examinations 

into the transcriptome, including the identification of non-coding RNAs (ncRNAs; e.g., 

The Fantom Consortium 2005). 

 For pigs, integration of cytogenetic and linkage maps (Archibald et al. 1995; 

Rohrer et al. 1996; Goureau et al. 1996) was first achieved using the INRA-University of 

Minnesota 7000rad whole-genome radiation hybrid panel (IMpRH; Yerle et al. 1998; 

Hawken et al. 1999).  This panel was also utilized in the generation of EST RH 
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comparative maps of the porcine genome (Rink et al. 2002, 2006).  The development of 

a 12,000rad RH panel (IMpRH2; Yerle et al. 2002) has allowed finer mapping of regions 

of interest (e.g., Demars et al. 2006).  At present parts of the pig genome are being 

sequenced, with a 0.66X coverage map already published (Wernersson et al. 2005); it is 

expected that a 6X coverage of sequence data for the pig genome will probably be 

available by next year.  Finally, the generation of porcine microarrays has provided 

valuable resources for carrying out functional analyses of the pig genome (Niewold et al. 

2005; Dvorak et al. 2005).   

Impacts in humans and other mammalian species 

The domestic species mentioned above have profited from higher-resolution 

maps which have facilitated improvements in medicine and understanding molecular 

bases behind traits of interest.  For example, genes responsible for morphological 

differences between dog breeds (Chase et al. 2002) have been mapped and examined.  

Gene expression data has clarified the genetic basis behind behavior patterns in different 

canids (e.g., Saetre et al. 2004, 2006).  Also, dense gene maps greatly enhance insight 

into the evolution of these species and mammals as a whole (Liu et al. 2006; Kijas et al. 

2006), which can ultimately aid in the discovery and exploitation of functional elements.  

High resolution sequence-level gene maps increase knowledge of the evolution of 

certain sequence features, such as repetitive elements (Schibler et al. 2006) and gene 

families (e.g. natural killer receptor gene complex, Hao et al. 2006).  Analysis of gene 

sequences in dogs has led to an improved elucidation of the evolution of canids as well 

as mammals (Parker et al. 2004).  Importantly, causative genes and mutations 
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responsible for traits of interest have been identified and investigated in these species.  

Examples of such conditions include double muscling in cattle (Grobet et al. 1997), 

resistance to edema disease (Frydendahl et al. 2003) and membranoproliferative 

glomerulonephritis type II (Hegasy et al. 2002) in pigs, spider lamb syndrome in sheep 

(chondroplasia; Beever et al. 2006), beta-mannosidosis in goats (Leipprandt et al. 1996), 

coat color (Kerns et al. 2003; Berryere et al. 2005) and leukocyte adhesion deficiency in 

dogs (Kijas et al. 2000) – among others (for a detailed list, refer to “Online Mendelian 

Inheritance in Animals [OMIA],” http://omia.angis.org.au/).  Causes behind resistance to 

retroviral infection have been decoded in cattle (Si et al. 2006).   

During recent years, a range of novel powerful research tools and resources such 

as microarrays and single nucleotide polymorphism (SNP) chips are expanding our 

knowledge of more complex, multi-gene conditions.  For example, a bovine innate 

immune microarray has been developed to help ascertain molecular aspects of varying 

disease responses in cattle (Donaldson et al. 2005).  Gene expression profiles in cattle 

embryos have been analyzed for improving nuclear transfer efficiency using microarray 

technology (Smith et al. 2005).  Genomic information generated for the pig has been 

used in various applications, including gene expression analyses in phenotypically 

different types of muscles (Bai et al. 2003), ovary function (Caetano et al. 2004), and 

microarray development (e.g., Zhao et al. 2005).  Canine sequence data have recently 

been used in a number of applications, such as SNP detection (Chevreux et al. 2004), 

identifying and determining the function of microRNAs (Wang and Wang 2006), and 

gene expression profiles of tumors (Thomas et al. 2003, 2005; Thomson et al. 2005).  
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Altogether, these examples represent cases of the practical application of genomic 

information in these species.  

Several factors serve as prerequisites for the development of dense gene maps. 

First is a rich pool of markers that can be rapidly utilized for mapping to individual 

chromosomes. This includes polymorphic microsatellite markers, sequence-tagged site 

(STS) markers and gene specific markers.  While a large number of polymorphic 

markers are being generated and verified for their degree of variability (e.g., Ellegren et 

al. 1992; Marklund et al. 1994), gene specific markers can either be generated from 

ESTs obtained from cDNA libraries developed for some of the horse tissues (e.g., Lieto 

and Cothran 2001; Pascual et al. 2002; Stratagene; others also available at 

http://www.ncbi.nlm.nih.gov/) or through multiple alignment of sequence data from 

other species to obtain equine orthologs of human genes.  BAC-end sequences with 

comparative information can also be used as markers. These markers may be genotyped 

on an RH panel and a dense linear map can be obtained for individual horse 

chromosomes.  Assuming the need for 1 marker/Mb of the genome, a 2,800 marker 

physical map will provide the desired resolution.  However, to have this resolution, the 

actual number of mapped markers needs to be higher (~4,000) so that a high-confidence 

ordered framework can be obtained. Further, selected markers will then have to be 

mapped via cytogenetic methods to anchor RH groups and determine their orientation.  

Only then can these maps be of the desired resolution where they can be used for 

mapping and identifying genes governing traits of interest and making detailed 
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comparisons with other species to elucidate features associated with chromosome 

evolution. 

In short, other species have profited significantly from the level of detail supplied 

by their gene maps.  In order to see similar progress for the horse, it is clearly necessary 

for gene map resolution to improve.  Increased marker density and nucleotide-level 

information will result in an enhanced utility of the gene maps for practical applications 

in horses, such as those observed in other species. 

 

Gene mapping approaches 

 Several approaches are employed for developing gene maps; these may be 

broadly classified as genetic and physical.  While most genetic and physical maps 

provide the relative order of loci in a given region of a chromosome, each measures 

distance between markers differently and has different requirements for map generation. 

Genetic maps 

Linkage maps fall under the category of genetic (or meiotic) maps.  Thomas 

Hunt Morgan’s observation of the non-random segregation of genetic “characters” led 

him to hypothesize that such characters are associated – or linked – with one another 

(Morgan 1911).  His student, Alfred H. Sturtevant, subsequently developed the first 

genetic linkage map for Drosophila (Sturtevant 1913; refer also to Sturtevant 1917), 

ordering markers on the basis of crossover frequency between them.  This mapping 

required characteristics (like physical traits) that could be inherited in different forms 

which today we call alleles.   
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Linkage mapping requires a set of highly polymorphic markers, which are used 

to screen a reference family where the segregation of specific alleles is traced to identify 

loci (or actually alleles of loci) that are segregating together. However, because only 

polymorphic markers – primarily microsatellites – may be used, linkage maps are not 

very useful for making comparisons of maps across different species (which may not 

share the same polymorphic markers) and subsequently inferring evolutionary events.  

Also, because recombination occurrence is not uniform throughout the genome, distance 

estimations – measured as frequency of recombination between markers and expressed 

as centiMorgans, cM – are not always reliable.  As a result, map sizes may not be 

accurately judged in relation to one another.  

Linkage maps provide an assortment of polymorphic markers (referred to as a 

genome scan panel) that are distributed uniformly over the genome and are routinely 

used to map traits of interest including diseases to specific chromosomes or 

chromosomal regions. Researchers use this data to identify candidate genes implicated in 

the phenotype. As a result, the method is particularly useful for finding genes and 

mutations/variations potentially associated with diseases or traits.   

Physical maps 

Synteny, cytogenetic, radiation hybrid, contig, and sequence-level maps are all 

examples of physical maps. These maps can incorporate any marker, regardless of 

polymorphic status.  The term "syntenic” describes those loci which reside on the same 

chromosome; accordingly, synteny maps group genes on the basis of their common 

chromosome address.  Synteny mapping involves the use of a somatic cell hybrid panel, 
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constructed by fusing donor (e.g., horse) cells with recipient (primarily rodent) cells to 

form hybrid cells (see Ephrussi and Weiss 1969).  The chromosomes from the donor 

genome are lost at random as individual hybrid cells multiply, until they at last become 

more or less stable resulting in each hybrid clone having an established and partly 

variable complement of donor chromosomes.  Clones can be screened by PCR, enzyme 

electrophoresis, or Southern blotting for the presence or absence of genes or gene 

products.  A gene may be assigned to a chromosome when screening reveals that the 

chromosome is consistently positive or negative for that gene or gene product in every 

cell line where the chromosome is present. 

Cytogenetic mapping involves labeling a DNA probe and then hybridizing it to 

its corresponding location on a chromosome.  Fluorescence in situ hybridization, or 

FISH, involves fluorescently labeling DNAs for specific markers, which then may be 

hybridized individually or in groups using different labeling and reporter molecules 

(Pinkel et al. 1986).  FISH can vary in resolution from 3-5Mb when done using 

metaphase spreads (Trask et al. 1989; Yokota et al. 1995), 25-750kb when carried out on 

interphase chromatin (Lawrence et al. 1988), or 1-500kb when using stretched DNA 

fibers (Laan et al. 1995).  Irrespective of the approach used, FISH helps to establish 

physical locations of the markers on the chromosome and has the ability to depict their 

relative order.  When performed using DNA material from an entire chromosome, the 

technique is known as chromosome painting (Pinkel et al. 1986; Lichter et al. 1988). 

When chromosome painting is done across evolutionarily closely or distantly related 
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species, it is referred to as ZooFISH (Scherthan et al. 1994).  The latter facilitates 

detection of homology between chromosomes of different species.   

Radiation hybrid panels are developed by fusing irradiated donor cells (e.g., 

horse cells) with non-irradiated recipient cells (e.g. hamster cells), forming hybrid cells 

(Goss and Harris 1975; Cox et al. 1990).  Clones of hybrid cells contain both whole 

hamster chromosomes and donor chromosomes fragmented by radiation. The donor 

chromosomes tend to fuse with recipient chromosomes.  Because not all donor 

chromosomes can be stably duplicated and segregated during mitosis, usually due to lack 

of centromeres, the unincorporated donor chromatin is lost at random until the individual 

hybrid cell lines (collectively termed “panel”) are stabilized.  The radiation dose given to 

the donor cells may be adjusted to control the frequency of breaks and therefore the 

achievable map resolution.  Typically, radiation hybrid panels of 5000rad have been made 

to be able to deduce linear order of ~5000 or less markers in a range of species (e.g., 

Womack et al. 1997; Murphy et al. 1999b). In some instances RH panels have been 

generated with a radiation dosage of 12,000 or even 20,000rad (e.g., Rexroad et al. 2000; 

Yerle et al. 2002). A higher radiation dose will result in more chromosomal breakages, 

thus increasing the chances of a break occurring between two markers and enhancing 

map resolution.  Such panels can resolve the order of ~10,000 markers (Hitte et al. 

2005).  Typically, the amount of rads used in generating the panel indicates the number 

of markers than can be mapped (e.g., a 5,000rad panel will allow up to 5,000 markers to 

be mapped). 
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The panel of hybrid cell lines generated as described above can be genotyped by 

PCR, and the results analyzed using statistical software (e.g., RHMAPPER, Slonim et al. 

1997; RHMAP 3.0, Boehnke 1992; Lunetta et al. 1995; rh_tsp_map, 

ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar; Agarwala et al. 2000; 

CONCORDE, http://www.isye.gatech.edu/~wcook/rh/; Applegate et al. 1998; Qsopt, 

http://www.isye.gatech.edu/~wcook/qsopt).  This results in physically ordered gene 

maps with distances between markers measured in centiRays (cR) – which is a statistical 

probability indicating the likelihood of a radiation-induced break occurring between the 

two markers (Cox et al. 1990).  Because primers for any marker that can be screened by 

PCR may be used for genotyping the RH panel, regardless of polymorphic status, 

radiation hybrid maps facilitate the integration of markers from various sources (i.e. 

genetic linkage, synteny, cytogenetic) into a single consensus map.  Importantly, such 

integrated maps contain a substantial proportion of gene specific markers that are very 

useful for making detailed comparisons with maps of different species.   

A third type of physical map is the contig map, constructed from contiguous, 

large overlapping clones of DNA fragments, such as the BACs.  Contigs provide a 

framework for the in-depth analysis of a region of interest (for example, the equine 

major histocompatibility complex [MHC]; Gustafson et al. 2003) or for the efficient 

development of nucleotide-level maps, as they facilitate the sequencing of a large section 

of DNA by partitioning it into more manageable, sequencing-ready pieces (e.g. the 

human genome; see below).  Most BAC clones may be put in order based on shared 

characteristics such as known marker content or sequence.  This can be done via 
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digesting the BAC DNA with a restriction enzyme and then comparing resultant patterns 

in a process known as fingerprinting (Marra et al. 1997; Soderlund et al. 2000), or by 

screening clones by PCR for the presence of certain unique sequences or markers.  

Alternatively, end sequences generated from the BACs are used to generate STS 

markers, which in turn provide the basis to substantiate the overlaps determined by 

fingerprinting (Olson et al. 1986; Venter et al. 1996; Zhao et al. 2000). Establishing 

clone order by default provides the order of the markers they contain though order of 

markers within a clone may not be deduced in some instances.  The development of 

contigs results in highly detailed, linearly ordered physical maps which may include any 

type of marker. 

The ultimate physical map is the sequence-level map because it provides the 

highest level of resolution (at the nucleotide level).  The development of sequence maps 

is considerably facilitated by a clone library.  The clones may be organized into contigs 

prior to sequencing to anchor the sequence data onto previously-established physical 

maps, as done by the public endeavor to sequence the human genome (International 

Human Genome Sequencing Consortium 2001).  Alternatively, whole genome DNA 

may be digested and cloned, and the clones may be randomly sequenced to eventually 

assemble the data (shotgun approach; Venter et al. 1998). This method was employed by 

Celera to sequence the human genome in 2001 (Venter et al. 2001).  Such nucleotide-

resolution maps enable the identification and localization of all genes within the genome 

of a species, and make possible the description of their structures including regulatory 

elements (e.g., Margulies et al. 2005; Kimura et al. 2006).  These maps also provide 
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complete insight into non-coding regions of the genome and facilitate research to 

understand their significance in genome structure and function (e.g., Johnson et al. 

2005a; Kapranov et al. 2005). Sequence information also elucidates features such as 

single nucleotide polymorphisms (SNPs; The International SNP Map Working Group 

2001), haplotypes (The International HapMap Project 2003, 2005), and gene regulatory 

elements (The ENCODE Project Consortium 2004).  In addition, sequence information 

provides valuable evolutionary insights by allowing analysis of breakpoint regions that 

are signatures of evolutionary rearrangements from an ancestral genome. 

 

Overview of gene mapping in the horse 

Efforts to analyze the horse genome and develop gene maps started much later 

compared to some of the other domestic species such as cattle, pig, and chicken.  Gene 

mapping for the horse began with the mapping of the glucose-6-phosphate 

dehydrogenase (G6PD) gene to the equine X chromosome by two groups (Trujillo et al. 

1965; Mathai et al. 1966).  The next decade heralded the first mapping of autosomal 

genes (Sandberg, 1974).  Unfortunately, an inundation of maps did not follow, and 

equine gene mapping made slow progress over the next several years.  Some of the 

significant contributions made during this period included developing genetic linkage 

maps (of three coat color genes; Andersson and Sandberg 1982) and physical assignment 

of the equine major histocompatibility complex to chromosome 20 by in situ 

hybridization (Ansari et al. 1988; Mäkinen et al. 1989).  Eventually the pace of equine 

gene mapping was accelerated after the first International Equine Gene Mapping 
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Workshop in 1995, where researchers from around the world formed a foundation for 

the organized and collaborative study of the equine genome at an international level. 

One of the findings reported at this meeting was the whole genome horse-human 

comparative map generated by Zoo-FISH (published later as Raudsepp et al. 1996) that 

formed the key basis for the development of gene maps in horses, primarily by 

permitting the use of the human gene maps as the template for targeted expansion.  

Synteny map 

Somatic cell hybrid panels were among the first organized tools developed for 

generating gene maps of horse chromosomes.  Panels of hybrid cells were generated by 

several groups (Lear et al. 1992; Williams et al. 1993; Bailey et al. 1995) by fusing horse 

and mouse cells to form hybrids which contained a complete complement of mouse 

chromosomes and a subset of equine chromosomes.  These panels were used to obtain 

early synteny maps for some of the equine chromosomes.  However, the most used panel 

developed for the horse was that reported by Shiue et al. (1999), which contributed 

significantly in the construction of synteny maps for the all equine autosomes and the 

sex chromosomes (Caetano et al. 1999a, b; Shiue et al. 1999). These maps provided gene 

mapping evidence to reaffirm the homology between horse and human genomes that was 

previously reported by Raudsepp et al. (1996). As synteny mapping does not allow 

markers to be placed in a linear order, this particular method became obsolete by the 

emergence of the radiation hybrid mapping technique. 
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Cytogenetic map 

The technique of in situ hybridization was first utilized by Ansari et al. (1988) 

and Mäkinen et al. (1989) to localize the equine major histocompatibility complex. 

During the next 4-5 years only ~15 additional genes were mapped using this approach, 

some of which included calcium release channel, glucosephosphate isomerase, etc. 

(Harbitz et al. 1990).  Oakenfull et al. (1993) broke new ground by mapping the alpha 

globin gene complex by fluorescence in situ hybridization to horse chromosome 13.  

This was the first gene to be mapped by this method (FISH) in the horse.  Subsequently, 

the development of the first horse-human Zoo-FISH map (Raudsepp et al. 1996) 

represented an advancement of the FISH approach to identify evolutionarily conserved 

chromosomal segments between the two species.  As mentioned earlier, this provided 

the opportunity to utilize the well-developed human gene map for identifying 

homologous regions in the horse and facilitated provisional assignments of linkage and 

synteny to specific chromosomes.  The findings also contributed to the elucidation of a 

possible ancestral karyotype by comparing Zoo-FISH and gene mapping data from a 

range of other species (human, pig, cattle, Indian muntjac, cat, American mink, harbor 

seal, and horse; Chowdhary et al. 1998).  During the past 5-6 years, a number of studies 

have added to the expansion of cytogenetic maps for horse chromosomes, noteworthy 

among which are Godard et al. (2000), Lear et al. (2001), Mariat et al. (2001), 

Milenkovic et al. (2002), Chowdhary et al. (2003), Lee et al. (2003a), Gustafson-

Seabury et al. (2005) and Perrocheau et al. (2005, 2006). The primary contribution of 

these studies is the anchoring of genetic linkage, synteny, and RH groups to specific 
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chromosomes or chromosomal locations identified by other maps, and identification of 

additional regions of homology.  These studies have also provided valuable estimations 

and/or verifications of marker orders and distances. 

Linkage map 

The first autosomal linkage map constructed for the entire horse genome 

employed the Uppsala half-sib reference family (Lindgren et al. 1998).  Almost at the 

same time, the International Horse Reference Family Panel was analyzed and facilitated 

the establishment of two more linkage maps for the horse genome (Guérin et al. 1999, 

2003) and the Animal Health Trust three-generation full-sib reference family was used 

for an additional whole-genome linkage map (Swinburne et al. 2000).  Recently, Penedo 

et al. (2005) combined data from all three half-sib reference families into a single 

comprehensive map containing 766 markers spanning 3,740cM and distributed on thirty-

one equine autosomes .  Furthermore, the AHT three-generation full-sib reference family 

was utilized for the generation of a significantly improved resolution 2,772cM linkage 

map comprising a total of 742 markers on the autosomes and the X chromosome 

(Swinburne et al. 2006).  Altogether these genetic maps have provided two sets of 

genome scan panels: the International Horse Reference Family Panel (IHRFP; Guérin et 

al. 1999, 2003) and the panel resulting from the map generated using the AHT family 

(Swinburne et al. 2000).  Together these provide a total of 742 markers (Swinburne et al. 

2006) for scanning the genome with polymorphic markers uniformly distributed over the 

genome, to map or find genes or markers potentially associated with traits of interest.  
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Importantly, the map published by Swinburne et al. (2006) had only one linkage group 

per chromosome. 

Radiation hybrid map 

Radiation hybrid maps have the advantage of integrating different kinds of maps, 

irrespective of the type of markers.  The first RH panel developed for the horse was a 

3000rad panel used to construct preliminary RH maps for horse chromosomes 1 and 10 

(ECA1 and 10; Kiguwa et al. 2000).  A short time later, a 5000rad panel was constructed 

by Chowdhary et al. (2002) and used to generate an RH map for ECA11 before being 

used to build a comprehensive radiation hybrid map for the entire horse genome 

(Chowdhary et al. 2003).  This represented the first high-throughput gene map for the 

horse genome that integrated type I and type II markers, thereby amalgamating synteny, 

cytogenetic, and linkage maps into a single consensus map.  Subsequently, this same 

panel was used to create high-resolution maps (≥1 marker per Mb) for several equine 

chromosomes: ECAX (Raudsepp et al. 2002; Raudsepp et al. 2004a), ECA17 (Lee et al. 

2003a), ECAY (Raudsepp et al. 2004b), ECA22 (Gustafson-Seabury et al. 2005), and 

the equine homologs of HSA5 (Goh et al. 2006), and has been integral to the work 

reported in this dissertation.  Maps of this resolution are essential to rapidly and 

efficiently identify genes responsible for conditions of significance to the horse industry, 

such as disease resistance or susceptibility, fertility, and performance-related traits.  

Also, such maps offer a comparative platform in relation to the gene maps of other 

species that provides insight into chromosome evolution. 
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Sequence map 

A landmark event in the history of the horse came in July 2006 with the 

announcement that the entire equine genome is being sequenced by scientists at the 

Broad Institute of MIT and Harvard, Boston, USA.  Using DNA from an inbred 

Thoroughbred mare named Twilight, the horse genome is currently in the process of 

being deciphered, with a 7X coverage anticipated for the ~2.7 Gb genome by the end of 

the year.  Simultaneously, a catalogue of SNPs is being generated using material from 

various modern and ancestral horse breeds.  As a member of Perissodactyla, a 

mammalian order which presently lacks any sequenced genome, the horse is expected to 

supply valuable information that will contribute to ongoing efforts to understand 

evolution of mammalian genomes.  Comparing whole genome sequence data from 

diverse genomes enables the identification of not only the coding sequences but also a 

variety of regulatory elements that are evolutionarily conserved and potentially serve key 

roles in regulating gene function (The ENCODE Project Consortium 2004; Margulies et 

al. 2005).  Such elements, identified across mammals and vertebrates, are expected to 

serve as targets for drug delivery in future biomedical research and treatment 

approaches. 

Relevance 

The over-arching goal of horse gene mapping is the discovery and exploration of 

genes associated with equine diseases and traits of interest (such as disease resistance 

and susceptibility, performance, and fertility) along with the elements that regulate the 

manifestation of these conditions.  As early as 1992, the causative mutation responsible 
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for a disorder inherited by simple Mendelian means (hyperkalemic periodic paralysis) 

was identified and described (Rudolph et al. 1992).  Subsequently, gene maps and 

comparative genomics have led to identification of mutations implicated in severe 

combined immunodeficiency disease (Bailey et al. 1997; Shin et al. 1997), overo lethal 

white foal disease (the equine version of Hirschsprung disease in humans; Yang et al. 

1998; Santschi et al. 1998; Metallinos et al. 1998), junctional epidermolysis bullosa 

(Spirito et al. 2002; Milenkovic et al. 2003), glycogen storage disease (Ward et al. 2004), 

and malignant hyperthermia (Aleman et al. 2004).  Additionally, genes and their variants 

or polymorphic markers associated with various coat colors have been described: agouti 

and brown (Rieder et al. 2001), cremello (Locke et al. 2001; Mariat et al. 2003), tobiano 

(Brooks et al. 2002; Mau et al. 2004; Brooks and Bailey 2005), chestnut (Marklund et al. 

1996), grey (Henner et al. 2002; Locke et al. 2002; Swinburne et al. 2002), silver (Mikko 

et al. 2006), and appaloosa (Terry et al. 2002, 2004).  These developments testify the 

significance and use of gene maps in the horse.  However, they also underline the need 

of higher resolution maps to facilitate the rapid detection of genes directly associated 

with the conditions.  High-resolution maps presently being generated by us and reported 

in this dissertation will provide essential details for deciphering the causes of these 

conditions at the molecular level.  High-resolution maps also serve as the basis for 

refined comparisons of the equine genome with genomes of different species, which in 

turn also means an improved understanding of chromosome evolution. 

The availability of whole genome sequence information for the horse in the near 

future will enable identification of all genes present in the horse genome. This will pave 
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the way for the construction and use of expression microarrays - most likely based on 

long oligos of ~70-mer length, and will lead to functional analysis of the equine genome, 

which will be key to the investigation of changing levels of gene expression under 

normal developmental as well as pathological states.  Further, the genomewide SNP 

chips comprising 30-50,000 SNPs distributed over the equine genome will serve as an 

important platform for association studies for Mendelain as well as complex traits. 

Jointly, the knowledge resulting from all these developments are of major relevance to a 

better comprehension of the mechanisms associated with manifestation and progression 

of diseases and their subsequent prevention, diagnoses, and treatments. 

 

Improving gene maps for the horse – need and possible strategies 

 Despite consistent advances in analyzing the equine genome, current maps in the 

horse lack the adequate density essential for candidate gene discovery and association 

studies.  While the first generation radiation-hybrid map for the horse genome 

represented a major advancement by providing gene maps of all autosomes and the X 

chromosome, the resolution of one marker mapped every 4Mb or greater provided by the 

map (Chowdhary et al. 2003) was insufficient for future practical applications.  The most 

noteworthy drawback in the map is the number and distribution of both gene specific 

and polymorphic microsatellite markers and lack of alignment between maps developed 

by different groups using different approaches.  
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Rationale for the present study 

 In this dissertation, the generation of detailed gene maps for seven equine 

chromosomes (ECA6, 7, 10, 15, 18, 21 and X) was undertaken.  These chromosomes 

were selected for high-resolution mapping on the basis of their potential involvement in 

harboring genes governing diseases and conditions important to equine welfare.  Firstly, 

horse chromosomes 7, 10, and 21 share homology with human chromosome 19 

(HSA19), which is the most gene-dense chromosome in humans (Dehal et al. 2001; 

Grimwood et al. 2004).  This human chromosome has been found to contain genes 

implicated in conditions which are also of interest to horses, including insulin-like 3 

(INSL3) - implicated in cryptorchidism and reduced fertility in humans and mice (Nef 

and Parada, 1999; Zimmermann et al. 1999; Ivell et al. 2005; Ferlin et al. 2006); insulin 

receptor (INSR), involved in diabetes mellitis (Taira et al. 1989; described for horses in 

Johnson et al. 2005b); and ryanodine receptor 1 (RYR1), which has a role in malignant 

hyperthermia (MacLennan et al. 1989; described for horses in Aleman et al. 2004).   

Expanding on the study of the horse homologs of HSA19, a section of ECA21 

was selected for contig development.  This particular genomic segment warrants special 

interest due to a Perissodactyl-specific breakpoint at the boundary in homology between 

HSA19 and HSA5 on ECA21.  Also, this ~5Mb segment contains genes responsible for 

various diseases and conditions that are of interest to horse owners and breeders. These 

include the aforementioned INSL3 gene; cartilage oligomeric matrix protein (COMP), 

connected with pseudoachondroplasia (Briggs et al. 1995; Posey et al. 2004); and 

exostoses (multiple) 3 (EXT3), which is implicated in a bone growth disorder called 
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multiple exostoses (Le Merrer et al. 1994). Hence it was decided to develop a BAC 

contig on this region to decipher the gene content, obtain complete sequence and make 

the information available for future equine research. An additional goal of this study was 

to precisely demarcate homology of this region in relation to HSA19 and characterize 

the evolutionary break/fusionpoint connecting to the segment corresponding to HSA5. 

The other chromosome chosen for development of a dense gene map was the X 

chromosome. This chromosome is the most conserved chromosome in mammals (Ohno 

1967; Charlesworth 1991), with an organization, constitution, and gene content that have 

remained very much the same throughout evolution in most mammals. The chromosome 

is known to harbor a preponderance of sex- and reproduction-related genes. It also 

contains genes that are associated with sex-linked diseases, development, and/or 

performance (Ross et al. 2005).  Moreover, dosage compensation is one of the key 

phenomena associated with this chromosome (Lyon 2002).  All these factors motivated 

us to develop a high resolution map of the chromosome in the horse such that an 

improved understanding of its organization and content can pave a way to study the 

genes present on this chromosome. 

Finally, the equine homologs of human chromosome 2 were selected for 

generation of dense gene maps. This human chromosome carries genes that are 

implicated in thyroid- and reproduction-related disorders.  Some of these include 

hyperparathyroidism 3 (HRPT3), involved in familial isolated hyperparathyroidism 

(Warner et al. 2006); CELIAC3 and CTLA4, involved in susceptibility to celiac disease 

(Djilali-Saiah et al. 1998; Naluai et al. 2000; van Belzen et al. 2004); 
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preeclampsia/eclampsia 2 (PEE2), implicated in the reproductive disorder preeclampsia 

(Arngrimsson et al. 1999); CDHS2, involved in coronary heart disease (Falchi et al. 

2004; BHF Family Heart Study Research Group 2005); and susceptibility to essential 

hypertension 3 (HYT3; Angius et al. 2002).  In humans, this chromosome harbors a 

unique ancestral chromosome fusion event (Fan et al. 2002a, b; Hillier et al. 2005) and 

in horses one of the boundaries of homology with HSA2 appears to be unique to Equids. 

The detailed mapping of each of these seven equine chromosomes (including 

parts or all of ECA6, 7, 10, 15, 18, 21, and X) is described in this dissertation, along with 

methods employed, inferences made, and potential benefits. 
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II.  OBJECTIVES 

 The overall goals of this dissertation were to generate high resolution physical 

and comparative maps that could eventually be used for improved understanding of 

equine diseases and conditions, disease resistance, fertility, reproduction, coat color, and 

other traits that are of economic significance to the equine industry. Generation of such 

maps will not only lead to the development of novel biomedical tools for equine health 

and welfare, but will also provide insight into the evolution of equine chromosomes.  

These overall goals were accomplished using the following specific objectives, listed 

along with the significance of each. 

The first objective was to develop high resolution integrated physical gene maps 

for seven horse chromosomes: ECA6p, ECA7, ECA10p, ECA15, ECA18, ECA21 and 

ECAX.  Dense gene maps with a targeted resolution of one marker per Mb or greater are 

needed for every horse chromosome.  These can be efficiently generated via analysis of 

genotyping data for both previously-mapped as well as new gene-specific markers, 

STSs, and microsatellites on the 5000rad horse x hamster RH panel.  The linear map thus 

generated can be anchored to specific chromosomes and appropriately oriented by FISH 

localization of selected markers.  This will ultimately lead to high resolution consensus 

maps which will integrate markers from a variety of sources (including those on 

different linkage and synteny maps), thereby maximizing their usefulness. 

The second objective was to generate comprehensive comparative maps for these 

equine chromosomes and finely align them to corresponding chromosomes in humans 

(viz., HSA2, HSA19 and HSAX) and other sequenced mammals.  Gene mapping data 
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and sequence positions of comparative markers (where available) in a range of mammals 

and vertebrates provide information about the organization of the corresponding regions 

of the genomes of these species. This in turn helps to finely align the equine genome 

with that of sequenced species or species with dense gene maps.  Such comparative 

maps are useful for candidate gene searches, as genes implicated in a condition in one 

species may also be responsible for that or a similar condition in another.   

The third objective was to postulate the comparative evolution of the seven 

equine chromosomes from a common ancestor in relation to other mammalian species 

and orders.  Comparative gene maps give useful information for evaluating regions of 

homology across diverse species.  This elucidates their likely ancestral state and 

provides an account of the evolution of the chromosome(s) leading to configurations in 

individual species. It also enables the identification of evolutionary breakage and/or 

fusion points and rearrangements.  Extrapolating information on the evolution of horse 

chromosomes together with other species can lead to an improved understanding of 

mammalian and vertebrate evolution. 

The fourth objective was to generate a sequence ready Bacterial Artificial 

Chromosome (BAC) contig over a 5 Mb region of the ECA21 that corresponds to the 

proximal half of HSA19p, and characterize it for gene content and order.  Contigs 

provide a template upon which to anchor sequence data.  In addition, they are essential 

for fine mapping of regions of interest, such as those known or suspected to contain 

candidate genes (e.g., INSL3 on ECA21, implicated in cryptorchidism).  Also, contigs 

facilitate more precise localization, sequence analysis and characterization of 
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evolutionary breakage or fusion points, such as the boundary in homology between 

HSA19 and HSA5 on ECA21. They also highlight minute rearrangements in gene order 

that can be easily missed by lower-resolution maps. 
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III.  SUMMARY OF METHODS USED 

 The high-resolution physical, comparative, and BAC contig maps for selected 

equine chromosomes were prepared using a range of approaches. Details of these 

approaches are provided in sections IV-VII containing three published articles and a 

manuscript describing a high resolution map for an individual group of chromosomes. In 

the sections below, a summary of these approaches is provided. The materials and 

methods are classified into three broad categories: 

- Radiation hybrid (RH) mapping 

- BAC isolation, contig development, and fingerprinting 

- Fluorescence in situ hybridization (FISH) 

 

Radiation hybrid (RH) mapping 

 This was the primary approach for generating the detailed physical gene maps in 

this dissertation.  The method involves the use of the 5000rad horse x hamster radiation 

hybrid panel developed at Texas A&M University (described in Chowdhary et al. 2002).  

The panel comprises 92 hybrid cell lines and has been characterized and used 

extensively to generate whole genome radiation hybrid maps for the horse (e.g., 

Chowdhary et al. 2003).  

Marker generation 

A variety of markers was genotyped on the panel for the generation of linear 

maps of equine chromosomes. These include gene-specific markers, microsatellites, and 

sequence-tagged sites (STSs).  
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Gene-specific markers 

Two sources were used to obtain this type of markers. The first included 

expressed sequence tags (ESTs) generated from the equine skeletal muscle and the testis 

cDNA libraries. Sequence data from ~25,000 ESTs was analyzed using bioinformatic 

approaches (BLAST hits and <1e-10 E-value when compared with available mammalian 

sequences) to identify loci that would potentially map to the targeted chromosomes or 

chromosomal regions based on previously described homology between horse and 

human chromosomes (Raudsepp et al. 1996).  For each of the chromosomes, genes were 

selected along the corresponding human chromosome at regular intervals (~1-2 Mb) so 

as to ensure the desired resolution. In addition to ESTs, gene specific markers were also 

developed by obtaining equine orthologs for human genes, following alignment of 

multiple sequences (http://www.ddbj.nig.ac.jp/search/clustalw-e.html) of the desired 

gene from a range of mammalian species (www.ncbi.nlm.nih.gov/BLAST; 

www.ensembl.org; genome.ucsc.edu). Subsequent primer design was performed in such 

a way as to obtain equine specific amplification. In such cases, the PCR product was 

verified by sequencing. 

Microsatellite markers 

All published polymorphic microsatellite markers on the chosen chromosomes 

were used for genotyping and integration in the map. For this, published data from 

Guérin et al. 2003, Penedo et al. 2005 and Swinburne et al. 2006 were used. Additionally, 

in some cases (e.g., Wagner et al. 2006) new microsatellite markers were generated by 

us. 
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STS markers   

All published sequenced tagged sites (STSs) expected to map on the selected 

chromosomes were genotyped in this study. Additionally, a number of STS markers 

were generated by end-sequencing of individual BACs. However, the majority of these 

STSs were not genotyped in the RH panel primarily due to their close physical proximity 

which could lead to problems in resolving their physical order. These STSs were instead 

used for chromosome walking and identification of new BAC clones  

Primer design and optimization 

PCR primers for all types of markers mentioned above were designed using the 

PRIMER3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).  All 

primers were optimized for equine specific DNA amplification in a hamster DNA 

background. This was essential to avoid amplification of hamster DNA (a part of hybrid 

cell lines) that could lead to false positive scoring of the genotyping results. This was 

primarily accomplished by selecting for primers within conserved sequences, with 1-3 

mismatches in rodent sequence. PCR products of heterologous primers were sequenced 

to verify the identity of the expected gene for genotyping on the RH panel. 

Genotyping, data analysis, and map development 

 Following optimization, primers for individual markers were genotyped by PCR 

on the RH panel in a 10 µl volume for each reaction. All PCRs were carried out in 

duplicate. The amplified products were visualized on a 2% agarose gel and all results 

were scored manually. The resultant data was analyzed using one of two different 

software packages.  The ECAX RH map was generated using RHMAPPER (Slonim et al. 
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1997) and RHMAP 3.0 software (Boehnke 1992; Lunetta et al. 1995), as described in 

Chowdhary et al. (2003).  Compared to this, the maps of the equine homologues of 

HSA19 and HSA2 were constructed using the software packages rh_tsp_map 

(ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar; Agarwala et al. 2000), 

CONCORDE (http://www.isye.gatech.edu/_wcook/rh/; Applegate et al. 1998), and 

Qsopt (http://www.isye.gatech.edu/_wcook/qsopt). The maps were drawn using the 

program MapChart, a software for the graphical presentation of maps developed by 

Voorrips et al. (2002; see also http://www.biometris.wur.nl/UK/Software/MapChart/). 

Comparative maps were developed using either available gene mapping or annotated 

sequence information, with preference to the latter. The comparative data was used to 

identify conserved linkages – regions of chromosomes across species with similar gene 

order; or conserved syntenies – regions of chromosomes carrying the same group of 

genes. Finally, this data was used together with available Zoo-FISH information to 

identify the ancestral chromosomal configuration and the putative evolution (fission 

and/or fusion events) that led to the present arrangement in compared species. 

 

BAC libraries 

Overgo primer development 

For generating overgo primers to be used in contig construction on ECA21, 

genes were selected at ~150kb intervals along the 14-20Mb sequence segment of human 

chromosome 19 and the 65-70 Mb segment of HSA5 (NCBI build 35).  Sequence 

information from a variety of mammalian and vertebrate species (identified using 
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ENSEMBL; http://www.ensembl.org/) was screened for repetitive elements using 

RepeatMasker (http://repeatmasker.genome.washington.edu/cgi-bin/Repeat-Masker) and 

aligned with the human gene sequence using CLUSTALW (http://www.ddbj.nig.ac.jp 

/search/clustalw-e.html).  Conserved regions of the sequence with four or fewer 

mismatches across all species were selected for design of overlapping oligonucleotide 

primers, or overgoes.  This was accomplished using the Overgo Maker program 

(http://www.genome.wustl.edu/tools/?overgo.html), and the gene identities of the 

resultant overgoes were confirmed by BLASTn analysis (http://www.ncbi.nlm.nih.gov 

/BLAST/). 

BAC library screening (by PCR and filter hybridization) 

  In order to obtain DNA for FISH and contig construction, two equine BAC 

libraries – the Texas A&M University horse BAC library (http://hbz7.tamu.edu/ 

homelinks/bac_est/bac.htm) and the CHORI-241 horse BAC library (http://bacpac. 

chori.org/equine241.htm) – were screened using PCR or overgo primers for selected 

markers. 

 For the three radiation hybrid mapping studies, oligonucleotide primers for 

selected markers were used to identify BACs by screening superpools and plate pools of 

the BACs from each library by PCR.  Subsequent PCR screens of row and column pools 

ultimately provided the BAC clones containing the specific markers. BACs included in 

the contig along ECA21 were identified by screening CHORI-241 BAC library filters 

using labeled overgo primers (probes) for markers in the region.  The eleven filters 
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together contained the entire collection of BAC clones included in the library, spotted 

onto the filters in a grid pattern.   

DNA extraction 

 Selected BAC clones were cultured in 2YT media containing 30µl/ml 

chloramphenicol and subsequently plated on LB agar plates which also contained 

30µl/ml chloramphenicol.  The identities of colonies were confirmed by PCR.  

Positively verified single colonies for BACs were used to inoculate 100ml of 2YT + 

30µl/ml chloramphenicol.  DNA was obtained for these BACs via alkaline lysis 

extraction (e.g., Birnboim and Doly 1979; Birnboim et al. 1983) using a Qiagen midi-

prep kit (Qiagen, Chatsworth, CA) according to the manufacturer’s instructions.   

BAC end sequencing and STS generation 

BAC end sequencing was accomplished using the T7.29 (5’-

GCCGCTAATACGACTCACTATAGGGAGAG) and SP6.26 (5’-

CCGTCGACATTTAGGTGACACTATAG) primers for BACs from the CHORI-241 

library and T7.19 (5’-TAATACGACTCACTATAGGG) and M13 reverse (5’-

CAGGAAACAGCTATGACC) primers for the Texas A&M University equine BAC 

library.  A Gene Amp (Applied Biosystems) PCR system 9700 was employed for dye 

terminator sequencing reactions (total volume 10 µl) as previously described (Gustafson 

et al. 2003).  Purification of reaction products was carried out by passing the products 

through spin columns (Spin-50, BioMax, Odenton, MD).  The purified products were 

then loaded on an ABI 3730 automated capillary sequencer (PE Applied Biosystems).   
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Contig development 

STS content mapping 

 STSs were developed from end sequences for all BACs included in the ECA21 

contig. The sequences were screened for repeats using RepeatMasker and analyzed by 

BLASTn to ensure that they were either horse-specific or located on a homolog of 

ECA21 in other species.  Primers were designed from BAC end sequences using 

PRIMER3 software and optimized on horse genomic DNA as well as the BAC of 

sequence origin.  These STS primers were then used to screen other BACs in the contig, 

in particular those adjacent to the parent BACs, for STS content mapping. The results 

were used to verify positions and orientations of the BACs.   

Chromosome walking 

 Chromosome walking was performed for the ECA21 contig using STS primers 

for BACs flanking the observed gaps. The primers were used to screen pooled BAC 

libraries by PCR to identify new BACs extending into the gap.  This “walking” 

continued with the end-sequencing of new BACs, STS primer design, and screening by 

PCR until the gaps were filled. 

 

Fingerprinting 

To further verify the order of BACs in the ECA21 contig, an automated capillary 

electrophoresis-based fingerprinting method (Xu et al. 2004, 2005) was used.  

Fingerprinting experiments were carried out using a three-restriction enzyme and one-

labeling color kit (Xu et al. 2004).  The BAC DNA was digested with HindIII, BamHI 
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and HaeIII; ddATP-NED or ddATP-HEX were then used to label ends resulting from 

digestion by BamHI and HindIII.  Next, the labeled fragments were fractionated on an 

ABI 3100 capillary sequencer and the FPC program was used to edit and assemble the 

BAC fingerprints (Soderlund et al. 2000; Xu et al. 2004, 2005).  Questionable clones 

(Qs) were removed from the automatic contigs initially assembled and subsequent 

examination was performed to disassemble the chimeric contigs.  Finally, the FPC 

program was used to add singletons and merge overlapping neighbor contigs into larger 

contigs. 

 

Fluorescence in situ hybridization (FISH) 

 Approximately 1 µg of DNA from BACs isolated for the presence of specific 

markers were individually labeled either by biotin (Bio-Nick Mix – Roche Molecular 

Biochemicals) or digoxigenin (Dig-Nick Mix – Roche Molecular Biochemicals) and 

hybridized in the presence of unlabeled competitive DNA onto horse metaphase 

chromosome spreads or interphase chromatin, either singly or in pairs.  In situ 

hybridization, signal detection, microscopy, and image analysis were performed as per 

Chowdhary et al. (2003). The single color hybridizations on metaphase chromosomes 

were carried out to anchor and orient the RH groups, while the double color 

hybridizations with two or three probes on metaphase or interphase chromatin were used 

for finding the relative order of closely located markers. 
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IV.  A HIGH-RESOLUTION PHYSICAL MAP OF EQUINE HOMOLOGUES OF 

HSA19 SHOWS DIVERGENT EVOLUTION COMPARED TO OTHER 

MAMMALS* 

Synopsis 

A high-resolution (1 marker/700 kb) physically ordered RH and comparative 

map of 122 loci on equine homologues of human chromosome 19 (HSA19) shows a 

variant evolution of these segments in equids/Perissodactyls as compared to other 

mammals. The segments include: parts of both the long and the short arm of horse 

chromosome 7 (ECA7), proximal part of ECA21, and the entire short arm of ECA10. 

The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) 

were genotyped on a 5000rad horse x hamster radiation hybrid (RH) panel, and 4 were 

mapped exclusively by FISH.  The orientation and alignment of the maps was 

strengthened by 21 new FISH localizations, of which 15 represent genes.  The ~seven-

fold improved map resolution attained in this study will prove extremely useful for 

candidate gene discovery in the targeted equine chromosomal regions. The highlight of 

the comparative map is the fine definition of homology between the four equine 

chromosomal segments and corresponding HSA19 regions specified by physical 

coordinates (bp) in the human genome sequence. Of particular interest are the regions on  

__________________ 
*This section is reprinted with kind permission of Springer Science and Business Media 
from “A high resolution physical map of equine homologs of HSA19 shows divergent 
evolution compared with other mammals” by Candice Brinkmeyer-Langford, Terje 
Raudsepp, Eun-Joon Lee, Glenda Goh, Alejandro A. Schäffer, Richa Agarwala, 
Michelle L. Wagner, Teruaki Tozaki , Loren C. Skow, James E. Womack, James R. 
Mickelson  and Bhanu P. Chowdhary, 2005, Mammalian Genome, volume 16, pages 
631-49.  Copyright 2005 by Springer Science and Business Media, Inc.   
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ECA7 and ECA21 that correspond to the short arm of HSA19 – a genomic 

rearrangement discovered to date only in equids/Perissodactyls as evidenced through 

comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments in 8 

mammalian orders involving ~50 species. 

 

Introduction 

The purpose of genome analysis in the horse (Equus caballus - ECA) is to 

identify and analyze genetic factors governing disease resistance, fertility, performance 

and other traits significant to the equine industry, for which highly informative gene 

maps are essential. These maps comprise an orderly collection of gene specific and 

polymorphic markers representative of the entire genome and are instrumental in 

facilitating discovery of genes of interest. The currently available low- to medium-

resolution synteny (Caetano et al. 1999a, b; Shiue et al. 1999), linkage (Lindgren et al. 

1998; Swinburne et al. 2000; Guérin et al. 1999, 2003), and cytogenetic maps (Raudsepp 

et al 1996; Godard et al. 2000; Lear et al. 2001; Mariat et al. 2001; Milenkovic et al. 

2002) for each horse autosome and the sex chromosomes have limitations in terms of 

uneven distribution of markers and low density in several regions. Consequently, the 

possibility to use the candidate gene approach is limited. This limitation is evident even 

in the first-generation radiation hybrid (RH) and comparative maps (Chowdhary et al. 

2003) and the newly published consensus linkage map (Penedo et al. 2005). The recent 

construction of ~1-Mb resolution physically ordered maps for some of the horse 

chromosomes e.g., ECA17 (Lee et al. 2003a), ECAX (Raudsepp et al. 2002, 2004a), 
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ECAY (Raudsepp et al. 2004b), and ECA22 (Gustafson-Seabury et al. 2005) is 

providing an excellent platform to initiate detailed analysis of genomic regions suspected 

to harbor genes of significance to horse breeders and owners. Maps of this resolution are 

indeed essential for all equine chromosomes. 

HSA19 corresponds to small parts of both the short (p) and long (q) arms of 

horse chromosome 7 (ECA7), proximal one-quarter of ECA21, and the entire short arm 

of ECA10 (Raudsepp et al. 1996; Chowdhary et al. 2003; Yang et al. 2004) and is one of 

the most gene dense chromosomes in the human genome (size: 64 Mb; contains 1750 

genes) (Dehal et al. 2001; Grimwood et al. 2004). The most recently published map of 

the HSA19-homologous regions in the horse includes only 5 genes assigned to ECA7, 7 

to ECA10, and none to the proximal part of ECA21 (Chowdhary et al 2003). This low 

resolution of gene specific markers is insufficient for candidate gene based searches in 

the human and mouse genomes for various equine conditions. The number and 

distribution of polymorphic markers in these regions is also inadequate. To resolve these 

shortcomings, the present study aims to generate a comprehensive high- resolution map 

for equine homologues of HSA19 (ECA7, ECA21, and ECA10) using an established 

5000rad horse x hamster RH panel (Chowdhary et al. 2002). The findings will facilitate 

the identification of genes of significance in these regions of the equine genome and 

contribute to improved understanding of the evolution of HSA19 homologues in horses, 

equids and other mammals.  
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Materials and methods 

Primer design and marker generation 

 Genes located on human chromosome 19 were selected at approximately 1 Mb 

intervals from the telomere of the short arm to the telomere of the long arm along the 

human draft sequence (http://genome.ucsc.edu, version May 2004). A representative 

sequence for each gene was selected from ENSEMBL (http://www.ensembl.org/) and 

used to obtain homologous sequences in mouse, rat, cattle, pig, and other mammalian 

species using BLASTn (http://www.ncbi.nlm.nih.gov/BLAST/).  Following multiple 

alignment of these sequences using ClustalW (http://www.ddbj.nig.ac.jp/search/ 

clustalw-e.html), conserved regions were identified for primer design.  Either a single 

exon or two adjacent exons were selected and primers were designed in highly 

conserved regions between different mammalian species with two to three mismatches 

with mouse or rat at potential primer sites.  Primers were designed using the Primer3 

program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and were optimized 

using hamster and horse genomic DNAs to ensure horse-specific amplification.  All 

equine PCR products were verified by sequencing and analyzed using BLASTn 

(Altschul et al. 1997) to confirm their homologies with the corresponding human gene.  

Additionally, primer pairs for 25 microsatellite markers were obtained from various 

sources (see Table A4-1 for details; note: tables with the designation ‘A’ are found in the 

Appendix) using approaches previously described (Tozaki et al. 2004; Wagner et al. 

2004a, b, c). 
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Genotyping of markers on a radiation hybrid panel 

PCR typing of the markers obtained above was performed in duplicate on the 

5000rad horse x hamster RH panel (Chowdhary et al. 2002) as described earlier. Each 

marker was typed using 50ng DNA as template, 1X buffer (Sigma Aldrich), 0.3 pmols of 

each primer, 0.2mM dNTPs, 1.5, 2.0, or 3.0mM MgCl2, and 0.25 units JumpStart 

REDTaq DNA polymerase (Sigma Aldrich) in a 10µl PCR reaction.  PCR amplification 

was performed as follows: an initial 30 s denaturation at 94 °C; 1 cycle of 94 °C for 30 s, 

60 °C for 30 s, and 72 °C for 30 s; followed by 30 cycles of 94 °C for 30 s, annealing 

temperature (ranging from 50-60 °C) for 30 s, and 72 °C for 30 s; ending with a final 

extension for 5 min at 72 °C.  For those primers whose annealing temperatures are listed 

as TD60, a touchdown program was used wherein the annealing temperature decreased 

by 1°C increments each cycle during the initial 11-cycle segment from 60 °C to 50 °C, 

followed by 30-cycle segment with the lowest (50 °C) annealing temperature.  The 

amplification products were resolved on 2.5% agarose gels (containing 0.25µg/mL 

ethidium bromide) and manually scored.  

Computation of radiation hybrid (RH) maps 

RH maps were computed using the software packages rh_tsp_map 

(ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar; Agarwala et al. 2000), 

CONCORDE (http://www.isye.gatech.edu/~wcook/rh/; Applegate et al. 1998), and 

Qsopt (http://www.isye.gatech.edu/~wcook/qsopt).  The maps were constructed to 

optimize the maximum likelihood (MLE) similarly to the cat maps in Menotti-Raymond 

et al. (2003b). However, we also took advantage of the new Qsopt package and recent 
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enhancements to rh_tsp_map. The rh_tsp_map package performed well in an 

independent comparison (Hitte et al. 2003). Pairwise LOD scores were computed and 

inter-marker distances were estimated. Linkage groups were identified with pairwise 

LOD score thresholds of 6.0, 7.0 and 7.0 for ECA7, ECA10 and ECA21, respectively. 

These thresholds yielded large enough groups, with the exception of one size 3 group on 

ECA7, and left few singleton markers. We dropped 8 singleton markers on ECA7, none 

on ECA10 and 2 on ECA21. 

Ben-Dor and Chor (1997) showed that one is unlikely to correctly order dozens 

of markers with a panel size of 92, so we selected a subset of markers in each linkage 

group for creating a robust map. The program frame_markers eliminated from initial 

consideration markers that have too many 2 entries – representing uncertainty regarding 

presence (1) or absence (0) of the marker in a specific RH line - and one marker out of 

each pair of markers that are too close to each other. These markers are candidates for 

placing relative to the robust map at a later stage. For this study, the intergenic markers 

were preferentially retained over microsatellite markers to obtain more useful 

comparative maps. Robust maps were created by finding a globally optimum order for 

an automatic translation of the RH mapping problem to the well-studied traveling 

salesman problem (TSP), and then using the CONCORDE package (Applegate et al. 

1998) linked together with Qsopt to solve the TSP instances to guaranteed optimality, as 

described earlier (Agarwala et al. 2000). We call these robust maps for a subset of 

markers "MLE-consensus maps" (instead of the more generally used term “framework 

map”) because each map is an optimal order for all three definitions of MLE that differ 
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in how the 2 entries are treated. The robustness of the maps was tested using the 

map_eval (LOD ≥0.25) and flips programs, comparing the best order to the second best 

with a threshold of LOD ≥0.25 and a window size of 8.  

Next, the placement program was used to find for each marker dropped by 

frame_markers its best placement relative to the MLE-consensus map. Placed markers 

with vectors identical to MLE-consensus markers were set aside at this stage. Markers 

with non-identical vectors that could not be placed with a LOD > 0.1 were dropped. 

Following this, maps for multiple linkage groups on the same horse chromosome were 

concatenated using intermarker distances estimated earlier. The order and orientation of 

linkage groups on a chromosome was determined by FISH data and available genetic 

maps (Swinburne et al. 2000; Guérin et al. 2003; Penedo et al. 2005).  

Finally, to generate cR positions, we constructed and solved a restricted TSP 

instance in which 1) the MLE-consensus markers were required to stay in the same order 

and 2) the placed markers were required to lie in the preferred interval between MLE-

consensus markers or between the extreme MLE-consensus marker and the telomere. 

The only flexibility in these reduced TSP instances occurs when multiple placed markers 

are assigned to the same interval by the placement program. Although we placed as 

many markers as possible with cR positions, we used only the markers on the MLE-

consensus map for comparison of marker/gene order with other mammalian genomes. 

BAC library screening and FISH mapping 

Primer pairs for selected markers mapped to ECA7, ECA21, and ECA10 were 

used to screen the CHORI-241 (http://bacpac.chori.org/equine241.htm) equine BAC 
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libraries. About 1µg DNA from BAC clones thus obtained was individually labeled with 

either biotin or digoxigenin using the Bio- or DIG-Nick Translation Mix (Roche 

Molecular Biochemicals). Labeled probes were hybridized either separately or in pairs to 

horse metaphase chromosome spreads in order to determine their physical location on 

the chromosome.  DNA labeling, in situ hybridization, signal detection, microscopy, and 

image analysis were performed as previously described (Chowdhary et al. 2003). 

 

Results 

Development of gene-specific markers 

A total of 117 primer pairs corresponding to human chromosome 19 genes were 

generated, of which 74 gave horse-specific amplification against a hamster background.  

Products from the latter were sequenced, and their identities were confirmed in relation 

to human genes using BLAST. These markers were genotyped with respect to the 

5000rad horse x hamster RH panel.  Information about all markers used is summarized 

in Table A4-1. 

RH mapping 

Of the 74 HSA19 gene specific markers developed above, 56 were successfully 

genotyped on the RH panel. Genotyping data from 20 additional genes (5, 1 and 14 

genes from HSA5, 11 and 19, respectively) and 25 microsatellite markers were added to 

these results (see Table A4-1 for details).  Following initial analysis of the 101 markers 

for the development of linkage groups, 12 gene specific markers were dropped (located 

too close to another marker), leaving 89 new markers mapped on equine chromosomal 
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regions corresponding to HSA19 (for details see Table A4-2).  The average retention 

frequency of the markers mapped to the specific regions of the three chromosomes is 

18.2% (ECA7), 19.6% (ECA10), and 15.1% (ECA21).  Physically ordered RH maps 

were developed for the 3 chromosomes (Fig. 4-1; Table A4-3).  A summary for each 

chromosome is provided below. 

ECA7 map 

Analysis of 71 markers led to the identification of two RH groups containing 54 

markers spanning the entire length of the chromosome.  The proximal group contained 

16 markers distributed over 419.47 centiRay (cR) length, while the distal group 

contained 38 markers spread over 818.23 cR, of which only 20 loci are shown in the 

truncated version in Fig. 4-1.  Thus two small regions corresponding to parts of the short 

arm of HSA19 were identified on ECA7 (Fig. 4-1).  The remaining part of the 

chromosome corresponds to HSA11 (Raudsepp et al. 1996).  A large proportion of the 

markers (74%) was present in the MLE-consensus map and confidently ordered. 

ECA10 map 

Analysis of 122 markers on this chromosome led to their distribution into two 

RH groups.  Figure 4-1 shows only the group present on the ECA10p because this arm 

corresponds to HSA19q (ECA10q corresponds to part of HSA6; Raudsepp et al. 1996).  

The group comprises 57 markers, and spans 756.99 cR.  Twenty-three of these markers 

with distinct RH vectors were in the MLE-consensus map and confidently ordered. 
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Figure 4-1.  High-resolution radiation hybrid (RH) and comparative maps of equine chromosomal regions corresponding to human chromosome 19 (HSA19).  To the far left is a schematic 
representation of HSA19 showing regions (demarcated in megabasepairs-Mbp on the human genomic sequence) that correspond to parts of horse chromosomes 7, 10 and 21 (ECA7, ECA10, 
ECA21). The G-banded ideograms of the equine chromosomes depict these regions by a color bar (left), and show all FISH-mapped loci (right). The 21 newly FISH-mapped loci are shown 
in bold. Next to the FISH-mapped markers are RH maps spanning only those regions of the equine chromosomes that correspond to HSA19. A total of four RH groups with color-codes 
corresponding to homologous regions on HSA19 are shown. The distal group on ECA7 is truncated at ~365 centirays (cR) to restrict to HSA19 homologous region. The RH groups are 
demarcated at 50 cR intervals. The MLE-consensus markers (framework) are shaded in light blue, with those having a lod score ≥3.0 shown in bold font. The remaining markers (unshaded) 
were placed on this framework. Markers shown in italics were placed at a lod score ≤0.5, and can therefore have alternative adjacent locations. Markers with same physical/cR position have 
a vertical bar to the left and are connected by a common line to the map. Markers with identical vectors have a bracket to the right.  Gene specific markers in red font represent FISH mapped 
loci that were tentatively placed in the map on the basis of RH-map location of adjacent FISH mapped markers. “?” indicates disagreement between FISH and RH assignments.  Next to the 
RH map are the megabases locations for human (HSA), chimp (PTR), dog (CFA), mouse (MMU), rat (RNO) and chicken (GGA) orthologs of the mapped horse genes 
(http://genome.ucsc.edu/cgi-bin/hgGateway). Vertical rectangles on Mb position of genes within each species essentially show conserved gene order in relation to the derived order in the 
horse. The light green shaded horizontal rectangles show conserved linkage across sequenced mammals. The red horizontal rectangles depict putative conserved linkages across vertebrates. 
A status of the comparative mapped loci in cattle (BTA) and pig (SSC) is provided for orthologs with available mapping information. Arrows indicate putative order of loci in these species. 
Mapping data for HSA19 orthologs in zebrafish (DRE) are depicted to the far right, showing the comparative genome organization of this evolutionarily distantly related species in relation 
to mammals.   
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ECA21 map 

Analysis of 103 markers assigned to this chromosome provided 2 RH groups of 

which the proximal group comprising 22 markers (10 with distinct RH vectors in the 

MLE-consensus map) corresponds mainly to HSA19 (Raudsepp et al. 1996), and spans 

278.07 cR.  The distal RH group corresponds to HSA5 and is therefore not presented. 

BAC library screening and FISH mapping 

To accurately align and orient the RH groups to specific chromosomal regions, 

FISH was carried out with BAC clones isolated for 20 genes and 9 microsatellites (Fig. 

4-2).  In general, the FISH locations of markers coincide well with the order of loci in 

the RH groups.  Of the 15 genes successfully FISH mapped in this study, 14 represent 

equine orthologs of HSA19 genes. 

Comparative map 

A comparative map of equine genomic segments corresponding to HSA19 in a 

range of mammalian/vertebrate species was developed as described earlier (Chowdhary 

et al. 2003; Gustafson-Seabury et al. 2005).  For this, the physical orders of 9, 16 and 35 

putative equine gene loci from ECA7, ECA21 and ECA10p RH maps, respectively, were 

used.  Additionally, 3 loci (PRSS15,C3, LDLR) from ECA7, 3 (KIAA0073, INSL3, 

SSTK) from ECA21 and 5 (XRCC1, POU2F2, LHB, ERCC2 and NR1H2) from ECA10p 

were ‘placed’ in the physical order, based on their location in the FISH map in relation 

to adjacent markers (Fig. 4-1 markers in red).  Megabase positions of orthologs for the 

70 putative equine genes were obtained for different species (see Fig. 4-1 legend for 

details).  As described earlier (Chowdhary et al. 2003) maximally contiguous 



 

 
 

55

 

Figure 4-2. Partial horse metaphase spreads showing (arrows) single- and double-color FISH results for selected loci. a: POLRMT - 
ECA7p16,  b: C19orf2 - ECA10p15,  c: TKY957 - ECA7p15-14.3,  d: BCKDHA (green) and NKG7 (red) - ECA10p13 and 10p13-
p12, respectively e: PRSS15 (green) - ECA7p16 and PEG3 (red) - ECA10p12,  f: SSTK (red) and SLC27A1 (green) - ECA21q13,  g: 
PPP5C (green) - ECA10p13, and NFIX (red) - ECA7q11-q12,  h: POU2F2 (green) - ECA10p14-p13 and INSL3 (red) - ECA21q13-
q14. 
 

 

chromosomal regions with identical gene content and order – referred to as conserved 

linkages – were identified by clustering the contiguous Mb locations of individual loci in 

human/chimpanzee, mouse, rat, dog and chicken (see Fig. 4-1).  In other species, only 

comparative data for mapped equine genes was used. 

Briefly, the two ECA7 segments and the ECA21 segment corresponding to the 

short arm of HSA19 are present as a single syntenic group in human, chimp, dog, cattle 

and pig.  The segment corresponding to ECA21, however, is present as a separate 

genomic segment in mouse, rat and, largely also in chicken (a non mammalian 
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vertebrate).  Compared to this, the segment corresponding to ECA10p shares conserved 

synteny in human, chimp and dog, and to some extent also in mouse and rat. In chicken, 

only a small region corresponding to the terminal part of ECA10p (HSA19q proximal 

segment) is conserved as a syntenic block on GGA11. The remaining ECA10p 

(HSA19q), however, is scattered on several chicken chromosomes. 

 

Discussion 

High-resolution map of equine chromosomal segments corresponding to HSA19 

The generation of high-resolution RH and comparative maps for the two small 

segments on ECA7, complete short arm of ECA10, and a small sub-centromeric region 

on ECA21 provides a comprehensive, physically-ordered map for those equine genomic 

regions corresponding to HSA19.  The results confirm and refine our earlier 

observations (Raudsepp et al. 1996; Chaudhary et al. 1998; Chowdhary et al. 1998; 

Chowdhary et al. 2003) regarding synteny conservation between HSA19 and 

corresponding equine chromosomal segments.  The results also provide the first gene 

mapping evidence for the recently detected Zoo-FISH correspondence between parts of 

ECA21 and the human chromosome (Yang et al. 2004). 

Mapping of 89 new loci by RH and 4 exclusively by FISH in this study 

considerably increases the density of mapped markers on the four equine chromosomal 

segments corresponding to HSA19.  Compared to the previously published map 

(Chowdhary et al. 2003), the number of mapped markers (RH and/or FISH) in these 

segments increased by 4-fold, and the gene-specific markers by 7-fold.  Based on the 
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current size estimate of HSA19, the four equine chromosomal segments are together 

anticipated to be ~64 Mbps.  Our map for these segments collectively provides a 

resolution of one marker every 561 kb, which represents a ~7-fold improvement over the 

previous map that had on average 1 marker/4 Mbps of the equine genome (Chowdhary 

et al. 2003). 

The dense mapping of HSA19 markers in the horse proves extremely useful for 

the fine alignment of the four corresponding equine chromosomal segments with specific 

regions on the human chromosome.  Our findings show that the terminal part of the short 

arm of HSA19 (from ~0 to 7 Mb) is represented on the telomeric end of the short arm of 

ECA7, while the ~9 to 13 Mb region of the human chromosome is represented on the 

sub-centromeric part of the long arm of the same horse chromosome.  The remaining 

part of HSA19p (~15-20 Mb) is represented on the proximal two bands of ECA21.  

Compared to this, the long arm of HSA19 (from 34-64 Mb) is represented as a 

conserved syntenic block on ECA10p (Fig. 4-1). 

Over two-thirds of the primer pairs generated for HSA19 genes in this study gave 

horse-specific amplification in the presence of a hamster DNA background.  This 

reflects distinct success in generation of equine orthologs for HSA19 genes such that the 

loci uniformly represent the human chromosome.  The only exception, however, is the 

19-26 Mb segment of HSA19 (band p12).  The region primarily comprises gene families 

that have highly conserved sequences across evolutionarily distantly related species 

(Grimwood et al. 2004).  Hence, for these genes it was difficult to design horse-specific 

primers that could amplify a distinct band in the presence of hamster DNA.  Incidentally, 
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the region, together with the 27-33 Mb segment across the centromere, also shows a 

relatively lower density of genes compared to the rest of the human chromosome 

(GeneLoc: http://genecards.weizmann.ac.il/cgi-bin/geneloc/gene_densities.pl?chr=19). 

The FISH localization of 21 new markers in the HSA19-homologous regions 

increases the tally of cytogenetically mapped markers to 60.  Overall, the location of 

FISH mapped markers is consistent with the physical order obtained by RH analysis.  

The localizations proved useful to accurately position different RH groups in relation to 

individual chromosomes.  Of particular interest were the FISH assignments on ECA7 

where two small but distinct regions of homology with HSA19 were observed.  Next, 

FISH mapping of BIRC2, TKY1107, and TKY957 helped to position the markers in the 

RH group on ECA7p.  Lastly, redesigning of primers for POU2F2 and INSL3 

(previously FISH mapped by Milenkovic et al. 2002), sequence confirmation of the 

amplification products, isolation of new BACs and subsequent FISH mapping show that 

POU2F2 unambiguously mapped to the distal half of ECA10p while INSL3 mapped to 

the proximal part of ECA21.  The localizations rectify previous erroneous mapping data 

and are in better conformity with adjacent genes mapped from HSA19 (see Fig. 4-1 for 

human Mb positions). 

Comparative map 

Adding a total of 61 new HSA19 orthologs in the horse gene map increases the 

number of gene-specific/Type I markers by >5-fold over the previously reported map 

(Chowdhary et al. 2003). On average, the targeted regions have one Type I marker every 

Mbp, which is a resolution comparable to that reported by us for ECA17 (Lee et al. 
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2003a), ECAX (Raudsepp et al. 2004a) and ECA22 (Gustafson-Seabury et al. 2005).  

This improved resolution enables refined demarcation of correspondence (in Mbps) 

between the four equine segments and HSA19. 

Comparison of gene order in the four equine chromosomal segments with 

corresponding segments on HSA19 showed conserved linkage between ECA10p and 

HSA19q.  Further, the high density of markers on the small proximal segment of ECA21 

is too dense for resolving gene order with current RH panel and metaphase FISH.  

Nevertheless, the framework markers suggest conserved linkage.  Next, the gene order 

for the two small ECA7 segments corresponding to HSA19 (7 markers on ECA7p and 3 

on ECA7q) also could not be resolved optimally by RH analysis.  However, tight linkage 

of the same group of loci in horse and humans suggests conservation.  Lastly, the 

arrangement of the equine HSA19 syntenic segments and their gene order in chimpanzee 

(PTR20; Richard et al. 2000; http://www.ensembl.org/Pan_troglodytes/syntenyview? 

otherspecies=Homo_sapiens&chr=20) was predictably the same as in humans.  

Comparison of gene order in the four equine chromosomal segments with corresponding 

regions in the dog showed that ECA10p/HSA19q shares conserved linkage with the 

terminal part of CFA1 (102-124 Mb).  The cen→tel arrangement of loci on both 

chromosomes is also the same.  However, the three segments on ECA7 and ECA21 

(corresponding to HSA19p) are present as a single distal block on CFA20.  Interestingly, 

the telomeric group of loci on ECA7p, CFA20 and HSA19p is the same.  Comparison of 

equine homologues of HSA19 with corresponding mouse and rat chromosomes (Dehal 
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et al. 2001; Grimwood et al. 2004) showed that ECA10p/HSA19q shares conserved 

synteny with parts of MMU7 and RNO1 (Fig. 4-1 and 4-3).  Though the two rodents 

show a rearranged gene order in relation to horse/dog/human, their loci are present in 

two contiguous conserved linkage blocks (Fig. 4-1).  Next, the ECA21/HSA19p segment 

shows distinct conserved linkage both in mouse (MMU8) and rat (RNO16).  Lastly, the 

ECA7 loci are distributed on at least 4 different chromosomes in both mouse and rat, due 

to which no clear inference on synteny/linkage conservation can be drawn. 

Expanding the comparisons to chicken illustrates that ECA7 and ECA21 

(HSA19p) genes are predominantly present on a single chicken chromosome - GGA28 

(Smith et al. 2002). Though it is difficult to infer comparative order for the ECA7 loci, 

the ECA21 loci do share similar order with orthologs on GGA28 indicating conserved 

linkage despite divergence of mammals and birds ~300-350 MYrs ago (Kumar and 

Hedges 1998; van Tuinen and Hadly 2004). With regards to the ECA10p (HSA19q) loci, 

the most prominent conserved syntenic and linkage block comprising eight genes was 

detected on GGA11. The remaining genes seem to be scattered across at least 5 chicken 

chromosomes. 

Despite availability of sequence data in cattle, zebrafish etc., contigs have not yet 

been put together for individual chromosomes to draw meaningful conclusions.  

Nevertheless, based on RH map order available in cattle (Goldammer et al. 2002; 

Gautier et al. 2003; Everts-van der Wind et al. 2004), it is anticipated that 

ECA10p/HSA19q genes largely (though not completely) share a conserved linkage with 

BTA18 (Goldammer et al. 2002).  Next, ECA7+ECA21/HSA19p genes located on 
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Figure 4-3. An overview of the evolution of putative ancestral HSA19 chromosomal segments (central circle) in >50 mammalian species (hitherto analyzed by Zoo-FISH) belonging to 8 
evolutionarily diverse mammalian orders. Perissodactyla is presently the only mammalian order with species that have four distinct chromosomal segments corresponding to HSA19. On the 
periphery of the second circle are combinations of human chromosomal segments that invariably form tandem/neighboring segments to genomic regions corresponding to HSA19p (red font) 
and HSA19q (blue font) in the karyotypes of species within individual mammalian orders. This depicts diversity in the evolution of these segments from the putative ancestral configuration. 
Color codes for correspondence with individual human chromosomes is shown (right bottom). A summary of references from which data were used to develop this figure is provided at the 
end of the reference list.   

References for Fig. 4-3: Perissodactyls: horse and donkey - Raudsepp et al. 1996, Yang et al. 2004; Hartmann’s and Burchell’s zebras - Yang et al. 2003b; cetartiodactyls: dolphin - Bielec 
et al. 1998, pig - Rettenberger et al. 1995, Frönicke et al. 1996, Goureau et al. 1996, Schmitz et al. 1998, Indian muntjac - Yang et al. 1997, Burkin et al. 1997, Chinese muntjac and gayal - 
Chi et al. 2005, Hirola antelope - Chaves et al. 2004, cattle - Chowdhary et al. 1996, river buffalo - Iannuzzi et al. 1998, goat - Schibler et al. 1998, sheep - Iannuzzi et al. 1999; lagomorphs: 
rabbits/hares - Korstanje et al. 1999; insectivores: common shrew - Dixkens et al. 1998; afrotherians: aardvark and elephant - Frönicke et al. 2003, Yang et al. 2003a, golden mole and 
elephant shrew - Robinson et al. 2004; carnivores: American mink - Graphodatsky et al. 2000, ferret - Hameister et al. 1997, cat and giant panda - Nash et al. 1998, Tian et al. 2004, arctic 
fox - Graphodatsky et al. 2000, 2001, crab-eating fox and Japanese raccoon dog - Nash et al. 2001, red fox and dog - Yang et al. 1999, Breen et al. 1999; rodents: Eastern gray squirrel 
(Sciurus carolinensis) - Stanyon et al. 2003, Li et al. 2004, Asian squirrel (Menetes bermorei) - Richard et al. 2003, flying squirrels (Petaurista albiventer) and chipmunks (Tamias sibiricus) 
- Li et al. 2004, rat and mouse - Nilsson et al. 2001, Helou et al. 2001; and chiropters: bats - Volleth et al. 1999, 2002. 
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BTA7 show a rearranged order relative to human (Gautier et al. 2003) indicating the 

likelihood of rearrangement compared also to the horse.  In cats, minor rearrangements

compared to ECA10q/HSA19q gene order have been detected on chromosome E2; 

however, HSA19p orthologs on chromosome A2 maintain an evolutionarily conserved 

linkage (Menotti-Raymond et al. 2003a).  Lastly in pigs (SSC), despite high-resolution 

RH maps of SSC6q1.2 (Martins-Wess et al. 2003) and SSC6q13.3-q13.4 (Bosak et al. 

2005), only synteny conservation can presently be detected between ECA10p/HSA19q 

and part of SSC6q; the remaining three equine segments correspond to SSC2q (Rattink 

et al. 2001). 

Comparative organization of HSA19 homologues  

Number of segments in different species 

The results in the present study show that HSA19 corresponds to 4 distinct 

segments distributed on three equine chromosomes.  Three of the segments (two on 

ECA7 and one on ECA21) share synteny with the short arm, and the remaining segment 

(on ECA10p) shares synteny with the long arm of the human chromosome. The only 

other known species where HSA19p corresponds to more than one segment are donkey 

and zebra (Yang et al. 2003b, 2004), though indirect evidence suggests the presence of 

two segments also in cattle and sheep (Frönicke and Wienberg 2001; Fig. 4-3).  In these 

species, presently a total of 3 segments correspond to HSA19.  Other species with 3 

segments include elephants (Frönicke et al. 2003, Yang et al. 2003a), Eastern grey 

squirrel (Stanyon et al. 2003) and some bats (Volleth et al. 1999, 2002).  However, 

contrary to equids (and probably the two bovids), HSA19q (rather than HSA19p) is 
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present as two segments in these species.  In all other mammalian species/orders studied 

thus far (except mouse and rat), two distinct syntenic segments of HSA19 are observed 

(Fig. 4-3), each of which corresponds to one of the arms of the human chromosome. 

Evolutionarily conserved neighboring segment combinations 

Genomic segments corresponding to six human chromosomes emerge as the 

primary contiguous neighbors (tandemly located or as sole homologue of the other arm) 

of genomic segments corresponding to HSA19 in different mammalian species analyzed 

up till now (Fig. 4-3). These include HSA1, HSA3, HSA4, HSA5, HSA11 and HSA16.  

In Perissodactyls and Cetartiodactyls, segments equivalent to HSA5 and HSA11 form 

the primary contiguous neighbors to parts sharing homology with HSA19p.  In 

carnivores (including canids, mustelids, pinnipeds, felids and ursids) and non mouse/rat 

rodents (squirrels, chipmunks), segments corresponding to HSA3 are partnered to the 

HSA19p-homologous segments.  In Chiropters (bats), the neighboring segments are 

homologous to HSA4, while in Afrotherians (elephants, aardvark etc.) the neighboring 

segments correspond to HSA1. 

Compared to HSA19p, chromosomal segments sharing homology with HSA19q 

were invariably found to be contiguous with segments corresponding to HSA16q as 

depicted earlier by us in a cross species analysis (Chowdhary et al. 1998).  The two 

segments are either tandemly placed or have a centromere in between.  The only 

exceptions lacking this combination are horse, donkey, mouse/rat and canids.  It is 

noteworthy that donkey is the only species known wherein the HSA19q equivalent 

segment exists as an independent chromosome (Raudsepp and Chowdhary 2001, Yang 
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et al. 2004).  In summary, the contiguous neighboring segments provide brief insight 

into the likely fusion/fission events and rearrangements potentially involved in the 

evolution of the HSA19 homologues in different species. 

Putative ancestral chromosome(s) of HSA19 and their evolution in horses, equids and 

other Perissodactyl karyotypes 

The data summarized in Fig. 4-3 enables the drawing of some basic conclusions 

about the ancestral chromosomal configuration of HSA19 homologues: 

i) The HSA19q-HSA16q combination is unambiguously an ancestral configuration that 

is preserved in a range of evolutionarily distantly related mammalian species: Hirola 

antelope (Chaves et al 2004), Indian muntjac (Yang et al. 1997), common shrew 

(Dixkens et al. 1998), giant panda, spectacled bear (Nash et al. 1998), harbor seal 

(Frönicke et al. 1997), bats (Volleth et al. 2002), and elephants (Frönicke et al. 2003).  It 

is also present in chicken (GGA11; Smith et al. 2002).  As far as known, domestic and 

Przewalski horse (Myka et al. 2003), donkey (Raudsepp et al. 1996, Yang et al. 2004), 

canids (arctic fox - Graphodatsky et al. 2000, 2001; crab-eating fox and Japanese 

raccoon dog - Nash et al. 2001; red fox and dog - Yang et al. 1999; Breen et al. 1999) 

and mouse/rat (Nilsson et al. 2001; Helou et al. 2001) are the only species where this 

configuration is broken (see Fig. 4-3).  In elephants, squirrels and some of the bats, two 

small syntenic chromosomal segments jointly correspond to HSA19q (Stanyon et al. 

2003; Richard et al. 2003; Li et al. 2004; Volleth et al. 1999, 2002).  This is most likely 

attributed to a fission event, followed by a fusion with two different chromosomes in the 
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elephant (Frönicke et al. 2003; Yang et al. 2003a) and an inversion in squirrels and bats 

(Fig. 4-3).  

ii) The segment corresponding to HSA19p is evidently an independent ancestral 

chromosome that is present as a single block in the majority of the species analyzed.  

Equids, where this segment is present on two different chromosomes, are exceptions to 

this rule (Yang et al. 2003b, 2004).  The Burchell’s zebra – rhinoceros Zoo-FISH 

indirectly indicates a similar trend also in other Perissodactyls (Trifonov et al. 2003). 

Starting with these ancestral configurations, the HSA19 homologues in 

equids/Perissodactyls seem to have evolved as follows: 

i) A fission event in the ancestral 19p equivalent chromosome led to two segments that 

can be characterized as 0-15 Mb and 15-25 Mb regions in the current HSA19p.  In 

donkeys and zebras, the 0-15 Mb segment underwent fusion with the HSA11 equivalent 

chromosome, leading to EAS20, EZH14 and EBU14, while the 15-25 Mb segment fused 

with HSA5pter-5q13 equivalent chromosome, leading to EAS10, EZH5p and EBU9p 

(Fig. 4-3).  In horses, the latter fusion event was the same, leading to ECA21.  However, 

the 0-15 Mb segment underwent an additional fission event, followed by a pericentric 

inversion event, leading to the current ECA7. 

ii) The ancestral 19q-16q equivalent configuration remained intact in the two zebra 

species hitherto analyzed.  However, in the horse and donkey a fission event seems to 

have separated the two segments.  In horses, the 19q related segment fused with parts 

corresponding to HSA6, leading to ECA10, while the HSA16q segment fused with a 

segment corresponding to part of HSA4, resulting in ECA3.  In donkeys, the fission led 
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to two independent chromosomes – EAS26 equivalent to HSA19q, and EAS28 

equivalent to HSA16q (Raudsepp and Chowdhary 2001; Yang et al. 2004).  

 

Conclusions 

The findings of this study provide high-resolution physically ordered RH and 

comparative maps for equine homologues of HSA19.  The maps will be useful for 

precise physical assignment of traits of interest within these chromosomal regions and 

for the discovery of candidate loci affecting the traits.  Discovery of four genomic 

segments corresponding to HSA19 (first in any of the mammalian species studied thus 

far), and their fairly precise Mbp demarcation in relation to the human chromosome, will 

augment such efforts.  The demarcations also provide valuable insights into the pattern 

of evolution of HSA19 homologous segments in equids/Perissodactyls.  A comparative 

overview of the evolution of these chromosomal segments in different mammals adds to 

the current knowledge of likely fusion/fission events associated with these segments in 

different species. 
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V.  BAC CONTIG OVER A 5 MB REGION OF THE HORSE GENOME FOR 

DISCOVERY OF FUNCTIONAL ELEMENTS AND EVOLUTIONARY 

BREAKPOINTS 

 

Introduction 

Dense gene maps are essential for the discovery, characterization and analyses of 

genes important for equine health, fertility, performance and other traits that are of vital 

economic significance to the equine industry.  Although significant strides have been 

made in the recent past to develop low- to medium-resolution genetic maps for all 

equine autosomes and the sex chromosomes (Chowdhary et al. 2002; Chowdhary et al. 

2003; Penedo et al. 2005; Perrocheau et al. 2006; Swinburne et al. 2006), the level of 

detail available from these maps is not sufficient for most practical applications.  

Consequently, high resolution gene maps (1 marker/Mb) have recently been reported for 

some of the horse chromosomes, including ECA17 (Lee et al. 2003a), ECAX (Raudsepp 

et al. 2004a), ECA22 (Gustafson-Seabury et al. 2005), ECAY (Raudsepp et al. 2004b), 

and the equine homologues of human chromosomes 19, 2, and 5 (HSA19, HSA2, and 

HSA5; Brinkmeyer-Langford et al. 2005; Wagner et al. 2006; Goh et al. 2006).  Once 

available for all equine chromosomes, these maps will be useful in a candidate gene 

approach to help identify loci implicated in traits important to the equine community.  

However, one of the major drawbacks of these maps is their inability to provide the 

same level of intricate detail regarding genome structure and organization that can be 
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found with whole genome sequence information.  Such details are essential to study the 

structures and functions of genes associated with important traits. 

 Sequence information is presently available for a variety of mammalian species 

including humans and mice and some of the domesticated animals like cattle, dog, and 

chicken (http://www.ensembl.org).  While sequence information in domesticated 

animals is proving to be extremely valuable in generating novel tools for the rapid 

discovery of genes associated with disease and other traits of economic significance, 

recent studies carried out in humans and mice show that it is also important for proper 

understanding of gene function and regulation (Bejerano et al. 2004; Margulies et al. 

2005; Xie et al. 2005; Kimura et al. 2006) as well as evolution (Medina 2005; Murphy et 

al. 2005; McEwen et al. 2006). Large scale efforts presently being invested in humans to 

identify all genomic elements that regulate gene function (ENCODE Project Consortium 

2004) further emphasize the significance of this work, and underscore the need for 

sequence data. Presently, sequence data is being generated for the horse 

(http://www.broad.mit.edu/). It is anticipated that the complete assembled and annotated 

sequence along with gene predictions will be available by 2007.  This should 

considerably improve the ability of equine researchers to use genomic information for 

developing a research platform for horses that could facilitate the development of novel 

diagnostic, preventive, and therapeutic approaches – the way it is being used in humans 

and other species. However, support data will be required from a variety of independent 

sources using complementary mapping approaches to validate and annotate the 

assembled sequence. 
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We recently reported a high-resolution (1 marker/700kb) gene map for equine 

homologues of human chromosome 19 (HSA19) – namely, small segments of ECA7, the 

entire short arm of ECA10, and the proximal one-quarter of ECA21 (Brinkmeyer-

Langford et al. 2005). HSA19 is the most gene-dense chromosome in humans (~1750 

genes along its 64Mb length; Dehal et al. 2001; Grimwood et al. 2004). It harbors 

several genes for which mutations or variations are implicated in diseases of various 

body systems in humans. Some of these conditions such as dwarfism (Naviaux 1999; 

Frankeny 2003; Marcella 2005), multiple exostoses (Morgan 1968; Gardner et al. 1975), 

diabetes mellitis (Johnson et al. 2005), and hypothyroidism (Frank et al. 2002) are 

documented also in horses.  However, due to lack of adequate genome information, very 

little has been carried out to find their underlying genetic causes. 

  As a first step towards addressing such issues, we embarked upon generating a 

BAC-contig based map for the ~5Mb segment of ECA21 that corresponds to HSA19, 

which contains a number of genes known or suspected to be associated with conditions 

in humans which may also be of economic significance to the equine industry.  These 

genes include exostoses (multiple) 3 (EXT3) - proposed to be associated with a bone 

growth disorder known as multiple exostoses (Le Merrer et al. 1994), cartilage 

oligomeric matrix protein (COMP) - associated with pseudoachondroplasia (Briggs et al. 

1995; Posey et al. 2004), and insulin-like 3 (INSL3) - implicated in cryptorchidism and 

reduced fertility in humans and mice (Nef and Parada 1999; Zimmermann et al. 1999; 

Ivell et al. 2005; Ferlin et al. 2006).  The development of the proposed contig will 

facilitate searches for such genes and/or closely linked markers associated with various 
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genetic conditions. It will also serve as a base to assemble and verify the draft sequence 

of the region and fill in gaps to eventually obtain a finished sequence that could provide 

complete information on the gene content and various components associated with their 

regulation (functional elements). Further, the availability of the contig will enable 

detailed comparisons of the equine segment with corresponding genomic segments in 

other species and help to detect differences and/or rearrangements it has gathered since 

evolving independently from a common mammalian ancestor. The contig will also form 

the basis to characterize two flanking evolutionary breakage/fusion points in relation to 

human and other mammalian genomes. 

 

Materials and methods 

Overgo primer design 

Genes at approximately 150kb intervals along the 15-20Mb segment of the draft 

sequence of human chromosome 19 (NCBI 35 assembly) were selected for overgo 

design.  Representative sequences for each gene in human, mouse, rat, cattle, dog, 

chicken, and other available mammalian and vertebrate species were selected from 

ENSEMBL (http://www.ensembl.org/).  The sequences were analyzed by RepeatMasker 

for the presence of repetitive elements (http://repeatmasker.genome.washington.edu/cgi-

bin/Repeat-Masker), and aligned using ClustalW (http://www.ddbj.nig.ac.jp/search/ 

clustalw-e.html). Regions conserved across species were identified and overgo primers 

were designed with four or fewer mismatches using the Overgo Maker program 

(http://www.genome.wustl.edu/tools/?overgo.html). Individual primer sequences were 
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screened using BLASTn (Altschul et al. 1997) to confirm their gene specificity.  

Detailed information on all overgo probes is presented in Table 5-1. 

Overgo probe labeling and filter hybridization to screen BAC library 

The overgo primers were radioactively labeled as previously described 

(Gustafson et al. 2003). Briefly, overgo primers were radioactively labeled in a 10 µl 

labeling reaction containing 1 µM forward primer, 1 µM reverse primer, 150 Ci/mmol 

each of 32P dATP and 32P dCTP (Amersham Biosciences, Piscataway, NJ), 2 U Klenow 

fragment DNA polymerase (Roche, Indianapolis, IN), and 1× DNA Polymerase Buffer 

(Promega, Madison, WI).  For fill-in labeling, 1 µl of a 250-µM dATP and dCTP 

mixture was added to each reaction (Han et al. 2000).  Unincorporated nucleotides were 

removed using Sephadex G-10 gravity flow columns. Labeled probes were then 

individually checked with a scintillation counter. Approximately the same amounts of 

each probe were pooled and used for screening high-density filters from the USDA 

CHORI-241 equine BAC library (http://bacpac.chori.org/equine241.htm).  The labeled 

overgo probes were added to the hybridization solution (20× SSPE, 10% SDS, 5% milk, 

and 100× Denhardt’s Solution) containing 50% formamide, denatured by boiling for 10 

min, chilled, and then hybridized onto CHORI-241 BAC library filters at 42° C for 16 h.  

After hybridization, filters were washed three times at 55° C for 15 min in 2× SSPE.  

The filters were exposed to film over intensifying screens for 2-7 days at –80° C and the 

autoradiograms were developed subsequently.  Positive BAC clones thus identified were  
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Table 5-1.  Overgo primers used to identify BAC clones containing selected genes.  Listings in parentheses are alternate names used 
for the gene.   

GENE NAME GENE ID 
(ENSEMBL OR NCBI) 

FORWARD 
OVERGO PRIMER 

REVERSE  
OVERGO PRIMER 

ADAMTS6 ENSG00000049192 GTGTGTAGAGAGCTCTGGTGTCTC AGCGGTTGCTTTTGCTGAGACACC 

AKAP8 ENSG00000105127 TCTGACTCTCTCATTGCCAAGATC TGTCCAAACGCTGGTTGATCTTGG 

ASF1B ENSG00000105011 CGAGCCCTTTCCACAGCCCCTTCC AAGCTGATCTCGAACCGGAAGGGG 

BPY2IP1 ENSG00000130479 GTCAATGGCTTCACTGTGCTGGTC GGTTTGAGCCACCGTTGACCAGCA 

CDK7 ENSG00000134058 AGTCTTGTGCTGACACCATCACAC ACATGTAGGCTTTGATGTGTGATG 

CHERP ENSG00000085872 ATGACAGCAAGCCTCCCATCCAGA TCTGAAGAGCCAGGCATCTGGATG 

COMP ENSG00000105664 TTCTCCCAGGAGAACATCATCTGG GGTAACGCAGGTTGGCCCAGATGA 

COPE ENSG00000105669 TGAGAAGCTGCAGGATGCCTACTA CATCTCCTGGAAGATGTAGTAGGC 

CRLF1 ENSG00000006016 CTCTTTACGCCCTATGAGATCTGG GGTTGGTGGCCTCCACCCAGATCT 

CYP4F11 ENSG00000171903 CACTGCCCATCCTTGCCCCTTTCC AAGCTCCAAGGACAGTGGAAAGGG 

DDX39 ENSG00000123136 CATGGAGGTGTTTGTAGACGACGA CAGTGTGAGCTTGGTCTCGTCGTC 

ELL ENSG00000105656 GAAGGTTCAGTTTCGGAAACCAGC GTCTGTTGCACCTGGGGCTGGTTT 

EMR3 ENSG00000131355 GACAAGGGATTCATCTGGAGTTTC CACAGACAGGGCCCAGGAAACTCC 

ERBB2IP ENSG00000112851 TGGCACAGTGATAGAGAATTGCTG GCTCTACAACTCTCCACAGCAATT 

F2RL3 ENST00000248076 ACTCTATGGTCACATGTATGGCTC GGCCAGCAGCAGCACTGAGCCATA 

FKBP8 ENSG00000105701 GCCCTGTACCGGAAAATGCTGGGC GCAGCCGGCTGGGGTTGCCCAGCA 

FLJ39501 OTTHUMG00000070837 CGTCCTGCCACTGTTGGTTCTGGT GATATAGTCAGGGTGCACCAGAAC 

FLJ40365 OTTHUMG00000070840 CCCTGGCGCTTTCGTGTGGAGATG TGCTGCCCCCTTTGAGCATCTCCA 

GMIP ENSG00000089639 TGAGGTTATCCGCTCGCTGAAGAC CAGCTGTACCAAGAGGGTCTTCAG 

GTPBP3 ENSG00000130299 TCTGACTTGGCCTCTCCGTACAGC TGTCCAGGAAGTTGCAGCTGTACG 

HAPLN4 ENSG00000187664 AACGCCGAGGAACGCTACGACGCC TGGACGTGAAGCAGAAGGCGTCGT 

INSL3 ENSG00000105639 ACAGCGGGCCAGACCAGCAGAGGG ATCTCCCGCTGAAAGTCCCTCTGC 

JUND ENSG00000130522 AGAAAGTCCTCAGCCACGTCAACA AGCAGCTGGCAGCCGCTGTTGACG 

KCNN1 ENSG00000105642 GGGTTCGGAAACACCAGCGTAAGT TGGATGGCTTGGAGGAACTTACGC 

KIAA0303 (MAST4) ENSG00000069020 TGGAACAGTTTGCTGAGACAGAAG GGGGAATAAATTCTGCCTTCTGTC 

KIAA0892 ENSG00000129933 TCTTTCACTGGCTGCCCAAGGAAC ACAAGCACACACATGTGTTCCTTG 

KLF2 ENST00000248071 ACGACCTCAACAGCGTGCTGGACT CCCATGGACAGGATGAAGTCCAGC 

LOC345667 (Q6ZNM4) ENST00000314351 GCATACTTCAGACAGATGTGTTGT GTCCTTGGCAGGTCTTACAACACA 

LOC388515 XM_373795 ATGTGGATTGCAGTGGAGACGCTG CCGCATTCTCTAACGCCAGCGTCT 

LOC388524 NM_001005472 TCTCTTCTGTTCCGCGTCCTCCAC ACCAGGGGCTACCGAGGTGGAGGA 

LOC390898 XM_497612 ACAGGGCATGGAGTTCACGGCAAG GAAGGTTGATGGGCTGCTTGCCGT 

LOC390913 XM_497619 TGGCCAAGCTTCTAACCAATGCTC CGGTGCAATAAGCTATGAGCATTG 

LOC440515 XM_496298 ATGTACATGTTCGTGTTCATGGCC TAAATTGCAATGGTCCGGCCATGA 
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Table 5-1.  Continued. 

GENE NAME GENE ID 
(ENSEMBL OR NCBI) 

FORWARD 
OVERGO PRIMER 

REVERSE  
OVERGO PRIMER 

LOC91120 OTTHUMG00000071382 GCAATGTGGCAAAGTCTTTAAATC AGAAAGGCCTGAGTGAGATTTAAA 

LSM4 ENST00000252816 AGTGCTACATCCGCGGCAGCACCA ATGCGCAGGTACTTGATGGTGCTG 

MDS032 ENSG00000053501 AACCAGTTCCTGGCCCCTGGCCGT TGGCTGTGGTTGGCACGCGGCCAG 

MECT1 ENSG00000105662 GAGCAGTTCAACATGATGGAGAAC TGCTGGAGCTGATGGCGTTCTCCA 

MEF2B ENSG00000064489 AAGTTCGGGCTGATGAAGAAAGCT GCACGCTCAACTCGTAAGCTTTCT 

MYO9B ENSG00000099331 TTCCGGGAGAAGAACATGGACTAC CGATGTCTGGCCGCATGTAGTCCA 

NLN ENSG00000123213 ATGGACATGCTCCACAATTTCTTG GGTTTGGCTCACGTTTCAAGAAAT 

NOTCH3 ENSG00000074181 CCCTTTGCAACGTGGAGATCAATG GGGCTGGACGCACACTCATTGATC 

OCLN ENSG00000197822 TCCACCTATCACTTCAGATCAACA CTTGTACAGTTGTCTTTGTTGATC 

PGLS ENSG00000130313 TGGTCCAGCCCCACACTGGGAAAC TCCAGGAACCAGCAGAGTTTCCCA 

PIK3R1 ENSG00000145675 GACTGTGAATAAAGGGTCCTTAGT ACTGAATCCAAGAGCTACTAAGGA 

PIK3R2 ENSG00000105647 GCAGTACCAGGACAAGAGCCGCGA ATAAAGCTGGTCATACTCGCGGCT 

PTGER1 ENSG00000160951 TGTACATCCTGCTGCGCCAGGCGG AGCAGTTGGCGCAGCACCGCCTGG 

SDCCAG10 ENSG00000153015 TTGCACTGCTGAACCAGTTTAAAT GCTTGAGTGAGTTTAGATTTAAAC 

SFRS12 ENSG00000153914 CTCAGGCTGCAGCTAAGGAGTTAG CGCTTCATTACTTCTTCTAACTCC 

SFRS14 ENSG00000064607 TCGGAAGAGGATCAGCAGCAAGTC CATGCCAACCTTCAATGACTTGCT 

SLC30A5 ENSG00000145740 GATTAATATCATACCGAGACCCTC GAATGACGCCAAAAATGAGGGTCT 

SSTK ENSG00000178093 CTCTACGTCATGGTCACCGGGTGC AGTCATCGAAGGGCATGCACCCGG 

TAF9 ENSG00000085231 AACCACGCTAGGCAAAGAACTTGC CAGTCCTGATCTTGATGCAAGTTC 

TMEM38A (MGC3169) OTTHUMG00000071467 ACATGTCTTTCCCCACCAAGGCCA ATGGCTCCATACAGGCTGGCCTTG 

TPM4 ENSG00000167460 GTGGGCTTACATCAGACACTGGAT GTTCGTTTAGTGTCTGATCCAGTG 

TRIM23 ENSG00000113595 TTGGGATGTAGGTGGAAAACACAA CCACAATGGTCTTAATTTGTGTTT 

UNC13A ENSG00000130477 TACTACGCACACACCACCGCCTCC AGGCAGACACGTTGGTGGAGGCGG 

ZNF14 ENST00000344099 TTCCTGGCCCATGGGAAGATTGCG TCAGGAGCAGGTGAAACGCAATCT 

ZNF539 ENSG00000183850 CTGTCGCCGGAGTCCCAGGTCTGT ACACAGAGCAGTGAAGACAGACCT 
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used to create dot-blot filters, which were screened in the same way with individual 

(non-pooled) overgo probes to differentiate BAC clones based on gene content. 

BAC DNA isolation and end sequencing 

DNA was isolated for putative minimum-tiling-path BACs using a Qiagen midi-

prep kit (Qiagen, Chatsworth, CA) according to the manufacturer’s instructions.  End 

sequencing of all BACs (including those obtained from chromosome walking; see 

below) was carried out using the T7.29 (5’-GCCGCTAATACGACTCACTATAG 

GGAGAG) and SP6.26 (5’-CCGTCGACATTTAGGTGACACTATAG) primers for 

BACs from the CHORI-241 library and T7.19 (5’-TAATACGACTCACTATAGGG) 

and M13 reverse (5’-CAGGAAACAGCTATGACC) primers for those from the Texas 

A&M University equine BAC library (http://hbz7.tamu.edu/homelinks/bac_est/bac.htm).  

Dye terminator sequencing reactions (total volume 10 µl) were set up and performed in a 

Gene Amp (Applied Biosystems) PCR system 9700 using previously described 

protocols (Gustafson et al. 2003). Reaction products were purified by passing through 

spin columns (Spin-50, BioMax, Odenton, MD) and loaded on an ABI 3730 automated 

capillary sequencer (PE Applied Biosystems) for obtaining the sequences. 
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STS content mapping and chromosome walking 

Primer pairs were designed from end sequences following RepeatMasker 

analysis and BLAST comparisons.  All primers were designed using Primer3 software 

(http://www-genome.wi.mit.edu/cgibin/primer/primer3_www.cgi), and optimized on 

horse genomic DNA and DNA from the BAC of sequence origin.  The primers were 

used to screen adjacent BACs in the contig to confirm the positions and orientations of 

individual BACs.  Primer pairs from the BAC end sequences bordering gaps between 

contigs were used to screen the CHORI-241 and Texas A&M equine BAC libraries to 

identify new BACs.  The latter were subsequently end-sequenced, and primers were 

designed to screen neighboring BACs (to verify location) and/or for additional library 

screens for further walking.  In some instances, internal sequencing was carried out on 

BACs adjacent to the gaps to develop additional STS primers for chromosome walking.  

Detailed information on all STSs and primers generated in this study, along with their 

PCR conditions, etc., is summarized in Table 5-2. 
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Table 5-2.  PCR primers designed from STSs for STS content mapping and chromosome walking. 
STS F PRIMER R PRIMER EXPECTED SIZE 

001P14SP6 AATATAACTGCCTGAACTTTGTCA CATGAAGACTTTTCAATTTGTGC 230 

001P14T7 CAGGTAGGACCTTGGGTTCA CCTCCCTTGCTCACTCTCTG 194 

009F01 int 1 TGGTGTATCGTGTGGCAGAT AACGTACTTGCACGCAACAG 225 

009F01 int 2 AGACGGCTGCTTCTGTGAAT CTCCATGTCAGGAACACACG 177 

009F01SP6 AGGGCATTCTTTGTCGCTTA GCTCAGAACACGCAGCTCTT 208 

009I01SP6 CCTTGTTCCAGGCTTCTGTT CTGCCAACAATTTTGGAGGT 230 

011O15T7 CATCTTGTCTTGTGAGTTTGTGG GGGTTACAAAGCCTTGAACAAA 179 

015A14/181B11 int 1 TGCTCCCCACCTCTAGTCAA TGAGCCCTGCCCAACTGGA 250 

015A14/181B11 int 2 AGCTGGTCCAGTGTCCTCAC AATTCCCCTTTTAAATTTCCAC 195 

015A14/181B11 int 3 CACATGTGAGAGGAGACAGCA TGAAAACTTCGCATCTGGTG 152 

015A14/181B11 int 4 GTTTGAGCTTTTGGGGTTTT TGAAAACTTCGCATCTGGTG 217 

015A14T7 GGCAGGAAGATGAGCGACTA TGGATGACCTCTGTGGTGAA 173 

017A17SP6 AAGTGTGGGGTTCCTCTGGT GGCCTAACCAATTCCTACCC 150 

017N12SP6 TGGCTGATGTCAGCAATGAT TTTGACTTGCTGCTCTTGGA 157 

017N12T7 TTCCAGGTCAAAGCTGAAGG GGCCTCTGAGTATGGGTTGA 157 

021G18SP6 CCGAGACATGAATCACCAAA CAACGGGGAAAGAGTCTGTG 151 

021G18T7 ATAGGTGGGAAATGGTGCAG TCAGGGTTGCTTCCTCAGAC 199 

34.1C10M13 TGTTTTGAAGTTTTGATGTTTGG CATGATGTAATCTACACGAAATTTGA 247 

034.1C10T7 GGGGAAAGAAGCTTGCATTAT ACCCTACCTGGTCACTTGATT 212 

038L24T7 CGGCCTAACACTCATTCCTC CCAAGTTCCTTGAATCTTAACAA 291 

046M21SP6 CAGGCTTGACTCTTGGGAAG AGAAATGCCAGGGAGTTGTG 225 

046M21T7 TTAATCACCTGGAGGCCAAG GAAGTGGGCTGTTCTGCTTC 207 

047B23/186F05 int 1 AGTGACTGAGGGGCAGCTAA ACTCAAAAGTGCCCATGTCC 158 

047B23/186F05 int 2 AGCTGCCAAGACCAAACTGT CTTAGCTGCCCCTCAGTCAC 178 

047B23SP6 GGCACCCATAAGGAGTCTCA GCTCCATCGGAGTGCTGTAT 212 

047B23T7 TCATTGCCTTACAGACTGTTGAA GAAGAGGGATTTGGACTTGC 208 

049J07SP6 CACTTTTTCTGAGCGCCTTC CGCTGTCTGTCTCTCTCCACT 161 

049J07T7 TGCCCCTCACACACAATTTA TGTGCTCCCTCATTTCCTTC 168 

056C12SP6 ATAGGGAATTAAGGGCATGG AGCAGGCGGATTCATGTTT 150 

056C12T7 ATGGTCTGGACTCTGGATGC TGTTTGCAAAGCGTTTCACT 159 

060I06SP6 AATGCAGACCCAAGCTCATC AGTCCATTTCACTGCCCAAC 229 

060I06T7 TCCTAACACACAGTGGAGCAG ACGGTCATTCAGACGAGGAG 52 

064I21SP6 TCAATGGGCTTTTCTCTAGCA CCAAGACCCCAGTTGACTCT 174 

064I21T7 CAAGTGTCAATGAGCTCAGGAAT TTTTCCTTCATAATGTCATCTTTGTT 171 

081G24SP6 TTCCAGGCCAATTTAAGTTCA GCCAAGTCAGGTGGAGAGTG 159 

081G24T7 AGAGGGGCGAGCTAGGTAAC GTCGTCTGGATTTTGCCAAT 158 

085N19SP6 ATCCCAGGAGAGGATCTTGG TGTGTGAGCCCACAACGAC 172 

085N19T7 GACTCCACATCTGGCTTTGC CAGGGGGAGCAGTCTTCAT 103 

087G16SP6 AACAACACTCCCTGGCTCAC AGGAATGGGGTCACTCACAG 158 

087G16T7 AGCTTGAGCCCTTAGGCATT TTTTCCACCCAGGCATTTAG 207 

097.1G07T7 GCCAGTCCCACTGGATCTTA AAGTCAACAGCTCCCCTTCC 160 

101K14SP6 ATCAGCCTGCATTCTCAGGT CTGGAATTGGAGTCCCAAGA 189 

101K14T7 GATCTTGGGGGACCTTGAG CTTTTCTCTGGCCTCCACTG 202 

107D18SP6 TTCTAGGGCATTAGGGAGCA CTGAAGGGAGACTGGCAAAG 188 
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Table 5-2.  Continued. 
STS F PRIMER R PRIMER EXPECTED SIZE 

109A22SP6 CCTTGCGCTGAGAAACCTAC ATCGTGTTTGTGGGGAATGT 180 

109A22T7 GATCTTGGGACTTGCTGCTC TGCAGATGGATCAAACCAAA 215 

114F19SP6 TCCGGGTGAAGAGAAATGAC CAGAATGGAGAGGGATTGGA 225 

115E14SP6 TGGCACCAGGAATATGAACA TTGCTTTTGCAGCTTCTTGA 250 

115E14T7 TCCACAATCCGAAATTAGCC AAGGAAGAGTCGTGGCGTTA 153 

125O11T7 GGACCCTCTCTGTGGAATGT CGGTCGGTGTTAGACGTCAG 245 

127O05SP6 AGGGTATGCATGAGGTGTCC AACCCTGTCCACAAGACCTG 226 

139F16T7 CGCCTGGGTGATAGAGAGAC CAGGCTGGTTGGATCCTTTA 151 

152N03SP6 GCAGGGACAGTGCTTAGAGG CTTCCTCGAGCCCTCAGAC 168 

152N03T7 TGCCTTCCAGGTCTCTTTTC CATCTGGGGCTGAAAGGTTA 167 

153C05SP6 GACTGCAATTCCCAGTGACA GTGGGCCAGCAGGTAGAAAC 154 

162B03SP6 CTCCCTGGGAATCCTAGCTT TCACAGGTAGCTGTCGAAATG 152 

167K09SP6 TTCAAAGGGAACACATTCCTG CACACCAGCCTGTCACTCTT 56 

168H06SP6 CTTCTACCCAAACCCCACCT GGGTTACAGGTCAGCAGGAA 153 

168H06T7 GCTCCTTCCTTCATCTGCTG GGGAAGGATCCCTTTGATCT 184 

172F16SP6 TGTGCAGGCATCATAAGACC AGGAACGATTCCATCACAGC 194 

177I18SP6 TTCCTGTGTCTTCGTGTTGG CCAAGTGGTGGTAGGAGGAA 150 

177J08SP6 TTTGGGAAGCCTCAGAAGAA CGTGAGGTGGGTGAGAAAAT 209 

177J08T7 CAGACACATGGACCAGCACT TTTGAAGGCAAAATAACAGGTG 291 

181B11SP6 TGATGAATTGATCCTCTGCTG CTCAGGTGTTGCTTGGGACT 152 

182E20SP6 GGACACCCTGGGATAGATCA CAGAGCAGACATGGGGATG 100 

182E20T7 TTGGACCAGAAGTCGAGGTT AACGTGTCCACTGCCTCTTC 91 

186F05 int 1 GCACAGTGGGTGAGACTCCT CCCCTCTTTAACAACTAAGTAGGC 110 

186F05 int 2 CCTTCTGGTCTCCATGGTTT TCCCAAGTTGAGAGAAGGACA 223 

186F05T7 GACCTGCCACCACTGAGAAT AAAGTGTCCCTCCTGCACAC 197 

195I22T7 TCTCCTCTCTGGCTCTTTCG ATTTGAATGGACTCGGGAAA 100 

219J06SP6 AGAGGTGACCCGGGTTTAGT ACATCACCTCCCTCCCTTCT 117 

219J06T7 CCTTCGGTTCATCTCTCGTC ACGCTGAGGCACCATCTTAT 206 

229L17T7 GCCTCACCACCTTGTCCTAA AGAGGGTCCAAGCTCTCCAG 186 

230C10SP6 ATCGGAACTCACAACCCATC CCGCCTCTTTCTTTTCCTTC 132 

230C10T7 GTCCAGCTTCCCTGTGACC CCTTGACAACGTCCAGTCCT 116 

230H17SP6 TCAGAGTGGACCACAGCATC GTCGGACTTCGTCCTTGTGT 171 

230H17T7 CGACCTGGTCATTCAGGAAC CATGAGAGGGCCCAGAGTT 150 

232K12SP6 CAGGGCCACTCATGTGTCTA ACTCATCAGCCTCCACACCT 103 

238A18SP6 GAAAAAGATGGGGCATCTGA GAACGCTCCTTGTGAATGGT 151 

238A18T7 ACAGGGATGCAGAAGTGTCC GGACTGGGCAGGGAAGATAC 157 

238I22SP6 CCTGCATTCGGGTACTGTTT ACATCCAGCTGACCTCGTCT 141 

238I22T7 AGGAAGGAGCCTGACCCTAC CTGTTTCAGGAAACCCAAGG 189 

242J14T7 GCAGAGGCAAGAGAAATTGG TCCCATCAGGAATCCAGAAA 152 

265C11SP6 TTTCACAGTTTTGGCAATATGAA TGCTTGGGGGTTAATAGCAC 102 

265C11T7 GGGGGCACTATGCTTTATCA GGAAATGACCGTCCTTAGCA 182 

276A04SP6 CCACTGGAACTGTGGGAGAT AGCAGCAGGAAATCTCACTTG 194 

311I15SP6 CGACCTGGTCATTCAGGAAC CATGAGAGGGCCCAGAGTT 150 

311I15T7 CAGCTCACCTCGGAGTACAG CTCAGAGGTGGTGGCAGAC 153 
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Table 5-2.  Continued. 
STS F PRIMER R PRIMER EXPECTED SIZE 

325D24SP6 AAACTGAGGCCAGGAGAGGT ATTCCCAGGATGAAGGTTCC 123 

325D24T7 CTTAGTCAAACCCGGCCATA AAACAGGGAGACACCCAAGA 203 

326D04SP6 ACACCAGAAAATGCCACCAT GTGCTTGGGACTGAAGGAAG 216 

326D04T7 GGAGAGTGACGTCAGCAACA TCCGATGTATAGCAGCATGG 153 

338D15SP6 CTAGGGGGTGAGCACAAAAG TGCCTATGCCCTCATCTTTC 163 

338D15T7 TGCACATCCCTTGTAGGTGA CCCTACATCATCCTCGCAAT 176 

394J21SP6 GTAGGTGGGCCCCTAAACTC GAAGGACCATCCTCAGACCA 109 

394J21T7 CTGAACTCCAGCACCATCCT TACCGTGCACTTGGTGATGT 153 

408C14SP6 TCAATGGGCTTTTCTCTAGCA CCTAACCATCCAATGCCAAG 221 

408M24SP6 GGAAGAAATTCCCGGCTTAG GGCCCTTTTTCTCTTTGCTT 242 

408M24T7 AGGCCACTCTCTGCACTACG CTCAAGCCAAGCAGGAAAAC 178 

412B24SP6 TAGGAGTTGCCTGGTCTGCT ACTTGTGGAGTGCCCAAAAC 156 

431M22SP6 TATCGTCAGGGAAAGGCAAC TGCTTCCATCTCATCATTGC 132 

431M22T7 CATAAATCCAGCCCCTGGTA TCCTGTCGGTCAGCCTTAAT 156 

493B19SP6 CAAACCAATGCCATTTTGAA CACTGGCCATGTCTCAGCTA 158 

501I16T7 CGATCCTTTTCTGGGATTCA TTCGGCTGGAAAGAGAGAAA 202 

506J16SP6 ATATCGTAACGCACCAAGCA AGTCCTCTCGGCAATTCAAA 151 

506J16T7 ACAAGTGAGTCCCCATGTCC CTGGCCACCTTCATCTAGGA 165 

    

      

Primers for further sequencing of BACs:   

    

Originating STS Sequence BAC(s) used for sequencing  

009I06SP6 TTTTGGGAGAGTGGTAGTCACATA 047B23; 186F05  

009I06SP6 CCAACAATTTTGGAGGTTAGATTT 047B23; 186F05  

047B23SP6 TATTGGTCCTGTAGCCTGTAGTGA 186F05  

047B23SP6 TCCTTGAGAAGGCTGGACTTATAC 186F05  

087G16SP6 TCCTCACTCTGTCACGAAACTAAG 015A14; 181B11  

087G16SP6 AGGAATGGGGTCACTCACAG 015A14; 181B11  

238I22T7 AGCTGCCACTCTCTTCCTCTATTA 009F01  

431M22SP6 TTGGTCCGTGGTGTCTTTTATTA 015A14; 181B11  

431M22SP6 AAACAGAAATCCTTAATTTCAATGC 015A14; 181B11  
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Fluorescence in situ hybridization (FISH) 

About 1µg of DNA from selected BACs was individually labeled with either 

biotin or digoxigenin using the Bio- or DIG-Nick Translation Mix (Roche Molecular 

Biochemicals).  Labeled probes were hybridized either separately or in pairs to horse 

metaphase chromosome spreads or interphase cells to verify their locations and to 

estimate approximate physical distances between BACs flanking a gap.  In situ 

hybridization, signal detection, microscopy, and image analysis were performed as 

previously described (Chowdhary et al. 2003). 

Designing gene specific PCR primers and verifying the identity of amplicons by 

sequencing  

Primer pairs for 33 genes expected to be present in the region were developed to 

establish their likely physical order on the contig.  Of these, 21 primer pairs were 

designed from horse ESTs.  The remaining 12 pairs were designed by aligning 

sequences for orthologs from various mammalian species as described above.  Following 

PCR, the amplified products were sequenced as described above to confirm the identities 

of individual genes.  Detailed information on markers, primers, PCR conditions, etc. is 

summarized in Table A5-3. 

DNA fingerprinting and contig assembly 

A recently reported automated, capillary electrophoresis-based fingerprinting 

method (Xu et al. 2004, 2005) was used for additional independent verification of the 

BAC contig map. A three-restriction enzyme and one-labeling color kit (Xu et al. 2004) 

was employed for fingerprinting experiments. BAC DNA was digested with HindIII, 
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BamHI, and HaeIII. The fragment ends of BamHI and HindIII were labeled with 

ddATP-NED or ddATP-HEX and the labeled fragments were fractionated on an ABI 

3100 capillary sequencer. The BAC fingerprints were edited and assembled into contigs 

using the FPC program (Soderlund et al. 2000; Xu et al. 2004, 2005). The automatic 

contigs initially assembled were examined to remove the questionable clones (Qs) and to 

disassemble the chimeric contigs. Singletons were added to the contigs and overlapping 

neighbor contigs merged into larger contigs with the FPC program. 

 

Results 

Screening of BAC library with overgos and verification of BAC identity 

Overgo primers were developed for 58 genes uniformly distributed on the 14.0 to 

20.0 Mb sequence map of HSA19 and 64.1 to 68.8 Mb region of HSA5. These human 

chromosomal regions share homology with the proximal one-third of ECA21. Screening 

the CHORI-241 equine BAC library with pools of 20 overgo probes per hybridization 

gave a total of 337 positive BAC clones for the loci. Next, screening of secondary filters 

from these BACs with individual overgo probes helped to associate 243 BACs with 47 

of the 58 genes.  On the basis of their common gene content, it was possible to group a 

number of BACs into clusters that would potentially overlap. The remaining 94 BACs 

seemed to be false positives and were therefore discarded from future analysis. No 

BACs could be obtained for 11 genes viz., CRLF1, CYP4F11, KIAA0892, LOC388515, 

LOC388524, LOC390898, LOC390913, LOC440515, LOC91120, ZNF14, and ZNF539.  
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The presence of the above specified 47 genes in the remaining BACs was further 

verified by PCR, using equine specific and heterologous primers for individual genes, 

and sequence analysis of the heterologous amplicons. Seven of the genes did not show 

consistent amplification with BAC DNA and were therefore discarded from next phase 

of analysis. Next, to ensure that the equine genomic region corresponding to HSA19 is 

accurately defined on ECA21, BACs for genes lying towards the end of the homologous 

segment were mapped by FISH to horse metaphase chromosomes. This led to the 

removal of 7 more loci because they mapped either to ECA7 (HSA19 homolog) or to 

ECA14 (HSA5 homolog). An additional 5 loci from the ECA21 region corresponding to 

HSA5 were removed because they were located >1 Mb away from the HSA19-HSA5 

evolutionary breakpoint on ECA21 investigated in this study.  Last, two more genes 

were deleted because BLAST analysis did not provide a reliable match of their amplicon 

sequences with the expected human ortholog. Finally a total of 25 genes contained in 

190 BACs were available for further analysis. The coverage and distribution of these 

genes over the corresponding sequence template of HSA19 and HSA5 were examined. 

Following close scrutiny, 17 additional genes were chosen to provide a uniform 

representation of the human orthologs at regular intervals along the ~5 Mb segment on 

ECA21. Equine ESTs were identified for the 17 human genes and PCR primers were 

designed, eventually leading to their assignments to specific BACs.  Further, 5 

microsatellite markers previously mapped to this region of ECA21 (Brinkmeyer-

Langford et al. 2005) were similarly assigned to individual BACs in the pool. Thus, the 

total number of markers contained in the 190 BACs increased to 47. Complete 
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information on these markers, their primers and PCR conditions, etc. is summarized in 

Table A5-3. 

STS development, STS content mapping and chromosome walking 

The 190 BACs obtained above were clustered into groups based on common sets 

of marker content. Using comparative markers as alignment points, individual clusters 

were arranged on the HSA19/HSA5 sequence template. This provided a provisionally 

ordered set of contigs on the proximal one-third of ECA21. Representative overlapping 

BACs from each contig were identified, resulting in a collection of 47 BAC clones that 

were selected for expansion of individual contigs and for filling gaps between them. The 

BACs covered the majority of the HSA19 homologous region on ECA21, the 

HSA19/HSA5 breakpoint, and part of the adjacent HSA5 homologous region. DNA was 

isolated for the 47 BAC clones.  End sequences from these clones were analyzed, 

leading to the development of 74 sequence-tagged sites (STSs; Table 5-2).  No STSs 

could be developed from the remaining 20 end sequences because they largely contained 

repetitive elements.  Primer pairs for individual STSs were used for content mapping by 

PCR on DNA from specific BACs. The findings permitted the arrangement of the 47 

BACs into 4 contigs spanning the targeted region on ECA21. 

The gaps between the contigs were filled by chromosome walking as described 

earlier (Raudsepp et al. 2004b). Briefly, STSs from end sequences of the most proximal 

BACs of the contigs flanking a gap were used to screen the CHORI-241 and/or TAMU 

equine genomic BAC libraries by PCR. This provided new BACs that were end 

sequenced to obtain new STSs for repeating the process until the gap was covered with 
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overlapping BACs. In total, 17 BACs were obtained via chromosome walking (15 from 

the CHORI-241 library and 2 from the TAMU library).  End sequencing of these BACs 

added 28 STSs to the contig. These STSs validated the locations of existing and new 

BACs, and helped to orient the new clones in relation to others. All gaps (2) except the 

one at the evolutionary break/fusion point between HSA19 and HSA5 were filled with 

overlapping BACs. Finally, two contigs were obtained over the targeted ECA21 region: 

the larger over the region corresponding to HSA19 (“contig A”), and the smaller over 

the adjacent part from where homology with HSA5 begins (“contig B”; Fig. 5-1). The 

gap signifies the evolutionary breakage/fusion point and its putative size is discussed 

below. Overall, the two contigs have a total of 207 BACs (196 in contig A and 11 in 

contig B), of which 22 and 4 formed the minimum tiling paths for contig A and contig B, 

respectively. A total of 106 STS markers were generated during the course of contig 

development, of which 87 are present in contig A and 19 in contig B. 

 Fluorescence in situ hybridization (FISH) 

FISH on equine metaphase chromosomes was carried out to verify the 

chromosomal locations of some of the loci present at the boundary of homology between 

HSA19/HSA5 and corresponding segment on ECA21. As indicated in previous sections 

for 7 genes previously presumed to be located on ECA21, FISH mapping of local BACs 

showed that 5 of the loci are actually present on ECA7 (ASF1B, DDX39, PTGER1, 

EMR3, and FLJ40365) and 2 on ECA14 (OCLN and TAF9). Thus, BACs for 
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Figure 5-1.  BAC contig along the section of ECA21 which corresponds to parts of HSA19 (green bar; referred to in text as contig A) and HSA5 (purple bar; referred to in text as contig B).  Blue triangles denote STSs; red circles denote genes and microsatellites; and starbursts indicate repetitive end sequences 
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these loci were excluded from development/expansion of the contig. Further, metaphase 

FISH using BACs containing NOTCH3, CDK7, and CCNB1 showed that these genes 

are indeed present within the region for which the contig is being developed.   

FISH was also carried out to estimate physical sizes of two of the gaps during the 

course of contig development. Dual-color metaphase and interphase FISH approaches 

indicated that gaps between markers FLJ39501 and TPM4 and between ATP13A1 and 

CDK7 did not exceed more than ~200 kb, as denoted by overlapping signals on 

metaphase chromosomes that were further corroborated by closely located signals on 

interphase chromatin (Fig. 5-2 d, e, and f). STSs from BACs flanking the first gap 

(between FLJ39501 and TPM4) eventually led to the identification of BAC clones that 

ultimately filled the gap. New BACs identified through chromosome walking for these 

gaps were also labeled and hybridized to confirm their locations within the gaps. Finally, 

the only remaining gap between contig A and contig B is rather small (not exceeding 

~100-150 kb). This is evident from dual color interphase FISH results using BACs 

506J16 and 114F19 (Fig. 5-2 e and f). These BACs face each other across the gap (Fig. 

5-1).   
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Figure 5-2. Partial horse metaphase spreads or interphase chromatin showing (arrows) single- and double-color FISH results for 
selected loci. a: CH329M17 (green) and 009F01 (red),  b: CH035N16 on ECA14ter,  c: NOTCH3 (red) and GMPI green),  d: 
CH015A14 (green) and 009F01 (red),  e: CH506J16 (red) and CH144F19 (green) showing size of remaining gap in contig,  f: 
CH506J16 (red) and CH144F19 (green) showing size of remaining gap in contig.

a b c

d e f
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Fingerprint analysis  

A total of 26 BACs comprise the minimum tiling path on contigs A and B. 

Fingerprint analysis pooling the BACs from the two contigs clearly showed that the 

minimum tiling path obtained via STS content mapping did indeed accurately represent 

the region, resulting in the assembly of the BACs into 2 contigs.  The fingerprint map 

affirmed the contigs obtained by STS content mapping and provided added confidence 

and robustness to the map. 

 

Discussion 

Contig overview 

The development of this contig began with 47 overgoes designed for genes in the 

region of interest, which returned positive BACs after screening CHORI-241 BAC 

library filters.  Provisional contigs were established from the positive BACs and 

chromosome walking provided additional BACs to close the gaps.  Metaphase and 

interphase FISH were then used to determine the boundaries of the region based on the 

locations of BACs at the far ends of the contigs.  Sequence-tagged sites were used to 

screen the BACs and validate the contigs.  Additional genes, microsatellites, and STS 

markers were added to the contigs via PCR to make the map more informative.  

Interphase FISH using BACs extending into the one remaining gap in the region, which 

encompasses the breakpoint in homology between HSA19 and HSA5, indicate that it is 

around 30-40kb wide.  Finally, BAC fingerprinting was performed for contig 

verification.  The final result is a contig containing 104 new STSs, 42 genes (of which 
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33 are newly added to the map), and 5 microsatellites, which provides a thorough 

coverage of the region. 

The contig described in this study provides a detailed map of the proximal 

segment of ECA21 that corresponds to the 15.1 to 19.7Mb sequence positions of the 

proximal part of the short arm of HSA19.  The 26 BACs in the minimum tiling path give 

the contig a span of ~4.3 Mb.  Presently, it is the largest contig available in horses and is 

over twice the size compared to the only other region in the horse for which a contig has 

been established, the equine major histocompatibility complex (Gustafson et al. 2003).  

BAC contigs have also been constructed in at least four other domesticated species for 

which whole-genome sequence (beyond draft-level) is not currently available.  These 

include several regions in the pig, such as the region on porcine chromosome 7 which 

contains quantitative trait loci related to fat (Barbosa et al. 2004; Demars et al. 2006; 

Tanaka et al. 2006; Sato et al. 2006), and the major histocompatibility complexes of 

sheep and cats, with three contigs spanning approximately 1900, 400, and 300 kb 

covering the region in sheep (Liu et al. 2006) and two contigs of ~2.85 Mb and ~0.50 

Mb built for the same region in the cat (Beck et al. 2005).  In addition, six contigs have 

been developed for the Polled Intersex Syndrome region of the goat; these are 

approximately 400, 1000, 1500, 1000, 400, and 300 kb in length (Schibler et al. 2000).  

Contigs such as these are essential for anchoring sequence information to physical maps 

and provide nucleotide-level resolution for fine mapping regions of interest. 

The development of a contig for the segment of ECA21 which correlates to 

HSA19 has significantly increased the level of map detail in the region, providing 
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additional markers to improve the overall utility of the map.  The previously-established 

high-resolution radiation hybrid (RH) map for this segment had an average of 1 marker 

per 380kb; however, the high density of markers in the region prevented their accurate 

ordering with the 5000rad horse x hamster radiation hybrid panel and metaphase FISH 

(Brinkmeyer-Langford et al. 2005).  Despite this, overall marker order of the RH and 

FISH maps appear to be in agreement with that found in this study.  The map reported 

herein shows a ~3.8-fold improvement in resolution over the RH map, with 1 marker 

mapped per ~100 kb.  Even at this density, not every gene in this very gene-dense region 

was selected for mapping.  Rather, one gene was selected every ~100kb from the 

corresponding human region; more closely packed genes could not have been adequately 

resolved with respect to each other.   Additionally, five previously described 

microsatellite markers were added to the contig, giving them more precise physical 

locations with respect to the mapped coding genes.  The order and positions of three of 

these microsatellites (TKY021, SG14, and SG16) are in agreement with the most recent 

linkage map developed for the horse (Swinburne et al. 2006; TKY678 and UMNe564 

are presently not on any linkage map).     

Comparative 

The equine genome is estimated to be around 10% smaller than that of humans.  

This has been found to hold true for the section of the genome on ECA21 which shares 

homology with HSA19.   The region covered by the contig on ECA21 is approximately 

4.3 kb in size, 10% smaller than the corresponding region in humans, which is around 

4.7kb (~4.6kb HSA19 and ~0.1kb HSA5).  Summing the lengths of synteny blocks for 
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several species gave estimates of the approximate sizes of the regions homologous to the 

segment of ECA21 corresponding to HSA19 (however, it should be noted that this 

method of estimation does not take into account individual sequence variations).  This 

region also appears to be smaller in size than in humans for the other mammalian species 

compared: chimpanzee, ~4.0Mb (PanTro 1.0); cattle, ~3.6Mb (Btau 2.0); rat, ~3.0Mb 

(RGSC 3.4); dog, ~2.6Mb (CanFam 1.0); and mouse, ~2.3Mb (NCBI m35).   The size 

differences between species can be attributed to any of several factors.  Firstly, the 

region is enriched for various repetitive elements, particularly short interspersed nuclear 

elements (SINES) in humans, so there may be differences between humans and other 

species (including horses) in the number of repetitive elements within and between 

genes (as seen between human and mouse; Dehal et al. 2001).  Next, much of the region 

(over 25% in humans) is comprised of gene family members, many of which have arisen 

through tandem in situ duplications of ancestral copies (Dehal et al. 2001; Grimwood et 

al. 2004) resulting from their propensity for nonhomologous pairing.  Lineage-specific 

changes within these families may also result in differences in lengths of the 

corresponding regions.   

One such gene family, a cluster of olfactory receptor genes, is located at the 14.7-

14.9Mb position in humans.  This region probably encompasses the division in HSA19 

homology between ECA7 and ECA21.  Two more families are located at the human 

positions 15.6-15.8Mb and 15.5-15.9Mb; in humans these contain 5 members of the 

OR10H olfactory receptor family and 9 members of the CYP4F gene family, 

respectively (Grimwood et al. 2004).  Due to its lineage-specific nature, human 
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homologues in this region could not be mapped in the horse.  In addition to these three 

gene family-rich regions, humans and chimpanzees possess a 4.6Mb cluster of ZNF 

genes, located in the pericentromeric region of HSA19p from ~19.5-24.1Mb.  This 

region is generally accepted to be primate-specific (Bellefroid et al. 1995; Eichler et al. 

1998; Dehal et al. 2001; Grimwood et al. 2004) and is therefore not found on the 

corresponding contigs of the horse or any other non-primate species. 

Overall HSA19 gene order (based on NCBI build 36) appears to be conserved in 

horses and chimps, where the region of interest is present on a single chromosome in 

each.  Gene orders of the homologous regions in dog, cattle, mouse, rat, chicken, and 

zebrafish are not as well conserved.  In general for the dog and chicken, the entire region 

is intact though inverted.  There are several breakpoints in the region involving inversion 

or transposition events in cattle, mouse, and rat.   

Interestingly, the region of interest is situated differently in each species with 

regards to homology with humans.  As illustrated by the contig described in this study, 

in horses, the end homologous to human position 15.1 Mb is adjacent to the centromere; 

the other end of HSA19 homology is next to the 68.5Mb region of HSA5.  As expected, 

chimp chromosome 19 and HSA19 share an almost one-to-one homology along the 

entire lengths of the chromosomes.  In dogs, the entire p arm of HSA19 is located on dog 

chromosome 20, with the end of the segment homologous to position 19.7 Mb on 

HSA19 associated with a region homologous to the 44.7 Mb sequence location next to 

the centromere on HSA3q.  Predictably, HSA19p homology is scattered in both mouse 

and rat, with segments frequently bounded by lineage- or rodent-specific regions.   
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The breakpoint between HSA19 and HSA5 homology on ECA21 is of particular 

interest because of its Perissodactyl-specific nature.  While HSA19p homology is 

present on a single chromosome in most mammalian species, it has been found on two 

separate chromosomes in Perissodactyls (Yang et al. 2003b, 2004; Brinkmeyer-Langford 

et al. 2005).  In cattle, HSA19p is located entirely on chromosome 7, though the 2.2-19.5 

Mb sequence segment of HSA19 is separate from the 0-1.9Mb segment (Everts-van der 

Wind et al. 2005).  Both ends of the 2.2-19.5Mb block are bounded by regions 

homologous to HSA5; however, neither is the same as in horses.  The 179.7Mb sequence 

position is next to the HSA19 19.5Mb position at the distal end in cattle, while the 

proximal end of the HSA19 block is bounded by the 132.0Mb position of HSA5.  In 

each of the Perissodactyl species studied (horses, donkeys, Burchell’s zebra, and 

Hartmann’s zebra), the ~15.1-19.6Mb HSA19p-homologous segment is adjacent to a 

region corresponding to HSA5pter-5p13 (68.5Mb sequence position).  While HSA19p 

and HSA5 share adjacent homology in artiodactyls, the corresponding HSA5 region is 

different; in no other mammalian species has this particular connection been observed. 

Lineage-specific gene families are frequently observed at breakpoints in each of 

the species examined.  The presence of olfactory receptor, CYP4F, and ZNF gene 

families and L1 repeat or LTR sequences at the margins of syntenic rearrangements is 

not uncommon for HSA19 homologous segments (Grimwood et al. 2004), suggesting 

that non-homologous recombination may have been a driving force in the evolution of 

the region (Dehal et al. 2001).  The olfactory receptor gene family cluster at human 

position 14.7-14.9Mb is probably located at the place where HSA19p homology is 
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divided between ECA7 and ECA21 (genes within this span could not be mapped in the 

horse).  A breakpoint at this location is not observed in dogs or cattle, though it is 

present in the mouse and rat.  Additionally, the OR10H olfactory receptor and CYP4F 

gene families located within the 15.5-16.0Mb sequence segment of HSA19 are located at 

synteny breakpoints in cattle, mouse, and rat.  In cattle, this breakpoint is 

intrachromosomal; in mouse and rat, it is interchromosomal.  It is interesting to note that 

an intrachromosomal boundary is also present within the section homologous to the 

16.6-17.0Mb segment in humans in each of these three species, despite the lack of gene 

family presence there; there are relatively few genes in this region (none of which were 

mapped in this contig).  Presumably there is some sequence feature that has predisposed 

this section to breakage.  Other synteny breakpoints not associated with gene families 

include three breakpoints in cattle, localized between the human positions of 17.30-

17.48Mb, 18.12-18.28Mb, and 19.43-19.48Mb, and one other breakpoint in mouse 

located between the human positions 17.78-17.83Mb.  Finally, the ZNF family located 

on HSA19 from ~19.5-24.1Mb demarcates another popular site for synteny breakpoints: 

each of the mammalian species studied here contains a boundary within this region.  

This includes the horse, where this particular breakpoint defines the boundary in 

homology between HSA19 and HSA5.  The other side of this boundary is homologous 

to the 68.5Mb sequence position on HSA5.  Breakpoints in HSA5 homology are found 

in similar locations in the pig (71.65Mb sequence position in humans; Lahbib-Mansais et 

al. 2006) and dog (74.2Mb sequence position in humans). 
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The development of this contig on ECA21 represents a significant step towards 

achieving nucleotide-level detailed resolution for a region in the horse by providing a 

template on which sequence information can be assembled.  In addition to learning more 

about the evolution of ECA21 and other homologues of HSA19 in the horse, the level of 

detail provided by the contig facilitates the identification of species- and lineage-specific 

features.  Another benefit will be improved accuracy in discovering functional elements, 

which have been conserved throughout evolution.  The ENCODE project seeks to 

identify and describe all functional elements in the human genome sequence (ENCODE 

Project Consortium 2004), an endeavor which is facilitated by the comparison of 

sequences of homologous regions in many, distantly-related species (Margulies et al. 

2005).  Although this particular region is not currently selected for analysis by the 

ENCODE project—presumably due to its extraordinarily high gene density—the 

presence of medically-important genes, at least one cancer breakpoint involving the gene 

ELL, and its Perissodactyl-specific nature may make it of special interest in future 

searches for regulatory elements.  The addition of data from the horse to the ever-

expanding phylogenetic tree of mammalian species with sequence information will 

further increase the utility of this contig for identifying and characterizing functional 

elements in the region which will ultimately form targets for disease research and drug 

development.  
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VI.  EXCEPTIONAL CONSERVATION OF HORSE-HUMAN GENE ORDER ON 

X CHROMOSOME REVEALED BY HIGH-RESOLUTION RADIATION 

HYBRID MAPPING* 

Synopsis 

Development of a dense map of the horse genome is key to efforts aimed at 

identifying genes controlling health, reproduction, and performance. We herein report a 

high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) 

generated by developing and typing 116 gene-specific and 12 short tandem 

repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel 

and mapping 29 gene loci by fluorescence in situ hybridization. The human X 

chromosome sequence was used as a template to select genes at 1-Mb intervals to 

develop equine orthologs. Coupled with our previous data, the new map comprises a total 

of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in 

situ hybridization mapped) distributed on average at ~880-kb intervals along the 

chromosome. This is the densest and most uniformly distributed chromosomal 

map presently available in any mammalian species other than humans and rodents. 

Comparison of the horse and human X chromosome maps shows remarkable 

conservation of gene order along the entire span of the chromosomes, including the 

location of the centromere. An overview of the status of the horse map in relation to  

__________________ 
*This section is reproduced with permission from Proceedings of the National Academy 
of Sciences, USA, Exceptional conservation of horse-human gene order on X 
chromosome revealed by high resolution radiation hybrid mapping, Terje Raudsepp, Eun-
Joon Lee, Srinivas R. Kata, Candice Brinkmeyer, James R. Mickelson, James E. 
Womack, Loren C. Skow and Bhanu P. Chowdhary, volume 101, 2386-2391, © 2004 by 
the National Academy of Sciences, U.S.A. 
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mouse, livestock, and companion animal species is also provided. The map will be 

instrumental for analysis of X linked health and fertility traits in horses by facilitating 

identification of targeted chromosomal regions for isolation of polymorphic markers, 

building bacterial artificial chromosome contigs, or sequencing. 

 

Introduction 

Equine genome analysis has proceeded at an unprecedented pace during recent 

years. From the initial horse (Equus caballus, ECA) gene map 6-7 years ago, organized 

international efforts have led to a ten fold expansion in the map. This is evident from the 

recently published meiotic (Guérin et al. 1999, 2003; Swinburne et al. 2000), cytogenetic 

(Milenkovic et al. 2002) and radiation hybrid maps (Chowdhary et al. 2003) that provide 

an array of polymorphic and gene specific markers distributed over all equine autosomes 

and the X chromosome. Comparative information available through these maps is 

proving critical for accurate alignment of the horse genome with the sequenced genomes 

of human and mouse (Chowdhary et al. 2003; Milenkovic et al. 2002) and with the gene 

maps of other livestock species. The maps, most of which are of low to medium-density, 

have served as a starting point to initiate research aimed at identifying genes responsible 

for valuable traits associated with equine biology, health and performance including 

genes responsible for base coat color, overo lethal white, hyperkalemic periodic paralysis, 

and severe combined immunodeficiency (Marklund et al. 1996; Rudolph et al. 1992; 

Santschi et al. 1998; Wiler et al. 1995). Further, marker based studies are in progress to 

dissect molecular causes of various coat colors [e.g., grey, (Henner et al. 2002; Locke et 

al. 2002; Swinburne et al. 2002); appaloosa, (Terry et al. 2001, 2002)], genetic diseases 
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[e.g., exertional rhabdomyolysis, (MacLeay et al. 1999a, b); polysaccharide storage 

myopathy (Valberg et al. 1996)] and other traits of interest. The major impediment 

associated with the latter group of studies is the lack of adequate resolution maps for 

individual equine chromosomes. Such maps could facilitate rapid targeted hunts for 

candidate genes associated with the traits, once they are mapped by genetic linkage 

analyses with highly polymorphic markers. 

The X chromosome is the most conserved mammalian chromosome 

(Charlesworth 1991; Ohno 1967). Extensive analyses/comparisons of structure, 

organization and gene content of this chromosome in evolutionarily diverse mammals 

have revealed a remarkable degree of conservation (Graves et al. 2002; Murphy et al. 

1999a; Raudsepp et al. 2002). Until now, the chromosome has been best studied in 

humans and mice, where the focus of research has been the intriguing patterns of X-

inactivation and the involvement of various X-specific genes in genetic diseases (Boyd et 

al. 2000; Lyon 2002), female and male fertility (Vaiman 2002; Vialard et al. 2002; Wang 

et al. 2001) and embryonic development (Burgoyne et al. 2002). Relatively very little 

applied research has yet been conducted in livestock and companion/pet species. This is 

primarily attributed to the limited information available through the medium to low 

resolution X chromosome maps that are presently available in pigs (McCoard et al. 2002; 

Rink et al. 2002), cattle (Amaral et al. 2002; Iannuzzi et al. 2000), cats (Menotti-

Raymond et al. 2003b; Murphy et al. 1999a), dogs (Breen et al. 2001; Everts et al. 2002; 

Guyon et al. 2003; Kirkness et al. 2003; Spriggs et al. 2003) and sheep/goats/buffalo 

(Iannuzzi et al. 2000; Piumi et al. 1998; Schibler et al. 1998), which are insufficient to 

permit comprehensive studies aimed at dissecting traits or phenomenon of interest. 
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The current horse X chromosome (ECAX) map is comparable to those of other 

livestock and companion species. Beginning with the physical assignment of three gene 

specific loci viz., G6PD, HGPRT and PGK during early 1970s (Deys 1972), the ECAX 

map developed mainly through synteny (Caetano et al. 1999b; Shiue et al. 2000) and 

genetic linkage mapping approaches (Swinburne et al. 2000). During recent years, the 

map has benefited considerably through the availability of the RH panel (Chowdhary et 

al. 2002). The current ECAX map comprises 26 gene and 17 short tandem repeat loci 

(Chowdhary et al. 2003; Raudsepp et al. 2002), offering a basic RH map for comparative 

analysis of ECAX. However, the resolution of this map is inadequate to facilitate 

identification of economically important genes over the ~153 Mbp span of the 

chromosome (Chowdhary et al. 2003). 

Building on our recent success in developing high resolution gene maps for 

ECA17 (Lee et al. 2003a), ECA22 (Gustafson-Seabury et al. 2005) and a targeted region 

of ECA26 (Ward et al. 2003), we undertook development of a high-resolution gene map 

of ECAX by stepwise selection of gene specific markers from the human and mouse X-

chromosome sequence templates. This effort has resulted in a dense and comprehensive 

map that is second only to the highly detailed maps in human and mice, and will lay the 

foundations to identify and analyze X-linked genes involved in equine reproduction and 

genetic disorders. 

 

 

 

 



 99

Materials and methods 

Marker selection and primer design  

The human genome sequence data available from NCBI build 34 of the human 

reference sequence (http://genome.ucsc.edu/cgi-bin/hgGateway) and the Ensembl l 

version (also from July 2003; http://www.ensembl.org/Homo_sapiens/) were jointly 

interrogated for known genes from the human X chromosome. The genes were selected at 

approximately 1 Mb intervals, beginning at 0 Mbps (distal tip of the short arm) and 

ending at 153 Mbps (distal end of the long arm). Whenever possible, human exonic 

sequences from selected genes were compared with orthologous sequences from mouse, 

rat, cattle, pig and other available mammals using BLASTn nr and est_others search 

engines (http://www.ncbi.nlm.nih.gov/BLAST/). This was followed by multiple 

alignment of the sequences in CLUSTALW (http://bioweb.pasteur.fr/seqanal/interfaces/ 

clustalw-simple.html). The alignments were used to design heterologous primers for PCR 

amplification of horse DNA in a hamster DNA background, as described previously 

(Jiang et al. 1998, 2002; Lee et al. 2003a). Briefly, all primers were derived either from a 

single exon or from two adjacent exons leaving an ~ 500-700 bp intron in between, and 

chosen for 100% sequence identity among human, cattle, pig etc. orthologues, but with 1 

to 3 mismatches with the rodent (mouse, rat) sequences. Primers were designed using the 

Primer3 software (http://www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi). A 

total of 88 gene specific markers were developed using this approach. Additionally, 

species specific primers for all microsatellites (12) and some genes (28) were designed 

based on the available equine genomic or EST sequences. Detailed information on all 

new markers (128) is presented in Table A6-1. 
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Primer optimization and sequencing 

Horse and hamster genomic DNAs were used to optimize the PCR conditions for 

individual primer pairs, such that only horse specific DNA amplification was obtained 

and all equine PCR amplification products were verified by sequencing. The identities of 

the sequences were confirmed through BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) 

and BLAT (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start) searches as 

described earlier (Lee et al. 2003a) and all comparisons were revalidated against the latest 

built of sequence data at UCSC and Ensembl. For RPS6KA3 (see Table A6-1), new 

primers were designed using sequence data obtained from the first primer pair. This 

provided robust horse-specific amplification compared to the weak amplification 

observed using the initial primer pair. The identity of this PCR product was revalidated 

by sequencing, as described above. 

RH typing analysis, bacterial artificial chromosome (BAC) library screening, and 

fluorescence in situ hybridization (FISH) mapping 

PCR typing on the 5000rad horse x hamster RH panel and data analysis was 

performed as described (Chowdhary et al. 2003).  The TAMU and CHORI-241 equine 

genomic BAC libraries were screened by PCR to obtain clones specific for 29 ECAX 

genes. The selection of these markers ensured physical anchors for the RH map at regular 

intervals along the entire length of the chromosome. Therefore, loci were chosen in 

regions having no or very few FISH mapped markers. Individual BAC clones were 

labeled with biotin and/or digoxigenin using BIO- and DIG-Nick Translation Mixes 

(Roche Molecular Biochemicals) and separately hybridized to horse metaphase 

chromosomes to confirm probe origin and determine precise physical locations. 
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Additionally, 9 closely positioned or overlapping markers in the RH map were co-

hybridized in differently labeled pairs or triplets on metaphase and interphase chromatin 

to refine their relative physical order. In situ hybridization, signal detection, microscopy 

and image analysis were carried out as described (Chowdhary et al. 2003). 

 

Results 

Generation of gene-specific markers on ECAX 

A total of 167 equine gene-specific primer pairs were designed by using the 

human X chromosome sequence map (Ensembl, www.ensembl.org; Human Genome 

Browser, http://genome.ucsc.edu/index. html?org=Human&db=hg16&hgsid=27764832). 

After the first round of optimization, 40 primer sets were excluded due to 

weak amplification of horse DNA, multiple PCR products, or amplification products of 

equal sizes for horse and hamster. Of the remaining 127 primer pairs, 28 were identified 

from equine EST or gene sequences, and the remaining 99 originated from multiple 

alignments of mammalian sequences (Table A6-1). Sequencing the PCR amplification 

products of individual primer pairs to verify the identity of the markers resulted in 11 

primer pairs being discarded, because the sequences did not correspond to the expected 

genes. This yielded 116 equine orthologs for human X chromosome genes and 

represented a ~70% success rate in developing horse-specific markers for use on the 

5,000- rad RH panel. 

Generation of a composite RH map 

A total of 128 new markers (116 genes and 12 microsatellites) were typed on the 

5000rad horse x hamster whole genome RH panel (Chowdhary et al. 2002). When 
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integrated with 42 loci from the two previous RH maps (Chowdhary et al. 2003; 

Raudsepp et al. 2002), the final map for the equine X chromosome comprised 169 

markers (135 Type I and 34 Type II) uniformly distributed along the length of the 

chromosome (Fig. 6-1). With the estimated size of ECAX at ~153 Mbp (Chowdhary et 

al. 2003) the average marker density is 1 every 900 kbps and the average gene marker 

density is 1 every ~1 Mbps. The retention frequency (RF) of the 169 markers in the RH 

panel ranged from 5.4% (BRIA3, BIRC4 and ODZ1) to 31.5% (Adlican), with an average 

of ~13% (Fig. 6-1). This retention frequency is satisfactory considering the RH panel was 

made from a male horse. A relatively high retention of markers was observed towards the 

proximal and distal end of the short arm, while retention was relatively lower than 

average in the distal part of the long arm (Fig. 6-1). 

At logarithm of odds score 7 (2PT-RHMAP), the 169 markers clustered in six 

RH-linkage groups arranged tandemly from pter to qter on the chromosome (LGI–LGVI; 

Fig. 6-1, which is published as supporting information on the PNAS web site), 

each comprising 48, 11, 15, 30, 31, and 34 markers, respectively (Fig. 6-1). The proximal 

three linkage groups comprising 74 markers were located on the short arm, whereas the 

distal three linkage groups comprising 95 markers were located on the long arm. 

The order of markers within each RH linkage group was deduced by using the equal 

retention probability and stepwise locus ordering models (RHMAXLIK). Twenty-nine 

loci served as frameworks (odds of 1,000:1; shaded orange in Fig. 6-1). The 

comprehensive map thus generated spans of 1,344 centiRay (cR)5000, uniformly covering 

the entire length of ECAX (see Fig. 6-1 legend for details on map construction). The only 

two human X (HSAX) regions (each spanning ~5–6 Mbp) not represented on ECAX 
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were the centromeric region and the HSAXp21.1 region (spanning between 54–62 and 

31–37 Mb positions, respectively, on the human sequence map). Otherwise, the 

representation/alignment of HSAX on ECAX was quite uniform, averaging one gene-

specific marker every ~1-Mbp interval. 

Seven genes from the upper terminal part of the RH group 1 (a region 

corresponding to ECAXpter) produced PCR patterns characteristic to both the X and Y 

chromosomes. These genes gave the same-size PCR amplification products in males 

and females and also amplified in RH cell lines known to be Y specific (results not 

shown). Redesign of primers for most of these genes did not change the PCR typing 

pattern. However, the second set of primers generated by using sequence data from 

the first amplification products of STS produced an X specific pattern, as indicated with 

two adjacent map positions for this gene: STSX and STSXY (Fig. 6-1). 

FISH map 

Equine BAC clones containing 29 selected genes FISH mapped to the expected 

chromosomal location (Table A6-1) based on theRHmap and the previously FISH 

mapped loci (Raudsepp et al. 2002). These localizations bring the total number of 

cytogenetically mapped markers on ECAX to 53 (46 gene-specific and 7 short 

tandem repeats; Fig. 6-1). The FISH markers are fairly uniformly distributed along the 

chromosome, from Xpter to Xqter (Fig. 6-1 and Fig. 6-2), except in band Xp21. Two-

color FISH on metaphase chromosomes provided the following physical order for 

overlapping loci:. Adlican-TMSB4 (pter cen; Fig. 6-2h), CHMDIAPH2 (cen qter; Fig. 

6-2f ) and FMR1-MTM1 (cen qter; Fig. 6-2h). Further, interphase FISH with 

combinations of differently labeled probes helped refine relative order of three loci 
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Figure 6-1.  A high-resolution radiation hybrid (RH) and comparative map of the Equus caballus (ECA) X chromosome (ECAX). Map of the short arm (Xp) is presented on the first sheet 
and of the long arm (Xq) on the second sheet. To the extreme left of the RH map is the diagrammatic representation (ideogram) of the G banded X chromosome. Next to the ideogram are all 
of the fluorescence in situ hybridization (FISH) localizations (53 loci), of which 29 were conducted in this study (denoted by •). Most of the FISH loci are connected by diagonal lines to 
corresponding loci in the RH map. The six RH groups (RHMAP2PT; logarithm of odds, 7.0) are marked as LG I–LG VI and are depicted by vertical color bars calibrated on the left at 50-
centiRay (cR) intervals. To the right of the bar are mapped equine loci; genes are shown in bold and microsatellites in normal font. Framework markers (odds, 1:1,000) are shaded. Next to 
the RH map are the sequence location in megabase pair for all human (HSA) and mouse (MMU) orthologs of the mapped horse genes (human, http://genome.ucsc.edu/cgi-bin/hgGateway; 
mouse, Genome gateway at same site). Orthologs showing conserved order compared to the derived order of equine genes are grouped in boxes (conserved linkages) demonstrating the 
degree of gene order conservation in human and mouse compared to that seen in the horse. The overall pter⇒ qter order of the horse loci corresponds closely to that observed in humans; 
however, the reshuffle in mouse can be inferred from the arrows next to the conserved linkage blocks. The direction of the arrows shows the pter⇒ qter arrangement of loci within each 
block. Yellow-shaded horizontal regions represent loci that have preserved gene order in horse, human, and mouse and signify core ancestral segments. To get an overview of the status of 
ECAX gene map in relation to other livestock/companion species, cattle, pig, dog, cat, and sheep/goat/buffalo orthologs of the mapped horse genes are presented next to the mouse 
comparative map. Solid vertical bars with arrows show known pter⇒ qter arrangement of loci, whereas dotted lines show an uncertain order. Map information for cattle (BTA), pig (SSC), 
dog (CFA), cat (FCA), sheep (OAR), goat (CHI), and buffalo (BBU) genes was obtained from the respective databases. 
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Figure 6-1.  Continued. 
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(Adlican, NLGN4, and TMSB4) located in the terminal region of the short arm (Xpter). 

The interphase-FISH order for the three loci was pter Adlican NLGN4 TMSB4 cen 

(Fig. 6-2i). All FISH results were in agreement with the physical order of loci deduced by 

theRHmap. However, there were minor exceptions: although double-color FISH showed 

that NUDT11 is distal to MAGEH1 on ECAXp13 (Fig. 6-2e), RH analysis gave a 

reversed order. Reexamination of typing results of these and adjacent loci did not show 

any genotyping_scoring errors. Last, our FISH assignment of LAMP2 is in agreement 

with our RH map but does not concur with earlier localization (Milenkovic et al. 2002). 

 

 

 

Figure 6-2. Single-color fluorescence in situ hybridization (FISH) show (arrows) location of (a) NLGN4 on Xp25, (b) TLR7 on Xp23-
p22, (c) PHKA1 on Xq14, and (d) IRS4 on Xq23. Double-color FISH on metaphase chromosomes show relative order of (e) MAGEH1 
(red) on Xp13-p12 and NUDT11 on Xp13, (f) CHM (red) on Xq15-q16 and DIAPH2 (green) on Xq17-q21prox, (g) FMR1 (green) on 
Xq28 and MTM1 (red) on Xq29, and (h) Adlican (green) on Xp25/Yqter and TMSB4 (red) on Xp23-p22. (i) Relative order of Adlican 
(red)-NLGN4 (green)-TMSB4 (red) in interphase nuclei. 
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Comparative mapping 

The mapping of 137 equine orthologs of HSAX genes demonstrated complete 

synteny conservation between the X chromosomes of the two species (Fig. 6-1). Of 

these, 114 loci have also been mapped in mouse: 113 to MMUX and one (CLCN4) to 

MMU7 (49). The results reiterate conservation of the X chromosome across three 

evolutionarily distantly related mammals, with a remarkably higher degree of 

conservation between horse and human than between horse and mouse or human and 

mouse. As yet no mouse orthologs have been found for 23 of the horse/human X specific 

genes. Of these, nine genes are from the human pseudoautosomal regions (PAR), PAR1 

and -2 (see Fig. 6-1). 

To obtain a refined comparative map among horse, human, and mouse X 

chromosomes, we determined the precise sequence location of human and mouse 

orthologs for all 133 physically ordered equine genes from the available genomic draft 

sequences (see Materials and Methods). Four FISH-mapped genes (ANT3, MG61, PLP1, 

and F9) not mapped by RH analysis were also included in the comparison by placing 

them on the comparative map based on adjacent FISH markers, increasing the number of 

comparative loci to 137. As described earlier (Chowdhary et al. 2003), if sequence 

locations of a group of human or mouse orthologs indicated conservation of gene order in 

relation to the derived order of equine genes, the data were clustered in boxes (see Fig. 6-

1). A total of seven clusters were observed in human and 13 in mouse. These clusters, 

referred to as conserved linkages [maximally contiguous chromosomal region with 

identical gene content and order (Nadeau and Sankoff 1998)], showed groups of genes 

with similar physical order in horse–human and horse–mouse. The clustering also 
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highlighted smaller evolutionarily conserved segments among the three species that could 

be observed within the larger conserved linkages (Fig. 6-1, cream-shaded regions over 

human/mouse orthologs). 

 

Discussion 

We herein report a physical map of the horse X chromosome comprising 175 

markers (139 genes and 36 microsatellites). The 128 markers mapped in this study by RH 

analysis, 90% of which are functional genes, expand the existing ECAX map (Raudsepp 

et al. 2002; Chowdhary et al. 2003) by >4-fold. Further, a total of 53 FISH localizations 

substantially improve the number of physical anchor points between the chromosome and 

the RH map and concurrently provide excellent corroboration to the RH data. The map is 

the first high resolution integrated gene map for a horse chromosome. With markers 

distributed on average at 880-kb intervals along the chromosome and gene-specific loci 

dispersed on average at ~1-Mb intervals, this is the densest and most uniformly 

distributed map of the X chromosome presently available in any of the mammalian 

species other than humans and mice. The currently available X chromosome maps of 

various livestock and pet/companion animals show a range of 12 (sheep/goat/buffalo) to 

92 (pig) genes mapped using different approaches [cattle, ~37 genes (Amaral et al. 2002; 

Band et al. 2000; Iannuzzi et al. 2000; Piumi et al. 1998); pig, ~92 genes (Cirera et al. 

2003; Davoli et al. 2002; Hawken et al. 1999; Hu et al. 1997; Lahbib-Mansais et al. 2003; 

McCoard et al. 2002; Quilter et al. 2002; Rink et al. 2002); dog, 22 genes (Breen et al. 

2001; Everts et al. 2002; Spriggs et al. 2003); cat, 30 genes (Menotti-Raymond et al. 

2003; Murphy et al. 1999a); sheep/goat/buffalo, 12 genes (Iannuzzi et al. 2000; Piumi et 
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al. 1998; Schibler et al. 1998)]. In most of these species except cat (Menotti-Raymond et 

al. 2003) and dog (Guyon et al. 2003), either the different maps are not integrated and 

physically ordered into a single map or the distribution of the loci is not uniform. In 

contrast, the 137 gene human–horse comparative map presented in this study is 2- to 4-

fold more informative for gene content and is conspicuously integrated into a single 

physically ordered map. This is evident also from the comparative status of the X 

chromosome map for all ECAX genes hitherto mapped in different species (see Fig. 6-1). 

Last, despite containing only ~10% of the expected X homologs from human (1,695 

genes http://genome.ucsc.edu/cgi-bin/hgGateway) or mouse (1,116 genes; draft sequence, 

www.ensembl.org/Mus_musculus), the map provides excellent alignment of ECAX with 

the X chromosome map of the two species. 

Despite a total of 169 markers, the ECAX RH map was divided into six RH 

linkage groups, due to the threshold chosen (logarithm of odds, 7 RHMAP2PT) to 

develop the linkage groups. Assuming the linkage groups to be separated by at least 50 

cR5000, the five gaps add ~250 cR to the current map of 1,344 cR, thus increasing the 

effective map size to ~1,600 cR. This implies that with the size of ECAX as 153 Mbp, the 

average span of the map for this chromosome in our 5,000-rad panel is ~10 cR_Mbp. 

Further, of the 153 Mbp, ~2–3 Mbp spans the centromeric region, whereas 5–6 Mbp 

spans the intercalary heterochromatic region on the long arm of the chromosome (Xq21). 

It is presumed that these regions are gene poor. These assumptions stem from the fact that 

gene density in the predominantly heterochromatic regions of HSA1, -9, and -16 is zero 

for stretches spanning 20, 16, and 9 Mbp of heterochromatin, respectively 

(http://bioinformatics.weizmann.ac.il/cards). A similar condition was also seen for 
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satellite-bearing chromosome HSA22, where the proximal ~14 Mbp are barren, and 

HSAY, where the distal ~20 Mbp do not contain any genes (except for three genes in the 

PAR2 region). 

XY amplification and the pseudoautosomal region 

Of significant interest in the ECAX map is the distal_terminal region of the short 

arm. Seven markers from this region (APXL, DXYS155E, ASMT, GYG2, Adlican, NLGN4, 

and STS) demonstrate both X and Y specific amplification with RH cell line DNA. In 

humans, all seven genes are known to have both X and Y homologs with sequence 

identities ranging from 60% to 96% (Skaletsky et al. 2003; Gene Cards, 

http://bioinformatics.weizmann.ac.il/cards).  Presently 31 such genes are located on 

HSAY. These genes, referred to as X degenerates, are considered as surviving relics of 

the ancestral autosome from which X and Y chromosomes evolved (Skaletsky et al. 

2003). Four more X degenerate genes (TMSB4X, USP9X, KAL1, and SMCX; Fig. 6-1) 

were also mapped in this study, but primers for these genes show only X specific 

amplification. We suggest that, because the latter four loci are further away from the 

XY recombining region, sequences of these genes might have had more evolutionary 

time for X-Y divergence (Lahn and Page 1999); however, this needs further investigation. 

Nevertheless, the identification of equine X-Y pattern genes in horse is an important 

starting point to analyze shared sequences between equine X and Y chromosomes, thus 

shedding light on their evolution. 

Synaptonemal complex analysis in horses shows that the ECAXpter region is 

pseudoautosomal [PAR (Power et al. 1992; Safronova and Pimenova 1988)]. The 

three main characteristics of the PAR genes are that they (i) represent functional 
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homologs of genes present on both X and Y chromosomes; (ii) escape X inactivation; and 

(iii) recombine during male meiosis (Blaschke and Rappold 1997; Charchar et al. 2003; 

Ellison et al. 1996; Gianfrancesco et al. 2001). The human PAR1 spans ~2.6 Mb 

and contains 13 genes (Charchar et al. 2003; Ellison et al. 1996; Gianfrancesco et al. 

2001; Rappold 1993). Of these, two, DXYS155E and ASMT, are mapped to ECAX in this 

study. The human PAR2, located terminally on HSAXq, spans 320 kb and contains 

four genes [HSPRY3, SYBL1, IL9R, and CXYorf1 (Charchar et al. 2003)]. Of these, 

two have been mapped in this study to the terminal end of ECAXq (Fig. 6-1). Analysis 

hitherto carried out in a range of mammalian species show significant species-specific 

differences in the PAR genes. A gene that is pseudoautosomal in one species may not 

be pseudoautosomal in the other. Of the 13 human PAR genes, eight do not have a known 

mouse homolog (Gianfrancesco et al. 2001). Further, STS is a PAR gene in cattle (Moore 

et al. 2001), pig (Quilter et al. 2002), dog, sheep and mouse, but not in human and 

primates (Blaschke and Rappold 1997; Gianfrancesco et al. 2001); KAL1 is 

pseudoautosomal in pigs (Quilter et al. 2002) and cattle (Moore et al. 2001) but not in 

human and primate. Surprisingly, this locus is not even found in mouse (Gianfrancesco et 

al. 2001). The horse PAR has not yet been defined for gene content. The genes mapped 

in this study provide a foundation to begin investigating the Xpter region in horse for 

identification of prospective PAR genes. Subsequent expression/methylation studies of 

these genes can help validate their pseudoautosomal status and contribute to 

precise characterization and physical demarcation the equine PAR. 
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Comparative map 

The physically ordered ECAX map, comprising 139 equine genes, is in close 

agreement with our previous maps (Raudsepp et al. 2002; Chowdhary et al. 2003) and 

provides a robust comparative map in relation to the observed order of these genes in 

humans and mice. The most striking feature of the horse–human comparison is that, 

barring minor exceptions involving four to five interruptions on the short arm, the relative 

order of loci in the two species is exceptionally conserved from Xpter to Xqter. This 

degree of gene order conservation has not yet been observed for any other 

chromosome between humans and other nonprimate mammals. The horse–mouse 

comparison, however, shows noticeably less conservation in gene order. The 

rearrangements are evident from the 13 conserved linkage blocks (boxes containing 

ordered loci) originating from different regions of MMUX, some with 

reversed centromere–telomere orientation in relation to horse and human (Fig. 6-1). 

The comparative map of the equine X chromosome presented here helps to 

identify 13 blocks/clusters of loci demonstrating conserved gene order across horse, 

human, and mouse (Fig. 6-1, yellow shaded regions). These clusters potentially represent 

the most conserved X chromosome regions of the ancestor common to horse, human, and 

mouse. Additionally, the blocks provide a quick comparative overview of smaller 

conserved linkages and their relative organization in the three species. Although 

an exceptional degree of gene order conservation is observed between ECAX and HSAX, 

there are also minor rearrangements. The most noticeable of these is a small segment 

corresponding to ECAXp12–13 and the human sequence positions 46–54 Mb (Fig. 6-1, 

red bracket). Interestingly, the horse and mouse genomes are also relatively more 
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rearranged in the same region. Based on studies focused on the evolution of 

mammalian X chromosome, it is proposed that the human X chromosome is composed of 

different evolutionary strata. These are roughly divided into the X conserved region XCR, 

corresponding to the proximal one-quarter of short arm and complete long arm of HSAX, 

and the recently added region XRA, corresponding to distal three-quarters of the short 

arm of HSAX (Wilcox et al. 1996; Lahn and Page 1999). Rearrangements observed by us 

in the horse, human, and mouse genomes are incidentally located close to the suggested 

ancestral fusion point of the conserved and the ancestral regions on HSAXp11.23 

(Wilcox et al. 1996). A detailed study of this region aimed at identifying evolutionary 

breakpoints may also lead to discovery of signatures of these rearrangements in 

horse/mouse, which in turn will be useful for understanding the origin of gene 

order differences in this region across the three species. 

Future uses 

The mammalian X chromosome contains a disproportionately high number of 

genes influencing development, female/male fertility, reproduction and diseases (OMIM, 

http://www.ncbi.nlm.nih.gov/Sitemap/index.html#OMIM; OMIA, http://morgan.angis. 

su.oz.au/Databases/BIRX/omia/; Graves and Delbridge 2001; Liao et al. 2003; Vaiman 

2002; Wang et al. 2001) that are also of significance in horses. The human and pig X 

chromosomes carry an unexpectedly high number of genes specifically expressed in the 

skeletal muscle (Bortoluzzi et al. 1998; Davoli et al. 2002; Pallavicini et al. 1997). 

Analysis of these genes could have implications for performance of horses. Structural and 

numerical aberrations of the X chromosome are the most common documented 

chromosome abnormalities in the horse that invariably lead to reproductive failures, 
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intersexuality, hermaphroditism or sex reversal (Mäkinen et al. 1999, 2001). 

Additionally, a number of X-linked conditions/diseases have been described in the horse, 

e.g., G6PD deficiency (Stockham et al. 1994), X-linked severe immunodeficiency 

(Felsburg et al. 1992), fragile X (Ronne 1992), agammaglobulinemia (Perryman et al. 

1983), hydrocephalus (Ojala and Ala-Huikku 1992). Presently very little information is 

available concerning the underlying molecular causes of these conditions. The high 

resolution RH and comparative map of ECAX presented in this study will, in conjunction 

with detailed map/sequence information on human and mouse X chromosomes (Boyd et 

al. 2000; Liao et al. 2003; Vaiman 2002; Vialard et al. 2002), serve as a basis to rapidly 

converge on X-specific genes significant in the horse. Our current efforts to isolate BAC 

clones for all mapped markers on this chromosome will considerably facilitate localized 

isolation of polymorphic markers, building BAC contigs in areas of interest and 

sequencing targeted chromosomal regions. 
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VII.  A 1.3-Mb INTERVAL MAP OF THE EQUINE HOMOLOGS OF HSA2* 

Synopsis 

A comparative approach that utilizes information from more densely mapped or 

sequenced genomes is a proven and efficient means to increase our knowledge of the 

structure of the horse genome. Human chromosome 2 (HSA2), the second largest human 

chromosome, comprising 243 Mb, and containing 1246 known genes, corresponds to all 

or parts of three equine chromosomes. This report describes the assignment of 140 new 

markers (78 genes and 62 microsatellites) to the equine radiation hybrid (RH) map, and 

the anchoring of 24 of these markers to horse chromosomes by FISH.   The updated 

equine RH maps for ECA6p, ECA15, and ECA18 resulting from this work have one, 

two, and three RH linkage groups, respectively, per chromosome/chromosome-arm.  

These maps have a three-fold increase in the number of mapped markers compared to 

previous maps, and an increase in the average marker density to one marker per 1.3 Mb.  

Comparative maps of ECA6p, ECA15, and ECA18 with human, chimpanzee, dog, 

mouse, rat, and chicken genomes reveal blocks of conserved synteny across mammals 

and vertebrates.   

 

 

__________________ 
*This section reproduced with kind permission of Springer Science and Business Media 
from Cytogenetics and Genome Research, A 1.3-Mb interval map of equine homologs of 
HSA2, Michelle L. Wagner, Terje Raudsepp, Glenda Goh, Richa Agarwala, Alejandro 
A. Schäffer, Patricia K. Dranchak, Candice Brinkmeyer-Langford, Loren C. Skow, 
Bhanu P. Chowdhary, and James R. Mickelson, volume 112, 227-234, © 2006 by S. 
Karger AG, Basel. 
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Introduction  

A major goal of the horse (Equus caballus) genome mapping effort is to identify 

genes impacting equine well-being.  Genes responsible for deleterious traits have been 

and continue to be propagated coincidentally with the line-breeding of desirable traits in 

various breeds of horses.  Thus far, the bases for fatal Mendelian disorders including 

Overo Lethal White Foal Syndrome in Paint Horses (Yang et al. 1998; Santschi et al. 

2001), Severe Combined Immunodeficiency in Arabians (Wiler et al. 1995), and 

Glycogen Branching Enzyme Deficiency in Quarter Horses (Ward et al. 2004), as well 

as the rarely fatal but debilitating Hyperkalemic Periodic Paralysis in Quarter Horses 

(Rudolph et al. 1992), have been defined.  Although a candidate gene approach was 

utilized to discover the genes mutated in these disorders, this method is applicable only 

when similar disorders caused by homologous genes are present in other species.  Since 

many inherited equine disorders are likely to be unique to E. caballus, as well as non-

Mendelian, a positional cloning approach will be required to map genes contributing to 

many equine diseases.  A comprehensive equine genome map will be useful in 

identifying positional candidate genes responsible for traits of interest when the gene has 

been mapped to a chromosomal segment by genetic linkage or cytogenetic analysis.  

 The first generation whole genome equine radiation hybrid (RH) map includes 

472 microsatellite and 258 gene/EST markers (Chowdhary et al. 2003). This map has an 

average density of one marker every 4 Mb, but many large gaps between markers exist.  

Subsequently, the marker density of ECA17 was increased to an average interval of 

every 1.4 Mb by the mapping of 75 markers, 56 of which were genes, making this the 
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first equine autosome to be densely mapped (Lee et al. 2003a).  The power of RH 

mapping to make a high-resolution map of selected equine chromosomes has been 

further demonstrated with the recent publication of a 175 marker (139 gene) map of the 

equine X chromosome, an 83 marker (52 gene) map of ECA22, and the preparation of 

maps of four equine chromosome segments corresponding to HSA19 (Raudsepp et al. 

2004a; Gustafson-Seabury et al. 2005; Brinkmeyer-Langford et al. 2005).   The ECAX 

and ECA22 maps now contain markers at 880 kb and 770 kb mean intervals, 

respectively, making them two of the densest farm animal chromosomal maps available 

at the present time (Raudsepp et al. 2004a; Gustafson-Seabury et al. 2005).  

Additionally, a recent report of the physical mapping of 77 markers on ECAY has made 

this one of the most densely mapped animal Y chromosomes (Raudsepp et al. 2004b). 

In this study, likely equine orthologs of HSA2 genes and known microsatellites were 

typed on a horse radiation hybrid panel, accompanied by additional FISH mapping, to enable 

direct comparison of the maps of HSA2 with its equine counterparts ECA6p, ECA15, and 

ECA18 (Milenkovic et al. 2002; Chowdhary et al. 2003; Yang et al. 2004).  These maps reveal 

rearrangements between human and horse chromosomes, and regions of conserved synteny 

between mammals, which have not yet been detected due to the low resolution of previous 

maps.  In so doing, we bring the horse genome mapping project closer to its long-term goal of 

dense maps of all chromosomes.   
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Materials and methods 

Primer design and PCR conditions 

In one approach, primers were designed to amplify conserved adjacent exons of 

genes at regularly spaced (1-10 Mb) intervals along HSA2.  Previous results suggested 

that 84% of such primers would work in different mammalian species, including the 

horse (Venta et al. 1996; Shubitowski et al. 2001). PCR products from horse genomic 

DNA were separated on 1% agarose gels, extracted, purified using the QIAquick Gel 

Extraction Kit (Qiagen, Valencia, CA), and sequenced.   Sequences that had BLAST 

results (Altschul et al. 1997) supporting the correct equine orthologous gene were then 

used to design horse specific RH mapping primers within introns using Prime (GCG, 

Wisconsin Package Version 10.2, Madison, WI).   

In related approaches, gene specific markers were generated from HSA2 genes 

selected from NCBI Map Viewer (http://www.ncbi.nlm.nih.gov/mapview/maps.cgi? 

taxid = 9606&chr = 2), or the human reference sequence (http://genome.ucsc.edu, 

version May 2004). HSA2 gene cDNA sequences were BLASTed against the publicly 

available horse EST and cDNA sequences, and strong equine matches were then 

BLASTed against the non-redundant (nr) database to find non-conserved regions with 

rodents (typically 3’ untranslated regions) for horse-specific primer design with Prime. 

HSA2 gene exon sequences were also compared to sequences for mouse, rat, cattle, and 

pig using BLASTn (http://www.ncbi.nlm.nih.gov/BLAST/) and conserved regions 

among mammals were identified by multiple alignments in CLUSTALW (Thompson et 

al. 1994; http://bioweb.Pasteur.fr/seqanal/interfaces/clustalw-simple.html). PCR primers 
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were then designed from regions, in single exons or adjacent exons with 500–700 bp 

introns, with 100% identity in coding sequence for humans, cattle, and pigs, but with 1–

3 mismatches in rodents.  Primer3 software was used for these primer designs 

(http://wwwgenome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi). Lastly, primer pairs 

for 62 microsatellite markers were obtained from multiple published sources (Mickelson 

et al. 2003; Tozaki et al. 2003; Wagner et al. 2004a, b, c).  

All primers were typed on the Texas A & M University 5000 rad horse x hamster 

RH panel comprising 92 cloned hybrid cell lines (Chowdhary et al. 2002, 2003).  PCR 

primers were optimized to specifically amplify horse DNA, with hamster DNA and no 

DNA controls included in each experiment.  Basic PCR conditions were per 15 µl 

reaction:  50 ng each hybrid cell DNA, 1.5 mM MgCl2, 1 nmol dNTPs, 0.25 U Jump 

Start Sigma Red Taq Polymerase (Sigma, St. Louis, MO) or 0.25 U HotStar Taq 

Polymerase (Qiagen, Valencia, CA).  All markers were typed in duplicate, and products 

were resolved on 2% agarose gels, and scored manually using Gel Score Software (Wes 

Barris).  Ambiguities were resolved with PCR of individual hybrid cell DNA in 

duplicate, along with horse DNA and hamster DNA controls.   

BAC library screening and FISH mapping 

Primer pairs for Type I and Type II markers spaced along ECA15 and ECA18 

were used to screen the CHORI-241 (http://bacpac.chori.org/equine241.htm) equine 

BAC library.  Thirty-seven BAC clones were isolated, with the goal of obtaining two 

clones per marker to confirm FISH results.  Approximately 1 microgram DNA from 

BAC clones was individually labeled with biotin and/or digoxigenin (BIO and DIG Nick 
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Translation Mix, Roche Biochemicals).  Labeled probes were hybridized separately or in 

pairs to horse metaphase chromosome spreads to visualize their physical chromosomal 

locations.  DNA labeling, in situ hybridization, signal detection, microscopy, and image 

analysis were performed as previously described (Chowdhary et al. 2003).   

Computation of radiation hybrid maps  

Radiation hybrid maps were computed using the software packages rh_tsp_map 

(Agarwala et al. 2000; ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar), 

CONCORDE (Applegate et al. 1998;http://www.isye.gatech.edu/~wcook/rh/), and Qsopt 

(http://www.isye.gatech.edu/~wcook/qsopt), as well as some auxiliary programs. The 

methods are similar to those used in (Menotti-Raymond et al. 2003) and identical to 

those used in (Brinkmeyer-Langford et al. 2005). 

Radiation hybrid maps were computed with the goal of optimizing the maximum 

likelihood (MLE) criterion.  When making linkage groups by single linkage clustering 

based on pairwise LOD scores, we used thresholds of 7.0, 6.0, and 7.5 for ECA6p, 

ECA18, ECA15, respectively. There were 1, 3, and 2 linkage groups respectively. Three 

singleton markers for ECA15 were dropped, but there were no singleton markers for 

ECA6p and ECA18. We verified that there was a space of at least 1 LOD unit between 

the smallest intra-group score and the largest inter-chromosomal score. 

 We used the program frame_markers to eliminate from initial consideration 

markers that have too many 2 entries (indicating uncertainty in the genotyping) and one 

out of each pair of markers that are too close to each other, preferentially retaining an 

intergenic marker over a closely linked microsatellite. We tested this set of markers to 
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see if it could be robustly ordered and dropped markers until that was the case. By 

“robustly ordered” we mean that: 1) the optimal ordering is the same for all three 

mathematical formulations of the MLE criterion (defined in Agarwala et al. 2000); 2), 

for each marker its best placement relative to all other markers is at least 0.25 LOD units 

better than the second best placement; and 3), the optimal order is at least 0.25 LOD 

units better than any other order obtained by permuting up to 8 consecutive markers. A 

map of markers that satisfies these three requirements is called an “MLE-consensus” 

map because of the first requirement.  

The remaining steps included: 1) placing markers not on the MLE-consensus 

maps relative to those maps; 2), ordering and orienting linkage groups; 3), concatenating 

linkage groups on the same chromosome; and, 4) producing a final map by solving 

restricted instances of the traveling salesman problem (TSP). These four steps were done 

exactly as in Brinkmeyer-Langford et al. 2005, except that step 2 was unnecessary for 

chromosome 6p because it had only 1 linkage group. The order and orientation of 

linkage groups on a chromosome was determined by considering FISH data and 

consulting a genetic linkage map (Penedo et al. 2005). 

 

Results 

Development of gene-specific markers 

Seventy-four of the 87 primer pairs from highly conserved coding regions in 

HSA2 genes gave successful equine amplifications. Sequencing of the products showed 

that 93% (69) gave BLASTn matches to the intended human gene (or orthologs in other 
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species) with E-values < 1e-10.  Horse specific PCR primers were designed from these 

sequences.  Thirty-six primer pairs were designed from the 3’ untranslated regions of 

putative orthologs of human genes obtained from equine EST sequences, or from BAC 

end sequences.  Lastly, 14 gene-specific markers were generated by multiple alignments 

of genomic DNA from non-equine species in single exons or two adjacent exons where 

there was 100% identity between human, cow, and pig but one to three mismatches with 

the rodent sequences. 

RH typing  

Sixty-one of the 69 primer pairs derived from the cross-intron approach produced 

readily scorable horse-specific products in a hamster DNA background. Of these, 14 

were eliminated in the statistical analysis of vector data, leaving 47 markers.  Of the 36 

primer pairs designed for horse EST and BAC sequences, 17 markers were added to the 

maps.  Further, all 14 gene-specific markers generated by multiple alignments of 

genomic DNA from non-equine origins could be genotyped on the RH panel. Thus, the 

total number of newly mapped Type I markers on the RH maps of ECA6p, 15 and 18 

was 78 (Table 7-1).  Additionally, 62 Type II markers were also added to the RH maps 

of these equine chromosomes. Average retention frequency for new HSA2-based gene 

markers on the panel was 18%, with an average of 21% for ECA6p, 16% for ECA18, 

and 19 % for ECA15. 

ECA6p map 

The gene markers mapped to ECA6p are derived from the 210-235 Mb region of 

HSA2q (Figure 7-1).  The updated RH map of this chromosome comprises 29 markers 
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Figure 7-1. Radiation hybrid (RH) and comparative maps of (a) ECA18 and ECA6p: corresponding to a majority of HSA2q and (b) of ECA15: corresponding to HSA2p and the proximal 
region of HSA2q. G-banded ideograms of individual chromosomes show FISH mapped markers, with new additions to the cytogenetic map in bold. To the left of the ideograms, regions of 
correspondence of individual equine chromosome with HSA2 are shown by approximately demarcating Megabase (Mb) positions on the human chromosome. To the right side of the 
ideogram, the RH map is presented. The MLE-consensus markers are shaded in light blue. Markers with a LOD score >3.0 are depicted in bold. Markers in normal font were placed on this 
framework, while those that were placed with a LOD of <0.5, and thus less reliable, are in italics. Markers with the same physical/cR position have a vertical bar to the left of them, while 
those with identical RH vector coordinates are shown with a bracket to the right. To the right of the RH map are Mb positions for orthologs in human (HSA), chimp (PTR), dog (CFA), 
mouse (MMU), rat (RNO), and chicken (GGA) as found in the Human Genome Browser (http:// genome.ucsc.edu/cgi-bin/hgGateway). Vertical black rectangles on Mb positions depict 
conservation of gene order within a species. Green shaded rectangles show conserved gene order among sequenced mammals and horizontal red rectangles show conserved gene order 
among vertebrates relative to the horse. Dotted lines show continuation/break in chromosomal region.     
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Figure 7-1.  Continued. 
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(19 new: 11 Type I and 8 Type II) in a single linkage group spanning 355.55 cR in 

length, and providing a marker every 12 cR.  55% of the markers are found in the MLE-

consensus map. 

ECA18 map 

Gene markers mapped to ECA18 came from the 118-210 Mb region of HSA2q 

(Figure 7-1).  The new ECA18 RH map covers 1265.70 cR, and has 71 markers (33 

Type I and 38 Type II) compared to the 24 markers reported in the previous map 

(Chowdhary et al. 2003).  The new ECA18 map has a marker every 18 cR, with 51% of 

markers making the MLE-consensus map.  

ECA15 map 

Genes mapped on ECA15 originate from the 1-114 Mb region of HSA2, 

corresponding to the p-arm and part of the q-cent region (Figure 7-1).  The map 

comprises a total of 86 markers (45 TypeI and 41 Type II) spread over 1242.86 cR 

distance and had 68 new loci (42 Type I and 26 Type II).  The new ECA15 RH map now 

has a marker every 14 cR, with 60% of the markers present in the MLE-consensus map.  

FISH mapping 

Thirty-five BAC clones containing 24 markers were isolated from the CHORI-

241 BAC library and used for FISH mapping. Mostly gene-containing BACs were used, 

with the exception of five markers on ECA15 being microsatellites.  A single clone for 

each of the marker resulted in 9 and 15 new FISH localizations that anchored the RH 

maps to ECA18 and ECA15, respectively.  Representative figures are shown for 6 

markers each from ECA15 and ECA 18 (Figure 7-2).  
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Figure 7-2. Partial horse metaphase spreads showing double-color FISH results for selected loci. (a) VRK2 (red) ECA15q22 and 
IL18RAP (green) ECA15q12, ( b ) LTBP1 (red) 15q24 and PPP1CB (green) 15q25, (c) DDX1 (red) 15q26 and RSAD2 ( CIG5 ) 
(green) 15q27, (d) DDX18 (red) 18q15 and BIN1 (green) 18q12-q13, (e) DDX18 (red) 18q15 and GRB14 (green) 18q23, (f) 
AJ577071 (red) 18q25 and NDUFS1 (green) 18q26.  

 

 

Comparative map 

 Forty-five, 33, and 16 gene markers from the RH maps of ECA15, ECA18, and 

ECA6p, respectively, were used to identify orthologs in human, chimpanzee, dog, 

mouse, rat, and chicken, as described previously (Chowdhary et al. 2003; Gustafson-

Seabury et al. 2005; Brinkmeyer-Langford et al. 2005).  Chromosomal locations and 

megabase positions of the orthologs in these species were determined using the Human 

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway).  Conserved linkages 

(Nadeau and Sankoff 1998) between these species and horse are shown by vertical 

rectangles around contiguous megabase positions for each species (Figure 7-1). 

As a first approximation, our data show that ECA6p is represented by a single 

nearly conserved linkage of HSA2 gene markers from 210 – 235 Mb; ECA18 is 

represented by six such conserved linkages, one from 118 – 128 Mb and five between 

a c

e f

b
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135 and 210 Mb; and ECA15 is represented by three similar group of markers, one 

considerably large segment from 1 – 86 Mb, and two smaller segments from 96- 102 Mb 

and 113Mb regions. Comparison of gene order between horse and chimp showed trends 

very similar to that of horse and human.  The only difference is that HSA2 synteny is 

broken to PTR12 and PTR13 (Jauch et al. 1992), the former sharing homology with 

ECA15 and the latter with ECA18/ECA6p.   

 Of the three equine chromosomes under investigation, ECA6p shows the greatest 

degree of conservation across compared mammals (Figure 7-1).  Genes corresponding to 

ECA6p are present in a single conserved linkage group in human, chimpanzee, mouse, 

and rat, with the potential for minor rearrangements, while in dog there are two 

conserved linkage groups.  The chicken is also relatively well conserved with respect to 

ECA6p.  

Although the segment corresponding to ECA18 is contained within single human 

and chimp chromosomes, it is present on three chromosomes in dog, three in mouse, 

four in rat and two in chicken (Figure 7-1). The segment nearest to ECA18qcen is 

inverted in horse, dog, mouse, rat, and chicken compared to human and chimpanzee. 

Further, an apparent inversion between horse and all other vertebrates is seen near 

ECA18qter, between 190 and 198 Mb position with respect to HSA2. 

ECA15 corresponds to seven identifiable segments conserved across compared 

mammals (Figure 7-1). There is an apparent inversion in gene order in horse, compared 

to human, with a noticeable break in the HSA2q segment adjacent to the centromere. 
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Additionally, there are three regions of conserved linkage with respect to HSA2 across 

all compared species. 

 

Discussion  

RH mapping to generate high-resolution physical maps 

The potential to develop comprehensive equine chromosome maps with the 5000 

rad horse x hamster radiation hybrid cell panel was demonstrated with the publication of 

the first generation whole-genome RH map (Chowdhary et al. 2003).  More recent 

efforts have focused on the production of higher-resolution physical maps of specific 

chromosomes, where the maps of ECA7, 10, 17, 21, 22, and X have an average density 

of 1 marker per Mb (Raudsepp et al. 2004a; Lee et al. 2003a; Brinkmeyer-Langford et 

al. 2005; Gustafson-Seabury et al. 2005).  Using similar approaches, we herein report a 

higher-resolution physical and comparative map for equine chromosomes that 

correspond to HSA2.   

RH and FISH map of equine orthologs of HSA2 

When combined with the previous map data (Chowdhary et al. 2003), the new 

RH maps for ECA15, 18 and 6p contain 186 total markers (94 Type I and 92 Type II), of 

which 78 gene-specific and 62 microsatellites are new.  Additionally, we added 24 new 

FISH mapped markers, which anchor 14 and 7 RH mapped markers, respectively, on 

ECA15 and ECA18.  This nearly doubled the number of FISH mapped markers on both 

ECA15 (20 vs 35) and ECA18 (12 vs 21) (Milenkovic et al. 2002; Chowdhary et al. 

2003).     
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 Despite this large increase in total number of mapped markers, several gaps (e.g., 

16-24 Mb region of HSA2 on ECA15 and 127-135 Mb and 177-189 Mb intervals of 

HSA2, on  ECA18) of greater than 5 Mb still exist between Type I markers.  This is 

partly attributed to exclusion of some of these markers from the final maps due to low 

two-point LOD scores.   However, the gaps are well covered with microsatellite 

markers. 

Agreement of the RH maps with previously reported maps 

The new RH and FISH assignments are in good agreement with the previously 

reported RH and genetic linkage maps (Chowdhary et al. 2003; Swinburne et al. 2000, 

2006; Penedo et al. 2005).  The maps for both ECA15 and ECA6p have only minor 

rearrangements of a few markers with respect to the previously published RH map 

(LEX046 and COR042 on ECA15 and CHRNG on ECA6p).  Two refinements on 

ECA18 should be addressed, though.  The region from SGCV07 (541.99 cR) to MCM6 

(672.30 cR) was previously in the reverse orientation, as was the region from HLM3 to 

COL3A1.  The only FISH/RH discrepancy occurs on ECA15 with ASB15 and SPTBN1.  

FISH mapping places ASB15 on ECA15q21.1-21.3 and SPTBN1 on ECA15q22, while 

on the RH map they are inverted.  ASB15 was placed onto the RH map with a LOD of 

<0.5; therefore, its location is not as reliable as that of SPTBN1, which is on the MLE-

consensus framework and has a LOD >3.   

Conservation of gene order and chromosome structure among vertebrates 

The high resolution RH maps presented in this study have helped to refine the 

locations of two evolutionary break/fusion points between HSA2 and the three equine 
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chromosomes. Previously, the break between ECA18 and ECA6p was shown to lie in an 

~11 Mb segment on HSA2 (Chowdhary et al. 2003). We have now narrowed down this 

region to approximately 5 Mb. Similarly, the breakpoint region between ECA15 and 

ECA18 has been narrowed down to within ~5 Mb of HSA2, from the previously 

reported ~9 Mb segment (Chowdhary et al. 2003). The high degree of homology 

between ECA6p, HSA2, and MMU1 has been noted previously (Mariat et al. 2001; 

Chowdhary et al. 2003). Our analysis confi rms this homology and extends it to 

demonstrate that ECA6p is evolutionarily conserved across four of the five sequenced 

mammals (Figure 7-1). Dog is an exception where this conservation is split 

between CFA25 and CFA37. When the comparison is extended to include chicken, there 

are three regions of conserved linkage across vertebrates, supporting the previously 

noted conservation of this chromosomal arm/segment across species (Mariat et al. 2001; 

Chowdhary et al. 2003). The evolutionary breakage/ fusion point between HSA2 

segments that separates ECA6p and ECA18 appears unique to horse and other equids 

(Yang et al. 2003b, 2004) among the vertebrate species examined. ECA18 is relatively 

well conserved in relation to human (HSA2) and chimp (PTR13) although there are a 

number of apparent minor rearrangements (Figure 7-1). Two notable exceptions to this 

conservation are inversions between the subcentromeric (BIN1 to DDX18) and distal 

(ECA18q24 q25; AJ577071 to COL3A1) conserved linkages on ECA18, 

and corresponding segments on HSA2 and PTR13. Regions sharing conserved synteny 

with ECA18 are present on three different chromosomes in dog (CFA19, CFA36, and 

CFA37), two in mouse (MMU1 and MMU2), three in rat (RNO3, RNO9, and RNO13), 



 

  

131

 

and surprisingly with primarily a single chromosome in chicken (GGA7). Overall, six 

core regions representing conserved linkage are observed across mammals and chicken 

(Figure 7-1). A high conservation in gene order is seen between ECA15, HSA2 and 

PTR12 (Figure 7-1). The largest region of conserved linkage of ECA15 with the primate 

chromosomes spans approximately 85–87 Mb and represents ~80% of the 

chromosome. A minor rearrangement in gene order with respect to primates involves the 

IL1A – L1RN region. The proximal region of ECA15 has four areas of conserved 

linkages among all the mammals, one of which spans to chicken. The distal half of 

ECA15 has four regions of conserved linkages across compared mammals, and notably 

shows a large segment that corresponds to several segments of GGA3. The distal 

ECA15 regions sharing conserved synteny with other mammals are split among two 

different chromosomes in dog (CFA10 and 17), three in mouse (MMU11, 12, and 17) 

and two in rat (RNO6 and 14). These observations suggest that the distal 2/3 of ECA15 

represents an ancestral vertebrate chromosomal segment.   

 

Conclusions  

This report details the construction of high-resolution RH and comparative maps 

for equine homologues of HSA2.  We have added an additional 140 markers to the 

equine RH map and 24 markers to the cytogenetic map in an effort to further refine and 

enhance the maps of ECA6p, ECA18, and ECA15.  The availability of high-resolution 

comprehensive maps for all equine chromosomes will increase the usefulness of these 



 

  

132

 

maps in identifying the chromosomal locations of genes responsible for traits of interest 

to breeders and veterinarians.   
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VIII.  SUMMARY OF RESULTS AND SALIENT FINDINGS 

First paper: A high-resolution physical map of equine homologs of HSA19 shows 

divergent evolution compared with other mammals 

A dense radiation hybrid and comparative gene map was developed for parts of 

the horse chromosomes that correspond to human chromosome 19 (HSA19) – small 

parts of both the short (p) and long (q) arms of ECA7, entire short arm of ECA10, and 

proximal one-third of ECA21 (Raudsepp et al. 1996; Chowdhary et al. 2003; Yang et al. 

2004).  The map contained a total of 120 markers, of which 89 markers (64 genes and 25 

microsatellites) were generated in this study and genotyped on the 5000rad horse x 

hamster radiation hybrid panel (Chowdhary et al. 2002).  This markedly improved the 

resolution of the map for these chromosomal regions by four-fold, with one marker 

mapped on average every 700kb.  The orientation and anchoring of the RH groups was 

accomplished by FISH mapping of 15 genes and 9 microsatellites (including 4 additional 

markers not included on the RH map). 

The density of mapped markers facilitated the fine alignment of horse and human 

genomes.  It is evident from the results that the ~0-7 Mb segment of the HSA19p 

sequence map is represented on the telomeric end of ECA7p and the ~9-13 Mb sequence 

segment is represented on the subcentromeric part of ECA7q.  The 15-20 Mb sequence 

region of HSA19p corresponds to the proximal two bands of ECA21, while the entire 

long arm of HSA19 is preserved in a single syntenic block on ECA10p. The segment of 

ECA21 which shares homology with HSA19 had previously been identified and 
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described only via Zoo-FISH (Yang et al. 2004); significantly, the radiation hybrid maps 

generated in this study provided the first gene mapping evidence for this region. 

A comparative map of parts of the equine chromosomes that are similar to 

HSA19 was also developed in relation to corresponding chromosomal regions in 

chimpanzee – PTR, dog – CFA, mouse – MMU, rat – RNO, chicken – GGA, cattle – 

BTA, pigs – SSC, cat – FCA and zebrafish – DRE with the help of either whole-genome 

sequence data or gene mapping data available for individual species. This led to the 

identification of 9 conserved linkages across the sequenced mammals and 5 putative 

conserved linkages in relation to chicken.  

The segments corresponding to HSA19p in horse (two on ECA7 and one on 

ECA21) are present as a single syntenic group in the non-rodent mammalian species 

studied (HSA, PTR, CFA, BTA, and SSC).  However, the section which corresponds to 

ECA21 is present separately from the ECA7-homologous segments in both rodents 

studied (MMU and RNO) and chicken.  Further, the region which corresponds to the 

long arm of HSA19 is similar to the short arm of ECA10 in horses.  This segment shares 

conserved synteny with human, chimp, and dog, as well as mouse and rat to some degree.  

In chicken, only the terminal part of ECA10p is conserved as a syntenic block on 

GGA11; the rest of ECA10p genes are present on several different chicken 

chromosomes.  The segment corresponding to ECA21 is present entirely on GGA28. 

Comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments 

in eight mammalian orders involving about 50 species revealed that the segment 

homologous to the short arm of HSA19 is represented as a single block in most species, 
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and is therefore an independent ancestral chromosome.  Further, regions on ECA7 and 

ECA21 that correspond to the short arm of HSA19 represent a genomic rearrangement 

discovered to date only in equids/Perissodactyls. 

An interesting and unique characteristic of the homology of equine chromosomes 

with HSA19 is its presence in four separate segments located on three equine 

chromosomes: the p arm on two chromosomes, and the q arm on one.  HSA19p is 

known to be present on more than one chromosome in only two other species, donkey 

and zebra (Yang et al. 2003b, 2004).  Moreover, regions adjacent to HSA19p-

homologous segments (located in tandem or as the sole homolog on the other arm) 

correspond to several different human chromosomes across species (see Figure 4-3). 

 

Second paper: Development and characterization of a BAC contig over a 5Mb 

segment of horse chromosome 21 

A total of 190 BACs containing 25 equine orthologs of HSA19p genes were 

isolated via the overgo approach and mapped to ECA21.  For an accurate depiction of 

homology of the region with HSA19p, 17 additional genes and 5 microsatellite markers 

were selected and mapped. Genes and corresponding BACs located on ECA7 (HSA19 

homolog) or 14 (HSA5 homolog) were excluded from analysis. 

End sequences of selected BACs were screened for repetitive elements by 

RepeatMasker (http://www.repeatmasker.org/).  This resulted in 74 unique sequence-

tagged sites (STSs; see Table 5-2) from which additional primers were designed.  These 

STS primers were subsequently used to order and orient the BACs.   
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The STS primers were also used for chromosome walking to fill the gaps 

separating initial groups of overlapping BACs, as described in Raudsepp et al. 2004b.  

As a result, 15 new BACs were obtained from the CHORI-241 BAC library and 2 from 

the TAMU BAC library, which provided 28 more STSs for the contig.  Eventually 207 

BACs were isolated for the region, encompassing 42 genes, 5 microsatellites, and 106 

STSs.  Of these, 26 BACs comprise the minimum tiling path of the contig, which spans 

approximately 4.3Mb.  The contig is currently the largest for the horse and nearly twice 

the size of the only other contig available for horses, described in Gustafson et al. 2003.   

With 47 markers mapped in this region, the resolution of the contig is ~1 marker 

every 100kb, reflecting an ~3.8-fold improvement over the previous map of the 

corresponding region of ECA21.  The marker order in the contig is in agreement with 

the most recent radiation hybrid and linkage maps of the region (Brinkmeyer-Langford 

et al. 2005; Swinburne et al. 2006).   

In humans, the region corresponding to the contig is ~4.7 Mb in length, but in 

horses it is estimated to be ~4.3 Mb in size, which is 10% smaller than in humans.  A 

similar smaller size of the region compared to humans is also apparent in several other 

species compared (PTR, BTA, CFA, RNO, MMU, and GGA).   

A large region spanning ~4.6 Mb in the humans comprises a family of zinc finger 

genes that are found only in primates and are absent in horses. This reflects a duplication 

or expansion event that is primate specific. 

The evolutionary breakage/fusion point between HSA19p and HSA5 segments 

on ECA21 was more precisely defined in this study.  The contig shows that ECA21 
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shares homology with a stretch of sequence on HSA19p extending from the 15.0-

19.6Mb positions, whereafter the adjacent segment corresponds to HSA5 starting at the 

68.5Mb sequence position. 

 

Third paper: Exceptional conservation of horse–human gene order on X 

chromosome revealed by high-resolution radiation hybrid mapping 

A high-resolution map comprising 175 markers was developed for the horse X 

chromosome. For this, a total of 116 gene-specific and 12 short tandem repeat markers 

were added to the map of the equine X chromosome through genotyping on the 5000rad 

horse x hamster radiation hybrid panel (Chowdhary et al. 2002).   

Twenty-nine gene loci were added to the cytogenetic map to anchor and orient 

the RH groups. Metaphase and interphase FISH were used to resolve the positions of 9 

markers for which the order could not be deduced by RH analysis.   

Overall, the map has a resolution of 1 mapped marker every ~880kb, with gene-

specific markers evenly distributed at 1Mb intervals.  Consequently, this is the densest 

and most uniformly distributed map currently available for the X chromosome of any 

non-sequenced species. The work also represents the first high-resolution physically 

integrated gene map for a horse chromosome.   

Several genes from the distal part of ECAX tended to produce X and Y specific 

PCR patterns on the RH panel.  This can be explained i) by their putative PAR status in 

horses, or ii) by retaining a certain degree of sequence homology due to the common 

ancestry of the sex chromosomes.  Two of these (DXY155E and ASMT) are known 
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PAR1 genes in humans, while the PAR status in horses of other Xp genes needs further 

verification.  Two genes from human PAR2 were mapped to the terminal end of ECAXq 

and are not pseudoautosomal in horses. 

Information from the X chromosome maps of nine mammalian species (HSA, 

MMU, BTA, SSC, CFA, FCA, CHI - goat, OAR - sheep, and BBU - river buffalo) was 

used for comparative analysis.  The most prominent observation to come from this 

comparison is that horses and humans share a remarkably similar order of loci, with the 

exception of a handful of minor rearrangements.  For no other non-primate, non-

sequenced mammalian species has such an extraordinary conservation been observed to 

date.   

The few rearrangements in gene order between horses and humans are most 

evident in the segment corresponding to human sequence positions 46-54Mb, found in 

the horse at ECAXp12-13 (indicated by a red bracket in Figure 6-3).  An increased 

prevalence of rearrangements between the horse and mouse is also observed in this 

region.  These rearrangements in gene order are situated near the putative fusion point of 

two different strata of the human X chromosome: the X conserved region (XCR) and the 

recently added region (XRA).  As a result, additional study of this particular region 

could be profitable for understanding the basis behind these rearrangements. 

The maps of the horse and mouse X chromosomes are less similar, with a 

number of rearrangements and reversals in the orientations of clusters of loci (refer to 

Figures 6-1 and 6-3).  The most dramatic differences are on Xp, where many genes are 

present in humans and not mice.  This includes the PAR: humans and mice share no 



 139

PAR genes (5 PAR genes in humans are present in mice on autosomes).  However, 13 

conserved linkage blocks were identified across horses, humans, and mice, denoting 

preserved X chromosome regions likely inherited from a common ancestor.   

The X chromosomes of other species included in the comparisons show 

considerable differences in gene order and orientation relative to human and horse.  

These discrepancies extend to their PARs, as several genes (e.g. STS, KAL1) have been 

found to be classified PAR in some species but not others. 

 

Fourth paper: A 1.3-Mb interval map of equine homologs of HSA2 

This study reported a high-resolution map of parts of ECA6p, ECA15 and 

ECA18 (homologs of HSA2) by analyzing a total of 186 markers (94 Type I and 92 

Type II). PCR primers were designed for 140 new markers (78 genes and 62 

microsatellites). These markers were then genotyped on the 5000rad horse x hamster 

radiation hybrid panel (Chowdhary et al. 2002).  Twenty-four of these markers were 

cytogenetically mapped by FISH for anchoring and orienting the RH groups on ECA15 

and 18.  The resultant maps of the equine chromosomes had a density of one marker 

every 1.3Mb which translates to a three-fold increase compared to previous maps of the 

regions. 

The high-resolution RH maps of the three equine chromosomes helped to refine 

the locations of two evolutionary break/fusion points between HSA2 and the three 

equine chromosomes.  The previous break for HSA2 synteny between ECA18 and 

ECA6p was detected in an ~11 Mb segment on HSA2 (Chowdhary et al. 2003).  This 
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has now been narrowed down to an approximately 3 Mb region, and appears to be 

unique to equids as it is not observed in any of the other species compared..  Similarly, 

the breakpoint region between ECA15 and ECA18 has been narrowed down to within ~4 

Mb of HSA2, from the previously reported ~9 Mb segment (Chowdhary et al. 2003). 

Comparison of the gene mapping data for the three equine chromosomes with 

that available in other mammalian and vertebrate species showed that ECA18 is 

relatively well conserved in relation to human (HSA2), chimp (PTR13), and chicken 

(GGA7). However, with regards to dog, mouse, and rat, the corresponding segments are 

present on 2-3 chromosomes.  Overall, six core regions representing conserved linkages 

are observed across mammals and chicken (see Fig. 7-1: green shaded regions and 

regions demarcated with red rectangles). In contrast, regions corresponding to ECA6p 

primarily show conserved linkage across four of the five sequenced mammals, with dog 

as an exception where this conservation is split between CFA25 and CFA37. 

ECA15 seems to be well conserved among mammals and notably shows a large 

segment (distal half of ECA15) that corresponds to part of chicken chromosome 3.  The 

inverted gene order of the proximal part of ECA15 with respect to primates, but similar 

to that of dog, suggests an evolutionary reorganization between these species.  The distal 

half of ECA15 has four regions of conserved linkages across compared mammals (Fig. 

7-1: green shaded rectangles).  However, comparison of the gene order with chicken 

essentially shows conservation implying that the distal 2/3 of ECA15 represents an 

ancestral vertebrate chromosomal segment. 
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IX.  FUTURE PROSPECTS 

 A better understanding of the molecular and genetic bases behind equine diseases 

and disorders is of utmost importance to the equine industry.  Horse breeders yearn to 

find ways to improve breeding strategies such that the health and (in many cases) 

athletic ability of the foals are maximized for greater gains at shows and race tracks; 

fertility of the breeding stock is also crucial to a successful and productive industry.  

Improvements in equine veterinary medicine are necessary as well to diagnose and treat 

or even prevent a number of maladies in horses, many of which require cures rather than 

symptomatic treatments. It is true that not every condition or disease in horses has a 

genetic cause. However, considering that equine biology, like that of any other living 

being, is governed by genes and their interactions, an in-depth understanding of the 

genome is expected to equip us with knowledge critical to discerning their roles in 

causing and mediating these conditions or predisposing horses to specific diseases. 

Given the substantial size of the equine industry and its impact on the economy, it is 

apparent that an increase in knowledge of the horse genome – its structure, organization, 

functions, and interactions – will be of paramount relevance during coming years. 

Gene mapping and genome analysis for the horse have undergone rapid and 

significant advances over the last several years.  Physical as well as genetic maps have 

been developed for the entire horse genome, rivaling those available in other domestic 

species where the process started much earlier.  Despite this, the gene maps currently 

available for several horse chromosomes lack sufficient marker density or a uniform 

marker distribution.  Hence, high-resolution maps with evenly-spaced markers are 
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essential for all chromosomes.  The second-generation whole-genome radiation hybrid 

map for the horse as well as other projects focused on improving maps for individual 

chromosomes will continue to be the major immediate goals for the equine gene 

mapping community.  

Two additional fronts with respect to the analysis of the equine genome will 

remain the center of focus for the current and next years. These are i) physical assembly 

of the genome using BAC clones and ii) whole genome sequencing and assembly of the 

genome which will be followed by annotation. For the former, ~150,000 BAC clones 

from the CHORI-241 equine BAC library are being end sequenced and will be 

fingerprinted to eventually obtain a complete physical map of the horse genome 

(http://www.volkswagenstiftung.de/presse-news/presse05/08122005.pdf). Using 

comparative mapping information and human gene annotation, the putative gene content 

of the equine BAC clones is being inferred. Additionally, the equine chromosome 

assignment of the BAC clones is predicted based on the currently available human-horse 

comparative maps. With regards to sequencing the equine genome, major progress is 

presently being achieved with the recently-initiated endeavor at the Broad Institute. 

While the first part of this initiative is completed and a 7X sequence of the equine 

genome is available, the next phase will involve assembly of the data and eventual 

annotation to identify and classify various features of the entire sequence. High 

resolution maps such as those presented in this thesis will be extremely useful in 

assembly as well as annotation of the sequence data finally leading to a finished 

sequence probably by the end of the next year. 
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 The availability of the 7X whole genome sequence of the horse described above 

will trigger the creation of two major resources: i) long oligonucleotide microarrays and 

ii) SNP chips. These tools will be extensively used during the coming years respectively 

for functional analysis of the equine genome and for analyses of Mendelian as well as 

complex traits.   It is expected that the annotated and assembled 7X-coverage sequence 

of the horse genome and the ~65,000 ESTs publicly available in various databases will 

be used in the near future to bioinformatically develop 70-mer probes for individual 

equine genes. These oligos will then be used to generate the first whole genome equine 

oligoarray, which will be a vital instrument for conducting organized and genome-wide 

functional genomics research in several branches of equine sciences. The resource will 

for the first time enable analyses of patterns of gene expression in horses under normal 

and perturbed physiological and developmental conditions. It will also facilitate 

comparisons of gene expression patterns between horses that vary with regard to 

genetically influenced, intrinsic, or environmentally induced health phenotypes. 

 SNP discovery is currently underway in conjunction with the 7X whole genome 

shotgun sequencing of the equine genome at the Broad Institute of Harvard and MIT, 

funded by the National Human Genome Research Institute. This will generate a 

comprehensive selection of equine SNPs and enable their validation in diverse breeds by 

re-sequencing predetermined regions of the genome in representative individuals.  

Eventually this will lead to the development of a highly informative whole genome SNP 

chip with applications in association studies of health and disease traits in different 

breeds of horses. This tool will be extensively used in the coming years not only to 
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understand equine biology, but also to study simple as well as complex diseases for 

which present testing and diagnostic tools do not provide conclusive results. It is 

expected that the findings from SNP analysis will allow the equine industry to make 

informed decisions regarding breeding programs.    

 An avenue of research that has been under-appreciated until recently is the Y 

chromosome.  While contigs have been developed for part of the euchromatic region of 

the equine Y (Raudsepp et al. 2004b), complete sequence information for this 

chromosome will not be available through the whole genome sequencing effort because 

a female horse was used for this purpose.  The existing contigs should serve as a 

template to ultimately provide a tenable scaffold for organizing future sequence data for 

the Y chromosome.  As this chromosome plays important roles in governing male 

fertility as well as differences in phenotypic sex, developing a sequence-level map is of 

prime importance.  With such information in hand, the in-depth scrutiny of the 

chromosome can lead to an improved understanding of these factors in the horse.   

 As a result of present and future developments in equine genomics, the field of 

equine biology will be revolutionized.  Advances ensuing from horse genomics research 

will provide valuable resources for clinicians and investigators.  These include more 

accurate and efficient means for diagnosing affected horses, such that proper treatment 

can commence.  Additionally, treatment methods themselves will improve, becoming 

more focused on the molecular aspects (such as genes) involved in the development and 

progress of conditions, and tailored to the affected individual.  Moreover, more 

sophisticated preventative measures will be possible, such as avoiding exposure of 
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susceptible animals to certain risk factors.  While genomics will not replace current 

practices in horse care, it will provide additional beneficial tools which will improve the 

efficacy of equine medicine.  Genomics will facilitate the elucidation of both 

environmental and genetic components of diseases and traits, providing valuable details 

particularly about genetic aspects of conditions and how they are affected by external 

circumstances.  Ultimately, progress in horse genomics will usher in a new era in equine 

medicine and biology. 
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X.  CONCLUSIONS 

 The work described in this thesis led to the development of high-resolution, 

integrated gene maps for seven equine chromosomes.  The maps permitted detailed 

comparisons of the horse genome with the genomes of mammalian and vertebrate 

species.  This helped to determine evolutionarily conserved chromosomal segments 

across species and provided insight into their evolution from an ancestral chromosomal 

configuration. In the future, these maps will be useful for assigning traits of economic 

significance to specific chromosomal regions in the horse and subsequently identifying 

and analyzing genes governing them.  Lastly, the maps will serve as templates upon 

which the newly acquired sequence information for individual chromosomes will be 

assembled.  Overall, the studies described herein advance our current understanding of 

various aspects of the equine genome.  The following observations are key features of 

this advancement: 

 

o High-resolution integrated physical gene maps were developed for seven equine 

chromosomes: the three equine homologs of HSA19 (parts of ECA7, 10, and 21), 

the three equine homologs of HSA2 (parts of ECA6, 15, and 18), and the X 

chromosome.  This was accomplished by generating a total of ~500 markers (99 

microsatellites, 106 STSs, and 291 genes) and genotyping them on the TAMU 

5000rad horse x hamster RH panel.  Selected markers were used to screen the 

CHORI-241 and TAMU horse BAC libraries to obtain BACs that were localized 

to specific chromosomal bands by FISH. This in turn facilitated the anchoring 
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and orientation of the RH groups to the chromosomes.  Additionally, a contig 

comprising 207 overlapping BAC clones was established over the proximal part 

of ECA21 that corresponds to HSA19p and part of HSA5. 

 

o Comparisons of the resulting maps for the equine chromosomes with those 

available for corresponding genomic regions in other mammalian and vertebrate 

species allowed the precise demarcation of correspondences between the equine 

chromosomal segments and chromosomes of the compared species. It also 

enabled the identification of regions of conserved synteny or evolutionarily 

conserved linkages across these species that permitted the detection of putative 

ancestral chromosomal regions between them.    

 

o Following analysis of Zoo-FISH and comparative gene mapping data from ~50 

mammalian species, a putative ancestral mammalian configuration was deduced 

for HSA19. This enabled postulation of the evolution of HSA19 homologs in the 

horse and other species from a common ancestor.  In addition to facilitating the 

determination of possible fission and fusion events that led to the present 

chromosome configurations in individual species, the comparisons made possible 

the identification of a Perissodactyl-specific fission event.  As a result of this 

event, HSA19p corresponds to two separate chromosomes in the equids, but not 

in any of the other compared mammalian species. Further, while the adjacency of 

segments corresponding to HSA19 and HSA5 is observed in artiodactyls as well 
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as Perissodactyls, different regions are involved in the latter, indicating separate 

evolutionary events in the two orders.   

 

o The BAC contig developed over the proximal one-third of ECA21 showed that 

this region corresponds to the ~15-20 Mb positions on the HSA19 sequence map. 

The BAC contig spans ~4.3Mb in length and is presently the largest assembly of 

overlapping BAC clones available for the horse. Interesting findings conferred by 

the contig include the apparent lack of a group of zinc finger genes in horses 

which is present as a large block in humans and other primates.  This was 

confirmed by screening the CHORI-241 library filters using overgo probes for 

several zinc finger genes from the human region.  In addition, diversity in the 

size of the contig is apparent particularly in regions of gene families.   

 

o The high-resolution gene map of the equine X chromosome revealed a degree of 

conservation with the counterpart in humans that has not yet been observed in 

any of the other non-sequenced mammalian species compared.   

 

o The gene maps for ECA6, ECA15, and ECA18 represent the first high-resolution 

maps for these equine chromosomes. Comparison of the mapping data with 

HSA2 led to the identification of two evolutionary breakpoints: one between 

ECA6 and ECA18, and another between ECA15 and ECA18.  The breakpoint 
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between ECA6 and ECA18 is considered to be equid-specific because it has not 

been found in any of the other compared mammalian or vertebrate species.   

 

o The radiation hybrid maps described in this dissertation demonstrate the far-

reaching utility of the approach for integrating information from a variety of 

other map types (e.g. synteny, linkage, and cytogenetic) into a single, highly 

informative, linearly ordered consensus map.  As is evident from the results, 

these maps are tremendously effective for making comparisons with gene maps 

of other species and extrapolating information, as well as elucidating the details 

of the evolution of a particular region or chromosome. Most importantly, the 

resolution attained for the seven chromosomes will considerably facilitate 

candidate gene searches for a range of equine conditions. 
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APPENDIX 

Table A4-1 
Detailed information about individual equine HSA19 orthologs and microsatellites typed on the 5000rad equine whole genome RH panel and/or FISH mapped to HSA19-homologous regions 
of ECA7, ECA10, and ECA21 

SYMBOL NAME FISH 
LOCATION 

PCR PRIMERS 
5’ – 3’ 

REFERENCE PRODUCT 
SIZE (BP) 

TA 
(C°), 
MgCl 
(mM) 

ACCESSION 
NO. 

AKAP8  A kinase (PRKA) anchor 
protein 8   - F: ACCAGCGTTTGGACATGATG 

R: ATAGTCGTAGCTGTAGCTGG This study 710 58, 1.5 BI774186 

AURKC aurora kinase C  - F: TCGATGACTTTGAAATCGGG 
R: CAGTCCTTCCTTCTCTATCTG This study 134 58, 1.5 CK463294 

BCKDHA 
branched chain keto acid 
dehydrogenase E1, alpha 
polypeptide  

ECA10p13 F: GAGAACCAGCCCTTCCTCAT 
R: TTCTTGCGGGACTGCTTCCT This study 436 60, 1.5 J03759 

C19orf19 chromosome 19 open 
reading frame 19   - F: GCCTACAGCCCAGAGAAAGT 

R: CTGCTGGGCTTGATGAAGAT This study 164 58, 1.5 BF080172 

C19orf2 chromosome 19 open 
reading frame 2    ECA10p15 F: AGAATTTTTGTCGCCCTCCT 

R: TTTTTCTGCTGCAATCTGGC This study 153 60, 1.5 CK464292 

C5R1 complement component 
5 receptor 1 (C5a ligand) - F: GGCCACGCGTCGACTAGTAC 

R: CTGTTTGAGCGGATGAAGGTGAA Pascual, I. et al. 2002 ~130 58, 2.0 BI395175 

CAPNS1 calpain, small subunit 1 - F: TGAGGCCAATGAGAGTGAG 
R: CCATCAGTCTTCAGATCAGG This study 408 58, 1.5 BP434626 

CEBPG 
CCAAT/enhancer 
binding protein (C/EBP), 
gamma    

- F: GCCCATGGATCGAAACAGT 
R: AGCTGATTCACTCTCTGCAG This study 123 58, 1.5 BI961735 

CLPTM1 
cleft lip and palate 
associated 
transmembrane protein 1 

- F: GGCCACGCGTCGACTAGTAC 
R: CTGTTTGAGCGGATGAAGGTGAA Pascual, I. et al. 2002 ~200 58, 2.0 BI395231 

COMP cartilage oligomeric 
matrix protein  - F: TCGTGCAAACAATGAACAGC 

R: TCCACATGACCACGTAGAAG This study 570 60, 1.5 AF325902 

DPP9 dipeptidylpeptidase 9    - F: TCACCACACCCGGCTTCT 
R: TGGCTGATGAACATGTCGAAGT This study 741 60, 1.5 BM030481 

EDG4 

endothelial 
differentiation, 
lysophosphatidic acid G-
protein-coupled receptor, 
4  

- F: CTCTTCCTCATGTTCCACACA 
R: ACAGCCACCATGAGCAGGAA This study 365 58, 1.5 CK461960 

 ELSPBP1 epididymal sperm 
binding protein 1 - F: AGTATGGGGGAAATTCTTTC 

R: TCGGGCACCAGAGCTTGTT This study 108 55, 1.5 AJ539176 

ETHE1 ethylmalonic 
encephalopathy 1    - F: ACTGTCTGATCTACCCTGCTCA 

R: TTGACAAACTCCTCACAGCTGA This study 823 58, 1.5 BP434586 

FKBP8 FK506 binding protein 8, 
38kDa - F: AACTCCTACGACCTCGCCAT 

R: GCCTTGATGTTGTCAGGCTG This study 642 60, 1.5 CB427408 

FTL ferritin, light polypeptide - F: CCATGAAAGCCGCCATTGT 
R: CCTCTGGATGTTGGTCAGATGG monocyte cDNA library 353 58, 1.5 BI961949 
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Table A4-1 (continued) 
SYMBOL NAME FISH 

LOCATION 
PCR PRIMERS 

5’ – 3’ 
REFERENCE PRODUCT 

SIZE (BP) 
TA 

(C°), 
MgCl 
(mM) 

ACCESSION 
NO. 

GDF1 growth differentiation 
factor 1 - F: CTCAAGGTCCTGTATGCCA 

R: TGTACAGGAACCAGTAGAGG This study 124 58, 1.5 BM286244 

GMIP Gem-interacting 
protein    - F: GTTATCCGCTCGCTGAAGA 

R: ACAATGCCCAGGTTGTTGG This study 460 58, 1.5 BE682381 

GPI† 
glucose phosphate 
isomerase    10p15 F: CTGGGACATCAACAGCTTTG 

R: GCTCCTGCTTGATGAAGTTG Chowdhary et al. 2003 261 58, 1.5 X07382 

GYS1 glycogen synthase 1 
(muscle) - F: AAGGCTCGAATCCAGGAGTT 

R: GGTCTTGTCCAAGTTGAAGT This study 413 58, 1.5 BX926004 

HKR1 GLI-Kruppel family 
member HKR1    - F: AATGTGGACGAGGCTTTAC 

R: TCCTTGCACACATAAGGCTTG This study 170 60, 1.5 CK834051 

ILT11B immunoglobulin-like 
transcript 11 protein - F: CCTCACGACTGGAATTTGAC 

R: ATAGCATCTGAACGTCCACC Takahashi et al. 2004 ~200 58, 1.5 - 

INSL3* insulin-like 3 (Leydig 
cell) ECA21q13-q14 F: GAACTGCTACAGTGGCTGGAAGG 

R: TCAGTGGGGACAGAGGGTCAG Milenkovic et al. 2002 ~200 58, 1.5 X73636.1 

INSR insulin receptor    ECA7p16 F: CTGTGGGACTGGAGCAAACA 
R: CCTCCATCTTGTGAATTTCC This study 100 60, 1.5 BM255680 

JUND jun D proto-oncogene    - F: ATCGACATGGACACTCAGGAG 
R: GCTGAGGACCTTCTGCTTGA This study 210 58, 1.5 CA779483 

KIR3DL 

killer cell 
immunoglobulin-like 
receptor, three domains, 
long cytoplasmic tail 

- F: TGCAATCAGGACAAAATGTG 
R: TCACAGGACCCAAGAAGAAG Takahashi et al. 2004 ~150 58, 1.5 - 

KLF2 Kruppel-like factor 2 
(lung)  - F: AGAAGCCCTACCACTGCAAC 

R: CTACATGTGCCGCTTCATG This study 173 58, 1.5 BI132469 

LILRA 
leukocyte 
immunoglobulin-like 
receptor, subfamily A 

- F: GCCAGTACAGATGCTACGGT 
R: CCAGATCTCAGAGCGACATT Takahashi et al. 2004 ~450 55, 1.5 - 

LIPE lipase, hormone-sensitive    - F: TTCCTGCAGACCATCTCCAT 
R: CTGTATGATCCGCTCAAACTC This study 266 55, 1.5 AJ000482 

LSM4 
LSM4 homolog, U6 
small nuclear RNA 
associated (S. cerevisiae) 

- F: GGATGCCCGAGTGCTACATT 
R: GCCCTTCTGCTGCTTCTGCT monocyte cDNA library 140 50, 1.5 - 

MGC34079 hypothetical protein 
MGC34079   - F: CCTTCAGGAACATCAAGACC 

R: CGTTCCAGTTCGTCCTTCT monocyte cDNA library 196 58, 1.5 BI961498 

MRPS12 mitochondrial ribosomal 
protein S12    - F: AAGCCCAAGAAGCCCAACT 

R: ACGACGGTGAGCTTGACG This study 173 60, 1.5 BI961235 

NFIX 
nuclear factor I/X 
(CCAAT-binding 
transcription factor) 

ECA7q11-q12 F: ATCAAGCAGAAGTGGGCATC 
R: TCCCCGTCAGTACTTTCCAG This study 245 60, 1.5 AW659814 

NKG7 natural killer cell group 7 
sequence    

ECA10p13dist-
p12prox 

F: GTGAGCTTCCTGGTCCTGTC 
R: GAGAAGAACGTCTGGATCTG This study 259 60, 1.5 BM734829 

NUP62 nucleoporin 62kDa    - F: TGGAGAAGGTGAAGCTGGAC 
R: CGAGTTCTGGTCGATCCACT This study 341 58, 1.5 BM089312 

OLFM2 olfactomedin 2    - F: ACTTCATGGTGGACGAGAGC 
R: GAGTTGGTGACGTAGAGCAC This study 185 TD60, 

1.5 BF078883 
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Table A4-1 (continued) 
SYMBOL NAME FISH 

LOCATION 
PCR PRIMERS 

5’ – 3’ 
REFERENCE PRODUCT 

SIZE (BP) 
TA 

(C°), 
MgCl 
(mM) 

ACCESSION 
NO. 

PDCD5 programmed cell death 5    - F: CAAGGTTTAATAGAAATCCTCGAAA 
R: CGTCATCTTCATCAGAGTCCA This study 426 60, 1.5 BX914933 

PDE4A 

phosphodiesterase 4A, 
cAMP-specific 
(phosphodiesterase E2 
dunce homolog, 
Drosophila)  

- F: CTCATGTACAACGACGAGTC 
R: ACCCCTGAGCTGGTCACTTT This study 426 58, 1.5 AV595552 

PEG3 paternally expressed 3 ECA10p12 F: GCTCACTAAAGGTTGGGCTA 
R: GATCATGCATACTAGAGAGAACC This study 245 58, 1.5 BU745796 

PEN2 presenilin enhancer 2 ECA10p14-p13 F: TTGTCCCGGCATACACGGA 
R: TACCCAGGGGTATGGTGAA This study 355 58, 1.5 BX921838 

PIK3R2 
phosphoinositide-3-
kinase, regulatory 
subunit 2 (p85 beta)   

- F: AGGGAGAGTACACGCTGAC 
R: TTGGACACTGGGTAGAGGAG This study 656  58, 1.5 AV663221 

POLR2E 
polymerase (RNA) II 
(DNA directed) 
polypeptide E, 25kDa    

- F: CAGACGCTGGAGGAGTTCAA 
R: CGGTGGGGTCGTCATTGT This study 106 55, 1.5 CD471676 

POLRMT 
polymerase (RNA) 
mitochondrial (DNA 
directed)  

ECA7p16 F: TGATGACCGTGGTGTACGG 
R: CAGAGAACATCTCCTGGAGG This study 346 58, 1.5 CF722762 

POP4 
processing of precursor 
4, ribonuclease P/MRP 
subunit (S. cerevisiae)    

- F: TACAGTCTTTTTCTCCCTCT 
R: GAAACAATAGCGCCGTGAAG This study 313 60, 1.5 BP172676 

POU2F2* POU domain, class 2, 
transcription factor 2 ECA10p14-p13 F: TCTGGTGGAACTCTGCCTCT 

R: GCTTCCTCGCCCTCTTTC This study 398 58, 1.5 BM734940 

PPP5C protein phosphatase 5, 
catalytic subunit    ECA10p13 F: AGTACACAGCCCAGATGTAC 

R: TCCGCTCGATCTTCCTGATG This study 280 58, 1.5 BP161170 

PRSS15* protease, serine, 15    ECA7p16 F: ACTGCTTGAGCTGCTGGA 
R: TTGGCCGTGCAGATGAAC This study 180 60, 2.0 CK947971 

RFXANK 
regulatory factor X-
associated ankyrin-
containing protein    

- F: TGTCCATCCACCAGCTTGCA 
R: GGCTTGTTGATGAGGTTGT This study 300 58, 1.5 CK459113 

RPL13A ribosomal protein L13a - F: CATGAACACCAACCCATCC 
R: TGCCATCGAACACCTTGAG monocyte cDNA library 343 58, 1.5 BI961884 

RPL28 ribosomal protein L28    - F: CTGATCAAGAGGAACAAGCA 
R: ATCTCCGCTTCATCACCACC This study 285 60, 1.5 BM780607 

RPS19 ribosomal protein S19 - F: CCCAGCCATTTTAGCAGAGG 
R: TCCCTGAGGTGTCAGTTTGC monocyte cDNA library 602 58, 1.5 BI961679 

RPS5 ribosomal protein S5    - F: TACATCGCGGTGAAGGAGAA 
R: GCTTCTTGCCATTGTTACGG This study 148 58, 1.5 BI961498 

SLC27A1 
 solute carrier family 27 
(fatty acid transporter), 
member 1  

ECA21q13-q14 F: TTCAACAGCCGCATCCTGC 
R: CTGTGGGCGATCTTCTTGCT This study 305 60, 1.5 CK837240 
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Table A4-1 (continued) 
SYMBOL NAME FISH 

LOCATION 
PCR PRIMERS 

5’ – 3’ 
REFERENCE PRODUCT 

SIZE (BP) 
TA 

(C°), 
MgCl 
(mM) 

ACCESSION 
NO. 

SLC7A10† 

solute carrier family 7, 
(neutral amino acid 
transporter, y+ system) 
member 10 

10p15 F: GGTCTTCAGCTTCATCTCGG 
R: ACATTGTAGGGAGGCATTCG Chowdhary et al. 2003 274 58, 2.0 AF425263 

SSTK* serine/threonine protein 
kinase SSTK    ECA21q13 F: TCAAGCTTACCGACTTCGGC 

R: GACCATGACGTAGAGCACGA This study 170 60, 1.5 BI344525 

STRN4 striatin, calmodulin 
binding protein 4 - F: GGCCACGCGTCGACTAGTAC 

R: CTGTTTGAGCGGATGAAGGTGAA Pascual, I. et al. 2002 ~700 55, 2.0 BI395151 

TRIP10 thyroid hormone receptor 
interactor 10    - F: TACCCATCATCGCCAAGTGT 

R: TTCATGGGCTGGCTGAAGT This study 250 58, 1.5 BP455004 

UBA52 
ubiquitin A-52 residue 
ribosomal protein fusion 
product 1  

- F: GCAGACATGCAGATCTTTGTG 
R: CTCCTTGTCTTGGATTTTAGC This study 108 60, 1.5 CD536556 

UHRF1 
ubiquitin-like, containing 
PHD and RING finger 
domains, 1    

- F: GGGAACTCGTTCACGTACAC 
R: TGTTGGTGTTGGTGAGTTTC This study 100 60, 2.0 BP169308 

ZNF536 
(KIAA0390) zinc finger protein 536 - F: CTTGTGTCCGATTGTCCTGT 

R: CACATTTTGCTTCAATCACC This study 209 55, 1.5 AV593008 

ZNF537 
(KIAA1474) zinc finger protein 537 - F: CAACGACCAGCCCATAGACT 

R: TGGAAGGGGTGGAGGACTT This study 245 58, 1.5 AW417891 

ZNF543 
(Q8NCX4) zinc finger protein 543 - F: TTCACCCACCGCTCCAATTT 

R: CTTCTCCCCAGTGTGAATCC This study 390 60, 1.5 BP437102 

COR095 microsatellite ECA7Q13PROX F: TACCTCTGGTGGTGATGCTT 
R: CCCACACTTACTCCCATCAC TALLMADGE ET AL. 1999 206-216 58, 2.0 AF154948 

HMS23 microsatellite - F: GATCCAATATTGTAAACCCCGCC 
R: CCTTCATAACCCTTATTGCAGCC Godard et al. 1997 95 60, 1.5 U89810 

TKY1034 microsatellite - F: GACCTGTTAGTGTAACTTCTG 
R: ACACCTGATGCAATGCTTTC Tozaki et al. in preparation 158 58, 1.5 AB104252 

TKY1107 microsatellite ECA7p15 F: AGGGGGATGATTGAAAACAG 
R: TCATGACACTACCTTTCCTG Tozaki et al. in preparation 197 58, 2.0 AB104325 

TKY1112 microsatellite - F: GATCACAGTGCGATGACTTG 
R: AAAATTACCATGTGACCCATC Tozaki et al. in preparation 149 58, 1.5 AB104330 

TKY460 microsatellite - F: CAACTAGAAGGACCCACAAG 
R: AGACTTCTCCATCAGGCAC Tozaki et al. in preparation 188 58, 1.5 AB103678 

TKY461 microsatellite ECA7p13-p14 F: ATGGCCCATCGTAAGAAACA 
R: GAGGGAGGAAGAAAGGAAGG Tozaki et al. 2004 162-168 58, 1.5 AB103679 

TKY512 microsatellite - F: CATTCACAGTTGCTGTGGAG 
R: GAATACCTACAGTACAGCGT Tozaki et al. in preparation 158 58, 2.0 AB103730 

TKY537 microsatellite - F: TCAGGGGTTCCTCTTCAGTG 
R: TTGCCTGGTGTCTAGGTTCC Tozaki et al. 2004 147 58, 1.5 AB103755 

TKY574 microsatellite - F: AGGAACATTGGCAAGAGATG 
R: TGCAGTCTCTGTATTTGGAT Tozaki et al. in preparation 97 58, 1.5 AB103792 

TKY678 microsatellite - F: TAAAAGAAGGGGGTAATGGG 
R: TGTGGTGCTTGTTCCAGCA Tozaki et al. in preparation 207 58, 1.5 AB103896 
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Table A4-1 (continued) 
SYMBOL NAME FISH 

LOCATION 
PCR PRIMERS 

5’ – 3’ 
REFERENCE PRODUCT 

SIZE (BP) 
TA 

(C°), 
MgCl 
(mM) 

ACCESSION 
NO. 

TKY773 microsatellite - F: GAGAACGGCCTTAACCGT 
R: CCTTGCAACCAAAGCCGTTC Tozaki et al. in preparation 245 58, 1.5 AB103991 

TKY806 microsatellite - F: TGGAACTGTGATGATGTTGC 
R: TCTTTCTTCCCTTCCGAGAG Tozaki et al. 2004 180 58, 1.5 AB104024 

TKY855 microsatellite - F: GATCTTGGCAGAAATGCCTG 
R: TCAAGCAAATAGGAGCTGAG Tozaki et al. in preparation 142 58, 1.5 AB104073 

TKY918 microsatellite - F: TGATGCCCAGGGAACAACT 
R: TGTTGTAGTACTTGTCCAGG Tozaki et al. in preparation 274 58, 1.5 AB104136 

TKY946 microsatellite - F: GATCCTAGGGCTTTGTGCG 
R: CATACCATGGAACACTGCTC Tozaki et al. in preparation 110 58, 2.0 AB104164 

TKY957 microsatellite ECA7p15-p14.3 F: AGAAAGTCAGGGAGCAATC 
R: CCTTTGAGACCACTCCAAAC Tozaki et al. in preparation 145 58, 2.0 AB104175 

UMNe093 microsatellite - F: CGCAGAGTTGGAGACACCTG 
R: GGTGCCATCCACTGAAACAC Wagner, M.L. et al. 2004c 167 58, 1.5 AY391287 

UMNe359 microsatellite - F: GTGTGACGGAGGACGAGG 
R: TGGTGCCATCCACTGAAAC Wagner, M.L. et al. 2004c 140 58, 1.5 AY391348 

UMNe425 microsatellite ECA7p12-p11 F: GAAAGAGCAAGGAGCCAAAG 
R: GCTTGCAAATGTTTGGGG M. Wagner, pers. comm ~200 58; 1.5 - 

UMNe506 microsatellite - F: AGGGACGTGACCTAACATGG 
R: CAGCACAGCCTCCTCTCC Wagner, M.L. et al. 2004a 142 58, 1.5 AY735257 

UMNe564 microsatellite - F: GAATACAGGGGCTTTTTCTGC 
R: TTCTGCATCTTGATTGCAGTG Wagner, M.L. et al. 2004b 223 58, 1.5 AY464530 

UMNe565 microsatellite ECA7q12-q13 F: GAGAGCTAACCAGAATTGCCC 
R: CTATACCGCAACTCTCCTGGG Wagner, M.L. et al. 2004a 333 58, 1.5 AY735270 

UMNe606 microsatellite - F: TGCCTTTACCTTACAAACAC 
R: ATCCAAGAATATCATATTGGC M. Wagner, pers. comm ~190 58, 1.5 - 

VHL108 microsatellite - F: TTTCTTTCCCTCAGGCTGGA 
R: GACCTAAGAGAACCCCTTAAGT van Haeringen et al. 1998 191 58; 1.5 Y08445 

FISH locations shown in bold are from this study.  TD- touchdown PCR 
* indicates those markers that are on the FISH map only. 
† indicates those markers were previously FISH mapped only, now also on the RH map. 
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Table A4-2.  A summary of the number and type of markers mapped to regions of ECA7, ECA10 and ECA21 that were found to share homology with HSA19. Others = 1 HSA11 and 5 
HSA5 orthologs. 

RH mapped loci 
On map Type I Type II 

FISH mapped loci Comparative 
loci 

(RH+FISH) 

Horse 
chromosome 

segment 
Tota
l 

New Tota
l 

New HSA1
9 loci 

Total New Total 
(genes) 

RH 
Anchor

s 

New 
(genes) 

Tota
l 

New 

ECA7pter 19 12 11 8 7 8 4 19 (13) 8 7 (4) 9 8 
ECA7qprox 20 13 3 3 3 17 10 7 (3) 5 4 (1) 4 3 
ECA7 total 39 25 14 11 10 25 14 26 (16) 13 11 (5) 13 11 
ECA21qprox 24 21 18 18 13 6 3 7 (4) 4 3 (all) 15 15 
ECA10p 57 43 37 35 37 20 8 27 (14) 17 7 (all) 42 35 
TOTAL 120 89 69 64 60 51 25 60 (34) 34 21 (15) 70 61 
 

Table A4-3.  Maps of ECA7, ECA10, and ECA21 in tabular form.  The computation of the maps is explained in materials and methods. These maps include portions of the horse 
chromosomes that are not homologous to any part of HSA19.  The data homologous to HSA19 (presented in Fig. 1) are separated from the remaining data by a thick horizontal line. The latter 
are italicized.  Map coordinates are in cR. Because gene names have changed over time, the homolog of a gene in the table may appear on another mammalian map with a different 
name.  Therefore, some pertinent gene aliases are shown in the rightmost column. ms = microsatellites; dc = discontinued; BAC-es = BAC end sequence. 

Horse 
Chromosome Marker Map 

Coordinate 
Human 

Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA7 C19orf19 0.00 19 0.4 FLJ40059 

ECA7 POLR2E 18.50 19 1.0  

ECA7 POLRMT 28.98 19 0.5  

ECA7 TRIP10 89.09 19 6.6  

ECA7 INSR 99.51 19 7.0  

ECA7 UHRF1 110.22 19 4.8  

ECA7 DPP9 124.15 19 4.6  

ECA7 TKY957 212.21 ms   

ECA7 BIRC2 240.87 11 101.7  

ECA7 TKY1107 271.13 ms   
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Table A4-3 (continued) 

Horse 
Chromosome Marker Map 

Coordinate 
Human 

Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA7 DRD2 320.33 11 112.8  

ECA7 TKY034 331.02 ms   

ECA7 TKY035 331.02 ms   

ECA7 TKY946 370.66 ms   

ECA7 APOC3 395.00 11 116.2  

ECA7 LEX015 395.00 ms   

ECA7 LEX038 395.00 ms   

ECA7 THY1 395.00 11 118.7  

ECA7 TKY461 419.47 ms   

ECA7 TKY005 0.00 ms   

ECA7 TKY283 2.80 ms   

ECA7 VHL108 15.09 ms   

ECA7 UMNe425 48.09 ms   

ECA7 NFIX 115.31 19 12.9  

ECA7 HTG33 126.20    

ECA7 TKY574 162.41 ms   

ECA7 TKY1112 184.46 ms   

ECA7 PDE4A 213.74 19 10.4  

ECA7 OLFM2 222.63 19 9.8  

ECA7 TKY272 226.70 ms   

ECA7 COR004 238.88 ms   

ECA7 UMNe093 246.39 ms   

ECA7 LEX045 246.39 ms   

ECA7 UMNe359 260.57 ms   

ECA7 TKY512 306.38 ms   
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA7 COR095 313.85 ms   

ECA7 TKY822 336.95 ms   

ECA7 UMNe565 356.35 ms   

ECA7 UMNe606 364.76 ms   

ECA7 TKY282 437.92 ms   

ECA7 SGCV28 469.33 ms   

ECA7 UMNe459 500.73 ms   

ECA7 TKY986 550.36 ms   

ECA7 TUB 574.70 11 8.0  

ECA7 TKY624 598.68 ms   

ECA7 HBB 607.93 11 5.2  

ECA7 UMNe574 620.61 ms   

ECA7 UMNe074 623.64 ms   

ECA7 UMNe100 630.03 ms   

ECA7 XLKD-1 644.07 11 10.5 LYVE-1 

ECA7 TKY1058 658.57    

ECA7 PTH 677.33 11 13.4  

ECA7 TKY793 716.80 ms   

ECA7 TKY839 752.26 ms   

ECA7 AHT019 762.51 ms   

ECA7 TKY1147 778.11 ms   

ECA7 TKY1177 782.73 ms   

ECA7 PAX6 818.23 11 31.7  

ECA10 POP4 0.00 19 34.7  
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA10 C19orf2 6.81 19 35.1  

ECA10 ZNF536 13.84 19 35.5 KIAA0390 

ECA10 HMS23 17.39 ms   

ECA10 ZNF537 17.39 19 36.4 KIAA1474 

ECA10 PDCD5 25.27 19 37.7  

ECA10 AAT10 38.74 ms  SLC7A10 

ECA10 CEBPG 52.06 19 38.5  

ECA10 GPI 60.18 19 39.5  

ECA10 PEN2 68.31 19 40.9  

ECA10 CAPNS1 86.08 19 41.3  

ECA10 COR020 129.79 ms   

ECA10 UMNe506 170.65 ms   

ECA10 TKY855 188.49 ms   

ECA10 RYR1 194.41 19   

ECA10 HKR1 199.93 19 42.5  

ECA10 MRPS12 210.30 19 44.1  

ECA10 UCD482 239.25 ms   

ECA10 COR048 266.81 ms   

ECA10 BCKDHA 266.81 19 46.5  

ECA10 AHT015 300.21 ms   

ECA10 LIPE 316.79 19 47.5  

ECA10 RPS19 356.62 19 47.0  

ECA10 ETHE1 381.53 19 48.7  

ECA10 NV018 402.54 ms   

ECA10 CLPTM1 409.73 19 50.1  
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA10 CKM 420.29 19 50.5  

ECA10 STRN4 435.38 19 51.9 ZIN 

ECA10 PPP5C 435.38 19 51.5  

ECA10 SGCV30 449.50 ms   

ECA10 TKY773 449.50 ms   

ECA10 C5R1 449.50 19 52.5  

ECA10 ELSPBP1 453.92 19 53.1  

ECA10 GYS1 453.92 19 54.1  

ECA10 FTL 453.92 19 54.1  

ECA10 NUP62 466.65 19 55.1  

ECA10 RPL13A 474.82 19 54.6  

ECA10 COR015 486.75 ms   

ECA10 NKG7 498.61 19 56.5  

ECA10 LEX008 502.51 ms   

ECA10 TKY537 516.29 ms   

ECA10 SGCV20 568.76 ms   

ECA10 LILRA 575.23 19 59.7 LILR14 

ECA10 ILT11B 582.09 19 59.4 ILT11-3 

ECA10 KIR3DL 592.48 19 60.0 KIRRH 

ECA10 TKY918 620.38 ms   

ECA10 TKY1034 636.67 ms   

ECA10 COR083 640.57 ms   

ECA10 RPL28 644.33 19 60.5  

ECA10 AURKC 678.65 19 62.4  

ECA10 UCD412 692.42 ms   
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA10 PEG3 695.84 19 62.0  

ECA10 ZNF543 695.84 19 62.5 Q8NCX4 

ECA10 LEX062 712.97 ms   

ECA10 MGC34079 728.73 19 63.1 LOC147678 

ECA10 RPS5 731.52 19 63.5  

ECA10 TKY460 756.99 ms   

ECA10 LEX017 0.00 ms   

ECA10 TKY838 57.40 ms   

ECA10 PHIP 64.67 6 79.7  

ECA10 NV007 85.20 ms   

ECA10 ME1 93.79 6 83.9  

ECA10 CGA 111.69 6 87.8  

ECA10 CNR1 115.61 6 88.9  

ECA10 PNRC1 123.14 6 89.8  

ECA10 UMNe372 134.45 ms   

ECA10 UMNe209 146.19 ms   

ECA10 MAP3K7 158.41 6 91.2  

ECA10 CH241-101G24_T7 176.20 6 BAC-es  

ECA10 EPHA7 180.44 6 94.0  

ECA10 UMNe426 180.44 ms   

ECA10 CH241-102A14_SP6 184.87 6 BAC-es  

ECA10 TKY1101 208.39 ms   

ECA10 PRDM1 212.29 6 106.7  

ECA10 ASB09 220.42 ms   

ECA10 CH241-101L6_SP6 224.38 6 BAC-es  
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA10 HMS02 237.42 ms   

ECA10 CH241-102D7_SP6 258.19 6 BAC-es  

ECA10 TKY614 258.19 ms   

ECA10 TKY1050 270.47 ms   

ECA10 CH241-101M4_T7 289.26 6 BAC-es  

ECA10 UMNe508 378.89 ms   

ECA10 AMD1 423.79 6 111.3  

ECA10 TKY471 427.90 ms   

ECA10 CD164a 432.01 6 109.8  

ECA10 SGCV17 432.01 ms   

ECA10 CH241-102D24_SP6 436.31 6 BAC-es  

ECA10 TKY999 440.60 ms   

ECA10 NR2E1 449.53 6 108.6  

ECA10 LEX009 471.93 ms   

ECA10 HDAC2 494.47 6 114.3  

ECA10 CH241-100C6_SP6 503.40 6 BAC-es  

ECA10 COL10A1 540.22 6 116.5  

ECA10 TKY496 557.31 ms   

ECA10 ROS1 571.50 6 117.7  

ECA10 MAN1A1 607.34 6 119.2  

ECA10 CH241-100E2_SP6 619.14 6 BAC-es  

ECA10 HSF2 626.67 6 122.7  

ECA10 CH241-101E16_T7 637.59 6 BAC-es  

ECA10 NV067 657.21 ms   

ECA10 HEY2 668.52 6 126.1  
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA10 TKY503 679.09 ms   

ECA10 ARG1 711.23 6 131.9  

ECA10 SGK 731.26 6 134.5  

ECA10 TKY632 751.87 ms   

ECA10 PEX7 769.00 6 137.2  

ECA10 LOC340567 788.63 6 dc  

ECA10 AHT086 836.16 ms   

ECA21 TKY021 0.00 ms   

ECA21 AKAP8 9.17 19 15.3  

ECA21 KLF2 24.20 19 16.2  

ECA21 SGCV14 24.20 ms   

ECA21 SGCV16 34.19 ms   

ECA21 SLC27A1 56.66 19 17.4  

ECA21 JUND 72.50 19 18.3  

ECA21 PIK3R2 72.50 19 18.1  

ECA21 LSM4 77.01 19 18.2  

ECA21 UBA52 133.59 19 18.5  

ECA21 FKBP8 178.42 19 18.5  

ECA21 COMP 192.59 19 18.7  

ECA21 GDF1 192.59 19 18.8  

ECA21 EDG4 192.59 19 19.5  

ECA21 GMIP 192.59 19 19.6  

ECA21 RFXANK 192.59 19 19.1  

ECA21 TKY678 192.59 ms   

ECA21 CCNB1 197.31 5 68.5  
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA21 UMNe564 197.31 ms   

ECA21 ERBB2IP 213.16 5 65.2  

ECA21 LOC375449 213.16 5 65.9  

ECA21 TKY806 232.69 ms   

ECA21 FLJ13611 263.87 5 64.9  

ECA21 ADAMTS6 278.07 5 64.5  

ECA21 KIF2 0.00 5 61.7  

ECA21 HESTG14 17.67 ms   

ECA21 XTP1 28.04 5 59.9  

ECA21 CKN1 38.47 5 60.2  

ECA21 UMNe229 48.32 ms   

ECA21 TKY677 53.06 ms   

ECA21 PDE4D 76.62 5 58.3  

ECA21 FLJ35954 97.76 5 56.3  

ECA21 HTG10 131.96 ms   

ECA21 CTLA3 146.20 5 54.4  

ECA21 DDX4 150.49 5 55.1  

ECA21 GZMA 154.41 5 54.5  

ECA21 FST 167.10 5 52.8  

ECA21 PELO 189.20 5 52.1  

ECA21 COR073 193.26 ms   

ECA21 LEX060 197.51 ms   

ECA21 FLJ21308 206.39 5 50.1  

ECA21 HCN1 215.28 5 45.3  

ECA21 OSRF 224.18 5 40.8  



 

 

197

Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA21 COR068 238.20 ms   

ECA21 HMGCS1 247.10 ms   

ECA21 NNT 247.10 5 43.7  

ECA21 GHR 251.36 5 42.5  

ECA21 FBXO4 251.36 5 42.0  

ECA21 C6 255.78 5 41.2  

ECA21 FLJ39155 270.47 5 38.3  

ECA21 UMNe139 270.47 ms   

ECA21 UMNe206 280.27 ms   

ECA21 C9 284.93 5 39.3  

ECA21 DAB2 284.93 5 39.4  

ECA21 GDNF 294.74 5 37.9  

ECA21 UMNe327 314.30 ms   

ECA21 SKP2 354.15 5 36.2  

ECA21 IDN3 365.47 5 37.0  

ECA21 TKY824 373.01 ms   

ECA21 IL7R 380.80 5 35.9  

ECA21 PRLR 399.44 5 35.1  

ECA21 UMNe464 404.34 ms   

ECA21 BRIX 404.34 5 35.0  

ECA21 C1QTNF3 413.20 5 34.1  

ECA21 TARS 422.05 5 33.5  

ECA21 FLJ11193 426.29 5 31.6  

ECA21 UMNe509 426.29 ms   

ECA21 HTG32 426.29 ms   
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Table A4-3 (continued) 
Horse 

Chromosome Marker Map 
Coordinate 

Human 
Chromosome # 

Human 
(Build 
35.1) 

Previous Alias 

ECA21 FLJ14054 426.29 5 32.8  

ECA21 TKY280 430.34 ms   

ECA21 NPR3 438.81 5 32.7  

ECA21 CDH9 522.31 5 26.9  

ECA21 LEX031 526.99 ms   

ECA21 CDH12 558.00 5 21.8  

ECA21 UMNe603 578.71 ms   

ECA21 MYO10 602.25 5 16.7  

ECA21 BASP1 607.44 5 17.3  

ECA21 TKY1018 607.44 ms   

ECA21 FBXL7 612.91 5 15.6  

ECA21 TRIO 622.71 5 14.2  

ECA21 DNAH5 627.62 5 13.7  

ECA21 LEX037 644.24 ms   

ECA21 LOC134146 655.33 5 dc  

ECA21 SEMA5A 671.86 5 9.1  

ECA21 AHT078 696.30 ms   

ECA21 SDHA 708.46 5 2.7  

ECA21 ADCY2 736.45 5 7.7  

ECA21 POLS 760.02 5 6.8  
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Table A5-3.  Detailed information about PCR primers used to place and/or verify gene and microsatellite positions on the ECA21 contig. 
ACCESSION 

NUMBER ENSEMBL/HORSE EST ID GENE PRIMERS 5’  3’ PRODUCT 
SIZE 

PCR 
CONDITIONS REFERENCE 

NM_024527 Plate22-H19-M13R.ab1 ABHD8 F: CGCTTACTGGTGGAGAACCT 
R: GTCTGCCAGCTCCACCTC 105 55, 2.0  

NM_005858 ENSCAFT00000025526 AKAP8 F: ACCAGCGTTTGGACATGATG 
R: ATAGTCGTAGCTGTAGCTGG 710 58, 2.0 (Brinkmeyer-Langford et al 2005) 

NM_032493 Plate32-D10-M13R.ab1 AP1M1 F: ATCACTCAGGAAGGCCACAA 
R: CCTCGTTCTTCCGGTACTTG 109 60, 1.5  

NM_020410 Plate9-K09-M13.rgy.ab1 ATP13A1 F: AAAGTCACTGGCCCTGGAG 
R: CCACACATGAGGGTCACGTA 266 60, 1.5  

NM_014299 CT02042A2E08.f1.ab1 BRD4 F: GAGATGCGTTTTGCCAAGAT 
R: CGCTCCTCCTCAGAGTCATC 170 58, 1.5  

NM_031966  CCNB1 F: CAAAATACCTACTGGGTCGG 
R: AATTTCTGGAGGGTACATTTCT 704 58, 1.5 (Goh et al 2006) 

NM_001799 LeukoS5_2_C03.g1_A027 CDK7 F: CAACTTGTTGCTAGATGAAAATGG 
R: GGTCACAACCTGATGTGTATAAGC 103 60, 1.5  

NM_006387 ENSCAFT00000024839 CHERP F: GGAGCTTCGAAATGTCATCG 
R: CGCCAGCTTGCACTTGTAGT 154 60, 1.5  

NM_153221 CT020018A20B09.ab1 CILP2 F: CTCCTCCGATGGCTTCTCTA 
R: CATCTCCCTGCGGATATCAT 151 60, 1.5  

NM_000095 ENSCAFT00000023228 COMP F: GGACAAGGTGGTGGACAAGA 
R: TTCATGGTCTGCACGATCTC 353 TD60, 2.0  

NM_007263 MONO1_16_E08.g1_A005 COPE F: TCAACCTCATTGTCCTGTCG 
R: CTTCAGCTGGGACAGGTAGC 507 62, 1.5  

NM_004831 CT020013B10B07.ab1 CRSP7 F: CCGGCAAAGTGAGTTCAGA 
R: GTGCTTCGGTTGCTGTGTTA 167 60, 1.5  

NM_006532 ENST00000262809 ELL F: CTGATTTCATCGACCCCCTA 
R: CCCAGGTCATTGCTGACAT 232 60, 1.5  

NM_014077 SM0056-2_A06_02.ab1 FAM32A F: AGGACAAGGACAAGGCGAAG 
R: CCGTTTCTCCTGCATCTTCT 128 60, 1.5  

NM_012181 ENST00000222308 FKBP8 F: CACGGAGACCGCCTTGTA 
R: AGCGATGACCACAGAGAGTG 562 60, 1.5  

NM_173483 OTTHUMT00000151074 FLJ39501 F: GCATCGGACAGAGCTTCG 
R: GCTCCACCTTGAGCCAGA 153 TD60, 2.0  

NM_016573 ENSCAFG00000014170 GMIP F: TACGACGCCTTCATCTCTCT 
R: GTTGTTGGCAGACATCTTGTT 570 60, 1.5  

NM_015965 CT020003A10_PLATE_H08_64_075.ab1 GRIM19 F: GGAGAACCTGGAGGAGGAAG 
R: CCGTAGGTGGCATTGAGAAT 389 60, 1.5  

NM_032620 LeukoS1_6_B12.g1_A023 GTPBP3 F: CGTACAGCTGCAACTTCCTG 
R: ACTTCAGCCAGCTCCTTCCT 223 60, 1.5  

NM_005543 ENSCAFG00000015159 INSL3 F: CTTCCAGAGGGAGATCCAGA 
R: CTGGGCAGGTACTCCATCA 562 58, 1.5 (Brinkmeyer-Langford et al 2005) 

NM_000215  JAK3 F: CTGCGGTTGGTCATGGAGTA 
R: GAAGTCGGCGATCTTGACGT 486 58, .15 (Brinkmeyer-Langford et al 2005) 

NM_005354  JUND F: ATCGACATGGACACTCAGGAG 
R: GCTGAGGACCTTCTGCTTGA 210 58, 1.5 (Brinkmeyer-Langford et al 2005) 
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Table A5-3 (continued) 
ACCESSION 

NUMBER ENSEMBL/HORSE EST ID GENE PRIMERS 5’  3’ PRODUCT 
SIZE 

PCR 
CONDITIONS REFERENCE 

NM_002248 ENSCAFT00000023962 KCNN1 F: AGCAGGAAGTGACCAGCAAC 
R: ATGCCAGTGAGCAGACACAC 127 60, 1.5  

XM_048457 CT020016B20F06.ab1 KIAA0892 
F: TTTCTTTGCTTCTAGGGCATTT 

R: 
AGGGTGATCACTAAAAGCACTTTAC 

100 55, 2.0  

NM_004831  KLF2 F: AGAAGCCCTACCACTGCAAC 
R: CTACATGTGCCGCTTCATG 173 58, 1.5 (Brinkmeyer-Langford et al 2005) 

NM_138442 CT020014A20D10.ab1 LOC115098 F: CAGGGATGCCCAAGAAGTT 
R: GCTCCTTCCTCATGACGTGT 156 62, 1.5  

NM_012321 Plate17-F24-M13.rgy.ab1  653 LSM4 F: ACAAGTTCTGGCGGATGC 
R: CCTTCTGCTGCTTCTGCTG 150 58, 1.5  

NM_018467 ENST00000263897 MDS032 F: GGACCAGAACCTGGAGAAACT 
R: GCAGACGATAATGAGCATGG 103 60, 1.5  

NM_025021 ENST00000321949 MECT1 F: ATGGAGAACGCCATCAGC 
R: AGGATGATGTTGGGGATGC 158 60, 1.5  

NM_005919 ENST00000162023 MEF2B F: CTGAGAGCGTCTACGTCCTG 
R: CTGCAGGCGTACTCCACAGT 1120 60, 1.5  

NM_024104 CT04003X1G10.f1.ab1 MGC2747 F: CTGGAAAACCGGTGACCTT 
R: GGAACCCTCCTGAAACTCCT 170 60, 1.5  

NM_004145  MYO9B F: CTGTTCCTGCAGAGCTGGTT 
R: CAGGCGGATGATGCTCAGT 213 60, 1.5 (Brinkmeyer-Langford et al 2005) 

NM_000435 ENSCAFT00000025565 NOTCH3 F: GTGGGCTCCTTTTCGTGCT 
R: CAGTGGAAGCCTCCATAACC 161 58, 1.5  

NM_017660 Plate19-A20-M13.rgy.ab1 p66alpha F: CACACGTTCAGCCAGTCG 
R: CAGTTGGAGGTGGCGTTG 122 62, 1.5  

NM_024050 CT02041A1F05.f1.ab1 PCIA1 F: CGCCAAGAAGAGAGACCAG 
R: CGAGGAGCAGACAAGACAGG 150 60, 1.5  

NM_012088 Plate17-K03-M13.rgy.ab1  416 PGLS F: GGGCCTCATCTCTGTCTTCTC 
R: CCACCAGTTGGGCTAGGG 62 58, 1.5  

NM_005027  PIK3R2 F: AGGGAGAGTACACGCTGAC 
R: TTGGACACTGGGTAGAGGAG 656 58, 1.5 (Brinkmeyer-Langford et al 2005) 

NM_000980 Plate26-A08-M13R.ab1 RPL18A F: ACTGCGGGTGAAGAACTTTG 
R: CTGCGATCTCCTCCACTTTC 879 60, 1.5  

NM_014884  SFRS14 F: CCCAACTTTTCCAGACTCTC 
R: ACTCTGGGTGTTTTCAAAGC 151 58, 1.5 (Brinkmeyer-Langford et al 2005) 

U90593 (microsatellite) SG14 F: CCCCAGTGGTTCCATTTAGATGT 
R: GGGGAGAGCATTTTGGTGA 188 58, 3.0 (Godard et al. 1997) 

U90594 (microsatellite) SG16 F: AATTCTCAAATGGTTCAGTGA 
R: CTCCCTCCCTTCCTTCTA 190 58, 2.0 (Godard et al. 1997) 

NM_032627 CT020008A20D09.ab1 SSBP4 F: ACCAACTCCAGCGAGAACAT 
R: GATCCGTTCACGTGGTGAG 231 60, 1.5  

AB048331 (microsatellite) TKY021 F: AGGTGAACCCCAGAGAGTCC 
R: AGTGAGGCCTCGGTTGGGAG 117-132 58, 2.0 (Kakoi et al. 1999; Swinburne et al. 2000) 

AB103896 (microsatellite) TKY678 F: TAAAAGAAGGGGGTAATGGG 
R: TGTGGTGCTTGTTCCAGCA 207 58, 1.5 (Tozaki et al. in preparation) 
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Table A5-3 (continued) 
ACCESSION 

NUMBER ENSEMBL/HORSE EST ID GENE PRIMERS 5’  3’ PRODUCT 
SIZE 

PCR 
CONDITIONS REFERENCE 

NM_024074 SM0051-2_E05_09.ab1  576 TMEM38A 
(MGC3169) 

F: CTCTCACAGCTCCCCTTTTG 
R: AGCTCCTCCTTGGACTTGGT 162 58, 1.5  

NM_003290 ENSP00000300933 TPM4 F: TGAAAAGGAGGACAAATATGAAGA 
R: CCAGTTTTGCAACCGTTCTC 189 TD60, 2.0  

AY464530 (microsatellite) UMNe564 F: GAATACAGGGGCTTTTTCTGC 
R: TTCTGCATCTTGATTGCAGTG 223 58, 1.5 (Wagner et al 2004b) 

 

 
 
 
 
 

Table A6-1. Composite information about all new genes (ordered according to human sequence map) and microsatellite markers mapped to ECAX. Primer sequences with note "Secondary 
primers" indicate that the final primers for RH typing were designed after sequencing the initial equine PCR product. Mouse gene sequence positions written with blat indicate that map 
positions were derived indirectly through BLAT comparison of corresponding human gene sequence in Mouse Genome Browser Gateway, http://genome.ucsc.edu/cgi-bin/hgGateway. 
Information for all other markers on the RH map but not listed is available from ref. 1. Fluorescence in situ hybridization locations shown with bold font are from this study. 

 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 
(mM) 

Ta Reference 
and  
accession No 

ASMT XY acetylserotonin O-
methyltransferase 
(homolog on Y) 

Xp Xp22.33 1.3 - F: GTTCTCTTTGCTGCCTGTGA 
R: CAGCAGCTTCAGGGACACAC 

150 1.5 60  

DXYS155E XY B-lymphocyte 
antigen precursor 
(homolog on Y) 

Xp Xp22.33 1.3 - F: GACATCCCCATGCTGGAC 
R: CTCGCCCTTGAACATGAG 

171 1.5 62  

GYG2 XY glycogenin 2 Xp Xp22.33 2.3 - F: GGTTATCCTCTCAAGGGTGT 
R: TGTCTGCATCCAGGAAGAC 

170 1.5 54  

AdlicanX  
(DKFZp564I1922) 

adlican Xp25+ 
Yqter 

Xp22.33 2.8 - F: TTTGCCAATGGGACCCTG 
R: CGGACTGCATGAAGGAGTT 

274 1.5 62  

NLGN4 XY neuroligin 4 
precursor 

Xp25 Xp22.32 5.2 84.1 
BLAT 

F: GAGATCATGTCCCTGCAGAT 
R: TCATGGTGATGGTGTTTGGC 

163 1.5 58  

STS X steroid sulfatase  Xp25 Xp22.31 6.5 - F: CCAATGGATGTTTTTCCAC 
R: ATGGGTTTCTTTCTCTTGG 

111 1.5 58 horse gene 
AF133204; 
(Raudsepp et 
al. 2002) 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

KAL1 Kallmann syndrome 
1 sequence  

Xp Xp22.31 7.9 - F: CAGTCTGGACAGCTGGAGGT 
R: GTGGCGTCGTCTTCACTAGG 

110 1.5 58-60  

TBL1X  transducin (beta)-
like 1X-linked 

Xp Xp22.22 8.8 67.2 
BLAT 

F: CACTCGAAACCAATGGAA 
R: TTCCATATCCTGGCAGTCGA 

500 1.5 58  

APXL XY apical protein-like 
(Xenopus laevis) 

Xp25 Xp22.22 9.1 140.9 F: AGGGCATCGTCTTCGACAT 
R: ACAGGCACTTCAGCTGCT 

153 1.5 58  

MID1 midline 1 
(Opitz/BBB 
syndrome) 

Xp Xp22.22 9.8 157.8 F: CCCTATTTGTCTGGAGCTC 
R: GATGATGTTCTGCAGGGTG 

220 1.5 58  

AMELX amelogenin (X 
chromosome, 
amelogenesis 
imperfecta 1) 

Xp Xp22.22 10.6 157.3 
BLAT 

F: CACCACCAAATCATTCCCG 
R: TTGGAGTCATGGAGTGTTGG 

151 1.5 60 horse cDNA 
AB032193 

MSL3L1 male-specific lethal 
3-like 1 
(Drosophila) 

Xp Xp22.22 11.1 156.7 F: CAATGCAGCCTTTTCAGC 
R: CTTAATCCATCCACCATCTC 

~780 1.5 62  

TLR7 toll-like receptor 7 Xp23-
p22 

Xp22.22 12.2 155.3 F: GAGGAAAGGGACTGGTTA 
R: ACACTGCCAGAAGTACGGGT 

300 1.5 62  

TLR8 toll-like receptor 8 Xp Xp22.22 12.2 155.2 F: TAGCCAAGGTAAAAGGCTAC 
R: TGCATGAGGTTGTCGATGAT 

211 1.5 54  

TMSB4X thymosin, beta 4 Xp23-
p22 

Xp22.22 12.3 155.2 F: ATTCCACAAGCATTGCCTTC 
R: CCCACTTCTTCCTTCACCAA 

210 1.5 58  

EGFL6 epidermal growth 
factor-like protein 6 

Xp Xp22.22 12.9 154.5 F: CATTTTTGAAGCAGAACGTG 
R: TCCACAGATAAAGGGCCATC 

102 1.5 58  

GPM6B glycoprotein M6B 
isoform 2 

Xp22 Xp22.22 13.1 154.3 F: ATGCTGCATCAAGTGTCTGG 
R: CAAGGCATGGTCACTTGTGT 

166 1.5 65 horse testis 
cDNA library 
BM414631 

GLRA2 glycine receptor, 
alpha 2 

Xq17 Xp22.22 13.9 153.1 
 

F: TCCTGGGTTAACTGATGG 
R: TGAAGTGGTTTGTCTCTAAG 

296 1.5 58 (Milenkovic 
et al. 2002) 

PIGA phosphatidylinositol 
glycan, class A 

Xp Xp22.13 14.6 152.4 F: TGCCTGATTGAAAGAGGGCA 
R: CAGCATTAGGAATGACGGAC 

454 1.5 63  

CTPS2 cytidine 
triphosphate 
synthase II 

Xp Xp22.13 15.9 150.9 F: GTCTTAAACGATGGTGGAGA 
R: CCTGGACAGCATCAGTAATG 

~1200 2.0 56  

RBBP7 retinoblastoma 
binding protein 7 

Xp Xp22.13 16.2 150.8 F: TGCATATTTGGGAACAGCAA 
R: TACTGCTCCATGAACGCTTG 

277 1.5 62 horse 
mesenteric 
lymph node 
cDNA 
library, 
BM780950 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

SCML2 sex comb on 
midleg-like 2 

Xp Xp22.13 17.6 149.1 F: GTTGGCATGAAGTTGGAAGC 
R: TTTTCACATGTCCCAACAGG 

176 2.0 55  

PPEF1 protein phosphatase, 
EF hand calcium-
binding domain 1 

Xp Xp22.13 18.0 148.6 
BLAT 

F: CTCATCTCCATGGAAGAATT 
R: GCTTCCATCTTTGTTTAAGTCC 

122 1.5 58  

GPR64 HE6 receptor long 
splice variant 

Xp Xp22.13 18.3 148.4 
 

F: TGTTCATTGTGGTCCTGGTT 
R: GTAAAAATGTAAGGCCAGCG 

114 2.0 55  

PDHA1 pyruvate 
dehydrogenase 
(lipoamide) alpha 1 

Xp Xp11.12 18.7 148.1 F: AATGTGATCTTCACCGGCTG 
R: GCTTTTAACTCCATTCGGCG 

115 1.5 58  

RPS6KA3 ribosomal protein 
S6 kinase, 90kDa, 
polypeptide 3 

Xp Xp22.12 19.5 147.2 F: GGATATTTGGTACCGTGGTG 
R: AAGAGACGAAAGCAGGAGCA 
SECONDARY PRIMERS 

144 1.5 58  

CNK2 connector enhancer 
of KSR2 

Xp Xp22.12 20.7 145.8 
 

F: AGAAGGAGTGGCCATTATGA 
R: AACCAGGCAAGCAGACTCTT 

105 1.5 60  

SMS  spermine synthase Xp22 Xp22.12 21.3 145.4 F: GACAGATACTGGCCCACTGC 
R: GCCAAATCACTTTCCGCCAA 

867 1.5 62  

ACATE2 mitochondrial Acyl-
CoA Thioesterase 

Xp Xp22.11 23.0 143.2 F: CTTCATAGTTTCCTGGCTAAG 
R: CCTTACGGTGTTTTGAACAG 

138 1.5 50  

PRDX4 peroxiredoxin 4 Xp Xp22.11 23.0 143.3 F: GACAAGGGAATCCTAAGAC 
R: TTCTCCGTGTTTGTCAGTGT 

111 2.0 55  

SAT 
HESTX-13 

spermidine/spermine 
N1-acetyltransferase 

Xp Xp22.11 23.1 143.2 F: 
GGTAGCAGAATGGAATGAACCATC 
R: 
AGCAAGTACTCCTTGTCGATCTTG 

111 2.0 65 horse 
monocyte 
cDNA library 
BI961507 

EIF2s3 eukaryotic 
translation initiation 
factor 2, subunit 3 
gamma 

Xp22-
p21dist 

Xp22.11 23.4 83.9 F: CAGGTGCTTGGTGCAGTTG 
R: TTTGTCTCCTTCAGTACGTACACC 

102 1.5 62 (Hu et al. 
1997) 

ARX aristaless related 
homeobox 

Xp Xp22.11 24.3 83.0 F: GAGCAATCAGTACCAGGAG 
R: AACAGCCGCATTTTGCAC 

128 1.5 60  

NR0B1 nuclear receptor 
subfamily 0, group 
B, member 1 

Xp Xp21.2 29.6 75.9 F: GGGCAGCATCCTCTACAACA 
R: CACCTGGAAGCAGGGTAAGT 

201 1.5 62 horse cDNA 
AF167158 

DMD dystrophin Xp16 Xp21.1 30.4 74.8 F: TCTGGAGTGAGTCTGTCAAA 
R: GAACCCAGTACCTGAAAACA 

187 1.5 58 (Milenkovic 
et al. 2002) 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

SRPX sushi-repeat-
containing protein 

Xp Xp11.4 37.0 8.5 F: GGAGACCACAAGATCCAGTA 
R: GTCACTGGAGCACTTCATGT 

838 1.5 58  

USP9X 
HESTX-7 

ubiquitin specific 
protease 9 

Xp Xp11.4 40.0 11.7 F: GCATGGTAGCTCTCTTCAGCA 
R: GTTCATCTCCAAGCCATTCC 

266 2.0 68 horse 
monocyte 
cDNA 
library, 
BI961890 

DDX3 DEAD (Asp-Glu-
Ala-Asp) box 
polypeptide 3 

Xp Xp11.4 40.2 11.8 F: GAAGCTGATCGGATGTTGGA 
R: GGTCTCCACAAACACTAAGG 

~600 1.5 58  

MAOA monoamine oxidase 
A 

Xp Xp11.3 42.6 15.1 F: GGATCTGGTCAAGTAAGCGA 
R: GGCCTCCTTGTAATACATCA 

~600 3.0 58  

FLJ22843 hypothetical protein 
FLJ22843 

Xp Xp11.3 43.0 15.6 
BLAT 

F: GAGGATCAGTTTTATACTGTGC 
R: CATGTAAGGATCTTCTGGAC 

165 3.0 58  

TIMP1 
HESTX-5 

tissue inhibitor of 
metalloproteinase 

Xp Xp11.3 46.4 19.4 F: CCTCAGAAGTCAACCAGACC 
R: CTCCGACCTGTGGAAGTATC 

345 1.5 63 horse 
monocyte 
cDNA library 
BI961880 

JM5 
[TUDPEc204] 

JM5 protein Xp Xp11.23 47.9 6.2 
BLAT 
DXImx38e 

F: GGCCACGCGTCGACTAGTAC 
R: CTGTTTGAGCGGATGAAGGTGAA 

107 3.0 55 horse 
lymphocyte 
cDNA library 
BI395200 
 

AKAP4 major sperm fibrous 
sheath protein 

Xp13 Xp11.22 48.8 5.6 F: GGTTTCCAACATGCACTGAG 
R: TCTCCTTGATTTCCTTACGG 

346 3.0 58  

BMP15 bone morphogenetic 
protein 15 precursor 

Xp Xp11.22 49.5 4.9 F: CTCCACCCTTTCCAAGTCAG 
R: ATGGCATGATTGGGGGAATT 

140 3.0 58  

NUDT11 nudix (nucleoside 
diphosphate linked 
moiety X)-type 
motif 11 

Xp13 Xp11.22 50.1 4.8 F: CTGTTAGTGAGTAGCAGTCG 
R: CAATGCTAACCGAATCTTCC 

241 1.5 58  

MAGED4 MAGED4 protein Xp Xp11.22 50.7 138.3 
trophinin 

F: AGGTACCCTCAAGGCACGTA 
R: AATGTTCGTCGTATTCTCGG 

455 1.5 58 horse testis 
cDNA library 
BM414656 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

SMCX Smcx homolog, X 
chromosome 

Xp Xp11.22 52.1 139.9 F: GCATCGCTTACCCCTATGAG 
R: TGTCTTCCTCTGTGGGTTCC 

~1200 1.5 63 horse mRNA; 
U52363 

UREB1 
[TUDPEc224] 

upstream regulatory 
element binding 
protein 1 

Xp Xp11.22 52.5 139.6 F: GGCCACGCGTCGACTAGTAC 
R: CTGTTTGAGCGGATGAAGGTGAA 

195 1.5 62 horse cDNA, 
TUDPEc224, 
BI395210 

MAGEH1 melanoma-
associated antigen 
H1 

Xp13-
p12 

Xp11.21 54.4 141.3 
BLAT 

F: TTATAAGCCGGTGCCCCGT 
R: GCACCTGAATTGAGGATAGC 

198 1.5 58  

ASB12 ankyrin repeat and 
SOCS box-
containing 12 

Xq11 Xq11.2 62.3 85.1 F: CCTCATGGACATCACCAAGA 
R: GCAGCTAAGGTGGCCATAA 

228 1.5 58  

HCA127 hepatocellular 
carcinoma-
associated antigen 
127 

Xq Xq11.2 63.0 85.3 
BLAT 

F: GAATGACCTAAACAAGCTGC 
R: ATAGGTCAGGGAGCCTCT 

119 1.5 60  

MSN moesin Xq Xq12 63.7 85.8 F: AGGATGTGCGGAAGGAAAG 
R: TCAGGCGGGCAGTAAATATC 

157 1.5 50  

HEPH hephaestin Xq Xq12 64.2 86.1 F: TGAAGATGCTGGGCATGCA 
R: CTTGAAGCTGTCATCCAGG 

179 1.5 60  

XEDAR X-linked ectodermal 
dysplasia receptor 
long isoform 

Xq Xq12 64.6 87.1 
BLAT 

F: TGGTTATGGAGAGGGTGGAG 
R: GGGATGCACTCTTGGTCCT 

766 1.5 58  

AR androgen receptor Xq15-
q16 

Xq12 65.6 87.9 F: GGAGCCCGGAAGTTAAAGAA 
R: ACCGTCAGCTTCTGGGTTG 

102 1.5 58 horse mRNA, 
AY032721; 
(Milenkovic 
et al. 2002) 

PJA1 ubiquitin protein 
ligase Praja1 

Xq Xq13.1 67.2 89.3 F: GTCAAACCACCAAGAGGAG 
R: TCCTCCTCACTATCATCTG 

202 1.5 58  

GJB1 gap junction protein, 
beta 1, 32kDa  

Xq Xq13.1 69.3 91.2 F: CTACGACCACTTTTTCCCCA 
R: CCCTGAGATGTGGACCTTGT 

204 2.0 58 horse cDNA, 
AJ319909 

TAF1 TATA box binding 
protein (TBP)-
associated factor 

Xq Xq13.1 69.4 91.4 
BLAT 

F: TCTTCGAGGCACCTTTGGA 
R: ATGTGCTTTAGCAAGGGCTG 

314 1.5 58  

PHKA1 phosphorylase 
kinase, alpha 1 
(muscle) 

Xq14 Xq13.1 70.6 92.4 F: GCAGATGATATCATGTTGGC 
R: ATGGCACAGATGCTGTGG 

155 1.5 58  

ATP7A 
[MNK] 

ATPase, Cu++ 
transporting, alpha 
polypeptide 
(Menkes syndrome) 

Xq Xq12-
q13 

75.9 95.9 F: CACAGCAAAGGAGTCCATCA 
R: CGGTTTCTTGAGTGAGAGGC 

360 2.0 58 Horse cDNA 
AY011430 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

P2RY10 putative purinergic 
receptor P2Y10 

Xq Xq21.1 76.9 97.0 F: AGTGCTGCCATATGGGTC 
R: TATGATAGGGAGTGAAGCAG 

328 1.5 58  

ITM2A integral membrane 
protein 2A 

Xq14-
q15 

Xq21 77.3 97.3 F: AATCATTGATGTGCCTGTCC 
R: CATCAGATAGCAGTTCCCCA 

368 1.5 60  

SH3BGRL 
HESTX-6 

SH3 domain binding 
glutamic acid-rich 
protein like 

Xq14-
q15 

Xq21.1 79.2 99.0 F: CATTCATTGTCCAAGGCTGGT 
R: 
CACTGGAATAGAGGCATAGAGAAG 

194 1.5 63 horse 
monocyte 
cDNA 
library, 
BI961868 

POU3F4 POU domain, class 
3, transcription 
factor 4 

Xq Xq21.1 81.5 100.8 F: ATTACTTGCAGGGAGTTCC 
R: CCAGCCACTTGTTCAGCA 

648 2.0 58  

ZNF6 zinc finger protein 6 Xq Xq21.1 83.2 102.3 
BLAT 

F: GAGCATATGGGGAACACA 
R: CATCTTCTCCCGCTGCAT 

~1200 1.5 60  

CHM choroideremia (Rab 
escort protein 1) 

Xq15-
q16 

Xq21.1 83.8 102.8 F: ATTAACCCCCAACCTCCAAT 
R: ACTGAGGGAGTTCTCCTTG 

173 1.5 58  

KLHL4 kelch-like 4 
(Drosophila) 

Xq Xq21.31 85.5 104.2 
BLAT 

F: GGCTACATATTGGCACCATG 
R: TTGACATGGGAGGCATCAC 

165 1.5 58  

PABPC5 poly(A) binding 
protein, cytoplasmic 
5 

Xq Xq21.31 89.4 109.6 F: GGAAAACCATTCCGCCTTAT 
R: TTGAGCCGCACTCCATTCA 

172 1.5 55  

NAP1L3 nucleosome 
assembly protein 1-
like 3 

Xq Xq21.32 91.6 112.0 F: CCAGATCACAATGATCCCTT 
R: TGATGCATTAGGAACCACTC 

169 1.5 TD65  

DIAPH2 diaphanous homolog 
2 (Drosophila) 

Xq17-
q21prox 

Xq21.33 94.7 118.1 F: GCCTGTGAAGAACTGAAGAA 
R: CCCAAAGACTGGGCATTTC 

107 1.5 60  

CHM1L 
[TNMD] 

tenomodulin Xq Xq22.1 98.6 122.3 F: TCACTTCCCTACCAACGACA 
R: GGCATGATGACACGACAGAT 

550 1.5 65 horse cDNA 
AB059407 

GLA galactosidase, alpha Xq Xq22.1 99.4 123.0 F: AATGACCTCCGACACATCAG 
R: GAAGCAAAACAGTGCCTGTG 

~700 1.5 60  

RPL36A 
HESTX-10 

ribosomal protein 
L36a 

Xq Xq22.1 99.4 - F: CACAATACAAGAAGGGCAAGG 
R: CACCATAGCCACTCTGCTTC 

269 1.5 65 horse 
monocyte 
cDNA library 
BI961599 

TMSNB thymosin beta Xq Xq22.1 100.5 - F: AGCAGGAGAAAGAGTGTGT 
R: AGGTGAGAAGACATCAGAAGA 

153 1.5 60  

KIAA0443 hypothetical protein 
KIAA0443 

Xq21 
prox 

Xq22.1 100.6 124.3 F: GGTCAGTCAGGGAAATTCG 
R: AACTCGGGAGGAGGGATAAT 

278 1.5 60  
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

LOC170242 
(CG7943) 

similar to 
hypothetical protein 
CG7943 

Xq Xq22.2 101.9 - F: GGAAAGAAAAGCTGGCAC 
R: GAAGTATTGAGGGCCTTCGT 

168 1.5 55  

SERPINA7 serine (or cysteine) 
proteinase inhibitor, 
clade A (alpha-1 
antiproteinase 

Xq Xq22.3 104.0 - F: TCAACCTGTACCGGAGGTTC 
R: TTCCAGCTCCTTCTTTGGAA 

230 2.0 55  

CLDN2 claudin 2 Xq21dist Xq22.3 104.9 128.1 F: ATCACCCAGTGTGACATCTA 
R: CAACAGGAATGAAGCCCAG 

243    

MID2 midline 2 Xq Xq22.3 105.8 129.1 F: TTGTGCTCACAGCCTCTGC 
R: CAGAACTGGCAAGCAATTCG 

294 1.5 53  

AUTL2 putative autophagy-
related cysteine 
endopeptidase 2 

Xq Xq22.3 106.1 129.3 F: GACCTGGAGGAAGATTTCG 
R: GTATGCTGTTGGCATATCAG 

147 1.5 60  

IRS4 insulin receptor 
substrate 4 

Xq23 Xq23 106.7 129.9 F: AAAACCACAAAAGCCCACAC 
R: AAATGGCACTCCGAACTCAA 

196 1.5 60  

PAK3 p21 activated kinase 
3 

Xq24-
q25 

Xq21.3-
q24 

109.1 131.7 F: TACTCCCTCGGATTATGTAATTTC 
R: GGAGGTTCGAATGCAAGAGGA 

238 2.0 58 Fetal cDNA 
library 
EST#841; 
G62153; 
(Chowdhary 
et al. 2003) 

DCX doublecortex; 
lissencephaly, X-
linked 
(doublecortin) 

Xq Xq23 109.3 132.1 F: CAAACAGGGCAGCAATGTC 
R: TTTGAAGGAGGTTCGAATGC 

198 1.5 60  

AMOT angiomotin Xq Xq23 110.7 133.7 F: CTGGTAGACCCCCTGATTTA 
R: CAGTGGACAGGCAGGATACC 

153 2.0 58  

HTR2C 5-
hydroxytryptamine 
(serotonin) receptor 
2C 

Xq Xq23 112.5 135.4 F: ATGTCTGGCCACTACCTAGA 
R: GAATTGAAACGGCTATGCTC 

148 1.5 58  

PLS3 plastin 3 (T isoform) Xq Xq23 113.6 65.5 
 

F: TGTCAGGGCACACCTGAAAT 
R: CACTGGGTGGAAAGCAAAAT 

198 1.5 62 Horse 
Lambda Zap 
Express 
library 
AW260928 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

AGTR2 angiotensin II 
receptor, type 2 

Xq Xq23 114.0 20.0 F: TCTTCCTCTATGGGCAACCT 
R: TGCCAGGGATTTCTTCTTTG 

189 1.5 60  

SLC6A14 solute carrier family 
6 (neurotransmitter 
transporter), 
member 14 

Xq Xq23 114.3 20.2 F: CTGATTGACCACTTCTGTGC 
R: CCACCATAGCCAGAATATCCA 

450 1.5 60  

BKLHD2 
[KIAA1309,  
FLJ10262] 

BTB and kelch 
domain containing 2 

Xq Xq24 115.7 21.8 F: GAGTCATGATGGCCTCTGC 
R: GCAGCTTCCAGTGTGTCTTG 

300 1.5 63  

RNF127 
(FLJ22612) 

ring finger protein 
127 (Hypothetical 
protein FLJ22612) 

Xq Xq24 116.8 27.6 F: GAATATGGCTGCATCCTAGAG 
R: TGTGTTGTAACCATCCCGC 

126 1.5 60  

PGRMC1 progesterone 
receptor membrane 
component 1 

Xq Xq24 117.1 27.9 F: GGGCAAACTGCTGAAGGA 
R: CTTTCTGGATTTGTGACACAC 

293 1.5 60  

LAMP2 
HESTX-9 

lysosomal-
associated 
membrane protein 2 

Xq25-
q26 

Xq24 118.3 29.5 F: CGGTTCTATCTGAAGGAGGTG 
R: CCTTCACATTGAAAGGCTGA 

~600 1.5 58 horse 
monocyte 
cDNA 
library; 
BI961803 

GRIA3 glutamate receptor 3 
isoform flip 
precursor 

Xq Xq25 121.0 32.7 F: CCCTTGGCTTATGAAATCTG 
R: TTCATTTGGAGGATCCGGAG 

159 2.0 58  

BIRC4 
[XIAP] 

baculoviral IAP 
repeat-containing 4 

Xq Xq25 121.7 33.4 F: TCAGAACACAGGCGACACTT 
R: ATCCGTGCTTCGTAATCTGC 

155 1.5 63  

ODZ1 odz, odd Oz/ten-m 
homolog 
1(Drosophila) 

Xq26-
q27 

Xq25 122.2 33.8 F: CAGCAACGGAGTCCTGAAAA 
R: GGTTGTCCAGCCATTTTCGT 

115 1.5 58  

KIAA1892L 
(LOC139170) 

KIAA1892-like Xq Xq25 124.3 36.1 
BLAT 

F: ACCTGTGGGTGAACTACTTC 
R: GAGGCCTGAAGGGAGAGG 

119 1.5 TD65  

ZDHHC9 zinc finger, DHHC 
domain containing 9 

Xq26-
q27 

Xq26.1 127.6 39.4 
BLAT 

F: GGACTTTTGATGATGTTTGACC 
R: TTCTTTCTCACCACCATCAC 

150 1.5 58  

ARHGEF6 Rac/Cdc42 guanine 
nucleotide exchange 
factor (GEF) 6 

Xq27 Xq26.3 134.4 46.8 F: AGCATGTTTTTGGGACTTGG 
R: GGCAAACAGGAACCCATTTA 

190 1.5 62 horse 
monocyte 
cDNA library 
BM734718 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

TNFSF5 tumor necrosis 
factor (ligand) 
superfamily, 
member 5 

Xq Xq26.2 134.4 46.8 F: CAGCTGGCCGTTAAAAGACA 
R: CCTCCCAAGTGAATGGATTG 

203 1.5 60  

RBMX RNA binding motif 
protein, X 
chromosome 

Xq Xq26.3 134.6 47.0 F: TTCCCTAAAGGCCACTTCCT 
R: CATAACCCGACCACCCTCTA 

153 1.5 53 horse 
monocyte 
cDNA library 
BI961399 

ZIC3 Zic family member 
3 heterotaxy 1  

Xq Xq26.3 135.3 47.6 F: CAGATGGTTGTTTAACTGCG 
R: CAGGGATGATTAAATCCAGC 

145 1.5 63  

FGF13 fibroblast growth 
factor 13 

Xq Xq26.3 136.6 48.7 F: CTGTGGAACTGTGATGTTG 
R: TGTTGTTTAGGGGTAACCAGTC 

141 1.5 58  

LDOC1 leucine zipper, 
down-regulated in 
cancer 1 

Xq28 Xq27.2 138.9 random 
44.3 

F: AGAACAGCCAGCTCATGGAA 
R: GCCGTCTGCACGATAAACTC 

151 1.5 58  

DKFZp547- 
M2010 

hypothetical protein Xq Xq27.3 141.4 - F: GCTAGACTGAACCTGAGGAA 
R: CCACAGCTTTAATGCCACCA 

263 1.5 60  

CXorf2 
[KIAA1854] 

chromosome X open 
reading frame 2 

Xq Xq27.3 143.5 - F: AGGGAGGGGCAGATGCTT 
R: CCTCCTGGAGAACCCCTCT 

151 1.5 TD65 horse 
sequence 
containing 
TKY754 
AB103972 

FMR1 fragile X mental 
retardation 1 

Xq28 Xq27.3 145.6 58.2 F: GTACCTGGGGTCACTGCTA 
R: AGCCTCAATTCTCACCCTCA 

290 1.5 58  

FMR2 
[OX19] 

fragile X mental 
retardation 2 

Xq Xq28 146.2 59.2 F: CCCCAGTGTCTCTCAACAAC 
R: CCCCGTAACACGTTGCTAGT 

133 1.5 58  

FAM11A Family with 
sequence similarity 
11 member A 

Xq Xq28 147.3 60.0 
BLAT 

F: TGCTGCTGTTCTCTGTGTTG 
R: ATATTGGGGATTTCGTGCC 

185 1.5 58  

MTM1 myotubular 
myopathy 1 

Xq29 Xq28 148.4 60.8 F: 
GGTCTACCAAATAAGACATCTCAAG 
R: AGCGTTTACAAAAAGCCAGA 

100 1.5 58  

CD99L2 CD99 antigen-like 2 Xq Xq28 148.5 61.0 
BLAT 
Mic2l1 

F: GCAGAGACTGGCACCATC 
R: CTGTATGCTGAAGCAGAACT 

111 1.5 58  

OPN1MW opsin 1 (cone 
pigments), medium-
wave-sensitive 

Xq Xq28 151.9 63.7 F: GACCTGGCAGAGACCATCAT 
R: CAGCTTGGCATCAAATCTCA 

~700 1.5 62 horse mRNA 
AF132043 
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Table A6-1 (continued) 
Symbol 
GENES 

Name Horse 
cyto. 

Human 
cyto 

Human 
sequence 

map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

RPL10 
HESTX-8 

ribosomal protein 
L10 

Xq Xq28 152.0 63.8 F: GTACATGGTGAAAAGCTGTGG 
R: GGGCTTCAATCACATGCTC 

755 1.5 63 horse 
monocyte 
cDNA library 
BI961947 

GDI1 GDP dissociation 
inhibitor 1 

Xq Xq28 152.1 63.9 F: CTACAGTGGGGCGTAAGAGC 
R: GTTCCCAGCATCTCTGCTTC 

259 1.5 60 horse 
monocyte 
cDNA library 
BM735209 

CLIC2 
[HESTX-11] 

chloride intracellular 
channel 2 

Xq29 Xq28 152.9 - F: 
CAGAGAGTGAGCATATCAGAGAGG 
R: 
CTAGGTGTTGAATCCCATGCTAAG 

108 2.0 63 horse 
monocyte 
cDNA library 
BI961616 

SPRY3 sprouty homolog 3 
(Drosophila) 

Xq Xq28 153.4 - F: AGTGAGCACCTCTTCATC 
R: CCCTTAACACAGCAGAGACA 

158 2.0 55  

SYBL1 synaptobrevin-like 1 Xq Xq28 153.5 random 
75.1 

F: CGCGAGCCTTTAATTTTCTG 
R: TGCAGCCAAGACACTTGAGA 

119 3.0 56  

Microsatellites           
UM035 microsatellite Xq - - - F: GTGATGGATGACATGAGG 

R: GCATTTAAAACACTAGAACAC 
200 2.0 58 AF195581 

UMNe091 microsatellite Xp - - - F: 
GCAACAATAAGATACCCAAAGCAG 
R: GATCTTGGCCAACAACTCGTC 

153 1.5 58 AY391286 

UMNe148 microsatellite Xp - - - F: 
GATCAAACACTAGAATGTTCACAC 
R: CAGCTGTGAGGCAGAGACTG 

110 1.5 65 AF536262 

UMNe202 microsatellite Xp - - - F: ATGATTCCAAATGAGGCCTG 
R: AGCAATCCTTGCAGGCAG 

187 2.0 58 AF536285 

UMNe241 microsatellite Xq - - - F: TTAGTATGTGCTACCCCCCG 
R: CTCTTTGCCCTGAATTTTATGG 

103 1.5 58 AF536311 

UMNe266 microsatellite Xq - - - F: TTCCAAAAAACATAACAGGGTG 
R: CCAATTTGAATGCTTTTCATTG 

150 2.0 58 AF536324 

UMNe350 microsatellite Xp - - - F: GCAAAATAAAAGGGTCACTTGC 
R: AGTGCTCCAGGTGCTTATATCC 

153 2.0 58 AY391343 

UMNe375 microsatellite Xq - - - F: GGAGCCAGTTCAAAGATTTCC 
R: ATTCAGTGGGTTGTTTTGCC 

130 2.0 58 AY391357 

UMNe376 microsatellite Xq - - - F: 
ACGCATATTAAAGTTTGAGAAGTCC 
R: 
CAGACCTACTGAATTGGAATACACC 

155 2.0 58 AY391358 
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Table A6-1 (continued) 
Symbol 

Microsatellites 
Name Horse 

cyto. 
Human 

cyto 
Human 

sequence 
map 

Mouse 
sequence 

map 

Primers 5’ – 3’ PCR 
product
(bp) 

MgCl2 

(mM) 
Ta Reference 

and  
accession No 

UMNe390 microsatellite Xp - - - F: 
TATGAGACTCTGACATTTGCTGTG 
R: ATATTCCCTTCCTGAAACAGTCC 

195 2.0 62 AY464476 

UMNe397 microsatellite Xq - - - F: TGTGGCTCCATCTCTCCAG 
R: TTTTCATGTCCCTAGGAAATTC 

126 2.0 55 AY464478 

UMNe402 microsatellite Xq - - - F: AAGATGTGGCCTGTTTCAGG 
R: TTGATTCCTGGAGACTGATGG 

244 2.0 58 AY464479 
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